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For my mentor, and to the world

Writing a book is a truly humbling exercise.
No matter how many sources you studied and
seek to include in your work,
at the end of the journey, you feel you have
barely scratched the surface,
you realise how little you know,
and how much there is and always will be out
there to learn.

To those whom I offended with a harsh
judgement from my side,
be it for a seemingly inappropriate choice in
an empirical study,
for a supposed lack of knowledge, or else,
I apologise.

It is okay to not know things,
and what we know, is effectively a spark
of the universe;
when we join forces, connect those small
lights, and learn from each other,
we, together, can reach for the skies.

I dedicate this book to a great person who
has been a support and inspiration,
with lessons not only about research but



equally about life,
the late Dr. Arno Muijtjens (11 April 1950–2
April 2019):
because for me, Arno, you have been a
mentor and teacher in many ways,
and you have been, and will be, an example
to follow.



Preface

We are living in exciting times. The movement called Open Science is visible
everywhere, all the way from the use of materials, the design of new research, data
collection, data analysis, as well as the reporting of findings and sharing of data.
Preregistration and registered reports are being adopted by increasing numbers of
journals across fields to complement or replace the traditional peer-review system.
Zero-cost Open-Source software packages allow people to save and share analyses
with anyone in the world without having to face paywalls. Data sharing offers
tremendous opportunities to bring the discourse about empirical phenomena to a
next level and is slowly but steadily becoming more common. Where a common
question used to be which methods are better or worse than which other methods,
the key question these days appears to be how combinations of methods can help us
make better decisions for research and practice. This book attempts to shed some
light on this apparent key question.

York, UK Jimmie Leppink
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Common Symbols and Abbreviations

a Statistical significance level in NHST, and Cronbach’s or
Krippendorff’s alpha in psychometric analysis

b Standardised regression coefficient
η2, partial η2 Effect size estimates in (M)AN(C)OVA
j Cohen’s kappa
µ Population mean
q Spearman’s rho
r Population standard deviation
s Kendall’s tau
u Coefficient phi for two-way contingency tables
v2 Chi-square
x2 Effect size estimate in (M)AN(C)OVA, generally slightly

less biased than η2 though the difference between x2 and
η2 decreases with increasing sample size

-2LL, -2RLL The minus two log-likelihood aka deviance of a model
using FIML (-2LL; fixed effects) or using REML (-2RLL;
random effects): LL stands for log likelihood

A, B, C In single-treatment-factor designs used to denote condi-
tions (e.g., A and B being two treatments, and C the
control), in two- or three-factor designs used to denote the
different factors; sometimes also used to name a hypothet-
ical experiment (e.g., Experiment A) or different
assessors/raters

A-B, B-A Used to denote orders of conditions in an experiment that
includes a within-subjects factor

A-by-B Term used for two-way contingency tables as well as for
an interaction effect of A and B

AD1 First-order ante-dependence residual covariance structure
AIC Akaike’s information criterion
AICc Corrected AIC, a variant of AIC that has a slightly lower

tendency towards more complex models than AIC, though
the difference between AIC and AICc reduces with
increasing sample size

xxi



ANCOVA Analysis of covariance, one of the methods used in this
book

ANCOVRES Analysis of covariate residuals, one of the methods
discussed in this book

ANOVA Analysis of variance, one of the methods used in this book
AR1 First-order autoregressive residual covariance structure
B, b Non-standardised regression coefficient (i.e., using the

original scales of predictor and outcome variable, not SDs
as scales for these variables)

BF Bayes factor
BF01, BF10 BF of H0 vs. H1 (i.e., 01) and of H1 vs. H0 (i.e., 10),

respectively
BIC Schwarz’ Bayesian information criterion
BLUE Best linear unbiased estimate
c, r In combination sometimes used to denote columns and

rows
CI Confidence interval; in this book, I hold a plea for both the

‘1—a’ and the ‘1—2a’ CI. Provided assumptions are met,
a C% CI should include the population parameter of
interest in C% of all possible samples of the same size
drawn from that population

CRI Credible interval aka posterior interval, a Bayesian alter-
native to the Frequentist confidence interval

CS Compound symmetry
D Used to denote a difficulty-levels independent variable
d Cohen’s d, a measure of effect size which expresses the

differences between two Ms in SDs instead of in actual
scale (e.g., points or minutes) units

df Degrees of freedom
DR Difference in rating
DRF Deviance reduction factor, also known as R2

MCF in
fixed-effects categorical outcome variable models, and for
any comparison of fixed-effects solutions in fixed-effects
and mixed-effects models in randomised controlled exper-
iments involving categorical or quantitative outcome
variables, a straightforward indicator of the reduction in -
2LL or deviance by a more complex model relative to a
simpler (i.e., special case) variant of that more complex
model (e.g., Model 1 vs. Model 0, or a main-effects plus
interaction model vs. a main-effects model)

EMM Estimated marginal mean(s)
F Probability distribution and test statistic; for comparisons

that involve two conditions or categories (i.e., dfgroups = 1
or dfeffect = 1), F = t2. As sample size goes to infinity, the
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difference between F for dfgroups = 1 or dfeffect = 1 and x21
converges to zero

f Effect size estimate that is similar to standardised b and can
be used for required sample size calculations for (M)AN
(C)OVA

FIML, ML Full information maximum likelihood, used for the
estimation of fixed effects and provides a valid approach
to dealing with missing data without imputation under
MAR and under MCAR

FOST Four one-sided testing, part of PASTE, and unites TOST
and ROPE

g Hedges’ g, an effect size estimate that is similar to Cohen’s d
GLB Greatest Lower Bound, along with McDonald’s omega one

of the proposed alternatives to Cronbach’s alpha
GPower A statistical package used in this book, version 3.1.2
GR Group
H0 Null hypothesis
H0.1, H0.2, H0.3, H0.4 The coherent set of four H0s tested in FOST, the first two

of which are also used in TOST
H1 Alternative hypothesis
HF Huynh–Feldt residual covariance structure
ICC Intraclass correlation
ITT Intent to treat: the average effect of offering treatment
Jamovi In other sources sometimes denoted with small J as jamovi,

a statistical software package used in this book, version
0.9.5.16

JASP A statistical software package used in this book, version
0.9.2.0

JZS JeffreysZellner–Siow
K, k Commonly used to denote the number of items, raters

(assessors), stations, or repeated measurements per partic-
ipant; sometimes also used to denote the number of
statistical tests of comparisons (to be) made in a given
context (the latter is also denoted as Cp)

KR-20 One of the Kuder–Richardson coefficients, a special case
of Cronbach’s alpha for dichotomous items or ratings

LB Lower bound
LR Likelihood ratio
M (arithmetic) mean in a sample or condition
Md Mean difference
MAR Missing at random
MCAR Missing completely at random
MNAR Missing not at random
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MN A factor by which to multiply N based on ICC = 0 to
account for ICC > 0

Model 0 Null model (H0 or simplest of models under comparisons)
Model 1 Alternative model (H1), a more complex version of the null

model, and when there are several alternatives to Model 0,
together with Model 0 among several competing models in
model comparison/selection (e.g., also Models 2–4 when
we deal with possible main and interaction effects of two
factors)

Mplus A statistical software package used in this book, version 8
N Total sample size (i.e., all conditions together)
n Sample size per condition
NHST Null hypothesis significance testing
NO Number of possible orders
O Observation
OR Odds ratio
p Probability; in NHST (i.e., the p-value), the probability

of the test statistic value observed or further away from H0,
if H0 is true (i.e., a conditional probability, the condition
being truth of H0)

PASTE Pragmatic approach to statistical testing and estimation, the
core approach in this book, which is about combining
different methods of testing and estimation to make
informed decisions

P(H0), P(H1) The probability of H0 and H1, respectively, prior to seeing
the data. These concepts fit within a Likelihoodist,
Bayesian, and to some extent also within an information-
theoretic (i.e., information criteria) approach to statistical
testing but not within the Frequentist approach

P(H0|O), P(H1|O) The probability of H0 and H1, respectively, after seeing the
data. These concepts fit within a Likelihoodist, Bayesian,
and to some extent also within an information-theoretic
(i.e., information criteria) approach to statistical testing but
not within the Frequentist approach

P(O|H0), P(O|H1) The probability of findings observed under H0 and under
H1, respectively. These concepts fit within a Likelihoodist,
Bayesian, and to some extent also within an information-
theoretic (i.e., information criteria) approach to statistical
testing but not within the Frequentist approach; note that
the Frequentist p-value is not P(O|H0) but P(O or further
away from H0 | H0)

QDA Question-design-analysis (bridge, heuristic)
R An environment in which, amongst others, statistical

packages can be developed and used; also used in this
book, version 3.5.0
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r Pearson’s correlation coefficient
R1-R12 Used to denote different (competing) candidate models for

the residual covariance structure in mixed-effects models
R2, R2 adjusted Proportion of variance explained in fixed-effects models

for quantitative outcome variables, with a penalty for
model complexity in the case of the adjusted variant

R2
C, R

2
M, R

2
R Useful in multilevel analysis, at least when using RI (i.e.,

CS) models or not too complex extensions of that model
(e.g., one RI term, one RS term, and their covariance): R2

C

combines the fixed and random effects, R2
R focusses on the

random effects (i.e., ICC), and R2
M is about the fixed effects

and can, therefore, be interpreted in a similar fashion as R2

in fixed effects models; with more complex residual
covariance structures, computing these or other R2-statistics
becomes more complicated

R2
CS R-squared statistic attributed to Cox and Snell, potentially

useful for categorical outcome variable models though its
upper bound is (well) below 1

R2
MCF R-squared statistic attributed to McFadden, my recom-

mended default R-squared statistic for categorical outcome
variable models

R2
N R-squared statistic attributed to Nagelkerke, potentially

useful for categorical outcome variable models
R2
T R-squared statistic attributed to Tjur, potentially useful for

categorical outcome variable models though its upper
bound is (well) below 1

REML Restricted maximum likelihood, used for the estimation of
random effects

RI Random intercept
RI-RS Model consisting of at least one RI and at least one RS

term
ROPE Region of practical equivalence, a Bayesian concept

similar to the region of relative equivalence in TOST,
and part of the TOST-ROPE uniting FOST

rRES Residual correlation
RS Random slope
RStudio A statistical package used in this book, version 1.1.456
SABIC Sample-size adjusted BIC
S Sometimes used to denote a score outcome variable
SD Standard deviation in a sample or condition
SE Standard error
SocNetV Stands for Social Network Visualizer, and is a statistical

package used in this book, version 2.4

Common Symbols and Abbreviations xxv



SPSS Stands for Statistical Package for the Social Sciences, and
is a statistical package used in this book, version 25

SS Sum or squares
Stata A statistical package used in this book, version 15.1
SUTVA Stable unit treatment value assumption
T Time point/occasion
t Probability distribution and test statistic, slightly wider

than the standard Normal distribution z though the
difference between t and z converges to zero as sample
size goes to infinity; squaring t, we obtain F for dfgroups = 1
or dfeffect = 1

TOST Two one-sided tests, an approach to (relative) equivalence
testing

TOT Treatment of the treated: the average effect of receiving
treatment

Type I error Concluding there is an effect where there is none
Type II error Concluding there is no effect where there is one
Type M error (Substantial) misestimation of an effect of interest in

magnitude
Type S error Seeing a negative effect that is actually positive or vice

versa
U Mann–Whitney’s nonparametric test statistic
UB Upper bound
UN Unstructured residual covariance model, a model in which

VRES is allowed to be different for each item or occasion
and in which rRES is allowed to be different for each pair of
items or occasions

V Cramér’s V
VAS Visual analogue scale, a continuous scale on which a

respondent or assessor can pick a point that is supposed to
provide a measurement of interest

VFIXED Fixed-effects variance
VRANDOM Random-effects variance
VRES Residual variance
VRI RI variance
VRS RS variance
VS-MPR Vovk–Sellke maximum p-ratio
X Commonly used to denote an independent or treatment

variable
Y Commonly used to denote an outcome variable
Z Probability distribution (i.e., standard Normal distribution)

and test statistic; squaring z yields x21
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1The Question-Design-Analysis Bridge

Abstract
This is the first of four chapters of Part I of this book. The focus of Part I lies on
common questions in experimental research. In this first chapter, the
question-design-analysis (QDA) heuristic is introduced: there is a bridge
connecting research questions and hypotheses, experimental design and sampling
procedures, and common statistical methods in that context. This heuristic runs
throughout the parts and chapters of this book and is used to present statistical
analysis plans for a wide variety of situations and which include alternative routes
to deal with assumption departures. This chapter briefly introduces the different
statistical methods that are covered in this book through the QDA heuristic. Both
likely candidates and alternative methods are presented for different questions and
designs. Further, common flaws that move away from the original research
question or from a particular hypothesis and/or fail to appropriately account for
one experimental design feature or another are discussed. Examples of flaws
discussed in this chapter are two-sided testing where one-sided testing would be
expected or vice versa, treating two-way data as one-way data, treating a
mediating variable as a confounding variable, and treating a within-subjects effect
as between-subjects. This chapter provides the foundation for the subsequent
chapters in this first part of the book: different approaches to statistical testing and
estimation (Chap. 2), important principles of measurement, validity, and
reliability (Chap. 3), and methods to deal with missing data (Chap. 4).

Introduction

During his Presidential Address at the First Indian Statistical Congress in 1938, Sir
Ronald Aylmer Fisher (1890–1962) reflected (1938, p. 17): “A competent over-
hauling of the process of collection, or of the experimental design, may often
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increase the yield ten or 12-fold, for the same cost in time and labour. To consult
the statistician after an experiment is finished is often merely to ask him to conduct
a post mortem examination. He can perhaps say what the experiment died of. To
utilise this kind of experience he must be induced to use his imagination, and to
foresee in advance the difficulties and uncertainties with which, if they are not
foreseen, his investigations will be beset.” Fisher is one of the greatest statisticians
of all time (Efron, 1998), and his books Statistical Methods for Research Workers
(1925) and The Design of Experiments (1935) have served as a foundation for most
if not all literature on experimental research since. Even literature in which no direct
reference is made to Fisher (1925) or Fisher (1935) still cites work that is based on
Fisher (1925, 1935). In the 95 words from his Presidential Address just quoted,
Fisher taught us that anticipation of possible challenges and careful planning and
designing constitute a conditio sine qua non for experimental research. Moreover,
the goal of experiments is not just to answer questions; an experiment ought to be
“designed to form a secure basis of knowledge” (Fisher, 1935, p. 8). Experimental
research is not about using theory to solve local problems (e.g., which teaching
approach should be used in Programme A at University X in country C); it is about
advancing theory, and in order to be able to advance theory, we need carefully
designed experiments.

In the words of Winer (1970, p. 1), those best qualified to design an experiment
are those who are “(1) most familiar with the nature of the experimental material,
(2) most familiar with the possible alternative methods for designing an experiment,
(3) most capable of evaluating the potential advantages and disadvantages of the
alternatives. Where an individual possesses all these qualifications, the roles of
experimenter and designer are one.” In contemporary experimental research
practice, this situation is relatively rare. Usually, experimental research is carried
out in teams, not in the last place because different team members bring different
knowledge, experience, and skills. Content experts are typically the ones who are
most familiar with the nature of the experimental material but are not necessarily
most familiar with different ways of designing an experiment let alone pros and
cons of those alternatives. Simultaneously, methodologists and statisticians may be
very familiar with the latter but not with the former. Unfortunately, eight decades
after Fisher’s Presidential Address (1938), methodologists and statisticians are still
in too many cases contacted for help once the experiment has been carried out, in
the hope that they can help researchers to ‘correct’ for some of the mistakes made at
one or several stages in the process. Even if such corrections are possible, which is
often not the case, methodological control (i.e., control by design) is virtually
always better than statistical control (i.e., control by analysis); as a rule of thumb,
the more of the latter is needed (if at all possible), the weaker the conclusions that
can be drawn from the experiment. Therefore, in Fisher’s words: researchers should
seek the support of a methodologist or statistician before, not only after, the
experiment. Whether you are designing a single experiment or you are in the
process of writing a grant proposal that presents a coherent series of experiments,
always consider having at least one well-trained methodologist or statistician on
board from the start.
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Focus on the Design and Analysis of Larger-Sample
Experiments

Succinctly put, an experiment is a study that is aimed at establishing causal relations
between activities, practices or procedures on the one hand and variables that
respond to these activities, practices or procedures on the other hand. The activities,
practices or procedures to be compared in an experiment together constitute one or
more independent variables, whereas the variables that respond to these activities,
practices or procedures are referred to as dependent variables and are also known as
response variables and outcome variables. For example, two teaching methods—a
newly developed one and a conventional one—may constitute an independent
variable for researchers who are interested in the question under what conditions the
newly developed method (i.e., treatment condition) can be expected to result in
better learning outcomes (i.e., outcome variable) than the conventional method (i.e.,
control condition). However, in a true experiment, participants are sampled from a
target population of interest at random and are allocated to the conditions at
random as well. In other words, the two conditions do not result from already
existing groups, such as Class A in School J happening to be taught the conven-
tional way and Class B in School K being taught in the newly developed format.
The latter would be an example of a quasi-experiment. The fact that this book
focusses on experimental research and does not cover quasi-experimental research
should by no means be interpreted as an implication that quasi-experimental
research is not useful or is necessarily inferior to experimental research. Different
ways of doing research may yield temporary answers to somewhat different
questions and may be bound to a partially different set of assumptions.
Quasi-experimental research, like experimental research, has its use provided that it
is done correctly and the interpretations and implications are restricted to where
they apply.

Every author has to make choices, some of which relate to being all-inclusive
versus focussing on a particular content. I have chosen for the latter. That said,
although quasi-experimental research is not covered in separate chapters, compar-
isons between experiments and quasi-experiments as well as dangers of applying
statistical techniques to a quasi-experiment as if it was a true experiment are dis-
cussed in several chapters of this book. Great general reads on quasi-experimental
research include Cook and Campbell (1979), Cook and Wong (2008), Huitema
(2011), and Stuart and Rubin (2010).

Another choice has been to focus on larger-sample experiments and to not
include specific chapters on single-case experiments. As for quasi-experiments, this
choice is not intended to serve as a statement that single-case experiments have no
use or are necessarily inferior to larger-sample experiments. The rationale behind
not covering single-case experiments in detail is simply that single-case research is
a world by itself. Moreover, several books (e.g., Barlow & Hersen, 2009; Ledford
& Gast, 2018), book sections (e.g., Huitema, 2011), and overview articles (e.g.,
Forbes, Ross, & Chesser, 2011; Michiels, Heyvaert, Meulders, & Onghena, 2017;
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Michiels & Onghena, 2018; Normand, 2016; Onghena, Maes, & Heyvaert, 2018;
Phan & Ngu, 2017; Smith, 2012) have already been written on this topic, and the
intention of this book is not to provide an overview of thousands of statistical
methods for all kinds of research out there. Note that the term ‘larger-sample’ has
been chosen intentionally over ‘large-sample’, to denote a preference to move
beyond we-have-to-publish-fast small samples but leave open to the interpretation
of the reader what is ‘large’ and what is ‘small’. In many educational and also quite
some psychological research settings, a two-group experiment with n = 64 per
group may already be considered ‘large’, whereas some sociologists who do
experiments in the context of say different presentation formats of surveys may call
samples of a size (N) of a few 100 s or participants ‘fairly small’.

Finally, another topic that is only mentioned briefly in some places in this book
is that of meta-analysis. Although authors of a book on experimental research could
well choose to include meta-analysis, this book focusses on the design and analysis
of larger-sample experiments, and refers readers to great reads like Konstantopoulos
(2010), Kruschke and Liddell (2017), Lipsey and Wilson (2001), Patall and Cooper
(2008), and Viechtbauer (2010) for an in-depth study of the world of meta-analysis.

The Bridge

Bloom (2008) provides an excellent, concise overview offive elements of a successful
experiment: (1) research questions; (2) experimental design; (3) measurement
methods; (4) implementation strategy; and (5) statistical analysis. These elements are
not isolated; there is a bridge that connects them. Besides, in my view, experimental
design,measurementmethods, and implementation strategy are hard to see as separate
elements in practice. Moreover, experiments are usually not just informed by research
questions; one or more testable hypotheses, general or more specific, are normally
available as well. Therefore, in this book, the term design includes the elements of
experimental design (e.g., Bloom, 2008; Howell, 2017), sampling (e.g., Kish, 1965),
measurement methods (e.g., Crocker & Algina, 1986), and implementation strategy,
and the term question in the QDA heuristic is used for the coherent set of research
questions and hypotheses. Finally, the term analysis in this heuristic also includes
reporting, in manuscripts or presentations, such that an audience can understand what
choices have been made in a given experiment and why.

From Question to Design

To start, the type of research questions and testable hypotheses determine our likely
options for the experimental design. If we are interested in whether a new online
health intervention aimed at reducing alcohol consumption in a given target pop-
ulation is more effective in doing so than a conventional online health intervention,
a two-group experiment may do. However, if researchers have reasons to expect
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that the effect of the new online health intervention is different in different
sub-populations (e.g., men and women) within that target population, a two-way
factorial design (e.g., Field, 2018; Howell, 2017), with intervention (new or ex-
perimental treatment condition vs. conventional or control condition) and gender
(men vs. women) as factors, is more appropriate. In the aforementioned two-group
experiment, simple random sampling of participants and random allocation of the
randomly sampled participants to conditions could do. However, in the two-way
factorial case it would be better apply a form of stratified random sampling (e.g.,
Kish, 1965): to apply simple random sampling and random allocation to the men,
and to the women, in such a way that the proportions of men and women in both
conditions are equal. Stratified random sampling, in the latter case, could yield a
considerable increase in precision, especially when sample sizes are not that large
(e.g., N < 100). Stratification or blocking is then applied, and random sampling and
random allocation are then applied for each stratum or block (here, the strata or
blocks would be men and women).

This brings us to two main reasons why random sampling constitutes the most
rigorous way to study causal relations between independent variables like the type
of health intervention in the example and outcome variables like a measure of
alcohol consumption or of a reduction of alcohol consumption. Both random
sampling of participants and random allocation of these participants to experimental
conditions are ways to eliminate bias, because only the laws of probability deter-
mine which participants are included in the experiment and which participants are
assigned to which condition in that experiment. In this case, all pre-existing dif-
ferences between groups or conditions are due to chance. If we were to do the same
experiment with the same sample size an infinite number of times and applied
random sampling and random allocation in every single experiment, on average—
across all experiments—the differences between conditions at the start of the
experiment, prior to any treatment, could be expected to be zero. Of course,
between experiments, there would be differences between conditions at start,
sometimes in favour of one condition sometimes in favour of the other condition,
and sometimes larger sometimes smaller. However, these differences between
experiments would decrease if we took larger samples. Where the laws of proba-
bility apply, all possible sources of uncertainty about estimates of phenomena of
interest are randomised, confidence intervals (CIs) and statistical significance tests
can account for that uncertainty, and the internal validity of the experiment can be
guaranteed. In the words of Bloom (2008, p. 128): “Absent treatment, the expected
values of all past, present, and future characteristics are the same for a randomized
treatment group and control group. Hence, the short-term and long-term future
experiences of the control group provide valid estimates of what these experiences
would have been for the treatment group had it not been offered the treatment.”

In small samples, large differences between the sample (size N) and the popu-
lation may be quite likely, and large differences between conditions (size n of N)
prior to any treatment are likely as well. Apart from small samples, non-random
sampling and non-random allocation have also been identified as sources that
decrease the likelihood of findings from one experiment being replicated in a next
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experiment (Hedges, 2018; Ioannidis, 2005a, b; Tipton, Hallberg, Hedges, & Chan,
2017). This is not to say that it is absolutely impossible to generalise sample
findings to a population of interest in cases where random sampling is practically
not feasible. However, researchers should be aware that randomly allocating a
relatively ‘large’ sample to conditions in an experiment does not compensate for
applying some kind of convenience sampling or some kind of purposeful sampling,
and that failing to apply random sampling may well come at the cost of a reduced
generalisability of findings to a population of interest. In the words of Bloom (2008,
p. 116): “One cannot, however, account for all uncertainty about generalizing an
impact estimate beyond a given sample (its external validity) without both randomly
sampling subjects from a known population and randomly assigning them to
experimental groups.” Furthermore, random sampling and random allocation
should not be used as an excuse for having small samples. Even if random sampling
and random allocation are applied, in the case of small samples findings of interest
can vary wildly from one experiment to the next. Consequently, even if the phe-
nomenon of interest is the same in a population sampled from in both initial and
replication experiment and the latter is an exact replication of the former, with small
samples it is quite likely to not replicate findings from the initial experiment in that
direct replication.

Increasingly, researchers carry out experiments where not individuals but
existing clusters of individuals are sampled and allocated to conditions, for example
health centres or schools some of which participate in a treatment condition some of
which participate in a control condition. As for the sampling and allocation of
individuals, random sampling plus random allocation constitutes the best practice,
for it can be expected to provide unbiased estimates of intervention effects. How-
ever, similarities and interactions between individuals within clusters induces a
within-cluster between-participant correlation (aka intraclass correlation, ICC; e.g.,
Leppink, 2015a; Snijders & Bosker, 2012; Tan, 2010) that reduces the effective
sample size from N to somewhere in between that sample size N and the k number
of clusters (i.e., the higher the ICC, the more the effective sample size goes down to
k), and statistical power and precision of treatment effects with it (Bloom, 2008;
Leppink, 2015a; Snijders & Bosker, 2012). Bloom (2008, p. 126) provides a useful
formula for calculating the so-called design effect or the number of times the
standard error (SE) for cluster randomisation compared to the SE for individual
randomisation, as a consequence of the ICC in cluster-randomised studies:

design effect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n�1ð Þ � ICC½ �ð Þ
p

:

In this formula, n is a constant number of individuals per class or cluster. In its
squared form, hence without the square root, the formula provides an indication of
how many times as many participants per cluster we would need to achieve the
same precision as if ICC was zero. Where clusters of participants are concerned,
ICC-values in the range of 0.01–0.20 are very common, and the expected value
depends on the nature of the clusters, the type of experimental manipulation, and
the type of outcome variable in question. If in a given context ICC = 0.10 is a
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reasonable assumption and the current number of participants per cluster is 20, the
design effect is the square root of 2.9 (ca. 1.703). To achieve the same precision for
cluster randomisation with ICC = 0.10 instead of ICC = 0, we would need 2.9
times as many sample members. Note that if ICC = 0, the design effect equals 1
regardless of n, meaning no need to plan a larger sample size, but ICC = 0 in the
case of cluster randomisation would be an unrealistic assumption.

Even if in an experiment treatment can vary within clusters, the ICC is some-
thing to be accounted for by aiming for a larger sample size. The same holds for
cases where so-called multistage sampling (e.g., Kish, 1965) is applied. In the case
of health centres or schools, for example, two-stage sampling is applied when not
all individuals of health centres or schools sampled are invited to participate but
only a sample of each centre or school is invited to participate. In such cases, the
first stage of sampling is that of which centres or schools are contacted, and the
second stage of sampling is found in sampling individuals within the centres or
schools contacted. Whether we deal with workplaces, schools, households or other
natural clusters, individuals coming from the same clusters tend to be similar in
ways that are likely to result in an ICC to be accounted for.

In some cases, statistical power and precision can be gained by using predictive
power of covariates (Bloom, 2008; Van Breukelen, 2006; Van Breukelen & Van
Dijk, 2007), provided that these covariates are anticipated and planned prior to data
collection and make sense from a theoretical perspective (Gruijters, 2016), and are
not affected by the treatment (Leppink, 2015b, 2017a). As explained earlier, where
the laws of probability apply, group differences unrelated to treatment are due to
nothing but chance, hence participants’ values on a covariate measured before the
start of the treatment do not influence which condition a given participant will be
part of and vice versa. The only case in which a covariate may reasonably be
affected by experimental treatment is where the covariate is measured after the start
of that treatment. However, even in that case, covariates cannot and should not be
expected to help researchers to ‘control’ for group differences unrelated to the
treatment; instead, such a covariate should be treated as a mediator instead of as a
confounder, and this has implications for how we design our experiments (e.g.,
allow study time or compliance to vary and be measured instead of keeping these
variables constant across conditions by design; Leppink, 2015b, 2017a). Also note
that covariates (mediators or not) may or may not moderate treatment effects of
interest (Field, 2018; Huitema, 2011; Leppink, 2018a, b) and to ensure sufficient
statistical power and precision for moderation of a meaningful magnitude we need
large enough samples.

Finally, in some cases, researchers have an interest in changes over time, and
more specifically, differences between conditions in a change over time, in a given
outcome variable of interest. In these cases, it is important to carefully plan mea-
surements and account for within-participant between-measurement correlation
(i.e., the ICC but now at the level of individual participants instead of at the level of
clusters of participants): N participants being measured k times each cannot and
should not be seen as an effective sample size of N times k (Leppink, 2015a;
Snijders & Bosker, 2011; Tan, 2010). In the context of repeated measurements from
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the same participants, ICC-values in the range of 0.30–0.60 are not uncommon.
Whether we have to deal with ICC > 0 due to cluster randomisation, ICC > 0 due
to repeated measurements, or both, we must account for that when planning our
sample size (e.g., Hox, Moerbeek, & Van der Schoot, 2017).

From Design to Analysis

One of the main conclusions from the previous section is that randomly drawing
sufficiently large samples from populations of interest that are then allocated ran-
domly to the different treatment conditions is to be considered the gold-standard
method. This is not to say that small samples are useless or that a failure to
randomise at either stage of sampling or allocation means we can throw the data of
our experiment in the bin, but the further we move away from the gold standard the
more our interpretations and generalisations of findings may be questioned.
Applying statistical methods that are suitable for experiments that meet the gold
standard to studies that are quite far away from that gold standard is tricky business.
For example, dealing with pre-existing groups in a quasi-experiment, we will likely
need to undertake additional steps at the data-analytic stage that are not needed in
the case of a true experiment (Cook & Wong, 2008; Hedges, 2018; Stuart & Rubin,
2010). Omitting these additional steps, as if we were dealing with an experiment
instead of with a quasi-experiment, comes at the risk of inappropriate conclusions
and recommendations for future research and practice in a field.

Even ifwe dealwith a true experiment, the features of the experimental design have
to be accounted for in the analysis. For example, data from a two-way factorial design
ought to be analysed as two-way not one-way data, because a one-way analysis does
not provide a formal test of the interaction between the two factors (i.e., moderation
aka effect modification) and comes at the cost of a substantially reduced statistical
power and precision for group differences (Leppink, O’Sullivan, & Winston, 2017).

In the context of the confounder-mediator distinction, if we treat a mediator as a
confounder, we will erase at least part of a treatment effect of interest as if it did not
exist (Leppink, 2017a) and that will likely result in inadequate recommendations for
future research or practice. The same holds for omitting the analysis or reporting of
variables that moderate treatment effects of interest; not analysing or not reporting
such moderations stimulates people to draw the conclusion that a treatment effect of
interest is fairly stable across the range of a third variable (i.e., the moderator) while
in fact it may differ substantially for different areas of that third variable (e.g., Field,
2018; Hayes, 2018; Huitema, 2011; Leppink, 2018b).

Failing to account for cluster randomisation or repeated measurements consti-
tutes another recipe for incorrect conclusions with regard to treatment effects of
interest. Even in the case of complete data (i.e., 100% response, 0% non-response
or missing data otherwise), ignoring cluster structures or repeated-measurements
structures tends to result in too narrow CIs and too small p-values in statistical
significance tests for between-subjects effects, and ignoring repeated-measurements
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structures additionally tends to result in too wide CIs and too large p-values for
within-subjects effects (Leppink, 2015a; Tan, 2010).

Note that the features to be accounted for in the analysis discussed thus far largely
relate to the design, which ought to logically follow from the research questions and
hypotheses at hand. With regard to hypotheses, we researchers in Education and
Psychology have the habit of engaging in two-sided hypothesis testing where
one-sided testing would be allowed. For example, based on theory and previous
research we may expect that providing novices in programming with worked exam-
ples of how to programme results in faster learning and hence better post-test per-
formance after an experiment than providing novices with no worked examples. In
that, we may test the null hypothesis of no difference against a one-sided alternative
that the worked examples (i.e., experimental treatment) condition will (on average)
perform better than the no worked examples (i.e., control) condition. As discussed in
Chaps. 2 and 10, the advantage of a one-sided test over a two-sided test is then an
increased statistical power given a sample sizeN and a somewhat smaller sample size
N needed for a given desired statistical power. Of course, hypotheses are to be for-
mulated prior to data collection and should not be revised after seeing the data;
formulating one-sided hypotheses after seeing the data is not allowed and can be
expected to result in more false alarms (i.e., incorrect rejections of null hypotheses).

Compliance and Non-compliance

An important assumption in causal inference is that of stable unit treatment value
assumption (SUTVA). Under SUTVA, a treatment applied to one participant does
not affect the outcome of another participant (Cox, 1958; Rubin, 1978), and there is
only a single version of each condition; if either of these two is violated, causal
effects are hard to define, and an experiment cannot be expected to yield unbiased
estimates of effects of interest.

In most experiments in Education and Psychology, different conditions are well
defined. Moreover, in most of the cases, the participants undergo and complete the
experiment in the condition they were assigned to. However, there are cases where
some participants unintendedly participate in a condition they were not assigned to.
This form of non-compliance disturbs the estimation of the treatment effect of
interest and hence needs to be accounted for in the analysis. How to do so depends
on the nature of non-compliance (e.g., participants allocated to the control condition
receiving treatment, participants allocated to the/a treatment condition participating
in the control condition, or both) and frequency thereof. Bloom (2008) provides a
very useful overview of estimating causal effects in the case of this kind of
non-compliance, focusing on two key questions: the average effect of offering
treatment (commonly referred to as ‘intent to treat’ or ITT), and the average effect of
receiving treatment (also called ‘treatment of the treated’ or TOT). Although ITT can
in many cases be estimated quite easily, there is no valid way of estimating TOT,
“because there is no way to know which control group members are counterparts to
treatment group members who receive treatment” (Bloom, 2008, p. 120).
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Remainder of This Book

The goal of this book is neither to cover all possible statistical methods out there nor
to focus on a particular software package. There are many excellent statistical
textbooks on the market that present both basic and advanced concepts at an
introductory level and/or provide a very detailed overview of options in a particular
statistical software package. Some recent examples are Andy Field’s 5th edition (as
well as previous editions) of Discovering Statistics Using IBM SPSS Statistics
(2018), Andy Field and colleagues’ Discovering Statistics Using R (2012), Thom
Baguley’s Serious Stats: A Guide to Advanced Statistics for the Behavioral Sci-
ences (2012), Bradley Huitema’s The Analysis of Covariance and Alternatives:
Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies
(2011, 2nd edition; I have not read the 1st edition, hence only the referral to the 2nd
edition), David Howell’s 8th edition (as well as previous editions) of Statistical
Methods for Psychology (2017), and Jari Metsämuuronen’s impressive
three-volume work entitled Essentials of Research Methods in Human Sciences
(2017). Besides, although perhaps some of the examples were more relevant in
former than they are in current times, many of the old sources definitely remain
more than worth the read (e.g., Burns & Dobson, 1981; Greenwood, 1989; Kish,
1965; Tacq, 1997), and the same goes for both older and more recent books on
research methods and methodologies that may not focus on experimental research
but provide a very nice view of what methods and methodologies are out there for
us (e.g., Creswell, 2012, as well as previous editions; Coe, Waring, Hedges, &
Arthur, 2012). This is not yet another book in this kind of genre. This book focusses
on experimental research in two disciplines that have a lot of common ground in
terms of theory, experimental designs used, and methods for the analysis of
experimental research data: Education and Psychology. Although the methods
covered in this book are also frequently used in many other disciplines, including
Sociology and Medicine, the examples in this book come from contemporary
research topics in Education and Psychology. The data used are not from actual
research but are simulated such that they represent examples of different types of
data—that fairly well or clearly do not meet certain assumptions—and allow to
discuss different types of approaches to data analysis for different types of variables.

Various statistical packages, commercial and zero-cost Open Source ones, are
used. Commercial packages used in this book areMplus version 8 (Muthén&Muthén,
2017), Stata 15.1 (StataCorp 2017), and SPSS version 25 (IBM Corporation, 2017).
Zero-cost Open Source packages used throughout this book are several packages in
the R programme version 3.5.0 (R Core Team, 2018) and RStudio version 1.1.456
(RStudio Team, 2018), GPower version 3.1.2 (Buchner, Erdfelder, Faul, & Lang,
2009), JASP version 0.9.2.0 (Love, Selker, Marsman, et al., 2018), Jamovi version
0.9.5.16 (Jamovi project, 2019), and SocNetV version 2.4 (Kalamaras, 2018). In the
remainder of this book, I just use the italic underlined terms to refer to the versions and
references here. Although this book uses both commercial and non-commercial
packages, at the time of writing, the non-commercial (i.e., zero-cost Open Source)
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packages just mentioned are developing at a very fast pace, and already provide
researchers with options that are either not available in common commercial packages
or in these commercial packages require quite some work and experience.

Each statistical method is discussed in a concrete context of a research question
along with a directed (one-sided or one-tailed) or undirected (two-sided or
two-tailed) hypothesis and an experimental setup in line with that. Therefore, the
titles of the chapters in this book do not include any names of statistical methods
such as analysis of variance (ANOVA; e.g., Field, 2018; Fisher, 1921, 1925;
Howell, 2010, 2017) or analysis of covariance (ANCOVA; e.g., Huitema, 2011;
Leppink, 2018a, b). In a total of seventeen chapters (of which this one is the first)
divided over five parts, this book covers a wide range of topics, research questions,
and hypotheses that call for experimental designs and statistical methods, fairly
basic or more advanced.

Part I: Common Questions (Chaps. 1–4)

In this first chapter, the QDA bridge is presented, and this heuristic runs throughout
the chapters of this first part as well as throughout the chapters of the subsequent
parts of this book. The next chapters in this first part of the book cover different
approaches to statistical testing and estimation (Chap. 2), important principles of
measurement, validity, and reliability (Chap. 3), and ways of dealing with missing
data (Chap. 4). The general principles presented in this first part return in each of
the subsequent parts of this book.

In Chap. 2 (Statistical Testing and Estimation), different approaches to statis-
tical testing and estimation are discussed. Although some of these approaches have
been used extensively, other approaches have been introduced but remain under-
used. Using concrete examples from educational and psychological research, four
approaches to statistical testing are compared: traditional null hypothesis signifi-
cance testing (NHST; Bakker, Van Dijk, & Wicherts, 2012; Cohen, 1990; Cohen,
1994; Kline, 2004), two one-sided tests (TOST) equivalence testing (Goertzen &
Cribbie, 2010; Hauck & Anderson, 1984; Lakens, 2017), information criteria
(Anderson, 2008; Burnham & Anderson, 2002), and Bayesian hypothesis testing
(Etz & Vandekerckhove, 2018; Rouder, Speckman, Sun, Morey, & Iverson, 2012;
Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; Wagenmakers et al.,
2018). While the traditional NHST approach has its use, the other three approaches
enable researchers to do things that cannot be done with the traditional approach.
For instance, in research articles across journals, statistically non-significant p-
values are interpreted as ‘confirming’ the null hypothesis. While no statistical
approach can provide absolute evidence for (i.e., prove the truth of) either the null
or the alternative hypothesis, contrary to the traditional approach, the alternatives
can help researchers establish evidence in favour of ‘no difference’ or a difference
so small that it may not be practically relevant. For statistical estimation and linking
to statistical testing, CIs and Bayesian posterior intervals aka credible intervals
(CRIs) are discussed. While 95% CIs are commonly used for interval estimation
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and associated with traditional NHST at the 5% statistical significance level, 90%
CIs also have their uses, including in the context of TOST equivalence testing
where two one-sided tests are carried out at a 5% statistical significance level each.
Similarities and differences between approaches for statistical testing and estimation
are discussed. Next, a general approach to statistical testing and estimation—which
combines elements of each of the aforementioned approaches—is proposed and this
approach is applied throughout the chapters of this book.

Many variables that are important in educational and psychological research
come from psychometric instruments. Performance or other behaviour may be
assessed by different raters. Constructs such as motivation, mental effort, and
emotion may be studied through self-report questionnaires. Researchers and edu-
cators may use tests in an attempt to measure knowledge or skills. Chapter 3
(Measurement and Quality Criteria) introduces important principles of measure-
ment, validity, and reliability (Bovaird & Embretson, 2008; Hoyle, 2008; Irama-
neerat, Smith, & Smith, 2010; Kellow & Willson, 2010; Mueller & Hancock, 2010;
Osborne, Costello, & Kellow, 2010; Stemler & Tsai, 2010; West & Thoemmes,
2008; Wolfe & Dobria, 2010). Even though researchers commonly report means
(Ms) and standard deviations (SDs) for outcome variables of interest, the use of
these and other statistics used for group comparisons relies on the assumption that
the instruments are valid and reliable. Chapter 3 does not cover all possible aspects
of reliability and validity (that would require a book in itself), but focusses on
statistical aspects of instrument reliability and validity. Across fields, group com-
parisons based on data acquired with psychometric instruments have been justified
(or sometimes discarded) by researchers through the use of Cronbach’s alpha
(Cronbach, 1951). Although Cronbach’s alpha has been widely interpreted as an
indicator of reliability, validity or ‘scale quality’, Chapter 3 reviews literature that
advises against Cronbach’s alpha and in favour of alternatives such as McDonald’s
omega (e.g., Crutzen & Peters, 2017; McDonald, 1978, 1999; Peters, 2014; Revelle
& Zinbarg, 2009; Sijtsma, 2009). Chapter 3 discusses some of these alternatives to
Cronbach’s alpha in a broader approach to psychometrics along with factor analysis
(Field, 2018; Hoyle, 2000; Osborne et al., 2010; Rummel, 1970; Thompson, 2004),
item response theory (e.g., Embretson & Reise, 2000; Hambleton, Swaminathan, &
Rogers, 1991), latent class analysis and latent profile analysis (Ding, 2018;
Hagenaars & McCutcheon, 2002; McCutcheon, 1987), network analysis (Epskamp,
Cramer, Waldorp, Schmittmann, & Borsboom, 2012; Van Borkulo et al., 2014),
mixed-effects modelling aka multilevel modelling (Hox et al., 2017; Molenberghs &
Verbeke, 2005; Singer & Willett, 2003; Snijders & Bosker, 2012; Tan, 2010;
Verbeke & Molenberghs, 2000), and Bland-Altman analysis (Altman & Bland,
1983; Bland & Altman, 1986, 2003).

For the sake of simplicity of the introduction, Chaps. 2 and 3 do not yet deal
with missing data situations. How to deal with missing data depends on the
expected nature of the missingness (Cole, 2010; Enders, 2010; Little & Rubin,
2002; Molenberghs & Kenward, 2007; Van Buuren, 2012). More than four decades
ago, Rubin (1976) proposed a framework of three types of missing data: missing
complete at random (MCAR), missing at random (MAR), and missing not at
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random (MNAR). Nevertheless, missing data are often treated inappropriately. Two
common inappropriate approaches to missing data are mean imputation and listwise
deletion. In the case of mean imputation, a missing data point is replaced by either
the mean of the cases that do have a value on that variable or the mean for the case
at hand of the items that do have a value. This tends to result in underestimated SDs.
In the case of listwise deletion aka ‘complete case’ analysis, all cases with missing
data on at least one variable are excluded from the analysis. For instance, in a paper
one may read that some participants were deleted from the analysis due to
incomplete data. Listwise deletion comes with an unnecessary loss of information.
In another deletion approach, called pairwise deletion, incomplete cases are deleted
only for variables where they have missing. Hence, the sample size may vary from
one (pair or set of) variables to the next and that may create some challenges for the
computation and comparison of SEs and for the comparisons of competing models.
Moreover, especially when missingness is not MCAR, both mean imputation and
the deletion approaches just mentioned are likely to result in biased estimates for
differences and relations of interest. Chapter 4 (Dealing with Missing Data) dis-
cusses several alternatives to the inappropriate approaches just mentioned, with
advantages and disadvantages: last observation carried forward (Peto et al., 1977),
matching aka hot-deck imputation (Little & Rubin, 2002; Roth, 1994), regression
imputation (Allison, 2002), full information maximum likelihood (FIML; Collins,
Schafer, & Kam, 2001), and multiple imputation (MI; Rubin, 1987; Schafer, 1997;
Van Buuren, 2012). Although no chapter can identify ‘the best’ solution to any
possible missing data situation, Chapter 4 provides some general guidelines and
rules of thumb—relating to the type of missingness (MCAR, MAR, MNAR),
whether a variable that has missing data has been measured more than once (i.e.,
repeated measurements), the proportion of missing data on a variable (e.g., 5, 20,
80%), and whether the variable that has missing is an outcome variable or not—that
can be used in many more or less common situations.

Part II: Types of Outcome Variables (Chaps. 5–8)

After the general questions covered in Part I, Part II discusses methods and models
for four different types of outcome variables, using examples from contemporary
research in Education and Psychology: two-category aka dichotomous (Chap. 5),
multicategory nominal (Chap. 6), ordinal (Chap. 7), and quantitative (Chap. 8).
Part II provides an overview of similarities and differences in statistics and inter-
pretation between different types of outcome variables and this helps to discuss
frequent misconceptions and inappropriate practices. For instance, in regression
analysis (e.g., Agresti, 2002; Anderson & Rutkowski, 2010; Baguley, 2012; Field,
2018; Howell, 2017; Huitema, 2011; McCullagh, 1980; Metsämuuronen, 2017;
Nussbaum, Elsadat, & Khago, 2010), researchers often resort to dummy coding
(i.e., 0/1 coding) not knowing that alternatives are available that, in the light of the
research questions and hypotheses at hand, may be more appropriate. Also, in
experiments where choice behaviour is an important outcome variable, researchers
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not rarely compare groups in terms of frequencies on separate categories of an
outcome variable not knowing that there are ways to include all categories in a
single model. Paradoxically, ordinal variables are sometimes treated as
interval/ratio level outcome variables (often in linear models, e.g., Tacq & Nassiri,
2011) and in other cases as multicategory nominal outcome variables. These and
other issues are discussed in Part II, and at the end of this part, the reader should
understand that, although there are differences in statistics and interpretation
between types of outcome variables, the approach to statistical testing and esti-
mation outlined in Part I of this book works for each of the different types of
outcome variables.

Chapter 5 (Dichotomous Outcome Variables) covers methods for dichotomous
outcome variables (e.g., binary logistic regression; Agresti, 2002; Field, 2018).
Although many experiments involve comparisons between conditions on quanti-
tative variables, pass/fail decisions, recover/fail to recover distinctions, and event
occurrence/event absence constitute examples of potentially interesting dichoto-
mous outcome variables. Useful plots, descriptive statistics, and tests are discussed
not only for dichotomous variables measured once in time but in the context of
event-history analysis of event occurrence as well. Although event-history analysis
is commonly associated with survival analysis (Hosmer, Lemeshow, & May, 2008;
Kleinbaum, 1996; Miller, 1997) in hospitals, (simulated) traffic research for
example may focus on the occurrence or absence of accidents in different groups of
participants studied.

Chapter 6 (Multicategory Nominal Outcome Variables) discusses methods for
multicategory nominal outcome variables (e.g., multinomial logistic regression;
Anderson & Rutkowski, 2010). Although this type of outcome variable is less
common than quantitative or dichotomous outcome variables, it may constitute a
main outcome variable in for instance experiments that focus on choice behaviour
or association as a function of treatment. For example, in research on emotion,
different content or different formats of presenting content may trigger different
types of emotions and different words with it. These emotions or words may at best
be considered nominal rather than ordinal categories. Useful plots, descriptive
statistics, and tests are discussed, and many of the concepts discussed in Chap. 5 in
the context of dichotomous outcome variables return as well (with extensions to
multicategory nominal outcome variables).

A commonly undervalued and mistreated type of outcome variable is the ordinal
one. Outcome variables with three or four categories are not rarely treated as
interval or ratio level outcome variables or in some cases—unwillingly—as mul-
ticategory nominal outcome variables, usually with incorrect outcomes as a con-
sequence. Whether we deal with a performance outcome variable such as a
categorisation of diagnostic performance as ‘poor’, ‘satisfactory’, and ‘excellent’ or
an effort rating like ‘very little effort’, ‘little effort’, ‘considerable effort’, ‘a lot of
effort’ in response to treatment, this type of outcome variables is to be treated as
ordinal. Chapter 7 (Ordinal Outcome Variables) discusses methods for ordinal
outcome variables (e.g., ordinal logistic regression; Agresti, 2002, 2010; McCul-
lagh, 1980). In terms of plots, descriptive statistics, and tests, this chapter largely
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builds forth on the foundations laid in Chap. 5 for dichotomous outcome variables
and in Chap. 6 for multicategory nominal outcome variables. Extensions focus on
what distinguishes multicategory ordinal outcome variables from dichotomous or
multicategory nominal outcome variables.

After Chap. 7, it will be clear to the reader why the distinction between types of
outcome variables matters and why for instance ordinal outcome variables need not
and should not be treated as interval or ratio outcome variables. A brief recap of the
main takeaways of Chaps. 5–7 is provided at the beginning of Chap. 8 (Quanti-
tative Outcome Variables) for the reader who opens the book and skips the other
chapters in Part II. Next, common statistics of correlation, effect size, and model
performance are discussed. Linear models (e.g., Field, 2018; Howell, 2017; Hui-
tema, 2011), non-linear models (e.g., Brown, 2001; Tan, 2010), and models for
counts (e.g., Poisson regression; Agresti, 2002; Nussbaum et al., 2010) are dis-
cussed in Chap. 8. Note that the term ‘quantitative outcome variables’ is used with
the sole intention to make the distinction between outcome variables that are of
interval or ratio level of measurement (Chap. 8) and outcome variables that are of
nominal or ordinal level of measurement; it is not intended to imply that the latter
are only ‘qualitative’ outcome variables. Also note that in this book, I am not
advocating for any kind of qualitative-quantitative divide that appears to be upheld
in some fields. Instead, my plea throughout this book is that such divides are
unrealistic and unconstructive, because they feed misconceptions like there never
being any hypotheses in qualitative research, qualitative research always being
exploratory and quantitative research always being confirmatory, qualitative
research being non-linear and quantitative research being linear, qualitative research
being subjective and quantitative research being objective, that qualitative
researchers are constructivists while quantitative researchers are (post-)positivists,
that qualitative research is done ‘by hand’ while quantitative research is done with
software, and more of this kind. Any kind of qualitative-quantitative divide fails to
appreciate that some core assumptions form part of all research, that research can be
qualitative and quantitative at the same time, and that (Van der Zee & Reich, 2018,
p. 3): “For both qualitative and quantitative research, interpretation of results
depends on understanding what stances researchers adopted before an investiga-
tion, what constraints researchers placed around their analytic plan, and what
analytic decisions were responsive to new findings. Transparency in that analytic
process is critical for determining how seriously practitioners or policymakers
should consider a result.” Especially nowadays with developments in analytics, text
mining, and Big Data (Toon, Timmerman, & Worboys, 2016), any kind of possibly
meaningful qualitative-quantitative divide has been become a thing of the past.
Some philosophers may still defend the ‘incompatibility’ thesis that states that
qualitative and quantitative research cannot go together, just like some other
philosophers may still consider combining Frequentist and Bayesian methods a
form of ‘heresy’. My view on this matter is more pragmatic: just like there are many
practical examples of how qualitative and quantitative research can be combined
into mixed methods research (e.g., Creswell, 2012; Johnson & Onwuegbuzie, 2004;
Levitt et al., 2018), Frequentist, Bayesian, and other statistical methods can be
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combined as well, and most statistical packages these days include these different
types of methods (e.g., Jamovi, JASP, SPSS, Stata, and increasing numbers of
packages in R).

Part III: Types of Comparisons (Chaps. 9–12)

To facilitate explanation and understanding of the different types of concepts in Part II,
comparisons in Part II are limited to a single treatment factor with two groups. In
Part III, the different types of outcome variables discussed in Part II are revisited but
this time with examples of single treatment factors that comprise three or more groups
and absence of specific hypotheses (Chap. 9) or presence thereof (Chap. 10), with
examples of two and three factors simultaneously (Chap. 11), and with examples that
involve covariates (Chap. 12). This part of the book serves several purposes,
including the following. Firstly, there are quite a few different approaches to multiple
testing and which one, if any, is needed depends on the set of hypotheses available
prior to data collection. Chapters 9 and 10 therefore discuss common approaches to
multiple testing and useful approaches to planned comparisons, respectively. Next,
Chapters 11 and 12 cover the concepts of main effects, interaction effects, and simple
effects. Although when dealing with two or three factors researchers often do study
interaction effects, a check on factor-covariate interaction (an important assumption
underlying for instance ANCOVA) is often omitted. Chapter 12 therefore compares
different methods for factor-covariate combinations.

When a treatment factor consists of more than two groups, applying a correction
for multiple testing to keep the rate of false alarms (seeing differences in a sample
while in the population sampled from there are none) limited is desirable. This is
especially the case when prior to data collection there are no clear expectations or
hypotheses that call for one or a few very specific tests. Chapter 9 (Common
Approaches to Multiple Testing) discusses several types of correction for multiple
testing—Tukey’s (Tukey, 1949), Scheffé’s (Bohrer, 1967; Scheffé, 1959), Bon-
ferroni’s (Bonferroni, 1936), Dunn’s (Dunn, 1979), Dunnett’s (Dunnett, 1955),
Games-Howell’s (Games & Howell, 1976; Games, Keselman, & Clinch, 1979),
Holm’s (Holm, 1979), and Bayesian prior probability fixing (Westfall, Johnson, &
Utts, 1997)—with their advantages and disadvantages. Next, a new approach to
(overall and) multiple testing is proposed.

When a treatment factor consists of more than two groups but—based on theory,
previous research or common sense—we do have specific hypotheses with regard
to which groups differ and eventually in what direction they differ, we may not need
to compare all groups with each other but may gain statistical power to detect
treatment effects of interest by performing tests in line with the hypotheses we have.
For instance, when the independent variable is a dosage of medication and par-
ticipants in the different groups receive 0, 5, 10, and 15 mg, respectively, and we
expect a linear relation between dosage and say performance in a driving simulator,
one test may do. In another context, when in an experiment with three conditions
we expect that two treatment conditions A and B lead to better driving performance
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than a control condition and additionally condition B will do better than condition
A, two one-sided tests—one for the difference between control and treatment A,
and another for the difference between treatments A and B—can do. These and
other planned comparisons, and how they follow from a specific set of hypotheses,
are discussed in Chap. 10 (Directed Hypotheses and Planned Comparisons).
Finally, Chap. 10 also discusses preregistration and registered reports as ways to
register prespecified hypotheses and justify planned comparisons.

When two or more factors are involved, different types of effects can be dis-
tinguished: main effects, interaction effects, and simple effects. Chapter 11 (Two-
Way and Three-Way Factorial Designs) discusses important guidelines for the
testing, estimation, interpretation, and reporting on each of these two types of
effects. The distinction between dummy coding and other types of coding discussed
in earlier chapters is revisited in Chap. 11 as well to discuss some common mis-
conceptions with regard to the meaning of model coefficients. For instance, when
performing a logistic regression on a dichotomous outcome variable with two
dummy coded treatment factors A and B (i.e., each 0/1 coded) and their interaction
(i.e., a product of 0s and 1s, hence a 0/1 variable as well), researchers at times
interpret the regression coefficients of A and B in a model that includes the A-by-B
interaction as ‘main effects’, while in fact they are simple effects.

For the sake of simplicity of the introduction of new topics, Chaps. 9–11 do not
cover examples that include covariates. However, in many studies, one or more
covariates are added to the analysis. Although adding covariates sometimes makes
sense, the reasons for which they are added are not always appropriate (e.g.,
Gruijters, 2016) and some important assumptions such as with regard to
factor-covariate interaction frequently remain unchecked, with inappropriate out-
comes and interpretations as a consequence. Chapter 12 (Factor-Covariate Com-
binations) compares different methods for dealing with covariates, including
ANCOVA, analysis of covariate residuals (ANCOVRES; Kane, 2013; Leppink,
2018b), path analysis (e.g., Baron & Kenny, 1986; Hayes, 2018; Preacher & Hayes,
2004, 2008), and moderated regression (e.g., Champoux & Peters, 1987; Darrow &
Kahl, 1982; Hayes, 2018; Leppink, 2018b).

Part IV: Multilevel Designs (Chaps. 13–16)

In Part IV of the book, different types of hierarchical data structures are discussed.
Although there is more awareness among researchers of multilevel designs and
multilevel analysis these days compared to say 10–15 years ago, journals across
fields continue to regularly publish articles in which a multilevel structure has been
ignored or otherwise treated inappropriately. This is problematic, because—as
explained earlier in this chapter—inadequately accounting for such structures can
substantially distort testing and estimation outcomes. Therefore, in this part of the
book, four common types of multilevel situations in experimental research are
discussed: participants who interact with each other because they are part of the
same social networks (e.g., centres) or because a particular type of interaction is part
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of the instruction of the experiment (Chap. 13), participants being assessed by two
or more raters (Chap. 14), treatment groups being measured repeatedly over time
(Chap. 15), and experiments where the type of treatment varies not only between
but within participants as well (Chap. 16). Appropriate methods and commonly
encountered inappropriate methods are compared in terms of outcomes and inter-
pretation, to help increase awareness of the usefulness of multilevel models when
dealing with multilevel data.

In increasing numbers of experiments, participants interact with each other
during the experiment, for instance because they are part of the same centres or
organisations or because a specific type of interaction is part of the instruction of the
experiment. This type of interaction is the focus of Chap. 13 (Interaction Between
Participants). Different types of situations are discussed: dyads (e.g., couples),
small-size groups (e.g., project teams), and larger groups or social networks. In each
of these types of situations, individuals are treated as actors nested within
higher-level actors or units (e.g., pairs, teams, or centres). Chapter 13 provides
examples of how failing to account for this structure can result in substantial
distortions of our perspective on treatment effects of interest.

In not so few experiments where performance or another behavioural outcome
variable is measured, scores of learners or other individuals result from an
assessment by two or more independent raters. The scores of different raters are
often averaged into a single score per participant. While this does not always result
in incorrect conclusions with regard to treatment effects of interest, a more accurate
analytic approach is found in treating the raters as stations that have to be passed by
participants. Chapter 14 (Two or More Raters) presents worked examples of how to
run that type of analysis and acquire estimates of treatment effects and inter-rater
reliability simultaneously.

Almost a century ago, Fisher (1925) launched the term split-plot design to define
agricultural experiments in which split plots of land received different treatments
and were measured across time. Later on, this term was also adopted in Psychology,
Education, and other disciplines to refer to similar kinds of experiments with human
participants: different groups are given a different treatment and are measured at two
or more occasions over time. In some cases, there are two measurements one of
which takes place before the treatment (i.e., pre-test) and the other takes place after
treatment (i.e., post-test). In other cases, there are two measurements one of which
takes place immediately after treatment (i.e., post-test) and the second one after
some time (i.e., follow up). In yet other cases, there are three or more measure-
ments, some of which before some of which after treatment. Methods for each of
these types of situations are discussed in Chap. 15 (Group-by-Time Interactions).
Analogously to the rater situations discussed in Chap. 14, occasions can be treated
as stations to be passed by each of the participants.

In some cases, different groups may receive different treatments at different
occasions, the order of treatment varies across groups, and there is a measurement
of an outcome variable of interest at each occasion. In the simplest setup, there are
two treatments, A and B, which are taken in a different order by each of two groups:
A-B in one group (with a measurement after A followed by a measurement after B),
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B-A in the other group (with a measurement after B followed by a measurement
after A). In other cases, there are more treatments and more orders for a larger
number of groups with it, or there are only a few—and perhaps only two—treat-
ments which can vary in each of a larger number of trials. At each trial, there is a
measurement of an outcome variable of interest. Consider students who are asked to
read ten articles, each article is read in each of two possible formats determined in a
random order, and after each article students are asked to rate on a visual analogue
scale (VAS: 0–100) how much effort it took to read the article. These are all
examples of situations where treatment varies both between and within participants
and a measurement of an outcome variable of interest takes place in each trial (e.g.,
after each condition or for each article). As in Chaps. 14 and 15, the occasions or
trials can still be viewed as stations to be passed by each of the participants, but
there is something that varies from station to station that has to be accounted for in
our models. Chapter 16 (Models for Treatment Order Effects) provides worked
examples for how to do that.

Part V: General Recommendations (Chap. 17)

The final chapter of this book, Chap. 17 (A General Pragmatic Approach to Sta-
tistical Testing and Estimation), provides a synthesis of Parts I–IV in the form of a
set of general recommendations on core questions discussed in this book: design
and sample size, ways to increase statistical power, dealing with missing data,
psychometrics of measurement instruments, testing and estimating treatment
effects, and dealing with covariates. To readers who wonder what about multilevel
questions, these are covered as part of the aforementioned core questions. For
instance, the distinction between single-level designs and two- or multilevel designs
has implications for both design and sample size and has implications for dealing
with eventual missing data. In the context of psychometrics of measurement
instruments, the final chapter provides a general mixed-effects aka multilevel
modelling approach that does not require the use of latent variables and can be
applied to all kinds of outcome variables covered in this book.
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2Statistical Testing and Estimation

Abstract
In Chap. 1, the QDA bridge is presented as an approach to experimental
research. In this chapter, a pragmatic approach to statistical testing and
estimation (PASTE) is presented. In line with the QDA heuristic introduced in
Chap. 1, all statistical testing and estimation is driven by research questions and
hypotheses and appropriately accounts for the features of the experimental
design and the data acquired in the experiment. To get a first grip on the data, to
check which assumptions may be reasonable, and to decide on how to proceed
with the numbers, we ought to first carefully inspect our data with graphs and,
based on what we see in these graphs, with appropriate simple descriptive
statistics. These graphs and descriptive statistics, together with the research
questions and hypotheses at hand and the features of the experimental design to
be accounted for, help us to decide on appropriate ways to test our hypotheses
and to estimate effects of interest. Point estimates are preferably accompanied by
CIs and/or CRIs. Statistical testing is preferably done using multiple criteria,
though which criteria to use partly depends on the nature of the hypotheses to be
tested. In this chapter, different approaches to statistical significance testing as
well as different approaches to hypothesis testing using information criteria and
Bayesian hypothesis testing are discussed and compared, and concepts of
sequential analysis and machine learning are discussed as well. After the
introduction of each of the aforementioned concepts and methods, this chapter
concludes with a coherent set of general guidelines that may serve as a general
pragmatic approach to statistical testing and estimation. This approach, called
PASTE, is also used in all subsequent chapters of this book. In a nutshell,
PASTE is not about preferring one approach over another (e.g., Bayesian over
statistical significance) but about using combinations of methods to make
evidence-based decisions with regard to findings at hand and to formulate
appropriate recommendations for future research and practice.
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Introduction

The QDA bridge, the heuristic introduced in Chap. 1, states that there is a bridge
between research questions and hypotheses (i.e., questions), experimental design
and methods used to collect data (i.e., design), and statistical analysis (i.e., anal-
ysis). That is, both questions and design inform analysis. Moreover, once we have
collected our data, we will also have to see which of the likely candidates for
statistical analysis (i.e., in the light of questions and design) are appropriate given
the nature of the data we have collected. For instance, the presence of several very
extreme cases, extreme skewness and other potentially severe departures from
normality constitute possible reasons for us to revise initial choices for statistical
methods that do not need normally distributed data but may well provide somewhat
inadequate results when used with particular data unless we take additional steps,
such as applying a transformation (e.g., taking the square root or log of a
no-zero-values time variable that is clearly skewed to the right; Field, 2018), before
we use these methods (e.g., Osborne, 2010a; and see Chaps. 3, 5, and 8 of this book
for more on this and other ways to deal with departures from assumptions). Cal-
culating Ms, SDs, correlations or other statistics without any kind of graphical
inspection of our data first may be a recipe for disaster.

Some readers may wonder if ‘disaster’ is not somewhat of a too heavy quali-
fication for possible outcomes of the exercise of calculating numbers without any
kind of visual check with appropriate graphs. As a matter of fact, from time to time,
medical doctors and educational researchers complain to me that statisticians (in-
cluding myself) can be very strict (or, in their words, harsh) in their reviews when it
comes to the design and analysis of experiments or other empirical studies. In their
view, educational and psychological research are not ‘rocket science’, we ‘just use’
statistics as a tool to draw some conclusions, and we cannot all be statisticians.
I fully agree with the latter: we cannot all be statisticians, just like we cannot all be
medical doctors. However, if I as a statistician—with no medical background—
provided some medical advice to people that is not based on solid evidence but is
inadequate, medical doctors might get very upset with me, and right so, especially if
my advice put the health of people who took my advice at risk or worsened health
issues they had been suffering from already. Likewise, when people use statistical
methods without following some basic rules, this will likely upset statisticians,
because the recommendations for future research and practice following from this
work undermine scientific practice, may harm society or at least put specific groups
of people at risk of being exposed to potentially harmful treatments, and may result
in an unnecessary loss of tax payers’ confidence in scientific practice (in the field at
hand or more broadly). Therefore, just like statisticians should refrain from pro-
viding inadequate medical advice, medical doctors and other researchers should not
violate the rules of good scientific practice by inventing and using their own rules.
Good methodological and statistical practice is a moral and ethical obligation to our
fields, to our colleagues, to next generations of researchers, and to society. This is
not to say that every problem has one appropriate statistical solution. On the
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contrary, most problems in educational and psychological research have several
possible solutions, and the latest when that becomes evident is when you ask
different teams of researchers to independently analyse the same data (e.g., Leppink
& Pérez-Fuster, 2019; Silberzahn et al., 2018) or the same team of researchers
illustrate how different ways of analysing the same data may shed light on different
aspects of an effect of interest (e.g., Twisk et al., 2018; Twisk, Hoogendijk, Zwi-
jsen, & De Boer, 2016).

Very good sources on graphical checks include Field (2018), Metsämuuronen
(2017), Osborne (2010), and Osborne and Overbay (2010), and graphical checks
can be done with virtually any statistical software package. Depending on the
nature of an outcome variable of interest, pie charts (for nominal variables) or bar
charts (for nominal and ordinal variables) with frequencies, or box plots and his-
tograms (for quantitative outcome variables) per condition or group can help us
acquire a good first understanding of the distribution of a response variable of
interest in each of the conditions. Depending on what this distribution looks like in
the different conditions, some methods will constitute better candidates for analysis
than other methods. That said, it is recommendable to not restrict ourselves to one
statistical method when writing a study proposal but instead to mention a few
candidate methods some of which may become more or less likely depending on
what the data to be collected looks like. In Chaps. 5, 6, 7, 8 of this book, this
exercise is done for the different outcome variables we may encounter in experi-
mental research. For the sake of simplicity, we will introduce a pragmatic approach
to statistical testing and estimation (PASTE) in this chapter in a context of
two-group experiments with quantitative outcome variables that are distributed such
that no transformations or decisions with regard to ‘extreme’ cases have to be made
and a good old Student’s t-test (e.g., Field, 2018; Fisher Box, 1987) constitutes an
appropriate way of testing hypotheses.

Example Experiment

Researchers in a Health Professions Education department are interested in the
effect of a new type of simulation training on the development of communication
skills among undergraduate medical students. The researchers decide to do an
experiment in which this new simulation training constitutes the experimental
treatment condition and the conventional form of simulation serves as control
condition. In both conditions, participating undergraduate medical students indi-
vidually undergo training with the same type of simulated patients. The only way in
which the two conditions differ is that specific instructions are provided during the
training in the treatment condition but not in the control condition. At the end of the
training, participants from both conditions individually complete the same post-test
with a simulated patient. For simplicity of the example, this post-test yields a
quantitative integer score that can range from 0 to 10, and higher scores indicate
better post-test performance. Suppose, the researchers have no pronounced
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expectations for a potential effect of the additional instructions in the treatment
condition to be positive (i.e., on average, the treatment condition results in better
performance than the control condition) or negative (i.e., on average worse per-
formance in the treatment condition compared to the control condition), for
example because the evidence with regard to providing this kind of instruction in
the literature thus far is mixed. Therefore, the researchers want to test the null
hypothesis of ‘no difference’ between conditions in average post-test performance
(H0: no treatment effect, µtreat = µcontrol), and their alternative hypothesis is that
there is a difference, positive or negative (H1: treatment effect, µtreat 6¼ µcontrol).

Required Sample Size Calculation

The researchers decide to randomly sample N = 128 undergraduate medical stu-
dents and randomly allocate them such that both conditions host n = 64 partici-
pants. They do so, because they know that these numbers yield a statistical power of
0.80 for a difference between conditions of 0.50 SD, using a two-sided (i.e., H1:
µtreat 6¼ µcontrol) Student t-test (introduced in 1908 by William Sealy Gosset, a
chemist working for the Guinness brewery in Dublin, Ireland, who used “Student”
as his writing name; see for instance: Fisher Box, 1987) at statistical significance
level a = 0.05. Required sample size calculations like this one can be done easily in
zero-cost software like GPower and Jamovi. A statistical power of 0.80 means that,
assuming an effect of a specified magnitude (here: 0.50 SD), on average eight out of
every ten experiments with the given sample size (here: n = 64 per condition) and
statistical significance level (here: a = 0.05) would yield a statistically significant
result (here: p < 0.05). A power of (at least) 0.80 is not only recommendable in the
light of having a decent chance of detecting an effect of interest in a new experi-
ment; it is simply necessary to do meaningful replication research. Assuming a
power of 0.80, the chance that two independent experiments in a row—let us call
them an initial experiment and a replication experiment—yield a statistically sig-
nificant outcome is 0.802 (i.e., 0.80 * 0.80) or 0.64. In other words, even with two
experiments that each have a statistical power of 0.80, there is only 64% chance that
both experiments will yield a statistically significant outcome. If we add a third
independent experiment with the same power of 0.80, say a second replication of
the initial experiment, the chance that all three experiments with a power of 0.80
yield a statistically significant outcome equals 0.803 (i.e., 0.80 * 0.80 *
0.80) = 0.512, hence hardly more than 50%.

Assumptions

The researchers in the example experiment are aware of all this and would like to
strive for a higher statistical power, but do not have more resources to do so. As
planned, they succeed in having 128 participants, 64 per condition, complete the
experiment. As recommended, before they proceed with statistical testing and
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estimation, they first graphically inspect their data. Figures 2.1 and 2.2 present the
histograms and box plots, respectively, of the distributions of post-test performance
in the control (X = 0) and treatment (X = 1) condition (Jamovi).

Based on these graphical checks, the researchers proceed with descriptive
statistics. In the control condition, post-test performance was M = 4.844 (SD =
1.312; skewness = 0.080, kurtosis = −0.078). In the treatment condition, post-test
performance was M = 5.078 (SD = 1.013; skewness = −0.066; kurto-
sis = −0.294). Post-test score ranged from 2 to 8 in the control group and from 3 to
7 in the treatment condition, and the median post-test score was 5 in both
conditions.

The histograms and skewness and kurtosis values indicate that the distributions
of post-test performance in both conditions do not deviate that much from nor-
mality. In linear regression models, the residuals around the best linear unbiased

Fig. 2.1 Histogram of the
distribution of post-test
performance (Y) in the control
(X = 0) and treatment (X = 1)
condition (Jamovi)

Fig. 2.2 Boxplot of the
distribution of post-test
performance (Y) per condition
(X = 0: control; X = 1:
treatment) (Jamovi)
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estimate (BLUE; the regression line) are assumed to follow a Normal distribution in
the population of interest. Small departures from normality are often not a problem,
especially in somewhat larger samples. Moreover, following the central limit the-
orem (e.g., Field, 2018), even if there are departures from the aforementioned
normality assumption, with increasing sample size the sampling distribution of Ms
and mean differences (Mds) more and more closely approximates a Normal distri-
bution. When dealing with somewhat smaller samples, software like the user-
friendlyscience R package (Peters, 2017) can help researchers to estimate the
sampling distribution given the data at hand. In the example experiment, the
population sampled from could well follow a Normal distribution and otherwise
sample sizes are large enough to safely assume an approximately Normal sampling
distribution.

Another assumption to be checked relates to the SDs (or, in squared form: the
variances) of the two conditions in the population sampled from: they may be
(approximately) equal, or (clearly) unequal. Many researchers test both the nor-
mally distributed population and equal SDs assumptions through statistical signif-
icance tests (e.g., Fasano & Francheschini, 1987; Justel, Peña, & Zamar, 1997;
Levene, 1960; Shapiro & Wilk, 1965; Smirnov, 1948; Stephens, 1974). However,
this approach is not without problems. Firstly, absence of evidence is not evidence
of absence; a statistically non-significant p-value generally cannot and should not
be interpreted as evidence in favour of ‘no deviation’ from normality, of ‘no dif-
ference’ between SDs, et cetera. Secondly, as with any statistical significance test,
small samples usually leave researchers poorly equipped to detect potentially
meaningful differences, while large samples may result in statistically significant
differences that from a practical point of view may not have much meaning if any.
Thirdly, any time, researchers can report both a t-test assuming equal SDs (i.e., the
classical Student’s t-test; Fisher Box, 1987) and a t-test assuming unequal SDs
(Welch, 1947). In the classical Student’s t-test, the number of degrees of freedom
(df) equals N – 2, hence here df = 126. In Welch’s t-test, the departure from equal
SDs is accounted for by lowering df. The more the departure from equal SDs
observed in the experiment, the more these two t-tests can be expected to differ; if
the difference between SDs observed in an experiment is fairly small, the two t-tests
will usually yield very similar outcomes. In the example experiment, the largest SD
is 1.312/1.013 � 1.295 times the smallest SD. Some may call this difference
substantial, others may call it fairly small. For the data at hand, assuming equal SDs
we find t126 = 1.131, p = 0.260, and assuming unequal SDs we find t118.4 = 1.131,
p = 0.260. Assuming equal SDs, the 95% CI for the Md (of 0.234) extends from
−0.176 to 0.644, and under unequal SDs the 95% CI for that Md extends from
−0.176 to 0.645. In other words, under equal and unequal SDs, we obtain almost
identical testing and estimation outcomes. The Md of 0.234 (in favour of the
treatment condition) corresponds with a difference of 0.200 SDs, Cohen’s
d = 0.200 (Cohen, 1988). Although this kind of effect size estimates is to be always
evaluated in the context of a study at hand, most researchers would agree that d-
values of this kind generally reflect relatively ‘small’ effects. The 95% CI for
Cohen’s d (of 0.200) extends from −0.148 to 0.547. The treatment explains about
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1% of the variance in post-test performance (i.e., R2 = 0.010) or perhaps even less
(adjusted R2 = 0.002, which corresponds with 0.2% of variance explained).

In a nutshell, the researchers conclude that they do not have sufficient evidence
to reject H0 of ‘no difference’. The p-value obtained from a two-sided test equals
0.260, which is larger than the pre-specified statistical significance level. Conse-
quently, the 95% intervals for the Md and for Cohen’s d include ‘0’, the difference
specified under H0. Cohen’s d and the model fit statistics of R2 and adjusted R2

indicate that the effect observed in the sample is small. However, these findings
should not be interpreted as evidence of ‘no difference’. No statistical method
should be expected to provide absolute evidence for any hypothesis, and that would
rarely if ever be the goal of statistics anyway, but if we want to establish evidence in
favour of H0 relative to H1, we need one or more alternatives to this ‘no difference’
NHST approach.

Likelihoods and Ratios

Already more than five decades ago, philosopher Ian Hacking (1965) suggested an
intuitive way of thinking about comparative support for H0 relative to H1 and vice
versa: dataset A provides evidence for H1 more than for H0 if A is more probable
under H1 than under H0. In that case, the ratio of likelihoods aka likelihood ratio
(LR) of H1 over H0 exceeds 1, and since the LR of H0 over H1 is the inverse of the
aforementioned this one is smaller than 1. In line with this approach, Royall (1997)
distinguished three questions: (1) what to believe now that we have seen A, (2) how
to act now that we have seen A, and (3) how to interpret A as evidence regarding
H0 versus H1? In the view of Royall, the belief question is captured by Bayesian
posteriors, the act question is in line with Frequentist approach of which NHST is
part, and the approach of the LR is captured by scholars of the Likelihoodist school
of thought. Moreover, according to Royall, all information or evidence in a sample
is contained in the likelihood function and can be captured in LRs. In the words of
Royall (2004, p. 129), “evidence has a different mathematical form than uncer-
tainty. It is likelihood ratios, not probabilities, that represent and measure statis-
tical evidence […]. It is the likelihood function, and not any probability
distribution, that shows what the data say.” Note that the LR [P(O|H1)/P(O|H0)] is
what in Bayes’ theorem (Bayes, 1763; Laplace, 1812) constitutes the shift from
prior odds [P(H1)/P(H0)] to posterior odds [P(H1|O)/P(H0|O)]:

P H1jOð Þ=P H0jOð Þ ¼ P OjH1ð Þ=P OjH0ð Þ½ � � P H1ð Þ=P H0ð Þ½ �:

Thus, the LR can be viewed as a shift from prior odds to posterior odds that
provides a measure of relative support for H1 versus H0 or (when numerator and
denominator are switched in prior odds, LR, and posterior odds) vice versa. Now,
when we deal with continuous variables—such as distributions of Ms or Mds—and
composite hypotheses (i.e., ‘a difference’ or ‘values in a given range’), we need a
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generalised LR based on Wilks’s theorem (Wilks, 1938). According to this theo-
rem, the log (generalised) LR (i.e., the difference in deviance or −2LL of two
competing models, one of which is an extension or reduction of the other) con-
verges to a v2-distribution as the sample size goes to infinity, if H0 is true. H0 is
rejected if the difference in log likelihood between the model called H0 and the
model called H1 exceeds the critical v

2-value at a = 0.05 for df = the difference in
number of parameters between the two models.

Applying this generalised LR test to our example experiment, we are dealing
with a v2-distribution with df = 1, hence v1

2. Just like in the case of two groups
(dfgroups = 1) the F-distribution is a squared t-distribution, the v1

2-distribution is a
squared z-distribution (i.e., z is the standard Normal distribution). As sample size
goes to infinity, the t-distribution more and more approaches the z-distribution and
the F-distribution more and more approaches the v2-distribution. The critical v1

2-
value at a = 0.05 is 3.84. The deviance (−2LL) for model ‘H0’ or ‘Model 0’ (aka
the ‘null model’) equals 403.138, while that for model ‘H1’ or ‘Model 1’ is
401.844. Note that the −2LL of the model that includes a parameter that is not
included in the simpler model—here: the treatment effect is part of Model 1 but not
of Model 0—is always lower (i.e., never higher) than that of the simpler model.
However, the generalised LR test (in the literature often simply called ‘LR test’,
even though the generalised LR is a generalisation of the ‘simple’ LR from the
above equation) indicates whether this reduction in −2LL is statistically significant.
The difference in deviance or −2LL is used as the observed v1

2-value and is found as
follows:

observed v21-value ¼ ½�2LLModel 1� � ½�2LLModel 0�:

In our example experiment, we find: observed v1
2-value = 403.138 –

401.844 = 1.294; v1
2 = 1.294 corresponds with p = 0.255. The difference in p-value

of 0.260 in the t-test and 0.255 in this generalised LR test arises because although
the t126-distribution more closely approaches a z-distribution (i.e., given df = 1, the
square root of v2 equals z) than t-distributions for smaller df it is still a bit wider
than the z-distribution.

Note that with the generalised LR test, we are in the end back to a statistical
significance test. Another ratio approach that relates to p-values is found in the
Vovk-Sellke maximum p-ratio (VS-MPR; Sellke, Bayarri, & Berger, 2001). Based
on a two-sided p-value, as in our example experiment, the maximum possible odds
in favour of H1 over H0 can be calculated as follows provided that p < 0.37:

VS-MPR ¼ 1= �e � p � log pð Þ½ �:

For the example experiment, that yields VS-MPR = 1.050, indicating that this p-
value is at most 1.050 times more likely to occur under H1 than under H0. For
p = 0.05, VS-MPR would be around 2.46.
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There Is More to Statistical Significance Testing

Whether we use p-values from t-tests, LR tests, or the VS-MPR, evidence in favour
of H1 over H0 is more easily established in larger samples than in smaller samples.
That is, given effect size and statistical significance level, larger samples have a
higher statistical power than smaller samples. Underpowered experiments (i.e.,
given a particular test and effect size) have constituted a source of concern for a
long time (Montgomery, Peters, & Little, 2003; Whisman & McClelland, 2005),
and should be a concern not only for single experiments but for meaningful
replication research as well. Experiments with a power of 0.50 for effects of a
realistic magnitude (e.g., 0.2 < d < 0.5) are not uncommon in educational and
psychological research, and following the aforementioned formula of ‘statistical
power per experiment ^ the number of independent experiments’, we learn that
there is only 25% chance that two independent experiments with a power of 0.50
both yield a statistically significant result and only 12.5% that three independent
experiments with a power of 0.50 yield a statistically significant result. These days,
readers can find many good resources for power analysis and required sample size
calculations for different types of designs, including: GPower; Dong, Kelcey, and
Spybrook (2017), Dong, Kelcey, Spybrook, Maynard (2016), Dong and Maynard
(2013), Jamovi; Kelcey, Dong, Spybrook, and Cox (2017), Kelcey, Dong, Spy-
brook, and Shen (2017), Spybrook, Kelcey, and Dong (2016).

Two-Sided or One-Sided Testing?

Had the researchers prior to the example experiment had the alternative hypothesis
that the treatment has a positive effect (H1: µtreat > µcontrol), a one-sided test could
have been defended, and t126 = 1.131 would have corresponded with p = 0.130 and
a 95% CI ranging from −0.092 to ∞. If on the contrary, the researchers prior to the
example experiment had the alternative hypothesis that the treatment has a negative
effect (H1: µtreat < µcontrol), a one-sided test in the other direction would have been
defendable, and t126 = 1.131 would have corresponded with p = 0.870 and a 95%
CI ranging from −∞ to 0.491. Doing a one-sided test because prior to the exper-
iment we expect a difference in a particular direction can help us gain statistical
power (higher effectiveness) or allows us to achieve the same statistical power with
a somewhat smaller sample size (higher efficiency). For example, with a two-sided
test at a = 0.05 and d = 0.50 in the population of interest, we need n = 64 par-
ticipants per condition (N = 128), whereas with a one-sided test we need only
n = 51 participants per condition (N = 102), to achieve a statistical power of 0.80
(e.g., GPower, Jamovi). Registering your hypotheses prior to data collection
through for instance research proposals approved for funding as well as registered
reports (Center for Open Science, 2018) constitutes the best practice for defending
one-sided testing. In the traditional publication system, peer review takes place only
after the data have been collected, and there is no way other than perhaps through a
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check of the original funded research proposal to check if researchers had reasons to
perform a one-sided test prior to seeing the data indeed. In registered reports, peer
review of the introduction and method section is done prior to data collection, and a
provisionally accepted manuscript will be published regardless of the findings if
authors comply with the protocol agreed after initial peer review, or can explain
minor deviations where they occur (e.g., unexpected attrition or logistic challenges).
Registered reports constitute a powerful approach to defending one-sided testing
where that is reasonable.

Sequential Testing

Another reason to consider registered reports lies in the possible use of sequential
testing (Armitage, McPherson, & Rowe, 1969; Dodge & Romig, 1929; Lakens,
2014; Pocock, 1977; see also Chap. 10). In the practice of research involving
human participants, an “important question is how we are going to be able to
increase sample sizes without greatly reducing the number of experiments one can
perform” (Lakens, 2014, p. 702). Contrary to a fixed sample size planned a priori,
sequential analyses are about continuing data collection until an interim analysis
reveals a statistically significant difference. There are three main arguments against
such sequential analyses. Firstly, Bayesians would argue that sequential analysis
constitutes a valid practice to data collection and testing in a Bayesian but not in a
Frequentist approach (e.g., Wagenmakers, 2007). Secondly, doing sequential
analyses means more statistical significance tests. Although these tests are not
statistically independent (e.g., a test after n = 15 also involves the data from the
previous test which was done after say n = 13), there will be an increase in Type I
error probability and this needs to be accounted for by adjusting the statistical
significance level downward (e.g., Lakens, 2014; Simmons, Nelson, & Simonsohn,
2011). Thirdly, as smaller samples come with wider CIs and more fluctuation across
studies, follow-up studies will be needed to provide more accurate effect size
estimates. Despite these arguments against sequential testing, there is evidence that
doing sequential analyses with an appropriately adjusted statistical significance
level (i.e., in response to the second argument against) can help researchers to
reduce the sample size of studies by 30% or more (Lakens, 2014). Moreover, there
is software to help researchers determine how to adjust the statistical significance
level such that the overall statistical significance level remains nicely below 0.05.
Sherman’s (2014) package in R called phack (from p-hacking, e.g., Bakker, Van
Dijk, & Wicherts, 2012) constitutes a nice example of that.

If you already have a in mind a limited number of interim tests before data
collection, you may not even need simulations such as in phack but can find
appropriate adjustments of the statistical significance level in literature such as
Fleming, Harrington, and O’Brien (1984), Lai, Shih, and Zhu (2006), Lakens
(2014) and Pocock (1977). There are different approaches to how to correct the

32 2 Statistical Testing and Estimation



statistical significance level alpha, the easiest one of which perhaps comes from
Pocock (1977). Suppose that we want to do a two-group experiment and would
normally strive for a total of N = 128 participants or n = 64 per condition for
reasons explained in the example experiment. Suppose, we would do an interim
analysis halfway, so at N = 64 hence n = 32 per condition. That would constitute
two statistical significance tests: one halfway and one at the end. Using a = 0.0294
for each of the two tests would keep the overall Type I error probability (a) at 0.05.
If we were to split the final total N not in two but three equal parts (e.g., first interim
analysis after N = 50, second interim analysis after N = 100, and final analysis after
N = 150), using a = 0.0221 for each of the three tests would keep the overall a at
5%. For four equal parts that would come down to a = 0.0182 for each test, and for
five equal parts that would mean a = 0.0158 per test. In other approaches (e.g.,
Fleming, Harrington, & O’Brien et al., 1984; Lai, Shih, & Zhu, 2006), the alpha of
interim analysis would be much smaller than 0.05 and the alpha of the final analysis
could remain at 0.05 or slightly below 0.05, to provide a penalty for larger vari-
ability in smaller samples.

Some readers may wonder if Pocock’s approach provides a sufficiently strong
correction of alpha indeed and whether a Bonferroni correction to multiple testing is
not more appropriate here. The answer to this is that the Bonferroni correction
constitutes a slightly conservative way of Type I error probability inflation cor-
rection in the case of statistically independent tests. For example, consider a
three-group experiment with no a priori expectations with regard to group differ-
ences. Researchers first perform an omnibus one-way ANOVA and follow up on a
statistically significant outcome of that omnibus test with three comparisons: con-
dition 1 versus condition 2, condition 1 versus condition 3, and condition 2 versus
condition 3. These k = 3 tests can be considered statistically independent, and the
probability of at least one Type I error can be calculated as follows:

atotal ¼ 1� ½ð1� aper-comparisonÞk�:

For k = 2 (i.e., two independent tests), atotal = 0.0975; for k = 3,atotal = 0.142625.
Bonferroni slightly conservatively corrects for that by dividing aper-comparison by
k and using that as corrected alpha for each test. Hence, for k = 2, Bonferroni would
state a corrected alpha of 0.025, and for k = 3, that would be about 0.0167.
Pocock’s recommended corrected alpha values of 0.0294 for two tests and 0.0221
for three tests are slightly higher than the Bonferroni approach and slightly higher
than the corrected alpha values one would achieve if using the above formula: for
k = 2, aper-comparison � 0.0253, and for k = 3, aper-comparison � 0.0169. This is
because the tests in sequential testing are not statistically independent. After all,
every subsequent test also includes the data used in previous tests (plus new data).
While the above formula is correct for independent tests, it exaggerates the inflation
of Type I error probability when there is dependency between tests. The same
applies to updating meta-analyses with new studies.
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Equivalence Testing

Note that thus far, the story has been one of ‘no difference’ NHST. One might argue
that in our target populations of interest, treatment effects and other differences are
rarely if ever exactly zero, and consequently, with sample sizes going to infinity we
could reject any ‘no difference’ null hypothesis. This is what Meehl (1990) also
calls the crud factor: “in social science everything correlates with everything to
some extent, due to complex and obscure causal influences” (p. 125). However,
many treatment effects or differences alike may be so small that a community may
agree that from a practical point of view they are too small to really matter. From
this perspective, we need an approach that allows us to test if a treatment of interest
is in that ‘too small to matter’ range, and the traditional ‘no difference’ NHST
approach does not allow us to do that. An approach that does enable us to address
that question is TOST equivalence testing. In TOST equivalence testing, we first
have to agree—in the scientific community—on the range of ‘too small to matter’
treatment effects. In the context of the example experiment, researchers in the field
may agree that d-values in the range of −0.3 to 0.3 are too small to matter. This
constitutes the range of relative equivalence, relative because we are dealing with a
range of values not with an absolute equivalence or ‘0’ difference. This range of
−0.3 to 0.3 is translated into two null hypotheses:

H0:1: d\� 0:3 i:e:;more negative treatment effectð Þ;
H0:2: d[ 0:3 i:e:;more positive treatment effectð Þ:

The alternative hypothesis, H1, captures the range of ‘too small to matter’, hence
−0.3 � d � 0.3. If and only if both H0.1 and H0.2 can be rejected, we declare
sufficient evidence to assume relative equivalence. Lakens (2017, 2018) developed
an R package called TOSTER, which enables researchers to do TOST equivalence
testing for a range of situations, including the type of data collected in the example
experiment. This package can be run in R and RStudio and is also incorporated in
Jamovi. Doing this for example experiment, we find—for both assuming and not
assuming equal SDs—for H0.1: d < −0.3, p = 0.003 and for H0.2: d > 0.3,
p = 0.286. In other words, we can reject H0.1 but fail to reject H0.2.

Earlier in this chapter, we saw that 95% CIs include ‘0’ if a p-value obtained
from a ‘no difference’ null hypothesis significance test is not statistically significant
at the 5% level. The 90% CI (i.e., general: 1–2a) is relevant in the context of TOST
equivalence testing, because two tests are carried out at 5% each. If both H0.1 and
H0.2 yield statistically significant p-values, the 90% CI for d includes neither values
in the range specified under H0.1 nor values in the range specified under H0.2. In the
example experiment, the 90% CI of d extends from −0.092 to 0.491. This explains
why H0.1, also called the lower bound null hypothesis, can be rejected, but H0.2,
which is also called the upper bound null hypothesis, cannot be rejected. In other
words, where researchers might at first erroneously interpret p = 0.260 obtained
from the ‘no difference’ null hypothesis significance test as evidence in favour of
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‘no difference’, TOST indicates that we have insufficient evidence to assume rel-
ative equivalence.

What TOSTER also enables researchers to do is required sample size calcula-
tions given the equivalence bounds, statistical significance level used in the two
tests, and desired statistical power. For instance, using a = 0.05 for the two tests
with equivalence bounds d = −0.3 and d = 0.3, for a statistical power of 0.80 we
would need 190.3077 participants per condition (n = 191), hence 382 participants
in total (N = 382). If we are okay with a power of 0.70, the numbers would be
159.7622 (n = 160) and 320 (N), respectively. In other words, establishing sig-
nificant evidence in favour of relative equivalence is more difficult than it may
appear at first. That said, in a meta-analysis across a series of experiments, we may
establish such evidence even if individual experiments do not.

Information Criteria

A different approach to hypothesis testing altogether is found in information cri-
teria. Although quite a few criteria have been developed, some of which may be
more useful than others in a given context, put very briefly they can help
researchers to decide which model of a set of competing models ought to be
preferred in the light of the data, not necessarily because that model is ‘true’ or
represents ‘truth’ but because it is best in terms of predictive accuracy. Adding
meaningful variables (e.g., large treatment effects) to a model will likely increase
predictive accuracy, whereas adding not so meaningful variables (e.g., small
treatment effects) will unlikely increase predictive accuracy. Different criteria differ
in the extent to which they penalise for adding not so meaningful variables.

Akaike’s Information Criterion

A first commonly encountered information criterion is Akaike’s information cri-
terion (AIC; Akaike, 1973, 1992). Given a set of competing models, the preferred
model is the one with the lowest AIC value. In the example experiment, we find
AIC = 407.138 for Model 0 (H0: no difference) and 407.844 for Model 1 (H1:
difference). In other words, Model 0 aka ‘no treatment effect’ is to be preferred.
A concept that is closely related to the aforementioned (generalised) LR test is that
of relative likelihood:

relative likelihood ¼ exp AICmin�AICaltð Þ=2½ �:

In our example experiment, we find about 0.703. Although AIC constitutes a
useful criterion, it has somewhat of a preference towards somewhat more complex
models. This tendency does not constitute much of an issue in large samples but
may result in researchers preferring too complex models especially when sample
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sizes are small (Claeskens & Hjort, 2008; Giraud, 2015; McQuarrie & Tsai, 1998).
Several adaptations of AIC have been developed to correct for this tendency,
including AICc (Burnham & Anderson, 2002; Cavanaugh, 1997; Hurvich & Tsai,
1989). With increasing sample size, the tendency of AIC towards overly complex
reduces, and as the sample size goes to infinity, the difference between AIC and
AICc goes to zero (Burnham & Anderson, 2004).

Schwarz’ Bayesian Information Criterion

Another commonly encountered information criterion is Schwarz’s Bayesian
information criterion (BIC; Schwarz, 1978). AIC and BIC use the same information
from the likelihood function, but BIC provides a more severe penalty for adding
perhaps not so meaningful variables and consequently tends towards simpler and
sometimes somewhat too simple models (Weakliem, 1999). Like with AIC, the
model with the lowest BIC is generally the one to be preferred. In the example
experiment, we find BIC = 412.842 for Model 0 and 416.400 for Model 1. Dif-
ferences in BIC values can be interpreted as follows: 0–2: anecdotal, mention and
that is it; 2–6: positive; 6–10: strong; and above 10: very strong (Kass &
Wasserman, 1995). In other words, the difference of almost four points constitutes
positive evidence in favour of ‘no treatment effect’. Analogous to the relative
likelihood, a ratio for differences between BIC values can be computed, and this
ratio can be interpreted as an approximate Bayes factor (BF) (Kass & Raftery,
1995):

approximate BF ¼ exp BICmin�BICaltð Þ=2½ �:

For the example experiment, the outcome is approximately 0.169. More gen-
erally, AIC, AICc, and BIC constitute three alternatives to BFs that do not require
researchers to formulate prior distributions and each provide different penalties for
overfitting (i.e., a tendency towards overly complex models), with AIC providing
the weakest penalty and BIC providing the strongest penalty.

Sample-Size Adjusted Bayesian Information Criterion

A variation on BIC which in terms of penalty for overfitting lies somewhere in
between AIC and BIC is found in the sample-size adjusted BIC (SABIC; Enders &
Tofighi, 2008; Tofighi & Enders, 2007). AIC and BIC are by default provided in
many software packages, and Mplus also by default provides the SABIC along with
AIC and BIC. In our example experiment, we find SABIC = 406.517 for Model 0
and 406.913 for Model 1. In line with the other information criteria discussed in this
section, the model with the lowest SABIC value is to be preferred, hence here
Model 0.
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Statistical Significance and Information Criteria

NHST and information criteria are based on a different logic. Regardless of the null
hypothesis tested—point (e.g., ‘no difference’) or composite (i.e., values in a given
range, common in one-sided testing)—the p-value is the probability of the observed
value of the test statistic (e.g., t or v2) or further away from H0, if H0 is true. As
such, very small p-values indicate that, in the light of H0, observing the findings
from the sample or further away from the H0 is unlikely. Even though different
information criteria depart from somewhat different questions and assumptions,
they help researchers to choose between competing models. That said, Forster
(2000) indicates that in terms of complex-simple preference two-sided ‘no differ-
ence’ NHST, using a = 0.05, appears to be situated somewhere in between AIC and
BIC. That is, the p-value may in some cases indicate insufficient evidence to reject a
‘no difference’ H0 (e.g., p = 0.07) while AIC indicates a slight preference for
Model 1 (H1), while in some other cases, the p-value may lead researchers to reject
a ‘no difference’ H0 (e.g., p = 0.04) while BIC indicates a slight preference for
Model 0 (H0).

Bayesian Estimation and Hypothesis Testing

What the approaches discussed thus far have in common is that there is no need to
think in terms of prior distributions or probability distributions of parameters of
interest before seeing the data. Bayesian methods are all about updating prior
distributions with regard to our treatment effects or other differences of interest with
incoming data into posterior distributions or probability distributions about the
same parameters of interest after seeing the data (e.g., Wagenmakers et al., 2018).
This process of updating is not one that stops after a single study; the probability
distribution posterior to Experiment 1 can serve as a prior distribution for
Experiment 2. In other words, Bayesian methods enable researchers to incorporate
information from previous studies into their models for next studies. Although not
so few people have claimed that Bayesian methods are still ‘new’ meaning they
were introduced only recently, they were introduced in psychological research in
the 1960s (Edwards, Lindman, & Savage, 1963).

Credible Intervals as a Bayesian Alternative to Confidence
Intervals

From the posterior distribution, 95% posterior intervals aka CRIs aka highest-
density (credible) intervals can be computed. Contrary to CIs, the width of a CRI
depends not only on the data but on the prior distribution as well. After all,
Bayesian inference is about updating a prior distribution to a posterior distribution
with new data. We saw before that the 95% CI for Cohen’s d in the example
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experiment extends from −0.148 to 0.547. Using the default prior distribution for
the difference between two Ms (JASP; Rouder, Speckman, Sun, Morey, & Iversonr,
2012), a Cauchy distribution with M (Md) 0 and scale 0.707 (i.e., 0.5 times the
square root of 2), the 95% CRI for Cohen’s d extends from −0.143 to 0.510. Using
a wide prior, a Cauchy distribution with M (Md) 0 and scale 1, instead, we find a
95% CRI from −0.155 to 0.540. Using an ultrawide prior, a Cauchy distribution
with M (Md) 0 and scale 1.4142 (i.e., the square root of 2), instead, we find a 95%
CRI from −0.151 to 0.544. Finally, taking the widest possible prior in JASP, a
Cauchy distribution with M (Md) 0 and scale 2, we find a 95% CRI from −0.143 to
0.535. The wider the prior, the less information we incorporate in that prior and the
more the 95% CRI resembles the 95% CI. Moreover, apart from the prior, the 95%
CRI becomes more similar to the 95% CI with more data coming in. Although
when using realistic prior distributions, 95% CIs and 95% CRIs may rarely be
identical, for Ms and Mds in larger-sample experiments they can be expected to be
very similar.

The 95% CRI can also be used to argue for the presence or absence of a
meaningful effect. Somewhat similar to the aforementioned equivalence testing
approach based on Frequentist statistics, Bayesians have what is called the region of
practical equivalence (ROPE; Kruschke, 2014; Kruschke & Liddell, 2017). The
idea behind ROPE is that if the 95% CRI does not exceed either of the boundaries
of ROPE—for example d = −0.3 and d = 0.3 being the boundaries—we have
sufficient evidence to declare relative or practical equivalence. Simultaneously, if a
95% CRI includes none of the values from the ROPE, we can safely reject (hy-
potheses in) that region, and CIs—90, 95% or other depending on what statistical
significance level we consider appropriate in a given context—can be used in the
same way. Although when using a Cauchy prior, the 95% CRI is—in comparison to
the 95% CI—somewhat shrunk towards ‘0’, the 95% CRI is usually still somewhat
wider than the 90% CI even if we use default priors. In the example experiment, the
90% CI for d extends from −0.092 to 0.491, which is somewhat narrower than the
95% CRI using a default prior (−0.143 to 0.510). Hence, one could argue that the
Bayesian ROPE procedure is slightly more conservative than the Frequentist
equivalence testing procedure. For a closer read on Bayesian estimation and power
analysis for the ROPE procedure, see Kruschke (2013, 2018).

Although ROPE is not based on p-values, and the 95% CRI is usually a bit wider
than the 90% CI, ROPE and TOST could provide two approaches to four one-sided
testing (FOST). We reject the range of values under ROPE whenever the 95% CRI
has no overlap with ROPE, and only when the 95% CRI completely falls within
ROPE, we declare sufficient evidence for relative equivalence. With TOST, a
similar logic can be applied, but now in terms of four one-sided statistical signif-
icance tests. For relative equivalence:

H0:1: d\� 0:3 i:e:;more negative treatment effectð Þ;
H0:2: d[ 0:3 i:e:;more positive treatment effectð Þ:
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Next, to reject relative equivalence:

H0:3: d� � 0:3 i:e:; either a less negative or a positive treatment effectð Þ;
H0:4: d� 0:3 i:e:; either a less positive or a negative treatment effectð Þ:

We can use the same ‘1–2a’ (i.e., usually 90%) interval for the set of H0.1 and
H0.2 as for the set of H0.3 and H0.4. FOST has three possible outcomes: (a) sufficient
evidence for relative equivalence (when both H0.1 and H0.2 can be rejected);
(b) sufficient evidence to reject relative equivalence (when either H0.3 or H0.4 can
be rejected); and (c) inconclusive (when at least one of H0.1 and H0.2 cannot be
rejected and none of H0.3 and H0.4 can be rejected). Note that ‘sufficient evidence’
should not be interpreted as ‘absolute’ evidence; we may still be wrong.

Figure 2.3 graphically presents the rationale behind FOST and the possible
scenarios

A, B1, B2, C1, C2, and C3 represent six 90% CIs. In the case of A, we reject
both H0.1 and H0.2 and therefore conclude sufficient evidence for relative equiva-
lence. Note that the rejection of both H0.1 and H0.2 implies that none of H0.3 and
H0.4 can be rejected. Again, this is not absolute evidence. Moreover, relative
equivalence does not necessarily imply that ‘no difference’ lies in the 90% CI. For
example, in a large meta-analysis, involving many studies, we may find a 90% CI
for d extending from 0.05 to 0.25; with this interval, we reject both H0.1 and H0.2

and therefore conclude sufficient evidence for relative equivalence, but the interval
does not include ‘0’.

Fig. 2.3 Four one-sided testing (FOST): sufficient evidence for relative equivalence (A),
sufficient evidence against relative equivalence (B1, B2), or inconclusive (C1, C2, C3)
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In the cases of B1 (reject H0.4) and B2 (reject H0.3), we have sufficient evidence
against relative equivalence. Again, this is not to be interpreted as absolute evi-
dence, and this is unlikely to occur in a single experiment unless d in the population
is very large or, when d is more moderate (e.g., 0.5 in B1 or −0.5 in B2) the sample
size is large enough to obtain a 90% CI that does not does include any of the d-
values in the [−0.3; 0.3] range, such that we can reject either H0.3 or H0.4. Note that
rejecting H0.3 implies rejecting H0.2 as well but that we fail to reject H0.1, and that
rejecting H0.4 implies rejecting H0.1 as well but that we fail to reject H0.2.

In single experiments, C1, C2, and C3 are more likely to occur than any of A or
B1 or B2. In the case of C1, we fail to reject H0.2 and fail to reject both H0.3 and
H0.4. In the case of C2, we fail to reject H0.1 and fail to reject both H0.3 and H0.4.
Finally, in the case of C3, we fail to reject any of H0.1, H0.2, H0.3, and H0.4.

In sum, FOST works as follows: (a) if we can reject both H0.1 and H0.2, we can
conclude sufficient evidence in favour of relative equivalence; (b) if we can reject
either H0.3 or H0.4, we can conclude sufficient evidence against relative equiva-
lence; and (c) in all other cases, we remain inconclusive, meaning we have neither
sufficient evidence in favour nor sufficient evidence against relative equivalence.
With increasing sample size of experiments as well as with replication experiments
and meta-analyses, the likelihood of scenario (c) can be expected to decrease and—
depending on the magnitude of a treatment effect of interest—the likelihood of
either scenario (a) or scenario (b) can be expected to increase. Nevertheless,
regardless the size of a sample or meta-analysis, none of these scenarios is to be
evaluated in terms of absolute evidence.

A Bayesian Approach to Model Comparison

A Bayesian alternative to p-values is found in BFs (e.g., Rouder et al., 2012;
Wagenmakers, 2007; Wagenmakers et al., 2018). Succinctly put, the BF quantifies
a shift from prior odds [P(H1)/P(H0)] to posterior odds [P(H1|O)/P(H0|O)], hence
from before to after seeing data O from Experiment A. However, contrary to the
aforementioned concept of LR, the BF itself depends on the prior distribution and
this remains a main source of critique to BFs (e.g., Gelman & Carlin, 2017;
Kruschke, 2011; Liu & Aitken, 2008). This critique is especially important where
effects of interest are rather small or ‘medium’ (e.g., Cohen’s d = 0.5) at best,
which is the case in much of educational and psychological research. Larger-sample
experiments on large effects will usually result in BFs that indicate strong or very
strong evidence in favour of H1 over H0 whether we use a default prior, a wide
prior, or an ultrawide prior. However, in the example experiment, where the
observed effect is small, things look a bit different. Under the aforementioned
default prior (JASP; Rouder et al., 2012), we find a BF for H1 over H0 (i.e., BF10)
of 0.337, which corresponds with BF01 = 2.964 (i.e., one BF is the inverse of the
other). Under the aforementioned wide prior, we find BF01 = 3.977, and under the
aforementioned ultrawide prior, we find BF01 = 5.458. The wider the prior we use,
the more the BF approach will tend towards the simple model (i.e., H0 or Model 0)
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and the more difficult to it is to establish evidence in favour of H1 over H0. BFs in
the range of 1 to about 3 indicate ‘anecdotal’ evidence, BFs in the range of about 3
to 10 indicate ‘moderate’ evidence, and BFs above 10 indicate stronger evidence in
favour of one hypothesis relative to the other hypothesis under comparison (e.g.,
Jeffreys, 1961; JASP). Some prefer a slightly more conservative approach (e.g.,
Kass & Raftery, 1995): BFs of 1–3 indicate negligible evidence, BFs of 3–20
indicate positive evidence, BFs of 20–150 indicate strong evidence, and BFs over
150 indicate very strong evidence. Either way, in the example experiment, under
the default prior, we would speak of ‘anecdotal’ or ‘negligible’ evidence in favour
of H0, while under a wide or ultrawide prior we would speak of ‘moderate’ or
‘positive’ evidence in favour of H0.

This exercise illustrates that although in an experiment of a size like the example
experiment or larger the influence of a different prior on the 95% CRI may be rather
small, the difference in BF may be considerable. For instance, the difference
between a ‘default’ (Rouder et al., 2012) and an ultrawide prior in BF in the
example factor is about a factor 1.84. This underlines the importance of doing a BF
robustness check or sensitivity analysis to examine to what extent different priors
may yield different BFs and conclusions with it. Software packages like JASP
provide useful graphs for such an analysis.

Comparison of Estimation Intervals and Testing Criteria

Regardless of which statistics we use for statistical testing and estimation, our
statistics will vary from one experiment to the next. Table 2.1 presents Cohen’s d,
p-value and 95% CI in each of twenty experiments of N = 128 (n = 64 per con-
dition) each, on the same treatment effect, d = 0.50 in the population of interest,
using a two-sided test at a = 0.05.

The 95% CIs indicate that there is still a margin of error of about 0.35 around the
Cohen’s d point estimate in an experiment, and the latter varies from 0.211 in
Experiment 9 to 0.873 in Experiment 2. Experiments 4, 7, 9, and 18 do not yield a
statistically significant difference at a = 0.05 (two-sided testing). This is in line with
what one would expect given a statistical power of 0.80. Although the idea of a
statistical power of 0.80 is not that for every fixed set of twenty studies exactly
sixteen should yield a statistically significant outcome, across an infinite number of
repetitions of this exercise we would on average expect sixteen out of twenty
studies to yield a statistically significant outcome.

Table 2.2 presents Bayesian posterior point and interval estimates of Cohen’s
along with BF10, based on a default prior (JASP; Rouder et al., 2012), for the same
series of twenty experiments.

As explained previously, with a Cauchy prior, 95% CRIs tend to be shrunk
towards 0 when compared to 95% CIs. For that same reason, the highest density
point estimates of Cohen’s d in Table 2.2 are slightly closer to 0 than the point
estimates presented in Table 2.1. Note that the BF varies wildly, all the way from
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0.361 (anecdotal evidence in favour of H0) in Experiment 9 to 6254.592 (very, very
strong evidence in favour of H1) in Experiment 2. Note also that the BF is lowest in
Experiments 4, 7, 9, and 18, where the Frequentist approach yielded no statistically
significant outcome.

Table 2.3 presents AIC and BIC values for each of Model 0 (H0) and Model 1
(H1) in each of the twenty experiments. In sixteen out of twenty experiments (80%)
—Experiments 2, 3, 5, 6, 8–17, 19, and 20—all criteria point in the same direction.
In the other four experiments (20%), there is some disagreement.

In Experiment 1, the Frequentist approach yields p = 0.030, BF10 indicates
anecdotal evidence in favour of H1, AIC also prefers H1, but BIC indicates a slight
preference for H0. In other words, while three criteria indicate some preference
towards the more complex model, BIC is not convinced. In Experiment 4,
p = 0.056, BF10 = 1.012, AIC is in favour of H1, but BIC favours H0. In Exper-
iment 7, p = 0.112, BF10 = 0.602, and BIC is in favour of H0 as well, but AIC
slightly favours H1. Finally, in Experiment 18, p = 0.057, BF10 = 0.999, AIC is in
favour of H1, while BIC favours H0.

In Experiment 1, BF10 = 1.630. Using the aforementioned relative likelihood
formula based on the difference in AIC to quantify the evidence in favour of H1

over H0, we find 4.019. When we use the difference in BIC, conform the

Table 2.1 Cohen’s d, p-value, and 95% CI (lower and upper bound, LB and UB) in each of
twenty experiments of N = 128 (n = 64 per condition) (JASP)

Experiment Cohen’s d p-value 95% LB 95% UB

1 0.387 0.030 0.037 0.736

2 0.873 <0.001 0.509 1.235

3 0.625 <0.001 0.268 0.978

4 0.341 0.056 −0.008 0.690

5 0.509 0.005 0.156 0.861

6 0.679 <0.001 0.321 1.034

7 0.283 0.112 −0.066 0.631

8 0.585 0.001 0.230 0.938

9 0.211 0.234 −0.137 0.558

10 0.663 <0.001 0.306 1.018

11 0.604 <0.001 0.248 0.957

12 0.502 0.005 0.149 0.853

13 0.635 <0.001 0.279 0.989

14 0.750 <0.001 0.390 1.107

15 0.738 <0.001 0.378 1.095

16 0.448 0.013 0.096 0.798

17 0.399 0.026 0.048 0.748

18 0.340 0.057 −0.010 0.688

19 0.575 0.001 0.220 0.928

20 0.585 0.001 0.230 0.937
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approximate BF approach, we find 1.036. In Experiment 2, BF10 = 6254.592.
Calculating the ratio based on AIC, we find 30760.910, and when we calculate the
ratio based on BIC, we find 7390.865. In Experiment 4, we find a ratio based on
AIC of 2.375 and a ratio based on BIC of 0.571. In Experiment 7, the ratios are
1.336 for AIC and 0.321 for BIC. In Experiment 9, the ratios are 0.757 for AIC and
0.222 for BIC. Finally, in Experiment 18, the ratios are 2.342 for AIC and 0.563 for
BIC.

JASP allows researchers to calculate the BF10 and ratios based on AIC and BIC
reported here in the ‘linear regression’ menu, by specifying the ‘default’ prior
(Jeffrey-Zellner-Siow, JZS; Rouder et al., 2012), the ‘AIC’ prior, and the ‘BIC’
prior, respectively. Although AIC and BIC do not require researchers to think about
prior distributions per se, one way to view AIC (and AICc) and BIC is as a form of
Bayesian analysis using different priors (Burnham & Anderson, 2002, 2004). Going
back to the example experiment we started with, BF10 using the default (JZS) prior
is 0.337. Under AIC and BIC prior (JASP), we find 0.702 and 0.169, respectively.

In sum, experiments like the ones of the size discussed in this chapter, when
observed effects are large (e.g., Experiment 2), all criteria (p, BF, AIC, BIC) will
probably indicate a preference for a model that includes that effect (here: Model 1,
H1) over a model that excludes that effect (here: Model 0, H0). Likewise, when

Table 2.2 Bayesian point and interval estimates of Cohen’s d and BF10 in each of the twenty
experiments of N = 128 (n = 64 per condition) (JASP)

Experiment Cohen’s d 95% LB 95% UB BF10
1 0.354 0.014 0.699 1.630

2 0.830 0.470 1.192 6254.592

3 0.583 0.243 0.932 46.121

4 0.314 −0.019 0.659 1.012

5 0.471 0.137 0.823 7.630

6 0.638 0.283 0.995 120.887

7 0.255 −0.070 0.595 0.602

8 0.545 0.198 0.895 23.863

9 0.190 −0.140 0.527 0.361

10 0.619 0.275 0.979 90.809

11 0.563 0.222 0.918 32.381

12 0.467 0.118 0.813 6.895

13 0.593 0.249 0.947 55.120

14 0.702 0.362 1.067 465.806

15 0.699 0.347 1.051 366.264

16 0.414 0.075 0.767 3.330

17 0.366 0.030 0.705 1.857

18 0.311 −0.017 0.649 0.999

19 0.530 0.177 0.885 20.492

20 0.539 0.201 0.893 23.792
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observed effects are small (e.g., Experiment 9), all criteria will probably prefer a
model that excludes that effect (here: Model 0, H0) over a model that includes that
effect (here: Model 1, H1). In all these cases, it will probably not be difficult to
explain one’s preference of one model over another, except perhaps when for some
reason or another (e.g., multiple testing) a more stringent testing is warranted (e.g.,
a = 0.01, only BFs or differences in AIC or BIC of a particular magnitude or
larger). In cases where there is disagreement between criteria, researchers will have
to motivate choices of model preference but in such cases the evidence in favour of
one model over another is not so strong anyway. For instance, in Experiment 1,
researchers who base their decisions on the p-value (0.030) or the difference in AIC
may be confident of having evidence for a treatment effect, while BF10 indicates
that this evidence may be weak at best, and the difference in BIC indicates that a
model that assumes no treatment effect may do.

Some have argued that we should strive for more stringent criteria for statistical
testing. For example, a very recent proposal is to change the ‘default’ 0.05 statistical
significance level to 0.005 (Benjamin et al., 2018, p. 6): “This simple step would
immediately improve the reproducibility of scientific research in many fields.
Results that would currently be called significant but do not meet the new threshold
should instead be called suggestive.” As a justification for their proposal, Benjamin
et al. (2018, p. 7) argue that a two-sided p-value of 0.005 grossly “corresponds to
Bayes factors between approximately 14 and 26 in favour of H1.” However, since

Table 2.3 AIC and BIC
values for the two models in
each of the twenty
experiments (Mplus)

Experiment AIC H0 AIC H1 BIC H0 BIC H1

1 958.537 955.755 964.241 964.311

2 967.753 947.085 973.457 955.641

3 942.091 931.998 947.795 940.554

4 960.635 958.905 966.340 967.461

5 948.451 942.279 954.155 950.835

6 944.576 932.394 950.280 940.950

7 950.740 950.160 956.444 958.716

8 964.887 956.227 970.591 964.783

9 950.325 950.882 956.029 959.438

10 966.457 954.895 972.161 963.451

11 947.260 937.936 952.964 946.492

12 996.024 990.074 1001.728 998.630

13 987.805 971.325 993.509 985.881

14 958.099 943.005 963.803 951.561

15 959.443 944.867 965.147 953.423

16 955.921 951.567 961.625 960.123

17 955.650 952.580 961.354 961.136

18 962.889 961.187 968.593 969.743

19 986.257 977.929 991.961 986.485

20 965.115 956.462 970.819 965.018
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the BF depends on the prior distribution while the p-value does not, it is difficult to
establish such relations. Take for instance Experiment 12: we find p = 0.005 and
BF10 = 6.895. Although a BF of this size is well within the 3–10 range that is
indicative of ‘moderate’ evidence, it is not yet indicate of ‘strong’ evidence (what
BFs of 14 and 26 indicate). Besides, to achieve a statistical power of 0.80 for
d = 0.50, we would need N = 218 participants or n = 109 per condition for a
two-sided test at a = 0.005, and we would need N = 192 or n = 96 per condition
for a one-sided test at a = 0.005.

Another approach is found in justifying your statistical significance level
(Lakens et al., 2018). In this approach, researchers transparently report and justify
all choices made when they design a study, and this includes the statistical sig-
nificance level. In response to Benjamin et al. (2018), the proponents of this jus-
tification approach argue that there is insufficient evidence that the current standard
of a = 0.05 is a leading cause of non-reproducibility indeed, that a call for a new
standard of a = 0.005 will not necessarily result in widespread implementation of
that new standard, and that such a lower threshold can come with negative con-
sequences that are not discussed by Benjamin et al. (2018). Potential negative
consequences identified by Lakens et al. (2018) are fewer replication studies (we
will already need more of our potentially scarce resources for initial studies), a
reduced generalisability and breadth (there is some trade-off between sample size
and number of experiments we may be able to run), and a renewed exaggeration of
the focus on single p-values (after all, statisticians and other well-trained scientists
are aware that a reliance on mere p-values is not a good thing, but many researchers
unfortunately use p-values as their only criterion). Whether we use a = 0.05 or
a = 0.005, whether we rely on AIC, BIC, BF10 or other criteria, strong evidence for
the presence or absence of a treatment effect is rarely if ever established in a single
experiment; replication research, systematic review, and meta-analysis are key
concepts for experimental researchers.

A Different Way of Learning from Data

In many settings, educational and psychological researchers do not have the
financial or logistic resources to run experiments with numbers that would guar-
antee a statistical power of 0.80 for tests at a = 0.005. If we took the numbers from
the example study (N = 128, n = 64), the statistical power to detect d = 0.50 would
decrease from 0.80 to 0.49. This is a considerable loss of statistical power. That
said, especially in times of online data collection, there are cases where experiments
with samples in the 100s are possible. In such cases, a potentially powerful
approach to statistical testing and estimation is found in cross-validation (Geisser,
1975; Kurtz, 1948; Mosier, 1951; Osborne, 2010b; Stone, 1974; Yu, 2010). This
approach is also part of machine learning, the basis of artificial intelligence or
systems’ abilities to learn from data in order to carry out a particular task (e.g.,
Samuel, 1959; Tiffin & Paton, 2018). Depending on whether that learning takes
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place with full information about an outcome variable (e.g., linear and logistic
regression), no information about an outcome variable (e.g., principal component
analysis; e.g., Field, 2018) or partial information about that outcome variable, that
learning is called supervised, unsupervised or semi-supervised learning.

In large-sample experiments (i.e., several 100s of participants per condition or
more), cross-validation can help to reduce the risk of overfitting (Osborne, 2010b):
choosing for more complex models than needed. In its simplest form, it works as
follows. First, we randomly divide our sample into a training sample (65–80% of N,
with larger N allowing for a percentage closer to 80) and a testing (aka evaluation)
sample (the remaining 20–35% of N, with larger N allowing for a percentage closer
to 20). Next the training set is used to determine which of a set of competing
models should be preferred. For this, we can use the criteria discussed thus far in
this chapter: R2 and eventually adjusted R2 as indicators of the proportion of
variance in the outcome explained by a model as well as different testing criteria
(some of the following: p, AIC, AICc, BIC, SABIC, BF). In a simple two-group
experiment, this comes down to a linear regression model with slope (i.e., Model 1:
treatment effect), where the slope estimates the magnitude of the treatment effect, or
without slope (i.e., Model 0: no treatment effect). When experiments include more
than a single factor (e.g., a second factor or at least one covariate), several com-
peting models can be compared. The model that is identified as the best model
based on the training sample is then saved and tested on the data from the testing
sample. This does not only work for Mds but for other types of models as well (e.g.,
exploratory factor analysis on the training data followed by confirmatory factor
analysis on the testing data; Mulaik, 1987; Yu, 2010; or building multiple regres-
sion models with training data and testing them with testing data; Chernick, 1999;
Osborne, 2010b; Yu, 2010).

Note that the approach outlined in this section is recommended for (very)
large-sample experiments only. In cases such as the example experiment and series
of replication experiments in this chapter (N = 128), which provide a much more
common—and for many settings still somewhat ‘ideal’—scenario with regard to
sample size (i.e., N < 100 is still common for many two-group experiments),
splitting the dataset into two parts would bring us back to wildly varying estimation
and testing outcomes and is therefore not recommended. However, where samples
are large, one can think of many practical examples.

A Pragmatic Approach to Statistical Testing and Estimation
(PASTE)

Based on the concepts, criteria, and issues discussed in this chapter, we now
conclude with a pragmatic approach to statistical testing and estimation (PASTE)
that is used for statistical testing and estimation in the remainder of this book. The
core of PASTE is to use different criteria instead of a single criterion for statistical
testing and estimation in a coherent, consistent way (Leppink, 2018a, b; some of the
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criteria outlined in this book were first formulated in the two articles referred to,
though by far not in the same level of detail as in this book, some criteria have been
added, and some recommendations on criteria introduced earlier have been slightly
modified in this book).

Visual and Numerical Checks of Assumptions

Every statistic is based on assumptions. To acquire a solid understanding of how
reasonable some core assumptions are, we must graphically inspect our data before
we calculate any numbers. For example, assumptions about distributions of resid-
uals in a population of interest and the severity of departures from these assump-
tions are much more easily checked through histograms than through statistical
significance tests. Whether it concerns normality or equal SDs (equal variances),
relying on statistical significance tests is problematic because the outcome of such
tests does not yet tell us what kind of deviations we are dealing with and how severe
these deviations are, and interpreting a statistically non-significant p-value as evi-
dence in favour of a null hypothesis—whether that null hypothesis concerns nor-
mality, equal SDs, absence of treatment effect, or something else—is a logical
fallacy. When in doubt about one assumption or another, a safe way may be to
report findings under different assumptions (e.g., assuming normality vs. not
assuming normality, or assuming SDs to be equal or not) if doing so results in
(meaningfully) different outcomes at all (e.g., in the example experiment in this
chapter, the 95% CIs under equal SDs versus under unequal SDs are almost
identical).

Model Comparison and Four One-Sided Testing (FOST)

Omitting the previous step to proceed with statistical testing and model comparison
straight away is a potential recipe for disaster. Whether assumptions are met or not,
statistical software programmes will provide you with R2-values, adjusted R2-
values, p-values, AIC, BIC, BFs, and statistics alike. However, every statistic
provides meaningful outcomes under certain assumptions and, although some
assumptions are more critical than others, substantial deviations from assumptions
may well invalidate numbers based on those assumptions.

Once we have checked the necessary assumptions and proceed with statistical
testing and model comparison, it is recommended to not base our conclusions on a
single criterion. Whether we prefer p-values, BFs, or other, every criterion has its
pros and cons. AIC may sometimes hint at a more complex model, where other
criteria provide good reasons not to prefer that more complex model. Likewise, in
some cases, BIC may prefer a simple model where researchers may have solid
reasons to rely more on AIC and p-values (the latter perhaps even from one-sided
tests). BFs provide an interesting alternative to p-values, AIC, and BIC, but are
quite sensitive to prior distribution choices. Given a reasonable sample size, as in
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the example experiment and replication series in this chapter, different criteria will
likely align when effects are large (i.e., a preference towards a model including that
effect) or small (i.e., a preference towards a model not including that effect), and
more explanation with regard to choices made is needed where different criteria
indicate different preferences.

Both p-values and BFs can be easily used when researchers have clear reasons to
expect a difference in one direction prior to an experiment. In the example exper-
iment, BF10 = 0.337 comes from the default two-sided tests. If the alternative was
one-sided in favour of the treatment condition (i.e., a positive treatment effect), a
one-sided test in that direction would yield BF10 = 0.579, and if the alternative was
one-sided against the treatment condition (i.e., a negative treatment), a one-sided
test in that direction would yield BF10 = 0.095.

In cases where we do not have reasons to engage in one-sided testing, p-values
and BFs can be used along with AIC, BIC, and/or AICc and SABIC. Given that
in situations where there is disagreement between criteria, AICc, SABIC, and
two-sided BF and p-value are usually situated somewhere in between AIC
(strongest tendency towards more complex) and BIC (strongest tendency towards
simpler), in the case of two-sided testing—which remains the default in most of
educational and psychological research—we may as well report just AIC and BIC,
and eventually some of the other criteria along.

What is good to provide along with statistical testing criteria regardless of
whether we test one-sided or two-sided is indicators of the proportion of explained
variance. Doing so helps researchers to appreciate if a difference in (adjusted) R2

between a model with or without treatment effect, or (in later chapters) between a
model with or without a particular covariate, is substantial enough to justify a
choice for a more complex model or is perhaps rather small and from a practical
perspective not really interesting. For example, in Experiment 1 of the replication
series, the treatment explains 2.9% (adjusted R2) to 3.7% (R2) of the variance in
post-test performance. Some may argue that although this is not a lot, the treatment
explains a proportion of the post-test variance that is substantial enough to matter in
a practical setting and use that argument along with AIC and p-value to justify their
preference for Model 1 (treatment effect) over Model 0. Others may argue that 3.7%
of the variance is, in the context at hand, not substantial enough and point at the
preference towards Model 0 indicated by BIC and/or that BF10 = 1.630 indicates
weak evidence for a treatment effect at best. By providing a range of criteria—
(adjusted) R2, AIC, BIC, and eventually other—along with the necessary descrip-
tive statistics, readers can have a meaningful discourse about findings reported in an
article and can draw their own conclusions.

Whenever the interest lies in establishing evidence in favour of (relative)
equivalence, p-values from ‘no difference’ null hypothesis significance tests should
not be used. In such cases, TOST equivalence testing and the Bayesian ROPE
approach constitute two powerful approaches that—certainly in single experiments
or small series of experiments—may well indicate that although p-values from ‘no
difference’ null hypothesis significance tests are not statistically significant we do
not have sufficient evidence to declare relative equivalence either. Although ROPE
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is not based on statistical significance, ROPE and TOST can be used in a similar
fashion in terms of fully, partially or not at all overlapping with an a priori declared
region of relative or practical equivalence. ROPE is by default based on a 95% CRI,
while TOST is by default based on a ‘1–2a’ interval, which in the case of a = 0.05
means a 90% CI but can be increased whenever a lower a is considered more
appropriate (e.g., multiple testing situations). FOST is a logical extension of TOST
which, like the ROPE procedure, has three possible outcomes: sufficient evidence in
favour of relative equivalence, sufficient evidence against relative equivalence, or
inconclusive. TOST, ROPE, and FOST are not meant to stimulate a renewed
black-or-white cut-off-style thinking like ‘p = 0.051’ being terrifying and
‘p = 0.049’ being worth a bottle of champagne or like BF10 = 2 ‘proving H1’ and
BF01 = 2 ‘proving H0’. A 90% interval from d = −0.301 to d = 0.304 is not much
different from an interval from d = −0.294 to d = 0.289, and the same goes for a
CRI. A good recent example of a combined use of ROPE and BFs indicating
evidence for relative or practical equivalence comes from Etherton et al. (2018),
who performed a Bayesian analysis of a series of multimethod ego-depletion
studies that all in all involved data from N = 840 participants. Main finding from
their meta-analysis: a point estimate of Hedges’ g (i.e., similar to Cohen’s d, see:
Hedges, 1981) with a 95% CRI of [−0.05; 0.24] and BFs, under each of a variety of
prior distributions, above 25 in favour of H0 (i.e., BF01 > 25).

Point and Interval Estimation

TOST and ROPE and the TOST-ROPE uniting FOST model remind us of the need
to compute not just point estimates but interval estimates (CIs in the case of TOST,
CRIs in the case of ROPE) as well. We are rarely really only interested in whether
or not ‘there is an effect’ of something on something; in virtually all educational and
psychological contexts, we would rather like to know what kind of magnitude of
effects we are dealing with. Where we agree that testing at a = 0.05 is defendable,
we should probably report both the two-sided 95% and the two-sided 90% CI of
treatment effects of interest. The 95% CI includes all possible null hypotheses that
would not be rejected at a = 0.05 in the case of two-sided testing. The 90% CI
serves two purposes. Firstly, it indicates the lower bound in the case of a one-sided
test if a negative treatment effect is expected, and it indicates what is the upper
bound if a one-sided test for a positive treatment effect is considered. Secondly, the
90% CI can in its entirety be used for TOST equivalence testing. For researchers
who prefer a Bayesian approach, the 95% CRI constitutes a Bayesian alternative to
the 95% CI that can also be used for ROPE. That said, perhaps Bayesians should
consider reporting both CIs and CRIs. Although in the case of minimal information
in the prior distribution (e.g., an ultrawide prior for the Md in a two-group exper-
iment) and sufficiently large N (e.g., the experiment taken as an example in this
chapter) the 95% CI and the 95% CRI can be expected to yield very similar results,
the difference between these two intervals provides an objective indicator of the
degree of subjective influence of the specified prior distribution.
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A Final Note on the Units

Note that the CIs and CRIs in this chapter have (largely) revolved around Cohen’s
d, not around the number of points of difference in post-test score. Which metric to
use partly depends on the research question and partly depends on what facilitates
comparison of effects of interest across experiments. TOST and ROPE can be used
with Cohen’s d as well as with other units, including the number of points of
difference in post-test score. However, the latter is heavily scale-dependent and may
be difficult to compare across experiments unless all experiments use exactly the
same instrument. Intervals based on scales (units) such as Cohen’s d allow
researchers to speak of practically meaningful versus perhaps not so meaningful
treatment effects and other differences independent of the scales used in a random
experiment. That said, which scales or units to use also depends on the nature of the
data. ForMds, Cohen’s d in many cases provides a sound standardised scale, at least
as long as the data structure is not such that multilevel analysis is needed. Besides,
the type of outcome variable is also important to consider; while Cohen’s d may
often constitute a useful metric in the context of Mds, it is generally inappropriate
for categorical outcome variables. Chaps. 5, 6, 7, 8 provide appropriate measures of
effect size for different types of outcome variables.
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3Measurement and Quality Criteria

Abstract
Chapters 1 and 2 provide the first two parts of a general framework for statistical
analysis in experimental research. In a nutshell, statistical analysis ought to be
question/hypothesis-driven, should account for the core features of the
experimental design and data acquired with that design, and involves
combinations of statistical testing and estimation criteria rather than a single
criterion. For the sake of simplicity, the examples discussed in the first chapters
do not touch issues of measurement and the reliability and validity of that
measurement. However, the vast majority of outcome variables as well as not so
few predictors of outcome variables come from psychometric measurements
such as self-reported ratings, assessment by experienced or not so experienced
raters or performance measured otherwise (e.g., through multiple-choice tests).
In this chapter, different approaches to measurement are discussed and compared
in terms of their relative pros and cons. Although many of these pros and cons
are not limited to experimental research, all issues discussed in this chapter are
important to consider in experimental research. This includes a revision of some
common practices that may distort our perspectives on the reliability of our
instruments, such as the default use of Cronbach’s alpha regardless of the nature
of the instrument and data acquired with that instrument.

Introduction

Psychometric measurement has been a topic of discussion at least since Thorndike
(1904), and over the past century many great scholars have contributed to theories
about psychometric measurement, including Birnbaum (1968), Crocker and Algina
(1986), Cronbach (1951, 1975, 1976), Cronbach, Gleser, Nanda, and Rajaratnam
(1972), Hambleton (1978, 1980, 1983), Lord and Novick (1968), Rasch (1960),
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Stevens (1946), Thurstone and Chave (1929), Torgerson (1958), Weitzenhoffer
(1951), and Yerkes (1921), to name a few. These days, there are many different
approaches to measurement, some of which are known by a wider audience than
others and some of which are more commonly used in (published) research than
others. This chapter is by no means an attempt to cover all measurement approaches
and methods that can be found in the literature. The goal of this chapter is to provide a
concise overview of methods to estimate the reliability of our measurement instru-
ments and/or to study some statistical aspects of the validity of our measurement
instruments. This chapter focusses on methods that are commonly encountered in
experimental educational and psychological research or that perhaps remain under-
used but may be useful for experimental research in one way or another. First, some
measures of consensus are presented. Next, several measures of consistency are
discussed. After this overview of consensus and consistency measures, several latent
variable methods are compared. Finally, some alternative approaches are discussed
that at first resemble latent variable methods presented in this chapter but are different
not in the last place because they are not based on latent variables.

Two Examples of Measurement Practice Leading Nowhere

Progress in science is to a large extent about learning from error, including through
discourse on unconstructive practices. Although critique on such practices is
sometimes booed away as bullying or otherwise undesirable behaviour, critique on
methods is not the same as criticising the scholars using the methods to be criti-
cised. Such a constructive dialogue is possible and ought to be stimulated, because
this dialogue can be held without discrediting any of the hard labour done by
scholars in a particular field and without disrespecting the scholars themselves.

Example 1: Cognitive Load

In the context of learning from error, I would like to share an example of a mea-
surement practice I believed in for years and that I contributed to with several widely
cited publications (e.g., Leppink, Paas, Van der Vleuten, Van Gog, & Van Mer-
riënboer, 2013; Leppink, Paas, VanGog,Van derVleuten,&VanMerriënboer, 2014)
but which I no longer view the same way because after some years of reflection I have
reached the conclusion that it is heavily flawed: cognitive load measurement. I have
been going back and forth between defending and abandoning the practice for a few
years for a number of reasons. Firstly, once you are in the middle of a particular
practice, you are likely to become at least somewhat biased towards that practice and it
becomes hard to let it go. I delivered twoKeynote lectures at international conferences
largely based on cognitive load theory and measurement: at the International Cog-
nitive Load Theory Conference (June 2016, Bochum, Germany) and at the Interna-
tional Association of Medical Science Educators (June 2017, Burlington, Vermont,
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United States). During my first talk, I focussed on weak spots in the measurement
practice in front of the cognitive load theory ‘community’ (a bit over 100 scholars
from across the world visiting the conference). Weak spots that I had identified and
also informally shared at two previous editions of the same conference, but which I
had been afraid to share at earlier occasions because I considered myself a ‘not yet
cited nobody’ whose opinion would not matter anyway. In fact, this was not just
something I believed; I was told so by some researchers (not from the cognitive load
theory community itself, though). However, in June of 2016 some of my work on
cognitive load theory and measurement (including Leppink et al., 2013, 2014) had
already been cited quite a few times and I thought there was a reason why I was one of
the Keynote speakers. I firmly believed in the work I had started some years earlier
(resulting in Leppink et al., 2013 after two years of hard labour), and I was confident
that I could help the measurement practice forward from there. However, in the year
that followed, I lost much of that belief and confidence, and for that reason, my second
Keynote lecture turned out to be one of my most difficult presentations in my career
thus far. I hadmy story, but only part of the belief and confidence with which I opened
my first Keynote, a year earlier. I still think that cognitive load theory (e.g., Sweller,
Ayres, & Kalyuga, 2011; Sweller, Van Merriënboer, & Paas, 1998) continues to
provide one of many potentially useful frameworks for thinking about the design of
education (e.g., Lee, Hanham, & Leppink, 2019), but in my view it will have to start
evolving to explain some findings it cannot explain (e.g., Kalyuga & Singh, 2016;
Kapur, 2008, 2011, 2014; Kapur & Rummel, 2012; see also the later chapters in Lee
et al., 2019) for otherwise at some point it will start to lose its value.

Cognitive load is the core construct of cognitive load theory. Basically, cognitive
load theory assumes that information has to be processed within narrow limits of
our working memory, and that we have to minimise cognitive load that may hinder
learning in order to keep as many working memory resources as possible available
for dealing with cognitive load that may stimulate learning. Although there is
agreement in the cognitive load theory community that not all cognitive load is
‘bad’ in the sense that all cognitive load hinders learning, there has been long-
standing disagreement on how many types of cognitive load we need and how the
types of cognitive load we need ought to be defined (e.g., Leppink & Van den
Heuvel, 2015; Sewell et al., 2018). This, together with measurement practices
outlined in the following, poses a serious threat to the continued usefulness of
cognitive load theory.

To start, cognitive loadmeasurement has largely been based on self-reports, above
all on a single mental effort categorical rating item (Paas, 1992; Sweller, 2018). Core
assumptions underlying that practice include respondents’ ability to assess and report
on their cognitive load. Knowing that a single item cannot distinguish between
multiple types of cognitive load, some researchers attempt to keep constant all cog-
nitive load types by design except Type X and then interpret differences in self-rated
mental effort as differences in X. Inability and bias of the respondent may undermine
the assessment and reporting assumption, and keeping any type of cognitive load
constant may work with robots but likely not with human learners. Even if we
understand keeping something ‘constant’ as creating randomised groups that on
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average are the same on a particular type of cognitive load, correlations will still be
influenced by scores not being constant instead of being constant, and given the
sample sizes that are common in cognitive load research (i.e., usually between 10 and
25 participants per condition) considerable differences between groups in that type of
cognitive load that is supposed to be ‘constant’ are well possible.

Studies involving more objective time-based or behaviour-based measures suffer
from the same problems and frequently use the mental effort as gold standard for
validation, because the mental effort item is widely believed to be reliable. How-
ever, estimating the reliability of measurement requires either multiple items at a
given time or repeated administration of an item under the same circumstances. For
variables such as mental effort, this is impossible, because measurement error, task
differences, and response shift due to learning and/or tiredness constitute three
perfectly confounded sources of variance.

Although multi-item cognitive load measurement instruments may help to dis-
tinguish between cognitive load types in theory, they rely on the assumption that
respondents are able to differentiate between and report on the different types of
cognitive load captured. These assumptions remain untested and are heavily con-
text-dependent. Moreover, all multi-item instruments available, including my own
and variants thereof (e.g., Leppink et al., 2013, 2014), suffer from question wording
effects that may heavily influence the psychometric structure of the instrument and
may invalidate the outcomes. Finally, if researchers cannot agree on the number and
definitions of cognitive load types, how can we expect respondents to differentiate
between types and report on any specific type of cognitive load?

Theoretical and measurement problems in cognitive load theory reinforce each
other and leave cognitive load measures useless in our endeavour to acquire a
deeper understanding of learning processes and learning outcomes. Cognitive load
measures are based on untested and perhaps untestable assumptions, and the best
they offer is unscientific after the fact explanations of processes and outcomes. If
outcomes are good, the load must have been ‘good’; otherwise, the load must have
been ‘bad’. Given further that cognitive load measures are not needed for
explaining learning processes or outcomes, we may as well stop measuring cog-
nitive load altogether.

Example 2: Learning Styles

Another flawed practice, which has been around for much longer than cognitive
load theory but—perhaps not in the last place because some have made a career out
of it—seems to not go away, is that of measuring learning styles in order to tailor
education to preferred learning styles (e.g., Veenman, Prins, & Verheij, 2003). This
practice is perpetuated despite a complete lack of theoretical (e.g., Kirschner & Van
Merriënboer, 2013) and empirical (e.g., Pashler, McDaniel, Rohrer, & Bjork, 2008)
support for that practice. In a recent letter to the editor, I summarised the main three
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reasons to stop this practice (Leppink, 2017b): (1) heavy reliance on questionable
self-report measures, (2) leaves all doors open for after the fact explanations and
has as the only implication for the design of education that everyone is different, and
(3) it flies in the face of decades of research the findings of which flatly contradict
what learning styles theory would predict.

As with cognitive load measures and any other self-report practice, the use of
self-report learning styles questionnaires relies on the assumption that learners are
aware of their learning styles and can reliably and validly report on them. As we have
seen, this is a problem with cognitive load measures and is no less of a problem for
learning style measures. Empirical support for the assertion that self-report learning
style instruments yield any kind of valid and reliably measures of use for educational
practice is lacking (Pashler et al., 2008; Veenman et al., 2003). Next, over 70 different
learning styles have been identified in the literature and learners can allegedly have all
kinds of combinations of learning styles. This quickly results inmore combinations of
learning styles than there are people on the planet, and if we are to tailor education in
that fashion, we would have a different kind of education for every single individual.
That would be neither practical nor in line with bodies of literature on research on the
design of education (e.g., Kalyuga&Singh, 2016; Kapur, 2008, 2011, 2014; Kapur&
Rummel, 2012; Kirschner & Van Merriënboer, 2013).

Theoretical and Measurement Issues

Cognitive load and learning styles have in common that theoretical and measurement
issues reinforce each other. Inconsistency in definitions and question wording effects
lead to poor measurement, and poor measurement does not allow us to investigate
important theoretical statements that are claimed to be of value for educational
practice. This leaves us with an after the fact explanation of empirical phenomena
which, if not changed, may at some point result in a consensus in broader com-
munities that cognitive load theory and theories on learning styles have hardly if any
more scientific and practical value than Sigmund Freud’s psychoanalysis (e.g.,
Freud, 1920). At least, contrary to theories on learning styles, cognitive load theory
has resulted in actually useful and widely recognised approaches to the design of
education (e.g., Leppink & Van den Heuvel, 2015; Sweller et al., 1998, 2011; Van
Merriënboer & Kirschner, 2018). However, theoretical inconsistencies and bad
measurement practices will need to be revised in order to maintain its perceived
value as a useful theory for the design of education. Extensive revisions may help to
initiate new research on phenomena it appears to consistently fail to explain (e.g.,
productive failure: Kalyuga & Singh, 2016; Kapur, 2008, 2011, 2014; Kapur &
Rummel, 2012; see also the later chapters in Lee et al., 2019). Moreover, research
inspired by cognitive load theory constitutes a good example of researchers
attempting to integrate many small sample size studies into a theoretical story.
Experiments with conditions of hardly over 20 participants, which are common in
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cognitive load research, leave researchers poorly equipped to test and estimate most
effects of interest (i.e., low statistical power and precision) and disable researchers to
thoroughly examine the psychometric properties of measurement instruments used.
Unless the cognitive load theory community incorporate these revisions, my pre-
diction is that sometime in the next decade we will see both learning styles and
cognitive load placed in the museum of history of art and science in education and
will no longer be considered useful or needed for educational research and practice.
That said, it appears that there is increasing awareness among cognitive load
researchers that theory and measurement practice need to evolve; in a recent special
issue on cognitive load theory in the journal called Educational Psychology Review
(Issue 2 of 2019), several ways forward are suggested. Good examples of ways
forward include an expansion of the theory to account for relations between cog-
nitive load and movement (e.g., tracing, gesturing, eye movement, and body
movement), the consideration of motivational change as a response to changes in
cognitive load rather than only as a precursor of cognitive load, and accounting for
emotion and stress. However, issues related to specific measurement practices (e.g.,
the continued dominance of single-item mental effort ratings) and frameworks that
generate findings and explanations that cannot be accounted for by cognitive load
theory (e.g., productive failure) remain unaddressed in this special issue.

The two examples shared in this section illustrate the importance of good theory
and good instruments; without these, any attempt to study the reliability or statis-
tical aspects of the validity of an instrument may be nothing more than a useless
exercise. If we cannot even agree in a community what we are measuring, there is
no way we can expect reliable and valid measurements of participants in our
experiments. If a measurement practice already flies in the face of the theory it is
supposed to be based on—such as using a single item for complex constructs such
as (types of) cognitive load—we may as well stop doing research in that area
altogether. Good theory and sound instruments are necessary conditions for a
meaningful study of the psychometric properties of our instruments.

Finally, the problems related to reliability estimation of single items are not limited
to cognitive load theory; this is a much wider problem in educational and psycho-
logical research. To mention another rather influential line of research, especially in
Educational Psychology, the one on judgement of learning (e.g., Kornell &Metcalfe,
2006; Metcalfe & Kornell, 2005; Thiede, Anderson, & Therriault, 2003; Thiede &
Dunlosky, 1999), suffers from exactly the same problem. Regardless of how the item
is formulated (there is considerable variety in that), much of the research uses a single
item; perfect confounding of measurement error, differences in tasks in which it is
used, and a likely response shift due to participants learning, changes in their per-
spectives of learning, and eventually tiredness, is also a commonly ignored elephant in
the room in this line of research. The measures discussed in the remainder of this
chapter are built on the assumption that researchers come prepared, with solid theo-
ries, appropriate sample sizes, and sound measurement instruments.
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Consensus

Which methods to use to estimate the reliability or statistical aspects of the validity
of our measurement instruments depends on a number of questions. Firstly, we
need to consider the level of measurement of our instrument or, in most cases, of the
items that constitute the instrument: nominal, ordinal, interval, or ratio (Stevens,
1946). Secondly, we need to carefully inspect the distributions of the different
items. Thirdly, a core assumption in measurement is that a set of items or a team of
raters can be considered raters of the same construct of interest, and that the
categories of items or ratings have the same meaning across items or ratings.

If we are dealing with two categorical items or raters, several measures of
consensus may be useful to a more or lesser extent. A first, straightforward measure
of consensus is found in the percentage of agreement. This provides an easy
understandable, intuitive metric. However, it does not yet correct for a degree of
consensus that could be expected just by random response (guessing), and this is
especially a problem when there are only few categories (e.g., two categories)
and/or when one or some categories occur very frequently or very rarely (e.g.,
Hayes & Hatch, 1999; Stemler & Tsai, 2010).

A second estimate of consensus can be found in the odds ratio (OR). This
concept is especially easy to use in the case of two-category ratings on two items or
by two raters (i.e., 2 � 2 contingency tables) and is useful in many other statistical
applications of categorical data analysis (e.g., Agresti, 2002). In the context of
interrater agreement, the OR is used as follows. Suppose, two professors inde-
pendently rate the performance of 100 undergraduate medical students in a skills
training test as either ‘pass’ or ‘fail’. Professor A lets 90 students pass (odds are
90:10), while Professor B only lets 80 students pass (odds are 80:20). The resulting
OR is [90/10]/[80/20] = 9/4 = 2.25. If the odds of the two professors were the
same, the OR would equal 1; the more the OR deviates from 1, the larger the
discrepancy between professors in their level of consensus.

Larger levels of discrepancy as expressed by the aforementioned OR result in
lower interrater agreement and lower interrater reliability estimates with it. Two
commonly used statistics of interrater reliability that, contrary to the percentage of
agreement, correct for agreement due to random response (guessing), are Cohen’s j
(Cohen, 1960, 1968) and Krippendorff’s a (2004). Although OR of 1 does not say
anything about Cohen’s j or Krippendorff’s a, the further away the OR from 1 the
lower the upper bound of possible j and a values. For instance, in the in practice
somewhat unlikely case that Professor A lets 80 students pass while Professor B
only lets 50 students pass, the resulting OR is 4, the maximum possible percentage
of agreement is 70, and the maximum possible Cohen’s j value is 0.40.

When the items or ratings are not categorical but quantitative, Bland-Altman
analysis may constitute a useful approach to examining consensus. In
Bland-Altman analysis enables research to estimate bias in measurement (i.e., Md)
as well as dispersion around that bias (e.g., the SD) and possible outliers. If the bias
is constant across the range of measurement, the bias can be easily accounted for by
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a simple addition or subtraction. If the bias is not constant across the range of
measurement, this indicates that the difference in items or ratings depends on the
extent to which participants have the construct of interest. For example, Professor A
might give higher exam scores than Professor B for very knowledgeable students,
while Professor B might give higher exam scores than Professor A for not so
knowledgeable students.

Consistency

In cases where multi-category ordinal or quantitative variables are concerned and
researchers are primarily interested in consistency of ratings as in covariation of
scores on different items or scores obtained from different raters rather than in
absolute agreement per se, several correlation-based approaches can be considered.

Pearson, Spearman, and Kendall

When there are two items or ratings that can be considered of interval or ratio level
of measurement and there are no severe departures from normally distributed
residuals, Pearson’s correlation coefficient r (Pearson, 1900) can be used as an
estimator of the linear correlation between items or ratings. When there are some
dubious departures from normality but still want to use Pearson’s r, researchers
have a number of options. Two easy approaches would be trimming the data (i.e.,
omitting the most extreme scores, for example the 5% or 10% most extreme scores)
or winsorising the most extreme cases by replacing their values by the nearest score
that is not an outlier (e.g., Field, 2018). Another approach is found in the use of
robust methods (e.g., Wilcox, 2017), which include bootstrapping (Efron, 1979,
1981, 1982, 1983; Efron & Tibshirani, 1993) and other resampling methods
(Fisher, 1960; Mosteller & Tukey, 1977; Quenouille, 1949; Rodgers, 1999; Tukey,
1958; Yu, 2010). Transformations (e.g., square root or log of right-skewed distri-
butions; Field, 2018) could constitute another approach but would only work if the
same transformation can be applied to both items or ratings.

Researchers who do not want to use any of the aforementioned methods just to
use Pearson’s r can also opt for rescaling the observed values to ranks. For
example, the values 10, 7, 4, 3, 2, 1 would then be rescaled to 6, 5, 4, 3, 2, 1.
Pearson’s r can then be calculated based on these rescaled ranks. This is in fact
what Spearman’s correlation coefficient q (Spearman, 1904) does and this is
interesting to think about for a bit longer for at least one other reason. Commonly,
Spearman’s q is presented as the default correlation coefficient for ordinal variables.
However, by squaring distances based on ranks we assume these ranks to be of
interval level of measurement; in other words, we are actually treating ordinal data
as if we were dealing with interval data (e.g., Tacq & Nassiri, 2011). Several
scholars have used comparisons of Pearson’s r and Spearman’s q to justify treating
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Likert data (i.e., Likert, 1932) as interval even if they are ordinal (e.g., Norman,
2010). However, this comparison is problematic because both coefficients treat the
numbers in the calculations as at least interval (i.e., equal distances).

If we really want to go ordinal, we probably need to use (one of) Kendall’s s
(rank) coefficients (Kendall, 1938, 1962). As explained by Tacq and Nassiri (2011),
there is an interesting connection between Kendall’s approach to ordinal data and
the work of a French sociologist that in some fields appears to be used an example
of why qualitative is ‘more important’ than quantitative data: Pierre Bourdieu (e.g.,
Bourdieu, 1984). Amongst others, Bourdieu distinguishes the dominant class, the
middle class, and the working class as three classes based on a relational logic (i.e.,
power relations, financial means), not in terms of ‘1’, ‘2’, and ‘3’ with equal
distances between these labels. Instead of interval distances, s coefficients are based
on the numbers of concordant (i.e., agreeing) and discordant (i.e., disagreeing) pairs
and, in some cases, on the number of ties (i.e., pairs that are neither concordant nor
discordant) (e.g., Agresti, 2010; Berry, Johnston, Zahran, & Mielke, 2009; Kruskal,
1958).

Correlation Structures

Although the previous paragraph discusses correlation coefficients in a context of
two items or two raters, the concept of correlation can be easily generalised to larger
numbers of items or raters. This generalised concept is also known as ICC. In its
simplest form, for any set of two or more items or ratings that are supposed to
measure a particular construct of interest, differences between participants in that
construct of interest creates a correlation between residuals of different items or
raters that is proportional to these differences. When SDs of residuals are the same
across items or raters and the correlations between residuals are the same across
pairs of items or raters as well, we are dealing with a so-called compound symmetry
(CS) structure (e.g., Field, 2018; Tan, 2010). In the context of mixed-effects aka
multilevel analysis, this structure can be accounted for with a random-intercepts
(RI) model (e.g., Snijders & Bosker, 2012; Tan, 2010; see also Chaps. 14–16 of
this book). The ICC estimated (using restricted maximum likelihood, REML; e.g.,
Tan, 2010) from a RI (i.e., CS residual covariance) model, in which the item Ms
may vary as long as the SDs are equal across items, is the ICC that serves as input
for Cronbach’s alpha and generalisability theory (Cronbach et al., 1972). Given the
number of items k and an ICC, Cronbach’s alpha (a) can be computed via the
Spearman–Brown formula (Brown, 1910; Spearman, 1910):

a ¼ k � ICCð Þ= 1þ k�1ð Þ � ICCð Þ½ �:

In other words, Cronbach’s alpha is a function of the number of items k and ICC
that can be estimated in a two-level (upper level: participant; lower level: item) RI
(i.e., at the level of participant) model, using REML for estimation. If k = 4 and
ICC = 0.30, a = 0.63. Given ICC, to increase a we would need more items.
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Cronbach’s Alpha and Generalisability Theory

Cronbach’s alpha (1951), which is the same as Guttman’s lambda-3 (1945) and a
generalisation of Kuder-Richardson’s KR-20 coefficient for dichotomous items
(Kuder & Richardson, 1937), remains the most widely used estimator of ‘relia-
bility’, ‘internal consistency’, ‘unidimensionality’, and ‘validity’ despite long-
standing critique from increasing numbers of scholars. In fact, Lee J. Cronbach
himself (1951, 1988) argued that alpha is a poor index of unidimensionality and, in
Cronbach and Shavelson (2004, p. 397) literally states: “It is an embarrassment to
me that the formula became conventionally known as Cronbach’s a.” The take
home message from Cronbach and Shavelson (2004, p. 391) is that “alpha covers
only a small perspective of the range of measurement uses for which reliability
information is needed and that it should be viewed within a much larger system of
reliability analysis, generalizability theory.” To generalisability theory, we return in
a bit. First, let us have a closer look at why Cronbach’s alpha is, at least in most
educational and psychological research settings, not a good estimator of reliability,
internal consistency, unidimensionality, validity or whatever label of scale quality
researchers want to give it.

With regard to unidimensionality, we can be short: this is an assumption that
underlies Cronbach’s alpha, not something that can be tested or estimated by
Cronbach’s alpha (e.g., Leppink & Pérez-Fuster, 2017; Peters, 2014). If a set of
items cannot be expected to measure the same construct of interest, computing
Cronbach’s alpha over that set of items is a useless exercise. Next, CS is, at least in
most educational and psychological research, an unrealistic assumption (e.g., Dunn,
Baguley, & Brunsden, 2014; Peters, 2014). Although small departures from that
assumption may not create a lot of distortion, substantial departures can do so, are
quite common, and ought to be accounted for by choosing a model that assumes a
different residual covariance structure (i.e., unequal SDs and/or unequal correla-
tions). For exactly the same reason, in the process of multilevel analysis of lon-
gitudinal data, researchers rarely rely on CS but prefer residual covariance
structures such as first-order autoregressive (AR1; e.g., Tan, 2010), and in exper-
iments that include series of say 3–5 repeated measurements residual covariance
structures like Huynh-Feldt (HF; e.g., Eyduran & Akbaş, 2010; Huynh & Feldt,
1970, 1976) are often more appropriate than CS. In some cases, a slight relaxation
of the CS model that allows for unequal SDs may already do the trick, and yield
testing and estimation outcomes that differ substantially from the restrictive CS
model.

Cronbach’s alpha constitutes a simplified case of generalisability theory
(Brennan, 2001; Cronbach et al., 1972; Cronbach, Rajaratnam, & Gleser, 1963).
Generalisability theory is an approach to questions like how many items or raters
would be needed to achieve a certain reliability of measurement as expressed by
Cronbach’s alpha or the ICC on which alpha is based. One problem with these
kinds of generalisability studies is the same as the use of Cronbach’s alpha: CS is a
very restrictive assumption that in many cases may be too restrictive, and other
models will likely need to be considered for a more appropriate estimation of
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reliability and numbers of items or raters needed (see also Chaps. 14–16). This is
one of the reasons why such generalisability studies, from a practical point of view,
rarely make sense. With increasing numbers of items or raters, the likelihood of a
violation of CS increases, even if these items or raters can be reasonably assumed to
measure the same trait or state of interest. Moreover, with more items or more
raters, the likelihood of a violation of undimensionality increases as well. For
different raters, even if they provide simultaneous ratings about the same partici-
pants independent of other raters, it is unlikely to find ever-increasing numbers of
raters that measure the same trait or state of interest to the same extent, and large
numbers of raters are in practice usually not feasible anyway. For items, main
problems are that respondents tend to become more and more tired with increasing
numbers of items to be responded to, that at some point it becomes difficult to
formulate more items about the same trait or state of interest that do not parrot other
items, and that the repeated use of the same items comes at the risk of items being
interpreted and responded to differently at subsequent occasions for a variety of
reasons. All these issues together reduce generalisability theory to an approach of
very limited potential from a practical point of view, and predictions such as one
needing say at least twelve raters instead of the four included in a study at hand, at
least ten items instead of the five items in the study in question, or at least eight
repeated measurements instead of the two or three in the study just carried out,
should not be given too much weight.

Greatest Lower Bound and McDonald’s Omega

Several alternatives to Cronbach’s alpha have been suggested, some of which are
better than others (for a good overview, see for instance: Revelle & Zinbarg, 2009).
Two main alternatives that have been mentioned by several scholars are the Greatest
Lower Bound (GLB; e.g., Peters, 2014; Sijtsma, 2009) and McDonald’s omega (e.g.,
Crutzen & Peters, 2017; Deng & Chan, 2017; Dunn et al., 2014; Green & Yang,
2009; Peters, 2014; Revelle & Zinbarg, 2009; Trizano-Hermosilla & Alvarado, 2016;
Watkins, 2017; Zhang & Yuan, 2016). Dunn et al. (2014) summarize the advantages
of omega over alpha as follows (p. 406): “(1) Omega makes fewer and more realistic
assumptions than alpha. (2) Problems associated with inflation and attenuation of
internal consistency estimation are far less likely. (3) Employing ‘omega if item
deleted’ in a sample is more likely to reflect the true population estimates of relia-
bility through the removal of a certain scale item. (4) The calculation of Omega
alongside a confidence interval reflects much closer the variability in the estimation
process, providing a more accurate degree of confidence in the consistency of the
administration of a scale”. Sijtsma (2009) suggests that the GLB is the lowest
possible value that a scale’s reliability can have, meaning that the true reliability
should lie somewhere between the value indicated and 1 (perfect reliability). As noted
by Ten Berge and Sočan (2004), the GLB has been ignored by many researchers due
to a positive sampling bias (i.e., overestimating the reliability), especially when many
items are involved and samples are small. Ten Berge and Sočan (2004) also indicate
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that McDonald’s omega has the same bias. For that reason, some recommend to use
the GLB and McDonald’s omega only in the case of large samples (e.g., N > 1,000;
Lorenzo-Seva & Ferrando, 2013). However, Ten Berge and Sočan (2004) also
indicate that other reliability estimates—including Cronbach’s alpha—also suffer
from positive sampling bias, and that the bias for the GLB and McDonald’s omega is
especially a problem when the number of items involved is large and samples are
small. In a recent study that compared Cronbach’s alpha, McDonald’s omega, and the
GLB under realistic conditions, Trizano-Hermosilla and Alvarado (2016) concluded
that when item distributions are approximately Normal, omega should be the first
choice followed by alpha because they avoid the overestimation that GLB suffers
from, but that in the case of moderate skewness the GLB or an adjusted version
thereof may be preferred over omega and alpha.

In short, it appears that there is no coefficient which always works better than
other coefficients. In the case of larger series of items, all coefficients may be
problematic. However, in many questionnaires, the number of items over which
reliability coefficients can reasonably be calculated usually varies from three to
around six, because that is the set of items that measures for instance a particular
aspect of motivation. A Cronbach’s alpha over a set of dozens of test items can
generally be expected to have little meaning, not in the last place because with the
number of items increasing the likelihood of a violation of unidimensionality
increases as well, and with such numbers of items the alternatives discussed here will
have their problems as well. In the case of substantial departure from CS, it appears
that either omega or the GLB are to be preferred, and in the absence of substantial
deviations from normality omega. When departures from CS are minimal, Cron-
bach’s alpha and omega should give very similar results. When in doubt, reporting
both alpha and omega—or perhaps: alpha, omega, and GLB—is also an option.

Sample Size Issues

We already noted that reliability estimates tend to suffer from positive sampling bias
and this is especially an issue when sample sizes are small. Moreover, in an
experiment, for variables that result from psychometric measurement after the start
of treatment, reliability estimation is preferably done per condition. Calculating a
reliability estimate for different conditions together when these conditions differ
from each other as a function of treatment will likely result in artificially inflated
reliability estimates. For variables that result from psychometric measurement before
the start of treatment, reliability estimates may well be calculated for the different
conditions together, since variables measured before the start of the treatment are not
affected by treatment. In other words, in an experiment with two groups of n = 125
participants each, we could calculate alpha, omega, and the GLB across N = 250 for
data obtained from a questionnaire or other type of psychometric instrument (e.g., a
pre-test or a prior knowledge test) measured before the start of treatment, but we
would need to calculate these statistics per group of n = 125 participants for all
instruments administered after the start of treatment. This is another reason to try and
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go beyond small samples when possible. In experiments that host N = 50 partici-
pants altogether, it will already be very difficult to obtain accurate estimates of
reliability (i.e., the CIs around these estimates will be very wide); numbers like
n = 25 for instruments after the start of treatment simply cannot be recommended for
reliability estimation. Such cases force researchers to make the strong assumption
that an instrument that demonstrated good reliability in past studies with similar
participants is also reliable in a new experiment at hand. It is better to check that
assumption whenever we can, and for that we need sufficiently large samples.

Latent Variable Approaches

Coefficient omega is based on a one-factormodel inwhich the loadings of items on the
factor are allowed to vary (e.g., Deng & Chan, 2017). Cronbach’s alpha can also be
represented in terms of a one-factor model, but one in which the loadings are equal. In
cases of minimal deviation from equal loadings, alpha and omega should yield similar
results.

The factor from the one-factor model is a latent variable, a variable that is not
experienced empirically directly but only indirectly through manifest variables aka
observables such as items or ratings. The basic idea behind a one-factor model is
that if the latent variable of interest constitutes a common cause for a set of manifest
variables, we can combine that set of manifest variables to measure that latent
variable (unidimensionality; e.g., Sijtsma & Molenaar, 2002). If this assumption
holds, once we specify a model in which the three items are represented as indi-
cators of the latent variable, the correlations between the residuals of different
manifest variables should be (approximately) zero. This assumption is also called
local independence (e.g., Iramaneerat et al., 2010), constitutes a core idea of psy-
chometrics, and allows us to fit models. When there are two uncorrelated or
moderately correlated latent variables, and there is one set of items for each of these
two latent variables, a one-factor model will probably indicate that unidimension-
ality and local independence are violated. In such a case, local independence can be
achieved by specifying a two-factor model, where the correct sets of items are
specified as two different sets of items that each measure one of the two latent
variables (that may or may not be correlated).

Another important assumption here is monotonicity of the item-response function
(e.g., Iramaneerat et al., 2010; Sijtsma & Molenaar, 2002), meaning a monotonous
increase in expected score on quantitative manifest variables or a monotonous
increase in probability of a higher category on a dichotomous ormulticategory ordinal
variable with an increase in the latent variable. An easy example of monotonicity is
found in test items that are scored ‘correct’ or ‘incorrect’: monotonicity implies that
the probability of a correct response on a given item monotonously increases with the
respondent’s knowledge or skill level tested.
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Different types of latent variable methods exist, and which one to choose
depends on the nature of the manifest variables and the (assumed) nature of the
latent variable(s) of interest. Furthermore, although it is possible to test and estimate
group differences in an experiment using latent variable methods, the extent to
which any of these methods is feasible in an experimental study heavily depends on
the sample size of the experiment. Generally, we are talking about sample sizes of
several hundreds of participants or more.

Factor Analysis and Item Response Theory

A commonly used approach to latent variables is that of factor-analytic methods.
Factor analysis constitutes a good approach to examining which quantitative items,
ratings or manifest variables otherwise can be grouped together, provided that we
are dealing with sufficiently large samples.

With regard to sample size guidelines, there are different approaches. On the one
hand, there are scholars that recommend minimum required sample sizes irre-
spective of how many items we intend to include in our factor analysis. For
example, Comfrey and Lee (1992, p. 217) suggest that “the adequacy of sample size
might be evaluated very roughly on the following scale: 50—very poor; 100—
poor; 200—fair; 300—good; 500—very good; 1000 or more—excellent.” On the
other hand, there are scholars who recommend minimum required sample sizes
based on the number of items. More specifically, these scholars recommend a
minimum participant-to-item ratio: at least 5:1 (in exploratory factor analysis;
Gorsuch, 1983; Hatcher, 1994), at least 10:1 (in exploratory factor analysis; Nun-
nally, 1978), or at least 20:1 (Osborne, Costello, & Kellow, 2010). That said, no
ratio will work in all cases, as the number of items per factor as well as commu-
nalities and item loading magnitudes also influence the ratio, but large samples are
needed unless you are dealing with very strong data (e.g., MacCallum, Widaman,
Preacher, & Hong, 2001; Osborne et al., 2010). What is clear is that sample sizes of
N < 100 rarely provide a good scenario for factor analysis, unless perhaps in very
exceptional cases where one wants to do a confirmatory factor analysis to test a
one-factor model with three or four items, or to test a two-factor model with two
sets of items, that fits very well.

Although factor analysis has constituted an important approach across fields in
the context of Likert scales and categorical rating scales alike, recent research
provides evidence for a tendency towards over-dimensionalisation (i.e., distin-
guishing more factors than should be distinguished)—of both exploratory and
confirmatory factor analysis—when applied to such rating scale data (Van der Eijk
& Rose, 2015). Van der Eijk and Rose (2015) therefore recommend extreme
caution with factor analysis on this type of data and suggest item response theory
(e.g., Hambleton, Swaminathan, & Rogers, 1991) models—such as the Rasch
model (Andrich, 2004; Bond & Fox, 2007; Rasch, 1960; Wright & Stone, 1979)
and the Mokken model (Mokken, 1971; Van Schuur, 2011)—as alternatives.
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There are quite a few different item response theory models, and which one to
use depends on the type of categorical variables one is dealing with (dichotomous,
multicategory nominal, or multicategory ordinal) as well as on the type of data,
what assumptions we are willing to make, what we want to do with our models, and
what is our sample size. Item response theory models are widely used in educa-
tional and psychological research as well as in medical and health care assessment
(e.g., Embretson & Reise, 2000; Hambleton, 2000; Hays, Morales, & Reise, 2000).
Especially in experimental settings where sample sizes are usually limited (typically
N < 200) and sets of items can be expected to measure a latent variable of interest
(e.g., knowledge, skill, effort, motivation) to more or less the same extent, Rasch
modelling may constitute the best approach. In the Rasch model, fewer parameters
are estimated than in more complex item response theory models. Although the
Rasch model is commonly criticised by proponents of more complex models that in
many cases may provide a better fit of the data, the Rasch model has strong
mathematical properties that provide researchers with a measurement model as a
tool to make sense of a particular theoretical framework (Iramaneerat et al., 2010).
The goal of the Rasch model is not to best fit the data but to provide invariant
measures (e.g., Engelhard, 1994) of the degree of latent trait of both participants
and items. This invariance allows researchers to model the measurement system in
such a way that the order of participants in terms of increasing degree of the latent
variable and the order of items in terms of increasing difficulty are invariant. This
implies two things. Firstly, a participant with a higher degree on the latent variable
should always have a higher probability of correct item response in a test than a
participant with a lower degree on the latent variable, regardless of which items
these participants encounter. Secondly, the probability of correct item response
should always be lower for a more difficult than for an easier item, regardless of the
degree of the latent variable of the participants who respond to those items (Rasch,
1960). For multicategory items, the rating scale model (Andrich, 1978; Embretson
& Reise, 2000; Wright & Masters, 1982) and the partial credit model (Embretson
& Reise, 2000; Masters, 1982; Masters & Wright, 1996) are widely used Rasch
models. Other extensions of the Rasch model include the binomial trials model
(Wright & Masters, 1982), the Poisson model (Rasch, 1960), the Saltus model
(Wilson, 1989), the many-faceted Rasch measurement model (Linacre, 1989), the
linear logistic test model (Fischer, 1973), and the mixed Rasch model (Rost, 1990,
1991). The latter combines principles of the Rasch model and latent class analysis
(see next paragraph), meaning that the Rasch model is applied within each class and
the parameters obtained from the Rasch model are allowed to vary across classes.

Latent Class Analysis and Latent Profile Analysis

Factor-analytic models and item response theory models have in common that the
latent variables of interest are typically assumed to be continuous. Latent class and
latent profile analysis provide alternatives when latent variables of interest are
assumed to be discontinuous. Where factor analysis and item response theory
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models can provide researchers with scores on a continuous scale for the partici-
pants in a study, latent class and profile analysis enable researchers to estimate
probabilities of participants being part of either of competing classes (Goodman,
1974; Lazarsfeld & Henry, 1968). Latent class analysis is used when manifest
variables are categorical, while latent profile analysis is used when manifest vari-
ables are quantitative. That is, the two methods have in common that different
classes can be distinguished in terms of their response patterns across items; in
latent class analysis these response patterns concern different categories of nominal
or ordinal items, while in latent profile analysis the response patterns are about
differences in quantitative items. Latent class or profile analysis may be useful in
studies that include at least a few hundreds of participants, and the numbers of
participants required increase with the number of items included and number of
classes expected, and become even more stringent (e.g., N > 1,000) when at least
one of the classes has a low probability of occurrence. In experiments of modest
sample size (N < 200), these methods are often difficult to use.

Latent Growth Analysis and Latent Transition Analysis

When changes in latent variables over time are concerned, latent growth analysis
(McArdle & Nesselroade, 2003; Meredith & Tisak, 1990; Rao, 1958; Scher, Young, &
Meredith, 1960; Tucker, 1958) and latent transition analysis (Collins & Lanza, 2010;
Lanza & Collins, 2008) provide researchers with options with changes in quantitative
and categorical variables, respectively. Latent growth modelling is part of the larger
factor analysis and structural equation modelling framework, while latent transition
analysis is conceptually related to latent class analysis; the term growth refers to changes
in a continuous latent variable, while the term transition is used for movements from one
latent class to another across time. In large-sample experiments (e.g., several 100s or
more participants) that include a longitudinal or repeated- measures component with
psychometric measurement, these latent change models may be useful.

Network Analysis as an Alternative Approach
to Measurement

An alternative to the aforementioned latent variable models is found in network
analysis. Succinctly put, given a collection of items, each fully connected subnet-
work or clique of items generates a latent variable. A swarm of animals, for
example, may move in a certain direction because there is local interaction between
cliques (i.e., subgroups) of animals. These and most other forms of general intel-
ligence may be achieved with mutualism (i.e., reciprocal causation, interaction; Van
der Maas et al., 2006), and no hidden latent variables appear needed to explain what
we see. If two sets of items in an instrument measure two different aspects of a
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construct (e.g., intrinsic and extrinsic motivation), this may appear in network
analysis as two fully connected cliques, one for each set of items.

Network analysis approach provides new ways of thinking about items and
constructs to be measured, and Open Source software such as JASP provides
researchers with tools to perform network analysis. However, the testing and
estimation procedures available for network analysis are still under research.
Besides, conceptually, network analysis is quite a bit more complex than most if not
all of the methods discussed earlier in this chapter. Finally, where factor-analytic
and item response theory models provide straightforward ways to estimate relia-
bility coefficients, it is not fully clear how network analysis can assist researchers in
this enterprise. For these reasons, we have not yet seen many practical applications
of network analysis published in educational and psychological research thus far.
Perhaps this will change in near future, but for now some of the other methods
discussed in this chapter appear to be preferred.

A Pragmatic Approach for Moderate Sample Sizes

Meehl (1990) discusses ten factors that together make most narrative summaries of
research in social science researchmore or less uninterpretable. One of these factors is
the crud factor mentioned in Chap. 2 of this book (everything correlates with
everything). This crud factor is one of several factors discussed by Meehl as factors
that tend to make bad theories look good. Other factors in this genre are selective bias
in favour of submitting reports rejecting a point null hypothesis and selective bias by
reviewers and editors towards accepting such papers, as well as the use of
small-sample pilot studies to draw conclusions (e.g., on the existence of an effect) that
cannot be drawn from pilot studies. As discussed inChap. 2, small samples comewith
relatively low estimation precision and (severely) limited statistical power. Two pilot
studies might well yield very different results about the same phenomenon of interest.
This does not hold only forMs, proportions,Mds and differences in proportions; with
small-sample studies, item-factor loadings and reliability estimates can vary wildly
from one study to the next. Some researchers have used factor analysis in studies with
N < 50 where the numbers of items were so large that they (almost) ended up esti-
mating more parameters than they had participants in their samples. Calculations of
Cronbach’s alpha in samples of n = 20 are not uncommon in educational and psy-
chological research. These practices, whichever outcomes they yield, are not rec-
ommended. Whether we want to estimate reliability using Cronbach’s alpha, one of
its more viable alternatives McDonald’s omega or the GLB, through factor analysis,
Rasch modelling, or otherwise, to obtain accurate estimates we need sufficiently large
samples, and sample size requirements are generally more stringent with increasing
complexity of design andmodels needed to account for that design.Whichever are the
reasons why we cannot go beyond a certain sample size for a given experiment, the
sample size limitations have implications for which analytic methods we can
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reasonably use. Besides, our questions, design features, and nature of the data should
also direct our analytic choices.

If we have good reasons to expect two subgroups of 3–4 items in a psychometric
instrument, each of which ought to measure one of two constructs of interest,
departing from a 20:1 participant-to-item ratio, we would do well taking 20 times
6–8 items (i.e., two sets) or N = 120–160, meaning n = 60–80 in a two-group
experiment. These numbers are well in line with the numbers discussed in Chap. 2
for experiments to ensure sufficient statistical power for medium size differences.
Note that items that come from different instruments usually do not have to be
included in the same factor analysis. Sometimes, researchers merge up to a few
dozens of items into a single factor analysis, while these dozens of items come from
a number of different instruments. Doing a factor analysis per instrument is in that
case more appropriate. In a pub, chairs, tables, and crutches should in terms of their
properties form separate factors. Likewise, for items from completely different
instruments, the scales have different meaning even if they use the same number of
categories and same numerical or verbal labels; putting them in one factor analysis
is like comparing chairs, tables, and crutches in a pub. Suppose that the afore-
mentioned two sets of 3–4 items each came from two different psychometric
instruments, running a one-factor model on each of these two sets of items is okay.

The recent work by Van der Eijk and Rose (2015) gives us reasons to rethink our
common practice of using factor analysis as a default approach to assessing the
structure of a psychometric instrument: for Likert and other forms of categorical
scales, which are likely candidates for factor analysis in educational and psycho-
logical research, both exploratory and confirmatory factor analysis tend to result in
over-dimensionalisation. For such data, we may want to consider an increased use
of item response theory models such as the Rasch model.

That said, whether we use factor analysis, item response theory models, or other
latent variable methods to examine the structure of a psychometric instrument,
whether we need reliability estimates additional to the outcomes of these latent
variable methods remains a question of debate. Some, including myself, argue that
if a factor analysis, a Rasch model or a latent class/profile model indicates good fit,
there is no need for further reliability estimates; the key outcomes of the factor
analysis, Rasch model or latent class/profile model usually provide sufficient
information to understand the data and allow those interested to calculate additional
reliability estimates. Others may argue it will still be good to also report additional
reliability estimates. If so, I hope this chapter has provided reasons to revise our
common practice of Cronbach’s alpha as the default option and to consider
reporting McDonald’s omega and the GLB instead of or along with Cronbach’s
alpha. Also, Chaps. 14–16 of this book place Cronbach’s alpha and its restrictive
CS assumption in a broader mixed-effects modelling perspective and provide other
residual covariance structure-based alternatives to CS.
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4Dealing with Missing Data

Abstract
A topic not yet touched in the previous chapters of this book is that of how to
deal with missing data. Although missing data is commonly associated with
other types of research and large proportions of missing data are uncommon in
most of experimental educational and psychological research, the topic is
equally relevant to experimental research. Frequently encountered methods for
dealing with missing data are mean imputation, listwise deletion, pairwise
deletion and, in repeated-measures and longitudinal studies, last observation
carried forward. Although these methods are very easy to implement, they are
usually wrong and may substantially distort our view of effects of interest for
reasons discussed in this chapter. Four somewhat more complex yet generally
more appropriate approaches to missing data are matching, regression imputa-
tion, FIML, and MI. After a comparison of these four methods in terms of their
pros and cons, this chapter provides a pragmatic approach to dealing with
missing data.

Introduction

For the sake of simplicity of the introduction of concepts, Chaps. 1, 2 and 3 do not
deal with missing data situations. Barnard and Meng (1999), Cole (2010) sum-
marize three major problems with incomplete data due to missing response: loss of
information and statistical power, complications in data management and analysis,
and the risk of biased estimation and testing outcomes with regard to effects of
interest. How to deal with missing data depends on the expected nature of the
missingness. More than four decades ago, Rubin (1976) proposed a framework of
three types of missing data: MCAR, MAR, and MNAR.
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Under MCAR, the probability of missing response is unrelated to our observed
variables of interest and is unrelated to unobserved variables that might affect our
variables of interest, because the missingness occurs for completely unsystematic,
random reasons (Abraham & Russell, 2004). In experiments that include an online
component, for example, a random disturbance may result in a (partial) loss of data
for some participants. In such cases, the group of participants with complete data is
considered a random subsample of all participants in the experiment (e.g., Cole,
2010). Although the assumption of no relation between missingness and unob-
served variables cannot be tested, several software programmes include Little’s
MCAR test (Little, 1988) for as far as the observed variables are concerned.
Rationale behind this test is that apart from the missingness, the two groups should
not differ significantly from each other in the observed variables of interest;
otherwise, the MCAR assumption can be rejected.

In short, if the reason of missingness can reasonably be expected to be random,
such as in the experiment where a random disturbance results in random omissions
in a dataset, MCAR may be assumed, and when in doubt, Little’s MCAR test
provides an objective way to test the MCAR assumption. If MCAR does not hold,
MAR is a next candidate. MAR occurs when the probability of missingness on
variable X is related to one or more other observed variables in the dataset but not to
the value of X itself (e.g., Acock, 2005). In longitudinal research, which is espe-
cially susceptible to missing data, within MAR a distinction can be made based on
whether the probability of missingness depends on the previous response (MAR1)
or on the previous two responses (MAR2; De Rooij, 2018; Rubin, 1976). Contrary
to MCAR, MAR cannot really be tested, because there is no way to verify that the
probability of missing data on X is related only to observed variables and not to
unobserved variables as well. Some of the observed variables that may correlate
with the occurrence of missingness of X can be used as explanatory or auxiliary
variables (Collins, Schafer, & Kam, 2001) to establish correlates of missingness to
decide on how to deal with the missing data. Misclassifications of missingness as
MCAR or MAR often have a rather minor impact on point estimates and SEs (Cole,
2010; Collins et al., 2001), and a major advantage of MCAR and MAR over
MNAR is that we do not need to model the mechanism of missingness. As such,
data are often said to be ‘ignorable’ if they are either MCAR or MAR and “the
parameters that govern the missingness mechanism are unrelated to the processes
to be estimated” (Cole, 2010, p. 217).

The most troublesome missing data mechanism is MNAR, because the proba-
bility of missingness on variable X depends on the actual value for the
non-responding participant(s) on X, even after controlling for other observed
variables. Basically, it is impossible to even verify MNAR without knowing the
missing values, and the latter is in practice usually the case. Under MNAR, in
contrast to MCAR and MAR also referred to as nonignorable data (Cole, 2010), we
need sophisticated methods to model the missingness mechanism (e.g., De Rooij,
2018; Molenberghs & Verbeke, 2005).
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In well-controlled and carefully managed experiments with single or small series
of repeated measurements, missingness occurs much less frequently than in
experimental or non-experimental longitudinal studies. The control and careful
management that makes an experiment a good experiment often helps to avoid
missingness or otherwise to minimise it (i.e., both participant and item
non-response remaining well below 10%) and reasonably establish the mechanism
where it occurs. While MNAR may be quite likely in many non-experimental
studies, MCAR and MAR are generally much more likely in well-controlled and
carefully managed experiments. Fallout of a server or failure of email are likely
forms of MCAR. Participants not being able to respond to all items of a final
questionnaire in a fixed-time experimental session due to a lack of time may be
considered MAR.

As becomes clear later on in this chapter, how to deal with missing data not only
depends on the type or mechanism of missingness and percentages of missing (per
participant and per item); how many times a variable of interest is measured (e.g.,
De Rooij, 2018) and whether that variable serves as an outcome variable or as a
covariate (Horowitz & Manski, 2000; Janssen et al., 2010; White & Carlin, 2010)
are also questions to be considered.

Simple Missing Data Methods

Despite over five decades of research on missingness, the use of several simple but
wrong missing data methods continues to be widespread across fields: mean
imputation, listwise deletion, pairwise deletion, and last observation carried
forward.

A first commonly encountered simple missing data method is that of mean
imputation. In this case, all participants whose scores on Y are missing are replaced
by the mean of Y based on the participants that do have a score on Y. This method is
known to result in underestimated SDs and biased estimates of correlations with it
(Haitovksy, 1968). Moreover, especially under MAR and MNAR, this method
tends to result in biased estimates of treatment effects (e.g., Eekhout et al., 2014).
Although in a two-way variant on mean imputation in questionnaires, the score to
be imputed is a function of both the mean of Y and the mean of the participant on
other items that are supposed to measure the same construct (Van Ginkel, Sijtsma,
Van der Ark, & Vermunt, 2010), the risk of biased estimates remains.

A second approach that is commonly used, perhaps because it has been the
default option in frequently used statistical packages, is that of listwise deletion aka
casewise deletion (Abraham & Russell, 2004; Acock, 2005; Cole, 2010). In this
method, all participants with any missing data are removed from the analysis,
regardless of the proportion of that missingness. Even under MCAR, this approach
tends to result in an unnecessary loss of statistical power and precision, unless we
are dealing with larger samples and the proportion of missingness is less than 5%
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(Cole, 2010). Moreover, under MAR and MNAR, it also tends to result in biased
estimates (Enders, 2010), even in the case of smaller proportions of missingness.

Another deletion approach that is sometimes used is that of pairwise deletion aka
available-case analysis (e.g., Cole, 2010). In this case, if a participant has missing
on variable X but not on variables Y and Z, that participant is included where Y-
Z relations are concerned but not where X-Y or X-Z relations are concerned. Main
problems of this approach lie in loss of statistical power and inconsistency of SEs
and other statistics across comparisons (e.g., Little & Rubin, 2002; Schafer &
Graham, 2002) as well as, under MAR and MNAR, expectedly biased estimates
(Baraldi & Enders, 2010). In cases where a variable X that has missing data is
considered as a predictor in some models for the explanation of Y—because X is a
treatment factor or a relevant covariate—but not in some competing model(s) of
Y (e.g., the ‘no difference’ model), pairwise deletion comes with the problem that
the data included is not the same across competing models. This undermines any
kind of comparison between competing models in terms of p-values, information
criteria or BFs.

Finally, in longitudinal studies, last observation carried forward (Peto et al.,
1977) is sometimes applied. In this approach, the missing value of a participant on
variable X at occasion Ot is imputed with last observation (Ot–1) on the same
variable X for that participant. This assumption only makes sense in longitudinal
studies where change does not occur frequently or where changes are generally
small, and this is something that is unrealistic in most longitudinal studies (Wood,
White, & Thompson, 2004). In other words, underestimated SDs and biased cor-
relation estimates are a main concern in this method as well.

More Complex Approaches to Missing Data

This section discusses four approaches to missing data that are more complex but
are generally better in one several ways compared to the methods discussed in the
previous section: matching imputation, regression imputation, FIML, and MI.

Matching imputation is a method in which non-responding participants are
matched to participants that in terms of other observed variables are similar, and
scores on variable X of matched participants who did respond are given to the
matched participants whose scores on X are missing. Two variants of hot-deck
imputation are the distance function approach and the matching pattern approach. In
the case of distance function, the imputation score is found directly from the
‘nearest neighbour’ participant (i.e., the participant who based on the other
observed variables has the smallest squared distance statistic to the participant
whose score on X is missing). In the case of matching pattern, the total sample is
stratified into a limited number of homogenous subgroups, and the imputation score
for the missing participant is a random draw from cases in the same homogenous
subgroup (e.g., Fox-Wasylyshyn & El-Masri, 2005). Compared to the methods
discussed in the previous section, this approach results in imputations that are more
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realistic and somewhat more respect the distribution of observed X scores. How-
ever, risks of underestimated SEs remain (e.g., Roth, 1994).

In a second approach, regression imputation, we perform regression analysis
with other observed variables to obtain predicted values where there is missingness.
This approach is more robust than the methods discussed in the previous section,
because it enables researchers to incorporate a variety of indicators to obtain
realistic imputation values that are consistent with observed relations between
variables (Cole, 2010). However, when several variables have missing data, the
process can become quite complex. Moreover, imputed scores are made to fit an
observed straight line, and this artificial reduction of residual variance is likely to
result in somewhat underestimated SEs (Enders, 2010).

Matching and regression imputation have in common with the methods dis-
cussed in the previous section that no additional datasets are created. In the case of
MI, several imputed datasets are created. Basically, MI involves three stages: im-
putation, analysis, and pooling. In the imputation phase, different versions of the
dataset are created in which the observed values are always the same but the
imputed values differ based on an iterative regression approach. This yields a
limited number of (e.g., 5–10) after imputation ‘complete’ datasets. Each of these
datasets is analysed in the second stage (i.e., analysis stage) with the statistical
methods one would normally use on complete datasets. Finally, in the pooling
stage, the parameter estimates and SEs obtained in the different datasets are pooled
to obtain outcomes that respect the distributions of the different variables involved,
enable researchers to model the bias in and between imputed datasets, and can—at
least under MAR (e.g., Eekhout et al., 2014)—produce unbiased estimates. In the
case of MNAR, the robustness of the imputations and outcomes may be examined
via the consideration of a range of auxiliary variables, variables that correlate with
the variable that needs imputation and/or with the probability of missing response
on that variable (Collins et al., 2001). Auxiliary variables can also be useful in the
aforementioned regression imputation and can be useful in the approach discussed
next as well. Examples of commercial software packages that include MI are SPSS
and Stata. A good package from R is the multivariate imputation by
chained equations (MICE) package (e.g., Azur, Stuart, Frangakis, & Leaf, 2011;
Horton & Lipsitz, 2001; Luo, Szolovits, Dighe, & Baron, 2017; Van Buuren &
Groothuis-Oudshoorn, 2007).

In all methods and approaches discussed in this chapter thus far, missing values
are imputed. In FIML, missing data is accounted for in the analysis without any
kind of imputation taking place, by using all available information without pairwise
deletion. FIML estimation of multilevel models, confirmatory factor models (e.g.,
Jamovi) and structural equation and latent growth models (e.g., Mplus) are good
examples of this approach.

Collins et al. (2001) demonstrated that in many practical situations, MI and
FIML will produce similar or very similar results. Some studies suggest that MI
may be preferred over FIML when sample sizes are small (e.g., Graham & Schafer,
1999; Schafer & Graham, 2002), although for MI a participant-to-variable ratio of
10:1 appears a recommendable lower bound (Cole, 2010). MI appears to have more
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potential than FIML in cases of MNAR through the inclusion of more auxiliary
variables, but more auxiliary variables also elevates sample size requirements.
FIML estimation is attractive to researchers who prefer not to impute missing
values, is easier to carry out than MI, and provides straightforward model indices
for a single dataset. Moreover, some work indicates that MI in small samples can
produce biased outcomes (Hayes & McArdle, 2017) and that FIML may be better
than MI in small samples under MAR although in small samples FIML may yield
substantial bias as well (Yuan, Yang-Wallentin, & Bentler, 2012).

A Pragmatic Approach to Dealing with Missing Data
in Experiments

This final section of this chapter provides some pragmatic guidelines for how to
deal with missing data in an experiment depending on whether or not variables are
measured repeatedly, what type (mechanism) of missingness is expected, how
many times a variable of interest is measured, and whether that variable serves as an
outcome variable or as a predictor variable. Generally speaking, the problem with
including unimputed predictor variables with missing data in our models is that
comparisons between models—some of which include and some of which exclude
one or several of the predictor variables with missing data—cannot really be made
because they do not use exactly the same data. For instance, take an experiment
with one treatment factor, one covariate measured prior to treatment, and one
outcome variable. Even if there is only one case missing on the covariate, doing
nothing and just including treatment factor and covariate in different competing
models—which do or do not include the treatment factor and/or covariate—results
in the following model. For models that do not include the covariate (i.e., the null
model and the treatment-factor-only model), data from N participants is used.
However, for all models that do include the covariate, data from N – 1 number of
participants is used. This affects SEs and all that is based on it, including CIs and p-
values. Besides, all model comparisons involving BFs or information criteria like
AIC and BIC are based on the premise that exactly the same data is used in each of
the models. For missing in an outcome variable, the situation is different: given
missing on the outcome variable but not on any of the predictor variables, the data
used for model comparison is always the same.

Single-Time Measurement of Variables

In many experiments in educational and psychological research, variables of
interest are measured once in time, even though the timing of that measurement
may differ for different variables: outcome variables are measured after the start of
treatment, and predictor variables may be measured any time before (i.e., possible
covariates and moderators) or after the start of treatment (i.e., possible mediators
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and moderators) but before the final outcome variables. Moreover, well-controlled
and carefully managed experiments may result in only a small percentage of
missing (if any at all), say 5% or up to 10%. In such situations, the loss of statistical
power due to listwise deletion may be small. For instance, consider an experiment
of N = 128 that starts with two groups of n = 64 each. Suppose, in both groups, six
participants have some missing data on a questionnaire or test (i.e., 9.4% in each
group). With listwise deletion, we are left with two groups of n = 58 each. For
Cohen’s d = 0.50 and a two-sided test at a = 0.05, that means a reduction in
statistical power of 0.80–0.76. Given that listwise deletion tends to result in biased
estimates under MAR and MNAR but not under MCAR, under MCAR (e.g.,
random fallout of a server or mail failure) with such small proportions of missing
listwise deletion may be defendable. Besides, in some odd cases, it happens that due
to failure of a server we lose the information with regard to one or a few participants
with regard to what condition they were in. With a solid experimental setup and
good data processing and registration equipment, this kind of missing should in
most cases be zero and otherwise constitute less than 5% or in any case less than
10% of the cases. In such cases, data may well be MCAR (i.e., failure of a server
affecting a random participant at time point T), and listwise deletion may be con-
sidered. The problem with FIML is then that across different competing models—
some of which may and some of which may not include the treatment factor of
interest—not exactly the same data may be used (cf. the aforementioned N vs. N – 1
example with a missing data point on a covariate). MI might be considered but
should be done carefully, and perhaps with somewhat larger numbers of imputa-
tions, for there may be a considerable chance of misclassifying (at least) one
participant in terms of condition membership.

In the case of well-designed and carefully managed experiments that do not
involve a repeated-measures or longitudinal component, more than 20% of par-
ticipants having missing data is rather uncommon. When the group of participants
who have some missing data is somewhere in the 10–20% range and missing is
only on one or more outcome but not on any predictor variables, under MCAR and
MAR both MI and FIML can be considered, and under MNAR one is likely better
off with MI. When combinations of missing on predictor and outcome variables are
concerned and the problem cannot be resolved by deleting the one or few partic-
ipants whose data is missing on all or almost all of these variables, MI is recom-
mended. Besides, for questionnaires and instruments alike that consist of series of
items, how to use MI also depends on how much missing individual participants
have on a questionnaire or test of interest. When participants have fairly small
percentages of items missing (e.g., 1 out of 5 items in a scale or 20%, or 3 out of 10
items in a scale or 30%), MI can be done at the item level (i.e., imputing item
scores). However, if participants have most of the items missing (e.g., 4 out of 5
items or 80%), MI on the total score of a set of items is probably better.

MI may still be useful if percentages of missingness exceed 20%, and perhaps in
some cases FIML estimation may under MAR also provide a satisfactory solution,
but the larger the percentages of missingness the more worrisome things get. I have
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rarely seen an experiment where over 50% of participants had missing data, but if
the occurrence of missingness goes beyond such a level one may wonder what is
the use of analysing the data at all—especially in cases of MNAR and/or where the
percentages of missingness per participant are also high—unless missingness
results from a dropout that is in itself considered an outcome variable of interest in
the context at hand.

Multiple-Time Measurement of Variables

Sometimes, the same outcome variable of interest is measured repeatedly in a short
time interval (i.e., repeated-measures design) or two or more times over a longer
time interval (i.e., longitudinal design). The same guidelines as for single-time
measurement of variables can be applied when it comes to missing in predictor
variables, and whichever method we sue, we should always explicitly report which
method we have used, how we have used that method, and why we have done so.

Apart from the guidelines for single-time measurement of variables, when out-
come variables are measured repeatedly, larger proportions of missing data may
become more likely, unless we have a very solid setup and context which help to
minimise the occurrence of missing data. MI may provide useful solutions under
MCAR, MAR or MNAR as long as the proportions of missingness do not exceed
such levels that data analysis altogether becomes questionable (e.g., 80% of par-
ticipants having missing data on the same outcome variable at several occasions,
especially under MNAR) and/or the effective sample size due to missingness
becomes so small that MI can no longer be expected to provide meaningful esti-
mates (see also the previous note on FIML providing somewhat less biased esti-
mates than MI under MAR in smaller samples). Finally, under MCAR and MAR,
missingness in outcome variables can be handled with FIML, unless the percent-
ages of missing are very high (e.g., 80% of participants having missing data on the
same outcome variable at several occasions) and/or the effective sample size due to
missingness becomes so small that FIML is no longer a reasonable option.
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5Dichotomous Outcome Variables

Abstract
The main take home message from Part I of this book is that whether we deal with
simple group comparisons (Chap. 2), measurement issues (Chap. 3) or missing
data (Chap. 4), data-analytic choices ought to be driven by the questions that led us
to do the experiment, by the features of the experimental design that resulted from
our questions, and by the nature of the data acquired in the experiment (the QDA
bridge from Chap. 1). In this second part of the book, this approach is applied to
different types of outcome variables. In this first chapter of Part II, we focus on
dichotomous outcome variables. Examples of dichotomous variables are pass/fail
decisions in tests, recover/failure to recover distinctions in mental health-related
contexts, and event occurrence/event absence. This chapter discusses different
plots and statistics for experiments in which a dichotomous outcome variable is
measured once in time aswell as for experiments inwhich the outcome variable is a
dichotomous variable in the form of event occurrence/absence in a particular time
period. Although the latter is commonly associated with survival analysis in
hospitals, (simulated) traffic research for example may focus on the occurrence or
absence of accidents in different groups of participants studied.

Introduction

Although many experiments in educational and psychological research involve
quantitative variables or multi-category ordinal variables that are treated as if they
were of interval or ratio level of measurement, there are experiments in which at least
one of the outcome variables of interest is a dichotomous, two-category variable. In
some experiments, that two-category variable results from dichotomising a quanti-
tative or multicategory variable, which is rarely recommendable because it usually
results in unnecessary information loss and a loss of statistical power and precision
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with it. However, where dichotomous variables arise from qualitative judgements or
from the occurrence/absence of a phenomenon of interest (e.g., a participant having a
missing response on variable Y or not, see Chap. 4), we need appropriate analytic
methods for dichotomous variables. Researchers often report a v2-test of a ‘no effect’
null hypothesis with its p-value and leave it there. This is a pity, because we learn little
from just a v2- and p-value, but if researchers at least report the observed frequencies in
a contingency table they allowother researchers to compute statistics thatmay provide
us with much more useful information about effects of interest than v2- and p-values.
Three examples of a simple two-group experiment with a dichotomous outcome
variable are discussed in this chapter: two examples with pass/fail decisions arising
from a qualitative judgment on a skills test at the end of an experiment, and the
occurrence of an accident in an experiment on different ways of training driving skills
in a simulated environment.

Experiment 1: Effect of Treatment on the Probability
of Passing a Test

Suppose, a group of medical education researchers have developed a new technique
for training communication skills with virtual patients among undergraduate medical
students. They want to compare this technique with a conventional technique for that
skills training, and develop a practice scenario and a test scenario for an experiment.
With the conventional technique, the pass rate at the first attempt is about 65%. Both
scenarios are presented in the same online environment. The practice scenario con-
stitutes the learning stage or practice period in preparation for the test scenario. In the
control condition, participants approach the practice scenario with the conventional
techniques. In the experimental treatment condition, participants approach that same
practice scenario with the new technique. After the practice scenario, participants take
the test (i.e., same test scenario) without any kind of the help that was included in the
conventional or new technique.

The researchers randomly recruit N = 300 undergraduate medical students in the
United States, because this is about the largest possible sample they can draw with
the logistic possibilities they have, and this number can guarantee a statistical power
of about 0.80 for a two-sided test at a = 0.05 for substantially better (80% or
higher) or substantially worse (48% or lower) pass rates with the new technique
(GPower), knowing that the N = 300 students are going to be allocated randomly to
the two conditions such that each condition hosts n = 150 different students.
Pass/fail decisions are made by teachers who have extensive experience with skills
training in the context at hand but who are blind to which participants were trained
with which technique and do not yet know of the new technique let alone have any
expectations with regard to how that technique might affect pass/fail rates.
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A Treatment Effect?

In the control condition, 100 of the n = 150 participants (about 66.7%) pass the test.
In the experimental treatment condition, 107 of the n = 150 participants (about
71.3%) pass the test. Figure 5.1 (from JASP) depicts the conditional estimates plot
aka estimated marginal means (EMM) plot for the control condition (left: X = 0)
and for the experimental treatment condition (right: X = 1): the observed pass rates
with 95% CIs around them.

Figure 5.1 indicates that the treatment effect observed in the sample is small.
Given the absence of an a priori one-sided hypothesis with regard to the direction of
an eventual treatment effect, two-sided testing is performed. Using the LR test for
H0 stating ‘no treatment effect’ against H1 stating ‘treatment effect’, we find
v21 = 0.764, p = 0.382. AIC is 373.460 for Model 0 (H0: no treatment effect) and
374.696 for Model 1 (H1: treatment effect). BIC is 377.164 for Model 0 and
382.104 for Model 1. Thus, AIC and BIC both prefer Model 0.

When it comes to estimating R2 (see also Chap. 2), quite a few different R2-
statistics have been proposed in the literature in the context of logistic regression
analysis, some of which appear better than others (e.g., Menard 2000; Mittlbock
and Schemper 1996). One of the most reported and perhaps also still one of the best
R2-statistics comes from McFadden (1974). McFadden’s R2

McF corresponds to a
proportional reduction or error variance similar to the R2-statistic for quantitative
outcome variables. It can be calculated from the deviance (-2LL) of Model 0 (null
model, no treatment effect) and that of Model 1 (treatment effect):

R2
McF ¼ 1� ð½-2LLModel 1�=½-2LLModel 0�Þ:

Fig. 5.1 EMM plot of
Experiment 1: (observed)
point and interval (95% CI)
estimates of the probability of
pass P(Y = 1) for the control
(X = 0) and treatment (X = 1)
condition (JASP)
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In Experiment 1, -2LL Model 1 = 370.696, and -2LL Model 0 = 371.460,
hence:

R2
McF ¼ 1� ð370:696=371:460Þ � 0:002:

Another more recently proposed R2-statistic that is conceptually closely related
to the R2-statistic for quantitative outcome variables, because it is based on pre-
dicted probabilities (proportions), is that of Tjur (R2

T; 2009). However, contrary to
R2
McF, R

2
T is not easily applicable in the case of multicategory nominal (Chap. 6) or

ordinal outcome (Chap. 7) variables. Moreover, at least when R2
McF is high, the

behaviour of R2
T is somewhat odd, and we will see what is meant by that after

discussing two other commonly encountered R2-statistics that are applicable to
dichotomous, multicategory nominal, and ordinal outcome variables: Cox and
Snell’s R2

CS (Cox and Snell 1989; Cragg and Uhler 1970; Maddala 1983) and
Nagelkerke’s R2

N (Nagelkerke 1991). However, these two coefficients are compu-
tationally more complex and are quite dependent on the marginal probability of an
event (e.g., the overall probability of pass). More specifically, R2

CS has the unde-
sirable feature that, contrary to what an R2-measure should be able to do, its highest
possible value (i.e., upper bound) cannot be 1; for marginal probabilities around
0.5, its upper bound is about 0.75, while for marginal probabilities further away
from 0.5 (e.g., 0.1 or 0.9) its upper bound can go below 0.50. R2

N corrects for that by
dividing R2

CS by its upper bound. Although that correction yields an R2-statistic that
has an upper bound of 1 and remains with a lower bound of 0, the R2

N may more
often than not be somewhat exaggerated, especially when the upper bound of R2

CS is
fairly low (e.g., 0.50).

If you find the discourse about R2
CS and R2

N difficult to follow, you can simulate
an example for yourself. Open any statistical software package that provides R2

McF,
R2
T, R

2
CS, and R2

N, for instance JASP. Create say 40 cases, 20 of which score ‘1’ on
two variables X and Y and 20 of which score ‘0’ on these two variables. A good R2-
statistic should yield 1.000 as outcome for this dataset, because there is a perfect
relation between X and Y. The -2LL of Model 0 (i.e., no relation aka statistical
independence) is 55.452, while that of Model 1 (i.e., relation) is exactly zero
because Model 1 fits the data perfectly. Consequently, R2

McF = 1.000. However,
JASP and Jamovi also return the following outcomes: R2

T = 0.513 (i.e., only in
JASP, not available in Jamovi, at the time), R2

CS = 0.750, and R2
N = 1.000. The

outcomes of R2
T and R2

CS simply do not make sense.
The marginal probability in the aforementioned exercise is 0.50, and we see that

the upper bound—that is: the maximum possible value of the statistic, which we
find in the case of perfect relation—is 0.750 for R2

CS and 0.513 for R2
T. Now let us

redo the exercise with a marginal probability of 0.80 (i.e., 0.20 would yield the
same outcomes), which is somewhat further away from the 0.50 value that might be
considered ‘ideal’ in the sense that we have as many cases with ‘0’ as we have cases
‘1’ on the outcome variable of interest. For our exercise with a marginal probability
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of 0.80, we create 40 cases, 32 of which score ‘1’ and the other 8 score ‘0’ on the
outcome variable of interest. The -2LL of Model 0 is 40.032, while that of Model 1
is 0. JASP and Jamovi return the following values: R2

McF = 1.000, R2
T = 0.821 (i.e.,

only in JASP, not available in Jamovi, at the time), R2
CS = 0.632, and R2

N = 1.000.
These two exercises, with marginal probabilities of 0.50 and 0.80 (or 0.20),

clearly demonstrate that some caution is needed when choosing R2-statistics for
categorical variables. R2

T and R2
CS suffer from the same problem of upper bounds

substantially lower than 1, and the correction applied by R2
N may be too heavy,

especially for marginal probabilities somewhat further away from 0.50. Although
several other R2-statistics have been proposed, R2

McF is probably still the best R2-
statistic for categorical outcome variables (Kvålseth 1985; Menard 2000). Thus, if
we want to report R2-statistics for dichotomous outcome variables (logistic regres-
sion) that is also easily applicable to multicategory nominal and ordinal outcome
variables and that can cover the full 0–1 range, the best option for now is R2

McF. R
2
McF

is available in virtually all statistical packages, including Jamovi, JASP, SPSS, and
Stata. In the latter, it is the default R2 for regression models with categorical outcome
variables and is found under the name ‘pseudo R2’. In Experiment 1, R2

McF � 0.002.
In other words, the effect observed in the sample is small.

Other useful statistics with regard to the effect of interest are Cramér’s V (Cramér
1946) and the OR and ln(OR) (the latter is also called log OR or logit and is found
by taking the natural logarithm, ln, of the OR; Agresti 2002). In the case of two
dichotomous variables—as is the case for the experiments discussed in this chapter:
a dichotomous treatment variable (treatment vs. control) and a dichotomous out-
come variable (pass vs. fail)—Cramér’s V yields the same point estimate as
Pearson’s r, Spearman’s q, Kendall’s s coefficients, and coefficient u (Agresti
2002; Guilford 1936). In Experiment 1, we find V = 0.050, which corresponds with
small differences (Cohen 1988; Lipsey and Wilson 2001). The interpretation of V-
values in terms of ‘small’, ‘medium’ and ‘large’, like for any effect size statistic,
depend on the context; what is ‘large’ in one context may be considered ‘modest’ in
another context and vice versa. Moreover, in the case of V, small-medium-large
interpretations of V depend on the number of categories of the variables involved.
As long as one of the two variables involved is a dichotomous variable, 0.1, 0.3,
and 0.5 are commonly interpreted as ‘small’, ‘medium’, and ‘large’ effects, but
these labels are associated with larger values when both variables involved have
three or more categories.

The point estimate of the OR in Experiment 1 is 1.244 (p = 0.383), and the 95%
CI of the OR extends from 0.762 to 2.032. The ln(OR)—also denoted as b because
it can be interpreted as a regression coefficient (though not in the same way as in a
linear model!)—is obtained by taken the natural logarithm (ln) from the OR. In
Experiment 1, we find b = 0.218, and the 95% CI extends from −0.272 to 0.709.
ORs are very useful in many statistical applications for categorical variables,
including in meta-analyses that include categorical variables. The b of 0.218 in
Experiment 1 is the slope in logistic regression, analogous to the regression coef-
ficient of a treatment effect in linear regression (though not the same!).

Experiment 1: Effect of Treatment on the Probability … 83



Relatively Equivalent?

The statistics discussed thus far indicate that the effect observed in Experiment 1 is
small. However, as discussed in Chap. 2, from effects being small and not statis-
tically significant at a = 0.05, we cannot conclude that the conditions compared in
an experiment are equal or equivalent in a population of interest, even if other
criteria such as AIC and BIC also indicate a preference towards the ‘no treatment
effect’ model. TOST equivalence testing and the Bayesian ROPE approach provide
better ways to establish relative equivalence of the treatment and control condition.
Both approaches require researchers to reach consensus about a range of values on a
given statistic in which two conditions can be considered relatively or practically
equivalent. In the context of Experiment 1, researchers in the field may agree that a
difference between conditions within a range of 10% is not of substantial practical
interest and hence the region of −10% (negative treatment effect) to +10% con-
stitutes the region of practical equivalence. The 95% CI for the difference in pass
rate (71.3% in the treatment condition, 66.7% in the control condition) ranges from
−0.058 to 0.151 and the 90% CI ranges from −0.0411 to 0.134 (Jamovi). Although
we can reject H0.1: ptreat − pcontrol < −0.10 (i.e., the difference being more negative
than 0.10; p = 0.003), we fail to reject H0.2: ptreat − pcontrol > 0.10 (i.e., the dif-
ference being more positive than 0.10; p = 0.159). In terms of FOST, our evidence
appears inconclusive: we have insufficient evidence for relative equivalence (i.e.,
the 90% CI would have to be within [−0.10; 0.10]) and we have insufficient
evidence to reject relative equivalence as well (i.e., the 90% CI would have to be
fully outside the −0.10 to 0.10 range).

Note that significance tests for differences in proportions are z-tests, not t-tests.
Reason for this is that in the case of dichotomous variables the variance r2 is a
direct function of the proportion p:

r2 ¼ p � ð1� pÞ:

Thus, given p, r is known. When dealing with quantitative outcome variables,
we normally use t-tests that estimate the population standard deviation r from the
sample SD; in situations where r is known, z-tests can be used. That said, in
Experiment 1, the findings leave us inconclusive; we fail to find evidence for a
treatment effect and fail to find evidence to assume relative equivalence. More
experiments will be needed to accumulate more information, so that perhaps a
meta-analysis on a series of experiments can help us establish point and interval
estimates that do allow us to more safely draw conclusions with regard to the
treatment effect of interest.
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Experiment 2: Effect of Treatment on the Probability
of Successful Completion

Suppose, the conventional technique actually yields much lower (first-time) pass
rates and that was the reason why the group of medical education researchers
developed a new technique. They run the experiment under the same conditions as
explained for Experiment 1 and the findings are as follows. In the control condition,
43 of the n = 150 participants (about 28.7%) pass the test. In the experimental
treatment condition, 115 of the n = 150 participants (about 76.7%) pass the test.
Figure 5.2 (from JASP) depicts the EMM plot for the control condition (left: X = 0)
and for the experimental treatment condition (right: X = 1): the observed pass rates
with 95% CIs around them. Contrary to Fig. 5.1 (Experiment 1), Fig. 5.2 illustrates
a very clear positive treatment effect.

Given the absence of an a priori one-sided hypothesis with regard to the
direction of an eventual treatment effect, two-sided testing is performed. Using the
LR test for H0 stating ‘no treatment effect’ against H1 stating ‘treatment effect’, we
find v21 = 72.311, p < 0.001. For Model 0 (H0: no treatment effect), AIC =
417.035, and BIC = 420.738. For Model 1 (H1: treatment effect), AIC = 346.724,
and BIC = 354.131. Thus, AIC and BIC both prefer Model 1. The R2-statistics are
now much higher than in Experiment 1: R2

McF = 0.174, R2
N = 0.286, R2

CS = 0.214,
and R2

T = 0.241. Cramér’s V now equals 0.481, which indicates a medium to large
effect. For the OR, we find a point estimate of 8.176 (p < 0.001) and a 95% CI from
4.870 to 13.726. For the b, we find a point estimate of 2.101 and a 95% CI from
1.583 to 2.619. The 95% CI of the difference in pass rate now extends from 0.381 to
0.579, which is fairly far outside the [−0.10; 0.10] range. Although even in this
kind of cases it is recommended to do follow-up experiments to examine the
replicability, Experiment 2 provides initial evidence for a medium to large positive

Fig. 5.2 EMM plot of
Experiment 2: (observed)
point and interval (95% CI)
estimates of the probability of
pass P(Y = 1) for the control
(X = 0) and treatment (X = 1)
condition (JASP)
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treatment effect. In FOST, we reject the relative equivalence region, and with such a
strong finding from an initial experiment, one-sided testing anticipating a positive
treatment effect would be defendable in a future experiment.

Experiment 3: Effect of Treatment on the Probability
and Timing of Accidents

Suppose, a group of psychologists is interested in the effect of a type of hay fever
treatment on the probability and timing of accidents when driving a car in a busy
city. They randomly sample N = 320 people in the age group of 25–40 years who
have experience with the hay fever treatment at hand but are not taking any other
medications. These 320 participants are randomly allocated to either treatment
(n = 160) or control (n = 160) condition. In the control condition, participants are
instructed to drive a car in a driving simulator during 120 min unless an accident
stops them. In the treatment condition, participants receive the same instructions but
receive a standard recommended dosage of the treatment half an hour before the
start of the driving session. In both conditions, the experiment stops either after
120 min or immediately after they are involved in an accident regardless of the
severity of that accident. The literature with regard to possible effects of the
treatment on driving behaviour is mixed, leaving the researchers with no direct
reason to engage in one-sided testing. They are interested in differences between
conditions in the proportion of accidents and timing of accidents. The occurrence of
accidents is a dichotomous variable; participant A either has an accident or not.

The Proportion of Accidents

In the control condition, 10 of the n = 160 participants (6.25%) have an accident. In
the experimental treatment condition, 32 of the n = 160 participants (20%) have an
accident. Figure 5.3 (from JASP) depicts the EMM plot for the control condition
(left: X = 0) and for the treatment condition (right: X = 1): the observed accident
rates with 95% CIs around them.

There are 3.2 times as many accidents in the treatment condition than in the
control condition. Using the LR test for H0 stating ‘no treatment effect’ against H1

stating ‘treatment effect’, we find v21 = 13.862, p < 0.001. For Model 0 (H0: no
treatment effect), AIC = 250.804, and BIC = 254.572. For Model 1 (H1: treatment
effect), AIC = 238.942, and BIC = 246.479. Thus, AIC and BIC both prefer
Model 1. The R2-statistics are as follows: R2

McF = 0.056, R2
N = 0.078, R2

CS = 0.042,
and R2

T = 0.069. Cramér’s V = 0.204. The OR is 3.750 (p < 0.001) and the 95% CI
ranges from 1.775 to 7.924. The 95% CI of the difference in accident rate (point
estimate = 20 – 6.25 = 13.75%) is [0.065; 0.210], and the 90% CI is [0.077; 0.198].
It appears that we are dealing with a small to medium effect. Note that although the
point estimate and CI are positive, positive numbers in this case indicate a negative
treatment effect (i.e., higher accident rate in the treatment condition).
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Survival Analysis

Note that the statistics presented thus far do tell us something about the proportion
of accidents but do not tell us anything about the occurrence of accidents over time.
For the latter, we need survival analysis. Figure 5.4 displays the survival curve
(Kaplan and Meier 1958) of the survival rates in the two conditions (‘0’ = control
condition, upper curve; ‘1’ = treatment condition, lower curve) with their 95% CIs
(Jamovi). The survival rate in condition X is found by dividing the number of
participants surviving longer than time point t by the total number of participants in
condition X.

Fig. 5.3 EMM plot of
Experiment 3: (observed)
point and interval (95% CI)
estimates of the probability of
an accident P(Y = 1) for the
control (X = 0) and treatment
(X = 1) condition (JASP)

Fig. 5.4 Survival plot of Experiment 3: (observed) point and interval (95% CI) estimates of the
proportion of survival for the control (X = 0) and treatment (X = 1) condition (Jamovi)
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Figure 5.4 indicates an earlier start of accidents (the horizontal axis indicates the
time in minutes over the 0–120 min duration of the experiment) and a consistently
lower survival rate in the treatment condition compared to the control condition.
Another way to plot the difference between conditions is in terms of cumulative
hazard (Peterson 1977). As long as the survival is 1 (100%), the cumulative hazard
equals 0. Once we start to see accidents, the survival starts to go down from 1,
while the cumulative hazard starts to go up from 0. The cumulative hazard, which is
also known as the conditional failure rate, can be expressed as the event rate at time
point t conditional on surviving up to or beyond time t. Figure 5.5 depicts the
cumulative hazard function for Experiment 3.

Different tests can be used to test if the difference between conditions in this
trajectory of accident occurrence is statistically significant at a given significance
level. To start, there is the classical nonparametric log-rank test (Mantel 1966;
Mantel and Haenszel 1959) which assumes that the hazard ratio of the two con-
ditions is proportional across time (i.e., proportional hazard assumption). When the
hazard ratio is not constant, as in Experiment 3, at least three alternatives based on
the Wilcoxon signed-rank test (Wilcoxon 1945)—which for that reason are also
called generalised Wilcoxon tests—provide alternatives to the classical log-rank
test: the Gehan-Wilcoxon test (Gehan 1965), the Peto-Peto test (Peto and Peto
1972), and the Tarone-Ware test (Tarone and Ware 1977). These three alternatives
differ from the classical test in that they deal differently with multiple accidents at a
given time point t and give more weight to earlier accidents than later accidents
(i.e., in the log-rank tests, all accidents have the same weight). The classical test is
more efficient than its alternatives whenever the proportional hazard assumption is
(more or less) met, whereas the alternatives are more efficient in the case of

Fig. 5.5 Cumulative hazard function of Experiment 3 for the control (X = 0) and treatment
(X = 1) condition (Jamovi)
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(substantial) departures from that assumption (Harrington and Fleming 1982).
When in doubt, reporting all four tests is always an option. Doing so, in Experiment
3, we find (Jamovi): log-rank z = 3.785, Peto-Peto z = 3.917, Gehan-Wilcoxon
z = 3.917, and Tarone-Ware z = 3.852; for all four tests, p < 0.001. In other words,
all four tests provide evidence for the hypothesis that the two conditions differ in
trajectory.

Additionally, we can take a closer look at the distribution of accidents over time
—excluding the cases who had no accident at all—in the two conditions, as dis-
played in the histograms in Fig. 5.6 and the boxplots in Fig. 5.7 (Jamovi).

In the control condition, theM time of accident occurrence is 99.000 min and the
SD is 5.944 (range: 91–110 min). In the treatment condition, the M time of accident
occurrence is 72.188 and the SD is 16.851 (range: 38–111 min).

Welch’s two-samples t-test for unequal SDs yields t39.20 = −7.612, p < 0.001,
and Cohen’s d = −2.122 with a 95% CI of [−3.682; −1.812] (JASP).

Fig. 5.6 Histogram of the
distribution of accident times
per condition in Experiment 3
(X = 0: control; X = 1:
treatment) (Jamovi)

Fig. 5.7 Boxplot of the
distribution of accident times
per condition in Experiment 3
(X = 0: control; X = 1:
treatment) (Jamovi)
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Mann-Whitney’s nonparametric U test (Fay and Proschan 2010; Mann and Whitney
1947) yields U = 21.500, p < 0.001, and a rank biserial correlation (Glass 1966;
Willson 1976) of −0.866 with a 95% CI ranging from −0.939 to −0.717.

Note that an alternative approach is to compare the distribution of all participants
including those who had no accident. However, the researchers in Experiment 3 are
interested in the timing of accidents, and in that light a comparison of the conditions
in terms of their distribution of accidents (i.e., excluding those cases that had no
accident) makes more sense.

Final Note on Questions and Outcome

While all three example experiments presented in this chapter have in common that
the key outcome variable is a dichotomous one, Experiment 3 differs from
Experiments 1–2 in that the question(s) and nature of the outcome variable in
Experiment 3 require researchers to inspect graphs and report statistics additional to
the ones reported in Experiments 1–2. That is, contrary to Experiments 1–2,
Experiment 3 involves a time variable. Extensions of Experiments 1–2 involving a
time variable are found in post-tests that involve more than trial, be it multiple
scenarios in Experiments 1–2 or multiple correctly/incorrectly responded items in a
post-test. With such extensions (see also Chaps. 14–16 of this book), multilevel aka
mixed-effects logistic models (Molenberghs and Verbeke 2005) can provide
appropriate tests and estimates of the treatment effect of interest, and Rasch mod-
elling may help to provide measurement reliability estimates as well.
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6Multicategory Nominal Outcome
Variables

Abstract
The concepts discussed in Chap. 5 in the context of dichotomous outcome
variables are also useful for multicategory nominal outcome variables. Although
this type of outcome variable remains less common than dichotomous, ordinal
(Chap. 7) or quantitative outcome variables (Chap. 8), it may constitute a main
outcome variable in for example experiments that focus on choice behaviour or
association as a function of treatment. For instance, in research on emotion or
attitudes, different content or different formats of presenting content may trigger
different types of emotions and stimulate different attitudes with it. These
emotions and attitudes may at best be considered nominal rather than ordinal
categories. Statistics for association as well as model performance statistics and
plots for multicategory nominal outcome variables are discussed in this chapter.

Introduction

Suppose, some psychologists are interested in factors that influence European
Union (EU) citizens’ attitudes towards EU politics, because recent polls revealed
that over 30% of the EU citizens are somewhat indifferent towards EU politics. The
psychologists decide to write a research proposal for a series of experiments on
factors that may influence EU citizens’ attitudes towards EU politics for the better
or for the worse. For reasons of feasibility, the researchers decide to carry out this
first series of experiments in their own EU member state. They realise that this may
limit the generalisability to their country rather than to the whole EU (even though
the aforementioned percentages are quite accurate for their country), but they hope
that researchers with similar interests in other EU member states will invest in
similar experiments in their countries.
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In each experiment, they randomly assign N = 240 citizens of age group 18–
75 years old to either of two conditions. In the control condition (n = 120), par-
ticipants see a 10-min YouTube video on a specific contemporary question in EU
politics. In the treatment condition (n = 120), participants see a 10-min video that
covers the same content as the video in the control condition but presents that
content in a slightly different way. In both conditions, immediately after the video,
participants are asked to choose which of four different words describes best how
they feel about the EU after the video: indifferent, embarrassed, surprised or dis-
appointed. Suppose that the psychologists have chosen these categories because
previous research indicates that these four words are by far the most likely can-
didates in the context of the video content. In other experiments, which focus on
other contents, different words constitute the categories to choose from.

Exchangeable Categories

Although the four categories represent different states, they cannot be ordered as in
an ordinal or interval level of measurement variable; the categories are exchange-
able. As in Chap. 5, the treatment variable is a dichotomous variable. However, the
outcome variable now has four instead of two categories. Binary logistic regression,
the core analytic method in Chap. 5, can no longer be used, at least not as a starter.
However, there is an extension of binary logistic regression called multinomial
logistic regression. Most of the plots, information criteria, as well as R2-statistics
and other effect size estimates discussed in the binary logistic regression context can
also be used in multinomial logistic regression.

Estimates Per Condition

In the control condition, the choices are as follows: 44 participants indifferent
(36.7%), 12 participants embarrassed (10.0%), 20 participants surprised (16.7%),
and 44 participants disappointed (36.7%). In the treatment condition, we find: 23
participants indifferent (19.2%), 22 participants embarrassed (18.3%), 17 partici-
pants surprised (14.2%), and 58 participants disappointed (48.3%). Figure 6.1
presents an EMM plot (Jamovi), which displays the aforementioned observed
proportions of participants per category for each condition (X = 0: control; X = 1:
treatment) and 95% CIs around them. These EMM plots are what in some other
software packages (e.g., JASP) are called conditional estimates plots (see Chap. 5).
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Multinomial Logistic Regression

Testing H0: ‘no difference’ against H1: ‘difference’ at a ¼ 0:05 with a LR test, we
find v23 ¼ 11:851, p ¼ 0:008. Note that the df is now 3 not 1. Given c columns and
r rows, df can be computed as follows:

df ¼ c�1ð Þ � r�1ð Þ:

Therefore, the LR ratio test is now a test with df ¼ 3, not df ¼ 1. AIC is
622.783 for Model 0 (H0: no treatment effect) and 616.932 for Model 1 (H1:
treatment effect). BIC is 633.225 for Model 0 and 637.816 for Model 1. In other
words, BIC indicates a preference for Model 0, while AIC indicates a preference for
Model 1. The BF for Model 1 versus Model 0 (BF10) using the JASP default prior
(based on Gunel & Dickey, 1974) is 3.292, indicating moderate evidence in favour
of Model 1. In other words, although there is some disagreement, most criteria
appear to hint at Model 1.

Statistical packages in which multinomial logistic regression analysis is included
present R2

McF; R
2
CS; R

2
N; or combinations thereof. For example, SPSS and Jamovi

provide all three, while Stata (by default) provides R2
McF (under pseudo R2). How-

ever, interestingly, different packages provide different outcomes for R2
McF as well as

for R2
CS and R2

N: Let us do an exercise similar to that in Chap. 5 with different
marginal probabilities (i.e., 0.50, and 0.80 casu quo 0.20). First, let us take the
example experiment and take a hypothetical case where the two groups could be told

Fig. 6.1 EMM plot of the experiment: observed proportions per category per condition (X = 0:
control; X = 1: treatment) and 95% CIs (Jamovi)
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apart perfectly in terms of which of four different emotions they choose. In the very
extreme case that all participants in the control condition chose one specific emotion
and all participants in the treatment condition chose one other specific emotion, we
would effectively be back to the exercise in Chap. 5 with marginal probability 0.50,
and we would find horrors with regard to R2

T and R2
CS (i.e., values well below 1).

Now, suppose that in the control condition half of the participants would embrace
emotion ‘1’ and half of the participants would embrace emotion ‘2’, while in the
treatment condition half of the participants would embrace emotion ‘3’ and half of
the participants would embrace emotion ‘4’. We now calculate R2

McF;R
2
CS; and R2

N

in different packages and find ‘magic’. For R2
McF; we find 1.000 in SPSS and 0.500 in

Stata and Jamovi. SPSS computes R2
McF to be 1.000 because −2LL of Model 0 is

55.452 while that of Model 1 is 0. In Stata and Jamovi, R2
McF ¼ 0:500 because even

though the conditions can be separated perfectly based on the emotions they
embrace, within group there is still uncertainty, and hence, in that respect, the
relation is not perfect. Consider an equivalent with a quantitative outcome variable
where the range of scores in the control condition is 0-10 while that in the treatment
condition is 15–25. The conditions can be told apart perfectly from one another in
terms of score on the outcome variable, but within conditions there is still variation
and hence R2 would probably be large but would not be 1. In that respect, in the
example at hand, R2

McF ¼ 0:500 (i.e., −2LL of Model 1 being not 0 but being half of
−2LL of Model 0, i.e., 55.452 for Model 1 and 110.904 for Model 0) makes more
sense than R2

McF ¼ 1:000: Likewise, SPSS reports R2
CS ¼ 0:750R2

N ¼ 0:652 and
R2
N ¼ 1:000; while Jamovi reports R2

CS ¼ 0:293 and R2
N ¼ 0:586.

Now let us do the same with marginal probabilities of 0.20 and 0.80 for emo-
tions ‘1’ (4 of the 20 participants) and ‘2’ (16 of the 20 participants) in the control
condition and marginal probabilities of 0.20 and 0.80 for emotions ‘3’ (4 of the 20
participants) and ‘4’ (16 of the 20 participants) in the treatment condition. SPSS
returns the same numbers as in the aforementioned 50%/50% example:
R2
McF ¼ 1:000, R2

CS ¼ 0:750, and R2
N ¼ 1:000. Stata and Jamovi return R2

McF ¼
0:581 (−2LL Model 0 = 40.032, and −2LL Model 1 = 95.484), and we find R2

CS ¼
0:293 and R2

N ¼ 0:652. Again, given the heterogeneity within conditions, 0.581
and 0.652 make more sense than 1.000. The value 1.000 in SPSS considers only
differences between conditions but not differences within conditions, while 0.581
and 0.652 account for both types of differences.

For the dataset at hand, where we deal with effects of a for educational and
psychological research much more realistic size, SPSS, Stata, and Jamovi return the
same outcome for R2

McF : 0:019 (i.e., the outcome is the same on the first six
decimals). However, SPSS returns R2

CS ¼ 0:048 and R2
N ¼ 0:052 while Jamovi

returns R2
CS ¼ 0:012 and R2

N ¼ 0:026. Again, the difference in R2
CS and R2

N lies in
Jamovi taking within-condition heterogeneity into account while the numbers in
SPSS are based on between-condition heterogeneity only. The way R2

CS and R2
N are

computed in Jamovi is consistent with our notions of R2 for quantitative outcome
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variables, and consequently the numbers are situated somewhere around R2
McF

(i.e., in Jamovi) instead of quite a bit above R2
McF (i.e., in SPSS).

As we recall from Chap. 5, a nice feature of R2
McF is that even if it is not provided

by a software package but we do have correct −2LL estimates for Model 0 and
Model 1, we can compute R2

McF from the deviance (−2LL) of Model 0 (null model,
no treatment effect) and that of Model 1 (treatment effect):

R2
McF ¼ 1� ð½�2LL Model 1 =� ½ � 2LL Model 0�Þ:

In the experiment at hand, 2LL Model 1 ¼ 604:932; and � 2LL Model 0 ¼
616:783 (i.e., recall from Chap. 2 that the difference between these two deviances is
the v2—value of 11.851 used for the LR test), hence:

R2
McF ¼ 1� 604:932=616:783ð Þ � 0:019:

Some readers may have noticed that another way of calculating R2
McF is as

follows:

R2
McF ¼ v2=½�2LL Model 0�Þ ¼ 11:851=616:783 � 0:019:

Cramér’s V for this dataset is: V ¼ 0:221. In other words, we appear to be
dealing with a fairly small effect. Researchers who prefer to base model selection on
BIC may prefer to stop here, point at the low R2-statistics and fairly low Cra-
mér’s V, and leave it there. However, in my view, it is always better to use a
combination of criteria, and small R2- or V-values by themselves do not imply
relative equivalence of treatment and control condition. This is even more so
because model fit and effect size estimates for multicategory nominal outcome
variables do not indicate what an effect looks like: are there small differences
between conditions across categories of the outcome variable, or are some differ-
ences between conditions (i.e., for some of the outcome variable categories) larger
than other differences?

Follow-Up Analysis (A): Simultaneous Estimation

From the criteria discussed thus far, we do not learn what an (eventual) effect looks
like. Figure 6.1 gives us an initial idea. What we can do next, after the outcomes of
statistical significance testing (p = 0.008) and AIC and BF10 (both in favour of
Model 1), is a follow-up analysis that uses the information depicted in Fig. 6.1. If
next to BIC, one or two of the other criteria—p-value, AIC or BF10—also indicated
no reason to go beyond Model 0, doing this follow-up analysis would not make
sense. In that case, one would not expect meaningful differences in the follow-up
analysis and any differences that did arise might well be false alarms.

The goal of the follow-up analysis in this kind of choice experiment is to acquire a
more accurate picture of what a treatment effect looks like. However, we should
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preferably do that follow-up analysis with the smallest number of statistical tests
possible. Frequently, the questions and design already inform which tests we should
carry out. In the case at hand, the psychologists designed the experiment from the
recent observation that over 30% of the EU citizens are somewhat indifferent
towards EU politics. Of the four words, indifference is probably the most laissez
faire attitude towards politics; the other three words appear to indicate at least some
kind of interest or emotional involvement. In this context, we can choose indifferent
as a reference category and compare the proportions of the three other choices with
those of indifference. With regard to the treatment effect of interest, this results in
three statistical tests: embarrassed versus indifferent, surprised versus indifferent,
and disappointed versus indifferent. Software packages like Stata and Jamovi pro-
vide an easy way to carry out this follow-up analysis: they provide b and OR with CI
and statistical significance test for each of the aforementioned three comparisons.
Table 6.1 presents the outcomes of this follow-up analysis as per Stata and Jamovi.

With regard to the treatment effect, we need the outcomes of the Treat–Control
rows in Table 6.1. For all three comparisons, we find a positive b: 1.255 for
embarrassment versus indifference (p = 0.004), 0.486 for surprise versus indiffer-
ence (p = 0.245), and 0.925 for disappointment versus indifference (p = 0.005).
Some may suggest to apply a correction for multiple testing, for instance a Bon-
ferroni correction (see also Chaps. 2 and 9), since we are testing three times at
a ¼ 0:05. Others may argue that the comparisons arise naturally from the origin of
the experiment and moreover all bs are estimated simultaneously and logically
relate to each other and therefore such a correction is not needed per se. That said,
whether we apply a Bonferroni correction or not, two of the three comparisons yield
a statistically significant outcome: embarrassment versus indifference, and disap-
pointment versus indifference.

Now, what do we mean by bs logically relating to each other? If we had no
natural reference category, we might as well list all possible comparisons of pairs of
categories Cp:

Cp ¼ k � k�1ð Þ½ �=2:

Table 6.1 Follow-up analysis of multinomial logistic regression: b point estimates and 95% CIs
(95% LB and UB) for each of three comparisons (Jamovi, Stata)

Comparison Term b estimate 95% LB 95% UB

Embar.–Ind. Intercept −1.299 −1.938 −0.661

Treat–Control 1.255 0.389 2.120

Surpr.–Ind. Intercept −0.788 −1.317 −0.260

Treat–Control 0.486 −0.334 1.306

Disap.–Ind. Intercept �0.000 −0.418 0.418

Treat–Control 0.925 0.286 1.564
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For k ¼ 3;Cp ¼ 3; for k ¼ 4;Cp ¼ 6; for k ¼ 5;Cp ¼ 10: In the presence of a
natural reference category, the number of natural comparisons Cn (i.e., the com-
parisons that make sense given the reference category) equals:

Cn ¼ k�1:

Given indifference as a reference category in the experiment of this chapter, we
only list the three comparisons i:e:; k�1 ¼ 4�1 ¼ 3ð Þ that involve anything else
versus indifference. However, we can compute the outcomes for the other possible
comparisons using the numbers presented in Table 6.1. To start, the Treat–Control
b for embarrassed versus indifferent (BEI) equals 1.255, and that for surprised
versus indifferent (BSI) is 0.486. From this, the b for embarrassed versus surprised
(BES) follows naturally:

BES ¼ BEI�BSI ¼ 1:255� 0:486 ¼ 0:769:

Likewise, the b for embarrassed versus disappointed (BED) can be calculated
from the numbers in Table 6.1 as well:

BED ¼ BEI�BDI ¼ 1:255� 0:925 ¼ 0:330:

To complete the exercise, the b for surprised versus disappointed, following the
numbers from Table 6.1, is:

BSD ¼ BSI�BDI ¼ 0:486� 0:925 ¼ �0:439:

Note that the latter also directly follows from the previous two:

BSE ¼ �BES; and

BDE ¼ �BED; and hence;

BSD ¼ BSE�BDE ¼ �0:769� �0:330ð Þ ¼ �0:769þ 0:330 ¼ �0:439:

Tounderstandwhat these outcomesmean,we should also check again Fig. 6.1. For
embarrassment, we find a slightly lower proportion than for indifference in the
treatment condition but a much lower proportion than for indifference in the control
condition. This difference is statistically significant. For surprise, we find a slightly
lower proportion than for indifference in the treatment condition but a considerably
lower proportion than for indifference in the control condition. This difference,
however, is not statistically significant. Finally, for disappointment, we find a
somewhat higher proportion than for indifference in the treatment condition but the
same proportion (36.7%) in the control condition. This difference is statistically
significant.

Figure 6.1 and the outcomes of Table 6.1 appear to indicate that the two con-
ditions differ in terms of two balances: embarrassment versus indifference and
disappointment versus indifference; the treatment under study may create (or
contribute to) some shift in these two balances from indifference towards embar-
rassment (for some citizens) or disappointment (for some other citizens).
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Follow-Up Analysis (B): Differences in Proportions Per
Outcome Variable Category

The aforementioned follow-up analysis makes sense in the light of the origin of the
experiment and the omnibus tests (p = 0.008, and AIC and BF10 in favour of
Model 1). A second possible follow-up analysis is found in a direct comparison of
the conditions in terms of proportions for each of the categories of the outcome
variable. This approach provides straightforward testing and estimation outcomes
for condition difference per category of the outcome variable, instead of for dif-
ferences in differences (i.e., the aforementioned approach is about differences
between conditions in differences between categories of the outcome variable). If
we are to apply a correction for multiple testing, which probably researchers would
argue for, this correction will be slightly stronger than in the aforementioned
approach, since we have one more test to carry out. Using the atotal-formula dis-
cussed in Chap. 2, for three tests atotal � 0:1426 while for four tests we find
atotal � 0:1855. The latter would come down to a corrected alpha of about 0.0127
per test to keep atotal at 0.05 (compared to about 0.0169 in the case of three tests).

Table 6.2 presents 90% CIs (default uncorrected intervals for two one-sided tests
equivalence testing; e.g., Lakens, 2017), 95% CIs (default uncorrected intervals for
two-sided testing of a ‘no difference’ null hypothesis), and 99% CIs (i.e., slightly
more conservative than the corrected alpha) for the difference in proportion between
conditions for each of the four categories of the outcome variable.

In Table 6.2, positive differences are indicative of higher proportions in the
treatment condition compared to the control condition. The outcomes of Table 6.2
indicate that whether we test two-sided at a = 0.05 or at a = 0.01, the only dif-
ference that is significantly different from zero is that of indifference: the proportion
of indifference is significantly lower in the treatment condition than in the control
condition (see Fig. 6.1). However, this follow-up analysis does not really help us to
acquire a somewhat more accurate picture of how an eventual reduction of a
tendency towards indifference is reflected one or more other categories.

Table 6.2 Alternative follow-up analysis of multinomial logistic regression: 90, 95, and 99% CIs
(LB and UB) for the condition difference in proportion per category of the outcome variable
(Jamovi)

Category 90% LB 90% UB 95% LB 95% UB 99% LB 99% UB

Ind. −0.268 −0.082 −0.286 −0.064 −0.321 −0.029

Embar. 0.010 0.157 −0.004 0.171 −0.032 0.198

Surpr. −0.102 0.052 −0.116 0.066 −0.145 0.095

Disap. 0.012 0.221 −0.008 0.241 −0.047 0.280
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Follow-Up Analysis (C): Outcome Variable Distribution Per
Condition

Having a closer look at Fig. 6.1, some readers may wonder if there is not a third
possible follow-up analysis: to compare the distribution of proportions for each of
the two conditions separately. Most software packages on the market, including free
ones such as JASP and Jamovi, include a multinomial test that allows researchers to
test whether an observed distribution differs significantly from an expected
distribution, be it equal proportions or unequal proportions based on previous
research. In this third follow-up analysis, that multinomial test would then be done
per condition. However, just like omnibus tests in a multinomial logistic regression
do not tell us what a treatment effect looks like, an omnibus multinomial test per
condition tells us only if there is any difference but not where these differences are.
For the latter, we would need additional binomial tests for local differences. With
such an approach, we run into serious multiple testing problems; we will either face
a heavy inflation of Type I error probability or need to apply a severe correction to
counter that inflation, and the latter comes with a considerable loss of statistical
power. Moreover, this approach—which focusses on differences within conditions
—tells us little if anything meaningful about the treatment effect of interest which
gave rise to the experiment in the first place.

A Pragmatic Approach to Multicategory Nominal Outcome
Variables

This chapter started with the statement that binary logistic regression (the core
method in Chap. 5) cannot provide an omnibus test for a treatment effect of interest
when the outcome variable of interest consists of multiple instead of two categories.
Instead, we start with multinomial logistic regression. If the multinomial logistic
regression analysis yields insufficient evidence to go beyond Model 0 (i.e., we fail
to reject the null hypothesis of ‘no treatment effect’), there is no reason to perform
any follow-up analysis. However, if the multinomial logistic regression analysis
does yield such evidence to go beyond Model 0, some follow-up analysis is needed
to gain a deeper understanding of the treatment effect of interest. Given that the
second approach to follow-up analysis discussed in this chapter (i.e., proportion
differences between conditions per category of the outcome variable) involves only
a subset of the data used in the first approach (i.e., simultaneously estimated bs), the
first approach has at least three advantages over the second approach.

To start, using only a subset of the data, where using a full set of data is possible,
comes with an unnecessary loss of statistical power and precision. Besides, while
there is a direct logical connection between the different bs in the first approach, that
relation is missing in the second approach. That is, although given the bs for all
comparisons involving a given reference category (here: indifferent) all other bs are
known, we cannot calculate the difference in proportions between conditions in any
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of the other categories just by knowing the difference in proportion in a reference
category (e.g., the difference in proportion for surprised is not yet known given the
difference in proportion for indifferent). Finally, the first approach comes with the
advantage that—based on theory, previous research, and the data at hand—specific
equality constraints (i.e., fixing two bs as equal) can be applied. This is especially
useful when outcome variables include many possible categories; a gain in df
resulting from equality constraints may in such cases greatly facilitate the estima-
tion of other parameters.

The only thing we learn from the second (i.e., proportion differences) follow-up
approach is that there is a statistically significant difference between conditions in
the proportion of indifference. Proponents of the first approach may argue that this
specific outcome of the second approach adds weight to the interpretation of
Fig. 6.1 and Table 6.1 in terms of a shift in a certain tendency of difference towards
more embarrassment and disappointment, because the difference in proportion of
indifference (Table 6.2) is significantly lower in the treatment condition. It is to be
noted, however, that this specific difference is rather strong; differences of just a bit
less of a magnitude would not be statistically significant. The category-specific
follow-up approach comes with a substantial loss of information and statistical
power and may in more than a few cases result in none of the categories yielding a
statistically significant difference even if there are substantial differences and the b-
approach detects (some of) these differences. Therefore, the category-specific (i.e.,
second) approach might be used in addition to the b (i.e., first) approach—espe-
cially in cases where the outcomes of the b-model appear somewhat more difficult
to understand—but should not be used instead of the b-approach.

Final Note on Questions and Outcome

For the ease of introduction, the experiment discussed in this chapter has a mul-
ticategory nominal outcome variable that is measured once in time. When a time
variable is involved, or when several questions with multiple nominal level choices
are involved, we need more complex models. Depending on the questions driving
the experiment, the nature of the choice variables and data acquired, and the sample
size at hand, one may have one or several alternatives to the simple model discussed
in this chapter. However, all alternatives have in common that they require much
larger samples than the sample in the experiment discussed in this chapter. In fact,
even for simple experiments like this, sample size is a tricky issue. The smaller the
sample, the higher the risk of ‘zero’ cells, contingency table cells that remain with 0
observations. The occurrence of ‘zero’ cells can seriously affect outcomes of testing
and estimation with regard to effects of interest, and in some cases the testing and
estimation of an effect of interest may not even be possible. Therefore, when small
proportions are expected in at least some of the cells—because some phenomena
naturally occur rather rarely or because there are many competing categories in an
experiment—we will need larger samples for otherwise we may not be able to
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(accurately) test and estimate our treatment effect of interest. For the experiment in
this study, two conditions with n = 120 participants each works fairly well, because
the smallest proportion observed in a condition is 10% (in the control condition,
n = 12 for ‘embarrassed’). However, even in this kind of experiments more is
better; with small numbers, the difference between one more or one less in Cell B
may constitute a more than trivial change in ORs in which the number of Cell B is
part of the input.

That said, when the same choice question is asked repeatedly or different choice
questions are presented at the same occasion (e.g., in the same experiment), and we
have access to much larger samples (e.g., choice experiments done online), we may
have several options. A first option may be multilevel aka mixed-effects multino-
mial logistic regression models (e.g., Dey, Raheem, & Lu, 2016; Hedeker, 2003).
This kind of mixed-effects models applies the same logic as mixed-effects models
for other types of outcome variables: participant (level 2, upper level) and question,
item or occasion (level 1, lower level) constitute the hierarchical levels. Other
approaches, which involve latent variables (e.g., for a comparison of non-latent and
latent-variable models, see: Hox, Moerbeek, & Van de Schoot, 2017), can be found
in generalised item response theory (IRT) models (e.g., Jeon & De Boeck, 2016),
the multidimensional random coefficient multinomial logit model (Adams, Wilson,
& Wang, 1997; Briggs & Wilson, 2004), latent class analysis, and mixed Rasch
models.
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7Ordinal Outcome Variables

Abstract
A commonly undervalued and mistreated type of outcome variable is the ordinal
one. Two common types of mistreatment are treating ordinal variables as
interval/ratio level outcome variables (frequently in linear models) and, in other
cases, as multicategory nominal outcome variables. Multicategory nominal
outcome variables are covered in Chap. 6 and quantitative outcome variables in
Chap. 8 of this book. What these two types of mistreatment have in common is
that they more often than not may result in outcomes that do not make sense.
Where we treat ordinal variables as if they were (at least) interval, we may see
linear relations where they do not make sense. Where we treat ordinal variables
as if they were nominal, we treat all categories as exchangeable and lose the
information with regard to the order of categories and, to a large extent, the
meaning of outcomes with it. Although many of the concepts discussed in the
context of dichotomous (Chap. 5) and multicategory nominal outcome variables
also have their use, we need to take an additional step to respect the ordinality
information when dealing with ordinal outcome variables. Differences between
approaches to ordinal data encountered in the literature are discussed first in
terms of animal comparisons (mice, hedgehogs, cats, bears, and elephants) and
then in the form two experiments each of which indicates a different type of
treatment effect.

Introduction

Once upon a time, there were five healthy adult animals: a bear, a cat, an elephant,
a hedgehog, and a mouse. This may constitute one way of ordering the animals, in
alphabetical order, yet the order depends on the language we use. In Spanish, for
example, the alphabetical ordering would be as follows: elefante, erizo, gato, oso,
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ratón (elephant, hedgehog, cat, bear, mouse). In other words, this kind of sorting is
nominal: although the animals can be distinguished in terms of their labels in either
language, alphabetic ordering does not imply some kind of increase in size, weight
or ability to run, and people who prefer different languages may come up with
different orders. It is a bit like the states discussed in Chap. 6: indifferent, embar-
rassed, surprised, disappointed. Is there one natural way of ordering these states in
terms of valence or intensity? Likely not, so we appear to be dealing with nominal
categories.

If we decide to order the adult animals in terms of their weight, it appears we are
able to rank them in only one way from light to heavy: mouse (likely in the 3–35 g
range depending on the type), hedgehog (likely in the range of 0.25–1.25 kg
depending on the type), cat (likely in the 3–5 kg range), bear (likely in the 60–600
kg depending on the type), and elephant (several 1,000s of kilos). Although there is
variation in weight among each of the five animal populations, it is safe to say that a
fat mouse will weigh less than a lightweight hedgehog, that a heavy hedgehog will
be lighter than a meagre cat, that a round cat will weigh less than a hungry bear, and
that a lazy fat bear has quite a few kilograms less than an elephant in the lowest
weight category. Relative to one another, we could order the five animals in terms
of their weight categories as follows:

very little (mouse)
little (hedgehog)
neither little nor much (cat)
much (bear)
very much (elephant)

We could safely do the same for these five healthy animals in terms of their
height or size:

very small (mouse)
small (hedgehog)
neither small nor big (cat)
big (bear)
very big (elephant)

One might also argue that this ordering fits either of the items This animal is
heavy and This animal is big:

strongly disagree (mouse)
disagree (hedgehog)
neutral (cat)
agree (bear)
strongly agree (elephant)
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Let us now assign values to these five animals based on the aforementioned
ordering:

1 (mouse) – 2 (hedgehog) – 3 (cat) – 4 (bear) – 5 (elephant)

Next, we ask 100 random people spread out over a big zoo that hosts these five
animals—in smaller and bigger sizes, in slimmer and rounder shapes—to respond
to this five-point scale with the first animal they encounter. This yields N = 100
single responses, and the outcomes (i.e., frequencies of responses per category) are
as follows:

mouse (1, strongly disagree): 3
hedgehog (2, disagree): 11
cat (3, neutral): 35
bear (4, agree): 35
elephant (5, strongly agree): 16

We now calculate the M and SD of this random sample from this population of
way over 5,000 people in the zoo, and we find: M = 3.50, SD = 0.99. Let us also
calculate the skewness (S) and kurtosis (K) of the distribution, to examine how
much the observed distribution deviates from a Normal one: S = −0.32, K = −0.21.
In other words, the average response is a bearish cat or a cattish bear, one SD down
we find the hedgehogcat or cathedgehog and one SD up we find the bearelephant
or elephantbear. The negative skewness indicates a slight skew to the left (mind
though that the n = 3 that responded ‘mouse’ are not outliers!), and the negative
kurtosis indicates that the observed distribution has somewhat fatter tails than a
Normal distribution. The median response is bear and the interquartile range (IQR),
which extends from percentiles 25 (first quarter, Q1, cat) to 75 (third quarter, Q3,
bear), is |cat-bear|.

Relational Meaning

At this point, you may be wondering what I was smoking when I was writing this
chapter. And that would be a legitimate question. Note, however, that this is how
we have been treating categorical rating data for many decades, including myself
for the time I have been around. We are often told it is okay to treat categorical
rating data as interval level of measurement data, that we can safely calculate Ms
and SDs, and can comfortably compute linear correlations between scores of dif-
ferent items. Although there may be cases where that is indeed the case, even in
such cases it is probably more appropriate to treat the data as ordinal. In the world
of truly ordinal data, Ms, SDs, and Pearson’s r (which uses Ms and SDs as input)
tend to make less sense than when dealing with interval or ratio level data.
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Calculating Ms, SDs, and Pearson’s r, we assume that we can reasonably call the
ordered categories equidistant. Consider a river with heavy stones that pop up such
that you could step on them to get from one side to the other side of a river in a
straight line without getting your feet wet; if the distance between the stones is such
that every subsequent step you take is (about) the same distance, it is fair to treat the
stones as (more or less) equidistant. If the distance between stones varies consid-
erably, taking equidistant steps we would get our feet wet. The same holds for Ms
and SDs, and statistics that are based on them, such as linear correlations: when
there are (substantial) departures from equidistance, they fall in the water and lose
their meaning. Adding numerical labels (e.g., ‘1’ … ‘5’) to a scale does not mean
we get rid of departures from equidistance. Whether we take weight or height (size)
of the five animals, we cannot draw a straight line connecting all animals in terms
equidistant increases. The differences between animals in terms of weight and
height are non-linear by nature; differences in weight or height between an average
hedgehog and an average cat are of completely different orders than differences
between an average cat and an average bear, et cetera. Elephant minus cat does not
equal hedgehog, and mouse plus cat does not equal bear either. Besides, even
within animal groups, there is quite some fluctuation, just like the difference
between disagree and neutral in a questionnaire may be quite distinct for different
items. Finally, a multinomial approach does not help either because it ignores the
information that hedgehogs are heavier and taller than mice, cats are heavier and
taller than hedgehogs, et cetera; in a multinomial model, mice might as well be
heavier than elephants and the height of a hedgehog might well exceed that of a
bear.

In Chap. 3, I briefly discuss an example taken from Tacq and Nassiri (2011),
who take the work from Pierre Bourdieu as an example of the nature of ordinal
variables: distinctions in terms of dominant class, middle class, and working class
are based on a relational logic (i.e., power relations, financial means) but not in
terms of 1–2–3 equidistant categories. The same holds for the animals, and prob-
ably for most if not all other categorical ratings, whether the variable that underlies
the ratings is weight or height (in the case of the animals), motivation or effort (in
quite some educational and psychological research), financial means (often broader
categories rather than single equidistant values), or something else. As discussed by
Tacq and Nassiri (2011) and in Chap. 3 of this book, using coefficients such as
Spearman’s q does not resolve the problem of non-equidistance but at best pushes
the problem forward to another level. In Spearman’s q, the ranks are treated as if
they were equidistant, but pasting numbers like ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ to ranks
does not magically turn an ordinal variable into an interval one. This is why
Pearson’s r and Spearman’s q yielding almost the same outcomes on some cate-
gorical rating data cannot be understood as a justification for treating ordinal
variables as interval ones (see also Chap. 3).

Ordinal variables come with information that is not present in nominal variables:
a natural and consistent order of categories (i.e., strongly disagree, disagree, neutral,
agree, strongly agree; or: mouse, hedgehog, cat, bear, elephant). If categories do not
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come in a consistent order, we are back to nominal variables. Moreover, depending
on how the categories are formulated, there may be a risk that categories cannot be
clearly separated. This may be a problem especially for items that include a perhaps
excessive number of categories, such as the mental effort item discussed in Chap. 3:
“In solving or studying the preceding problem I invested: 1. very, very low mental
effort; 2. very low mental effort; 3. low mental effort; 4. rather low mental effort;
5. neither low nor high mental effort; 6. rather high mental effort; 7. high mental
effort; 8. very high mental effort; 9. very, very high mental effort.” Respondents are
supposed to choose the categories that applies to them for the activity that just
finished. However, can a respondent distinguish between very, very low and very
low, between low and rather low, between rather high and high, between high and
very high, and between very high and very, very high? Surprisingly, although more
or less since its introduction in 1992 the mental effort item has constituted the
dominant method of cognitive load measurement (Sweller, 2018), this question
remains untested. Yet, the answer to this question is crucial to determine the (most
likely) level of measurement and can be tested with, among others, item response
theory models including the Mokken model and variants of the Rasch model called
the rating scale model and the partial credit model.

The procedure can be fairly straightforward: to administer the mental effort item
with a group of N > 300 participants (to obtain good estimates and reduce the
likelihood of zero cells) under the same circumstances a few (e.g., 5–10) times in a
row, that is: with tasks and participants that could guarantee sufficient variation in
response and the tasks being as similar as possible in terms of content and difficulty.
If participants can make the distinction and the aforementioned psychometric
methods provide reasonable support for the equidistance assumption, treating
mental effort data as interval may make sense. However, if the categories can be
distinguished in a consistent order but psychometric analysis does not provide
support for the equidistance assumption, the different categories in ordinal variables
likely only have a relational meaning. In the latter case, they cannot be summed,
subtracted, averaged, or captured in neat linear equations. Indeed, ordinal data
analysis is supposed to be non-linear. Furthermore, there is a third and perhaps a
fourth option. Until empirically demonstrated otherwise, a possible outcome of the
proposed study is that the order of the nine categories of the mental effort item is not
consistent but deviates in at least one of the administrations. If so, the categories
constitute a multicategory nominal variable at best. At best, because in the case of
such a shift, we may find evidence for a phenomenon that would degrade the mental
effort to not even nominal: respondents who actually differ in their mental effort
provide the same response and/or respondents with the same mental effort respond
differently.
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Experiment 1: Different Qualities of Action

Some pharmacy education researchers are investigating the effectiveness of dif-
ferent approaches to skills training with simulated patients. In one of their exper-
iments, they want to study the effect of providing a particular type of additional
instruction prior to seeing a simulated patient. They do so because they are
searching for ways to increase students’ performance during this type of simulation
training, but are not sure if the type of instruction they have in mind likely affects
that performance positively or negatively (i.e., H0: ‘neither positive nor negative
effect’; H1: ‘positive or negative effect’).

They randomly sample N = 160 undergraduate pharmacy students from different
universities in the region and randomly allocate them to treatment (n = 80) or
control (n = 80) condition. The only way in which the two conditions differ is that
participants in the treatment condition receive the type of instruction prior to seeing
the simulated patient in addition to the usual instruction (i.e., the instruction that is
always provided in this type of training), whereas in the control condition partic-
ipants only receive the usual instruction. The simulated patient is the same for the
two conditions. In both conditions, sessions are video-recorded and are evaluated
by a team of pharmacy educators from the different universities sampled from who
are blind to whether a participant received treatment or not and who are not aware
of possible effects of the treatment on the outcome they are coding. For each
participant, the team members discuss and come to consensus with regard to the
performance: appropriate performance (label: ‘2’), inappropriate performance
without damaging the simulated patient (label: ‘1’), and inappropriate performance
with damage to the simulated patient (label: ‘0’). Note that the labels ‘0’, ‘1’, and
‘2’ are just codes, not pretended interval level of measurement values. These three
categories are to be treated as ordinal, with damaging the simulated patient rep-
resenting the worst outcome, appropriate performance the best outcome, and
inappropriate action without damage being somewhere in between. The coding and
order of categories is in line with standard practice for assessing performance in this
type of simulation training and for providing feedback after the training.

Towards Higher-Quality Performance

In the control condition (n = 80), 19 participants (23.8%) are coded ‘0’ (damage),
28 participants (35.0%) are coded ‘1’ (inappropriate but no damage), and 33 par-
ticipants (41.3%) are coded ‘2’ (appropriate). In the treatment condition (n = 80), 13
participants (16.3%) are coded ‘0’, 20 participants (25.0%) are coded ‘1’, and 47
participants (58.8%) are coded ‘2’. Hence, we observe slightly fewer ‘0’ and ‘1’ but
somewhat more ‘2’ codes in the treatment condition than in the control condition.
Figure 7.1 presents the aforementioned percentages with their 95% CIs.

Testing H0: ‘no effect’ against H1: ‘effect’ at a = 0.05 with a LR test, we find v2
2

= 4.536, p = 0.033. The df equals two, because we have one dichotomous variable
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and one three-category variable. The v2-value of 4.536 is the difference in deviance
(−2LL) of Model 1 (324.953) and Model 0 (324.953 + 4.536 = 329.489). Thus, we
can now calculate RMcF

2 (see also Chaps. 5 and 6):

R2
McF ¼ 1�ð½�2LLModel 1�=½�2LLModel 0�Þ:

In Experiment 1, we find:

R2
McF ¼ 1� 324:953=329:489ð Þ � 0:014:

AIC is 333.489 for Model 0 (H0: no treatment effect) and 330.953 for Model 1
(H1: treatment effect). BIC is 339.639 for Model 0 and 340.178 for Model 1. JASP
provides BFs for Kendall’s s coefficient (b; Kendall, 1962, in this Experiment, s =
0.159, p = 0.034, 95% CI = [0.077; 0.242]). Using a default beta prior with width 1
(JASP; Ly, Verhagen, & Wagenmakers, 2016; Rouder & Morey, 2012; Wetzels &
Wagenmakers, 2012), we find BF10 = 8.801. In other words, BIC indicates a slight
preference towards Model 0, but the other criteria (p < 0.05, AICModel1 < AICModel0,
BF10 = 8.801) indicate a preference for Model 1.

Proportional Odds

Figure 7.1 graphically depicts that there are (proportionally) fewer 0s and 1s and
(consequently) more 2s in the treatment condition. From the frequencies or pro-
portions per category (0, 1, 2) per condition we can calculate ORs. One type of OR
we can calculate is for each pair of categories, as in the multinomial logistic

Fig. 7.1 Effects plot aka EMM plot aka conditional estimates plot of the findings in Experiment 1:
observed proportions per category (A = 0: inappropriate with damage; A = 1: inappropriate without
damage; A = 2: appropriate) per condition (X = 0: control; X = 1: treatment) and 95% CIs (Jamovi)
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regression approach in Chap. 6. Even though in Chap. 6 I convert bs, we can also
convert ORs. If we take the lowest category, 0, as reference category and calculate
the OR of category 1 versus category 0 for the two conditions, we find:

OR1 versus 0 ¼ odds of ‘1’ for treatment=odds of ‘1’ for control ¼ 20=13ð Þ= 28=19ð Þ
� 1:044:

Likewise, for OR of category 2 versus category 0 for the two conditions, we find:

OR2 versus 0 ¼ odds of ‘2’ for treatment=odds of ‘2’ for control ¼ 47=13ð Þ= 33=19ð Þ
� 2:082:

Now, given only three categories, OR for category 2 versus category 1 for the
two conditions follows from OR2 versus 0 and OR1 versus 0:

OR2 versus 1 ¼ OR2 versus 0=OR1 versus 0 � 1:994:

In other words, all ORs are in favour of the treatment condition. Although there
are both fewer 0s and fewer 1s in the treatment condition than in the control
condition, the odds of being in ‘1’ instead of ‘0’ are higher in the treatment con-
dition than in the control condition.

A second type of OR we can compute when dealing with ordinal outcome
variables is that of one category versus all the others. For a trichotomous (i.e.,
three-category) outcome variable, that comes down to two ORs, namely OR of
being at least in category 1 (i.e., 1 or 2) versus being in category 0 (OR12 versus 0)
and OR of being in the highest category (2) versus being in one of the lower
categories (OR2 versus 10):

OR12 versus 0 ¼ 67=13ð Þ= 61=19ð Þ � 1:605; and
OR2 versus 10 ¼ 47=33ð Þ= 33=47ð Þ � 2:028:

Contrary to the aforementioned simple ORs, OR12 versus 0 and OR2 versus 10 are
so-called cumulative ORs: they are ratios of cumulative odds or cumulative prob-
abilities (note though that odds themselves are not probabilities!), because proba-
bilities of different categories are accumulated here (Agresti, 2002; McCullagh,
1980). When we take the natural logarithm (ln) from an OR, we obtain b, which can
be interpreted as a regression coefficient. In Experiment 1, we find b12 versus 0 �
0.473 and b2 versus 10 � 0.707. Especially when dealing with smaller sample sizes,
to avoid zeros and to reduce bias some recommend to add 0.5 to all numerators and
denominators in the above formulas of OR12 versus 0 and OR2 versus 10. Doing so in
Experiment 1, we find

OR12 versus 0 ¼ 67:5=13:5ð Þ= 61:5=19:5ð Þ � 1:585; and
OR2 versus 10 ¼ 47:5=33:5ð Þ= 33:5=47:5ð Þ � 2:010:
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For the adjusted logits, we then find b12 versus 0 � 0.461 and b2 versus 10 � 0.698.
Either way, from a practical standpoint, the logits are in the same direction and of a
similar magnitude. In such cases, it makes sense to calculate and interpret one
overall OR (or log OR) for the treatment effect of interest (ORtreat); this model is
also known as the proportional odds model (e.g., Agresti, 2002; McCullagh, 1980)
and is the default ordinal logistic regression model estimated by Stata, SPSS, and
Jamovi. Moreover, Stata and SPSS also include a test of the proportional odds
assumption (i.e., that OR12 versus 0 and OR2 versus 10 have the same sign and are of
[about] the same magnitude). For example, SPSS returns a deviance (−2LL) value
for the proportional odds (Model 0) and non-proportional odds (Model 1) model
and performs a LR (i.e., v2) test on the difference:

v2 ¼ ½�2LLModel 0� � ½�2 LLModel 1�:

In Experiment 1, the difference between Model 0 and Model 1 in df = 1, hence
our v2-test will be a v2-test with df = 1, v1

2. We find: v1
2 = 0.398, p = 0.528. With

such an outcome, all criteria including AIC will indicate a preference for Model 0,
here: the proportional odds model. Stata, SPSS, and Jamovi return ORtreat = 1.900,
with a 95% CI from 1.052 to 3.463 (p = 0.034). On a logit scale (b), we find: btreat =
0.642, with a 95% CI from 0.051 to 1.242. It is to be noted that this regression
coefficient does not imply we are treating ordinal data as interval and that this
coefficient should not be interpreted as a linear coefficient that we could derive
through linear regression. In fact, if we were to perform a linear regression here
(wrong and not recommended), we would find B = 0.250, quite a bit different from
the coefficient obtained from ordinal logistic regression.

Experiment 2: Degrees of Identification

Although the proportional odds model constitutes the default option in software like
Stata, SPSS, and Jamovi and is attractive in that a single coefficient can be obtained
with regard to a treatment effect of interest, it is always recommended to first
inspect separate category-to-category ORs (in our case: OR10, OR20, and OR21) and
cumulative ORs (in our case: OR12 versus 0 and OR2 versus 10) to check if merging
outcomes across the full range of the outcome variable into a single coefficient (cf.
proportional odds model) makes sense. In Experiment 2, we are taking a look at a
case where the proportional odds assumption clearly does not hold and where the
proportional odds model can surely still provide a single coefficient for the treat-
ment effect but does not provide an accurate picture of what is actually going on.

Experiment 2 (N = 160) is carried out by a group of radiologists who want to
compare two approaches of training—incorporated in the treatment (n = 80) and
control condition (n = 80), respectively—in terms of fostering students’ skills of
identifying abnormalities in an x-ray. In both conditions, students are given the
same x-ray with the same instructions, but the timing of some of the instruction
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differs between the two conditions (but is the same within conditions). In both
conditions, participants are instructed to mark the area in the x-ray that shows an
abnormality. These individually marked x-rays are evaluated by a team of
fellow-radiologists who were not present during the experiment, do not know which
participants were in which condition, and are blind to the researchers’ reasons to
expect a difference between conditions, positive or negative. For each marked
x-ray, the team members come to a single, consensus-based verdict about the
performance (i.e., quality of identification): 0 = not identified, 1 = acceptable, and 2
= excellent. Although this kind of categorisation is not rarely dealt with in linear
models by researchers, there is no guarantee that the difference between ‘not
identified’ and ‘acceptable’ is comparable to the difference between ‘acceptable’
and ‘excellent’.

More Excellent and Poor Performance

In the control condition (n = 80), 17 participants (21.3%) are coded ‘0’ (not
identified), 32 participants (40.0%) are coded ‘1’ (acceptable identification), and 31
participants (38.8%) are coded ‘2’ (excellent identification). In the treatment con-
dition (n = 80), 24 participants (30.0%) are coded ‘0’, 13 participants (16.2%) are
coded ‘1’, and 43 participants (53.7%) are coded ‘2’. Hence, we observe slightly
more ‘0’ and ‘2’ but somewhat fewer ‘1’ codes in the treatment condition than in
the control condition. Figure 7.2 presents the aforementioned percentages with their
95% CIs.

Testing H0: ‘no effect’ against H1: ‘effect’ at a = 0.05 with a LR test, we find v2
2

= 0.585, p = 0.444. For RMcF
2 , we find a value of about 0.002. For Model 0 (no

Fig. 7.2 Effects plot aka EMM plot aka conditional estimates plot of the findings in Experiment 2:
observed proportions per category (A = 0: not identified; A = 1: acceptable identification; A = 2:
excellent identification) per condition (X = 0: control; X = 1: treatment) and 95% CIs (Jamovi)
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treatment effect), AIC = 343.941; for Model 1 (treatment effect), AIC = 345.356.
For Model 0, BIC = 350.091; for Model 1, BIC = 354.581. Kendall’s s (b) = 0.057
(p = 0.448; 95% CI = [−0.029; 0.143]), and BF10 for Kendall’s s, using the same
default prior as in Experiment 1, is 0.182. In other words, all criteria appear to point
in the direction of Model 0.

When we calculate a single ORtreat based on the data from Experiment 2, we find
ORtreat = 1.255, with a 95% CI ranging from 0.702 to 2.253 (p = 0.445). On a logit
scale, we find: btreat = 0.227, and 95% CI = [−0.354; 0.812]. Now, how do these
findings make sense in the light of Fig. 7.2?

Contrary to what we find in Experiment 1, in Experiment 2 there is not just a
higher proportion of ‘2’ in the treatment condition but a higher proportion of ‘0’ as
well! Figure 7.2 indicates that only the proportion of ‘1’ is lower in the treatment
than in the control condition. This hints at a violation of the proportional odds
assumption, and SPSS yields the following outcomes of a test of that assumption:
the −2LL of Model 0 (proportional odds) is 28.714, and the −2LL of Model 1
(disproportional odds) is 17.864, hence v1

2 = 10.850, p = 0.001. To understand how
serious the departure from proportional odds really is, we can take a closer look at
the category-to-category and cumulative ORs. For the category-to-category ORs,
we find:

OR1 versus 0 ¼ 13=24ð Þ= 32=17ð Þ � 0:288; and
OR2 versus 1 ¼ 43=13ð Þ= 31=32ð Þ � 3:414:

This corresponds with b1 versus 0 � −1.246 and b2 versus 1 � 1.228. Next, for the
cumulative ORs, we find:

OR21 versus 0 ¼ 56=24ð Þ= 63=17ð Þ � 0:630; and
OR2 versus 10 ¼ 43=37ð Þ= 31=39ð Þ � 1:837:

This corresponds with b1 versus 0 � −0.463 and b2 versus 1 � 0.608. Clearly, these
cumulative logits point in distinct directions, and the category-to-category (OR-
and) b-values (and Fig. 7.1) help us understand why. The treatment appears to
create a shift from acceptable performance towards both more cases of excellent
identification, b2 versus 1 = 1.228, 95% CI = [0.435; 2.021] (p = 0.002), and more
cases of no identification, b0 versus 1 = 1.246, 95% CI = [0.350; 2.141] (p = 0.006).
In other words, we fail to find an overall positive or overall negative treatment
effect, but the findings do indicate that the treatment may have a positive effect for
one subpopulation of students but a negative effect for another subpopulation.
Future experiments may shed light on factors that may influence the direction and
magnitude of treatment effects for different types (subpopulations) of students.

Note that again the b-coefficients shared here ought not to be interpreted as b-
coefficients that can be obtained with linear regression. If we were to do linear
regression analysis (wrong and not recommended), instead of b1 versus 0 � −1.246
and b2 versus 1 � 1.228 we would find B = −0.302 and B = 0.276, respectively; the
signs are the same, the magnitude and interpretation are different.
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Ordinality and Different Types of Treatment Effects

Experiments 1 and 2 each constitute an example of a different type of treatment
effect. In Experiment 1, the proportional odds assumption is reasonable, and we can
express the treatment effect of interest in a single ORtreat- or btreat-value. The b-value
from the resulting ordinal logistic regression based on the proportional odds
assumption (i.e., proportional odds model) cannot and should not be interpreted as a
linear coefficient we could achieve with linear regression as well. Although the
linear and ordinal model will normally agree in terms of sign, the magnitude and
interpretation of the coefficients is different (e.g., Agresti, 2002). If we were to do a
multinomial logistic regression instead of an ordinal logistic regression, we would
lose the ordinality information. In Experiment 1, a LR test treating the outcome
variable as multicategory nominal—instead of as ordinal—would yield: v2

2 = 4.934,
p = 0.085, and RMcF

2 � 0.015. The problem is that with a multinomial model we do
not recognise different types of performance can be ranked in terms of their quality
and hence we just test if there is any difference between conditions instead of
whether there is a fairly constant or at least clearly monotonous relation between the
conditions that we may as well express in a single coefficient.

In Experiment 2, researchers who perform multinomial logistic regression
thinking that this model tests what actually should require an ordinal logistic
regression may erroneously conclude an overall treatment effect (i.e., an overall
tendency of improvement or decline): v2

2 = 11.435, p = 0.003, and RMcF
2 � 0.034.

That is quite a difference from the v2
2 = 0.585, p = 0.444, and RMcF

2 � 0.002 we find
in a model that treats the data as ordinal. Now, it is true that b2 versus 1 and b0 versus 1

can be obtained via a multinomial logistic regression model (see also Chap. 6). For
instance, when in Jamovi we define ‘1’ as the reference category, the programme
returns both b2 versus 1 and b0 versus 1. However, the fact that ORs and logits have
their use in binary logistic, multinomial logistic, and ordinal logistic regression
should not be taken as a justification to treat our data as nominal by performing
multinomial instead of ordinal logistic regression. Questions drive methods, and the
question that normally underlies a two-group experiment with ordinal or quanti-
tative outcome variables is whether there is an overall increase or decrease in
performance. With quantitative outcome variables, that usually calls for compar-
isons of Ms (or sometimes: medians); with ordinal outcome variables, that usually
calls for comparisons of observed (frequencies or) proportions for different ordered
categories through bs or ORs. When the proportional odds assumption is reason-
able, a single ORtreat- or btreat-value provides an accurate and parsimonious estimate
of a difference between two conditions. When the LR test and other criteria indicate
a preference towards a ‘no treatment effect’ model (Model 0), this can be interpreted
as insufficient evidence to assume an overall treatment effect. This may mean either
of two things: the differences are overall too small to be detected, or a treatment
creates more heterogeneity because its effect differs (substantially) across
subpopulations.
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That said, either way, as introduced in Chap. 1, analytic choices are driven by
questions and the features of our design and data acquired, and when dealing with
ordinal data that means that an overall test based on an ordinal logistic model
constitutes a natural starting point. If there is an expectation of different treatment
effects (i.e., the sign or magnitude differs substantially for different subpopulations),
a two-group experiment (i.e., one-way comparison) is not the best way to start in
the first place; in such cases, a two-way design with a possible moderator as second
factor (if the moderator is categorical) or covariate (if it is quantitative) makes more
sense (see also Chap. 11).

Final Note on Questions and Outcome

For the sake of introduction of new concepts, the experiments discussed in this
chapter have an ordinal outcome variable that is measured only once in time. When
series of ordinal items (e.g., several x-rays administered in a session or spread out
over different sessions) are involved, we need more complex models. Depending on
the questions that drive the experiment, the nature of the choice variables and data
acquired, and the sample size at hand, one may have one or several alternatives to
the simple approach discussed in this chapter. However, all alternatives have in
common that they require much larger sample sizes than the sample in the two
experiments discussed in this chapter. In fact, even for simple experiments like this,
larger would be better. The smaller the sample, the higher the risk of ‘zero’ cells
which may make the estimation of some effects impossible, and the higher the risk
of cells with very small numbers (e.g., 1 or 2 per cell) that may result in fairly
imprecise estimates (e.g., Agresti, 2002; McCullagh, 1980). This is also one of the
reasons why in practice ordinal data are often treated as if they were interval;
samples of n = 10 or n = 20 per condition make it sheer impossible to meaningfully
use ordinal models. This is not to say that small samples justify treating ordinal data
as interval; ordinal and quantitative outcome variable models provide different
types of coefficients, and with small samples such as the ones just mentioned
quantitative outcome variable models tend to yield inaccurate estimation outcomes
as well.

That said, when the same ordinal item is administered repeatedly or different
ordinal items are presented at the same occasion (e.g., in the same experiment), and
we have access to much larger samples (e.g., experiments online), we may have
several options. A first option may be multilevel aka mixed-effects ordinal logistic
regression models (e.g., Bauer & Sterba, 2011; Hedeker & Gibbons, 1994, 1996;
Hox, Moerbeek, & Van de Schoot, 2017; Liu, 2016). This kind of mixed-effects
models applies the same logic as mixed-effects models for other types of outcome
variables: participant (level 2, upper level) and question, item or occasion (level 1,
lower level) constitute the hierarchical levels. Other approaches, which involve
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latent variables (e.g., for a comparison of non-latent and latent-variable models, see:
Hox et al., 2017), can be found in latent class analysis, extensions of the Rasch
model for multicategory ordinal data (e.g., Embretson & Reise, 2000; Linacre,
1989; Masters & Wright, 1996; Wilson, 1989; Wright & Masters, 1982), the
Mokken model or mixed Rasch models.
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8Quantitative Outcome Variables

Abstract
After a brief summary of Chaps. 1–7, this eighth chapter delves into some
important questions when dealing with quantitative outcome variables. Since an
example with a quantitative outcome variable and no substantial departures from
assumptions is already covered in Chap. 2, this chapter focusses on three types
of somewhat more difficult situations: considerable skewness in a time outcome
variable, skewness inherent to the nature of a count outcome variable for perhaps
not so frequent (or rare) events, and non-linearity. For each of these three types
of situations, different ways of dealing with departure from ‘the typical’ (i.e.,
Normal and linear) are presented with their advantages and disadvantages.

Introduction

The main take away from Part I (Chaps. 1–4) of this book is that data-analytic
choices should be driven by the questions that led us to do the experiment, and
should also be informed by the features of the experimental design that resulted
from our questions as well as by the nature of the data acquired in the experiment.
The first three chapters of this second part of the book (Chaps. 5–7) focus on
different types of categorical variables. Although there are differences in the best
ways of dealing with these different types of variables, there is also some common
ground.

To start, categorical outcome variables ought to be treated as categorical, not as
variables of interval or ratio level of measurement. Recent work by Van der Eijk
and Rose (2015) illustrates that common practices such as factor analysis on cat-
egorical rating data may need a revision. Where we deal with multiple or repeated
dichotomous or polytomous ordinal outcome variables and assumptions of con-
tinuous latent variables are reasonable, various item response theory models
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mentioned in Chaps. 3, 5, and 7 provide useful alternatives to factor analysis. When
dealing with multiple or repeated multicategory nominal items (Chap. 6), gener-
alised item response tree models can be considered. Finally, when some kind of
discontinuity in latent variables is likely, researchers may opt for latent class
analysis or latent profile analysis as well as mixed Rasch analysis.

Treating categorical outcome variables as categorical also has implications for
the statistics we use for single outcome variables, such as in experiments that focus
on a difference between conditions in a single categorical outcome variable (not
measured repeatedly). When dealing with categorical outcome variables, we deal
with ORs and bs to estimate and express relations and effects of interest. For overall
model fit, we can use a pseudo-R2 known as R2

McF. Although many software
packages also report R2

CS and R2
N; R

2
McF is generally to be preferred (see Chap. 5).

Moreover, some software packages (e.g., JASP) also provide R2
T for binary logistic

regression, but an advantage of R2
McF is that its generalisation to multicategory

nominal and ordinal outcome variables is much more straightforward than that of
R2
T (see Chap. 5). Moreover, R2

T suffers from the same problem as R2
CS of having an

upper bound substantially lower than 1. In any case, R2
McF (or any of the other

pseudo-R2 alternatives) cannot and should not be equated with the R2-statistic for
quantitative outcome variables. Thus, researchers should not run a linear regression
on a categorical outcome variable and interpret the R2-statistic from that linear
regression as R2

McF.
Finally, the example experiments discussed in Chaps. 5–7 demonstrate that the

pragmatic approach to statistical testing and estimation (PASTE) outlined in Chap. 2
with quantitative outcome variable examples also applies to categorical outcome
variables: different Frequentist outcomes, information criteria, and Bayesian out-
comes can be combined to make informed and reasonable decisions. Whether we
deal with Ms, proportions or ORs, where CIs and CRIs can be computed, we can
have a meaningful discourse with regard to the kind of effect we are dealing with:
likely substantial, likely not substantial or not yet clear; see Chaps. 2 and 5 for a
rationale behind these qualifications using FOST (introduction in Chap. 2, another
example in Chap. 5), which can be done with TOST equivalence testing and/or the
Bayesian ROPE. In this chapter, we repeat this exercise for different quantitative
outcome variable scenarios: a skewed time variable, a count variable, and an out-
come variable that holds a non-linear relation with a treatment factor.

Experiment 1: Skewed Time Outcome Variable

Some psychologists have been working on an online critical thinking test for
Bachelor of Science students. They have developed two variants with somewhat
different content scenarios but with the same set of tasks. The psychologists want to
carry out a series of experiments to examine if these two variants can be considered
(relatively or practically) equivalent variants of the same ‘critical thinking task’.
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Since this is an online test, time from start (i.e., pressing ‘start’) to completion (i.e.,
pressing ‘complete’) can be measured accurately along with task performance and a
few other variables. For this example, we only focus on the time outcome variable
in one of the experiments carried out by this group of psychologists. In this
experiment, a random sample of N = 400 students from different Bachelor of
Science in Psychology programmes from different countries participate. They are
randomly allocated to the two variants: n = 200 to Variant ‘0’ and n = 200 to
Variant ‘1’. The rationale behind these numbers is as follows. Lakens’ (2017, 2018)
R package TOSTER (see also Chap. 2) indicates that, using a = 0.05 for TOST
equivalence testing, with equivalence bounds d = −0.3 and d = 0.3, for a statistical
power of 0.80 we would need 190.3077 participants per condition (n = 191), hence
382 participants in total (N = 382). They anticipate that even though they randomly
contact N = 400 students, some of the students contacted may not participate.
Given random allocation to condition, there is no reason to assume unequal sample
size for the two conditions unless the final N is an odd instead of an even number,
and a final N of 382 instead of 400 would correspond with a 4.5% non-response.

Figure 8.1 presents the histograms of the time distribution in the two conditions
(variants 0 and 1), and Fig. 8.2 presents the boxplots of the time distribution in the
two conditions.

Time ranges from 4.719 to 22.612 min in variant 0 and from 4.236 to
26.319 min in variant 1. The median time is 9.240 min in variant 0 and 9.730 min
in variant 1. The interquartile range (i.e., from the 25th to the 75th percentile) is
[7.720; 11.926] in variant 0 and [8.001; 12.186] in variant 1. The M time is
9.971 min in variant 0 and 10.330 in variant 1, and the SD is 3.156 in variant 0 and
3.453 in variant 1. As seen Fig. 8.1, time is skewed to the right in both conditions:
the skewness statistic is 0.907 in variant 0 and 1.357 in variant 1 (i.e., positive
values indicate skewness to the right, whereas negative values indicate skewness to
the left). The kurtosis statistic is 0.934 in variant 0 and 2.945 in variant 1 (i.e.,
positive values indicate thinner tails than a Normal distribution, and negative values
indicate thicker tails than a Normal distribution).

Fig. 8.1 Histograms of the
distribution of time in minutes
in variant 0 (n = 200) and
variant 1 (n = 200) (Jamovi)
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Due to the skew to the right, the two conditions have aM time that is about half a
minute higher than their median time. With this kind of distributions, different
teams of researchers may prefer different routes for estimating and reporting on the
time difference between conditions. Whichever route is chosen, transparency or full
disclosure of steps taken is key.

Some researchers may argue that some of the cases are outliers or extreme cases
and should therefore be deleted. They then either delete these cases or apply either
trimming (i.e., omitting the most extreme scores, for example the 5% or 10% most
extreme scores) or winsorising the most extreme cases by replacing their values by
the nearest score that is not an outlier (e.g., Field, 2018). Some others might
consider robust methods which include bootstrapping and other resampling meth-
ods. Nonparametric procedures such as Mann–Whitney’s U test and the rank bis-
erial correlation could also be considered. Finally, again others may consider
transforming the outcome variable (e.g., Field, 2018).

Of these approaches, I generally prefer the ones that do not involve loss of data
(i.e., deleting cases) or edits of data (i.e., winsorising), do not require resampling
(e.g., bootstrapping is about taking repeated samples with replacement from the
data set at hand), and stay as closely as possible to the original features of the data.
However, which approach to choose partly depends on the nature of abnormalities
in observed data. Therefore, let us compare several approaches to this right-skewed
time outcome variable, some of which are encountered frequently and some of
which are encountered less frequently but may be promising. The approaches
compared in the following are: analysing the data as is (i.e., not deleting, editing or
transforming anything), a nonparametric approach using Mann–Whitney’s U test
and the rank biserial correlation, a robust t-test approach based on Wilcox (2017),
and a transformation approach with two types of transformation: square root and
logarithmic. Advantages and disadvantages of these approaches are discussed.

Fig. 8.2 Boxplots of the
distribution of time in minutes
in variant 0 (n = 200) and
variant 1 (n = 200) (Jamovi)
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Approach (a): Unchanged

Some researchers may argue that there appear to be some relative outliers that are not
really ‘extreme’ cases; they are like the small islands above the mainland in the
North of the Netherlands (i.e., Texel, Vlieland, Terschelling, and a few more) which
are a short ferry trip distance from the mainland of the Netherlands rather than
Hawaii in relation to the mainland of the United States of America (i.e., a 5–6 h trip
by plane from Los Angeles). Moreover, although there is rather clear skewness, the
central limit theorem kicks in; with samples of this size, it is more than reasonable to
assume an approximately Normal sampling distribution. When sample sizes are
smaller and in doubt about the sampling distribution, R packages like user-
friendlyscience allow researchers to estimate the sampling distribution (see Chap. 2).

In the example experiment in Chap. 2, the largest SD is about 1.295 times the
smallest SD, and the t-test for equal variances and that for unequal variances yield
almost identical results. In Experiment 1 in this chapter, the largest SD is
3.453/3.156 � 1.094 times the smallest SD. The smaller the difference in SDs, the
smaller the difference in the two variants of the t-test in outcomes. Therefore, let us
proceed assuming equal variances. Using Mplus, we find that AIC is 2095.397 for
Model 0 (H0: no treatment effect) and 2096.217 for Model 1 (H1: treatment effect).
BIC is 2103.380 for Model 0 and 2108.191 for Model 1. Thus, AIC and BIC both
prefer Model 0. The R2-statistic is 0.003, and the adjusted R2-statistic is smaller than
0.001. The 95% CI of Cohen’s d is [−0.088; 0.305] and the 90% CI is [−0.056;
0.273] (JASP). The observed d = 0.108, and for a two-sided t-test of H0: ‘no
treatment effect’, we find: t398 = 1.084, p = 0.279 (for Welch’s test assuming
unequal variances, we find the same 90 and 95% CI and t394.832 = 1.084,
p = 0.279; in short, in the first three decimals both tests yield the same outcomes).
Using d = −0.3 and d = 0.3 as equivalence bounds, TOST equivalence testing
(Jamovi; Lakens, 2017) yields the following outcomes: H0.1: d < −0.3, p < 0.001,
and H0.2: d > 0.3, p = 0.028. Using a default prior (see also Chap. 2) for the t-test
(JASP; Rouder, Speckman, Sun, Morey, & Iverson, 2012), we find BF10 = 0.195
(BF01 = 5.121) and a 95% CRI of [−0.086; 0.294]. In other words, applying FOST,
we learn that both TOST and ROPE provide evidence in favour of relative or
practical equivalence. Whether one prefers Frequentist, one prefers Bayesian, or
one is open to both, these outcomes provide reasonable evidence in favour or
relative or practical equivalence.

Approach (b): Nonparametric

Some researchers might prefer a nonparametric approach instead of a parametric
one such as the t-test. For Experiment 1, Mann–Whitney’s test yields: U ¼
20153; p ¼ 0:363; BF10 (default settings; JASP) = 0.199, and the rank biserial
correlation is 0.053 with a 95% CI of [−0.042; 0.147]. Contrary to Approach (a),
this nonparametric approach is based on ranks instead of actual scores. This comes
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with the clear advantage that it can be used with distributions that show severe
departures from normality where Approach (a) could well be considered inappro-
priate. However, a main drawback of the nonparametric approach is that we pretend
to be dealing with ordinal data instead of with data of interval or ratio level of
measurement. To use TOST or ROPE, we need to convert bounds of a straight-
forward scale such as Cohen’s d into reasonable bounds for ranks and that may
seem easier than it is.

Approach (c): Robust

An alternative to Approach (a) that does not involve thinking in terms of ranks
instead of actual scores is found in the robust independent samples t-test (Algina,
Keselman, & Penfield, 2005; Jamovi; Mair & Wilcox, 2018; Wilcox, 2017; Wilcox
& Tian, 2011; Yuen, 1974). In this t-test, and robust Cohen’s d estimation,
observed Ms are replaced with 20% trimmed Ms and SDs with the square root of a
20% winsorised variance (e.g., Algina et al., 2005; Yuen, 1974). The R package
WRS2 (Mair & Wilcox, 2018), which is also incorporated in Jamovi includes this
test, as well as alternatives to it based on bootstrapping or other robust estimators.
The trim proportion (default 20%) can be adjusted to higher or lower levels (and the
number of bootstrap samples, default 599, as well). Running Yuen’s t-test with the
default settings (Jamovi; Mair & Wilcox, 2018), we find: t237:886 ¼ 0:849; p ¼
0:397; and (robust variant of Cohen’s d; Algina et al., 2005) n ¼ 0:064 with a 95%
CI of [0.000; 0.215]. In line with Approach (b), the robust approach may be
promising in cases where extreme departures from normality make Approach
(a) inappropriate. The trimming and winsoring proportion can be adjusted to higher
or lower levels in order to deal with extreme cases or one or two extremely long and
thin tails, leaving the bulk of the data unchanged. In my view, the latter constitutes a
clear advantage of the robust approach to the nonparametric approach; although
some of the original information is lost, we are still comparing scores not ranks. In
the case of only a few extreme scores in an otherwise fairly symmetric and uni-
modal sample distribution, the trim proportion can be reduced to 5 of 10% to deal
with these extreme scores and leave the rest as is. However, in my view, the default
of 20% trimming is already quite something, and in cases where we need that or a
higher trim proportion, one may want to consider either Approach (b) or
Approach (d).

Approach (d): Transformation

Although the nature of the changes is different, the use of nonparametric and robust
methods comes with a change in either the scale of comparison (nonparametric:
ranks instead of actual scores) or the tails of sample distributions (robust: trim
proportion). These changes may have researchers better equipped than the analyse
as is Approach (a) to several types of fairly extreme departures from normality, but
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also come with some information loss. In the final, fourth approach discussed in this
section, data transformation is applied to all data following a simple mathematical
function that helps us to keep a link with the original scale. Two common trans-
formations to deal with non-zero time outcome variables, which—like in Experi-
ment 1—are often skewed to the right are square root transformation and
logarithmic (log10) transformation. These two transformations have in common that
they reduce the right-skew tendency and can as such yield transformed outcome
variables that are somewhat closer to Normal.

Figures 8.3 and 8.4 present the histograms of the square root transformed time
and the logarithmically transformed time per condition, respectively.

With the square root transformation, we obtain a distribution with a skewness of
0.493 and a kurtosis of 0.060 in the control condition and a distribution with a
skewness of 0.792 and a kurtosis of 1.038 in the treatment condition. With the
logarithmic transformation, we obtain a distribution with a skewness of 0.098 and a
kurtosis of −0.282 in the control condition and a distribution with a skewness of
0.293 and a kurtosis of 0.151 in the treatment condition.

Using square root transformation, we find the following Ms and SDs per con-
dition: M = 3.120, SD = 0.485 in the control condition; M = 3.174, SD = 0.508 in
the treatment condition. Using logarithmic transformation, we find: M = 0.978,
SD = 0.133 in the control condition and M = 0.993, SD = 0.135 in the treatment
condition. Square root and logarithmic transformation affect the Ms, SDs, and
shapes of the distribution; both Mds and differences in SDs between conditions are
smaller after than before transformation.

Using square root transformation, we find AIC = 578.627 for Model 0 and
AIC = 579.472 for Model 1, and we find BIC = 586.610 for Model 0 and BIC =
591.446 for Model 1. Using the default (equal variances) t-test, we find: t398 = 1.073,
p = 0.284. The 95% CI of Cohen’s d is [−0.089; 0.303] and the 90% CI is [−0.057;
0.272]. These intervals very closely resemble the ones from Approach (a) (i.e.,
[−0.088; 0.305] and [−0.056; 0.273], respectively). Using d = −0.3 and d = 0.3 as

Fig. 8.3 Histograms of the
square root transformed time
distribution in variant 0
(n = 200) and variant 1
(n = 200) (Jamovi)
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equivalence bounds, TOST equivalence testing (Jamovi; Lakens, 2017) yields the
following outcomes: H0:1: d\� 0:3; p\0:001; and H0:1: d[ 0:3; p ¼ 0:027.
Using a default prior for the t-test (JASP; Rouder et al., 2012), we find BF10 ¼
0:193 BF01 ¼ 5:184ð Þ and a 95% CRI of [−0.090; 0.296]. Hence, findings very
similar to Approach (a), in favour of relative/practical equivalence.

Using logarithmic transformation, we find AIC = −467.742 for Model 0 and
AIC = −466.884 for Model 1, and we find BIC = −459.759 for Model 0 and
BIC = −454.910 for Model 1. Comparisons of AIC and BIC values in negative
territory are the same as for positive territory; the lower (i.e., the less positive or the
more negative) the better. Hence, both AIC and BIC indicate a preference for
Model 0. Using the default (equal variances) t-test, we find: t398 ¼ 1:067; p ¼
0:287. The 95% CI of Cohen’s d is [−0.090; 0.303] and the 90% CI is [−0.058;
0.271]. Using d = −0.3 and d = 0.3 as equivalence bounds, TOST equiva-
lence testing (Jamovi; Lakens, 2017) yields the following outcomes:
H0:1 : d\� 0:3; p\0:001; and H0:1 : d[ 0:3; p ¼ 0:027. Using a default prior
for the t-test (JASP; Rouder et al., 2012), we find BF10 ¼ 0:192 BF01 ¼ 5:215ð Þ
and a 95% CRI of [−0.090; 0.294]. Again, findings very similar to Approach (a), in
favour of relative/practical equivalence.

Comparison of Approaches

Although the skewness in the time outcome variable in Experiment 1 is not min-
imal, approaches (a) and (d) yield almost the same outcomes. These minimal dif-
ferences in outcomes between Approaches (a) and (d) may provide an argument in
favour of researchers who prefer to stick to Approach (a). However, when depar-
tures from normality are more severe (e.g., skewness > 2 and kurtosis > 5 in one or
both conditions), differences between Approaches (a) and (d) in outcomes may well

Fig. 8.4 Histograms of the
logarithmically transformed
time distribution in variant 0
(n = 200) and variant 1
(n = 200) (Jamovi)
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be more substantial, and we may want to report both (a) and (d). A clear advantage
of approaches (a) and (d) over (b) and (c) is no loss of information due to ranking
(b) or trimming (c) data. However, in some cases working with ranks or trimmed
data may provide a more sensible way of dealing with departures from normality
than ignoring the departures (a) or getting around them via a transformation (d).
Approach (d), for example, works well when the outcome variable is skewed in the
same direction such that a single transformation can be applied to reduce normality
problems (cf. Experiment 1). For time outcome variables, right skew is quite
common and can be reduced via a square root or a logarithmic transformation.
When departures from normality are such that a single straightforward mathemat-
ical transformation does not really help us, approaches (b) and (c) are likely to
provide better alternatives to (a) than (d).

Experiment 2: Skewed Count Outcome Variable

Time outcome variables constitute an example of an outcome variable that may
well be skewed to the right. Another type of outcome variable in which right skew
is common is that of counts: the outcome variable may have any non-negative
integer value in a particular interval of possible or likely values. In Chap. 5, we
have an example of an experiment on the effect of treatment on accident occurrence.
However, in that example, the outcome variable is dichotomous: a participant either
has or has no accident in the (max) 120 min session in the simulated environment.
Suppose, we deal with a simulated driving environment where the session is not
ended when there is an accident, but we count the number of errors (with or without
consequences such as other drivers getting angry or ending in an accident) for each
participant in a given interval. We have N = 140 participants randomly divided
over control (n = 70) and treatment (n = 70) condition complete a 60-min session
in a simulator and count the number of errors made (e.g., not giving priority to other
drivers where needed, too close of a distance to the car in front) for each participant.
Figure 8.5 presents the histograms of the distribution of errors per condition (X = 0:
control, X = 1: treatment).

The frequencies are as follows. In the control condition (M = 1.39, SD = 1.231,
variance = 1.516): 16 participants without error, 28 participants with 1 error, 16
participants with 2 errors, 6 participants with 3 errors, 2 participants with 4 errors, 1
participant with 5 errors, and 1 participant with 6 errors. In the treatment condition
(M = 1.07, SD = 1.108, variance = 1.227): 25 participants without error, 28 par-
ticipants with 1 error, 6 participants with 2 errors, 9 participants with 3 errors, and 2
participants with 4 errors.
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Poisson Distribution

Many researchers who are familiar with t-tests and other kinds of linear analysis are
inclined to approach this kind of data with some of the approaches (a), (b),
(c) and/or (d) discussed in the context of Experiment 1. However, each of these four
approaches fails to appreciate a basic feature of counts, namely that they tend to
follow a so-called Poisson distribution (i.e., the Poisson distribution is named after
Siméon-Denis Poisson, 1790–1840; e.g., Nussbaum, Elsadat, & Khago, 2010).
When event occurrence is so frequent that zero counts are unlikely and it is not
restricted by a stringent upper limit, the Poisson distribution may somewhat
resemble a Normal distribution. However, for events like in Experiment 2, low
counts (i.e., 0, 1, 2) are much more likely than higher counts, and hence the
distribution of counts is clearly skewed to the right. For instance, in Experiment 2,
we find skewness values of 1.327 in the control condition and 0.975 in the treat-
ment condition. Logarithmic transformation cannot be applied with zeros on the
outcome variable, and square root transformation is not a solution either because the
distance between counts larger than 1 becomes smaller while the distance between
0 and 1 remains the same.

Our count variable is in essence of ratio level of measurement: ‘0’ is a natural
zero, and hence 2 errors is twice as many as 1 error just like 4 errors is twice as
many as 2 errors. Nonparametric approaches convert our ratio count variable to an
ordinal variable, and we lose the Poisson information with it. The proportional odds
model discussed in Chap. 7 suffers from the same problem and has an additional
problem: several zero cells (i.e., no participants with 5 or 6 errors in the treatment
condition) and several low frequency cells (i.e., in the control condition, only 1
participant with 5 errors and only 1 participant with 6 errors, and in both conditions
only 2 participants with 4 errors) undermine testing and estimation.

Some may argue that although the population distribution of errors might be
Poisson distributed (Nussbaum et al., 2010), the sampling distribution of M is

Fig. 8.5 Histograms of the
distribution of errors in the
control (X = 0) and treatment
(X = 1) condition (Jamovi)
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approximately Normal with the sample size at hand. However, the violation of
normally distributed residuals comes with an inflation of SDs and SEs, and that
makes linear regression a substantially less powerful approach to count data than
Poisson regression; it is well possible to detect a treatment effect with Poisson
regression where with linear regression we fail to find that treatment effect (e.g.,
Nussbaum et al., 2010).

Poisson Regression

Several statistical packages have Poisson regression, including SPSS, Stata, and
Jamovi. An important condition for obtaining valid Poisson regression estimates is
no overdispersion (e.g., Agresti, 2002). When the variance is substantially larger
than M, there is overdispersion; when the variance is similar to M, there may be no
overdispersion or overdispersion may be minimal. For Experiment 2, this
assumption is quite realistic (i.e., in both conditions, the variance is just a bit higher
than M). However, when dealing with events the occurrence of which is much rarer
and/or that come with longer tails (e.g., cases with 10 or more errors), variances
substantially exceed the Ms. Such an overdispersion can be accounted for by
applying an overdispersion correction (Frome & Checkoway, 1985; Le, 1998) or by
using regression models that are based on a negative binomial distribution (e.g.,
Cameron & Trivedi, 1998; Nussbaum et al., 2010). The negative binomial distri-
bution is similar to the Poisson distribution, but the probability declines expo-
nentially with the number of counts.

While overdispersion may be quite common in non-experimental studies (e.g.,
Agresti, 2002), it may be less common or be of a much lower magnitude in
experimental studies. A straightforward way of testing for overdispersion is to
compute the Pearson v2-statistic or the deviance statistic and divide this statistic by
the df. SPSS provides both statistics: deviance = 168.194, and Pearson
v2138 ¼ 154:474. When we divide these numbers by df ¼ 138, we find 1.219 and
1.119, respectively. These numbers are still fairly close to 1, so we can proceed with
Poisson regression. Using SPSS, we find AIC = 407.596 and BIC = 411.538 for
Model 0 and AIC = 406.774 and BIC = 414.658 for Model 1. The pseudo R2-
statistic is 0.007 (Jamovi). Using the LR test, we find v21 ¼ 2:822; p ¼ 0:093. The
coefficient associated with the treatment effect is b ¼ �0:257, and the 95% CI of
b is [−0.561; 0.043]. The exponent of b; eb; is 0:773 and is also referred to as
relative risk ratio (e.g., Nussbaum et al., 2010). Note that a relative risk ratio is not
the same as an OR; the latter is a ratio of odds, whereas the relative risk ratio is a
ratio of probabilities. The ratio of 0.773 indicates that, on average, the number of
errors is about 29.4% i:e:; 1=0:773 � 1:294ð Þ higher in the control condition than
in the treatment condition.
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Correcting for Overdispersion

If we consider the Pearson v2-statistic/df or deviance statistic/df to be not so close to
1, we may also consider a Poisson model with correction for overdispersion and/or
a negative binomial model. Both alternatives yield the same point estimates for
b and eb but somewhat larger SEs. After all, the standard Poisson model assumes no
overdispersion. The more the departure from that assumption, the more the SEs of
the alternatives will differ from that of the standard Poisson model. Negative
binomial models can be run in several packages, including SPSS, Stata, and Jamovi.
Using Jamovi, we find a 95% CI of b of [−0.579; 0.060] and a p-value of 0.116 for
the overdispersion-corrected Poisson model, and we find a 95% CI of b of [−0.574;
0.056] and a p-value of 0.109 for the negative binomial model. Both intervals are
fairly close to that of the standard Poisson model, [−0.561; 0.043].

Experiment 3: Non-linearity

Experiments 1 and 2 indicate two types of departures from normality. Experiment 3
revolves around a different type of departure from what in educational and psy-
chological research is often considered ‘normal’ or ‘typical’: a departure from
linearity. Where two (seemingly) quantitative variables are involved, the relation
between these variables is frequently described in terms of a linear one; Pearson’s
r is then reported, perhaps with a 95% CI around it. Although such linear
descriptions are attractive because they may often provide a more parsimonious and
easier interpretation of a relation of interest than non-linear alternatives, when a
relation of interest is inherently non-linear, linear descriptions may more often than
not fall short. In any case, linearity is an assumption underlying linear models and
should—like other assumptions—be checked. Suppose, some educational psy-
chologists are interested in developing an online learning environment for Bachelor
of Science students to practice their probability calculus skills. Many researchers
cannot tell the difference between p(O|H) and p(H|O), one of the consequences of
which is a large scale and perpetuated misunderstanding of a Frequentist p-value as
‘the probability that H0 is true’. The p-value is the probability of the observed value
of the test statistic e:g:; t or v2ð Þ or further away from H0; if H0 is true (Chap. 2), so
that would be p(O or more extreme|H0). This conditional probability cannot and
should not be interpreted as the probability of H0 being true. Formulations like
p being the probability that findings are ‘due to chance’ are not any better; given
random sampling and random allocation, findings are always due to chance. Some
may respond that if we formulate p as the probability that findings are ‘due to
chance alone’, the problem is solved. However, with that addition, we are effec-
tively back to interpreting p as the probability of H0 being true. After all, if there is a
treatment effect, findings are due to a combination of chance and treatment effect,
while in the absence of treatment effect findings are due to chance alone.
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Starting from an Assumption of Linearity

The educational psychologists who want to develop an online learning environment
for Bachelor of Science students to practice their probability calculus skills are well
aware of these and other issues and see a learning environment with series of
practice tasks for each of a series of different levels of difficulty as one of several
possible contributors to a better understanding of statistics. They intend to develop
tasks of five levels of difficulty that all use 3-by-3 contingency tables but differ in
the question they ask from the student: a marginal probability (level 1), a joint
probability (level 2), a conditional probability (level 3), the complement of a joint
probability (level 4), and the ratio of two complements of joint probabilities (level
5). In other words, in each subsequent level of difficulty, one element is added.
However, can task difficulty—with its five levels—be conceived as a linear pre-
dictor of task performance? The educational psychologists decide to investigate this
by randomly recruiting N = 250 first-year Bachelor of Science students from dif-
ferent universities in the region who did not yet start any probability calculus
coursework at their universities and randomly allocating them to either of five
conditions: level 1 (n = 50), level 2 (n = 50), level 3 (n = 50), level 4 (n = 50), and
level 5 (n = 50).

Graphical Evidence for Non-linearity

In each condition, students complete 40 tasks of the level (condition) they have
been assigned to. Each task is completed by typing a numerator and a denominator
derived from the 3-by-3 contingency table in the task. Within level (condition), the
tasks differ in nothing else but the content (e.g., different types of fishes in one task,
different colours cows in another task) and can be considered parallel versions of
the same type (i.e., difficulty level) task. For each task, a correct response yields 1
point while an incorrect response yields 0 points. Hence, a student’s total score can
range from 0 to 40. All students complete the session, meaning we have n = 50
scores in the 0 (min) to 40 (max) range in each of the five conditions. Figures 8.6
and 8.7 present the histograms and boxplots of the distributions of scores per
condition.

We find the following Ms and SDs for the subsequent conditions: M = 30.131
and SD = 3.853 for level 1, M = 25.849 and SD = 3.629 for level 2, M = 24.190
and SD = 3.717 for level 3, M = 22.886 and SD = 4.586 for level 4, and
M = 23.360 and SD = 4.100 for level 5. Researchers who are focussed on linear
relations may now calculate Pearson’s r and find a point estimate of −0.516
(p < 0.001) with a 95% CI of [−0.602; −0.419]. Although r-coefficients of such a
magnitude hint at substantial linear correlations, a linear coefficient does not
accurately represent the effect of difficulty on performance (i.e., score). Figure 8.8
presents a scatterplot of the findings and the best linear unbiased estimate (BLUE;
Plackett, 1950) with its SE (i.e., the marked area around it).
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Figure 8.9 presents the best non-linear alternative with its SE. Figure 8.9 appears
to hint that a quadratic model provides a better description of the difficulty-score
relation than a linear model. The EMM plot in Fig. 8.10 illustrates that even more
clearly.

A linear model with difficulty as predictor explains a bit over 26% of the
variance in score: R2 = 0.266, and adjusted R2 = 0.263. In ANOVA, where all Ms
are allowed to differ freely, differences in difficulty explain a 32–33% of the
variance in score: R2 = 0.331, and adjusted R2 = 0.320 (η2 = 0.331, x2 = 0.319;
Jamovi). Note that R2 never decreases when we go from a simple to a more
complex model. However, in the ANOVA-model, we use 3 df more than in the
linear model. The quadratic model requires only 1 df more than the linear model,
hence 2 df less than the ANOVA model; however, the reduction in R2 is minimal:
R2 = 0.329. In other words, with a quadratic model, we explain almost the same as
with the ANOVA model but use fewer df. This is in line with Figs. 8.9 and 8.10.

Fig. 8.6 Histogram of the
distribution of score (0–40)
per condition: D1–D5

represent the conditions, here
different levels of difficulty
(Jamovi)

Fig. 8.7 Boxplot of the
distribution of score (0–40)
per condition: D1–D5

represent the conditions, here
different levels of difficulty
(Jamovi)
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Fig. 8.8 Scatterplot of the relation between difficulty (Ds: Ds1–Ds5 represent the conditions) and
score (S) and the best fitting straight line with its SE (Jamovi)

Fig. 8.9 Scatterplot of the relation between difficulty (Ds: Ds1–Ds5 represent the conditions) and
score (S) and the best fitting non-straight line with its SE (Jamovi)
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Given k observed levels or conditions constituting the independent variable, we
can perform polynomial regression analysis and investigate polynomials up to the
power k − 1 (e.g., Leppink & Pérez-Fuster, 2019). With k = 2 all we can ‘see’
seems linear, and k = 3 constitutes the minimum for quadratic polynomials (i.e., to
the power k − 1 comes down to squared). In the case of k = 5, we can test four
polynomials: linear, quadratic, cubic, and quartic. In Experiment 3, we find evi-
dence for a quadratic relation between difficulty and score. Firstly, for the quartic
polynomial: B = 0.441 (the standardised b = 0.092), p = 0.458 (standardised
b-values around 0.1, 0.25, and 0.40 indicate ‘small’, ‘medium’, and ‘large’ effects,
respectively). Next, for the cubic polynomial, we find: B = −0.267 (the standard-
ised b = −0.055), p = 0.637. Although absence of evidence does not equate evi-
dence of absence, the testing outcomes for the cubic and quartic polynomial do not
come as a surprise in the light of Figs. 8.9 and 8.10 and in the light of the difference
in R2-value between a quadratic model and the ANOVA model. If the difference in
R2 between the quadratic and the ANOVA model was larger, a cubic or a quartic
model might explain substantially more than a quadratic model. However, the R2 of
the cubic and quartic model lie somewhere in between that of the quadratic model
and that of the ANOVA model. Given that the R2 of the quadratic model is almost
that of the ANOVA model, going from quadratic to cubic or quartic adds close to
nothing. For the quadratic polynomial, we find B = 2.637 (standardised b = 0.547),
p < 0.001, which is again in line with Figs. 8.9 and 8.10, and with the difference in
R2 between the linear and the quadratic model. For the linear polynomial, we find:
B = −5.219 (standardised b = −1.083), p < 0.001. Although the linear polynomial
is also statistically significant (and large), the linear polynomial only influences the
shape of the quadratic curve.

Fig. 8.10 EMM plot of the relation between difficulty (D: D1–D5 represent the conditions) and
score (S): the bars around the points are 95% CIs (Jamovi)

132 8 Quantitative Outcome Variables



To Conclude: Graphs Before Statistics

This chapter provides three examples of situations where there is a departure from
what many researchers view or would like to view as typical: substantial departure
from normality (Experiments 1–2) or substantial departure from linearity (Experi-
ment 3). Note that the two can go together. Researchers who tend to start with
estimating a linear relation between two variables of interest may inspect a single
histogram of the response variable, see and remove outliers, to then estimate a linear
relation. However, what may be perceived as an outlier in a linear model may not
be an outlier in a more appropriate non-linear alternative (e.g., Leppink &
Pérez-Fuster, 2019). Moreover, when the independent variable consists of integer
values, such as the difficulty levels in Experiment 3, inspecting histograms (and
boxplots) of the distribution of the response variable of interest per level of the
independent variable makes more sense than ordering a single histogram of the
distribution of the response variable merged over the full range of the independent
variable.

When dealing with skewed quantitative non-count outcome variables,
researchers can choose from a variety of approaches how to deal with the skewness.
Depending on what the graphs indicate, they may decide to ignore the skewness, to
use nonparametric methods, to use robust methods, and/or to apply a simple
mathematical transformation. When dealing with skewed count outcome variables,
these approaches are unlikely to provide useful outcomes; instead, Poisson
regression and/or overdispersion-corrected Poisson regression or negative binomial
regression should be used. Again, graphs can greatly facilitate decision-making
with regard to which type of model to use.

Finally, when dealing with quantitative non-count outcome variables, even if
based on theory, previous research or common sense, relations of interest are
assumed to be linear, it is important to check linearity assumptions. When devia-
tions from linearity are fairly minimal, the loss in R2 relative to likely non-linear
alternatives (e.g., quadratic, cubic or varying freely like in the ANOVA model) by
restricting to a linear model should be fairly minimal. However, when deviations
are fairly substantial—such as in Experiment 3 in this chapter—an appropriate
non-linear alternative ought to be preferred even if the linear model yields a sub-
stantial R2.
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9Common Approaches to Multiple
Testing

Abstract
To facilitate the introduction of concepts in Parts I and II, the examples
discussed in the earlier chapters of this book focus on two-group experiments,
with the exception of Experiment 3 in Chap. 8 with ANOVA and polynomial
regression analysis on a five-groups treatment factor. When a treatment factor
consists of more than two groups but specific hypotheses about group differences
are lacking, applying a correction for multiple testing to keep the rate of false
alarms limited is recommendable. This chapter discusses seven types of
correction for multiple testing based on Frequentist statistics (Tukey, Scheffé,
Bonferroni, Dunn, Dunnett, Games-Howell, and Holm) and one type of
correction for multiple testing based on Bayesian statistics (Westfall and
colleagues) with their advantages and disadvantages. Next, a new approach to
omnibus and follow-up testing is proposed, based on the logic of TOST
equivalence testing, the Bayesian ROPE, and the TOST-ROPE uniting FOST
model.

Introduction

When randomly throwing a fair die, the probability of obtaining ‘6’ is 1 in 6. After
all, there are six possible outcomes—1, 2, 3, 4, 5 or 6—and under the assumption of
throwing a fair die at random, all outcomes have the same probability of occurring,
in any throw. However, when randomly throwing two fair dice, the probability of at
least one ‘6’ is (1/6) + (1/6) − [(1/6) * (1/6)] = 11/36. If you find this difficult to
understand, draw a tree diagram with six arms and then draw six arms on each of
these six arms. These combinations of 6 * 6 = 36 arms represent the possible
outcomes of randomly throwing two fair dice. Since each outcome has the same
probability of occurring (1 in 6), each combination has the same probability of

© Springer Nature Switzerland AG 2019
J. Leppink, Statistical Methods for Experimental Research
in Education and Psychology, Springer Texts in Education,
https://doi.org/10.1007/978-3-030-21241-4_9

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21241-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21241-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21241-4_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-21241-4_9


occurring as well, namely 1 in 36. The eleven combinations that include at least one
‘6’ are: 16, 26, 36, 46, 56, 66, 65, 64, 63, 62, and 61. Hence, a probability of 11/36.
In Chap. 2, we have a formula for calculating the probability of at least one Type I
error in k independent statistical significance tests at level a:

atotal ¼ 1� ½ð1� aper�comparisonÞk�:

For k = 2, atotal ¼ 0:0975; for k = 3, atotal ¼ 0:142625: The dice example above
is based on the same logic. For a moment, let us use 1/6 as aper-comparison and use
k = 2:

atotal ¼ 1� 1� 1=6ð Þð Þ2
h i

¼ 11=36 � 0:306:

Whether we use 1/6, 1/20, or another statistical significance level per compar-
ison, the more tests we perform the higher the probability of at least one Type I
error. This is where the concept of controlling for Type I error rates comes in, and
this has been and continues to be a heavily debated topic for a number of reasons.

Four Types of Error: I, II, S, and M

To start, there are scholars who fear that attempts to keep atotal at 0.05 (or lower) by
lowering aper-comparison come at the cost of a reduced Type II error control (e.g.,
Fiedler, Kutzner, & Krueger, 2012; Perneger, 1998; Rothman, 1990). In many
educational, psychological and other research settings, it is already difficult to
obtain sample sizes that yield a statistical power for detecting differences of 0.8 or
0.7, even without correcting for multiple testing. Lower aper-comparison comes with a
reduction of statistical power and an increased Type II error rate with it. However,
performing many tests not driven by specific hypotheses is like randomly throwing
a bunch of dice, and not-large-enough sample sizes often reflect a lack of time (i.e.,
having to carry out experiments and publish on them fast) rather than an absolute
lack of resources over an extended period of time. Lowered statistical power due to
applying a correction for multiple testing can be anticipated by a priori agreeing on
which correction to apply and to compute the required sample size based on that
correction. From this perspective, controlling for Type II error rates is more a matter
of carefully designing your experiment.

If we take yet another perspective, Type I and Type II errors—at least as far as it
concerns (much of) the social sciences—exist in a ‘parallel universe’ but not in the
real world. Going back to Chap. 2 for a moment: “in social science everything
correlates with everything to some extent, due to complex and obscure causal
influences” (Meehl, 1990, p. 125, on the crud factor). From this point of view, a
difference, relation or effect is rarely if ever exactly zero, and consequently, the null
hypothesis is rarely of interest or use to researchers (e.g., Perneger, 1998), and the
classical concepts of Type I Error (seeing a difference where there is none) and
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Type II error (seeing no difference where there is one) are of little use if any. Rather,
we should think in terms of Type S and Type M error (e.g., Gelman & Tuerlinckx,
2000): errors in sign (S) and errors in magnitude (M). Type S error is of the type
that we claim a positive effect that is actually negative or vice versa, and type M
error is of the type that we state a medium or large size effect while the effect is
actually small or vice versa. However, from a TOST equivalence testing, a
Bayesian ROPE, or FOST (see Chaps. 2, 5, and 8 for examples) perspective, the
concepts of Type I and Type II error can go together with those of Type S and
Type M error. Three possible outcomes of FOST (which can be done with TOST
and ROPE) are: sufficient evidence against relative equivalence (a), sufficient evi-
dence in favour of relative equivalence (b), or inconclusive (c). If we conclude
(b) from our sample(s) while it is (a) in the population sampled from, we are dealing
with a Type II error that can also be understood as a Type M error and eventually as
a Type S error. Likewise, if we conclude (a) from our sample(s) while it is (b) in the
population sampled from, we are dealing with a Type I error that can also be
understood as a Type M error and eventually as a Type S error. Finally, if we
conclude (c) from our sample(s) while it is either (a) or (b) in the population
sampled from, a Type S error may occur but a (substantial) Type M error is
probably less likely. A Type S error occurs if we are between relative equivalence
(b) and clearly positive effect (i.e., a CI or CRI that includes only positive values)
(a) while the effect is actually outside the region of relative equivalence on the
negative side, or vice versa. However, from a Type M perspective, when we
conclude (c), we state that we do not yet have sufficient evidence to draw a con-
clusion and hence still leave both (a) and (b) open.

In this approach, we just give somewhat wider definitions to Type I and II errors,
because they now relate to a region of relative (or practical) equivalence instead of
to a ‘no difference’ point state that may rarely if ever happen (at least in much of the
social sciences). In FOST, a Type I error is concluding that an effect is not part of
the region of relative equivalence while in fact it is part of the region of relative
equivalence, and a Type II error occurs when we conclude that an effect is part of
the region of relative equivalence when in fact it is not part of the region of relative
equivalence.

What Are We Controlling?

Whether to control and what to control may partly depend on the school(s) of
thought one identifies oneself with. As explained in Chap. 2, the Frequentist, the
Likelihoodist, the information-theoretic, and the Bayesian approach are based on
different philosophies and questions (e.g., Royall, 1997, 2004). In the Likelihoodist
school of thought Royall (2004, p. 129), “evidence has a different mathematical
form than uncertainty. It is likelihood ratios, not probabilities, that represent and
measure statistical evidence […]. It is the likelihood function, and not any prob-
ability distribution, that shows what the data say.” Contrary to the Frequentist
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approach, the Likelihoodist and the Bayesian approach do not rely on the idea of
infinitely drawing random samples of the same size N from the same population of
interest. From a Likelihoodist perspective, the interest lies in how to interpret the
data at hand as evidence regarding H0 versus H1 (Royall, 1997, 2004). Bayesian
inference revolves around updating our beliefs about H0 versus H1 with incoming
data. Therefore, to not so few scholars who adhere to the Likelihoodist or Bayesian
school of thought, hedging our conclusion based on Test Ti because we happen to
perform additional tests Ti+1, 2, 3, et cetera on other differences of interest may not
make much sense. The same holds for scholars who adopt an information-theoretic
approach to statistical testing; information criteria such as AIC and BIC are based
on the deviance from models to the data and strictly do not require notions of
repeated sampling. However, statistics that are not based on the Frequentist school
of thought vary from experiment to experiment just like Frequentist statistics do
(see for instance Tables 2.1, 2.2, and 2.3 in Chap. 2). Therefore, many
Frequentist-oriented scholars would find it odd to just perform all tests possible
without any kind of correction for multiple testing. Note that this is not to say that
all scholars who advocate for some kind of correction for multiple testing are
Frequentists or that all approaches to such corrections are Frequentist.

Many different methods of correcting for multiple testing have been developed.
Which method to choose partly depends on what we are testing. One context in
which many may argue to apply a correction for multiple testing is when performing
a test on every bivariate correlation for a set of k variables. Following the formula of
the number of possible tests (comparisons) Cp in Chap. 6, given k variables, Cp is:

Cp ¼ k � k�1ð Þ½ �=2:

For k = 3, Cp = 3; k = 5, Cp = 10; and for k = 8, Cp = 28. If we consider it
possible that a full set of H0s tested can be true and we have no specific hypothesis
with regard to group differences, a correction to control Type I error rates is
desirable. However, it is possible that about some of the correlations we already
have specific hypotheses based on theory, previous research, or common sense. In
that case, we may want to opt for a slightly less conservative correction for multiple
testing; applying the same control for all correlations in that case does not make
sense and comes with an unnecessary loss of statistical power (e.g., Benjamini,
Krieger, & Yekutieli, 2006). The same holds for experiments in which more than
two conditions comprising a treatment factor are to be compared. Let us look at an
example of the latter in this chapter.

Two Treatments and One Control Condition

Some educationalists have been working on two different types of instructional
support in language learning. They want to compare these two types of support to
each other and to a control condition where neither of the two types of support are
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provided in terms of post-test performance immediately after a language learning
session. Knowing that providing support does not always facilitate learning but can
in some cases hinder learning as well, the educationalists decide to randomly
allocate a random sample of N = 153 French language learners who are native
speakers in English to either of the three conditions: treatment A (support type A,
n = 53), treatment B (support type B, n = 53), and control (neither A nor B;
n = 53). These numbers are based on a desired statistical power of 0.80 for a
medium size difference (f = 0.25) with a one-way ANOVA testing at a ¼ 0:05
(GPower).

Participants in the three conditions in the experiment study the same content, just
in a different condition-specific approach with regard to instructional support (A, B,
or none). After the study stage, all participants complete a post-test that consists of
translating 15 sentences from English to French. Each correct sentence yields 1
point, resulting in a post-test score somewhere from 0 (no correct sentences) to 15
(all sentences correct). Figure 9.1 presents the histograms of the post-test score
distribution for each of the three conditions (GR = 0: control, GR = 1: treatment A,
GR = 2: treatment B).

Ms and SDs of post-test performance are as follows: M = 8.170 and SD = 2.128
in the control condition, M = 9.302 and SD = 1.917 in treatment A, and M = 8.962
and SD = 1.951 in treatment B. These differences correspond with R2 = 0.054 and
adjusted R2 = 0.042 (η2 = 0.054 and x2 = 0.042). One-way ANOVA yields a
statistically significant outcome: F2, 156 = 4.468, p = 0.013. Like with the
two-samples t-test, the common ANOVA model assumes population SDs to be
equal. In the case of a substantial departure from this assumption, there are two
alternatives that do not assume equal SDs: Brown-Forsythe’s F-test (Brown &
Forsythe, 1974) and Welch’s F-test (Welch, 1951). In the experiment at hand, the
largest SD is 2.128 and the smallest SD is 1.917. The resulting ratio is:
2.128/1.917 � 1.110. This is smaller than the ratio in Chaps. 2 and 5, where we see
the two variants of the two-samples t-test yield near identical results. SPSS provides

Fig. 9.1 Histograms of the
distribution of post-test score
in the control condition
(GR = 0), treatment A
(GR = 1), and treatment B
(GR = 2) (Jamovi)
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all three tests—the default ANOVA F-test and its two alternatives—and we see
very similar outcomes: Brown-Forsythe’s F2, 154.645 = 4.468, p = 0.013; Welch’s
F2, 103.797 = 4.240, p = 0.017. In short, we may as well proceed treating the SDs as
(approximately) equal.

The −2LL of the null model (i.e., Model 0, which represents H0: no differences)
is 677.615, and that of the ANOVA model is 668.759. In the null model, one M is
used for all conditions; in the ANOVA model, each condition has its own
M. Therefore, given three conditions, the difference between the two models in
df = 2. The difference in −2LL is approximately v2-distributed, and the v2-dis-
tribution is that of the difference in df between the model, hence: v22. In our case, we
find v22 ¼ 8:856, p = 0.012. For Model 0, we find AIC = 681.615 and BIC =
687.752 (Mplus). For the ANOVA model, we find AIC = 676.759 and BIC =
689.034. Running a Bayesian one-way ANOVA with a default prior (Rouder,
Engelhard, McCabe, & Morey, 2016; Rouder, Morey, Speckman, & Province,
2012; Rouder, Morey, Verhagen, Swagman, & Wagenmakers, 2017; Wetzels,
Grasman, & Wagenmakers, 2012) in JASP, we find BF10 = 2.789 (er-
ror = 0.009%). In other words, based on AIC and p-value, we may prefer the
ANOVA model, while based on BIC we may prefer the null model, and BF10
indicates some preference towards the ANOVA model but the evidence is
negligible.

Follow-Up or Post Hoc Comparisons

Researchers who give more weight to BIC than to other criteria may not dig further
than the omnibus test. Others may argue that explaining about 5% of the post-test
variance is not bad and the other criteria (p < 0.05, AIC, BF10) hint at some
difference. However, if we proceed, the question that arises is how we should
proceed. There are many ways to proceed, but they generally have in common
comparisons of sets of two conditions. In the case of three conditions, that comes
down to a maximum of three comparisons.

Approach (a): Statistical Significance Testing Without
Correction

Some may argue that there is no need to correct for multiple testing in post hoc
comparisons—we can just test each two conditions at the same 5% as the omnibus
test—for one of the following reasons. To start, by testing at a = 0.05 in the
omnibus test (i.e., one-way ANOVA, Brown-Forsythe, and/or Welch) we already
have an overall Type I error probability of 5%, and that if the omnibus test yields a
statistically significant difference probably at least one M differs from the rest. More
stringent testing at this stage by lowering alpha then just results in a loss of sta-
tistical power (i.e., an increased probability of at least one Type II error). Building
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forth on this, some may argue that if the omnibus test indicates that probably at least
one M differs from the rest, assuming all H0s to be true in the post hoc stage makes
little sense. If we have four conditions and one M differs from the rest, for the three
comparisons of two conditions that involve that different M H0 is incorrect,
meaning that H0 can be true in only three other comparisons. In the case of three
conditions, when one M differs from the rest, in two of the three comparisons—
namely the two that involve the M that differs from the rest—H0 is incorrect,
meaning that H0 can be true in only one other comparison. Thus, effectively, we are
back to a single test at a = 0.05, and there is no need to lower that alpha.

If we use Brown-Forsythe’s or Welch’s F as overall test, the SE in each of the
three post hoc comparisons can be different; if we use the default one-way ANOVA
F-test because deviations from homogeneity (i.e., heterogeneity in SDs) are fairly
small at best, we can use one SE for all three comparisons (in our case: 0.389). This
yields the following outcomes: control versus treatment A, p = 0.004; control
versus treatment B, p = 0.043, and treatment A versus treatment B, p = 0.384.

Approach (b): Information Criteria for All Competing Models

A different approach to post hoc comparisons which is also based on no correction
is to compare all competing models directly in terms information criteria, such as
AIC and BIC. AIC and BIC can be seen as two different criteria to model com-
parison, with BIC being somewhat more conservative than AIC. The null model
and the ANOVA model represent two of five possible models:

Model 0: null model
Model 1: control differs from A and B
Model 2: A differs from control and B
Model 3: B differs from control and A
Model 4: all Ms are different (ANOVA model).
We already know AIC and BIC of Model 0 and Model 4. For Model 1, we find

AIC = 675.535 and BIC = 684.742. For Model 2, we find AIC = 678.940 and
BIC = 688.147. For Model 3, we find AIC = 683.178 and BIC = 692.385.
Both AIC and BIC are lowest for Model 1. In other words, the model that states that
the control M is different from the treatment Ms but that the treatment Ms do not
differ from one another, appears to be preferred. AIC might in some cases prefer a
difference between two Ms where p > 0.05, while BIC may in some cases prefer no
difference between two Ms although p < 0.05. In this sense, this approach may be
combined with Approach (a), that is: at least in the case of three conditions. In cases
where AIC and BIC disagree, AIC may be given more weight in the case of partial
availability of hypotheses (i.e., for one of the three comparisons we may already
expect a difference based on theory or previous research) or where the cost of a
Type II error may be high, while BIC provides a more stringent threshold than
a = 0.05 for comparisons where no hypotheses are available or where the cost of a
Type I error may be high.

Follow-Up or Post Hoc Comparisons 143



That said, a challenge of this information criteria approach is that with four or
more conditions the number of possible models increases much faster than the
number of sets of two conditions to be compared in Approach (a). A possible
solution to this problem is to not compare all possible models but to select can-
didate models based on theory, previous research or common sense. However,
when specific hypotheses are absent, that may be more easily said than done.

Approach (c): Statistical Significance Testing Involving
Corrections

Quite a variety of corrections for multiple testing involving an adjustment of a can
be found in the literature. This section discusses some common ones and some that
are perhaps less common to many readers but may be useful in some situations.

In Chap. 2, the Bonferroni correction for multiple testing is introduced: given
k comparisons, we perform each comparison not at a but at a/k. Hence, if the
omnibus test is carried out at a = 0.05 and the post hoc analysis consists of three
tests, each test is carried out at 0.05/3 � 0.0167. In the experiment at hand, this
means that, after a Bonferroni correction, the difference between control condition
and treatment B (p = 0.043) is no longer statistically significant. Many software
packages apply Bonferroni correction not through lowering a but by multiplying
the uncorrected p-values with k. This results in the following Bonferroni-corrected
outcomes: control versus treatment A, p = 0.012; control versus treatment B,
p = 0.129, and treatment A versus treatment B, p > 0.999 (software may indicate
‘p = 1’ or ‘1.000’; e.g., JASP, SPSS).

Several alternatives to Bonferroni correction have been developed, which like
Bonferroni provide some correction but that correction differs to some extent from
the one applied by Bonferroni. One intuitive approach comes from Holm. We first
order the uncorrected p-values from low to high: control versus treatment A,
p = 0.004; control versus treatment B, p = 0.043, and treatment A versus treatment
B, p = 0.384. The correction for multiple testing equals k for the lowest p-value, k −
1 for the next p-value, and k − 2 for the third (i.e., highest) p-value. Hence,
correction factors of 3, 2, and 1, respectively. This then yields the following
Holm-corrected p-values (e.g., JASP): control versus treatment A, p = 0.012;
control versus treatment B, p = 0.086, and treatment A versus treatment B,
p = 0.384.

When researchers are interested only in comparisons of any treatment condition
versus the control condition, Dunnett’s approach is based exactly on that logic and
the correction for multiple testing is therefore a bit less conservative than that of
Bonferroni or Holm. In the experiment at hand, we find: control versus treatment A,
p = 0.008; control versus treatment B, p = 0.079.

Two other commonly encountered correction methods that apply somewhat
different corrections but often yield results quite similar to those after Bonferroni
correction or Holm correction come from Tukey and Scheffé. Tukey’s correction is
also used in the Games-Howell’s approach, which allows the SEs to vary per
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comparison (i.e., a logical follow-up on statistically significant outcome from
Brown-Forsythe’s or Welch’s F-test, which are recommended as alternatives to the
common one-way ANOVA F-test in the case of substantial heterogeneity in SDs).
Bonferroni and Holm corrections are also common in Dunn’s nonparametric
comparison approach. Dunn’s approach is a logical follow-up if the data are dis-
tributed such that parametric tests are not considered approach. In Chap. 8,
Mann-Whitney’s test is discussed as nonparametric alternative to the two-samples t-
test. A nonparametric alternative to one-way ANOVA is found in the
Kruskal-Wallis test (Kruskal & Wallis, 1952). Dunn’s post hoc approach consti-
tutes a logical follow-up on a statistically significant outcome from the
Kruskal-Wallis test.

Approach (d): Fixing the Prior Odds

A Bayesian approach to multiple testing comes from Westfall et al. (1997) and is
implemented in software packages like JASP. In this approach, the posterior odds
are corrected for multiple testing by fixing the prior odds to 1 (for an explanation of
prior and posterior odds, see Chap. 2). When the prior odds are fixed to 1, the
probability of all H0s being correct is the same as the probability of at least one of
the H0s being incorrect: both probabilities are 0.5. For the experiment at hand, JASP
returns the following posterior odds: control versus treatment A: 4.490; control
versus treatment B: 0.707; and treatment A versus treatment B: 0.174. In other
words, only for control versus treatment A the posterior odds are in favour of a
difference. Fixing the prior odds to 1 is in line with the default for the Bayesian
two-samples t-test, Bayesian one-way ANOVA, and Bayesian linear regression
such as implemented in software like JASP: prior to data collection, the probabil-
ities of H0 (no treatment effect) and H1 (treatment effect) are treated as equal (i.e.,
0.5 each). In the prior odds fixing post hoc comparisons approach, this logic is
applied to all H0s.

An Alternative Approach to Multiple Testing: FOST-OF

When three conditions are involved, at most three post hoc comparisons are
involved, and in that case each of the aforementioned four approaches can be
defended from one perspective or another. However, as the number of conditions
increases, the number of possible comparisons increases faster. Not applying any
correction for multiple comparisons in an experiment with five conditions in which
all ten possible comparisons are made in the post hoc stage is hard to defend. With
that number of conditions, the information criteria approach is also hard to
implement. However, the corrections from the other two (types of) approaches may
in such cases come with a substantial or even dramatic loss of statistical power. In
other words, unless we make informed (i.e., hypothesis-driven) choices, any of the
aforementioned approaches may be problematic.
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A core problem underlying the different methods discussed under umbrella term
Approach (c) is that all or most (depending on which method used) of the H0s are
being assumed correct. In a social science world, this is highly unlikely to begin
with. The same goes for Approach (d), where the prior probability of all H0s being
correct is put at 0.5; this is a very high probability for a highly unlikely real-world
scenario. Moreover, even if a ‘no difference’ H0 holds in a particular case,
Approach (a) and Approach (c) do not provide researchers with evidence in favour
of that H0. Another problem with the methods discussed thus far is that they pretend
that an experiment at hand kind of provides the ‘final verdict’ for a hypothesis or
model and that is virtually never the case. TOST, ROPE, and the TOST-ROPE
uniting FOST model resonate much better with a social science reality in two ways.
Firstly, differences are rarely if ever exactly zero but many differences may be too
small to practically matter (i.e., the idea of relative or practical equivalence).
Secondly, a single experiment (or single study otherwise) virtually never provides
conclusive evidence for a difference, relation or effect of interest. Therefore, I
propose a new approach to omnibus and follow-up (OF) testing that is based on
TOST, ROPE, and the TOST-ROPE uniting FOST model (i.e., FOST-OF).

FOST-OF Step 1: Omnibus (O)

As in the traditional approach, we start with an Omnibus test. In the experiment at
hand, this comes down to a one-way ANOVA. We have already seen some com-
mon statistics of proportion of explained variance. ANOVA is a special case of
(piecewise) linear regression model. In linear regression models, R2 and adjusted R2

are generally reported as measures for overall model fit. What is called R2 in linear
regression jargon is commonly referred to as η2 in the case of ANOVA, and x2

provides an outcome very similar to adjusted R2. Generally speaking, x2 tends to be
less biased than η2 (Howell, 2010, 2017), but the difference between η2 and x2

decreases with increasing sample sizes. Both η2 and x2 can be calculated from the
ANOVA output provided by the software programme used. Moreover, both can be
used to do statistical power and required sample size calculations for future
experiments. For instance, η2-values of around 0.01, 0.06, and 0.14 are generally
interpreted as ‘small’, ‘medium’, and ‘large’ effects, respectively, in statistical
power software (e.g., GPower), and x2-values can be interpreted and used in a
similar way. Just like we can define a range of Cohen’s d values that represent the
region of relative or practical equivalence in a given context (e.g., −0.3 < d < 0.3),
we can do the same for η2. In a two-group experiment, where one-way ANOVA
and the two-samples t-test assuming equal SDs yield the same p-value (i.e.,
dfgroups = 1, hence F = t2), Cohen’s d values of around 0.3, 0.4, and 0.5 roughly
correspond with η2-values around 0.02, 0.04, and 0.06.

When more than two groups (conditions) are involved, a problem with η2- and
x2-values is that they tell us nothing about how the different groups differ. An η2-
value of 0.06 may arise from modest differences between all Ms as well as from one
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M somewhat substantially deviating from the other Ms. However, when η2-values
are small (i.e., 0–0.02), it appears we are dealing with small differences. We may
agree that, in a particular context, η2-values in the [0; 0.02] or perhaps [0, 0.03]
region indicate differences that practically speaking are not very useful. Although
many software packages by default only provide point estimates of η2, software
packages like Stata make it very easy to calculate 90 or 95% CIs of η2 (i.e., run
ANOVA via the anova command, then type in the command window either estat
esize or estat esize, level(90) for the 95% or 90% CI, respectively). In line with the
TOST and FOST logic, I prefer a 90% CI of η2, and in the experiment at hand, we
find: [0.007; 0.114]. In a much larger experiment, or in a meta-analysis of a series of
experiments, the interval would be much smaller. If in given context, the region of
relative equivalence is [0, 0.03] and a meta-analysis yields a 90% CI that falls
entirely within that region, we declare sufficient evidence in favour of relative
equivalence. If a 90% CI of η2 has no overlap with [0, 0.03], we declare sufficient
evidence against relative equivalence. Intervals like the one at hand leave us
inconclusive, which—as we have seen several times earlier in this book—is not
uncommon for single experiments.

FOST-OF Step 2: Follow-Up (F)

If Step 1 yields a 90% CI of η2 that lies completely within the region of practical
equivalence, there is little reason to expect meaningful differences when comparing
each set of two conditions separately. However, it is still possible that for one or
some of the sets of conditions we find evidence for relative equivalence while we
remain inconclusive for one or some other sets. Simultaneously, even if Step 1
yields a 90% CI of η2 that lies completely outside the region of practical equiva-
lence, it is still possible that we can establish sufficient evidence against relative
equivalence for one or some of the sets of conditions but remain inconclusive or
even find evidence in favour of relative equivalence for one or some other sets of
conditions. In other words, in FOST-OF, Step 1 (Omnibus) is always followed by
Step 2 (Follow-Up), regardless of the outcome of Step 1. The explanation for this is
simple: contrary to the traditional focus of multiple testing approaches on differ-
ences between groups, in FOST-OF there are three equally interesting outcomes:
for relative equivalence, against relative equivalence, or inconclusive.

In the comparison of pairs of conditions, we are back to Cohen’s d as a useful
measure of effect size. Suppose that in the given context, the [−0.3; 0.3] interval
constitutes a sensible d-region of relative or practical equivalence. What we can do
next is to calculate the 90 and 95% CI of d for each set of two conditions. The 90%
CI constitutes the default in TOST and FOST when there is no correction for
multiple testing. The 95% CI then corresponds with a factor 2 correction for
multiple testing (i.e., from 2a = 0.10 to 2a = 0.05) and will be somewhat wider
than the 95% CRI using a realistic prior (see also Chap. 2). No one would argue for
a factor 10 correction or going from a 90% to a 99% CI, and given that in practice
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we often do have at least a partial set of hypotheses with regard to the group
differences of interest even a factor 2 correction may be on the conservative side
(see also Chap. 10). Although there are more comparisons to be made when there
are four or more conditions, a complete absence of hypotheses is in such cases quite
unrealistic. And again, corrections such that we would need a 99% instead of a 90%
CI are based on the unrealistic assumption of all or most H0s being correct and
unrealistically pretend that a single experiment can provide the ‘final verdict’ on a
particular hypothesis or model. Table 9.1 therefore presents Cohen’s d point esti-
mates along with 90 and 95% CIs for each of the three pairs of conditions.

Contrary to Approach (a) and Approach (c) in the previous section, the estimates
in Table 9.1 are based on comparison-specific SEs (i.e., assuming more or less
equal SDs per comparison) not on one constant SE across comparisons. The
rationale behind that is that even though the experiment at hand comprises three
conditions, each comparison of two conditions in itself can be of interest and be part
of separate two-group experiments. Moreover, SDs, just like Ms, are rarely exactly
equal. Although it is efficient to treat the SDs as equal in an Omnibus ANOVA
when the SDs do not deviate substantially (as in the experiment at hand), there is no
need to do so in follow-up comparisons that may be interesting as part of an
experiment including more conditions but may also be interesting in isolation.

By way of comparison, let us now have a look at the 95% CRIs (cf. Bayesian
ROPE) obtained in JASP using the default prior. For treatment A versus control, we
find: [0.133; 0.896]. For treatment B versus control, we find: [-0.008; 0.724]. For
treatment A versus treatment B, we find: [−0.199; 0.523]. As is to be expected,
these intervals are somewhat wider than the 90% CIs and somewhat smaller than
the 95% CIs. Whether we use 90% CIs, 95% CIs or 95% CRIs, the conclusion we
draw is the same: inconclusive with regard to relative or practical equivalence for
all three comparisons.

Where the approaches discussed earlier in this chapter stimulate a dichotomous
thinking in terms of which Ms may or may not differ, FOST-OF indicates that the
best conclusion we can draw from this experiment is that we remain inconclusive.
Although two of the three Cohen’s d point estimates are outside the [−0.3; 0.3]
interval and the other point estimate lies within that interval, for all three com-
parisons we obtain CIs that partially overlap with the [−0.3; 0.3] interval. Hence,
for all three pairs, we come to the same conclusion: we have neither sufficient

Table 9.1 Cohen’s d point estimates along with 90 and 95% CIs (LB, UB) for each of the three
pairs of conditions

Comparison Cohen’s d 90% LB 90% UB 95% LB 95% UB

A–control 0.559 0.232 0.883 0.169 0.946

B–control 0.388 0.065 0.710 0.003 0.772

A–B 0.176 −0.145 0.495 −0.206 0.557
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evidence against nor sufficient evidence in favour of relative equivalence. In my
view, this reading of findings is much more informative than any set of p-values
(corrected or uncorrected), information criteria or posterior odds.

To Conclude: PASTE-FOST-OF (PFO) as a New Framework
for Thinking About Evidence

Chapter 2 introduces a pragmatic approach to statistical testing and estimation
(PASTE) which comes down to combining Frequentist, information-theoretic, and
Bayesian statistics to come to informed decisions: p-values, information criteria,
and BFs are recognised as potentially useful statistics in this approach when
combined appropriately—along with CIs and optionally CRIs—in the light of the
questions and design of the experiment (cf. the QDA heuristic in Chap. 1). In
Chaps. 2, 5, and 8, FOST—an approach uniting Frequentist TOST and Bayesian
ROPE—is presented as a framework of thinking about evidence, with three pos-
sible (temporary) decisions: sufficient evidence in favour of relative or practical
equivalence, sufficient evidence against relative or practical equivalence, or in-
conclusive (i.e., we find ourselves somewhere in between or neither in favour nor
against relative equivalence). These decisions are rarely if ever reached in single
experiments (or single studies otherwise), are subject to change with new data
coming in, and are generally easier to reach in (large-sample or) meta-analytic
studies. In this chapter, FOST-OF is presented as a generalisation or natural
extension of FOST for experiments (or other studies) that involve multiple com-
parisons, such as the example experiment in this chapter. Where traditional
approaches stimulate a dichotomous thinking in terms of differences versus absence
of differences, FOST-OF states that we should always do both omnibus (O) and
follow-up (F) testing and estimation regardless of whether some statistical criterion
states ‘significance’ or some other kind of dichotomous decision. The rationale
behind PASTE, FOST and its generalisation FOST-OF—which together constitute
my working approach for the remaining chapters in this book: PASTE-FOST-OF
(PFO)—is that differences, relations, and effects of interest are—at least for much of
the social sciences—rarely if ever exactly zero but that many differences may be too
small to really matter in a given practical context (e.g., a not sufficiently substantial
improvement of educational practice with a more resource-intensive method, or an
insufficiently substantial improvement in mental health with a more costly
intervention).
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10Directed Hypotheses and Planned
Comparisons

Abstract
In Chap. 9, different approaches to multiple testing are discussed. Most of these
ideas are based on the ideas of (the possibility of) all null hypotheses being
tested being true (no matter how large that series) and not having specific
hypotheses that would justify focusing on only a few instead of on all
comparisons. When a treatment factor consists of more than two conditions but
—based on theory, previous research or common sense—we do have specific
hypotheses with regard to which groups differ and eventually in what direction
they differ, we may not need to compare all conditions with each other but may
gain statistical power to detect treatment effects of interest by performing tests in
line with the hypotheses we have (i.e., planned comparisons). In this chapter,
different types of planned comparisons are discussed.

Introduction

In Chap. 2, preregistration of a priori hypotheses, in the form of for instance reg-
istered reports, is discussed as a powerful way of preregistering and defending
one-sided over two-sided tests and/or defending (an appropriate method of)
sequential testing. When done properly, one-sided testing and sequential testing can
substantially increase statistical power for a given sample size and result in a
substantial reduction of the sample size required to achieve a desired statistical
power. Although in Chap. 2, sequential testing is presented in a two-sided testing
fashion—which ought to be the default when a priori we have no idea what to
expect—one-sided sequential testing is defendable when we do have a one-sided
hypothesis about a difference of interest; the prescribed statistical significance levels
then apply to one side of the difference range, knowing that differences in the other
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direction in that case—even if they are large—should not be interpreted as statis-
tically significant since they go against the prespecified hypothesis.

Next to one-sided and sequential testing, another way to increase our statistical
power for a given sample size, and simultaneously, decrease the sample size
required for a given statistical power, is found in the use of planned comparisons.
For instance, when the independent variable is a dosage of medication and par-
ticipants in the different conditions receive 0, 5, 10, and 15 mg, respectively, and
we expect a linear relation between dosage and say performance in a driving
simulator, one test may do. In another context, when in an experiment with three
conditions we expect that two treatment conditions A and B lead to better driving
performance than a control condition and additionally condition B will do better
than condition A, two one-sided tests—one for the difference between control and
treatment A, and another for the difference between treatments A and B—can do.
These and other planned comparisons, and how they follow from a specific set of
hypotheses, are discussed in this chapter. What all planned comparisons have in
common, apart from requiring (substantially) fewer tests, is that preregistration—
such as in the form of registered reports, in funded research proposals, or study
proposals that were approved by an Ethical Review Board—provide powerful ways
to register prespecified hypotheses and justify planned comparisons. Just like
sequential testing, two-sided testing should be default but one-sided testing of
planned comparisons can be defended if the hypotheses these comparisons are
based on state a difference in a specific direction.

Finally, sequential testing with planned comparisons is possible; hence, when-
ever one-sided planned comparisons are available, one-sided sequential testing of
these planned comparisons provides the best way to achieve a statistical power of
0.80 with a considerably smaller sample size. Lakens (2014) discusses how with
sequential testing we may achieve a statistical power of 0.80 for a Cohen’s d of 0.5
with a sample size of about n = 51 instead of n = 68 per condition or just below
80% of the sample size we need if we do not consider sequential testing. We also
know that in the case of no sequential testing, opting for one-sided testing instead of
two-sided testing comes with the same reduction of n = 51 instead of n = 68 per
condition (e.g., GPower; see also Chap. 2). When we square the numbers—hence:
(51/64)2—we obtain 0.635 or 63.5%. This is the proportion of the total sample size
needed in a default two-sided non-sequential test that we would need in a one-sided
sequential-testing procedure. Although the exact proportion depends on the type of
sequential testing procedure chosen (e.g., a four-tests procedure in Lakens, 2014)
and which approach to correcting the statistical significance level we use (see also
Chap. 2), the reduction in required sample size is substantial to say the least;
depending on the specifics just mentioned, we may need a sample size somewhere
in between 60 and 70% of the sample size we would need normally. If we multiply
n = 64 per condition with 0.635, we obtain about 40.641 meaning n = 41 per
condition (about 64% of 64). That is quite a reduction in sample size. In some cases,
we may need to continue until the full planned sample (e.g., n = 51 per condition in
a one-sided testing situation), whereas in some other cases we may be able to stop
after an interim test, as in the following experiment.
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Experiment 1: Linear

A first type of directed hypothesis and planned comparison is found in the linear
one. Suppose, some researchers from a psychopharmacology department want to
study the influence of a particular drug on cognitive performance. They decide to
set up an experiment with four conditions: 0, 20, 40, and 60 mg. In each of the
situations, the dose is put in a glass of orange juice, such that from the taste of the
drink participants cannot tell which condition they are part of. Half an hour after the
glass of orange juice, participants individually complete a cognitive task on a
computer which entails reacting to different types of stimuli from different sides of
the screen by clicking a stimulus- and direction-dependent button. This test results
in a score of 0 (worst performance) to 20 (best performance). The researchers have
good reasons to expect a (fairly) negative linear relation between drug dose and task
performance: a higher drug dose predicts worse performance. This hypothesis is
formulated in the study proposal approved by their local Ethical Review Board.

A random sample of N = 120 adults who have experience with the drug but have
no known physical or mental health complaints are randomly allocated to the four
conditions (n = 30 per condition). Not so few readers may automatically think
about one-way ANOVA as a way to analyse the data and may note that a sample
size of N = 120 does not yield enough statistical power for a medium size effect.
Indeed, a one-way ANOVA with four groups of n = 30 each yields a statistical
power of about 0.61 for a medium size difference (i.e., η2 = 0.06; e.g., GPower)
testing at a = 0.05. To achieve a power of 0.80, we would need N = 180 partici-
pants (i.e., n = 45 per condition). However, contrary to the example experiment in
Chap 9, one-way ANOVA does not constitute an appropriate method for Exper-
iment 1 in this chapter. The core question driving one-way ANOVA is: is there any
difference in Ms across conditions? The researchers in Experiment 1 are not
interested in just any difference; they have a specific hypothesis: a linear relation
between drug dose and task performance. Given k conditions, a linear contrast test
uses k−1 number of df less than one-way ANOVA, because in the linear contrast
test the difference in Ms between conditions can be summarised in a single slope.
Higher drug doses decreasing performance is translated as a negative slope,
whereas higher drug doses increasing performance would mean a positive slope.
The researchers hypothesise a negative slope. Assuming a medium size standard-
ised regression coefficient (b), which in the case of a single independent variable
equals Pearson’s r, of 0.30, for a two-sided test of this linear contrast at a = 0.05,
the researchers would achieve a statistical power of 0.80 with a sample size of
n = 21 per condition; in a one-sided test at a = 0.05, that power would be achieved
with n = 16 per condition (i.e., about 53.3% of n = 30; GPower). Using a
one-sided test at a = 0.05, which is defendable in this case, N = 120 (n = 30 per
condition) yields a statistical power of about 0.96 for b = 0.30 and yields a sta-
tistical power of 0.80 for b � 0.22.
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Testing Linearity (a): One One-Sided Test

Note that the power and required sample size calculations for Experiment 1 just
mentioned are based on no sequential testing. Figures 10.1 and 10.2 present the
boxplots of the distribution of task performance per condition, and the scatterplot of
the relation between drug dosage (Ds) and task performance (Y), respectively.

The line in Fig. 10.2 is the best fitting non-linear relation between the two
variables, and the margin around it is the SE. To conclude, we have little reason not
to assume a linear relation between drug dosage and task performance. We find a
standardised linear coefficient b (=r) of −0.249, with a one-sided (i.e., negative
correlation) p-value of 0.003 and a 90% CI of [−0.386; −0.102]. This corresponds

Fig. 10.1 Boxplots of the
distribution of task
performance per condition:
D0–D3 represent the
conditions (Jamovi)

Fig. 10.2 Scatterplot of the
relation between drug dosage
(Ds) and task performance
(Y): Ds0–Ds3 represent the
conditions (Jamovi)
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with a 90% CI of R2 of about [0.010; 0.149]. Cohen’s d values are about twice the
size of b-values, so Cohen’s d-values of 0.20, 0.30, and 0.50 roughly correspond
with b-values of 0.10, 0.15, and 0.25. In other words, a region of practical
equivalence for d of [−0.30; 0.30] roughly corresponds with a region of practical
equivalence for b of [−0.15; 0.15] and with a region of practical equivalence for R2

of about [0; 0.023]. Thus, we have sufficient evidence to reject positive correlations
(i.e., the upper bound of the 90% CI is −0.102), but if in the context at hand [−0.15;
0.15] constitutes a meaningful region of practical equivalence, we would not yet
have sufficient evidence to reject practical equivalence.

Note that we could have used a Bayesian approach as well. Using JASP, we find
a two-sided BF10 for the slope of interest of 4.727 and a one-sided BF10 in the
expected direction of 9.423. The 95% CRI of b is [−0.406; −0.076]. Although the
interval still overlaps with the region of practical equivalence, it does not include
positive values.

Testing Linearity (b): Sequential Testing

Suppose, the researchers had planned in advance to apply sequential testing with
two tests—one after N = 60 (n = 15 per condition) and one after N = 120 (the full
sample)—and they use Pocock’s recommended alpha values of 0.0294 for each of
the two tests (see Chap. 2). Figure 10.3 presents the scatterplot of the relation
between drug dosage (Ds) and task performance (Y) for the interim analysis
(N = 60 of the 120).

Fig. 10.3 Scatterplot of the
relation between drug dosage
(Ds) and task performance
(Y) for the ‘halfway’ (i.e.,
N = 60 of the 120) interim
analysis: Ds0–Ds3 represent
the conditions (Jamovi)

Experiment 1: Linear 155



Again, no convincing evidence for a non-linear relation between dosage and test
performance. Based on the first 60 participants, we find b = −0.339 with a 95% CI
of [−0.546; −0.093] and a one-sided p-value of 0.004, which is statistically sig-
nificant at a = 0.0294. Given one-sided testing at a = 0.0294, the 95% CI is the
default nearest to the 1 − (2 * 0.0294) = 0.9412 or 94.12% CI we could use, on the
conservative side. Some software packages may provide the exact 94.12% CI, but
most packages provide 90, 95, and 99% CIs. That said, the difference in width of a
94.12% and a 95% CI is barely noticeable. Although the interval of [−0.546;
−0.093] still overlaps with the region of practical equivalence, it includes negative
values only, meaning we have sufficient evidence to reject positive slope values and
we can stop our experiment; no need to continue until N = 120, so we can save the
other 60 participants for another experiment.

Now, suppose that the 60 participants that will now be saved for a future
experiment are actually the ones who participated first instead of the ones for which
we just presented the findings. Figure 10.4 presents the scatterplot of the relation
between drug dosage (Ds) and task performance (Y) for the interim analysis
(N = 60 of the 120).

Again, no convincing evidence for a non-linear relation between dosage and test
performance. Based on the first 60 participants, we find b = −0.154 with a 95% CI
of [−0.393; 0.104]. The one-sided p-value is now 0.120, which is not statistically
significant at a = 0.0294. Hence, we continue data collection until the full N = 120,
the one-sided p-value of 0.003 found at the end (i.e., see the section of no sequential
testing) is statistically significant at a = 0.0294. The 95% CI (i.e., default nearest to
94.12% on the conservative side) of b is [−0.410; −0.073].

Fig. 10.4 Scatterplot of the
relation between drug dosage
(Ds) and task performance
(Y) for the ‘halfway’ (i.e.,
N = 60 of the 120) interim
analysis had the other sixty
participants appeared first:
Ds0–Ds3 represent the
conditions (Jamovi)
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Experiment 2: Helmert

In not so few cases where researchers run an experiment that includes a control
condition and two treatment conditions, expectations with regard to the direction of
differences are available, but they may not be formulated in terms of hypotheses
because two-sided testing is commonly considered the default for hypothesis
testing. Like in the type of scenario in Experiment 1, researchers then proceed with
one-way ANOVA and, in the case of a statistically significant outcome, with one of
the follow-up approaches discussed in Chap. 9. However, in the light of the
hypotheses at hand, this is probably not the most sensible approach.

Let us revisit the experiment discussed in Chap. 9. Suppose, the researchers
prior to that experiment hypothesised that both treatments—A and B—would
outperform the control condition but had no expectations with regard to any dif-
ference between treatments A and B. In this case, two tests are needed: one for the
difference between the control condition and the two treatments together, and one
for the difference between the two treatments. This type of contrasting of (groups
of) conditions is also known as Helmert coding (e.g., Field, 2018). Given our
directed hypothesis of a positive difference between the treatments on the one hand
and the control condition on the other hand, the first test ought to be one-sided. The
second test, which is about the difference between treatments and is one the
researchers had no hypothesis about, is to be done two-sided.

The model with these two contrasts is a multiple linear regression model which
uses the same number of df and has the same R2 as the default one-way ANOVA
but uses these df differently. For the first contrast, the two treatments versus control,
we find a non-standardised regression coefficient B of 0.962, which is the Md

between the two parts of the contrast. The corresponding standardised regression
coefficient b = 0.223, and the 90% CI of b is [0.094; 0.351]. The one-sided p-value
is about 0.002. For the second contrast, treatment A versus treatment B, we find a
non-standardised regression coefficient B of 0.340, which is theMd between the two
treatments. The sign is positive, because the M of treatment A minus the M of
treatment B is positive. The corresponding standardised regression coefficient
b = 0.068, the 95% CI of b extends from −0.086 to 0.222, and the two-sided p-
value is 0.384.

Experiment 3: Ordinal Hypothesis, Quantitative Outcome

Experiment 1 provides an example of a linear relation between a treatment factor
and an outcome variable. However, assuming such a linear relation requires
equidistance between the levels of the treatment factor; we in fact treat the inde-
pendent variable as a variable of interval or ratio level of measurement. In
Experiment 1, where the doses are 0, 20, 40, and 60 mg, a ratio variable (i.e., 0 is a
natural 0 and hence 40 mg is twice as much as 20 mg), this makes sense. However,
what if different conditions may be orderable but there is no equidistance? For
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example, consider an experiment where mathematics education researchers have
developed two new methods for helping secondary school learners to improve their
linear algebra skills. Both methods offer a type of support that is not supported in
the way linear algebra is presented in textbooks and is conventionally taught in
classrooms. Moreover, one new method (B) offers a bit more support than the other
new method (A). In other words, we can order conventional (control), method A
(treatment A), and method B (treatment B) in terms of the degree of support they
provide but assuming equidistance in support between the methods may not make
sense. Suppose, the mathematics education researchers have solid grounds to
assume that, for novices in linear algebra, more support results in better learning
outcomes. They decide to randomly allocate a random sample of N = 159 sec-
ondary school learners who are still novices in linear algebra to the three conditions
(n = 53 each): control, treatment A, and treatment B. In each condition, participants
complete the same series of linear algebra assignments but in their
condition-specific approach. Immediately after that practice session, they complete
a post-test of fifteen items that can be considered equally difficult. Each correctly
responded item yields 1 point, hence the post-test score of a participant can range
from 0 (all items responded incorrectly) to 15 (all items responded correctly).

While the hypothesis in Experiment 1 is a linear one, the hypothesis in Exper-
iment 3 is an ordinal one. In other words, using a linear contrast like in Experiment
1 does not work here. However, the ordinal hypothesis can be translated into two
ordered one-sided tests:

H0:1: lA � lControl; and

H0:2: lB � lA:

These can also be written in one statement as:

H0: lB � lA � lControl:

The ordinal alternative hypothesis is:

H1: lControl \ lA \ lB:

Suppose, we find the following Ms and SDs. In the control condition,
M = 10.604, SD = 1.801. In treatment A, M = 11.453, SD = 2.062. In treatment B,
M = 12.113, SD = 2.136. Indeed, there seems to be an order inMs as expected. The
model with the two contrasts of interest—(1) treatment A versus control, and
(2) treatment B versus treatment A—is a multiple linear regression model which
uses the same number of df and has the same R2 as the default one-way ANOVA
(here: 0.088) but uses these df differently. For the first contrast, we find: B = 0.849
(M treatment A minusM control), one-tailed p = 0.015, b = 0.192, and a 90% CI of
b of [0.046; 0.339]. For the second contrast, we find: B = 0.660, one-tailed
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p = 0.046, b = 0.150, and a 90% CI of b of [0.004; 0.296]. Had we done a one-way
ANOVA followed up with Bonferroni-corrected post hoc comparisons—which is
what quite some researchers do in this kind of case—the two-tailed
Bonferroni-corrected p-values of these contrasts would have been 0.092 (first
contrast) and 0.276 (second contrast); six times larger than needed (i.e., two-tailed
instead of one-tailed, and Bonferroni correction instead of no correction).

Experiment 4: Ordinal Hypothesis, Dichotomous Outcome

Let us repeat the exercise of Experiment 3 with a dichotomous outcome variable.
Suppose, we design an experiment to test the same kind of ordinal hypothesis as in
Experiment 3 but the outcome variable of interest in our experiment is pass/fail. We
register our ordinal hypothesis in our study proposal that will be approved by the
local Ethical Review Board and will be undergo first-stage peer review with a
registered reports journal. The outcome of that first-stage peer review is positive, so
we can start collecting data, add the Results and Discussion section to our manu-
script and submit that to the same journal. Provided that we have adhered to the
plan outlined in the study proposal, our manuscript will get accepted for publication
regardless of the findings (Center for Open Science, 2018).

Suppose, the pass rates are as follows: 28.3% in the control condition (15 out of
53 participants), 47.2% in treatment A (25 out of 53 participants), and 67.9% in
treatment B (36 out of 53 participants). We can now run a binary logistic regression
model (see also Chap. 5) with the same two contrasts as in Experiment 3.
R2
McF = 0.078. For the first contrast, we find a b of 0.816 with a 90% CI of [0.141;

1.492] and a one-tailed p-value of 0.023. For the second contrast, we find a b of
0.864 with a 90% CI of [0.201; 1.526] and a one-tailed p-value of 0.016. Again, in
the typical Bonferroni-correction approach that we see in the research literature, the
p-values would be six times higher.

Note that contrary to previous chapters, in none of the experiments in this
chapter we report LR tests or information criteria such as AIC or BIC. The reason
for this is that these criteria work are based on two-sided testing; positive and
negative differences are treated as the same: as differences. Consequently, although
there are p-values and BFs for two-sided testing for each of two possible one-sided
directions, there are no such equivalents for AIC and BIC. For the LR test that is
done on a single comparison that is in the expected direction, a solution is to divide
the resulting p-value by two or to test the resulting p-value at 2a (i.e., a one-sided
test for a difference in a given direction at level a for that critical value corresponds
with a test in which no distinction in direction is made at 2a).
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Experiment 5: Ordinal Hypothesis, Ordinal Outcome

Finally, suppose that we had the same ordinal hypothesis and that the outcome
variable in our experiment was neither quantitative (Experiment 3) nor dichotomous
(Experiment 4) but ordinal (see also Chap. 7): poor performance (0), acceptable
performance (1), great performance (2). Performance in this final experiment is as
follows. In the control condition, we have 26 cases of poor, 16 cases of acceptable,
and 11 cases of great performance. In treatment A, we have 17 cases of poor, 16
cases of acceptable, and 20 cases of great performance. In treatment B, we have 9
cases of poor, 16 cases of acceptable, and 28 cases of great performance. SPSS
returns deviance (−2LL) values of 24.803 for the proportional odds model and
24.534 for the no proportional odds alternative. The resulting LR test is:
v22 = 0.269, p = 0.874. This outcome is very similar to the outcome in Experiment
1 in Chap. 7; we have no reason to go beyond proportional odds. R2

McF = 0.046,
and the two contrasts yield the following outcomes (Jamovi). For the first contrast,
b = 0.776, one-tailed p = 0.017 (with a LR test, dividing the resulting p-value by
two, we find p = 0.016), and the 90% CI is [0.179; 1.383]. For the second contrast,
b = 0.692, one-tailed p = 0.030 (with a LR test, dividing the resulting p-value by
two, we find p = 0.029), and the 90% CI is [0.092; 1.300]. As in Experiments 3–4,
the p-values would be six times the ones found here in the default two-sided testing
with Bonferroni correction habit.

To Reiterate: The Many Uses of 90% Confidence Intervals

Several earlier chapters in this book (Chaps. 2 and 5–9) together provide quite a
few examples from different types of experiments of how 90% CIs can be of use
even if two-sided testing is applied. After all, statistically non-significant p-values
from ‘no difference’ null hypothesis tests cannot be interpreted as evidence in
favour of that null hypothesis. Besides, p-values and BFs involving ‘no difference’
null hypotheses do not provide information with regard to whether an effect of
interest is of practical importance or it is more likely to be somewhere in a region of
practical equivalence that represents values that from a practical perspective are not
really interesting. The same 90% CI that can be used in TOST equivalence testing
to provide evidence in favour of relative equivalence can also be used to provide
evidence against relative equivalence, just like the 95% CRI has a similar function
in the Bayesian ROPE. Since rejecting practical equivalence requires two one-sided
tests as well (see Chap. 2), as stated in FOST, the same 90% CI can be used for the
decision with regard to whether or not we have sufficient evidence against or in
favour of practical equivalence. In this chapter, we remember that the 90% CI also
remains useful to understand the outcomes of one-sided tests of ‘no difference’ null
hypotheses. As seen in Chap. 9 and also in Experiment 2 in this chapter, the 95%
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CI provides a useful backup alternative when we want to apply a reasonable cor-
rection for multiple testing. Therefore, where we consider a = 0.05 as an acceptable
statistical significance level, we should report 90% CI by default, and where con-
sidered appropriate, the 95% CI in addition to the 90% CI.

To Reiterate: The Many Uses of 90% Confidence Intervals 161



11Two-Way and Three-Way Factorial
Designs

Abstract
The previous chapters in this book focus on one-factor experiments, that is: there
is only one independent variable aka treatment factor. When two or more factors
are involved, different types of effects can be distinguished: main effects,
interaction effects, and simple effects. Although experiments with four or more
factors are rather uncommon in educational and psychological research,
experiments with three factors (three-way design) and especially experiments
with two factors (two-way design) are common in these fields. This chapter
presents some important guidelines for the testing, estimation, interpretation, and
reporting of main effects, interaction effects, and simple effects. For the sake of
simplicity of the introduction, covariates are not yet included in this chapter;
they are introduced in Chap. 12 (no repeated measurements) and Chap. 15
(repeated measurements). However, the main, interaction, and simple effects
distinction and guidelines discussed in this chapter are also of use when dealing
with covariates, unless we deal with baseline measurements (i.e., prior to
treatment) in randomised controlled experiments (see Chap. 15). Two example
experiments are discussed in this chapter: first one with a two-way design, then
one with a three-way design.

Introduction

Suppose, we are interested in the effect of providing instructional support to novices
who are practicing with a systematic approach to solving a particular type of
problem and how that effect of instructional support may depend on whether or not
these learners are provided with feedback right after task practice. There is some
evidence that, for the type of problem-solving approach at hand, novices tend to
learn a bit more from practicing completion tasks (i.e., support) in which they have
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to complete the missing steps than from practicing complete tasks (i.e., having to do
all steps by themselves, no support). However, not much is known about how the
effect of providing this type of guidance depends on whether students receive
feedback about their performance right after a task or only at the end of a practice
session that involves a larger series of tasks.

We have developed an online learning environment in which high school
learners can practice their skills of solving heredity problems where the genotypes
of some family members are known but learners have to find the possible genotypes
for the other family members. Every problem is to be solved through a five-step
approach. In the support condition, the first three of these steps are already worked
out and learners have to complete the final two steps in order to solve the problem.
In the no support condition, learners have to complete all five steps autonomously,
without support. In the feedback condition, learners receive feedback on their
performance after each completed problem. In the no feedback condition, learners
receive only general feedback at the end of the practice session. For all learners, a
practice session consists of ten problems. After this practice session, all learners
complete a post-test of 20 items, each of which yields a maximum of 5 points (0 =
all steps incorrect, 5 = all steps correct), and hence the total score can vary from 0
(all incorrect) to 100 (all correct). For the sake of simplicity for the introduction of
the concepts of main, interaction, and simple effects, we are not going to delve into
psychometric questions concerning the post-test score; the latter are discussed in
Chaps. 14, 15 and 16 of this book.

Since heredity is a topic taught across high schools in the country where we
work, we have no trouble drawing a random sample of N = 240 high school learners
for our experiment. We randomly allocate them to either of four possible combi-
nations (n = 60 each): support no immediate feedback no, support no immediate
feedback yes, support yes immediate feedback no, and support yes immediate
feedback yes. In other words, we are dealing with a two-way design, in which
support (no, yes) and immediate feedback (no, yes) are the two factors, with two
levels each (i.e., no vs. yes). These numbers yield sufficient statistical power not
only for medium but also for somewhat smaller effect sizes (e.g., GPower).

Different Types of Effects: Main, Interaction, and Simple

Figures 11.1 and 11.2 present the histograms of the distribution of post-test per-
formance (0–100) and the Ms with 95% CIs in the four conditions in our experi-
ment, respectively.

The Ms and SDs are as follows. In the condition where participants received
support but no immediate feedback, M = 48.150, SD = 14.568. In the condition
where participants received neither support nor immediate feedback, M = 43.000,
SD = 16.059. In the condition where participants received both support and
immediate feedback, M = 54.083, SD = 16.152. In the condition where participants
received no support but immediate feedback,M = 63.800, SD = 12.880. Figure 11.2
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presents the Ms and 95% CIs around these Ms for each of the four conditions
(A = 0: completion, support; A = 1: autonomous, no support; B = 0: no immediate
feedback; B = 1: immediate feedback).

The pattern that we see here hints at what, depending on the field in which one is
active, is called effect modification aka moderation aka an interaction effect (e.g.,
Field, 2018): the effect of support on post-test outcome appears to depend on
whether or not learners receive immediate feedback. In our experiment, among

Fig. 11.1 Histograms of the distribution of post-test performance score (S: 0–100) in each of the
four conditions: support without immediate feedback (comp-nof), neither support nor immediate
feedback (auto-nof), support and immediate feedback (comp-f), and no support but immediate
feedback (auto-f) (Jamovi)

Fig. 11.2 Ms and 95% CIs around these Ms for each of the four conditions (A = 0: completion,
support and hence not autonomous; A = 1: autonomous, no support; B = 0: no immediate feedback;
B = 1: immediate feedback); S represents the score (Jamovi)
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learners who do not receive immediate feedback (B = 0 in Fig. 11.2), the condition
in which participants have to perform the task themselves (A = 1 in Fig. 11.2) on
average performs worse than the condition in which participants receive support
(A = 0 in Fig. 11.2, the learners who do not have to do everything by themselves).
Simultaneously, among learners who do receive immediate feedback (B = 1 in
Fig. 11.2), the condition in which participants have to perform the task themselves
on average performs better than the condition in which participants receive support.
If the lines in Fig. 11.2 were (more or less) parallel, we could speak of main effects
of support and feedback on post-test performance: the effect of support on post-test
performance would then be (approximately) the same for learners who receive
immediate feedback as for learners who do not receive immediate feedback, and the
effect of feedback on post-test performance would then be (more or less) the same
for learners who receive support as for learners who do not receive support. In such
a case, looking at simple effects would not be needed. The simple effects of support
on post-test performance are the effects of support on post-test performance (1) for
learners who receive immediate feedback and (2) for learners who do not receive
immediate feedback. Likewise, the simple effects of immediate feedback on
post-test performance are the effects of immediate feedback on post-test perfor-
mance (1) for learners who receive support and (2) for learners who do not receive
support. The study of simple effects only makes sense if we find a (substantial)
interaction effect, because only in that case the simple effects (of feedback per level
of support, and of support per level of feedback) differ (substantially).

Competing Models

In Chap. 9, we see one-way ANOVA as a special case of linear regression analysis.
As in Chap. 9 and 10 in this book, we can compute R2 for the model as a whole, but
we can now compute effect size estimates for interaction, main, and—if needed—
simple effects as well. Moreover, when treatment factors include more than two
levels (e.g., Chap. 9) but we do not have specific hypotheses with regard to effects
of interest (as in Chap. 10), a follow-up approach (cf. Chap. 9) may be needed for at
least one main or simple effect. Two-way ANOVA, a special case of multiple linear
regression generally constitutes a sound method of analysing the kind of data found
in the experiment in this chapter. In the absence of specific hypotheses with regard
to the direction of a main or interaction effect, two-sided testing constitutes the
default, and there five possible models:

Model 0: null model;
Model 1: only a main effect of support (A);
Model 2: only a main effect of immediate feedback (B);
Model 3: two main effects (A and B); and
Model 4: two main effects (A and B) plus an interaction effect (A by B).
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The interaction effect is a combined effect of the two factors and can only be
examined in a model that also includes the main effects of the two factors.
Therefore, there is no such a model as ‘Model 5: interaction but no main effects’,
and Model 4 is also referred to as full (factorial) model (i.e., all effects are present).
Given that R2 cannot decrease when we add an effect to our model (R2 adjusted can
though), R2 is lowest for Model 0 (i.e., 0) and highest for Model 4. However, if the
increase in R2 by adding an effect is minimal, the question arises whether we need
to include that effect. In the traditional ‘no difference’ NHST approach, we start
with Model 4 and compute the p-value of the interaction effect. If that p-value is not
statistically significant, we continue with Model 3 and compute the p-values of the
main effects. If one or both main effects are not statistically significant, we may
follow up with Models 1 and 2 and compute the p-value of each of the two main
effects. A more efficient way of comparing all these models is to compare all
models simultaneously in terms of information criteria such as AIC and BIC and/or
in terms of BFs (JASP; Rouder, Engelhard, McCabe, & Morey, 2016; Rouder,
Morey, Speckman, & Province, 2012; Rouder, Morey, Verhagen, Swagman, &
Wagenmakers, 2017; Wetzels, Grasman, & Wagenmakers, 2012). The model with
the lowest AIC and BIC and the highest BF is generally to be preferred, with larger
differences indicating a clearer difference between the preferred model and the other
candidate models. Table 11.1 presents the R2, AIC, BIC, and BF for each of the five
models (Models 0–4).

The best model clearly is Model 4; the gain in R2 from Model 3 to Model 4 is
quite substantial, and AIC, BIC, and BF indicate that Model 4 is to be preferred
over the other models. The logic of the BF is similar to that in earlier chapters on
the t-test and one-way ANOVA, only that the number of competing models is larger
now. In the case of a one-way ANOVA, the null model and the alternative model
constitute the two competing models and are given equal prior probability each: 0.5.
In the case of two-way ANOVA, all competing models are given equal prior
probability as well: 0.2. Generally speaking, given m number of competing models,
the prior probability of each model equals 1/m. Whether this is the best choice is
open to debate, but the rationale behind this approach is that if we have no evidence
to prefer a particular model we may as well treat them as equally likely until we
observe data with which some models become more likely while other models
become less likely. We usually use BF = 1 for the null model or, in some cases, for

Table 11.1 R2, AIC, BIC, and BF for each of the five competing models for the quantitative
outcome variable (Mplus for the R2, AIC and BIC, JASP for the BF using default priors)

Model R2 AIC BIC BF

0: null 0.000 2037.676 2044.637 1.000

1: main A 0.005 2038.557 2048.999 2.390e−1

2: main B 0.159 1998.011 2008.453 6.060e+7

3: main A & B 0.164 1998.680 2012.602 1.553e+7

4: full factorial 0.213 1986.096 2003.499 2.256e+9
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the best model. When we use BF = 1 for the null model, all models with BF < 1 are
considered worse than the null model whereas all models with BF > 1 are con-
sidered better than the null model. When we use BF = 1 for the best model (here:
Model 4), all other BFs are smaller than 1, and the inverse of each of the BFs than
indicates the BF in favour of the best model over each of the respective alternatives.
For instance, in Table 11.1, Model 4 is the best model; if we specify BF = 1 for that
model, the inverse of the BF of Model 3 indicates the strength of evidence of Model
4 over Model 3. In that case, the inverse of the BF of Model 3 would be a bit over
145, indicating (very) strong evidence in favour of Model 4 over Model 3. Given
that the only difference between these two models is the interaction effect, the
resulting BF for the difference between these models can be used as an indicator of
evidential strength of the interaction effect. In terms of model preference, the BF is
usually situated somewhere in between AIC and BIC (see also Chap. 2).

The η2 of the interaction effect is 0.049 (partial η2 = 0.059, x2 = 0.046, p <
0.001), which constitutes a small-to-medium effect (values around 0.01, 0.06, and
0.14 are generally interpreted as ‘small’, ‘medium’, and ‘large’ effects; e.g.,
GPower). The η2 of the two main effects are 0.005 and 0.159, respectively (for main
effect A, partial η2 = 0.006, x2 = 0.001, p = 0.239; for main effect B, partial η2 =
0.168, x2 = 0.156, p < 0.001).

Interaction Follow Up: Simple Effects Analysis

When Model 4 is to be preferred, we may want to follow up with simple effects
analyses. This follow up would not make sense if another model was to be pre-
ferred, because the effect of one factor on the outcome variable of interest would
likely be (approximately) the same across levels of the other factor. When Model 4
is the best model, analysing simple effects may be useful. I stress may be useful,
because tests of simple effects generally have a substantially lower statistical power
than tests for main or interaction effects. Moreover, Fig. 11.2 already indicates what
the interaction effect may look like. If apart from estimating the magnitude of the
interaction effect we have a specific interest in simple effects, we can test and
estimate one or two types of interest depending on our interest: (1) the effect of
support per level of the immediate feedback factor and/or (2) the effect of imme-
diate feedback per level of the support factor. This way, we can obtain statistical
testing outcomes and CIs or CRIs for each simple effect. However, the intervals we
obtain will probably be quite wide and perhaps not so informative. For instance, for
the effect of support among learners who receive no immediate feedback, we obtain
a 95% CI of Cohen’s d of [−0.025; 0.696] and a 90% CI of [0.033; 0.638]. Note
that the sample size of the experiment in this chapter is considerably larger than
what we often see in educational and psychological research; in the samples of sizes
that are more common in these fields, the intervals will be considerably wider. Even
with intervals of a width like in this experiment, it is difficult to establish evidence
in favour of a (meaningful) difference. Even if an interval does not include zero, the
point estimate will have to be well in the medium-to-large range (d-values well
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above 0.6 or well below −0.6) for the interval not to overlap with [−0.3; 0.3] or a
similarly reasonable region of practical equivalence.

Since we always report the Ms and SDs in our manuscripts, meta-analyses over a
series of experiments can obtain much more accurate estimates of simple effects.
Based on Fig. 11.2 and Table 11.1, we can draw the temporary tentative conclusion
that the effect of feedback is larger for learners who receive no support (A = 1 in
Fig. 11.2) than for learners who do receive support (A = 0 in Fig. 11.2) and that
practicing without support is easier in the presence than in the absence of immediate
feedback. Replication experiments and eventually a meta-analysis can help to
investigate this phenomenon further and to obtain sufficiently accurate simple
effects that are hard to obtain in single experiments.

A Note on Coding

Knowing that two-way ANOVA can be seen as a special case of multiple linear
regression, not so few researchers directly run a multiple linear regression with the
software package they use and code the factors manually. Commonly, the two
levels of a dichotomous treatment factor are then coded ‘0’ and ‘1’ (i.e., dummy
coding), and when dealing with multicategory treatment factors multiple 0/1
(dummy) variables are created. However, in ANOVA, not dummy coding but
contrast coding is applied. Statistical software packages like Jamovi show the user
how this coding is applied, and allows users to switch to different kinds of coding
(e.g., polynomial, which is sometimes useful for multicategory treatment factors as
seen in Chaps. 8 and 10) if desired. With contrast coding, what is listed as main
effect are main effects; with dummy coding, we are actually interpreting simple
effects while we may think we are interpreting main effects. Consider the following
regression equation for the predicted post-test score Sp using Model 4:

Sp ¼ B0 þ B1 � Factor A½ � þ B2 � Factor B½ � þ B3 � Interaction½ �:

In this formula, B0 is the intercept, and B1, B2, and B3 are slopes. For condition
A = 0 & B = 0, Sp = B0. In other words, using dummy coding, the intercept is the
M of condition A = 0 & B = 0. In two-way ANOVA, the intercept is the overall M
of all conditions together (e.g., Field, 2018; Howell, 2017). Next, for condition A =
1 & B = 0, Sp = B0 + B1. In other words, what one may from the output interpret B1

as ‘main effect of A’ is in fact the simple effect of A for B = 0. Likewise, for
condition A = 0 & B = 1, Sp = B0 + B2; this is not the main effect of B but the simple
effect of B for A = 0. Finally, for condition A = 1 & B = 1, Sp = B0 + B1 + B2 + B3.

From the aforementioned calculations, it follows that the difference between
condition A = 1 & B = 1 and condition A = 1 & B = 0 is: DSp = [B0 + B1 + B2 + B3]
− [B0 + B1] = [B2 + B3]. Likewise, the difference between A = 1 & B = 1 and
condition A = 0 & B = 1 is: [B0 + B1 + B2 + B3] − [B0 + B2] = [B1 + B3]. Finally, the
difference between A = 1 & B = 1 and condition A = 0 & B = 0 is: DSp = [B0 + B1 +
B2 + B3] − B0 = [B1 + B2 + B3]. In this, B1 and B2 are simple effects, and B3
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expresses the extent to which the lines in Fig. 11.2 are not parallel (i.e., the in-
teraction effect). Therefore, whether we do contrast coding or dummy coding, the p-
value we would obtain for the interaction effect is going to be the same; however,
the meaning and interpretation of the other coefficients are different. However, in
Model 3, which does not hold the interaction effect, the regression equation is as
follows:

Sp ¼ B0 þ B1 � Factor A½ � þ B2 � Factor B½ �:

In this model, we can interpret B1 and B2 as main effects; in the absence of the
interaction term, the simple effect of A on Sp is the same across levels of B and the
simple effect of B on Sp is the same across levels of A. Note, however, that using
Model 3 would only make sense if from the criteria in Table 11.1 (and eventually
the p-value of the interaction effect, which for the data at hand is <0.001) Model 3
was to be preferred over Model 4 (which is not the case for the data at hand).

When there is substantial interaction, the main effects are often difficult to
interpret. Although they are still needed in the model to estimate the interaction
effect, they may not have much meaning by themselves because they are based on
the assumption that the simple effect of A on Sp is the same across levels of B and
the simple effect of B on Sp is the same across levels of A. Of course, researchers
can still report the main effects from a contrast coded regression model (i.e.,
two-way ANOVA), but they cannot be understood without the interaction effect. In
the experiment in this chapter, for example, the main effect of A is small and not
statistically significant; this is because the main effect of A comes down to the
average of the difference in A1 versus A0 for B0 (i.e., the lower line in Fig. 11.2; a
negative slope) and the difference in A1 versus A0 for B1 (the upper line in
Fig. 11.2; a positive slope): that average is close to zero. However, the main effect
of B is the difference between the average of the two points connected by the upper
line and the average of the two points connected by the lower line; this difference is
much larger and statistically significant.

Categorical Outcome

The note on the difference between dummy and contrast coding is important,
because not so few researchers automatically apply dummy coding to predictors
when they want to perform a regression analysis with a categorical outcome.
However, the same contrast coding that is used in two-way ANOVA for quanti-
tative outcome variables can also be used for binary logistic and ordinal logistic
regression analysis, and the same holds for the types of contrasts discussed in
Chap. 10. The same goes for the model comparison strategy just discussed for
quantitative outcome variables. Consider, for example, that we had a dichotomous
instead of a quantitative outcome variable. When we have scores, dichotomising
them rarely if ever makes sense; it just results in an unnecessary loss of information
and statistical power. However, suppose that in our experiment we did not have a
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quantitative score but only a qualitative pass/fail judgement, and the findings were
as follows.

In the condition where participants received support but no feedback, 26 of the
60 participants pass. In the condition where participants received neither support
nor feedback, 23 of the 60 participants pass. In the condition where participants
received support and feedback, 39 of the 60 participants pass. In the condition
where participants received support but no feedback, 52 of the 60 participants pass.
Table 11.2 presents R2

McF along with AIC and BIC for each of the five competing
models for the data at hand.

For the interaction effect, we find an OR of 4.306 with a 95% CI of [1.337;
13.862] and a 90% CI of [1.614; 11.486]. The p-value of the interaction effect is
0.014. In other words, researchers who prefer BIC (or a statistical significance test
at a stricter significance level, such as a = 0.01 or a = 0.005; for main effect B, p <
0.001) will prefer Model 2, whereas researchers who prefer AIC or a statistical
significance test at a = 0.05 will prefer Model 4. An advantage of presenting the
outcomes of an experiment as in Tables 11.1 and 11.2 is that readers can decide for
themselves what model they would prefer.

Three Factors

Two-way designs are very common in educational and psychological research and,
to some extent, three-way designs are as well. However, two-way and three-way
designs are not always treated as they should be treated; not so few researchers treat
them as one-way designs. This is unfortunate, because treating a two-way or
three-way design as a one-way design disables us to formally test interaction effects
and comes with a substantial or even severe loss of statistical power (e.g., Leppink,
O’Sullivan, & Winston, 2017). One recent example from experimental educational
research is found in studies that focus on the effects of worked examples of learning
outcomes as measured through immediate post-testing. Consider four possible
conditions: problem-problem, problem-example, example-problem, and example-
example.

In the problem-problem condition, participants try to solve two problems A and
B that follow the same structure and are of (more or less) the same difficulty. In the
problem-example condition, participants first try to solve problem A and then study

Table 11.2 R2
McF, AIC, and

BIC for each of the five
competing models (JASP) for
the dichotomous outcome
variable

Model R2
McF AIC BIC

0: null 0.000 328.013 331.493

1: main A 0.005 328.296 335.257

2: main B 0.095 299.018 305.979

3: main A & B 0.101 299.052 309.494

4: full factorial 0.120 294.803 308.726

Different Types of Effects: Main, Interaction, and Simple 171



a worked example of problem B. In the example-problem condition, participants
first study a worked example of problem A and next try to solve problem B. Finally,
in the example-example condition, participants study worked examples of both
problems, meaning they solve nothing autonomously. Right after study, participants
individually complete the same post-test consisting of ten problems of the same
difficulty yielding a total post-test score ranging from 0 (all incorrect) to 10 (all
correct; 1 point for each correctly solved problem). Researchers who analyse the
data as one-way typically start with a one-way ANOVA and follow up with
post-hoc comparisons with Bonferroni correction. As seen in Chap. 9, this con-
stitutes an inefficient way of analysing data when specific hypotheses are available.
In this example, comparisons ought not to be made with separate sets of two groups
(as in Chap. 9) but through combinations of groups (i.e., contrasts).

In two-way ANOVA, three types of contrasts are made: main effect of first task,
main effect of second task, and interaction effect. The main effect of first task comes
down to comparing: [the average of problem-problem and problem-example] versus
[the average of example-problem and example-example]. The main effect of second
task comes down to the following comparison: [the average of problem-problem and
example-problem] versus [the average of problem-example and example-example].
Finally, the interaction effect is found in the third possible contrast: [the average of
problem-problem and example-example] versus [the average of problem-example
and example-problem]. In other words, each contrast involves a comparison ofMs of
two groups of 2n each (given n per condition). In the post-hoc follow-up on one-way
ANOVA, however, each comparison of a set of two conditions is one of the Ms of
two groups of n each. Next, a Bonferroni correction for multiple testing is added, and
the statistical power is reduced even further; all in all, the SE for comparison in the
Bonferroni-corrected post-hoc testing is more than 1.7 times the SE in two-way
ANOVA). The difference between the correct two-way ANOVA and the incorrect
one-way ANOVA is explained in more detail by Leppink et al. (2017).

Some researchers may argue that if the question is which strategy results in best
performance, motivation or whatever outcome variable is of interest,
example-example, example-problem, problem-example, and problem-problem can
be perceived as four different strategies and should therefore be treated as one-way.
The answer to this is no, because any pattern of differences between these four
strategies can be captured through one or two main effects and/or through the
interaction in a two-way analysis. For instance, if one strategy stands out from the
other strategies and the latter do not really differ from one another, this should be
reflected in the interaction effect. The only difference is that a one-way ANOVA
will come at the cost of a loss of statistical power and precision. For instance, given
four conditions of n = 32 each, a two-way ANOVA has a statistical power of about
0.80 for a medium size difference (f = 0.25; GPower) for each of the aforemen-
tioned contrasts that constitute the interaction and main effects, respectively,
whereas one-way ANOVA has a power of only about 0.64, and that power goes
down further when researchers apply a correction for multiple testing (i.e., a power
of about 0.47 when applying Bonferroni correction).
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Some other researchers may argue that the one-way approach is more easily
generalised when the sequence has more than two tasks, but again the answer is no:
a multi-factor ANOVA is then still more appropriate. Let us look at this for a
sequence of three tasks.

Different Sequences

A total of N = 240 participants is randomly assigned to eight conditions that differ
in their sequences of problems (P) and examples (E) studied for the consecutive
tasks A, B, and C (the order in these tasks being the same across conditions): PPP
(n = 30), PPE (n = 30), PEP (n = 30), PEE (n = 30), EPP (n = 30), EPE (n = 30),
EEP (n = 30), and EEE (n = 30). With these eight sequences, we can estimate the
following effects: the main effect of A (first task), the main effect of B (second task),
the main effect of C (third task), the A-by-B interaction, the A-by-C interaction, the
B-by-C interaction, and the A-by-B-by-C interaction. The latter is the three-way
interaction. Post-test performance (0–10) in the various conditions is follows: PPP:
M = 3.067, SD = 0.944; PPE: M = 4.000, SD = 0.983; PEP: M = 3.800, SD = 0.887;
PEE: M = 5.967, SD = 1.033; EPP: M = 5.167, SD = 1.085; EPE: M = 6.033, SD =
0.999; EEP: M = 7.200, SD = 0.847; and EEE: M = 6.067, SD = 1.143.

Figure 11.3 presents the Ms of each of the eight conditions with their 95% CIs
Contrary to two-way ANOVA, three-way ANOVA is best understood with two

plots. In the case of a two-way interaction, the effect of A on an outcome variable of
interest depends on the level of B. In the case of a three-way interaction, the
aforementioned A-by-B two-way interaction depends on the level of C. Figure 11.3

Fig. 11.3 Ms and 95% CIs around these Ms for each of the eight conditions (A = 0: first task = P;
A = 1: first task = E; B = 0: second task = P, lower line in both plots; B = 1: second task = E, upper
line in both plots; C = 0: third task = P, left plot; C = 1: third task = E, right plot); Ss represents the
score (Jamovi)
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hints at such a three-way interaction effect. In the left plot (i.e., C = 0: first task = P),
we see that the expected difference in post-test performance for a learner whose
second task was an example versus a problem is larger for learners who started with
an example (i.e., A = 1: first task = E) than for learners who started with a problem
(i.e., A = 0: first task = P). However, in the right plot (i.e., C = 1: first task = E), we
see that the pattern is the other way around: there is hardly any difference between
the second task being a problem or an example for learners who started with an
example, but there is a big difference in favour of the second task being an example
for learners who started with a problem. Besides, the Ms for A = 1 (i.e., first task
being an example) are consistently higher than the Ms for A = 0 (i.e., first task being
a problem), so at least at first glance, the findings appear to indicate that starting
with an example tends to yield better performance than starting with a problem.

Different Effects and Models

Researchers who choose a one-way ANOVA with Bonferroni-corrected post-hoc
comparisons follow up will find themselves in trouble: with eight conditions, the
post-hoc stage involves a total of 28 comparisons! A three-way ANOVA, on the
contrary, enables researchers to simultaneously estimate the aforementioned three
main and four interaction effects (here: F1, 232 for each effect). Table 11.3 presents
the F-values and p-values along with η2-, partial η2-, and x2-values for each of the
effects.

In other words, we appear to be dealing with a medium size (η2 = 0.060)
three-way interaction effect. The largest effect is the main effect of A and is easy to
understand from Fig. 11.3 (i.e., A = 1 consistently having higher Ms than A = 0).
Table 11.4 presents the R2 of each possible model along with AIC and BIC (A, B,
and C represent main effects, while AB, AC, BC, and ABC represent interaction
effects).

Both AIC and BIC clearly prefer Model 18, the full factorial three-way model.
Some readers may wonder if this collection of nineteen models indeed constitutes

Table 11.3 F-values and p-values along with η2-, partial η2-, and x2-values for each of the
effects in three-way ANOVA (JASP)

Effect F1, 232 p-value η2 partial η2 x2

Main A 220.949 <0.001 0.337 0.488 0.335

Main B 86.157 <0.001 0.131 0.271 0.130

Main C 30.441 <0.001 0.046 0.116 0.045

A-by-B 1.521 0.219 0.002 0.007 0.001

A-by-C 42.980 <0.001 0.066 0.156 0.064

B-by-C 2.229 0.137 0.003 0.010 0.002

A-by-B-by-C 39.643 <0.001 0.060 0.146 0.059
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the full set of possible models. Indeed, other models are not possible. For instance,
we cannot have a model with AC (i.e., the A-by-C interaction) without having A
and C in the model as well. Likewise, to estimate ABC (i.e., the three-way inter-
action), we need all underlying main and two-way interaction effects in the model
as well.

A Note on Effect Size

As mentioned in Chap. 9, η2 and x2 are common measures of effect size in
ANOVA, with the latter being slightly less biased but with a difference slowly
going to zero with increasing sample sizes (Howell, 2010, 2017). The η2 of an effect
is easily computed by hand by dividing the sum of squares (SS) of that effect by the
total SS (of all effects in the model plus residual). In the three-way experiment, for
instance, the total SS (SST) is the sum of the following eight SS:

SST ¼ SSA þ SSB þ SSC þ SSAB þ SSAC þ SSBC þ SSABC þ SSResidual:

Table 11.4 R2, AIC, and
BIC for each of the nineteen
competing models in
three-way ANOVA (Jamovi,
Mplus)

Model R2 AIC BIC

0: null 0.000 923.716 930.677

1: A 0.337 827.134 837.576

2: B 0.131 891.920 902.361

3: A, B 0.468 776.156 790.078

4: A, B, AB 0.471 777.107 794.510

5: C 0.046 914.311 924.753

6: A, C 0.383 811.721 825.644

7: B, C 0.178 880.742 894.664

8: A, B, C 0.515 756.240 773.643

9: A, B, AB, C 0.517 757.091 777.975

10: A, C, AC 0.449 786.763 804.166

11: A, B, C, AC 0.580 723.435 744.318

12: A, B, AB, C, AC 0.582 724.105 748.470

13: B, C, BC 0.181 884.748 899.151

14: A, B, C, BC 0.518 756.554 777.438

15: A, B, AB, C, BC 0.520 757.397 781.761

16: A, B, C, AC, BC 0.584 723.484 747.849

17: A, B, AB, C, AC, BC 0.586 724.144 751.989

18: A, B, AB, C, AC, BC,
ABC

0.646 688.284 719.610
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In our three-way experiment, we find the following SS: SSA = 218.504; SSB =
85.204; SSC = 30.104; SSAB = 1.504; SSAC = 42.504; SSBC = 2.204; SSABC =
39.204; SSResidual = 229.433; SST = 648.663 (the difference in the third decimal
between SST and the total of the other SS is due to round-off error). The η2 of an
effect, g2E, is:

g2E ¼ SSE=SST:

Hence, for the main effect of A we find η2 = 0.337, and for the three-way
interaction we find η2 = 0.060. Contrary to η2 of an effect, the partial η2 of an effect
is based on that part of SST that cannot be explained by other effects in the model.
Consider the difference between η2 and partial η2 as cutting a pie. Suppose, we cut a
pie into eight pieces for each of the different effects (i.e., seven in this example) and
the residual (i.e., what cannot be explained by any of the effects in the model).
These pieces are not equally big, since some effects explain more than other effects,
and the residual piece is biggest because about 35.4% (i.e., SSResidual/SST) remains
unexplained. Now, η2 (i.e., g2E in the formula) expresses what is the proportion of
the surface of the original (uncut) pie that is explained by a given effect. However,
partial η2 works like this. Suppose, we are interested in the partial η2 of the
three-way interaction. We take out from the cut pie all pieces of the main effects
and two-way interactions, so only the piece of A and the piece of residual are left on
the plate:

g2EP ¼ SSE= SSE þ SSResidual½ �:

For the three-way interaction, we find 39.204/229.433 � 0.146. The difference
between the standard η2 (i.e., g2E) and the partial η

2 (i.e., g2EP) is important for several
reasons. Firstly, the interpretation is different; while g2E responds to the question
what proportion of SST can be explained by effect E, g2EP responds to the question
what proportion of the rest of SST, after cutting out all other effects in the model. In
other words, the latter is about the proportion of that part of SST that cannot be
explained by other effects in the model that can be explained by effect E. Statistical
software packages do not always correctly label η2; for instance, although in the
SPSS version used in this book, ‘Partial Eta Squared’ correctly refers to g2EP, in
some previous versions it stated ‘Eta Squared’ where it actually provided g2EP, and
mistaking g2EP for g2E may have led not so few SPSS users to overestimate their
effects of interest (e.g., Levine & Hullett, 2002). Luckily, statistical packages such
as Jamovi and JASP include both variants of η2 (as well as x2) with their correct
labels, so that this kind of overestimation is easily avoided. Finally, for statistical
power and required sample size calculations, we use partial η2 and partial x2.
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The Bridge

In line with the QDA heuristic introduced in Chap. 1, two-way designs call for
two-way analysis, three-way designs call for three-way analysis, et cetera. Ana-
lysing two- or multi-way data as if we were dealing with one-way data comes at
cost of no longer being able to formally test interaction effects and with a sub-
stantial or even severe loss of statistical power. When dealing with two- or
multi-way data, there is no question that can be studied with one-way analysis that
cannot be studied with the much more appropriate alternative. Some readers may
wonder if we should not apply a correction for multiple testing since we are testing
several effects at the same time. The answer to this is: no, because the rationale
behind a correction is to keep the family-wise error rate at a given level. For the
main effect of a factor, the conditions that constitute that factor constitute one
family. The same holds for other main effects as well as for interaction effects. In
short, each effect can be conceived as one family. The only case in which
researchers might want to consider some correction for multiple testing is if a factor
has more than two levels and therefore a follow-up analysis on a statistically
significant main or interaction effect entails a comparison of more than two con-
ditions. In such a case, the same logic as in Chap. 9 applies, unless the availability
of one or more specific hypotheses justifies one of the approaches discussed in
Chap. 10, but the latter might also have implications for how to test the interaction
effect (i.e., any kind of interaction pattern or an expected specific type of interaction
pattern, see also Chap. 12, Experiment 6).
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12Factor-Covariate Combinations

Abstract
The examples in the previous chapters all revolve around the effects of one
(Chaps. 2 and 5–10) or two or three (Chap. 11) categorical treatment factors on
a categorical or quantitative outcome variable. However, in not so few cases, we
have at least one other, non-treatment variable measured along with our primary
outcome variable of interest. How to deal with this additional variable depends
on whether it is measured before or after the start of treatment and how it relates
to the primary outcome variable of interest. When this additional quantitative
variable is measured together with the primary outcome variable, we may in
some cases treat this additional variable as a second outcome variable that is
correlated with our primary outcome variable. When this additional variable is
measured after the start of treatment but before our primary outcome variable,
the additional variable may mediate treatment effects of interest. Finally, when
the additional variable is measured before the start of the treatment, we may
under conditions outlined in this chapter include the additional variable as a
covariate. Both covariates and mediators may moderate a treatment effect of
interest.

Introduction

How to deal with observed variables that are neither treatment factors nor outcome
variables of direct interest first of all depends on theory. Including variables to our
statistical models in a purely data-driven, a-theoretical manner may contribute to an
increased likelihood of findings not being replicable more than anything else,
especially when samples are fairly small, since findings with regard to any variable
fluctuate from sample to sample. Therefore, such a data-driven approach to variable
inclusion, which has also been called covariate fishing (e.g., Gruijters, 2016) is
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generally not recommended. Besides, even if adding a variable to our model can be
defended based on theory or common sense, how to treat this variable depends on
when this variable is measured and what is its expected relation to our primary
outcome variable of interest. In this chapter, we focus on different types of such
‘additional variables’, based on when they are measured and how they relate to the
primary outcome variable of interest, and how they can be treated in our models: as
an additional outcome variable that is correlated with our primary outcome variable
of interest (i.e., common response: two correlated outcome variables commonly
respond to a treatment variable; Experiment 1); as an additional predictor variable
aka covariate (Experiments 2, 3, and 6); as a mediator (Experiment 4); and as a
moderator (Experiment 5).

Experiment 1: Correlated Outcome Variables

In some cases, it makes sense to add an additional variable as a second outcome
variable that is correlated with the primary outcome variable of interest. For
example, suppose that in a two-group experiment (N = 130, n = 65 per condition)
on the effect of a particular type of instruction in simulation training on the effort
invested in a task we ask participants to self-rate both the effort they invested in the
(condition-specific) task just completed and the experienced difficulty of that task,
say both on a continuous VAS ranging from 0 (min) to 100 (max). Although we are
primarily interested in the effect of condition on effort, difficulty and effort are
conceptually related and are therefore likely correlated: effort is likely to increase
with difficulty. Figure 12.1 presents the scatterplot of the relation between difficulty
(D) and effort (E) for each of the two conditions (X = 0: control, X = 1: treatment).

In both conditions, the relation between difficulty and effort can be reasonably
summarised in linear terms. In the control condition, we find a Pearson’s r of 0.621,
and in the treatment condition we find r = 0.636. In other words, in both conditions,
around 40% of the variance in effort can be explained by difficulty, and vice versa.
This correlation is not so high that we may treat difficulty and effort as perhaps
measuring the same thing (i.e., r > 0.80) but is not in a range where we might call
difficulty and effort being more or less independent (e.g., 0 < r < 0.15) either.

Figure 12.2 provides so-called quantile plot to assess multivariate normality of
the residuals (e.g., Field, 2018), the variant of normally distributed residuals when
more than a single outcome variable is involved.

The more the dots deviate from the straight line, the more they deviate from
multivariate normality. In this case, the deviations are not so strong. As mentioned
in earlier chapters in this book, I am generally not a big fan of statistical significance
tests as a way to check assumptions, but Shapiro–Wilk’s multivariate normality test
is not statistically significant at any meaningful significance level (i.e., 1, 5, or
10%), W = 0.990, p = 0.431.
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Apart from multivariate normality, we can inspect the homogeneity of the
variance-covariance matrix across conditions: the matrix of the variances of the
different outcome variables and their covariances. In the case of two outcome
variables, the variance-covariance matrix consists of two variances (i.e., the diag-
onal of the matrix) and one covariance (i.e., off-diagonal, there is only one pair of

Fig. 12.1 Scatterplot of the relation between difficulty (D) and effort (E) for the control (X = 0)
and treatment (X = 1) condition in Experiment 1 (Jamovi)

Fig. 12.2 Quantile plot to
assess multivariate normality
of the residuals in Experiment
1 (Jamovi)
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variables to be correlated). In our case, the variances (and in square root form: SD)
are 23.947 (SD = 4.894) for difficulty and 57.248 (SD = 4.127) for effort in the
control condition and 17.035 (SD = 7.566) for difficulty and 67.994 (SD = 8.246)
for effort in the treatment condition. The covariance is 23.947 in the control con-
dition and 21.631 in the treatment condition. Box’s homogeneity of covariance
matrices test (Box, 1949) is not statistically significant at any meaningful signifi-
cance level (i.e., 1, 5, or 10%): v23 = 3.709, p = 0.295 (Jamovi).

Under these conditions, we can reasonably treat difficulty and effort as two
correlated outcome variables in a multivariate linear regression model that is also
called multivariate ANOVA (MANOVA; e.g., Field, 2018). Examples of statistical
packages that can do MANOVA include SPSS, Jamovi, and Stata, with the latter
also including multivariate follow-up tests which may be useful for treatment
factors that have more than two levels. For the data at hand, we find F2, 127 = 4.569,
p = 0.012. SPSS also provides a partial η2-estimate along with this multivariate test,
and in the case of a single treatment factor, η2 and partial η2 in are the same. In our
case, we find η2 = 0.067, which corresponds with a medium size effect.

With MANOVA, we need one multivariate instead of several separate (i.e.,
univariate) ANOVAs and generally gain some statistical power relative to
ANOVA. The rationale behind MANOVA and a single η2-estimate makes sense if
the variables are conceptually related, are reasonably correlated, yield residuals that
do not deviate too much from multivariate normality, and constitute a
variance-covariance matrix that is more or less the same across conditions. If
correlations between outcome variables are much smaller (e.g., smaller than 0.30)
MANOVA as an alternative to separate ANOVAs becomes more difficult to defend
and the outcomes will be more difficult to understand. Simultaneously, if correla-
tions between outcome variables are high (i.e., over 0.80), we may as well compute
one composite score for the set of outcome variables together.

Experiment 2: Covariate in a Linear Model

In cases where the additional variable is not measured along with the primary
outcome variable of interest but before the start of the experiment (i.e., before the
start of the treatment), the MANOVA approach does not make sense. After all, given
random assignment, variables measured before treatment are not affected by treat-
ment. In such a case, if we have good reasons to include a variable measured prior to
treatment in our models, we can add that variable as a covariate. If this variable is a
categorical variable, this covariate can be included in the form of an additional
factor; if it is a quantitative variable, it can be added as a quantitative covariate. In the
simplest case, we do not have to worry about treatment-by-covariate interactions.
However, we always need to check that assumption.

Consider the following example. A total of N = 200 randomly sampled Bachelor
of Science students are randomly allocated to an experiment in which two different
methods of learning inferential statistics are compared in terms of post-test score
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(0–120). Prior to the start of the experiment, all learners are asked to self-rate their
interest in inferential statistics on a 0–100 VAS. Figure 12.3 presents the scatterplot
of the relation between interest (I) and post-test score (Y) for the control (X = 0) and
treatment (X = 1) condition.

Interest is on average 68.431 (SD = 10.178) in the control condition and 69.646
(SD = 10.370) in the treatment condition, and post-test performance is on average
77.153 (SD = 6.981) in the control condition and 80.874 (SD = 6.723) in the
treatment condition. As expected, average interest is very similar for the two
conditions. In terms of post-test performance, the difference is a bit over 0.5 SD.
Post-test score and interest correlate considerably: r = 0.506 in the control condi-
tion, and r = 0.615 in the treatment condition.

The regression lines in Fig. 12.3 are more or less parallel, indicating that the
factor-by-covariate interaction is more or less zero. The magnitude of the interac-
tion effect has consequences for the statistical modelling of treatment effects (e.g.,
Leppink, 2018a, b). A nice advantage of this kind of situation is that the difference
between the regression lines, which constitutes the effect of the treatment factor, is
more or less the same across the range of the covariate. As in the case of two- or
multi-factor ANOVAs, speaking of main effects tends to make little sense when
there is substantial interaction. Whether or not we need a model with interaction
effect can be examined through a comparison of competing models as explained in
Chap. 11. Given one treatment factor and one covariate, the five competing models
are:

Fig. 12.3 Scatterplot of the relation between interest (I) and post-test score (Y) for the control
(X = 0) and treatment (X = 1) condition in Experiment 2 (Jamovi)
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Model 0: null model;
Model 1: only treatment effect (T);
Model 2: only an effect of the covariate (C);
Model 3: both treatment and covariate effect (T and C); and
Model 4: T and C as well as the T-by-C interaction effect.

Model 0 uses the observed M post-test score as the predicted post-score for any
individual, Model 1 comes down to a two-samples t-test, Model 2 is a simple linear
regression, Model 3 (i.e., main-effects only) is also known as ANCOVA, and
Model 4 is also referred to as moderated regression. Table 12.1 presents the R2

along with AIC and BIC for each of these five models.
Both AIC and BIC prefer Model 3 and from the differences in R2 it is easy to

understand why. Model 3 (ANCOVA) provides outcomes of both main effects. For
the treatment effect, we find a standardised b of 0.231 with a 95% CI of [0.119;
0.344] and a 90% CI of [0.137; 0.325]. For the effect of the covariate, we find a
standardised b of 0.541 with a 95% CI of [0.428; 0.653] and a 90% CI of [0.446;
0.635] (Jamovi).

Experiment 3: Covariate in a Categorical Outcome Model

The approach used in Experiment 2 is also applicable to models for dichotomous,
multicategory nominal and ordinal outcome variables. For example, in Chap. 6, we
deal with an experiment where the outcome variable of interest is a choice. Suppose
that some researchers do a follow-up experiment on the experiment presented in
Chap. 6, with slightly larger numbers: they randomly assign N = 400 citizens of
age group 18–75 years old to either of two conditions. In the control condition
(n = 200), participants see a 10 min YouTube video on a specific contemporary
question in EU politics. In the treatment condition (n = 200), participants see a 10
min video that covers the same content as the video in the control condition but
presents that content in a slightly different way. In both conditions, immediately
after the video, participants are asked to choose which of four different words
describes best how they feel about the EU after the video: indifferent, embarrassed,
surprised or disappointed.

Table 12.1 R2, AIC, and
BIC of the five competing
models in Experiment 2
(Mplus)

Model R2 AIC BIC

0: null 0.000 1353.809 1360.406

1: T 0.069 1341.446 1351.341

2: C 0.307 1282.362 1292.257

3: T and C 0.361 1268.363 1281.556

4: T, C, and T-by-C 0.362 1269.924 1286.415
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However, in the follow-up study, participants are asked prior to the experiment
to self-rate their mood on a VAS ranging from −5 (very bad) to +5 (very good). The
researchers want to add this variable as a covariate to their model, because they
expect that mood can explain some of the choice behaviour. The findings are as
follows. The average mood is 0.046 (SD = 1.092) in the control condition and
0.080 (SD = 0.996) in the treatment condition, very similar as expected since it is
not a function of treatment but entirely the result of random assignment. In the
control condition, 62 participants (31%) are indifferent, 22 participants (11%) are
embarrassed, 24 participants (12%) are surprised, and 92 (46%) are disappointed. In
the treatment condition, 41 participants (20.5%) are indifferent, 32 participants
(16%) are embarrassed, 40 participants (20%) are surprised, and 87 participants
(43.5%) are disappointed. Table 12.2 presents R2

McF along with AIC and BIC for
each of the five competing models for the data at hand.

AIC prefers Model 3 while BIC prefers Model 2. In other words, neither of the
two criteria prefers Model 4. Indeed, the gain in R2

McF from Model 3 to Model 4 is
minimal. Model 3, the equivalent of ANCOVA for multicategory nominal outcome
variables, provides outcomes (bs) of both main effects. For the treatment effect, we
find the following bs. For embarrassed versus indifferent, b = 0.796, p = 0.022, and
95% CI = [0.113; 1.478]. For surprised versus indifferent, b = 0.923, p = 0.005,
and 95% CI = [0.275; 1.571]. For disappointed versus indifferent, b = 0.359,
p = 0.161, and 95% CI = [−0.143; 0.860]. For the covariate, we find the following
outcomes. For embarrassed versus indifferent, b = 0.611, p < 0.001, and 95%
CI = [0.272; 0.949]. For surprised versus indifferent, b = 0.433, p = 0.007, and
95% CI = [0.118; 0.748]. For disappointed versus indifferent, b = 0.485,
p < 0.001, and 95% CI = [0.241; 0.730]. In line with previous examples, we could
also provide the 90% CIs but they are not needed in this example; the goal of this
example is to illustrate that models with covariates are not limited to quantitative
outcome variables but work for categorical outcome variables as well. Had Model 4
been the preferred one, we would have calculated three additional bs: one for the
factor-by-covariate interaction for embarrassed versus indifferent, one for that
interaction for surprised versus indifferent, and one for that interaction for disap-
pointed versus indifferent. In Model 3, we do provide a b for each of embarrassed
versus indifferent, surprised versus indifferent, and disappointed versus indifferent,
but we treat each of these bs as equal across conditions.

Table 12.2 R2
McF, AIC, and

BIC of the five competing
models in Experiment 3
(Jamovi)

Model R2
McF AIC BIC

0: null 0.000 1024.186 1036.160

1: T 0.010 1019.829 1043.778

2: C 0.020 1009.643 1033.592

3: T and C 0.030 1005.529 1041.452

4: T, C, and T-by-C 0.032 1009.176 1057.073
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Experiment 4: Mediation

In Experiment 1, the additional variable is measured along with the primary out-
come variable of interest, and in Experiments 2–3 it is measured prior to the start of
the treatment. In other cases, the additional variable is measured after the start of the
treatment but before the outcome variable of interest. In this kind of case, it is an
outcome variable of the treatment effect and a predictor variable of the outcome
variable of interest. In other words, the additional variable is an intermediate
variable in a causal chain (e.g., Hayes, 2018; Leppink, 2015b, 2017). If the treat-
ment results in differences on this intermediate variable and the latter influences the
outcome variable of interest, the intermediate variable mediates at least part of the
treatment. A form of path analysis may then be needed. Path analysis can provide
three treatment effects—direct, indirect, and total—that are related as follows:

total effect ¼ direct effectþ indirect effect:

The total effect comes down to a two-samples t-test or one-way ANOVA for the
effect of treatment on the outcome variable of interest. The direct effect is what
could be obtained through an ANCOVA in which the additional variable is treated
as covariate. Not so few researchers think that what they report from the ANCOVA
is the treatment effect ‘corrected for’ the third variable instead of the direct effect.
This is like treating a mediator as a confounder, and we erase part of our treatment
effect as if it did not exist (e.g., Leppink, 2017a). Finally, the indirect effect is that
part of the total effect of treatment that can be explained by the mediator, that is: the
part of the treatment effect that is mediated by the additional variable in the model.

Since the treatment effect of interest is the total effect, if researchers’ interest lies
exclusively in the treatment effect and are not really interested in the mediator as
one of the possible mechanisms of that treatment effect (i.e., possible because
mediation is necessary but not sufficient evidence of mechanism; e.g., Tryon,
2018), a one-way analysis will do. However, whenever researchers are interested in
the role of the mediator, path analysis constitutes a more meaningful approach than
just an ANCOVA. That said, the indirect effect can be calculated once the total
effect from a one-way analysis and the direct effect obtained through ANCOVA are
known. In other words, an appropriate combination of ANOVA and ANCOVA can
yield the same estimates of total, direct, and indirect treatment effect as the path
analysis. However, it is good to keep in mind that ANCOVA does not provide the
total treatment effect or some kind of ‘confounding-corrected’ treatment effect.

Let us look at an example. A total of N = 150 high school students are randomly
allocated to control (n = 75) and treatment (n = 75) condition in an experiment on
training grammar of a foreign language in an online learning environment. After a
condition-specific practice session, participants individually rate on a VAS from 0
(min) to 100 (max) the effort invested in the practice session. Five minutes later,
they are presented a post-test that consists of 100 sentences that they have to
complete. Each correctly completed sentence generates 1 point, hence a partici-
pant’s post-test score is somewhere between 0 (all incorrect) and 100 (all correct).
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The average effort is 60.880 (SD = 10.520) in the control condition and 48.947
(SD = 9.228) in the treatment condition, and the average post-test score is 39.000
(SD = 14.069) in the control condition and 45.267 (SD = 12.240) in the treatment
condition. Figure 12.4 presents the scatterplot of the relation between effort (E) and
post-test score (Y) for the control (X = 0) and treatment (X = 1) condition. Pear-
son’s r for the linear relation between effort and score is r = −0.805 in the control
condition and −0.676 in the treatment condition.

Contrary to what we see in Experiments 2 and 3, the conditions do not differ
only in average post-test score but in average effort as well. For post-test score, we
find: t148 = 2.910, p = 0.004, Cohen’s d = 0.475, 95% CI of d = [0.150; 0.799],
and 90% CI of d = [0.202; 0.747]. For effort, we find: t148 = −7.385, p < 0.001,
d = −1.206, 95% CI of d = [−1.552; −0.856], and 90% CI of d = [−1.496;
−0.912]. In other words, a medium size treatment effect on post-test score and a
(very) large treatment effect on effort. Table 12.3 presents R2 along with AIC and
BIC for each of the five competing models for the data at hand.

Fig. 12.4 Scatterplot of the relation between effort (E) and post-test score (Y) for the control
(X = 0) and treatment (X = 1) condition in Experiment 4 (Jamovi)

Table 12.3 R2, AIC, and
BIC of the five competing
models in Experiment 4
(Mplus); in Models 2–4, M
stands for mediator

Model R2 AIC BIC

0: null 0.000 1209.773 1215.794

1: T 0.054 1203.425 1212.457

2: M 0.553 1090.854 1099.886

3: T and M 0.586 1081.631 1093.673

4: T, M, and T-by-M 0.590 1082.088 1097.141
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AIC and BIC indicate a preference for Model 3, which includes the treatment
factor and mediator but not their interaction effect. In other words, we do not need
to treat the mediator as a moderator of the treatment effect (that would be Model 4).
Now, the total treatment effect can be found through Model 1: R2 = 0.054. Model 1
comes down to the two-samples t-test for post-test score just reported. Model 3
presents how much of the variance in post-test score treatment and effort (but not
their interaction, that would be Model 4) can explain together. Going from Model 2
to Model 3, the difference in R2 is considerably smaller than the 0.054 from Model
1 (i.e., going from Model 0 to Model 1). This is because treatment has a strong
effect on effort.

Several software packages can be used to calculate the percentage of mediation
of the treatment effect, including Jamovi, which allows one to use bootstrapping as
well. For the data at hand, Jamovi estimates that nearly 68% of the total treatment
effect is mediated by effort. Moreover, in the path model, the direct effect of
treatment is negative not positive: B = −5.654, p < 0.001, 95% CI = [−8.960;
−2.345], 90% CI = [−8.423; −2.884]. The rationale behind this is that the treatment
lowers effort and that is a good thing because higher effort predicts lower post-test
performance. Consequently, the direct effect of treatment, which is what researchers
would obtain with an ANCOVA (Model 3), is negative even though the total effect
is positive. It appears that the effect of the treatment to quite a large extent is found
in a reduction of effort during practice. However, researchers who only report
ANCOVA thinking they are controlling for a ‘confounder’ called effort would
report a negative ‘treatment’ effect, while what they were to report is actually only
that part of the treatment effect that cannot be explained in terms of effort reduction,
and the total treatment effect—which is ultimately of interest—is positive.

Experiment 5: Moderation

In some cases, the additional variable moderates the treatment effect. Suppose, the
findings of Experiment 2 would have been as presented in Fig. 12.5 and
Table 12.4.

Both AIC and BIC indicate a preference for Model 4, and Fig. 12.5 indicates
that the treatment effect is small for low levels of interest but increases with
increasing interest. Intuitively, this makes sense; students who are not interested in a
subject at all tend to be less motivated to invest in learning that subject than students
who have a genuine interest in the subject. In this case, the methods used in
Experiments 1–4 fall short because they fail to account for this interaction effect.
Instead, we need an approach similar to factorial ANOVA (see Chap. 11) to
evaluate the treatment effect at different levels of the covariate: a picked-points
analysis (Huitema, 2011) aka pick-a-point analysis (Hayes, 2018). A common
approach, which is implemented in several software packages (e.g., Hayes, 2017;
Jamovi), is to evaluate the treatment effect at three points: at the average of the
covariate (cf. ANCOVA), at one SD below the average of the covariate, and at one
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SD above the average of the covariate. Figure 12.6 presents the simple slope plot
from Jamovi resulting from that three-point comparison.

At the average of the covariate, we find: B = 7.532, p < 0.001, 95% CI =
[5.893; 9.171], and 90% CI = [6.157; 8.907]. At average −1SD of the covariate,
we find: B = 5.080, p < 0.001, 95% CI = [2.773; 7.387], and 90% CI = [3.144;
7.016]. At average +1SD of the covariate, we find: B = 9.984, p < 0.001, 95%
CI = [7.677; 12.291], and 90% CI = [8.048; 11.920]. As can already be seen in
Fig. 12.5, the treatment effect is positive at all three points. This may make some
readers wonder why bother about the interaction term and not just do ANCOVA.
The answer to that is twofold. To start, we are rarely just interested in the question if
there is ‘a difference’ but are usually interested in the magnitude of a difference as
well, and in the presence of interaction that magnitude depends on the level of the
covariate. Besides, although in this specific case the treatment effect is positive at all

Fig. 12.5 Scatterplot of the relation between interest (I) and post-test score (Y) for the control
(X = 0) and treatment (X = 1) condition in Experiment 5, an alternative scenario of Experiment 2
(Jamovi)

Table 12.4 R2, AIC, and
BIC of the five competing
models in Experiment 5
(Mplus); in Models 2–4, M
stands for moderator

Model R2 AIC BIC

0: null 0.000 1488.960 1495.556

1: T 0.177 1452.036 1461.931

2: M 0.500 1352.258 1362.153

3: T and M 0.644 1286.390 1299.584

4: T, M, and T-by-M 0.659 1279.635 1296.127
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three points, in other cases it may be negative at one or two points and positive at
the other one or two points (e.g., Leppink, 2018b). Therefore, just like a two-way
ANOVA model with interaction term is a more appropriate choice than a two-way
ANOVA model without interaction term, moderated regression is to be preferred
over ANCOVA when the treatment effect of interest depends on the level of the
covariate. The non-interaction assumption is an assumption underlying ANCOVA
that should be checked even if an interaction is not of primary interest. Speaking of
a main treatment effect, hence to pretend that a treatment effect of interest is
constant across the range of the covariate, while in fact that treatment effect differs
substantially across the range of the covariate, generally does not make sense.

Some have proposed ANCOVRES (e.g., Kane, 2013) as an alternative to
ANCOVA when there is interaction or when small samples leave researchers with a
fairly low statistical power to detect such an interaction effect. Contrary to
ANCOVA, the residuals of the regression of outcome variable on covariate are then
not pooled over conditions, but condition-specific residuals are used. Consequently,
ANCOVRES does not rely on the non-interaction assumption, and this may result
in ANCOVRES having slightly more statistical power than ANCOVA to detect a
treatment effect at the average of the covariate. The average of the covariate con-
stitutes the default comparison in both ANCOVA and ANCOVRES. This is a
problem, because the interaction remains ignored. Besides, especially when sam-
ples are somewhat smaller, using condition-specific regression slopes can be quite
tricky. As seen in Chap. 2, smaller samples come with larger deviations between
sample and population and with larger fluctuation of estimates from sample to
sample. Departures from normally distributed residuals may then also have more

Fig. 12.6 Simple slope plot from picked-points aka pick-a-point analysis: the treatment effect at
the average of the covariate as well as at average −1SD and at average +1SD, respectively
(Jamovi)
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severe consequences for the validity of model outcomes, and after we correct the df
of the residual term for estimating condition-specific slopes instead of a
condition-overall slope (Keppel, 1991; Maxwell, Delaney, & Manheimer, 1985;
Winer, Brown, & Michels, 1991) the difference in statistical power between
ANCOVRES and ANCOVA may well be zero. The only case where ANCOVRES
may really be more useful than ANCOVA is when there is a large difference
between conditions in variance of the outcome variable and/or in the pattern of
variance around the regression line. However, this kind of situation is far more
common in non-experimental than in experimental studies.

Experiment 6: Non-linearity

In not so few cases, a linear relation between the additional variable—covariate,
mediator, or moderator—and the outcome variable of interest provides a reasonable
approach because the scatterplot hints at no substantial deviation from linearity
and/or a limited sample size leave us fairly poorly equipped to detect non-linearity.
However, there certainly are cases where non-linear models are to be preferred over
linear ones (e.g., Leppink & Pérez-Fuster, 2019). How to study and interpret that
non-linearity depends not only on the sample size but on the nature of the additional
variable as well. Consider the following example. In a two-group experiment with
N = 200 Bachelor of Science in Psychology students (n = 100 per condition), two
different approaches of learning probability calculus are compared in terms of
immediate post-test performance (0–20 points, with 20 being the maximum score).
Prior to the experiment, participants are asked to self-rate their prior knowledge of
probability calculus on an integer scale from 1 (min) to 5 (max).

In the control condition, prior knowledge is rated as ‘1’ by 7 participants, as ‘2’
by 25 participants, as ‘3’ by 36 participants, as ‘4’ by 19 participants, and as ‘5’ by
12 participants. In the treatment condition, prior knowledge is rated as ‘1’ by 11
participants, as ‘2’ by 24 participants, as ‘3’ by 37 participants, as ‘4’ by 20
participants, and as ‘5’ by 8 participants. Researchers who prefer to treat prior
knowledge as a variable of interval level of measurement calculate the Ms and SDs
for the two conditions: in the control condition, we find M = 3.060 and SD =
1.118; in the treatment condition, we findM = 2.900 and SD = 1.096. Let us agree
for the sake of the example that this approach is justifiable. However, others might
argue that prior knowledge is a variable of ordinal level of measurement. If we
follow the latter approach, prior knowledge can be added as a second factor in a
two-way ANOVA. If we consider prior knowledge of interval level of measure-
ment, we can treat it either as a second factor in two-way ANOVA—after all, it is
still an integer variable—or as a quantitative covariate. Either way allows us to do
the model comparison as in Experiments 2–5 (Models 0–4). Let us take a closer
look at both options.
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Figure 12.7 presents the EMM plot of a two-way ANOVA treating condition
(X = 0: control, X = 1: treatment) and prior knowledge (P: 1, 2, 3, 4, 5) as factors
that may have an interaction effect on post-test score (Y) and Fig. 12.8 demonstrates
a quantile plot of the residuals.

The quantile plot indicates no substantial deviations from normality. For the
interaction effect, we find F4, 190 = 1.347, p = 0.254, η2 = 0.015, partial
η2 = 0.028, and x2 = 0.004. In other words, a small interaction effect that is not
statistically significant at any meaningful significance level (i.e., 1%, 5%, or 10%).
Table 12.5 presents R2, AIC, and BIC of each of the usual Models 0–4.

Fig. 12.7 EMM plot of a two-way ANOVA treating condition (X = 0: control, X = 1: treatment)
and prior knowledge (P: 1, 2, 3, 4, 5) as factors that may have an interaction effect on post-test
score (Y) in Experiment 6 (Jamovi)

Fig. 12.8 Quantile plot of
the residuals of two-way
ANOVA treating condition
(X = 0: control, X = 1:
treatment) and prior
knowledge (P: 1, 2, 3, 4, 5) as
factors that may have an
interaction effect on post-test
score (Y) in Experiment 6
(Jamovi)
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AIC and BIC both prefer Model 3. Now, if we prefer to view prior knowledge as a
variable of interval level of measurement, we can also use Model 3 to test poly-
nomial contrasts for prior knowledge, given five levels of prior knowledge (Jamovi):
linear (B = 4.749, p < 0.001), quadratic (B = −3.020, p < 0.001), cubic (B = 0.658,
p = 0.057), and quartic (B = −0.213, p = 0.447); and for the treatment effect, we
find: F1, 190 = 6.498, p = 0.003, η2 = 0.025, partial η2 = 0.046, and x2 = 0.022.
Some statistical packages, such as SPSS, can help us obtain AIC and BIC for the
models that treat the relation between prior knowledge and post-test score as linear,
quadratic, cubic, and quartic. For the linear model, we find: AIC = 910.072 and
BIC = 923.265. For the quadratic model, we find: AIC = 858.304 and BIC =
874.796. For the cubic model, we find AIC = 856.410 and BIC = 876.200. For the
quartic model, we find AIC = 857.811 and BIC = 880.899. The latter are the same
as the ones we see for Model 3 in Table 12.5, because the quartic model uses the
same df = 4 for the effect of prior knowledge as Model 3 in Table 12.5. The other
three models use fewer df: the cubic model 3 df, the quadratic model 2 df, and the
linear model only 1 df.

AIC prefers a cubic model, whereas BIC prefers a quadratic model. Although
different researchers may use different criteria (p-values, AIC, BIC) to decide
whether a quadratic or a cubic model is to be preferred, all will agree that to treat the
relation between prior knowledge and post-test score as linear (cf. the linear model)
is not a good idea.

If there was substantial treatment-by-prior-knowledge interaction, the interaction
effect could also take the form of a polynomial and same kind of comparison of
linear, quadratic, cubic, and quartic could be applied to that interaction effect.
Regardless of whether the relation between prior knowledge and post-test score was
linear or non-linear, as in linear models (e.g., Experiments 2, 4, and 5) the inter-
action effect would be linear if there was a constant increase or a constant decrease
in distance between the condition-specific regression lines with increasing prior
knowledge.

Table 12.5 R2, AIC, and
BIC of the five competing
models in Experiment 6,
treating treatment (T) and
prior knowledge (P) as
categorical variables (Mplus)

Model R2 AIC BIC

0: null 0.000 978.265 984.862

1: T 0.013 977.567 987.462

2: P 0.454 865.136 884.926

3: T and P 0.479 857.811 880.899

4: T, P, and T-by-P 0.494 860.216 896.498
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The Different Roles of ‘Third’ Variables

Additional or so-called ‘third’ variables, even though we are often not really
interested in them, may help us gain a better understanding of a treatment effect of
interest. Mediators may help us to gain an understanding of one of the potential
mechanisms of a treatment effect (i.e., how a treatment effect works, though see
Chap. 1 for a note of caution, hence the addition ‘potential’ in one of the potential
mechanisms), moderators may help us think in terms of different effects of a
treatment under different conditions, and even if an additional variable is neither a
mediator nor a moderator it may constitute a good covariate because it helps to
increase the statistical power for a treatment effect of interest. Note that the
examples in this chapter all use a single additional variable next to a single treat-
ment factor. When sample sizes are large enough, it is possible to deal with
combinations of more than one treatment factor and more than one mediator,
moderator or covariate. The steps discussed in this chapter hold for these extensions
as well, but extra steps will have to be taken. For instance, in an experiment with
two treatment factors and one covariate or in an experiment with one treatment
factor and two covariates, the non-interaction assumption needs to be checked for
several combinations of variables (cf. the three-way example in Chap. 11).

Early on in Chap. 1, I state that we cannot just treat quasi-experimental data as if
we were dealing with data from a randomised controlled experiment, and that doing
so comes at the risk of inappropriate conclusions and recommendations for future
research and practice in a field. If our groups to be compared are pre-existing
instead of randomised groups, they may already differ in several key variables,
observed and unobserved, to degrees that are very unlikely in true experiments.
Adding covariates to ‘correct for confounding’ does not guarantee a solution to this
problem (see also Chap. 15). It is quite common to add one or more covariates in a
quasi-experiment in an attempt to control for differences in key variables prior to
the start of treatment. This is problematic for a number of reasons.

Firstly, substantial differences between groups may lie in key variables that have
not been measured and that would, due to appropriate randomisation, probably
differ (much) less in a true experiment. In a true experiment, differences in key
unobserved variables A, B, C, D, E, and F will, prior to the experiment, vary around
zero from somewhat or slightly in favour of the control condition for some variables
(e.g., A, D, and E) to somewhat or slightly in favour of the treatment condition for
the other variables and can be expected to cancel each other out across the range of
unobserved variables. In a quasi-experiment, it is possible that the difference on
most or all of variables A–F is in favour of the same condition prior to the treat-
ment. This is problematic partly because we cannot really correct for variables we
have not observed.

Even in the highly unlikely case that substantial differences existed only in
observed variables—say covariates G and H—we have problems. Predictor vari-
ables in the regression models discussed in this and previous chapters should
preferably be uncorrelated or otherwise correlate as little as possible. In a factorial
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design where every cell has the same number of participants (e.g., N = 160 ran-
domly allocated to the four combinations or cells in a 2-by-2 design yielding n = 40
for each cell), the correlation between factors is zero. In a randomised controlled
experiment which includes a covariate measured prior to the start of treatment,
randomisation will usually result in minor differences on the covariate between
groups, resulting in a correlation fairly close to zero. In quasi-experiments, larger
differences may be more likely to occur, and the larger the differences the more
problematic. Adding the covariate in an attempt to ‘correct for confounding’ will
not solve the problem; that step will not magically provide us with the ‘pure’
treatment effect. All that happens when we add a covariate, is that the Md between
groups is evaluated at the average of the covariate (and perhaps at some other
values of the covariate if the covariate moderates that Md). When pre-existing
groups (subpopulations) by nature differ substantially on the covariate at hand, a
comparison at the average of that covariate is a counterfactual that may have little
meaning if any. Such a comparison is then based on an incorrect assumption of
regression towards a common mean on the covariate while in fact there is regression
towards different means on that covariate (see also Chap. 15). Besides, even if there
is substantial difference on the covariate in the sample but not in the population—
which may well happen for example when dealing with conveniently available
pre-existing groups (i.e., neither random sampling nor random allocation)—more
correlation between predictor variables in a sample comes with higher SEs and thus
reduced statistical power and precision for group differences of interest. As a rule of
thumb, the more we have to correct from a sample to a population, the more our SEs
are inflated and more power and precision we lose.

Simultaneously, while variables measured after the start of treatment and before
the outcome variable of interest may serve as mediators in randomised controlled
experiments, we may not be able to tell to what extent differences in that potential
mediators already existed prior to the start of the treatment in the case of a
quasi-experiment. Baseline measurements, regardless of what statistical approach
we use to test and estimate them, may in quite a few educational and psychological
research settings not provide a reasonable solution to the problem. When the out-
come variable of interest is about learning, for example, we will likely face an
assessment and learning paradox (Leppink, 2018c): the very measurement of
knowledge or skill at a given point in time can itself influence learning. In other
words, by adding a pre-test on say probability calculus when the post-test will
measure probability calculus as well, we are most probably adding an effect to our
model. To investigate the effect of that addition, we would need to consider pre-test
itself as an additional factor (i.e., pre-test: yes vs. no). Again, this is more feasible in
true experiments than in quasi-experiments.

Interpreting effect size estimates and other outcomes of a meta-analysis over a
series of non- or quasi-experimental studies as if the underlying studies were true
experiments is problematic for the same reasons outlined in the previous. For
instance, in a quite widely used and cited meta-analysis by Grynszpan, Weiss,
Perez-Diaz, & Gal (2014), three types of pre-post designs were identified depending
on the control condition used: (1) studies on an intervention’s efficacy using control
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groups of participants with Autism Spectrum Disorder who did not receive the
intervention; (2) studies on learning characteristics of people with Autism Spectrum
Disorder that relied on control groups of participants not diagnosed with Autism
Spectrum Disorder; and (3) studies on the feasibility of an intervention that were
devoid of a control group. Several of the studies called ‘experiment(s)’ did not
apply randomisation, yet that constitutes one of the key features to speak of an
experiment in the first place. Several studies included applied some form of
matching by age, gender, symptom severity, or cognitive abilities. Why and how
matching for these covariates could create groups that on characteristics not mat-
ched for and not randomised either were comparable, remains unclear. Possibly in
the majority of studies included the evaluator was not blind to group allocation and
that may have had an influence on the outcomes in those studies. Correlations of
variables like age with outcomes of interest are interpreted in terms of causal
relations (e.g., age influencing or not influencing the outcome). Such conclusions
cannot be drawn even in well-designed randomised controlled experiments, because
age is not a factor that we can randomise like we can do with treatment factors. If
people with Autism Spectrum Disorder in different age groups tend to receive
somewhat different treatments—for instance: in technology-based interventions for
Autism Spectrum Disorder, robots may be used more often with kids while
applications (apps) may be used more frequently with adults—differential type of
treatment may fully explain the apparent ‘causal’ relation between age and an
outcome variable of interest (e.g., learning, behaviour change). Apart from the fact
that most of the methodological and statistical choices made in the article reporting
on the meta-analysis are not or poorly explained, and the main aim of the
meta-analysis appeared to reach ‘p < 0.05’ for the mean effect size estimate more
than anything else (which would surely not be the case if some correction for
publication bias was applied), with such a heterogenous collection of studies most
of which do not meet some vital criteria to be called experiments the whole idea of a
meta-analysis becomes questionable. Most of the conclusions drawn by the authors
of this meta-analysis article simply cannot be drawn.

In line with the statement in Chap. 1, the reasons outlined here to refrain from
treating data from a quasi-experiment as if that data came from a true experiment
should not be interpreted as a recommendation against doing quasi-experimental
research. Quasi-experiments can be very useful and may in not so few settings even
make more sense or at least be more feasible than true experiments; we should just
be aware of the dangers of using statistical methods that go well in experiments and
interpreting the outcomes the same way as if we were doing an experiment. Even in
the context of a meta-analysis, we cannot just include true experiments and other
types of studies in the same meta-analysis and treat all studies as if they were
experiments.
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Part IV
Multilevel Designs



13Interaction Between Participants

Abstract
For the sake of introduction of all the concepts thus far, the example experiments
in previous chapters are about individual participation of participants and a few
other conditions (e.g., no twins, family members or natural groups otherwise)
that likely do not invalidate the assumption of individual participants counting as
independent observations. However, as in natural settings, increasing numbers of
experiments have to deal with some kind of interaction between participants
prior or during the experiment (e.g., twins, family members, students from the
same learning groups, employees or patients from the same centre). In such
cases, independence of observations is an unrealistic assumption. Whether a
dependence results from natural ties or from an interaction component explicitly
incorporated in an experiment, we need to account for that dependence in our
statistical models. Three different types of situations are discussed in this
chapter: dyads (e.g., couples), small-size groups (e.g., project teams), and larger
groups or social networks. In each of these types of situations, individuals are
treated as actors nested within higher-level actors or units (e.g., pairs, teams,
centres or cliques). Also discussed in this chapter is how failing to account for
this kind of data structure (dependence) can result in substantial distortions of
our perspective on a treatment effect of interest.

Introduction

As discussed in Chap. 1, SUTVA (stable unit treatment value assumption) is an
important assumption in causal inference, and under this assumption, a treatment
applied to one participant does not affect the outcome of another participant. In
experiments where participants undergo treatment and are measured individually,
SUTVA may well hold. However, when a component of interaction is introduced,
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things get tricky. In this case, the treatment applied to one participant may influence
the outcome of another participant through the interaction between participants. This
is problematic especially if the interaction involves participants from different con-
ditions. When the interaction occurs within but not between conditions, there may be
no problem, especially if interaction is natural in the kind of behaviour that is studied.
For example, for researchers who are interested in comparisons involving different
types of group learning, it appears natural to apply condition-specific treatment to
groups of participants. In some cases, these groups may be a random sample of
existing groups from a population of amuch larger number of existing groups. In other
cases, individual participants may be sampled randomly, then randomly allocated to
learning groups, and these randomly composed groups are then allocated randomly to
treatment conditions.We can then account for the interaction and interpret a treatment
effect of interest without fearing conditions influencing each other.

Experiment 1: Dyads

In the simplest case, the interaction between participants lies in working in dyads
(i.e., pairs, teams of two participants) to perform a particular kind of task. In some
experiments, the outcome variables of interest may be measured while the inter-
action takes place, whereas in other experiments the outcome variables may be
measured after the interaction. In the context of learning dyads or learning groups,
an example of measuring an outcome variable while the interaction takes place is
found in a short questionnaire on effort or motivation during the group learning
session, and an example of an outcome variable measured after the interaction is
found in a post-test or examination after the group learning session. Even if the
post-test or other kind of outcome variable of interest is measured after the inter-
action, learners from the same group will likely yield somewhat more common
responses on an outcome variable of interest than randomly drawn learners from
different groups. This tendency can be estimated through the ICC. If pairs or groups
of participants did not interact, the ICC might well be 0, as in experiments where
everyone received individual treatment. However, where pairs or groups of par-
ticipants interact, likely ICC > 0, and that has to be accounted for in our statistical
models and required sample size calculations.

Required Sample Size

Chapter 1 includes a formula to compute the design effect.

design effect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n� 1ð Þ � ICC½ �ð Þ
p

:

In this formula, n is the sample size per cluster. In the case of dyads, n = 2, so
the design effect formula comes down to:
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design effect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ICCð Þ
p

:

For ICC = 0, the design effect is 1; for ICC = 0.10, the design effect is about
1.049; for ICC = 0.20, the design effect is about 1.095. We also recall from Chap. 1
that the square of the design effect can be interpreted as the factor by which we
would need to multiply our total sample size (MN) to achieve the same precision as
if ICC = 0. For n = 2 (i.e., dyads), this comes down to:

MN ¼ 1þ ICC:

In other words, the ICC can be interpreted directly as a proportion of increase in
total sample size N given the departure from ICC = 0. Thus, ICC = 0.10 would
correspond with a 10% increase, and ICC = 0.20 with a 20% increase. Now, at first
it may seem that larger cluster sizes n come with a much higher MN. This is because
given total sample size N and cluster sizes n, fewer groups will be randomised when
n is larger. However, larger n may also come with lower ICC values. Succinctly
put, in learning groups of 10–20 students, ICC values in the 0.05–0.20 range may
be common, whereas intensive 1-on-1 interaction in dyads may well create an ICC
in the 0.30–0.60 range. Martin, Bobis, Anderson, Way and Vellar, (2011) provide a
very good example of this kind of variation in the context of psycho-educational
phenomena.

If we consider that ICC = 0.50 is a plausible estimate in a given context with
dyads, the above formula indicates that we would have to increase our sample size
by 50%. Note that in the very extreme case of ICC = 1, the maximum possible ICC
—which we would obtain if there were differences between pairs but no differences
within pairs—we would need to increase our sample size by 100%: that would come
down to doubling the sample size. How does this make sense? Well, if each pair
yields two identical scores, the number of independent observations is reduced to the
number of pairs, that is: we have one independent observation for each pair while
ICC = 0 would generate two independent observations for each pair. Hence, when
there are differences between pairs (which is usually the case) but within pairs
outcomes are always the same (i.e., ICC = 1), we have to double the number of pairs
to have the same statistical precision and power as if we were dealing with indi-
viduals. In a two-group experiment with n = 64 participants per condition, we would
then need 64 pairs per condition, hence a total sample size of 256 instead of 128.

Consider the following example of an experiment involving interacting dyads.
Suppose, researchers are interested in a comparison between two types of learning a
foreign language in pairs. After all, language learning involves among others
practice with peers. Initially, this practice takes the form of exchanging small
sentences in turns. Next, bit by bit, sentences are supposed to become more elab-
orate, and eventually we get to the level of having short and ultimately longer
dialogues. Let us call these two types of learning the control and the treatment
condition. The researchers have no idea which of the conditions will yield better
outcomes on a post-test (score: an integer ranging from a minimum of 0 to a
maximum of 25), so they decide to opt for two-sided testing. They expect that
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having participants learn in pairs will likely create an ICC in of about 0.40.
Knowing that in the case of ICC = 0, a two-group experiment with N = 128 or
n = 64 per condition would yield a statistical power of 0.80 for a difference of
d = 0.50 testing two-sided with a good-old-fashioned Student’s t-test at a = 0.05,
the authors reason that to achieve the same statistical power with ICC = 0.40, they
will need N = 128 * 1.40 = 179.2. They have logistic means for 180 participants so
they decide to randomly recruit N = 180 participants, randomly assign them to
K = 90 pairs, and then randomly allocate the K = 90 pairs to the two treatment
conditions such that each condition has k = 45 pairs.

Mixed-Effects Modelling (1): Estimating Random Effects

Figures 13.1 and 13.2 present the histogram and boxplot of the distribution of
post-test score (S) for the control (X = 0) and treatment (X = 1) condition,
respectively.

In the control condition, post-test score ranges from 10 to 21, M = 15.700, and
SD = 2.654. In the treatment condition, post-test score ranges from 10 to 22,
M = 14.789, and SD = 2.758. The ICC can now be estimated through a mixed-
effects model. The models used in earlier chapters in this book are so-called fixed-
effects models, because the treatment effects of interest are fixed effects and we have
not estimated any random effects other than the residual term. In the experiment at
hand, pair and individual constitute two hierarchical levels, with pair constituting
the upper level (level 2) and individual the lower level (level 1). At the level of
individual, we cannot estimate random effects. However, at the level of pair, we can
estimate a random effect. In a fixed-effects regression model for data from a
two-group experiment, the intercept and slope relate the Ms of the control and
treatment condition. These fixed-effects terms can still be estimated in mixed-effects
models. However, now each pair has its own intercept around which the individual

Fig. 13.1 Histogram of the
distribution of post-test score
(S) for the control (X = 0) and
treatment (X = 1) condition
(Jamovi)
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scores vary. In the extreme case that there is no variation within pairs, all variance is
variance between pairs and hence ICC = 1. Given a particular variance between
pairs, the more variation within pairs, the more ICC goes down. In the extreme case
that the variance between pairs is zero but that within pairs is not, ICC = 0.

In experiments like the one at hand, pair-level intercepts are called random
effects because we assume the pairs to result from random sampling and want to
generalise to a population of possible pairs. This is an important distinction with
fixed effects like a treatment effect. A treatment factor comes with predefined
conditions; generalisation takes place from the sample of these predefined condi-
tions to a population of these predefined conditions (e.g., Leppink, 2015a). The set
of prespecified conditions is not some random sample of possible conditions to
which we generalise; we are exclusively interested in this set of prespecified con-
ditions. In line with earlier chapters in this book, fixed effects such as treatment
effects can be estimated using FIML. In some statistical packages, this is simply
called ‘maximum likelihood’ (ML). However, for random effects such as the
pair-level intercepts variance, FIML results in somewhat underestimated effects,
and REML is therefore recommended as an alternative to FIML for random effects
(e.g., Tan, 2010; Verbeke & Molenberghs, 2000). For the kind of models suitable
for the experiment at hand, many statistical packages can do the job, including
Stata, SPSS, Mplus, and Jamovi.

In sum, we are dealing with a mixed-effects model, because the treatment effect
of interest is a fixed effect, and the pair-level RI variance is a random effect. We are
not adding the latter because of a genuine interest—our interest lies in the treatment
effect—but we need to include that random effect to account for the correlational
(i.e., dependence of observations) structure, unless it is so small that ICC is very
close to zero (i.e., ICC < 0.01). Using REML in Jamovi, we find ICC = 0.570
when we assume the means of the conditions to be different and ICC = 0.579 when
we assume the means of the conditions to be the same. Unless the difference in
means is really zero or so close to zero that we may as well call it zero, treating the

Fig. 13.2 Boxplot of the
distribution of post-test score
(S) for the control (X = 0) and
treatment (X = 1) condition
(Jamovi)
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means as different in the estimation of ICC is more appropriate. The reason for that
is the following. In a model that includes fixed effects and a RI term, the resulting
ICC is:

ICC ¼ VRI= VFIXED þVRI þVRESð Þ:

If no fixed effects were estimated or VFIXED was 0, VFIXED would be dropped
from the last equation. Not including fixed effects while they should be included is
likely to result in an overestimation of ICC, because what should be seen as VFIXED

is then attributed partly to VRI and partly to VRES and likely such that the resulting
ICC not accounting for VFIXED is slightly higher than the ICC in which VFIXED is
appropriately accounted for. This does not hold only for treatment conditions in a
randomised controlled experiment; there are good examples of how computing a
Cronbach’s alpha over a group of experts and a group of novice participants
together provides a heavily inflated outcome compared to when that Cronbach’s
alpha is estimated for the two groups separately (e.g., a rather extreme example
from Cook, 2015: well over 0.9 when treating experts and novices as one group,
equivalent to not accounting for VFIXED, instead of hardly over 0.6 when including
VFIXED hence correctly treating experts and novices as distinguishable fixed-effect
groups).

Analogous to the LR test for fixed effects, which uses FIML, we can perform a
LR test for random effects using REML. This way, we can test whether a random
effect of interest differs significantly from 0 (i.e., if a random effect was 0, we would
not need it). For ICC = 0.570, the LR test using REML yields: v21 = 35.191,
p < 0.001. The v2-test is one of df = 1, because the RI variance is a single estimate,
hence we do not need more df. With regard to the statistical significance level, some
may suggest to compare the p-value with significance level a as in a two-sided test,
whereas others may argue to divide the p-value by two as in a one-sided test,
because given one more complex and one simpler model the direction of the
difference between the two models in what they can explain is always known.
Either way may be defended, as long as we justify our choice.

Most statistical packages also allow researchers to compare a model with and
without a random effect in terms of AIC, BIC or information criteria alike. With
fixed effects, competing models can be compared in terms of AIC and BIC using
FIML (as in the earlier chapters in this book). With random effects, REML is more
appropriate than FIML and this comes with a problem at least for BIC. The penalty
in BIC to protect against overfitting combines the number of parameters in a model
and the sample size. In fixed-effects models, where a sample size of N can be
interpreted as N number of independent observations, this is fine. However, in
mixed-effects models, what N represents is open to discussion and the correction
applied by BIC may then be too severe (e.g., Delattre, Lavielle, & Poursat, 2014;
Fitzmaurice, Laird, & Ware, 2004; Hedeker & Gibbons, 2006). When random
effects are large, like the ICC estimating the RI variance in the experiment at hand,
BIC will favour a model with that random effect over a model without that random
effect. However, when effects are more modest yet still possibly substantial, BIC
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may prefer a model without random effect (i.e., assuming ICC = 0) while actually a
model with random effect makes more sense even though the ICC seems fairly
‘small’ (e.g., 0.05). Furthermore, while given a particular random effects structure,
different software packages provide the same AIC and BIC values for the fixed
effects (i.e., using FIML), under REML the outcomes of AIC and BIC may differ
somewhat across packages (e.g., Delattre et al., 2014) and some packages do not
even provide BIC under REML (e.g., Jamovi).

Decisions on the random effects structure in an experiment should best be based
on a combination of common sense and LR testing under REML, with p-values
from the LR test to be divided by two or to be tested at 2a (cf. one-sided testing
explained in previous chapters). Common sense means staying as closely as pos-
sible to the features of the experimental design. In the experiment at hand, this
comes down to a simple decision of including or excluding a RI variance. The ICC
is large and the LR test under REML is statistically significant; in this case,
including the RI variance makes sense.

Mixed-Effects Modelling (2): Estimating Fixed Effects

The decision on the inclusion of the RI variance has importance for testing and
estimating the treatment effect of interest. If we were to estimate that treatment
effect without including the RI term (i.e., a fixed-effects model), we would find for
B (i.e., Md): B = −0.911, t178 = −2.258, p = 0.025, and a 95% CI of the B of
[−1.707; −0.115]. In a mixed-effects model which includes the RI term and uses
FIML for the estimation of fixed effects, we find (Jamovi, SPSS): t90 = −0.911,
p = 0.073, and a 95% CI of Md of [−1.894; 0.072]. The point estimate is the same,
because n = 2 across clusters (i.e., pairs) and no data is missing. However, the CI is
wider and consequently the p-value is higher as well. In the fixed-effects model, we
overestimate the effective sample size by incorrectly assuming ICC = 0; the higher
the ICC, the more the reduction in effective sample size relative to the total sample
size (N).

In our mixed-effects model, under FIML, we find AIC = 842.199 and BIC =
851.778 for Model 0 (i.e., H0: no treatment effect) and AIC = 840.958 and
BIC = 853.730 for Model 1 (i.e., H1: treatment effect). Performing a LR test under
FIML for the treatment effect, we find: v21 = 836.199 (i.e., -2LL of null model)—
832.958 (i.e., -2LL of alternative model) = 3.241, p = 0.072.

Some statistical packages, such as Jamovi, also provide a marginal and condi-
tional R2 (henceforth: R2

M and R2
C) for each model. While R2

C combines the fixed
and random effects, R2

M is about the fixed effects and can therefore be interpreted in
a similar fashion as R2 in fixed-effects models (Nakagawa, Johnson, & Schielzeth,
2017; Nakagawa & Schielzeth, 2013). In the computation of both R2

M and R2
C, the

denominator is the sum of fixed-effects variance (VFIXED), random-effects variance
(VRANDOM), and remaining (i.e., lowest-level) residual variance (VRES). However,
the numerator is the sum of VFIXED and VRANDOM in the case of R2

C but only
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VFIXED in the case of R2
M (e.g., Nakagawa et al., 2017). In other words, the

formulae of R2
M and R2

C are:

R2
M ¼ VFIXED= VFIXED þVRANDOM þVRESð Þ; and

R2
C ¼ VFIXED þVRANDOMð Þ= VFIXED þVRANDOM þVRESð Þ:

Note that if there are no random effects to be included, VRANDOM is 0, and hence
R2

C = R2
M = R2 of a fixed-effects model. Note also that the difference between R2

C

and R2
M can be interpreted as R2

R:

R2
R ¼ R2

C � R2
M ¼ VRANDOM= VFIXED þVRANDOM þVRESð Þ:

With this, we are effectively back to the formula of ICC. In an experiment, where
the interest lies in fixed effects and where random effects are only included to
account for the data structure so that appropriate testing and estimation outcomes
can be acquired for the fixed effects of interest, R2

R and R2
C are usually not really of

interest, but R2
M is. In the experiment at hand, we find R2

M = 0.028. Moreover,
some may wonder if we can still use effect size estimates such as Cohen’s d or
standardised b, like in fixed-effects models. This is where opinions among scholars
diverge. Some argue that in mixed-effects models, the lowest level variance is “the
amount of variation in the outcome measure attributable to the individual obser-
vation after appropriate controls have been made” (Schagen & Elliot, 2004, p. 13)
and therefore state that “such calculations are considered appropriate because they
explicitly model the extent and impact of clustering in the data” (Schagen & Elliot,
2004, p. 13). However, doing so will result in inflated effect size estimates, and very
much so when ICC values are substantial. In the extreme case that VRES goes to 0
because the random effect(s) included in a model can fully explain the residuals,
effect size estimates go to infinity.

In the experiment at hand, VRES is 3.167. If we use this to estimate Cohen’s d,
we obtain d = −0.512. However, when we use VRES from a fixed-effects model, we
find d = −0.337. This is quite a difference, and d = −0.337 is more in line with
Fig. 13.1 (i.e., with a difference of 0.5 SD or more, we would see a somewhat
clearer difference in location of the histograms). Besides, the approach proposed by
Schagen and Elliot (2004) is not consistent with the formulae of R2

R, R2
C, and R2

M;
we do not leave out VRANDOM of the nominators of these three R2-statistics, so why
would we do that when estimating effect sizes?

Finally, we have already seen that the fixed-effects and mixed-effects model,
given constant n per cluster (i.e., 2) and no missing data, yield the same point
estimate of Md. In that light, it makes much more sense to adjust the 95% CI (or the
90% one when we are using a 90% CI) for clustering by computing the bounds of
d from the ICC-adjusted bounds of Md (i.e., −1.894 and 0.072). The fixed-effects
(i.e., ICC-uncorrected) model yields a 95% CI of d of [−0.630; −0.042]. In the
mixed-effects (i.e., ICC-corrected) model, we then find a 95% CI of [−0.700;
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0.027]. This can also be done when n is not constant across clusters (i.e., due to
starting with unequal n and/or due to missing data), just that in that case not just the
interval but also the point estimate will differ from what we would obtain with a
fixed-effects model.

Experiment 2: Groups

If instead of pairs, we have larger groups of learners, the factor by which we would
need to multiply our total sample size (MN) comes down to:

MN ¼ 1þ n� 1ð Þ � ICC½ �:

If we deal with groups of n = 10 each and it is reasonable to expect ICC = 0.20:

MN ¼ 1þ 9 � 0:20½ � ¼ 1þ 1:8 ¼ 2:8:

For ICC = 0.10, we would find:

MN ¼ 1þ 9 � 0:10½ � ¼ 1þ 0:9 ¼ 1:9:

In other words, for ICCs in the range of 0.10–0.20 we would need to multiply
N in the case of ICC = 0 with a factor 1.9–2.8 depending on the exact ICC value we
consider reasonable. Suppose, we are dealing with a three-group experiment and
strive for a statistical power of 0.80 for a medium size difference (η2 = 0.06) using a
default F-test at a = 0.05. Under ICC = 0 (i.e., one-way ANOVA), this comes
down to N = 159 or n = 53 per condition. Using a multiplication factor of 1.9–2.8,
we would need between n = 101 per condition (using 1.9) and n = 149 per con-
dition (using 2.8). Suppose that we are dealing with a situation like in Experiment 2
in Chap. 10: we expect a positive difference of both treatment conditions from the
control condition (i.e., a one-sided test) but have no clear expectations with regard
to how the two treatment conditions differ from one another. Each of three con-
ditions comprises k = 14 learning groups of n = 10 individuals each.

Figures 13.3 and 13.4 present the histogram of the distribution of post-test score
(0–100, higher is better) for the three conditions (X = 0: control; X = 1: treatment
A; X = 2: treatment B) at the level of the individual (Fig. 13.3) and at level of the
group (average per group: Fig. 13.4).

Figure 13.3 provides a preliminary screening of possible extreme cases in
post-test score, and Fig. 13.4 can help us to check for eventual extreme groups.
Additionally, we could inspect histograms of the distribution of scores per group, to
locate eventual extreme cases in terms of in which group(s) they are (it is normally
helpful to do that, but adding another 42 histograms to this book is not needed). An
equivalent of the latter does not make sense when dealing with pairs, but an
equivalent of Fig. 13.4 could help to check for eventual extreme pairs (there are
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none in Experiment 1). These figures are generally useful, because assumptions of
normally distributed residuals are made in mixed-effects models as well: in the
population sampled from, we generally assume RIs to be normally distributed
around the fixed intercept (i.e., the RIs observed form a random sample from a
normally distributed population of RIs), and we assume the individual residuals to
be normally distributed around their group-specific RIs. Some departures from
these assumptions are not problematic, and even less so when dealing with large
samples, but the problem with more extreme departures is that they may substan-
tially inflate at least one of the variance estimates. The quantile plots in Figs. 13.5
(for the distribution of intercepts) and 13.6 (for the distribution of individual
residuals around their intercepts) can help us examine the aforementioned
assumptions.

Fig. 13.3 Histogram of the
distribution of post-test score
(S: 0–100; higher is better) for
the three conditions (X = 0:
control; X = 1: treatment A;
X = 2: treatment B) at the
level of the individual
(Jamovi)

Fig. 13.4 Histogram of the
distribution of post-test score
(S: 0–100; higher is better) for
the three conditions (X = 0:
control; X = 1: treatment A;
X = 2: treatment B) at the
level of the group (average
per group) (Jamovi)
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These plots do not indicate severe departures from normality. For the three
conditions, we find the following Ms and SDs. In the control condition, M = 60.786
and SD = 10.017; in treatment A, M = 64.821 and SD = 9.822; in treatment B,
M = 65.243 and SD = 10.346. In other words, the two treatment conditions differ a
bit over 0.4 SD from the control condition but less than 0.1 SD from one another.

We can now proceed with testing and estimating the RI variance. In this
experiment, the two hierarchical levels are found in the learning groups (level 2)
and the individuals within learning groups (level 1). Hence, the RI variance is about
the extent to which the group-specific intercepts vary around the fixed intercept.
Using REML in Jamovi, we find ICC = 0.139, and the LR test of the ICC yields
v21 = 21.155, p < 0.001. Although the ICC in this experiment is quite a bit lower
than that in Experiment 1, it is still substantial so we should prefer a mixed-effects
model (i.e., accounting for ICC = 0.139) over a fixed-effects model (i.e., erro-
neously assuming ICC = 0).

We can now proceed with the fixed-effects part, using FIML in Jamovi. For the
treatment factor, we find R2

M = 0.039. Using Helmert coding, we find for the first

Fig. 13.5 Quantile plot of
the residuals of RIs around
the fixed intercept (Jamovi)

Fig. 13.6 Quantile plot of
the individual residuals
around the RIs (Jamovi)
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contrast, both treatments versus the control: B = 4.246, p = 0.004 (one-tailed), and
a 90% CI of [1.281; 7.212]. For the second contrast, the two treatments compared
with one another, we find: B = 0.421 (in favour of treatment B), p = 0.811
(two-tailed), and a 90% CI of [−3.002; 3.845]. For a model in which all means
differ, we find AIC = 3119.636 and BIC = 3139.838. For a model in the control
mean differs from the treatment means but the latter do not differ from one another,
we find AIC = 3117.695 and BIC = 3133.856. The ICC-adjusted 90% CI of d is
[−0.298; 0.381]. This is somewhat wider than the 90% CI of d we would obtain in a
fixed-effects model: [−0.193; 0.276]. The explanation of the difference is simple:
ICC > 0 means a reduction of the effective sample size from N to N divided by MN

and a loss of information and precision proportional to it.

Advanced Questions

Although the experiments in this chapter have quantitative outcome variables, the
concepts discussed in this chapter also apply to mixed-effects models for categorical
outcomes variables (e.g., the extensions of the methods discussed in Chaps. 5–7).
Besides, when additional variables are measured and we have sufficiently large
samples, we may also estimate random slopes (RSs) along with or instead of RIs.
For instance, if in Experiment 2 we had a quantitative covariate measured prior to
the treatment, we could estimate the fixed-effects slope of the relation between
covariate and outcome variable for each condition (i.e., model with interaction) or
the fixed-effect slope of the relation between covariate and outcome variable across
conditions (i.e., ANCOVA) using FIML but we could additionally estimate
learning-group-specific RSs of that relation between covariate and outcome vari-
able. Each learning group may have its own RS and, analogous to the RIs, we
assume the RSs observed in our experiment to be a random sample of a population
of possible RSs. That said, RS variances are easier to estimate in larger than in
smaller clusters; when we deal with say N = 900 divided over K = 30 clusters of
n = 30, we may have sufficient information in the data to obtain good estimates for
both RIs and RSs; when either K or n is much smaller, estimating random effects
becomes more difficult. With small numbers of K (e.g., K = 10), there are only a
few RIs and RSs to estimate and a substantial deviation from normally distributed
residuals may influence at least one of the random effect variances considerably.
When K is sufficiently large but cluster size n is small (e.g., the experiments in this
chapter), estimating the RIs variance may not be much of a problem but RSs
become difficult to estimate and may not even make much sense even if they can be
estimated. In experiments that involve repeated measurements, RSs are generally
easier to estimate (e.g., Tan, 2010) and may in some cases make sense even if we
have only two measurements per participants (e.g., Leppink, 2015a).

Finally, the mixed-effects analysis approach taken in this chapter, and more
commonly in experimental educational and psychological research, is based on
prespecified clusters. When an experiment explicitly includes a component of
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interaction and cluster sizes n are small, like in the experiments in this chapter, it
appears reasonable to assume that all members of a cluster interact with each other.
However, with increasing n, the likelihood of not all members interacting increases
as well and it is possible that cliques or sub-groups of interacting individuals are
formed (i.e., the term ‘cliques’ is also used in Chap. 3 in the context of network
analysis as an approach to studying how different items or other variables of interest
may be interrelated) and/or that some combinations of individuals yield a
higher-frequency and/or higher-intensity interaction than other combinations of
individuals. In such cases, social network analysis (Leppink & Pérez-Fuster, 2018;
Scott, 1988, 2017; Wasserman & Faust, 1994) may be used to examine which
individuals interact with each other and eventually to what extent. Figures 13.7 and
13.8 present two examples of a social network of a group (cluster) of n = 10
individuals who all interact with each other to an equal extent (Fig. 13.7) and who
do not all interact with each other (Fig. 13.8).

Especially in times of online interaction, experimenters may collect data with
regard to who interacts with whom and how frequently or intensely quite easily and
social network analysis can then help to compare prespecified groupings with actual
groupings and to make decisions with regard to what (different types of) clustering
to use for mixed-effects modelling. In large-sample studies that monitor not only if
interaction occurs but also the frequency or intensity of interactions in a network,
social network analysis may help to compute distance measures that may be used in
so-called spatial multilevel models (Arcaya, Brewster, Zigler, & Subramanian,
2012; Bingenheimer & Raudenbush, 2004; Dong, Harris, Jones, & Yu 2015; Dong,
Ma, Harris, & Pryce, 2016; Ma, Chen, & Dong, 2017) to account for different
degrees of interaction in a network. Although these models are commonly asso-
ciated with geographical distances, different degrees of interaction can also be

Fig. 13.7 Social network of a group of n = 10 individuals in which everyone interacts equally
with everyone (SocNetV)
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expressed in terms of distance measures. That said, the more complex the intended
models, the more demands on sample size, and in most experimental settings the
approach presented for the experiments in this chapter may well be sufficient.

This chapter is the first of four chapters that discusses situations where the
assumption of independent observations that underlies the methods discussed in
earlier chapters in this book is violated. This chapter presents examples of exper-
iments in which participants are allowed to or even instructed to interact. In
Chap. 14, we focus on a second common type of dependence in observations:
ratings of the same individuals on an outcome variable of interest by two or more
assessors. Even though the assessors are supposed to provide their ratings inde-
pendently, differences between individuals rated creates a within-individual
between-assessors ICC proportional to these differences. In Chap. 15, we see a
few examples of experiments in which conditions of a treatment factor are mea-
sured twice or more times on the same outcome variable of interest. Finally, in
Chap. 16, we deal with experiments in which different participants undergo dif-
ferent conditions in different orders. What all chapters in this fourth and final part of
the book have in common is that a state of ICC > 0 (instead of ICC = 0) can be and
should be accounted for.

Fig. 13.8 Social network of a group of n = 10 individuals in which any individual interacts with
only a limited number of other individuals in the group (SocNetV)
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14Two or More Raters

Abstract
In not so few experiments where performance or another behavioural outcome
variable is measured, scores of learners or other individuals result from ratings
by two or more independent assessors. These ratings are often averaged into a
single score per participant. While this does not always result in incorrect
conclusions with regard to treatment effects of interest, a more accurate analytic
approach is found in treating the raters or assessors as stations that have to be
passed by participants. This chapter discusses some examples of how to run that
type of analysis and acquire estimates of treatment effects and inter-rater
reliability simultaneously.

Introduction

When an outcome variable of interest results from ratings from two or more inde-
pendent assessors, different designs with regard to which assessors rate which par-
ticipants are possible. In one extreme case, each participant is rated by a different
cluster of independent assessors. In this case, raters can be considered as nested
within participant, just like in Chap. 13 participants can be considered as nested
within pairs or learning groups. Therefore, for this type of designs, the models
discussed in Chap. 13 may be used to estimate treatment effects and the resulting
ICC can provide an indication of inter-rater or inter-assessor reliability. However,
this kind of design requires fairly large numbers of assessors and is for that and other
reasons quite uncommon in experimental research. At the other end, we find a type
of design where there is one set of k independent assessors that constitute the
k number of stations to be passed by all participants. This type of case, where
participants and raters form a fully crossed design, is quite common in experimental
research and comes with the advantage that different raters can be treated as repeated
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measurements in the mixed-effects models and that allows us to estimate eventual
systematic differences in rating tendency between raters. For instance, a stricter rater
will likely provide lower scores on a test or fewer ‘passes’ on an exam than a more
lenient rater. This kind of design is discussed in this chapter. Finally, there are
designs somewhere in between nested and fully crossed. For instance, there are ten
raters which form five pairs, and each of these five pairs provides ratings of a
different subset of participants in an experiment. Although this is sometimes con-
sidered most feasible given the logistics in a particular context and we may in some
cases still be able to use the methods discussed in this chapter, the more the balance
shifts from crossed to nested, the less information we have to estimate systematic
differences between raters and the more we find ourselves back with the methods
discussed in the previous chapter. Moreover, in the context of the latter kind of
design, if the different subsets of raters are active in only one or part of all conditions
and there are considerable differences between raters on the strictness-leniency
dimension, even with randomisation there may be considerable differences between
conditions on the strictness-leniency dimension in a given experiment for ran-
domisation is done only with a small number of raters. Therefore, this chapter
focusses on fully crossed designs, one with two raters and one with four raters.

Experiment 1: Two Raters or Assessors

Suppose, we are dealing with a two-group experiment with n = 64 participants per
condition and the outcome variable is a type of performance rated on an integer scale
from 0 (min) to 10 (max) by two independent assessors. The assessors are always the
same, meaning that all N = 128 participants have to pass these two assessors (sta-
tions). Figures 14.1 and 14.2 present the histograms of the distributions of the two
assessors for each of the two conditions (X = 0: control, X = 1: treatment).

Fig. 14.1 Histogram of the
distribution of ratings in the
control (X = 0) and treatment
(X = 1) condition for
Assessor 1 (R1) (Jamovi)
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For Assessor 1, we find M = 6.063 (SD = 1.233) in the control condition and
M = 6.453 (SD = 1.332) in the treatment condition. For Assessor 2, we find
M = 6.031 (SD = 1.112) in the control condition and M = 6.391 (SD = 1.341) in
the treatment condition. Figure 14.3 presents the scatter plot of the relation between
the ratings of the two assessors.

Fig. 14.2 Histogram of the
distribution of ratings in the
control (X = 0) and treatment
(X = 1) condition for
Assessor 2 (R2) (Jamovi)

Fig. 14.3 Scatterplot of the relation between the ratings of the two assessors in Experiment 1
(Jamovi)
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Pearson’s r is 0.612 in the control condition and 0.726 in the treatment condi-
tion. Figure 14.4 presents the histogram of the difference in ratings (DR: Assessor 2
minus Assessor 1) per condition.

In the control condition, MDR = 0.031 and SDDR = 1.038; in the treatment
condition, MDR = 0.063 and SDDR = 0.990. Inspecting Figs. 14.1, 14.2, 14.3, 14.4
is useful, because they can inform our statistical modelling choices. The histograms
are helpful because they indicate severe departures from normally distributed
residuals neither in the univariate distributions of assessors (Figs. 14.1, 14.2) nor in
the distribution of differences between assessors (Fig. 14.4), and the relation
between ratings can reasonably be described in linear terms (Fig. 14.3). Inspecting
the distribution of differences between assessors is important, because even in the
case of normally distributed univariate distributions extreme differences between
assessors in individual cases may occur and these can substantially influence MDR,
SDDR, and r between assessors.

Mixed-Effects Analysis (1): Residual Covariance Structure

Not so few researchers may be inclined to calculate Cronbach’s alpha as a measure
of inter-rater reliability or the ICC from which Cronbach’s alpha can be computed
using the Spearman-Brown formula (see Chap. 3). If we make no distinction
between treatment conditions, the ICC used for the computation of Cronbach’s
alpha assumes CS (cf. RI model): the same SD for all items (ratings) and the same
correlation for all pairs of items (ratings). The means of items or ratings are allowed
to differ as long as the SDs are the same. In the experiment at hand, where we have
two assessors, there is only one correlation so that part is easy, and the two SDs are
assumed to be equal. In the resulting mixed-effects model (SPSS), where the means
of assessors are allowed to vary but the SDs are the same, under REML we find
ICC = 0.682. From the Spearman-Brown formula, we can then compute

Fig. 14.4 Histogram of the
distribution of differences in
ratings between assessors
(DR = R2 − R1) for the
control (X = 0) and treatment
(X = 1) condition in
Experiment 1 (Jamovi)
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Cronbach’s alpha and find 0.811. There are two potential problems with this model:
it does not allow the means of the treatment and control condition to vary, and the
SDs of assessors are not much different but not equal either.

There are two possible solutions to the problem of possibly different means for
treatment and control condition: to run the aforementioned mixed-effects model for
each condition separately or to use the same model as before but to allow the
treatment conditions to vary (cf. the ICC estimations in Chap. 13). Using the first
approach, we find ICC = 0.609 (a = 0.757) in the control condition and ICC =
0.726 (a = 0.841) in the treatment condition. In the second approach, we can also
allow for condition-by-assessor interaction (i.e., the extent to which assessor dif-
ferences differ across conditions casu quo Md of the conditions differs across
assessors). Doing so, we find ICC = 0.675; not much lower than 0.682 but a bit
lower. The larger the difference in means between treatment and control condition,
the larger the difference in ICC in a model that accounts for that difference and a
model that does not account for it. As recommended in Chap. 13, it is generally
better to account for mean differences when estimating an ICC, even if they are
small. Next, we can make our model more flexible by allowing the SDs of assessors
to vary. Doing so, we find ICC = 0.675 as well; the difference in ICC between a
model treating the SDs as equal (0.6748) and a model treating them as unequal lies
in the fourth decimal (0.6754). This is because the difference in SDs is small. A LR
test (under REML) for the difference in −2RLL (i.e., the equivalent of −2LL but
under REML instead of FIML) of a model with equal (770.494) and a model with
unequal (770.887) SDs yields v1

2 = 0.393, p = 0.531. The LR test is one at df = 1,
because the model treating the SDs as equal uses 1 df for a common SD whereas the
other model uses 2 df since there are two assessors each of which has its own SD.
The difference is not statistically significant at any meaningful significance level.
Hence, in this case, CS does not fit significantly worse than a more flexible model
that allows for unequal SDs, and with ICC = 0.675 Cronbach’s alpha would be
about 0.806.

Mixed-Effects Analysis (2): Treatment Effect

Now that we have decided on our residual covariance structure, we can estimate the
treatment effect (using FIML). In a fully crossed design, the outcome of the
treatment effect is the same whether we also include assessor differences and the
condition-by-assessor interaction or not. Using SPSS or Jamovi, we find the fol-
lowing outcomes for the fixed effects. For the condition-by-assessor interaction, we
find: F1, 128 = 0.031, p = 0.861. For the assessor main effect, we find: F1,

128 = 0.278, p = 0.599. For the treatment effect of interest, we find: F1, 128 = 3.450,
p = 0.066. Jamovi returns RM

2 = 0.023 for a full factorial model and RM
2 = 0.022 for

the treatment effect (i.e., a rather small effect). The 95% CI of Md for the treatment
effect (point estimate: 0.375) is [−0.021; 0.771] and the 90% CI is [0.040; 0.710].
For the full factorial model (i.e., with interaction), we find AIC = 774.192 and
BIC = 795.463. For a main-effects-only model, we find AIC = 772.223 and
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BIC = 789.949. For a treatment-effect-only model (i.e., no differences between
assessors), we find AIC = 770.500 and BIC = 784.681. For an assessor-
effect-effect-only model (i.e., no differences between conditions), we find AIC =
773.627 and BIC = 787.808. Finally, for the null model, we find AIC = 771.905
and BIC = 782.540. In other words, AIC prefers the treatment-effect-only model,
while BIC prefers the null model.

Some may wonder why we are treating assessor as a fixed effect instead of as a
random effect. The answer to that is that although the participants who are rated by
the assessors are still assumed to be a random sample of a population of possible
participants—and hence the ICC, which comes down to a participant-level RI
model is treated as a random effect and therefore estimated with REML—the
assessors in this design constitute a fixed set of assessors available in a given setting
where the experiment takes place rather than a random sample of a population of
possible assessors. Besides, even if we drew assessors randomly, with only two or
an otherwise very small number (e.g., four in Experiment 2), it is difficult to obtain
meaningful estimates for generalisation to a wider population of assessors. Finally,
even though our primary interest lies in treatment effects, Mds between specific
assessors across conditions provides us with very useful information about whether
a treatment effect is more or less the same across assessors in our experiment (i.e.,
no or minimal condition-by-assessor interaction).

Experiment 2: Several Raters or Assessors

Suppose, we are dealing with a two-group experiment with n = 100 participants per
condition and the outcome variable is a type of performance rated on an integer
scale from 0 (min) to 10 (max) by four instead of two independent assessors. The
assessors are always the same, meaning that all N = 200 participants have to pass
these four assessors (stations). The exercise of inspecting histograms and scatter
plots should now be done for each of four assessors (i.e., histograms of univariate
distributions) and for each of six pairs of assessors (i.e., histograms of differences
and scatter plots), and again per condition. Suppose, we do these checks and
consider that we are good to continue as in Experiment 1. For Assessor 1, we find
M = 5.560 (SD = 0.903) in the control condition and M = 6.050 (SD = 0.857) in
the treatment condition. For Assessor 2, we find M = 5.500 (SD = 1.087) in the
control condition and M = 5.950 (SD = 1.209) in the treatment condition. For
Assessor 3, we find M = 5.380 (SD = 1.196) in the control condition and
M = 5.890 (SD = 1.163) in the treatment condition. For Assessor 4, we find
M = 5.840 (SD = 1.098) in the control condition and M = 6.330 (SD = 0.943) in
the treatment condition. In other words, we appear to be dealing with differences
around d = 0.5 in favour of the treatment condition, albeit that this difference
fluctuates a little bit across assessors (largest: d = 0.557 with Assessor; smallest:
d = 0.391 with Assessor 2). Table 14.1 presents the Pearson’s r between ratings for
each pair of assessors for each condition.
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In both conditions, the correlation varies a bit across pairs of assessors. The
correlations presented in Table 14.1 along with the Ms and SDs inform our mod-
elling of the random part, the residual covariance structure.

Mixed-Effects Analysis (1): Residual Covariance Structure
Candidates

Using the approach from Experiment 1, we start with a CS model and find (using
REML in SPSS): ICC = 0.594 and a residual variance VRES = 1.134. In this model,
we treat ICC = 0.594 as holding for all pairs of assessors and VRES = 1.134 (or in
its square root form: SDresidual) as holding for all assessors. The −2RLL of this
model is 2050.661. When we allow VRES to vary across assessors, we find:
ICC = 0.620, VRES = 0.706 for Assessor 1, VRES = 1.363 for Assessor 2, VRES =
1.470 for Assessor 3, and VRES = 1.062 for Assessor 4. The −2RLL of this model
is 1998.641. A LR test of the difference in −2RLL of the two models reported
yields: v3

2 = 52.02, p < 0.001. This test is at df = 3 because the difference between
the two models is that the restrictive model uses 1 df for VRES (i.e., one for all
assessors), whereas the more flexible model uses 4 df (i.e., one for each assessor).
Another more flexible model is to also let the correlation vary across pairs of
assessors. This model is also referred to as the unstructured (UN) model (e.g., Field,
2018; Tan, 2010; Verbeke & Molenberghs, 2000), because it does not assume any
particular structure such as a single ICC or a single VRES. Table 14.2 presents the
point estimates and 95% CIs of the correlation and variance estimates obtained with
this model.

The −2RLL of this model is 1931.983. To compare if this model can be pre-
ferred above another somewhat more flexible model (−2RLL = 1998.641), we have
to perform a LR test at df = 5. This is because both models use 4 df for the V-
estimates but the UN model uses 6 df for the r-estimates (i.e., one for each pair of
assessors) while the other model—like the restrictive CS model—uses 1 df for r-
estimation (i.e., the ICC as r-estimate for all pairs of assessors). We find:
v5
2 = 66.658, p < 0.001. In other words, we have reasons to prefer the UN model.

Although a drawback of this model is that it does not provide a single r-estimate

Table 14.1 Correlation of ratings for each pair of assessors for each condition (Jamovi)

Control Treatment

Pair Pearson’s r Pair Pearson’s r

Assessors 1 and 2 0.710 Assessors 1 and 2 0.763

Assessors 1 and 3 0.653 Assessors 1 and 3 0.675

Assessors 1 and 4 0.774 Assessors 1 and 4 0.716

Assessors 2 and 3 0.427 Assessors 2 and 3 0.557

Assessors 2 and 4 0.567 Assessors 2 and 4 0.502

Assessors 3 and 4 0.570 Assessors 3 and 4 0.494
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like the other two models, providing the reader with Table 14.2 is more informative
than presenting a single ICC of around 0.6 because the r-estimate varies consid-
erably across assessor pairs. For all three pairs that involve Assessor 1, the r-
estimates are okay (quite well above 0.60) while for the three pairs in which
Assessor 1 is not present the r-estimates are somewhat disappointing (quite well
below 0.60; e.g., Stemler & Tsai, 2010).

Although the UN model has the advantage of being more flexible than the other
models discussed, an issue with this model is that it uses quite a few df, given
k conditions:

df ¼ kþ k � k�1ð Þ=2½ �:

For k = 4, df = 10; for k = 5, df = 15; and for k = 8, df = 36. In other words, the
flexibility of the UN model comes with a loss of df, and that loss may be a problem
especially when dealing with somewhat larger numbers of assessors. Another
approach to the residual covariance structure, which does not use as many df as the
UN model, but is more flexible than the other two models discussed thus far, is
found in combining RIs (see Chap. 13) and RSs. In a RI model, differences between
participants on the outcome variable of interest induce a within-participant
between-measurements correlation proportional to these differences. The Md

between two assessors can be thought of as a fixed slope, around which
participant-specific RSs are allowed to vary following a certain distribution (i.e.,
often assumed Normal or at least not too different from Normal). Given k assessor
Ms, k − 1 Ms can vary freely, and the same can be said about the fixed slopes.
Given four assessors, we can compute six fixed slopes for that is the number of
pairs of assessors. However, once we have estimated the fixed slope for each of the
three pairs that include Assessor 1, we can from there—through subtraction—find
the fixed slope for each of the three pairs that do not include Assessor 1. This
translates into a model for the residual covariance structure as follows: a RI, a RS
for the difference between Assessor 1 and Assessor 2, a RS for the difference
between Assessor 1 and Assessor 3, and a RS for the difference between Assessor 1

Table 14.2 VRES and rRES
estimates in an UN residual
covariance model (SPSS):
point estimates and 95% CIs
(LB, UB)

Term Point estimate 95% LB 95% UB

VRES A1 0.775 0.636 0.943

VRES A2 1.322 1.086 1.610

VRES A3 1.391 1.142 1.693

VRES A4 1.048 0.861 1.277

rRES A1–A2 0.735 0.664 0.793

rRES A1–A3 0.663 0.578 0.734

rRES A1–A4 0.493 0.381 0.591

rRES A2–A3 0.747 0.679 0.803

rRES A2–A4 0.531 0.423 0.623

rRES A3–A4 0.534 0.427 0.626
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and Assessor 4. This comes down to using 4 df: one for the RI variance, and three
for the set of RSs. The RI and RS terms may correlate; if we were to estimate all
these correlations, we would need 6 df more (i.e., there are three RI-RS pairs and
three RS-RS pairs) and we would essentially be back to an UN model (−2RLL of
1931.983).

In the experiment at hand, all these correlations between RI and RS terms are in
the [−0.1; 0.1] range, in other words fairly close to zero. Table 14.3 presents the
outcomes of a RI-RS model with the correlations between these random effects
fixed to zero (i.e., we need 4 df instead of 10 df).

In this model, the heterogeneity between assessors in terms of their variances
and across pairs of assessors in terms of correlations is modelled through a com-
bination of RSs and RIs. The −2RLL of this model is 1937.473, a bit higher than
that of the UN model but it also uses 6 df less than the UN model. A LR test for the
difference in −2RLL yields: v6

2 = 5.49, p = 0.483. Although a statistically
non-significant p-value cannot and should not be read that two things are ‘the
same’, this LR test outcome indicates that we do not have sufficient reason to reject
the RI-RS model as a significant oversimplification relative to the UN model.

Mixed-Effects Analysis (2): Treatment Effect Under Different
Assumptions

Some may argue in favour of the UN model over the RI-RS model pointing at the
comprehensive outcomes from Table 14.2 and not having to fix correlations
between random effects to zero. Others may vote in favour of the RI-RS model
because it is also quite intuitive to understand and if two models can explain the
same phenomenon to about the same degree, we may as well prefer the simpler
model. In the words attributed to statistician George Box that essentially “all
models are wrong, but some are useful” (Box & Draper, 1987, p. 424), a com-
promise solution is to provide the outcomes of the fixed part from both an UN
perspective and the RI-RS perspective. Both models perform better than the first
two models discussed in this chapter but do not really differ from one another in
their outcomes even though they are based on partly different assumptions.

From the UN perspective, we find no statistically significant condition-
by-assessor interaction effect: F3, 200 = 0.054, p = 0.984. The assessor main
effect is statistically significant: F3, 200 = 15.156, p < 0.001. The treatment effect is

Table 14.3 VRES and RI/RS
estimates in a RI-RS model
(SPSS): point estimates and
95% CIs (LB, UB)

Term Point estimate 95% LB 95% UB

VRES 0.041 0.015 0.112

VRI 0.721 0.582 0.892

VRS A1–A2 0.541 0.422 0.692

VRS A1–A3 0.703 0.552 0.894

VRS A1–A4 0.394 0.293 0.530
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positive (Md = 0.490 points on the 0–10 scale) and also statistically significant: F1,

200 = 15.158, p < 0.001, and a 95% CI ofMd = [0.206; 0.774]. For the full factorial
model, we find AIC = 1942.244 and BIC = 2026.567. For the main-effects-only
model, we find AIC = 1936.405 and BIC = 2006.674. For the treatment-effect-only
model, we find AIC = 1971.373 and BIC = 2027.589. For the assessor-effect-only
model, we find AIC = 1950.036 and BIC = 2015.621. Finally, for the null model,
we find AIC = 1985.005 and BIC = 2036.536. In other words, as expected, both
AIC and BIC prefer the main-effects model.

From the RI-RS perspective, we find for the interaction effect: F1,

294.186 = 0.054, p = 0.983; for the assessor main effect, we find: F1,

294.186 = 15.323, p < 0.001; and for the treatment main effect, we find F1,

224.585 = 14.258, p < 0.001, and a 95% CI of Md = [0.192; 0.788]. For the full
factorial model, we find AIC = 1937.789 and BIC = 1998.689. For the
main-effects-only model, we find AIC = 1931.952 and BIC = 1978.799. For the
treatment-effect-only model, we find AIC = 1968.442 and BIC = 2001.234. For the
assessor-effect-only model, we find AIC = 1945.326 and BIC = 1987.488. Finally,
for the null model, we find AIC = 1981.733 and BIC = 2009.841. In other words,
as expected, both AIC and BIC prefer the main-effects model.

Other Outcome Variables and Alternative Approaches

Although the experiments in this chapter have quantitative outcome variables, the
concepts discussed in this chapter also apply to mixed-effects models for categorical
outcomes variables (e.g., the extensions of the methods discussed in Chaps. 5–7). In
some cases, for example, assessors may not provide quantitative scores but just
make pass/fail decisions or share verdicts like poor/sufficient/good. Such cases ask
for binary logistic mixed-effects and ordinal logistic mixed-effects models,
respectively. The models discussed in this chapter can also be applied to experi-
ments where items instead of assessors are used. If for instance ten items in a
post-test are supposed to measure the same knowledge or skill of interest, one
would expect differences between treatment and control conditions to be compa-
rable across items; they do not need to be the same, but it would be odd to find for
instance a difference in favour of a control group for one item and a difference in
favour of a treatment condition for another item. A closer look at the
condition-by-item interaction effect can provide a check on (the absence of) such
abnormalities.

When three or larger numbers of assessors or items are available, some may opt
for a latent variable modelling approach, such as confirmatory factor analysis or
some item-response theory model. These approaches have in common with the
methods discussed in this chapter that they can help us to estimate treatment effects
of interest while appropriately accounting for the data structure. In latent variable
approaches, RIs and RSs can be modelled in terms of latent variables, and these
approaches are especially useful alternatives to the methods discussed in this
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chapter when two or more related but different constructs are measured. For
example, if the four assessors in Experiment 2 were to rate participants in two
related but different constructs, an appropriate latent variable model could account
for the anticipated structure in a two-correlated-latent-variables model and provide
additional model fit statistics and reliability estimates. In the mixed-effects approach
taken in this chapter, the second related construct could be incorporated as a second
factor. In Experiment 2, the design is a 2-by-4 design: there are two treatment
conditions (between subjects) and four assessors (within subjects). With another
variable to be rated by the four assessors, we would obtain a 2-by-2-by-4 design:
two treatment conditions (between subjects), and two variables (within subjects)
rated by four assessors (within subjects). That said, the more complex our data
structures, the more complex our models, and the larger the sample sizes needed to
obtain meaningful estimates of all the effects at play.

The methods discussed in this chapter, as well as the latent variable alternatives,
can be extended to situations that include some kind of nested structure as discussed
in Chap. 13 by adding another level. For instance, suppose that each pair or each
group of students in the example experiments in the previous chapter were rated on
their performance by two or more assessors. The result would be a three-level
design: pair or group as upper level (level 3), participant within pair or group as
middle level (level 2), and the assessors as stations to be crossed by all pairs or
groups of participants as lower level (level 1). We could then model the residual
covariance structure through combinations of RIs and RSs and eventually their
intercorrelations at the upper and middle level. Since at the lowest level, we are
always back to single observations—in this example, no participant is rated twice
on the outcome variable of interest by the same assessor—at the lowest level we
cannot estimate RIs or RSs. If we were to expend the three-level design by another
level under the assessors, by having each participant rated on the same outcome
variable by the same assessors, we would obtain a four-level design, and the idea of
combinations of RIs and RSs would then hold for all levels except for the mea-
surements which would then constitute the lowest level 1 (levels 2, 3, and 4 would
then be found in the assessors, the participants, and the pairs or groups, respec-
tively). However, to reiterate, the more complex our designs, the more complex our
analyses, and the higher the demands on sample size; designs with more than four
levels are certainly possible, and corresponding mixed-effects models are available
as well, but with such structures we may need several (ten) thousands to obtain
meaningful estimates of all the different fixed and random effects to be modelled.

Other Outcome Variables and Alternative Approaches 223



15Group-by-Time Interactions

Abstract
Whether we deal with different plots of land that receive different treatments in
agricultural experiments or we have groups of human participants who are given
different treatments in an educational or psychological experiment, when we
measure these plots of land or groups of participants at two or more occasions on
the same outcome variable of interest we speak of a split-plot design and we can
use split-plot analytic methods to analyse differences between plots of land or
groups of participants and how these differences increase or decrease from
occasion to occasion. In some cases, there are two measurements (i.e., two
occasions) one of which takes place immediately after treatment (i.e., post-test,
sometimes also referred to as immediate post-test) and the second sometime after
(i.e., follow-up). In other cases, one of the measurements takes place before the
treatment (i.e., pre-test) and the other takes place after treatment (i.e., post-test).
The latter type is also known as pre-test post-test control-group design. In yet
other cases, there are three or more measurements; these measurements may
either all take place after treatment, or one or some (though not all) of them take
place before the treatment. In this chapter, each of these types of situations is
discussed with an example experiment.

Introduction

The experiments discussed in Chaps. 13 and 14 have in common that the mea-
surement of a given participant (Chap. 14) or cluster of participants (Chap. 13) takes
place a single point in time; no repeated measurements are involved (though different
raters can be conceived as different stations to be passed). However, the concepts of
mixed-effects analysis discussed in the previous two chapters also apply to split-plot
designs. The histograms and scatterplots discussed in Chap. 14 to examine relations
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between different assessors (or items) and to detect eventual extreme combinations
of scores (i.e., a well above-average rating by one assessor and a clearly
below-average rating by another assessor) can also be used for comparisons of
distributions of scores at different occasions. Treatment effects, effects of occasion,
and treatment-by-occasion (i.e., group-by-time) interaction effects are fixed effects,
and the residual covariance structure can be modelled in ways discussed in Chap. 14.
In this chapter, this exercise of estimating random and fixed effects is done with four
example experiments: an immediate post-test follow-up control group design
(Experiment 1), a pre-test post-test control-group design (Experiment 2), a several
post-treatment measurements design (Experiment 3), and a several pre-treatment and
several post-treatment measurements design (Experiment 4).

Experiment 1: Immediate Test and Follow Up

Researchers in a Health Professions Education department are interested in the effect
of a new type of simulation training on the development of communication skills
among undergraduate medical students. The researchers decide to do an experiment
with N = 128 in which this new simulation training constitutes the experimental
treatment condition and the conventional form of simulation serves as control
condition. In both conditions (n = 64 per condition), participating undergraduate
medical students individually undergo training with the same type of simulated
patients. The only way in which the two conditions differ is that specific instructions
are provided during the training in the treatment condition but not in the control
condition. At the end of the training, participants from both conditions individually
complete the same post-test with a simulated patient. For simplicity of the example,
this post-test yields a quantitative integer score that can range from 0 to 25, and
higher scores indicate better post-test performance. A week later, all participants
return and complete the same post-test, because the researchers are not just interested
in which of the two conditions performs better immediately after training but also
how to two conditions compare a week after training. Suppose, the histograms are
okay and Fig. 15.1 presents the scatterplot of the bivariate distribution of post-test
and follow-up test for the control (X = 0) and treatment (X = 1) condition.

Pearson’s r for the relation between post-test and follow-up test is 0.706 in the
control condition and 0.569 in the treatment condition. Box’s homogeneity of
covariance matrices test is not statistically significant at any meaningful significance
level (i.e., 1, 5, or 10%): v23 = 4.119, p = 0.249; and the same holds for Shapiro–
Wilk’s multivariate normality test: W = 0.987, p = 0.277 (Jamovi).

In the control condition, we find M = 15.047 (SD = 2.019) for the post-test,
M = 15.156 (SD = 2.721) for the follow-up test, and M = 0.109 (SD = 1.928) for
the gain from post-test to follow-up test. In the treatment condition, we find
M = 16.172 (SD = 1.619) for the post-test, M = 14.969 (SD = 2.678) for the
follow-up test, and M = −1.203 (SD = 2.205) for the gain from post-test to
follow-up test.
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Mixed-Effects Analysis (1): Unequal Residual Variance

Like in the experiments discussed in Chaps. 13 and 14, it is important to account
for the residual covariance structure and hence not to assume all observations to be
independent. Erroneously assuming independence of repeated measurements would
result in too wide CIs and too high p-values for occasion main effects and
condition-by-occasion (i.e., group-by-time) interaction effects, because in models
that assume independence of all observations no distinction is made between
variance within and variance between participants (i.e., everything is thrown on one
common error pile; e.g., Leppink, 2015a; Tan, 2010). With only two measurements,
a likely first candidate is CS aka a RI model. Using REML in SPSS or Jamovi, we
find ICC = 0.597. The resulting −2RLL is 1097.485. Next, we run a model in
which the VRESs of the two occasions are allowed to differ. We find ICC = 0.642,
VRES = 3.349 for the post-test and VRES = 7.289 for the follow-up test. The
resulting −2RLL is 1067.305. A LR test for the difference in −2RLL yields:
v21 = 30.180, p < 0.001. In other words, the more flexible model appears to be
preferred.

Fig. 15.1 Scatterplot of the bivariate distribution of post-test (PO) and follow-up test (FU) for the
control (X = 0) and treatment (X = 1) condition in Experiment 1 (Jamovi)
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Mixed-Effects Analysis (2): Main and Interaction Effects

To reiterate from Chaps. 13 to 14, in the process of finding an appropriate model for
the residual covariance structure (i.e., modelling the random part of our
mixed-effects models), we should include our fixed effects of interest as well. RIs,
RSs, VRESs, and random effects are based on fluctuations around fixed intercepts
and slopes, so we should include these fixed intercepts and slopes in our models as
well when estimating random effects. In this case, that comes down to: a main effect
of occasion, a main effect of condition, and a condition-by-occasion interaction
effect. However, at the stage of estimating the random effects, we use REML, and
once we turn to estimating fixed effects, we use FIML. For the full factorial model,
we find AIC = 1077.315 and BIC = 1102.132. For the main-effects model, we find
AIC = 1087.744 and BIC = 1109.015. For the treatment-effect-only model, we find
AIC = 1095.495 and BIC = 1113.221. For the occasion-effect-only model, we find
AIC = 1093.716 and BIC = 1111.442. Finally, for the null model, we find
AIC = 1101.467 and BIC = 1115.648. Thus, both AIC and BIC prefer the full
factorial model. Although the treatment condition performs on average 1.125 points
higher on the post-test (the 95% CI ranges from 0.490 to 1.760), that favour has
vanished completely after one week: the regression coefficient of this interaction
effect is −1.313, and the corresponding 95% CI ranges from −2.031 to −0.594. In
other words, evidence in favour of a positive effect of treatment is found only
immediately after training but not one week later. This phenomenon is not
uncommon in studies that involve learning, yet relatively few experiments in
educational research actually include a follow-up test.

Experiment 2: Pre and Post

A second type of split-plot design is found in a pre-test post-test control-group
design. In this case, one or more treatment conditions and a control condition are
compared in terms of an outcome variable that is measured first prior to and then
after treatment. Although this type of design can be quite problematic in studies on
learning because pre-testing can in itself influence learning and as such count as an
intervention, there are plenty of outcome variables (e.g., motivation, effort, interest,
hours of sleep, blood pressure in psychopharmacological studies) that may lend
themselves well for this type of design. There has been quite a bit of debate in the
literature with regard to how to analyse data obtained in such a design. Although
not so few researchers are inclined to use repeated-measures analysis as in
Experiment 1—where all measurements are done after the treatment—this is, for
randomised controlled experiments, not the best approach. The explanation for this
is as follows.
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Regression to One Common Mean Versus Regression
to Different Means

In a quasi-experiment, where pre-existing instead of randomised groups receive
different treatments, or in experiments like Experiment 1 in this chapter where all
measurements take place after treatment, groups will usually differ on the outcome
variable of interest prior to the first measurement. In each group or condition, scores
from measurement at subsequent occasions will than show fluctuations following a
pattern of regression to their group-specific or condition-specific mean Mc. How-
ever, as Twisk et al. (2018, p. 80) note: “When differences at baseline between the
treatment and control group are due to random fluctuations and measurement
error, there is a tendency of the average value to go down in the group with the
initial highest average value and to go up in the group with the initial lowest
average value.” After all, in a true experiment—where, contrary to
quasi-experiments—we randomly allocate our participants to the different condi-
tions, prior to treatment there is regression to a common mean M. As rightly argued
by Twisk et al. (2018), not adjusting for the baseline difference in the outcome
variable is likely to result in the estimation of an artificial treatment effect. Absent
treatment, the participants allocated to the different conditions have been (ran-
domly) sampled from the same population, and any deviation from equal Ms on an
outcome variable prior to any treatment is entirely due to the laws of probability.

Although repeated-measures analysis makes sense in Experiment 1 in this
chapter as well as in quasi-experiments with pre-existing groups—albeit it that, for
causal inference, quasi-experiments should not be treated as if they were true
experiments—it fails to appreciate this characteristic of regression towards a
common mean M prior to any treatment when (at least) one measurement takes
place prior to treatment. In the repeated-measures analysis, where differences
between conditions are expected and estimated on the first measurement, we
assume regression to condition-specific Mcs instead of to one common M (e.g., Van
Breukelen, 2006). The regression equation of (the fixed part of) the
repeated-measures model for the predicted score S on the outcome variable is:

S ¼ B0 þ B1 � Condition½ � þ B2 � Occasion½ � þ B3 � Condition-by-Occasion½ �:

In this equation, B0 is the expected score for a participant in the control condition
(i.e., Condition = 0) at the first occasion (i.e., Occasion = 0), B1 is the expected
difference in (average) score between conditions at the first occasion, B2 is the
expected change in score in the control condition from first to second occasion (i.e.,
from Occasion = 0 to Occasion = 1), and B3 is the difference in expected change in
score between conditions. When the first measurement occasion is before the
treatment, B1 is expected to be 0, and any deviation from 0 in a given experiment is
entirely due to the laws of probability. When we include B1, we assume regression
to Mcs; when we exclude B1, we assume regression to M. When the first mea-
surement takes place after the treatment (or we deal with pre-existing groups in a
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quasi-experiment), leaving out B1 comes at the risk of substantially biased treatment
effect estimates, because we erroneously assume regression to M instead of to Mcs.
However, in a randomised controlled experiment, when the first occasion is mea-
sured before treatment, the assumption of regression to M instead of to Mcs is
correct, and hence B1 should be omitted from the aforementioned equation to obtain
the following:

S ¼ B0 þ B1 � Occasion½ � þ B2 � Condition-by-Occasion½ �:

This equation is the same as the previous but without baseline (i.e., Occa-
sion = 0) difference; B0 is the commonM of all conditions prior to treatment (i.e., at
Occasion = 0). The treatment effect can be directly obtained from B2. In other
words, in this model, we have three instead of four fixed-effects terms: intercept
(B0), occasion (time: B1), and condition-by-occasion interaction (the treatment
effect of interest: B2). This second model is like an ANCOVA but, as any
mixed-effects model, can handle missing data. Suppose that there are a few par-
ticipants who do respond at pre-test but not at post-test; in the classical ANCOVA
model, these cases are omitted from the analysis unless we apply some form of
imputation; in the mixed-effects model here, FIML can (under MAR or MCAR) use
all available data and account for the missing data without losing cases and without
imputation (see also Chap. 4). For an excellent explanation of why the classical
ANCOVA model and this adjusted mixed-effects model—where B0 serves as
common M of all conditions prior to treatment—are to be preferred over the
aforementioned repeated-measures approach or a simple change test on pre-post
differences, see Twisk et al. (2018).

Why Statistical Tests for Baseline Differences Do Not Make
Sense

Many researchers use to argue that an adjustment for baseline differences, through
ANCOVA or the adjusted mixed-effects model, only makes sense when the dif-
ference at baseline (in our example: pre-test) is statistically significant, and until
some years ago I used to think that way as well. However, this approach does not
make sense, since given randomisation all differences are baseline are by definition
entirely the result of the laws of probability and not of any ‘no difference’ null
hypothesis being incorrect. Given that prior to treatment all participants are from the
same source population, the null hypothesis of ‘no difference’ at baseline is always
true, and anytime we find a statistically significant difference we deal with a Type I
error or artefact. Regardless of what statistical testing criteria we use—p-values,
AIC, BIC, BF, or other—testing for baseline differences in a true experiment does
not make sense. Therefore, while in quasi-experiments with pre-existing groups or
in experiments where the first measurement takes place after treatment the adjusted
model (i.e., with B0 as commonM) is not recommended because it is likely to result
in substantially biased treatment effect estimates (e.g., Van Breukelen, 2006), in
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experiments where the first measurement takes place before treatment this model
can be expected to be the best option regardless of whether or not the baseline
difference is statistically significant.

Different Types of Outcome Variables

The correction discussed here is important for all experiments that involve quan-
titative outcome variables. Besides, although the baseline constitutes the most
important covariate, the regression to M instead of to Mcs argument can also be
considered for other relevant covariates (e.g., Kahan, Jairath, Doré, & Morris,
2014). However, when the outcome variable of interest is dichotomous, the situ-
ation is more complicated than when we are dealing with quantitative outcome
variables. In a linear model, the unexplained variance of the outcome variable of
interest decreases when we add a covariate and the explained variance increases
with the same amount. In a logistic model, on the contrary, the unexplained vari-
ance is fixed; consequently, adding a covariate that contributes to the explanation of
the outcome variable of interest will result in an increase of the total variance as a
sum of explained variance (which increases) and (fixed) unexplained variance (e.g.,
Twisk et al., 2018). A consequence of this difference between linear and logistic
models is that even when the baseline values of two conditions are the same and the
baseline value is clearly related to the outcome at later occasions,
baseline-difference-unadjusted and -adjusted mixed-effects binary logistic regres-
sion models will differ (i.e., non-collapsibility; e.g., Hernan, Clayton, & Keiding,
2011; Newman, 2004). Therefore, when dealing with dichotomous outcome vari-
ables, an adjustment for baseline differences in the outcome variable of interest as
argued for in the case of quantitative outcome variables mostly appears not nec-
essary (Twisk et al., 2018).

Two Types of Interaction: Condition-by-Occasion
and Condition-by-Baseline

Although ANCOVA and the adjusted mixed-effects model constitute more
appropriate approaches to pre-test post-test control-group design data, they have in
common with the typical repeated-measures and change approaches that they focus
on a group-by-time or condition-by-occasion interaction but do not consider the
possibility that the effect of treatment on the outcome variable of interest may differ
substantially across the range of baseline scores: condition-by-baseline interaction.
In the case of the latter, moderated regression (see also Chap. 12) can provide a
more nuanced picture of a treatment effect of interest. Let us look at this a bit closer
with an example. Suppose that we are redoing Experiment 1 but with a pre-test and
post-test instead of with a post-test and follow-up test; the pre-test is a training
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session that participants usually take at their stage in the curriculum, then they
undergo condition-specific training as in Experiment 1, and immediately after, they
do the post-test.

Interaction (1): Condition-by-Occasion

Suppose, the histograms of the distributions pre-test, post-test and pre-post differ-
ence are fine and that we find:M = 6.953 (SD = 1.578) for pre-test andM = 16.891
(SD = 1.920) for post-test in the control condition, andM = 6.734 (SD = 1.576) for
pre-test and M = 17.531 (SD = 1.781) for post-test in the treatment condition. The
scatterplot in Fig. 15.2 presents the bivariate distribution for the relation between
pre-test (baseline) and post-test for the control (X = 0) and treatment (X = 1)
condition.

Pearson’s r for the correlation between pre-test and post-test is 0.355 in the
control condition and 0.718 in the treatment condition. Using SPSS, in ANCOVA
with treatment as factor and pre-test (baseline) as covariate, we find for the treat-
ment effect of interest: B = 0.777, p = 0.006, with a 95% CI of [0.223; 1.330]. In
the adjusted mixed-effects model, assuming CS, we find for the treatment effect of
interest: B = 0.755, p = 0.004, with a 95% CI of [0.247; 1.263]. In the adjusted
mixed-effects model, allowing for unequal VRES for pre-test and post-test (i.e., LR
test indicates that this residual covariance structure is to be preferred over CS:

Fig. 15.2 Scatterplot of the bivariate distribution of pre-test (PR) and post-test (PO) for the
control (X = 0) and treatment (X = 1) condition in Experiment 2 (Jamovi)
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v21 = 4.556, p = 0.033), we find for the treatment effect of interest: B = 0.777 (i.e.,
same as for ANCOVA given no missing data), p = 0.006, with a 95% CI of [0.231;
1.322]. In other words, a positive treatment effect.

Interaction (2): Condition-by-Baseline

The methods discussed in the previous paragraph do not go beyond the
condition-by-occasion interaction and therefore provide only a single treatment
effect estimate. However, in Fig. 15.2, we see some signs of a
condition-by-baseline interaction effect: learners with above-average baseline
scores appear to benefit from the treatment more than their below-average baseline
peers. To examine whether a model accounting for the apparent
condition-by-baseline interaction seen in Fig. 15.2 is recommended, we can use
AIC/BIC model comparison approach as in Chap. 12, Experiment 5. For Model 0
(null model), we find AIC = 526.830 and BIC = 532.534. For Model 1 (condition
as only predictor), we find AIC = 524.998 and BIC = 533.554. For Model 2
(baseline as only predictor), we find AIC = 490.624 and BIC = 499.180. For
Model 3 (main effects of condition and baseline), we find AIC = 484.960 and
BIC = 496.368. Finally, for Model 4 (full factorial, with condition-by-baseline
interaction), we find AIC = 482.211 and BIC = 496.471. Performing a classical
significance test on the interaction effect (JASP), we find: B = 0.380, p = 0.032,
with a 95% CI of [0.033; 0.728]. If we test at a = 0.05, AIC and the outcome of the
statistical significance test indicate in favour of Model 4. BIC indicates a slight
preference for Model 3. In a Bayesian ANCOVA in JASP (default prior), we find a
BF of about 1.43 in favour of Model 4 over Model 3, in other words: not spec-
tacular. The effect size estimates of the interaction effect (JASP or Jamovi) indicate
that the condition-by-baseline interaction effect is rather small: η2 = 0.026, partial
η2 = 0.036, and x2 = 0.020. Some researchers may argue, based on combinations
of BIC, BF, and/or effect size estimates, that we do not need to go beyond
ANCOVA. Others may argue that we need to account for the interaction, and a
middle solution is to report both. Applying the simple slope analysis approach from
Chap. 12 (Experiment 5) to the data from the experiment at hand, we find the
following outcomes. For one SD below the average of pre-test, we find: B = 0.180,
p = 0.643, and 95% CI = [−0.581; 0.941]. For average pre-test, we find:
B = 0.777, p = 0.005, and 95% CI = [0.236; 1.317]. For one SD above the average
of pre-test, we find: B = 1.373, p < 0.001, and 95% CI = [0.612; 2.135]. In other
words, we have insufficient evidence to suggest a treatment effect at one SD below
the average of pre-test.
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Experiment 3: Several Post-treatment Measurements

Variants on Experiments 1–2 are found in having more than two measurements of
the same outcome variable of interest. For instance, in Experiment 2, researchers
could have chosen for a pre-test, post-test, and follow-up test. The arguments
concerning regression to one versus several means, baseline corrections, and the
two types of interaction also apply to these extensions, and can be dealt with by
extensions of the models discussed in the context of Experiment 2. Another variant
on Experiment 1 is to have more than two measurements after treatment and no
measurements prior to treatment. Suppose, we are dealing with three different
randomised groups (n = 53 per group) in an experiment that focusses on differences
between two treatment conditions (Groups 1 and 2) and a control condition (Group
3) in a number of outcome variables including the experienced difficulty of learning
tasks carried out as part of the grammar training. In each of three conditions,
participants complete four learning tasks and rate the experienced difficulty of each
task right after completing it on a VAS from 0 (min) to 100 (max). Suppose, the
histograms of distributions at each occasion and those of the differences in scores
between occasions look fine, and the findings are as follows. In Group 1, we find:
M = 7.604 (SD = 1.964) after Task 1, M = 11.019 (SD = 2.422) after Task 2,
M = 12.208 (SD = 2.938) after Task 3, and M = 12.019 (SD = 3.692) after Task 4.
In Group 2, we find: M = 7.698 (SD = 2.198) after Task 1, M = 11.340 (SD =
3.019) after Task 2, M = 12.302 (SD = 3.719) after Task 3, and M = 12.547
(SD = 4.107) after Task 4. In Group 3, we find: M = 7.660 (SD = 2.019) after Task
1, M = 10.623 (SD = 3.001) after Task 2, M = 11.792 (SD = 3.466) after Task 3,
and M = 11.660 (SD = 4.296) after Task 4. Figure 15.3 presents Ms and SDs of
experienced task difficulty per condition (group) after each task.

Fig. 15.3 Ms and SDs (error bars) of experienced difficulty per condition after each task in
Experiment 3 (SPSS)
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In short, small differences after Task 1, increases in Ms and Mds between con-
ditions from Task 1 to Task 2, some increases in Ms from Task 2 to Task 3 as well,
and generally SDs increase from task to task. The researchers are interested in the
main effect of time, the main effect of group, and the group-by-time (i.e.,
condition-by-task) interaction effect.

Suppose, the scatterplots of the bivariate relations for each pair of tasks do not
indicate any strange patterns (normally, this would involve six scatterplots: one for
each of six pairs of tasks). Box’s homogeneity of covariance matrices test is not
statistically significant at any meaningful significance level: v220 = 17.832,
p = 0.598; and the same holds for Shapiro-Wilk’s multivariate normality test:
W = 0.989, p = 0.253 (Jamovi).

Mixed-Effects Analysis (1): Random Part

With four tasks in a particular temporal order, we have several options, and even
more so when the tasks are equidistant in time (i.e., equal time intervals between
adjacent tasks). Four possible residual covariance structures can be taken from
Chap. 14 (Experiment 2): CS, its extension allowing the VRES to vary across tasks,
RIs and/or RSs (not all may be needed), and UN. When we are dealing with
equidistant tasks, other possible candidates for the residual covariance structure are
the following. Firstly, with tasks in a given order, it is well possible that the
residuals of adjacent tasks are correlated more strongly than the residuals of
non-adjacent tasks, and that the residual correlation (rRES) decreases as the distance
between tasks decreases. In one type of residual covariance structure, named after
the German mathematician Otto Toeplitz (1881–1940) and therefore also known as
Toeplitz covariance structure (e.g., Bareiss, 1969; Littell, Pendergast, & Natarajan,
2000; Lu & Mehrotra, 2009), one rRES is estimated for adjacent tasks, one for tasks
that have one other task in between them, one for tasks that have two other tasks in
between them, and so forth. For four tasks, this comes down to three rRES estimates:
one for tasks 1 and 2, tasks 2 and 3, and tasks 3 and 4; one for tasks 1 and 3 and
tasks 2 and 4; and one for tasks 1 and 4. There are two variants of Toeplitz: equal
and unequal VRES across tasks. The same holds for another popular type of residual
covariance structure: AR1 (e.g., Lu & Mehrotra, 2009; Tan, 2010). In AR1, we
need only 1 df for rRES, because rRES between a given pair of tasks is a simple
mathematical function of the number of tasks k between that pair of tasks:

rRES ¼ rkþ 1:

For adjacent tasks—in our case: 1 and 2, 2 and 3, and 3 and 4—there are no
tasks between them, hence k = 0, and rRES = r. For the next shortest distance—
tasks 1 and 3 and tasks 2 and 4—there is one task in between, hence k = 1, and
rRES = r2. Finally, for tasks 1 and 4, there are two tasks in between, hence k = 2,
and rRES = r3. Given that r < 1, rRES by definition decreases according to the
power function with the number of tasks between a pair of tasks. Sometimes, a
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combination of RI and AR1 can be used (e.g., Tan, 2010). Whether we assume
equal or unequal VRES across tasks, Toeplitz and AR1 only make sense when we
have equidistance between tasks. After all, what reason would we have to assume
rRES between tasks 1 and 2 to be the same for 2 and 3 and for 3 and 4 if the
distances are different? Further, given that both CS and AR1 only use 1 df for rRES,
they are often too simplistic. Simultaneously, while the UN model may be one of
the most likely candidates when dealing with only a few tasks, Toeplitz may well
constitute a good compromise between the too simplistic CS and AR1 on the one
hand and the df-consuming UN on the other hand (e.g., Lu & Mehrotra, 2009).
When tasks are not equidistant, combinations of RI and RS terms may constitute a
useful alternative to the UN model. Not all RI and RS terms may be needed. For
instance, in this experiment, the RS variance for the change from Task 1 to Task 2
is as close to zero that we may as well call it zero. Also, we do not always need to
estimate all correlations between all RI and RS terms or treat all these correlations
as being zero; in some cases, for instance, a single average correlation between the
different RI and RS terms may do. Finally, there are at least two other covariance
structures worth considering when dealing with this kind of designs: first-order
ante-dependence (AD1) and HF (e.g., Eyduran & Akbaş, 2010). In HF, all rRESs are
a function of the VRESs of the two tasks that constitute a pair and a constant factor k
that holds for all pairs. In other words, it uses as many df as CS with unequal VRES

across tasks and as many df as AR1 with unequal VRES across tasks (i.e., the
number of tasks plus one). In AD1, we allow the VRES to vary across tasks and we
estimate a rRES for each pair of adjacent tasks; rRES of any pair of non-adjacent
tasks is the product of all adjacent correlations in between. This way, AD1 may
constitute a more parsimonious alternative to the UN model that comes with the
advantage over AR1 and Toeplitz in that it does not need tasks to be equidistant.

Suppose, the tasks in this experiment are equidistant. Table 15.1 provides a
comparison between different residual covariance structures, using the same fixed
part (i.e., main effect of condition, main effect of task, and condition-by-task
interaction effect): (R1) UN; (R2) RI aka CS; (R3) CS with unequal VRES across
tasks; (R4) RI, RS for the difference between Task 1 and Task 3, and RS for the
difference between Task 1 and Task 4; (R5) the same as R4 but with an average
correlation between these random effects; (R6) Toeplitz; (R7) Toeplitz with unequal
VRES across tasks; (R8) AR1; (R9) AR1 with unequal VRES across tasks; (R10)
AD1; and (R11) HF.

In this comparative approach, we use the UN model—the most flexible one of all
—as starting point and see how all other models, which are less flexible than the
UN model in one way or another, compare. A statistically significant LR test
outcome in that case indicates a significant loss of information and hence not a good
simplification of the UN model. In this case, the only model that does not yield a
statistically significant LR test outcome is AD1. How come AD1 performs so well?
The rRESs estimated in the UN model are as follows: 0.710 for Tasks 1 and 2, 0.598
for Tasks 1 and 3, 0.837 for Tasks 2 and 3, 0.550 for Tasks 1 and 4, 0.740 for Tasks
2 and 4, and 0.860 for Tasks 3 and 4. When we multiply 0.710 by 0.837, we obtain
0.594 as estimate for rRES for Tasks 1 and 3, which is almost the same as the 0.598
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obtained in the UN model. Likewise, when we multiply, 0.837 by 0.860, we obtain
0.720 as estimate for rRES for Tasks 2 and 4, which is not far away from the 0.740
obtained in the UN model. Finally, the multiplication 0.710 * 0.837 *
0.860 � 0.511 as estimate for rRES for Tasks 1 and 4, which is not far away from
the 0.550 obtained in the UN model.

If the most complex model (UN: df = 10) and a simplification of that model
(AD1: df = 7) perform about equally well, we may as well prefer the simplification.
Therefore, based on the outcomes of Table 15.1, we may as well prefer AD1.
Perhaps some others will still prefer UN. The middle solution is to provide the
fixed-effects outcomes for both.

Mixed-Effects Analysis (2): Fixed Part

Using the UN model for the random part, we find the following outcomes for the
fixed effects (SPSS). For the main effect of task, we find: F3, 159 = 171.411,
p < 0.001. For the main effect of condition, we find: F2, 159 = 0.511, p = 0.601. For
the condition-by-task interaction effect, we find: F6, 159 = 0.849, p = 0.534. Using
the AD1 model for the random part, we find the following outcomes for the fixed
effects (SPSS). For the main effect of task, we find: F3, 222.480 = 170.919,
p < 0.001. For the main effect of condition, we find: F2, 160.351 = 0.515, p = 0.598.
For the condition-by-task interaction effect, we find: F6, 222.480 = 0.858, p = 0.526.

Table 15.1 Comparison of eight residual covariance structures in Experiment 3 (SPSS): (R1)
UN, (R2) RI aka CS, (R3) CS with unequal VRES across tasks; (R4) RI, RS for the difference
between Task 1 and Task 3, and RS for the difference between Task 1 and Task 4; (R5) the same
as R3 but with an average correlation between these random effects; (R6) Toeplitz; (R7) Toeplitz
with unequal VRES across tasks; (R8) AR1; (R9) AR1 with unequal VRES across tasks; (R10) AD1;
and (R11) HF: number of estimated parameters (df), −2RLL, and LR test v2df and p-value for any
of R2–R11 tested against R1

Structure df −2RLL LR test v2df LR test p-value

R1 10 2675.520 – –

R2 2 2889.728 v28 = 214.208 <0.001

R3 5 2771.988 v25 = 96.468 <0.001

R4 4 2848.548 v26 = 173.028 <0.001

R5 5 2762.062 v25 = 86.542 <0.001

R6 4 2765.684 v26 = 90.164 <0.001

R7 7 2695.772 v23 = 20.252 <0.001

R8 2 2768.692 v28 = 93.172 <0.001

R9 5 2696.030 v25 = 20.510 0.001

R10 7 2676.862 v23 = 1.342 0.719

R11 5 2796.654 v25 = 121.134 <0.001
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In other words, either way insufficient evidence for an interaction effect or for a
treatment main effect. The only fixed effect for which we find sufficient evidence is
for the main effect of task, and Fig. 15.3 illustrates what that effect looks like.

Experiment 4: Several Pre-treatment and Several
Post-treatment Measurements

An in experimental educational and psychological research slightly less common
type of design (i.e., compared to the other designs discussed in this chapter) is that
where both before and after treatment there are multiple measurements on the same
outcome variable of interest. The methods discussed for Experiments 1–3 still
apply, but the control for baseline differences discussed in Experiment 2 now
applies for several baseline measurements. Consider the following example. Some
traffic psychologists are interested in the effect of a new type of drug on—among
others—cognitive performance within the first half an hour after consumption and
want to test this by a comparing a treatment group (n = 51) and control group
(n = 51) in performance on a computer task that requires a participant to use the
front (speed up), back (slow down), left (steer left), and right (steer right) arrows on
a computer keyboard to drive a car on a very busy four-lane highway that randomly
bends left and right, sometimes more sometimes less firmly, and is full of cars that
occasionally move to another lane to overtake a car in front of them. The participant
is supposed to avoid hitting any of the cars, to respect a distance between cars in
front of them (i.e., to overtake timely), and to not scratch the walls on the left and
right of the highway. Depending one’s performance, the score on this 5-min task is
somewhere between 0 (min) and 25 (max). Based on previous research, the
researchers argue that to accurately estimate the effect of the drug and not have too
much noise from inexperience with this type of task, participants should first do
three practice trials separated by 3-min breaks, then receive condition-specific
treatment (i.e., another 3-min break)—an orange juice in the control condition, and
an orange juice with a standardised dose of the drug in the treatment condition—
and then do another four post-treatment trials separated by 3-min breaks. Suppose,
the usual histograms and scatterplots indicate no abnormalities and Fig. 15.4 pre-
sents Ms and SDs of task performance per condition (group) after each task (i.e.,
Tm2, Tm1, and T0 being the three practice trials and T1–T4 being the
post-treatment trials).

At Tm2, we find M = 8.745 (SD = 2.096) in the control condition and
M = 8.725 (SD = 2.246) in the treatment condition. At Tm1, we find M = 9.902
(SD = 2.274) in the control condition and M = 9.863 (SD = 2.458) in the treatment
condition. At T0, we find M = 10.078 (SD = 2.505) in the control condition and
M = 9.863 (SD = 2.254) in the treatment condition. At T1, we find M = 9.874
(SD = 2.602) in the control condition and M = 11.020 (SD = 2.429) in the
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treatment condition. At T2, we find M = 9.745 (SD = 2.606) in the control con-
dition and M = 11.118 (SD = 2.718) in the treatment condition. At T3, we find
M = 9.627 (SD = 2.898) in the control condition and M = 11.294 (SD = 2.935) in
the treatment condition. Finally, at T4, we find M = 9.784 (SD = 2.942) in the
control condition and M = 11.176 (SD = 3.428) in the treatment condition. The
standard deviations increase somewhat over time and, as to be expected, the con-
ditions only start to visibly differ after treatment (i.e., starting T1); any differences
between conditions on the practice trials is a matter of random fluctuation, while
differences on the last four trials can result from treatment differences along with
random fluctuation. Therefore, the following regression equation of (the fixed part
of) the repeated-measures model for the predicted score S on the outcome variable
can be used:

S ¼B0 þ B1 � Tm1½ � þ B2 � T0½ � þ B3 � T1½ � þ B4 � T2½ � þ B5 � T3½ � þ B6 � T4½ �
þ B7 � T1 � Treat½ � þ B8 � T2 � Treat½ � þ B9 � T3 � Treat½ � þ B10 � T4 � Treat½ �:

This model is nothing more than an extension of the adjusted mixed-effects
model regression equation in Experiment 2.

Mixed-Effects Analysis (1): Random Part

Table 15.2 provides a comparison between different residual covariance structures,
using the same fixed part (cf. the regression equation just mentioned): (R1) UN;

Fig. 15.4 Ms and SDs (error bars) of task performance per condition after each task in
Experiment 3 (SPSS)
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(R2) CS; (R3) CS with unequal VRES across tasks; (R4) RI, and RS for the dif-
ference between first and last task; (R5) the same as R4 but with correlation
between these random effects; (R6) Toeplitz; (R7) Toeplitz with unequal VRES

across tasks; (R8) AR1; (R9) AR1 with unequal VRES across tasks; (R10) AD1; and
(R11) HF.

Four solutions appear to deserve a closer look: R1 (−2RLL = 2225.138), R7
(−2RLL = 2239.182; v215 = 14.044, p = 0.522), R9 (−2RLL = 2241.338;
v220 = 16.200, p = 0.704), and R10 (−2RLL = 2238.200; v215 = 13.062, p = 0.598).
Each of R7, R9, and R10 can be tested against R1, because each of these three
alternatives to R1 is a simplification aka special case of R1. R7 and R10 cannot be
viewed in these terms; neither is a special case of the other, and besides the use the
same number of df; for these reasons, a LR test for a comparison between R7 and
R10 is not an option. However, R9 can be viewed as a special case of R7 and as a
special case of R10: these three models all allow the VRES to vary across tasks, but
R9 uses only 1 df for rRES while R7 and R10 use several df for estimating rRESs.
When we compare R9 against R7, we find: v25 = 2.156, p = 0.827. When we
compare R9 against R10, we find: v25 = 3.138, p = 0.679. In other words, we do not
have sufficient evidence to reject the assumption that R9 is a valid simplification of
R1, R7, and R10. In R9, the rRES for adjacent tasks is estimated to be 0.920, and
from here rRES for any pair of non-adjacent tasks can be computed following the
power function mentioned in Experiment 3 (e.g., Tasks 1 and 3: 0.846; Tasks 1 and

Table 15.2 Comparison of eight residual covariance structures in Experiment 4 (SPSS): (R1)
UN; (R2) CS; (R3) CS with unequal VRES across tasks; (R4) RI, and RS for the difference between
first and last task; (R5) the same as R4 but with correlation between these random effects; (R6)
Toeplitz; (R7) Toeplitz with unequal VRES across tasks; (R8) AR1; (R9) AR1 with unequal VRES

across tasks; (R10) AD1; and (R11) HF: number of estimated parameters (df), −2RLL, and LR test
v2df and p-value for any of R2–R11 tested against R1

Structure df −2RLL LR test v2df LR test p-value

R1 28 2225.138 – –

R2 2 2572.709 v226 = 347.571 <0.001

R3 8 2508.713 v220 = 283.575 <0.001

R4 3 2544.560 v225 = 319.422 <0.001

R5 4 2533.052 v224 = 307.914 <0.001

R6 7 2266.993 v221 = 41.855 0.013

R7 13 2239.182 v215 = 14.044 0.522

R8 2 2269.031 v226 = 43.893 0.016

R9 8 2241.338 v220 = 16.200 0.704

R10 13 2238.200 v215 = 13.062 0.598

R11 8 2544.477 v220 = 319.339 <0.001
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7: 0.606). VRES is estimated to be 5.016 for Task 1, 5.979 for Task 2, 5.949 for Task
3, 6.352 for Task 4, 6.766 for Task 5, 7.900 for Task 6, and 9.474 for Task 7.

Mixed-Effects Analysis (2): Fixed Part

Using R9 for the random part, Table 15.3 presents the outcomes for the fixed effects
(SPSS).

In Table 15.3, terms B0–B10 are from the aforementioned regression equation:
B0–B6 indicate the trajectory in the control condition across tasks cf. Fig. 15.4,
whereas B7–B10 indicate the difference between the two conditions for each of the
tasks after treatment, with positive differences indicating higher scores in the
treatment condition.

Revisiting the Main-Interaction-Simple Effects Distinction

Unless we deal with measurements prior to treatment in a randomised controlled
experiment, we should always include all main effects underlying an interaction
effect. In a two-way or three-way factorial experiment like in Chap. 11 or in a
moderated regression like in Chap. 12 and in Experiment 2 in this chapter, we
cannot interpret the interaction term as the interaction effect of interest without
having the underlying main effects in the model. Whether we deal with measure-
ments prior to or after treatment in a quasi-experiment or with measurements after
treatment in a randomised controlled experiment, leaving out the treatment term in
attempt to control for baseline differences is generally asking for trouble. However,

Table 15.3 Fixed-effect outcomes in Experiment 4 (SPSS): B, df, p, and 95% CI (LB, UB)

Term B df p-value 95% LB 95% UB

B0 8.735 110.019 <0.001 8.298 9.173

B1 1.147 282.964 <0.001 0.962 1.332

B2 1.235 390.451 <0.001 0.982 1.488

B3 0.947 426.325 <0.001 0.583 1.310

B4 0.913 433.994 <0.001 0.467 1.358

B5 0.795 375.994 0.004 0.260 1.331

B6 0.952 271.734 0.003 0.319 1.584

B7 1.440 337.605 <0.001 1.059 1.821

B8 1.567 339.165 <0.001 1.033 2.101

B9 1.860 308.420 <0.001 1.180 2.540

B10 1.587 234.199 <0.001 0.758 2.416
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such control (i.e., correction) does make sense when it comes to measurements prior
to treatment in a randomised controlled treatment (at least as far as quantitative
outcome variables are concerned), whether we have one such baseline measurement
(Experiment 2) or several (Experiment 4).
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16Models for Treatment Order Effects

Abstract
In the experiments discussed thus far, treatment is a between-subjects factor:
participants in one condition do not also participate in another condition.
However, in some cases, different groups may receive different treatments at
different occasions, the order of treatment varies across groups, and there is a
measurement of an outcome variable of interest at each occasion. In the simplest
setup, there are two treatments, A and B, which are taken in a different order by
each of two groups: A-B in one group (with a measurement after A followed by
a measurement after B), B-A in the other group (with a measurement after B
followed by a measurement after A). In other cases, there are more treatments
and more orders for a larger number of groups with it, or there are only a few—
and perhaps only two—treatments which can vary in each of a larger number of
trials. At each trial, there is a measurement of an outcome variable of interest.
Consider students who are asked to read ten articles, each article is read in each
of two possible formats determined in a random order, and after each article
students are asked to rate on a VAS how much effort it took to read the article.
These are all examples of situations where treatment varies both between and
within participants and a measurement of an outcome variable of interest takes
place in each trial (e.g., after each condition or for each article). As in Chaps. 14
and 15, the occasions or trials can still be viewed as stations to be passed by each
of the participants, but there is something that varies from station to station that
has to be accounted for in our models. This final chapter provides examples for
how to do that.
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Introduction

There are not so few examples of empirical research articles that state ‘effective-
ness’ of a treatment based on a study in which only one group was measured on an
outcome variable of interest prior to and after treatment. Over the years, I have
found myself in many discussions with authors and co-authors about interpretation
and wording in such cases. We appear to be wired such that we tend to speak in
terms of X ‘impacting’ or ‘influencing’ Y, or X ‘resulting in’ higher or lower Y even
when the design of our study does not allow for such inference. Treating such a
within-subjects comparison as if it was a true, between-subjects, experiment is
based on the assumption that the between-subjects model holds for within-subjects
studies. This is a very strong assumption; we do not really know if this can ever be
true and we actually have good reasons to believe, at least in most settings, that it
cannot be true.

In a pre-test post-test single-group design, many phenomena may explain a
difference that we would like to attribute to a treatment effect. Some of these
phenomena may relate to maturation or to other influences unrelated to the treat-
ment of interest, such as regression to the mean (see also Chap. 15). Besides, earlier
measurements may in some cases influence later measurements. For instance, in
studies on learning, researchers have to realise that a pre-test of knowledge or skill
prior to treatment may in itself function as a treatment and influence participants’
scores on a post-test of that knowledge or skill (see also the assessment and learning
paradox in Chap. 12). Adding pre-test as an additional factor to a randomised
controlled experiment may provide a way to estimate the effect of such a pre-test. If
we originally had in mind to compare a control condition and two treatment con-
ditions, with adding a pre-test factor, we would obtain a three-by-two design, with
half of the conditions obtaining a pre-test and half of the conditions not obtaining a
pre-test. Finally, even when there is no pre-test to worry about, participants
undergoing different conditions comes at the risk of so-called carryover effects:
participants’ performance or behaviour of interest otherwise in one condition is
influenced by the fact that they just participated in at least one other condition (e.g.,
Gravetter & Forzano, 2006). Examples of many possible sources of carryover
effects are learning, fatigue, adaptation, sensitisation, and habituation. All these
within-subjects design-related effects have in common that they threaten the internal
validity of a study and make outcomes of interest more difficult to interpret.

In a between-subjects design, when the experimental condition and the treatment
condition result from random (sampling and) allocation, absent confounding
resulting from flaws in the experimental setup, the between-subjects causal account
of the treatment-control contrast can be defended via the conditions of Mill (1843):
there is covariation between treatment factor and outcome variable of interest,
differences in treatment precede the measurement of the outcome variable (i.e.,
temporal order), and there are no other factors that could reasonably explain the
covariation (i.e., no alternative explanations). In this case, two logical methods
based on Mill’s work together constitute the basis of the treatment-control causal
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inference: the method of agreement (i.e., treatment condition) or “if X, then Y”, and
the method of difference (i.e., control condition, absent treatment) or “if not X, then
not Y” (e.g., Rosnow & Rosenthal, 2005). This is consistent with most ideas about
causality as well as with ideas of repeated sampling, sampling distributions, and
expected values.

An important advantage of within-subjects over between-subjects designs is that
they enable us to separate within-subjects from between-subjects variance. This is
the reason why treating within-subjects data as if they were between-subjects will
result in substantially larger SEs and CIs compared to appropriate treating
within-subjects data as within-subjects. However, when we apply Mill’s methods to
a within-subjects design, we run into trouble. Firstly, although there may still be
covariation between treatment factor and outcome variable of interest, the models
we use to estimate treatment effects usually do not deal with covariation at the level
of the individual participant; rather, we have a model based on a group of partic-
ipants and assume that this model is the same for individual participants (i.e., local
homogeneity). Secondly, the idea of temporal order from the between-subjects
design no longer applies: at least one of the conditions is preceded by a mea-
surement of the outcome variable of interest. Thirdly, a modification of this tem-
poral order and other factors may largely if not completely explain the covariation.

We may never fully get rid of these problems, but may somewhat reduce the
trouble by including several groups in our experiment and having each group
undergo different conditions in different orders. Given k conditions, we have k!
possible orders of conditions. In the simplest case, where we have two possible
conditions A and B, we can have each of two groups undergo these conditions in a
different order: A-B (first group) and B-A (second group). With three possible
conditions, we have 3 * 2 * 1 = 6 possible orders: A-B-C, A-C-B, B-A-C, B-C-A,
C-A-B, and C-B-A. The process of having different groups for different orders of
conditions is also called counterbalancing (e.g., Gravetter & Forzano, 2006; Ros-
now & Rosenthal, 2005). When we have one group for each possible order, we
speak of complete counterbalancing; when we have fewer groups than possible
orders, we can only use a limited number of the orders, and in such cases, we speak
of partial counterbalancing. A common misunderstanding appears to be that
counterbalancing eliminates carryover effects, but this is not the case, and generally
speaking, when we have reasons to assume (substantial) carryover from one con-
dition to another we may better opt for a between-subjects design (i.e., have one
group for each condition, instead of one group per different order of conditions).

There is an excellent read on counterbalancing and so-called Latin-square
designs by Richardson (2018). A Latin square is a matrix with k number of rows
and columns (e.g., two by two, three by three, or six by six), in which sequences of
conditions are presented such that each condition occurs only once in each row and
only once in each column. Fisher (1925) already recommended the use of Latin
squares to control for effects of extraneous variables. In line with one of the core
messages of this book, which is based on Fisher (1925), when using Latin squares,
the choice of the exact square should match the research design and should be
accounted for in the data analysis as well. In this context, Grant (1948) pointed out
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that a simple two-by-two Latin square, where two conditions are presented in one
order to half of the participants but in the reverse order to the other half of the
participants, does not control for interactions between the treatment variable and the
counterbalanced variable. Later on, others indicated that this problem also exists for
larger Latin squares (e.g., Poulton & Edwards, 1979; Richardson, 2018). All these
considerations have in common that although Latin-square designs constitute a
potentially powerful tool for experimental researchers in a wide range of settings, it
is important to account for their use in the statistical analysis (i.e., the bridge
between design and analysis). In this chapter, we have a look at two experiments
where the order of conditions varies: one with a simple two-order two-group
comparison, and one with a multi-order design.

Experiment 1: Two Orders

Sometimes, experiments that include a within-subjects component arise from a
particular interest in an order effect. Take the following example. Some clinicians
are interested in comparing two different orders of tasks in simulation training in
terms of clinical reasoning activity during each of these tasks. They randomly
sample N = 100 Clinical Psychology students and randomly assign them to two
possible orders: first Task 1 then Task 2 (n = 50), or first Task 2 then Task 1
(n = 50). Both tasks take 10 min and involve a participant to carry out physical
examination manoeuvres on a human simulated patient while thinking aloud. All
sessions are video-recorded and given a consensus-based clinical reasoning score
by a team of experienced clinicians who are blind with regard to any possible
expectations of which type of task or which order of tasks might yield better scores.
Suppose, the histograms of the distributions of scores for each of the task and for
the difference between the two tasks do not indicate substantial deviations from
normality and the Ms and SDs are as follows. In the condition in which the order is
Task 1–Task 2, M = 10.580 and SD = 1.592 for Task 1, and M = 11.280 and
SD = 2.110 for Task 2. In the condition in which the order is Task 2–Task 1,
M = 11.660 and SD = 3.041 for Task 2, and M = 11.480 and SD = 2.367 for Task
1. Figure 16.1 presents the scatterplot of the relation between clinical reasoning
score at Occasion 1 (Y1: Task 1 for the order Task 1–Task 2; Task 2 for the order
Task 2–Task 1) and Occasion 2 (Y2: Task 2 for the order Task 1–Task 2; Task 1 for
the order Task 2–Task 1) per condition (X1 = 0: order is Task 1–Task 2; X1 = 1:
order is Task 2–Task 1).

In the condition where Task 1 is done first, Pearson’s correlation between the
two tasks is r = 0.726, and in the condition where Task 2 is done first, we find
r = 0.794.
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Mixed-Effects Analysis (1): Equal Versus Unequal Residual
Variance

We can now turn to determining the random part of our mixed-effects model,
knowing that the fixed effects to include are the following: main effect of occasion
(i.e., first vs. second occasion), main effect of task (i.e., first vs. second task), and
the occasion-by-task interaction effect. For the simplest model, CS, we find
−2RLL = 833.665 (SPSS). For the extension allowing for unequal VRES, we find
−2RLL = 803.165. The resulting LR test yields: v21 = 30.500, p < 0.001. In CS, we
find: ICC = 0.717 and VRES = 5.459. In the extension with unequal VRES, we find:
ICC = 0.769, VRES = 3.492 at Occasion 1, and VRES = 7.246 at Occasion 2.

Mixed-Effects Analysis (2): Task, Occasion, and Task Order
Effects

In this model, the occasion-by-task interaction effect can be used as an estimate of
the task order effect: if the order of tasks does not really matter, the interaction effect
should be minimal. Next, the occasion main effect can be used as an estimate of
change from one practice occasion to another, and the task main effect can be used as
an estimate of the difference between two tasks. In some studies, the main interest

Fig. 16.1 Scatterplot of the relation between clinical reasoning score at Occasion 1 (Y1: Task 1
for the order Task 1–Task 2; Task 2 for the order Task 2–Task 1) and Occasion 2 (Y2: Task 2 for
the order Task 1–Task 2; Task 1 for the order Task 2–Task 1) per condition (X1 = 0: order is Task
1–Task 2; X1 = 1: order is Task 2–Task 1)

Experiment 1: Two Orders 247



lies in the treatment main effect, which would here be the task main effect. In other
studies, including the one in this example, the interest lies in the task order effect.
However, even if the interest in a particular study lies in the treatment main effect, we
will still need to check for interaction first because main effects are generally hard to
interpret when there is substantial interaction. For the full factorial model, we find:
AIC = 813.549, BIC = 836.637, and for the interaction effect, p = 0.307. For the
two main-effects model, we find: AIC = 812.597 and BIC = 832.387. For the task
main-effect model, we find: AIC = 815.995 and BIC = 832.486. For the occasion
main-effect model, we find: AIC = 823.267 and BIC = 839.759. Finally, for the null
model, we find: AIC = 826.441 and BIC = 839.634. In other words, the two
main-effects model appears to be preferred. In this model, we find for occasion (i.e.,
higher at Occasion 2): B = 0.640, p < 0.001, and 95% CI = [0.295; 0.985]; and we
find for task (i.e., higher for Task 2): B = 0.352, p = 0.020, and 95% CI = [0.057;
0.648].

Experiment 2: Several Orders

Experiment 1 can be easily extended to more orders when more than two tasks are
to be compared. However, sometimes, researchers take a different approach to
dealing with task order effects, even when only two types of tasks are involved. For
example, in a recent study by Martin et al. (2018), 72 participants read eight articles
in either of two formats—infographic or text-only—in either of eight possible
orders. Several outcome variables were measured, one of which was viewing time.
The 72 participants were randomly assigned to each of the orders (i.e., n = 9 per
order). Had the group of participants been larger (e.g., a larger-scale online
experiment), an approach to randomisation could have been as follows. Given
k tasks and c options per task, the number of possible orders NO is:

NO ¼ ck:

With c = 2 and k = 8 (cf. Martin et al., 2018), this comes down to 256 different
orders. If we are not interested in estimating the effects of different orders (which
are difficult to estimate with 72 participants and 8 orders as well) and we have
N = 256 participants to be randomly assigned to these orders, we could have one
participant per order. Advantages of this is that the occurrence of each of the
formats is exactly equal (i.e., 50% of participants receiving infographic, 50% of
participants receiving text-only) at each occasion and that the correlation between
occasions in terms of format occurrence is exactly 0; these factors facilitate esti-
mation. Another factor that facilitates estimation is sample size. With only 72
participants, several of the residual covariance structure models that use relatively
many df—UN, Toeplitz with unequal VRES, and AD1, and RI-RS models that
include several RS terms and correlations between RI and RS terms—may not
provide stable estimates, and we may need to use more restrictive models such as
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CS or AR1 with or without unequal VRES even if these more restrictive models in
somewhat larger samples usually perform worse than their more flexible alterna-
tives. Therefore, in this final experiment of this book, we have a look at a simulated
example of an experiment like the one by Martin et al. (2018), in which viewing
time (in minutes) serves as the outcome variable, but where the sample size is
larger.

Suppose, the usual histograms indicate no strange cases or shapes, and
Table 16.1 presents the Ms and SDs of viewing time per format per occasion.

The findings in Table 16.1 appear to indicate a format-by-occasion interaction
effect: the difference between formats in average viewing time appears to decrease
from occasion to occasion.

Mixed-Effects Analysis (1): Random

The fixed effects to be included are: main effect of format (i.e., infographic vs.
text-only), main effect of occasion (i.e., Occasions 1–8), and the format-by-occasion
interaction effect. Table 16.2 provides a comparison between different residual
covariance structures, using the same fixed part (i.e., format and occasion main
effects and their interaction effect): (R1) UN; (R2) CS; (R3) CS with unequal VRES

across tasks; (R4) RI, and RS for the difference between first and last task; (R5)
Toeplitz; (R6) Toeplitz with unequal VRES across tasks; (R7) AR1; (R8) RI and
AR1; (R9) AR1 with unequal VRES across tasks; (R10) RI and AR1 with unequal
VRES across tasks; (R11) AD1; and (R12) HF.

For R6–R11, the LR test is not statistically significant at the 5% level, although
for R7 and R8 the outcome is statistically significant if we test one-sided (see also
Chap. 13). For the comparisons of random part models in the following, the out-
comes are or are not statistically significant at 5% regardless of whether we test
one-sided or two-sided, so let us stick with two-sided testing. The most restrictive
of R6–R11 is R7, and this is a special case of each of R6 and R8–R11. For R7
versus R8 (i.e., the nearest to R7 in terms of additional df), the LR test yields:
v21 = 0.207, p = 0.649. For R7 versus R9 (i.e., the second-nearest to R7 in terms of

Table 16.1 Ms and SDs of
viewing time per format per
occasion (Jamovi)

Occasion Text-only
M (SD)

Infographic
M (SD)

1 7.955 (0.457) 8.400 (0.513)

2 7.695 (0.597) 7.924 (0.543)

3 7.573 (0.549) 7.802 (0.574)

4 7.417 (0.538) 7.689 (0.544)

5 7.478 (0.578) 7.573 (0.610)

6 7.423 (0.560) 7.459 (0.569)

7 7.349 (0.524) 7.480 (0.591)

8 7.389 (0.628) 7.359 (0.563)
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additional df), the LR test yields: v27 = 15.316, p = 0.032. For R7 versus R10 (i.e.,
third-nearest to R7 in terms of additional df), the LR test yields: v27 = 15.564,
p = 0.049. For R7 versus R11, the LR test yields: v213 = 18.378, p = 0.019. Finally,
for R7 versus R6, the LR test yields: v213 = 17.918, p = 0.161.

In both R7 versus R8 and R9 versus R10, the difference is a RI term, and the
outcome of the LR test in R9 versus R10 is similar to that of R7 versus R8:
v21 = 0.248, p = 0.618. For R9 versus R11, we find: v26 = 3.062, p = 0.801. Finally,
for R9 versus R6, we find: v26 = 2.354, p = 0.884. We cannot perform a LR test on
R6 versus R11, since neither is a special case of the other and the difference in
df = 0 for these two models. However, there appears to be no need to compare R6
and R11 anyway, for we have insufficient evidence to assume that R9 is too much
of a simplification of R6 and R11.

In R9, rRES for adjacent tasks is estimated to be 0.462, and VRES varies from
0.239 for Article 1 to 0.361 for Article 8.

Mixed-Effects Analysis (2): Fixed

Using R9 for the random part, we find the following outcomes for the fixed effects.
For the full factorial model, we find: AIC = 3027.051, BIC = 3167.666, and
p < 0.001 for the interaction effect. For the two main-effects model, we find:
AIC = 3040.553 and BIC = 3141.796. For the article-effect-only model, we find:

Table 16.2 Comparison of eight residual covariance structures in Experiment 2 (SPSS): (R1)
UN; (R2) CS; (R3) CS with unequal VRES across tasks; (R4) RI, and RS for the difference between
first and last task; (R5) Toeplitz; (R6) Toeplitz with unequal VRES across tasks; (R7) AR1; (R8) RI
and AR1; (R9) AR1 with unequal VRES across tasks; (R10) RI and AR1 with unequal VRES across
tasks; (R11) AD1; and (R12) HF: number of estimated parameters (df), −2RLL, and LR test v2df
and p-value for any of R2–R12 tested against R1

Structure df −2RLL LR test v2df LR test p-value

R1 36 3018.991 – –

R2 2 3324.434 v234 = 305.443 <0.001

R3 9 3310.937 v227 = 291.946 <0.001

R4 3 3319.352 v233 = 300.361 <0.001

R5 8 3062.013 v228 = 43.022 0.035

R6 15 3046.163 v221 = 27.172 0.165

R7 2 3064.081 v234 = 45.090 0.097

R8 3 3063.874 v233 = 44.883 0.081

R9 9 3048.765 v227 = 29.774 0.324

R10 10 3048.517 v226 = 29.526 0.288

R11 15 3045.703 v221 = 26.712 0.181

R12 9 3307.284 v227 = 288.293 <0.001
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AIC = 3112.117 and BIC = 3207.795. For the format-effect-only model, we find:
AIC = 3300.732 and BIC = 3362.603. Finally, for the null model, we find:
AIC = 3356.145 and BIC = 3412.391. Although BIC prefers the two main-effects
model, AIC and the p-value associated with the interaction effect indicate a pref-
erence of the full factorial model. Table 16.3 presents the EMMs and SEs for each
format per article.

The additional viewing time needed for infographic decreases with the number
of articles.

To Conclude

In Experiment 2, as in several experiments in previous chapters, we see that BIC
sometimes prefers a simpler model—for instance a two main-effects instead of a full
factorial model—where AIC and perhaps p and/or JZS-prior-based BF appear to
hint at a more complex model (e.g., full factorial instead of two main effects),
especially when the additional complexity requires quite a few more df (i.e., con-
siderably more parameters to be estimated). For the effects in Experiment 2, for
example, the main effect of format requires 1 df while the main effect of article and
the format-by-article interaction effect each require 7 df. Conversely, AIC may in
some cases slightly prefer a more complex model where none of the other criteria
may support that. This underlines the importance of not relying on a single criterion
for model selection but to base model-selection decisions on combinations of cri-
teria. As seen in previous chapters, when both AIC and BIC indicate a preference
towards a more complex model relative to simpler alternatives, the p-value from a
‘no difference’ null hypothesis significance test will likely be statistically significant
at a = 0.05 (two-tailed testing) and JZS-prior-based BF will normally be in favour
of the more complex model. When neither AIC nor BIC indicate a preference
towards a more complex model, the p-value from a ‘no difference’ null hypothesis
significance test will normally not be statistically significant at a = 0.05 and

Table 16.3 EMM and SE
per format per article in
Experiment 2 (SPSS)

Article Text-only
EMM (SE)

Infographic
EMM (SE)

1 7.996 (0.041) 8.359 (0.041)

2 7.713 (0.046) 7.906 (0.046)

3 7.564 (0.045) 7.812 (0.045)

4 7.436 (0.043) 7.670 (0.043)

5 7.446 (0.047) 7.606 (0.047)

6 7.420 (0.045) 7.462 (0.045)

7 7.352 (0.045) 7.477 (0.045)

8 7.372 (0.050) 7.376 (0.050)

Experiment 2: Several Orders 251



JZS-prior-based BF will probably indicate at least some preference towards (one of)
the simpler model(s). This is not to say that the simpler model is then ‘true’, but we
have insufficient evidence to assume that the more complex model provides a better
explanation of the outcome variable of interest.

While effect size estimates such as Cohen’s d and associated CIs and overall
model fit indices such as R2 are easy to compute in fixed-effects designs and are also
fairly easy to obtain in group-nesting cases such as discussed in Chap. 13 and in
experiments with two or more assessors where CS holds such as in Experiment 1 in
Chap. 14, things can become tricky when more complex covariance structures are
to be preferred. When the random part consists of only an RI term (cf. CS), VRandom

is the RI variance estimated. However, when for instance an RI term and an RS
term are included in the random part, VRandom is the sum of the RI variance, the RS
variance, and the RI-RS covariance. This is still fairly straightforward, but when we
deal with multiple occasions and add several RS terms or use any of AR1 (with or
without varying VRES), Toeplitz (with or without varying VRES), HF or AD1 to
model the random part, things become more complicated.

Some have proposed pseudo-R2-statistics similar to R2
McF, R

2
CS, and R2

N, based on
differences in LL or differences in −2LL. Given the relation between −2LL dif-
ferences and LR tests, some refer to this kind of pseudo-R2-statistics as LR-based
pseudo-R2-statistics (e.g., Bartoń, 2018). While under FIML, such statistics will
provide differences in outcomes between different fixed-effects solutions (e.g., one
vs. two main effects, or two main effects vs. two main effects plus interaction effect)
in mixed-effects modelling that are consistent with differences between these
solutions in fixed-effects modelling (i.e., increasing not decreasing R2 when adding
one or more fixed-effects terms), these statistics and differences are generally lower
—and sometimes quite a bit lower—than what we obtain through R2 in fixed-effects
models or R2

M in mixed-effects models. Consequently, we cannot really interpret a
difference in LR-based pseudo-R2-statistic for two competing models—such as two
main effects versus two main effects plus interaction effect—in terms of a difference
in proportion of variance explained in the outcome variable as we do with the
conventional R2 in fixed-effects models or with R2

M in mixed-effects models.
However, given its intuitive concept, applicability across fixed-effects and
mixed-effects models, and consistency with R2 and R2

M, we can use the difference in
deviance (−2LL) of any model versus Model 0 to acquire a deviance reduction
factor (DRF)—which in fixed-effects categorical outcome variable models is also
known as R2

McF—that quantifies the proportion of reduction in deviance by an
alternative model (Model 1) at hand relative to Model 0, given the same random
part for the two models (i.e., the random part is modelled, using REML, before the
fixed part is taken care of, using FIML):

DRF10 ¼ ½�2LLModel 0��2LLModel 1�=�2LLModel 0:
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This factor can also be used for comparing other models, one of which is a
special case of the other, for instance: a two main-effects model (special case:
Model 3) versus a two main-effects plus interaction effect model (Model 4); DRF43
is then the proportion of reduction in deviance by Model 4 relative to Model 3:

DRF43 ¼ ½�2LLModel 3��2LLModel 4�=�2LLModel 3:

When a fixed effect adds absolutely nothing, for instance: the Ms of treatment
and control condition in an experiment are exactly the same, DRF10 = 0. In the
other extreme (and highly unlikely) case, where all of the variance in an outcome
variable can be explained by a particular model, the deviance is reduced from
non-zero to zero, hence DRF10 = 1 (see for instance the examples of perfect fit in
Chap. 5, where R2

McF = 1). This factor can provide a consistent approach to model
comparison—along with criteria such as p, AIC, BIC, and BF, and confidence
intervals and optionally credible intervals (and eventually R2, adjusted R2, R2

M or η2

and x2 when dealing with quantitative outcome variables)—for categorical and
quantitative outcome variable situations discussed in this book.

That said, regardless of the simplicity or complexity of computations of (pseudo-)
R2-statistics, even when effect size estimates can be computed easily (i.e., most
fixed-effects and CS mixed-effects models), they need to be evaluated in the context
at hand and in the light of differences on the original scale (e.g., points or minutes).
A Cohen’s d of 0.50 may make sense when on an outcome variable of interest that
can range from 0 to 5 the control group hasM = 3.0 and SD = 1.0 and the treatment
group hasM = 3.5 and SD = 1.0. However, when on that same outcome variable (0–
5)M = 4.50 and SD = 0.20 in the control group andM = 4.60 and SD = 0.20 in the
treatment group, Cohen’s d is still 0.50 but the actual difference between groups may
not have much if any practical meaning, at least for many outcome variables. TOST,
ROPE, and FOST can be applied to both standardised (e.g., Cohen’s d) and
unstandardised (e.g., points or minutes) differences, provided that researchers can
reasonably agree on the equivalence bounds. The 90% CIs are not provided in the
experiments in Chaps. 15 and 16, because they can be computed from the 95% CIs
or SEs and the focus in these last two chapters lies on concepts not discussed in
earlier chapters.

This final chapter also once more stresses that, whether our primary interest lies
in a main effect or in an interaction effect, we always need to check for interaction
before we draw any conclusions about main effects. It is well possible, for example,
that researchers who do an experiment similar to Experiment 2 in this chapter are
first of all interested in a main effect of format, and may even have an expectation
with regard to what that effect looks like. However, the outcome of the interaction
effect and the pattern of EMMs and SEs in Table 16.3 indicates that the two con-
ditions under comparison—infographic and text-only—appear to slowly converge
to no difference as we read more articles. We have no idea what would happen if
participants read more than eight articles, but at the eighth article in the series of
eight, we observe a difference in viewing time of about 0.004 min, which is less
than a quarter of a second. Averaged across all articles, we find EMM = 7.533

To Conclude 253



(SE = 0.022) for text-only and EMM = 7.712 (SE = 0.022) for infographic—about
0.179 min or about 10.74 s, p < 0.001—but we may wonder if 10.74 s on an
average of a bit over 7.5 min is a big deal, and this difference is representative for
neither the first articles (larger differences, for instance 0.363 min or 21.78 s for the
first article) nor later articles (slowly converging to zero).
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17A General Pragmatic Approach
to Statistical Testing and Estimation

Abstract
This final chapter provides a synthesis of the other sixteen chapters in this book
in the form of a general pragmatic approach to statistical testing and estimation:
a coherent set of general recommendations and guidelines on core questions
discussed throughout this book: design and sample size (single-level vs. two- or
multilevel designs); gaining power (contrasts and sequential testing); missing
data (MAR or MCAR vs. MNAR); psychometrics of measurement instruments
(levels of measurement and easy alternatives to Cronbach’s alpha, among others
via a general mixed-effects modelling approach); testing and estimating
treatment effects (several criteria and concepts); and dealing with covariates
(general guidelines and baseline measurements as a special case). As such, this
chapter provides a concise overview and summary of the other sixteen chapters
in this book.

Introduction

There ought to be a logical connection between questions, design, and analysis (cf.
QDA introduced in Chap. 1). More complex questions generally call for more
complex designs and analyses, and that puts higher demands on the sample size.
Chapter 2 provides a variety of sources to assist researchers to perform required
sample size calculations, assuming a particular effect size, statistical significance
level, and desired statistical power. Whether we use p-values, information criteria,
or BFs, evidence against a H0 in favour of an alternative H1 is—keeping other
factors constant—more easily established in larger than in smaller samples.
Although we cannot use p-values to obtain evidence in favour of a H0 (after all, it is
a conditional probability in which the condition is that H0 is true), whether we use
information criteria or BFs, evidence in favour of a H0 relative to an alternative H1
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is—keeping other factors constant—more easily established in larger than in
smaller samples. Whether we adopt a Frequentist approach or a Bayesian approach
to interval estimation, CIs and CRIs are—keeping other factors constant—narrower
in larger than in smaller samples. Whether we call the approach we use TOST,
ROPE or FOST, evidence against or in favour of relative or practical equivalence is
more easily established in larger than in smaller samples.

Design and Sample Size

The more groups we wish to compare in our experiments, the larger our total
sample should be. When we are interested in main and interaction effects of two or
more factors, sample size demands also go up.

Single-Level Designs

Another factor that influences sample size demands is that of the type of outcome
variable considered. Generally, categorical outcome variables (Chaps. 5, 6 and 7)
are more demanding than quantitative outcome variables (Chap. 8), and the demand
increases with the number of categories of a categorical outcome variable. Zero
cells and low frequency (e.g., 1 or 2 observations) cells can pose serious threats to
the validity of testing and estimation outcomes; some statistics may not be com-
puted, and other statistics may be highly inaccurate. It is important to be aware of
this before instead of only after data collection.

Two- or Multilevel Designs

Apart from the type of outcome variable, the number of levels and nature of these
levels in a design also influence the required sample size. Chapters 1 and 13 provide
a useful formula for estimating by what factor the sample size required in a
single-level design should be multiplied to acquire a sample size required in a
two-level design, where the levels are cluster (level 2) and participant within cluster
(level 1). Some of the sources referred to in Chap. 2 also enable researchers to do
required sample size calculations for other types of two- or multilevel designs,
including where the multilevel structure—or part of it—is due to participants being
measured repeatedly or by multiple assessors on the same outcome variable of
interest. Just like with cluster designs we should not consider k clusters times
n participants the total sample size, we should not treat N participants times
k measurements as a total sample size of N * k either. A feature inherent to
multilevel designs (Chaps. 13, 14, 15 and 16) is that the effective sample size is
always smaller than the products just mentioned, and how much smaller depends on
the ICC.
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Gaining Power

There are ways to gain statistical power relative to conventional practices: planned
contrasts through directed hypotheses and/or factorial designs, and sequential
testing. Although factorial designs are used quite commonly, they are not always
treated appropriately by researchers in the analytic stage. Directed hypotheses and
sequential testing remain underused, possibly partly due to misconceptions around
these concepts, but that may change in the near future.

Contrasts

Although in the overwhelming majority of studies, researchers engage in two-sided
testing and apply Bonferroni or some other correction for multiple testing when
several tests are carried out (Chap. 9), in not so few cases neither of these two
conventional practices may be appropriate. When directed hypotheses are available
and explicitly formulated in grant proposals and (pre)registered reports, one-sided
testing—with two groups, or with several groups when for instance a Helmert-type
or ordinal hypothesis is available—and refraining from multiple testing (Chap. 10)
are not only defendable but a moral and ethical obligation as well. After all, if we
can achieve a higher statistical power with a given number of participants or we can
achieve the same statistical power with a lower number of participants, that is
certainly a good thing. We should not use more participants and resources than
needed.

Another practice that results in an unnecessary loss of statistical power and
precision is found in treating two- or three-way design data as one-way. Unfortu-
nately, there are full professors with whom I have had several discussions on this
matter and to whom I explained—with numbers and main/interaction effect dis-
tinctions—why the one-way practice is incorrect, but who nevertheless prefer to
continue treating their two- or three-way design data as one-way and hence vol-
untarily choose to obtain incorrect outcomes and misinform educational practice.
Chapter 11 demonstrates how dramatic the loss of statistical power and precision
can be. We are all human and all make mistakes, but to prolong a practice that we
can reasonably know to be wrong is unethical and irresponsible.

Sequential Testing

Another way to gain statistical power, which has commonly been associated with
Bayesian statistics but—when applied appropriately—can be justified in a Fre-
quentist approach as well, is sequential testing (Chaps. 2 and 10). Contrary to
popular belief, as discussed in Chaps. 2 and 10, sequential testing has been around
in Frequentist statistics for decades, and sequential analyses can be perfectly valid
from a Frequentist perspective, provided that they are carefully planned a priori and
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statistical significance levels are adjusted appropriately. Given its potential in terms
of power gain and required sample size reduction (i.e., using as few participants and
resources as possible), it is high time we start implementing the concept of
sequential analysis in educational and psychological experimental research.

Missing Data

As discussed in Chap. 4, several methods for dealing with missing data are
encountered in the literature, some of which are better than others. How to deal with
missing data depends on a variety of factors outlined in Chap. 4, but the following
guidelines are overall safe.

Random or Completely Random

Under MCAR and small percentages of missing (i.e., less than 10%), listwise
deletion may be applied. This may be useful especially when missingness occurs on
one of the predictor variables, as that type of missing poses a threat to the validity of
model comparisons. Consider a two-way factorial experiment with one covariate,
and some missing on the covariate. In models that do not include the covariate, all
data is used; in models that do include the covariate, all data minus the cases who
have the covariate missing is used. This is problematic, because it affects SEs and
therefore CIs and p-values, and invalidates comparisons of models with versus
without covariate in terms of AIC and BIC and other criteria (e.g., BF and SABIC),
because the latter requires that exactly the same data is used in all models com-
pared. However, if missing is not MCAR, listwise deletion comes with biased
estimates. As long as the sample size is—from the start or due to the amount of
missingness—not too small, FIML and MI may both provide useful alternatives
under MCAR and under MAR, with FIML possibly being somewhat less biased
than MI in the case of somewhat smaller samples.

Not Random

Under MNAR, MI appears the best approach to dealing with missing data, although
when sample sizes are—from the start or due to the amount of missingness—small
MI may be problematic as well. As explained in Chap. 4, the problem with MAR
and MNAR is that they cannot be empirically tested. Although MCAR is often easy
to recognise and can be tested empirically, whether missingness is MAR or MNAR
is often difficult to tell. From a pragmatic standpoint, one might—in carefully
designed and carried out randomised controlled experiments—want to treat miss-
ingness as MAR if MCAR is not the case and use FIML. An advantage of FIML
over MI is that no imputation is carried out; the missingness is handled in the
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analysis. When missingness is MNAR, there are challenges to be faced anyhow;
unless samples are sufficiently large, good auxiliary variables are available, and we
are willing to make perhaps rather strong assumptions, even MI may not really help
us deal with our worries.

Psychometrics of Measurement Instruments

Chapters 3, 14, 15 and 16 cover questions concerning the psychometrics of our
measurement instruments and approaches. Whether we use items or assessors at a
given point in time or we deal with outcome variables measured repeatedly for the
same participants, we deal with some important questions. The mixed-effects
modelling approach presented in Chaps. 14, 15 and 16 enables researchers to test
and estimate treatment effects of interest while accounting for the residual covari-
ance structure without having to rely on latent variables.

Levels of Measurement

Although the examples discussed in Chaps. 14, 15 and 16 use quantitative outcome
variables, the concepts and methods discussed in these chapters also apply to
categorical outcome variables. This allows researchers to put the Cronbach’s alpha
as a considered ‘default’ estimator of reliability or internal consistency in a broader
framework of residual covariance structures regardless of the level of measurement
of the items, ratings or repeatedly measured outcome variable of interest. Also,
traditional computations of Cronbach’s alpha and its alternatives require no missing
data. On the contrary, a mixed-effects modelling approach can—at least under
MAR and MCAR—obtain valid estimates in the presence of missing data as well.
Now that we have seen the multilevel designs and residual covariance structures, let
us take a final look at this.

Easy Alternatives to Cronbach’s Alpha

Suppose, in a random sample of N = 300 students, we administer two questions,
each of which require a response on a VAS with negative and positive scores and
with 0 as middle point (i.e., neutral). The two items correlate r = 0.469, each item
has M = 0, and item 1 has SD = 1. For the SD of item 2, let us look at three
scenarios: Scenario 1: SD = 1; Scenario 2: SD = 1.5; Scenario 3: SD = 2. Item 2
from Scenario 2 is obtained by multiplying item 2 from Scenario 1 by 1.5, and item
2 from Scenario 3 is obtained by multiplying item 2 from Scenario 1 by 2. Thus, the
three versions of item 2 correlate perfectly.

In each of the three scenarios, McDonald’s omega is 0.638. However, for
Cronbach’s alpha, we find: 0.638 in Scenario 1, 0.604 in Scenario 2, and 0.545 in
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Scenario 3. The reason for this is that ICC based on CS is different in each of the
three scenarios: 0.469 in Scenario 1, 0.432 in Scenario 2, and 0.375 in Scenario 3.
There is an easy solution to this problem: to estimate ICC under a more flexible
alternative to CS, namely allowing VRES to vary across items. Doing so, we find
ICC = 0.469 in all three scenarios, and hence the VRES-adjusted alpha is equal to
McDonald’s omega not only in Scenario 1 but in all three scenarios: 0.638. This
difference between Cronbach’s alpha and its two more appropriate alternatives does
not matter only for reporting on the reliability of the set of items but matters for
questions like ‘how many items would we need to obtain a reliability of 0.7, 0.8 or
0.9’ as well. Based on the ICC obtained under CS, we would need at least 3 items
for a reliability of 0.7, at least 5 items for a reliability of 0.8, and at least 11 items
for a reliability of 0.9 in Scenario 1. In Scenario 2, the numbers would be: 4 items
(0.7), 6 items (0.8), and 12 items (0.9). And in Scenario 3, the numbers would be: 4
items (0.7), 7 items (0.8), and 15 items (0.9). Using ICC under the more flexible CS
with varying VRES, the numbers would be the same for all three scenarios: 3 (0.7), 5
(0.8), and 11 (0.9). Especially for a reliability of 0.9, this is quite a difference.

Due to the CS assumption, the upper bound of Cronbach’s alpha is smaller than
1 when items are perfectly correlated but standard deviations are different. If we
take item 2 from Scenario 1 and item 2 from Scenario 2, we obtain a Cronbach’s
alpha of 0.960, and the same exercise for item 2 from Scenario 1 and item 2 from
Scenario 3 yields a Cronbach’s alpha of 0.889. When we express reliability in terms
of consistency, as Cronbach’s alpha and its alternatives are supposed to do, perfect
correlation should result in a reliability of 1. However, the upper bound of Cron-
bach’s alpha decreases as the difference in SDs of items involved increases.

The same holds when three or more items are involved. When for example three
items are involved and both the correlations and SDs are more or less the same, CS
may be realistic. However, when SDs and/or correlations differ, alternatives are
better. Table 17.1 provides an example for three different scenarios (again: a ran-
dom sample of N = 300 in each scenario) with three items: (1) CS is realistic,
(2) CS with varying VRES is realistic, and (3) UN is best.

When the correlation is fairly similar across pairs of items but the SDs are quite
different (i.e., Scenario 2 in Table 17.1), VRES-adjusted a and McDonald’s x yield
about the same outcome, and when correlations differ as well (cf. Scenario 3 in
Table 17.1) McDonald’s x yields the highest

As discussed in Chap. 3, McDonald’s x and other alternatives to Cronbach’s a,
such as GLB, put some demands on the sample size. If researchers worry about
their sample size not being large enough to use McDonald’s x or GLB, an easy
alternative to Cronbach’s a that accounts for varying VRES and provides estimates
more in line with McDonald’s x is found in VRES-adjusted a, especially when the
correlation is fairly similar across pairs of items. This is not to say that we can throw
McDonald’s x, GLB, and other alternatives to Cronbach’s a in the bin, but we do
have an alternative to Cronbach’s a when there is some worry about whether or not
the sample size is large enough for McDonald’s x and other alternatives. When in
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doubt, reporting a combination of criteria (e.g., Cronbach’s a and McDonald’s x,
Cronbach’s alpha and GLB, or Cronbach’s alpha and VRES-adjusted a), especially
in combination with information on item standard deviations and correlations
between pairs of items, is always an option.

Testing and Estimating Treatment Effects

The mixed-effects modelling approach has another advantage: we can simultane-
ously estimate reliability and treatment effects of interest without potentially
overestimating the reliability. If we were to compute Cronbach’s a, VRES-adjusted
a, or McDonald’s x for the full sample—different treatment conditions merged
together—we would likely overestimate the reliability. Estimating the reliability for
each condition separately would then be more appropriate but may be difficult when
sample sizes are on the smaller side. In the mixed-effects modelling approach, one
common reliability estimate can be obtained while appropriately accounting for
different conditions, and the problem of overestimated reliability is avoided.

For making decisions on the residual covariance structure, an LR testing
approach under REML in which simpler structures are tested against UN, and
perhaps some additional tests are carried out for structures that can be considered
special cases of other structures, constitutes a robust approach. The problem with
AIC and BIC when dealing with random effects is that many df can be involved.
The more df are involved, the more AIC and BIC may diverge, because AIC will
tend more towards increased complexity while BIC will tend more towards as
simple as possible even if the latter makes no sense (e.g., preferring independence
of residuals when there is dependence). When dealing with fixed effects, AIC and
BIC are normally useful, unless df associated with a treatment or interaction effect is

Table 17.1 Cronbach’s alpha, VRES-adjusted alpha, and Cronbach’s alpha in three scenarios
(JASP, SPSS): (1) CS is realistic, (2) CS with varying VRES is realistic, and (3) UN is best

Scenario (1): CS (2): varying VRES (3): UN

ICC based on CS 0.343 0.309 0.343

ICC with varying VRES 0.343 0.328 0.356

Cronbach’s a 0.610 0.573 0.610

VRES-adjusted a 0.610 0.595 0.621

McDonald’s x 0.612 0.599 0.665

Average inter-item r 0.342 0.328 0.352

Item 1–Item 2 r 0.315 0.275 0.477

Item 1–Item 3 r 0.379 0.351 0.373

Item 2–Item 3 r 0.333 0.359 0.206

SD Item 1 0.782 0.598 1.259

SD Item 2 0.703 0.711 1.152

SD Item 3 0.758 1.036 1.437
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rather large (i.e., many conditions or groups); in the latter case, AIC and BIC may in
some cases quite easily disagree.

A Deviance-Reduction/Information-Theoretic Approach

When dealing with quantitative outcome variables, R2, adjusted R2, η2, x2, and R2
M

may provide useful statistics for the proportion of variance explained in an outcome
variable depending on what type of design is employed. When dealing with cate-
gorical outcome variables, I recommend R2

McF as the default pseudo-R2-statistic for
reasons outlined in Chaps. 5 and 6. The DRF discussed in Chap. 16 provides a
natural extension (i.e., deviance-reduction equivalent) of R2

McF for multilevel
designs for both categorical and quantitative outcome variables.

Differences in AIC and BIC are a direct function of deviance reduction and a
criterion-specific penalty for model complexity (and in the case of BIC: sample
size). Although AIC and BIC do not require researchers to specify prior distribu-
tions as in Bayesian analysis, one way to view AIC and BIC is as a form of
Bayesian analysis using different priors. The prior associated with BIC is a bit wider
(i.e., less informative) than that associated with AIC and therefore less easily prefers
a more complex model than AIC. BFs based on JZS priors tend to yield an outcome
somewhere in between the pseudo-BFs one would obtain based on AIC and BIC. In
cases where AIC and BIC agree with regard to which model to prefer, the decision
is fairly easy. In cases where AIC and BIC disagree, AIC indicates a preference
towards a more complex model than does BIC; other statistics—including R2-
statistics—may then be used to support decision making, although the strength of
evidence in favour of a possible ‘best’ model is in such disagreement cases often
limited at best (i.e., unless the difference in df between competing models is rather
large). As such AIC and BIC provide easy alternatives to p-values (which cannot
provide evidence in favour of H0 relative to H1) and BFs (which require the
specification of prior distributions). When two-sided testing is considered, AIC and
BIC may serve as primary criteria and p-values and JZS-prior-based BFs may be
considered additionally. However, in the case of one-sided testing, one-sided BFs
and one-sided p-values make more sense than AIC or BIC.

Two Types of Intervals: ‘1 − a’ and ‘1 − 2a’

In several chapters in this book, 90 and 95% CIs are used, and in some chapters
95% CRIs are used as well. While 95% CIs constitute the default in educational and
psychological experimental research because usually two-sided tests at a = 0.05 are
performed, 95% CRIs are also starting to be used and can be used for ROPE.
For TOST, 90% CIs (i.e., 1 − 2a) are used. In FOST, both 90 and 95% CIs as well
as 95% CRIs can be used. As argued in Chap. 9, 90% CIs can be used as a default,
95% CRIs are—in terms of width—usually somewhere in between the 90 and 95%
CIs, and 95% CIs can be reported additionally when some correction for multiple
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testing is to be considered. As argued in Chap. 9, reporting 90% and optionally 95%
CIs (and additionally or alternatively: 95% CRIs) is always a good idea, even in the
form of a follow up in multi-condition comparisons (i.e., FOST-OF).

Provided that we can reach agreement on a region of relative or practical
equivalence, in a study—or usually, and better, across a series of studies—three
outcomes are possible: (a) evidence in favour of relative equivalence (i.e., rejecting
both H0.1 and H0.2, hence rejecting both substantial negative and substantial pos-
itive differences, and thus rejecting the whole non-relative-equivalence range),
(b) evidence against relative equivalence (i.e., when either H0.3 or H0.4 can be
rejected), or (c) inconclusive (i.e., when at least one of H0.1 and H0.2 cannot be
rejected, and none of H0.3 and H0.4 can be rejected). In single studies, when samples
are of a smaller size, (c) is usually much more likely than (a) or (b); the larger our
samples, the easier (a) and (b) can be established, although we should always bear
in mind that statistics is normally about relative not absolute evidence and that there
is always a real chance that our conclusions are wrong. Whenever possible, it is
better not to draw conclusions based on single studies but to invest in replication
instead, and even then, we should not interpret findings as absolute evidence.

Dealing with Covariates

Caution is a virtue when practicing statistics, and one of the topics where that applies
especially is when dealing with covariates. As discussed in Chaps. 12 and 15, third
variables can have a variety of different roles depending on the study design and
context, and their roles influence how we should treat them.

General Guidelines

A first general guideline for the treatment of a third variable or ‘covariate’ is that
when it is measured after the start of treatment it may well be affected by that
treatment and is therefore to be treated as a mediator not as a confounder. Treating
such a variable as a covariate as if it was a confounder can then result in a
substantial or even severe distortion of testing and estimation outcomes regarding a
treatment effect of interest; treating it as a mediator is then more appropriate.
Besides, regardless of whether a third variable is or is not a mediator, it may
moderate a treatment effect of interest, meaning that the magnitude of a treatment
effect may differ substantially across the range of the third variable. Failing to
account for that moderation may result in meaningless outcomes with regard to the
treatment effect of interest. Finally, checking for treatment-by-third-variable mod-
eration always requires both the main effect of treatment and the main effect of the
third variable to be included in our model, unless the third variable is a baseline
measurement: a first measurement of a response variable of interest that takes place
prior to the start of treatment (e.g., pre-test post-test control-group design).
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Baseline Measurements: A Special Case

Experiments 2 and 4 in Chap. 15 demonstrate how to deal with baseline mea-
surements. While the approach taken there would likely result in biased estimates in
the case of non-randomised groups, in the case of randomised controlled experi-
ments it constitutes a best practice. The rationale behind this differential treatment
for non-randomised versus randomised studies is regression to group-specific Ms in
non-randomised versus regression to a common M in randomised studies. There-
fore, although the general guideline is to have both treatment and covariate main
effects in a model that also includes the interaction term, in the special case of
baseline measurements it is recommended not to include the treatment term but
only the covariate term and the treatment-by-covariate interaction term. The latter
treatment correctly treats the samples in conditions prior to treatment as coming
from one common source population and hence one common M to be regressed to.

To Conclude

Like Education, Psychology, Medicine, and other disciplines, the discipline of
Statistics is in continuous development; new work on the behaviour of existing
statistical methods under different circumstances, on new statistical methods, and
other topics, is published almost on a daily basis. It is a real challenge keep up with
all the developments, and whichever discipline we find ourselves in, we can learn
new things every day. Models are always a reduction of reality, and in the words
attributed to statistician George Box that essentially “all models are wrong, but
some are useful” (Box & Draper, 1987, p. 424); instead of being ‘right’ most of the
time, we may well be ‘wrong’ most of the time. Moreover, a model fitting or
performing well in one context should not be taken as guarantee that it fits in other
contexts as well. For instance, if some statistical models work well in studies that
include novice learners but not advanced learners, we should not generalise the
performance of our statistical models to more advanced learners; instead, we need
studies that include advanced learners as well. Even if we deal with random samples
and allocate participants in these random samples to conditions in an experiment at
random, we must be aware of the context in which our experiments are carried out
and think carefully to what extent the models and findings from these experiments
are generalisable or transferable to other contexts. And when possible, collecting
data in other contexts is the best way to study that generalisability or transferability.
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Contact and Website

For a quick tour through the book and data files, syntax, and worked examples of
studies discussed in this book, please visit: https://wordpress.com/view/
research489962293.wordpress.com. The website also has a contact form, which
allows you to send emails to me. For any questions, comments, or suggestions
(which I will consider for an eventual next edition), please use the contact form on
the website or get in touch with me directly via j.leppink@gmail.com (Gmail) or
hyjl17@hyms.ac.uk (my Outlook email address at Hull York Medical School).
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