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Foreword

Everybody knows that software is riddled with security flaws. At first
blush, this is surprising. We know how to write software in a way that
provides a moderately high level of security and robustness. So why
don’t software developers practice these techniques?

This book deals with two of the myriad answers to this question. The
first is the meaning of secure software. In fact, the term “secure soft-
ware” is a misnomer. Security is a product of software plus environ-
ment. How a program is used, under what conditions it is used, and
what security requirements it must meet determine whether the soft-
ware is secure. A term like “security-enabled software” captures the
idea that the software was designed and written to meet specific secu-
rity requirements, but in other environments where the assumptions
underlying the software—and any implied requirements—do not
hold, the software may not be secure. In a way that is easy to under-
stand, this book presents the need for accurate and meaningful secu-
rity requirements, as well as approaches for developing them. Unlike
many books on the subject of secure software, this book does not
assume the requirements are given a priori, but instead discusses
requirements derivation and analysis. Equally important, it describes
their validation.

The second answer lies in the roles of the executives, managers, and
technical leaders of projects. They must support the introduction of
security enhancements in software, as well as robust coding practices
(which is really a type of security enhancement). Moreover, they must
understand the processes and make allowances for it in their schedul-
ing, budgeting, and staffing plans. This book does an excellent job of
laying out the process for the people in these roles, so they can realisti-
cally assess its impact. Additionally, the book points out where the
state of the art is too new or lacks enough experience to have
approaches that are proven to work, or are not generally accepted to
work. In those cases, the authors suggest ways to think about the
issues in order to develop effective approaches. Thus, executives, man-
agers, and technical leaders can figure out what should work best in
their environment.
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An additional, and in fact crucial, benefit of designing and implement-
ing security in software from the very beginning of the project is the
increase in assurance that the software will meet its requirements. This
will greatly reduce the need to patch the software to fix security
holes—a process that is itself fraught with security problems, under-
cuts the reputation of the vendor, and adversely impacts the vendor
financially. Loss of credibility, while intangible, has tangible repercus-
sions. Paying the extra cost of developing software correctly from the
start reduces the cost of fixing it after it is deployed—and produces a
better, more robust, and more secure product.

This book discusses several ways to develop software in such a way
that security considerations play a key role in its development. It
speaks to executives, to managers at all levels, and to technical leaders,
and in that way, it is unique. It also speaks to students and developers,
so they can understand the process of developing software with secu-
rity in mind and find resources to help them do so. 

The underlying theme of this book is that the software we all use could
be made much better. The information in this book provides a founda-
tion for executives, project managers, and technical leaders to improve
the software they create and to improve the quality and security of the
software we all use.

Matt Bishop
Davis, California
March 2008
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Preface

The Problem Addressed by This Book 

Software is ubiquitous. Many of the products, services, and processes
that organizations use and offer are highly dependent on software to
handle the sensitive and high-value data on which people’s privacy,
livelihoods, and very lives depend. For instance, national security—
and by extension citizens’ personal safety—relies on increasingly com-
plex, interconnected, software-intensive information systems that, in
many cases, use the Internet or Internet-exposed private networks as
their means for communication and transporting data.

This ubiquitous dependence on information technology makes soft-
ware security a key element of business continuity, disaster recovery,
incident response, and national security. Software vulnerabilities can
jeopardize intellectual property, consumer trust, business operations
and services, and a broad spectrum of critical applications and infra-
structures, including everything from process control systems to com-
mercial application products. 

The integrity of critical digital assets (systems, networks, applications,
and information) depends on the reliability and security of the software
that enables and controls those assets. However, business leaders and
informed consumers have growing concerns about the scarcity of practi-
tioners with requisite competencies to address software security [Carey
2006]. Specifically, they have doubts about suppliers’ capabilities to build
and deliver secure software that they can use with confidence and with-
out fear of compromise. Application software is the primary gateway to
sensitive information. According to a Deloitte survey of 169 major global
financial institutions, titled 2007 Global Security Survey: The Shifting Secu-
rity Paradigm [Deloitte 2007], current application software countermea-
sures are no longer adequate. In the survey, Gartner identifies application
security as the number one issue for chief information officers (CIOs).

Selected content in this preface is summarized and excerpted from Security in the Software Lifecycle:
Making Software Development Processes—and Software Produced by Them—More Secure [Goertzel 2006].
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The absence of security discipline in today’s software development prac-
tices often produces software with exploitable weaknesses. Security-
enhanced processes and practices—and the skilled people to manage
them and perform them—are required to build software that can be
trusted to operate more securely than software being used today.

That said, there is an economic counter-argument, or at least the per-
ception of one: Some business leaders and project managers believe
that developing secure software slows the software development
process and adds to the cost while not offering any apparent advan-
tage. In many cases, when the decision reduces to “ship now” or “be
secure and ship later,” “ship now” is almost always the choice made
by those who control the money but have no idea of the risks. The
opposite side of this argument, including how software security can
potentially reduce cost and schedule, is discussed in Chapter 1
(Section 1.6, “The Benefits of Detecting Software Security Defects
Early”) and Chapter 7 (Section 7.5.3, in the “Knowledge and Exper-
tise” subsection discussing Microsoft’s experience with its Security
Development Lifecycle) in this book.

Software’s Vulnerability to Attack

The number of threats specifically targeting software is increasing, and
the majority of network- and system-level attacks now exploit vulner-
abilities in application-level software. According to CERT analysts at
Carnegie Mellon University,1 most successful attacks result from tar-
geting and exploiting known, unpatched software vulnerabilities and
insecure software configurations, a significant number of which are
introduced during software design and development.

These conditions contribute to the increased risks associated with
software-enabled capabilities and exacerbate the threat of attack.
Given this atmosphere of uncertainty, a broad range of stakeholders
need justifiable confidence that the software that enables their core
business operations can be trusted to perform as intended.

Why We Wrote This Book: Its Purpose, Goals, and Scope

The Challenge of Software Security Engineering

Software security engineering entails using practices, processes, tools,
and techniques to address security issues in every phase of the software

1. CERT (www.cert.org) is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

www.cert.org
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development life cycle (SDLC). Software that is developed with security
in mind is typically more resistant to both intentional attack and unin-
tentional failures. One view of secure software is software that is engi-
neered “so that it continues to function correctly under malicious
attack” [McGraw 2006] and is able to recognize, resist, tolerate, and
recover from events that intentionally threaten its dependability.
Broader views that can overlap with software security (for example,
software safety, reliability, and fault tolerance) include the notion of
proper functioning in the face of unintentional failures or accidents
and inadvertent misuse and abuse, as well as reducing software
defects and weaknesses to the greatest extent possible regardless of
their cause. This book addresses the narrower view.

The goal of software security engineering is to build better, defect-free
software. Software-intensive systems that are constructed using more
securely developed software are better able to do the following:

• Continue operating correctly in the presence of most attacks by
either resisting the exploitation of weaknesses in the software by
attackers or tolerating the failures that result from such exploits

• Limit the damage resulting from any failures caused by attack-
triggered faults that the software was unable to resist or tolerate
and recover as quickly as possible from those failures

No single practice offers a universal “silver bullet” for software secu-
rity. With this caveat in mind, Software Security Engineering: A Guide for
Project Managers provides software project managers with sound prac-
tices that they can evaluate and selectively adopt to help reshape their
own development practices. The objective is to increase the security
and dependability of the software produced by these practices, both
during its development and during its operation.

What Readers Can Expect

Readers will increase their awareness and understanding of the secu-
rity issues in the design and development of software. The book’s con-
tent will help readers recognize how software development practices
can either contribute to or detract from the security of software.

The book (and material referenced on the Build Security In Web site
described later in this preface) will enable readers to identify and com-
pare potential new practices that can be adapted to augment a
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project’s current software development practices, thereby greatly
increasing the likelihood of producing more secure software and
meeting specified security requirements. As one example, assurance
cases can be used to assert and specify desired security properties,
including the extent to which security practices have been successful
in satisfying security requirements. Assurance cases are discussed in
Chapter 2 (Section 2.4, “How to Assert and Specify Desired Security
Properties”).

Software developed and assembled using the practices described in
this book should contain significantly fewer exploitable weaknesses.
Such software can then be relied on to more capably resist or tolerate
and recover from attacks and, therefore, to function more securely in
an operational environment. Project managers responsible for ensur-
ing that software and systems adequately address their security
requirements throughout the SDLC should review, select, and tailor
guidance from this book, the Build Security In Web site, and the
sources cited throughout this book as part of their normal project man-
agement activities. 

The five key take-away messages for readers of this book are as follows:

1. Software security is about more than eliminating vulnerabilities
and conducting penetration tests. Project managers need to take a
systematic approach to incorporate the sound practices discussed
in this book into their development processes (all chapters).

2. Network security mechanisms and IT infrastructure security ser-
vices do not sufficiently protect application software from security
risks (Chapters 1 and 2). 

3. Software security initiatives should follow a risk management
approach to identify priorities and determine what is “good
enough,” while understanding that software security risks will
inevitably change throughout the SDLC (Chapters 1, 4, and 7). 

4. Developing secure software depends on understanding the opera-
tional context in which it will be used (Chapter 6). 

5. Project managers and software engineers need to learn to think
like an attacker to address the range of things that software should
not do and identify how software can better resist, tolerate, and
recover when under attack (Chapters 2, 3, 4, and 5).
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Who Should Read This Book

Software Security Engineering: A Guide for Project Managers is primarily
intended for project managers who are responsible for software devel-
opment and the development of software-intensive systems. Lead
requirements analysts, experienced software and security architects
and designers, system integrators, and their managers should also
find this book useful. It provides guidance for those involved in the
management of secure, software-intensive systems, either developed
from scratch or through the assembly, integration, and evolution of
acquired or reused software. 

This book will help readers understand the security issues associated
with the engineering of software and should help them identify prac-
tices that can be used to manage and develop software that is better able
to withstand the threats to which it is increasingly subjected. It pre-
sumes that readers are familiar with good general systems and software
engineering management methods, practices, and technologies.

How This Book Is Organized

This book is organized into two introductory chapters, four technical
chapters, a chapter that describes governance and management con-
siderations, and a concluding chapter on how to get started. 

Chapter 1, Why Is Security a Software Issue?, identifies threats that
target most software and the shortcomings of the software develop-
ment process that can render software vulnerable to those threats. It
describes the benefits of detecting software security defects early in
the SDLC, including the current state of the practice for making the
business case for software security. It closes by introducing some prag-
matic solutions that are further elaborated in the chapters that follow.

Chapter 2, What Makes Software Secure?, examines the core and influ-
ential properties of software that make it secure and the defensive and
attacker perspectives in addressing those properties, and discusses how
desirable traits of software can contribute to its security. The chapter
introduces and defines the key resources of attack patterns and assur-
ance cases and explains how to use them throughout the SDLC.

Chapter 3, Requirements Engineering for Secure Software, describes
practices for security requirements engineering, including processes
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that are specific to eliciting, specifying, analyzing, and validating secu-
rity requirements. This chapter also explores the key practice of mis-
use/abuse cases.

Chapter 4, Secure Software Architecture and Design, presents the
practice of architectural and risk analysis for reviewing, assessing, and
validating the specification, architecture, and design of a software sys-
tem with respect to software security, and reliability.

Chapter 5, Considerations for Secure Coding and Testing, summa-
rizes key practices for performing code analysis to uncover errors in
and improve the quality of source code, as well as practices for secu-
rity testing, white-box testing, black-box testing, and penetration test-
ing. Along the way, this chapter references recently published works
on secure coding and testing for further details.

Chapter 6, Security and Complexity: System Assembly Challenges,
describes the challenges and practices inherent in the design, assem-
bly, integration, and evolution of trustworthy systems and systems of
systems. It provides guidelines for project managers to consider, rec-
ognizing that most new or updated software components are typically
integrated into an existing operational environment.

Chapter 7, Governance, and Managing for More Secure Software,
describes how to motivate business leaders to treat software security
as a governance and management concern. It includes actionable prac-
tices for risk management and project management and for establish-
ing an enterprise security framework.

Chapter 8, Getting Started, summarizes all of the recommended prac-
tices discussed in the book and provides several aids for determining
which practices are most relevant and for whom, and where to start.

The book closes with a comprehensive bibliography and glossary.

Notes to the Reader

Navigating the Book’s Content

As an aid to the reader, we have added descriptive icons that mark the
book’s sections and key practices in two practical ways:

• Identifying the content’s relative “maturity of practice”:

The content provides guidance for how to think about a topic
for which there is no proven or widely accepted approach. The

L1
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intent of the description is to raise awareness and aid the
reader in thinking about the problem and candidate solutions.
The content may also describe promising research results that
may have been demonstrated in a constrained setting.
The content describes practices that are in early (pilot) use and
are demonstrating some successful results.
The content describes practices that are in limited use in indus-
try or government organizations, perhaps for a particular mar-
ket sector.
The content describes practices that have been successfully
deployed and are in widespread use. Readers can start using
these practices today with confidence. Experience reports and
case studies are typically available.

• Identifying the designated audiences for which each chapter sec-
tion or practice is most relevant: 

Executive and senior managers
Project and mid-level managers
Technical leaders, engineering managers, first-line managers,
and supervisors

As the audience icons in the chapters show, we urge executive and
senior managers to read all of Chapters 1 and 8, plus the following sec-
tions in other chapters: 2.1, 2.2, 2.5, 3.1, 3.7, 4.1, 5.1, 5.6, 6.1, 6.6, 7.1, 7.3,
7.4, 7.6, and 7.7.

Project and mid-level managers should be sure to read all of Chapters
1, 2, 4, 5, 6, 7, and 8, plus these sections in Chapter 3: 3.1, 3.3, and 3.7.

Technical leaders, engineering managers, first-line managers, and
supervisors will find useful information and guidance throughout the
entire book.

Build Security In: A Key Resource

Since 2004, the U.S. Department of Homeland Security Software Assur-
ance Program has sponsored development of the Build Security In (BSI)
Web site (https://buildsecurityin.us-cert.gov/), which was one of the
significant resources used in writing this book. BSI content is based on
the principle that software security is fundamentally a software engi-
neering problem and must be managed in a systematic way throughout
the SDLC. 

L2

L3

L4

E

M

L

https://buildsecurityin.us-cert.gov/
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BSI contains and links to a broad range of information about sound
practices, tools, guidelines, rules, principles, and other knowledge to
help project managers deploy software security practices and build
secure and reliable software. Contributing authors to this book and the
articles appearing on the BSI Web site include senior staff from the
Carnegie Mellon Software Engineering Institute (SEI) and Cigital, Inc.,
as well as other experienced software and security professionals.

Several sections in the book were originally published as articles in
IEEE Security & Privacy magazine and are reprinted here with the per-
mission of IEEE Computer Society Press. Where an article occurs in
the book, a statement such as the following appears in a footnote:

This section was originally published as an article in IEEE
Security & Privacy [citation]. It is reprinted here with permis-
sion from the publisher.

These articles are also available on the BSI Web site.

Articles on BSI are referenced throughout this book. Readers can consult
BSI for additional details, book errata, and ongoing research results.

Start the Journey

A number of excellent books address secure systems and software
engineering. Software Security Engineering: A Guide for Project Managers
offers an engineering perspective that has been sorely needed in the
software security community. It puts the entire SDLC in the context of
an integrated set of sound software security engineering practices.

As part of its comprehensive coverage, this book captures both stan-
dard and emerging software security practices and explains why they
are needed to develop more security-responsive and robust systems.
The book is packed with reasons for taking action early and revisiting
these actions frequently throughout the SDLC.

This is not a book for the faint of heart or the neophyte software
project manager who is confronting software security for the first time.
Readers need to understand the SDLC and the processes in use within
their organizations to comprehend the implications of the various
techniques presented and to choose among the recommended prac-
tices to determine the best fit for any given project.
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Other books are available that discuss each phase of secure software
engineering. Few, however, cover all of the SDLC phases in as concise
and usable a format as we have attempted to do here. Enjoy the journey!
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Chapter 1

Why Is Security a 
Software Issue?

1.1 Introduction

Software is everywhere. It runs your car. It controls your cell phone.
It’s how you access your bank’s financial services; how you receive
electricity, water, and natural gas; and how you fly from coast to
coast [McGraw 2006]. Whether we recognize it or not, we all rely on
complex, interconnected, software-intensive information systems
that use the Internet as their means for communicating and trans-
porting information.

Building, deploying, operating, and using software that has not been
developed with security in mind can be high risk—like walking a high
wire without a net (Figure 1–1). The degree of risk can be compared to
the distance you can fall and the potential impact (no pun intended).

This chapter discusses why security is increasingly a software problem.
It defines the dimensions of software assurance and software security. It
identifies threats that target most software and the shortcomings of the

Selected content in this chapter is summarized and excerpted from Security in the Software Lifecy-
cle: Making Software Development Processes—and Software Produced by Them—More Secure [Goertzel
2006]. An earlier version of this material appeared in [Allen 2007].
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software development process that can render software vulnerable to
those threats. It closes by introducing some pragmatic solutions that are
expanded in the chapters to follow. This entire chapter is relevant for
executives (E), project managers (M), and technical leaders (L).

1.2 The Problem

Organizations increasingly store, process, and transmit their most
sensitive information using software-intensive systems that are
directly connected to the Internet. Private citizens’ financial transac-
tions are exposed via the Internet by software used to shop, bank,
pay taxes, buy insurance, invest, register children for school, and join
various organizations and social networks. The increased exposure
that comes with global connectivity has made sensitive information
and the software systems that handle it more vulnerable to uninten-
tional and unauthorized use. In short, software-intensive systems

Figure 1–1: Developing software without security in mind is like walking a 
high wire without a net



1.2 The Problem 3

and other software-enabled capabilities have provided more open,
widespread access to sensitive information—including personal
identities—than ever before.

Concurrently, the era of information warfare [Denning 1998], cyberter-
rorism, and computer crime is well under way. Terrorists, organized
crime, and other criminals are targeting the entire gamut of software-
intensive systems and, through human ingenuity gone awry, are being
successful at gaining entry to these systems. Most such systems are not
attack resistant or attack resilient enough to withstand them. 

In a report to the U.S. president titled Cyber Security: A Crisis of Prioriti-
zation [PITAC 2005], the President’s Information Technology Advisory
Committee summed up the problem of nonsecure software as follows:

Software development is not yet a science or a rigorous disci-
pline, and the development process by and large is not con-
trolled to minimize the vulnerabilities that attackers exploit.
Today, as with cancer, vulnerable software can be invaded
and modified to cause damage to previously healthy soft-
ware, and infected software can replicate itself and be carried
across networks to cause damage in other systems. Like can-
cer, these damaging processes may be invisible to the lay per-
son even though experts recognize that their threat is
growing.

Software defects with security ramifications—including coding bugs
such as buffer overflows and design flaws such as inconsistent error
handling—are ubiquitous. Malicious intruders, and the malicious
code and botnets1 they use to obtain unauthorized access and launch
attacks, can compromise systems by taking advantage of software
defects. Internet-enabled software applications are a commonly
exploited target, with software’s increasing complexity and extensibil-
ity making software security even more challenging [Hoglund 2004]. 

The security of computer systems and networks has become increas-
ingly limited by the quality and security of their software. Security
defects and vulnerabilities in software are commonplace and can
pose serious risks when exploited by malicious attacks. Over the past
six years, this problem has grown significantly. Figure 1–2 shows the
number of vulnerabilities reported to CERT from 1997 through 2006.
Given this trend, “[T]here is a clear and pressing need to change the

1. http://en.wikipedia.org/wiki/Botnet

http://en.wikipedia.org/wiki/Botnet
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way we (project managers and software engineers) approach com-
puter security and to develop a disciplined approach to software
security” [McGraw 2006].

In Deloitte’s 2007 Global Security Survey, 87 percent of survey respon-
dents cited poor software development quality as a top threat in the
next 12 months. “Application security means ensuring that there is
secure code, integrated at the development stage, to prevent potential
vulnerabilities and that steps such as vulnerability testing, application
scanning, and penetration testing are part of an organization’s soft-
ware development life cycle [SDLC]” [Deloitte 2007].

The growing Internet connectivity of computers and networks and the
corresponding user dependence on network-enabled services (such as
email and Web-based transactions) have increased the number and
sophistication of attack methods, as well as the ease with which an
attack can be launched. This trend puts software at greater risk.
Another risk area affecting software security is the degree to which
systems accept updates and extensions for evolving capabilities.
Extensible systems are attractive because they provide for the addi-
tion of new features and services, but each new extension adds new

Figure 1–2: Vulnerabilities reported to CERT
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capabilities, new interfaces, and thus new risks. A final software
security risk area is the unbridled growth in the size and complexity of
software systems (such as the Microsoft Windows operating system).
The unfortunate reality is that in general more lines of code produce
more bugs and vulnerabilities [McGraw 2006].

1.2.1 System Complexity: The Context within Which 
Software Lives

Building a trustworthy software system can no longer be predicated
on constructing and assembling discrete, isolated pieces that address
static requirements within planned cost and schedule. Each new or
updated software component joins an existing operational environ-
ment and must merge with that legacy to form an operational whole.
Bolting new systems onto old systems and Web-enabling old systems
creates systems of systems that are fraught with vulnerabilities. With
the expanding scope and scale of systems, project managers need to
reconsider a number of development assumptions that are generally
applied to software security:

• Instead of centralized control, which was the norm for large
stand-alone systems, project managers have to consider multiple
and often independent control points for systems and systems of
systems.

• Increased integration among systems has reduced the capability to
make wide-scale changes quickly. In addition, for independently
managed systems, upgrades are not necessarily synchronized.
Project managers need to maintain operational capabilities with
appropriate security as services are upgraded and new services are
added.

• With the integration among independently developed and oper-
ated systems, project managers have to contend with a heteroge-
neous collection of components, multiple implementations of
common interfaces, and inconsistencies among security policies. 

• With the mismatches and errors introduced by independently
developed and managed systems, failure in some form is more
likely to be the norm than the exception and so further complicates
meeting security requirements.

There are no known solutions for ensuring a specified level or degree
of software security for complex systems and systems of systems,
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assuming these could even be defined. This said, Chapter 6, Security
and Complexity: System Assembly Challenges, elaborates on these
points and provides useful guidelines for project managers to consider
in addressing the implications.

1.3 Software Assurance and Software Security

The increasing dependence on software to get critical jobs done means
that software’s value no longer lies solely in its ability to enhance or
sustain productivity and efficiency. Instead, its value also derives from
its ability to continue operating dependably even in the face of events
that threaten it. The ability to trust that software will remain depend-
able under all circumstances, with a justified level of confidence, is the
objective of software assurance.

Software assurance has become critical because dramatic increases in
business and mission risks are now known to be attributable to
exploitable software [DHS 2003]. The growing extent of the resulting
risk exposure is rarely understood, as evidenced by these facts: 

• Software is the weakest link in the successful execution of interde-
pendent systems and software applications.

• Software size and complexity obscure intent and preclude exhaus-
tive testing. 

• Outsourcing and the use of unvetted software supply-chain com-
ponents increase risk exposure. 

• The sophistication and increasingly more stealthy nature of attacks
facilitates exploitation.

• Reuse of legacy software with other applications introduces unin-
tended consequences, increasing the number of vulnerable targets. 

• Business leaders are unwilling to make risk-appropriate invest-
ments in software security.

According to the U.S. Committee on National Security Systems’
“National Information Assurance (IA) Glossary” [CNSS 2006], soft-
ware assurance is

the level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally
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inserted at any time during its life cycle, and that the software
functions in the intended manner.

Software assurance includes the disciplines of software reliability2 (also
known as software fault tolerance), software safety,3 and software secu-
rity. The focus of Software Security Engineering: A Guide for Project Manag-
ers is on the third of these, software security, which is the ability of
software to resist, tolerate, and recover from events that intentionally
threaten its dependability. The main objective of software security is to
build more-robust, higher-quality, defect-free software that continues to
function correctly under malicious attack [McGraw 2006].

Software security matters because so many critical functions are com-
pletely dependent on software. This makes software a very high-value
target for attackers, whose motives may be malicious, criminal, adver-
sarial, competitive, or terrorist in nature. What makes it so easy for
attackers to target software is the virtually guaranteed presence of
known vulnerabilities with known attack methods, which can be
exploited to violate one or more of the software’s security properties
or to force the software into an insecure state. Secure software remains
dependable (i.e., correct and predictable) despite intentional efforts to
compromise that dependability.

The objective of software security is to field software-based systems
that satisfy the following criteria:

• The system is as vulnerability and defect free as possible.
• The system limits the damage resulting from any failures caused

by attack-triggered faults, ensuring that the effects of any attack
are not propagated, and it recovers as quickly as possible from
those failures. 

• The system continues operating correctly in the presence of most
attacks by either resisting the exploitation of weaknesses in the
software by the attacker or tolerating the failures that result from
such exploits.

2. Software reliability means the probability of failure-free (or otherwise satisfactory) software
operation for a specified/expected period/interval of time, or for a specified/expected number
of operations, in a specified/expected environment under specified/expected operating condi-
tions. Sources for this definition can be found in [Goertzel 2006], appendix A.1.

3. Software safety means the persistence of dependability in the face of accidents or mishaps—
that is, unplanned events that result in death, injury, illness, damage to or loss of property, or
environmental harm. Sources for this definition can be found in [Goertzel 2006], appendix A.1.
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Software that has been developed with security in mind generally
reflects the following properties throughout its development life cycle: 

• Predictable execution. There is justifiable confidence that the soft-
ware, when executed, functions as intended. The ability of mali-
cious input to alter the execution or outcome in a way favorable to
the attacker is significantly reduced or eliminated.

• Trustworthiness. The number of exploitable vulnerabilities is inten-
tionally minimized to the greatest extent possible. The goal is no
exploitable vulnerabilities.

• Conformance. Planned, systematic, and multidisciplinary activities
ensure that software components, products, and systems conform
to requirements and applicable standards and procedures for spec-
ified uses. 

These objectives and properties must be interpreted and constrained
based on the practical realities that you face, such as what constitutes
an adequate level of security, what is most critical to address, and
which actions fit within the project’s cost and schedule. These are risk
management decisions.

In addition to predictable execution, trustworthiness, and conform-
ance, secure software and systems should be as attack resistant, attack
tolerant, and attack resilient as possible. To ensure that these criteria
are satisfied, software engineers should design software components
and systems to recognize both legitimate inputs and known attack pat-
terns in the data or signals they receive from external entities (humans
or processes) and reflect this recognition in the developed software to
the extent possible and practical.

To achieve attack resilience, a software system should be able to
recover from failures that result from successful attacks by resuming
operation at or above some predefined minimum acceptable level of
service in a timely manner. The system must eventually recover full
service at the specified level of performance. These qualities and prop-
erties, as well as attack patterns, are described in more detail in
Chapter 2, What Makes Software Secure?

1.3.1 The Role of Processes and Practices in Software Security

A number of factors influence how likely software is to be secure.
For instance, software vulnerabilities can originate in the processes
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and practices used in its creation. These sources include the deci-
sions made by software engineers, the flaws they introduce in spec-
ification and design, and the faults and other defects they include in
developed code, inadvertently or intentionally. Other factors may
include the choice of programming languages and development
tools used to develop the software, and the configuration and
behavior of software components in their development and opera-
tional environments. It is increasingly observed, however, that the
most critical difference between secure software and insecure software lies
in the nature of the processes and practices used to specify, design, and
develop the software [Goertzel 2006].

The return on investment when security analysis and secure engineer-
ing practices are introduced early in the development cycle ranges
from 12 percent to 21 percent, with the highest rate of return occurring
when the analysis is performed during application design [Berinato
2002; Soo Hoo 2001]. This return on investment occurs because there
are fewer security defects in the released product and hence reduced
labor costs for fixing defects that are discovered later.

A project that adopts a security-enhanced software development process
is adopting a set of practices (such as those described in this book’s chap-
ters) that initially should reduce the number of exploitable faults and
weaknesses. Over time, as these practices become more codified, they
should decrease the likelihood that such vulnerabilities are introduced
into the software in the first place. More and more, research results and
real-world experiences indicate that correcting potential vulnerabilities as
early as possible in the software development life cycle, mainly through the adop-
tion of security-enhanced processes and practices, is far more cost-effective than
the currently pervasive approach of developing and releasing frequent
patches to operational software [Goertzel 2006].

1.4 Threats to Software Security

In information security, the threat—the source of danger—is often a
person intending to do harm, using one or more malicious software
agents. Software is subject to two general categories of threats:

• Threats during development (mainly insider threats). A software
engineer can sabotage the software at any point in its development
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life cycle through intentional exclusions from, inclusions in, or
modifications of the requirements specification, the threat models,
the design documents, the source code, the assembly and integra-
tion framework, the test cases and test results, or the installation
and configuration instructions and tools. The secure development
practices described in this book are, in part, designed to help
reduce the exposure of software to insider threats during its devel-
opment process. For more information on this aspect, see “Insider
Threats in the SDLC” [Cappelli 2006].

• Threats during operation (both insider and external threats). Any
software system that runs on a network-connected platform is
likely to have its vulnerabilities exposed to attackers during its
operation. Attacks may take advantage of publicly known but
unpatched vulnerabilities, leading to memory corruption, execu-
tion of arbitrary exploit scripts, remote code execution, and buffer
overflows. Software flaws can be exploited to install spyware,
adware, and other malware on users’ systems that can lie dormant
until it is triggered to execute.4

Weaknesses that are most likely to be targeted are those found in the
software components’ external interfaces, because those interfaces
provide the attacker with a direct communication path to the soft-
ware’s vulnerabilities. A number of well-known attacks target soft-
ware that incorporates interfaces, protocols, design features, or
development faults that are well understood and widely publicized as
harboring inherent weaknesses. That software includes Web applica-
tions (including browser and server components), Web services, data-
base management systems, and operating systems. Misuse (or abuse)
cases can help project managers and software engineers see their soft-
ware from the perspective of an attacker by anticipating and defining
unexpected or abnormal behavior through which a software feature
could be unintentionally misused or intentionally abused [Hope 2004].
(See Section 3.2.)

Today, most project and IT managers responsible for system operation
respond to the increasing number of Internet-based attacks by relying
on operational controls at the operating system, network, and data-
base or Web server levels while failing to directly address the insecurity

4. See the Common Weakness Enumeration [CWE 2007], for additional examples.
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of the application-level software that is being compromised. This
approach has two critical shortcomings:

1. The security of the application depends completely on the robust-
ness of operational protections that surround it.

2. Many of the software-based protection mechanisms (controls) can
easily be misconfigured or misapplied. Also, they are as likely to
contain exploitable vulnerabilities as the application software they
are (supposedly) protecting.

The wide publicity about the literally thousands of successful attacks
on software accessible from the Internet has merely made the
attacker’s job easier. Attackers can study numerous reports of security
vulnerabilities in a wide range of commercial and open-source soft-
ware programs and access publicly available exploit scripts. More
experienced attackers often develop (and share) sophisticated, tar-
geted attacks that exploit specific vulnerabilities. In addition, the
nature of the risks is changing more rapidly than the software can be
adapted to counteract those risks, regardless of the software develop-
ment process and practices used. To be 100 percent effective, defenders
must anticipate all possible vulnerabilities, while attackers need find
only one to carry out their attack.

1.5 Sources of Software Insecurity

Most commercial and open-source applications, middleware systems,
and operating systems are extremely large and complex. In normal
execution, these systems can transition through a vast number of dif-
ferent states. These characteristics make it particularly difficult to
develop and operate software that is consistently correct, let alone con-
sistently secure. The unavoidable presence of security threats and risks
means that project managers and software engineers need to pay
attention to software security even if explicit requirements for it have
not been captured in the software’s specification.

A large percentage of security weaknesses in software could be
avoided if project managers and software engineers were routinely
trained in how to address those weaknesses systematically and consis-
tently. Unfortunately, these personnel are seldom taught how to
design and develop secure applications and conduct quality assurance
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to test for insecure coding errors and the use of poor development
techniques. They do not generally understand which practices are
effective in recognizing and removing faults and defects or in han-
dling vulnerabilities when software is exploited by attackers. They are
often unfamiliar with the security implications of certain software
requirements (or their absence). Likewise, they rarely learn about the
security implications of how software is architected, designed, devel-
oped, deployed, and operated. The absence of this knowledge means
that security requirements are likely to be inadequate and that the
resulting software is likely to deviate from specified (and unspecified)
security requirements. In addition, this lack of knowledge prevents the
manager and engineer from recognizing and understanding how mis-
takes can manifest as exploitable weaknesses and vulnerabilities in the
software when it becomes operational.

Software—especially networked, application-level software—is most
often compromised by exploiting weaknesses that result from the fol-
lowing sources:

• Complexities, inadequacies, and/or changes in the software’s pro-
cessing model (e.g., a Web- or service-oriented architecture model).

• Incorrect assumptions by the engineer, including assumptions
about the capabilities, outputs, and behavioral states of the soft-
ware’s execution environment or about expected inputs from
external entities (users, software processes).

• Flawed specification or design, or defective implementation of

– The software’s interfaces with external entities. Development
mistakes of this type include inadequate (or nonexistent) input
validation, error handling, and exception handling.

– The components of the software’s execution environment
(from middleware-level and operating-system-level to firm-
ware- and hardware-level components).

• Unintended interactions between software components, including
those provided by a third party.

Mistakes are unavoidable. Even if they are avoided during require-
ments engineering and design (e.g., through the use of formal meth-
ods) and development (e.g., through comprehensive code reviews and
extensive testing), vulnerabilities may still be introduced into software
during its assembly, integration, deployment, and operation. No mat-
ter how faithfully a security-enhanced life cycle is followed, as long as
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software continues to grow in size and complexity, some number of
exploitable faults and other weaknesses are sure to exist.

In addition to the issues identified here, Chapter 2, What Makes Soft-
ware Secure?, discusses a range of principles and practices, the
absence of which contribute to software insecurity.

1.6 The Benefits of Detecting Software Security 
Defects Early5

Limited data is available that discusses the return on investment (ROI)
of reducing security flaws in source code (refer to Section 1.6.1 for
more on this subject). Nevertheless, a number of studies have shown
that significant cost benefits are realized through improvements to
reduce software defects (including security flaws) throughout the
SDLC [Goldenson 2003]. The general software quality case is made in
this section, including reasonable arguments for extending this case to
include software security defects.

Proactively tackling software security is often under-budgeted and
dismissed as a luxury. In an attempt to shorten development schedules
or decrease costs, software project managers often reduce the time
spent on secure software practices during requirements analysis and
design. In addition, they often try to compress the testing schedule or
reduce the level of effort. Skimping on software quality6 is one of the
worst decisions an organization that wants to maximize development
speed can make; higher quality (in the form of lower defect rates) and
reduced development time go hand in hand. Figure 1–3 illustrates the
relationship between defect rate and development time.

Projects that achieve lower defect rates typically have shorter sched-
ules. But many organizations currently develop software with defect
levels that result in longer schedules than necessary. In the 1970s,

5. This material is extracted and adapted from a more extensive article by Steven Lavenhar of
Cigital, Inc. [BSI 18]. That article should be consulted for more details and examples. In addition,
this article has been adapted with permission from “Software Quality at Top Speed” by Steve
McConnell. For the original article, see [McConnell 1996]. While some of the sources cited in this
section may seem dated, the problems and trends described persist today.

6. A similar argument could be made for skimping on software security if the schedule and
resources under consideration include software production and operations, when security
patches are typically applied.
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studies performed by IBM demonstrated that software products with
lower defect counts also had shorter development schedules [Jones
1991]. After surveying more than 4000 software projects, Capers
Jones [1994] reported that poor quality was one of the most common
reasons for schedule overruns. He also reported that poor quality
was a significant factor in approximately 50 percent of all canceled
projects. A Software Engineering Institute survey found that more
than 60 percent of organizations assessed suffered from inadequate
quality assurance [Kitson 1993]. On the curve in Figure 1–3, the orga-
nizations that experienced higher numbers of defects are to the left of
the “95 percent defect removal” line.

The “95 percent defect removal” line is significant because that level of
prerelease defect removal appears to be the point at which projects
achieve the shortest schedules for the least effort and with the highest
levels of user satisfaction [Jones 1991]. If more than 5 percent of defects
are found after a product has been released, then the product is vul-
nerable to the problems associated with low quality, and the organiza-
tion takes longer to develop its software than necessary. Projects that
are completed with undue haste are particularly vulnerable to short-
changing quality assurance at the individual developer level. Any
developer who has been pushed to satisfy a specific deadline or ship a
product quickly knows how much pressure there can be to cut corners
because “we’re only three weeks from the deadline.” As many as four
times the average number of defects are reported for released software

Figure 1–3: Relationship between defect rate and development time
Percentage of Defects Removed Before Release

Most organizations
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products that were developed under excessive schedule pressure.
Developers participating in projects that are in schedule trouble often
become obsessed with working harder rather than working smarter,
which gets them into even deeper schedule trouble.

One aspect of quality assurance that is particularly relevant during
rapid development is the presence of error-prone modules—that is,
modules that are responsible for a disproportionate number of defects.
Barry Boehm reported that 20 percent of the modules in a program are
typically responsible for 80 percent of the errors [Boehm 1987]. On its
IMS project, IBM found that 57 percent of the errors occurred in 7 per-
cent of the modules [Jones 1991]. Modules with such high defect rates
are more expensive and time-consuming to deliver than less error-
prone modules. Normal modules cost about $500 to $1000 per function
point to develop, whereas error-prone modules cost about $2000 to
$4000 per function point to develop [Jones 1994]. Error-prone modules
tend to be more complex, less structured, and significantly larger than
other modules. They often are developed under excessive schedule
pressure and are not fully tested. If development speed is important,
then identification and redesign of error-prone modules should be a
high priority. 

If an organization can prevent defects or detect and remove them
early, it can realize significant cost and schedule benefits. Studies have
found that reworking defective requirements, design, and code typi-
cally accounts for 40 to 50 percent of the total cost of software develop-
ment [Jones 1986b]. As a rule of thumb, every hour an organization
spends on defect prevention reduces repair time for a system in pro-
duction by three to ten hours. In the worst case, reworking a software
requirements problem once the software is in operation typically costs
50 to 200 times what it would take to rework the same problem during
the requirements phase [Boehm 1988]. It is easy to understand why
this phenomenon occurs. For example, a one-sentence requirement
could expand into 5 pages of design diagrams, then into 500 lines of
code, then into 15 pages of user documentation and a few dozen test
cases. It is cheaper to correct an error in that one-sentence requirement
at the time requirements are specified (assuming the error can be iden-
tified and corrected) than it is after design, code, user documentation,
and test cases have been written. Figure 1–4 illustrates that the longer
defects persist, the more expensive they are to correct.

The savings potential from early defect detection is significant:
Approximately 60 percent of all defects usually exist by design time
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[Gilb 1988]. A decision early in a project to exclude defect detection
amounts to a decision to postpone defect detection and correction until
later in the project, when defects become much more expensive and
time-consuming to address. That is not a rational decision when time
and development dollars are at a premium. According to software qual-
ity assurance empirical research, $1 required to resolve an issue during
the design phase grows into $60 to $100 required to resolve the same
issue after the application has shipped [Soo Hoo 2001].

When a software product has too many defects, including security
flaws, vulnerabilities, and bugs, software engineers can end up
spending more time correcting these problems than they spent on
developing the software in the first place. Project managers can
achieve the shortest possible schedules with a higher-quality product
by addressing security throughout the SDLC, especially during the
early phases, to increase the likelihood that software is more secure
the first time.

Figure 1–4: Cost of correcting defects by life-cycle phase
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1.6.1 Making the Business Case for Software Security: 
Current State7

As software project managers and developers, we know that when we
want to introduce new approaches in our development processes,
we have to make a cost–benefit argument to executive management to
convince them that this move offers a business or strategic return on
investment. Executives are not interested in investing in new technical
approaches simply because they are innovative or exciting. For profit-
making organizations, we need to make a case that demonstrates we
will improve market share, profit, or other business elements. For
other types of organizations, we need to show that we will improve
our software in a way that is important—in a way that adds to the
organization’s prestige, that ensures the safety of troops in the battle-
field, and so on.

In the area of software security, we have started to see some evidence
of successful ROI or economic arguments for security administrative
operations, such as maintaining current levels of patches, establishing
organizational entities such as computer security incident response
teams (CSIRTs) to support security investment, and so on [Blum 2006,
Gordon 2006, Huang 2006, Nagaratnam 2005]. In their article “Tangi-
ble ROI through Secure Software Engineering,” Kevin Soo Hoo and
his colleagues at @stake state the following:

Findings indicate that significant cost savings and other
advantages are achieved when security analysis and secure
engineering practices are introduced early in the develop-
ment cycle. The return on investment ranges from 12 percent
to 21 percent, with the highest rate of return occurring when
analysis is performed during application design.
Since nearly three-quarters of security-related defects are
design issues that could be resolved inexpensively during the
early stages, a significant opportunity for cost savings exists
when secure software engineering principles are applied
during design.

However, except for a few studies [Berinato 2002; Soo Hoo 2001], we
have seen little evidence presented to support the idea that investment
during software development in software security will result in com-
mensurate benefits across the entire life cycle. 

7. Updated from [BSI 45].
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Results of the Hoover project [Jaquith 2002] provide some case study
data that supports the ROI argument for investment in software secu-
rity early in software development. In his article “The Security of
Applications: Not All Are Created Equal,” Jaquith says that “the best-
designed e-business applications have one-quarter as many security
defects as the worst. By making the right investments in application
security, companies can out-perform their peers—and reduce risk by
80 percent.”

In their article “Impact of Software Vulnerability Announcements on
the Market Value of Software Vendors: An Empirical Investigation,”
the authors state that “On average, a vendor loses around 0.6 percent
value in stock price when a vulnerability is reported. This is equiva-
lent to a loss in market capitalization values of $0.86 billion per vulner-
ability announcement.” The purpose of the study described in this
article is “to measure vendors’ incentive to develop secure software”
[Telang 2004].

We believe that in the future Microsoft may well publish data reflect-
ing the results of using its Security Development Lifecycle [Howard
2006, 2007]. We would also refer readers to the business context dis-
cussion in chapter 2 and the business climate discussion in chapter 10
of McGraw’s recent book [McGraw 2006] for ideas.

1.7 Managing Secure Software Development

The previous section put forth useful arguments and identified emerg-
ing evidence for the value of detecting software security defects as
early in the SDLC as possible. We now turn our attention to some of
the key project management and software engineering practices to aid
in accomplishing this goal. These are introduced here and covered in
greater detail in subsequent chapters of this book.

1.7.1 Which Security Strategy Questions Should I Ask?

Achieving an adequate level of software security means more than
complying with regulations or implementing commonly accepted best
practices. You and your organization must determine your own defini-
tion of “adequate.” The range of actions you must take to reduce soft-
ware security risk to an acceptable level depends on what the product,
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service, or system you are building needs to protect and what it needs
to prevent and manage.

Consider the following questions from an enterprise perspective.
Answers to these questions aid in understanding security risks to
achieving project goals and objectives. 

• What is the value we must protect?
• To sustain this value, which assets must be protected? Why must

they be protected? What happens if they’re not protected?
• What potential adverse conditions and consequences must be pre-

vented and managed? At what cost? How much disruption can we
stand before we take action? 

• How do we determine and effectively manage residual risk (the
risk remaining after mitigation actions are taken)?

• How do we integrate our answers to these questions into an effec-
tive, implementable, enforceable security strategy and plan?

Clearly, an organization cannot protect and prevent everything. Inter-
action with key stakeholders is essential to determine the project’s risk
tolerance and its resilience if the risk is realized. In effect, security in
the context of risk management involves determining what could go
wrong, how likely such events are to occur, what impact they will
have if they do occur, and which actions might mitigate or minimize
both the likelihood and the impact of each event to an acceptable level.

The answers to these questions can help you determine how much to
invest, where to invest, and how fast to invest in an effort to mitigate
software security risk. In the absence of answers to these questions
(and a process for periodically reviewing and updating them), you
(and your business leaders) will find it difficult to define and deploy
an effective security strategy and, therefore, may be unable to effec-
tively govern and manage enterprise, information, and software
security.8

The next section presents a practical way to incorporate a reasoned
security strategy into your development process. The framework

8. Refer to Managing Information Security Risks: The OCTAVE Approach [Alberts 2003] for more
information on managing information security risk; “An Introduction to Factor Analysis of Infor-
mation Risk (FAIR)” [Jones 2005] for more information on managing information risk; and “Risk
Management Approaches to Protection” [NIAC 2005] for a description of risk management
approaches for national critical infrastructures.
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described is a condensed version of the Cigital Risk Management
Framework, a mature process that has been applied in the field for
almost ten years. It is designed to manage software-induced business
risks. Through the application of five simple activities (further detailed
in Section 7.4.2), analysts can use their own technical expertise, rele-
vant tools, and technologies to carry out a reasonable risk manage-
ment approach.

1.7.2 A Risk Management Framework for Software Security9

A necessary part of any approach to ensuring adequate software secu-
rity is the definition and use of a continuous risk management process.
Software security risk includes risks found in the outputs and results
produced by each life-cycle phase during assurance activities, risks
introduced by insufficient processes, and personnel-related risks. The
risk management framework (RMF) introduced here and expanded in
Chapter 7 can be used to implement a high-level, consistent, iterative
risk analysis that is deeply integrated throughout the SDLC. 

Figure 1–5 shows the RMF as a closed-loop process with five activity
stages. Throughout the application of the RMF, measurement and
reporting activities occur. These activities focus on tracking, display-
ing, and understanding progress regarding software risk.

1.7.3 Software Security Practices in the Development 
Life Cycle

Managers and software engineers should treat all software faults and
weaknesses as potentially exploitable. Reducing exploitable weak-
nesses begins with the specification of software security requirements,
along with considering requirements that may have been overlooked
(see Chapter 3, Requirements Engineering for Secure Software). Soft-
ware that includes security requirements (such as security constraints
on process behaviors and the handling of inputs, and resistance to and
tolerance of intentional failures) is more likely to be engineered to
remain dependable and secure in the face of an attack. In addition,
exercising misuse/abuse cases that anticipate abnormal and unex-
pected behavior can aid in gaining a better understanding of how to
create secure and reliable software (see Section 3.2).

9. This material is extracted and adapted from a more extensive article by Gary McGraw, Cigital,
Inc. [BSI 33].
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Developing software from the beginning with security in mind is more
effective by orders of magnitude than trying to validate, through test-
ing and verification, that the software is secure. For example, attempt-
ing to demonstrate that an implemented system will never accept an
unsafe input (that is, proving a negative) is impossible. You can prove,
however, using approaches such as formal methods and function
abstraction, that the software you are designing will never accept an
unsafe input. In addition, it is easier to design and implement the sys-
tem so that input validation routines check every input that the soft-
ware receives against a set of predefined constraints. Testing the input
validation function to demonstrate that it is consistently invoked and
correctly performed every time input enters the system is then
included in the system’s functional testing.

Analysis and modeling can serve to better protect your software
against the more subtle, complex attack patterns involving externally
forced sequences of interactions among components or processes that
were never intended to interact during normal software execution.
Analysis and modeling can help you determine how to strengthen the
security of the software’s interfaces with external entities and increase
its tolerance of all faults. Methods in support of analysis and modeling

Figure 1–5: A software security risk management framework
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during each life-cycle phase such as attack patterns, misuse and abuse
cases, and architectural risk analysis are described in subsequent chap-
ters of this book.

If your development organization’s time and resource constraints pre-
vent secure development practices from being applied to the entire
software system, you can use the results of a business-driven risk
assessment (as introduced earlier in this chapter and further detailed
in Section 7.4.2) to determine which software components should be
given highest priority.

A security-enhanced life-cycle process should (at least to some extent)
compensate for security inadequacies in the software’s requirements
by adding risk-driven practices and checks for the adequacy of those
practices during all software life-cycle phases. Figure 1–6 depicts one
example of how to incorporate security into the SDLC using the con-
cept of touchpoints [McGraw 2006; Taylor 2005]. Software security
best practices (touchpoints shown as arrows) are applied to a set of
software artifacts (the boxes) that are created during the software
development process. The intent of this particular approach is that it is

Figure 1–6: Software development life cycle with defined security 
touchpoints [McGraw 2006]
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process neutral and, therefore, can be used with a wide range of soft-
ware development processes (e.g., waterfall, agile, spiral, Capability
Maturity Model Integration [CMMI]). 

Security controls in the software’s life cycle should not be limited to
the requirements, design, code, and test phases. It is important to con-
tinue performing code reviews, security tests, strict configuration con-
trol, and quality assurance during deployment and operations to
ensure that updates and patches do not add security weaknesses or
malicious logic to production software.10 Additional considerations for
project managers, including the effect of software security require-
ments on project scope, project plans, estimating resources, and prod-
uct and process measures, are detailed in Chapter 7.

1.8 Summary

It is a fact of life that software faults, defects, and other weaknesses
affect the ability of software to function securely. These vulnerabilities
can be exploited to violate software’s security properties and force the
software into an insecure, exploitable state. Dealing with this possibility
is a particularly daunting challenge given the ubiquitous connectivity
and explosive growth and complexity of software-based systems.

Adopting a security-enhanced software development process that
includes secure development practices will reduce the number of
exploitable faults and weaknesses in the deployed software. Correct-
ing potential vulnerabilities as early as possible in the SDLC, mainly
through the adoption of security-enhanced processes and practices, is
far more cost-effective than attempting to diagnose and correct such
problems after the system goes into production. It just makes good
sense.

Thus, the goals of using secure software practices are as follows:

• Exploitable faults and other weaknesses are eliminated to the
greatest extent possible by well-intentioned engineers.

• The likelihood is greatly reduced or eliminated that malicious
engineers can intentionally implant exploitable faults and weak-
nesses, malicious logic, or backdoors into the software.

10. See the Build Security In Deployment & Operations content area for more information [BSI 01]. 
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• The software is attack resistant, attack tolerant, and attack resilient
to the extent possible and practical in support of fulfilling the orga-
nization’s mission.

To ensure that software and systems meet their security requirements
throughout the development life cycle, review, select, and tailor guid-
ance from this book, the BSI Web site, and the sources cited through-
out this book as part of normal project management activities. 
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Chapter 2

What Makes 
Software Secure?

2.1 Introduction

To answer the question, “What makes software secure?” it is impor-
tant to understand the meaning of software security in the broader
context of software assurance.

As described in Chapter 1, software assurance is the domain of work-
ing toward software that exhibits the following qualities:

• Trustworthiness, whereby no exploitable vulnerabilities or weak-
nesses exist, either of malicious or unintentional origin

• Predictable execution, whereby there is justifiable confidence that
the software, when executed, functions as intended

• Conformance, whereby a planned and systematic set of multidisci-
plinary activities ensure that software processes and products con-
form to their requirements, standards, and procedures

We will focus primarily on the dimension of trustworthiness—that is,
which properties can be identified, influenced, and asserted to charac-
terize the trustworthiness, and thereby the security, of software. To be
effective, predictable execution must be interpreted with an appropri-
ately broader brush than is typically applied. Predictable execution

LME
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must imply not only that software effectively does what it is expected
to do, but also that it is robust under attack and does not do anything
that it is not expected to do. This may seem to some to be splitting
hairs, but it is an important distinction between what makes for high-
quality software versus what makes for secure software.

To determine and influence the trustworthiness of software, it is neces-
sary to define the properties that characterize secure software, identify
mechanisms to influence these properties, and leverage structures and
tools for asserting the presence or absence of these properties in com-
munication surrounding the security of software. 

This chapter draws on a diverse set of existing knowledge to present
solutions to these challenges and provide you with resources to
explore for more in-depth coverage of individual topics. 

2.2 Defining Properties of Secure Software1

Before we can determine the security characteristics of software and
look for ways to effectively measure and improve them, we must first
define the properties by which these characteristics can be described.
These properties consist of (1) a set of core properties whose presence
(or absence) are the ground truth that makes software secure (or not)
and (2) a set of influential properties that do not directly make soft-
ware secure but do make it possible to characterize how secure soft-
ware is.

2.2.1 Core Properties of Secure Software

Several fundamental properties may be seen as attributes of security
as a software property, as shown in Figure 2–1:

• Confidentiality. The software must ensure that any of its characteris-
tics (including its relationships with its execution environment and
its users), its managed assets, and/or its content are obscured or
hidden from unauthorized entities. This remains appropriate for
cases such as open-source software; its characteristics and content
are available to the public (authorized entities in this case), yet it
still must maintain confidentiality of its managed assets.

1. Much of this section is excerpted from Security in the Software Lifecycle [Goertzel 2006]. 

L4L L4ME
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• Integrity. The software and its managed assets must be resistant
and resilient to subversion. Subversion is achieved through unau-
thorized modifications to the software code, managed assets, con-
figuration, or behavior by authorized entities, or any modifications
by unauthorized entities. Such modifications may include over-
writing, corruption, tampering, destruction, insertion of unin-
tended (including malicious) logic, or deletion. Integrity must be
preserved both during the software’s development and during its
execution.

• Availability. The software must be operational and accessible to its
intended, authorized users (humans and processes) whenever it is
needed. At the same time, its functionality and privileges must be
inaccessible to unauthorized users (humans and processes) at all
times.

Two additional properties commonly associated with human users are
required in software entities that act as users (e.g., proxy agents, Web
services, peer processes):

• Accountability. All security-relevant actions of the software-as-user
must be recorded and tracked, with attribution of responsibility.
This tracking must be possible both while and after the recorded
actions occur. The audit-related language in the security policy for
the software system should indicate which actions are considered
“security relevant.”

• Non-repudiation. This property pertains to the ability to prevent the
software-as-user from disproving or denying responsibility for
actions it has performed. It ensures that the accountability prop-
erty cannot be subverted or circumvented.

These core properties are most typically used to describe network
security. However, their definitions have been modified here slightly
to map these still valid concepts to the software security domain. The
effects of a security breach in software can, therefore, be described in
terms of the effects on these core properties. A successful SQL injection
attack on an application to extract personally identifiable information
from its database would be a violation of its confidentiality property. A
successful cross-site scripting (XSS) attack against a Web application
could result in a violation of both its integrity and availability proper-
ties. And a successful buffer overflow2 attack that injects malicious

2. See the glossary for definitions of SQL injection, cross-site scripting, and buffer overflow.
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code in an attempt to steal user account information and then alter
logs to cover its tracks would be a violation of all five core security
properties. While many other important characteristics of software
have implications for its security, their relevance can typically be
described and communicated in terms of how they affect these core
properties.

2.2.2 Influential Properties of Secure Software

Some properties of software, although they do not directly make soft-
ware secure, nevertheless make it possible to characterize how secure
software is (Figure 2–2):

• Dependability
• Correctness
• Predictability
• Reliability
• Safety

These influential properties are further influenced by the size, com-
plexity, and traceability of the software. Much of the activity of soft-
ware security engineering focuses on addressing these properties and
thus targets the core security properties themselves.

Figure 2–1: Core security properties of secure software
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Dependability and Security

In simplest terms, dependability is the property of software that
ensures that the software always operates as intended. It is not sur-
prising that security as a property of software and dependability as a
property of software share a number of subordinate properties (or
attributes). The most obvious, to security practitioners, are availability
and integrity. However, according to Algirdas Avizienis et al. in “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” a
number of other properties are shared by dependability and security,
including reliability, safety, survivability, maintainability, and fault tol-
erance [Avizienis 2004].

To better understand the relationship between security and depend-
ability, consider the nature of risk to security and, by extension,
dependability. A variety of factors affect the defects and weaknesses
that lead to increased risk related to the security or dependability of
software. But are they human-made or environmental? Are they inten-
tional or unintentional? If they are intentional, are they malicious?
Nonmalicious intentional weaknesses often result from bad judgment.
For example, a software engineer may make a tradeoff between perfor-
mance and usability on the one hand and security on the other hand
that results in a design decision that includes weaknesses. While many
defects and weaknesses have the ability to affect both the security and

Figure 2–2: Influential properties of secure software
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the dependability of software, it is typically the intentionality, the
exploitability, and the resultant impact if exploited that determine
whether a defect or weakness actually constitutes a vulnerability lead-
ing to security risk.

Note that while dependability directly implies the core properties of
integrity and availability, it does not necessarily imply confidentiality,
accountability, or non-repudiation. 

Correctness and Security

From the standpoint of quality, correctness is a critical attribute of soft-
ware that should be consistently demonstrated under all anticipated
operating conditions. Security requires that the attribute of correctness
be maintained under unanticipated conditions as well. One of the
mechanisms most commonly used to attack the security of software
seeks to cause the software’s correctness to be violated by forcing it
into unanticipated operating conditions, often through unexpected
input or exploitation of environmental assumptions.

Some advocates for secure software engineering have suggested that
good software engineering is all that is needed to ensure that the soft-
ware produced will be free of exploitable faults and other weaknesses.
There is a flaw in this thinking—namely, good software engineering
typically fails to proactively consider the behavior of the software
under unanticipated conditions. These unanticipated conditions are
typically determined to be out of scope as part of the requirements
process. Correctness under anticipated conditions (as it is typically
interpreted) is not enough to ensure that the software is secure,
because the conditions that surround the software when it comes
under attack are very likely to be unanticipated. Most software specifi-
cations do not include explicit requirements for the software’s func-
tions to continue operating correctly under unanticipated conditions.
Software engineering that focuses only on achieving correctness under
anticipated conditions, therefore, does not ensure that the software
will remain correct under unanticipated conditions.

If explicit requirements for secure behavior are not specified, then
requirements-driven engineering, which is used frequently to increase
the correctness of software, will do nothing to ensure that correct soft-
ware is also secure. In requirements-driven engineering, correctness is
assured by verifying that the software operates in strict accordance
with its specified requirements. If the requirements are deficient, the
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software still may strictly be deemed correct as long as it satisfies those
requirements that do exist. 

The requirements specified for the majority of software are limited to
functional, interoperability, and performance requirements. Determin-
ing that such requirements have been satisfied will do nothing to
ensure that the software will also behave securely even when it oper-
ates correctly. Unless a requirement exists for the software to contain a
particular security property or attribute, verifying correctness will
indicate nothing about security. A property or attribute that is not cap-
tured as a requirement will not be the subject of any verification effort
that seeks to discover whether the software contains that function or
property. 

Security requirements that define software’s expected behavior as
adhering to a desired security property are best elicited through a
documented process, such as the use of misuse/abuse cases (see
Section 3.2). Misuse/abuse cases are descriptive statements of the
undesired, nonstandard conditions that the software is likely to face
during its operation from either unintentional misuse or intentional
and malicious misuse/abuse. Misuse/abuse cases are effectively
captured by analyzing common approaches to attack that the soft-
ware is likely to face. Attack patterns, as discussed later in this chap-
ter, are a physical representation of these common approaches to
attack. Misuse/abuse cases, when explicitly captured as part of the
requirements process, provide a measurable benchmark against
which to assess the completeness and quality of the defined security
requirements to achieve the desired security properties in the face of
attack and misuse.

It is much easier to specify and satisfy functional requirements stated in
positive terms (“The software will perform such-and-such a function”).
Security properties and attributes, however, are often nonfunctional
(“This process must be non-bypassable”). Even “positively” stated
requirements may reflect inherently negative concerns. For example,
the requirement “If the software cannot handle a fault, the software
must release all of its resources and then terminate execution” is, in
fact, just a more positive way of stating the requirement that “A crash
must not leave the software in an insecure state.”

Moreover, it is possible to specify requirements for functions, interac-
tions, and performance attributes that result in insecure software
behavior. By the same token, it is possible to implement software that
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deviates from its functional, interoperability, and performance require-
ments (that is, software that is incorrect only from a requirements
engineering perspective) without that software actually behaving inse-
curely. 

Software that executes correctly under anticipated conditions cannot
be considered secure when it is used in an operating environment
characterized by unanticipated conditions that lead to unpredictable
behavior. However, it may be possible to consider software that is
incorrect but completely predictable to be secure if the incorrect por-
tions of the software are not manifested as vulnerabilities. Thus it does
not follow that correctness will necessarily help assure security, or that
incorrectness will necessarily become manifest as insecurity. Never-
theless, correctness in software is just as important a property as secu-
rity. Neither property should ever have to be achieved at the expense
of the other. 

A number of vulnerabilities in software that can be exploited by
attackers can be avoided by engineering for correctness. By reducing
the total number of defects in software, the subset of those defects
that are exploitable (that is, are vulnerabilities) will be coincidentally
reduced. However, some complex vulnerabilities may result from a
sequence or combination of interactions among individual compo-
nents; each interaction may be perfectly correct yet, when combined
with other interactions, may result in incorrectness and vulnerabil-
ity. Engineering for correctness will not eliminate such complex vul-
nerabilities.

For the purposes of requirements-driven engineering, no requirement
for a software function, interface, performance attribute, or any other
attribute of the software should ever be deemed “correct” if that
requirement can only be satisfied in a way that allows the software to
behave insecurely or that makes it impossible to determine or predict
whether the software will behave securely. Instead, every requirement
should be specified in a way that ensures that the software will always
and only behave securely when the requirement is satisfied. 

“Small” Faults, Big Consequences

There is a conventional wisdom espoused by many software engineers
that says vulnerabilities which fall within a specified range of specu-
lated impact (“size”) can be tolerated and allowed to remain in the soft-
ware. This belief is based on the underlying assumption that small faults
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have small consequences. In terms of defects with security implica-
tions, however, this conventional wisdom is wrong. Nancy Leveson
suggests that vulnerabilities in large software-intensive systems with
significant human interaction will increasingly result from multiple
minor defects, each insignificant by itself, thereby collectively placing
the system into a vulnerable state [Leveson 2004].

Consider a classic stack-smashing attack that relies on a combination
of multiple “small” defects that individually may have only minor
impact, yet together represent significant vulnerability [Aleph One
1996]. An input function writes data to a buffer without first perform-
ing a bounds check on the data. This action occurs in a program that
runs with root privilege. If an attacker submits a very long string of
input data that includes both malicious code and a return address
pointer to that code, because the program does not do bounds check-
ing, the input will be accepted by the program and will overflow the
stack buffer that receives it. This outcome will allow the malicious
code to be loaded onto the program’s execution stack and overwrite
the subroutine return address so that it points to that malicious code.
When the subroutine terminates, the program will jump to the mali-
cious code, which will be executed, operating with root privilege. This
particular malicious code is written to call the system shell, enabling
the attacker to take control of the system. (Even if the original program
had not operated with root privileges, the malicious code may have
contained a privilege escalation exploit to gain those privileges.) 

Obviously, when considering software security, the perceived size of a
vulnerability is not a reliable predictor of the magnitude of that vul-
nerability impact. For this reason, the risks of every known vulnerabil-
ity—regardless of whether it is detected during design review,
implementation, or testing—should be explicitly analyzed and miti-
gated or accepted by authoritative persons in the development organi-
zation. Assumption is a primary root of insecurity anywhere, but
especially so in software.

For high-assurance systems, there is no justification for tolerating
known vulnerabilities. True software security is achievable only when
all known aspects of the software are understood and verified to be
predictably correct. This includes verifying the correctness of the soft-
ware’s behavior under a wide variety of conditions, including hostile
conditions. As a consequence, software testing needs to include
observing the software’s behavior under the following circumstances:
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• Attacks are launched against the software itself
• The software’s inputs or outputs (e.g., data files, arguments, sig-

nals) are compromised
• The software’s interfaces to other entities are compromised
• The software’s execution environment is attacked

Predictability and Security

Predictability means that the software’s functionality, properties, and
behaviors will always be what they are expected to be as long as the
conditions under which the software operates (i.e., its environment,
the inputs it receives) are also predictable. For dependable software,
this means the software will never deviate from correct operation
under anticipated conditions. 

Software security extends predictability to the software’s operation
under unanticipated conditions—specifically, under conditions in
which attackers attempt to exploit faults in the software or its environ-
ment. In such circumstances, it is important to have confidence in pre-
cisely how the software will behave when faced with misuse or attack.
The best way to ensure predictability of software under unanticipated
conditions is to minimize the presence of vulnerabilities and other
weaknesses, to prevent the insertion of malicious logic, and to isolate
the software to the greatest extent possible from unanticipated envi-
ronmental conditions.

Reliability, Safety, and Security3

The focus of reliability for software is on preserving predictable, cor-
rect execution despite the presence of unintentional defects and other
weaknesses and unpredictable environment state changes. Software
that is highly reliable is often referred to as high-confidence software
(implying that a high level of assurance of that reliability exists) or
fault-tolerant software (implying that fault tolerance techniques were
used to achieve the high level of reliability).

3. This section’s use of the term reliability is consistent with the definition of the term found in
IEEE Standard 610.12-1990, Standard Glossary of Software Engineering Terminology [IEEE 1990],
which defines reliability as “the ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time.” Nevertheless, it is more closely
aligned with the definition of the term in the National Research Council’s study Trust in Cyber-
space [Schneider 1999], which defines reliability as “the capability of a computer, or information
or telecommunications system, to perform consistently and precisely according to its specifica-
tions and design requirements, and to do so with high confidence.” 
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Software safety depends on reliability and typically has very real and
significant implications if the property is not met. The consequences, if
reliability is not preserved in a safety-critical system, can be cata-
strophic: Human life may be lost, or the sustainability of the environ-
ment may be compromised. 

Software security extends the requirements of reliability and safety to
the need to preserve predictable, correct execution even in the face of
malicious attacks on defects or weaknesses and environmental state
changes. It is this maliciousness that makes the requirements of soft-
ware security somewhat different from the requirements of safety and
reliability. Failures in a reliability or safety context are expected to be
random and unpredictable. Failures in a security context, by contrast,
result from human effort (direct, or through malicious code). Attackers
tend to be persistent, and once they successfully exploit a vulnerabil-
ity, they tend to continue exploiting that vulnerability on other sys-
tems as long as the vulnerability is present and the outcome of the
attack remains satisfactory.

Until recently, many software reliability and safety practitioners
have not concerned themselves with software security issues.
Indeed, the two domains have traditionally been viewed as separate
and distinct. The truth is that safety, as a property of software, is
directly dependent on security properties such as dependability. A
failure in the security of software, especially one that is intentional
and malicious, can directly change the operational and environmen-
tal presumptions on which safety is based, thereby compromising
any possible assurance in its safety properties. Any work toward
assuring the safety of software that does not take security properties
into consideration is incomplete and unreliable.

Size, Complexity, Traceability, and Security

Software that satisfies its requirements through simple functions that
are implemented in the smallest amount of code that is practical, with
process flows and data flows that are easily followed, will be easier to
comprehend and maintain. The fewer the dependencies in the soft-
ware, the easier it will be to implement effective failure detection and
to reduce the attack surface.4

4. A system’s attack surface is the set of ways in which an attacker can enter and potentially
cause damage to the system.
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Size and complexity should be not only properties of the software’s
implementation, but also properties of its design, as they will make it
easier for reviewers to discover design flaws that could be manifested
as exploitable weaknesses in the implementation. Traceability will
enable the same reviewers to ensure that the design satisfies the speci-
fied security requirements and that the implementation does not devi-
ate from the secure design. Moreover, traceability provides a firm basis
on which to define security test cases. 

2.3 How to Influence the Security Properties 
of Software 

Once you understand the properties that determine the security of
software, the challenge becomes acting effectively to influence those
properties in a positive way. The ability of a software development
team to manipulate the security properties of software resolves to a
balance between engaging in defensive action and thinking like an
attacker. The primary perspective is that of a defender, where the
team works to build into the software appropriate security features
and characteristics to make the software more resistant to attack
and to minimize the inherent weaknesses in the software that may
make it more vulnerable to attack. The balancing perspective is that
of the attacker, where the team strives to understand the exact
nature of the threat that the software is likely to face so as to focus
defensive efforts on areas of highest risk. These two perspectives,
working in combination, guide the actions taken to make software
more secure. 

Taking action to address these perspectives requires knowledge
resources (prescriptive, diagnostic, and historical) covering the vari-
ous aspects of software assurance combined with security best prac-
tices called touchpoints integrated throughout the SDLC; all of this
must then be deployed under an umbrella of applied risk manage-
ment [McGraw 2006]. For the discussion here, we use these definitions
for best practices and touchpoints: 

Best practices are the most efficient (least amount of effort)
and effective (best results) way of accomplishing a task,

L3L LM
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based on repeatable procedures that have proven themselves
over time for large numbers of people.5

Touchpoints are lightweight software security best practice
activities that are applied to various software artifacts.
[McGraw 2006]

Project managers who are concerned with the security of the software
they are developing must proactively select the appropriate practices
and knowledge to ensure that both the defensive and attacker’s per-
spectives are appropriately represented and understood by the devel-
opment team. This chapter, and the rest of this book, presents several
of the most effective options (though they vary in their level of adop-
tion) for knowledge resources and security practices and guidance on
how to select and use them. 

2.3.1 The Defensive Perspective

Assuming the defensive perspective involves looking at the software
from the inside out. It requires analyzing the software for vulnerabili-
ties and opportunities for the security of the software to be compro-
mised through inadvertent misuse and, more importantly, through
malicious attack and abuse. Doing so requires the software develop-
ment team to perform the following steps:

• Address expected issues through the application of appropriate
security architecture and features

• Address unexpected issues through the avoidance, removal, and
mitigation of weaknesses that could lead to security vulnerabilities

• Continually strive to improve and strengthen the attack resistance,
tolerance, and resilience of the software in everything they do

Addressing the Expected: Security Architecture and Features 

When most people think of making software secure, they think in
terms of the architecture and functionality of security features. Secu-
rity features and functionality alone are insufficient to ensure software
security, but they are a necessary facet to consider. As shown in
Figure 2–3, security features aim to address expected security issues
with software such as authentication, authorization, access control,

5. http://en.wikipedia.org/wiki/Best_practice

http://en.wikipedia.org/wiki/Best_practice
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permissions, privileges, and cryptography. Security architecture is the
overall framework that holds these security functionalities together
and provides the set of interfaces that integrates them with the broader
software architecture.6

Without security architecture and features, adequate levels of confi-
dentiality, integrity, accountability, and non-repudiation may be
unattainable. However, fully addressing these properties (as well as
availability) requires the development team not only to provide

Figure 2–3: Addressing expected issues with security architecture and 
features

6. In-depth discussions of and best practices for these very technical considerations can be found
in other books and forums. This book focuses on providing guidance to the software project man-
ager on software security engineering practices and knowledge that will help improve the secu-
rity assurance of the software being developed regardless of its functionality or features.
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functionality to manage the security behavior of the software, but
also to ensure that the functionality and architecture of the software
do not contain weaknesses that could render the software vulnerable
to attack in potentially unexpected ways.

Addressing the Unexpected: Avoiding, Removing, and 
Mitigating Weaknesses

Many activities and practices are available across the life cycle of soft-
ware systems that can help reduce and mitigate weaknesses present in
software. These activities and practices can typically be categorized
into two approaches: application defense and software security.

Application Defense

Employing practices focused at detecting and mitigating weaknesses
in software systems after they are deployed is often referred to as appli-
cation defense (see Figure 2–4), which in many cases is mislabeled as
application security. Application defense techniques typically focus on
the following issues:

• Establishing a protective boundary around the application that
enforces rules defining valid input or recognizes and either blocks
or filters input that contains recognized patterns of attack

• Constraining the extent and impact of damage that might result
from the exploit of a vulnerability in the application

• Discovering points of vulnerability in the implemented applica-
tion through black-box testing so as to help developers and admin-
istrators identify necessary countermeasures (see the description
of black-box testing in Section 5.5.4)

Reactive application defense measures are often similar to the tech-
niques and tools used for securing networks, operating systems, and
middleware services. They include things such as vulnerability scan-
ners, intrusion detection tools, and firewalls or security gateways.
Often, these measures are intended to strengthen the boundaries
around the application rather than address the actual vulnerabilities
inside the application. 

In some cases, application defense measures are applied as stopgaps for
from-scratch application software until a security patch or new version
is released. In other cases, these measures provide ongoing defense in
depth to counter vulnerabilities in the application. In software systems
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that include acquired or reused (commercial, government off-the-shelf,
open-source, shareware, freeware, or legacy) binary components, appli-
cation defense techniques and tools may be the only cost-effective coun-
termeasures to mitigate vulnerabilities in those components.

Application defense as typically practiced today incorporates few, if
any, techniques and tools that will aid the developer in producing soft-
ware that has very few vulnerabilities in the first place. These practices
often provide valuable guidance in identifying and mitigating more
obvious security vulnerabilities, especially those associated with the
deployment configuration and environment. Most serious weaknesses,
including both design flaws and implementation bugs, are not typically

Figure 2–4: Addressing the unexpected through application defense
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detectable in this manner, however; when they are, they are usually
much more expensive to remedy so late in the life cycle. A software
security perspective, by contrast, not only incorporates protective, post-
implementation techniques, but also addresses the need to specify,
design, and implement an application with a minimal attack surface.

The point to take away is that a disciplined, repeatable, security-
enhanced development process should be instituted that ensures
application defense measures are used only because they are deter-
mined in the design process to be the best approach to solving a soft-
ware security problem, not because they are the only possible
approach after the software is deployed.

That said, using secure systems engineering approaches can be helpful
to further protect securely engineered software in deployment by
reducing its exposure to threats in various operational environments.
These measures may be particularly useful for reducing risk for soft-
ware, such as commercial and open-source software, that is intended
to be deployed in a wide variety of threat environments and opera-
tional contexts.

Software Security

While application defense takes a somewhat after-the-fact approach,
practices associated with “software security” and its role in secure
software engineering processes focus on preventing weaknesses from
entering the software in the first place or, if that is unavoidable, at least
removing them as early in the life cycle as possible and before the soft-
ware is deployed (see Figure 2–5). These weaknesses, whether unin-
tentional or maliciously inserted, can enter the software at any point in
the development process through inadequate or incorrect require-
ments; ambiguous, incomplete, unstable, or improper architecture and
design; implementation errors; incomplete or inappropriate testing; or
insecure configuration and deployment decisions.

Contrary to a common misconception, software security cannot be the
sole responsibility of the developers who are writing code, but rather
requires the involvement of the entire development team and the orga-
nization supporting it. Luckily, a wide variety of security-focused
practices are available to software project managers and their develop-
ment teams that can be seamlessly integrated throughout any typical
software engineering SDLC. Among other things, these practices
include security requirements engineering with misuse/abuse cases,
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architectural risk analysis, secure code review, risk-based security test-
ing, and software penetration testing. These practices of software secu-
rity, which are collectively referred to as “building security in,” are the
primary focus of this book. The chapters that follow outline software
security practices and knowledge associated with various phases of
the SDLC that are of value to development teams looking to minimize
weaknesses and thereby build more secure software that is resistant,
tolerant, and resilient to attack.

Figure 2–5: Addressing the unexpected through software security
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Attack Resistance, Attack Tolerance, and Attack Resilience

The ultimate goal of defensive software security efforts can be most
clearly seen in their ability to maintain security properties in the face
of motivated and intentional attempts to subvert them. The ability of
software to function in the face of attack can be broken down into
three primary characteristics: attack resistance, attack tolerance, and
attack resilience. 

• Attack resistance is the ability of the software to prevent the capabil-
ity of an attacker to execute an attack against it. The most critical of
the three characteristics, it is nevertheless often the most difficult to
achieve, as it involves minimizing exploitable weaknesses at all
levels of abstraction, from architecture through detailed imple-
mentation and deployment. Indeed, sometimes attack resistance is
impossible to fully achieve. 

• Attack tolerance is the ability of the software to “tolerate” the errors
and failure that result from successful attacks and, in effect, to con-
tinue to operate as if the attacks had not occurred. 

• Attack resilience is the ability of the software to isolate, contain,
and limit the damage resulting from any failures caused by
attack-triggered faults that the software was unable to resist or tol-
erate and to recover as quickly as possible from those failures.7

Attack tolerance and attack resilience are often a result of effective
architectural and design decisions rather than implementation wiz-
ardry. Software that can achieve attack resistance, attack tolerance, and
attack resilience is implicitly more capable of maintaining its core
security properties.

2.3.2 The Attacker’s Perspective8

Assuming the attacker’s perspective involves looking at the software
from the outside in. It requires thinking like attackers think, and ana-
lyzing and understanding the software the way they would to attack
it. Through better understanding of how the software is likely to be

7. See Bruce Schneier’s discussion of resilient systems in chapter 9 of his book Beyond Fear
[Schneier 2003].

8. The majority of the content provided in this section is adapted from the Attack Patterns con-
tent area on the Build Security In Web site authored by Sean Barnum and Amit Sethi of Cigital,
Inc. [BSI 02]. For deeper understanding, see the full and more detailed content available there.
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attacked, the software development team can better harden and secure
it against attack.

The Attacker’s Advantage

The primary challenge in building secure software is that it is much
easier to find vulnerabilities in software than it is to make software
secure. As an analogy, consider a bank vault. Its designers need to
ensure that it is safe against many different types of attacks, not just
the seemingly obvious ones. It must generally be safe against mechan-
ical attacks (e.g., using bulldozers), explosives, and safecracking, to
name a few, while still maintaining usability (e.g., allowing authorized
personnel to enter, having sufficient ventilation and lighting). This is
clearly not a trivial task. However, the attacker may simply need to
find one exploitable vulnerability to achieve his or her goal of entering
the vault. The attacker may try to access the vault through various
potential means, including through the main entrance by cracking the
safe combination, through the ceiling, by digging underground, by
entering through the ventilation system, by bribing an authorized
employee to open the vault, or by creating a small fire in the bank
while the vault is open to cause all employees to flee in panic. Given
these realities, it is evident that building and maintaining bank vault
security is typically much more difficult than breaking into a vault.

Building secure software has similar issues, but the problem is exacer-
bated by the virtual (rather than physical) nature of software. With
many systems, the attacker may actually possess the software (obtain-
ing a local copy to attack is often trivial) or could attack it from any-
where in the world through networks. Given attackers’ ability to
attack remotely and without physical access, vulnerabilities become
much more widely exposed to attack. Audit trails may not be suffi-
cient to catch attackers after an attack takes place, because attackers
could leverage the anonymity of an unsuspecting user’s wireless net-
work or public computers to launch attacks.

The attackers’ advantage is further strengthened by the fact that
attackers have been learning how to exploit software for several
decades, but the general software development community has not
kept up-to-date with the knowledge that attackers have gained. This
knowledge gap is also evident in the difference of perspective evident
between attackers, with their cynical deconstructive view, and devel-
opers, with their happy-go-lucky “You’re not supposed to do that”



2.3 How to Influence the Security Properties of Software 45

view. The problem continues to grow in part because of the traditional
fear that teaching how software is exploited could actually reduce the
security of software by helping the existing attackers and even poten-
tially creating new ones. In the past, the software development com-
munity hoped that obscurity would keep the number of attackers
relatively small. This assumption has been shown to be a poor one,
and some elements of the community are now beginning to look for
more effective methods of addressing this problem.

To identify and mitigate vulnerabilities in software, the development
community needs more than just good software engineering and ana-
lytical practices, a solid grasp of software security features, and a pow-
erful set of tools. All of these things are necessary but not sufficient. To
be effective, the community needs to think creatively and to have a
firm grasp of the attacker’s perspective and the approaches used to
exploit software [Hoglund 2004; Koizol 2004].

Finding a Way to Represent the Attacker’s Perspective

For software development teams to take advantage of the attacker’s
perspective in building security into software, there first must be a
mechanism for capturing and communicating this perspective from
knowledgeable experts and communicating it to teams. A powerful
resource for providing such a mechanism is the attack pattern.

Design patterns are a familiar tool used by the software development
community to help solve recurring problems encountered during soft-
ware development [Alexander 1964, 1977, 1979; Gamma 1995]. These
patterns attempt to tackle head-on the thorny problems of secure, sta-
ble, and effective software architecture and design. Since the introduc-
tion of design patterns, the pattern construct has been applied to many
other areas of software development. One of these areas is software
security and representation of the attacker’s perspective in the form of
attack patterns. The term attack patterns was coined in discussions
among software security experts starting around 2001, was introduced
in the paper Attack Modeling for Information Security and Survivability
[Moore 2001], and was brought to the broader industry in greater
detail and with a solid set of specific examples by Greg Hoglund and
Gary McGraw in their book Exploiting Software: How to Break Code
[Hoglund 2004]. 

Attack patterns apply the problem–solution paradigm of design pat-
terns in a destructive—rather than constructive—context. Here, the
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common problem targeted by the pattern represents the objective of
the software attacker, and the pattern’s solution represents common
methods for performing the attack. In short, attack patterns describe
the techniques that attackers might use to break software.

The incentive behind using attack patterns is that they give software
developers a structured representation of how attackers think, which
enables them to anticipate attacks and hence take more effective steps
to mitigate the likelihood or impact of attacks. Attack patterns help to
categorize attacks in a meaningful way so that problems and solutions
can be discussed effectively. They can identify the types of known
attacks to which an application could be exposed so that mitigations
can be built into the application. Another benefit of attack patterns is
that they contain sufficient detail about how attacks are carried out to
enable developers to help prevent them. Owing to the omission of
information about software security in many curricula and the tradi-
tional shroud of secrecy surrounding exploits, software developers are
often ill informed about the field of software security and especially
software exploit. The concept of attack patterns can be used to teach
the software development community both how software is exploited
in reality and how to avoid such attacks.

Since the publication of Exploiting Software, several individuals and
groups in the industry have tried to push the concept of attack pat-
terns forward, with varying levels of success. These efforts have faced
challenges such as the lack of a common definition and schema for
attack patterns, a lack of diversity in the targeted areas of analysis by
the various groups involved, and a lack of any independent body to
act as the collector and disseminator of common attack pattern cata-
logues. The two most significant advances in this regard have been the
recent publication of the detailed attack pattern articles on the Build
Security In Web site sponsored by the U.S. Department of Homeland
Security (DHS) and the initial launch of the ongoing DHS-sponsored
Common Attack Pattern Enumeration and Classification (CAPEC)
[CAPEC 2007] initiative content. Content released as part of the initial
launch of CAPEC includes a formal attack pattern schema, a draft
attack classification taxonomy, and 101 actual detailed attack patterns.
All of this content is freely available to the public to use for software
security engineering.
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What Does an Attack Pattern Look Like?

An attack pattern at a minimum should fully describe what the attack
looks like, what sort of skill or resources are required to successfully exe-
cute it, and in which contexts it is applicable and should provide enough
information to enable defenders to effectively prevent or mitigate it.

We propose that a simple attack pattern should typically include the
information shown in Table 2–1.

MITRE Security Initiatives

In addition to the Common Attack Pattern Enumeration and
Classification (CAPEC), the Making Security Measurable pro-
gram sponsored by the Department of Homeland Security and
led by MITRE Corporation produces Common Vulnerabilities and
Exposures (CVE), a dictionary of publicly known information
security vulnerabilities and exposures, and Common Weakness
Enumeration (CWE), a dictionary of software weakness types.
Links to all three can be found on MITRE’s Making Security Mea-
surable site, along with links to other information security enu-
merations, languages, and repositories.

http://measurablesecurity.mitre.org/

Table 2–1: Attack Pattern Components 

Pattern name and 
classification

A unique, descriptive identifier for the pattern.

Attack prerequisites Which conditions must exist or which function-
ality and which characteristics must the target 
software have, or which behavior must it 
exhibit, for this attack to succeed?

Description A description of the attack, including the chain 
of actions taken.

Continues

http://measurablesecurity.mitre.org/
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Related
vulnerabilities or 
weaknesses

Which specific vulnerabilities or weaknesses 
does this attack leverage? Specific vulnerabilities 
should reference industry-standard identifiers 
such as Common Vulnerabilities and Exposures 
(CVE) number [CVE 2007] or US-CERTa number. 
Specific weaknesses (underlying issues that may 
cause vulnerabilities) should reference industry-
standard identifiers such as the Common Weak-
ness Enumeration (CWE) [CWE 2007].

Method of attack What is the vector of attack used (e.g., malicious 
data entry, maliciously crafted file, protocol cor-
ruption)?

Attack motivation—
consequences

What is the attacker trying to achieve by using 
this attack? This is not the end business/mission 
goal of the attack within the target context, but 
rather the specific technical result desired that 
could be used to achieve the end business/mis-
sion objective. This information is useful for 
aligning attack patterns to threat models and for 
determining which attack patterns from the 
broader set available are relevant for a given 
context.

Attacker skill or 
knowledge
required

What level of skill or specific knowledge must 
the attacker have to execute such an attack? This 
should be communicated on a rough scale (e.g., 
low, moderate, high) as well as in contextual 
detail of which type of skills or knowledge are 
required.

Resources required Which resources (e.g., CPU cycles, IP addresses, 
tools, time) are required to execute the attack?

Solutions and 
mitigations

Which actions or approaches are recommended 
to mitigate this attack, either through resistance 
or through resiliency?

Table 2–1: Attack Pattern Components (Continued)
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A simplified example of an attack pattern written to this basic schema
is provided in Table 2–2. The idea for this pattern came from Hoglund
and McGraw’s book Exploiting Software, and a more detailed version is
now available as CAPEC attack pattern #22.9

Context description In which technical contexts (e.g., platform, oper-
ating system, language, architectural paradigm) 
is this pattern relevant? This information is use-
ful for selecting a set of attack patterns that are 
appropriate for a given context.

References What other sources of information are available 
to describe this attack?

a. http://www.us-cert.gov

9. http://capec.mitre.org/data/definitions/22.html

Table 2–2: Example Attack Pattern 

Pattern name and 
classification

Make the Client Invisible

Attack prerequisites The application must have a multitiered archi-
tecture with a division between the client and 
the server.

Description This attack pattern exploits client-side trust 
issues that are apparent in the software architec-
ture. The attacker removes the client from the 
communication loop by communicating directly 
with the server. This could be done by bypassing 
the client or by creating a malicious imperson-
ation of the client.

Continues

Table 2–1: Attack Pattern Components (Continued)

http://www.us-cert.gov
http://capec.mitre.org/data/definitions/22.html
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Related
vulnerabilities or 
weaknesses

Man-in-the-Middle (MITM) (CWE #300), Ori-
gin Validation Error (CWE #346), Authentica-
tion Bypass by Spoofing (CWE #290), No 
Authentication for Critical Function (CWE 
#306), Reflection Attack in an Authentication 
Protocol (CWE #301).

Method of attack Direct protocol communication with the server.

Attack motivation—
consequences

Potentially information leak, data modification, 
arbitrary code execution, and so on. These can 
all be achieved by bypassing authentication and 
filtering accomplished with this attack pattern.

Attacker skill or 
knowledge
required

Finding and initially executing this attack 
requires a moderate skill level and knowledge of 
the client/server communications protocol. 
Once the vulnerability is found, the attack can 
be easily automated for execution by far less 
skilled attackers. Skill levels for follow-on 
attacks can vary widely depending on the 
nature of the attack.

Resources required None, although protocol analysis tools and cli-
ent impersonation tools such as netcat can 
greatly increase the ease and effectiveness of the 
attack.

Solutions and 
mitigations

Increase attack resistance: Use strong two-way 
authentication for all communication between 
the client and the server. This option could have 
significant performance implications.
Increase attack resilience: Minimize the amount 
of logic and filtering present on the client; place 
it on the server instead. Use white lists on the 
server to filter and validate client input.

Table 2–2: Example Attack Pattern (Continued)
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Note that an attack pattern is not overly generic or theoretical. The fol-
lowing is not an attack pattern: “Writing outside array boundaries in
an application can allow an attacker to execute arbitrary code on the
computer running the target software.” This statement does not iden-
tify which type of functionality and specific weakness is targeted or
how malicious input is provided to the application. Without that infor-
mation, the statement is not particularly useful and cannot be consid-
ered an attack pattern.

An attack pattern is also not an overly specific attack that applies only
to a particular application, such as “When the PATH environment
variable is set to a string of length greater than 128, the application foo
executes the code at the memory location pointed to by characters 132,
133, 134, and 135 in the environment variable.” This amount of speci-
ficity is of limited benefit to the software development community
because it does not help its members discover and fix vulnerabilities in
other applications or even fix other similar vulnerabilities in the same
application.

Although not broadly required or typical, it can be valuable to adorn
attack patterns where possible and appropriate with other useful ref-
erence information such as that listed in Table 2–3.

Context description “Any raw data that exist outside the server soft-
ware cannot and should not be trusted. Client-
side security is an oxymoron. Simply put, all cli-
ents will be hacked. Of course, the real problem 
is one of client-side trust. Accepting anything 
blindly from the client and trusting it through 
and through is a bad idea, and yet this is often 
the case in server-side design.”

References Exploiting Software: How to Break Code, p. 150.

Table 2–2: Example Attack Pattern (Continued)
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Table 2–3: Optional Attack Pattern Components 

Examples—
instances

Explanatory examples or demonstrative exploit 
instances of this type of attack. They are 
intended to help the reader understand the 
nature, context, and variability of the attack in 
more practical and concrete terms.

Source exploits From which specific exploits (e.g., malware, 
cracks) was this pattern derived, and which 
shows an example?

Related attack 
patterns

Which other attack patterns affect or are affected 
by this pattern?

Relevant design 
patterns

Which specific design patterns are recom-
mended as providing resistance or resilience 
against this attack, or which design patterns are 
not recommended because they are particularly 
susceptible to this attack?

Relevant security 
patterns

Which specific security patterns are recom-
mended as providing resistance or resilience 
against this attack?

Related guidelines 
or rules

Which existing security guidelines or secure 
coding rules are relevant to identifying or miti-
gating this attack?

Relevant security 
requirements

Have specific security requirements relevant to 
this attack been identified that offer opportuni-
ties for reuse?

Probing techniques Which techniques are typically used to probe 
and reconnoiter a potential target to determine 
vulnerability and/or to prepare for an attack?

Indicators—
warnings of attack

Which activities, events, conditions, or behaviors 
could serve as indicators that an attack of this type 
is imminent, is in progress, or has occurred?

Obfuscation tech-
niques

Which techniques are typically used to disguise 
the fact that an attack of this type is imminent, is 
in progress, or has occurred?
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Leveraging Attack Patterns in All Phases of the Software Development 
Life Cycle

Unlike many of the defensive touchpoint activities and knowledge
with a narrowly focused area of impact within the SDLC, attack pat-
terns as a resource provide potential value to the development team
during all phases of software development regardless of the SDLC
chosen, including requirements, architecture, design, coding, testing,
and even deploying the system. 

Leveraging Attack Patterns in Positive and Negative Security Requirements

Security-focused requirements are typically split between positive
requirements, which specify functional behaviors the software must
exhibit (often security features), and negative requirements (typically
in the form of misuse/abuse cases), which describe behaviors that the
software must not exhibit if it is to operate securely. 

Injection vector What is the mechanism and format for this 
input-driven attack? Injection vectors must take 
into account the grammar of an attack, the syn-
tax accepted by the system, the position of vari-
ous fields, and the acceptable ranges of data.

Payload What is the code, configuration, or other data to 
be executed or otherwise activated as part of this 
injection-based attack?

Activation zone What is the area within the target software that 
is capable of executing or otherwise activating 
the payload of this injection-based attack? The 
activation zone is where the intent of the 
attacker is put into action. It may be a command 
interpreter, some active machine code in a 
buffer, a client browser, a system API call, or 
other element.

Payload activation 
impact

What is the typical impact of the attack payload 
activation for this injection-based attack on the 
confidentiality, integrity, or availability of the 
target software?

Table 2–3: Optional Attack Pattern Components (Continued)
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Attack patterns can be an invaluable resource for helping to identify
both positive and negative security requirements. They have obvious
direct benefit in defining the software’s expected reaction to the
attacks they describe. When put into the context of the other func-
tional requirements for the software and when considering the under-
lying weaknesses targeted by the attack, they can help identify both
negative requirements describing potential undesired behaviors and
positive functional requirements for avoiding—or at least mitigat-
ing—the potential attack. For instance, if a customer provides the
requirement “The application must accept ASCII characters,” then the
attack pattern “Using Unicode Encoding to Bypass Validation Logic”
(CAPEC #71)10 can be used to ask the question, “What should the
application do if Unicode characters or another unacceptable, non-
ASCII character set is encountered?” From this question, misuse/
abuse cases can be defined, such as “Malicious user provides Unicode
characters to the data entry field.” By having a specific definition for
this negative requirement, the designers, implementers, and testers
will have a clear idea of the type of hostile environment with which
the software must deal and will build the software accordingly. This
information can also help define positive requirements, such as “The
system shall translate all input into the ASCII character set before pro-
cessing that input.” If these sorts of requirements are overlooked, the
developed application may unknowingly accept Unicode characters
in some instances, and an attacker could use that fact to bypass input
filters for ASCII characters.

Many vulnerabilities result from vague specifications and require-
ments. In general, attack patterns allow the requirements engineer to
ask “what if” questions in a structured and bounded way to make the
requirements more specific. If an attack pattern states “Condition X
can be leveraged by an attacker to cause Y,” then a valid question may
be “What should the application do if it encounters condition X?” Of
course, one of the great challenges with any “what if” session is know-
ing when to stop. There is no hard-and-fast answer to this question, as
it is very dependent on context. Using attack patterns, however, can
help minimize this risk by offering a method to ask the appropriate
“what if” questions within a defined rather than boundless scope.

Software security requirements as an element of software security
engineering are discussed further in Chapter 3.

10. http://capec.mitre.org/data/definitions/71.html

http://capec.mitre.org/data/definitions/71.html
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Leveraging Attack Patterns in Architecture and Design

Once requirements have been defined, all software must go through
some level of architecture and design. Regardless of the formality of
the process followed, the results of this activity will form the founda-
tion for the software and drive all remaining development activities.
During architecture and design, decisions must be made about how
the software will be structured, how the various components will be
integrated and interact, which technologies will be used, and how the
requirements defining how the software will function will be inter-
preted. Careful consideration is necessary during this activity, given
that as much as 50 percent of software defects leading to security prob-
lems are design flaws [McGraw 2006]. In the example depicted in
Figure 2–6, a potential architecture could consist of a three-tier system
with the client (a Web browser leveraging JavaScript/HTML), a Web
server (leveraging Java servlets), and a database server (leveraging
Oracle 10i). Decisions made at this level can have significant implica-
tions for the overall security profile of the software.

Figure 2–6: Example architecture
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Attack patterns can be valuable during planning of the software’s
architecture and design in two ways. First, some attack patterns
describe attacks that directly exploit architecture and design flaws in
software. For instance, the Make the Client Invisible attack pattern
(briefly described earlier in this chapter) exploits client-side trust
issues that are apparent in the software architecture. Second, attack
patterns at all levels can provide a useful context for the threats that
the software is likely to face and thereby determine which architec-
tural and design features to avoid or to specifically incorporate. The
Make the Client Invisible attack pattern, for example, tells us that
absolutely nothing sent back by the client can be trusted, regardless
of which network security mechanisms (e.g., SSL) are used. The cli-
ent is untrusted, and an attacker can send back literally any informa-
tion that he or she desires. All input validation, authorization checks,
and other security assessments must be performed on the server
side. In addition, any data sent to the client should be considered vis-
ible by the client regardless of its intended presentation (that is, data
that the client should not see should never be sent to the client). Per-
forming authorization checks on the client side to determine which
data to display is unacceptable.

The Make the Client Invisible attack pattern instructs the architects
and designers that they must ensure that absolutely no security-critical
business logic is performed on the client side. In fact, depending on
the system requirements and the threats and risks faced by the system,
the architects and designers may even want to define an input valida-
tor through which all input to the server must pass before being sent
to the other classes. Such decisions must be made at the architecture
and design phase, and attack patterns provide some guidance regard-
ing what issues should be considered.

It is essential to document any attack patterns used in the architecture
and design phase so that the application can be tested using those
attack patterns. Tests must be created to validate that mitigations for
the attack patterns considered during this phase were implemented
properly.

Software architecture and design as an element of software security
engineering is discussed further in Chapter 4.
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Leveraging Attack Patterns in Implementation and Coding

If the architecture and design have been performed properly, each
developer implementing the design should be writing well-defined
components with well-defined interfaces.

Attack patterns can be useful during implementation because they
enumerate the specific weaknesses targeted by relevant attacks and
allow developers to ensure that these weaknesses do not occur in their
code. These weaknesses could take the form of implementation bugs
or simply valid coding constructs that can have security implications if
used improperly. Unfortunately, implementation bugs are not always
easy to avoid or to catch and fix. Even after applying basic review
techniques, they can still remain abundant and can make software vul-
nerable to extremely dangerous exploits. It is important to extend
basic review techniques by including more focused security-relevant
concerns. Failure to properly check an array bound, for example,
might permit an attacker to execute arbitrary code on the target host,
whereas failure to perform proper input validation might enable an
attacker to destroy an entire database. 

Underlying security issues in non-buggy valid code are typically more
difficult to identify. They cannot be identified with simple black-box
scanning or testing, but instead require specialized knowledge of what
these weaknesses look like. Here, we focus on how attack patterns can
be used to identify specific weaknesses for targeting and mitigation
through informing the developer ahead of time about those issues to
avoid and through providing a list of issues (security coding rules)
to look for in code reviews; the latter step can often be automated
through the use of security scanning tools. It is important to determine
precisely which attack patterns are applicable for a particular project.
In some instances, different attack patterns may be applicable for dif-
ferent components of a product.

Good architecture and design, as well as developer awareness,
enhanced with attack patterns can help to minimize security weak-
nesses. Nevertheless, it is also essential to ensure that all source code,
once written, is reviewed with processes that have been shown to be
capable of detecting the targeted weaknesses. Given the sometimes
daunting size and sheer monotony of this task, it is typically performed
using an automated analysis tool (e.g., those from Fortify, Ounce Labs,
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Klocwork, or Coverity). Even though analysis tools cannot find all secu-
rity weaknesses, they can help weed out many potential issues. Using
attack patterns as guidance, specific subsets of the tools’ search rules can
be selected and custom rules can be created for organizations to help
find specific security weaknesses or instances of failure to follow secu-
rity standards. For example, to deal with the Simple Script Injection
(CAPEC #63)11 attack pattern, an organization may establish a security
standard in which all untrusted input is passed through an input filter
and all output of data obtained from an untrusted source is passed
through an encoder. An organization can develop a variety of such fil-
ters and encoders, and static source code analysis tools can help find
occurrences in code where developers may have neglected to adhere to
standards and opted to use Java’s input/output features directly.

Software implementation and coding as an element of software secu-
rity engineering is discussed further in Chapter 5.

Leveraging Attack Patterns in Software Security Testing

The testing phase differs from the previous phases in the SDLC in that
its goal is not necessarily constructive; the goal of risk-based security
testing is typically to break software so that the discovered issues can
be fixed before an attacker can find them [Whittaker 2003]. The pur-
pose of using attack patterns in this phase is to have the individuals
performing the various levels and types of testing act as attackers
attempting to break the software. In unit testing, applicable attack pat-
terns should be used to identify relevant targeted weaknesses and to
generate test cases for each component, thereby ensuring that each
component avoids or at least resists these weaknesses. For example, to
test for shell command injection using command delimiters, malicious
input strings containing delimiter-separated shell commands should
be crafted and input to the applicable component(s) to confirm that the
software demonstrates the proper behavior when provided with this
type of malicious data. In integration testing, a primary security issue
to consider is whether the individual components make differing
assumptions that affect security, such that the integrated whole may
contain conflicts or ambiguities. Attack patterns documented in the
architecture and design phase should be used to create integration
tests exploring such ambiguities and conflicts. 

In system testing, the entire system is exercised and probed to ensure
that it meets all of its functional and nonfunctional requirements. If

11. http://capec.mitre.org/data/definitions/63.html

http://capec.mitre.org/data/definitions/63.html
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attack patterns were used in the requirements-gathering phase to gen-
erate security requirements, system testing will have a solid foundation
for identifying test cases that validate secure behavior. These security
requirements should be tested during system testing. For example, the
Using Unicode Encoding to Bypass Validation attack pattern can be
used to generate test cases that ensure that the application behaves
properly when provided with unexpected characters as input. Testers
should input characters that the application is not supposed to accept
to see how the application behaves under these conditions. The appli-
cation’s actual behavior when under attack should be compared with
the desired behavior defined in the security requirements.

Even if security is considered throughout the SDLC when building
software, and even if extensive testing is performed, vulnerabilities
will likely still exist in the software after deployment, simply because
no useful software is 100 percent secure [Viega 2001]. Software can be
designed and developed to be extremely secure, but if it is deployed
and operated in an insecure fashion, many vulnerabilities can be intro-
duced. For example, a piece of software might provide strong encryp-
tion and proper authentication before allowing access to encrypted
data, but if an attacker can obtain valid authentication credentials, he
or she can subvert the software’s security. Nothing is 100 percent
secure, which means that the environment must always be secured
and monitored to thwart attacks.

Given these caveats, it is extremely important to perform security test-
ing of the software in its actual operational environment. Vulnerabili-
ties present in software can sometimes be masked by environmental
protections such as network firewalls and application firewalls, and
environmental conditions can sometimes create new vulnerabilities.
Such issues can often be discovered using a mix of white-box and
black-box analysis of the deployed environment. White-box analysis
of deployed software involves performing security analysis of the soft-
ware, including its deployed environment, with knowledge of the
architecture, design, and implementation of the software. Black-box
analysis (typically in the form of penetration testing) involves treating
the deployed software as a “black box” and attempting to attack it
without any knowledge of its inner workings. Black-box testing is
good for finding the specific implementation issues you know to look
for, whereas detailed and structured white-box testing can uncover
unexpected architecture and design and implementation issues that
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you may not have known to look for. Both types of testing are impor-
tant, and attack patterns can be leveraged for both.

Black box testing of Web applications is generally performed using
tools such as application security testers like those from companies
such as Watchfire that automatically run predefined tests. Attack pat-
terns can be used as models to create the tests (simulated attacks) these
tools perform, thereby giving them more significant relevance and
effectiveness. These tools typically test for a large variety of attacks,
but they generally cannot find subtle architectural vulnerabilities.
Although they may effectively identify vulnerabilities that script kid-
dies and other relatively unskilled attackers would likely exploit, a
skilled attacker would be able to find many issues that a vulnerability
scanning tool simply could not detect. For instance, a lack of encryp-
tion for transmitting Social Security numbers would not be detected
using an automated tool because the fact that Social Security numbers
are unencrypted is not a purely technical flaw. The black-box testing
tool cannot determine which information is a Social Security number
and cannot apply business logic. Attack patterns that are useful for
creating black-box tests include those that can be executed remotely
without requiring many steps. 

White-box testing is typically more thorough than black-box testing. It
involves extensive analysis performed by security experts who have
access to the software’s requirements, architecture, design, and code.
Because of the deeper understanding of the code involved, white-box
security testing is often capable of finding more obscure implementa-
tion bugs that are not uncovered in black-box testing and, occasionally,
some architecture and design flaws. Attack patterns can be leveraged
to determine areas posing system risks, which can then be scrutinized
by the system white-box analysis. Attack patterns that are effective
guides for white-box analysis include those that focus on architecture
and design weaknesses or implementation weaknesses. For example,
an attack pattern that could be used in white-box testing of a deployed
system is sniffing sensitive data on an insecure channel. Those with
knowledge of data sensitivity classifications and an understanding of
the business context around various types of data can determine
whether some information that should always be communicated over
an encrypted channel is actually being sent over an insecure channel.
Such issues are often specific to a deployed environment; thus, analy-
sis of the actual deployed software is required.
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Software testing as an element of software security engineering is dis-
cussed further in Chapter 5.

2.4 How to Assert and Specify Desired 
Security Properties12

Identifying and describing the properties that determine the security
profile of software gave us the common language and objectives for
building secure software. Outlining mechanisms for how these prop-
erties can be influenced gave us the ability to take action and effect
positive change in regard to the security assurance of the software we
build. Taken in combination, these achievements lay a foundation for
understanding what makes software secure. Unfortunately, without a
mechanism for clearly communicating the desired or attained security
assurance of software in terms of these properties and activities, this
understanding is incomplete. What is needed is a mechanism for
asserting and specifying desired security properties and using them as
a basis for planning, communicating, and assuring compliance. These
assertions and specifications are typically captured and managed in an
artifact known as an assurance case.

Elsewhere in this book and on the BSI Web site, you can learn about
best practices, tools, and techniques that can help in building security
into software. Nevertheless, the mere existence or claimed use of one
or more of these best practices, tools, or techniques does not constitute
an adequate assurance case. For example, in support of an overarching
security claim (e.g., that a system is acceptably secure), security assur-
ance cases must provide evidence that particular best practices, tools,
and techniques were properly applied and must indicate by whom
they were applied and how extensive their coverage is. Moreover,
unlike many product certifications that quickly grow stale because
they are merely snapshots in time of an infrequently applied certifica-
tion process, a security assurance case should provide evidence that
the practices, tools, or techniques being used to improve security were
actually applied to the currently released version of the software (or

12. The majority of the content provided in this section is adapted from the Assurance Cases con-
tent area of the Build Security In Web site authored by Howard Lipson, John Goodenough, and
Chuck Weinstock of the Software Engineering Institute [BSI 03]. 

L2L LM
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that the results were invariant to any of the code changes that subse-
quently occurred).

2.4.1 Building a Security Assurance Case

A security assurance case uses a structured set of arguments and a cor-
responding body of evidence to demonstrate that a system satisfies
specific claims with respect to its security properties. This case should
be amenable to review by a wide variety of stakeholders. Although
tool support is available for development of these cases, the creation
and documentation of a security assurance case can be a demanding
and time-consuming process. Even so, similarities may exist among
security cases in the structure and other characteristics of the claims,
arguments, and evidence used to construct them. A catalog of patterns
(templates) for security assurance cases can facilitate the process of
creating and documenting an individual case. Moreover, assurance
case patterns offer the benefits of reuse and repeatability of process, as
well as providing some notion of coverage or completeness of the evi-
dence.

A security assurance case13 is similar to a legal case, in that it presents
arguments showing how a top-level claim (e.g., “The system is accept-
ably secure”) is supported by objective evidence. Unlike a typical
product certification, however, a security case considers people and
processes as well as technology. A case is developed by showing how
the top-level claim is supported by subclaims. For example, part of a
security assurance case would typically address various sources of
security vulnerabilities. The case would probably claim that a system
has none of the common coding defects that lead to security vulnera-
bilities, including, for example, buffer overflow vulnerabilities.14 A
subclaim about the absence of buffer overflow vulnerabilities could be
supported by showing that (1) developers received training on how to
write code that minimizes the possibility of buffer overflow vulnera-
bilities; (2) experienced developers reviewed the code to see if any

13.  Assurance cases were originally used to show that systems satisfied their safety-critical
properties. In this usage, they were (and are) called safety cases. The notation and approach used
in this chapter has been used for more than a decade in Europe to document why a system is suf-
ficiently safe [Kelly 2004]. The application of the concept to reliability was documented in an SAE
Standard [SAE 2004]. In this chapter, we extend the concept to cover system security claims.

14. Further information about the common coding defects that lead to security vulnerabilities
can be found on the BSI Web site [BSI 04, 05, 06, 07] and in the computer security literature [Voas
1997; Viega 2001; Howard 2005; Howard 2006; Lipner 2005; McGraw 2006; Seacord 2005].
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buffer overflow possibilities existed and found none; (3) a static analy-
sis tool scanned the code and found no problems; and (4) the system
and its components were tested with invalid arguments and all such
inputs were rejected or properly handled as exceptions.

In this example, the “evidence” would consist of developer training
credentials, the results of the code review, the output of the code scan-
ner, and the results of the invalid-input tests. The “argument” is stated
as follows: “Following best coding practice has value in preventing
buffer overflow coding defects. Each of the other methods has value in
detecting buffer overflow defects; none of them detected such defects
(or these defects were corrected15), and so the existing evidence sup-
ports the claim that there are no buffer overflow vulnerabilities.”16

Further information could show that this claim is incorrect. 

Our confidence in the argument (that is, in the soundness of the claim)
depends on how convincing we find the argument and the evidence.
Moreover, if we believe that the consequences of an invalid claim are
sufficiently serious, we might require that further evidence or other
subclaims be developed. The seriousness of a claim would depend on
the potential impact of an attack (e.g., projected economic loss, injury,
or death) related to that claim and on the significance of the threat of
such an attack. Although an in-depth discussion of the relation of
threat and impact to security cases is beyond the scope of this book, a
comprehensive security case should include—or should at least be
developed in the context of—analyses of the threats to a system and
the projected outcomes of successful attacks.

2.4.2 A Security Assurance Case Example

The structure for a partially developed security assurance case focus-
ing on buffer overflow coding defects appears in Figure 2–7. This case

15. The proper response to the detection of developer errors is not simply to correct the code but
also to keep a record of the defects found and to use that information to improve the process that
created the defect. For example, based on the nature of the defects detected, the training of devel-
opers in best coding practices might need to be improved. One might also search other products
for similar defects and remind (or retrain) developers regarding these defects.

16. Of course, despite our best efforts, this claim might be invalid; the degree of confidence that
we have in the argument supporting any given claim is an assertion about the case itself rather
than an assertion about what is claimed. That is, when we say a system is “acceptably” secure or
that it meets its security requirements, we provide an argument and evidence in support of these
claims. The extent to which the case is convincing (or valid) is determined when the case is
reviewed.
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Continues

Security
The system is
acceptably secure 

Buffer Overflow
There are no buffer 
overflow possibilities 
in the code

Coding Defects
There are no 
implementation errors 
that create security 
vulnerabilities

Coding Defects
Argue over the various 
classes of coding 
defects that may 
introduce security 
vulnerabilities

Requirements
Deficiencies
There are no missing 
or existing requirements 
that create security 
vulnerabilities

Design Deficiencies
There are no errors of 
design that create 
security vulnerabilities

Race Conditions
There are no race 
conditions in the 
system code

Improper Error 
Handling
Errors are handled 
properly by the 
system code

Other Defects
All other common 
security-related 
coding defects have 
been addressed

Acceptably Secure
Acceptably secure for 
this system is defined in 
requirements document R

Operational
Deficiencies
Operational 
procedures guard 
against security 
vulnerabilities

SDLC
Address the security 
deficiencies that can be 
introduced in the different 
stages of the software 
development life cycle

Programmers Trained
Programmers have been trained 
in best coding practices that 
help to ensure that security 
vulnerabilities are not 
introduced into code

Prevention and Detection
Argue considering competency 
of the workforce and types of 
defects in the system’s code 

Coding Practices
Description of best 
coding practices 
addressed in the 
training



2.4 How to Assert and Specify Desired Security Properties 65

is presented in a graphical notation called Goal Structuring Notation
(GSN) [Kelly 2004].

The case starts with a claim (in the shape of a rectangle) that “The sys-
tem is acceptably secure.” To the right, a box with two rounded sides,
labeled “Acceptably Secure,” provides context for the claim. This ele-
ment of the case provides additional information on what it means for
the system to be “acceptably” secure. For example, the referenced doc-
ument might cite Health Information Portability and Accountability

Figure 2–7: Partially expanded security assurance case that focuses on 
buffer overflow
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Test Results
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overflow tests

Test Selection Analysis
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that the selected tests are 
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of buffer overflow errors

Code Review
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show no 
potential buffer 
overflow 
conditions
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Act (HIPAA) requirements as they apply to a particular system, or it
might classify the kinds of security breaches that would lead to differ-
ent levels of loss (laying the basis for an expectation that more effort
will be spent to prevent the more significant losses).

Under the top-level claim is a parallelogram labeled “SDLC.” This ele-
ment shows the strategy to be used in developing an argument sup-
porting the top-level claim and provides helpful insight to anyone
reviewing the case. In this example, the strategy is to address potential
security vulnerabilities arising at the different stages of the SDLC—
namely, requirements, design, implementation (coding), and opera-
tion.17 One source of deficiencies is coding defects, which is the topic
of one of the four subclaims. The other subclaims cover requirements,
design, and operational deficiencies. (The diamond under a claim
indicates that further expansion is required to fully elaborate the
claim–argument–evidence substructure.) The structure of the argu-
ment implies that if these four subclaims are satisfied, the system is
acceptably secure.

The strategy for arguing that there are no coding defects involves
addressing actions taken both to prevent and to detect possible vulner-
abilities caused by coding defects.18 In Figure 2–7, only one possible
coding defect—buffer overflow—is developed. Three types of evi-
dence are developed to increase our confidence that no buffer over-
flow vulnerabilities are present, where each type of evidence is
associated with each of three subclaims. The “Code Scanned” sub-
claim asserts that static analysis of the code has demonstrated the
absence of buffer overflow defects. Below it are the subclaims that
the tool definitively reported “No Defects” and that all warnings
reported by the tool were subsequently verified as false alarms (that
is, “Warnings OK”). Below these subclaims are two pieces of evi-
dence: the tool output, which is the result of running the static analy-
sis tool, and the resolution of each warning message, showing why
each was a false alarm.

17. We omit validation and testing (as development activities) because these activities will be
included within the security case itself.

18. The strategy might also consider actions taken to mitigate possible vulnerabilities caused by
coding defects, although we don’t illustrate this step in our example. Such actions could include
the use of tools and techniques that provide runtime protection against buffer overflow exploits
[BSI 08] in the event that some buffer overflow vulnerability was neither prevented nor detected
prior to release of the code.
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This is not a complete exposition of GSN. For instance, two other sym-
bols, not shown in Figure 2–7, represent justification and assumption. As
with the context element, they are used to provide additional informa-
tion helpful in understanding the claim.

The claims in the example are primarily product focused and techni-
cal; that is, the claims address software engineering issues. An assur-
ance case may also require taking into account legal, regulatory,
economic (e.g., insurance), and other nontechnical issues [Lipson
2002]. For example, a more complete case might contain claims reflect-
ing the importance of legal or regulatory requirements relating to the
Sarbanes–Oxley Act or HIPAA. In addition, an analysis of the threat
and consequences of security breaches will determine how much
effort is put into developing certain claims or types of argument. If a
security breach can lead to a major regulatory fine, the case may
require a higher standard of evidence and argumentation than if a
breach carries little economic penalty.

2.4.3 Incorporating Assurance Cases into the SDLC

Developing a security assurance case is not a trivial matter. In any real
system, the number of claims involved and the amount of evidence
required will be significant. The effort involved is offset by an
expected decrease in effort required to find and fix security-related
problems at the back end of product development and by a reduced
level of security breaches and their attendant costs. 

Creating and evolving the security case as the system is being devel-
oped is highly recommended. Developing even the preliminary out-
lines of an assurance case as early as possible in the SDLC can improve
the development process by focusing attention on what needs to be
assured and which evidence needs to be developed at each subsequent
stage of the SDLC. Attempting to gather or generate the necessary
security case evidence once development is complete may be not just
much more costly, but simply impossible. 

For maximum utility, a security assurance case should be a document
that changes as the system it documents changes. That is, the case
should take on a different character as a project moves through its life
cycle. In the predevelopment stage, the case focuses on demonstrating
the following points:
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• The plan for a security case is appropriate for the security require-
ments of the proposed system.

• The technical proposals are appropriate for achieving the security
requirements of the proposed system.

• It will be possible to demonstrate that security has been achieved
during the project.

At development time, the following steps are taken in relation to the
security assurance case (which is derived from the predevelopment case):

• It is updated with the results of all activities that contribute to the
security evaluation (including evidence and argumentation) so
that, by the time of deployment, the case will be complete.

• It is presented at design (and other) reviews and the outcomes are
included in the case.

Using a configuration control mechanism to manage the security case
will ensure its integrity, as well as help the case remain relevant to the
project’s development status.

Security cases provide a structured framework for evaluating the
impact of changes to the system and can help ensure that the changes
do not adversely impact security. The case should continue to be
maintained after deployment of the system, especially whenever the
system is modified. Examining the current case can help determine
whether modifications will invalidate or change arguments and
claims and, if so, will help identify the appropriate parts of the case
that need to be updated. In addition, if parts of the system prove inse-
cure even in the face of a well-developed case, it is important to
understand why this particular chain of evidence–argument–claim
reasoning was insufficient.

2.4.4 Related Security Assurance and Compliance Efforts

Security-Privacy Laws and Regulations

Laws and regulations such as Sarbanes–Oxley and HIPAA mandate
specific security and privacy requirements. Security assurance cases
can be used to argue that a corporation is in compliance with a given
law or regulation. One can envision the development of security case
patterns for particular laws or regulations to assist in demonstrating
such compliance.
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Common Criteria

The Common Criteria (CC) is an internationally recognized standard for
evaluating security products and systems [CCMB 2005a, 2005b]. Protec-
tion profiles represent sets of security requirements that products can be
evaluated and certified against. The results of a CC evaluation include an
Evaluation Assurance Level (EAL), which indicates the strength of assur-
ance. Although a CC evaluation includes elements that are similar to
those found in a security case, the security case is a more general frame-
work into which the results of CC evaluations can be placed as evidence
of assurance. Anyone creating a product or system meant to satisfy a pro-
tection profile needs a way to argue that it does, in fact, match the
requirements of the profile. Unlike ad hoc approaches to arguing about
the achievement of certain security levels, the security case method pro-
vides an organizing structure and a common “language” that can be
used to make assurance arguments about satisfying the set of require-
ments in a protection profile (at a particular EAL), as well as providing a
broader framework that can be used to place CC evaluations in the con-
text of other available evidence of assurance.

The standard format of CC evaluations allows for reuse of some of the
basic elements in an assurance argument and hence may be thought of
as providing patterns of evaluation. For example, the Common Crite-
ria provides catalogs of standard Security Functional Requirements
and Security Assurance Requirements. In contrast, security case pat-
terns allow for the reuse of entire claim–argument–evidence structures
and are, therefore, patterns in a much more general sense. Unlike CC
evaluations, a security case is well suited to be maintained over time
as a system development artifact. Thus the assurance case could
evolve along with the system, always reflecting the system’s current
state and configuration.

2.4.5 Maintaining and Benefitting from Assurance Cases

Assurance cases for security provide a structured and reviewable set
of artifacts that make it possible to demonstrate to interested parties
that the system’s security requirements have been met to a reasonable
degree of certainty.19 Moreover, the creation of an assurance case can

19. We consider a “reasonable degree of certainty” to mean a “tolerable degree of uncertainty.”
What is reasonable and tolerable depends on the perceived threat, the consequences of a security
breach, and the costs of security measures, including the costs associated with creating and main-
taining a security case.
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help in the planning and conduct of development. The process of
maintaining an assurance case can help developers identify new secu-
rity issues that may arise when changes are made to the system.
Developing and maintaining security cases throughout the SDLC is an
emerging area of best practice for systems with critical security
requirements.

A key difference between arguments related to security and argu-
ments related to other quality attributes of a system is the presence of
an intelligent adversary. Intelligent adversaries do not follow predict-
able courses, but rather try to attack where you least expect. Having an
intelligent adversary implies that security threats will evolve and
adapt. As a consequence, a security case developed today may have its
assumptions unexpectedly violated, or its strength may not be ade-
quate to protect against the attack of tomorrow. This evolutionary
nature of threats suggests that security assurance cases will need to be
revisited more frequently than assurance cases for safety, reliability, or
other dependability properties.

One should not think of the creation, use, sharing, and evolution of
security cases as a method that is in competition with other security
certification or evaluation methods, tools, or techniques. Security cases
provide a general framework in which to incorporate and integrate
existing and future certification and evaluation methods into a unified
argument and evidentiary structure. The security case is particularly
valuable as a supporting framework because it allows you to make
meta-arguments about the methods, tools, and techniques being used
to establish assurance. For example, a security case might argue that a
certification method applied by a third-party certifier provides higher
assurance than the same method applied by the vendor of the product
being certified. This type of meta-argument is outside the scope of the
certification method itself.

Although further research and tool development are certainly needed,
you can take advantage of the assurance case method right now. There is
much to be gained by integrating even rudimentary security cases and
security case patterns into the development life cycle for any mission-
critical system. Even a basic security case is a far cry above the typical
ad hoc arguments and unfounded reassurances in its ability to provide
a compelling argument that a desired security property has been built
into a system from the outset and has continued to be maintained
throughout the SDLC.
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2.5 Summary

As a project manager looking for understanding and guidance on build-
ing better security into your software, it is first crucial that you under-
stand which characteristics of software make it more or less secure.

Three areas of knowledge and practice were recommended in this
chapter:

• A solid understanding of the core security properties (confidential-
ity, integrity, availability, accountability, and non-repudiation) and
of the other properties that influence them (dependability, correct-
ness, predictability, reliability, safety, size, complexity, and traceabil-
ity) provides a solid foundation for communicating software
security issues and for understanding and placing into context the
various activities, resources, and suggestions discussed in this book.

• Understanding both the defensive and attacker’s perspectives as
well as activities (touchpoints) and resources (attack patterns and
others) available to influence the security properties of software
can enable you to place the various activities, resources, and sug-
gestions described in this book into effective action and cause pos-
itive change.

• Assurance cases provide a powerful tool for planning, tracking,
asserting, assessing, and otherwise communicating the claims, argu-
ments, and evidence (in terms of security properties, perspectives,
activities, and resources) for the security assurance of software.

Understanding the core properties that make software secure, the
activities and knowledge available to influence them, and the mecha-
nisms available to assert and specify them lays the foundation for the
deeper discussion of software security practices and knowledge found
in the following chapters. As you explore each life-cycle phase or con-
cern and examine each discussed practice or knowledge resource, it
may be beneficial for you to revisit this chapter, using the content here
as a lens to understand and assess the practice or resource for value
and applicability in your own unique context.
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Chapter 3

Requirements 
Engineering for 
Secure Software

3.1 Introduction

When security requirements are considered at all during the system
life cycle, they tend to be general lists of security features such as pass-
word protection, firewalls, virus detection tools, and the like. These
are, in fact, not security requirements at all, but rather implementation
mechanisms that are intended to satisfy unstated requirements, such
as authenticated access. As a result, security requirements that are spe-
cific to the system and that provide for protection of essential services
and assets are often neglected. In addition, the attacker perspective is
not considered, with the result being that security requirements—
when they exist—are likely to be incomplete. We believe that a system-
atic approach to security requirements engineering will help avoid the
problem of generic lists of features and take into account the attacker’s
perspective. Several approaches to security requirements engineering
are described in this chapter, and references are provided to additional
material that can help you ensure that your products effectively meet
security requirements.

L4LME
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3.1.1 The Importance of Requirements Engineering

It comes as no surprise that requirements engineering is critical to
the success of any major development project. Some studies have
shown that requirements engineering defects cost 10 to 200 times as
much to correct once the system has become operational than if they
were detected during requirements development [Boehm 1988;
McConnell 2001]. Other studies have shown that reworking require-
ments, design, and code defects on most software development
projects accounts for 40 to 50 percent of the total project effort [Jones
1986a]; the percentage of defects originating during requirements
engineering is estimated at more than 50 percent. The total percent-
age of project budget due to requirements defects ranges from 25
percent to 40 percent [Wiegers 2003]. Clearly, given these costs of
poor security requirements, even a small improvement in this area
would provide a high value. By the time that an application is
installed in its operational environment, it is very difficult and
expensive to significantly improve its security.

Requirements problems are among the top causes of the following
undesirable phenomena [Charette 2005]:

• Projects are significantly over budget, go past schedule, have sig-
nificantly reduced scope, or are cancelled

• Development teams deliver poor-quality applications
• Products are not significantly used once delivered

These days we have the further problem that the environment in which
we do requirements engineering has changed, resulting in an added ele-
ment of complexity. Today’s software development takes place in a
dynamic environment that changes while projects are still in develop-
ment, with the result that requirements are constantly in a state of flux.
Such changes can be inspired by a variety of causes—conflicts between
stakeholder groups, rapidly evolving markets, the impact of tradeoff
decisions, and so on.

In addition, requirements engineering on individual projects often suf-
fers from the following problems: 

• Requirements identification typically does not include all relevant
stakeholders and does not use the most modern or efficient tech-
niques.
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• Requirements are often statements describing architectural con-
straints or implementation mechanisms rather than statements
describing what the system must do.

• Requirements are often directly specified without any analysis or
modeling. When analysis is done, it is usually restricted to functional
end-user requirements, ignoring (1) quality requirements such as
security, (2) other functional and nonfunctional requirements,
and (3) architecture, design, implementation, and testing constraints.

• Requirements specification is typically haphazard, with speci-
fied requirements being ambiguous, incomplete (e.g., nonfunc-
tional requirements are often missing), inconsistent, not cohesive,
infeasible, obsolete, neither testable nor capable of being validated,
and not usable by all of their intended audiences.

• Requirements management is typically weak, with ineffective
forms of data capture (e.g., in one or more documents rather than
in a database or tool) and missing attributes. It is often limited to
tracing, scheduling, and prioritization, without change tracking or
other configuration management. Alternatively, it may be limited
to the capabilities provided by a specific tool, with little opportu-
nity for improvement.

3.1.2 Quality Requirements

Even when organizations recognize the importance of functional end-
user requirements, they often neglect quality requirements, such as
performance, safety, security, reliability, and maintainability. Some
quality requirements are nonfunctional requirements, but others
describe system functionality, even though it may not contribute
directly to end-user requirements. 

As you might expect, developers of certain kinds of mission-critical
systems and systems in which human life is involved, such as the
space shuttle, have long recognized the importance of quality require-
ments and have accounted for them in software development. In
many other systems, however, quality requirements are ignored alto-
gether or treated in an inadequate way. Hence we see the failure of
software associated with power systems, telephone systems,
unmanned spacecraft, and so on. If quality requirements are not
attended to in these types of systems, it is far less likely that they will
be focused on in ordinary business systems. 
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This inattention to quality requirements is exacerbated by the desire to
keep costs down and meet aggressive schedules. As a consequence,
software development contracts often do not contain specific quality
requirements, but rather offer up some vague generalities about qual-
ity, if they touch on this topic at all. 

3.1.3 Security Requirements Engineering

If security requirements are not effectively defined, the resulting sys-
tem cannot be evaluated for success or failure prior to its implementa-
tion [BSI 09]. When security requirements are considered, they are
often developed independently of other requirements engineering
activities. As a result, specific security requirements are often
neglected, and functional requirements are specified in blissful igno-
rance of security aspects.

In reviewing requirements documents, we typically find that security
requirements—when they exist—are in a section by themselves and
have been copied from a generic list of security features. The require-
ments elicitation and analysis that are needed to produce a better set of
security requirements seldom take place.

As noted previously, operational environments and business goals
often change dynamically, with the result that security requirements
development is not a one-time activity. Therefore the activities that we
describe in this chapter should be planned as iterative activities, tak-
ing place as change occurs. Although we describe them as one-time
activities for the sake of exposition, you can expect mini-life cycles to
occur over the course of a project. 

Much requirements engineering research and practice addresses the
capabilities that the system will provide. As a consequence, a lot of
attention is paid to the functionality of the system from the user’s per-
spective, but little attention is devoted to what the system should not do
[Bishop 2002]. Users have implicit assumptions for the software applica-
tions and systems that they use. They expect those products to be secure
and are surprised when they are not. These user assumptions need to be
translated into security requirements for the software systems when
they are under development. Often the implicit assumptions of users
are overlooked, and features are focused on instead.

Another important perspective is that of the attacker. An attacker is
not particularly interested in functional features of the system, unless
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they provide an avenue for attack. Instead, the attacker typically
looks for defects and other conditions outside the norm that will
allow a successful intrusion to take place. For this reason, it is
important for requirements engineers to think about the attacker’s
perspective and not just the functionality of the system from the
end-user’s perspective. The discussion of attack patterns in
Chapter 2 provides a good place to start this analysis. Other tech-
niques that can be used in defining the attacker’s perspective are
misuse and abuse cases [McGraw 2006], attack trees [Ellison 2003;
Schneier 2000], and threat modeling [Howard 2002]. Some of these
methodologies are discussed in later sections of this chapter.

For many projects, security requirements are stated as negative
requirements. As a result, general security requirements, such as “The
system shall not allow successful attacks,” are usually not feasible, as
there is no consensus on ways to validate them other than to apply for-
mal methods to the entire system. We can, however, identify the essen-
tial services and assets that must be protected. Operational usage
scenarios can be extremely helpful aids to understanding which ser-
vices and assets are essential. By providing threads that trace through
the system, such scenarios also help to highlight security requirements
as well as other quality requirements such as safety and performance
[Reifer 2003]. Once the essential services and assets are understood,
we become able to validate that mechanisms such as access control,
levels of security, backups, replication, and policy are implemented
and enforced. We can also validate that the system properly handles
specific threats identified by a threat model and correctly responds to
intrusion scenarios.

As usable approaches to security requirements engineering continue
to emerge and new mechanisms are identified to promote organiza-
tional use, project managers can do a better job of ensuring that the
resulting product effectively meets security requirements. The follow-
ing techniques are known to be useful in this regard:

• Comprehensive, Lightweight Application Security Process (CLASP)
approach to security requirements engineering. CLASP is a life-
cycle process that suggests a number of different activities across the
development life cycle in an attempt to improve security. Among
these is a specific approach for security requirements [BSI 12].

• Security Quality Requirements Engineering (SQUARE). This pro-
cess is aimed specifically at security requirements engineering.
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• Core security requirements artifacts [Moffett 2004]. This approach
takes an artifact view and starts with the artifacts that are needed to
achieve better security requirements. It provides a framework that
includes both traditional requirements engineering approaches to
functional requirements and an approach to security requirements
engineering that focuses on assets and harm to those assets.

Other useful techniques include formal specification approaches to
security requirements, such as Software Cost Reduction (SCR) [Heitm-
eyer 2002], and the higher levels of the Common Criteria [CCMB
2005a]. As an additional reference, the SOAR report Software Security
Assurance [Goertzel 2007] contains a good discussion of SDLC pro-
cesses and various approaches to security requirements engineering.

In this chapter we discuss several approaches to development of secu-
rity requirements, including the use of misuse and abuse cases, security
quality requirements engineering, security requirements elicitation, and
security requirements prioritization. While the processes we discuss are
similar to those used for requirements engineering in general, we have
found that when we delve into the detailed steps of how to do security
requirements engineering, certain techniques are particularly useful,
and we highlight these where they occur. 

3.2 Misuse and Abuse Cases1

To create secure and reliable software, we first must anticipate abnor-
mal behavior. We don’t normally describe non-normative behavior in
use cases, nor do we describe it with UML, but we must have some
way to talk about and prepare for it. Misuse (or abuse) cases can help
you begin to see your software in the same light that attackers do. By
thinking beyond normative features while simultaneously contem-
plating negative or unexpected events, you can better understand how
to create secure and reliable software.2

1. [BSI 43] © 2004 IEEE. Reprinted, with permission, from “Misuse and Abuse Cases: Getting
Past the Positive” by Paco Hope, Gary McGraw, and Annie I. Anton, IEEE Security & Privacy 2, 3
(May/June 2004): 90–92.

2. Since the original publication of this material, there have been a number of vendor efforts to
improve security, such as the Microsoft effort described in [Howard 2007].
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Guttorm Sindre and Andreas Opdahl extend use-case diagrams with
misuse cases to represent the actions that systems should prevent in tan-
dem with those that they should support for security and privacy
requirements analysis [Sindre 2000]. Ian Alexander advocates using
misuse and use cases together to conduct threat and hazard analysis
during requirements analysis [Alexander 2003]. Here, we provide a
nonacademic introduction to the software security best practice of mis-
use and abuse cases, showing you how to put the basic science to work. 

3.2.1 Security Is Not a Set of Features

There is no convenient security pull-down menu that will let you
select “security” and then sit back and watch magic things happen.
Unfortunately, many software developers simply link functional secu-
rity features and mechanisms somewhere into their software, mistak-
enly assuming that doing so addresses security needs throughout the
system. Too often, product literature makes broad, feature-based
claims about security, such as “built with SSL” or “128-bit encryption
included,” which represent the vendor’s entire approach for securing
its product. 

Security is an emergent property of a system, not a feature. This is
analogous to how “being dry” is an emergent property of being inside
a tent in the rain. The tent will keep you dry only if the poles are stabi-
lized, vertical, and able to support the weight of wet fabric; the tent
also must have waterproof fabric (with no holes) and be large enough
to protect everyone who wants to remain dry. Lastly, everyone must
remain under the tent for the entire time it’s raining. So, although hav-
ing poles and fabric is important, it’s not enough to say, “The tent has
poles and fabric; thus it keeps you dry!” This sort of claim, however, is
analogous to the claims that software vendors make when they high-
light numbers of bits in cryptographic keys or the use of particular
encryption algorithms. Cryptography of one kind or another is usually
necessary to create a secure system, but security features alone are not
sufficient for building secure software. 

Because security is not a feature, it cannot be bolted on after other soft-
ware features are codified, nor can it be patched in after attacks have
occurred in the field. Instead, security must be built into the product
from the ground up, as a critical part of the design from the very begin-
ning (requirements specification) and included in every subsequent
development phase, all the way through fielding a complete system.
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Sometimes building security in at the beginning of the SDLC means
making explicit tradeoffs when specifying system requirements. For
example, ease of use might be paramount in a medical system
designed for clerical personnel in doctors’ offices, but complex authen-
tication procedures, such as obtaining and using a cryptographic iden-
tity, can be hard to use [Whitten 1999]. Furthermore, regulatory
pressures from HIPAA and California’s privacy regulations (Senate
Bill 1386) force designers to negotiate a reasonable tradeoff.

Technical approaches must go far beyond the obvious features, deep
into the many-tiered heart of a software system, to provide enough
security: Authentication and authorization can’t stop at a program’s
front door. The best, most cost-effective approach to software security
incorporates thinking beyond normative features and maintains that
thinking throughout the development process. Every time a new
requirement, feature, or use case is created, the developer or security
specialist should spend some time thinking about how that feature
might be unintentionally misused or intentionally abused. Profession-
als who know how features are attacked and how to protect software
should play active roles in this kind of analysis.

3.2.2 Thinking About What You Can’t Do 

Attackers are not standard-issue customers. They’re bad people with
malicious intentions who want your software to act to their benefit. If
the development process doesn’t address unexpected or abnormal
behavior, then an attacker usually has plenty of raw material with
which to work [Hoglund 2004]. 

Although attackers are creative, they always probe well-known loca-
tions—boundary conditions, edges, intersystem communication,
and system assumptions—in the course of their attacks. Clever
attackers will try to undermine the assumptions on which a system
was built. If a design assumes that connections from the Web server
to the database server are always valid, for example, an attacker will
try to make the Web server send inappropriate requests to access
valuable data. If the software design assumes that the client never
modifies its Web browser cookies before they are sent back to the
requesting server (in an attempt to preserve some state), attackers
will intentionally cause problems by modifying the cookies. Building
Secure Software teaches us that we have to be on guard when we
make any assumptions [Viega 2001]. 
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When we design and analyze a system, we’re in a great position to
know our systems better than potential attackers do. We must leverage
this knowledge to the benefit of security and reliability, which we can
achieve by asking and answering the following critical questions:
Which assumptions are implicit in our system? Which kinds of things
make our assumptions false? Which kinds of attack patterns will an
attacker bring to bear?

Unfortunately, a system’s creators are not the best security analysts of
that system. Consciously noting and considering all assumptions
(especially in light of thinking like an attacker) is extremely difficult
for those who have built up a set of implicit assumptions. Fortunately,
these professionals make excellent subject matter experts (SMEs).
Together, SMEs and security analysts can ferret out base assumptions
in a system under analysis and think through the ways an attacker will
approach the software. 

3.2.3 Creating Useful Misuse Cases

One of the goals of misuse cases is to decide and document a priori how
software should react to illegitimate use. The simplest, most practical
method for creating misuse cases is usually through a process of
informed brainstorming. Several theoretical methods require fully speci-
fying a system with rigorous formal models and logics, but such activities
are extremely time and resource intensive. A more practical approach
teams security and reliability experts with SMEs. This approach relies
heavily on expertise and covers a lot of ground quickly.

To guide brainstorming, software security experts ask many questions
of a system’s designers to help identify the places where the system is
likely to have weaknesses. This activity mirrors the way attackers
think. Such brainstorming involves a careful look at all user interfaces
(including environmental factors) and considers events that develop-
ers assume a person can’t or won’t do. These “can’ts” and “won’ts”
take many forms: “Users can’t enter more than 50 characters because
the JavaScript code won’t let them” or “Users don’t understand the
format of the cached data, so they can’t modify it.” Attackers, unfortu-
nately, can make these can’ts and won’ts happen. 

The process of specifying abuse cases makes a designer very clearly dif-
ferentiate appropriate use from inappropriate use. To reach this point,
however, the designer must ask the right questions: How can the system
distinguish between good input and bad input? Can it tell whether a
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request is coming from a legitimate application or from a rogue applica-
tion replaying traffic? All systems have more vulnerable places than the
obvious front doors, so where might a bad guy be positioned? On the
wire? At a workstation? In the back office? Any communication line
between two endpoints or two components is a place where an attacker
might try to interpose himself or herself, so what can this attacker do in
the system? Watch communications traffic? Modify and replay such
traffic? Read files stored on the workstation? Change registry keys or
configuration files? Be the DLL? Be the “chip”? 

Trying to answer such questions helps software designers explicitly
question design and architecture assumptions, and it puts the designer
squarely ahead of the attacker by identifying and fixing a problem
before it’s ever created. 

3.2.4 An Abuse Case Example

This section describes a real-world example of a classic software secu-
rity problem on a client/server application. The architecture had been
set up so that the server relied on the client-side application, which
manipulated a financially sensitive database, to manage all data-access
permissions—no permissions were enforced on the server itself. In
fact, only the client had any notion of permissions and access control.
To make matters worse, a complete copy of the database (only parts of
which were to be viewed by a given user with a particular client) was
sent to the client program, which ran on a garden-variety desktop PC.
As a consequence, a complete copy of the sensitive data (which was
expressly not to be viewed by the user) was available on that user’s PC
in the clear. If the user looked in the application’s cache on the hard
disk and used a standard-issue unzip utility, he or she could see all
sorts of sensitive information.

The client also enforced which messages were sent to the server, hon-
oring these messages independent of the user’s actual credentials. The
server assumed that any messages coming from the client had passed
the client software’s access control system (and policy) and were,
therefore, legitimate. By intercepting network traffic, corrupting val-
ues in the client software’s cache, or building a hostile client, malicious
users could inject data into the database that they were not even sup-
posed to read (much less write to). 

Determining the can’ts and won’ts in such a case is difficult for those
who think only about positive features. Attack patterns can provide
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some guidance in this regard (see Section 2.3.2). Attack patterns are
akin to patterns in sewing—that is, a blueprint for creating an attack.
Everyone’s favorite example, the buffer overflow, follows several dif-
ferent standard patterns, but patterns allow for a fair amount of varia-
tion on a theme. They can take into account many dimensions,
including timing, resources required, techniques, and so forth
[Hoglund 2004]. When we’re trying to develop misuse and abuse
cases, attack patterns can help.

Misuse/Abuse Case Templates

Templates for misuse and abuse cases appear in a number of ref-
erences. They can be text or diagrams, and some are supported
by tools. Some good sources for templates are in materials by Sin-
dre and Opdahl [Sindre 2001] and Alexander [Alexander 2002].
Figure 3–1 is an example of a use/misuse-case diagram to elicit
security requirements from Alexander’s article. The high-level
case is shown on the left; use cases are drawn in white and mis-
use cases are drawn in black.

Figure 3–1: Misuse case example
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It is possible for misuse cases to be overused (and generated forever
with little impact on actual security). A solid approach to building
them requires a combination of security know-how and subject matter
expertise to prioritize misuse cases as they are generated and to strike
the right balance between cost and value.

Although misuse and abuse cases can be used as a stand-alone activity,
they are more effective when they are developed as part of an overall
security requirements engineering process. As noted in Section 3.1.3, a
number of processes can be used to address security requirements engi-
neering. In the next section, we describe one such process, the SQUARE
process model, in which misuse and abuse cases play important roles.
Consult the reference material that we have provided to learn about
other processes and select the process and methods that are best for
your organization. 

3.3 The SQUARE Process Model

Security Quality Requirements Engineering (SQUARE) is a process
model that was developed at Carnegie Mellon University [Mead
2005].3 It provides a means for eliciting, categorizing, and prioritizing
security requirements for information technology systems and appli-
cations. (Note that this section and the following sections all discuss
security requirements, regardless of whether the term “security” is
specifically used as a qualifier.) The focus of the model is to build secu-
rity concepts into the early stages of the SDLC. It can also be used for
documenting and analyzing the security aspects of systems once they
are implemented in the field and for steering future improvements
and modifications to those systems.

After its initial development, SQUARE was applied in a series of client
case studies [Chen 2004; Gordon 2005; Xie 2004]. Prototype tools were
also developed to support the process. The draft process was revised and
established as a baseline after the case studies were completed; the base-
lined process is shown in Table 3–1. In principle, Steps 1–4 are actually
activities that precede security requirements engineering but are neces-
sary to ensure that it is successful. Brief descriptions of each step follow; a
detailed discussion of the method can be found in [Mead 2005].

3. The SQUARE work is supported by the Army Research Office through grant number
DAAD19-02-1-0389 (“Perpetually Available and Secure Information Systems”) to Carnegie Mel-
lon University’s CyLab.
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Table 3–1: The SQUARE Process 

Number Step Input Techniques Participants Output

1 Agree on 
definitions

Candidate
definitions from 
IEEE and other 
standards

Structured 
interviews, focus 
group

Stakeholders,
requirements 
engineers

Agreed-to 
definitions

2 Identify security 
goals

Definitions, candi-
date goals, busi-
ness drivers, 
policies and pro-
cedures, examples

Facilitated work 
session, surveys, 
interviews

Stakeholders,
requirements 
engineers

Goals

3 Develop artifacts 
to support secu-
rity requirements 
definition

Potential artifacts 
(e.g., scenarios, 
misuse cases, 
templates, forms)

Work session Requirements 
engineers

Needed artifacts: 
scenarios, misuse 
cases, models, 
templates, forms

4 Perform
(security) risk
assessment

Misuse cases, 
scenarios, secu-
rity goals

Risk assessment 
method, analysis 
of anticipated risk 
against organiza-
tional risk toler-
ance, including 
threat analysis

Requirements 
engineers, risk
expert,
stakeholders

Risk assessment 
results

Continues
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5 Select elicitation 
techniques

Goals, defini-
tions, candidate 
techniques,
expertise of stake-
holders, organi-
zational style, 
culture, level of 
security needed, 
cost–benefit
analysis

Work session Requirements 
engineers

Selected elicita-
tion techniques

6 Elicit security 
requirements

Artifacts, risk 
assessment
results, selected 
techniques

Accelerated
Requirements 
Method, Joint 
Application
Development,
interviews, sur-
veys, model-
based analysis, 
checklists, lists of 
reusable require-
ments types, doc-
ument reviews

Stakeholders
facilitated by 
requirements 
engineers

Initial cut at secu-
rity requirements

Table 3–1: The SQUARE Process (Continued)

Number Step Input Techniques Participants Output



87

7 Categorize
requirements as 
to level (e.g., 
system, software) 
and whether they 
are requirements 
or other kinds of 
constraints

Initial
requirements, 
architecture

Work session 
using a standard 
set of categories

Requirements 
engineers, other 
specialists as 
needed

Categorized
requirements

8 Prioritize
requirements

Categorized
requirements and 
risk assessment 
results

Prioritization
methods such 
as Analytical 
Hierarchy 
Process (AHP), 
triage, and 
win-win

Stakeholders
facilitated by 
requirements 
engineers

Prioritized
requirements

9 Inspect
requirements

Prioritized
requirements, 
candidate formal 
inspection
technique

Inspection
method such as 
Fagan and peer 
reviews

Inspection team Initial selected 
requirements, 
documentation of 
decision-making
process and 
rationale

Table 3–1: The SQUARE Process (Continued)

Number Step Input Techniques Participants Output
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3.3.1 A Brief Description of SQUARE

The SQUARE process is best applied by the project’s requirements
engineers and security experts in the context of supportive executive
management and stakeholders. We have observed that this process
works best when elicitation occurs after risk assessment (Step 4) has
been done and when security requirements are specified before criti-
cal architecture and design decisions. Thus critical security risks to
the business will be considered in the development of the security
requirements.

Step 1, “Agree on definitions,” is needed as a prerequisite to security
requirements engineering. On a given project, team members tend to
have definitions in mind, based on their prior experience, but those
definitions often differ [Woody 2005]. For example, for some govern-
ment organizations, security has to do with access based on security
clearance levels, whereas for others security may have to do with
physical security or cybersecurity. It is not necessary to invent defini-
tions. Sources such as the Institute for Electrical and Electronics Engi-
neers (IEEE) and the Software Engineering Body of Knowledge
(SWEBOK) provide a range of definitions to select from or tailor. A
focus group meeting with the interested parties will most likely enable
the selection of a consistent set of definitions for the security require-
ments activity.

Step 2, “Identify security goals,” should be done at the organizational
level and is needed to support software development in the project at
hand. This step provides a consistency check with the organization’s
policies and operational security environment. Different stakeholders
usually have different goals. For example, a stakeholder in human
resources may be concerned about maintaining the confidentiality of
personnel records, whereas a stakeholder in a financial area may be
concerned with ensuring that financial data is not accessed or modi-
fied without authorization. It is important to have a representative set
of stakeholders, including those with operational expertise. Once the
goals of the various stakeholders have been identified, they need to be
prioritized. In the absence of consensus, an executive decision may be
needed to prioritize them. It is expected that the goals identified in this
step will link to the core properties discussed in Chapter 2.

Step 3, “Develop artifacts,” is necessary to support all subsequent
security requirements engineering activities. Organizations often do
not have a documented concept of operations for a project, succinctly
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stated project goals, documented normal usage and threat scenarios,
misuse or abuse cases, and other documents needed to support
requirements definition. As a consequence, either the entire require-
ments process is built on unstated assumptions or a lot of time is spent
backtracking to try to obtain such documentation. 

Step 4, “Perform risk assessment,” requires an expert in risk assess-
ment methods, the support of the stakeholders, and the support of a
security requirements engineer. A number of risk assessment methods
are available (as discussed in detail in Section 3.4.1). The risk assess-
ment expert can recommend a specific method based on the unique
needs of the organization. The artifacts from Step 3 provide the input
to the risk assessment process; the outcomes of the risk assessment, in
turn, can help in identifying the high-priority security exposures (see
also the discussion of the risk management framework in Section 7.4).
Organizations that do not perform risk assessment typically do not have
a logical approach to considering organizational risks when identifying
security requirements, but rather tend to select specific solutions or tech-
nologies, such as encryption, without really understanding the problem
that is being solved.

Step 5, “Select elicitation technique,” becomes important when the
project has diverse stakeholders. A more formal elicitation technique,
such as the Accelerated Requirements Method [Hubbard 1999], Joint
Application Design [Wood 1989], or structured interviews, can be
effective in overcoming communication issues when stakeholders
have variable cultural backgrounds. In other cases, elicitation may
simply consist of sitting down with a primary stakeholder and trying
to understand that stakeholder’s security requirements needs.

Step 6, “Elicit security requirements,” is the actual elicitation process
using the selected technique. Most elicitation techniques provide
detailed guidance on how to perform elicitation. This effort builds on
the artifacts that were developed in earlier steps, such as misuse and
abuse cases, attack trees, threats, and scenarios.

Step 7, “Categorize requirements,” allows the security requirements
engineer to distinguish among essential requirements, goals (desired
requirements), and architectural constraints that may be present.
Requirements that are actually constraints typically arise when a spe-
cific system architecture has been chosen prior to the requirements
process. This is good, as it allows for assessment of the risks associated
with these constraints. This categorization also helps in the prioritiza-
tion activity that follows (Step 8). 
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Step 8, “Prioritize requirements,” depends not only on the prior step,
but may also involve performing a cost–benefit analysis to determine
which security requirements have a high payoff relative to their cost.
Prioritization may also depend on other consequences of security
breaches, such as loss of life, loss of reputation, and loss of consumer
confidence.

Step 9, “Requirements inspection,” can be done at varying levels of
formality, ranging from Fagan inspections (a highly structured and
proven technique for requirements inspection) [Fagan 1999] to peer
reviews. Once this inspection is complete, the project team should
have an initial set of prioritized security requirements. It should also
understand which areas are incomplete and must be revisited at a later
time. Finally, the project team should understand which areas are
dependent on specific architectures and implementations and should
plan to revisit those areas as well. 

3.3.2 Tools 

A prototype tool has been developed to support SQUARE. It primarily
provides an organizational framework for the artifact documents; in
addition, it provides default content for some of the steps. The tool
does not perform sophisticated functions such as requirements analy-
sis. This prototype is undergoing further development so that it will
provide better support to the SQUARE process and be more attractive
to users. The current status of the SQUARE process and tool, as well as
contact information, can be found at http://www.cert.org/nav/
index_purple.html/square.html.

3.3.3 Expected Results 

When you apply SQUARE, you can expect relevant security require-
ments to be identified and documented for the system or software that
is being developed. SQUARE is better suited to use with a system
under development than with a system that has already been fielded,
although it has been used in both situations. Although quantitative
measures do not exist, case study clients recognized the value of the
new security requirements and have taken steps to incorporate them
into their system specifications. You’ll need to consider the resources
required for this activity and for the implementation of the resulting
requirements [Xie 2004]. 

http://www.cert.org/nav/index_purple.html/square.html
http://www.cert.org/nav/index_purple.html/square.html
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Our experience with SQUARE suggests that the system and its ele-
ments must be considered within the context or environment in which
it operates. For example, a system that operates on a single isolated
workstation will have very different security requirements from a sim-
ilar system that is Web based. Likewise, a medical information system
will have different security requirements for workstations that are iso-
lated in a physician’s office than for those that are located in a public
area in a hospital. These differences should be accounted for in the
artifacts developed in Step 3—for example, in usage scenarios and
misuse or abuse cases. When the context for a project changes, you
should revisit the security requirements and reapply the SQUARE
process. It may be that a subset of the SQUARE steps will be sufficient
for this purpose, but we do not yet have enough experience with sub-
sequent applications of SQUARE to the same system to make that
determination.

3.4 SQUARE Sample Outputs

Several case studies have been conducted using the SQUARE process
model [Chen 2004; Gordon 2005]. The goals of these case studies were
to experiment with each step of the SQUARE process, make recom-
mendations, and determine the feasibility of integrating the SQUARE
methodology into standard software development practices. The case
studies involved real-world clients that were developing large-scale IT
projects, including an IT firm in Pittsburgh, Pennsylvania; a federal
government research institute; and a department of the federal gov-
ernment.

Acme Corporation (an alias used to protect the identity of the client), a
private IT firm headquartered in Pittsburgh, provides technical and
management services to various public sectors and a number of diver-
sified private sectors. Its product, the Asset Management System
(AMS) version 2, provides a tool that enables companies to make stra-
tegic allocations and plans for their critical IT assets. This system pro-
vides specialized decision support capabilities via customized views.
AMS provides a graphical interface to track and analyze the state of
important assets. The security requirements surrounding the AMS are
the subject of one of our case studies and the source of the sample out-
puts that follow.
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3.4.1 Output from SQUARE Steps

We present a sample output for each step, all taken from the case stud-
ies, to provide concrete examples of the nine SQUARE steps. Given
that these are actual results, they are not all that sophisticated or cut-
ting edge, but they do reflect the typical state of affairs at present.
Note, however, that these snippets leave out underlying assumptions
and background information.

Step 1: Agree on Definitions

We worked with the client to agree on a common set of security defini-
tions with which to create a common base of understanding. The fol-
lowing is a small subset of the definitions that were agreed to:

• Access control: Ensures that resources are granted only to those
users who are entitled to them.

• Access control list: A table that tells a computer operating system
which access rights or explicit denials each user has to a particular
system object, such as a file directory or individual file.

• Antivirus software: A class of program that searches hard drives and
memory for any known or potential viruses.

The full set of definitions was drawn from resources such as IEEE, Car-
negie Mellon University, industry, and various dictionaries. 

Step 2: Identify Security Goals

We worked with the client to flesh out security goals that mapped to
the company’s overall business goals. This is one example set of goals:

• Business goal of AMS: To provide an application that supports asset
management and planning.

• Security goals: Three high-level security goals were derived for the
system (it’s not surprising that these are closely linked to the secu-
rity properties of Chapter 2):

a. Management shall exercise effective control over the system’s 
configuration and use.

b. The confidentiality, accuracy, and integrity of the AMS shall be 
maintained.

c. The AMS shall be available for use when needed.



3.4 SQUARE Sample Outputs 93

Step 3: Develop Artifacts

Architectural diagrams, use cases, misuse cases, abuse case diagrams,
attack trees, and essential assets and services were documented in this
step. As noted earlier, the attack patterns discussed in Chapter 2 pro-
vide a good starting point for developing artifacts that reflect the
attacker’s perspective. For instance, an attack scenario was docu-
mented in the following way:

System administrator accesses confidential information

1. by being recruited OR
a. by being bribed OR
b. by being threatened OR
c. through social engineering OR

2. by purposefully abusing rights

An example abuse case diagram is shown in Figure 3–2.

Figure 3–2: Abuse case example

Exploit poor password management

Exploit poor account management

Exploit OS vulnerability

Install software sniffer

Install hardware sniffer

Assume system administrator identity

Tamper with client data

Tamper with application

Disgruntled
Employee

Script 
Kiddie

Hostile
Competitor
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This step creates needed documentation that serves as input for the
following steps. 

Step 4: Perform Risk Assessment

The risk assessment techniques that were field tested were selected
after completing a literature review. This review examined the useful-
ness and applicability of eight risk assessment techniques:

1. General Accounting Office Model [GAO 1999]
2. National Institute of Standards and Technology (NIST) Model

[Stoneburner 2002]
3. NSA’s INFOSEC Assessment Methodology [NSA 2004]
4. Shawn Butler’s Security Attribute Evaluation Method [Butler 2002]
5. Carnegie Mellon’s Vendor Risk Assessment and Threat Evaluation

[Lipson 2001]
6. Yacov Haimes’s Risk Filtering, Ranking, and Management Model

[Haimes 2004]
7. Carnegie Mellon’s Survivable Systems Analysis Method [Mead 2002]
8. Martin Feather’s Defect Detection and Prevention Model [Corn-

ford 2004]

Each method was ranked in four categories:

1. Suitability for small companies
2. Feasibility of completion in the time allotted
3. Lack of dependence on historical threat data
4. Suitability in addressing requirements

The results of the ranking are shown in Table 3–2.

After averaging scores from the four categories, NIST’s and Haimes’s
models were selected as useful techniques for the risk assessment step.
Brainstorming, attack tree, and misuse case documentation were used
to identify potential threat scenarios. The two independent risk assess-
ment analyses produced a useful risk profile for the company’s sys-
tem, with two especially meaningful findings:

• Insider threat poses the highest-impact risk to the AMS.
• Because of weak controls, it is easy for an insider or unauthorized

user to defeat authentication.
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Table 3–2: Ranking of Assessment Techniques

Suitable for 
Small

Companies

Feasible to 
Complete within 

Time Frame

Does Not Require 
Additional Data 

Collection
Suitable for 

Requirements
Average

Score

M
et

ho
do

lo
gi

es

GAO 2 4 2 2 2.50

NIST 2 2 1 1 1.50

NSA/IAM 3 3 2 2 2.50

SAEM 4 4 4 4 4.00

V-Rate 3 4 4 4 3.75

Haimes 2 2 2 2 2.00

SSA 2 2 2 4 2.50

DDP/Feather 3 4 2 4 3.25
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In this particular case study, we also identified a set of essential services
and assets as part of the artifact generation. This activity is not part of the
standard SQUARE process but nevertheless can be a beneficial exercise if
enough architectural information already exists to support it. All findings
from the risk assessment, along with the findings from the essential ser-
vices and asset identification process, were used to determine the priority
level associated with each of the nine requirements.

We analyzed the importance of each of the major system services, out-
lined in the 11 use cases shown in Table 3–3, and made a determina-
tion as to which were essential.

Table 3–3: Classification of Use Cases

Use Case Service Status 

UC-1 View floor plans Essential

UC-2 Enter damage assessment Essential

UC-3 Add/delete/edit Post-it notes Nonessential

UC-4 Find specialized employees Important

UC-5 Create journal entry Nonessential

UC-6 Install the Asset Management System Nonessential

UC-7 Create links to documents Nonessential

UC-8 Archibus administration: Add user and 
assign privileges

Nonessential

UC-9 View contact information for maintenance 
tasks

Important

UC-10 Create open space report Essential

UC-11 View incident command Essential
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There are two essential assets in this system. The first is the Windows
Server computer, which houses the majority of the production sys-
tem’s intellectual assets (that is, the code that runs the system). This
computer acts as a server that allows remote users to access the Asset
Management System. The second essential asset is the information
inside the Windows Server computer—specifically, the files stored in
the Microsoft IIS server and the information stored in the Sybase data-
base and MapGuide database are critical for making informed deci-
sions. If this information is lost or compromised, the ability to make
accurate decisions is lost. 

Step 5: Select Elicitation Techniques

For this step, teams tested various elicitation techniques and models. It is
often the case that multiple techniques will work for the same project.
The difficulty lies in choosing a technique that can be adapted to the
number and expertise of stakeholders, the size and scope of the client
project, and the expertise of the requirements engineering team. It is
extremely unlikely that any single technique will work for all projects
under all circumstances, although our experience has shown that the
Accelerated Requirements Method [Hubbard 2000] has been successful
in eliciting security requirements. Selection of an elicitation technique is
discussed in more detail in Section 3.5.

Steps 6 and 7: Elicit and Categorize Security Requirements

Nine security requirements were identified and then organized to map
to the three high-level security goals (see Step 2). Examples include the
following requirements:

• Requirement 1: The system is required to have strong authentica-
tion measures in place at all system gateways and entrance points
(maps to Goals 1 and 2).

• Requirement 2: The system is required to have sufficient process-
centric and logical means to govern which system elements (e.g.,
data, functionality) users can view, modify, and/or interact with
(maps to Goals 1 and 2).

• Requirement 3: A continuity of operations plan (COOP) is required
to assure system availability (maps to Goal 3).

• Requirement 6: It is required that the system’s network communi-
cations be protected from unauthorized information gathering
and/or eavesdropping (maps to Goals 1 and 2).
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The nine security requirements were central to the security require-
ments document that was ultimately delivered to the client. 

Step 8: Prioritize Requirements

In the first case study, the nine security requirements were prioritized
based on the following qualitative rankings:

• Essential: The product will be unacceptable if this requirement is
absent.

• Conditional: The requirement enhances security, but the product is
acceptable if this requirement is absent.

• Optional: The requirement is clearly of lower priority than essential
and conditional requirements.

Requirement 1 from Steps 6 and 7, which dealt with authentication at
borders and gateways, was deemed essential because of its impor-
tance in protecting against the high-impact, authentication-related
risks identified in the risk assessment. Requirement 3, dealing with
continuity of operations planning, was still seen as an important ele-
ment and worth considering, but it was found to be an optional
requirement relative to the other eight requirements. That is, although
COOP plans are valuable, the risk assessment phase found that greater
threats to the system resulted from unauthorized disclosure of infor-
mation than from availability attacks.

We also used the Analytical Hierarchy Process (AHP) methodology to
prioritize requirements and found it to be successful both in client
acceptance and in its ability to handle security requirements [Karlsson
1997; Saaty 1980]. Requirements prioritization is discussed in more
detail in Section 3.6.

Step 9: Requirements Inspection

We experimented with different inspection techniques and had vary-
ing levels of success with each. None of the inspection techniques was
sufficiently effective in identifying defects in the security require-
ments. Instead, we recommend experimenting with the Fagan inspec-
tion technique.

In one case study instance, each team member played a role in
inspecting the quality of the team’s work and deliverables. A peer
review log was created to document what had been reviewed and
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was used to maintain a log of all problems, defects, and concerns.
Each entry in the log was numbered and dated, and indicated the
date, origin, defect type, description, severity, owner, reviewer, and
status of the issue. Each entry was assigned to an owner, who was
responsible for making sure that defects were fixed. This step was
used as a sanity check to ensure that the system met quality goals
and expectations. 

3.4.2 SQUARE Final Results 

The final output to the client was a security requirements document. The
client could then use this document in the early stages of the SDLC to
ensure that security requirements were built into project plans.

Once a system has been deployed, the organization can look back to its
requirements documentation to analyze whether it met its require-
ments and, therefore, satisfied its security goals. As change occurs—be
it a configuration concern in the system, the organization’s risk profile,
or a business goal—the SQUARE process can be revisited to determine
how the change might affect the system’s security requirements. In
this way, SQUARE can be reapplied to a system as needed.

3.5 Requirements Elicitation

Using an elicitation method can help in producing a consistent and
complete set of security requirements. However, brainstorming and elic-
itation methods used for ordinary functional (end-user) requirements
usually are not oriented toward security requirements and, therefore, do
not result in a consistent and complete set of security requirements. The
resulting system is likely to have fewer security exposures when
requirements are elicited in a systematic way.

In this section, we briefly discuss a number of elicitation methods and
the kind of tradeoff analysis that can be done to select a suitable one.
Companion case studies can be found in “Requirements Elicitation
Case Studies” [BSI 10]. While results may vary from one organization
to another, the discussion of our selection process and various meth-
ods should be of general utility. Requirements elicitation is an active
research area, and we expect to see advances in this area in the future. 

L2L L
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Eventually, studies will likely determine which methods are most
effective for eliciting security requirements. At present, however, there
is little if any data comparing the effectiveness of different methods for
eliciting security requirements.

3.5.1 Overview of Several Elicitation Methods

The following list identifies several methods that could be considered
for eliciting security requirements. Some have been developed specifi-
cally with security in mind (e.g., misuse cases), whereas others have
been used for traditional requirements engineering and could poten-
tially be extended to security requirements. In the future, we may have
a better understanding of how the unique aspects of security require-
ments elicitation drive selection of a method. We also note recent work
on requirements elicitation in general that could be considered in
developing such a list [Hickey 2003, 2004; Zowghi 2005] and in doing
the selection process [Hickey 2004]. We briefly describe each of the fol-
lowing elicitation methods:

• Misuse cases [Sindre 2000; McGraw 2006, pp. 205–222]
• Soft Systems Methodology [Checkland 1990]
• Quality Function Deployment [QFD 2005]
• Controlled Requirements Expression [Christel 1992; SDS 1985]
• Issue-based information systems [Kunz 1970]
• Joint Application Development [Wood 1995]
• Feature-oriented domain analysis [Kang 1990]
• Critical discourse analysis [Schiffrin 1994]
• Accelerated Requirements Method [Hubbard 2000]

Misuse Cases

As noted earlier, misuse/abuse cases apply the concept of a negative
scenario—that is, a situation that the system’s owner does not want to
occur—in a use-case context. For example, business leaders, military
planners, and game players are familiar with the strategy of analyzing
their opponents’ best moves as identifiable threats.  

By contrast, a use case generally describes behavior that the system
owner wants the system to show [Sindre 2000]. Use-case models and
their associated diagrams (UCDs) have proven quite helpful for the
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specification of requirements [Jacobson 1992; Rumbaugh 1994]. How-
ever, a collection of use cases should not be used as a substitute for a
requirements specification document, as this approach can result in
overlooking significant requirements [Anton 2001]. As a result, it is
controversial to use only use-case models for system and quality
requirements elicitation.

Soft Systems Methodology (SSM)

SSM deals with problem situations in which there is a high social,
political, and human activity component [Checkland 1990]. The SSM
can deal with “soft problems” that are difficult to define, rather than
“hard problems” that are more technology oriented. Examples of soft
problems include how to deal with homelessness, how to manage
disaster planning, and how to improve Medicare. Eventually technology-
oriented problems may emerge from these soft problems, but much
more analysis is needed to reach that point.

The primary benefit of SSM is that it provides structure to soft problem
situations and enables their resolution in an organized manner. In
addition, it compels the developer to discover a solution that goes
beyond technology.

Quality Function Deployment (QFD)

QFD is “an overall concept that provides a means of translating cus-
tomer requirements into the appropriate technical requirements for
each stage of product development and production” [QFD 2005]. The
distinguishing attribute of QFD is the focus on customer needs
throughout all product development activities. By using QFD, orga-
nizations can promote teamwork, prioritize action items, define clear
objectives, and reduce development time [QFD 2005].

Controlled Requirements Expression (CORE)

CORE is a requirements analysis and specification method that clar-
ifies the user’s view of the services to be supplied by the proposed
system. In CORE, the requirements specification is created by both
the user and the developer—not solely one or the other. The prob-
lem to be analyzed is defined and broken down into user and devel-
oper viewpoints. Information about the combined set of viewpoints
is then analyzed. The last step of CORE deals with constraints anal-
ysis, such as the limitations imposed by the system’s operational
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environment, in conjunction with some degree of performance and
reliability investigation.

Issue-Based Information Systems (IBIS)

Developed by Horst Rittel, the IBIS method is based on the principle
that the design process for complex problems, which Rittel terms
wicked problems, is essentially an exchange among the stakeholders in
which each stakeholder brings his or her personal expertise and per-
spective to the resolution of design issues [Kunz 1970]. Any problem,
concern, or question can be an issue and may require discussion and
resolution for the design to proceed. 

Joint Application Development (JAD)

The JAD methodology [Wood 1995] is specifically designed for the
development of large computer systems. Its goal is to involve all stake-
holders in the design phase of the product via highly structured and
focused meetings. In the preliminary phases of JAD, the requirements
engineering team is charged with fact-finding and information-gathering
tasks. Typically, the outputs of this phase, as applied to security
requirements elicitation, are security goals and artifacts. The actual
JAD session is then used to validate this information by establishing
an agreed-on set of security requirements for the product.

Feature-Oriented Domain Analysis (FODA)

FODA is a domain analysis and engineering method that focuses on
developing reusable assets [Kang 1990]. By examining related soft-
ware systems and the underlying theory of the class of systems they
represent, domain analysis can provide a generic description of the
requirements of that class of systems in the form of a domain model
and a set of approaches for their implementation.

The FODA method was founded on two modeling concepts: abstrac-
tion and refinement [Kean 1997]. Abstraction is used to create domain
models from the specific applications in the domain. Specific applica-
tions in the domain are then developed as refinements of the domain
models. The example domain used in the initial report on FODA
[Kang 1990] is window management systems. The window manage-
ment examples of that time are no longer in use, but include VMS,
Sun, and Macintosh, among others.
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Critical Discourse Analysis (CDA)

CDA uses sociolinguistic methods to analyze verbal and written dis-
course [Schiffrin 1994]. In particular, this technique can be used to ana-
lyze requirements elicitation interviews and to understand the
narratives and “stories” that emerge during those interviews.

Accelerated Requirements Method (ARM)

The ARM process [Hubbard 2000] is a facilitated requirements elicita-
tion and description activity. It includes three phases:

1. Preparation phase
2. Facilitated session phase
3. Deliverable closure phase

The ARM process is similar to JAD but has certain significant differ-
ences from the baseline JAD method, which contribute to its unique-
ness. For example, in this process, the facilitators are content neutral,
the group dynamic techniques used are different from those used in
JAD, the brainstorming techniques used are different, and the require-
ments are recorded and organized using different conceptual models.

3.5.2 Elicitation Evaluation Criteria

Following are example evaluation criteria that may be useful in select-
ing an elicitation method, although you could certainly use other crite-
ria. The main point is to select a set of criteria and to have a common
understanding of what they mean.

• Adaptability. The method can be used to generate requirements in
multiple environments. For example, the elicitation method works
equally well with a software product that is near completion as it
does with a project in the planning stages.

• Computer-aided software engineering (CASE) tool. The method
includes a CASE tool.

• Stakeholder acceptance. The stakeholders are likely to agree to the
elicitation method in analyzing their requirements. For example,
the method isn’t too invasive in a business environment.

• Easy implementation. The elicitation method isn’t overly complex
and can be properly executed easily.
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• Graphical output. The method produces readily understandable
visual artifacts.

• Quick implementation. The requirements engineers and stakeholders
can fully execute the elicitation method in a reasonable length of time.

• Shallow learning curve. The requirements engineers and stakehold-
ers can fully comprehend the elicitation method within a reason-
able length of time.

• High maturity. The elicitation method has experienced consider-
able exposure and analysis with the requirements engineering
community.

• Scalability. The method can be used to elicit the requirements of
projects of different sizes, from enterprise-level systems to small-
scale applications.

Note that this approach presumes that all criteria are equally impor-
tant. If some criteria are more important than others, a weighted aver-
age can be used. For example, availability of a CASE tool might be
more important than graphical output. A typical weighting scheme
could consider criteria to be “essential” with weight 3, “desirable”
with weight 2, and “optional” with weight 1. The elicitation methods
can then be ranked using a tabular form, as shown in Table 3–4. The
example in Table 3–4 is not intended to be an actual recommendation
to use a specific method. You can develop your own comparison crite-
ria and ratings.

In our case studies, we decided to use JAD, ARM, and IBIS on three
different projects. These three methods were subjectively ranked to be
the most suitable candidates for the case studies, given the time and
effort constraints for the project. We considered not just the total score:
The learning curve was an important factor, and the team attempted to
select methods that were not too similar to one another, so as to have
some variety. In our case studies, we had the most success using ARM
to identify security requirements. Detailed results for all three meth-
ods can be found in the Requirements Engineering section of the Build
Security In Web site [BSI 10]. 

Additional Considerations

It is possible that a combination of methods may work best. You
should consider this option as part of the evaluation process, assum-
ing that you have sufficient time and resources to assess how methods
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Table 3–4: Comparison of Elicitation Methods

Misuse
Cases SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability 3a 1 3 2 2 3 2 1 2

CASE tool 1 2 1 1 3 2 1 1 1

Stakeholder
acceptance

2 2 2 2 3 2 1 3 3

Easy implementation 2 2 1 2 3 2 1 1 2

Graphical output 2 2 1 1 2 1 2 2 3

Quick implementation 2 2 1 1 2 1 2 2 3

Shallow learning 
curve

3 1 2 1 3 2 1 1 1

High maturity 2 3 3 3 2 3 2 2 1

Scalability 1 3 3 3 2 3 2 1 2

Total Score 18 18 17 16 22 19 14 14 18

a. 3 = Very good; 2 = Fair; 1 = Poor.
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may be combined and to actually combine them. You should also con-
sider the time necessary to implement a particular elicitation method
and the time needed to learn a new tool that supports a method.
Selecting a requirements elicitation method that meets the needs of a
diverse group of stakeholders aids in addressing a broader range of
security requirements.

3.6 Requirements Prioritization

Once you have identified a set of security requirements, you will usu-
ally want to prioritize them. Given the existence of time and budget
constraints, it can be difficult to implement all requirements that have
been elicited for a system. Also, security requirements are often imple-
mented in stages, and prioritization can help to determine which ones
should be implemented first. Many organizations pick the lowest-cost
requirements to implement first, without regard to importance. Others
pick the requirements that are easiest to implement—for example, by
purchasing a COTS solution. These ad hoc approaches are not likely to
achieve the security goals of the organization or the project. 

To prioritize security requirements in a more logical fashion, we rec-
ommend a systematic prioritization approach. This section discusses a
tradeoff analysis that you can perform to select a suitable require-
ments prioritization method and briefly describes a number of meth-
ods. We also discuss a method of prioritizing requirements using AHP.
More extensive coverage of this material is available elsewhere
[Chung 2006].

While results may vary for your organization, the discussion of the
various techniques should be of interest. Much work needs to be done
before security requirements prioritization is considered a mature
area, but it is one that we must start to address.

3.6.1 Identify Candidate Prioritization Methods

A number of prioritization methods have been found to be useful in tra-
ditional requirements engineering and could potentially be used for
developing security requirements. We briefly mention here the binary
search tree, numeral assignment technique, planning game, the 100-point
method, Theory-W, requirements triage, Wiegers’ method, requirements
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prioritization framework, and AHP. Further information can be found on
the Build Security In Web site and in the references.

Binary Search Tree (BST)

A binary search tree is an algorithm that is typically used in a search
for information and can easily be scaled to be used in prioritizing
many requirements [Ahl 2005]. The basic approach for requirements is
as follows, quoting from [Ahl 2005]:

1. Put all requirements in one pile.
2. Take one requirement and put it as the root node.
3. Take another requirement and compare it to the root node.
4. If the requirement is less important than the root node, compare it

to the left child node. If the requirement is more important than the
root node, compare it to the right child node. If the node does not
have any appropriate child nodes, insert the new requirement as
the new child node to the right or left, depending on whether the
requirement is more or less important.

5. Repeat Steps 3 and 4 until all requirements have been compared
and inserted into the BST.

6. For presentation purposes, traverse through the entire BST in
order and put the requirements in a list, with the least important
requirement at the end of the list and the most important require-
ment at the start of the list.

Numeral Assignment Technique

The numeral assignment technique provides a scale for each require-
ment. Brackett proposed dividing the requirements into three groups:
mandatory, desirable, and unessential [Brackett 1990]. Participants
assign each requirement a number on a scale of 1 to 5 to indicate its
importance [Karlsson 1995]. The final ranking is the average of all par-
ticipants’ rankings for each requirement.

Planning Game

The planning game is a feature of extreme programming [Beck 2004]
and is used with customers to prioritize features based on stories. It is
a variation of the numeral assignment technique, where the customer
distributes the requirements into three groups: “those without which
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the system will not function,” “those that are less essential but provide
significant business value,” and “those that would be nice to have.”

100-Point Method

The 100-point method [Leffingwell 2003] is basically a voting scheme of
the type that is used in brainstorming exercises. Each stakeholder is
given 100 points that he or she can use for voting in favor of the most
important requirements. The 100 points can be distributed in any
way that the stakeholder desires. For example, if there are four require-
ments that the stakeholder views as having equal priority, he or she can
put 25 points on each. If there is one requirement that the stakeholder
views as having overarching importance, he or she can put 100 points
on that requirement. However, this type of scheme works only for an
initial vote. If a second vote is taken, people are likely to redistribute
their votes in an effort to move their favorites up in the priority scheme.

Theory-W

Theory-W (also known as “win-win”) was initially developed at the
University of Southern California in 1989 [Boehm 1989; Park 1999].
This method supports negotiation to solve disagreements about
requirements, so that each stakeholder has a “win.” It relies on two
principles:

1. Plan the flight and fly the plan.
2. Identify and manage your risks.

The first principle seeks to build well-structured plans that meet pre-
defined standards for easy development, classification, and query.
“Fly the plan” ensures that the progress follows the original plan. The
second principle, “Identify and manage your risks,” involves risk
assessment and risk handling. It is used to guard the stakeholders’
“win-win” conditions from infringement. In win-win negotiations,
each user should rank the requirements privately before negotiations
start. In the individual ranking process, the user considers whether he
or she is willing to give up on certain requirements, so that individual
winning and losing conditions are fully understood. 

Requirements Triage

Requirements triage [Davis 2003] is a multistep process that includes
establishing relative priorities for requirements, estimating the resources
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needed to satisfy each requirement, and selecting a subset of require-
ments to optimize the probability of the product’s success in the intended
market. This technique is clearly aimed at developers of software prod-
ucts in the commercial marketplace. Davis’s more recent book [Davis
2005a] expands on the synergy between software development and mar-
keting; we recommend that you read it if you are considering this
approach. Requirements triage is a unique approach that is worth
reviewing, although it clearly goes beyond traditional requirements pri-
oritization to consider business factors as well.

Wiegers’ Method

Wiegers’ method relates directly to the value of each requirement to a
customer [Wiegers 2003]. The priority is calculated by dividing the
value of a requirement by the sum of the costs and technical risks asso-
ciated with its implementation [Wiegers 2003]. The value of a require-
ment is viewed as depending on both the value provided by the client
to the customer and the penalty that occurs if the requirement is miss-
ing. Given this perspective, developers should evaluate the cost of the
requirement and its implementation risks as well as the penalty
incurred if the requirement is missing. Attributes are evaluated on a
scale of 1 to 9.

Requirements Prioritization Framework

The requirements prioritization framework and its associated tool
[Moisiadis 2000, 2001] includes both elicitation and prioritization
activities. This framework is intended to address the following issues:

• Elicitation of stakeholders’ business goals for the project
• Rating the stakeholders using stakeholder profile models
• Allowing the stakeholders to rate the importance of the require-

ments and the business goals using a fuzzy graphic rating scale
• Rating the requirements based on objective measures
• Finding the dependencies between the requirements and cluster-

ing requirements so as to prioritize them more effectively
• Using risk analysis techniques to detect cliques among the stake-

holders, deviations among the stakeholders for the subjective rat-
ings, and the association between the stakeholders’ inputs and the
final ratings
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AHP

AHP is a method for decision making in situations where multiple
objectives are present [Saaty 1980; Karlsson 1996, 1997]. This method
uses a “pair-wise” comparison matrix to calculate the value and costs
of individual security requirements relative to one another. By using
AHP, the requirements engineer can confirm the consistency of the
result. AHP can prevent subjective judgment errors and increase the
likelihood that the results are reliable. It is supported by a stand-alone
tool as well as by a computational aid within the SQUARE tool.

3.6.2 Prioritization Technique Comparison

We recommend comparing several candidate prioritization techniques
to aid in selecting a suitable technique. Some example evaluation crite-
ria are provided here:

• Clear-cut steps: There is clear definition between stages or steps
within the prioritization method. 

• Quantitative measurement: The prioritization method’s numerical
output clearly displays the client’s priorities for all requirements.

• High maturity: The method has had considerable exposure and
analysis by the requirements engineering community.

• Low labor-intensity: A reasonable number of hours are needed to
properly execute the prioritization method.

• Shallow learning curve: The requirements engineers and stakehold-
ers can fully comprehend the method within a reasonable length of
time.

Note that this simple approach does not consider the importance of
each criterion. It is also possible to construct a weighted average when
comparing techniques. For example, maturity may be of greater
importance than learning curve. This difference could be taken into
account by weighting the results and ranking the various criteria as
“essential” with weight 3, “desirable” with weight 2, and “optional”
with weight 1. A comparison matrix used in a case study is shown in
Table 3–5. This example is not intended to be an actual recommenda-
tion to use a specific technique; you can develop your own compari-
son criteria and ratings. 
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For one of our case studies, we considered the numeral assignment
technique (NAT), Theory-W (TW), and AHP. The results of the com-
parison are summarized in Table 3–5.

We decided to use AHP as a prioritizing method. This decision was
made on the basis of the results shown in Table 3-5 comparison, recog-
nizing that the rankings are subjective. Factoring into the rationale
behind choosing AHP were the team members’ familiarity with the
method, its quantitative outputs, and its structure in providing defi-
nite steps for implementation. The detailed case study results are
described in [BSI 11].

3.6.3 Recommendations for Requirements Prioritization

Prioritization of security requirements is an important activity. We rec-
ommend that stakeholders select candidate prioritization techniques,
develop selection criteria to pick one, and apply that methodology to
decide which security requirements to implement when. During the
prioritization process, stakeholders can verify that everyone has the
same understanding about the security requirements and further
examine any ambiguous requirements. After everyone reaches consen-
sus, the results of the prioritization exercise will be more reliable.

Table 3–5: Comparison of Prioritization Techniques for a Case Study

Selection Criteria NAT TW AHP

Clear-cut steps 3a

a. 3 = Very good; 2 = Fair; 1 = Poor.

2 3

Quantitative measurement 3 1 3

Maturity 1 3 3

Labor-intensive 2 1 2

Learning curve 3 1 2

Total Score 12 8 13
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3.7 Summary

In this chapter, we initially focused on the role of misuse and abuse
cases, which can motivate the identification and documentation of
security requirements. The examination of SQUARE focused on the
process to support security requirements engineering. We also
explored a method for selecting a requirements elicitation process and
provided experimental results for several candidate elicitation pro-
cesses. We then focused on methods for prioritizing requirements and
described the results of a case study in this area.

On the Build Security In Web site, we also discuss the Comprehensive,
Lightweight Application Security Process (CLASP) approach to secu-
rity requirements engineering, core security requirements artifacts,
and the use of attack trees in security requirements engineering [BSI
12]. Formal specification approaches to security requirements, such as
REVEAL and Software Cost Reduction (SCR), are also useful in this
regard. The higher levels of the Common Criteria provide similar
results [BSI 13]. Another article on BSI discusses the use of integer pro-
gramming for optimizing investment in implementation of security
requirements [BSI 14]. 

Although security requirements engineering is an area of active
research, many promising techniques have already emerged that you
can use to identify the requirements needed to improve your software
products. It seems obvious that systematic and thorough identification
of security requirements in the early stages of the SDLC will result in
more secure software and reduced security costs later on. 

Here are our recommendations for software project managers who
wish to pay more attention to security requirements engineering:

• Review your existing development practices. Do you have devel-
opment practices that are specific to requirements engineering? If
not, put a standard requirements engineering practice in place.

• If you have an existing requirements engineering process, does it
address security requirements? If not, use the material presented
in this chapter and elsewhere to decide which steps need to be
taken to produce good security requirements. If your process does
address security requirements, have you considered the end-user’s
and attacker’s perspectives, in addition to the perspectives of other
stakeholders?

LME
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• There is no one-size-fits-all answer to security requirements engineer-
ing. You need to analyze your projects to figure out which ones need
more attention to security requirements (such as mission-critical sys-
tems) and which ones are less critical (such as administrative systems
that don’t contain sensitive data). Note, however, that even unimpor-
tant systems can potentially provide an attacker with an indirect
means to access more critical systems and sensitive data.

• Start small. Try out your new and improved practices on a couple
of systems under development so that you can debug the process
without making all of your projects part of a grand experiment.
The case study results described on the BSI Web site give guidance
on how to go about this [BSI 10, 11].

• Document your results—both positive and negative—and use
them to improve your processes. As you know, development pro-
cesses need to be revisited periodically, just like everything else we
do in software and security engineering.

• Don’t be a victim of NIH (“not invented here”). If someone else has
an approach to security requirements engineering that could
potentially be useful to you, give it a try. It’s not necessary to rein-
vent the wheel every time.
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Chapter 4

Secure Software 
Architecture and 
Design

4.1 Introduction

4.1.1 The Critical Role of Architecture and Design

Software architecture and design is where ambiguities and ideas are
translated and transformed into reality, where the what and why of
requirements become the who, when, where, and how of the software to
be. From a functional perspective, this transition from desire to actual
form is second only to the requirements phase in contributing to the
overall quality and success of the eventual software deliverable. From
a security perspective, architecture and design is considered by many
experts as the single most critical phase of the SDLC. Good decisions
made during this phase will not only yield an approach and structure
that are more resilient and resistant to attack, but will often also help
to prescribe and guide good decisions in later phases such as code and
test. Bad decisions made during this phase can lead to design flaws
that can never be overcome or resolved by even the most intelligent
and disciplined code and test efforts. 

LME
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General Objectives of Software Architecture and Design

• Completeness
– Supports the full scope of the defined requirements

• Stability
– Consistently performs as intended within its defined

operational context
• Flexibility

– Can adapt to changing conditions
– Decomposable such that selected components can be

replaced going forward with minimal impact to the 
software

• Extensibility
– Leverages industry standards
– Long-lived and resistant to obsolescence

• Scalability
– Operates effectively at any size and load

Security-Specific Objectives of Software Architecture 
and Design

• Comprehensive functional security architecture
– Security features and capabilities are fully enabled

• Attack resistance
– Contains minimal security weaknesses that could be

exploited
• Attack tolerance

– While resisting attack, software function and capability
are not unduly affected

• Attack resilience
– In the face of successful attack, the effects on the software

are minimized



4.1 Introduction 117

While much of the fanfare of software security today focuses on buffer
overflows, SQL injection, and other implementation bugs, the reality is
that approximately half of the defects leading to security vulnerabili-
ties found in today’s software are actually attributable to flaws in
architecture and design [McGraw 2006]. These flaws tend to have a
much greater footprint in terms of their exploit and potential security
impact within a single piece of software and potentially across multi-
ple projects and systems. The goal of building security into the archi-
tecture and design phase of the SDLC is to significantly reduce the
number of flaws as early as possible while also minimizing ambigu-
ities and other weaknesses.

4.1.2 Issues and Challenges

Just as security software (e.g., application firewalls, encryption pack-
ages) is not the same thing as software security (the practice of mak-
ing software more secure), so too security architecture (the
architecture of security components) is not the same as secure archi-
tecture (architecture that is resilient and resistant to attack). Security
is not simply about functionality. Rather, it is about the assurance
both that the software will do what it is expected to do and that it
will not do what it is not expected to do. The challenge to building
security into the architecture and design portion of the SDLC is that
not only must the architecture address currently understood security
issues—both known weaknesses and attacks—but at its level of
abstraction it must also be flexible and resilient under constantly
changing security conditions. 

This moving target of weakness and vulnerability, combined with the
proactive and creative nature of the security attacker, means that no
system can ever be perfectly secure. The best that can be achieved is a
minimized risk profile accomplished through disciplined and continu-
ous risk management. The practice of architectural risk analysis
(involving threat modeling, risk analysis, and risk mitigation plan-
ning) performed during the architecture and design phase is one of the
cornerstones of this risk management approach. (See Section 7.4.2 for a
description of a high-level risk management framework within which
to conduct architectural risk analysis.)

Because of their complex yet critical nature, both architectural risk analy-
sis and the basic activities of secure architecture and design require
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the application of diverse, high-level knowledge. This knowledge is, for
the most part, based on experience and historically has been very diffi-
cult to come by, leaving this field in the past to become the realm of a
small number of experts and gurus. More recently, great strides have
been made to capture, codify, and share this sort of knowledge among
a much broader audience. With this foundation, every software devel-
opment team, including architects and designers, can build on the
knowledge of veteran experts. Some examples of these knowledge
resources (security principles, security guidelines, and attack patterns)
are described in Section 4.3.

This chapter introduces some of the resources available, in the form of
practices and knowledge, for building security into the architecture
and design phase of the SDLC. Although it is not a complete treatment
of the topic, it does provide the more critical resources needed to
address security as part of software development processes. Based on
the context of your project, you can decide how best to integrate these
practices and knowledge resources into your processes. 

Specific Project Manager Concerns During Software Architecture and Design

Concern Process/Knowledge

Delivering what was specified
• Deliverables must fulfill the 

objectives of the project

Architectural risk analysis

Getting it right the first time
• Minimize rework

Architectural risk analysis

Effectively shoring up staff 
expertise shortfalls

Security principles
Security guidelines
Attack patterns



4.2 Software Security Practices for Architecture and Design 119

4.2 Software Security Practices for 
Architecture and Design: Architectural 
Risk Analysis1, 2

If you are looking to integrate security concerns into the software
architecture and design phase of the SDLC, the practice of architec-
tural risk analysis is of utmost importance. Architectural risk analysis
is intended to provide assurance that architecture and design-level
security concerns are identified and addressed as early as possible in
the life cycle, yielding improved levels of attack resistance, tolerance,
and resilience.3 Without this kind of analysis, architectural flaws will
remain unaddressed throughout the life cycle (though they often
cause trouble during implementation and testing) and will likely
result in serious security vulnerabilities in the deployed software. No
other single action, practice, or resource applied during the architec-
ture and design phase of the SDLC will have as much positive impact
on the security risk profile of the software being developed. 

While architectural risk analysis does not focus primarily on assets, it
does depend on the accurate identification of the software’s ultimate
purpose and understanding of how that purpose ties into the busi-
ness’s activities to qualify and quantify the risks identified during this
process. For this reason, a solid understanding of the assets that the
software guards or uses should be considered a prerequisite to per-
forming architectural risk analysis. Methodologies for asset identifica-
tion are available from a wide variety of risk management sources.

During risk analysis, potential threats are identified and mapped to
the risks they bring to bear. These risks are a function of the likelihood
of a given threat exploiting a particular potential vulnerability and the
resulting impact of that adverse event on the organization or on infor-
mation assets. To determine the likelihood of an adverse event, threats
to the software must be analyzed in conjunction with the potential vul-
nerabilities and the security controls in place for the software. The

1. The majority of the content in this section is adapted from the Architectural Risk Analysis con-
tent area of the Build Security In Web site authored by Paco Hope and Steve Lavenhar of Cigital,
Inc., and Gunnar Peterson of Artec Group [BSI 15]. 

2. The Build Security In Web site contains a Software Risk Assessment Terminology description
that provides further details on the terminology used in this section [BSI 16].

3. Attack resistance, tolerance, and resilience are defined in Section 2.3.
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impact refers to the magnitude of harm that could be caused by real-
ized risk. Its level is governed by the potential costs and losses to indi-
viduals or to the organization, its mission, or its assets and, in turn,
leads to assignment of a relative value to the information assets and
resources affected (e.g., the criticality and sensitivity of the software
components and data). In the end, the results of the risk analysis help
identify appropriate controls, revisions, or actions for reducing or
eliminating risk during the risk mitigation process. 

The risk analysis methodology consists of six activities:

• Software characterization
• Threat analysis
• Architectural vulnerability assessment
• Risk likelihood determination
• Risk impact determination
• Risk mitigation planning

These activities are described next.

4.2.1 Software Characterization

The first step required in analyzing any software, whether new or
existing, for risk is to achieve a full understanding of what the soft-
ware is and how it works. For architectural risk analysis, this under-
standing requires at least minimal description using high-level
diagramming techniques. The exact format used may vary from orga-
nization to organization and is not critically important. What is impor-
tant is coming up with a comprehensive, yet concise picture that
unambiguously illustrates the true nature of the software. 

One format that has proven itself particularly effective for this pur-
pose is a simple whiteboard-type, high-level, one-page diagram that
illustrates how the components are wired together, as well as how
control and data flow are managed [McGraw 2006]. This “forest-
level” view is crucial for identifying architecture and design-level
flaws that just don’t show up during code-level reviews. For more
detailed analysis, this one-page diagram can be fleshed out as neces-
sary with more detailed design descriptions.

Gathering information for this characterization of the software typically
involves reviewing a broad spectrum of system artifacts and conducting
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in-depth interviews with key high-level stakeholders such as product/
program managers and software architects. Useful artifacts to review
for software characterization include, but are not limited to, the follow-
ing items:

• Software business case
• Functional and nonfunctional requirements
• Enterprise architecture requirements
• Use case documents
• Misuse/abuse case documents
• Software architecture documents describing logical, physical, and

process views
• Data architecture documents
• Detailed design documents such as UML diagrams that show

behavioral and structural aspects of the system
• Software development plan
• Transactions security architecture documents
• Identity services and management architecture documents
• Quality assurance plan
• Test plan
• Risk management plan
• Software acceptance plan
• Problem resolution plan
• Configuration and change management plan

In cases where the software is already in production or uses resources
that are in production (e.g., databases, servers, identity systems), these
systems may have already been audited and assessed. These assess-
ments, when they exist, may provide a rich set of analysis information.

Although it is often not practical to model and depict all possible inter-
relationships, the goal of the software characterization activity is to
produce one or more documents that depict the vital relationships
between critical parts of the software. Using information gathered
through asset identification, interviews, and artifact analysis, the dia-
grams and documents gradually take shape.

Figure 4–1 presents an example of a high-level, one-page system soft-
ware architecture diagram. This diagram shows major system compo-
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Figure 4–1: High-level, one-page system software architecture diagram
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nents, their interactions, and various zones of trust.4 Avatars and their
associated arrows represent potential attackers and attack vectors
against the system. These potential threats and attack vectors are fur-
ther fleshed out and detailed during the following stages of architec-
tural risk analysis.

4.2.2 Threat Analysis

Threats are agents that violate the protection of information assets and
site security policy. Threat analysis identifies relevant threats for a spe-
cific architecture, functionality, and configuration. It may assume a
given level of access and skill level that the attacker may possess. Dur-
ing this analysis, threats may be mapped to vulnerabilities to under-
stand how the software may be exploited. A mitigation plan is
composed of countermeasures that are considered to be effective
against the identified vulnerabilities that these threats exploit.

Attackers who are not technologically sophisticated are increasingly
performing attacks on software without really understanding what it
is they are exploiting, because the weakness was discovered by some-
one else. These individuals, who are often referred to as “script kid-
dies,” typically do not launch attacks in an effort to obtain specific
information or target specific organizations. Instead, they use the
knowledge of various vulnerabilities to broadly scan the entire Inter-
net for systems that possess those vulnerabilities, and then attack
whichever ones they come across. At the other end of the attacker
spectrum, highly skilled threats targeting very specific organizations,
systems, and assets have become increasing prevalent. Threat analysis
should evaluate and identify threats across this spectrum.

Table 4–1, which was developed by NIST, summarizes a very generic
set of potential threat sources [NIST 2002, p. 14].

An issue that greatly complicates the prevention of threat actions is that
the attacker’s underlying intention often cannot be determined. Both
internal and external threat sources may exist, and an attack taxonomy
should consider the motivation and capability of both types of threats.
Internal attacks might be executed by individuals such as disgruntled
employees and contractors. It is important to note that nonmalicious use
by threat actors may also result in software vulnerabilities being

4. Zones of trust are areas of the system that share a common level and management mechanism
of privilege (e.g., Internet, dmz, hosting LAN, host system, application server, database host).
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Table 4–1: NIST Threat Identification and Characterization 

Threat Source Motivation Threat Actions

Cracker Challenge
Ego
Rebellion

• System profiling
• Social engineering
• System intrusion, break-ins
• Unauthorized system access

Computer criminal Destruction of information
Illegal information disclosure
Monetary gain
Unauthorized data alteration

• Computer crime (e.g., cyberstalking)
• Fraudulent act (e.g., replay, impersonation, interception)
• Information bribery
• Spoofing
• System intrusion
• Botnets
• Malware: Trojan horse, virus, worm, spyware
• Spam
• Phishing

Terrorist Blackmail
Destruction
Exploitation
Revenge
Monetary gain
Political gain

• Bomb
• Information warfare
• System attack (e.g., distributed denial of service)
• System penetration
• System tampering
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Industrial
espionage

Competitive advantage
Economic espionage
Blackmail

• Economic exploitation
• Information theft
• Intrusion on personal privacy
• Social engineering
• System penetration
• Unauthorized system access (access to classified, 

proprietary, and/or technology-related information)

Insiders
(poorly trained, 
disgruntled, 
malicious,
negligent,
dishonest, or 
terminated
employees)
[CERT 2007]

Curiosity
Ego
Intelligence
Monetary gain
Revenge
Unintentional errors and 
omissions (e.g., data entry 
errors, programming errors)
Wanting to help the 
company (victims of social 
engineering)
Lack of procedures or 
training

• Assault on an employee
• Blackmail
• Browsing of proprietary information
• Computer abuse
• Fraud and theft
• Information bribery
• Input of falsified, corrupted data
• Interception
• Malicious code (e.g., virus, logic bomb, Trojan horse)
• Sale of personal information
• System bugs
• System intrusion
• System sabotage
• Unauthorized system access

Table 4–1: NIST Threat Identification and Characterization (Continued)

Threat Source Motivation Threat Actions
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exploited. Internal threat actors may act either on their own or under the
direction of an external threat source (for example, an employee might
install a screensaver that contains a Trojan horse). 

Some threat actors are external. These attackers could include structured
external, transnational external, and unstructured external threats:

• Structured external threats are generated by a state-sponsored
entity, such as a foreign intelligence service. The resources sup-
porting the structured external threat are usually quite substantial
and highly sophisticated.

• Transnational threats are generated by organized nonstate entities,
such as drug cartels, crime syndicates, and terrorist organizations.
Such threats generally do not have as many resources behind them
as do structured threats (although some of the larger transnational
threat organizations may have more resources than some smaller,
structured threat organizations). The nature of the transnational
external threat makes it more difficult to trace and provide a
response, however. These kinds of threats can target members or
staff of the Treasury, for example, by employing any or all of the
techniques mentioned above.

• Unstructured external threats are usually generated by individuals
such as crackers. Threats from this source typically lack the
resources of either structured or transnational external threats but
nonetheless may be very sophisticated. The motivation of such
attackers is generally—but not always—less hostile than that
underlying the other two classes of external threats. Unstructured
threat sources generally limit their attacks to information system
targets and employ computer attack techniques. New forms of
loosely organized virtual hacker organizations (hacktivists—hack-
ers and activists) are also emerging.

4.2.3 Architectural Vulnerability Assessment

Vulnerability assessment examines the preconditions that must be
present for vulnerabilities to be exploited and assesses the states that
the software might enter upon exploit. Three activities make up archi-
tectural vulnerability assessment: attack resistance analysis, ambiguity
analysis, and dependency analysis. As with any quality assurance pro-
cess, risk analysis testing can prove only the presence—not the
absence—of flaws. Architectural risk analysis studies vulnerabilities
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and threats that might be malicious or nonmalicious in nature.
Whether the vulnerabilities are exploited intentionally (malicious) or
unintentionally (nonmalicious), the net result is that the desired secu-
rity properties of the software may be affected. 

One advantage when conducting vulnerability assessment at the
architectural level is the ability to see the relationships and effects at
a “forest-level” rather than “tree-level” view. As described earlier,
this perspective takes the form of a one-page overview of the system
created during software characterization. In practice, it means
assessing vulnerabilities not just at a component or function level,
but also at interaction points. Use-case models help to illustrate the
various relationships among system components. In turn, the archi-
tecture risk analysis should factor these relationships into the vulner-
abilities analysis and consider vulnerabilities that may emerge from
these combinations.

Attack Resistance Analysis

Attack resistance analysis is the process of examining software archi-
tecture and design for common weaknesses that may lead to vulnera-
bilities and increase the system’s susceptibility to common attack
patterns.

Many known weaknesses are documented in the software security lit-
erature, ranging from the obvious (failure to authenticate) to the subtle
(symmetric key management problems). Static code checkers, runtime
code checkers, profiling tools, penetration testing tools, stress test
tools, and application scanning tools can find some security bugs in
code, but they do not as a rule address architectural flaws. For exam-
ple, a static code checker can flag bugs such as buffer overflows, but it
cannot identify security vulnerabilities such as transitive trust mis-
takes.5 Architectural-level flaws can currently be found only through
human analysis.

When performing attack resistance analysis, consider the architecture
as it has been described in the artifacts that were reviewed for asset
identification. Compare it against a body of known bad practices, such
as those outlined in the Common Weakness Enumeration (CWE)

5. Transitive trust mistakes are improper assumptions of the form that because component A trusts
component B, and component B trusts component C, component A should trust component C.
When dealing with the complexities of security in software, these kinds of issues are rarely as
straightforward as they appear and are fraught with risk owing to unvalidated assumptions.
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[CWE 2007], or known good principles, such as those outlined in
Section 4.3. For example, the principle of least privilege dictates that all
software operations should be performed with the least possible privi-
lege required to meet the need. To consider architecture in light of this
principle, find all the areas in the software that operate at an elevated
privilege level. To do so, you might perhaps diagram the system’s
major modules, classes, or subsystems and circle areas of high privi-
lege versus areas of low privilege. Consider the boundaries between
these areas and the kinds of communications that occur across those
boundaries.

Once potential vulnerabilities have been identified, the architecture
should be assessed for how well it would fare against common attack
patterns such as those outlined in the Common Attack Pattern Enu-
meration and Classification (CAPEC) [CAPEC 2007]. CAPEC
describes the following classes of attack, among others:

• Abuse of functionality
• Spoofing
• Probabilistic techniques
• Exploitation of privilege or trust
• Injection
• Resource manipulation
• Time and state attacks

Relevant attack patterns should be mapped against the architecture,
with special consideration being given to areas of identified vulnera-
bility. Any attack found to be viable against identified vulnerabilities
should be captured and quantified as a risk to the software.

Ambiguity Analysis

Ambiguity is a rich source of vulnerabilities when it exists between
requirements or specifications and development. A key role of archi-
tecture and design is to eliminate the potential misunderstandings
between business requirements for software and the developers’
implementation of the software’s actions. All artifacts defining the
software’s function, structure, properties, and policies should be
examined for any ambiguities in description that could potentially
lead to multiple interpretations. Any such opportunities for multiple
interpretations constitute a risk to the software.
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A key consideration is to note places where the requirements or archi-
tecture are ambiguously defined or where the implementation and
architecture either disagree or fail to resolve the ambiguity. For example,
a requirement for a Web application might state that an administrator
can lock an account, such that the user can no longer log in while the
account remains locked. But what about sessions for that user that are
actively in use when the administrator locks the account? Is the user
suddenly and forcibly logged out, or does the active session remain
valid until the user logs out? In an existing system, the authentication
and authorization architecture must be compared to the actual imple-
mentation to learn the answer to this question. The security ramifica-
tions of logins that persist even after the account is locked should be
balanced against the sensitivity of the information assets being guarded.

Dependency Analysis

An architectural risk assessment must include an analysis of the vul-
nerabilities associated with the software’s execution environment. The
issues addressed as part of this assessment will include operating sys-
tem vulnerabilities, network vulnerabilities, platform vulnerabilities
(popular platforms include WebLogic, WebSphere, PHP, ASP.net, and
Jakarta), and interaction vulnerabilities resulting from the interaction
of components. The goal of this analysis is to develop a list of software
or system vulnerabilities that could be accidentally triggered or inten-
tionally exploited, resulting in a security breach or a violation of the
system’s security policy. When credible threats can be combined with
the vulnerabilities uncovered in this exercise, a risk exists that needs
further analysis and mitigation.

The types of vulnerabilities that will exist and the methodology
needed to determine whether the vulnerabilities are present can vary.
At various times, the analysis might focus on the organization’s secu-
rity policies, planned security procedures, nonfunctional requirement
definitions, use cases, misuse/abuse cases, architectural platforms/
components/services, and software security features and security con-
trols (both technical and procedural) used to protect the system,
among other issues.

Independent of the life-cycle phase, online vulnerability references
should be consulted. Numerous such resources are available, includ-
ing the National Vulnerability Database (NVD) [NIST 2007], the
Common Vulnerabilities and Exposures (CVE) database [CVE 2007],
and the BugTraq email list [SecurityFocus 2007], among others. These
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sites and lists should be consulted regularly to keep the vulnerability
list up-to-date for a given architecture.

Vulnerability Classification

Classifying vulnerabilities allows for pattern recognition of vulnerabil-
ity types. This exercise, in turn, may enable the software development
team to recognize and develop countermeasures to deal with classes of
vulnerabilities by dealing with the vulnerabilities at a higher level of
abstraction. The most comprehensive and mature example of such a
classification taxonomy currently available is the Common Weakness
Enumeration (CWE) [CWE 2007], which has been crafted as a normal-
ized aggregation of dozens of the other such taxonomies recognized and
respected by the industry. The CWE includes seven top-level catego-
ries for architecture and source code [Tsipenyuk 2005]:

• Data Handling
• API Abuse
• Security Features
• Time and State
• Error Handling
• Code Quality
• Encapsulation

Mapping Threats and Vulnerabilities

The combination of threats and vulnerabilities illustrates the risks to
which the software is exposed. Several models exist to categorize the
areas where these threats and vulnerabilities frequently intersect. One
example is Microsoft’s STRIDE [Howard 2002], which provides a model
of risks to a computer system related to spoofing, tampering, repudia-
tion, information disclosure, denial of service, and elevation of privilege.

Risk classification assists in communicating and documenting risk
management decisions. Risk mitigation mechanisms should map to
the risk category or categories of the threats and vulnerabilities that
have been identified through this effort.

4.2.4 Risk Likelihood Determination

Having determined which threats are important and which vulnera-
bilities might exist to be exploited, it can be useful to estimate the
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likelihood of the various possible risks. In software security, “likeli-
hood” is a qualitative estimate of how likely a successful attack will
be, based on analysis and past experience. Because of the complexity
of the software domain and the number of variables involved in risk
analysis, this likelihood measure is not an actual mathematical proba-
bility of a successful attack. Nonetheless, the concept of likelihood
can be useful when prioritizing risks and evaluating the effectiveness
of potential mitigations.

Consider these factors, all of which are incorporated in the likelihood
estimation:

• The threat’s motivation and capability
• The vulnerability’s impact (and therefore attractiveness to an

attacker)
• The effectiveness of current controls

Threats’ motivation and capability will vary widely. For instance, a
college student who hacks for fun is less highly motivated than a paid
hacker who has backing or the promise of a significant payment from
an organized crime cabal. A former employee who has a specific griev-
ance against a company will be more motivated and better informed
than an outsider who has no special knowledge of the target soft-
ware’s internal workings.

The effectiveness of current controls characterizes how high the bar
is set for an intentional attacker or how unlikely an accidental fail-
ure is. For example, simple user IDs and passwords can be compro-
mised much more easily than most two-factor authentication
systems. Adding a second authentication factor raises the bar for a
would-be threat. However, if the second factor in the authentication
is a biometric thumbprint reader that can be spoofed with latent
image recovery techniques, then the system may be less secure than
desired.

The likelihood estimation is a subjective combination of these three
qualities—motivation, directness of vulnerability, and compensat-
ing controls—and is typically expressed as a rating of high,
medium, or low. Table 4–2 describes one potential model for calcu-
lating likelihood from these three qualities. In most cases, such
hard-and-fast rules cannot adequately cover all contingencies, so
calculations must be tailored for each context and remain flexible to
interpretation.
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4.2.5 Risk Impact Determination

Independent of the risk’s likelihood and the system’s controls against
it, the risk’s impact must be determined. That is, what consequences
will the business face if the worst-case scenario in the risk description
comes to pass? Furthermore, the risk analysis must account for other
credible scenarios that are not the worst case, yet are bad enough to
warrant attention. This section discusses three aspects of risk impact
determination: identifying the threatened assets, identifying business
impact, and determining impact locality.

Identify Threatened Assets

The assets threatened by realization of the risk, and the nature of what
will happen to them, must be identified. Common impacts on infor-
mation assets include loss of data, corruption of data, unauthorized or
unaudited modification of data, unavailability of data, corruption of
audit trails, and insertion of invalid data.

Identify Business Impact

The business will suffer some impact if an attack takes place. It is of
paramount importance to characterize those effects in as specific
terms as possible. Risk management efforts are almost always

Table 4–2: Model for Calculating Likelihood

High The three qualities are all weak. A threat is highly motivated 
and sufficiently capable, a vulnerability exists that is severe, 
and controls to prevent the vulnerability from being 
exploited are ineffective.

Medium One of the three qualities is compensating, but the others are 
not. The threat is perhaps not very motivated or not suffi-
ciently capable, the controls in place might be reasonably 
strong, or the vulnerability might be not very severe.

Low Two or more of the three qualities are compensating. The 
threat might lack motivation or capability; strong controls 
might be in place to prevent, or at least significantly impede, 
the vulnerability from being exploited; and the vulnerability 
might have a very low impact.
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funded ultimately by management in the organization whose pri-
mary concern is monetary. Those managers’ support and under-
standing can be assured only by quantifying software risks in terms
of their fiscal implications. If the worst possible consequence of a
software failure is the loss of $10,000 to the business, but it will take
$20,000 in labor-hours and testing to fix the software, the return on
the mitigation investment does not make financial sense. Further-
more, correct financial assessment of the risk’s effects drives prioriti-
zation. It is usually more important to fix a flaw that can precipitate a
$25 million drop in the company’s market capitalization than to
address a flaw that can expose the business to a regulatory penalty of
$500,000. Unless software risks are tied to business impacts, how-
ever, such reasoning is not possible.

Examples of business impacts include loss of market share, loss of rep-
utation, depreciation of stock value, fines, legal fees and judgments,
costs of technical remediation, and theft. A good example of a case in
which all of these impacts are relevant is the TJX data breach, where
lax wireless security led to large quantities of customer data being
accessed through exploitation of a vulnerability. TJX suffered severe
brand damage and costs that some analysts predict may reach into the
billions of dollars:

IPLocks, a compliance and database security company,
released a report earlier this month estimating that the TJX
breach will eventually cost the company $100 per lost record,
or a total of $4.5 billion. The company based the estimate on
the accumulated costs of fines, legal fees, notification
expenses, and brand impairment, according to Adrian Lane,
the company’s chief technology officer [Gaudin 2007].

Risk Exposure Statement

The risk exposure statement combines the likelihood of a risk with the
impact of that risk. The product of these two analyses provides the over-
all summary of risk exposure for the organization for each risk. Table 4–3
describes a method of generating the risk exposure statement.

The risk exposure statement generalizes the overall exposure of the
organization relative to the given risk and offers more granular visi-
bility to both its impact and its likelihood. In this way, the risk expo-
sure statement gives the organization finer-grained control over risk
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management but does not require all risks to be eliminated. As Alan
Greenspan, Chairman of the Federal Reserve Board, said in 1994:

There are some who would argue that the role of the bank
supervisor is to minimize or even eliminate bank failure, but
this view is mistaken in my judgment. The willingness to
take risk is essential to the growth of the free market econ-
omy . . . [i]f all savers and their financial intermediaries
invested in only risk-free assets, the potential for business
growth would never be realized.6

4.2.6 Risk Mitigation Planning

Mitigation of a risk entails changing the architecture of the software or
the business in one or more ways to reduce the likelihood or the impact
of the risk. Formal and informal testing, such as penetration testing,
may be used to test the effectiveness of these mitigation measures.7

Mitigations aimed at architectural flaws are often more complicated to
implement than mitigations focusing on coding bugs, which tend to be
more localized. Architectural mitigations often require changes to mul-
tiple modules, multiple systems, or at least multiple classes; and the
affected entities may be managed and implemented by different teams.
Thus, when a flaw is found, the fix often requires agreement across

Table 4–3: Risk Exposure Calculation Matrix

Impact

Low Medium High

Likelihood

Low Low Low Medium

Medium Low Medium High

High Medium High High

6. Address to the Garn Institute of Finance, University of Utah, November 30, 1994.

7. Although changing how the business operates (e.g., insuring the business against impacts of
risks) is a valid response to risk, it is outside the scope of architecture assessment, so this possibil-
ity will not be covered here.



4.2 Software Security Practices for Architecture and Design 135

multiple teams, testing of multiple integrated modules, and synchroni-
zation of release cycles that may not always be present in the different
modules.

Measures intended to reduce the likelihood of a risk can take several
forms. Raising the bar in terms of the skills necessary to exploit a vul-
nerability is often a first step in this direction. For example, changing
authentication mechanisms from user IDs and passwords to pre-
shared public key certificates can make it far more difficult to imper-
sonate a user. Reducing the period of time when a vulnerability is
available for exploit is another way to reduce the likelihood of a risk
coming to fruition. For example, if sessions expire after 10 minutes of
inactivity, then the window of opportunity for session hijacking is
about 10 minutes long.

Measures intended to reduce the impact of a risk can also take several
forms. Most developers immediately consider eliminating the vulner-
ability altogether or fixing the flaw so that the architecture cannot be
exploited. Cryptography can help, for example, as long as it is applied
correctly. It is easier to detect corruption in encrypted data than in
unencrypted data, and encrypted data is more difficult for attackers to
use if they collect it. Sometimes, from a business point of view, it
makes more sense to focus on building functionality to detect and log
successful exploits and providing enough related auditing informa-
tion to effectively recover after the fact. Remediating a broken system
might be too expensive, whereas adding enough functionality to allow
recovery after an exploit might be sufficient.

Many mitigations can be described as either detection strategies or
correction strategies. Depending on the cost of making failure impossi-
ble through correction, the organization may find it much more cost-
effective to enable systems to detect and repair failure quickly and
accurately. Imagine a software module that is very temperamental and
tends to crash when provided with bad input and (for the sake of
argument) cannot be modified or replaced. A focus on correction
would add business logic to validate input and make sure that the
software module never received input that it could not handle. In con-
trast, a focus on detection would add monitoring or other software to
watch for a crash of the module and try to restart the module quickly
with minimal impact.

Mitigation is never without cost. The fact that remediating a problem
costs money makes it even more important to handle the risk impact
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determination step well. It is typically straightforward to characterize
the cost of implementing mitigations—for example, in terms of hours
of labor, cost of shipping new units with the improved software, or
delay entering the market with new features because old ones must be
fixed. This ability to characterize the mitigation’s cost, however, is of
little value unless the cost of the risk’s business impact is known.

Of course, risk mitigation mechanisms themselves can introduce
threats and vulnerabilities to the software. Designs also evolve and
change over time. The risk analysis process is therefore iterative,
accounting for and guarding against new risks that might have been
introduced. 

4.2.7 Recapping Architectural Risk Analysis

Architectural risk analysis is a critical activity in assuring the secu-
rity of software. Current technologies cannot automate the detection
process for architectural flaws, which often prove to be among the
most damaging security defects found in software. Human-executed
architectural risk analysis is the only way to effectively address these
problems.

Risk management is an ongoing process, and architectural risk analy-
sis follows suit. Architectural risk analysis is conducted at discrete
points in time and performed iteratively as an ongoing process across
the life cycle. As the software evolves, its architecture must be kept up-
to-date. The body of known attack patterns (discussed in Chapter 2) is
always growing, so continued success in attack resistance analysis
depends on remaining current in software security trends. Ambiguity
analysis is always necessary as conditions and the software evolve.
Even with that focus, it is worthwhile to occasionally step back and
reappraise the entire system for ambiguity. As platforms are upgraded
and evolve in new directions, each subsequent release will fix older
problems—and probably introduce new ones. Given this probability,
dependency analysis must continue throughout the life of the product. 

A master list of risks should be maintained during all stages of the
architectural risk analysis. This list should be continually revisited to
determine mitigation progress for the project at hand and to help
improve processes for future projects. For example, the number of
risks identified in various software artifacts and/or software life-cycle
phases may be used to identify problematic areas in the software
development process. Likewise, the number of risks mitigated over
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time may be used to show concrete progress as risk mitigation activi-
ties unfold. Ideally, the display and reporting of risk information
should be aggregated in some automated way and displayed in a risk
“dashboard” that enables the development team to make accurate and
informed decisions. 

4.3 Software Security Knowledge for 
Architecture and Design: Security 
Principles, Security Guidelines, and 
Attack Patterns

One of the significant challenges you may face when seeking to inte-
grate security into the architecture and design of your software
projects is the scarcity of experienced architects who have a solid grasp
of security concerns. The problem here is the learning curve associated
with security concerns: Most developers simply don’t have the benefit
of the years and years of lessons learned that an expert in software
security can call on. To help address this issue, you can leverage codi-
fied knowledge resources—such as security principles, security guide-
lines, and attack patterns—to bolster your software architects’ basic
understanding of software security. These knowledge resources serve
as the fuel that effectively drives the process of architectural risk anal-
ysis. They guide the architects and designers by suggesting which
questions to ask, which issues to consider, and which mitigation mea-
sures to pursue. Although projects should still enlist the services of at
least one truly experienced software security architect, knowledge
resources such as security principles, security guidelines, and attack
patterns can help organizations to more effectively distribute these
scarce resources across projects. 

4.3.1 Security Principles8

Security principles are a set of high-level practices derived from real-
world experience that can help guide software developers (software
architects and designers in particular) in building more secure soft-

8. The majority of the content provided in this section is adapted from the Principles content area
of the Build Security In Web site authored by Sean Barnum and Michael Gegick of Cigital, Inc.
[BSI 17]. 
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ware. Jerome Saltzer and Michael Schroeder were the first researchers
to correlate and aggregate high-level security principles in the context
of protection mechanisms [Saltzer 1975]. Their work provides the
foundation needed for designing and implementing secure software
systems. Principles define effective practices that are applicable prima-
rily to architectural-level software decisions and are recommended
regardless of the platform or language of the software. As with many
architectural decisions, principles, which do not necessarily guarantee
security, at times may exist in opposition to each other, such that
appropriate tradeoffs must be made. Software architects, whether they
are crafting new software or evaluating and assessing existing soft-
ware, should always apply these design principles as a guide and
yardstick for making their software more secure.

Despite the broad misuse of the term “principle,” the set of things that
should be considered security principles is actually very limited. The
Principles content area of the Build Security In (BSI) Web site [BSI 17]
presents an aggregation of such principles, including many taken from
Saltzer and Schroeder’s original work and a few offered by other
thought leaders such as Gary McGraw, Matt Bishop, Mike Howard,
David LeBlanc, Bruce Schneier, John Viega, and NIST. The filter
applied to decide what constitutes a principle and what does not is
fairly narrow, recognizing that such lasting principles do not come
along every day. The high-level and lasting nature of these principles
leads to their widespread recognition, but also to a diversity of per-
spectives and interpretation.9

By leveraging security principles, a software development team can
benefit from the guidance of the industry’s leading practitioners and
can learn to ask the right questions of their software architecture and
design so as to avoid the most prevalent and serious flaws. Without
these security principles, the team is reduced to relying on the individ-
ual security knowledge of its most experienced members.

The following list outlines a core set of security principles that every
software development team member—from the people writing code
on up to the project managers—should be aware of and familiar with.
While this information is most actively put into play by software

9. Rather than instigating conflict by acting as self-appointed arbiters in defining the one true
interpretation of each principle, the authors of the BSI content decided to present readers with
the different points of view available and allow them to make their own interpretations based on
their personal trust filters. In doing this, editorial comment and explanatory prose were kept to a
minimum by design.
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architects and designers, awareness of these foundational concerns
across the team is a powerful force for reducing the risk to the soft-
ware posed by security issues. Brief descriptions are given here for
each principle; more detailed descriptions and examples are available
on the Principles content area on the BSI Web site.

The Principles for Software Security

• Least privilege
• Failing securely
• Securing the weakest link
• Defense in depth
• Separation of privilege
• Economy of mechanism
• Least common mechanism
• Reluctance to trust
• Never assuming that your secrets are safe
• Complete mediation
• Psychological acceptability
• Promoting privacy

The Principle of Least Privilege

Only the minimum necessary rights should be assigned to a subject10

that requests access to a resource and should be in effect for the short-
est duration necessary (remember to relinquish privileges). Granting
permissions to a user beyond the scope of the necessary rights of an
action can allow that user to obtain or change information in
unwanted ways. In short, careful delegation of access rights can limit
attackers’ ability to damage a system.

The Principle of Failing Securely

When a system fails, it should do so securely. This behavior typically
includes several elements: secure defaults (the default is to deny
access); on failure, undo changes and restore the system to a secure
state; always check return values for failure; and in conditional code/
filters, make sure that a default case is present that does the right

10. The term subject used throughout the Principle descriptions is intended to denote a user, pro-
cess, or other entity acting on the software system.
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thing. The confidentiality and integrity of a system should remain
unbreached even though availability has been lost. During a failure,
attackers must not be permitted to gain access rights to privileged
objects that are normally inaccessible. Upon failing, a system that
reveals sensitive information about the failure to potential attackers
could supply additional knowledge that threat actors could then use
to create a subsequent attack. Determine what may occur when a sys-
tem fails and be sure it does not threaten the system.

The Principle of Securing the Weakest Link

Attackers are more likely to attack a weak spot in a software system
than to penetrate a heavily fortified component. For example, some
cryptographic algorithms can take many years to break, so attackers
are unlikely to attack encrypted information communicated in a net-
work. Instead, the endpoints of communication (e.g., servers) may be
much easier to attack. Knowing when the weak spots of a software
application have been fortified can indicate to a software vendor
whether the application is secure enough to be released.

The Principle of Defense in Depth

Layering security defenses in an application can reduce the chance of a
successful attack. Incorporating redundant security mechanisms
requires an attacker to circumvent each mechanism to gain access to a
digital asset. For example, a software system with authentication
checks may prevent intrusion by an attacker who has subverted a fire-
wall. Defending an application with multiple layers can eliminate the
existence of a single point of failure that compromises the security of
the application.

The Principle of Separation of Privilege

A system should ensure that multiple conditions are met before it
grants permissions to an object. Checking access on only one condition
may not be adequate for enforcing strong security. If an attacker is able
to obtain one privilege but not a second, the attacker may not be able to
launch a successful attack. If a software system largely consists of one
component, however, it will not be able to implement a scheme of having
multiple checks to access different components. Compartmentaliz-
ing software into separate components that require multiple checks
for access can inhibit an attack or potentially prevent an attacker from
taking over an entire system.
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The Principle of Economy of Mechanism

One factor in evaluating a system’s security is its complexity. If the
design, implementation, or security mechanisms are highly complex,
then the likelihood that security vulnerabilities will exist within the
system increases. Subtle problems in complex systems may be difficult
to find, especially in copious amounts of code. For instance, analyzing
the source code that is responsible for the normal execution of a func-
tionality can be a difficult task, but checking for alternative behaviors
in the remaining code that can achieve the same functionality may
prove even more difficult. Simplifying design or code is not always
easy, but developers should strive for implementing simpler systems
when possible.

The Principle of Least Common Mechanism

Avoid having multiple subjects share those mechanisms that grant
access to a resource. For example, serving an application on the Inter-
net allows both attackers and users to gain access to the application. In
this case, sensitive information might potentially be shared between
the subjects via the same mechanism. A different mechanism (or
instantiation of a mechanism) for each subject or class of subjects can
provide flexibility of access control among various users and prevent
potential security violations that would otherwise occur if only one
mechanism were implemented.

The Principle of Reluctance to Trust

Developers should assume that the environment in which their system
resides is insecure. Trust—whether it is extended to external systems,
code, or people—should always be closely held and never loosely
given. When building an application, software engineers should
anticipate malformed input from unknown users. Even if users are
known, they are susceptible to social engineering attacks, making
them potential threats to a system. Also, no system is ever 100 per-
cent secure, so the interface between two systems should be secured.
Minimizing the trust in other systems can increase the security of
your application.

The Principle of Never Assuming That Your Secrets Are Safe

Relying on an obscure design or implementation does not guarantee
that a system is secure. You should always assume that an attacker can
obtain enough information about your system to launch an attack. For
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example, tools such as decompilers and disassemblers may allow
attackers to obtain sensitive information that may be stored in binary
files. Also, insider attacks, which may be accidental or malicious, can
lead to security exploits. Using real protection mechanisms to secure
sensitive information should be the ultimate means of protecting your
secrets.

The Principle of Complete Mediation

A software system that requires access checks to an object each time a
subject requests access, especially for security-critical objects,
decreases the chances that the system will mistakenly give elevated
permissions to that subject. By contrast, a system that checks the sub-
ject’s permissions to an object only once can invite attackers to exploit
that system. If the access control rights of a subject are decreased after
the first time the rights are granted and the system does not check the
next access to that object, then a permissions violation can occur. Cach-
ing permissions can increase the performance of a system, albeit at the
cost of allowing secured objects to be accessed.

The Principle of Psychological Acceptability

Accessibility to resources should not be inhibited by security mecha-
nisms. If security mechanisms hinder the usability or accessibility of
resources, then users may opt to turn off those mechanisms. Where
possible, security mechanisms should be transparent to the users of
the system or, at most, introduce minimal obstruction. Security mecha-
nisms should be user friendly to facilitate their use and understanding
in a software application.

The Principle of Promoting Privacy

Protecting software systems from attackers who may obtain private
information is an important part of software security. If an attacker
breaks into a software system and steals private information about a
vendor’s customers, then those customers may lose their confidence
in the software system. Attackers may also target sensitive system
information that can supply them with the details needed to attack
that system. Preventing attackers from accessing private informa-
tion or obscuring that information can alleviate the risk of information
leakage.
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Recapping Security Principles

Security principles are the foundational tenets of the software security
domain. They are long-standing, universal statements of how to build
software the right way if security is a concern (which it always is).
These principles represent the experiential knowledge of the most
respected thought leaders and practitioners in the field of software
security. By leveraging them, your team gains access to the scalable
wisdom necessary for assessing and mitigating the security risk posed
by your software’s architecture and design.

For a full understanding and treatment of the security principles dis-
cussed here, we recommend that you review the more detailed content
available on the Build Security In Web site [BSI 17]. 

4.3.2 Security Guidelines11

Like security principles, security guidelines are an excellent resource
to leverage in your projects. They represent experiential knowledge
gained by experts over many years of dealing with software security
concerns within more specific technology contexts than those covered
by the broader security principles. Such guidelines can inform archi-
tectural decisions and analysis, but they also represent an excellent
starting point and checklist for software designers who are charged
with the task of integrating security concerns into their design efforts.
You should ensure that resources such as security guidelines are
readily available and frequently consulted by the software designers
on your teams before, during, and after the actual execution of the
architecture and design phase of the SDLC.

What Do Security Guidelines Look Like?

Numerous interpretations of what security guidelines are and what
they look like have been put forth. The BSI Web site contains one inter-
pretation. Gary McGraw’s book Software Security: Building Security In
[McGraw 2006] presents another.12

11. The majority of the content provided in this section is adapted from the Guidelines content
area of the Build Security In Web site, which was authored by William L. Fithin of the Software
Engineering Institute [BSI 06]. 

12. It would be far too lengthy to provide details for all interpretations in this book. An in-depth
treatment of security guidelines would make an excellent book of its own targeted at software
designers.
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The full description for one of the security guidelines from the BSI
Web site is included here as an example. This guideline is not necessar-
ily any more important than any other guideline or interpretation; it
was chosen at random to demonstrate the value of this resource.

Guideline: Follow the Rules Regarding Concurrency Management

Failure to follow proper concurrency management protocols can intro-
duce serious vulnerabilities into a system. In particular, concurrent
access to shared resources without using appropriate concurrency
management mechanisms produces hard-to-find vulnerabilities.
Many “functions” that are necessary to use can introduce “time of
check/time of use” vulnerabilities [Viega 2001].

When multiple threads of control attempt to share the same resource
but do not follow the appropriate concurrency protection protocol,
then any of the following results are possible:

• Deadlock: One or more threads may become permanently blocked
[Johansson 2005].

• Loss of information: Saved information is overwritten by another
thread [Gong 2003; Pugh 1999; Manson 2001, 2005].

• Loss of integrity of information: Information written by multiple
threads may be arbitrarily interlaced [Gong 2003; Pugh 1999; Man-
son 2001, 2005].

• Loss of liveness: Imbalance in access to shared resources by com-
peting threads can cause performance problems [Gong 2003; Pugh
1999; Manson 2001, 2005].

Any of these outcomes can have security implications, which are
sometimes manifested as apparent logic errors (decisions made based
on corrupt data).

Competing “Systems” (Time of Check/Time of Use)

This is the most frequently encountered subclass of concurrency-
related vulnerabilities. Many of the defects that produce these vul-
nerabilities are unavoidable owing to limitations of the execution
environment (i.e., the absence of proper concurrency control mecha-
nisms). A common mitigation tactic is to minimize the time interval
between check and use. An even more effective tactic is to use a
“check, use, check” pattern that can often detect concurrency viola-
tions, though not prevent them.
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Applicable Context

All of the following must be true:

• Multiple “systems” must be operating concurrently.
• At least two of those systems must use a shared resource (e.g., file,

device, database table row).
• At least one of those systems must use the shared resource in any

of the following ways:

– Without using any concurrency control mechanism. This includes
the situation where no such mechanism exists, such as conven-
tional UNIX file systems, causing corruption or confusion.

– Using the right concurrency control mechanism incorrectly.
This includes situations such as not using a consistent resource
locking order across all systems (e.g., in databases), causing
deadlocks.

– Using the wrong concurrency control mechanism (even if it
used correctly). This includes situations where a give resource
may support multiple concurrency control mechanisms that
are independent of one another [e.g., UNIX lockf() and flock()],
causing corruption or confusion.

These defects are frequently referred to as time of check/time of use
(or TOCTOU) defects because APIs providing access to the resource
neither provide any concurrency control operations nor perform any
implicit concurrency control. In this case, a particular condition (e.g.,
availability of resource, resource attributes) is checked at one point in
time and later program actions are based on the result of that check,
but the condition could change at any time, because no concurrency
control mechanism guarantees that the condition did not change.

Competing Threads within a “System” (Races)

The second largest class of concurrency-related vulnerabilities is gen-
erated by defects in the sharing of resources such as memory, devices,
or files. In such a case, the defect may be a design error associated with
the concurrency control mechanisms or with an implementation error,
such as not correctly using those mechanisms. Caching errors can be
considered members of this class.

Strictly speaking, signal-handling defects are not concurrency defects.
Signal handlers are invoked preemptively in the main thread of the pro-
cess, so signal handlers are not really concurrently executed. However,
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from the developer’s viewpoint, they “feel” like concurrent execution,
so we classify them here, at least for now.

Applicable Context

All of the following must be true:

• A “system” must have multiple concurrently operating threads of
control.

• Two or more of those threads must use a shared data object,
device, or other resource.

• At least one thread must use the shared resource without using the
appropriate concurrency control mechanism correctly (or at all).

Security Policies to Be Preserved

1. Threads must not deadlock.
2. Information must not be lost.
3. Information must not be corrupted.
4. Acceptable performance must be maintained.

How to Recognize This Defect

Concurrency defects are extremely difficult to recognize. There is no
general-purpose approach to finding them.

Impact Minimally Maximally

1 None Deadlock: One or more threads may become 
permanently blocked.

2 None Loss of information: Saved information is 
overwritten by another thread.

3 None Loss of integrity of information: Information 
written by multiple threads may be arbitrarily 
interlaced.

4 None Loss of liveness: Imbalance in access to shared 
resources by competing threads can cause 
performance problems.
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Recapping Security Guidelines

Security guidelines represent prescriptive guidance for those software
design-level concerns typically faced by the software development
project team. They provide an effective complement to the more
abstract and far-reaching security principles. When combined, these
two resources provide the knowledge necessary to know what you
should do when creating software architecture and design. When com-
bined with representations of the attacker’s perspective such as attack
patterns (described in Section 4.3.3), they also can provide an effective
checklist of what you may have failed to do to ensure that your soft-
ware is both resistant and resilient to likely attack.

4.3.3 Attack Patterns

As discussed in Chapter 2, attack patterns are another knowledge
resource available to the software project manager. They offer a for-
malized mechanism for representing and communicating the
attacker’s perspective by describing approaches commonly taken to
attack software. This attacker’s perspective, while important through-
out the SDLC, has increased value during architecture and design
phase. Attack patterns offer a valuable resource during three primary
activities of architecture and design: design and security pattern selec-
tion, threat modeling, and attack resistance.

One of the key methods for improving the stability, performance, and
security of a software architecture is the leveraging of proven patterns.
Appropriate selection of design patterns and security patterns can
offer significant architectural risk mitigation. Comprehensive attack
patterns can facilitate this process through identification of prescribed
and proscribed design and security patterns known to mitigate the

Efficacy Mitigation

Low Where no concurrency control mechanism is available, seek to 
minimize the interval between the time of check and the time 
of use. Technically this action does not correct the problem, 
but it can make the error much more difficult to exploit.

Infinite The appropriate concurrency control mechanism must be 
used in the conventional way (assuming there is one).
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risk of given attack patterns that have been determined to be applica-
ble to the software under development.

During the asset identification and threat modeling (combining soft-
ware characterization and threat analysis) portions of architectural
risk analysis, the architects/analysts identify and characterize the
assets of the software, the relevant potential threats they may face, and
the topology and nature of the software’s attack surface and trust
boundaries. They combine these considerations into an integrated
model that demonstrates likely vectors of attack against the attack sur-
face by the identified threats and targeted at the identified assets.
These attack vectors represent security risks. One of the more effective
mechanisms for quickly identifying likely attack vectors, characteriz-
ing their nature, and identifying vetted mitigation approaches is the
use of attack patterns as an integral part of the threat model.

Lastly, during the attack resistance analysis portion of the risk analysis
process, in which the architectural security is vetted, attack patterns
can be a valuable tool in identifying and characterizing contextually
appropriate attacker perspectives to consider in a red teaming type of
approach.

For further information about attack patterns, review Section 2.3.2 and
see [Hoglund 2004].

4.4 Summary

The architecture and design phase of the SDLC represents a critical time
for identifying and preventing security flaws before they become part of
the software. As the connectivity, complexity, and extensibility of soft-
ware increase, the importance of effectively addressing security concerns
as an integral part of the architecture and design process will become
even more critical. During this phase in the software development effort,
architects, designers, and security analysts have an opportunity to
ensure that requirements are interpreted appropriately through a secu-
rity lens and that appropriate security knowledge is leveraged to give the
software structure and form in a way that minimizes security risk. This
can be accomplished through use of the following practices and knowl-
edge resources:

LM
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• Beyond consistent application of good security common sense, one
of the greatest opportunities for reducing the security risk of soft-
ware early in the SDLC is through the practice of architectural risk
analysis. By carrying out software characterization, threat analy-
sis, architectural vulnerability assessment, risk likelihood determi-
nation, risk impact determination, and risk mitigation planning,
project team members can identify, prioritize, and implement
appropriate mitigating controls, revisions, or actions before secu-
rity problems take root. These activities and their by-products not
only yield more secure software, but also provide the software
development team with a much richer understanding of how the
software is expected to behave under various operating conditions
and how its architecture and design support that behavior.

• The activities and processes that make up architectural risk analy-
sis are enabled and fueled by a range of experiential security
knowledge without which they would be meaningless. Security
principles and security guidelines offer prescriptive guidance
that serves as a positive benchmark against which to compare and
assess software’s architecture and design. The high-level abstrac-
tion, universal context, and lasting nature of security principles
make the wisdom they bring to architectural-level decisions
extremely valuable. The broad brush of security principles is
enhanced and refined through the consideration of context-specific
security guidelines that provide more concrete guidance down
into the design level. 

• Architectural risk analysis requires not only recognition of good
defensive software practices, but also a solid understanding of the
sort of threats and attacks that the software is likely to face. Attack
patterns, describing common approaches to attacking software,
provide one of the most effective resources for capturing this
attacker’s perspective. By developing the software’s architecture
and design to be resistant and resilient to the types of attack it is
likely to face, the software development team lays a solid security
foundation on which to build.

Project managers who can effectively leverage the practices (architec-
tural risk analysis) and knowledge (security principles, security guide-
lines, and attack patterns) introduced in this chapter will gain a
significant advantage in lowering the security risk profile of their soft-
ware and will do so at a much lower cost than if they wait until later in
the SDLC to act.
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Chapter 5

Considerations for 
Secure Coding and 
Testing

5.1 Introduction

This chapter provides an overview of key security practices that
project managers should include during software coding and testing.
A number of excellent books and Web sites also provide detailed guid-
ance on software security coding and software security testing. Thus
the intent here is to summarize considerations for project managers
and provide references for further reading. 

Software security is first and foremost about identifying and managing
risks. Assuming that appropriate requirements engineering, design, and
architecture practices have been implemented, the next most effective
way to identify and manage risks for a software application is to itera-
tively analyze and review its code throughout the course of the SDLC.
In fact, many project managers start here because code analysis and
review is better defined, more mature, and, therefore, more commonly
used than some of the earlier life-cycle practices. This chapter identifies
some of the more common software code vulnerabilities and effective

LME
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practices for conducting source code review. It also briefly introduces
the topic of practices for secure coding, and provides supporting refer-
ences for further investigation.

The description of software security testing compares and contrasts
software testing with testing software with security in mind. It
describes two accepted approaches for software security testing: func-
tional testing and risk-based testing. The chapter closes by describing
practices and approaches to be considered when addressing security
during unit test (including white-box testing), the testing of libraries
and executable files, integration testing, and system testing (including
black-box and penetration testing). 

5.2 Code Analysis1

Developing robust software applications that are predictable in their
execution and as vulnerability free as possible is a difficult task; mak-
ing them completely secure is impossible. Too often software develop-
ment organizations place functionality, schedules, and costs at the
forefront of their concerns and make security and quality an after-
thought. Nearly all attacks on software applications have one funda-
mental cause: The software is not secure owing to defects in its design,
coding, testing, and operations. 

A vulnerability is a software defect that an attacker can exploit.
Defects typically fall into one of two categories: bugs and flaws. 

A bug is a problem introduced during software implementation. Most
bugs can be easily discovered and corrected. Examples include buffer
overflows, race conditions, unsafe system calls, and incorrect input
validation.

A flaw is a problem at a much deeper level. Flaws are more subtle, typ-
ically originating in the design and being instantiated in the code.
Examples of flaws include compartmentalization problems in design,
error-handling problems, and broken or illogical access control.

In practice, we find that software security problems are divided 50/
50 between bugs and flaws [McGraw 2006]. Thus discovering and

1. This material is extracted and adapted from a more extensive article by Steven Lavenhar of
Cigital, Inc. [BSI 19]. That article should be consulted for additional details and examples.

L4L L4M
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eliminating bugs during code analysis takes care of roughly half of
the problem when tackling software security. Attack patterns, as dis-
cussed in Chapter 2, can also be used effectively during coding to
help enumerate specific weaknesses targeted by relevant attacks,
allowing developers to ensure that these weaknesses do not occur in
their code.

This section focuses on implementation-level security bugs that can be
addressed during source code analysis. Design-level flaws are dis-
cussed in Chapter 4, Secure Software Architecture and Design.

5.2.1 Common Software Code Vulnerabilities

The use of sound coding practices can help to substantially reduce
software defects commonly introduced during implementation. The
following types of security bugs are common. More details are available
in [McGraw 2006] and [Tsipenyuk 2005] as well as the Common Vulner-
abilities and Exposures Web site [CVE 2007], the Common Weakness
Enumeration Web site [CWE 2007], and the National Vulnerability
Database [NIST 2007].

Input Validation

Trusting user and parameter input is a frequent source of security
problems. Attacks that take advantage of little to no input validation
include cross-site scripting, illegal pointer values, integer overflows,
and DNS cache poisoning (refer to the glossary for definitions of these

Common Security Bugs and Attack Strategies with Known 
Solution Approaches

• Incorrect or incomplete input validation
• Poor or missing exception handling
• Buffer overflows
• SQL injection
• Race conditions
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types of attacks). In addition, inadequate input validation can lead to
buffer overflows and SQL defects as described below. All of these
types of attacks can pose risks to confidentiality and integrity. One of
the more effective approaches for input validation is to use a whitelist,
which lists all known good inputs that a system is permitted to accept
and excludes everything else (including characters used to perform
each type of attack).

Exceptions

Exceptions are events that disrupt the normal flow of code. Program-
ming languages may use a mechanism called an exception handler to
deal with unexpected events such a divide-by-zero attempt, violation
of memory protection, or a floating-point arithmetic error. Such excep-
tions could be handled by the code by checking for conditions that can
lead to such violations. When such checks are not made, however,
exception handling passes control from the function with that error to
a higher execution context in an attempt to recover from that condi-
tion. Such exception handling disrupts the normal flow of the code.
The security concerns that arise from exception handling are discussed
in [McGraw 2006].

Buffer Overflows

Buffer overflows are a leading method used to exploit software by
remotely injecting malicious code into a target application
[Hoglund 2004; Viega 2001]. The root cause of buffer overflow prob-
lems is that commonly used programming languages such as C and
C++ are inherently unsafe. No bounds checks on array and pointer
references are carried out, meaning that a developer must check the
bounds (an activity that is often overlooked) or risk encountering
problems.

When writing to buffers, C/C++ programmers must take care not to
store more data in the buffer than it can hold. When a program writes
past the bounds of a buffer, a buffer overflow occurs and the next con-
tiguous chunk of memory is overwritten. C and C++ allow programs
to overflow buffers at will. No runtime checks are performed that
might prevent writing past the end of a buffer, so developers have to
perform the checks in their own code.

Reading or writing past the end of a buffer can cause a number of
diverse (and often unanticipated) behaviors: (1) Programs can act in
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strange ways, (2) programs can fail completely, and (2) programs can
proceed without any noticeable difference in execution. The side
effects of overrunning a buffer depend on the following issues:

• How much data is written past the buffer bounds
• What data (if any) is overwritten when the buffer gets full and

spills over
• Whether the program attempts to read data that is overwritten

during the overflow
• Which data ends up replacing the memory that gets overwritten

The indeterminate behavior of programs that have overrun a buffer
makes them particularly tricky to debug. In the worst cases, a program
may overflow a buffer and not show any adverse side effects at all. As
a result, buffer overflow problems often remain invisible during stan-
dard testing. The important thing to realize about buffer overflows is
that any data that happens to be allocated near the buffer can poten-
tially be modified when the overflow occurs.

Memory usage vulnerabilities will continue to be a fruitful resource
for exploiting software until languages that incorporate memory man-
agement schemes enter into wider use.

SQL Injection

SQL injection is currently the principal technique used by attackers to
take advantage of nonvalidated input defects to pass SQL commands
through an application for execution by a database. The security
model used by many applications assumes that a SQL query is a
trusted command. In this case, the defect lies in the software’s con-
struction of a dynamic SQL statement based on user input.

Attackers take advantage of the fact that developers often chain
together SQL commands with user-provided parameters, meaning
that the attackers can, therefore, embed SQL commands inside these
parameters. As a result, the attacker can execute arbitrary SQL que-
ries and/or commands on the database server through the applica-
tion. This ability enables attackers to exploit SQL queries to
circumvent access controls, authentication, and authorization checks.
In some instances, SQL queries may allow access to commands at the
level of the host operating system. This can be done using stored pro-
cedures.
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Race Conditions

Race conditions take on many forms but can be characterized as
scheduling dependencies between multiple threads that are not prop-
erly synchronized, causing an undesirable timing of events. An exam-
ple of a race condition that could have a negative outcome on security
is when a specific sequence of events is required between Event A and
Event B, but a race occurs and the proper sequence is not ensured by
the software program. Developers can use a number of programming
constructs to control the synchronization of threads, such as sema-
phores, mutexes, and critical sections. Race conditions fall into three
main categories:

• Infinite loops, which cause a program to never terminate or never
return from some flow of logic or control

• Deadlocks, which occur when the program is waiting on a
resource without some mechanism for timeout or expiration and
the resource or lock is never released

• Resource collisions, which represent failures to synchronize access
to shared resources, often resulting in resource corruption or privi-
lege escalations (see [Bishop 1996])

Additional security concerns that arise from these and other types of
software vulnerabilities are discussed in [McGraw 2006].

5.2.2 Source Code Review

Source code review for security ranks high on the list of sound prac-
tices intended to enhance software security. Structured design and
code inspections, as well as peer review of source code, can produce
substantial improvements in software security. You can easily inte-
grate these reviews into established software development processes.
In this type of review, the reviewers meet one-on-one with develop-
ers and review code visually to determine whether it meets previ-
ously established secure code development criteria. Reviewers
consider coding standards and use code review checklists (refer to
Section 5.3.1) as they inspect code comments, documentation, the
unit test plan, and the code’s compliance with security requirements.
Unit test plans detail how the code will be tested to demonstrate that
it meets security requirements and design/coding standards
intended to reduce design flaws and implementation bugs. The test
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plan includes a test procedure, inputs, and expected outputs [Viega
2001]. (See also Section 5.5.1.)

Manual inspection of code for security vulnerabilities can be time-
consuming. To perform a manual analysis effectively, reviewers must
know what security vulnerabilities look like before they can rigorously
examine the code and identify those problems. The use of static analy-
sis tools is preferred over manual analysis for this purpose because the
former tools are faster, can be used to evaluate software programs
much more frequently, and can encapsulate security knowledge in a
way that does not require the tool operator to have the same level of
security expertise as a human reviewer. Nevertheless, these tools can-
not replace a human analyst; they can only speed up tasks that are eas-
ily automated.

Static Code Analysis Tools2

Static source code analysis is the process by which software develop-
ers check their code for problems and inconsistencies before compiling
it. Developers can automate the analysis of source code by using static
analysis tools. These tools scan the source code and automatically
detect errors that typically pass through compilers and can cause
problems later in the SDLC. 

Many modern static analysis tools generate reports that graphically
present the analysis results and recommend potential resolutions to
identified problems.

Identifying security vulnerabilities is complicated by the fact that they
often appear in hard-to-produce software states or crop up in unusual
circumstances. Static analysis has the advantage of being performed
before a program reaches a level of completion where dynamic analy-
sis or other types of analysis can be meaningfully used. However,
static code analyzers should not be viewed as a panacea to all potential
problems. These tools can produce false positives and false negatives,
so their results should be taken with the proverbial “grain of salt.”
That is, results indicating that zero security defects were found should
not be taken to mean that your code is completely free of vulnerabili-
ties or 100 percent secure; rather, these results simply mean that your
code has none of the patterns found in the analysis tool’s rulebase for
security defects.

2. See [McGraw 2006, appendix A], [Chess 2004], [Chess 2007], and http://en.wikipedia.org/
wiki/List_of_tools_for_static_code_analysis for further details and several examples.

http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
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The greatest promise of static analysis tools derives from their abil-
ity to automatically identify many common coding problems.
Unfortunately, implementation bugs created by developer errors are
often only part of the problem. Static analysis tools cannot evaluate
design and architectural flaws. They cannot identify poorly
designed cryptographic libraries or improperly selected algorithms,
and they cannot point out design problems that might cause confu-
sion between authentication and authorization. They also cannot
identify passwords or magic numbers embedded in code. One fur-
ther drawback to automated code analysis is that the tools are prone
to producing false positives when a potential vulnerability does not
exist. This is especially true of older freeware tools, most of which
are not actively supported; many analysts do not find these tools to

What Static Analysis Tools Find

Static analysis tools look for a fixed set of patterns or rules in the
code in a manner similar to virus-checking programs. While some
of the more advanced tools allow new rules to be added to the
rulebase, the tool will never find a problem if a rule has not been
written for it. 

Here are some examples of problems detected by static code
analyzers:

• Syntax problems
• Unreachable code
• Unconditional branches into loops
• Undeclared variables
• Uninitialized variables
• Parameter type mismatches
• Uncalled functions and procedures
• Variables used before initialization
• Non-usage of function results
• Possible array bound errors
• Misuse of pointers
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be useful when analyzing real-world software systems.3 Commer-
cial tool vendors are actively addressing the problem of false posi-
tives and have made considerable progress in this realm, but much
remains to be done. 

Static code analysis can be used to discover subtle and elusive imple-
mentation errors before the software is tested or placed into operation.
By correcting subtle errors in the code early, project managers can
reduce testing efforts and minimize operations and maintenance costs.
Static code analysis tools can be applied in a variety of ways, all of
which lead to higher-quality software. This said, static analysis tools
can identify only a subset of the vulnerabilities leading to security
problems. These tools must always be used in conjunction with man-
ual analysis and other software assurance methods to reduce vulnera-
bilities that cannot be identified based on patterns and rules. 

Metric Analysis

Metric analysis produces a quantitative measure of the degree to
which the analyzed code possesses a given attribute. An attribute is a
characteristic or a property of the code. For example, 

When considered separately, “lines of code” and “number of
security breaches” are two distinct measures that provide
very little business meaning because there is no context for
their values. A metric made up as “number of breaches/lines
of code” provides a more interesting relative value. A com-
parative metric like this can be used to compare and contrast
a given system’s “security defect density” against a previous
version or similar systems and thus provide management
with useful data for decision making. [McGraw 2006, p. 247]

The process of using code metrics begins by deriving metrics that are
appropriate for the code under review. Then data is collected, and
metrics are computed and compared to preestablished guidelines and
historical data (such as the number of defects per 1000 lines of code).
The results of these comparisons are used to analyze the code with the
intent of improving the measured qualities.

Two classes of quantitative software metrics are distinguished: abso-
lute and relative. Absolute metrics are numerical values that represent

3. See Cigital’s ITS4 software security tool (http://www.cigital.com/its4) and Fortify Software’s
RATS (Rough Auditing Tool for Security) (http://www.fortifysoftware.com/security-resources/
rats.jsp).

http://www.cigital.com/its4
http://www.fortifysoftware.com/security-resources/rats.jsp
http://www.fortifysoftware.com/security-resources/rats.jsp
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a characteristic of the code, such as the probability of failure, the num-
ber of references to a particular variable in an application, or the number
of lines of code. Absolute metrics do not involve uncertainty. There can
be one and only one correct numerical representation of a given abso-
lute metric. In contrast, relative metrics provide a numeric representa-
tion of an attribute that cannot be precisely measured, such as the
degree of difficulty in testing for buffer overflows. There is no objec-
tive, absolute way to measure such an attribute. Multiple variables are
factored into an estimation of the degree of testing difficulty, and any
numeric representation is just an approximation.

Code Analysis Process Diagrams

The BSI Web site provides a number of code analysis process flow dia-
grams for source code review, static code analysis, and metric analysis, as
well as for dynamic analysis, fault injection, cryptanalysis, and random-
number generator analysis. We encourage you to consult the Web site
[BSI 19] and [McGraw 2006] for further details.

5.3 Coding Practices4

Coding practices typically describe methods, techniques, processes,
tools, and runtime libraries that can prevent or limit exploits against
vulnerabilities. These measures may include the development and
technology environment in which the coding practice is applied, as
well as the risk of not following the practice and the type of attacks
that could result.

Secure coding requires an understanding of programming errors that
commonly lead to software vulnerabilities and the knowledge and use
of alternative approaches that are less prone to error. Secure coding
can benefit from the proper use of software development tools, includ-
ing compilers. Compilers typically have options that allow increased
or specific diagnostics to be performed on code during compilation.
Resolving these warnings (by correcting the problem or determining
that the warning is superfluous) can improve the security of the

4. This material is extracted and adapted from a more extensive article by Robert Seacord and
Daniel Plakosh of Carnegie Mellon University [BSI 20]. That article should be consulted for addi-
tional details and examples.
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deployed software system. In addition, compilers may provide
options that influence runtime settings. Understanding available com-
piler options and making informed decisions about which options to
use and which to omit can help eliminate vulnerabilities and mitigate
against runtime exploitation of undiscovered or unresolved vulnera-
bilities.

As one example, CERT has observed through an analysis of thousands
of vulnerability reports that most vulnerabilities stem from a relatively
small and recurring number of common programming errors that
could be easily avoided if developers learned to recognize them and
understand their potential harm. In particular, the C and C++ pro-
gramming languages have proved highly susceptible to these classes
of errors. Easily avoided software defects are a primary cause of com-
monly exploited software vulnerabilities. By identifying insecure cod-
ing practices and developing secure alternatives, software project
managers and developers can take practical steps to reduce or elimi-
nate vulnerabilities before they are deployed in the field.

5.3.1 Sources of Additional Information on Secure Coding

We encourage readers to review the Coding Practices area of the BSI
Web site for additional coding practices that can be used to mitigate
common problems in C and C++ [BSI 20]. An example of the use of
compiler checks to minimize integer vulnerabilities is described in the
“Compiler Checks” section of the Web site. Examples of using other
static and dynamic analysis tools to discover and mitigate vulnerabili-
ties are described in “Runtime Analysis Tools” and “Heap Integrity
Detection.”

The CERT Secure Coding Initiative (http://www.cert.org/secure-
coding) works with software developers and software development
organizations to reduce vulnerabilities resulting from coding errors
before they are deployed in products. The initiative’s work includes
identifying common programming errors that lead to software vul-
nerabilities, establishing standard secure coding standards, educat-
ing software developers, and advancing the state of the practice in
secure coding. 

Table 5–1 provides a description of a number of recent and excellent
books on the subject.

http://www.cert.org/securecoding
http://www.cert.org/securecoding
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Table 5–1: Books to Consult for Secure Coding Approaches and 
Practices

Secure 
Programming with 
Static Analysis
[Chess 2007]

Describes how static source code analysis can be 
used to uncover errors and the most common 
types of security defects that result in security 
vulnerabilities. The book describes how this 
method works, explains how to integrate it into 
your software development process, and explores 
how to conduct effective code reviews using the 
method.

Software Security: 
Building Security In
[McGraw 2006]

Describes in detail how to put software security 
into practice. It presents the topic from the two 
sides of software security—attack and defense, 
exploiting and designing, breaking and build-
ing—including a description of seven essential 
“touchpoints” for software security. Excerpts and 
citations from Software Security are included 
throughout this chapter and on the BSI Web site.

The Secure Develop-
ment Lifecycle
[Howard 2006]

Describes Microsoft’s Security Development 
Lifecycle (SDL) as one proven way to help 
reduce the number of software security defects 
during each phase of the development process. 
This process has been used effectively in many 
Microsoft products.

Secure Coding in C 
and C++ [Seacord 
2005]

Provides a comprehensive description of common 
programming errors (for example, in string 
manipulation, integer operations, and dynamic 
memory management), the vulnerabilities that 
result from them, and mitigation strategies for 
minimizing their impact.

Exploiting Software: 
How to Break Code
[Hoglund 2004]

Describes how to design software so that it is as 
resistant as possible to attack. This book describes 
how malicious hackers go about writing exploit 
scripts that can be used to cause software to fail; 
in this way, it provides software designers with 
an understanding of the types of attacks their 
software may be forced to deal with.
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5.4 Software Security Testing5

Security test activities are primarily performed to demonstrate that a
system meets its security requirements and to identify and minimize

Secure Coding: 
Principles and Prac-
tices [Graff 2003]

Describes good and bad practices to consider dur-
ing architecture, design, code, test, and opera-
tions, along with supporting case studies. Good 
practices for secure coding identified in this book 
include handling data with caution (perform 
bounds checking, set initial values for data), reus-
ing good code whenever practicable, insisting on 
a sound review process (peer reviews, indepen-
dent verification and validation), using checklists 
and standards, and removing obsolete code.

Writing Secure Code, 
second edition 
[Howard 2002]

Provides developers with detailed practices for 
designing secure applications, writing robust 
code that can withstand repeated attacks, and 
testing applications for security flaws. The book 
provides proven principles, strategies, and coding 
techniques.

Building Secure 
Software: How to 
Avoid Security Prob-
lems the Right Way
[Viega 2001]

“Helps people involved in the software develop-
ment process learn the principles necessary for 
building secure software. It is intended for any-
one involved in software development, from 
managers to coders, although it contains the low-
level detail that is most applicable to developers. 
Specific code examples and technical details are 
presented in the second part of the book. The first 
part is more general and is intended to set an 
appropriate context for building secure software 
by introducing security goals, security technolo-
gies, and the concept of software risk manage-
ment” [Viega 2001, p. xxiii].

5. This material is extracted and adapted from a more extensive article by C. C. Michael and Will
Radosevich of Cigital, Inc. [BSI 21]. That article should be consulted for additional details.

Table 5–1: Books to Consult for Secure Coding Approaches and 
Practices (Continued)
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the number of security vulnerabilities in the software before the sys-
tem goes into production. Additionally, security test activities can aid
in reducing overall project costs, protecting an organization’s reputa-
tion or brand once a product is deployed, reducing litigation expenses,
and complying with regulatory requirements. 

The goal of security testing is to ensure that the software being tested
is robust and continues to function in an acceptable manner even in
the presence of a malicious attack. Security testing is motivated by
probing undocumented assumptions and areas of particular complex-
ity to determine how a software program can be broken. The designers
and the specification might outline a secure design, and the develop-
ers might be diligent and write secure code, but ultimately the testing
process determines whether the software will be adequately secure
once it is fielded. 

Testing is laborious, time-consuming, and expensive, so the choice of
testing approaches should be based on the risks to the software and
the system. Risk analysis provides the right context and information to
make tradeoffs between time and effort to achieve test effectiveness
(see Section 7.4.2). An effective testing approach balances efficiency
and effectiveness to identify the greatest number of critical defects for
the least cost.

This section is not intended to serve as a primer on software testing.
Anyone responsible for security testing should be familiar with stan-
dard approaches to software testing such as those described in these
books:

• Testing Object-Oriented Systems: Models, Patterns, and Tools [Binder
1999]

• Automated Software Testing [Dustin 1999]
• Software Test Automation [Fewster 1999]
• The Craft of Software Testing: Subsystems Testing Including Object-

Based and Object-Oriented Testing [Marick 1994]
• Black-Box Testing: Techniques for Functional Testing of Software and

Systems [Beizer 1995]
• Managing the Testing Process: Practical Tools and Techniques for Man-

aging Hardware and Software Testing, Second Edition [Black 2002]
• Testing Computer Software, Second Edition [Kaner 1999]
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5.4.1 Contrasting Software Testing and Software Security 
Testing

At one time, it was widely believed that security bugs in a software
system were just like traditional programming bugs and that tradi-
tional quality assurance and testing techniques could be applied
equally well to secure software development. Over time, however,
developers have learned that security-related bugs can differ from tra-
ditional software bugs in a number of ways. These characteristics, in
turn, influence the practices that you should use for software security
testing [Hoglund 2004].

• Users do not normally try to search out software bugs. An enter-
prising user may occasionally derive satisfaction from making
software break, but if the user succeeds, it affects only that user.
Conversely, malicious attackers do search for security-related vul-
nerabilities in an intelligent and deliberate manner. One important
difference between security testing and other testing activities is
that the security test engineer needs to emulate an intelligent
attacker. An adversary might do things that no ordinary user
would do, such as entering a 1000-character surname or repeatedly
trying to corrupt a temporary file. Test engineers must consider
actions that are far outside the range of normal activity and might
not even be regarded as legitimate tests under other circumstances.
A security test engineer must think like the attacker and find the
weak spots first.

• Malicious attackers are known to script successful attacks and dis-
tribute exploit scripts throughout their communities. In other
words, a single, hard-to-find vulnerability can be exploited by a
large number of malicious attackers using publicly available
exploit scripts. This proliferation of attacker knowledge can cause
problems for a large number of users, whereas a hard-to-find soft-
ware bug typically causes problems for only a few users. 

• Although most developers are not currently trained in secure pro-
gramming practices, developers can (and do) learn from experi-
ence to avoid poor programming practices that can lead to
software bugs in their code. However, the list of insecure program-
ming practices is long and continues to grow, making it difficult
for developers to keep current on the latest exploits and attack pat-
terns (see also Section 2.3.2). 
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• Security testing differs from traditional software testing in that it
emphasizes what an application should not do rather than what
it should do. While it sometimes tests conformance to positive
requirements such as “User accounts are disabled after three
unsuccessful login attempts” and “Network traffic must be
encrypted,” more often it tests negative requirements [Fink 1997]
such as “Outside attackers should not be able to modify the con-
tents of the Web page” and “Unauthorized users should not be
able to access data.” This shift in emphasis from positive to nega-
tive requirements affects the way testing is performed (see
Section 5.4.3). The standard way to test a positive requirement is to
create the conditions in which the requirement is intended to hold
true and verify that the requirement is satisfied by the software. By
contrast, a negative requirement may state that something should
never occur. To apply a standard testing approach to negative
requirements, one would need to create every possible set of con-
ditions, which is not feasible. 

• Many security requirements, such as “An attacker should never be
able to take control of the application,” would be regarded as
untestable in a traditional software development setting. It is con-
sidered a legitimate practice for testers to ask that such require-
ments be refined or perhaps dropped altogether. Many security
requirements, however, can be neither refined nor dropped even if
they are untestable. For example, one cannot reliably enumerate all
of the ways in which an attacker might gain control of an applica-
tion (which would be one way to make it more testable), and obvi-
ously one cannot drop the requirement either. Thus the challenge
is to find both a way to specify these types of requirements and a
way to adequately test them.

Project managers and security test engineers must ask which kinds of
vulnerabilities can exist for the software being tested and which kinds
of problems are likely to have been overlooked by the developers.
Often the most important types of vulnerabilities to consider are the
most common ones (described in Section 5.2.1), which are targeted by
security scanners and reported in public forums.

Many traditional software bugs can have security implications. Buggy
behavior is almost by definition unforeseen behavior, and as such it pre-
sents an attacker with the opportunity for a potential exploit. Indeed,
many well-known vulnerabilities could cause software to crash if they
were triggered. Crashing software can expose confidential information



5.4 Software Security Testing 167

in the form of diagnostics or data dumps. Even if the software does not
crash as the result of a bug, its internal state can become corrupted and
lead to unexpected behavior at a later time. For this reason, error-
handling software is a frequent target of malicious attacks. Attackers
probing a new application often start by trying to crash it. 

Security Testing Methods

Two common methods for testing whether software has met its secu-
rity requirements are functional security testing and risk-based security
testing [McGraw 2006]. Functional testing is meant to ensure that soft-
ware behaves as specified and so is largely based on demonstrating
that requirements defined in advance during requirements engineer-
ing (see Chapter 3) are satisfied at an acceptable level. Risk-based test-
ing probes specific risks that have been identified through risk
analysis. The next two sections discuss how functional and risk-based
testing can be used to enhance confidence in the software’s security.

5.4.2 Functional Testing

Functional testing usually means testing the system’s adherence to its
functional requirements. A functional requirement usually has the fol-
lowing form: “When a specific thing happens, then the software
should respond in a certain way.” This way of specifying a require-
ment is convenient for the tester, who can exercise the “if” part of the
requirement and then confirm that the software behaves as it should.

Ninety Percent Right

Finding 90 percent of a software program’s vulnerabilities does
not necessarily make the software less vulnerable; it merely
reduces the cost of future fixes and increases the odds of finding
the remaining problems before attackers do. The result is that
secure software development is intrinsically more challenging
than traditional software development. Given this fact, security
testing needs to address these unique considerations and per-
spectives to the extent possible and practical. 
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Examples of functional security requirements are that a user’s account
is disabled after three unsuccessful login attempts and that only cer-
tain characters are permitted in a URL. These positive functional
requirements can be tested in traditional ways, such as attempting
three unsuccessful login attempts and verifying that the account is dis-
abled, or by supplying a URL with illegal characters and making sure
that those characters are stripped out before the URL is processed.

When risks are identified early in the SDLC, developers have adequate
time to include mitigations for those risks (also known as countermea-
sures). Mitigations are meant to reduce the severity of the identified
risks, and they lead to positive requirements. For example, the risk of
password-cracking attacks can be mitigated by disabling an account
after three unsuccessful login attempts or by enforcing long pass-
phrases. Passphrases are largely immune to cracking and have the
added benefit of often being easier to remember than complex pass-
words. The risk of SQL injection attacks from a Web interface can be
mitigated by using an input validation whitelist (a list of all known
good inputs that a system is permitted to accept) that excludes all
other characters. These mitigations have to be tested not only to con-
firm that they are implemented correctly, but also to determine how
well they actually safeguard the system against the risks they were
designed to address.

A common software development practice is to ensure that every
requirement can be mapped to a specific software artifact meant to
implement that requirement. As a consequence, the tester who is prob-
ing a specific requirement knows exactly which code artifact to test.
Generally, there is a clear mapping between functional requirements,
code artifacts, and functional tests.

Some Caveats

Software engineers may not understand how to implement some secu-
rity requirements. In one example, a Web application was found to be
vulnerable to a directory traversal attack, where a URL containing the
string “..” was used to access directories that were supposedly forbid-
den to remote clients. To counter this possibility, developers used a
blacklist technique, in which a list is created and used to exclude or fil-
ter out bad input data and bad characters. URLs that contained this
string were added to the blacklist and thus disallowed. However,
blacklists are not infallible:
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[Blacklists] often fail because the enumeration is incomplete,
or because the removal of bad characters from the input can
result in the production of another bad input which is not
caught (and so on recursively). Blacklists fail also because
they are based on previous experience, and only enumerate
known bad input. The recommended practice is the creation
of whitelists that enumerate known good input. Everything
else is rejected. [Meunier 2006]

Testing cannot demonstrate the absence of software problems; it can
only demonstrate (sometimes) that problems are present [Dijkstra
1970]. The problem is that testers can try out only a limited number of
test cases; the software might work correctly for those cases and fail
for other cases. Therefore, testing a mitigation measure is not enough
to guarantee that the corresponding risk has truly been eliminated,
and this caveat is especially important to keep in mind when the risk
in question is a severe one. 

Also, when bugs are fixed, the fix is sometimes not subjected to the
same scrutiny as those features that were part of the original software
design. For example, a problem that should normally be detected in
design reviews might slip through the cracks if it shows up as part of a
bug fix. Sometimes software that has been repaired is retested simply
by running the original test suite again—but that approach works
poorly for the caveats described here.

Testing Beyond Requirements

Functional testing is meant to probe whether software behaves as it
should, but so far we have focused only on requirements-based test-
ing. A number of other functional testing techniques (as described in
170 on pages 170–171) do not rely on defined requirements. These tech-
niques are described in more detail in [BSI 21].

5.4.3 Risk-Based Testing

Risk-based testing addresses negative requirements, which state what
a software system should not do. Tests for negative requirements can
be developed in a number of ways. They should be derived from a risk
analysis, which should encompass not only the high-level risks identi-
fied during the design process but also low-level risks derived from
the software itself. 
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Table 5–2: Functional Testing Techniques 

Ad hoc testing 
(experience-based
testing) and explor-
atory testing

Tests are based on the tester’s skill, intuition, and 
experience with similar programs to identify 
tests not captured in more formal techniques.

Specification-based
and model-based 
testing

Tests are derived automatically using a specifica-
tion created in a formal language (rare) or 
through the use of a model of program interfaces.

Equivalence
partitioning

Tests are derived by dividing the input domain 
into a collection of subsets or equivalence classes 
(such as output path or program structure) and 
then selecting representative tests for each class.

Boundary values 
analysis

Tests are selected on or near the boundaries of the 
input domain of variables, given that many 
defects tend to concentrate near the extreme val-
ues of inputs.

Robustness and 
fault-tolerance
testing

Test cases are chosen outside the domain to test 
program robustness in the face of unexpected 
and erroneous inputs.

Decision table (also 
called logic-based) 
testing

Tests are derived by systematically considering 
every possible combination of conditions (such 
as inputs) and actions (such as outputs).

State-based testing Tests are selected that cover states and transitions 
from a finite state machine model of the software.

Control-flow 
testing

Tests are selected to detect poor and incorrect 
program structures. Test criteria aim at covering 
all statements, classes, or blocks in a program (or 
some specified combinations).

Data-flow testing This form of testing is often used to test interfaces 
between subsystems. It is accomplished by anno-
tating a program-control flow graph with infor-
mation about how variables are defined and used 
and then tracing paths from where the variable is 
defined to where it is used.
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When testing negative requirements, security test engineers typically
look for common mistakes and test suspected weaknesses in the soft-
ware. The emphasis is on finding vulnerabilities, often by executing
abuse and misuse tests that attempt to exploit software weaknesses
(see Section 3.2). In addition to demonstrating the actual presence of
vulnerabilities, security tests can assist in uncovering symptoms that
suggest potential vulnerabilities. 

Requirements can be expected to contain mitigations for many risks.
Mitigations generally result in positive requirements, but the fact
that a risk has a mitigation does not imply that it should be ignored
during risk-based testing. Even if a mitigation measure is correctly
implemented, there is still a need to ask whether it really does safe-
guard against the risk it serves as a countermeasure for and to what
extent. Each mitigation generates a positive requirement—the correct

Usage-based and 
use-case-based
testing

Tests are derived by developing an operational 
scenario or set of use cases that describe how the 
software will be used in its operational environ-
ment. (See also Section 3.2.)

Code-based testing 
(also called white-
box testing; see 
Section 5.5.1)

This approach is a superset of control-flow and 
data-flow testing. Tests are designed to cover the 
code by using the control structure, data-flow 
structure, decision control, and modularity.

Fault-based testing Tests are designed to intentionally introduce 
faults to probe program robustness and reliabil-
ity [Whittaker 2003].

Protocol 
conformance
testing

Tests are designed to use a program’s communi-
cation protocol as the test basis. In combination 
with boundary values testing and equivalence-
based testing, this method is useful for Web-based 
programs and other Internet-based code.

Load and 
performance
testing

Tests are designed to verify that the system meets 
its specified performance requirements (capacity 
and response time) by exercising the system to 
the maximum design load and beyond it.

Table 5–2: Functional Testing Techniques (Continued)
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implementation of the mitigation strategy—but it also generates a
negative requirement stating that the mitigation must not be circum-
ventable. To put it another way, the mitigation might not be sufficient
for avoiding the underlying risk, and this possibility constitutes a
risk in and of itself. 

Unfortunately, the process of deriving tests from risks is as much an
art as a science, such that it depends a great deal on the skills and secu-
rity knowledge of the test engineer. Many automated tools can be
helpful during risk-based testing (for example, see the description of
black-box testing in Section 5.5.4), but these tools can perform only
simple tasks; the difficult tasks remain the responsibility of the test
engineer. You might also consider the use of commercial tools for iden-
tifying vulnerabilities in Web applications such as those from SPI
Dynamics and Watchfire.

Defining Tests for Negative Requirements

As a basis for defining test conditions, past experience comes into play
in two ways. First, a mature test organization typically has a set of test
templates that outline the test techniques to be used for testing against
specific risks and requirements in specific types of software modules.
Test templates are usually created during testing projects, and they
accumulate over time to capture the organization’s past experience.
This book does not provide test templates, but attack patterns appro-
priate for this purpose are described in several other sources [Hoglund
2004; Whittaker 2002, 2003]. 

Another way to derive test scenarios from past experience is to use
incident reports. Incident reports can simply be bug reports, but in
the context of security testing they can also be forensic descriptions
of successful intruder activity. Furthermore, vulnerability reports are
often followed by proofs of concept to demonstrate how the reported
vulnerability can be exploited. Sometimes these proofs of concept are
actual exploits; at other times they simply show that a vulnerability
is likely to be exploitable. For example, if a buffer overflow can be
made to cause a crash, then it can usually be exploited by an attacker
as well. Sometimes it is sufficient to find evidence of vulnerabilities
as opposed to actual exploits, so that the resulting proofs of concept
can be used as the basis for test scenarios. When devising risk-based
tests, it can be useful to consult IT security personnel, as their jobs
involve keeping up-to-date on vulnerabilities, incident reports, and
security threats. 
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Attack patterns (as discussed in Chapter 2) can be used effectively
during software security testing to craft test cases that reflect attacker
behavior and to help identify test cases that validate secure behavior.

Finally, threat modeling can be leveraged to help create risk-based
tests. For example, if inexperienced intruders (e.g., script kiddies) are
expected to pose a major threat, then it might be appropriate to probe
the software under test with automated tools; intruders often use the
same tools (see the description of black-box testing in Section 5.5.4). 

Additional thought processes that might be helpful in creating new
tests for negative requirements include (1) understanding a software
component and its environment, (2) understanding the assumptions of
the developers, and (3) building a fault model (hypotheses about what
might go wrong). Consult [BSI 21] for further details.

5.5 Security Testing Considerations 
Throughout the SDLC6

Activities related to testing take place throughout the software life
cycle, not just after coding is complete. Preparations for security test-
ing can begin even before the planned software system has definite
requirements and before a risk analysis has been conducted. For exam-
ple, past experience with similar systems can provide a wealth of
information about relevant attacker activity.

As part of a preliminary risk analysis, you might consider which envi-
ronment factors the software will be subjected to, what its security
needs are, and what kinds of effects a breach of security might have.
This information provides useful and early inputs for test planning. If
risk analysis starts early in the SDLC, it becomes possible to take a
security-oriented approach when defining requirements.

During the requirements phase, test planning focuses on outlining how
each requirement can and will be tested. Some requirements may ini-
tially appear to be untestable. If test planning is already under way, then
those requirements can be identified and possibly revised to make them
more testable. Testing is driven by both risks and requirements, and

6. This material is extracted and adapted from a more extensive article by C. C. Michael and Will
Radosevich of Cigital, Inc. [BSI 21]. That article should be consulted for additional details.
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risks are especially important to consider in security testing. While tra-
ditional non-security-related risks are linked to what can go wrong if a
requirement is not satisfied, security analysis often uncovers severe
security risks that were not anticipated in the requirements phase. In
fact, a security risk analysis (as discussed in Chapters 4 and 7) is an inte-
gral part of secure software development, and it should drive require-
ments derivation and system design as well as security testing. 

Risks identified during this phase may inspire additional require-
ments that call for features to mitigate those risks. The software devel-
opment process can be expected to go more smoothly if these security
measures are defined early in the SDLC, when they can be more easily
implemented. If the development team faces intense time pressure, it
is often a legitimate strategy to spend less time testing against a risk
that has a known countermeasure, on the assumption that a mitigated
risk is less severe.

Functional security testing generally begins as soon as software is
available to test. Given this timeline, a test plan should be established
at the beginning of the coding phase and the necessary infrastructure
and personnel should be determined before testing starts. 

Software is tested at many levels in a typical development process.
This section cannot hope to catalog every possible software test activ-
ity. Instead, it describes several broader activities that are common to
most test processes, some of which are repeated at different times for
software artifacts at different levels of complexity. We discuss the role
of security testing in each of these activities: 

• Unit testing, where individual classes, methods, functions, or other
relatively small components are tested 

• Testing libraries and executable files 
• Functional testing, where software is tested for adherence to

requirements (as described in Section 5.4.2)
• Integration testing, where the goal is to test whether software com-

ponents work together as they should 
• System testing, where the entire system is under test 

5.5.1 Unit Testing

Unit testing is usually the first stage of testing that a software artifact
goes through. This type of testing involves exercising individual
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functions, methods, classes, or stubs. As a functional-based approach
to unit testing, white-box testing is typically very effective in validat-
ing design decisions and assumptions and in finding programming
errors and implementation errors. It focuses on analyzing data flows,
control flows, information flows, coding practices, and exception and
error handling within the system, with the goal of testing both
intended and unintended software behavior. White-box testing can
be performed to validate whether code implementation follows the
intended design, to validate implemented security functionality, and
to uncover exploitable vulnerabilities. 

White-box testing requires knowing what makes software secure or
insecure, how to think like an attacker, and how to use different testing
tools and techniques. The first step in such testing is to comprehend
and analyze the source code (see Section 5.2.2), so knowing what
makes software secure is a fundamental requirement. In addition, to
create tests that exploit software, a tester must think like an attacker.
Finally, to perform testing effectively, testers need to know what kinds
of tools and techniques are available for white-box testing. The three
requirements do not work in isolation, but together. 

Further details on how to conduct white-box testing and what sorts of
benefits it confers are available at [BSI 22].

5.5.2 Testing Libraries and Executable Files

In many development projects, unit testing is closely followed by a
test effort that focuses on libraries and executable files. Usually test
engineers who are experienced in testing security—rather than soft-
ware developers—perform testing at this level. As part of this testing,
there may be a need for specialized technology that crafts customized
network traffic, simulates fault and stress conditions, allows observa-
tion of anomalous program behavior, and so on. 

Coverage analysis (which measures the degree to which the source
code has been fully tested, including all statements, conditions, paths,
and entry/exit conditions) can be especially important in security test-
ing [Hoglund 2004]. Because a determined attacker will probe the soft-
ware system thoroughly, security testers must do so as well. Error-
handling routines are difficult to cover during testing, and they are
also notorious for introducing vulnerabilities. Good coding practices
can help reduce the risks posed by error handlers, but it may still be
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useful to have test tools that simulate error conditions during testing
so as to exercise the error handlers in a dynamic environment. 

Libraries need special attention in security testing, because compo-
nents found in a library might eventually be reused in ways that are
not anticipated in the current system design. For example, a buffer
overflow in a particular library function might seem to pose little risk
because attackers cannot control any of the data processed by that
function; in the future, however, this function might be reused in a
way that makes it accessible to outside attackers. Furthermore, librar-
ies may be reused in future software development projects even if
such reuse was not planned during the design of the current system. 

5.5.3 Integration Testing

Integration testing focuses on a collection of subsystems, which may
contain many executable components. Numerous software bugs are
known to appear only because of the way components interact, and
the same is true for security bugs as well. 

Integration errors often arise when one subsystem makes unjustified
assumptions about other subsystems. For example, an integration
error can occur if the calling function and the called function each
assume that the other is responsible for bounds checking and neither
one actually does the check. The failure to properly check input values
is one of the most common sources of software vulnerabilities. In turn,
integration errors are one of the most common sources of unchecked
input values, because each component might assume that the inputs
are being checked elsewhere. (Components should validate their own
data, but in many systems this ideal is sacrificed for reasons of effi-
ciency.) During security testing, it is especially important to determine
which data flows and controls flows can and cannot be influenced by a
potential attacker. 

5.5.4 System Testing

Certain activities relevant to software security, such as stress testing, are
often carried out at the system level.7 Penetration testing is also carried
out at the system level, and when a vulnerability is found in this way, it
provides tangible proof that the vulnerability is real: A vulnerability that

7. See also Chapter 6, Security and Complexity: System Assembly Challenges.
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can be exploited during system testing will be exploitable by attackers.
In the face of schedule, budget, and staff constraints, these problems are
the most important vulnerabilities to fix. 

Black-Box Testing

One popular approach to system testing is black-box testing. Black-
box testing uses methods that do not require access to source code.
Either the test engineer does not have access or the details of the
source code are irrelevant to the properties being tested. As a conse-
quence, black-box testing focuses on the externally visible behavior of
the software, such as requirements, protocol specifications, APIs, or
even attempted attacks. Within the security test arena, black-box test-
ing is normally associated with activities that occur during the pre-
deployment test phase (system test) or on a periodic basis after the
system has been deployed.

Black-box test activities almost universally involve the use of tools,
which typically focus on specific areas such as network security, data-
base security, security subsystems, and Web application security. For
example, network security tools include port scanners to identify all
active devices connected to the network, services operating on systems
connected to the network, and applications running for each identified

Stress Testing for Security

Stress testing is relevant to security because software performs
differently when it is under stress. For example, when one com-
ponent is disabled because of insufficient resources, other compo-
nents may compensate in insecure ways. An executable that
crashes may leave sensitive information in places that are accessi-
ble to attackers. Attackers might be able to spoof subsystems that
are slow or disabled, and race conditions (see Section 5.2.1) might
become easier to exploit. Stress testing may also exercise error
handlers, which are often fraught with vulnerabilities. Security
testers should look for unusual behavior during stress testing that
might signal the presence of unsuspected vulnerabilities.
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service. Vulnerability scanning tools identify specific security vulnera-
bilities associated with the scanned system based on information con-
tained within a vulnerability database. Potential vulnerabilities include
those related to open ports that allow access to insecure services, protocol-
based vulnerabilities, and vulnerabilities resulting from poor imple-
mentation or configuration of an operating system or application.

For more information on black-box testing and test tools, refer to [BSI 23].

Penetration Testing

Another common approach for conducting certain aspects of system
security testing is penetration testing, which allows project managers
to assess how an attacker is likely to try to subvert a system. At a basic
level, the term “penetration testing” refers to testing the security of a
computer system and/or software application by attempting to com-
promise its security—in particular, the security of the underlying oper-
ating system and network component configurations.

Conventional penetration testing tools come in a variety of forms,
depending on which sort of testing they can perform. A key distin-
guishing factor is the perspective from which each type of tool oper-
ates—that is, whether a testing tool evaluates its target from afar or
from relatively close up (i.e., at least within the same computer sys-
tem). Popular classes of tools used in penetration testing today include
host-based, network-based, and application scanning [Fyodor 2006].

For example, most organizations, when doing network-based penetra-
tion testing, follow a process that looks something like this (Steps 1–3
constitute the vulnerability scanning approach mentioned earlier):

1. Target acquisition. The test engineer identifies legitimate test targets.
This step is most often performed using a combination of manual
and automated approaches in which the person responsible for the
system under test provides a starting list of network addresses and
the test engineer uses software tools to look for additional comput-
ers in the network vicinity.

2. Inventory. The test engineer uses a set of tools to conduct an inven-
tory of available network services to be tested.

3. Probe. The test engineer probes the available targets to determine
whether they are susceptible to compromise.

4. Penetrate. Each identified vulnerability (or potential vulnerability)
is exploited in an attempt to penetrate the target system. The level
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of invasiveness involved in exploiting a vulnerability can influence
this step dramatically. For example, if a vulnerability can result in
the attacker (in this case, the test engineer) having the ability to
overwrite an arbitrary file on the target system, great care should
be taken in how the vulnerability is exploited.

5. Host-based assessment. This step is typically carried out for any sys-
tem that is successfully penetrated. It enables the test engineer to
identify vulnerabilities that provide additional vectors of attack,
including those that provide the ability to escalate privileges once
the system is compromised.

6. Continue. The test engineer obtains access on any of the systems
where identified vulnerabilities were exploited and continues the
testing process from the network location(s) of each compro-
mised system.

For more information on penetration testing and pitfalls to avoid, refer
to [BSI 24]. For more information on penetration testing tools, refer to
[BSI 25]. 

5.5.5 Sources of Additional Information on Software Security 
Testing

Articles in the IEEE Security & Privacy “Building Security In” series
provide excellent guidance on software security testing. Articles titled
“Software Penetration Testing,” “Static Analysis for Security,” and
“Software Security Testing” are available on the BSI Web site under
Additional Resources [BSI 26]. 

The Art of Software Security Testing [Wysopal 2006] reviews software
design and code vulnerabilities and provides guidelines for how to
avoid them. This book describes ways to customize software debug-
ging tools to test the unique aspects of any software program and then
analyze the results to identify exploitable vulnerabilities. Coverage
includes the following topics:

• Thinking the way attackers think
• Integrating security testing into the SDLC
• Using threat modeling to prioritize testing based on risk
• Building test labs for conducting white-, gray-, and black-box testing
• Choosing and using the right tools
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• Executing today’s leading attacks, from fault injection to buffer
overflows

• Determining which flaws are most likely to be exploited

Exploiting Software: How to Break Code [Hoglund 2004] provides exam-
ples of real attacks, attack patterns, tools, and techniques used by
attackers to break software. It discusses reverse engineering, classic
attacks against server software, surprising attacks against client soft-
ware, techniques for crafting malicious input, buffer overflows, and
rootkits.

How to Break Software Security: A Practical Guide to Testing [Whittaker
2003] defines prescriptive techniques (attacks that software test engi-
neers can use on their own software) that are designed to reveal secu-
rity vulnerabilities in software programs. The book’s chapters discuss
fault models for software security testing, the creation of unantici-
pated user input scenarios, and ways to attack software designs and
code that focus on the most common places where software vulnera-
bilities occur (e.g., user interfaces, software dependencies, software
design, and process and memory).

5.6 Summary

It is no secret that common, everyday software defects cause the
majority of software vulnerabilities. The most widely used operating
systems and most application software contain at least one or two
defects per thousand lines of code and, therefore, may include hun-
dreds to thousands of defects. While not every software defect is a
security defect, if only 1 or 2 percent lead to security vulnerabilities,
the risk is still substantial. Understanding the sources of vulnerabili-
ties and learning to program securely are essential for protecting the
Internet, your software, and your systems from attack. Reducing secu-
rity defects, and thereby security vulnerabilities, requires a disciplined
engineering approach based on sound coding practices [Howard 2006;
McGraw 2006; Seacord 2005].

The key secure coding practices highlighted in this chapter include
these approaches:

• Using sound and proven secure coding practices to aid in reducing
software defects introduced during implementation

LME



5.6 Summary 181

• Performing source code review using static code analysis tools,
metric analysis, and manual review to minimize implementation-
level security bugs

Security testing relies on human expertise to an even greater extent
than does ordinary testing, so full automation of the test process is
even less feasible when focusing on security issues than in a tradi-
tional testing environment. Although tools are available that automate
certain types of tests, organizations using these tools should not be
lulled into a false sense of security, because they cover only a small
part of the spectrum of potential vulnerabilities. Instead, test tools
should be viewed as aides for human testers, automating many tasks
that are time-consuming or repetitive.

Creating security tests other than ones that directly map to security
requirements is challenging, especially tests that intend to exercise the
non-normative behavior of the system. When creating such tests, it is
helpful to view the software under test from multiple angles, includ-
ing the data the system will handle, the environment in which the sys-
tem will operate, the users of the software (including software
components), the options available to configure the system, and the
error-handling behavior of the system. There is an obvious interaction
and overlap between the different views; however, treating each one
individually and specifically provides unique perspectives that are
very helpful in developing effective tests.

This chapter has highlighted the following key software security test-
ing practices: 

• Understanding the differences between software security testing
and traditional software testing, and planning how best to address
these (including thinking like an attacker and emphasizing how to
exercise what the software should not do)

• Constructing meaningful functional test cases (using a range of
techniques) that demonstrate the software’s adherence to its func-
tional requirements, including its security requirements (positive
requirements)

• Developing risk-based test cases (using, for example, misuse/
abuse cases, attack patterns, and threat modeling) that exercise
common mistakes, suspected software weaknesses, and mitiga-
tions intended to reduce or eliminate risks to ensure they cannot be
circumvented (negative requirements)
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• Using a complement of testing strategies, including white-box test-
ing (based on deep knowledge of the source code), black-box testing
(focusing on the software’s externally visible behavior), and pene-
tration testing (identifying and targeting specific vulnerabilities at
the system level)

An organization should not rely exclusively on security test activities
to build security into a system. This said, security testing—when it is
coupled with other security activities performed throughout the
SDLC—can be very effective in validating design assumptions, dis-
covering vulnerabilities associated with the software environment,
and identifying implementation issues that may lead to security vul-
nerabilities.
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Chapter 6

Security and 
Complexity:
System Assembly 
Challenges

6.1 Introduction

The primary theme of this chapter is how aspects of complexity due to
technical difficulty, size, and conflicting objectives affect security as
systems expand to support multiple processes within and across orga-
nizations.1 Mitigation strategies and project management approaches
are suggested for each area, including examples of “planning for fail-
ure” in the context of Web services and identity management. 

System development has always encountered new and often complex
problems that were not represented in project plans. Often, the hard-to-
solve problems are not new. Not many years ago, for example, the Com-
mon Object Request Broker Architecture (CORBA) received considerable

1. Robert Ferguson at the SEI has been studying the effects of systems engineering complexity on
project management. The discussion of complexity factors in this chapter reflects discussions
with him and was also influenced by the Incremental Commitment Model (ICM) [Boehm 2007].

Security and 
Complexity
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attention as an approach for integrating distributed systems; now much
of that attention has shifted to Web services. The sequence of solutions
over multiple decades is not just a measure of the difficulty of the chal-
lenges, but also an indicator of the progress that is made in overcoming
them. For example, Web services protocols have significantly eased the
mechanics of connecting systems and offer the opportunity to address a
number of business requirements.

The improved capability to assemble systems does not by itself
address the problem of the failures observed in complex systems, but
rather may increase the risk of deploying systems whose behavior is
not predictable. The theme of a 2007 New York Times article is captured
in a quote by Peter Neumann: “We don’t need hackers to break the
systems because they’re falling apart by themselves” [Schwartz 2007].
For example, 17,000 international travelers flying into Los Angeles
International Airport were stranded on planes for hours one day in
August 2007 after U.S. Customs and Border Protection Agency com-
puters went down and stayed down for nine hours. The Northeastern
power grid failure in the summer of 2003 is another recent example of
the effects of a system failure. Voting machine failures continue to be
publicized. Customers for Skype, the Internet-based telephone com-
pany, encountered a 48-hour failure in August 2007. 

The Los Angles airport failure was traced to a malfunctioning network
card on a desktop computer that slowed the network and set off a
domino effect of failures on the customs network. The power grid fail-
ure was not caused by a single event but rather by a cascading set of
failures with multiple causes. Avi Rubin, a professor of computer
science at Johns Hopkins University, noted that for voting machines
the focus might have been too much on hackers and not on accidental
events that sometimes can cause the worst problems. The Skype fail-
ure was initiated by a deluge of login attempts by computers that had
restarted after downloading a security update. The logins overloaded
the Skype network and revealed a bug in the Skype program that allo-
cated computer resources that normally would have mitigated the
excessive network load [Schwartz 2007]. 

The individuals interviewed for the New York Times article include a num-
ber of well-known experts in computer security, but the general observa-
tions focused more on reliability and complexity than on security:

• Most of the problems we have today have nothing to do with mal-
ice. Things break. Complex systems break in complex ways. (Steve
Bellovin, Columbia University)
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• We have gone from fairly simple computing architectures to mas-
sively distributed, massively interconnected and interdependent
networks. As a result, flaws have become increasingly hard to pre-
dict or spot. Simpler systems could be understood and their behav-
ior characterized, but greater complexity brings unintended
consequences. (Andreas M. Antonopoulos, Nemertes Research)

• Change is the fuel of business, but it also introduces complexity,
whether by bringing together incompatible computer networks or
simply by growing beyond the network’s ability to keep up.
(Andreas M. Antonopoulos)

• Complexity was at the heart of the problem at the Los Angeles air-
port. Problems are increasingly difficult to identify and correct as
we move from stovepipes to interdependent systems. (Kenneth M.
Ritchhart, the chief information officer for the U.S. Customs and
Border Protection Agency)

This chapter considers how some of those observations relate to
security analysis. One perspective is that insufficient effort has been
made to analyze potential failures and to apply known methods
and technology. If a system is designed correctly in the first place, it
can be made reliable, secure, fault tolerant, and human safe. The
focus of this perspective, then, is developing and using best prac-
tices and better integrating security into the overall SDLC. Security
analysis should be able to take advantage of an increased emphasis
on managing failures. Attackers create events that take advantage
of errors that are ignored or poorly managed by the system.
Section 6.2 provides an introduction to categories of errors that are
associated with security failures. Security analysis involves consid-
ering both functional and attacker perspectives of a system. In
Section 6.3, those perspectives are applied to the examples of Web
services and identity management. 

Unfortunately, existing best practices do not fully address the secu-
rity challenges caused by increased system complexity and distrib-
uted operational environments. The wider spectrum of failures,
changing and conflicting goals, and incremental development chal-
lenge some of the traditional security assumptions. For instance, risk
assessments are affected by reduced visibility for distributed systems
and the wider spectrum of failures. Large systems are developed
incrementally and must deal with changing and sometimes conflict-
ing stakeholder objectives. As a consequence, security now needs to
consider general system failures that usually have been associated
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with reliability. The security research world is constantly evolving,
and assumptions about certain vulnerability classes can change over-
night [Howard 2007]. Howard emphasizes a critical lesson that most
vendors have learned the hard way: Today’s denial of service is
tomorrow’s exploit. An attacker could, for example, exploit any of a
variety of failures [Schwartz 2007] to create a denial of service. The
security challenges created by increased system complexity may
prove to be difficult-to-mitigate problems that do not have known
solutions. The effects of multisystem complexity on security are dis-
cussed in Section 6.4, and Section 6.5 provides an overview of
approaches for managing deep technical problems.

6.2 Security Failures

A failure—an externally observable event—occurs when a system
does not deliver its expected service (as specified or desired). An error
is an internal state that may lead to failure if the system does not han-
dle the situation correctly; a fault is the cause of an error. For example,
in a buffer overflow, the error might be in a functional component that
does not check the size of user input. An attacker could exploit that
error by sending an input stream that is larger than available storage
and that includes executable code: This is the fault. The program logic
that accepts the bad input actually overwrites another part of program
logic. The attacker then executes the added code, which enables him or
her to bypass authentication controls. In this way, the functional error
can be leveraged into a security failure. 

A number of errors have been demonstrated to lead to exploitable fail-
ures. Historically, a significant number of security vulnerabilities have
been associated with errors in functional components rather than in
security functions, such as those employed for authentication and
authorization. An attacker may, for example, try to put a system into a
state that was not anticipated during development. Such a situation
might lead to a system crash and hence a denial of service, or it might
let the attacker bypass the authentication and authorization controls
and access normally protected information. Attacks have also
exploited errors in parts of the system that were not fully analyzed
during development or that were poorly configured during deploy-
ment because that effort concentrated on primary usage. Attacks can
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also create an unlikely collection of circumstances that were not con-
sidered in the design and exploit aspects of an interface that develop-
ers have left exposed.

Software engineers should be aware of the ever-lengthening list of
exploitable errors (although even an expert can find it difficult to navi-
gate through all of them). Specific weaknesses or underlying issues that
that may cause vulnerabilities are described in the Common Weakness
Enumeration [CWE 2007]. Several systematic, in-depth, and lengthy
discussions have examined the difficulties associated with building
trustworthy systems [Anderson 2001; Neumann 2004; Schneider 1999]
and can provide a solid foundation of awareness. Although these
sources concentrate on software and system errors, be aware that a
design may also need to mitigate exploitable operator and user errors.

6.2.1 Categories of Errors

To aid in the analysis of security failures, errors can be categorized
according to their occurrence in these five system elements:

1. Specific interface. An interface controls access to a service or compo-
nent. Interfaces that fail to validate input often crop up on pub-
lished vulnerability lists.

2. Component-specific integration. Assembly problems often arise
because of conflicts in the design assumptions for the components.
Project constraints may require using components, COTS software,
or legacy systems that were not designed for the proposed usage,
which raises the likelihood of mismatches. The increasing impor-
tance of business integration requirements compounds the prob-
lems associated with component integration and serves as the
motivation for designs based on a service-oriented architecture. 

3. Architecture integration mechanisms. Commercial software tool ven-
dors often provide a built-in capability for purchasers to integrate a
tool into their systems and tailor its functionality for their specific
needs. Unfortunately, the capability to reconfigure a system rapidly
is typically accompanied by an increased probability of component
inconsistencies generated by the more frequently changing compo-
nent base, as well as the increased risk that the dynamic integration
mechanisms could be misused or exploited. These mechanisms rep-
resent another interface that must be properly constrained
[Hoglund 2004].
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4. System behavior: component interactions. The behavior of a system is
not the simple sum of the behaviors of its individual components.
System behavior is strongly influenced by the interactions of its
components. Components may individually meet all specifica-
tions, but when they are aggregated into a system, the unantici-
pated interactions among components can lead to unacceptable
system behavior. Components that are not secure as stand-alone
components in an operating environment may be secure when
used in a system that controls access to those components. The
technical problems for this category of errors can be significantly
more challenging to solve than the corresponding problems for the
first three categories.

5. Operations and usage. Operational errors are also a frequent source
of system failures, as noted in Trust in Cyberspace [Schneider 1999]:

Errors made in the operation of a system also can lead to sys-
tem-wide disruption. NISs are complex, and human opera-
tors err: An operator installing a corrupted top-level domain
name server (DNS) database at Network Solutions effectively
wiped out access to roughly a million sites on the Internet in
July 1997 [Wayner 1997]; an employee’s uploading of an
incorrect set of translations into a Signaling System 7 (SS7)
processor led to a 90-minute network outage for AT&T toll-
free telephone service in September 1997 [Perillo 1997]. Auto-
mating the human operator’s job is not necessarily a solution,
for it simply exchanges one vulnerability (human operator
error) for another (design and implementation errors in the
control automation).

6.2.2 Attacker Behavior

Modeling attacker behavior presents significant challenges in software
failure analysis. The analysis for quality attributes such as perfor-
mance and hardware reliability is based on well-established failure
rates, but security analysis does not have as solid a foundation. We
may be able to model the work processes so as to generate authentica-
tion and authorization requirements, but we also have to model an
active agent—the attacker—who can change the details of an attack in
response to defensive actions. 

The buffer overflow exploit described earlier in this chapter is a good
example of the complexity of security analysis in terms of the inter-
action of models. Whereas the architect may have modeled the
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authentication and authorization mechanisms and demonstrated
that they satisfy the design requirements, the new code that the
exploit allowed to be executed enables the attacker to move outside
the implemented software controls and hence outside the model. As
a consequence, the validity of the authorization model becomes
dependent on a security analysis of the data flow. 

Social engineering exploits are other examples of external events that
put a system in a state that may not be accounted for by the usage
models. In these exploits, an attacker typically tries to convince users
or administrators to take an action that lets the attacker circumvent a
security control. For example, the attacker might try to impersonate
a user and convince help-desk personnel that they should change an
account password so that a customer order could be submitted.

Attack patterns, which are discussed in Chapter 2, are a good way to
describe known attacker perspectives of a system.

6.3 Functional and Attacker Perspectives for 
Security Analysis: Two Examples

Security analysis must take both a functional perspective and the
attacker’s perspective. The functional perspective identifies the impor-
tance of an issue to the business functionality of the system and hence
is a component of a risk assessment. The attacker’s perspective consid-
ers the opportunities that business usage and the specifics of a technol-
ogy create. For example, a capability to easily configure Web services
could also be used by attackers to configure those services to support
their objectives. Central services that consolidate authentication and
authorization are also highly prized targets for attackers, because any
vulnerabilities in those services can provide access to desired targets
such as business information assets.

These two perspectives capture the fact that distributed decision mak-
ing across both physical and organizational boundaries is a necessity for
software-intensive systems that support human interactions. As work
processes extend beyond the corporate IT perimeter and encompass ser-
vices and data provided by external systems and organizations, the con-
cept of a perimeter becomes even more elusive. Frequently each
interface must be monitored to reflect the dynamically changing assur-
ance associated with it. The interfaces among systems may depend on
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organizational relationships. Thus the central control represented by a
firewall-protected perimeter has increasingly been replaced by multiple,
and potentially conflicting, control points. 

The next two sections introduce some of the security issues associated
with Web services and identity management. Web services are often
deployed to support business requirements for the integration of geo-
graphically distributed systems. Identity management concentrates on
one aspect of system interoperability: authentication and authoriza-
tion across multiple systems. We take both a functional perspective
and attacker’s perspective with each example. 

By “functional,” we mean the added value from the organizational
perspective. For Web services, the functional perspective includes the
capability of dynamically exchanging information without having to
hard-wire the mechanics of that exchange into each system. Thus a
change in business requirements may be implemented by changing
the Web service interfaces rather than changing the functional busi-
ness logic. For identity management, the functional perspective is rep-
resented by two objectives: 

• Interoperability across systems to enable sharing of identity
information

• Consolidation and, where desired, centralization of the security
services of authentication and authorization across multiple systems

6.3.1 Web Services: Functional Perspective

To support greater business efficiency and agility, information systems
and their operations have become increasingly decentralized and het-
erogeneous. Business processes are distributed among far-flung busi-
ness divisions, suppliers, partners, and customers, with each
participant having its own special needs for technology and automa-
tion. As a consequence, the demand for a high degree of interoperabil-
ity among disparate information systems has never been greater.
Moreover, this high degree of interoperability must be sustained as
participants continually modify their systems in response to new or
changing business requirements.

Traditional assembly and integration methods (and the resulting inte-
gration software market stimulated by these methods) are not particu-
larly well suited to this new business environment. These methods
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rely on a tight coupling between cooperating systems, which requires
either the universal deployment of homogeneous systems (unlikely,
considering the diversity and broad scale of modern business services)
or extraordinarily close coordination among participating development
organizations during initial development and sustainment (e.g., to
ensure that any changes to APIs or protocols are simultaneously
reflected in all of the deployed systems). Such tight coordination is often
impractical (e.g., prohibitively expensive), and rapid evolution in
response to a new business opportunity is typically out of the question.

In contrast to traditional assembly and integration methods, Web ser-
vices technology uses messages (in the form of XML documents) that
are passed among diverse, loosely coupled systems as the focal point
for integration. These systems are no longer viewed solely as compo-
nents within a larger system of systems, but rather as providers of ser-
vices that are applied to the messages. Web services are a special case
of the more general notion of service-oriented architecture (SOA).
Service-oriented architectures represent interconnected systems or
components as collections of cooperating services. The goal of Web
services technology is to dramatically reduce the interoperability
issues that would otherwise arise when integrating disparate systems
using traditional means. 

The distributed aspects of a business transaction also affect how we
manage identities. A Web services message, for example, might contain
an order for materials and be submitted by an organization to a sup-
plier. For infrequent transactions, an employee from the purchasing
organization could log into a supplier’s online application and submit
the request. That employee would be authenticated by the supplier’s
identity management system. This type of online purchasing system is
synchronous—that is, the supplier’s system requests information and
waits for a response. Such a synchronous communication protocol can
tie up computing resources waiting for responses. In contrast, for high-
volume transactions (and particularly those associated with just-in-time
delivery), the transactions are system generated and the communication
protocols are asynchronous—that is, the sending system does not wait
for a reply. With an asynchronous interface, a business purchasing trans-
action might start with a message from the purchaser to the supplier
that describes the details of the order. Later, the supplier would send
another message—an acknowledgment of the order or confirmation of
shipment—to the purchaser. Each of these messages updates the trans-
action state that is maintained independently by both organizations. In
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such a communication process, messages can be thought of as events,
and an application architecture that processes messages is often
described as an event-driven architecture.

In an event-driven architecture, the system that processes a message
needs the equivalent to the user login for the synchronous online
application to authenticate the purchaser and, in some instances, to
verify that the purchaser is authorized by the purchasing organization
to submit the order. The purchaser does not directly log into the sup-
plier’s system; rather, the purchaser’s user authentication and authori-
zation information is incorporated into the order sent to the supplier.
Although this purchase order may contain business-sensitive informa-
tion that should require authentication and authorization to access, the
purchaser cannot directly observe or monitor the processing of that
order by the supplier. As a consequence, the purchasing organization
may require assurance that the order was accepted by the supplier. 

A Web services message not only contains the ordering data, but also
provides mechanisms for the necessary authentication and authoriza-
tion. Encryption might be used by the sender to restrict access to this
information. Signing can be used to confirm data integrity or as a
means to identify the author of specific components of the message.
Security Assertion Markup Language (SAML) can be used to share
user identities and attributes. 

6.3.2 Web Services: Attacker’s Perspective

We next look at the attack risks associated with Web services. Our
analysis assumes that Web services have been implemented using the
Simple Object Access Protocol (SOAP). SOAP is an XML-based proto-
col that lets applications exchange information. The information
exchanged might consist of business data (such as a purchasing order)
or instructions on how the business process should be done. 

This section describes illustrative—not canonical—threats and vulner-
abilities that Web services applications face. To do so, it uses Shirey’s
model [Shirey 1994], which categorizes threats in terms of their impact
as disclosure, deception, disruption, and usurpation. The threats are
further categorized by the service-level threats that are common to
most distributed systems and the message-level threats that affect Web
services XML messages. A more detailed description of the threats and
mitigations appears in [BSI 27].
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Figure 6–1 depicts an exchange based on Web services. Web services are
designed to support interchanges among diverse systems. The initial
step of an interchange is for the purchasing organization to acquire a
description of the data transaction and the protocols used for encryption
and signing. The eventual objective is for the initial exchanges to estab-
lish security policies that are acceptable to both parties. A service regis-
try contains the message exchange pattern, types, values, methods, and
parameters that are available to the service requester. It could be con-
trolled by the service provider or could be a more widely accessible site
operated by a third party.

Two main risk factors are associated with Web services:

• Distributed systems risks—that is, risks to the service providers
themselves that are similar to risks that exist in Web applications
and component applications. For example, malicious input attacks
such as SQL injection fit this description. These risks arise simply
because the system is distributed on a network. Note that standard
IT security controls such as network firewalls are largely blind to
Web services risks, because Web services are deployed on com-
monly available open ports. Nevertheless, some types of applica-
tion firewalls have the ability to examine content, such as XML

Figure 6–1: Web services
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message bodies, and can use application-specific knowledge to
thwart some attacks. Unfortunately, they are by no means a pana-
cea for all distributed systems risks [BSI 28]. 

• Message risks—that is, risks to the document and data that are
exchanged among participants. The document may participate in a
multisystem transaction or be subject to inspection by a variety of
intermediaries, each operating in different security zones, includ-
ing separate policy, geographic, technical, and organizational
domains. The message’s content may also, of course, contain sensi-
tive data.

Using Shirey’s threat categories based on impact, Tables 6–1 through
6–4 describe general threats for Web services, the tactics that an
attacker might use, and the ways that a developer might mitigate
those threats. Studying attack patterns that use those tactics can assist
in analyzing the possible mitigation options. 

Table 6–1: Disclosure of Information

Attack
tactics

The XML-based messages may be passed without encryp-
tion (in the clear) and may contain valuable business 
information, but an attacker may be more interested in 
gaining knowledge about the system to craft attacks 
against the service directly and the system in general. A 
security vulnerability in the service registry (like that 
shown in Figure 6–1) might let the attacker identify the 
system’s data types and operations. That same informa-
tion could be extracted from messages sent in the clear. 
Messages may also contain valuable information such as 
audit logs and may lead to identity spoofing and replay 
attacks, which use message contents to create a new mes-
sage that might be accepted.

Mitigations Authentication and authorization mechanisms may be 
used to control access to the registry. There are no central-
ized access control mechanisms that can protect the XML 
messages, but message-level mechanisms such as encryp-
tion and digital signatures can be used.
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Table 6–2: Deception

Attack
tactics

An attack can try to spoof the identity of the service 
requester by sending a well-formed message to the ser-
vice provider. The identity of the service provider could 
also be spoofed. XML messages are passed without integ-
rity protection by default. Without integrity protection, an 
attacker could tamper with the XML message to execute 
code or gain privileges and information on service 
requesters and providers.

Mitigations Web services provide a number of integrity and authenti-
cation mechanisms that can mitigate deception. For exam-
ple, WS-Security defines how to include X.509, Kerberos, 
and username and password security information in the 
XML message to support end-to-end authentication. Mes-
sage integrity is supported through digital signatures and 
message origin authentication.

Table 6–3: Disruption

Attack
tactics

An attacker could execute a denial of service at the network 
level against a Web service. Messages could also be used for 
a denial-of-service attack. For example, an attacker could 
send a specially formed XML message that forces the appli-
cation into an infinite loop that consumes all available 
computing resources. The receipt of a large volume of mal-
formed XML messages may exceed logging capabilities.

Mitigations A network-level denial of service is mitigated in a similar 
fashion to a Web application denial of service—that is, by 
using routers, bandwidth monitoring, and other hard-
ware to identify and protect against service disruption. 
Mitigation of message-level disruptions depends on vali-
dating the messages, but that mitigation can be tricky, 
because the target of such attacks is that mitigation com-
ponent. One tactic would be to encapsulate message vali-
dation in a service that is applied before messages are 
passed to applications.
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6.3.3 Identity Management: Functional Perspective2

Information systems are increasingly interconnected, such as when
companies’ intranet sites provide single sign-on capabilities to other com-
panies that provide 401(k) and health benefit services. These parties—
that is, the financial and health benefits services organizations—may
rely on their customers’ systems to provide information about the
identities of the users who are connecting to their services. However,
the two systems may not have consistent security policy, enforcement,
audit, or privacy requirements. 

Table 6–4: Usurpation

Attack
tactics

An attacker may usurp command of a system by elevating 
his or her privileges. One way to do so is to exploit the ser-
vice registry to redirect service requests, change security pol-
icy, and perform other privileged operations. XML messages 
may be used to propagate viruses that contain malicious 
code to steal data, usurp privileges, drop and alter tables, 
edit user privileges, and alter schema information.

Mitigations When service registries are used in Web services, they 
become a central organizing point for a large amount of sen-
sitive information about services. The service registry (and 
communication to and from the service registry) should be 
hardened to the highest degree of assurance that is feasible 
in the system. Vulnerability analysis of source code pays 
particular attention to system calls to privileged modules in 
the operating system. The service registry can affect policy, 
runtime, and locale for other services and hence is analo-
gous in importance to the operating system. Therefore par-
ticular attention must be paid to how service requesters 
access the service registry. At the message level, vendors are 
beginning to realize the significant threat that viruses, when 
attached and posted with XML documents, may pose to the 
environment. For systems that may have XML or binary 
attachments, virus protection services should be deployed 
to scan XML and binary messages for viruses in a similar 
fashion to email messages—that is, before the messages are 
executed for normal business operations.

2. This material is extracted from “Identity in Assembly and Integration” by Gunnar Peterson
[BSI 27].
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Identity management (IM) is an administrative system that deals with
the creation, maintenance, and use of digital identities. The use of a
digital identity is controlled by the authorizations associated with it.
IM includes the business processes associated with organization gov-
ernance, as well as the supporting computing infrastructure. Operat-
ing systems, specific applications, and database management systems
have each defined their own digital identity and implemented access
control mechanisms. The initial technical challenge associated with
implementing organizational governance policies is whether those
policies can be implemented consistently across that diverse collection
of identities and access control mechanisms. Even more difficult tech-
nical challenges arise from the following trends:

• Identity must be consistently managed across multiple and often
geographically distributed systems. In some instances, identities
can pass between organizations. A number of technical issues have
to be resolved before such management is possible, however:

– Access control. Identity is a foundation-level component for
many access control mechanisms. Identity information about a
digital subject is bound to a principal, which is typically an end
user. Access control mechanisms consume identity data from
the principal to make and enforce access control decisions.
Weaknesses in identity systems affect the overall viability of
access control, security, and privacy mechanisms.

– Audit and reporting. These systems can be used to record,
track, and trace identity information throughout systems.
Audit logs and usage reports may be used for regulatory, com-
pliance, and security purposes. Depending on their implemen-
tation, however, they may create privacy issues for individuals
when that information is reported. Some techniques allow for
system reporting and monitoring without disclosing identity
information.

– Identity mapping services. Distributed systems may have dif-
ferent implementations of identities. Identity mapping services
can transform identities in a variety of ways so that a principal
on one system can be mapped to a principal on another system. 

– Domain provisioning services. In this context, a domain is a
system in which computing subsystems have common defini-
tions for security objects such as identities and authorizations.
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A domain could, for example, consist of a collection of Win-
dows workstations or be a database management system
deployed on a single server. The organizational identity and
authorization information must be mapped to each domain.
Provisioning services perform that function. 

• Identities are associated with more than just employees. Some
organizations may have to manage customer, contractor, and busi-
ness partner identities as well. 

• Increasingly, legislation and regulation have begun to recognize
the value of identity data. Countries and industries have specific
points that must be addressed to ensure that identity is protected.
For applications that have an international user base, additional
regulatory and legal concerns may span legal boundaries.

• Privacy concerns relate to identity information that is linked at
some level to an individual. They center on which personal data is
disclosed and may manifest themselves in the system design
through privacy legislation, liability, and/or psychological accept-
ability and success of the solution. Systems may implement pri-
vacy mechanisms using pseudonyms or anonymous mechanisms. 

• Information relating to digital subjects is used by a wide array of
applications from Internet portals (e.g., business Web sites, loyalty
programs, customer relationship management services, personal-
ization engines, and content management servers) to enhance the
customer experience and provide convenience and targeted ser-
vices on behalf of businesses and consumers. Personal data, when
stored by organizations, may also be shared and correlated for a
variety of reasons, including data mining and target marketing;
these uses of personal data may directly conflict with goals related
to pseudonymous protection of data subject information.

6.3.4 Identity Management: Attacker’s Perspective

Given that identity information is so central to so many security deci-
sions and to so much application functionality, it represents a highly
prized target for attackers. From a cultural viewpoint, identity infor-
mation is understood to require extra due diligence by government,
regulatory bodies, and individual users. This kind of information and
its related architectural constituents, therefore, may be held to a higher
standard for both security and privacy elements, and additional secu-
rity analysis, design, implementation, operations, and auditing may be
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required. Throughout all phases of the SDLC, you should examine the
security model of the identity services and identity stores in the con-
text of your overall system security to ensure that those services and
stores are among the strongest links in the system. The more identity
information is centralized logically or physically, the more risk to iden-
tity information is aggregated.

Identity information leakage can occur when identity providers sup-
ply more information than is necessary to perform the functional task
and do not protect the identity information when it is transmitted
across the domains’ boundaries. A classic example would be a service
that requires authorized users to be 21 years of age or older. In this
case, the relying party asks the identity provider for the age informa-
tion. If the identity provider gives the relying party the user’s birth
date so that the relying party can calculate the age of the user, then the
user’s birth date has been propagated to a separate service that now
can retain (or disclose or otherwise lose) a valuable piece of personal
information that the service does not absolutely require to perform its
functions. A more appropriate response could be that the relying party
queries the identity provider or the data subject if the user is more
than 21 years old and receives a Boolean yes/no response. Some infor-
mation has been revealed to the service provider in this instance, but it
is far less critical. 

Emerging technologies such as Web services and federated identity
have direct implications on identity information leakage. An objec-
tive for federated identity is to enable a portable identity by sharing
identity information among normally autonomous security domains.
With federated identity, a traveler could, for example, log into a hotel
system and then reserve a rental car or reconfirm an air reservation

Security Versus Privacy

An inherent tension exists between security and privacy that
plays out most directly in the identity space. This tension
revolves around the extent to which the user and the relying
party have control and visibility of personal data. To be effective,
the identity architecture must resolve these concerns in a manner
that is congruent with each party’s requirements.
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without explicitly logging into the car rental or airline systems.
Those systems would accept the user’s identity as authenticated by
the hotel. Early efforts related to portable identity for Web usage,
such as Microsoft Passport, suffered from disclosure of identity
information to parties that did not have a justifiable place in the
transaction [Cameron 2005]. Directory services that replicate identity
information at the data level can also create exposure by replicating
more identity information than is required for dependent systems.

General mitigations for identity management risks are listed in Table 6–5.

Table 6–5: Identity Management Risk Mitigations 

Availability Identity services provide an interface to information 
about subjects stored in the identity stores in a system. 
They also can provide a single point of failure that 
attackers may target to bring application systems down, 
without the need for the attackers to target the applica-
tion itself. In fact, because identity services and stores 
are often reused in organizations serving identity infor-
mation to multiple applications, an attacker who suc-
cessfully executes a denial-of-service or other 
availability attack against identity services and stores 
can have a large adverse impact on the availability of the 
system. Incorporating redundancy and automatic 
failover for identity services can be used to combat 
availability threats. Services are often consolidated to 
reduce costs, but consolidation of identity services can 
expand the consequences of a successful exploit. Decen-
tralizing the deployment and management of identity 
services may be an appropriate tradeoff for this risk, 
albeit with increased operational costs.

Hardened 
servers and 
services

Given the critical nature of the data that identity servers 
host and the access they vouch for in the system, iden-
tity servers should be hardened to the highest level of 
surety that is practical. The goal of identity servers to is 
provide and verify identity information for applica-
tions—not to run Web servers, database servers, and so 
on. Standard server-hardening techniques that limit 
privileges and services available only to those strictly 
necessary apply in this instance. Hardening special-
purpose identity servers such as directory services servers   
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6.3.5 Identity Management and Software Development 

Software development teams may lack agreed-upon plans for adoption
of standard representation and consumption patterns for authentica-
tion, attribute query or update, and authorization of identity informa-
tion across technological and organizational domains. The current state
of identity may consist of numerous identity silos that are directly
bound to domain-specific technologies, policies, and organizational

is a relatively more straightforward task than hardening 
identity servers; the latter are more general-purpose 
tools in the organization and may contain both identity 
and line of business or domain information.
Host integrity monitoring, network- and host-based 
intrusion detection systems, network security monitor-
ing, and secure exception management practices enable 
more robust detection when protection mechanisms fail.

Incident
response

Many attacks against identity—and particularly identity 
theft attempts—rely in large part on the victim remain-
ing ignorant that theft has occurred for some period of 
time. The damage an attacker can cause can be partially 
mitigated by an effective, rapid, and targeted response 
to identity data theft. An effective program could 
include clear communication lines and response pat-
terns, along with a set of guidelines that the victimized 
users can implement to deal with the aftermath of an 
identity theft.

Usability:
endpoint
attacks

At runtime, the endpoint for identity data is frequently 
the user session and user desktop. Therefore, securing 
identity information often boils down to a battle 
between usability and security. The work done in pro-
tecting an identity across dozens of hops across servers 
and nodes can be defeated by attackers who target the 
desktop layer or the user. Robust identity systems must 
ensure that the usability of identity is factored in so that 
users understand their roles and responsibilities in 
using their identity in the system. Individual users are 
typically not able to discern when it is appropriate and 
safe to disclose personal information.

Table 6–5: Identity Management Risk Mitigations (Continued)
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domains, each with its own interpretation of how to issue, encapsulate,
and negotiate identity data and services. This potential lack of consis-
tency creates issues for distributed systems that are required to traverse
multiple identity silos and domains and has the overall effect of stimu-
lating numerous one-off solutions for identity, each of which contains its
own arcane, tightly coupled, and technology-specific ways of dealing
with identity. There is a well-understood best practice in software devel-
opment that developers should not attempt to write their own crypto-
graphic algorithms because of the complexity, lack of peer review, and
value of that which the cryptographic functions are protecting. Develop-
ers, in contrast, routinely write one-off identity solutions that are never
peer reviewed by a wider audience. This identity information is then
propagated and integrated throughout software systems and used as a
basis for making security decisions about access control to critical
resources and the confidentiality of personal and business data.

In many systems, these one-off solutions are further integrated with
other identity silos, creating a mishmash of identity solutions with
varying limitations, and in the worst case generating a lowest common
denominator effect. Exacerbating this problem further is the fact that
many identity solutions are already in place as legacy systems while
software is being developed, such that the projects inherit the standard
issues found in legacy integrations with identity, including brittleness
and lack of support for robust protocols and current standards. Why is
this proliferation of solutions an especially serious problem for iden-
tity management? As noted by Matt Bishop, “Every access control
mechanism is based on an identity of some sort.” Bishop goes on to
state that all decisions of access and resource allocation assume that
the binding of an identity to the principal is correct [Bishop 2002].
Hence, identity is a foundation-level element for security and account-
ability decisions, and breakage at this level in design has profound
implications for the system’s security as a whole. Transactions may
employ multiple identity contexts throughout their life cycles, broad-
ening the scope of identity’s usage for access.

Piling on to the previously mentioned system-level problems are
users’ lack of awareness, ability, and tools for managing and propagat-
ing their own digital identity information and their lack of ability and
technical tools to use in determining the veracity of requests for their
personal information. The net result: The emergence of phishing and
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other attacks targeting these vulnerabilities at the directory, user desk-
top, and client levels.

To protect identity on the client and server and throughout the sys-
tem as a whole, software development teams require an overarching
understanding of identity’s architectural elements and approaches to
integrating identity into software systems. Such an understanding
will enable them to bridge the chasm that exists between the
assumptions made about identities and the actual state that exists in
the system with which they are attempting to integrate. The acquisi-
tion of knowledge regarding the union of identity elements, behav-
iors, and constraints and the software user’s knowledge and abilities
related to the desktop and clients will give software development
teams the tools they need to build more robust software based on
secure usage of identity. 

6.4 System Complexity Drivers and Security

Satisfying business requirements increasingly depends on integrating
and extending existing systems. In particular, new development must
often be integrated with an existing operational environment. The
analysis described in Section 6.3 concentrated on how an attacker
might exploit the Web services interfaces that support a desired inte-
gration. Such analysis is representative of current security analysis
techniques. Nevertheless, characteristics of the resulting operational
environment can not only generate additional security risks, but also
constrain the mitigation of those risks.

Some consequences of this tradeoff for security analysis of the distrib-
uted operational environments are described in Table 6–6. Security risk
assessments are affected by unanticipated risks, reduced visibility, and
the wider spectrum of failures possible. A number of these factors
affect the software development process. The wider spectrum of errors,
for example, may require that more attention be devoted to fault toler-
ance. Other factors may dictate which risk mitigation options can be
applied. Factors such as less development freedom, changing goals, and
the importance of incremental development all affect how security is
incorporated into the software development process. 

L2L LM
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Table 6–6: Consequences of Expanded Scope for Security 

Unanticipated
risks

The dynamic nature of the operational environment 
raises software risks that are typically not addressed 
in current systems. Interoperability across multiple 
systems may involve resolving conflicting risk profiles 
and associated risk mitigations among those systems. 
As work processes cross business units and multiple 
organizations, change becomes increasingly difficult 
to control, and any changes might invalidate the exist-
ing security analysis.

Reduced
visibility

Work processes often involve external, COTS, or leg-
acy systems that cannot be observed or whose behav-
ior cannot be thoroughly analyzed. Testing the subsets 
of such systems is not sufficient to establish confi-
dence in the fully networked system. That is particu-
larly true when some of the subsystems are 
uncontrollable or unobservable [Schneider 1999]. In 
these circumstances, it is much more difficult to distin-
guish an attacker-induced error from a nonmalicious 
event. Business requirements may increase the need 
for interoperability with less than fully trusted sys-
tems. Under such circumstances, the security architect 
cannot have the in-depth knowledge that existing 
techniques often assume.

Wider
spectrum of 
failures

As noted by Leveson for safety [Leveson 2004], the 
cause of a system security failure may be not a single 
event, but rather a combination of events that individ-
ually would be considered insignificant. The probabil-
ity of a single combination of events is typically quite 
small, but the probability of some adverse combina-
tion of events occurring can increase as system size 
increases. 
One of the more challenging problems for security 
analysis involves establishing priorities for identified 
risks. Increasingly, security risks are associated with 
high-impact, low-probability events. The relationship 
frequently applied in risk analysis,

Expected Cost = Probability of Event × Impact

is not valid for such events.
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6.4.1 Wider Spectrum of Failures

Software failure analysis in this context may require a different model
of accidents than that used for hardware. Hardware failure analysis
typically relies on event-based models of accidents. Such models, with
their relatively simple cause-and-effect links, were created in an era of
mechanical systems and then adapted for electromechanical systems.
The use of software in engineered systems has removed many of the
physical constraints that limit complexity and has allowed engineers
to incorporate greatly increased complexity and coupling in systems
containing large numbers of dynamically interacting components. In
the simpler systems of the past, where all the interactions between
components could be predicted and handled, component failure was

Less
development
freedom

Architectural principles provide guidance on how to 
decompose a system so that the components can later be 
assembled into a system that meets the security require-
ments. The decomposition guidance assists in address-
ing issues associated with component and system 
interactions. When we integrate existing subsystems or 
incrementally add functionality to an existing system, 
most aspects of the decomposition have already been 
defined. We no longer have the ability to specify a 
decomposition that best supports the desired system 
characteristics. At some point, the stress between what 
we have and what we should have becomes great 
enough that the only option is reengineering. 

Incremental 
and evolution-
ary develop-
ment

Large systems typically emerge from a smaller system 
by incremental additions of new functionality. A suc-
cessfully deployed system may encourage new usages 
that were not anticipated in the original design. While 
the knowledge that supported the initial design might 
have been considered sufficient for that context, it may 
be incomplete for the new functionality and usage. 

Conflicting or 
changing goals

Business usage and underlying technology are typi-
cally changing faster than our capability to change the 
software. Computing systems can be friction points 
for organizational change.

Table 6–6: Consequences of Expanded Scope for Security (Continued)
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the primary cause of accidents. In today’s highly complex systems,
this is no longer the case. 

While vulnerabilities are often associated with just a single compo-
nent, the more challenging classes of vulnerability derive from interac-
tions among multiple system components. Such vulnerabilities are
difficult to locate and predict, because it may not be possible to model
the behavior of multiple systems under all conditions. An unexpected
pattern of usage might overload a shared resource and lead to a denial
of service, for example. In addition, multiple factors may contribute to
the vulnerability and prove difficult to identify. For example, a vulner-
ability could arise from a software design that increases the possibility
of errors by human operators. 

Bellovin observed (in [Schwartz 2007]) that the power grid failure in
August 2003 was not caused by a single failure but rather by a cascad-
ing set of events. Certainly, a race condition that disabled the sub-
system that alerted the power grid controllers to potential failure
conditions was a significant factor, but that failure by itself likely could
have been managed. After that subsystem failure, a combination of
operator and management missteps led to a significant time period
during which the power grid controllers were not aware of serious
transmission line problems. The operators saw no system-generated
alerts and had not been told of the alert system failure. During that
same period, a second monitoring system managed by an indepen-
dent organization also suffered a series of failures.

The combination of system, management, and operational errors
delayed mitigating the transmission line problems until recovery was
impossible. The combination of such events does not have to be con-
current to produce a failure of the system. In this case, the lack of staff
mitigation training had existed for some time, which had reduced the
capability to mitigate system or operator failures.

Discrepancies between the expected and the actual arise frequently in
the normal course of business processes. Discrepancies can be thought
of as stresses that may drive a business process into an unacceptable
state. Stress types include interactions, resources, and people. Missing,
inconsistent, or unexpected data are examples of interaction stresses,
whereas resource stresses may include excessive network latency,
insufficient capacity, and unavailable services. People stresses can con-
sist of information overload that slows analysis, distraction (too much
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browsing) and a “Not my job” attitude, which can inhibit effective
responses to problems. 

Figure 6–2 depicts one way to represent system behavior when the
cause of a failure is a combination of events. Think of system capacity
as a collective measure of the resources available, both computing and
human. A system might be thought of as in a healthy state when suffi-
cient resources are available to manage temporary increases in usage,
even with some discrepancies. Over time, however, changes in usage
may increase resource loading so that an internal fault that previously
could be mitigated now leads to system failure. In the case of the
power grid failure, the lack of training reduced the capacity of the sys-
tem and increased the probability of a mitigation failure.

As we integrate multiple systems, we should expect technical discrep-
ancies. Systems developed at different times will inevitably have vari-
ances in technology and expected usage. In addition, technical stresses
can arise because large distributed systems are constructed incremen-
tally. The functionality of the initial deployment of a system may sug-
gest other applications that were not anticipated in the initial design.
Finally, users frequently exploit system functionality in unanticipated
ways that may improve the business processes, but their efforts may
also stress the operation of components that were not designed for the
new usage. 

Figure 6–2: System failures
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The overall success of a business process depends on how the staff and
supporting computing systems handle those discrepancies. Changes
in business processes and systems, for example, can introduce new
discrepancies. In addition, dealing with discrepancies becomes much
more difficult as the number of participants—people and systems—
increases. Each participant must cope with multiple sources of dis-
crepancies, and a single discrepancy can affect multiple participants.
In this situation, the likelihood that a discrepancy will not be properly
managed by some participant increases, with that failure then affect-
ing other participants.

Partitioning Security Analysis

The system complexity associated with business system integration
requirements expands the spectrum of development, user, and system
management failures that security analysis has to consider. One way
to partition that effort is to consider two perspectives for the analysis
of work processes that span multiple systems. 

The first perspective focuses on the global work process. The compo-
sitions of the functions associated with the individual systems cer-
tainly must meet the functional requirements for the work process,
but the challenge is most likely meeting quality requirements such as
those for security, performance, and reliability. How do individual
system failures affect the work process? The individual system risks
and chosen mitigations may not be compatible with the risk profile
desired for the work process, particularly when the individual sys-
tems are independently managed or provide services to multiple
work processes. 

The second perspective is that of a service provider. An essential
requirement is to provide the specified functionality, but as with the
work process perspective, the quality requirements pose the greater
challenge. An individual system has to meet the quality require-
ments associated with a request, yet there are also risks associated
with servicing a request. A requesting system may have been com-
promised, for example, but system resources must remain protected.
Unexpected patterns of usage by a single or multiple requesters may
adversely affect the capability to provide a service. Whereas a global
work process has limited knowledge about individual systems, a ser-
vice provider is in an equivalent position with the requesting sys-
tems and about the effects that a system action might have on
external work process. 
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Mitigations

• Concentrate first on the first three categories of security failures
described in Section 6.2.1. With more interfaces to less trusted sys-
tems, it is critical to first deal with known interface vulnerabilities.
Pay particular attention to network-based interfaces such as those
included in Web services. Web services provide mechanisms to
manage security across geographically and even independently
operated systems, but the use of those protocols could also be
exploited by an attacker. Some of the vulnerabilities associated
with Web services are described in Section 6.3.2. 

The remaining mitigations apply to the general problem of integrating
multiple systems.

• One approach to simplifying security across multiple systems is to
share essential security services such as user authentication and
authorization. Interoperability among multiple systems often
results in security problems raised by multiple access control and
authentication control points. For example, an operating system
supports user authentication and controls access to operating sys-
tem objects such as files and processes; a database server supports
independent user authentication and access control mechanisms
for database objects such as tables or individual data items. Iden-
tity management refers to an approach to integrating those multi-
ple authentication and authorization mechanisms so that some
aspects of identity can be shared among systems. Identity manage-
ment represents an essential aspect of security functionality. A suc-
cessful attack on identity management services can enable the
attacker to gain enhanced privileges and thereby access confiden-
tial information. Security issues for identity management are dis-
cussed in Section 6.3.4.

• An essential design task for a large system is delegating the respon-
sibilities for meeting security requirements. Delegation of responsi-
bilities goes beyond system components and includes users and
system management. For example, a password or private key used
for authentication can be compromised by a careless user, so in this
sense the authentication responsibilities are shared by users and
the system. The user responsibilities might be reduced by using a
one-time password mechanism or a biometric device such as a finger-
print scanner. 
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The delegation of responsibilities can purposely introduce redun-
dancy to support a “defense in depth” strategy. A simple form of
defense in depth is to always check the validity of inputs to a com-
ponent even though the design calls for those checks to occur in
advance of the call to the component. 
Poor delegation of responsibilities is often reflected by a “Not my
job” response and inaction when problems arise. Causal analysis
for engineered systems usually concentrates on component fail-
ures that are mitigated by prevention or redundancy. That focus
does not account for (1) social and organizational factors in acci-
dents, (2) system accidents and software errors, (3) human error,
(4) system interactions, (5) tradeoffs among system properties such
as performance and reliability, and (6) adaptation over time [Leve-
son 2004]. A risk for security is that it is typically treated as a sepa-
rate concern, with responsibility being assigned to different parts
of the organization that often function independently. That isola-
tion becomes even more problematic as the scope and scale of sys-
tems expand. 
Business integration requirements and the use of technologies
such as Web services to support the integration of distributed sys-
tems can affect the delegation of responsibilities. It is not unusual
to find that an organization’s development, operational, and busi-
ness groups are tackling common problems with little coordina-
tion or that some security problems have been ignored.3

• [BSI 30] and [BSI 31] provide guidance on risk assessment and
security concerns for COTS and legacy systems.

A number of organizations are exploring approaches to better manage
the risks associated with system complexity. Such practices are on the
leading edge of security initiatives and certainly have not been
proven. The following suggestions are drawn from those experiences:

• Operational monitoring. Failures of some sort are a given for a com-
plex system. A system design usually identifies some set of poten-
tially adverse events and corresponding mitigations, but that set of
adverse events is never truly complete. Given this fact of life, it is
critical to monitor any unexpected events that fall outside that set.
Potential security failures may change because of the appearance

3. A more detailed discussion of the affects of operations on development appears in [Woody
2007].
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of new attack patterns, and changes in usage or system configura-
tions may generate unexpected activity. It can be helpful to analyze
system failures that have affected other organizations, because
they may identify a similar internal weakness. The monitoring
strategy is similar to that applied to deal with hard-to-solve prob-
lems. With this approach, the analysis serves as a learning experi-
ence for the staff and increases their capability to respond to future
failures and to incorporate that knowledge into system enhance-
ments.

• Consolidation of failure analysis and mitigations. The multiplicity of
systems and increasing number of possible error states arising
from the interactions can overwhelm analysis. The risk in this
case is having too many point solutions that mitigate narrowly
specified events. Changes in usage could then generate a signifi-
cant reengineering effort. Failure analysis is done for security,
reliability, and safety if applicable. How much of that effort can
be consolidated?
Given system complexity and dynamics of usage, it is not realistic
to assume that a system is entirely free of vulnerabilities. Instead,
error management must be perceived as an ongoing activity for
any large system. When an error occurs, there is rarely sufficient
information to immediately identify a specific cause, let alone
characterize that cause as malicious. The runtime choice of an
appropriate mitigation might be based simply on the impact of the
failure. If the identified error involves data integrity, the general
strategy independent of the cause may be to contain the damage
and enable recovery. A recovery from a security breach may be
able to take advantage of the general failure mitigations.
An attacker may be able to exploit how a system manages fail-
ures—particularly failures in the interfaces with normally trusted
components. As an example, one of the causes of the 2003 electric
power grid blackout was a race condition in a subsystem that mon-
itored sensor data. While there were no malicious events for that
blackout, could an attacker crash such control systems by targeting
trusted sensors?

• Generalization of the problem. Some organizations are revisiting
how they treat availability. Is it a security requirement or a busi-
ness requirement? Should those two perspectives be consoli-
dated? As a business requirement, availability supports business
continuity, which is based on the dependability of the computing
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infrastructure, service providers, the technology deployed, opera-
tions, information processing, and communications. Security, reli-
ability, and compliance are all part of business continuity. 

Aspects of such guidance could be applied to enterprise architec-
tures that are not geographically distributed. One tactic for sup-
porting business continuity for a system of systems could be to
maintain sufficient independence among the systems so that
essential aspects of business processing can be restored with a sub-
set of the systems rather than the full system of systems or so that
processing can continue asynchronously with an eventual syn-
chronization.

6.4.2 Incremental and Evolutionary Development

Incremental system development affects the design of the software
architecture for most of the quality attributes, not just security. A soft-
ware architecture can realistically support only a limited number of
anticipated changes. The consequences of change can be greater for
security than the other quality attributes, however, if incremental
development introduces vulnerabilities.

The authors of the 2007 National Research Council (NRC) report
Towards a Safe and More Secure Cyberspace observed the lack of adoption
of known techniques for improving system security [Goodman 2007].
Section 4.3.1 describes a number of architectural principles used to
enhance software security, such as least privilege, defense in depth,
and securing the weakest link. Researchers have found that the use of
such architectural principles by system designers and architects corre-
lates highly with the security and reliability of a system [Goodman
2007]. Unfortunately, these principles have not been widely adopted.
The NRC committee proposed that the primary reasons for that lack of
use included the following issues: 

• A mismatch between the principles and current development
methodologies

• The short-term costs associated with serious adherence to those
principles

• Potential conflicts with performance

As stated in the report, an examination of the architectural principles
suggests that a serious application of them depends on designers and
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architects knowing very well and in considerable detail exactly what the
software component is supposed to do and under which conditions. All
too frequently, however, system requirements and specifications are
incomplete. In addition, user requirements may change during develop-
ment. Likewise, architectural tradeoff analysis among quality attributes
such as reliability, security, and performance can lead to revisions of
requirements. While incremental development, simulation, and proto-
typing can enable users to better specify their needs and provide the
developer with a better knowledge of how to implement the desired
behavior, the use of legacy systems, COTS components, or systems
developed and operated by external organizations means that our sys-
tem knowledge will always be incomplete. Perhaps not surprisingly, the
NRC report listed the ability to incorporate security into an incremental
development process as an important research topic. 

Increasingly, system development depends on integrating existing
systems, as reflected in both the Web services and identity manage-
ment examples. Size complexity can be mitigated by the use of com-
mercial products, the sharing of software-based services among
multiple systems, and the reuse of existing software components or
systems (i.e., legacy systems). The support for multisystem work pro-
cesses—particularly those that involve multiple organizations—
depends on the ability to create a system of systems. The security
issues raised by the design of computing support for a multisystem
work process are similar to those associated with the design of a large
system in the typical IT environment that uses a significant number of
commercially supplied products and legacy systems. In both cases, a
new or updated component must merge with an existing operational
environment to form a satisfactory operational whole. And in both
cases, the systems have not necessarily been designed for the new use
or for any additional threats associated with the new use or operating
environment. 

6.4.3 Conflicting or Changing Goals Complexity

Conflicting goals occur when desired product quality attributes or
customer values conflict with one another. There may be conflicts
between portability and performance requirements. In addition, con-
flicts frequently arise between security and ease-of-use requirements.
Meeting the cost requirements for implementing the desired features
may increase operational costs and create a conflict between develop-
ment costs and operational goals. Conflicting goals affect both the
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developer and the project manager, and there is a learning component
for addressing these problems. What are the important interactions
among those goals? Which aspects of the software architecture might
be affected by a resolution of these conflicts? Do requirements for
future needs adversely affect current cost and schedule constraints?

Web services protocols provide mechanisms that describe at runtime
which security policy is associated with a transaction. That security
policy could describe how authentications are done, how data is
encrypted, or which data fields must be signed. This adaptability
comes at a cost, however: An application might need to support multi-
ple security protocols, and a number of the security threats described
in Section 6.3.4 could potentially exploit that adaptability. 

Changes in goals can generate equivalent problems. The implementa-
tion of a new objective may conflict with earlier design tradeoffs. Often
changes in goals arise from changes in business requirements, changes
in usage of existing functionality, or customers gaining new under-
standing of their own needs. The tendency is to add but rarely remove
functionality for an existing system. Over time, that feature creep and
any interaction among features can be source of vulnerabilities.

Changes or conflicts can require some form of experimentation on
the part of the user and/or the developer in the form of simulation,
scenario analysis, or prototypes. Such problems must be resolved
before the final design is attempted. In practice, incremental develop-
ment methods are often used to address ambiguous or vague func-
tional requirements; such methods can delay decisions about
troublesome requirements. 

The existence of unanticipated hard-to-solve problems and conflicts
and changes in requirements are often just a recognition that our
understanding of the problem domain and the tradeoffs among
requirements or design options is incomplete when a development
project is initiated. 

Mitigations

• Assurance cases. Changes in requirements or threats and the evolu-
tion of usage all require that the security aspects of a system be
regularly reviewed. For a large system, that kind of analysis could
be daunting, but an assurance case can simplify and improve that
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task (see Section 2.4). An assurance case describes the arguments
and evidence that support the security claims for a system. It can
be analyzed when changes are made to identify any arguments or
evidence that may no longer be valid and hence those claims and
associated components that may require a more detailed analysis.

• Operational monitoring. Our information is always incomplete for
complex systems. The reality of ongoing changes increases the
importance of operational monitoring, as described in Section 6.4.1.

• Continuous risk assessments. Existing risk assessments and security
testing procedures should be reviewed and updated if necessary.

• Flexibility and support for change. The ability to easily change systems
is a general problem. A number of efforts—for example, the Object
Management Group’s Model-Driven Architecture, Microsoft’s Soft-
ware Factory, and service-oriented architecture (SOA)—have sought
to address certain aspects of that problem. Aspect-oriented program-
ming proposes techniques that make it easier to change the behavior
of the system as described by the quality attributes. At this point, we
are still dependent on good software engineering to anticipate the
most likely changes or to find ways to adapt existing components to
meet the new requirements. As we noted earlier, at some point the
gap between what we have and what we should have will become
great enough that the only option is reengineering. 

6.5 Deep Technical Problem Complexity

Deep technical problems appear to arise more frequently when the
software development team focuses on meeting the quality measures
for reliability, performance, and security rather than satisfying a func-
tional requirement. Grady Booch commented on this phenomenon in
his Web log on March 22, 2005:

Most enterprise systems are architecturally very simple, yet
quite complex in manifestation: simple because most of the
relevant architectural patterns have been refined over
decades of use in many tens of thousands of systems and
then codified in middleware; complex because of the pleth-
ora of details regarding vocabulary, rules, and nonfunctional
requirements such as performance and security. [Booch 2005]

L1L LM
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Because security can be a source of hard-to-solve technical problems
for the implementation of a single system, it should come as no sur-
prise that it becomes a rich source of deep problems as we deploy
more complex systems and systems of systems. All of the items listed
in Table 6–6 can lead to hard-to-solve security problems. Both usage
and potential threats are dynamic factors. Complexity affects both the
functional and attacker’s security perspectives. The functional per-
spective captures the obvious requirements for authentication and
authorization and hence is likely to be considered early in the develop-
ment cycle. The attacker’s perspective may not receive equivalent
attention, yet may be a source of problems that require reengineering
for their resolution when identified later in development. 

Mitigations

Some general guidelines are applicable for managing hard-to-solve
problems.

• The hard-to-solve problems should be tackled first. A deep techni-
cal problem can generate extraordinary delays if the solution is
postponed, but schedule pressures often lead project teams to
work on easy-to-solve problems so they can demonstrate rapid
progress. The following quotations from [BSI 29], which refer to
the Correctness by Construction (CbyC) method, are a good sum-
mary of the justifications for this recommendation:

When faced with a complex task, the natural tendency is to start
with the parts you understand with the hope that the less obvi-
ous parts will become clearer with time. CbyC consciously
reverses this. As risk and potential bugs hide in the most com-
plex and least understood areas, these areas should be tackled
first. Another reason for tackling uncertainty early is that free-
dom for maneuver tends to decrease as the project progresses;
we don’t want to address the hardest part of a problem at the
point with the smallest range of design options. Of course, one
could take the fashionable approach and refactor the design;
however, designing, building, and incrementally validating a
system only to change it because risky areas were not proac-
tively considered is hardly efficient and is not CbyC.

Managing risk must be done on a case-by-case basis. Com-
mon examples are prototyping of a user interface to ensure
its acceptability, performance modeling to ensure the selected
high-level design can provide adequate throughput, and
early integration of complex external hardware devices.
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• Enable the technical staff to concentrate on such problems. When
the highly skilled staff that is addressing a deep problem attempts
to achieve multitasking, this approach typically delays a solution
and affects its quality. The analysis and solution of deep technical
problems take time but not many people. A solution for the
developer may require both learning and experimentation. That
is, a developer needs to identify which techniques might work,
where a technique might be an algorithm, an architecture design
pattern, or hardware. Under what conditions does the specific
technique work? How might it be used for the current problem?
Does the technique introduce constraints that adversely affect satisfy-
ing other system requirements?

• The existence of hard-to-solve problems can affect the feasibility,
risks, and costs associated with specific requirements and hence
can influence stakeholder commitments to those requirements.
The Incremental Commitment Model explores the effects of hard
problems on requirements, project management, and acquisition
[Boehm 2007]. 

• The project manager needs to consider risk mitigations such as
alternative implementations at least for the interim, but must rec-
ognize that such alternatives may not fully meet quality attribute
objectives.

6.6 Summary

The technologies and dynamic nature of the operational environment
raise software risks that are typically not addressed in current practice.
Security assessments are often done for a point in time, and the tech-
niques are not easily adapted to the more dynamic environment that
software now has to address. Vulnerability analysis, for example, eval-
uates an operationally ready network, system, or software set against
previously identified and analyzed defects and failures at a given
point in time for a specified configuration. Such techniques have only
limited value, however, when the system can be dynamically config-
ured to meet changing operational and business needs.

While security analysis is rarely complete, such completeness is often
tacitly assumed. The increasing complexity of deployed systems cer-
tainly invalidates such an assumption now. Business requirements
increasingly lead to the need to integrate multiple systems to support
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business processes. The design objective to better support rapidly
evolving business requirements or to deal with conflicting or ambigu-
ous functional requirements has led to increased use of incremental
development methods. For the project manager, such techniques often
translate into hard-to-solve technical problems for meeting the secu-
rity requirements. General guidance for dealing with these kinds of
complex problems should be part of any project plan. System com-
plexity leads to a growing need to explicitly incorporate learning into
the project schedule that builds the necessary knowledge base about the
operational environment, the dependencies and potential interactions
among systems, and the risks that may be associated with proposed
designs.

General recommendations include the following:

1. Tackle known interface vulnerabilities first. With systems having
more interfaces to less trusted systems, developers should concen-
trate first on known interface vulnerabilities, such as those found
in Web services.

2. Conduct end-to-end analysis of cross-system work processes. With
increasing complexity, vulnerability analysis of individual systems
is not sufficient. The security analysis of work processes that cross
multiple systems has to consider the risks for those processes
(including end-to-end analysis) as well as the risks that each work
process creates for the systems that support it. In short, security
analysis has to account for a wider spectrum of errors.

3. Recognize the unavoidable risk that, with the reduced visibility
and control of multiple systems, security analysis will be incom-
plete. One approach to this situation is to focus first on mitigating
the possible impacts of an attack and not on the vulnerabilities that
were exploited. 

a. Attend to containing and recovering from failures. Assume the 
existence of discrepancies of some form, whether in systems, 
operations, or users, during the execution of work processes, 
particularly as usage evolves. Give increased attention to con-
tainment and recovery from failures. These issues should be 
considered in the context of business continuity analysis.

b. Explore failure analysis and mitigation to deal with complexity. 
The multiplicity of systems and increasing number of possible 
error states arising from interactions can overwhelm analysis or 
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generate too many point solutions that mitigate narrowly speci-
fied events. Explore how security could take advantage of a con-
solidated failure analysis and mitigation effort. 

4. Coordinate security efforts across organizational groups. Security
is typically treated as a separate concern, with responsibility often
being assigned to independent parts of the organization (such as
development and operations). It is not unusual to find that an
organization’s development, operational, and business groups are
tackling common problems with little coordination or that some
security problems have fallen through the cracks. This separation
becomes even more problematic as the scope and scale of systems
expand. Vulnerability analysis and mitigations should be inte-
grated across organization units, users, technology, systems, and
operations.
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Chapter 7

Governance, and 
Managing for More 
Secure Software

7.1 Introduction

The objective of this chapter is to help software project managers (1)
more effectively engage their leaders and executives in security gover-
nance and management by understanding how to place security in a
business context and (2) better understand how to enhance their cur-
rent management practices and thereby produce more secure soft-
ware. Armed with this material, managers can become attentive,
security-conscious leaders who are in a better position to make well-
informed security investment decisions. With this support, managers
can then take actionable steps to implement effective security gover-
nance and management practices across the software and system
development life cycle.

Governance and management of security are most effective when they
are systemic—that is, woven into the culture and fabric of organiza-
tional behaviors and actions. In this regard, culture is defined as the

Governance,
and Managing 
for Secure 
Software
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predominating shared attitudes, values, goals, behaviors, and prac-
tices that characterize the functioning of a group or organization. Cul-
ture creates and sustains connections among principles, policies,
procedures, processes, products, people, and performance. Effective
security should be thought of as an attribute or characteristic of an
organization. It becomes evident when all members of the organiza-
tion proactively carry out their roles and responsibilities, creating a
culture of security that displaces ignorance and apathy.

To achieve this outcome, security must come off the technical side-
lines, abandoning its traditional identity of “activities and responsibil-
ities solely relegated to software development and IT departments.”
Today, boards of directors, senior executives, and managers all must
work to establish and reinforce a relentless, ongoing drive toward
effective enterprise, information, system, and software security. If the
responsibility for these tasks is assigned to roles that lack the authority,
accountability, and resources to implement and enforce them, the
desired level of security will not be articulated, achieved, or sustained. 

Contrary to the popular belief that security is a technical issue, even
the best efforts to buy secure software and build security into devel-
oped software and operational systems encounter “considerable resis-
tance because the problem is mostly organizational and cultural, not
technical” [Steven 2006]. Software and information security are about
spending money where the definition of success is “nothing bad hap-
pens.” As time goes on, this kind of effort can become a tough sell to
business leaders as the “We haven’t been attacked lately, so we can cut
back on spending” mentality sets in.

Project managers need to elevate software security from a stand-alone,
technical concern to an enterprise issue. Because security is a business
problem,1 the organization must activate, coordinate, deploy, and
direct many of its core resources and competencies to manage security
risks in concert with the entity’s strategic goals, operational criteria,
compliance requirements, and technical system architecture. To sustain
enterprise security, the organization must move toward a security
management process that is strategic, systematic, and repeatable, with
efficient use of resources and effective, consistent achievement of goals
[Caralli 2004b].

1. See also “Governing for Enterprise Security” [Allen 2005], “Security Is Not Just a Technical
Issue” [BSI 32], and Governing for Enterprise Security Implementation Guide [Westby 2007]. 
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7.2 Governance and Security

Governance entails setting clear expectations for business conduct and
then following through to ensure the organization fulfills those expec-
tations. Governance action flows from the top of the organization to all
of its business units and projects. Done right, governance facilitates an
organization’s approach to nearly any business problem, including
security. National and international regulations call for organiza-
tions—and their leaders—to demonstrate due care with respect to
security. This is where governance can help.

7.2.1 Definitions of Security Governance

The term governance applied to any subject can have a wide range of
interpretations and definitions. For the purpose of this chapter, we
define governing for enterprise security2 as follows:

Directing and controlling an organization to establish and
sustain a culture of security in the organization’s conduct
(beliefs, behaviors, capabilities, and actions) 

Treating adequate security as a non-negotiable requirement
of being in business [Allen 2005]

In its publication Information Security Handbook: A Guide for Managers
[Bowen 2006], NIST defines information security governance as:

The process of establishing and maintaining a framework
and supporting management structure and processes to pro-
vide assurance that information security strategies 

– are aligned with and support business objectives, 
– are consistent with applicable laws and regulations through

adherence to policies and internal controls, and
– provide assignment of responsibility, 

all in an effort to manage risk.

2. L4 for information security; L3 for software security.

2.  The term “security,” as used here, includes software security, information security, application
security, cybersecurity, network security, and information assurance. It does not include disci-
plines typically considered to reside within the domain of physical security, such as facilities,
executive protection, and criminal investigations.

L3L LME L4L4 *
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In his article “Adopting an Enterprise Software Security Framework,”
John Steven, a Principal at Cigital, states

In the context of an Enterprise Software Security Framework,
governance is competency in measuring software-induced
risk and supporting an objective decision-making process for
remediation and software release. This competency involves
creating a seat at the project management table for software
risk alongside budget and scheduling concerns [Steven 2006]. 

(See also Section 7.5.)

In the context of security, governance incorporates a strong focus on
risk management. Governance is an expression of responsible risk
management, and effective risk management requires efficient gover-
nance. One way governance manages risk is to specify a framework
for decision making. It makes clear who is authorized to make deci-
sions, what the decision making rights are, and who is accountable for
decisions. Consistency in decision making across an enterprise boosts
confidence and reduces risk.

7.2.2 Characteristics of Effective Security Governance and 
Management

One of the best measures that an organization is addressing security as a
governance and management concern is a consistent and reinforcing set
of beliefs, behaviors, capabilities, and actions that match up with security
best practices and standards. These measures aid in building a security-
conscious culture. They can be expressed as statements about the orga-
nization’s current behavior and condition:3

• Security is managed as an enterprise issue, horizontally, vertically,
and cross-functionally throughout the organization. Executive
leaders understand their accountability and responsibility with
respect to security for the organization; for their stakeholders; for
the communities they serve, including the Internet community;
and for the protection of critical national infrastructures and eco-
nomic and national security interests.

3. See also “Characteristics of Effective Security Governance” for a table of 11 characteristics that
compares and contrasts an organization with effective governance practices and an organization
in which these practices are missing [Allen 2007].
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• Security is treated as a business requirement. It is considered a cost
of doing business and perceived as an investment rather than an
expense or a discretionary budget-line item. Security policy is set
at the top of the organization with input from key stakeholders.
Business units and staff are not allowed to decide unilaterally how
much security they want. Adequate and sustained funding and
allocation of adequate security resources are a given.

• Security is considered an integral part of normal strategic, capital,
project, and operational planning cycles. Security has achievable,
measurable objectives that are integrated into strategic and project
plans and implemented with effective controls and metrics.
Reviews and audits of plans identify security weaknesses and defi-
ciencies and requirements for the continuity of operations and
measure progress against plans of action and milestones. 

• Security is addressed as part of any new project initiation, acquisi-
tion, or relationship and as part of ongoing project management.
Security requirements are addressed throughout all system/soft-
ware development life-cycle phases, including acquisition, initia-
tion, requirements engineering, system architecture and design,
development, testing, operations, maintenance, and retirement.

• Managers across the organization understand how security serves
as a business enabler. They view security as one of their responsi-
bilities and understand that their team’s performance with respect
to security is measured as part of their overall performance.

• All personnel who have access to digital assets and enterprise net-
works understand their individual responsibilities to protect
and preserve the organization’s security, including the systems and
software that it uses and develops. Awareness, motivation, and
compliance are the accepted, expected cultural norm. Rewards,
recognition, and consequences with respect to security policy com-
pliance are consistently applied and reinforced.

Leaders who are committed to dealing with security at a governance
level can use this checklist to determine the extent to which a security-
conscious culture is present (or needs to be present) in their organi-
zations. The relative importance of each statement depends on the
organization’s culture and business context.

In the next section, which was originally published as an article in IEEE
Security & Privacy, John Steven explains which governance and manage-
ment actions to take to address software security at the enterprise level.
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7.3 Adopting an Enterprise Software 
Security Framework4

Most organizations no longer take for granted that their deployed appli-
cations are secure. But even after conducting penetration tests, network

Example: Bank of America

Rhonda MacLean, (former) chief information security officer at
Bank of America, describes the bank’s approach to enterprise
security at both a governance and management level:

On a structural level, Bank of America has established a security
compliance framework that includes commitment and account-
ability, policies and procedures, controls and supervision, regu-
latory oversight, monitoring, training and awareness, and
reporting. Bank of America has also established a four-level
information security governance model that maps out the
responsibilities of board directors, business executives, chief
information officers, corporate audit, the security department,
legal, corporate and line-of-business, privacy, and supply chain
management.
The board of directors is responsible for reviewing the corporate
information security program and policy, while senior manage-
ment is accountable for ensuring compliance with applicable
laws, regulations, and guidelines and for establishing compli-
ance roles, accountabilities, performance expectations, and met-
rics. It’s up to the auditors to ensure the commitment and
accountability for information security controls.
Bank of America’s corporate information security department
focuses on people, technology, and processes using a protect/
detect/respond–recover model and measures its progress based
on the Six Sigma quality methodology. Bank of America mea-
sures security based on failed customer interactions rather than
on downtime, performance, or the number of infections or
attacks. Achieving 99 percent uptime isn’t important if the 1 per-
cent downtime impacts 30 million customers [McCollum 2004].

4. [BSI 44] © 2006 IEEE. Reprinted, with permission, from “Adopting an Enterprise Software
Security Framework” by John Steven, IEEE Security & Privacy 4, 2 (March/April 2006): 84–87. 
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and hosting security personnel spend considerable time chasing inci-
dents. Your organization might be one of the many that have realized
the “secure the perimeter” approach doesn’t stem the tide of incidents
because the software it’s building and buying doesn’t resist attack.

Painfully aware of the problem, savvy organizations have grappled
with how to build security into their software applications for a few
years now. Even the best efforts have met considerable resistance
because the problem is mostly organizational and cultural, not techni-
cal—although plenty of technical hurdles exist as well.

Unfortunately, software security might be new to your organization’s
appointed “application security” czar—if one even exists. Even know-
ing where to start often proves a serious challenge. The first step
toward establishing an enterprise-wide software security initiative is
to assess the organization’s current software development and secu-
rity strengths and weaknesses. Yes, this applies to software built in-
house, outsourced, purchased off-the-shelf, or integrated as part of a
vendor “solution.” 

As an exercise, ask yourself the first question in my imaginary soft-
ware security assessment: “How much software does my organization
purchase compared to how much it builds in-house?” If the over-
whelming majority of deployed software is outsourced, software secu-
rity looks a lot more like outsourced assurance than it does building
security in! Most organizations do quite a bit of both, so we’ll have to
solve both problems.

7.3.1 Common Pitfalls

Whether tackling the problem formally or informally, top-down or
bottom-up, organizations hit the same roadblocks as they prepare to
build and buy more secure applications. How each organization over-
comes these roadblocks depends a great deal on its strengths and
weaknesses: No one-size-fits-all approach exists. Just knowing some of
the landmines might help you avoid them, though. Let’s look at some
of the most common ones.

Lack of Software Security Goals and Vision

It bears repeating: The first hurdle for software security is cultural.
It’s about how software resists attack, not how well you protect the
environment in which the software is deployed. Organizations are
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beginning to absorb this concept, but they don’t know exactly what
to do about it. Their first reaction is usually to throw money and one
of their go-getters at it. He or she might make some progress initially
by defining some application security guidelines or even buying a
static analysis tool—essentially, picking the low-hanging fruit.

Although it sounds compelling, avoid charging off to win this easy
battle. If your organization is large, you don’t need to be reminded of
what role politics plays. At the director level, headcount, budget, and
timelines are the system of currency, and demanding that develop-
ment teams adhere to guidelines requiring development they haven’t
budgeted for, or imposing a tool that spits out vulnerabilities for them
to fix prior to release, can quickly send software security efforts into
political deficit.

To use a war analogy, each of the chief information officer’s majors must
understand their role in software security prior to going into battle. To
win, each major will have to take on at least a small amount of responsi-
bility for software security, but the most crucial aspect of success is for
each of them to know his or her responsibility and when to collaborate.

Put simply, without executive sponsorship, a unified understanding of
roles, responsibilities, and a vision for software security, the effort will
sink quickly into political struggle or inaction.

Creating a New Group

Some organizations respond to the software security problem by creat-
ing a group to address it. Headcount and attention are necessary, but
it’s a mistake to place this headcount on an island by itself. It’s an even
bigger mistake to use network security folks to create a software secu-
rity capability—they just don’t understand software well enough.

Software security resources must be placed into development teams
and seen as advocates for security, integration, and overcoming devel-
opment roadblocks.

Software Security Best Practices Nonexistent

Security analysts won’t be much more effective than penetration test-
ing tools if they don’t know what to look for when they analyze soft-
ware architecture and code. Likewise, levying unpublished security
demands on developers is nonproductive and breeds an us-versus-
them conflict between developers and security.
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Instead, build technology-specific prescriptive guidance for develop-
ers. If the guidance doesn’t explain exactly what to do and how to do
it, it’s not specific enough. Specific guidance removes the guesswork
from the developer’s mind and solves the problem of consistency
between security analysts.

Software Risk Doesn’t Support Decision Making

Although most organizations view critical security risks as having the
utmost importance, project managers constantly struggle to apply
risk-management techniques. The first reason for this is a lack of visi-
bility. Even if a technical vulnerability is identified, analysts often
don’t fully understand its probability and impact. Rarely does an orga-
nization use a risk-management framework to consistently calculate a
risk’s impact at the project-management or portfolio level.

Establish a common risk framework as part of governance efforts to
gain business owners’ understanding and respect if you want the
organization to choose security risk over time-to-market or if you need
additional capital when making release decisions.

Tools as the Answer

Companies often believe that an authentication, session management,
data encryption, or similar product protects their software completely.
Although they serve as lynchpins of an organization’s software secu-
rity proposition, most organizations have a weak adoption of these
tools at best. What’s worse is that these technologies are often
deployed without being properly vetted. Not only do the products
themselves possess vulnerabilities, but the organization’s develop-
ment teams weren’t consulted to help with deployment, making inte-
gration difficult if not infeasible. Even if adoption of these tools were
complete, they would not in and of themselves assure that an applica-
tion could resist attack. Too often, architecture review is reduced to a
checklist: “Did you integrate with our single sign-on and directory ser-
vice tools?” “Yes? Then you’re done.” It’s no wonder these applica-
tions still possess exploitable architectural flaws.

Penetration testing and static analysis tools aren’t panaceas either.
These tools help people find vulnerabilities, but there’s a lot more to
building security into software applications than running these tools,
as we’ll see.
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7.3.2 Framing the Solution

An enterprise software security framework (ESSF) is a new way of
thinking about software security more completely at the enterprise
level, targeting the problem directly without demands for massive
headcount, role changes, or turning an IT shop upside down to priori-
tize security ahead of supporting the business that funds it. ESSFs
align the necessary people, know-how, technologies, and software
development activities to achieve more secure software. Because every
organization possesses different strengths and weaknesses and, most
important, faces different risks as a result of using software, ESSFs will
differ across organizations. There are, however, certain properties that
all good ESSFs will possess.

“Who, What, When” Structure

To align each group’s role in achieving secure software, an organiza-
tion’s ESSF should possess a “who, what, when” structure—that is, the
framework should describe what activities each role is responsible for
and at what point the activity should be conducted. Because building
security into applications requires the collaboration of a wide variety of
disciplines, the framework should include roles beyond the security
analysts and application development teams. Figure 7–1 shows column
headings under which an ESSF might list each role’s responsibility. The
boxes outlined in a lighter shade represent each role’s first steps.

You might not recognize some of the group names in the figure. One
organization’s infrastructure group is another’s shared services or
architecture office, or something else entirely, and that’s okay. Another
subtlety involves reporting relationships—although they’re important,
don’t get wound up in them when defining an ESSF. Focus on who
needs to do what. 

Figure 7–2 shows a partial enumeration of activities for which a partic-
ular role is responsible. Each group further defines how they accom-
plish each of their framework activities. For example, the business
owner of development might decide to build a handbook to walk
developers step-wise through the process of programming securely.
It’s just as likely this wouldn’t get traction, though, so the ESSF could
mandate training for developers before they’re unleashed into the
development organization. 

In this relative ordering, teams know which activities depend on oth-
ers. Providing any more of a detailed “when” diagram can be seen as
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Figure 7–1: Role responsibilities: who
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offensive and overly constraining to each suborganization. Let people
conduct detailed project planning around these activities themselves.

It’s unclear what activities will compose your organization’s ESSF, but
here are a few gotchas to avoid:

• Don’t place technologies or products, such as “single sign-on,” in
the framework’s boxes. 

• Don’t demand that teams begin conducting every activity on day
one. Slowly introduce the simplest activities first, then iterate. 

• Avoid activities that produce unverifiable artifacts or results, such
as “collaborate with security here.” 

Figure 7–2: Role activities: what
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Remember, the framework’s primary goal is to align people and their
responsibilities, so keep the visuals about who does what activities
when.

Focus on Resisting Attack, Not Including Security Features

Security is an emergent property of an application, not just an amal-
gam of security features. In an attempt to simplify the problem and
make initial strides, organizations often get stuck in a feature-centric
mode: They tell themselves, “If we just encrypt our HTTP connections
and authenticate users, we’re doing enough.” Thinking about how to
leverage the security features of toolkits, languages, and application
servers within an application is good and necessary—it just isn’t suffi-
cient. To be successful, the philosophy of “resisting attack” must per-
vade each and every ESSF activity. Avoid the feature trap by
establishing a goal of improving attack resistance in each activity from
its inception. Here are some guidelines:

• Construct misuse/abuse cases.
• Model the threats each application faces.
• Assess applications against a threat model, including misuse/

abuse cases.
• Train using vulnerability case studies.
• Define standards based on risk and vulnerabilities.
• Avoid relying on security-feature checklists.
• Avoid relying solely on API-guide security standards and training.

Like adopting framework activities, attempting to adhere to each of
these guidelines on day one can be too onerous. Build on your organi-
zation’s current strengths, infusing this guidance opportunistically.

Possess Five Competencies

Regardless of how an organization operates, every good ESSF addresses
five pursuits in one form or another, as described in Table 7–1. Organi-
zations should iteratively raise their competencies in each of these
pursuits gradually as they adopt their ESSF.
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Table 7–1: Competencies for Effective Enterprise Software 
Security

Enterprise
software 
security
framework

The ESSF defines an organization’s approach to soft-
ware security and describes roles, responsibilities, 
activities, deliverables, and measurement criteria. It 
also includes a communication plan for enterprise-
wide rollout.
Enterprise software and data architectures are essential 
anchors of the goal-state an ESSF defines. Definition of 
and migration toward a secure enterprise architecture 
are thus part of the framework competency.

Knowledge
management,
training

An organized collection of security knowledge is likely 
to include policy, standards, design and attack patterns, 
threat models, code samples, and eventually a refer-
ence architecture and secure development framework.
Another element of this competency is the develop-
ment and delivery of a training curriculum. Topics 
include security knowledge as well as help for conduct-
ing assurance activities. This pursuit also includes new 
courseware, along with retrofitting of existing 
courseware to software security concepts.

Security
touchpoints

The definition of tasks and activities that augment 
existing development processes (formally or infor-
mally) help developers build security into any custom 
software development process, as well as in-place out-
source assurance and commercial off-the-shelf valida-
tion processes. This competency defines how to assure 
software. See [McGraw 2006].

Assurance The execution of security touchpoint activities pro-
vides assurance—conducting a software architectural 
risk assessment, for example, validates that security 
requirements were translated into aspects of the soft-
ware’s design and that the design resists attack. 
Assurance activities rely heavily on the knowledge 
and training competency to define what to look for.
Tool adoption is likely to be part of this pursuit in the 
short to medium term. It will involve the purchase, 
customization, and rollout of static analysis tools as 
well as dynamic analysis aides. Your organization 
might have already adopted a penetration-testing 
product, for instance.
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7.3.3 Define a Roadmap

Each competency depends somewhat on the others, and growing each
effectively demands thoughtful collaboration. It’s foolish to attempt to
understand all the subtle interdependencies from the start and attempt
a “big bang” rollout. Instead, good ESSFs leverage key initial successes
in support of iterative adoption and eventual maturation. Keep two
things in mind:

• Patience. It will take at least three to five years to create a working,
evolving software security machine. Initial organization-wide suc-
cesses can be shown within a year. Use that time to obtain more
buy-in and a bigger budget, and target getting each pursuit into
the toddler stage within the three-year timeframe. 

• Customers. The customers are the software groups that support the
organization’s lines of business. Each milestone in the roadmap
should represent a value provided to the development organiza-
tion, not another hurdle. 

Thankfully, the organizations that have been doing this work for a
few years now are starting to share some of their experiences.
Expert help is increasingly available, too. As always, use your com-
munity resources, and good luck being the agent of change in your
organization!

Governance In the context of an ESSF, governance is competency in 
measuring software-induced risk and supporting an 
objective decision-making process for remediation and 
software release. This competency involves creating a 
seat at the project management table for software risk 
alongside budget and scheduling concerns. 
Governance should also be applied to the rollout and 
maturation of an organization’s ESSF. The framework’s 
owners can measure project coverage and depth of 
assurance activities, reported risks (and their severity), 
and the progress of software security knowledge and 
skill creation, among other things.

Table 7–1: Competencies for Effective Enterprise Software 
Security (Continued)
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7.4 How Much Security Is Enough? 

Prior to selecting which security governance and management actions
to take and in what order, you must answer the following question:
How much security is enough? One way to tackle this question is to
formulate and answer the set of security strategy questions presented
in Chapter 1 (see Section 1.7.1), identify a means for determining your
definition of adequate or acceptable security, and use these as inputs
for your security risk management framework.

7.4.1 Defining Adequate Security

Determining adequate security is largely synonymous with determin-
ing and managing risk. Where possible, an organization can imple-
ment controls that satisfy the security requirements of its critical
business processes and assets. Where this is not possible, security risks
to such processes and assets can be identified, mitigated, and managed
at a level of residual risk that is acceptable to the organization.

Adequate security has been defined as follows: “The condition where the
protection strategies for an organization’s critical assets and business pro-
cesses are commensurate with the organization’s tolerance for risk”
[Allen 2005]. In this definition, protection strategies include principles, pol-
icies, procedures, processes, practices, and performance indicators and
measures—all of which are elements of an overall system of controls.5

An asset is anything of value to an organization. Assets include infor-
mation such as enterprise strategies and plans, product information,
and customer data; technology such as hardware, software, and IT-
based services; supporting facilities and utilities; and items of signifi-
cant, yet largely intangible value such as brand, image, and reputation.
Critical assets are those that directly affect the ability of the organiza-
tion to meet its objectives and fulfill its critical success factors [Caralli
2004a]. The extent to which software is the means by which digital
assets are created, accessed, stored, and transmitted provides one com-
pelling argument for ensuring that such software has been developed
with security in mind.

5. A system of internal controls often includes categories such as administrative, technical, and
physical controls as well as directive, preventive, compensating, detective, and corrective con-
trols [Lousteau 2003].

L3L LME L4L4
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A process is a series of progressive and interdependent actions or steps
by which a defined end result is obtained. Business processes create
the products and services that an organization offers and can include
customer relationship management, financial management and
reporting, and management of relationships and contractual agree-
ments with partners, suppliers, and contractors.

Risk Tolerance

An organization’s tolerance for risk can be defined as “the amount of
risk, on a broad level, an entity is willing to accept in pursuit of value
(and its mission)” [COSO 2004]. Risk tolerance influences business cul-
ture, operating style, strategies, resource allocation, and infrastructure.
It is not a constant, however, but rather is influenced by and must
adapt to changes in the environment.

Defining the organization’s tolerance for risk is an executive responsi-
bility. Risk tolerance can be expressed as impact (potential conse-
quences of a risk-based event), likelihood of a risk’s occurrence, and
associated mitigating actions. For identified and evaluated risks, it
could be defined as the residual risk the organization is willing to
accept after implementing risk-mitigation and monitoring processes
[Allen 2005].

Risk tolerance can be expressed both qualitatively and quantitatively.
For example, we might define high, medium, and low levels of resid-
ual risk. An example is a policy to take explicit and prioritized action
for high- and medium-level risks and to accept (monitor) low-level
risks as the default condition.

With the benefit of this description, a useful way to address the ques-
tion “How much security is enough?” is to first ask, “What is our defi-
nition of adequate security?” To do so, we can explore the following
more detailed questions:

• What are the critical assets and business processes that support
achieving our organizational goals? What are the organization’s
risk tolerances, both in general and with respect to critical assets
and processes?

• Under which conditions and with what likelihood are assets and
processes at risk? What are the possible adverse consequences if a
risk is realized? Do these risks fit within our risk tolerances?
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• In cases where risks go beyond these thresholds, which mitigating
actions do we need to take and with which priority? Are we mak-
ing conscious decisions to accept levels of risk exposure and then
effectively managing residual risk? Have we considered mecha-
nisms for sharing potential risk impact (e.g., through insurance or
with third parties)?

• For those risks we are unwilling or unable to accept, which protec-
tion strategies do we need to put in place? What is the cost–benefit
relationship or return on investment of deploying these strategies?

• How well are we managing our security state today? How confi-
dent are we that our protection strategies will sustain an accept-
able level of security 30 days, 6 months, and 1 year from now? Are
we updating our understanding and definition of our security
state as part of normal planning and review processes?

7.4.2 A Risk Management Framework for Software 
Security6

As introduced in Chapter 1, a necessary part of any approach to ensur-
ing adequate security (including an adequate level of software secu-
rity) is the definition and use of a continuous risk management
process. Software security risks include risks found in the outputs and
results produced by each life-cycle phase during assurance activities,
risks introduced by insufficient processes, and personnel-related risks.
The risk management framework (RMF) described here can be used to
implement a high-level, consistent, iterative risk analysis that is
deeply integrated throughout the SDLC.

Five Stages of Activity

Figure 7–3 shows the RMF as a closed-loop process with five funda-
mental activity stages: 

1. Understand the business context.
2. Identify the business and technical risks.
3. Synthesize and prioritize the risks, producing a ranked set.
4. Define the risk mitigation strategy.
5. Carry out required fixes and validate that they are correct.

6. This material is extracted and adapted from a more extensive article by Gary McGraw of Cigi-
tal, Inc. [BSI 33]. Also, see chapter 2 of [McGraw 2006].
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Each of these stages is briefly summarized below. Critical business
decisions, including release readiness, can be made in a more straight-
forward and informed manner by identifying, tracking, and managing
software risks explicitly as described in the RMF.

1. Understand the Business Context

Software risk management occurs in a business context. The increas-
ing integration of business processes and IT systems means that soft-
ware risks often have serious and specific implications for the
organization’s mission. Given that resources are rarely unlimited, mit-
igation of software risks can and should be prioritized according to the
severity of the related business risks.

Central to the notion of risk management is the idea of describing
impact. Without a clear and compelling tie to either business or mis-
sion consequences, technical risks, software defects, and the like are
not often compelling enough on their own to warrant action. Unless
software risks are described in terms that business people and decision
makers understand, they will likely not be addressed.

Risks are unavoidable and are a necessary part of software develop-
ment. Management of risks, including the notions of risk aversion
and technical tradeoff, is deeply affected by the relevant business

Figure 7–3: A software security risk management framework
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motivation. Thus the first stage of software risk management
involves getting a handle on the business situation. Commonly, busi-
ness goals are neither obvious nor explicitly stated. In some cases,
the risk analyst may even have difficulty expressing these goals
clearly and consistently. 

During this stage, the analyst must extract and describe business
goals, priorities, and circumstances to understand which kinds of soft-
ware risks are important to care about and which business goals are
paramount. Business goals may include, for example, increasing reve-
nue, meeting service-level agreements, reducing development costs,
and generating a high return on investment.

2. Identify Business and Technical Risks

Business risks directly threaten one or more of a customer’s business
goals. The identification of such risks helps to clarify and quantify the
possibility that certain events will directly affect business goals. Busi-
ness risks have impacts that include direct financial loss, damage to
brand or reputation, violation of customer or regulatory constraints,
exposure to liability, and increased development costs. The severity of
a business risk should be expressed in terms of financial or project
management metrics. These parameters may include, for example,
market share (percentage), direct cost, level of productivity, and cost of
rework.

The process of business risk identification helps to define and guide
the use of particular technical methods for extracting, measuring, and
mitigating software risks for various software artifacts such as require-
ments, architecture, and design specifications. The identification of
business risks provides a necessary foundation that allows software
risks (especially their impacts) to be quantified and described in busi-
ness terms. 

Central to this stage of the RMF is the ability to discover and describe
technical risks and map them (through business risks) to business
goals. A technical risk is a situation that runs counter to the planned
design or implementation of the system under consideration. For
example, this kind of risk may give rise to the system behaving in an
unexpected way, violating its own design constraints, or failing to per-
form as required. Technical risks can also be related to the process
used to develop software—that is, the process an organization follows
may offer opportunities for mistakes in design or implementation.
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Technical risks involve impacts such as unexpected system crashes,
absence or avoidance of controls (audit or otherwise), unauthorized
data modification or disclosure, and needless rework of artifacts dur-
ing development. 

Technical risk identification is supported by the practices described in
Chapter 4, Secure Software Architecture and Design, which discuss
the identification, assessment, prioritization, mitigation, and valida-
tion of the risks associated with architectural flaws.

3. Synthesize and Prioritize Risks

Large numbers of risks inevitably become apparent in almost any sys-
tem. Identifying these risks is important, but it is the prioritization of
these risks that leads directly to creation of value. Through the activi-
ties of synthesizing and prioritizing risks, the critical “Who cares?”
question can (and must) be answered. Synthesis and prioritization
should answer questions such as “What shall we do first, given the
current risk situation?” and “What is the best allocation of resources,
especially in terms of risk mitigation activities?” The prioritization
process must take into account which business goals are the most
important to the organization, which goals are immediately threat-
ened, and how risks that are likely to be realized may affect the busi-
ness. The output of this stage is a list of all the risks along with their
relative priorities for resolution. Typical risk metrics might include, for
example, risk likelihood, risk impact, risk severity, and number of
risks emerging and mitigated over time.

4. Define the Risk Mitigation Strategy

Given a set of prioritized risks from stage 3, stage 4 creates a coherent
strategy for mitigating the highest-priority risks in a cost-effective
manner. Any suggested mitigation activities must take into account
cost, time to implement, likelihood of success, completeness, and
impact over the entire set of risks. A risk mitigation strategy must be
constrained by the business context and should consider what the
organization can afford, integrate, and understand. The strategy must
also specifically identify validation techniques that can be used to
demonstrate that risks are properly mitigated. Typical metrics to con-
sider in this stage are financial in nature and include, for example, esti-
mated cost of mitigation actions, return on investment, method
effectiveness in terms of dollar impact, and percentage of risks covered
by mitigating actions. Typically, it is not cost-effective to mitigate all
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possible risks, so some level of residual risk will remain once mitiga-
tion actions are taken. Of course, these residual risks need to be regu-
larly reviewed and consciously managed.

5. Fix the Problems and Validate the Fixes

Once a mitigation strategy has been defined, it must be executed. Arti-
facts in which problems have been identified (such as architectural
flaws in a design, requirements collisions, or problems in testing)
should be fixed. Risk mitigation is carried out according to the strategy
defined in stage 4. Progress at this stage should be measured in terms
of completeness against the risk mitigation strategy. Good metrics
include, for example, progress against risks, open risks remaining, and
any artifact quality metrics previously identified. 

This stage also involves application of previously identified validation
techniques. The validation stage provides some confidence that risks
have been properly mitigated through artifact improvement and that
the risk mitigation strategy is working. Testing can be used to demon-
strate and measure the effectiveness of risk mitigation activities. The
central concern at this stage is to confirm that software artifacts and
processes no longer hold unacceptable risks. This stage should define
and leave in place a repeatable, measurable, verifiable validation
process that can be run from time to time to continually verify arti-
fact quality. Typical metrics employed during this stage include artifact
quality metrics as well as levels of risk mitigation effectiveness. 

Measurement and Reporting on Risk

The importance of identifying, tracking, storing, measuring, and report-
ing software risk information cannot be overemphasized. Successful use
of the RMF depends on continuous and consistent identification,
review, and documentation of risk information as it changes over time.
A master list of risks should be maintained during all stages of RMF
execution and continually revisited, with measurements against this
master list being regularly reported. For example, the number of risks
identified in various software artifacts and/or software life-cycle phases
can be used to identify problem areas in the software process. Likewise,
the number of risks mitigated over time can be used to show concrete
progress as risk mitigation activities unfold.

As you converge on and describe software risk management activities
in a consistent manner, you’ll find that the basis for measurement and
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common metrics emerges (see Section 7.5.6). Such metrics should help
your organization achieve the following ends: 

• Better manage business and technical risks, given particular qual-
ity goals 

• Make more informed, objective business decisions regarding soft-
ware (such as whether an application is ready to release) 

• Improve internal software development processes and thereby bet-
ter manage software risks

The Multilevel-Loop Nature of the RMF

The RMF shown in Figure 7–3 has a clear loop (a single pass through
the stages) that depicts risk management as a continuous and iterative
process. Although the five stages are shown in a particular order in
Figure 7–3, they may need to be applied over and over again through-
out a project, and the order of stage execution may be interleaved.

There are two main reasons for this complication. First, risks can crop
up at any time during the software life cycle. One natural way to apply
a cycle of the loop is during each software life-cycle phase. For exam-
ple, software risks should be identified, ranked, and mitigated (one
loop) during requirements and again during design (another loop).
Second, risks can crop up between stages, regardless of where the soft-
ware is in its development life cycle or in its development process.

A further complication is that the RMF process can be applied at sev-
eral levels of abstraction. The top level is the project level, meaning
that each stage of the loop clearly must have some representation for
an entire project so that risks can be effectively managed and commu-
nicated by the project manager. Next comes the software life-cycle
phase level: Each stage most likely has a representation for the require-
ments phase, the design phase, the architecture phase, the test plan-
ning phase, and so on. A third level is the artifact level. Each stage has
a representation during both requirements analysis and use-case anal-
ysis, for example. Fortunately, a generic description of the validation
loop is sufficient to capture critical aspects at all of these levels at once.

The risk management process is, by its very nature, cumulative and
sometimes arbitrary and difficult to predict (depending on project cir-
cumstances). Specific RMF stages, tasks, and methods (described seri-
ally here) may occur independently of one another, in parallel,
repeatedly, and somewhat randomly as new risks arise.
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To summarize, the level of adequate security as defined here is con-
stantly changing in response to business and risk environments and
variations in the level of risk tolerance that management is willing to
accept. Effectively achieving and sustaining adequate security and the
use of a risk management framework demands that this work be
viewed as a continuous process, not a final outcome. As a result, pro-
cesses to plan for, monitor, review, report, and update an organiza-
tion’s security state must be part of normal day-to-day business
conduct, risk management, and governance, rather than simply a one-
shot occurrence.

In addition to the sources cited here, refer to “Risk-Centered Practices”
[BSI 34] and Software Security: Building Security In [McGraw 2006] for
further implementation details. 

7.5 Security and Project Management7

This section describes how security influences project plans and man-
agement actions and suggests several approaches for inserting secu-
rity practices into a defined SDLC as described in previous chapters.
Continuous risk management and periodic risk assessment are key
activities that help guide project managers in determining which secu-
rity practices to incorporate in each life-cycle activity and to what
degree.

Software security requirements affect project planning and monitor-
ing, specifically with respect to the following aspects of the project:

• The project’s scope 
• The project plan, including the project life cycle, which reflects

software security practices 
• Tools, knowledge, and expertise
• Estimating the nature and duration of required resources
• Project and product risks 

7. This material is extracted and adapted from a more extensive article by Robert J. Ellison of
Software Engineering Institute [BSI 35].
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7.5.1 Project Scope

Security’s impact on the scope of the project has several dimensions
that need to be considered throughout project planning and execution.
These dimensions influence all SDLC activities and need to be specifi-
cally addressed in the final software and system before they are
approved for release:

• The type and number of threats
A risk assessment (as described in Section 7.4.2) can help in identi-
fying the highest-priority threats and the profiles of the most likely
attackers.

• The sophistication of and resources available to the attacker
Straightforward preventive measures may offer sufficient protec-
tion from the inexperienced attacker. By contrast, protecting
against experienced external attackers, those with substantial
resources, and “insiders” will require more elaborate tactics. 

• The desired response to an attack
A passive response does not depend on the system having knowl-
edge of an attack and is typically preventive in nature. For exam-
ple, input validation is a passive response that prevents a
significant number of attacks. An active response is an action that
takes place when a fault is detected. For example, an active
response that improves reliability in the event of a hardware fail-
ure might be automatic failover of processing to a redundant sys-
tem. A simple active response might be an automatic system
shutdown when an attack is detected to protect resources, but a
more frequently preferred objective for an active response is to
continue to provide essential services during an attack by dynami-
cally changing system behavior. Hence, an active response typically
increases software complexity. 

• The level of required assurance that the system meets its security
requirements 
In practice, the assurance level depends on the consequences of a
security failure. Security governance is typically associated with
systems that require medium or high assurance. High-assurance
systems include those that are important for national defense and
for domains such as health care and nuclear power. Medium-
assurance systems are those for which the consequences of a risk
could reasonably lead to substantial reduction in shareholder
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value, the leakage of confidential business information, legal liabil-
ity above normal business liability insurance, or substantial civil
action or negative publicity.8 Medium assurance could, for exam-
ple, be applicable to corporate financial systems, manufacturing
control systems, and the information systems used for critical
infrastructure services such as power and water. 
Access to sensitive information may have to satisfy legal, regula-
tory, or fiduciary duties; contractual obligations; or voluntary
requirements such as the protection of proprietary data. Those
requirements raise the importance of security governance. In par-
ticular, regulatory compliance may depend on formalizing gover-
nance and risk management and, for each regulation, may require
specifying the scope in terms of the responsibilities and roles for
personnel and IT systems. 

7.5.2 Project Plan

The nature of security risks and their consequences affect both project
planning and resources. Actions to mitigate low-consequence and
low-likelihood risks can often be left to the discretion of the project
leader with limited management review. Conversely, the management
of high-probability risks with medium-level consequences would
likely require expert assistance and a well-defined, systematic review
process. 

All too often, software errors that render systems vulnerable to cyber-
attack are introduced as a result of disconnects and miscommunica-
tions during the planning, development, testing, and maintenance of
any system or software component. For example:

1. The complexity associated with product development may be a
consequence of tight component integration to meet market
demands for functionality or performance. Products typically have
extensibility requirements so that they can be tailored for a specific
customer’s operating environment. The complexity induced by
those product requirements also increases the risk that those fea-
tures might be exploited.

2. Shared services typically aggregate risks. A failure in shared soft-
ware or infrastructure services could affect multiple systems. The
level of software assurance required for the shared components

8. Cohen, Fred. Burton Group presentation at Catalyst 2005.
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should be higher than that required than for the systems in which
they are deployed. The higher assurance and aggregation of risks
implies that the risks for shared services should include the full
spectrum of integrity, confidentiality, and availability issues.

3. System integration has to resolve any mismatches with both inter-
nal and outsourced development. One mechanism to encourage
better integration might be to specify the software assurance crite-
ria for each component, such as completed code analysis for all
delivered software. There will probably be differences in the soft-
ware assurance requirements among components developed in-
house and those commercially available.

Given these concerns, communication and links among life-cycle
activities, among multiple development teams, and between the sys-
tem development and operational use environments need to be
addressed by project managers.

Software Security Practices in the Development Life Cycle

As stated earlier, a necessary part of any project planning effort that
includes requirements for software security is the use of a continuous
risk management process that includes risk assessment. The factors
involved with a risk assessment that is done early in the software
development process are predominantly business oriented rather than
technical. You’ll want to ensure that business-knowledgeable stake-
holders participate in risk assessment and analysis. 

Architectural risk analysis is an example of an important software
security practice. The software architecture describes the system struc-
ture in terms of components and specified interactions. The increased
system specificity provided by this architecture calls for a more
detailed description of security threats and desired system responses
to them. Thus an architectural risk assessment can review the threats,
analyze how the architecture responds to them, and identify addi-
tional risks introduced by the architecture. For example, attack pat-
terns would be rather abstract for a preliminary risk assessment, but
would become more detailed as the software architecture and detailed
design evolve. (See Section 7.4.2 and Section 4.2. Also see Chapter 6 for
a more detailed discussion of system development and integration
issues, along with recommended mitigations.) 

As introduced in Chapter 1, Figure 7–4 depicts one example of how to
incorporate security into the SDLC using the concept of touchpoints
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[McGraw 2006; Taylor 2005]. Software security best practices (touch-
points shown as arrows) are applied to a set of software artifacts that
are created during the software development process (the boxes).
While Figure 7-4 may convey a traditional waterfall development
approach, most of today’s organizations actually use an iterative
approach and thus cycle through the touchpoints more than once as
the software evolves.

The Security Development Lifecycle—SDL: A Process for Developing
Demonstrably More Secure Software [Howard 2006] provides an addi-
tional example of a pragmatic way to address security during devel-
opment; it is being used successfully at Microsoft. CLASP
(Comprehensive, Lightweight Application Security Process) [BSI 12],
as was mentioned in Chapter 3, is an activity-driven, role-based set of
process components guided by formalized best practices. CLASP is
designed to help software development teams build security into the
early stages of existing and new-start SDLCs in a structured, repeat-
able, and measurable way. Descriptions of additional secure SDLC
processes can be found in Secure Software Development Life Cycle Pro-
cesses [BSI 46; Davis 2005b].

Figure 7–4: Software development life cycle with defined security 
touchpoints [McGraw 2006]
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The objective of including security in a defined SDLC is not to over-
haul an existing process totally, but rather to add well-defined security
practices and security deliverables. The implementation of these prac-
tices depends on the characteristics of the software. For example, risk
analysis and assessment for an integrated system has different require-
ments than the risk assessment of a commercial product or an infra-
structure component. The differences in software security issues and
project management actions among products, application and inte-
grated systems, and systems of systems are discussed in more detail in
an article titled “The Influence of System Properties on Software
Assurance and Project Management” on the BSI Web site [BSI 36].

Activities Required to Complete Deliverables

Regulatory or contractual compliance may require demonstrating
that the software provides the necessary controls when accessing
sensitive information (that is, the production of an assurance case—
see Section 2.4). Meeting security compliance requirements typically
increases the software’s complexity. For example, business process com-
pliance may require showing that the composition and interactions of
multiple applications maintain the required controls and feedback. 

Delivering “secure” software requires demonstrating that the desired
level of assurance has been achieved. While demonstrating that a sys-
tem provides the required functionality is an essential aspect of soft-
ware assurance, software security assurance depends more on
demonstrating what a system does not do. Does improper input lead
to a system failure or enable an attacker to bypass authentication or
authorization defenses? (See also Section 5.4.) The production of such
an assurance case must be planned and managed. An assurance case
provides an argument for how the software addresses an identified
risk. That argument typically is based on assumptions about how the
software behaves under certain operating conditions. Hence, an early
step in building an assurance case is to provide evidence that the soft-
ware behavior satisfies the assumptions of the assurance argument.
Note that the production of an assurance case is an incremental activ-
ity: The assurance case should evolve to describe how the architecture
contributes to meeting security requirements, and the architectural
risk assessment and analysis should provide evidence that the archi-
tecture satisfies those requirements. 

An assurance case may be part of the requirements for contracted
development to address such questions as “How will the assurance of
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delivered software be demonstrated?” and “Do the assurance cases for
the supplied software support the assurance argument for the inte-
grated system?” 

7.5.3 Resources 

Tools

The software development environment should be at least as secure as
the planned security level of the software being produced. Appropri-
ate controls for and configuration management of development arti-
facts are essential. As part of developing those controls, specific tools
may be required to aid in the production or testing of secure software,
such as for static code analysis. 

The security functionality for authentication, authorization, and
encryption is typically composed of commercially supplied compo-
nents that can be tailored for a specific operational environment. These
components must have the required assurance level. 

As assurance levels rise, the development process should provide the
necessary control and information protection mechanisms. Change
management must be conducted according to a defined, repeatable
process, with zero tolerance for unauthorized changes. (See the article
titled “Prioritizing IT Controls for Effective, Measurable Security” on
the BSI Web site [BSI 37].) High-assurance configuration management
must support requirements for audit, traceability, and process enforce-
ment. For very sensitive code segments, security governance may
require that changes always be made by two developers to limit the
ability of an individual to insert malicious code. 

Knowledge and Expertise

Security expertise on most projects is limited and may be provided via
an internal means or a contracted service. Determining how best to
allocate this limited resource is challenging even when security activ-
ity involves only networks, authentication, and access control. When
security has to be incorporated into application development, this
expertise is even more difficult to come by. Also, any increase in the
level of assurance can significantly affect the need for security and
software engineering expertise. 

The security expertise required to develop more secure software can
be classified into two categories:
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• Knowledge of security functionality and features, such as the spec-
ification and implementation of access control, authentication, and
encryption. Security functionality specialists should be aware of
the security issues associated with development and project man-
agement.

• The skills to identify and mitigate exploitable vulnerabilities.
Unfortunately, software development teams rarely have the neces-
sary security expertise needed to satisfy this need. Vulnerabilities
may reside in the least exercised parts of the system or depend on
aspects of system interfaces that are highly unlikely to occur or dif-
ficult to predict. Software development teams may miss these
types of vulnerabilities because they normally concentrate on the
core software and security functionality. 

Project managers need to ensure that both types of expertise are avail-
able to their development teams throughout the SDLC (see sidebar).

Tasks such as risk assessment, architectural risk analysis, and code
review require significant security expertise. Other software security
practices can be implemented with somewhat less experience. For
example, although extensive security knowledge may be necessary to
configure a tool for the static analysis of source code, the use of such a
tool may not require the same level of expertise. (See Section 5.2.) 

Testing provides a second example. Penetration testing is often part of
an acceptance test or certification process. Penetration testing might be
implemented by a red team—that is, security experts who attempt to
breach the system defenses. Fuzz testing is a simple form of penetra-
tion testing that finds software defects by purposely feeding invalid
and ill-formed data as input to program interfaces [Arkin 2005;
Howard 2006]. Fuzz testing does not replace the need for testing that
targets explicit security risks, but it is an approach that can be used
without detailed knowledge of security vulnerabilities. (See [BSI 23]
for a discussion of the effective use of fuzz testing.) 

7.5.4 Estimating the Nature and Duration of Required 
Resources

An increase in the required assurance level can have a significant impact
on project cost and schedule, and additional development skills, devel-
opment practices, and tool support will be required to demonstrate that
the desired assurance is in place. Traditional cost-saving strategies such
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as reusing existing components or general-purpose commercial compo-
nents may not be useful when developing medium- and high-assurance
systems. In addition, early estimates for staff effort and schedule are not
very reliable until a more detailed description of the software is avail-
able, such as that provided by the software architecture and detailed
design, along with a more detailed model of attacker actions and possi-
ble responses.

Using shared services and a shared IT infrastructure across a number
of application development projects can reduce component develop-
ment costs but typically aggregates risks across all uses. In other
words, if a shared service includes a certain risk, this risk needs to be
managed by every project that uses the service. Examples of shared
services that might be used by multiple applications include Web

Deployment of Security Expertise at Microsoft

Microsoft’s experience with the implementation of its Security
Development Lifecycle suggests that someone with security
expertise must be available for frequent interactions with the
development team during software design and development. A
similar recommendation has been made for projects utilizing
agile development [Wäyrynen 2004]. 

Microsoft created a central security group that drives the devel-
opment and evolution of security best practices and process
improvements, serves as a source of expertise for the organiza-
tion as a whole, and performs a final security review before soft-
ware is released. For example, during the requirements phase, the
product team requests the assignment of a security advisor from
the central group who serves as point of contact, resource, and
guide as planning proceeds. This security advisor helps the prod-
uct team by reviewing plans and ensuring that the central secu-
rity team plans for and identifies appropriate resources to
support the product team’s schedule. The security advisor also
makes recommendations to the product team on security mile-
stones and exit criteria based on project size, complexity, and risk. 

See “Lessons Learned from Five Years of Building More Secure
Software” [Howard 2007] for more details on this initiative.
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portal interfaces, encryption and public key infrastructure, content
management, access control, and authentication. Project estimates
need to consider and reflect the increased assurance that will need to
be applied to any shared services. 

The nature of the required security expertise varies over the develop-
ment life cycle. General security expertise might be stretched thin in
the initial planning and requirements phases, when teams without
that experience require the most assistance. Security test planning
should start after the architecture is defined. Although risk analysis
has to be a continuing activity, the specific expertise required to per-
form such analysis may vary. The analysis of a detailed design may
require in-depth knowledge of a specific technology, while the analy-
sis of an implementation draws on a detailed knowledge of known
exploits.

7.5.5 Project and Product Risks

If you are using relatively new protocols such as those for Web ser-
vices, you may find them to be a moving target, as they continue to
change to reflect the experiences of early adopters. Best practices in
this context have short lives, and the lack of well-defined and proven
practices adversely affects planning. Given this caveat, you might
want to include a prototype or use an iterative or incremental
approach. 

Potential requirements for secure data access during development,
secure facilities, or demonstration of capability can add great complex-
ity and schedule concerns to projects. 

Software vulnerabilities may be intentionally inserted during in-house
or contracted development. These vulnerabilities can be much more
difficult to find than those resulting from inadequate software security
practices. Change and configuration management procedures provide
some assurance for internal development. 

Some security risks are inherent in the operational environment or
with the desired functionality and hence are unavoidable. For exam-
ple, it may be very difficult to block a well-resourced denial-of-service
attack. Other risks may arise because of tradeoffs made elsewhere in
the project. For example, an organization might permit employees to
access information assets using personal laptops or PDAs because the
need for such access outweighs its perceived risks. 
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In summary, the requirement for secure systems and software affects
many of the “knowledge areas” of project management—specifically,
scoping, human resources, communications, risk management, pro-
curement, quality, and integration. Activities such as an architectural
risk assessment, threat analysis, and static analysis for the source code
provide practices for specific development phases. Development con-
trols and change management are essential development tools. How-
ever, the software assurance issues that arise during development are
dynamic, meaning that project managers must maintain links between
business and technical perspectives, among life-cycle phases, and
among development teams. The production of an assurance case can
serve as an integrating mechanism by identifying threats and desired
responses and then tracing and refining the threats and responses dur-
ing development. 

Providing the necessary level of security assurance requires more than
the development of what is typically thought of as a security architec-
ture—that is, perimeter defenses (firewalls), proxies, authentication,
and access controls. Software security can be achieved only by inte-
grating software assurance practices into development processes. Such
integration happens as an act of project management. 

7.5.6 Measuring Software Security9

Measurement of both product and development processes has long been
recognized as a critical activity for successful software development.

Mitigations May Create New Risks

Security mechanisms that mitigate a specific risk may create addi-
tional ones. For example, security requirements for managing
identity for a large distributed system might be met by imple-
menting authentication and authorization as infrastructure ser-
vices shared by all applications. As noted earlier, the aggregation
of authentication and authorization mechanisms into a shared
service makes that service a single point of failure and a possible
attack target. Such design decisions should involve a risk assess-
ment to identify any new risks that require mediation, as well as
the analysis of the operational costs after the system is deployed.

L1L LM
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Good measurement practices and data enable realistic project plan-
ning, timely monitoring of project progress and status, accurate iden-
tification of project risks, and effective process improvement.
Appropriate measures and indicators of software artifacts such as
requirements, designs, and source code can be analyzed to diagnose
problems and identify solutions during project execution and reduce
defects, rework (i.e., effort, resources), and cycle time. Unfortunately,
useful measurements for software that have been developed to meet
security requirements are still in their infancy, and no consensus
exists as to which measures constitute best practices. Nonetheless,
some measures and practices used in software development can be
fruitfully extended to address security requirements.

Effective use of a software development measurement process for
security relies first on agreeing on the desired security characteristics
and measurement objectives, which can be applied to both the product
and the development process. These objectives rely on having explicit
system requirements—which means that security aspects must be
specified early in the SDLC (see Chapter 3). The organization should
assess the risk environment to address probable risks and translate
these concerns into specific security requirements, and then design
and implement a development process that ensures such requirements
are built in. 

Measurement objectives can be formulated that will provide insight into
the software’s security state or condition. Following are some examples
of analytical questions that can lead to measurement objectives:

• Which vulnerabilities have been detected in our products? Are our
current development practices adequate to prevent the recurrence
of the vulnerabilities? 

• Which process steps or activities are most likely to introduce
security-related risks? 

• What proportion of defects relates to security concerns and
requirements? Do defect classification schemes include security
categories?

• To what extent do developers comply with security-related pro-
cesses and practices? 

9. This material is extracted and adapted from a more extensive article by James McCurley,
David Zubrow, and Carol Dekkers [BSI 38].
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• To what extent are security concerns addressed in intermediate
work products (e.g., requirements, architecture and design
descriptions, test plans)? Have measures associated with security
requirements and their implementation been defined and
planned?

• What are the critical and most vulnerable software components?
Have vulnerabilities been identified and addressed? 

Architectural risk analysis (which helps identify probable types and
sources of attacks) can provide significant guidance for the develop-
ment processes for secure products (see Chapter 4). A thesis by Stuart
E. Schechter at Harvard University’s Department of Computer Science
uses economic models for valuing the discovery of vulnerabilities in
the final or end product during development [Schechter 2004]. His
measurement of security strength depends most on threat scenarios to
assign values to vulnerabilities. Many risk and threat methodologies
are publicly available, including [McGraw 2006] and CLASP [BSI 12].
In addition, Microsoft has published extensive materials that delineate
its approach to analyzing and mitigating threat risks during the SDLC
[Howard 2006]. 

Process Measures for Secure Development 

Process artifacts that implement security measurement objectives for
the development process should address the following issues:

• The presence of security policies applicable to the SDLC (e.g., roles
and responsibilities, management, procedures, coding rules,
acceptance/release criteria) 

• Policy compliance 
• The efficiency and effectiveness of the policies over time 

The security measurement objectives for the development process are
identical to the general measurement objectives—and they need to be
included in the process implementation. Such measures could be imple-
mented as part of an organization’s integrated quality assurance
function.

Although targeted for systems development and risk assessment as a
whole, the NIST Special Publication Security Metrics Guide for Informa-
tion Technology Systems [Swanson 2003] provides useful guidance for
measurements of this type. Risk management can encompass secure
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coding and provides a familiar framework in which to incorporate
new practices and procedures to address software security issues (see
also Section 7.4.2).

Defect density is a commonly used measure of product quality. It is
often computed as the number of defects discovered during system
testing or during the first six months of operational use divided by the
size of the system. Estimates of defects remaining in the product (cal-
culated by techniques such as phase containment, defect depletion,
and capture–recapture techniques) form a natural analogue to esti-
mate security vulnerabilities remaining in the software. Phase contain-
ment of defects is an analytical technique that measures the proportion
of defects originating in a phase that are detected within that same
phase; it provides a good characterization of the ability of the develop-
ment process to maintain quality throughout the SDLC. Refer to
“Team Software Process for Secure Systems Development” [in BSI 46;
Over 2002] for additional information on process measures for secure
development.

Product Measures for Secure Development

In the product context, security concerns addressed by measurement
objectives may take any of the following forms:

• Security requirements, which are based on privacy policies, legal
implications, risks identified by threat assessments, and other
sources, and can be specified as to extent and completeness 

• Security architecture, which reflects the specified security require-
ments

• Secure design criteria, where security requirements can be traced 
• Secure coding practices, where integrity can be assessed and mea-

sured 

Not all measures need to be complicated. Measures should be as sim-
ple as possible while still meeting the project’s information needs.
For example, in the requirements phase it is useful to know whether
security-related concerns have been considered in specifying system
requirements. This information could be summarized initially as yes
or no. As experience with the measure accrues over time, however,
the measure could evolve to characterize the extent to which require-
ments have been checked and tested against security concerns. Tools,
inspections, and reviews can be used to determine the extent to
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which security measurement objectives are implemented during the
design and coding phases. 

Inspection measurements often take the form of traditional defect
identification checklists, to which security-oriented items have been
added. For example, you could track the percentage of sources of
input that have validation checks and associated error handling.
Check each input source for length, format, and type, and its associ-
ated exit flows—either (1) accepted and then executed or (2) recog-
nized as an error or exception and not executed. The target for this
measure would be 100 percent, unless performance is unacceptable as
a result or this scheme costs too much to implement. Note that while
this simple measure represents an improvement over no measurement
for this type of vulnerability, it does not address the potentially com-
plex issue of determining the effectiveness of an input validation tech-
nique as implemented and whether any particular datum should be
counted in the tally. Resolving this issue requires ongoing tracking of
this measure’s performance to characterize the effectiveness of the
input validation techniques used. Over time, you can benchmark these
kinds of measures as performance standards.

Simple measures of enumeration and appropriate security handling
for vulnerabilities provide insight into the security status of the soft-
ware during development. For example, a useful list of “Measurable
Security Entities” and “Measurable Concepts” has been published by
Practical Software and Systems Measurement [PSM 2005]. Questions
generated by the PSM/DHS Measurement Technical Working Group
address many of the previously mentioned issues and can provide
starting points for developing measurement objectives. These ques-
tions—which form a solid basis for measurement in most develop-
ment organizations, regardless of size or methods employed—can be
found on the BSI Web site in the article titled “Measures and Measure-
ment for Secure Software Development” [BSI 38]. In addition, a useful
description of software security metrics for Web applications is pro-
vided in “A Metrics Framework to Drive Application Security
Improvement” [Nichols 2007].

This section has described a range of topics that project managers
need to pay particular attention to when developing secure software.
Software Project Management for Software Assurance [Fedchak 2007] is
another comprehensive source that presents information on how soft-
ware assurance and software security affect project management
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practices, including risk management, size and cost estimation, met-
rics, quality assurance, and management practices by life-cycle phase.

We close this chapter by highlighting a number of observed shifts and
trends, along with supporting evidence, that describe the state of the
practice in various communities and market sectors with respect to
governing and managing information and software security. This
information can be used to help formulate business-based arguments
and implementation approaches for developing and deploying more
secure software.

7.6 Maturity of Practice

Security’s emergence as a governance and management concern is pri-
marily taking place in the parts of the organization that provide and
use IT. We currently see minimal attention paid to this topic during the
early life-cycle phases of software and system development, but
increasing attention being devoted to it during detailed design, cod-
ing, and testing. Treating security as a governance and management
concern, as a risk management concern, and as a project management
concern at the earliest phases of the life cycle will likely produce more
robust, less vulnerable software, thereby resulting in a decline in the
reactive, fire-fighting mode now observed in most IT and system oper-
ations and maintenance organizations.

Consistent governance and management action across the organiza-
tion is key. This includes attention and participation from business
unit leaders, human resources, legal, audit, risk management, and
finance, as well as IT and software and system development groups.
This section identifies several indicators that organizations are
addressing security as a governance and management concern, at the
enterprise level. It summarizes how some organizations, trade associa-
tions, and market sectors are proceeding in this area. Many of the ref-
erences cited here provide more detailed implementation guidance.

7.6.1 Protecting Information

One significant shift that is causing leaders to pay increasing attention
to security is the need to treat information—and particularly con-
sumer, customer, client, and employee information—with greater care,

L3L LME
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perhaps with the same care as money. Leaders understand how their
organizations’ reputations may suffer if this is not done competently
and breaches become public.10 Customers expect that organizations
will carefully protect their privacy and their information, and they are
becoming more acutely aware of the risk of identity theft posed by
unintended data disclosure. U.S. federal laws such as the Sarbanes–
Oxley Act for financial reports, along with state laws such as the Cali-
fornia Database Protection Act for consumer data, have codified these
concerns. The European Union’s Directive on the Protection of Per-
sonal Data11 is even more comprehensive with respect to an organiza-
tion’s legal duty and ethical responsibility to protect personal
information.

The credit card industry has been proactive in defining a standard for
all merchants that accept and process credit card information.
Through the efforts of American Express, Discover Financial Services,
JCB, MasterCard Worldwide, and Visa International, the Payment
Card Industry Security Standards Council was founded and acts as the
steward of the Payment Card Industry Data Security Standard [PCI
2006]. As stated on its Web site, “The PCI DSS is a multifaceted secu-
rity standard that includes requirements for security management,
policies, procedures, network architecture, software design, and other
critical protective measures. This comprehensive standard is intended
to help organizations proactively protect customer account data.” The
key requirements of DSS are that member organizations will (1) build
and maintain a secure network, (2) protect cardholder data, (3) main-
tain a vulnerability management program, (4) implement strong
access control measures, (5) regularly monitor and test networks, and
(6) maintain an information security policy. An article on the BSI Web
site titled “Plan, Do, Check, Act” [BSI 39] describes how to integrate
PCI DSS requirements with other accepted security standards for sus-
taining software security during deployment and operations.

7.6.2 Audit’s Role

As part of the U.S. Critical Infrastructure Assurance Project, the
Institute of Internal Auditors (IIA) held six summit conferences in

10. Refer to the Privacy Rights ClearingHouse Web site for a chronology of all publicly reported
privacy breaches that have occurred since the ChoicePoint breach in 2005 (http://www.priva-
cyrights.org/ar/ChronDataBreaches.htm).

11. http://ec.europa.eu/justice_home/fsj/privacy/index_en.htm.

http://ec.europa.eu/justice_home/fsj/privacy/index_en.htm
http://www.privacyrights.org/ar/ChronDataBreaches.htm
http://www.privacyrights.org/ar/ChronDataBreaches.htm
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2000 to better understand the role of governance with respect to
information security management and assurance. The IIA also pro-
vided guidance in 2001 in the document titled “Information Secu-
rity Governance: What Directors Need to Know.” This report
includes case studies from General Motors, IBM, BellSouth, Intel,
Sun Microsystems, the Federal Reserve Bank in Chicago, and Home
Depot. Useful questions to ask that resulted from this work are
listed in “Maturity of Practice and Exemplars” on the BSI Web site
[IIA 2001; BSI 40].

The Information Systems Audit and Control Association (ISACA) and
its partner organization, the IT Governance Institute (ITGI), have pub-
lished extensive guidance on information technology and information
security governance. Their report titled “Information Security Gover-
nance: Guidance for Boards of Directors and Executive Management”
[ITGI 2006] addresses these questions:

1. What is information security governance?
2. Why is it important?
3. Who is responsible for it?

The same report also describes how to measure an organization’s
maturity level relative to information security governance.

7.6.3 Operational Resilience and Convergence

In its work with the Financial Services Technology Consortium
(FSTC), CERT is examining the convergence of security, business con-
tinuity, and IT operations management given their critical roles in
operational risk management.12 The intent is “to improve the opera-
tional resiliency of the organization—the ability to adapt to a changing
operational risk environment as necessary” [Caralli 2006]. In their
technical reports Sustaining Operational Resilience: A Process Improve-
ment Approach to Security Management [Caralli 2006] and Introducing the
CERT Resiliency Engineering Framework: Improving the Security and Sus-
tainability Processes [Caralli 2007], the authors offer an initial process
improvement framework for business continuity and security. This
framework is being pilot-tested with members of the FSTC and other
collaboration partners.

12. http://www.cert.org/resiliency_engineering

http://www.cert.org/resiliency_engineering
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A number of other organizations are describing their efforts to
achieve organizational resilience through the integration of business
continuity, operational and technology risk management, compli-
ance, and information security and privacy, supported by audit.
These integrating activities occur across products and business lines
and take into account people, business processes, infrastructure,
applications, information, and facilities. Indicators of success include
the following outcomes:

• Reduced risk of a business interruption
• Shorter recovery time when an interruption occurs
• Improved ability to sustain public confidence and meet customer

expectations
• Increased likelihood of complying with regulatory and internal

service level requirements

The Alliance for Enterprise Security Risk Management is a coalition
formed by ASIS International (representing the physical security
community), ISACA (representing the IT audit community), and
ISSA (Information Systems Security Association, representing the
information security community). It is addressing “the integration of
traditional and information security functions to encourage board
and senior executive level attention to critical security-related
issues” [AESRM 2005]. In its study titled “Convergence of Enterprise
Security Organizations,” the Alliance quotes the ASIS definition of
convergence:

The identification of security risks and interdependencies
between business functions and processes within the enter-
prise and the development of managed business process
solutions to address those risks and interdependencies.

The report goes on to describe five imperatives driving convergence13

and the organizational implications with supporting examples. These
efforts are providing evidence of the value of addressing security as
part of a broader convergence effort and in support of organizational
preparedness.

13. Rapid expansion of the enterprise ecosystem, value migration from the physical to information-
based and intangible assets, new protective technologies blurring functional boundaries, new
compliance and regulatory regimes, continuing pressure to reduce cost [AESRM 2005].
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7.6.4 A Legal View

The American Bar Association’s Privacy and Computer Crime Com-
mittee has published a “Roadmap to an Enterprise Security Program”
[Westby 2005]. The preface to the Roadmap states the following:

This publication was developed by a multidisciplinary team of
industry representatives, government personnel, policy spe-
cialists, attorneys, technical experts, and academicians. They
came together to provide a roadmap that links the various
pieces of the cyber security “puzzle” into an orderly process
that conforms with global standards and best practices, helps
meet compliance requirements, facilitates cooperation with law
enforcement, and promotes public-private sector cooperation.

The Roadmap presents a structure that includes governance, security
integration and security operations, implementation and evaluation,
and capital planning and investment controls. The steps for gover-
nance include these [Westby 2005]:

• Establish governance structure, exercise oversight, and develop
policies.

• Inventory digital assets (networks, applications, information).
• Establish ownership of networks, applications, and information;

designate security responsibilities for each.
• Determine compliance requirements with laws, regulations, guid-

ance, standards, and agreements (privacy, security, and cybercrime).
• Conduct threat and risk assessments and security plan reviews (for

internal and contractor operations). This may include certification
and accreditation. 

• Conduct risk management based on digital asset categorization
and level of risk.

7.6.5 A Software Engineering View

An emerging body of knowledge describes aspects of how to apply
governance and management thinking to the engineering and devel-
opment of secure software. In addition to John Steven’s article
“Adopting an Enterprise Software Security Framework” provided in
Section 7.3, several other articles on the BSI Web site that were previ-
ously published in a series in IEEE Security & Privacy address aspects
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of this issue. “Adopting a Software Security Improvement Program”
[BSI 41; Taylor 2005] provides several concrete steps and a progression
of phases for improvement. “Bridging the Gap Between Software
Development and Information Security” [BSI 42; van Wyk 2005]
describes a range of secure software development activities and prac-
tices to conduct during a software development life cycle. 

Chapter 10 of Software Security: Building Security In [McGraw 2006]
elaborates on several of the IEEE Security & Privacy articles. It
describes elements of an enterprise software security program,
addressing the following concerns:

• The business climate
• Building blocks of change, including four common pitfalls:

– Over-reliance on late-life-cycle testing
– Management without measurement
– Training without assessment
– Lack of high-level commitment (particularly relevant for gov-

ernance and management)
• Building an improvement program
• Establishing a metrics program, including a three-step enterprise

rollout:
– Assess and plan
– Build and pilot
– Propagate and improve

• Continuous improvement
• COTS (and existing software applications), including an enterprise

information architecture
• Adopting a secure development life cycle

Part I of The Security Development Lifecycle—SDL: A Process for Develop-
ing Demonstrably More Secure Software [Howard 2006] describes the
need for a Secure Development Lifecycle (SDL). According to Michael
Howard and Steve Lipner, “The biggest single factor in the success of
SDL is executive support.” Effective commitment to an SDL includes
making a statement, being visible, providing resources, and stopping
the delivery of products that do not meet their security and SDL
requirements. Part II of the same book describes the 12-stage SDL.
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7.6.6 Exemplars

On the BSI Web site, the article titled “Maturity of Practice and Exem-
plars” [BSI 40] provides 12 examples of principles, guidelines, frame-
works, and roadmaps that can assist organizations in implementing a
governance-based enterprise security program. This article summa-
rizes the efforts of several professional associations and selected mar-
ket sectors and organizations, describing how they have successfully
addressed security at governance and management levels. Many use
strategic questions and guiding principles as starting points. Summa-
ries are provided for the following organizations and events:

• Aberdeen Group 
• American Chemistry Counsel
• Audit Associations (Institute of Internal Auditors, Information

Technology Governance Institute)
• BITS
• Corporate Governance Task Force 
• Corporate Information Security Working Group 
• Federal Financial Institutions Examination Council 
• Health Information and Management Systems Society 
• ISO/IEC 27001 and ISO/IEC 17799 
• National Association of Corporate Directors 
• National Institute of Standards and Technology 
• Payment Card Industry Data Security Standard 
• Veterans Administration Data Breach 

Several of these examples and their supporting references provide suf-
ficient detail to help you start implementing a security governance
and management program.

Clearly, many sectors, organizations, and organizational functions
(including risk management, IT, business continuity, audit, legal, and
software development) are making progress and producing results by
treating security as an enterprise issue. They are taking governance
and management actions to integrate security into ongoing business
councils and steering groups, decision-making processes, plans, busi-
ness and development processes, and measures of success.
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7.7 Summary

Regardless of the extent of security practices included as part of the
SDLC, software security and system security cannot be accomplished
without informed, knowledgeable, committed leaders—business lead-
ers, project managers, and technical leaders. This chapter presented
recommendations and practices to aid software project managers in
the management tasks of producing more secure software as well as
actions to take to engage their business leaders and senior executives
at the governance level.

Key recommendations and practices are as follows:

• Recognize that being security aware and understanding the impor-
tance of addressing security during software development needs
to be a cultural norm.

• Engage leaders to better appreciate and understand the character-
istics and actions necessary to address security as governance and
management concerns, and the consequences of not doing so.

• Establish a framework and roadmap for addressing software secu-
rity as an enterprise-wide undertaking and for tackling some of the
pitfalls and barriers head on.

• Identify ways to determine what constitutes adequate security
practice based on risk management, established levels of risk toler-
ance, and risk assessment.

• Put a continuous, business-driven risk management framework in
place, and assess for acceptable and unacceptable levels of risk
throughout the SDLC.

• Follow the recommendations for inserting security into the SDLC
as part of traditional project management activities, including the
use of defined security touchpoints at each life-cycle phase.

• Include security as part of the software development measurement
process, including implementing suggested process and product
measures.

As the examples offered in this chapter demonstrate, security is being
effectively tackled today, at the enterprise level, from several points of
view, representing a growing community of practice across a wide
range of roles, disciplines, and market sectors.

LME
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Chapter 8

Getting Started

Ideally, by now we will have convinced you that software security is a
topic worthy of your attention. As software and security professionals,
we will never be able to get ahead of the game by addressing security
solely as an operational issue. Attackers are creative, ingenious, and
increasingly motivated by financial gain. They have been learning
how to exploit software for several decades; the same is not true for
software engineers and we need to change this. Given the extent to
which our nations, our economies, our businesses, and our families
rely on software to sustain and improve our quality of life, we must
make significant progress in putting higher-quality and more secure
software into production. The practices described in this book serve as
an excellent starting point for this journey.

To aid you in getting started, this chapter summarizes all of the prac-
tices presented in the preceding chapters. Practices described in each
chapter are summarized here in tabular form (Tables 8–1 through 8–6),
listed in the order of which practice to tackle first, then second, then
third, and so forth. The practice order is established either by an
author’s assessment of which practice makes most sense to do first
based on its serving as a prerequisite for or a useful precursor to sub-
sequent practices or by listing first those practices that are most
mature and in widespread use. 
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For example, Table 8–2 lists “Establish a defined process for identify-
ing and documenting security requirements” as the first practice.
Without a defined process, all of the other requirements engineering
practices are deployed out of context; the defined process serves as the
foundation for their implementation. Once this is in place, the practice
order is then determined based on its ability to produce the best
results from the process. With respect to Table 8–4, the practice order is
more obvious. Clearly, you cannot review source code until it is devel-
oped (by using secure coding practices!), and you cannot test that code
until you understand the unique aspects of software security testing. 

Each chapter practice table identifies the designated “maturity level”
for each practice as follows:

The practice serves as guidance for how to think about a topic for
which there is no proven or widely accepted approach. The intent
of the description is to raise awareness and assist you in thinking
about the problem and candidate solutions. The content may also
describe promising research results that may have been demon-
strated in a constrained setting.
The practice is in early pilot use and demonstrating some success-
ful results.
The practice is in limited use in industry or government organiza-
tions, perhaps for a particular market sector.
The practice has been successfully deployed and is in widespread
use. You can start using this practice today with confidence. Expe-
rience reports and case studies are typically available for it as well.

The tables identify the relevant reader audiences called out in the
chapters:

Executive and senior managers
Project and mid-level managers
Technical leaders, engineering managers, first-line managers, and
supervisors

They also identify other relevant roles that need to understand a prac-
tice and are typically involved in its deployment. 

L1

L2

L3

L4

E

M

L
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8.1 Where to Begin

Each project manager needs to carefully consider the knowledge, skills,
and competencies of his or her development team, the organizational cul-
ture’s tolerance (and attention span) for change, and the degree to which
sponsoring executives have bought in (a prerequisite for sustaining any
improvement initiative). In some cases, it may be best to start with coding
and testing practices (Table 8–4) given that these are the most mature,
have a fair level of automated support, and can demonstrate some early
successes, thereby providing visible benefit to help software security
efforts gain support and build momentum. By contrast, requirements
engineering (Table 8–2) and architecture and design practices (Table 8–3)
offer opportunities to address more substantive root cause issues early in
the life cycle that, if left unaddressed, will show up in code and testing.
Practice selection and tailoring are specific to each organization and
project, being based on the objectives, constraints, and criticality of the
software under development. Software criticality is based on the func-
tionality it provides and the information it processes.

Project managers and software engineers need to better understand
what constitutes secure software and develop their skills to think like
an attacker—and then apply this mindset throughout the SDLC. The
practices listed in Table 8–1 get this ball rolling and are the best place
to start in terms of awareness, training, and education. Alternatively, if
you have access to experienced security analysts, adding a few of
them to your development team can jump-start this effort.

With respect to the context within which software lives, it is essential
to consider the practices, processes, and mitigations identified in
Table 8–5 (and Chapter 6), because they inform the practice selection
process and help set expectations as to what is realistically achievable
given the current state of the practice.

Two of the key project management practices are (1) defining and
deploying a risk management framework to help inform practice selec-
tion and determine where best to devote scarce resources and (2) identi-
fying how best to integrate software security practices into the
organization’s current software development life cycle. These and other
governance and management practices are described in Table 8–6 and
Chapter 7.
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Table 8–1: Software Security Practices That Span the SDLC (Chapter 2)

Practices in 
Recommended Order Description Maturity Audience Relevant for These Roles

Properties of 
secure software

Core and influential properties 
of software that enable the 
understanding and descrip-
tion of its security characteris-
tics

L4 E, M, L • Executive responsible for soft-
ware development

• Project manager
• All software engineering roles
• Security analyst

Attack patterns Formalized capture of common 
methods of attacking software 
to serve as guides for improv-
ing software attack resistance 
and resilience

L3 M, L • Requirements engineer
• Architect
• Designer
• Developer
• Quality assurance engineer
• Security analyst

Assurance cases Structured mechanism for cap-
turing, communicating, and 
validating desired or attained 
levels of software security 
assurance in terms of the prop-
erties of secure software

L2 M, L • Project manager
• Quality assurance engineer
• Security analyst
• Acquisition manager
• Software supplier
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Table 8–2: Requirements Engineering Practices (Chapter 3) 

Practices in 
Recommended Order Description Maturity Audience Relevant for These Roles

Standard security 
requirements engi-
neering process

Establish a defined process for 
identifying and documenting 
security requirements, such as 
SQUARE

L3 E, M, L • Project manager

Security risk 
assessment

Perform a risk assessment 
aimed at security exposures, 
either as part of a project risk 
assessment or as a stand-alone 
activity

L3 for 
security;
L4 for 
projects 
in gen-
eral

M, L • Project manager
• Lead requirements engineer

Threat 
identification

Use techniques such as mis-
use/abuse cases, threat model-
ing, attack patterns, or attack 
trees to identify security 
threats

L3 L • Lead requirements engineer
• Security analyst

Continues
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Security require-
ments elicitation

Conduct a security require-
ments elicitation activity to 
identify potential security 
requirements

L2 L • Lead requirements engineer
Stakeholders

Security require-
ments categoriza-
tion and 
prioritization

Categorize and prioritize secu-
rity requirements to separate 
true requirements from archi-
tectural recommendations and 
to optimize cost–benefit con-
siderations

L2 L • Lead requirements engineer
Stakeholders

Security require-
ments inspection

Inspect security requirements 
in conjunction with other 
requirements to ensure they 
are correct and complete

L2 for 
security;
L4 for 
inspec-
tions in 
general

L • Lead requirements engineer

Table 8–2: Requirements Engineering Practices (Chapter 3) (Continued)

Practices in 
Recommended Order Description Maturity Audience Relevant for These Roles
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Table 8–3: Architecture and Design Practices (Chapter 4) 

Practices in 
Recommended Order Brief Description Maturity Audience Relevant for These Roles

Security principles High-level perspectives/prac-
tices to provide prescriptive 
guidance for architecture and 
design

L3 M, L • Architect
• Designer
• Security analyst

Attack patterns Formalized capture of common 
methods of attacking software 
to serve as guides for improving 
the attack resistance and resil-
ience of the software architec-
ture

L3 M, L • Requirements engineer
• Architect
• Designer
• Developer
• Quality assurance engineer
• Security analyst

Architectural risk 
analysis

Perform a detailed risk assess-
ment of the software architec-
ture and design and its ability 
to securely support the require-
ments of the software

L3 M, L • Architect
• Designer
• Security analyst

Security guide-
lines

Technology-specific prescrip-
tive guidance founded on dem-
onstrated experience to guide 
integrating security concerns 
into architecture and design

L3 M, L • Architect
• Designer
• Developer
• Security analyst



274

Table 8–4: Coding and Testing Practices (Chapter 5) 

Practices in 
Recommended Order Brief Description Maturity Audience

Relevant for These 
Roles

Secure coding 
practices

Use sound and proven secure coding 
practices to aid in reducing software 
defects introduced during implementa-
tion

L4 M, L • Project manager 
• Security analyst
• Developer

Source code 
review for secu-
rity vulnerabilities

Perform source code review using static 
code analysis tools, metric analysis, and 
manual review to minimize implementa-
tion-level security bugs

L4 M, L • Project manager 
• Security analyst 
• Developer

Unique aspects of 
software security 
testing

Understand the differences between soft-
ware security testing and traditional soft-
ware testing, and plan how best to address 
these (including thinking like an attacker 
and emphasizing how to exercise what the 
software should not do)

L3/4 M, L • Project manager 
• Security analyst
• Test engineer

Functional test 
cases for security

Construct meaningful functional test cases 
(using a range of techniques) that demon-
strate the software’s adherence to its func-
tional requirements, including its security 
requirements (positive requirements)

L4 M, L • Project manager
• Security analyst
• Test engineer
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Risk-based test 
cases for security

Develop risk-based test cases (using, for 
example, misuse/abuse cases, attack pat-
terns, or threat modeling) that exercise 
common mistakes, suspected software 
weaknesses, and mitigations intended to 
reduce or eliminate risks to ensure they 
cannot be circumvented (negative 
requirements)

L3/4 M, L • Project manager
• Security analyst
• Test engineer

Test cases using a 
range of security 
test strategies

Use a complement of testing strategies 
including white-box testing (based on 
deep knowledge of the source code), 
black-box testing (focusing on the soft-
ware’s externally visible behavior), and 
penetration testing (identifying and tar-
geting specific vulnerabilities at the sys-
tem level)

L4 M, L • Project manager
• Security analyst
• Test engineer

Table 8–4: Coding and Testing Practices (Chapter 5) (Continued)

Practices in 
Recommended Order Brief Description Maturity Audience

Relevant for These 
Roles
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Table 8–5: Security Analysis for System Complexity and Scale: Mitigations (Chapter 6) 

Practices in 
Recommended Order Brief Description Maturity Audience

Relevant for These 
Roles

Tackle known 
interface vulnera-
bilities first

With systems having more interfaces to 
less trusted systems, developers should 
concentrate first on known interface vul-
nerabilities such as those in Web services.

L3 M, L • Project manager
• Security analyst
• Developer

Conduct end-to-
end analysis of 
cross-system work 
processes

With increasing complexity, vulnerability 
analysis of individual systems is not suffi-
cient. The security analysis of work pro-
cesses that cross multiple systems has to 
consider the risks for those processes 
(including end-to-end analysis) as well as 
the risks that each work process creates 
for the systems that support it. Security 
analysis has to consider a wider spectrum 
of errors.

L3 M, L • System architect
• Security analyst

Attend to contain-
ing and recover-
ing from failures

Assume the existence of discrepancies of 
some form, whether in systems, opera-
tions, or users, during the execution of 
work processes, particularly as usage 
evolves. Give increased attention to con-
tainment and recovery from failures. 
These should be considered in the context 
of business continuity analysis.

L4 M, L • System architect
• Software architect
• Security analyst
• Designer
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Explore failure 
analysis and miti-
gation to deal with 
complexity

The multiplicity of systems and increasing 
number of possible error states arising 
from their interactions can overwhelm 
analysis or generate too many point solu-
tions that mitigate narrowly specified 
events. Explore how security could take 
advantage of a consolidated failure analy-
sis and mitigation effort.

L2 M, L • Chief information 
officer

• System architect
• Security analyst
• Designer

Coordinate secu-
rity efforts across 
organizational 
groups

Security is typically treated as a separate 
concern, with responsibility often being 
assigned to independent parts of the orga-
nization. It is not unusual to find that an 
organization’s development, operational, 
and business groups are tackling common 
problems with little coordination or that 
some security problems have fallen 
through the cracks. This separation 
becomes even more problematic as the 
scope and scale of systems expand. Vulner-
ability analysis and mitigations should be 
integrated across organization units, users, 
technology, systems, and operations.

L4 E, M, L • Chief information 
officer

• Chief information 
security officer

• System architect

Table 8–5: Security Analysis for System Complexity and Scale: Mitigations (Chapter 6) (Continued)

Practices in 
Recommended Order Brief Description Maturity Audience

Relevant for These 
Roles
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Table 8–6: Governance and Management Practices (Chapter 7) 

Practices in 
Recommended Order Brief Description Maturity Audience Relevant for These Roles

Risk-based defini-
tion of adequate 
security

Identify ways to determine what 
constitutes adequate security prac-
tice based on risk management, 
established levels of risk tolerance, 
and risk assessment

L4 for 
informa-
tion
security;
L3 for 
software 
security

E, M, L • Executive responsible for 
software development

• Project manager
• Lead software engineer
• Lead security analyst

Continuous risk 
management
framework

Put a continuous, business-driven 
risk management framework in 
place and periodically assess for 
acceptable and unacceptable levels 
of risk throughout the SDLC

L4 M, L • Project manager
• Lead software engineer
• Lead security analyst

Software security 
practices inte-
grated with SDLC

Provide recommendations for 
inserting security practices into 
the SDLC as part of traditional 
project management activities, 
including the use of defined secu-
rity touchpoints at each life-cycle 
phase

L3 M, L • Project manager
• Lead software engineer
• Lead security analyst
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Software security 
as a cultural norm

Recognize that being security 
aware and understanding the 
importance of addressing security 
during software development 
needs to be a cultural norm 
(beliefs, behaviors, capabilities, 
actions)

L4 for 
informa-
tion
security;
L3 for 
software 
security

E, M, L • Executive responsible for 
software development

• Project manager
• Lead software engineer
• Lead security analyst

Characteristics of 
software security 
at the governance/
management level

Engage leaders to better appreci-
ate and understand the character-
istics and actions necessary to 
address software security as gov-
ernance and management con-
cerns, and the consequences of not 
doing so

L4 for 
informa-
tion
security;
L3 for 
software 
security

E, M, L • Executive responsible for 
software development

• Project manager
• Lead software engineer
• Lead security analyst

Continues

Table 8–6: Governance and Management Practices (Chapter 7) (Continued)

Practices in 
Recommended Order Brief Description Maturity Audience Relevant for These Roles
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Enterprise soft-
ware security 
framework

Establish a framework and road-
map for addressing software secu-
rity as an enterprise-wide 
undertaking, and identify some of 
the pitfalls and barriers to tackle 
head on

L3 E, M, L • Executive responsible for 
software development

• Project manager
• Lead software engineer
• Lead security analyst

Software security 
included in 
software 
development
measurement 
process

Determine how to include security 
as part of a software development 
measurement process, including 
suggested process and product 
measures, and implement, track, 
and report such measures

L1 M, L • Project manager
• Lead software engineer
• Lead security analyst

Table 8–6: Governance and Management Practices (Chapter 7) (Continued)

Practices in 
Recommended Order Brief Description Maturity Audience Relevant for These Roles
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John Steven states [Steven 2006]:

Don’t demand teams to begin conducting every activity on
day one. Slowly introduce the simplest activities first, then
iterate.

[Have] patience. It will take at least three to five years to cre-
ate a working, evolving software security machine. Initial
organization-wide successes can be shown within a year. Use
that time to obtain more buy-in and a bigger budget.

Clearly, there is no one-size-fits-all approach to software security. Project
managers and their teams need to think through the choices, define
their tradeoff and decision criteria, learn as they go, and understand that
this effort requires continuous refinement and improvement. 

The U.S. Department of Homeland Security Software Assurance Pro-
gram has sponsored and provided access to a number of reports that
contain additional guidance on software assurance practices in general
and for project management, acquisition, and workforce competency
development in particular. Downloadable current versions and drafts
for review are available on the BSI Web site [BSI 47].

8.2 In Closing

We’ll leave you with the five key take-away points introduced in the
preface. We trust you now better understand these and can use them
to build a sense of urgency and a better business case for software
security engineering:

1. Software security is about more than eliminating vulnerabilities
and conducting penetration tests. Project managers need to take a
systematic approach to incorporate the sound practices discussed
in this book into their development processes.

2. Network security mechanisms and IT infrastructure security services
do not sufficiently protect application software from security risks. 

3. Software security initiatives should follow a risk management
approach to identify priorities and determine what is good
enough, understanding that software security risks will change
throughout the SDLC. 
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4. Building secure software depends on understanding the opera-
tional context in which it will be used. 

5. Project managers and software engineers need to learn to think
like an attacker to address the range of things that software should
not do and how software can better resist, tolerate, and recover
from attack.
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Glossary

Accountability
For software entities that act as users (e.g., proxy agents, Web services, peer pro-
cesses), the ability to record and track security-relevant actions of the software-
as-user, with attribution of responsibility.

Ambiguity analysis
Identification and elimination of ambiguities in the software architecture and
design due to ambiguous requirements or insufficiently specified architecture
and design.

Architectural risk analysis
A high-level evaluation of a software system involving (1) characterization of
the system to clearly understand its nature; (2) the identification of potential
threats to the system; (3) an assessment of the system’s vulnerability to attack;
(4) an estimate of the likelihood of potential threats; (5) identification of the
assets at risk and the potential impact if threats are realized; and (6) risk miti-
gation planning.

Assurance case
A structured set of arguments and a corresponding body of evidence demon-
strating that a system satisfies specific claims with respect to its security,
safety, or reliability properties.

Attack pattern
A pattern abstraction describing common approaches that attackers might use
to attack certain kinds of software for a certain purpose. It is used to capture
and represent the attacker’s perspective in software security engineering.

Attack resilience
The ability to recover from failures that result from successful attacks by
resuming operation at or above some predefined minimum acceptable level
of service in a timely manner.

Attack resistance
The ability of the software to prevent the capability of an attacker to execute
an attack against it. 

Attack resistance analysis
The process of examining software architecture and design for common
weaknesses that might lead to vulnerabilities and for susceptibility to com-
mon attack patterns.
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Attack surface
The set of ways (functionalities, APIs, interfaces, resources, data stores, etc.) in
which an attacker can attempt to enter and potentially cause damage to a sys-
tem. The larger the attack surface, the more insecure the system [Manadhata
2007].

Attack tolerance
The ability of software to “tolerate” errors and failures that result from success-
ful attacks and, in effect, continue to operate as if the attacks had not occurred.

Attack tree
A representation of the ways that an attacker could cause an event to occur
that could significantly harm a system’s mission. Each path through an attack
tree represents a unique intrusion.

Authentication
The process of determining whether someone or something (such as a com-
puter or software process) is, in fact, who or what it is declared to be. Methods
for human authentication typically include something you know (a pass-
word), something you have (a token), or something you are (fingerprint).

Availability
The extent to which a software component, product, or system is operational
and accessible to its intended, authorized users (humans and processes) when-
ever it is needed and, at the same time, when availability is considered as a
property of software security, its functionality and privileges are inaccessible to
unauthorized users (humans and processes) at all times.

Best practice; sound practice
The most efficient (least amount of effort) and effective (best results) way of
accomplishing a task, based on repeatable procedures that have proven them-
selves over time for large numbers of people [http://en.wikipedia.org/wiki/
Best_practice].

Black-box testing
Software testing using methods that do not require access to source code.
Such testing usually focuses on the externally visible behavior of the software,
such as requirements, protocol specifications, and interfaces.

Botnet
A number of Internet computers that, although their owners are unaware of it,
have rogue software that forwards transmissions (including spam or viruses) to
other computers on the Internet. Any such computer is referred to as a zom-
bie—in effect, it is a computer “robot” or “bot” that serves the wishes of some
master spam or virus originator [http://searchsecurity.techtarget.com].

Buffer overflow
An attack that targets improper or missing bounds checking on buffer opera-
tions, typically triggered by input injected by an attacker. As a consequence,
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an attacker is able to write past the boundaries of allocated buffer regions in
memory, causing a program crash or redirection of execution [http://
capec.mitre.org/data/definitions/100.html]. 

Bug
A software security defect that is introduced during software implementation
and can be detected locally through static and manual analysis [BSI 48].

Cache poisoning
A technique that tricks a domain name server (DNS server) into believing it
has received authentic information when, in reality, it has not. If the server
does not correctly validate DNS responses to ensure that they have come
from an authoritative source, the server will end up caching the incorrect
entries locally and serve them to users that make the same request [http://
en.wikipedia.org/wiki/DNS_cache_poisoning].

Confidentiality
The extent to which the characteristics of a software component, product, or
system—including its relationships with its execution environment and its
users, its managed assets, and its content—are obscured or hidden from
unauthorized entities. 

Conformance
Planned, systematic, and multidisciplinary activities that ensure software
components, products, and systems conform to requirements and applicable
standards and procedures for specified uses.

Correctness
The property of software behaving exactly as specified.

Cross-site scripting (XSS)
An attack in which an attacker embeds malicious scripts in content that will
be served to Web browsers. The goal of the attack is for the target software
(i.e., the client-side browser) to execute the script with the user’s privilege
level [http://capec.mitre.org/data/definitions/63.html].

Defect
A software fault, typically either a bug or a flaw.

Defense in depth
Using multiple types and layers of security to defend an application or sys-
tem so as to avoid having a single point of failure.

Denial-of-service attack
An attempt to make a computer resource unavailable to its intended users,
usually to prevent an Internet site or service from functioning efficiently or
at all, either temporarily or indefinitely [http://en.wikipedia.org/wiki/
Denial_of_service].
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Dependability
The property of software that ensures the software always operates as intended.

Dependency analysis
Analysis of the vulnerabilities and associated risk present in the underlying
software platforms, operating systems, frameworks, and libraries that the
software under analysis relies on in its operational environment. The software
you are writing almost never exists in total isolation.

DNS cache poisoning
See cache poisoning.

Elevation (escalation) of privilege
A situation in which a user obtains privileges that he or she is not authorized
to have.

Error
For a software system, an internal state leading to failure if the system does
not handle the situation correctly.

Exploit
A piece of software, a chunk of data, or sequence of commands that takes
advantage of a bug, glitch, or vulnerability in an effort to cause unin-
tended or unanticipated behavior to occur [http://en.wikipedia.org/wiki/
Exploit_%28computer_security%29].

Fagan inspection
A structured process set forth by M. E. Fagan [Fagan 1999] for trying to find
defects in development documents such as programming code, specifica-
tions, designs, and others during various phases of the software development
life cycle [http://en.wikipedia.org/wiki/Fagan_inspection]. 

Failure
For a software system, a situation in which the system does not deliver its
expected service as specified or desired. Such a failure is externally observable.

Fault
The cause of an error, which may lead to a failure.

Flaw
A software security defect that originates at the architecture or design level
and is instantiated in the code [BSI 48].

Hardening
Securing a system to defend it against attackers by, for example, removing
unnecessary usernames or logins and removing or disabling unnecessary
services [http://en.wikipedia.org/wiki/Hardening].

Identity spoofing
A situation in which one person or program successfully masquerades as
another by falsifying data and thereby gains an illegitimate advantage [http://
en.wikipedia.org/wiki/Spoofing_attack].

http://en.wikipedia.org/wiki/Exploit_%28computer_security%29
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Illegal pointer values
A situation in which a software function returns a pointer to memory outside
the bounds of the buffer to be searched. This can occur when an attacker controls
the contents of the buffer to be searched or an attacker controls the value for
which to search [http://www.owasp.org/index.php/Illegal_Pointer_Value].

Integer overflow
An attack that forces an integer variable to go out of range, leading to unex-
pected program behavior and possibly execution of malware by the attacker
[CAPEC 2007].

Integrity
The extent to which the code, managed assets, configuration, and behavior of
a software component, product, or system are resistant and resilient to unau-
thorized modification by authorized entities or any modification by unautho-
rized entities.

Malware
Malicious software (e.g., viruses, worms, and Trojan horses) that is created to
do intentional harm to a computer system.

Misuse/abuse cases
Descriptive statements of the undesirable, nonstandard conditions that soft-
ware is likely to face during its operation from either unintentional misuse or
intentional and malicious misuse or abuse.

Mitigation
An action that can be taken to reduce the likelihood and/or impact of a risk to
a software system.

Non-repudiation
For software entities that act as users (e.g., proxy agents, Web services, peer
processes), the ability to prevent the software-as-user from disproving or
denying responsibility for actions it has performed.

Phishing
An attempt to acquire sensitive information criminally and fraudulently, such
as usernames, passwords, and credit card details, by masquerading as a trust-
worthy entity in an electronic communication [http://en.wikipedia.org/
wiki/Phishing].

Predictable execution
Justifiable confidence that the software, when executed, functions as
intended. The ability of malicious input to alter the execution or outcome in a
way favorable to the attacker is significantly reduced or eliminated.

Protection profile
In the Common Criteria, a set of security requirements that a product can be
evaluated and certified against.

http://www.owasp.org/index.php/Illegal_Pointer_Value
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Reasonable degree of certainty
The amount of assurance needed that security requirements have been met
given a specific perceived threat, the consequences of a security breach, and
the costs of security measures.

Recognize
As a property that can be used to measure software security, the ability of a
software component or system to identify known attack patterns.

Recover
As a property that can be used to measure software security, the ability of a
software component or system to isolate, contain, and limit the damage
resulting from any failures caused by attack-triggered faults that it was
unable to resist or tolerate and to resume operation as quickly as possible.

Red teaming
In the software security engineering context, red teaming is creative software
penetration testing in which the test team takes a defined adversarial role and
uses doctrine, tactics, techniques, and procedures appropriate to that role.

Replay attack
A form of network attack in which a valid data transmission is maliciously or
fraudulently repeated or delayed. It is carried out either by the originator or
by an adversary who intercepts the data and retransmits it [http://en.wikipe-
dia.org/wiki/Replay_attack].

Repudiation
The ability of an attacker to deny performing some malicious activity because
the system does not have sufficient proof otherwise [Howard 2002].

Resist
As a property that can be used to measure software security, the ability of a
software component or system to prevent the capability of an attacker to exe-
cute an attack against it.

Security architecture
A framework that enables the interoperability of security features such as
access control, permissions, and cryptography and integrates them with the
broader software architecture.

Security governance
Directing and controlling an organization to establish and sustain a culture of
security in the organization’s conduct and treating adequate security as a
non-negotiable requirement of being in business.

Security profile
The degree to which software meets its security requirements.

Social engineering
A collection of techniques used to manipulate people into performing
actions or divulging confidential information, typically for information

http://en.wikipedia.org/wiki/Replay_attack
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gathering or computer system access [http://en.wikipedia.org/wiki/
Social_engineering_%28security%29].

Software assurance
The level of confidence that software is free from vulnerabilities, either inten-
tionally designed into the software or accidentally inserted at any time during its
life cycle, and that the software functions in the intended manner [CNSS 2006].

Software reliability
The probability of failure-free (or otherwise satisfactory) software operation
for a specified/expected period/interval of time, or for a specified/expected
number of operations, in a specified/expected environment under specified/
expected operating conditions [Goertzel 2006, 94].

Software safety
Persistence of dependability in the face of accidents or mishaps—that is,
unplanned events that result in death, injury, illness, damage to or loss of
property, or environmental harm [Goertzel 2006, 94]. 

Software security
Engineering software so that it is as vulnerability and defect free as possible
and continues to function correctly in spite of attack or misuse.

Spoofing
An attack in which the identity of a person or resource is impersonated.

SQL injection
An attack exploiting software that constructs SQL statements based on user
input. An attacker crafts input strings so that when the target software constructs
SQL statements based on the input, the resulting SQL statement performs
actions other than those the application intended [http://capec.mitre.org/data/
definitions/66.html].

Stack smashing attack
Causing a stack in a computer application or operating system to overflow,
which makes it possible to subvert the program or system or cause it to crash.
The stack is a form of buffer that holds the intermediate results of an opera-
tion or data that is awaiting processing. If the stack receives more data than it
can hold, the excess data is lost [http://searchsecurity.techtarget.com].

Tampering
Modification of data within a system to achieve a malicious goal [Howard
2002].

Threat
An actor or agent that is a source of danger, capable of violating the confiden-
tiality, integrity, and availability of information assets and security policy. 

Threat analysis
The identification of relevant threats for a specific architecture, functionality,
and configuration.
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Threat modeling
Combining software characterization, threat analysis, vulnerability analysis,
and likely attack analysis to develop a gestalt picture of the risk posed to the
software under analysis by anticipated threats.

Tolerate
As a property that can be used to measure software security, the ability of a
software component or system to withstand the errors and failure that result
from successful attacks and, in effect, to continue to operate as if the attacks
had not occurred.

Touchpoints
Lightweight software security best practice activities that are applied to vari-
ous software artifacts, such as requirements and code [McGraw 2006].

Trust boundaries
The boundaries between system zones of trust (areas of the system that share
a common level and management mechanism of privilege—Internet, dmz,
hosting LAN, host system, application server, database host, and so forth).
These trust boundaries are often ripe with vulnerabilities because systems fail
to properly segregate and manage differing levels of privilege.

Trustworthiness
A situation in which the number of exploitable vulnerabilities in a software
product is intentionally minimized to the greatest extent possible. The goal is
no exploitable vulnerabilities.

Use case
In requirements elicitation, a description of a complete transaction between
one or more actors and a system in normal, expected use of the system.

Vulnerability
A software defect that an attacker can exploit.

White-box testing
Performing security analysis of software, including its deployed environ-
ment, with knowledge of the architecture, design, and implementation of the
software.

Whitelist
A list of all known good inputs that a system is permitted to accept.

Zone of trust
Elements of a software system that share a specific level and management
mechanism of privilege.
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Index terms should be read within the context of software security engineering. For
example, “requirements engineering” refers to security requirements engineering.
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