
Cryptography
and Network
Security

Sixth Edition
by William Stallings

Chapter 5

Advanced Encryption Standard

“It seems very simple.”

“It is very simple. But if you don’t know what
the key is it’s virtually indecipherable.”

—Talking to Strange Men,
Ruth Rendell

Origins
• clear a replacement for DES was needed

• have theoretical attacks that can break it

• have demonstrated exhaustive key search attacks

• can use Triple-DES – but slow, has small blocks

• US NIST issued call for ciphers in 1997

• 15 candidates accepted in Jun 98

• 5 were shortlisted in Aug-99

• Rijndael was selected as the AES in Oct-2000

• issued as FIPS PUB 197 standard in Nov-2001

The AES Cipher - Rijndael

• designed by Rijmen-Daemen in Belgium

• has 128/192/256 bit keys, 128 bit data

• an iterative rather than feistel cipher
• processes data as block of 4 columns of 4 bytes

• operates on entire data block in every round

• designed to be:
• resistant against known attacks

• speed and code compactness on many CPUs

• design simplicity

AES
Encryption
Process

AES Data Structures

Table 5.1
AES Parameters

AES
Encryption
and
Decryption

Detailed Structure

• Processes the entire data block as a single matrix during each round using substitutions and
permutation

• The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]

• The cipher begins and ends with an AddRoundKey stage

• Can view the cipher as alternating operations of XOR encryption (AddRoundKey) of a block,
followed by scrambling of the block (the other three stages), followed by XOR encryption, and so
on

• Each stage is easily reversible

• The decryption algorithm makes use of the expanded key in reverse order, however the
decryption algorithm is not identical to the encryption algorithm

• State is the same for both encryption and decryption

• Final round of both encryption and decryption consists of only three stages

Four different stages are used:

• Substitute bytes – uses an S-box to perform a byte-by-byte substitution of the block

• ShiftRows – a simple permutation

• MixColumns – a substitution that makes use of arithmetic over GF(28)

• AddRoundKey – a simple bitwise XOR of the current block with a portion of the expanded key

Some Comments on AES

• an iterative rather than feistel cipher

• key expanded into array of 32-bit words
• four words form round key in each round

• 4 different stages are used as shown

• has a simple structure

• only AddRoundKey uses key

• AddRoundKey a form of Vernam cipher

• each stage is easily reversible

• decryption uses keys in reverse order

• decryption does recover plaintext

• final round has only 3 stages

AES
Byte
Level
Operations

Substitute Bytes
• a simple substitution of each byte

• uses one table of 16x16 bytes containing a permutation of all 256 8-
bit values

• each byte of state is replaced by byte indexed by row (left 4-bits) &
column (right 4-bits)
• eg. byte {95} is replaced by byte in row 9 column 5

• which has value {2A}

• S-box constructed using defined transformation of values in GF(28)

• designed to be resistant to all known attacks

Substitute Bytes

Substitute Bytes Example

Table 5.2

(Table can be found on page 139 in textbook)

(a) S-box

Table 5.2

(Table can be found on page 139 in textbook)

(b) Inverse S-box

S-Box Rationale

• The S-box is designed to be resistant to known cryptanalytic attacks

• The Rijndael developers sought a design that has a low correlation
between input bits and output bits and the property that the output
is not a linear mathematical function of the input

• The nonlinearity is due to the use of the multiplicative inverse

Shift Rows

• a circular byte shift in each each
• 1st row is unchanged

• 2nd row does 1 byte circular shift to left

• 3rd row does 2 byte circular shift to left

• 4th row does 3 byte circular shift to left

• decrypt inverts using shifts to right

• since state is processed by columns, this step permutes bytes
between the columns

Shift Rows

Shift Row Rationale

•More substantial than it may first appear

•The State, as well as the cipher input and output, is treated as an
array of four 4-byte columns

•On encryption, the first 4 bytes of the plaintext are copied to the
first column of State, and so on

•The round key is applied to State column by column
•Thus, a row shift moves an individual byte from one column to another,

which is a linear distance of a multiple of 4 bytes

•Transformation ensures that the 4 bytes of one column are spread
out to four different columns

Mix Columns

• each column is processed separately

• each byte is replaced by a value dependent on all 4 bytes in the
column

• effectively a matrix multiplication in GF(28) using prime poly m(x)
=x8+x4+x3+x+1

Mix Columns

Mix Columns Example

Mix Columns Rationale

• Coefficients of a matrix based on a linear code with maximal distance
between code words ensures a good mixing among the bytes of each
column

• The mix column transformation combined with the shift row
transformation ensures that after a few rounds all output bits depend
on all input bits

AddRoundKey Transformation

•The 128 bits of State are bitwise
XORed with the 128 bits of the
round key

•Operation is viewed as a
columnwise operation between
the 4 bytes of a State column
and one word of the round key
•Can also be viewed as a byte-level

operation

Rationale:

Is as simple as possible and
affects every bit of State

The complexity of the round
key expansion plus the
complexity of the other

stages of AES ensure security

Inputs
for
Single
AES
Round

AES Key Expansion

•Takes as input a four-word (16 byte) key and produces a linear
array of 44 words (176) bytes
•This is sufficient to provide a four-word round key for the initial

AddRoundKey stage and each of the 10 rounds of the cipher

•Key is copied into the first four words of the expanded key
•The remainder of the expanded key is filled in four words at a time

•Each added word w[i] depends on the immediately preceding
word, w[i – 1], and the word four positions back, w[i – 4]
• In three out of four cases a simple XOR is used

•For a word whose position in the w array is a multiple of 4, a more
complex function is used

AES
Key
Expansion

Key Expansion Rationale

•The Rijndael developers
designed the expansion key
algorithm to be resistant to
known cryptanalytic attacks

•Inclusion of a round-
dependent round constant
eliminates the symmetry
between the ways in which
round keys are generated in
different rounds

• Knowledge of a part of the cipher key
or round key does not enable
calculation of many other round-key
bits

• An invertible transformation

• Speed on a wide range of processors

• Usage of round constants to eliminate
symmetries

• Diffusion of cipher key differences into
the round keys

• Enough nonlinearity to prohibit the full
determination of round key differences
from cipher key differences only

• Simplicity of description

The specific criteria that were used are:

Table 5.3

AES Example
Key Expansion

(Table is located on page 151

in textbook)

Table 5.4

AES

Example

(Table is located on page 153

in textbook)

Table 5.5

Avalanche

Effect

in AES:

Change in

Plaintext

(Table is located on page 154

in textbook)

Table 5.6

Avalanche

Effect

in AES:

Change

in Key

(Table is located on page 155

in textbook)

Equivalent Inverse Cipher

•AES decryption cipher is not
identical to the encryption
cipher
•The sequence of

transformations differs
although the form of the key
schedules is the same

•Has the disadvantage that two
separate software or firmware
modules are needed for
applications that require both
encryption and decryption

Two separate changes are
needed to bring the
decryption structure in line
with the encryption structure

The first two stages of the
decryption round need to be
interchanged

The second two stages of the
decryption round need to be
interchanged

Interchanging
InvShiftRows and InvSubBytes

•InvShiftRows affects the sequence of bytes in State but does not
alter byte contents and does not depend on byte contents to
perform its transformation

•InvSubBytes affects the contents of bytes in State but does not
alter byte sequence and does not depend on byte sequence to
perform its transformation

Thus, these two operations commute and can be
interchanged

Interchanging
AddRoundKey and InvMixColumns

The
transformations
AddRoundKey

and
InvMixColumns
do not alter the

sequence of
bytes in State

If we view the
key as a

sequence of
words, then

both
AddRoundKey

and
InvMixColumns

operate on
State one

column at a
time

These two
operations are

linear with
respect to the
column input

AES Decryption

• AES decryption is not identical to encryption since steps done in
reverse

• but can define an equivalent inverse cipher with steps as for
encryption
• but using inverses of each step

• with a different key schedule

• works since result is unchanged when
• swap byte substitution & shift rows

• swap mix columns & add (tweaked) round key

Equivalent
Inverse
Cipher

Implementation Aspects

•AES can be implemented very efficiently on an 8-bit processor

•AddRoundKey is a bytewise XOR operation

•ShiftRows is a simple byte-shifting operation

•SubBytes operates at the byte level and only requires a table of
256 bytes

•MixColumns requires matrix multiplication in the field GF(28),
which means that all operations are carried out on bytes

Implementation Aspects

•Can efficiently implement on a 32-bit processor
•Redefine steps to use 32-bit words

•Can precompute 4 tables of 256-words

•Then each column in each round can be computed using 4 table lookups + 4
XORs

•At a cost of 4Kb to store tables

•Designers believe this very efficient implementation was a key factor
in its selection as the AES cipher

Random Numbers

• many uses of random numbers in cryptography
• nonces in authentication protocols to prevent replay

• session keys

• public key generation

• keystream for a one-time pad

• in all cases its critical that these values be
• statistically random, uniform distribution, independent

• unpredictability of future values from previous values

• true random numbers provide this

• care needed with generated random numbers

Pseudorandom Number Generators (PRNGs)

• often use deterministic algorithmic techniques to create “random
numbers”
• although are not truly random

• can pass many tests of “randomness”

• known as “pseudorandom numbers”

• created by “Pseudorandom Number Generators (PRNGs)”

Random & Pseudorandom Number Generators

Stream Cipher Structure

Stream Cipher Properties

• some design considerations are:
• long period with no repetitions

• statistically random

• depends on large enough key

• large linear complexity

• properly designed, can be as secure as a block cipher with same size
key

• but usually simpler & faster

RC4

• a proprietary cipher owned by RSA DSI

• another Ron Rivest design, simple but effective

• variable key size, byte-oriented stream cipher

• widely used (web SSL/TLS, wireless WEP/WPA)

• key forms random permutation of all 8-bit values

• uses that permutation to scramble input info processed a byte at a
time

RC4 Key Schedule

starts with an array S of numbers: 0..255

use key to well and truly shuffle

S forms internal state of the cipher

for i = 0 to 255 do
S[i] = i

T[i] = K[i mod keylen])

j = 0

for i = 0 to 255 do
j = (j + S[i] + T[i]) (mod 256)

swap (S[i], S[j])

RC4 Encryption

• encryption continues shuffling array values

• sum of shuffled pair selects "stream key" value from permutation

• XOR S[t] with next byte of message to en/decrypt
i = j = 0

for each message byte Mi

i = (i + 1) (mod 256)

j = (j + S[i]) (mod 256)

swap(S[i], S[j])

t = (S[i] + S[j]) (mod 256)

Ci = Mi XOR S[t]

RC4 Overview

RC4 Security

claimed secure against known attacks
have some analyses, none practical

result is very non-linear

since RC4 is a stream cipher, must never reuse a key

have a concern with WEP, but due to key handling rather than RC4
itself

Modes of Operation

• block ciphers encrypt fixed size blocks
• eg. DES encrypts 64-bit blocks with 56-bit key

• need some way to en/decrypt arbitrary amounts of data in practise

• NIST SP 800-38A defines 5 modes

• have block and stream modes

• to cover a wide variety of applications

• can be used with any block cipher

Electronic Codebook Book (ECB)

• message is broken into independent blocks which are encrypted

• each block is a value which is substituted, like a codebook, hence
name

• each block is encoded independently of the other blocks
Ci = EK(Pi)

• uses: secure transmission of single values

Advantages and Limitations of ECB

• message repetitions may show in ciphertext
• if aligned with message block

• particularly with data such graphics

• or with messages that change very little, which become a code-book analysis
problem

• weakness is due to the encrypted message blocks being independent

• main use is sending a few blocks of data

Cipher Block Chaining (CBC)

• message is broken into blocks

• linked together in encryption operation

• each previous cipher blocks is chained with current plaintext block,
hence name

• use Initial Vector (IV) to start process
Ci = EK(Pi XOR Ci-1)

C-1 = IV

• uses: bulk data encryption, authentication

Cipher Block
Chaining (CBC)

Cipher FeedBack (CFB)

• message is treated as a stream of bits

• added to the output of the block cipher

• result is feed back for next stage (hence name)

• standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
• denoted CFB-1, CFB-8, CFB-64, CFB-128 etc

• most efficient to use all bits in block (64 or 128)
• Ci = Pi XOR EK(Ci-1)

• C-1 = IV

• uses: stream data encryption, authentication

s-bit
Cipher FeedBack
(CFB-s)

Advantages and Limitations of CFB

• appropriate when data arrives in bits/bytes

• most common stream mode

• limitation is need to stall while do block encryption after every n-bits

• note that the block cipher is used in encryption mode at both ends

• errors propogate for several blocks after the error

Counter (CTR)

• a “new” mode, though proposed early on

• similar to OFB but encrypts counter value rather than any feedback
value

• must have a different key & counter value for every plaintext block
(never reused)
• Oi = EK(i)

• Ci = Pi XOR Oi

• uses: high-speed network encryptions

Counter (CTR)

Advantages and Limitations of CTR

• efficiency
• can do parallel encryptions in h/w or s/w

• can preprocess in advance of need

• good for bursty high speed links

• random access to encrypted data blocks

• provable security (good as other modes)

• but must ensure never reuse key/counter values, otherwise could
break (cf OFB)

Summary

• Finite field arithmetic

• AES structure
• General structure

• Detailed structure

• AES key expansion
• Key expansion algorithm

• Rationale

•AES transformation functions
•Substitute bytes

•ShiftRows

•MixColumns

•AddRoundKey

• AES implementation
•Equivalent inverse cipher

• Implementation aspects

