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CHAPTER	0:	HOW	TO	USE	THIS	BOOK





What	this	book	is	about
This	book	is	about	usage	of	data	structures	and	algorithms	in	computer	programming.	Data	structures	are
the	ways	in	which	data	is	arranged	in	computers	memory.	Algorithms	are	set	of	instructions	to	solve	some
problem	by	manipulating	these	data	structures.
	
Designing	an	efficient	algorithm	to	solve	a	computer	science	problem	is	a	skill	of	Computer	programmer.
The	skill	which	tech	companies	like	Google,	Amazon,	Microsoft,	Facebook,	Adobe	and	many	others	are
looking	for	 in	an	 interview.	Once	we	are	comfortable	with	a	programming	language,	 the	next	step	 is	 to
learn	how	to	write	efficient	algorithms.
	
This	book	assumes	that	you	are	a	C	language	developer.	You	are	not	an	expert	in	C	language,	but	you	are
well	familiar	with	concepts	of	pointers,	functions,	arrays	and	recursion.	At	the	start	of	this	book,	we	will
be	revising	the	C	language	fundamentals	that	will	be	used	throughout	this	book.	We	will	be	looking	into
some	of	the	problems	in	arrays	and	recursion	too.
	
Then	in	the	coming	chapter	we	will	be	looking	into	Complexity	Analysis.	Followed	by	the	various	data
structures	 and	 their	 algorithms.	Will	 look	 into	 a	 linked	 list,	 stack,	 queue,	 trees,	 heap,	Hash-Table	 and
graphs.	We	will	also	be	looking	into	sorting,	searching	techniques.
	
Moreover,	 we	 will	 be	 looking	 into	 analysis	 of	 various	 algorithm	 techniques,	 such	 as	 brute	 force
algorithms,	 greedy	 algorithms,	 divide	 &	 conquer	 algorithms,	 dynamic	 programming,	 reduction	 &
backtracking.
	
In	the	end,	we	will	be	looking	into	system	design	that	will	give	a	systematic	approach	to	solve	the	design
problems	in	an	Interview.
	



Preparation	Plans
Given	 the	 limited	 time	you	have	before	your	next	 interview,	 it	 is	 important	 to	have	a	solid	preparation
plan.	The	preparation	plan	depends	upon	the	time	and	which	companies	you	are	planning	to	target.	Below
are	the	three-preparation	plan	for	1	Month,	3	Month	and	5	Month	durations.
	

1	Month	Preparation	Plans
Below	is	a	list	of	topics	and	approximate	time	user	need	to	take	to	finish	these	topics.	These	are	the	most
important	chapters	that	must	to	be	prepared	before	appearing	for	an	interview.
	
This	plan	should	be	used	when	you	have	a	limited	time	before	an	interview.	These	chapters	cover	90%	of
data	 structures	 and	 algorithm	 interview	 questions.	 In	 this	 plan	 since	we	 are	 reading	 about	 the	 various
ADT	in	chapter	4	so	we	can	use	these	datatype	easily	without	knowing	the	internal	details	how	they	are
implemented.
Chapter	24	is	for	system	design,	you	must	read	this	chapter	if	you	are	three	or	more	years	of	experienced.
Anyway,	reading	this	chapter	will	give	the	reader	a	broader	perspective	of	various	designs.
	
Time Chapters Explanation

Week	1

Chapter	 1:	 Introduction	 -	 Programming
Overview
Chapter	2:	Algorithms	Analysis
Chapter	 3:	 Approach	 To	 Solve	 Algorithm
Design	Problems
Chapter	4:	Abstract	Data	Type

You	 will	 get	 a	 basic	 understanding	 of	 how	 to	 find
complexity	 of	 a	 solution.	 You	 will	 know	 how	 to
handle	new	problems.	You	will	 read	 about	 a	variety
of	datatypes	and	their	uses.

Week	2
Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	Sorting	and	String	algorithm	consists	of	a
major	portion	of	the	interviews.

Week	3
Chapter	7:	Linked	List
Chapter	8:	Stack
Chapter	9:	Queue

Linked	lists	are	one	of	the	favourites	in	an	interview.

Week	4
Chapter	10:	Tree
Chapter	23:	Interview	Strategy
Chapter	24:	System	Design

This	 portion	 you	will	 read	 about	 Trees	 and	 System
Design.	You	 are	 good	 to	 go	 for	 interviews.	 Best	 of
luck.

	

3	Month	Preparation	Plan
This	plan	should	be	used	when	you	have	some	 time	 to	prepare	 for	an	 interview.	This	preparation	plan
includes	nearly	everything	in	this	book	except	various	algorithm	techniques.	Algorithm	problems	that	are
based	on	dynamic	programming,	divide	&	conquer	etc.	Which	are	asked	in	vary	specific	companies	like
Google,	Facebook,	etc.	Therefore,	until	you	are	planning	to	face	interview	with	them	you	can	park	these
topics	for	some	time	and	focus	on	the	rest	of	the	topics.
	
Again,	same	thing	here	with	system	design	problems,	the	more	experience	you	are,	the	more	important	this
chapter	becomes.	However,	if	you	are	a	fresher	from	college,	then	also	you	should	read	this	chapter.
	
Time Chapters Explanation



Week	1

Chapter	 1:	 Introduction	 -	 Programming
Overview
Chapter	2:	Algorithms	Analysis
Chapter	 3:	 Approach	 To	 Solve	 Algorithm
Design	Problems
Chapter	4:	Abstract	Data	Type

You	will	 get	 a	basic	understanding	of	how	 to	 find
complexity	 of	 a	 solution.	 You	 will	 know	 how	 to
handle	 new	 problems.	 You	 will	 read	 about	 a
variety	of	datatypes	and	their	uses.

Week	 2	 &
Week	3

Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	 sorting	 and	 string	 algorithm	consists	 of
a	major	portion	of	the	interviews.

Week	 4	 &
Week	5

Chapter	7:	Linked	List
Chapter	8:	Stack
Chapter	9:	Queue

Linked	 lists	 are	 one	 of	 the	 favourites	 in	 an
interview.

Week	 6	 &
Week	7

Chapter	10:	Tree
Chapter	11:	Heap

This	 portion	 you	 will	 read	 about	 trees	 and	 heap
data	structures.

Week	 8	 &
Week	9

Chapter	12:	Hash-Table
Chapter	13:	Graphs

Hash-Table	 are	 used	 throughout	 this	 book	 in
various	 places	 but	 now	 it	 is	 time	 to	 understand
how	Hash-Table	are	actually	implemented.	Graphs
are	 used	 to	 propose	 a	 solution	 many	 real	 life
problems.

Week	10 Chapter	23:	Interview	Strategy
Chapter	24:	System	Design

Interview	 strategy	 and	 system	 design	 chapter	 are
the	final	chapters	of	this	course.

Week	 11	 &
Week	12 Revision	of	the	chapters	listed	above.

At	 this	 time,	 you	 need	 to	 revise	 all	 the	 chapters
that	 we	 have	 seen	 in	 this	 book.	Whatever	 is	 left
needs	 to	 be	 completed	 and	 the	 exercise	 that	 may
be	left	needing	to	be	solved	in	this	period.

5	Month	Preparation	Plan
This	preparation	plan	is	made	on	top	of	3-month	plan.	In	this	plan,	the	students	should	look	for	algorithm
design	 chapters.	 In	 addition,	 in	 the	 rest	 of	 the	 time	 they	 need	 to	 practice	 more	 and	 more	 from
www.topcoder.com	 and	 other	 resources.	 If	 you	 are	 targeting	 google,	 Facebook,	 etc.,	 then	 it	 is	 highly
recommended	to	join	topcoder	and	practice	as	much	as	possible.
	
Time Chapters Explanation

Week	1
Week	2

Chapter	 1:	 Introduction	 -	 Programming
Overview
Chapter	2:	Algorithms	Analysis
Chapter	3:	Approach	To	Solve	Algorithm	Design
Problems
Chapter	4:	Abstract	Data	Type

You	 will	 get	 a	 basic	 understanding	 of	 how	 to
find	 complexity	 of	 a	 solution.	 You	 will	 know
how	 to	 handle	 new	 problems.	 You	 will	 read
about	a	variety	of	datatypes	and	their	uses.

Week	 3
Week	4
Week	5

Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	 sorting	 and	 string	 algorithm	 consists
of	a	major	portion	of	the	interviews.

Week	 6
Week	7
Week	8

Chapter	7:	Linked	List
Chapter	8:	Stack
Chapter	9:	Queue

Linked	 lists	 are	 one	 of	 the	 favourites	 in	 an
interview.

Week	9
Week	10

Chapter	10:	Tree
Chapter	11:	Heap This	portion	you	will	read	about	trees

Week	11
Week	12

Chapter	12:	Hash-Table
Chapter	13:	Graphs

Hash-Table	 are	 used	 throughout	 this	 book	 in
various	 places	 but	 now	 it	 is	 time	 to	 understand
how	 Hash-Table	 are	 actually	 implemented.

http://www.topcoder.com


Graphs	are	used	to	propose	a	solution	many	real
life	problems.

Week	13
Week	14
Week	 15
Week	16

Chapter	15:	Algorithm	Design	Techniques
Chapter	16:	Brute	Force
Chapter	17:	Greedy	Algorithm
Chapter	 18:	 Divide-And-Conquer,	 Decrease-
And-Conquer
Chapter	19:	Dynamic	Programming
Chapter	 20:	 Backtracking	 And	 Branch-And-
Bound
Chapter	 21:	 Complexity	 Theory	 And	 Np
Completeness

These	chapters	contain	various	algorithms	types
and	 their	 usage.	 Once	 the	 user	 is	 familiar	 with
most	of	 this	 algorithm.	Then	 the	next	 step	 is	 to
start	 solving	 topcoder	 problems	 from
https://www.topcoder.com/
	

Week	 17
Week	18

Chapter	22:	Interview	Strategy
Chapter	23:	System	Design

Interview	strategy	and	system	design	chapter	are
the	final	chapters	of	this	course.

Week	 19
Week	20
	

Revision	of	the	chapters	listed	above.

At	 this	 time,	you	need	 to	 revise	all	 the	chapters
that	we	have	seen	in	this	book.	Whatever	is	left
needs	to	be	completed	and	the	exercise	that	may
be	left	needing	to	be	solved	in	this	period.

	

https://www.topcoder.com/


Summary
These	are	 few	preparation	plans	 that	can	be	 followed	 to	complete	 this	book	 there	by	preparing	 for	 the
interview.	It	is	highly	recommended	that	the	user	should	read	the	problem	statement	first,	then	he	should
try	to	solve	the	problems	by	himself	and	then	only	he	should	look	into	the	solution	to	find	the	approach	of
the	book	practicing	more	and	more	problems	open	our	thinking	capacity	and	you	will	be	able	to	handle
new	 problems	 in	 an	 interview.	 System	 design	 is	 a	 topic	 that	 is	 not	 asked	 much	 from	 a	 fresher	 from
college,	 but	 as	 you	 gain	 experience	 its	 importance	 increase.	 We	 will	 recommend	 practicing	 all	 the
problems	 given	 in	 this	 book,	 then	 solve	 more	 and	 more	 problems	 from	 online	 resources	 like
www.topcoder.com,	www.careercup.com,	www.geekforgeek.com	etc.





CHAPTER	1:	INTRODUCTION	-
PROGRAMMING	OVERVIEW

	



Introduction
This	 chapter	 emphasizes	 on	 the	 fundamentals	 of	C	Programming	 language.	 It	will	 talk	 about	 variables,
pointers,	recursion,	arrays	etc.
	



Variable
"Variables"	are	simply	storage	locations	to	hold	data.	For	every	variable,	some	memory	is	allocated.	The
size	of	 this	memory	depends	on	the	type	of	 the	variable.	For	example,	2	bytes	are	allocated	for	 integer
type,	4	bytes	are	allocated	for	float	type,	etc.
	
Program	1.1
1.	#include	<stdio.h>
2.
3.	int	main()
4.	{
5.	int	var1,var2,var3;
6.	var1=100;
7.	var2=200;
8.	var3=var1+var2;
9.	printf("Adding	%d	and	%d	will	give	%d",	var1,var2,var3);
10.	return	0;
11.	}
	
Analysis:
Line	5:	Memory	 is	allocated	 for	variables	var1,	var2	and	var3.	Whenever	we	declare	a	variable,	 then
memory	is	allocated	for	storing	the	value	in	the	variable.	In	our	example,	2	bytes	are	allocated	for	each	of
the	variable.
Line	6	&	7:	Value	100	is	stored	in	variable	var1	and	value	200	is	stored	in	variable	var2.
Line	8:	Value	of	var1	and	var2	is	added	and	stored	in	var3.
Line	9:	Finally,	the	value	of	var1,	var2	and	var3	is	printed	to	screen.
	



Pointers
Pointers	are	nothing	more	than	variables	that	store	memory	addresses	of	another	variable	and	can	be	used
to	access	 the	value	 stored	at	 those	addresses.	Various	operators	 such	as	*,	&,	and	 [],	 enable	us	 to	use
pointers.
	
Address	-	The	numeric	location	of	a	place	in	memory.	An	address	of	a	memory	is	used	by	the	computer	to
identify	data	stored	in	it	quickly.	Just	as	the	postal	address	of	a	house	is	used	to	identify	a	house	by	the
postal	worker.
	
Dereference	 -	A	pointer	stores	an	address	of	a	 location	 in	 the	memory.	To	get	 the	value	stored	 in	 that
address,	we	need	 to	dereference	 the	pointer,	meaning	we	need	 to	go	 to	 that	 location	 and	get	 the	value
stored	there.
	
Program	1.2
1.	int	main()
2.	{
3.	int	var;
4.	int*	ptr;
5.	var	=	10;
6.	ptr	=	&var;
7.
8.	printf("Value	stored	at	variable	var	is	%d\n",var);
9.	printf("Value	stored	at	variable	var	is	%d\n",	*ptr);
10.
11.	printf("The	address	of	variable	var	is	%p	\n",	&var);
12.	printf("The	address	of	variable	var	is	%p	\n",	ptr);
13.	return	0;
14.	}
	
Analysis:
Line	3:	An	integer	type	variable	var	is	created.
Line	4:	A	pointer	to	int	ptr	is	created.
Line	6:	Address	of	var	is	stored	in	ptr.
Line	8	&	9:	Value	stored	in	variable	var	is	printed	to	screen.	*	Operator	is	used	to	get	the	value	stored	at
the	pointer	location.
Line	11	&	12:	Memory	address	of	var	is	printed	to	the	screen.	&	operator	is	used	to	get	the	address	of	a
variable.
	
Point	to	Remember:

1.	You	can	define	a	pointer	by	including	a	*	before	the	name	of	the	variable.	(Pointer	declaration)
2.	You	can	get	the	value	stored	at	address	by	adding	*	before	the	variable	name.	(Pointer	use)
3.	You	can	get	the	address	of	a	variable	by	using	&	operator.

	



Array
An	array	 is	 a	data	 structure	used	 to	 store	multiple	data	elements	of	 the	 same	data	 type.	All	 the	data	 is
stored	sequentially.	The	value	stored	at	any	index	can	be	accessed	in	constant	time.
	
Program	1.3
1.	int	main()
2.	{
3.	int	arr[10];
4.	for	(int	i	=	0;	i	<	10;	i++)
5.	{
6.	arr[i]	=	i;
7.	}
8.	printArray(arr,10);
9.	}
	
Analysis:
Line	3:	Defines	an	array	of	integer	s.	The	array	is	of	size	10	-	which	means	that	it	can	store	10	integers
inside	it.
Line	 6:	 Array	 elements	 are	 accessed	 using	 subscript	 operator	 [].	 Lowest	 subscript	 is	 0	 and	 highest
subscript	is	(size	of	array	–	1).	Value	0	to	9	is	stored	in	the	array	at	index	0	to	9.
Line	8:	Array	and	its	size	are	passed	to	printArray()	function.
	
Program	1.4
1.	void	printArray(int	arr[],	int	count)
2.	{
3.	printf("Values	stored	in	array	are	:	");
4.	for	(int	i	=	0;	i	<	count;	i++)
5.	{
6.	printf("	[	%d	]	",	arr[i]);
7.	}
8.	}
	
Analysis:
Line	1:	Array	variable	arr	and	its	variable	count	are	passed	as	arguments	to	printArray()	function.
Line	4-7:	Finally,	array	values	are	printed	to	screen	using	the	printf	function	in	a	loop.
	
Point	to	Remember:
1.	Array	index	always	starts	from	0	index	and	highest	index	is	size	-1.
2.	The	subscript	operator	has	highest	precedence	if	you	write	arr[2]++.	Then	the	value	of	arr[2]	will	be

incremented.
	
Each	element	of	the	array	has	a	memory	address.	The	following	program	will	print	the	value	stored	in	an
array	and	their	address.
	



Program	1.5
1.	void	printArrayAddress(int	arr[],	int	count)
2.	{
3.	printf("Values	stored	in	array	are	:	");
4.	for	(int	i	=	0;	i	<	count;	i++)
5.	{
6.	printf("Data:	[%d]	has	Address:	[%p]	\n",	arr[i],arr+	i);
7.	}
8.	}
	
Analysis:
Line	 6:	 Value	 stored	 in	 an	 array	 is	 printed.	 The	 address	 of	 the	 various	 elements	 in	 the	 array	 is	 also
printed.
	
Point	to	Remember:	For	array	elements,	consecutive	memory	location	is	allocated.
	
Program	1.6
1.	void	printArrayUsingPointer(int	arr[],	int	count)
2.	{
3.	printf("Values	stored	in	array	are	:	");
4.	int*	ptr	=	arr;
5.	for	(int	i	=	0;	i	<	count;	i++)
6.	{
7.	printf("Data:	[%d]	has	Address:	[%p]	\n",	*ptr,	ptr);
8.	ptr++;
9.	}
10.	}
	
Analysis:
Line	4:	A	pointer	to	an	int	is	created	and	it	will	point	to	the	array.
Line	7:	value	stored	in	pointer	is	printed	to	scree.
Line	8:	Pointer	is	incremented.
	



Two	Dimensional	Array
We	can	define	two	dimensional	or	multidimensional	array.	It	is	an	array	of	array.
	
Program	1.7
1.	int	main()
2.	{
3.	int	arr[4][2];
4.	int	count	=	0;
5.	for	(int	i	=	0;	i	<	4;	i++)
6.	for	(int	j	=	0;	j	<	2;	j++)
7.	arr[i][j]	=	count++;
8.
9.	print2DArray((int**)arr,	4,	2);
10.	print2DArrayAddress((int**)arr,	4,	2);
11.	}
	
1.	void	print2DArray(int*	arr[],	int	row,	int	col)
2.	{
3.	for	(int	i	=	0;	i	<	row;	i++)
4.	for	(int	j	=	0;	j	<	col;	j++)
5.	printf("[	%d	]",	*(arr	+	i	*	col	+	j	));
6.
7.	}
1.	void	print2DArrayAddress(int*	arr[],	int	row,	int	col)
2.	{
3.	for	(int	i	=	0;	i	<	row;	i++)
4.	for	(int	j	=	0;	j	<	col;	j++)
5.	printf("Value:	%d,	Address:	%p\n",	*(arr+i*col+j),	(arr+i*col+j));
6.	}
	
Analysis:
·	An	array	is	created	with	dimension	4	x	2.	The	array	will	have	4	rows	and	2	columns.
·	Value	is	assigned	to	the	array
·	Finally	the	value	stored	in	array	is	printed	to	screen	and	the	address	used	to	store	values	is	printed	by

using	print2DArray()	and	print2DarrayAddress()	function.
	
We	can	define	a	pointer	array	similar	to	an	array	of	integer.	The	array	element	will	store	a	pointer	inside
it.
	
Program	1.8
1.	void	printArray(int*	arr[],	int	count)
2.	{
3.	int	*ptr;
4.	for	(int	i	=	0;	i	<	count;	i++)



5.	{
6.	ptr	=	arr[i];
7.	printf("[	%d	]",	*ptr);
8.	}
9.	}
	
1.	void	printArrayAddress(int*	arr[],	int	count)
2.	{
3.	int	*ptr;
4.	for	(int	i	=	0;	i	<	count;	i++)
5.	{
6.	ptr	=	arr[i];
7.	printf("Value	is:	%d,	Address	is:	%p\n",	*ptr,ptr);
8.	}
9.	}
	
1.	int	main()
2.	{
3.	int	one	=	1,	two	=	2,	three	=	3;
4.	int*	arr[3];
5.	arr[0]	=	&one;
6.	arr[1]	=	&two;
7.	arr[2]	=	&three;
8.	printArray(arr,	3);
9.	printArrayAddress(arr,	3);
10.	}
Analysis:
·	Three	variables,	one,	two	and	three	are	defined.
·	Pointer	array	arr	is	defied.
·	The	address	of	one,	two	and	three	is	stored	inside	array	arr.
·	printArray()	and	printArrayAddress()	functions	are	used	to	print	value	stored	in	the	array.
	



Array	Interview	Questions
The	following	section	will	discuss	the	various	algorithms	that	are	applicable	to	arrays	and	will	follow	by
list	of	practice	problems	with	similar	approaches.
	

Sum	Array
Program:	Write	a	function	that	will	return	the	sum	of	all	the	elements	of	the	integer	array	given	array	and
its	size	as	an	argument.
	
Program	1.9
int	SumArray(int	arr[],	int	size)
{

int	total=0;
int	index=0;
for(index=0;index<size;index++)
{
total	=	total	+	arr[index];
}
return	total;

}
	

Sequential	Search
Write	a	function	which	will	search	in	an	array	that	some	value	is	present	in	the	array	or	not.
	
Program	1.10:
int	SequentialSearch(int	arr[],	int	size,	int	value)
{

int	i	=	0;
for(i	=	0;	i	<	size;	i++)	{
if(value	==	arr[i]	)
return	i;
}
return	-1;

}
	
Analysis:
·	Since	we	have	no	idea	about	the	data	stored	in	array	or	if	the	data	is	not	sorted	then	we	have	to	search

the	array	in	sequential	manner	one	by	one.
·	If	we	find	the	value,	we	are	looking	for	we	return	that	index.
·	Else,	we	return	-1	index,	as	we	did	not	found	the	value	we	are	looking	for.
	
In	 the	 above	 example,	 the	 data	 are	 not	 sorted.	 If	 the	 data	 is	 sorted,	 a	 binary	 search	may	 be	 done.	We
examine	 the	middle	position	at	 each	 step.	Depending	upon	 the	data	 that	we	are	 searching	 is	greater	or



smaller	than	the	middle	value.	We	will	search	either	the	left	or	the	right	portion	of	the	array.	At	each	step,
we	are	eliminating	half	of	the	search	space	there	by	making	this	algorithm	very	efficient	the	linear	search.
	

Binary	Search
	
Program	1.11:	Binary	search	in	a	sorted	array.
/*	Binary	Search	Algorithm	–	Iterative	Way	*/
int	BinarySearch	(int	arr[],	int	size,	int	value)
{

int	low	=	0,	mid;
int	high	=	size-1;
while	(low	<=	high)
{
mid	=	low	+	(high-low)/2;	/*	To	avoid	the	overflow	*/
if	(arr[mid]	==	value)
return	mid;
else	if	(arr[mid]	<	value)
low	=	mid	+	1;
else
high	=	mid	-	1;
}
return	-1;

}
	
Analysis:
·	Since	we	have	data	sorted	in	increasing	/	decreasing	order,	we	can	apply	more	efficient	binary	search.

At	each	step,	we	reduce	our	search	space	by	half.
·	At	each	step,	we	compare	the	middle	value	with	the	value	we	are	searching.	If	mid	value	is	equal	to	the

value	we	are	searching	for	then	we	return	the	middle	index.
·	If	the	value	is	smaller	than	the	middle	value,	we	search	the	left	half	of	the	array.
·	If	the	value	is	greater	than	the	middle	value	then	we	search	the	right	half	of	the	array.
·	If	we	find	the	value	we	are	looking	for	then	its	index	is	returned	or	-1	is	returned	otherwise.
	

Rotating	an	Array	by	K	positions.
For	example,	an	array	[10,20,30,40,50,60]	rotate	by	2	positions	to	[30,40,50,60,10,20]
	
Program	1.12
void	rotateArray(int	*a,int	n,int	k)
{

reverseArray(a,k);
reverseArray(&a[k],n-k);
reverseArray(a,n);

}



	
void	reverseArray(int	*a,int	n)
{

for(int	i=0,j=n-1;i<j;i++,j--)
{
a[i]^=a[j]^=a[i]^=a[j];
}

}
	
1,2,3,4,5,6,7,8,9,10	=>	5,6,7,8,9,10,1,2,3,4
1,2,3,4,5,6,7,8,9,10	=>	4,3,2,1,10,9,8,7,6,5	=>	5,6,7,8,9,10,1,2,3,4
	
Analysis:
·	Rotating	array	is	done	in	two	parts	trick.	In	the	first	part,	we	first	reverse	elements	of	array	first	half	and

then	second	half.
·	Then	we	reverse	the	whole	array	there	by	completing	the	whole	rotation.

Find	the	largest	sum	contiguous	subarray.
Given	an	array	of	positive	and	negative	integers,	find	a	contiguous	subarray	whose	sum	(sum	of	elements)
is	maximized.

Program	1.13
int	maxSubArraySum(int	a[],	int	size)
{

int	maxSoFar	=	0,	maxEndingHere	=	0;
for	(int	i	=	0;	i	<	size;	i++)
{
maxEndingHere	=	maxEndingHere	+	a[i];
if	(maxEndingHere	<	0)
maxEndingHere	=	0;
if	(maxSoFar	<	maxEndingHere)
maxSoFar	=	maxEndingHere;
}
return	maxSoFar;

}
	
Analysis:
·	Maximum	subarray	in	an	array	is	found	in	a	single	scan.	We	keep	track	of	global	maximum	sum	so	far

and	the	maximum	sum,	which	include	the	current	element.
·	When	we	find	global	maximum	value	so	far	is	less	than	the	maximum	value	containing	current	value	we

update	the	global	maximum	value.
·	Finally	return	the	global	maximum	value.
	



Structure
Structures	are	used	when	we	want	to	process	data	of	multiple	data	types	as	a	single	entity.
	
Program	1.14:	Demonstrating	Structure
1.	struct	coord{
2.	int	x;
3.	int	y;
4.	};
5.	int	main()
6.	{
7.	struct	coord	point;
8.	point.x=10;
9.	point.y=10;
10.	printf("X	axis	coord	value	is	%d	\n",	point.x);
11.	printf("Y	axis	coord	value	is	%d	\n",	point.y);
12.	printf("Size	of	structure	is	%d	bytes\n",	sizeof(point));
13.	return	0;
14.	}
	
Output:
X	axis	coord	value	is	10
Y	axis	coord	value	is	10
Size	of	structure	is	8	bytes
	
Analysis:
Line	1-4:	We	have	declared	structure	"coord",	which	contain	two	elements	inside	it.	The	two	elements	x
and	y	corresponding	to	x-axis	and	y-axis	coordinates.
Line	8:	We	have	declared	a	variable	"point"	of	type	"struct	coord”.
Line	9-10:	We	have	assigned	coordinate	(10,	10),	to	x	and	y	element	of	the	"point".	Various	elements	of	a
structure	are	assessed	using	the	dot(.)	operator.
Line	11-12:	We	are	printing	 the	value	 stored	 in	 the	x	 and	y	 elements	 of	 the	point	 that	 is	 of	 type	 struct
coord.
Line	13:	We	are	printing	the	size	of	struct	point.	Since	structure	consists	of	more	than	one	element,	then
the	size	of	a	structure	is	the	sum	of	all	the	elements	inside	it.
	



Pointer	to	structure
Pointers	can	be	used	to	access	the	various	elements	of	a	structure.	The	various	elements	of	a	structure	are
accessed	by	pointer	using	->	operator.
	
Program	1.15:	Pointer	to	structure
1.	#include<stdio.h>
2.	struct	student	{
3.	int	rollNo;
4.	char*	firstName;
5.	char*	lastName;
6.	};
7.	int	main()
8.	{
9.	int	i=0;
10.	struct	student	stud;
11.	struct	student*	ptrStud;
12.	ptrStud=	&stud;
13.	ptrStud->rollNo=1;
14.	ptrStud->firstName	="john";
15.	ptrStud->lastName	="smith";
16.	 printf("Roll	 No:	 %d	 Student	 Name:	 %s	 %s	 ",	 ptrStud->rollNo,	 ptrStud->firstName,	 ptrStud-
>lastName);
17.
18.	return	0;
19.	}
	
Analysis:
Line	2-6:	We	have	declared	a	struct	student	that	contain	roll	no,	first	and	last	name	of	a	student.
Line	12:	We	have	declared	a	pointer	to	struct	student.
Line	13-15:	Pointer	ptrStud	is	pointing	to	stud.	We	have	used	ptrStud	to	assign	a	value	to	struct	stud.	We
have	used	->	operator	to	access	the	various	elements	of	the	structure	pointed	by	ptrStud.
Note:	 If	 we	 have	 used	 the	 stud	 to	 assign	we	would	 have	 used	 "."	 operator.	 The	 same	 structure	when
accessed	using	pointer	we	use	indirection	operator	"->".
Line	16:	We	have	finally	printed	all	the	various	elements	of	structure	variable	stud.
	
Note:	In	the	same	way	you	can	use	->	operator	to	access	elements	of	the	Union.
	



Dynamic	Memory	Allocation
In	 c	 language,	 dynamic	 memory	 is	 allocated	 using	 the	 malloc(),	 calloc()	 and	 realloc()	 functions.	 The
dynamic	memory	required	to	be	freed	using	the	free()	function.
	

Malloc	function
Definition	of	the	malloc	function	is	as	below.
void	*malloc	(size_t	size);
	
It	allocates	a	memory	block	of	length	"size"	bytes	and	return	a	pointer	to	the	block.	It	will	return	NULL	if
the	system	does	not	have	enough	memory.
	
The	C	standard	defines	void*	is	a	generic	pointer	that	is	required	to	be	casted	to	the	required	type.	Most
C	compilers	need	this	casting.	However,	the	latest	ANSI	C	standard	does	not	require.
E.g.
int*	p	=	(int	*)	malloc	(sizeof(int));
	

Calloc	function
Definition	of	calloc	function	is	as	below.
	
void	*calloc	(size_t	num,	size_t	size);
	
It	allocates	a	memory	block	of	length	"num	*	size"	bytes	and	return	a	pointer	to	the	block.	It	will	return
NULL	if	the	system	does	not	have	enough	memory.	One	thing	more	it	does	that,	it	initializes	every	byte	to
zero.
	

Realloc	function
Definition	of	realloc	function	is	as	below.
	
void	*realloc	(void	*ptr,	size_t	newSize);
	
It	is	used	to	change	the	memory	block	size	of	a	previously	allocated	block	of	memory	pointed	by	ptr.	It
returns	a	memory	block	of	the	newSize.	If	the	block	size	if	increased,	then	the	content	of	the	old	memory
block	is	copied	to	a	newly	allocated	region.	If	the	pointer	returned	by	the	function	is	different	from	the	old
pointer	ptr.	Then	ptr	will	no	longer	point	to	a	valid	location.	So	in	general	you	should	not	use	ptr	once	it
is	passed	to	realloc()	function.	If	ptr	is	NULL,	realloc	works	same	as	malloc().
	
Note:	Again,	you	need	 to	cast	 the	 return	value	of	malloc/calloc/realloc	before	using	 it.	 int	*i	=	 (int	*)
malloc(size);
	

Free	Function
The	memory	 that	 is	 allocated	using	malloc/calloc/realloc	need	 to	be	 freed	using	 a	 free()	 function.	The



syntax	of	the	free()	function	is	as	below.
	
void	free	(void	*pointer);
	
A	pointer	 to	previously	 allocated	memory	 is	passed	 to	 free()	 function.	The	 free()	 function	will	 put	 the
allocated	memory	block	back	to	heap	section.
	



Function
Functions	are	used	to	provide	modularity	to	the	program.	By	using	function,	we	can	divide	complex	tasks
into	smaller	manageable	tasks.	The	use	of	the	function	is	also	to	avoid	duplicate	code.	For	example,	we
can	define	a	function	sum()	which	take	two	integers	and	return	their	sum.	Then	we	can	use	this	function
multiple	times	whenever	we	want	sum	of	two	integers.
	
Program	1.16:	Demonstrating	Function	Calls
1.	#include	<stdio.h>
2.	/*	function	declaration	*/
3.	int	sum(int	num1,	int	num2);
4.	int	main()
5.	{
6.	/*	local	variable	definition	*/
7.	int	x	=	10;
8.	int	y	=	20;
9.	int	result;
10.	/*	calling	a	function	to	find	sum	*/
11.	result	=	sum(x,	y);
12.	printf(	"Sum	is	:	%d\n",	result	);
13.	return	0;
14.	}
15.	/*	function	returning	the	sum	of	two	numbers	*/
16.	int	sum(int	num1,	int	num2)
17.	{
18.	/*	local	variable	declaration	*/
19.	int	result;
20.	result=	num1+num2;
21.	return	result;
22.	}
	
Output:
Sum	is:30
	
Analysis:
Line	3:	function	declaration	of	sum()	function
Line	11:	sum	function	is	called	from	this	main	by	passing	variable	x	and	y	with	value	10	and	20	at	this
point	control	flow	will	go	to	Line	16.
Line	16:	variables	passed	to	sum	function	are	copied	into	num1	and	num2	local	variables.
Line	20	&	21:	 the	sum	is	calculated	and	saved	 in	a	variable	 result.	And	 the	 result	 is	 returned.	Control
flow	comes	back	to	line	number	11.
Line	11-12:	return	value	of	the	sum	function	is	saved	in	a	local	variable	result	and	printed	to	the	screen.
	



Concept	of	Stack
A	stack	is	a	memory	in	which	values	are	stored	and	retrieved	in	“last	in	first	out”	manner.	Data	is	added
to	stack	using	push	operation	and	data	is	taken	out	of	stack	using	pop	operation.
	

	
1.	Initially	the	stack	was	empty.	Then	we	have	added	value	1	to	stack	using	push(1)	operator.
2.	Similarly,	push(2)	and	push(3)
3.	Pop	operation	take	the	top	of	the	stack.	Stack	data	is	added	and	deleted	in	“last	in,	first	out”	manner.
4.	First	pop()	operation	will	take	3	out	of	the	stack.
5.	Similarly,	other	pop	operation	will	take	2	then	1	out	of	the	stack
6.	In	the	end,	the	stack	is	empty	when	all	the	elements	are	taken	out	of	the	stack.
	



System	stack	and	Function	Calls
When	the	function	is	called,	the	current	execution	is	stopped	and	the	control	goes	to	the	called	function.
After	the	called	function	exits	/	returns,	the	execution	resumes	from	the	point	at	which	the	execution	was
stopped.
	
To	get	the	exact	point	at	which	execution	should	be	resumed,	the	address	of	the	next	instruction	is	stored
in	the	stack.	When	the	function	call	complete	the	address	at	the	top	of	the	stack	is	taken	out.
	
Program	1.17
1.	void	fun2()
2.	{
3.	printf("fun2	line	1\n");
4.	}
5.
6.	void	fun1()
7.	{
8.	printf("fun1	line	1\n");
9.	fun2();
10.	printf("fun1	line	2\n");
11.	}
12.
13.	int	main()
14.	{
15.	printf("main	line	1\n");
16.	fun1();
17.	printf("main	line	2\n");
18.	}
	
Output:
main	line	1
fun1	line	1
fun2	line	1
fun1	line	2
main	line	2
	
Analysis:
Line	13:	Every	program	starts	with	main()	function.
Line	15:	This	is	the	first	statement	that	will	be	executed.	And	we	will	get	“main	line	1”	as	output.
Line	16:	fun1()	is	called.	Before	control	goes	to	fun1()	then	next	instruction	that	is	address	of	line	17	is
stored	in	the	system	stack.
Line	6:	Control	goes	to	fun1()	function.
Line	8:	This	is	the	first	statement	inside	fun1(),	this	will	print	“fun1	line	1”	to	output.
Line	9:	fun2()	is	called	from	fun1().	Before	control	goes	to	fun2()	address	of	the	next	instruction	that	is
address	of	line	10	is	added	to	the	system	stack.



Line	1:	Control	goes	to	fun2()	function.
Line	3:	“fun2	line	1”	is	printed	to	screen.
Line	10:	When	fun2	exits,	control	come	back	 to	 fun1.	Moreover,	 the	program	reads	 the	next	 instruction
from	the	stack,	and	line	10	is	executed.	And	print	“fun1	line	2”	to	screen.
Line	17:	When	 fun1	 exits,	 control	 comes	back	 to	 the	main	 function.	Program	 reads	 the	next	 instruction
from	the	stack,	line	number	17	is	executed,	and	finally	“main	line	2”	is	printed	to	screen.
	
Points	to	remember:
1.	Functions	are	implemented	using	a	stack.
2.	When	a	function	is	called	the	address	of	the	next	instruction	is	pushed	into	the	stack.
3.	When	a	function	is	finished	the	address	of	the	execution	is	taken	out	of	the	stack.
	



Parameter	passing,	Call	by	value
Arguments	can	be	passed	from	one	function	to	other	using	parameters.	By	default,	all	the	parameters	are
passed	by	value.	That	means	a	separate	copy	is	created	inside	the	called	function	and	the	variable	in	the
calling	function	remains	unchanged.
	
Program	1.18
1.	void	increment(int	var)
2.	{
3.	var++;
4.	}
5.
6.	int	main()
7.	{
8.	int	i	=	10;
9.	printf("Value	of	i	before	increment	is	:	%d	\n",	i);
10.	increment(i);
11.	printf("Value	of	i	before	increment	is	:	%d	\n",	i);
12.	}
	
Output:
Value	of	i	before	increment	is	:	10
Value	of	i	before	increment	is	:	10
	
Analysis:
Line	8:	variable	”i”	is	declared	and	value	10	is	initialized	to	it.
Line	9:	value	if	”i”	is	printed.
Line	10:	increment	function	is	called.	When	a	function	is	called	the	value	of	the	parameter	is	copied	into
another	variable	of	the	called	function.	Flow	of	control	goes	to	line	no	1.
Line	 3:	 value	 of	 var	 is	 incremented	 by	 1.	 However,	 remember,	 it	 is	 just	 a	 copy	 inside	 the	 increment
function.
Line	11:	When	the	function	exits,	the	value	of	”i”	is	still	10.
	
Points	to	remember:
1.	Pass	by	value	just	creates	a	copy	of	variable.
2.	Pass	by	value,	value	before	and	after	the	function	call	remain	same.
	



Parameter	passing,	Call	by	Reference
If	you	need	to	change	the	value	of	the	parameter	inside	the	function,	then	you	should	use	call	by	reference.
C	language	by	default	passes	by	value.	Therefore,	to	make	it	happen,	you	need	to	pass	the	address	of	a
variable	and	changing	the	value	of	the	variable	using	this	address	inside	the	called	function.
	
Program	1.19
1.	void	increment(int	*ptr)
2.	{
3.	(*ptr)++;
4.	}
5.	int	main()
6.	{
7.	int	i	=	10;
8.	printf("Value	of	i	before	increment	is	:	%d	\n",	i);
9.	increment(&i);
10.	printf("Value	of	i	before	increment	is	:	%d	\n",	i);
11.	}
	
Output:
Value	of	i	before	increment	is	:	10
Value	of	i	before	increment	is	:	11
	
Analysis:
Line	9:	Address	of	“i”	 is	passed	 to	 the	function	 increment.	Function	 increment	 takes	a	pointer	 to	 int	as
argument.
Line	3:	Variable	at	the	address	ptr	is	accessed	and	its	value	is	incremented.
Line	10:	Finally,	incremented	value	is	printed	to	screen.
	
Points	to	remember:
1.	Call	by	reference	is	implemented	indirectly	by	passing	the	address	of	a	variable	to	the	function.
	



Recursive	Function
A	recursive	function	is	a	function	that	calls	itself,	directly	or	indirectly.
	
A	 recursive	 function	 consists	 of	 two	 parts:	 Termination	Condition	 and	Body	 (which	 include	 recursive
expansion).
1.	Termination	Condition:	A	 recursive	 function	 always	 contains	 one	or	more	 terminating	 condition.	A

condition	in	which	recursive	function	is	processing	a	simple	case	and	do	not	call	itself.
	
2.	Body	(including	recursive	expansion):	The	main	logic	of	the	recursive	function	contained	in	the	body

of	the	function.	It	also	contains	the	recursion	expansion	statement	that	in	turn	calls	the	function	itself.
	
Three	important	properties	of	recursive	algorithm	are:
1)	A	recursive	algorithm	must	have	a	termination	condition.
2)	A	recursive	algorithm	must	change	its	state,	and	move	towards	the	termination	condition.
3)	A	recursive	algorithm	must	call	itself.
	
Note:	The	speed	of	a	recursive	program	is	slower	because	of	stack	overheads.	If	 the	same	task	can	be
done	using	an	 iterative	solution	(loops),	 then	we	should	prefer	an	 iterative	solution	(loops)	 in	place	of
recursion	to	avoid	stack	overhead.
	
Note:	Without	termination	condition,	the	recursive	function	may	run	forever	and	will	finally	consume	all
the	stack	memory.
	

Factorial
Program	1.20:	Factorial	Calculation.	N!	=	N*	(N-1)….	2*1.
1.	int	factorial(unsigned	int	i)
2.	{
3.	/*	Termination	Condition	*/
4.	if(i	<=	1)
5.	return	1;
6.	/*	Body,	Recursive	Expansion	*/
7.	return	i	*	factorial(i	-	1);
8.	}
	
Analysis:	Each	time	function	fn	is	calling	fn-1.	Time	Complexity	is	O(N)
	

Print	Base	10	Integers
Program	1.21
1.	void	printInt(unsigned	int	number)
2.	{
3.	char	digit	=	number	%	10	+	'0';
4.	if	(number	/=	10)



5.	printInt(number/10);
6.	printf("%c",	digit);
7.	}
	
Analysis:
Line	3:	Each	time	remainder	is	calculated	and	stored	its	char	equivalent	in	digit.
Line	4-5:	if	the	number	is	greater	than	10	then	the	number	divided	by	10	is	passed	to	printInt()	function.
Line	6:	Number	will	be	printed	with	higher	order	first	then	the	lower	order	digits.
Time	Complexity	is	O(N)
	

Print	Base	16	Integers
Program	1.22:	Generic	print	to	some	specific	base	function.
1.	void	printInt(unsigned	int	number,	const	int	base)
2.	{
3.	char*	conversion	=	"0123456789ABCDEF";
4.	char	digit	=	number	%	base	;
5.	if	(number	/=	base)
6.	printInt(number,base);
7.	printf("%c",	conversion[digit]);
8.	}
	
Analysis:
Line	1:	base	value	is	also	provided	along	with	the	number.
Line	4:	remainder	of	the	number	is	calculated	and	stored	in	digit.
Line	5-6:	if	the	number	is	greater	than	base	then,	number	divided	by	base	is	passed	as	an	argument	to	the
printInt()	function	recursively.
Line	7:	Number	will	be	printed	with	higher	order	first	then	the	lower	order	digits.
Time	Complexity	is	O(N)
	

Integer	to	String
Program	1.23
1.	char	*	intToStr(char	*p,	unsigned	int	number)
2.	{
3.	char	digit	=	number	%	10	+	'0';
4.	if	(number	/=	10)
5.	p	=	intToStr(p,	number);
6.	*p++	=	digit;
7.	return	(p);
8.	}
	
Analysis:
Line	1:	character	buffer	p	 is	passed	as	argument	and	number	 is	passed,	which	need	 to	be	converted	 to
string.



Line	3:	least	significant	digit	of	the	number	is	converted	into	corresponding	character.
Line	4-5:	 if	 the	number	 is	greater	 than	10	 then,	number	divided	by	10	 is	passed	as	 an	argument	 to	 the
intToStr	()	function	recursively.
Line	6:	The	character	is	stored	in	the	buffer	p	higher	order	first,	then	the	lower	order	digits.
Time	Complexity	is	O(N)
	

Tower	of	Hanoi
The	Tower	of	Hanoi	(also	called	the	Tower	of	Brahma)	We	are	given	three	rods	and	N	number	of	disks,
initially	all	the	disks	are	added	to	first	rod	(the	leftmost	one)	in	decreasing	size	order.	The	objective	is	to
transfer	the	entire	stack	of	disks	from	first	tower	to	third	tower	(the	rightmost	one),	moving	only	one	disk
at	a	time	and	never	a	larger	one	onto	a	smaller.

Program	1.24
1.	void	towerOfHanoi(int	num,	char	src,	char	dst,	char	temp)
2.	{
3.	if	(num	<	1)
4.	return;
5.
6.	towerOfHanoi(num	-	1,	src,	temp,	dst);
7.	printf("\n	Move	disk	%d	from	peg	%c	to	peg	%c",	num,	src,	dst);
8.	towerOfHanoi(num	-	1,	temp,	dst,	src);
9.	}
	
1.	int	main()
2.	{
3.	int	num	=	4;
4.	printf("The	sequence	of	moves	involved	in	the	Tower	of	Hanoi	are	:\n");
5.	towerOfHanoi(num,	'A',	'C',	'B');
6.	return	0;
7.	}
	
Analysis:	TowerOfHanoi	problem	if	we	want	to	move	N	disks	from	source	to	destination,	then	we	first



move	N-1	disks	from	source	to	temp,	then	move	the	lowest	Nth	disk	from	source	to	destination.	Then	will
move	N-1	disks	from	temp	to	destination.
	

Greatest	common	divisor	(GCD)
Program	1.25
1.	int	GCD(int	m,	int	n)
2.	{
3.	if(m<n)
4.	return	(GCD(n,	m));
5.	if(m%n	==	0)
6.	return	(n);
7.	return(GCD(n,	m%n));
8.	}
Analysis:	Euclid’s	algorithm	is	used	to	find	gcd.	GCD(n,	m)	==	GCD(m,	n	mod	m)
	

Fibonacci	number
Program	1.26
1.	int	fibonacci(int	n)
2.	{
3.	if	(n	<=	1)
4.	return	n;
5.	return	fibonacci(n	-	1)	+	fibonacci(n	-	2);
6.	}
Analysis:	Fibonacci	number	are	calculated	by	adding	sum	of	the	previous	two	number.
There	is	an	inefficiency	in	the	solution	we	will	look	better	solution	in	coming	chapters.
	

All	permutations	of	an	integer	array
Program	1.27
1.	void	printArray(int	arr[],	int	count)
2.	{
3.	printf("Values	stored	in	array	are	:	");
4.	for	(int	i	=	0;	i	<	count;	i++)
5.	{
6.	printf("	%d	",	arr[i]);
7.	}
8.	printf("\n");
9.	}
10.	void	swap(int*	arr,	int	x,	int	y){
11.	int	temp	=	arr[x];
12.	arr[x]	=	arr[y];
13.	arr[y]	=	temp;
14.	return;



15.	}
16.	void	permutation(int	*arr,	int	i,	int	length)	{
17.	if	(length	==	i){
18.	printArray(arr,	length);
19.	return;
20.	}
21.	int	j	=	i;
22.	for	(j	=	i;	j	<	length;	j++)	{
23.	swap(arr,	i,	j);
24.	permutation(arr,	i	+	1,	length);
25.	swap(arr,	i,	j);
26.	}
27.	return;
28.	}
29.	int	main()
30.	{
31.	int	arr[5];
32.	for	(int	i	=	0;	i	<	5;	i++)
33.	{
34.	arr[i]	=	i;
35.	}
36.	permutation(arr,	0,	5);
37.	}
	
Analysis:In	 permutation	 function	 at	 each	 recursive	 call	 number	 at	 index,	 “i”	 is	 swapped	 with	 all	 the
numbers	that	are	right	of	it.	Since	the	number	is	swapped	with	all	the	numbers	in	its	right	one	by	one	it
will	produce	all	the	permutation	possible.
	

Binary	search	using	recursion
Program	1.28
1.	/*	Binary	Search	Algorithm	–	Recursive	Way	*/
2.	int	BinarySearchRecursive(int	arr[	],	int	low,	int	high,	int	value)
3.	{
4.	if(low	>	high)
5.	return	-1;
6.	int	mid	=	low	+	(high-low)/2;	/*	To	avoid	the	overflow	*/
7.	if	(arr[mid]	==	value)
8.	return	mid;
9.	else	if	(arr[mid]	<	value)
10.	return	BinarySearchRecursive	(arr,	mid	+	1,	high,	value);
11.	else
12.	return	BinarySearchRecursive	(arr,	low,	mid	-	1	,	value);
13.	}
	



Analysis:
Similar	 iterative	solution	we	had	already	seen.	Now	let	us	 look	into	 the	recursive	solution	of	 the	same
problem	in	this	solution	also,	we	are	diving	the	search	space	into	half	and	doing	the	same	what	we	had
done	in	the	iterative	solution.
	



Exercises
1.	Find	average	of	all	the	elements	in	an	array.
2.	Find	the	sum	of	all	the	elements	of	a	two	dimensional	array.
3.	Find	the	largest	element	in	the	array.
4.	Find	the	smallest	element	in	the	array.
5.	Find	the	second	largest	number	in	the	array.
6.	Print	all	 the	maxima’s	 in	an	array.	 (A	value	 is	a	maximum	if	 the	value	before	and	after	 its	 index	are

smaller	than	it	is	or	does	not	exist.)
Hint:	
a)	Start	traversing	array	from	the	end	and	keep	track	of	the	max	element.
b)	If	we	encounter	an	element	>	max,	print	the	element	and	update	max.

	
7.	Print	alternate	elements	in	an	array.
	
8.	Given	an	array	with	value	0	or	1,	write	a	program	to	segregate	0	on	the	left	side	and	1	on	the	right	side.
	
9.	Given	a	list	of	intervals,	merge	all	overlapping	intervals.

Input:	{[1,	4],	[3,	6],	[8,	10]}
Output:	{[1,	6],	[8,	10]}

	
10.	Write	a	function	that	will	take	intervals	as	input	and	takes	care	of	overlapping	intervals.
	
11.	Reverse	 an	 array	 in-place.	 (You	 cannot	 use	 any	 additional	 array	 in	other	wards	Space	Complexity

should	be	O(1).)
Hint:	Use	two	variable,	start	and	end.	Start	set	to	0	and	end	set	to	(n-1).	Increment	start	and	decrement
end.	Swap	the	values	stored	at	arr[start]	and	arr[end].	Stop	when	start	is	equal	to	end	or	start	is	greater
than	end.
	

12.	Given	an	array	of	0s	and	1s.	We	need	to	sort	it	so	that	all	the	0s	are	before	all	the	1s.
Hint:	Use	two	variable,	start	and	end.	Start	set	to	0	and	end	set	to	(n-1).	Increment	start	and	decrement
end.	Swap	the	values	stored	at	arr[start]	and	arr[end]	only	when	arr[start]	==	1	and	arr[end]==0.	Stop
when	start	is	equal	to	end	or	start	is	greater	than	end.

	
13.	Given	an	array	of	0s,	1s	and	2s.	We	need	to	sort	it	so	that	all	the	0s	are	before	all	the	1s	and	all	the	1s

are	before	2s.
Hint:	Same	as	above	first	think	0s	and	1s	as	one	group	and	move	all	the	2s	on	the	right	side.	Then	do	a
second	pass	over	the	array	to	sort	0s	and	1s.

	
14.	Find	the	duplicate	elements	in	an	array	of	size	n	where	each	element	is	in	the	range	0	to	n-1.

Hint:	
Approach	1:	Compare	each	element	with	all	the	elements	of	the	array	(using	two	loops)	O(n2)	solution
Approach	2:	Maintain	a	Hash-Table.	Set	the	hash	value	to	1	if	we	encounter	the	element	for	the	first
time.	When	we	same	value	again	we	can	see	that	the	hash	value	is	already	1	so	we	can	print	that	value.



O(n)	solution,	but	additional	space	is	required.
Approach	3:	We	will	exploit	the	constraint	"every	element	is	in	the	range	0	to	n-1".
We	can	take	an	array	arr[]	of	size	n	and	set	all	the	elements	to	0.	Whenever	we	get	a	value	say	val1.
We	will	increment	the	value	at	arr[var1]	index	by	1.	In	the	end,	we	can	traverse	the	array	arr	and	print
the	repeated	values.	Additional	Space	Complexity	will	be	O(n)	which	will	be	less	 than	Hash-Table
approach.

	
15.	Find	the	maximum	element	in	a	sorted	and	rotated	array.	Complexity:	O(logn)

Hint:	Use	binary	search	algorithm.
	
16.	Given	an	array	with	'n'	elements	&	a	value	'x',	find	two	elements	in	the	array	that	sums	to	'x'.

Hint:
Approach	1:	Sort	the	array.
Approach	2:	Using	a	Hash-Table.

	
17.	Write	 a	 function	 to	 find	 the	 sum	 of	 every	 number	 in	 an	 int	 number.	 Example:	 input=	 1984,	 output

should	be	32	(1+9+8+4).
	
18.	Write	a	function	to	compute	Sum(N)	=	1+2+3+…+N.





CHAPTER	2:	ALGORITHMS	ANALYSIS
	



Introduction
Computer	 programmer	 learn	 by	 experience.	 We	 learn	 by	 seeing	 solved	 problems	 and	 solving	 new
problems	by	ourselves.	Studying	various	problem-solving	techniques	and	by	understanding	how	different
algorithms	are	designed	helps	us	to	solve	the	next	problem	that	is	given	to	us.	By	considering	a	number	of
different	algorithms,	we	can	begin	to	develop	pattern	so	that	the	next	time	a	similar	problem	arises,	we
are	better	able	to	solve	it.
	
When	an	interviewer	asks	to	develop	a	program	in	an	interviewer,	what	are	the	steps	that	an	interviewee
should	follow.	We	will	be	taking	a	systematic	approach	to	handle	the	problem	and	finally	reaching	to	the
solution.
	

Algorithm
An	algorithm	is	a	set	of	steps	to	accomplish	a	task.
An	algorithm	in	a	computer	program	is	a	set	of	steps	applied	over	a	set	of	input	to	produce	a	set	of	output.
	
Knowledge	of	algorithm	helps	us	to	get	our	desired	result	faster	by	applying	the	right	algorithm.
	
The	most	important	properties	of	an	algorithm	are:
1.	Correctness:	The	 algorithm	 should	 be	 correct.	 It	 should	 be	 able	 to	 process	 all	 the	 given	 inputs	 and

provide	correct	output.
2.	Efficiency:	The	algorithm	should	be	efficient	in	solving	problems.
	
Algorithmic	complexity	is	defined	as	how	fast	a	particular	algorithm	performs.	Complexity	is	represented
by	function	T	(n)	-	time	versus	the	input	size	n.
	



Asymptotic	analysis
Asymptotic	analysis	is	used	to	compare	the	efficiency	of	algorithm	independently	of	any	particular	data
set	or	programming	language.
	
We	are	generally	interested	in	the	order	of	growth	of	some	algorithm	and	not	interested	in	the	exact	time
required	for	running	an	algorithm.	This	time	is	also	called	Asymptotic-running	time.
	



Big-O	Notation
Definition:	“f(n)	is	big-O	of	g(n)”	or	f(n)	=	O(g(n)),	if	there	are	two	+ve	constants	c	and	n0	such	that
f(n)	≤	c	g(n)	for	all	n	≥	n0,
	
In	other	words,	c	g(n)	is	an	upper	bound	for	f(n)	for	all	n	≥	n0
	
The	function	f(n)	growth	is	slower	than	c	g(n)

Example:	n2	+	n	=	O(n2)
	



Omega-Ω	Notation
Definition:	“f(n)	is	omega	of	g(n).”	or	f(n)	=	Ω(g(n))	if	there	are	two	+ve	constants	c	and	n0	such	that
c	g(n)	≤	f(n)	for	all	n	≥	n0
	
In	other	words,	c	g(n)	is	lower	bound	for	f(n)
Function	f(n)	growth	is	faster	than	c	g(n)

Find	relationship	of	f(n)	=	nc	and	g(n)	=	cn
F(n)	=	Ω	(g(n))
	



Theta-Θ	Notation
Definition:	“f(n)	is	theta	of	g(n).”	or	f(n)	=	Θ(g(n))	if	there	are	three	+ve	constants	c1,	c2	and	n0	such	that
c1	g(n)	≤	f(n)	≤	c2	g(n)	for	all	n	≥	n0
	
g(n)	is	an	asymptotically	tight	bound	on	f(n).
Function	f(n)	grows	at	the	same	rate	as	g(n).

Example:	n3	+	n2	+	n	=	Ɵ(n2)
	
Example:	n2	+	n	=	Ɵ(n2)
Find	relationship	of	f(n)	=	2n2	+	n	and	g(n)	=	n2
f(n)	=	O(g(n))
f(n)	=	Ɵ(g(n))
f(n)	=	Ω(g(n))
	
Note:-	Asymptotic	Analysis	is	not	perfect,	but	that	is	the	best	way	available	for	analysing	algorithms.
	
For	example,	 say	 there	are	 two	sorting	algorithms	 first	 take	 f(n)	=	10000nlogn	and	 f(n)	=	n2	 time.	The
asymptotic	analysis	says	that	the	first	algorithm	is	better	(as	it	ignores	constants)	but	actually	for	a	small
set	 of	 data	 when	 n	 is	 small	 then	 10000,	 the	 second	 algorithm	 will	 perform	 better.	 To	 consider	 this
drawback	of	asymptotic	analysis	case	analysis	of	the	algorithm	is	introduced.
	



Complexity	analysis	of	algorithms
1)	Worst	Case	 complexity:	 It	 is	 the	 complexity	of	 solving	 the	problem	 for	 the	worst	 input	 of	 size	n.	 It
provides	the	upper	bound	for	the	algorithm.	This	is	the	most	common	analysis	done.
	
2)	Average	Case	complexity:	It	is	the	complexity	of	solving	the	problem	on	an	average.	We	calculate	the
time	for	all	the	possible	inputs	and	then	take	an	average	of	it.
	
3)	Best	Case	complexity:	It	is	the	complexity	of	solving	the	problem	for	the	best	input	of	size	n.



Time	Complexity	Order
A	list	of	commonly	occurring	algorithm	Time	Complexity	in	increasing	order:
Name Notation
Constant O(1)
Logarithmic O(logn)
Linear O(n)
N-LogN O(n.logn)
Quadratic O(n2)
Polynomial O(nc)	c	is	a	constant	&	c>1
Exponential O(cn)	c	is	a	constant	&	c>1
Factorial	or	N-power-N O(n!)	or	O(nn)

Constant	Time:	O(1)
An	algorithm	is	said	to	run	in	constant	time	regardless	of	the	input	size.
Examples:
1.	Accessing	nth	element	of	an	array
2.	Push	and	pop	of	a	stack.
3.	Enqueue	and	Dequeue	of	a	queue.
4.	Accessing	an	element	of	Hash-Table.
5.	Bucket	sort
	

Linear	Time:	O(n)
An	algorithm	is	said	to	run	in	linear	time	if	the	execution	time	of	the	algorithm	is	directly	proportional	to
the	input	size.
Examples:
1.	Array	operations	like	search	element,	find	min,	find	max	etc.
2.	Linked	list	operations	like	traversal,	find	min,	find	max	etc.
	
Note:	when	we	need	to	see/	traverse	all	the	nodes	of	a	data-structure	for	some	task	then	complexity	is	no
less	than	O(n)
	

Logarithmic	Time:	O(logn)
An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	the	algorithm	is	proportional	to	the
logarithm	 of	 the	 input	 size.	 Each	 step	 of	 an	 algorithm,	 a	 significant	 portion	 of	 the	 input	 is	 pruned	 out
without	traversing	it.
Example:
1.	Binary	search
	
Note:	We	will	read	about	these	algorithms	in	this	book.
	

N-LogN	Time:	O(nlog(n))
An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	an	algorithm	is	proportional	to	the



product	of	input	size	and	logarithm	of	the	input	size.
Example:
1.	Merge-Sort
2.	Quick-Sort	(Average	case)
3.	Heap-Sort
	
Note:	Quicksort	is	a	special	kind	of	algorithm	to	sort	a	list	of	numbers.	Its	worst-case	complexity	is	O(n2)
and	average	case	complexity	is	O(n.logn)
	

Quadratic	Time:	O(n2)
An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	an	algorithm	is	proportional	to	the
square	of	the	input	size.
Examples:
1.	Bubble-Sort
2.	Selection-Sort
3.	Insertion-Sort
	



Deriving	the	Runtime	Function	of	an	Algorithm

Constants

Each	statement	takes	a	constant	time	to	run.	Time	Complexity	is	O(1)
	

Loops

The	 running	 time	 of	 a	 loop	 is	 a	 product	 of	 running	 time	 of	 the	 statement	 inside	 a	 loop	 and	 number	 of
iterations	in	the	loop.	Time	Complexity	is	O(n)
	

Nested	Loop

The	running	time	of	a	nested	loop	is	a	product	of	running	time	of	the	statements	inside	loop	multiplied	by
a	product	of	the	size	of	all	the	loops.	Time	Complexity	is	O(nc)
Where	c	is	a	number	of	loops.	For	two	loops,	it	will	be	O(n2)
	

Consecutive 	Statements

Just	add	the	running	times	of	all	the	consecutive	statements
	

If-Else 	Statement

Consider	the	running	time	of	the	larger	of	if	block	or	else	block.	Moreover,	ignore	the	other	one.
	

Logarithmic	statement

If	each	iteration	the	input	size	of	decreases	by	a	constant	multiple	factors.	O(logn)
	



Time	Complexity	Examples
Example	1
int	fun(int	n)
{

int	m	=	0;
for	(int	i	=	0;	i<n;	i++)
m	+=	1;
return	m;

}
	
Time	Complexity:	O(n)
	
Example	2
int	fun(int	n)
{

int	i=0,	j=0,	m	=	0;
for	(i	=	0;	i<n;	i++)
for	(j	=	0;	j<n;	j++)
m	+=	1;
return	m;

}
	
Time	Complexity:	O(n2)
	
Example	3
int	fun(int	n)
{

int	i=0,	j=0,	m	=	0;
for	(i	=	0;	i<n;	i++)
for	(j	=	0;	j<i;	j++)
m	+=	1;
return	m;

}
	
Time	Complexity:	O(N+(N-1)+(N-2)+...)	==	O(N(N+1)/2)	==	O(n2)
	
Example	4
int	fun(int	n)
{

int	i	=	0,	m	=	0;
i	=	1;
while	(i	<	n)	{
m	+=	1;
i	=	i	*	2;



}
return	m;

}
	
Each	time	problem	space	is	divided	into	half.	Time	Complexity:	O(log(n))
	
Example	5
int	fun(int	n)
{

int	i	=	0,	m	=	0;
i	=	n;
while	(i	>	0)	{
m	+=	1;
i	=	i	/	2;
}
return	m;

}
	
Same	as	above	each	time	problem	space	is	divided	into	half.
Time	Complexity:	O(log(n))
	
Example	6
int	fun(int	n)
{

int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
i	=	n;
for	(i	=	0;	i<n;	i++)
for	(j	=	0;	j<n;	j++)
for	(k	=	0;	k<n;	k++)
m	+=	1;
return	m;

}
	
Outer	loop	will	run	for	n	number	of	iterations.	In	each	iteration	of	the	outer	loop,	inner	loop	will	run	for	n
iterations	of	their	own.	Final	complexity	will	be	n*n*n
Time	Complexity:	O(n3)
	
Example	7
int	fun(int	n)
{

int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
i	=	n;
for	(i	=	0;	i<n;	i++)
for	(j	=	0;	j<n;	j++)
m	+=	1;



	
for	(i	=	0;	i<n;	i++)
for	(k	=	0;	k<n;	k++)
m	+=	1;
return	m;

}
	
These	 two	 groups	 of	 for	 loop	 are	 in	 consecutive	 so	 their	 complexity	 will	 add	 up	 to	 form	 the	 final
complexity	of	the	program.
Time	Complexity:	T(n)	=	O(n2)	+	O(n2)	=	O(n2)
	
Example	8
int	fun(int	n)
{

int	i	=	0,	j	=	0,	m	=	0;
	

for	(i	=	0;	i<n;	i++)
for	(j	=	0;	j<	sqrt(n);	j++)
m	+=	1;
return	m;

}
	
Time	Complexity:	O(	n	*	√n)	=	O(n3/2)
	
Example	9
int	fun(int	n)
{

int	i	=	0,	j	=	0,	m	=	0;
	

for	(i	=	n;	i	>	0;	i	/=	2)
for	(j	=	0;	j	<	i;	j++)
m	+=	1;
return	m;

}
	
Each	time	problem	space	is	divided	into	half.
Time	Complexity:	O(log(n))
	
Example	10
int	fun(int	n)
{

int	i	=	0,	j	=	0,	m	=	0;
	

for	(i	=	0;	i	<	n;	i++)
for	(j	=	i;	j	>	0;	j--)



m	+=	1;
return	m;

}
	
O(N+(N-1)+(N-2)+...)	=	O(N(N+1)/2)	//	arithmetic	progression.
Time	Complexity:	O(n2)
	
Example	11
int	fun(int	n)
{

int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
	

for	(i	=	0;	i<n;	i++)
for	(j	=	i;	j<n;	j++)
for	(k	=	j+1;	k<n;	k++)
m	+=	1;

	
return	m;

}
	
Time	Complexity:	O(n3)
	
Example	12
int	fun(int	n)
{

int	i	=	0,	j	=	0,	m	=	0;
	

for	(i	=	0;	i<n;	i++)
for	(;	j<n;	j++)
m	+=	1;
return	m;

}
	
Think	carefully	once	again	before	finding	a	solution,	j	value	is	not	reset	at	each	iteration.
Time	Complexity:	O(n)
	
Example	13
int	fun(int	n)
{

int	i	=	1,	j	=	0,	m	=	0;
	

for	(i	=	1;	i<=n;	i	*=	2)
for	(j	=	0;	j<=i;	j++)
m	+=	1;

	



return	m;
}
	
The	inner	loop	will	run	for	1,	2,	4,	8,…	n	times	in	successive	iteration	of	the	outer	loop.
Time	Complexity:	T(n)	=	O(1+	2+	4+	….+n/2+n)	=	O(n)
	



Master	Theorem
The	master	theorem	solves	recurrence	relations	of	the	form:
T(n)	=	a	T(n/b)	+	f(n)
	
Where	a	≥	1	and	b	>	1.
"n"	is	the	size	of	the	problem.
"a"	is	a	number	of	sub	problem	in	the	recursion.
“n/b”	is	the	size	of	each	sub-problem.
"f(n)"	is	the	cost	of	the	division	of	the	problem	into	sub	problem	or	merge	of	results	of	sub	problems	to
get	the	result.
	
It	is	possible	to	determine	an	asymptotic	tight	bound	in	these	three	cases:
Case	1:	when	 )	and	constant	Є	>	1,	then	the	final	Time	Complexity	will	be:

	
Case	2:	when	 )	and	constant	k	≥	0,	then	the	final	Time	Complexity	will	be:

)
	
Case	3:	when	 	and	constant	Є	>	1,	then	the	final	Time	Complexity	will	be:
T(n)	=	Ɵ(f(n))

	
Example	14:	Take	an	example	of	Merge-Sort,	T(n)	=	2	T(n/2)	+	n
Sol:-
Logba	=	log22	=	1

)
Case	2	applies	and	 )
T(n)	=	Ɵ(n	log(n))
	
Example	15:	Binary	Search	T(n)	=	T(n/2)	+	O(1)
Sol:-
Logba	=	log21	=	0

)



Case	2	applies	and	 )
T(n)	=	Ɵ(log(n))
	
Example	16:	Binary	tree	traversal	T(n)	=	2T(n/2)	+	O(1)
Sol:-
Logba	=	log22	=	1
F(n)	=	1	=	 )
Case	1	applies	and	
T(n)	=	Ɵ(n)
	
Example	17:	Take	an	example	T(n)	=	T(n/2)	+	n2
Sol:-
Logba	=	log22	=	1
f(n)	=	n2	=	
Case	3	applies	and	T(n)	=	Ɵ(f(n))
T(n)	=	O(n2)
	
Example	18:	Take	an	example	T(n)	=	4	T(n/2)	+	n2
Sol:-
Logba	=	log24	=	2
f(n)	=	n2	=	 )
Case	2	applies	and	T(n)	=	 )
T(n)	=	Ɵ(n2	log	n)
	



Modified	Master	theorem
This	is	a	shortcut	to	solving	the	same	problem	easily	and	fast.	If	the	recurrence	relation	is	in	the	form	of
T(n)	=	a	T(n/b)	+	dxs

Example	19:	T(n)	=	2	T(n/2)	+	n2
Sol:-
r	=	log22
s	=	2
Case	3:	log22	<	s
T(n)	=	Ɵ(f(n))	=	Ɵ(n2)

	
Example	20:	T(n)	=	T(n/2)	+	2n
Sol:-
r	=	log21	=	0
s	=	1
Case	3
T(n)=	Ɵ(n)
	
Example	21:	T(n)	=	16	T(n/4)	+	n
Sol:-
r	=	2
s	=	1
Case	1
T(n)=	Ɵ(n2)
	
Example	22:	T	(n)	=	2T	(n/2)	+	n	log	n
Sol:-
There	is	logn	in	f(n)	so	use	master	theorem	shortcut	will	not	word.
T(n)	=	n	log(n)	=	 )

)	=	Ɵ(n	log(n))
	
Example	23:	T(n)	=	2	T(n/4)	+	n0.5
Sol:-
r	=	log42	=	0.5	=	s



Case	2:
)	=	Ɵ(n0.5	log1.5n)

	
Example	24:	T(n)	=	2	T(n/4)	+	n0.49
Sol:-
Case	1:

	=	Ɵ(n0.5)
	
Example	25:	T	(n)	=	3T	(n/3)	+	√	n
Sol:-
r	=	log33	=	1
s	=	½
Case	1
T(n)	=	Ɵ(n)
	
Example	26:T	(n)	=	3T	(n/4)	+	n	log	n
Sol:-
There	is	logn	in	f(n)	so	see	if	master	theorem.
f(n)	=	n	log	n	=	 )
Case	3:
T(n)	=	Ɵ(n	log(n))
	
Example	27:	T	(n)	=	3T	(n/3)	+	n/2
Sol:-
r=1=s
Case	2:
T(n)	=	Ɵ(n	log(n))
	



Exercise
1.	True	or	false

a)	5	n	+	10	n2=	O(n2)
b)	n	log	n	+	4	n	=	O(n)
c)	log(n2)	+	4	log(log	n)	=	O(logn)
d)	12	n1/2+	3	=	O(n2)
e)	3n+	11	n2+	n20=	O(2n)

	
2.	What	is	the	best-case	runtime	Complexity	of	searching	an	array?
	
3.	What	is	the	average-case	runtime	Complexity	of	searching	an	array?





CHAPTER	3:	APPROACH	TO	SOLVE
ALGORITHM	DESIGN	PROBLEMS



Introduction
Know	the	theoretical	knowledge	of	the	algorithm	is	essential,	but	it	is	not	sufficient.	You	need	to	have	a
systematic	approach	to	solve	a	problem.	Our	approach	is	fundamentally	different	to	solve	any	algorithm
design	 question.	We	will	 follow	 a	 systematic	 five-step	 approach	 to	 reach	 to	 our	 solution.	Master	 this
approach	and	you	will	be	better	than	most	of	the	candidates	in	interviews.
	
Five	steps	for	solving	algorithm	design	questions	are:
1.	Constraints
2.	Ideas	Generation
3.	Complexities
4.	Coding
5.	Testing
	



Constraints
Solving	 a	 technical	 question	 is	 not	 just	 about	 knowing	 the	 algorithms	 and	 designing	 a	 good	 software
system.	The	 interviewer	wants	 to	 know	you	 approach	 towards	 any	 given	 problem.	Many	 people	make
mistakes	 as	 they	 do	 not	 ask	 clarifying	 questions	 about	 a	 given	 problem.	They	 assume	many	 things	 and
begin	working	with	that.	There	is	data,	which	is	missing	that	you	need	to	collect	from	your	interviewer
before	beginning	to	solve	a	problem.
	
In	this	step,	you	will	capture	all	the	constraints	about	the	problem.	We	should	never	try	to	solve	a	problem
that	is	not	completely	defined.	Interview	questions	are	not	like	exam	paper	where	all	the	details	about	a
problem	 are	well	 defined.	 In	 the	 interview,	 the	 interviewer	 actually	 expects	 you	 to	 ask	 questions	 and
clarify	the	problem.
	
For	example	:	When	the	problem	statement	says	that	write	an	algorithm	to	sort	numbers.
	
The	first	information	you	need	to	capture	is	what	king	of	data.	Let	us	suppose	interviewer	respond	with
the	answer	Integer.
The	second	information	that	you	need	to	know	what	is	the	size	of	data.	Your	algorithm	differs	if	the	input
data	size	if	100	integers	or	1	billion	integers.
	
Basic	guideline	for	the	Constraints	for	an	array	of	numbers:
1.	How	many	numbers	of	elements	in	the	array?
2.	What	is	the	range	of	value	in	each	element?	What	is	the	min	and	max	value?
3.	What	is	the	kind	of	data	in	each	element	is	it	an	integer	or	a	floating	point?
4.	Does	the	array	contain	unique	data	or	not?
	
Basic	guideline	for	the	Constraints	for	an	array	of	string:
1.	How	many	numbers	of	elements	in	the	array?
2.	What	is	the	length	of	each	string?	What	is	the	min	and	max	length?
3.	Does	the	array	contain	unique	data	or	not?
	
Basic	guideline	for	the	Constraints	for	a	Graph
1.	How	many	nodes	are	there	in	the	graph?
2.	How	many	edges	are	there	in	the	graph?
3.	Is	it	a	weighted	graph?	What	is	the	range	of	weights?
4.	Is	the	graph	directed	or	undirected?
5.	Is	there	is	a	loop	in	the	graph?
6.	Is	there	negative	sum	loop	in	the	graph?
7.	Does	the	graph	have	self-loops?
	
We	 have	 already	 seen	 this	 in	 graph	 chapter	 that	 depending	 upon	 the	 constraints	 the	 algorithm	 applied
changes	and	so	is	the	complexity	of	the	solution.
	



Idea	Generation
We	have	covered	a	lot	of	theoretical	knowledge	in	this	book.	It	is	impossible	to	cover	all	the	questions	as
new	ones	are	created	every	day.	Therefore,	we	should	know	how	to	handle	new	problems.	Even	if	you
know	the	solution	of	a	problem	asked	by	the	interviewer	then	also	you	need	to	have	a	discussion	with	the
interviewer	and	reach	to	the	solution.	You	need	to	analyse	the	problem	also	because	the	interviewer	may
modify	a	question	a	little	bit	and	the	approach	to	solve	it	will	vary.
	
Well,	how	to	solve	a	new	problem?	The	solution	to	this	problem	is	that	you	need	to	do	a	lot	of	practice
and	the	more	you	practice	the	more	you	will	be	able	to	solve	any	new	question,	which	come	in	front	of
you.	When	you	have	solved	enough	problems,	you	will	be	able	to	see	a	pattern	in	the	questions	and	able
to	solve	new	problems	easily.
	
Following	is	the	strategy	that	you	need	to	follow	to	solve	an	unknown	problem:
1.	Try	to	simplify	the	task	in	hand.
2.	Try	a	few	examples
3.	Think	of	a	suitable	data-structure.
4.	Think	about	similar	problems	you	have	already	solved.
	

Try	to	simplify	the	task	in	hand
Let	us	look	into	the	following	problem:
Husbands	and	their	wives	are	standing	in	random	in	a	line.	They	have	been	numbered	for	husbands	H1,
H2,	H3	and	 so	on.	And	 their	 corresponding	wives	have	number	W1,	W2,	W3	and	 so	on.	You	need	 to
arrange	them	so	that	H1	will	stand	first,	followed	by	W1,	then	H2	followed	by	W2	and	so	on.
	
At	the	first	look,	it	looks	difficult,	but	it	is	a	simple	problem.	Try	to	find	a	relation	of	the	final	position.
P(Hi)	=	i*2	-	1
P(Wi)	=	i*2
The	rest	of	the	algorithm	we	are	leaving	you	to	do	something	like	Insertion-Sort	and	you	are	done.
	

Try	a	few	examples
In	the	same	above	problem	if	you	have	tried	it	with	some	example	for	3	husband	and	wife	pair	then	you
may	have	reached	 to	 the	same	formula	 that	we	have	shown	in	 the	previous	section.	Some	time	thinking
some	more	examples	try	to	solve	the	problem	at	hand.
	

Think	of	a	suitable	data-structure
For	some	problems,	it	is	straight	forward	which	data	structure	is	most	suitable.	For	example,	if	we	have	a
problem	finding	min/max	of	some	given	value,	then	probably	heap	is	the	data	structure	we	are	looking	for.
We	have	seen	a	number	of	data	structure	throughout	this	book.	In	addition,	we	have	to	figure	out	which
data-structure	will	suite	our	need.
	
Let	us	look	into	a	problem:	We	are	given	a	stream	of	data	at	any	time	we	can	be	asked	to	tell	the	median
value	of	the	data	and	maybe	we	can	be	asked	to	pop	median	data.



	
We	can	think	about	some	sort	of	tree,	may	be	balanced	tree	where	the	root	is	the	median.	Wait	but	it	is	not
so	easy	to	make	sure	the	tree	root	to	be	a	median.
A	heap	can	give	us	minimum	or	maximum	so	we	cannot	get	the	desired	result	from	it	too.	However,	what
if	we	use	 two	heap	one	max	heap	 and	one	min	 heap.	The	 smaller	 values	will	 go	 to	min	 heap	 and	 the
bigger	values	will	go	to	max	heap.	In	addition,	we	can	keep	the	count	of	how	many	elements	are	there	in
the	heap.	The	rest	of	the	algorithm	you	can	think	yourself.
	
For	 every	 new	 problem	 think	 about	 the	 data	 structure,	 you	 know	 and	 may	 be	 one	 of	 them	 or	 some
combination	of	them	will	solve	your	problem.
	
Think	about	similar	problems	you	have	already	solved
Let	us	suppose	you	are	given	two	linked	list	head	pointer	and	they	meet	at	some	point	and	need	to	find	the
point	of	 intersection.	However,	 in	place	of	the	end	of	both	the	linked	list	 to	be	a	null	pointer	 there	is	a
loop.
	
You	know	how	to	find	intersection	point	of	two	intersecting	linked	list,	you	know	how	to	find	if	a	linked
list	 have	 a	 loop	 (three-pointer	 solution).	 Therefore,	 you	 can	 apply	 both	 of	 these	 solutions	 to	 find	 the
solution	of	the	problem	in	hand.
	



Complexities
Solving	 a	 problem	 is	 not	 just	 finding	 a	 correct	 solution.	 The	 solution	 should	 be	 fast	 and	 should	 have
reasonable	memory	 requirement.	You	have	already	 read	about	Big-O	notation	 in	 the	previous	chapters.
You	 should	be	 able	 to	do	Big-O	analysis.	 In	 case	you	 think	 the	 solution	you	have	provided	 is	 not	 that
optimal	and	there	is	some	more	efficient	solution,	then	think	again	and	try	to	figure	out	this	information.
	
Most	interviewers	expect	that	you	should	be	able	to	find	the	time	and	Space	Complexity	of	the	algorithms.
You	should	be	able	to	compute	the	time	and	Space	Complexity	instantly.	Whenever	you	are	solving	some
problem,	you	should	find	the	complexity	associated	with	it	from	this	you	would	be	able	to	choose	the	best
solutions.	In	some	problems	there	is	some	trade-offs	between	space	and	Time	Complexity,	so	you	should
know	these	trade-offs.	Sometime	taking	some	bit	more	space	saves	a	lot	of	time	and	make	your	algorithm
much	faster.
	



Coding
At	 this	 point,	 you	 have	 already	 captured	 all	 the	 constraints	 of	 the	 problem,	 proposed	 few	 solutions,
evaluated	the	complexities	of	the	various	solutions	and	picked	the	one	solution	to	do	final	coding.	Never
ever,	jump	into	coding	before	discussing	constraints,	Idea	generation	and	complexity	with	the	interviewer.
	
We	are	accustomed	to	coding	in	an	IDE	like	visual	studio.	So	many	people	struggle	when	asked	to	write
code	on	a	whiteboard	or	some	blank	sheet.	Therefore,	we	should	have	a	little	practice	to	the	coding	on	a
sheet	of	paper.	You	should	think	before	coding	because	there	is	no	back	button	in	sheet	of	paper.	Always
try	to	write	modular	code.	Small	functions	need	to	be	created	so	that	the	code	is	clean	and	managed.	If
there	 is	 a	 swap	 function	 so	 just	 use	 this	 function	 and	 tell	 the	 interviewer	 that	 you	will	 write	 it	 later.
Everybody	knows	that	you	can	write	swap	code.
	



Testing
Once	the	code	is	written,	you	are	not	done.	It	is	most	important	that	you	test	your	code	with	several	small
test	 cases.	 It	 shows	 that	 you	 understand	 the	 importance	 of	 testing.	 It	 also	 gives	 confidence	 to	 your
interviewer	that	you	are	not	going	to	write	a	buggy	code.
	
Once	you	are	done	with,	your	coding	it	is	a	good	practice	that	you	go	through	your	code	line	by	line	with
some	small	test	case.	This	is	just	to	make	sure	your	code	is	working	as	it	is	supposed	to	work.
	
You	should	test	few	test	cases.
Normal	test	cases:	These	are	the	positive	test	cases,	which	contain	the	most	common	scenario,	and	focus
is	on	the	working	of	the	base	logic	of	the	code.	For	example,	if	we`	are	going	to	write	some	algorithm	for
linked	list,	then	this	may	contain	what	will	happen	when	a	linked	list	with	3	or	4	nodes	is	given	as	input.
These	test	cases	you	should	always	run	in	your	head	before	saying	the	code	is	done.
	
Edge	cases:	These	are	 the	 test	cases,	which	are	going	 to	 test	 the	boundaries	of	 the	code.	For	 the	same
linked	list	algorithm,	edge	cases	may	be	how	the	code	behaves	when	an	empty	list	is	passed	or	just	one
node	is	passed.	These	test	cases	you	should	always	run	in	your	head	before	saying	the	code	is	done.	Edge
cases	may	help	to	make	your	code	more	robust.	Just	few	checks	need	to	be	added	to	the	code	to	take	care
of	the	condition.
	
Load	testing:	In	this	kind	of	test,	your	code	will	be	tested	with	a	huge	data.	This	will	allow	us	to	test	if
your	code	is	slow	or	too	much	memory	intensive.
	
Always	follow	these	five	steps	never	 jump	to	coding	before	doing	constraint	analysis,	 idea	generation,
and	Complexity	Analysis:.	At	least	never,	miss	the	testing	phase.
	



Example
Let	us	suppose	the	interviewer	ask	you	to	give	a	best	sorting	algorithm.
Some	 interviewee	 will	 directly	 jump	 to	 Quick-Sort	O(nlogn).	 Oops,	 mistake	 you	 need	 to	 ask	 many
questions	before	beginning	to	solve	this	problem.
	
Questions	1:	What	is	the	type	of	data?	Are	they	integers?
Answer:	Yes,	they	are	integers.
	
Questions	2:	How	much	data	are	we	going	to	sort?
Answer:	May	be	thousands.
	
Questions	3:	What	exactly	is	this	data	about?
Answer:	They	store	a	person’s	age
	
Questions	4:	What	kind	of	data-structure	used	to	hold	this	data?
Answer:	Data	are	given	in	the	form	of	some	array
	
Questions	5:	Can	we	modify	the	given	data-structure?	In	addition,	many,	many	more…?
Answer:	No,	you	cannot	modify	the	data	structure	provided
	
Ok	from	the	first	answer,	we	will	deduce	that	the	data	is	integer	.	The	data	is	not	so	big	it	just	contains	a
few	thousand	entries.	The	third	answer	is	interesting	from	this	we	deduce	that	the	range	of	data	is	1-150.
Data	is	provided	in	an	array.	From	fifths	answer	we	deduce	that	we	have	to	create	our	own	data	structure
and	we	cannot	modify	the	array	provided.	So	finally,	we	conclude,	we	can	just	use	bucket	sort	to	sort	the
data.	The	range	is	just	1-150	so	we	need	just	151-capacity	integral	array.	Data	is	under	thousands	so	we
do	not	have	to	worry	about	data	overflow	and	we	get	the	solution	in	linear	time	O(N).
	
Note:	We	will	read	sorting	in	the	coming	chapters.
	



Summary
At	this	point,	you	know	the	process	of	handling	new	problems	very	well.	In	the	coming	chapter	we	will
be	looking	into	a	lot	of	various	data	structure	and	the	problems	they	solve.	A	huge	number	of	problems	are
solved	 in	 this	book.	However,	 is	 recommended	so	 first	 try	 to	solve	 them	by	yourself,	 then	 look	for	 the
solution.	Always	think	about	the	complexity	of	the	problem.	In	the	interview	interaction	is	the	key	to	get
problem	described	completely	and	discuss	your	approach	with	the	interviewer.
	



	



CHAPTER	4:	ABSTRACT	DATA	TYPE



Abstract	data	type	(ADT)
An	abstract	data	type	(ADT)	is	a	logical	description	of	how	we	view	the	data	and	the	operations	that	are
allowed	on	it.	ADT	is	defined	as	a	user	point	of	view	of	a	data	type.	ADT	concerns	about	the	possible
values	of	the	data	and	what	are	interface	exposed	by	it.
	
ADT	does	not	concern	about	the	actual	implementation	of	the	data	structure.
	
For	example,	a	user	wants	to	store	some	integers	and	find	a	mean	of	it.	Does	not	talk	about	how	exactly	it
will	be	implemented.



Data-Structure
Data	structures	are	concrete	representations	of	data	and	are	defined	as	a	programmer	point	of	view.	Data-
structure	represents	how	data	will	be	stored	in	memory.	All	data-structures	have	their	own	pros	and	cons.
Depending	upon	the	problem	at	hand,	we	pick	a	data-structure	that	is	best	suited	for	it.
	
For	example,	we	can	store	data	in	an	array,	a	linked-list,	stack,	queue,	tree,	etc.



Array

Array	 represent	 a	 collection	 of	 multiple	 elements	 of	 the	 same	 datatype.	 Arrays	 are	 fixed	 size	 data
structure,	the	size	of	this	data	structure	must	be	known	at	compile	time	and	cannot	be	changed	after	that.
Arrays	are	the	most	common	data	structure	used	to	store	data.
	
As	we	cannot	change	the	size	of	an	array,	we	generally	declare	large	size	array	to	handle	any	future	data
expansion.	This	ends	up	in	creating	large	size	array,	where	most	of	the	space	is	unused.
	

Array	ADT	Operations
Below	is	the	API	of	array:
Insert(x,	k):	adds	an	element	at	kth	position
If	we	want	 to	 just	 store	 value	 k	 at	 index	 x,	 and	we	do	 not	 care	 about	 the	 value	 already	 stored	 in	 that
location	than	this	operation	is	done	in	O(1)	constant	time.
However,	 if	 we	 care	 about	 the	 previous	 values	 stored	 in	 an	 array,	 so	 insertions	 and	 deletions	 of	 an
element	is	time	consuming	as	we	have	to	shift	other	elements	by	one	position	respectively.	In	this	case,
insertion	and	deletion	take	O(n)	time.
	
Delete(k):	delete	element	at	kth	position
If	we	want	to	mark	that	there	is	no	value	stored	at	index	k,	this	operation	is	done	in	O(1)	constant	time.
However,	 if	 we	 care	 about	 the	 other	 values	 stored	 in	 an	 array,	 so	 deletions	 of	 an	 element	 are	 time
consuming	as	we	have	 to	 shift	 other	 elements	by	one	position	 respectively.	 In	 this	 case,	deletion	 takes
O(n)	time.
	
FindKth(k):	find	element	at	position	k
The	biggest	advantage	of	the	array	is	that	if	we	know	index	of	an	element	then	it	can	be	accessed	in	O(1)
Time	Complexity.	We	just	need	to	return	A[k].
	
Find(x):	find	position	of	element
If	the	array	is	unsorted,	then	find(x)	an	element	will	take	O(n)	Time	Complexity.
If	the	array	is	sorted,	then	find(x)	is	fast	using	binary	search	and	will	take	O(logn)	Time	Complexity.
	
PrintList():	display	all	the	elements	in	the	list
PrintList	Just	run	through	the	array	and	print	one	element	at	a	time.	Uses	one	loop.	Linear	time	O(n).
	
IsEmpty():	check	if	number	of	elements	are	zero
Searching	if	there	is	no	element	stored	in	array	also	take	linear	time	O(n).
	



Linked	List

Linked	lists	are	dynamic	data	structure	and	memory	is	allocated	at	run	time.	The	concept	of	linked	list	is
not	to	store	data	contiguously.	Use	links	that	point	to	the	next	elements.
	
Performance	 wise	 linked	 lists	 are	 slower	 than	 arrays	 because	 there	 is	 no	 direct	 access	 to	 linked	 list
elements.
The	linked	list	is	a	useful	data	structure	when	we	do	not	know	the	number	of	elements	to	be	stored	ahead
of	time.
	
There	are	many	flavours	of	linked	list	:	linear,	circular,	doubly,	and	doubly	circular.
	

Linked	List	ADT	Operations
Below	is	the	API	of	Linked	list.
Insert(k):	adds	k	to	the	start	of	the	list
Insert	an	element	at	 the	start	of	 the	 list.	 Just	create	a	new	element	and	move	pointers.	So	 that	 this	new
element	becomes	the	new	element	of	the	list.	This	operation	will	take	O(1)	constant	time.
	
Delete():	delete	element	at	the	start	of	the	list
Delete	an	element	at	the	start	of	the	list.	We	just	need	to	move	one	pointer.	This	operation	will	also	take
O(1)	constant	time.
	
PrintList():	display	all	the	elements	of	the	list.
Start	with	the	first	element	and	then	follow	the	pointers.	This	operation	will	take	O(N)	time.
	
Find(k):	find	the	position	of	element	with	value	k
Start	with	the	first	element	and	follow	the	pointer	until	we	get	the	value	we	are	looking	for	or	reach	the
end	of	the	list.	This	operation	will	take	O(N)	time.
Note:	binary	search	does	not	work	on	linked	lists.
	
FindKth(k):	find	element	at	position	k
Start	from	the	first	element	and	follow	the	links	until	you	reach	the	kth	element.	This	operation	will	take
O(N)	time.
	
IsEmpty():	check	if	the	number	of	elements	in	the	list	are	zero.
Just	check	the	head	pointer	of	the	list	it	should	be	Null.	Which	means	list	is	empty.	This	operation	will
take	O(1)	time.
	



Stack

Stack	is	a	special	kind	of	data	structure	that	follows	Last-In-First-Out	(LIFO)	strategy.	This	means	that	the
element	that	is	added	to	stack	last	will	be	the	first	to	be	removed.
	
The	various	applications	of	stack	are:
1.	Recursion:	recursive	calls	are	preformed	using	system	stack.
2.	Postfix	evaluation	of	expression.
3.	Backtracking
4.	Depth-first	search	of	trees	and	graphs.
5.	Converting	a	decimal	number	into	a	binary	number	etc.
	

Stack	ADT	Operations
Push(k):	Adds	a	new	item	to	the	top	of	the	stack
Pop():	Remove	an	element	from	the	top	of	the	stack	and	return	its	value.
Top():	Returns	the	value	of	the	element	at	the	top	of	the	stack
Size():	Returns	the	number	of	elements	in	the	stack
IsEmpty():	determines	whether	the	stack	is	empty.	It	returns	1	if	the	stack	is	empty	or	return	0.
Note:	All	the	above	Stack	operations	are	implemented	in	O(1)	Time	Complexity.
	



Queue

A	queue	is	a	First-In-First-Out	(FIFO)	kind	of	data	structure.	The	element	that	is	added	to	the	queue	first
will	be	the	first	to	be	removed	from	the	queue	and	so	on.
Queue	has	the	following	application	uses:
1.	Access	to	shared	resources	(e.g.,	printer)
2.	Multiprogramming
3.	Message	queue

Queue	ADT	Operations:
Enqueue():	Add	a	new	element	to	the	back	of	the	queue.
Dequeue():	remove	an	element	from	the	front	of	the	queue	and	return	its	value.
Front():	return	the	value	of	the	element	at	the	front	of	the	queue.
Size():	returns	the	number	of	elements	inside	the	queue.
IsEmpty():	returns	1	if	the	queue	is	empty	otherwise	return	0
Note:	All	the	above	Queue	operations	are	implemented	in	O(1)	Time	Complexity.
	



Trees
Tree	is	a	hierarchical	data	structure.	The	top	element	of	a	 tree	is	called	the	root	of	 the	tree.	Except	 the
root	element,	every	element	in	a	tree	has	a	parent	element,	and	zero	or	more	child	elements.	The	tree	is
the	most	useful	data	structure	when	you	have	hierarchical	information	to	store.
	
There	are	many	types	of	trees,	for	example,	binary-tree,	Red-black	tree,	AVL	tree,	etc.



Binary	Tree
A	binary	tree	is	a	type	of	tree	in	which	each	node	has	at	most	two	children	(0,	1	or	2)	which	are	referred
as	left	child	and	right	child.



Binary	Search	Trees	(BST)

	
A	binary	search	tree	(BST)	is	a	binary	tree	on	which	nodes	are	ordered	in	the	following	way:
1.	The	key	in	the	left	subtree	is	less	than	the	key	in	its	parent	node.
2.	The	key	in	the	right	subtree	is	greater	or	equal	the	key	in	its	parent	node.
	

Binary	Search	Tree	ADT	Operations
Insert(k):	Insert	an	element	k	into	the	tree.
Delete(k):	Delete	an	element	k	from	the	tree.
Search(k):	Search	a	particular	value	k	into	the	tree	if	it	is	present	or	not.
FindMax():	Find	the	maximum	value	stored	in	the	tree.
FindMin():	Find	the	minimum	value	stored	in	the	tree.
The	average	Time	Complexity	of	all	 the	above	operations	on	a	binary	search	tree	 is	O(log	n),	 the	case
when	the	tree	is	balanced.
	
The	worst-case	Time	Complexity	will	be	O(n)	when	the	tree	is	skewed.	A	binary	tree	is	skewed	when
tree	is	not	balanced.
There	are	two	types	of	skewed	tree.
1.	Right	Skewed	binary	tree:	A	binary	tree	in	which	each	node	is	having	either	only	a	right	child	or	no

child	at	all.
2.	Left	Skewed	binary	tree:	A	binary	tree	in	which	each	node	is	having	either	only	a	left	child	or	no	child

at	all.
	

Balanced	Binary	search	tree
There	are	few	binary	search	tree,	which	always	keeps	themselves	balanced.	Most	important	among	them
are	Red-Black	Tree	(RB-Tree)	and	AVL	tree.
	
The	standard	template	library	(STL)	is	implemented	using	this	Red-Black	Tree	(RB-Tree).
	



Priority	Queue	(Heap)

	
Priority	queue	is	implemented	using	a	binary	heap	data	structure.	In	a	heap,	the	records	are	stored	in	an
array	so	that	each	key	is	larger	than	its	two	children	keys.	Each	node	in	the	heap	follow	the	same	rule	that
the	parent	value	is	greater	than	its	children.
There	are	two	types	of	the	heap	data	structure:
1.	Max	heap:	each	node	should	be	greater	than	or	equal	to	each	of	its	children.
2.	Min	heap:	each	node	should	be	smaller	than	or	equal	to	each	of	its	children.
	
A	heap	is	a	useful	data	structure	when	you	want	to	get	max/min	one	by	one	from	data.	Heap-Sort	uses	max
heap	to	sort	data	in	increasing/decreasing	order.
	

Heap	ADT	Operations
Insert()	-	Adding	a	new	element	to	the	heap.	The	Time	Complexity	of	this	operation	is	O(log(n))
Extract()	-	Extracting	max	for	max	heap	case	(or	min	for	min	heap	case).	The	Time	Complexity	of	this
operation	is	O(log(n))
Heapify()	–	To	convert	a	list	of	numbers	in	an	array	into	a	heap.	This	operation	has	a	Time	Complexity
O(n)
Delete()	–	Delete	an	element	from	the	heap.	The	Time	Complexity	of	this	operation	is	O(log(n))
	



Hash-Table

	
A	Hash-Table	 is	a	data	structure	 that	maps	keys	 to	values.	Each	position	of	 the	Hash-Table	 is	called	a
slot.	The	Hash-Table	uses	a	hash	 function	 to	calculate	an	 index	of	an	array	of	 slots.	We	use	 the	Hash-
Table	when	the	number	of	keys	actually	stored	is	small	relatively	to	the	number	of	possible	keys.
	
The	process	of	storing	objects	using	a	hash	function	is	as	follows:
1.	Create	an	array	of	size	M	to	store	objects,	this	array	is	called	Hash-Table.
2.	Find	a	hash	code	of	an	object	by	passing	it	through	the	hash	function.
3.	Take	module	of	hash	code	by	the	size	of	Hash-Table	to	get	the	index	of	the	table	where	objects	will	be
stored.
4.	Finally	store	these	objects	in	the	designated	index.
	
The	process	of	searching	objects	in	Hash-Table	using	a	hash	function	is	as	follows:
1.	Find	a	hash	code	of	the	object	we	are	searching	for	by	passing	it	through	the	hash	function.
2.	Take	module	of	hash	code	by	 the	size	of	Hash-Table	 to	get	 the	 index	of	 the	 table	where	objects	are
stored.
3.	Finally,	retrieve	the	object	from	the	designated	index.
	

Hash-Table	Abstract	Data	Type	(ADT)
ADT	of	Hash-Table	contains	the	following	functions:
Insert(x):	Add	object	x	to	the	data	set.
Delete(x):	Delete	object	x	from	the	data	set.
Search(x):	Search	object	x	in	data	set.
	
The	Hash-Table	is	a	useful	data	structure	for	implementing	dictionary.	The	average	time	to	search	for	an
element	in	a	Hash-Table	is	O(1).	A	Hash	Table	generalizes	the	notion	of	an	array.
	



Dictionary	/	Symbol	Table
A	symbol	table	is	a	mapping	between	a	string(	key)	and	a	value,	which	can	be	of	any	data	type.	A	value
can	be	an	integer	such	as	occurrence	count,	dictionary	meaning	of	a	word	and	so	on.
	

Binary	Search	Tree	(BST)	for	Strings
Binary	Search	Tree	(BST)	is	the	simplest	way	to	implement	symbol	table.	Simple	string	compare	function
can	 be	 used	 to	 compare	 two	 strings.	 If	 all	 the	 keys	 are	 random,	 and	 the	 tree	 is	 balanced.	 Then	 on	 an
average	key	lookup	can	be	done	in	logarithmic	time.

	

Hash-Table
The	Hash-Table	 is	 another	 data	 structure,	which	 can	 be	 used	 for	 symbol	 table	 implementation.	Below
Hash-Table	diagram,	we	can	see	the	name	of	that	person	is	taken	as	the	key,	and	their	meaning	is	the	value
of	the	search.	The	first	key	is	converted	into	a	hash	code	by	passing	it	to	appropriate	hash	function.	Inside
hash	function	the	size	of	Hash-Table	is	also	passed,	which	is	used	to	find	the	actual	index	where	values
will	be	stored.	Finally,	the	value	that	is	meaning	of	name	is	stored	in	the	Hash-Table,	or	you	can	store	a
reference	to	the	string	which	store	meaning	can	be	stored	into	the	Hash-Table.



Hash-Table	has	an	excellent	lookup	of	constant	time.
	
Let	 us	 suppose	we	want	 to	 implement	 autocomplete	 the	 box	 feature	 of	Google	 search.	When	 you	 type
some	string	to	search	in	google	search,	it	propose	some	complete	string	even	before	you	have	done	typing.
BST	cannot	solve	this	problem	as	related	strings	can	be	in	both	right	and	left	subtree.
	
The	Hash-Table	is	also	not	suited	for	 this	 job.	One	cannot	perform	a	partial	match	or	range	query	on	a
Hash-Table.	Hash	 function	 transforms	 string	 to	 a	 number.	Moreover,	 a	 good	 hash	 function	will	 give	 a
distributed	hash	code	even	for	partial	string	and	there	is	no	way	to	relate	two	strings	in	a	Hash-Table.
	
Trie	 and	 Ternary	 Search	 tree	 are	 a	 special	 kind	 of	 tree,	 which	 solves	 partial	match,	 and	 range	 query
problem	well.
	

Trie
Trie	is	a	tree,	in	which	we	store	only	one	character	at	each	node.	This	final	key	value	pair	is	stored	in	the
leaves.	Each	node	has	K	children,	one	for	each	possible	character.	For	simplicity	purpose,	let	us	consider
that	the	character	set	is	26,	corresponds	to	different	characters	of	English	alphabets.
	
Trie	 is	 an	 efficient	 data	 structure.	 Using	 Trie,	 we	 can	 search	 the	 key	 in	 O(M)	 time.	Where	M	 is	 the
maximum	string	length.	Trie	is	also	suitable	for	solving	partial	match	and	range	query	problems.

Ternary	Search	Trie/	Ternary	Search	Tree
Tries	having	a	very	good	search	performance	of	O(M)	where	M	is	the	maximum	size	of	the	search	string.
However,	tries	having	very	high	space	requirement.	Every	node	Trie	contain	references	to	multiple	nodes,
each	 reference	 corresponds	 to	 possible	 characters	 of	 the	 key.	 To	 avoid	 this	 high	 space	 requirement
Ternary	Search	Trie	(TST)	is	used.
	



A	 TST	 avoid	 the	 heavy	 space	 requirement	 of	 the	 traditional	 Trie	 while	 still	 keeping	 many	 of	 its
advantages.	 In	 a	TST,	 each	node	 contains	 a	 character,	 an	 end	of	key	 indicator,	 and	 three	pointers.	The
three	 pointers	 are	 corresponding	 to	 current	 char	 hold	 by	 the	 node(equal),	 characters	 less	 than	 and
character	greater	than.
	
The	Time	Complexity	of	ternary	search	tree	operation	is	proportional	to	the	height	of	the	ternary	search
tree.	In	the	worst	case,	we	need	to	traverse	up	to	3	times	that	many	links.	However,	this	case	is	rare.
	
Therefore,	TST	is	a	very	good	solution	for	implementing	Symbol	Table,	Partial	match	and	range	query.



Graphs

A	graph	is	a	data	structure	which	represents	a	network,	that	connects	a	collection	of	nodes	called	vertices,
and	there	connections,	called	edges.	An	edge	can	be	seen	as	a	path	between	two	nodes.	These	edges	can
be	either	directed	or	undirected.	If	a	path	is	directed	then	you	can	move	only	in	one	direction,	while	in	an
undirected	path	you	can	move	in	both	the	directions.
	



Graph	Algorithms

Depth-First	Search	(DFS)
The	DFS	algorithm	we	start	from	starting	point	and	go	into	depth	of	graph	until	we	reach	a	dead	end	and
then	move	up	 to	parent	node	(Backtrack).	 In	DFS,	we	use	stack	 to	get	 the	next	vertex	 to	start	a	search.
Alternatively,	we	can	use	recursion	(system	stack)	to	do	the	same.



Breadth-First	Search	(BFS)
In	BFS	 algorithm,	 a	 graph	 is	 traversed	 in	 layer-by-layer	 fashion.	 The	 graph	 is	 traversed	 closer	 to	 the
starting	point.	The	queue	is	used	to	implement	BFS.

	



Sorting	Algorithms

Sorting	is	the	process	of	placing	elements	from	a	collection	into	ascending	or	descending	order.
Sorting	arranges	data	elements	in	order	so	that	searching	become	easier.
There	are	good	sorting	functions	available	which	does	sorting	in	O(nlogn)	time,	so	in	this	book	when	we
need	sorting	we	will	use	sort()	function	and	will	assume	that	the	sorting	is	done	in	O(nlogn)	time.
	



Counting	Sort
Counting	sort	is	the	simplest	and	most	efficient	type	of	sorting.	Counting	sort	has	a	strict	requirement	of	a
predefined	range	of	data.
	
Like,	sort	how	many	people	are	in	which	age	group.	We	know	that	the	age	of	people	can	vary	between	1
and	130.

If	we	know	the	range	of	input,	then	sorting	can	be	done	using	counting	in	O(n+k).
	

http://www.bogotobogo.com/Algorithms/countingsort.php


End	note
This	 chapter	 have	 provided	 a	 brief	 introduction	 of	 the	 various	 data	 structures,	 algorithms	 and	 their
complexities.	In	the	coming	chapters	we	will	look	into	all	these	data	structure	in	details.	If	you	know	the
interface	 of	 the	 various	 data	 structures,	 then	 you	 can	 use	 them	 while	 solving	 other	 problems	 without
knowing	the	internal	details	how	they	are	implemented.





CHAPTER	5:	SEARCHING
	



Introduction
In	Computer	Science,	Searching	is	the	algorithmic	process	of	finding	a	particular	item	in	a	collection	of
items.	The	item	may	be	a	keyword	in	a	file,	a	record	in	a	database,	a	node	in	a	tree	or	a	value	in	an	array
etc.
	



Why	Searching?
Imagine	you	are	in	a	library	with	millions	of	books.	You	want	to	get	a	specific	book	with	specific	title.
How	will	 you	 find?	You	will	 just	 start	 searching	 by	 initial	 letter	 of	 the	 book	 title.	 Then	 you	 continue
matching	with	a	whole	book	title	until	you	find	your	desired	book.	(By	doing	this	small	heuristic	you	have
reduced	the	search	space	by	a	factor	of	26,	consider	we	have	an	equal	number	of	books	whose	title	begin
with	particular	char.)
	
Similarly,	computer	stores	 lots	of	 information	and	 to	 retrieve	 this	 information	efficiently,	we	need	very
efficient	searching	algorithms.	To	make	searching	efficient,	we	keep	the	data	in	some	proper	order.	There
are	certain	ways	of	organizing	the	data.	If	you	keep	the	data	in	proper	order,	it	is	easy	to	search	required
element.	For	example,	Sorting	is	one	of	the	process	for	making	data	organized.
	



Different	Searching	Algorithms
·	Linear	Search	–	Unsorted	Input
·	Linear	Search	–	Sorted	Input
·	Binary	Search	(Sorted	Input)
·	String	Search:	Tries,	Suffix	Trees,	Ternary	Search.
·	Hashing	and	Symbol	Tables
	



Linear	Search	–	Unsorted	Input
When	elements	of	an	array	are	not	ordered	or	sorted	and	we	want	 to	search	for	a	particular	value,	we
need	to	scan	the	full	array	unless	we	find	the	desired	value.	This	kind	of	algorithm	known	as	unordered
linear	 search.	The	major	 problem	with	 this	 algorithm	 is	 less	 performance	 or	 high	Time	Complexity	 in
worst	case.
	
Example	5.1
int	linearSearchUnsorted(int	arr[],	int	size,	int	value)
{

int	i	=	0;
for(i	=	0	;	i	<	size	;	i++)
{
if(value	==	arr[i]	)
return	i;
}
return	-1;

}
	
Time	Complexity:	O(n).	As	we	need	to	traverse	the	complete	array	in	worst	case.	Worst	case	is	when
your	desired	element	is	at	the	last	position	of	the	array.	Here,	‘n’	is	the	size	of	the	array.
Space	Complexity:	O(1).	No	extra	memory	is	used	to	allocate	the	array.
	



Linear	Search	–	Sorted
If	 elements	 of	 the	 array	 are	 sorted	 either	 in	 increasing	 order	 or	 in	 decreasing	 order,	 searching	 for	 a
desired	element	will	be	much	more	efficient	than	unordered	linear	search.	In	many	cases,	we	do	not	need
to	traverse	the	complete	array.	Following	example	explains	when	you	encounter	a	greater	element	from
the	 increasing	 sorted	 array,	 you	 stop	 searching	 further.	 This	 is	 how	 this	 algorithm	 saves	 the	 time	 and
improves	the	performance.
	
Example	5.2
int	linearSearchSorted(int	arr[],	int	size,	int	value)
{

int	i	=	0;
for(i	=	0	;	i	<	size	;	i++)
{
if(value	==	arr[i]	)
return	i;
else	if(	value	<	arr[i]	)
return	-1;
}
return	-1;

}
	
Time	Complexity:	O(n).	As	we	need	to	traverse	the	complete	array	in	worst	case.	Worst	case	is	when
your	 desired	 element	 is	 at	 the	 last	 position	 of	 the	 sorted	 array.	 However,	 in	 the	 average	 case	 this
algorithm	is	more	efficient	even	though	the	growth	rate	is	same	as	unsorted.
Space	Complexity:	O(1).	No	extra	memory	is	used	to	allocate	the	array.
	



Binary	Search
How	do	we	search	a	word	in	a	dictionary?	In	general,	we	go	to	some	approximate	page	(mostly	middle)
and	start	searching	from	that	point.	 If	we	see	the	word	that	we	are	searching	is	same	then	we	are	done
with	the	search.	Else,	if	we	see	the	page	is	before	the	selected	pages,	then	apply	the	same	procedure	for
the	first	half	otherwise	to	the	second	half.	Binary	Search	also	works	in	the	same	way.	We	get	the	middle
point	from	the	sorted	array	and	start	comparing	with	the	desired	value.
	
Note:	Binary	search	requires	the	array	to	be	sorted	otherwise	binary	search	cannot	be	applied.
	
Example	5.3
/*	Binary	Search	Algorithm	–	Iterative	Way	*/
int	Binarysearch(int	arr[],	int	size,	int	value)
{

int	low	=	0;
int	high	=	size-1;
int	mid;
while	(low	<=	high)
{
mid	=	low	+	(high-low)/2;	/*	To	avoid	the	overflow	*/
if	(arr[mid]	==	value)
return	mid;
else	if	(arr[mid]	<	value)
low	=	mid	+	1;
else
high	=	mid	-	1;
}
return	-1;

}
	
Time	Complexity:	O(logn).	We	always	take	half	input	and	throwing	out	the	other	half.	So	the	recurrence
relation	for	binary	search	is	T(n)	=	T(n/2)	+	c.	Using	master	theorem	(divide	and	conquer),	we	get	T(n)	=
O(logn)
Space	Complexity:	O(1)
	
Example	5.4
/*	Binary	Search	Algorithm	–	Recursive	Way	*/
int	BinarySearchRecursive(int	arr[],	int	low,	int	high,	int	value)
{

if(low	>	high)
return	-1;
int	mid	=	low	+	(high-low)/2;	/*	To	avoid	the	overflow	*/
if	(arr[mid]	==	value)
return	mid;
else	if	(arr[mid]	<	value)



return	BinarySearchRecursive	(arr,	mid	+	1,	high,	value);
else
return	BinarySearchRecursive	(arr,	low,	mid	-	1	,	value);

}
	
Time	Complexity:	O(logn).
Space	Complexity:	O(logn)	for	system	stack	in	recursion
	



String	Searching	Algorithms
Refer	String	chapter.
	



Hashing	and	Symbol	Tables
Refer	Hash-Table	chapter.
	



How	sorting	is	useful	in	Selection	Algorithm?
Selection	problems	can	be	converted	to	sorting	problems.	Once	the	array	is	sorted,	it	is	easy	to	find	the
minimum/maximum	(or	desired	element)	from	the	sorted	array.	The	method	‘Sorting	and	then	Selecting’	is
inefficient	for	selecting	a	single	element,	but	it	is	efficient	when	many	selections	need	to	be	made	from	the
array.	 It	 is	 because	 only	 one	 initial	 expensive	 sort	 is	 needed,	 followed	 by	 many	 cheap	 selection
operations.
	
For	example,	if	we	want	to	get	the	maximum	element	from	an	array.	After	sorting	the	array,	we	can	simply
return	the	last	element	from	the	array.	What	if	we	want	to	get	second	maximum.	Now,	we	do	not	have	to
sort	 the	array	again	and	we	can	return	 the	second	last	element	from	the	sorted	array.	Similarly,	we	can
return	the	kth	maximum	element	by	just	one	scan	of	the	sorted	list.
So	with	the	above	discussion,	sorting	is	used	to	improve	the	performance.	In	general	this	method	requires
O(nlogn)	(for	sorting)	time.	With	the	initial	sorting,	we	can	answer	any	query	in	one	scan,	O(n).
	



Problems	in	Searching

Print	Duplicates	in	Array
Given	an	array	of	n	numbers,	print	the	duplicate	elements	in	the	array.
	
First	approach:	Exhaustive	 search	or	Brute	 force,	 for	 each	element	 in	 array	 find	 if	 there	 is	 some	other
element	with	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element	and	second
loop	to	find	its	duplicate	entry.
	
Example	5.5
void	printRepeating(int	arr[],	int	size)
{

int	i,	j;
printf("	Repeating	elements	are	");
for(i	=	0;	i	<	size;	i++)
for(j	=	i+1;	j	<	size;	j++)
if(arr[i]	==	arr[j])
printf("	%d	",	arr[i]);

}
	
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can	find	the
duplicates.
	
Example	5.6
void	printRepeating(int	arr[],	int	size)
{

int	i;
Sort(arr,	size);
printf("	Repeating	elements	are	");
for(i	=	1;	i	<	size;	i++)
{
if(arr[i]	==	arr[i-1])
printf("	%d	",	arr[i]);
}

}
	
Sorting	algorithms	take	O(n.log(n))	time	and	single	scan	take	O(n)	time.
The	Time	Complexity	of	an	algorithm	is	O(n.log(n)) and	Space	Complexity	is	O(1)
Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have	already	seen
and	we	can	find	the	duplicates	in	just	one	scan.
	
Example	5.7



void	printRepeating(int	arr[],	int	size)
{

HashTable	h;
int	i;
printf("	Repeating	elements	are	");
for(i	=	0;	i	<	size;	i++)
{
if(findValue	(h,	arr[i])	)
printf("	%d	",	arr[i]);
else
addValue(h,	arr[i]);
}

}
	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)
	
Forth	approach:	Counting,	this	approach	is	only	possible	if	we	know	the	range	of	the	input.	If	we	know
that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n	and	when	we
see	an	element	we	can	increase	its	count.	In	just	one	single	scan,	we	know	the	duplicates.	If	we	know	the
range	of	the	elements,	then	this	is	the	fastest	way	to	find	the	duplicates.
	
Example	5.8
void	printRepeating(int	arr[],	int	size)
{

int	*count	=	(int	*)calloc(sizeof(int),	size);
int	i;
printf("	Repeating	elements	are	");
for(i	=	0;	i	<	size;	i++)
{
if(count[arr[i]]	==	1)
printf("	%d	",	arr[i]);
else
count[arr[i]]++;
}

}
	
Counting	 approach	 just	 uses	 an	 array	 so	 insert	 and	 find	 take	 constant	 time	 O(1)	 so	 the	 total	 Time
Complexity	of	the	algorithm	is	O(n)	time.	Space	Complexity	for	creating	count	array	is	also	O(n)
	

Find	max,	appearing	element	in	an	array
Given	an	array	of	n	numbers,	find	the	element,	which	appears	maximum	number	of	times.
	
First	approach:	Exhaustive	 search	 or	Brute	 force,	 for	 each	 element	 in	 array	 find	 how	many	 times	 this



particular	value	appears	 in	array.	Keep	 track	of	 the	maxCount	and	when	some	element	count	 is	greater
than	maxCount	then	update	the	maxCount.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element
and	second	loop	to	count	the	occurrence	of	that	element.
The	Time	Complexity	is	O(n2),	and	Space	Complexity	is	O(1)
	
Example	5.9
int	getMax(int	arr[],	int	size)
{

int	i,	j;
int	max	=	arr[0],	count	=	1,	maxCount	=	1;

	
for	(i	=	0;	i	<	size;	i++)
{
count	=	1;
for	(j	=	i	+	1;	j	<	size;	j++)
if	(arr[i]	==	arr[j])
count++;
if	(count	>	maxCount)
{
max	=	arr[i];
maxCount	=	count;
}
}
return	max;

}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can	find	the
counts.	Sorting	algorithms	take	O(n.log(n))	time	and	single	scan	take	O(n)	time.	The	Time	Complexity	of
an	algorithm	is	O(n.log(n)) and	Space	Complexity	is	O(1)
	
Example	5.10
int	getMax(int	arr[],	int	size)
{

int	max	=	arr[0],	maxCount	=	1,	curr	=	arr[0],	currCount	=	1;
int	i;
Sort(arr,	size);
for	(i	=	1;	i	<	size;	i++)
{
if	(arr[i]	==	arr[i	-	1])
currCount++;
else
{
currCount	=	1;
curr	=	arr[i];
}



if	(currCount	>	maxCount)
{
maxCount	=	currCount;
max	=	curr;
}
}
return	max;

}
	
Third	approach:	Counting,	This	approach	is	only	possible	if	we	know	the	range	of	the	input.	If	we	know
that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n	and	when	we
see	an	element	we	can	increase	its	count.	In	just	one	single	scan,	we	know	the	duplicates.	If	we	know	the
range	of	the	elements,	then	this	is	the	fastest	way	to	find	the	max	count.
	
Counting	 approach	 just	 uses	 array	 so	 to	 increase	 count	 take	 constant	 time	 O(1)	 so	 the	 total	 Time
Complexity	of	the	algorithm	is	O(n)	time.	Space	Complexity	for	creating	count	array	is	also	O(n)
	
Example	5.11
#define	N	100
int	getMax(int	arr[],	int	size)
{

int	max	=	arr[0],	maxCount	=	1;
int	*count	=	(int	*)calloc(sizeof(int),	N);
int	i;

	
for	(i	=	0;	i	<	size;	i++)
{
count[arr[i]]++;
if	(count[arr[i]]	>	maxCount)
{
maxCount	=	count[arr[i]];
max	=	arr[i];
}
}
return	max;

}
	

Majority	e lement	in	an	Array
Given	an	array	of	n	elements.	Find	the	majority	element,	which	appears	more	than	n/2	times.	Return	0	in
case	there	is	no	majority	element.
	
First	approach:	Exhaustive	 search	 or	Brute	 force,	 for	 each	 element	 in	 array	 find	 how	many	 times	 this
particular	value	appears	 in	array.	Keep	 track	of	 the	maxCount	and	when	some	element	count	 is	greater
than	maxCount	then	update	the	maxCount.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element



and	second	loop	to	count	the	occurrence	of	that	element.
	
Once	we	have	 the	 final,	maxCount	we	 can	 see	 if	 it	 is	 greater	 than	 n/2,	 if	 it	 is	 greater	 than	we	have	 a
majority	if	not	we	do	not	have	any	majority.
	
The	Time	Complexity	is	O(n2)	+	O(1)	=	O(n2)	and	Space	Complexity	is	O(1)
	
Example	5.12
int	getMajority(int	arr[],	int	size)
{

int	i,	j;
int	max=0,	count=0	,	maxCount=0;
for(i	=	0;	i	<	size;	i++)
{
for(j	=	i+1;	j	<	size;	j++)
if(arr[i]	==	arr[j])
count++;
if(count	>	maxCount)
{
max	=	arr[i];
maxCount	=	count;
}
}
if	(maxCount	>	size/2)
return	max;
else
return	0;

}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array.	If	there	is	a	majority	than	the	middle	element
at	the	index	n/2	must	be	the	majority	number.	So	just	single	scan	can	be	used	to	find	its	count	and	see	if	the
majority	is	there	or	not.
	
Sorting	algorithms	take	O(n.logn)	time	and	single	scan	take	O(n)	time.
The	Time	Complexity	of	an	algorithm	is	O(n.log	n) and	Space	Complexity	is	O(1)
Example	5.13
int	getMajority(int	arr[],	int	size)
{

int	majIndex	=	size/2,	count	=	1;
int	i;
int	candidate;
Sort(arr,size);
candidate	=	arr[majIndex];
count	=	0;
for	(i	=	0;	i	<	size;	i++)



if(arr[i]	==	candidate)
count++;
if	(count	>	size/2)
return	arr[majIndex];
else
return	0;

}
	
Third	approach:	 This	 is	 a	 cancelation	 approach	 (Moore’s	Voting	Algorithm),	 if	 all	 the	 elements	 stand
against	the	majority	and	each	element	is	cancelled	with	one	element	of	majority	if	there	is	majority	then
majority	prevails.
·	Set	the	first	element	of	the	array	as	majority	candidate	and	initialize	the	count	to	be	1.
·	Start	scanning	the	array.

o	If	we	get	some	element	whose	value	same	as	a	majority	candidate,	then	we	increase	the	count.
o	If	we	get	an	element	whose	value	is	different	from	the	majority	candidate,	then	we	decrement	the

count.
o	If	count	become	0,	that	means	we	have	a	new	majority	candidate.	Make	the	current	candidate	as

majority	candidate	and	reset	count	to	1.
o	At	the	end,	we	will	have	the	only	probable	majority	candidate.

·	Now	scan	through	the	array	once	again	to	see	if	that	candidate	we	found	above	have	appeared	more	than
n/2	times.

	
Counting	approach	just	scans	throw	array	two	times.	The	Time	Complexity	of	the	algorithm	is	O(n)	time.
Space	Complexity	for	creating	count	array	is	also	O(1)
	
Example	5.14
int	getMajority(int	arr[],	int	size)
{

int	majIndex	=	0,	count	=	1;
int	i;
int	candidate;
for(i	=	1;	i	<	size;	i++)
{
if(arr[majIndex]	==	arr[i])
count++;
else
count--;
if(count	==	0)
{
majIndex	=	i;
count	=	1;
}
}
candidate	=	arr[majIndex];
count	=	0;



for	(i	=	0;	i	<	size;	i++)
if(arr[i]	==	candidate)
count++;
if	(count	>	size/2)
return	arr[majIndex];
else
return	0;

}
	

Find	the	missing	number	in	an	Array
Given	an	array	of	n-1	elements,	which	are	in	the	range	of	1	to	n.	There	are	no	duplicates	in	the	array.	One
of	the	integer	is	missing.	Find	the	missing	element.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	value	in	the	range	1	to	n,	find	if	there	is	some
element	in	array	which	have	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to	select	value	in
the	range	1	to	n	and	the	second	loop	to	find	if	this	element	is	in	the	array	or	not.
	
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)
	
Example	5.15
int	findMissingNumber(int	arr[],	int	size)
{

int	i,	j,	found	=	0;
for	(i	=	1;	i	<=	size;	i++)
{
found	=	0;
for	(j	=	0;	j	<	size;	j++)
{
if	(arr[j]	==	i)
{
found	=	1;
break;
}
}
if	(found	==	0)
return	i;
}

}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can	find	the
duplicates.
	
Sorting	algorithms	take	O(n.log	n)	time	and	single	scan	take	O(n)	time.
The	Time	Complexity	of	an	algorithm	is	O(n.log	n)	and	Space	Complexity	is	O(1)



	
Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have	already	seen
and	we	can	find	the	missing	element	in	just	one	scan.
	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)
	
Forth	approach:	Counting,	we	know	the	range	of	the	input	so	counting	will	work.	As	we	know	that,	 the
elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n	and	when	we	see	an
element	we	can	increase	its	count.	In	just	one	single	scan,	we	know	the	missing	element.
	
Counting	 approach	 just	 uses	 an	 array	 so	 insert	 and	 find	 take	 constant	 time	 O(1)	 so	 the	 total	 Time
Complexity	of	the	algorithm	is	O(n)	time.	Space	Complexity	for	creating	count	array	is	also	O(n)
	
Fifth	approach:	You	are	allowed	to	modify	the	given	input	array.	Modify	the	given	input	array	in	such	a
way	that	in	the	next	scan	you	can	find	the	missing	element.
	
When	you	scan	through	the	array.	When	at	index	“index”,	the	value	stored	in	the	array	will	be	arr[index]
so	add	 the	number	“n	+	1”	 to	arr[	arr[	 index]].	Always	read	 the	value	from	the	array	using	a	reminder
operator	“%”.	When	you	scan	the	array	for	the	first	time	and	modified	all	the	values,	then	one	single	scan
you	 can	 see	 if	 there	 is	 some	 value	 in	 the	 array	which	 is	 smaller	 than	 “n+1”	 that	 index	 is	 the	missing
number.
	
In	this	approach,	the	array	is	scanned	two	times	and	the	Time	Complexity	of	this	algorithm	is	O(n).	Space
Complexity	is	O(1)
	
Sixth	approach:	Summation	formula	to	find	the	sum	of	n	numbers	from	1	to	n.	Subtract	the	values	stored	in
the	array	and	you	will	have	your	missing	number.
The	Time	Complexity	of	this	algorithm	is	O(n).	Space	Complexity	is	O(1)
	
Seventh	approach:	XOR	approach	to	find	the	sum	of	n	numbers	from	1	to	n.	XOR	the	values	stored	in	the
array	and	you	will	have	your	missing	number.
The	Time	Complexity	of	this	algorithm	is	O(n).	Space	Complexity	is	O(1).
	
Example	5.16
int	findMissingNumber(int	arr[],	int	size,	int	range)
{

int	i;
int	xorSum	=	0;
//get	the	XOR	of	all	the	numbers	from	1	to	range
for	(i	=	1;	i	<=	range;	i++)
xorSum	^=	i;

	
//loop	through	the	array	and	get	the	XOR	of	elements
for	(i	=	0;	i<size;	i++)



xorSum	^=	arr[i];
	
return	xorSum;

}
	
Note:	 Same	 problem	 can	 be	 asked	 in	 many	 forms	 (sometimes	 you	 have	 to	 do	 the	 xor	 of	 the	 range
sometime	you	do	not):
1.	There	are	numbers	 in	 the	 range	of	1-n	out	of	which	all	 appears	 single	 time	but	one	 that	 appear	 two

times.
2.	All	 the	elements	 in	 the	 range	1-n	are	appearing	16	 times	and	one	element	appear	17	 times.	Find	 the

element	that	appears	17	times.
	

Find	Pair	in	an	Array
Given	an	array	of	n	numbers,	find	two	elements	such	that	their	sum	is	equal	to	“value”
	
First	approach:	Exhaustive	 search	or	Brute	 force,	 for	 each	element	 in	 array	 find	 if	 there	 is	 some	other
element,	 which	 sum	 up	 to	 the	 desired	 value.	 This	 is	 done	 using	 two	 for	 loop,	 first	 loop	 to	 select	 the
element	and	second	loop	to	find	another	element.
	
The	Time	Complexity	is	O(n2)	 and	Space	Complexity	is	O(1)
Example	5.17
int	FindPair(int*	arr,	int	size,	int	value)
{

int	i,	j;
for	(i	=	0;	i	<	size;	i++)
for	(j	=	i	+	1;	j	<	size;	j++)
if	((arr[i]	+	arr[j]	)	==	value)
{
printf("The	pair	is	%d,	%d",arr[i],arr[j]);
return	1;
}
return	0;

}
	
Second	approach:	Sorting,	Steps	are	as	follows:
1.	Sort	all	the	elements	in	the	array.
2.	Take	two	variable	first	and	second.	Variable	first=	0	and	second	=	size	-1
3.	Compute	sum	=	arr[first]+arr[second]
4.	If	the	sum	is	equal	to	the	desired	value,	then	we	have	the	solution
5.	If	the	sum	is	less	than	the	desired	value,	then	we	will	increase	first
6.	If	the	sum	is	greater	than	the	desired	value,	then	we	will	decrease	the	second
7.	We	repeat	the	above	process	till	we	get	the	desired	pair	or	we	get	first	>=	second	(don’t	have	a	pair)
	
Sorting	algorithms	take	O(n.log	n)	time	and	single	scan	take	O(n)	time.



The	Time	Complexity	of	an	algorithm	is	O(n.log	n)	and	Space	Complexity	is	O(1)
	
Example	5.18
int	FindPair(int*	arr,	int	size,	int	value)
{

int	first	=	0,	second	=	size	-	1;
int	curr;
Sort(arr,	size);

	
while	(first	<	second)
{
curr	=	arr[first]	+	arr[second];
if	(curr	==	value)
{
printf("The	pair	is	%d,	%d",	arr[first],	arr[second]);
return	1;
}
else	if	(curr	<	value)
first++;
else
second--;
}
return	0;

}
	
Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have	already	seen
and	we	can	find	the	pair	in	just	one	scan.
1.	For	each	element,	insert	the	value	in	Hashtable.	Let	say	current	value	is	arr[index]
2.	If	the	value	-	arr[index]	is	already	in	a	Hashtable.
3.	If	value	-	arr[index]	is	in	the	Hashtable	then	we	have	the	desired	pair.
4.	Else,	proceed	to	the	next	entry	in	the	array.
	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)
	
Example	5.19
int	FindPair(int*	arr,	int	size,	int	value)
{

HashTable	h;
int	i;
for	(i	=	0;	i	<	size;	i++)
{
if	(findValue(h,	value	-	arr[i]))
{
printf("The	pair	is	%d,	%d",	arr[i],	value	-	arr[i]);



return	1;
}
addValue(h,	arr[i]);
}
return	0;

}
	
Forth	approach:	Counting,	This	approach	is	only	possible	if	we	know	the	range	of	the	input.	If	we	know
that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n	and	when	we
see	an	element	we	can	increase	its	count.	In	place	of	the	Hashtable	in	the	above	approach,	we	will	use
this	array	and	will	find	out	the	pair.
	
Counting	 approach	 just	 uses	 an	 array	 so	 insert	 and	 find	 take	 constant	 time	 O(1)	 so	 the	 total	 Time
Complexity	of	the	algorithm	is	O(n)	time.	Space	Complexity	for	creating	count	array	is	also	O(n)
	

Find	the	Pair	in	two	Arrays
Given	two	array	X	and	Y.	Find	a	pair	of	elements	(xi,	yi)	such	that	xi∈X	and	yi∈Y	where	xi+yi=value.
	
First	approach:	Exhaustive	search	or	Brute	 force,	 loop	 through	element	xi	of	X	and	see	 if	you	can	find
(value	–	xi)	in	Y.	Two	for	loop.
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	second	array	Y.	For	each	element	if	X	you	can	see
if	that	element	is	there	in	Y	by	using	binary	search.
	
Sorting	algorithms	take	O(m.	log	m)	and	searching	will	take	O(n.	log	m) time.
The	Time	Complexity	of	an	algorithm	is	O(n.log	m)	or	O(m.log	m)	and	Space	Complexity	is	O(1)
	
Third	approach:	Sorting,	Steps	are	as	follows:
1.	Sort	the	elements	of	both	X	and	Y	in	increasing	order.
2.	Take	the	sum	of	the	smallest	element	of	X	and	the	largest	element	of	Y.
3.	If	the	sum	is	equal	to	value,	we	got	our	pair.
4.	If	the	sum	is	smaller	than	value,	take	next	element	of	X
5.	If	the	sum	is	greater	than	value,	take	the	previous	element	of	Y
	
Sorting	algorithms	take	O(n.log	n)	+	O(m.log	m)	for	sorting	and	searching	will	take	O(n+m) time.
The	Time	Complexity	of	an	algorithm	is	O(n.log	n)	Space	Complexity	is	O(1)
	
Forth	approach:	Hash-Table,	Steps	are	as	follows:
1.	Scan	through	all	the	elements	in	the	array	Y	and	insert	them	into	Hashtable.
2.	Now	scan	through	all	the	elements	of	array	X,	let	us	suppose	the	current	element	is	xi	see	if	you	can

find	(value	-	xi)	in	the	Hashtable.
3.	If	you	find	the	value,	you	got	your	pair.
4.	If	not,	then	go	to	the	next	value	in	the	array	X.



	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)
	
Fifth	approach:	 Counting,	 This	 approach	 is	 only	 possible	 if	we	 know	 the	 range	 of	 the	 input.	 Same	 as
Hashtable	implementation	just	use	a	simple	array	in	place	of	Hashtable	and	you	are	done.
	
Counting	 approach	 just	 uses	 an	 array	 so	 insert	 and	 find	 take	 constant	 time	 O(1)	 so	 the	 total	 Time
Complexity	of	the	algorithm	is	O(n)	time.	Space	Complexity	for	creating	count	array	is	also	O(n).
	

Two	elements	whose	sum	is	closest	to	zero
Given	an	Array	of	 integers,	both	+ve	and	-ve.	You	need	 to	find	 the	 two	elements	such	 that	 their	sum	is
closest	to	zero.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	the	other	element	whose
value	when	added	will	give	minimum	absolute	value.	This	is	done	using	two	for	loop,	first	loop	to	select
the	element	and	second	loop	to	find	the	element	that	should	be	added	to	it	so	that	the	absolute	of	the	sum
will	be	minimum	or	close	to	zero.
	
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)
	
Example	5.20
void	minAbsSumPair(int	arr[],	int	size)
{

int	l,	r,	minSum,	sum,	minFirst,	minSecond;
	

/*	Array	should	have	at	least	two	elements*/
if(size	<	2)
{
printf("Invalid	Input");
return;
}

	
/*	Initialization	of	values	*/
minFirst	=	0;
minSecond	=	1;
minSum	=	abs(arr[0]	+	arr[1]);

	
for(l	=	0;	l	<	size	-	1;	l++)
{
for(r	=	l+1;	r	<	size;	r++)
{
sum	=	abs(arr[l]	+	arr[r]);
if(sum	<	minSum)



{
minSum	=	sum;
minFirst	=	l;
minSecond	=	r;
}
}
}
printf("	The	two	elements	with	minimum	sum	are	%d	&	%d",	arr[minFirst],	arr[minSecond]);

}
	
Second	approach:	Sorting
Steps	are	as	follows:
1.	Sort	all	the	elements	in	the	array.
2.	Take	two	variable	firstIndex	=	0	and	secondIndex	=	size	-1
3.	Compute	sum	=	arr[firstIndex]+arr[secondIndex]
4.	If	the	sum	is	equal	to	the	0	then	we	have	the	solution
5.	If	the	sum	is	less	than	the	0	then	we	will	increase	first
6.	If	the	sum	is	greater	than	the	0	then	we	will	decrease	the	second
7.	We	repeat	the	above	process	3	to	6,	till	we	get	the	desired	pair	or	we	get	first	>=	second
	
Example	5.21
void	minAbsSumPair(int	arr[],	int	size)
{

int	l,	r,	minSum,	sum,	minFirst,	minSecond;
/*	Array	should	have	at	least	two	elements*/
if	(size	<	2)
{
printf("Invalid	Input");
return;
}
Sort(arr,	size);
/*	Initialization	of	values	*/
	
minFirst	=	0;
minSecond	=	size	-	1;
minSum	=	abs(arr[minFirst]	+	arr[minSecond]);
for	(l	=	0,	r	=	size	-	1;	l	<	r;)
{
sum	=	(arr[l]	+	arr[r]);
if	(abs(sum)	<	minSum)
{
minSum	=	abs(sum);
minFirst	=	l;
minSecond	=	r;
}



if	(sum	<	0)
l++;
else	if	(sum	>	0)
r++;
else
break;
}
printf("	The	two	elements	with	minimum	sum	are	%d	&	%d",	arr[minFirst],	arr[minSecond]);

}
	

Find	maxima	in	a	bitonic	array
A	bitonic	array	comprises	of	an	 increasing	sequence	of	 integers	 immediately	 followed	by	a	decreasing
sequence	of	integers.	Since	the	elements	are	sorted	in	some	order,	we	should	go	for	algorithm	similar	to
binary	search.	The	steps	are	as	follows:
1.	Take	two	variable	for	storing	start	and	end	index.	Variable	start=0	and	end=size-1
2.	Find	the	middle	element	of	the	array.
3.	See	if	the	middle	element	is	the	maxima.	If	yes,	return	the	middle	element.
4.	Alternatively,	If	the	middle	element	in	increasing	part,	then	we	need	to	look	for	in	mid+1	and	end.
5.	Alternatively,	if	the	middle	element	is	in	the	decreasing	part,	then	we	need	to	look	in	the	start	and	mid-

1.
6.	Repeat	step	2	to	5	until	we	get	the	maxima.
	
Example	5.22
int	SearchBotinicArrayMax(int	arr[],	int	size)
{

int	start	=	0,	end	=	size	-	1,	mid;
int	maximaFound	=	0;
if	(size	<	3)
{
printf("error");
return	0;
}
while	(start	<=	end)
{
mid	=	(start	+	end)	/	2;
if	(arr[mid	-	1]	<	arr[mid]	&&	arr[mid	+	1]	<	arr[mid])	//maxima
{
maximaFound	=	1;
break;
}
else	if	(arr[mid	-	1]	<	arr[mid]	&&	arr[mid]	<	arr[mid	+	1])	//increasing
{
start	=	mid	+	1;
}



else	if	(arr[mid	-	1]	>	arr[mid]	&&	arr[mid]	>	arr[mid	+	1])	//decreasing
{
end	=	mid	-	1;
}
else
{
break;
}
}
if	(maximaFound	==	0)
{
printf("error");
return	0;
}
return	arr[mid];

}
	

Search	element	in	a	bitonic	array
A	bitonic	array	comprises	of	an	 increasing	sequence	of	 integers	 immediately	 followed	by	a	decreasing
sequence	of	integer	s.	To	search	an	element	in	a	bitonic	array	:
1.	Find	the	index	or	maximum	element	in	the	array.	By	finding	the	end	of	increasing	part	of	the	array,	using

modified	binary	search.
2.	Once	we	have	the	maximum	element,	search	the	given	value	in	increasing	part	of	the	array	using	binary

search.
3.	If	the	value	is	not	found	in	increasing	part,	search	the	same	value	in	decreasing	part	of	the	array	using

binary	search.
	
Example	5.23
int	SearchBitonicArray(int	arr[],	int	size,	int	key)
{

int	max	=	FindMaxBitonicArray(arr,	size);
	

int	k	=	BinarySearch(arr,	0,	max,	key,	true);
if	(k	!=	-1)
return	k;
else
return	BinarySearch(arr,	max	+	1,	size	-	1,	key,	false);

}
	
int	FindMaxBitonicArray(int	arr[],	int	size)
{

int	start	=	0,	end	=	size	-	1,	mid;
if	(size	<	3)
{



printf("error");
return	0;
}
while	(start	<=	end)
{
mid	=	(start	+	end)	/	2;
if	(arr[mid	-	1]	<	arr[mid]	&&	arr[mid	+	1]	<	arr[mid])//maxima
{
return	mid;
}
else	if	(arr[mid	-	1]	<	arr[mid]	&&	arr[mid]	<	arr[mid	+	1])//increasing
{
start	=	mid	+	1;
}
else	if	(arr[mid	-	1]	>	arr[mid]	&&	arr[mid]	>	arr[mid	+	1])//increasing
{
end	=	mid	-	1;
}
else
{
break;
}
}
printf("error");
return	0;

}
	
int	BinarySearch(int	arr[],	int	start,	int	end,	int	key,	int	isInc)
{

int	mid;
if	(end	<	start)
return	-1;
mid	=	(start	+	end)	/	2;
if	(key	==	arr[mid])
return	mid;
if	(isInc	&&	key	<	arr[mid]	||
!isInc	&&	key	>	arr[mid])
{
return	BinarySearch(arr,	start,	mid	-	1,	key,	isInc);
}
else
{
return	BinarySearch(arr,	mid	+	1,	end,	key,	isInc);
}

}



	

Occurrence	counts	in	sorted	Array
Given	a	sorted	array	arr[]	find	the	number	of	occurrences	of	a	number.
	
First	approach:	Brute	force,	Traverse	the	array	and	in	linear	time	we	will	get	the	occurrence	count	of	the
number.	This	is	done	using	one	loop.
	
The	Time	Complexity	is	O(n)	and	Space	Complexity	is	O(1).
	
Example	5.24
int	findKeyCount(int	arr[],	int	size,	int	key)
{

int	i,	count	=	0;
for	(i	=	0;	i	<	size	;	i++)
{
if	(arr[i]	==	key)
count++;
}
return	count;

}
	
Second	approach:	Since	we	have	sorted	array,	we	should	think	about	some	binary	search.
1.	First,	we	should	find	the	first	occurrence	of	the	key.
2.	Then	we	should	find	the	last	occurrence	of	the	key.
3.	Take	the	difference	of	these	two	values	and	you	will	have	the	solution.
	
Example	5.25
int	findKeyCount(int	arr[],	int	size,	int	key)
{

int	firstIndex,	lastIndex;
firstIndex	=	findFirstIndex(arr,	0,	size	-1,	key);
lastIndex	=	findLastIndex(arr,	0,	size	-	1,	key);
return	(lastIndex	-	firstIndex	+	1);

}
	
int	findFirstIndex(int	arr[],	int	start,	int	end,	int	key)
{

int	mid;
if	(end	<	start)
return	-1;

	
mid	=	(start	+	end)	/	2;

	
if	(key	==	arr[mid]	&&	(mid	==	start	||	arr[mid	-	1]	!=	key))



return	mid;
if	(key	<=	arr[mid])//	<=	is	us	the	number.t	in	sorted	array.
{
return	findFirstIndex(arr,	start,	mid	-	1,	key);
}
else
{
return	findFirstIndex(arr,	mid	+	1,	end,	key);
}

}
	
int	findLastIndex(int	arr[],	int	start,	int	end,	int	key)
{

int	mid;
if	(end	<	start)
return	-1;

	
mid	=	(start	+	end)	/	2;

	
if	(key	==	arr[mid]	&&	(mid	==	end	||	arr[mid	+	1]	!=	key))
return	mid;

	
if	(key	<	arr[mid])//	<
{
return	findLastIndex(arr,	start,	mid	-	1,	key);
}
else
{
return	findLastIndex(arr,	mid	+	1,	end,	key);
}

}
	

Separate	even	and	odd	numbers	in	Array
Given	 an	 array	 of	 even	 and	 odd	 numbers,	 write	 a	 program	 to	 separate	 even	 numbers	 from	 the	 odd
numbers.
	
First	approach:	allocate	a	separate	array,	then	scan	through	the	given	array,	and	fill	even	numbers	from	the
start	and	odd	numbers	from	the	end.
	
Second	approach:	Algorithm	is	as	follows.
1.	Initialize	the	two	variable	left	and	right.	Variable	left=0	and	right=	size-1.
2.	Keep	increasing	the	left	index	until	the	element	at	that	index	is	even.
3.	Keep	decreasing	the	right	index	until	the	element	at	that	index	is	odd.
4.	Swap	the	number	at	left	and	right	index.



5.	Repeat	steps	2	to	4	until	left	is	less	than	right.
	
Example	5.26
void	swap(int	*first,	int	*second)
{

int	temp	=	*first;
*first	=	*second;
*second	=	temp;

}
	
void	seperateEvenAndOdd(int	arr[],	int	size)
{

int	left	=	0,	right	=	size	-	1;
	

while	(left	<	right)
{
if	(arr[left]	%	2	==	0	)
{
left++;
}
else	if(arr[right]	%	2	==	1)
{
right--;
}
else
{
swap(&arr[left],	&arr[right]);
left++;
right--;
}
}

}
	

Stock	purchase-sell	problem
Given	an	array,	whose	nth	element	is	the	price	of	the	stock	on	nth	day.	You	are	asked	to	buy	once	and	sell
once,	on	what	date	you	will	be	buying	and	at	what	date	you	will	be	selling	to	get	maximum	profit.

Or
Given	an	array	of	numbers,	you	need	to	maximize	the	difference	between	two	numbers,	such	that	you	can
subtract	the	number,	which	appear	before	form	the	number	that	appear	after	it.
	
First	approach:	Brute	force,	for	each	element	in	array	find	if	there	is	some	other	element	whose	difference
is	maximum.	This	is	done	using	two	for	loop,	first	loop	to	select,	buy	date	index	and	the	second	loop	to
find	its	selling	date	entry.
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)



	
Second	approach:	Another	clever	solution	is	to	keep	track	of	the	smallest	value	seen	so	far	from	the	start.
At	each	point,	we	can	find	the	difference	and	keep	track	of	the	maximum	profit.	This	is	a	linear	solution.
	
The	Time	Complexity	of	 the	algorithm	is	O(n)	 time.	Space	Complexity	 for	creating	count	array	 is	also
O(1)
	
Example	5.27
void	maxProfit(int	stocks[],	int	size)
{

int	buy	=	0,	sell	=	0;
int	curMin	=	0;
int	currProfit=0;
int	maxProfit	=	0;
int	i;

	
for	(i	=	0;	i	<	size;	i++)
{
if	(stocks[i]	<	stocks[curMin])
curMin	=	i;

	
currProfit	=	stocks[i]	-	stocks[curMin];

	
if	(currProfit	>	maxProfit)
{
buy	=	curMin;
sell	=	i;
maxProfit	=	currProfit;
}
}
printf("\nPurchase	day	is-	%d	at	price	%d",	buy,	stocks[buy]);
printf("\nSell	day	is-	%d	at	price	%d",	sell,	stocks[sell]);

}
	

Find	a	median	of	an	array
Given	an	array	of	numbers	of	size	n,	if	all	the	elements	of	the	array	are	sorted	then	find	the	element,	which
lie	at	the	index	n/2.
	
First	approach:	Sort	the	array	and	return	the	element	in	the	middle.
	
Sorting	algorithms	take	O(n.log	n).
The	Time	Complexity	of	an	algorithm	is	O(n.log	n)	and	Space	Complexity	is	O(1)
	
Example	5.28



int	getMedian(int	arr[],	int	size)
{

sort(arr,	size);
return	arr[size	/	2];

}
	
Second	 approach:	 Use	 QuickSelect	 algorithm.	 This	 algorithm	 we	 will	 look	 into	 the	 next	 chapter.	 In
QuickSort	algorithm	just	skip	the	recursive	call	that	we	do	not	need.
The	average	Time	Complexity	of	this	algorithm	will	be	O(1)
	

Find	median	of	two	sorted	arrays.
	
First	approach:	Keep	track	of	 the	index	of	both	the	array,	say	the	index	are	i	and	 j.	keep	 increasing	 the
index	of	the	array	which	ever	have	a	smaller	value.	Use	a	counter	to	keep	track	of	the	elements	that	we
have	already	traced.
	
The	Time	Complexity	of	an	algorithm	is	O(n)	and	Space	Complexity	is	O(1)
	
Example	5.29
int	findMedian(int	arrFirst[],	int	sizeFirst,	int	arrSecond[],	int	sizeSecond)
{

//cealing	function.
int	medianIndex	=	((sizeFirst	+	sizeSecond)	+	(sizeFirst	+	sizeSecond)	%	2)	/	2;
int	i	=	0,	j	=	0;
int	count	=	0;
while	(count	<	medianIndex	-	1)
{
if	(i	<	sizeFirst	-	1	&&	arrFirst[i]	<	arrSecond[j])
i++;
else
j++;

	
count++;
}

	
if	(arrFirst[i]	<	arrSecond[j])
return	arrFirst[i];
else
return	arrSecond[j];

}
	

Find	kth	element	of	two	sorted	arrays.
Find	kth	Smallest	Element	in	the	Union	of	Two	Sorted	Arrays



	
Example	5.30
1.	#define	ERROR	-999;
2.	int	min(int	a,	int	b)
3.	{
4.	return	a	>	b	?	b	:	a;
5.	}
6.	int	find_kth(int	first[],	int	second[],	int	sizeFirst,	int	sizeSecond,	int	k)
7.	{
8.	if	(sizeFirst	+	sizeSecond	<	k)
9.	return	ERROR;
10.
11.	if	(sizeFirst	==	0)
12.	return	second[k	-	1];
13.
14.	if	(sizeSecond	==	0)
15.	return	first[k	-	1];
16.
17.	if	(k	==	1)
18.	return	min(first[0],	second[0]);
19.
20.	/*	Now	divide	and	conquer	*/
21.	int	i	=	min(sizeFirst,	k	/	2);
22.	int	j	=	min(sizeSecond,	k	/	2);
23.
24.	if	(first[i	-	1]	>	second[j	-	1])
25.	return	find_kth(first,	second	+	j,	i,	sizeSecond	-	j,	k	-	j);
26.	else
27.	return	find_kth(first	+	i,	second,	sizeFirst	-	i,	j,	k	-	i);
28.	}
	

Search	01	Array
Given	an	array	of	0’s	and	1’s.	All	the	0’s	come	before	1’s.	Write	an	algorithm	to	find	the	index	of	the	first
1.

Or
You	 are	 given	 an	 array	 which	 contains	 either	 0	 or	 1,	 and	 they	 are	 in	 sorted	 order	 Ex.	 a[	 ]	 =	 {
1,1,1,1,0,0,0}	How	will	you	count	no	of	1`s	and	0's?
	
First	approach:	Binary	Search,	since	the	array	is	sorted	using	binary	search	to	find	the	desired	index.
The	Time	Complexity	of	an	algorithm	is	O(log	n)	and	Space	Complexity	is	O(1)
	
Example	5.31
int	BinarySearch01Wrapper(int	arr[],	int	size)
{



if	(size	==	1	&&	arr[0]	==	1)
return	0;

	
return	BinarySearch01(arr,	0,	size	-	1);

}
	
int	BinarySearch01(int	arr[],	int	start,	int	end)
{

int	mid;
if	(end	<	start)
return	-1;

	
mid	=	(start	+	end)	/	2;

	
if	(1	==	arr[mid]	&&	0	==	arr[mid	-	1])
return	mid;

	
if	(0	==	arr[mid])
{
return	BinarySearch01(arr,	mid	+	1,	end);
}
else
{
return	BinarySearch01(arr,	start,	mid	-	1);
}

}
	

Search	in	sorted	rotated	Array
Given	a	sorted	array	of	n	integers	which	is	rotated	an	unknown	number	of	times.	Find	an	element	in	the
array.
	
First	approach:	Since	the	array	is	sorted,	we	can	use	modified	binary	search	to	find	the	element.
The	Time	Complexity	of	an	algorithm	is	O(log	n)	and	Space	Complexity	is	O(1)
	
Example	5.32
int	BinarySearchRotateArray(int	arr[],	int	start,	int	end,	int	key)
{

int	mid;
if	(end	<	start)
return	-1;

	
mid	=	(start	+	end)	/	2;

	
if	(key	==	arr[mid])



return	mid;
if	(arr[mid]	>	arr[start])
{
if	(arr[start]	<=	key	&&	key	<	arr[mid])
{
return	BinarySearchRotateArray(arr,	start,	mid	-	1,	key);
}
else
{
return	BinarySearchRotateArray(arr,	mid	+	1,	end,	key);
}
}
else
{
if	(arr[mid]	<	key	&&	key	<=	arr[end])
{
return	BinarySearchRotateArray(arr,	mid	+	1,	end,	key);
}
else
{
return	BinarySearchRotateArray(arr,	start,	mid	-	1,	key);
}
}

}
	
int	BinarySearchRotateArrayWrapper(int	arr[],	int	size,	int	key)
{

return	BinarySearchRotateArray(arr,	0,	size	-	1,	key);
}
	

First	Repeated	element	in	the	array
Given	an	unsorted	array	of	n	elements,	find	the	first	element,	which	is	repeated.
	
First	approach:	Exhaustive	 search	or	Brute	 force,	 for	 each	element	 in	 array	 find	 if	 there	 is	 some	other
element	with	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element	and	second
loop	to	find	its	duplicate	entry.
	
The	Time	Complexity	is	O(n2)	and	Space	Complexity	is	O(1)
	
Example	5.33
int	FirstRepeated(int*	arr,	int	size)
{

int	i,	j;
for	(i	=	0;	i	<	size;	i++)



for	(j	=	i	+	1;	j	<	size;	j++)
if	(arr[i]	==	arr[j])
return	arr[i];

	
return	0;

}
	
Second	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	number	of	times	a	particular
element	 came	 in	 the	 array.	 First	 scan	 just	 populate	 the	 Hashtable.	 In	 the	 second,	 scan	 just	 look	 the
occurrence	of	 the	elements	 in	 the	Hashtable.	 If	occurrence	 is	more	for	some	element,	 then	we	have	our
solution	and	the	first	repeated	element.
	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)	for	maintaining	hash.
	



Transform	Array
How	would	you	swap	elements	of	an	array	like	[a1	a2	a3	a4	b1	b2	b3	b4]	to	convert	it	into	[a1	b1	a2	b2
a3	b3	a4	b4]?

	
Approach:
·	First	swap	elements	in	the	middle	pair
·	Next	swap	elements	in	the	middle	two	pairs
·	Next	swap	elements	in	the	middle	three	pairs
·	Iterate	n-1	steps.

Ex:	with	n	=	4.
a1	a2	a3	a4	b1	b2	b3	b4
a1	a2	a3	b1	a4	b2	b3	b4
a1	a2	b1	a3	b2	a4	b3	b4
a1	b1	a2	b2	a3	b3	a4	b4
	
Example	5.34
void	transformArrayAB1(int	arr[],	int	size)
{

int	N	=	size/2,	i,	j;
for	(i	=	1;	i	<	N;	i++)
{
for	(j	=	0;	j	<	i;	j++)
{
swap(&arr[N-i+2*j],	&arr[N-i+2*j+1]);
}
}

}
void	swap(int	*a,int	*b)
{

int	t=*a;
*a=*b;
*b=t;

}
	

Find	2nd	largest	number	in	an	array	with	minimum	comparisons
Suppose	you	are	given	an	unsorted	array	of	n	distinct	elements.	How	will	you	identify	the	second	largest
element	with	minimum	number	of	comparisons?
	
First	 approach:	 Find	 the	 largest	 element	 in	 the	 array.	 Then	 replace	 the	 last	 element	 with	 the	 largest
element.	Then	search	the	second	largest	element	int	the	remaining	n-1	elements.
The	total	number	of	comparisons	is:	(n-1)	+	(n-2)



	
Second	approach:	Sort	the	array	and	then	give	the	(n-1)	element.	This	approach	is	still	more	inefficient.
	
Third	 approach:	 Using	 priority	 queue	 /	 Heap.	 This	 approach	 we	 will	 look	 into	 heap	 chapter.	 Use
buildHeap()	 function	 to	build	heap	from	the	array.	This	 is	done	 in	n	comparisons.	Arr[0]	 is	 the	 largest
number,	and	the	greater	among	arr[1]	and	arr[2]	is	the	second	largest.
The	total	number	of	comparisons	are:	(n-1)	+	1	=	n
	

Check	if	two	arrays	are	permutation	of	each	other
Given	two	integer	arrays.	You	have	to	check	whether	they	are	permutation	of	each	other.
	
First	approach:	Sorting,	Sort	all	 the	elements	of	both	 the	arrays	and	Compare	each	element	of	both	 the
arrays	from	beginning	to	end.	If	there	is	no	mismatch,	return	true.	Otherwise,	false.
Sorting	algorithms	take	O(n.log	n)	time	and	comparison	take	O(n)	time.
The	Time	Complexity	of	an	algorithm	is	O(n.log	n)	and	Space	Complexity	is	O(1)
	
Example	5.35
int	checkPermutation(int	array1[],	int	size1,	int	array2[],	int	size2)
{

if	(size1	!=	size2)
return	0;

	
sort(array1,	size1);
sort(array2,	size2);

	
for	(int	i	=	0;	i	<	size1;	i++){
if	(array1[i]	!=	array2[i])
return	0;
}
return	1;

}
	
Second	approach:	Hash-Table	(Assumption:	No	duplicates).
Steps	are:
1.	Create	a	Hash-Table	for	all	the	elements	of	the	first	array.
2.	Traverse	the	other	array	from	beginning	to	the	end	and	search	for	each	element	in	the	Hash-Table.
3.	If	all	the	elements	are	found	in	the	Hash-Table,	return	true	otherwise	return	false.
	
Hash-Table	insert	and	find	take	constant	time	O(1)	so	the	total	Time	Complexity	of	the	algorithm	is	O(n)
time.	Space	Complexity	is	also	O(n)
	
Time	Complexity	=	O(n)	(For	creation	of	Hash-Table	and	look-up),
Space	Complexity	=	O(n)	(For	creation	of	Hash-Table).
	



Example	5.36
int	checkPermutation(int	array1[],	int	size1,	int	array2[],	int	size2)
{

int	i;
if	(size1	!=	size2)
return	0;
Hashtable	h;

	
for	(i	=	0;	i	<	size1;	i++)
insert(h,	array1[i]);

	
for	(i	=	0;	i	<	size2;	i++)
{
if	(!containsValue(h,	array2[i]))
return	false;
}
return	true;

}
	

Remove	duplicates	in	an	integer	array
First	approach:	Sorting
Steps	are	as	follows:
1.	Sort	the	array.
2.	 Take	 two	 pointers.	A	 subarray	will	 be	 created	with	 all	 unique	 elements	 starting	 from	 0	 to	 the	 first

pointer	(The	first	pointer	points	to	the	last	index	of	the	subarray).	The	second	pointer	iterates	through
the	array	from	1	to	the	end.	Unique	numbers	will	be	copied	from	the	second	pointer	location	to	first
pointer	location	and	the	same	elements	are	ignored.

Time	Complexity	calculation	:
Time	to	sort	the	array	=	O(nlogn).
Time	to	remove	duplicates	=	O(n).	Overall	Time	Complexity	=	O(nlogn).
No	additional	space	is	required	so	Space	Complexity	is	O(1).

Example	5.37
int	removeDuplicates(int	array[],	int	size)
{

int	j	=	0;
int	i;
if	(size	==	0)
return	0;
sort(array,	size);

	
for	(i	=	1;	i	<	size;	i++)	{
if	(array[i]	!=	array[j])	{



j++;
array[j]	=	array[i];
}
}
return	j	+	1;

}

Searching	for	an	element	in	a	2-d	sorted	array
Given	a	2	dimensional	array.	Each	row	and	column	are	sorted	in	ascending	order.	How	would	you	find	an
element	in	it?
	
The	algorithm	works	as:
1.	Start	with	element	at	last	column	and	first	row
2.	If	the	element	is	the	value	we	are	looking	for,	return	true.
3.	 If	 the	element	 is	greater	 than	 the	value	we	are	 looking	for,	go	 to	 the	element	at	previous	column	but

same	row.
4.	If	the	element	is	less	than	the	value	we	are	looking	for,	go	to	the	element	at	next	row	but	same	column.
5.	Return	false,	if	the	element	is	not	found	after	reaching	the	element	of	the	last	row	of	the	first	column.

Condition	row	<	r	&	&	column	>=	0	is	false.
	
Running	time	=	O(N).
	
Example	5.38
int	FindElementIn2DArray(int*	arr[],	int	r,	int	c,	int	value)
{

int	row	=	0;
int	column	=	c	-	1;

	
while	(row	<	r	&	&	column	>=	0){
if	(arr[row][column]	==	value)
return	1;
else	if	(arr[row][column]	>	value)
column--;
else
row++;
}
return	0;

}
	



Exercise
1.	Given	 an	 array	 of	 n	 elements,	 find	 the	 first	 repeated	 element.	Which	 of	 the	 following	methods	will

work	for	us	(and	which	of	the	method	will	not	work	for	us).	If	a	method	work,	then	implements	it.
·	Brute	force	exhaustive	search.
·	Use	Hash-Table	to	keep	an	index	of	the	elements	and	use	the	second	scan	to	find	the	element.
·	Sorting	the	elements.
·	If	we	know	the	range	of	the	element	then	we	can	use	counting	technique.

	
Hint:	When	order	in	which	elements	appear	in	input	is	important,	we	cannot	use	sorting.

	
2.	Given	an	array	of	n	 elements,	write	 an	algorithm	 to	 find	 three	 elements	 in	 an	array	whose	 sum	 is	 a

given	value.
	

Hint:	Try	to	do	this	problem	using	a	brute	force	approach.	Then	try	to	apply	the	sorting	approach	along
with	a	brute	force	approach.	The	Time	Complexity	will	be	O(n2)

	
3.	 Given	 an	 array	 of	 –ve	 and	 +ve	 numbers,	 write	 a	 program	 to	 separate	 –ve	 numbers	 from	 the	 +ve

numbers.
	
4.	Given	an	array	of	1’s	and	0’s,	write	a	program	to	separate	0’s	from	1’s.

Hint:	QuickSelect,	counting
	
5.	Given	an	array	of	0’s,	1’s	and	2’s,	write	a	program	to	separate	0’s	,	1’s	and	2’s.
	
6.	Given	an	array	whose	elements	is	monotonically	increasing	with	both	negative	and	positive	numbers.

Write	an	algorithm	to	find	the	point	at	which	list	becomes	positive.
	
7.	Given	a	sorted	array,	find	a	given	number.	If	found	return	the	index	if	not,	find	the	index	of	that	number

if	it	is	inserted	into	the	array.
	
8.	Find	max	in	sorted	rotated	array.
	
9.	Find	min	in	the	sorted	rotated	array.



	



CHAPTER	6:	SORTING
	



Introduction
Sorting	 is	 the	 process	 of	 placing	 elements	 from	 a	 collection	 into	 ascending	 or	 descending	 order.	 For
example,	when	we	play	cards,	sort	cards,	according	to	their	value	so	that	we	can	find	the	required	card
easily.
	
When	we	go	to	some	library,	the	books	are	arranged	according	to	streams	(Algorithm,	Operating	systems,
Networking	etc.).	Sorting	arranges	data	elements	in	order	so	that	searching	become	easier.	When	books
are	arranged	in	proper	indexing	order,	then	it	is	easy	to	find	a	book	we	are	looking	for.
	
This	chapter	discusses	algorithms	for	sorting	a	set	of	N	 items.	Understanding	sorting	algorithms	are	 the
first	step	towards	understanding	algorithm	analysis.	Many	sorting	algorithms	are	developed	and	analysed.
	
A	 sorting	 algorithm	 like	Bubble-Sort,	 Insertion-Sort	 and	 Selection-Sort	 are	 easy	 to	 implement	 and	 are
suitable	for	the	small	input	set.	However,	for	large	dataset	they	are	slow.
	
A	 sorting	 algorithm	 like	 Merge-Sort,	 Quick-Sort	 and	 Heap-Sort	 are	 some	 of	 the	 algorithms	 that	 are
suitable	for	sorting	large	dataset.	However,	they	are	overkill	if	we	want	to	sort	the	small	dataset.
	
Some	algorithm,	which	is	suitable	when	we	have	some	range	information	on	input	data.
	
Some	 other	 algorithm	 is	 there	 to	 sort	 a	 huge	 data	 set	 that	 cannot	 be	 stored	 in	memory	 completely,	 for
which	external	sorting	technique	is	developed.
	
Before	we	start	a	discussion	of	the	various	algorithms	one	by	one.	First,	we	should	look	at	comparison
function	that	is	used	to	compare	two	values.
	
Less	function	will	return	1	if	value1	is	less	than	value2	otherwise,	it	will	return	0.
int	less(int	value1,	int	value2)
{

return	value1	<	value2;
}
	
More	function	will	return	1	if	value1	is	more	than	value2	otherwise	it	will	return	0.
int	more(int	value1,	int	value2)
{

return	value1	>	value2;
}
	
The	 value	 in	 various	 sorting	 algorithms	 is	 compared	 using	 one	 of	 the	 above	 functions	 and	 it	 will	 be
swapped	depending	upon	the	return	value	of	these	functions.	If	more()	comparison	function	is	used,	then
sorted	output	will	be	increasing	in	order	and	if	less()	is	used	than	resulting	output	will	be	in	descending
order.
	



Type	of	Sorting
Internal	Sorting:	All	the	elements	can	be	read	into	memory	at	the	same	time	and	sorting	is	performed	in
memory.

1.	Selection-Sort
2.	Insertion-Sort
3.	Bubble-Sort
4.	Quick-Sort

	
External	Sorting:	In	this,	the	dataset	is	so	big	that	it	is	impossible	to	load	the	whole	dataset	into	memory
so	sorting	is	done	in	chunks.

1.	Merge-Sort
	
Three	things	to	consider	in	choosing,	sorting	algorithms	for	application:

1.	Number	of	elements	in	list
2.	A	number	of	different	orders	of	list	required
3.	The	amount	of	time	required	to	move	the	data	or	not	move	the	data

	



Bubble-Sort
Bubble-Sort	is	the	slowest	algorithm	for	sorting,	but	it	is	heavily	used,	as	it	is	easy	to	implement.
	
In	Bubble-Sort,	we	compare	each	pair	of	adjacent	values.	We	want	to	sort	values	in	increasing	order	so	if
the	second	value	is	less	than	the	first	value	then	we	swap	these	two	values.	Otherwise,	we	will	go	to	the
next	pair.
Thus,	smaller	values	bubble	to	the	start	of	 the	array.	We	will	have	N	number	of	passes	to	get	 the	array
completely	sorted.	After	the	first	pass,	the	largest	value	will	be	in	the	rightmost	position.

Example	6.1
1.	void	BubbleSort(int*	arr,	int	size)
2.	{
3.	int	i,	j,	temp;
4.	for	(i	=	0	;	i	<	(	size	-	1	);	i++)
5.	{
6.	for	(j	=	0	;	j	<	size	-	i	-	1;	j++)
7.	{
8.	if	(more(arr[j],	arr[j+1]))
9.	{
10.	/*	Swapping	*/
11.	temp=	arr[j];
12.	arr[j]=	arr[j+1];
13.	arr[j+1]	=	temp;
14.	}
15.	}
16.	}
17	.}
	
Analysis:
Line	4:	The	outer	for	loops	represents	the	number	of	swaps	that	are	done	for	comparison	of	data.
	
Line	 6:	 The	 inner	 loop	 is	 actually	 used	 to	 do	 the	 comparison	 of	 data.	 At	 the	 end	 of	 each	 inner	 loop



iteration,	the	largest	value	is	moved	to	the	end	of	the	array.	In	the	first	iteration	the	largest	value,	in	the
second	iteration	the	second	largest	and	so	on.
	
Line	 8:	 more()	 function	 is	 used	 for	 comparison	 which	means	 when	 the	 value	 of	 the	 first	 argument	 is
greater	than	the	value	of	the	second	argument	then	perform	a	swap.	By	this	we	are	sorting	in	increasing
order	if	we	have,	the	less()	function	in	place	of	more()	than	we	will	get	decreasing	order	sorting.
	
Have	a	look	into	more()	function	in	case	you	forgot
int	more(int	value1,	int	value2)
{

return	value1	>	value2;
}
	
Complexity	Analysis:
Each	time	the	inner	loop	execute	for	(n-1),	(n-2),	(n-3)…
(n-1)	+	(n-2)	+	(n-3)	+	.....	+	3	+	2	+	1	=	n(n-1)/2
	
Worst	case	performance O(n2)
Average	case	performance O(n2)
Space	Complexity O(1)	as	we	need	only	one	temp	variable
Stable	Sorting Yes
	



Modified	(improved)	Bubble-Sort
When	there	is	no	more	swap	in	one	pass	of	the	outer	loop.	It	indicates	that	all	the	elements	are	already	in
order	so	we	should	stop	sorting.	This	sorting	improvement	in	Bubble-Sort	is	extremely	useful	when	we
know	that,	except	few	elements	rest	of	the	array	is	already	sorted.
	
Example	6.2
1.	void	BubbleSort(int*	arr,	int	size)
2.	{
3.	int	i,	j,	temp,	swapped=1;
4.	for	(i	=	0;	i	<	(size	-	1)	&&	swapped;	i++)
5.	{
6.	swapped	=	0;
7.	for	(j	=	0;	j	<	size	-	i	-	1;	j++)
8.	{
9.	if	(more(arr[j],	arr[j	+	1]))
10.	{
11.	/*	Swapping	*/
12.	temp	=	arr[j];
13.	arr[j]	=	arr[j	+	1];
14.	arr[j	+	1]	=	temp;
15.	swapped	=	1;
16.	}
17.	}
18.	}
19.	}
By	applying	this	improvement,	best	case	of	this	algorithm,	when	an	array	is	nearly	sorted,	is	improved.
Best	case	is	O(n)
	
Complexity	Analysis:
Worst	case	performance O(n2)
Average	case	performance O(n2)
Space	Complexity O(1)
Adaptive:	When	array	is	nearly	sorted O(n)
Stable	Sorting Yes
	



Insertion-Sort

Insertion-Sort	Time	Complexity	is	O(n2)	which	is	same	as	Bubble-Sort	but	perform	a	bit	better	than	it.	It
is	the	way	we	arrange	our	playing	cards.	We	keep	a	sorted	subarray.	Each	value	is	inserted	into	its	proper
position	in	the	sorted	sub-array	in	the	left	of	it.

	

	
Example	6.3
1.	void	insertion(int	*arr,	int	size)
2.	{
3.	int	temp,j;
4.	for(int	i=1;	i<size;	i++)
5.	{
6.	temp=arr[i];
7.	for(j=i;	j>0	&&	more(arr[j-1],	temp));	j--)
8.	{
9.	arr[j]=arr[j-1];
10.	}
11.	arr[j]=temp;
12.	}
13.	}
	
Analysis:
Line	4:	The	outer	loop	is	used	to	pick	the	value	we	want	to	insert	into	the	sorted	left	array.



	
Line	6:	The	value	we	want	to	insert	we	have	picked	and	saved	in	a	temp	variable.
	
Line	7-10:	These	are	the	lines,	which	are	implementing	the	inner	loop	and	doing	the	comparison	using	the
more()	function.	The	values	are	shifted	to	the	right	until	we	find	the	proper	position	of	the	temp	value	for
which	we	are	doing	this	iteration.
	
Line	11:	This	is	the	line	,	which	we	are	actually	placing	the	temp	value	into	the	proper	position.
	
Line	4-12:	In	each	iteration	of	the	outer	loop,	the	length	of	the	sorted	array	increase	by	one.	When	we	exit
the	outer	loop,	the	whole	array	is	sorted.
	
Complexity	Analysis:
Worst	case	Time	Complexity O(n2)
Best	case	Time	Complexity O(n)
Average	case	Time	Complexity O(n2)
Space	Complexity O(1)
Stable	sorting Yes
	



Selection-Sort
Selection-Sort	searches	the	whole	unsorted	array	and	put	the	largest	value	at	the	end	of	it.	This	algorithm
is	 having	 the	 same	 Time	 Complexity,	 but	 performs	 better	 than	 both	 bubble	 and	 Insertion-Sort	 as	 less
number	of	comparisons	required.	The	sorted	array	is	created	backward	in	Selection-Sort.

Example	6.4:
1.	void	SelectionSort(int*	arr,	int	size)
2.	{
3.	int	i,	j,	max,	temp;
4.	for	(i	=	0;	i	<	size	-	1;	i++)
5.	{
6.	max	=	0;
7.	for	(j	=	1;	j	<	size	-1	-	i	;	j++)
8.	{
9.	if	(arr[j]	>	arr[max])
10.	{
11.	max	=	j;
12.	}
13.	}
14.	temp	=	arr[size	-	1	-	i];
15.	arr[size	-	1	-	i]	=	arr[max];
16.	arr[max]	=	temp;
17.	}
18.	}
	
Analysis:
Line	4-17:	 It	 is	 the	outer	 loop,	which	 is	used	 to	pick	 the	 largest	value	from	the	unsorted	array.	 In	each
iteration,	the	largest	value	will	be	placed	at	the	end	of	the	array.
	
Line	6:	The	index	of	the	max	value	is	always	set	to	the	beginning	of	the	array	and	we	will	iterate	through
the	array	to	find	the	proper	index.
	
Line	7-10:	These	are	the	inner	loop	lines	to	find	the	proper	index	of	the	maximum.
	



Line	14-17:	This	is	the	final	replacement	of	the	maximum	value	to	the	proper	location.	The	sorted	array	is
created	backward.
	
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(n2)
Average	case	Time	Complexity O(n2)
Space	Complexity O(1)
Stable	Sorting No
	
The	same	algorithm	can	be	implemented	by	creating	the	sorted	array	in	the	front	of	the	array.
	
Example	6.5:
1.	void	SelectionSort(int*	arr,	int	size)
2.	{
3.	int	i,	j,	min,	temp;
4.	for	(i	=	0;	i	<	size	-	1;	i++)
5.	{
6.	min	=	i;
7.	for	(j	=	i	+	1;	j	<	size;	j++)
8.	{
9.	if	(arr[j]	<	arr[min])
10.	{
11.	min	=	j;
12.	}
13.	}
14.	temp	=	arr[i];
15.	arr[i]	=	arr[min];
16.	arr[min]	=	temp;
17.	}
18.	}
	



Merge-Sort

	
Example	6.6:
1.	#include<stdio.h>
2
3.	void	merge(int*	arr,int*	tempArray,	int	lowerIndex,	int	middleIndex,	int	upperIndex)
4.	{
5.	int	lowerStart=lowerIndex;
6.	int	lowerStop=middleIndex;
7.	int	upperStart=middleIndex+1;
8.	int	upperStop=upperIndex;
9.	int	count=lowerIndex;
10.	while(lowerStart<=lowerStop	&&	upperStart<=upperStop)
11.	{
12.	if(arr[lowerStart]<arr[upperStart])
13.	tempArray[count++]=arr[lowerStart++];
14.	else
15.	tempArray[count++]=arr[upperStart++];
16.	}
17.	while(lowerStart<=lowerStop)
18.	{
19.	tempArray[count++]=arr[lowerStart++];
20.	}
21.	while(	upperStart<=upperStop)
22.	{
23.	tempArray[count++]=arr[upperStart++];
24.	}
25.	for(int	i=lowerIndex;i<=upperIndex;i++)
26.	arr[i]=tempArray[i];
27.	}
	



1.	void	mergeSrt(int	*arr,int*	tempArray,	int	lowerIndex,	int	upperIndex)
2.	{
3.	if(lowerIndex	>=	upperIndex)
4.	return;
5.	int	middleIndex=(lowerIndex+upperIndex)/2;
6.	mergeSrt(arr,tempArray,lowerIndex,middleIndex);
7.	mergeSrt(arr,tempArray,middleIndex+1,upperIndex);
8.	merge(arr,tempArray,lowerIndex,middleIndex,upperIndex);
9.	}
	
1.	void	mergeSort(int	*arr,	int	size)
2.	{
3.	int	*tempArray=(int*)malloc(size*sizeof(int));
4.	mergeSrt(arr,tempArray,0,size-1);
5.	}
	
1.	void	printArray(int*	arr,	int	size)
2.	{
3.	for(int	i=0;i<size;i++)
4.	printf("	%d	",arr[i]);
5.	}
	
1.	int	main()
2.	{
3.	int	arr[10]={3,4,2,1,6,5,7,8,1,1};
4.	mergeSort(arr,10);
5.	printArray(arr,10);
6.	}
	
·	The	Time	Complexity	of	Merge-Sort	is	O(nlogn)	in	all	3	cases	(best,	average	and	worst)	as	Merge-Sort

always	divides	the	array	into	two	halves	and	take	linear	time	to	merge	two	halves.
·	It	requires	the	equal	amount	of	additional	space	as	the	unsorted	list.	Hence,	it	is	not	at	all	recommended

for	searching	large	unsorted	lists.
·	It	is	the	best	Sorting	technique	for	sorting	Linked	Lists.
	
	
	
	
Complexity	Analysis:
Worst	Case	Time	Complexity O(nlogn)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(n)
Stable	Sorting Yes



	



Quick-Sort

	

	
Example	6.7:
1.	int	main()
2.	{
3.	int	arr[10]	=	{	4,	5,	3,	2,	6,	7,	1,	8,	9,	10	};
4.	printArray(arr,	sizeof(arr)	/	sizeof(int));
5.	quickSort(arr,	sizeof(arr)	/	sizeof(int));
6.	printArray(arr,	sizeof(arr)	/	sizeof(int));
7.	}
	
1.	void	swap(int	arr[],	int	first,	int	second)
2.	{
3.	int	temp	=	arr[first];
4.	arr[first]	=	arr[second];
5.	arr[second]	=	temp;



6.	}
	
1.	void	printArray(int	arr[],	int	size)
2.	{
3.	for	(int	i	=	0;	i<size;	i++)
4.	printf("	%d	",	arr[i]);
5.	printf("\n");
6.	}
	
1.	void	quickSort(int	arr[],	int	size)
2.	{
3.	quickSortUtil	(arr,	0,	size	-	1);
4.	}
1.	void	quickSortUtil	(int	arr[],	int	lower,	int	upper)
2.	{
3.	if	(upper<=lower)
4.	return;
5.
6.	int	pivot	=	arr[lower];
7.
8.	int	start	=	lower;
9.	int	stop	=	upper;
10.
11.	while	(	lower	<	upper)
12.	{
13.	while	(arr[lower]	<=	pivot)
14.	{
15.	lower++;
16.	}
17.	while	(arr[upper]	>	pivot)
18.	{
19.	upper--;
20.	}
21.	if	(lower	<	upper)
22.	{
23.	swap(arr,upper,lower);
24.	}
25.	}
26.	swap(arr,	upper,	start);	//upper	is	the	pivot	position
27.
28.	quickSortUtil	(arr,	start,	upper	-	1);	//pivot	-1	is	the	upper	for	left	sub	array.
29.	quickSortUtil	(arr,	upper	+	1,	stop);	//	pivot	+	1	is	the	lower	for	right	sub	array.
30.	}
	
·	The	space	required	by	Quick-Sort	is	very	less,	only	O(nlogn)	additional	space	is	required.



·	Quicksort	is	not	a	stable	sorting	technique,	so	it	might	change	the	occurrence	of	two	similar	elements	in
the	list	while	sorting.

	
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(nlogn)
Stable	Sorting No
	



Quick	Select
Quick	select	is	very	similar	to	Quick-Sort	in	place	of	sorting	the	whole	array	we	just	ignore	the	one-half
of	the	array	at	each	step	of	Quick-Sort	and	just	focus	on	the	region	of	array	on	which	we	are	interested.
	
Example	6.8:
1.	void	quickSelect(int	arr[],	int	lower,	int	upper,int	k)
2.	{
3.	if	(upper	<=	lower)
4.	return;
5.
6.	int	pivot	=	arr[lower];
7.
8.	int	start	=	lower;
9.	int	stop	=	upper;
10.
11.	while	(lower	<	upper)
12.	{
13.	while	(arr[lower]	<=	pivot)
14.	{
15.	lower++;
16.	}
17.	while	(arr[upper]	>	pivot)
18.	{
19.	upper--;
20.	}
21.	if	(lower	<	upper)
22.	{
23.	swap(arr,	upper,	lower);
24.	}
25.	}
26.
27.	swap(arr,	upper,	start);	//upper	is	the	pivot	position
28.	if	(k<upper)
29.	quickSelect(arr,	start,	upper	-	1,	k);	//pivot	-1	is	the	upper	for	left	sub	array.
30.	if	(k>upper)
31.	quickSelect(arr,	upper	+	1,	stop,	k);	//	pivot	+	1	is	the	lower	for	right	sub	array.
32.	}
	
1.	int	quickSelect(int	*a,	int	count,	int	index)	2.	{
3.	quickSelect(a,	0,	count	-	1,	index	-	1);
4.	return	a[index	-	1];
5.	}
	
Complexity	Analysis:



Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(logn)
Average	Time	Complexity O(logn)
Space	Complexity O(nlogn)
	



Bucket	Sort
Bucket	 sort	 is	 the	 simplest	 and	most	 efficient	 type	of	 sorting.	Bucket	 sort	 has	 a	 strict	 requirement	of	 a
predefined	range	of	data.
	
Like,	sort	how	many	people	are	in	which	age	group.	We	know	that	the	age	of	people	can	vary	between	1
and	130.

Example	6.9:
1.	void	BucketSort(int	array[],	int	n,	int	range)	2.	{
3.	int	i,	j;
4.	int*	count	=	(int*)malloc(range	*	sizeof(int));
5.
6.	for	(i	=	0;	i	<	range;	i++)
7.	{
8.	count[i]	=	0;
9.	}
10.
11.	for	(i	=	0;	i	<	n;	i++)
12.	{
13.	count[array[i]]++;
14.	}
15.
16.	j	=	0;
17.
18.	for	(i	=	0;	i	<	range;	i++)
19.	{
20.	for	(;	count[i]>0;	(count[i])--)
21.	{
22.	array[j++]	=	i;
23.	}
24.	}
25	free(count);
26	}
	
Analysis:
Line	4:	We	have	created	a	count	array	to	store	counts.
Line	6-9:	count	array	elements	are	initialized	to	zero.



Line	11-14:	Index	corresponding	to	input	array	is	incremented.
Line:	18-24:	Finally,	the	information	stored	in	count	array	is	saved	in	the	array.
	
Complexity	Analysis:
Data	structure Array
Worst	case	performance O(n+k)
Average	case	performance O(n+k)
Worst	case	Space	Complexity O(k)
	
Where	k	-	is	number	of	distinct	elements.
n	–	is	the	total	number	of	elements	in	array.
	



Generalized	Bucket	Sort
There	are	cases	when	the	element	falling	into	a	bucket	are	not	unique	but	are	in	the	same	range.	When	we
want	to	sort	an	index	of	a	name,	we	can	use	the	pointer	bucket	to	store	names.

The	 buckets	 are	 already	 sorted	 and	 the	 elements	 inside	 each	 bucket	 can	 be	 kept	 sorted	 by	 using	 an
Insertion-Sort	algorithm.	We	are	leaving	this	generalized	bucket	sort	implementation	to	the	reader	of	this
book.	 The	 similar	 data	 structure	 will	 be	 defined	 in	 the	 coming	 chapter	 of	 Hash-Table	 using	 separate
chaining.
	



Heap-Sort
Heap-Sort	we	have	already	studied	in	the	Heap	chapter.
Complexity	Analysis:
Data	structure Array
Worst	case	performance O(nlogn)
Average	case	performance O(nlogn)
Worst	case	Space	Complexity O(1)
	



Tree	Sorting
In-order	 traversal	of	 the	binary	search	tree	can	also	be	seen	as	a	sorting	algorithm.	We	will	see	 this	 in
binary	search	tree	section	of	tree	chapter.
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(n)
Stable	Sorting Yes
	



External	Sort	(External	Merge-Sort)
When	data	need	to	be	sorted	is	huge.	Moreover,	it	is	not	possible	to	load	it	completely	in	memory	(RAM)
for	such	a	dataset	we	use	external	sorting.	Specific	data	 is	sorted	using	external	Merge-Sort	algorithm.
First	data	are	picked	in	chunks	and	it	is	sorted	in	memory.	Then	this	sorted	data	is	written	back	to	disk.
Whole	data	 are	 sorted	 in	 chunks	using	Merge-Sort.	Now	we	need	 to	 combine	 these	 sorted	 chunks	 into
final	sorted	data.
	
Then	we	create	queues	for	the	data,	which	will	read	from	the	sorted	chunks.	Each	chunk	will	have	its	own
queue.	We	will	pop	from	this	queue	and	these	queues	are	responsible	for	reading	from	the	sorted	chunks.
Let	us	suppose	we	have	K	different	chunks	of	sorted	data	each	of	length	M.
	
The	third	step	is	using	a	Min-Heap,	which	will	take	input	data	from	each	of	this	queue.	It	will	take	one
element	 from	 each	 queue.	 The	 minimum	 value	 is	 taken	 from	 the	 Heap	 and	 added	 to	 the	 final	 sorted
element	output.	Then	queue	from	which	this	min	element	is	inserted	in	the	heap	will	again	popped	and	one
more	element	from	that	queue	is	added	to	the	Heap.	Finally,	when	the	data	is	exhausted	from	some	queue
that	queue	is	removed	from	the	input	list.	Finally,	we	will	get	a	sorted	data	came	out	from	the	heap.
	
We	can	optimize	this	process	further	by	adding	an	output	buffer,	which	will	store	data	coming	out	of	Heap
and	will	do	a	limited	number	of	the	write	operation	in	the	final	Disk	space.

Note:	No	one	will	be	asking	to	implement	external	sorting	in	an	interview,	but	it	is	good	to	know	about	it.
	



Comparisons	of	the	various	sorting	algorithms.

	
Sort Average	Time Best	Time Worst	Time Space Stability

Bubble-Sort O(n2) O(n2) O(n2) O(1) Stable

Modified	Bubble-Sort O(n2) O(n) O(n2) O(1) Stable

Selection-Sort O(n2) O(n2) O(n2) O(1) Unstable

Insertion-Sort O(n2) O(n) O(n2) O(1) Stable

Heap-Sort O(n*log(n)) O(n*log(n)) O(n*log(n)) O(1) Unstable

Merge-Sort O(n*log(n)) O(n*log(n)) O(n*log(n)) O(n) Stable

Quick-Sort O(n*log(n)) O(n*log(n)) O(n2)
O(n)	worst	case
O(log(n))	average	case Unstable

Bucket	Sort O(n	k) O(n	k) O(n	k) O(n	k) Stable

	

http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/heapsort.html
http://www.cprogramming.com/tutorial/computersciencetheory/mergesort.html
http://www.cprogramming.com/tutorial/computersciencetheory/quicksort.html


Selection	of	Best	Sorting	Algorithm
No	sorting	algorithm	is	perfect.	Each	of	them	has	their	own	pros	and	cons.	Let	us	read	one	by	one:
	
Quick-Sort:	When	you	do	not	need	a	stable	sort	and	average	case	performance	matters	more	than	worst-
case	 performance.	When	data	 is	 random,	we	prefer	 the	Quick-Sort.	Average	 case	Time	Complexity	 of
Quick-Sort	 is	O(nlogn)	and	worst-case	Time	Complexity	 is	O(n2).	Space	Complexity	of	Quick-Sort	 is
O(logn)	auxiliary	storage,	which	is	stack	space	used	in	recursion.
	
Merge-Sort:	When	 you	 need	 a	 stable	 sort	 and	Time	Complexity	 of	O(nlogn),	Merge-Sort	 is	 used.	 In
general,	Merge-Sort	 is	 slower	 than	 Quick-Sort	 because	 of	 lot	 of	 copy	 happening	 in	 the	merge	 phase.
There	are	two	uses	of	Merge-Sort	when	we	want	to	merge	two	sorted	linked	lists	and	Merge-Sort	is	used
in	external	sorting.
	
Heap-Sort:	When	you	do	not	need	a	stable	sort	and	you	care	more	about	worst-case	performance	 than
average	 case	 performance.	 It	 has	 guaranteed	 to	 be	O(nlogn)	 time	 complexity,	 and	 uses	O(1)	 auxiliary
space,	meaning	that	you	will	not	unpredictably	run	out	of	memory	on	very	large	inputs.
	
Insertion-Sort:	When	we	need	a	stable	sort,	When	N	is	guaranteed	to	be	small,	including	as	the	base	case
of	a	Quick-Sort	or	Merge-Sort.	Worst-case	Time	Complexity	is	O(n2),	it	has	a	very	small	constant,	so	for
smaller	 input	 size	 it	 performs	 better	 than	Merge-Sort	 or	Quick-Sort.	 It	 is	 also	 useful	when	 the	 data	 is
already	pre-sorted	in	this	case	its	best	case	running	time	is	O(N).
	
Bubble-Sort:	Where	we	know	 the	data	 is	 very	nearly	 sorted.	Say	only	 two	elements	 are	out	 of	 place.
Then	in	one	pass,	Bubble	Sort	will	make	the	data	sorted	and	in	the	second	pass,	it	will	see	everything	is
sorted	and	then	exit.	Only	takes	2	passes	of	the	array.
	
Selection-Sort:	Best	Worst	Average	Case	running	time	all	O(n2).	It	is	only	useful	when	you	want	to	do
something	quick.	They	can	be	used	when	you	are	just	doing	some	prototyping.
	
Counting-Sort:	When	you	are	sorting	data	within	a	limited	range.
	
Radix-Sort:	When	log(N)	is	significantly	larger	than	K,	where	K	is	the	number	of	radix	digits.
	
Bucket-Sort:	When	your	input	is	more	or	less	uniformly	distributed.
	
Note:	A	stable	sort	is	one	that	has	guaranteed	not	to	reorder	elements	with	identical	keys.
	

http://stackoverflow.com/questions/1933759/when-is-each-sorting-algorithm-used


Exercise
1.	Given	a	text	file,	print	the	words	with	their	frequency.	Now	print	the	kth	word	in	term	of	frequency.

Hint:
·	First	approach	may	be	you	can	use	the	sorting	and	return	the	kth	element.
·	Second	approach:	You	can	use	the	kth	element	quick	select	algorithm.
·	Third	approach:	You	can	use	Hashtable	or	Trie	to	keep	track	of	the	frequency.	Use	Heap	to	get	the

Kth	element
	
2.	Given	K	 input	 streams	 of	 number	 in	 sorted	 order.	You	 need	 to	make	 a	 single	 output	 stream,	which

contains	all	 the	elements	of	 the	K	streams	in	sorted	order.	The	 input	streams	support	ReadNumber()
operation	and	output	stream	support	WriteNumber()	operation.
Hint:
·	Read	the	first	number	from	all	the	K	input	streams	and	add	them	to	a	Priority	Queue.	(Nodes	should

keep	track	of	the	input	stream)
·	Dequeue	one	element	at	a	time	from	PQ,	Put	this	element	value	to	the	output	stream,	Read	the	input

stream	number	and	from	the	same	input	stream	add	another	element	to	PQ.
·	If	the	stream	is	empty,	just	continue
·	Repeat	until	PQ	is	empty.

	
3.	Given	K	 sorted	 arrays	 of	 fixed	 length	M.	Also,	 given	 a	 final	 output	 array	 of	 length	M*K.	Give	 an

efficient	algorithm	to	merge	all	the	arrays	into	the	final	array,	without	using	any	extra	space.
Hint:	you	can	use	the	end	of	the	final	array	to	make	PQ.

	
4.	How	will	you	sort	1	PB	numbers?	1	PB	=	1000	TB.
	
5.	What	will	be	the	complexity	of	the	above	solution?
	
6.	Any	other	improvement	on	question	3	solution	if	the	number	of	cores	is	eight.
	
7.	Given	an	integer	array	that	support	three	function	findMin,	findMax,	findMedian.	Sort	the	array.
	
8.	Given	a	pile	of	patient	 files	of	High,	mid	and	 low	priority.	Sort	 these	 files	 such	 that	higher	priority

comes	first,	then	mid	and	last	low	priority.
Hint:	Bucket	sort.

	
9.	Write	pros	and	cons	of	Heap-Sort,	Merge-Sort	and	Quick-Sort.
	
10.	Given	a	rotated	-	sorted	array	of	N	integer	s.	(The	array	was	sorted	then	it	was	rotated	some	arbitrary

number	of	times.)	If	all	the	elements	in	the	array	were	unique	the	find	the	index	of	some	value.
Hint:	Modified	binary	search

	
11.	 In	 the	 problem	9,	what	 if	 there	 are	 repetitions	 allowed	 and	 you	 need	 to	 find	 the	 index	 of	 the	 first

occurrence	of	the	element	in	the	rotated-sorted	array.
	



12.	Merge	two	sorted	arrays	into	a	single	sorted	array.
Hint:	Use	merge	method	of	Merge-Sort.

	
13.	Given	an	array	contain	0’s	and	1’s,	sort	the	array	such	that	all	the	0’s	come	before	1’s.
	
14.	Given	an	array	of	English	characters,	sort	the	array	in	linear	time.
	
15.	Write	a	method	to	sort	an	array	of	strings	so	that	all	the	anagrams	are	next	to	each	other.

·	Loop	through	the	array.
·	For	each	word,	sort	the	characters	and	add	it	to	the	hash	map	with	keys	as	sorted	word	and	value	as

the	original	word.	At	the	end	of	the	loop,	you	will	get	all	anagrams	as	the	value	to	a	key	(which	is
sorted	by	its	constituent	chars).

·	Iterate	over	the	hashmap,	print	all	values	of	a	key	together	and	then	move	to	the	next	key.
Space	Complexity:	O(n),	Time	Complexity:	O(n)



	



CHAPTER	7:	LINKED	LIST
	



Introduction
Let	us	suppose	we	have	an	array	that	contains	following	five	elements	1,	2,	4,	5,	6.	We	want	to	insert	an
element	with	value	“3”	in	between	“2”	and	“4”.	In	the	array,	we	cannot	do	so	easily.	We	need	to	create
another	array	that	is	long	enough	to	store	the	current	values	and	one	more	space	for	“3”.	Then	we	need	to
copy	 these	 elements	 in	 the	 new	 space.	 This	 copy	 operation	 is	 inefficient.	 To	 remove	 this	 fixed	 length
constraint	linked	list	is	used.
	



Linked	List
The	linked	list	is	a	list	of	items,	called	nodes.	Nodes	have	two	parts,	value	part	and	link	part.	Value	part
is	used	 to	stores	 the	data.	The	value	part	of	 the	node	can	be	either	a	basic	data-type	 like	an	 integer	or
some	other	data-type	like	structure.
The	link	part	is	a	pointer,	which	is	used	to	store	addresses	of	the	next	element	in	the	list.



Types	of	Linked	list
There	are	different	types	of	linked	lists.	The	main	difference	among	them	is	how	their	nodes	refer	to	each
other.
	

Singly	Linked	List
Each	node	(Except	the	last	node)	has	a	reference	to	the	next	node	in	the	linked	list.	The	link	portion	of
node	contains	the	address	of	the	next	node.	The	link	portion	of	the	last	node	contains	the	value	NULL.

Doubly	Linked	list
The	node	in	this	type	of	linked	list	has	reference	to	both	previous	and	the	next	node	in	the	list.

Circular	Linked	List
This	type	is	similar	to	the	singly	linked	list	except	that	the	last	element	points	to	the	first	node	of	the	list.
The	link	portion	of	the	last	node	contains	the	address	of	the	first	node.

The	various	parts	of	linked	list
1.	Head:	Head	is	a	pointer	that	holds	the	address	of	the	first	node	in	the	linked	list.
2.	Nodes:	Items	in	the	linked	list	are	called	nodes.
3.	Value:	The	data	that	is	stored	in	each	node	of	the	linked	list.
4.	Link:	Link	part	of	the	node	is	used	to	store	the	address	of	the	node.

a.	We	will	use	“next”	and	“prev”	to	store	address	of	next	or	previous	node.
	



Singly	Linked	List

Look	at	Node	in	this	example,	its	value	part	is	of	type	int	(it	can	be	of	some	other	data-type).	The	link	is
named	as	next	in	the	below	structure.	We	have	typedef	the	Node*	to	NodePtr	so	that	our	code	looks	clean.
	
struct	Node	{

int	value;
Node	*next;

};
typedef	Node*	NodePtr;
	

Note:	For	a	singly	linked,	we	should	always	test	these	three	test	cases	before	saying	that	the	code	is	good
to	go.	This	one	node	and	zero	node	case	is	used	to	catch	boundary	cases.	It	is	always	to	take	care	of	these
cases	before	submitting	code	to	the	reviewer.
	
	

·	Zero	element	/	Empty	linked	list.
·	One	element	/	Just	single	node	case.
·	General	case.

	
Note:	Any	program	that	is	likely	to	change	the	head	pointer	is	to	be	passed	as	a	double	pointer.
	
Basic	 operation	 of	 a	 linked	 list	 requires	 traversing	 a	 linked	 list.	 The	 various	 operations	 that	 we	 can
perform	on	linked	lists,	many	of	these	operations	require	list	traversal:

·	Insert	an	element	in	the	list,	this	operation	is	used	to	create	a	linked	list.
·	Print	various	elements	of	the	list.
·	Search	an	element	in	the	list.
·	Delete	an	element	from	the	list.
·	Reverse	a	linked	list.

	
You	cannot	use	Head	to	traverse	a	linked	list	because	if	we	use	the	head,	then	we	lose	the	nodes	of	the
list.	We	have	to	use	another	pointer	variable	of	same	data-type	as	the	head.

Insert	element	in	linked	list
An	element	can	be	inserted	into	a	linked	list	in	various	orders.	Some	of	the	example	cases	are	mentioned
below:

1.	Insertion	of	an	element	at	the	start	of	linked	list



2.	Insertion	of	an	element	at	the	end	of	linked	list
3.	Insertion	of	an	element	at	the	2nd	position	in	linked	list
4.	Insert	element	in	sorted	order	in	linked	list

	

Example	7.1
1.	struct	Node	{
2.	int	value;
3.	Node	*next;
4.	};
5.	typedef	Node*	NodePtr;
	
1.	int	InsertNode(NodePtr*	ptrHead,	int	value)
2.	{
3.	printf("Insert	Node:	%d",	value);
4.	NodePtr	tempPtr	=	(NodePtr)	malloc	(sizeof	(Node));
5.	if(!tempPtr)
6.	return	-1;
7.	tempPtr->value=value;
8.	tempPtr->next=*ptrHead;
9.	*ptrHead=tempPtr;
10.	return	1;
11.	}



	
Analysis:
Line	1:	Double	pointer	ptrHead	is	passed	to	the	function	as	argument,	as	we	want	to	assign	the	new	node
to	the	head	of	the	linked	list.
Line	3:	Value	passed	as	argument	is	printed	to	standard	output.
Line	4:	Memory	is	allocated	for	the	new	node	of	the	list	and	is	pointed	by	trmpPtr.
Line	5-6:	Here	it	is	checked	if	the	system	is	able	to	allocate	memory	if	malloc()	succeeded	in	allocating
memory	 it	 returns	 the	address	of	 that	memory	 location.	Moreover,	 if	malloc()	 fails	 to	allocate	memory,
then	it	returns	NULL.
Line	7:	The	value	passed	as	argument	is	stored	in	the	memory	pointed	by	tempPtr
Line	8:	The	new	node	next	pointer	will	point	to	the	head	of	the	original	list.
Line	9:	The	head	of	 the	original	 list	will	now	start	pointing	 to	 tempPtr.	There	by	adding	a	node	at	 the
beginning	of	the	linked	list	is	done.
	

Traversing	Linked	List
Example	7.2:	Print	various	elements	of	a	linked	list
1.	void	PrintList(NodePtr	head)
2.	{
3.	while(head)
4.	{
5.	printf("value	%d	\n",	head->value);
6.	head=head->next;
7.	}
8.	}
	
Analysis:
Line	1:	This	function	takes	the	head	of	the	list	as	input	argument.
Line	3:	On	this	line,	we	are	checking	if	the	head	is	not	NULL.	If	the	head	is	not	null	then	while	block	will
execute.
Line	5:	It	prints	value	stored	as	the	value	of	the	current	node.
Line	6:	At	this	line,	we	are	incrementing	the	head	pointer,	so	that	it	will	point	to	the	next	element	of	the
linked	list.
	

Complete	code	for	list	creation	and	printing	the	list.
Example	7.3:
1.	int	main()
2.	{
3.	NodePtr	head	=	NULL;
4.	int	arr[5]	=	{	1,	2,	3,	4,	5	};
5.	int	i;
6.	for	(i	=	0;	i<5;	i++)
7.	{
8.	InsertNode(&head,	arr[i]);



9.	}
10.	return	0;
11.	}
	
Analysis:
Line	3:	Head	pointer	of	 the	 list	 is	 created	and	 it	 is	 assigned	 the	value	NULL.	Head	pointing	 to	NULL
means	the	list	is	empty.
Line	4:	In	this,	we	have	created	an	array	of	5	elements.	These	elements	will	be	sorted	in	the	list.
Line	6-9:	Value	stored	in	array	are	stored	in	list	by	calling	InsertNode	function.
	

Insert	an	element	at	the	end	of	linked	list	given	Head	pointer
Example	7.6:	Insert	an	element	at	the	end	of	linked	list	given	Head	pointer
1.	int	InsertAtEnd(NodePtr*	ptrHead,	int	value)
2.	{
3.	printf("insert	element	%d	\n",	value);
4.	NodePtr	head=*ptrHead;
5.	NodePtr	tempNode	=	(NodePtr)	malloc(sizeof(Node));
6.	if(!tempNode)
7.	return	-1;
8.	tempNode->value=value;
9.	tempNode->next=NULL;
10.	if(head==NULL)
11.	{
12.	tempNode->next=*ptrHead;
13.	*ptrHead=tempNode;
14.	return	1;
15.	}
16.	while(head->next	!=	NULL)
17.	{
18.	head=head->next;
19.	}
20.	tempNode->next=head->next;
21.	head->next=tempNode;
22.	return	1;
23.	}
	
Analysis:
Line	3-14:	New	node	is	created	and	the	value	is	stored	inside	it.	If	the	list	is	empty,	then	it	will	be	pointed
by	the	head	pointer	ptrHead.
Line	16-19:	Will	traverse	until	the	end	of	the	list.
Line	20-21:	Finally,	new	node	is	added	to	the	end	of	the	list.
	
Note:	This	operation	is	un-efficient	as	each	time	you	want	to	insert	an	element	you	have	to	traverse	to	the
end	of	the	list.	Therefore,	the	complexity	of	creation	of	the	list	is	n2.	So	how	to	make	it	efficient	we	have



to	keep	 track	of	 the	 last	 element	by	keeping	a	 tail	 pointer.	Therefore,	 if	 it	 is	 required	 to	 always	 insert
element	at	the	end	of	linked	list,	so	that	we	will	keep	track	of	the	tail	pointer	also.
	

Insertion	of	an	element	at	the	end
Insertion	of	an	element	at	the	end	of	linked	list	(given	head	pointer,	and	tail	pointer)

	

Example	7.5:
1.	int	InsertNode(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)
2.	{
3.	printf("Insert	Node::	%d",value);
4.	NodePtr	tempPtr=	(NodePtr)malloc(sizeof(Node));
5.	if(!tempPtr)
6.	return	-1;
7.	tempPtr->value=value;
8.	tempPtr->next=NULL;



9.	if(*ptrHead	==	NULL)
10.	{
11.	*ptrTail=*ptrHead=tempPtr;
12.	}
13.	else
14.	{
15.	NodePtr	tail	=	*ptrTail;
16.	tail->next=tempPtr;
17.	*ptrTail=tempPtr;
18.	}
19.	return	1;
20.	}
	
Analysis:
Line	4-8:	New	linked	list	node	is	created	and	the	value	stored	inside	it	and	its	next	points	to	NULL.
Line	9-12:	If	the	linked	list	is	empty.	Then	the	new	node	will	be	pointed	by	ptrTail	and	ptrHead.
Line	15-17:	If	linked	list	is	not	empty,	then	list	ptrHead	will	not	change.	Only	the	ptrTail	will	be	changed
and	it	will	point	to	this	new	node.
	

Sorted	Insert
Insert	an	element	in	sorted	order	in	linked	list	given	Head	pointer

Example	7.4:



1.	int	SortedInsert(NodePtr*	ptrHead,	int	value)
2.	{
3.	NodePtr	curr=*ptrHead;
4.	NodePtr	tempNode	=	(NodePtr)	malloc(sizeof(Node));
5.	printf("Insert	element	%d	\n",	value);
6.	if(!tempNode)
7.	return	-1;
8.	tempNode->value=value;
9.	tempNode->next=NULL;
10.	if(curr==NULL	||	curr->value>value)
11.	{
12.	tempNode->next=*ptrHead;
13.	*ptrHead=tempNode;
14.	return	1;
15.	}
	
16.	while(curr->next	!=	NULL	&&
17.	curr->next->value	<	value)
18.	{
19.	curr=curr->next;
20.	}
21.	tempNode->next=curr->next;
22.	curr->next=tempNode;
23.	return	1;
24.	}
	
Analysis:
Line	3:	Head	of	the	list	is	stored	in	curr	pointer.
Line	4-9:	A	new	empty	node	of	the	linked	list	is	created.	It	is	initialized	by	storing	an	argument	value	into
its	value.	Next	of	the	node	will	point	to	null.
Line	10-15:	It	checks	if	the	list	was	empty	or	if	the	value	stored	in	the	first	node	is	greater	than	the	current
value.	Then	this	new	created	node	will	be	added	to	the	start	of	the	list.
Line	16-20:	We	iterate	through	the	list	to	find	the	proper	position	to	insert	the	node.
Line	21-23:	Finally,	the	node	will	be	added	to	the	list.
	

Search	Element	in	a	Linked-List
Search	element	in	linked	list.	Given	a	head	pointer	and	value.	Returns	1	if	value	found	in	list	else	returns
0.
Search	in	a	single	linked	list	can	be	only	done	in	one	direction.	Since	all	elements	in	the	list	has	reference
to	the	next	item	in	the	list.	Therefore,	traversal	of	linked	list	is	linear	in	nature.
	
Example	7.7:
1.	int	SearchList(NodePtr	head,	int	value)
2.	{



3.	while(head)
4.	{
5.	If(head->value	==	value)
6.	{
7.	printf(“The	value	is	found”);
8.	return	1;
9.	}
10.	head=head->next;
11.	}
12.	return	0;
13.	}
	
Analysis:
Line	1:	We	do	not	need	to	modify	the	list	so	pointer	to	the	head	is	passed	(no	double	pointer	needed).
Line	3:	While	loop	will	iterate	through	the	list	and	will.
Line	5:	Value	of	each	element	of	list	is	compared	with	the	given	value	if	found,	then	“The	value	is	found”
will	be	printed	to	the	screen.	In	addition,	function	will	return	1.
Line	12:	If	the	value	is	not	found,	then	0	will	be	returned	from	the	function.
	

Delete	element	from	the	linked	list

	

Delete	First	element	in	a	linked	list.
Example	7.8:
1.	void	DeleteFirstNodes(NodePtr*	ptrHead)
2.	{



3.	printf("\nDelete	First	Node	\n");
4.	NodePtr	tempNode=*ptrHead;
5.	if(tempNode==NULL)
6.	return;
7.	*ptrHead	=	tempNode->next;
8.	free(tempNode);
9.	}
	
Analysis:
·	We	need	to	find	the	second	element	of	the	list	and	assign	it	as	head	of	the	linked	list.
·	If	the	list	has	at	least	one	element,	its	first	element	will	be	deleted	and	the	head	of	the	list	will	point	to

the	second	element.
	

Delete	node	from	the	linked	list	given	its	value.

	
Example	7.9:
1.	void	DeleteNode(NodePtr*	ptrHead,	int	delValue)
2.	{
3.	printf("\nDelete	Node	\n");
4.	NodePtr	currNode=*ptrHead;
5.	NodePtr	nextNode;



6.
7.	if(currNode->value==delValue)/*first	node	*/
8.	{
9.	*ptrHead=currNode->next;
10.	free(currNode);
11.	return;
12.	}
13.
14.	while(currNode!=NULL)
15.	{
16.	nextNode=currNode->next;
17.	if(nextNode	&&	nextNode->value	==	delValue)
18.	{
19.	currNode->next	=	nextNode->next;
20.	free(nextNode);
21.	return;
22.	}
23.	else
24.	{
25.	currNode=nextNode;
26.	}
27.	}
28.	}
	
Analysis:
Line	7-12:	If	 the	value	stored	in	first	node	is	the	value	that	need	to	deleted,	so	the	head	of	the	list	will
change	so	this	case	is	handled	separately.	Else,	in	no	other	case	head	of	linked	list	will	change.
	
Line	14-27:	We	traverse	the	link	list	 in	a	loop	to	find	the	node	that	need	to	be	deleted.	We	are	keeping
nextNode	as	the	next	of	currNode.	We	always	compare	nextNode	value	with	the	delValue	and	currNode’s
next	pointer	will	point	to	the	nextNode’s	next	pointer.	Then	nextNode	is	the	node	that	needs	to	be	deleted
which	is	finally	free	at	line	20.
	

Delete	all	the	occurrence	of	particular	value	in	linked	list.
	
Example	7.10:
1.	void	DeleteNodes(NodePtr*	ptrHead,	int	delValue)
2.	{
3.	printf("\nDelete	Node	\n");
4.	NodePtr	currNode=*ptrHead;
5.	NodePtr	nextNode;
6.	NodePtr	delNode;
7.
8.	while(currNode!=NULL	&&	currNode->value==delValue)/*first	node	*/



9.	{
10.	*ptrHead=currNode->next;
11.	delNode=currNode;
12.	currNode=currNode->next;
13.	free(delNode);
14.	}
15.
16.	while(currNode!=NULL)
17.	{
18.	nextNode=currNode->next;
19.	if(nextNode	&&	nextNode->value	==	delValue)
20.	{
21.	currNode->next	=	nextNode->next;
22.	free(nextNode);
23.	}
24.	else
25.	{
26.	currNode=nextNode;
27.	}
28.	}
29.	}
	
Analysis:
Line	8-14:	While	loop	will	delete	all	the	nodes	that	are	at	the	front	of	the	list,	which	have	valued	equal	to
delValue.
Line	 16-28:	 In	 this	 while	 loop,	 we	 will	 be	 deleting	 all	 the	 nodes	 that	 are	 having	 value	 equal	 to	 the
delValue.
	

Delete	node	from	the	linked	list	given	its	pointer
Example	7.11:
1.	void	DeleteNodePtr(NodePtr*	ptrHead,	NodePtr	ptrDel)
2.	{
3.	printf("\ndeleteNode\n");
4.	NodePtr	currNode=*ptrHead;
5.	NodePtr	nextNode;
6.
7.	if(ptrDel==NULL)
8.	return;
9.
10.	if(currNode==ptrDel)//first	node
11.	{
12.	*ptrHead=currNode->next;
13.	free(currNode);
14.	}



15.	while(currNode!=NULL)
16.	{
17.	nextNode=currNode->next;
18.	if(nextNode==ptrDel)//node	to	be	deleated
19.	{
20.	currNode->next=nextNode->next;
21.	free(nextNode);	return;
22.	}
23.	else
24.	{
25.	currNode=nextNode;
26.	}
27.	}
28.	}
	
Analysis:
Line	10-14:	If	the	node	that	need	to	be	deleted	is	the	first	node,	then	the	head	of	the	linked	list	will	change
and	will	point	to	the	next	element	of	the	linked	list.
Line	15-27:	In	this	while,	loop	the	node	that	is	supposed	to	be	deleted	will	be	removed	from	the	list.

Delete	a	single	linked	list
Delete	all	the	elements	of	a	linked	list,	given	a	pointer	to	head	of	linked	list.
	
Example	7.12:
1.	void	DeleteList(NodePtr*	ptrHead)
2.	{
3.	printf("\nDelete	List\n");
4.	NodePtr	deleteMe=*ptrHead;
5.	NodePtr	nextNode;
6.	while(deleteMe!=NULL)
7.	{
8.	nextNode=deleteMe->next;
9.	free(deleteMe);
10.	deleteMe=nextNode;
11.	}
12.	*ptrHead=NULL;
13.	}
	
Analysis:
Line	6-11:	In	this	while	loop	each	node	is	deleted	one	by	one.	Until	whole	list	is	deleted.
Line	12:	In	this	line	head	of	linked	list	is	assigned	the	value	NULL	there	by	making	the	list	empty.
	

Reverse	a	linked	list.
Reverse	a	singly	linked	List	iteratively	using	three	Pointers



	
Example	7.13:
1.	void	ReverseList(NodePtr*	ptrHead)
2.	{
3.	NodePtr	currNode=*ptrHead;
4.	NodePtr	prevNode;
5.	NodePtr	nextNode;
6.	if(!currNode)
7.	{
8.	return;
9.	}
10.	if(!currNode->next)
11.	{
12.	return;
13.	}
14.	prevNode=currNode;
15.	currNode=currNode->next;
16.	prevNode->next=NULL;
17.	while(tempNode)
18.	{
19.	nextNode=	currNode	->next;
20.	currNode	->next=prevNode;
21.	prevNode=	currNode;
22.	currNode	=nextNode;
23.
24.	}
25.	*ptrHead=prevNode;
26.	}
	
Analysis:
Line	17-24:	The	list	is	iterated.	Make	nextNode	equal	to	the	next	node	of	the	currNode.	Make	currNode
node’s	 next	 will	 point	 to	 prevNode.	 Then	 iterate	 the	 list	 by	making	 prevNode	 point	 to	 currNode	 and
currNode	point	to	nextNode.
	

Recursively	Reverse	a	singly	linked	List
	
Example	7.14:	Recursively	Reverse	singly	linked	List	Arguments	are	current	node	and	its	next	value.
1.	NodePtr	reverseRecurseUtil	(NodePtr	currentNode,	NodePtr	nextNode)
2.	{
3.	NodePtr	ret;
4.	if(!currentNode)
5.	return	NULL;
6.
7.	if(!currentNode->next)



8.	{
9.	currentNode->next=nextNode;
10.	return	currentNode;
11.	}
12.
13.	ret=	reverseRecurseUtil	(currentNode->next,	currentNode);
14.	currentNode->next=nextNode;
15.
16.	return	ret;
17.	}
18.
19.	void	reverseRecurse(NodePtr*	ptrHead)
20.	{
21.	*ptrHead=reverseRecurseUtil(*ptrHead,NULL);
22.	}
	
Analysis:	Line	19-22:	reverseRecurse	function	will	call	a	reverseRecurseUtil	function	to	reverse	the	list
and	the	pointer	returned	by	the	reverseRecurseUtil	will	be	the	head	of	the	reversed	list.
Line	9	&	14:	the	current	node	will	point	to	the	nextNode	that	is	previous	node	of	the	old	list.
	
Note:	A	linked	list	can	be	reversed	using	two	approaches	the	one	approach	is	by	using	three	pointers.	The
Second	approach	is	using	recursion	both	are	linear	solution,	but	three-pointer	solution	is	more	efficient.
	

Remove	duplicates	from	the	linked	list
Remove	 duplicate	 values	 from	 the	 linked	 list.	 The	 linked	 list	 is	 sorted	 and	 it	 contains	 some	 duplicate
values,	 you	 need	 to	 remove	 those	 duplicate	 values.	 (You	 can	 create	 the	 required	 linked	 list	 using
SortedInsert()	function)
	
Example	7.15:
1.	void	RemoveDuplicate(NodePtr	head)
2.	{
3.	NodePtr	deleteMe;
4.	while(head)
5.	{
6.	if((head->next)	&&	head->value	==	head->next->value)
7.	{
8.	deleteMe=head->next;
9.	head->next=deleteMe->next;
10.	free(deleteMe);
11.	}
12.	else
13.	{
14.	head=head->next;
15.	}



16.	}
17.	}
	
Analysis:	Line	4-16:	While	 loop	 is	used	 to	 traverse	 the	 list.	Whenever	 there	 is	a	node	whose	value	 is
equal	to	the	next	node’s	value,	that	node	will	be	removed	from	the	list	and	delete	that	node.
	

Copy	List	Reversed
Copy	the	content	of	linked	list	 in	another	linked	list	 in	reverse	order.	If	 the	original	linked	list	contains
elements	in	order	1,2,3,4,	the	new	list	should	contain	the	elements	in	order	4,3,2,1.
	
Example	7.16:
1.	void	CopyListReversed(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	tempNode=NULL;
5.	NodePtr	tempNode2=NULL;
6.	while(head)
7.	{
8.	tempNode2	=	(NodePtr)malloc(	sizeof(Node));
9.	tempNode2->value=head->value;
10.	tempNode2->next=tempNode;
11.	tempNode=tempNode2;
12.	head=head->next;
13.	}
14.	*ptrHead2=tempNode;
15.	}
	
Analysis:	 Traverse	 the	 list	 and	 add	 the	 node’s	 value	 to	 the	 new	 list.	 Since	 the	 list	 is	 traversed	 in	 the
forward	direction	and	each	node’s	value	is	added	to	another	list	so	the	formed	list	is	reverse	of	the	given
list.
	

Copy	the	content	of	given	linked	list	into	another	linked	list
Copy	the	content	of	given	linked	list	into	another	linked	list.	If	the	original	linked	list	contains	elements	in
order	1,2,3,4,	the	new	list	should	contain	the	elements	in	order	1,2,3,4.
	
Example	7.17:
1.	void	CopyList(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	headNode=NULL;
5.	NodePtr	tailNode=NULL;
6.	NodePtr	tempNode=NULL;
7.



8.	if(head==NULL)
9.	return;
10.	headNode=(NodePtr)malloc(sizeof(Node));
11.	tailNode=headNode;
12.	headNode->value=head->value;
13.	headNode->next=NULL;
14.	head=head->next;
15.
16.	while(head)
17.	{
18.	tempNode=(NodePtr)malloc(	sizeof(Node));
19.	tempNode->value=head->value;
20.	tempNode->next=NULL;
21.	tailNode->next=tempNode;
22.	tailNode=tailNode->next;
23.	head=head->next;
24.	}
25.	*ptrHead2=headNode;
26.	}
Analysis:	Traverse	the	list	and	add	the	node’s	value	to	new	list,	but	this	time	always	at	the	end	of	the	list.
Since	the	list	is	traversed	in	the	forward	direction	and	each	node’s	value	is	added	to	the	end	of	another
list.	Therefore,	the	formed	list	is	same	as	the	given	list.
	

Compare	List
Example	7.18:
1.	int	compareList(NodePtr	head1,	NodePtr	head2)
2.	{
3.	printf("compare	list");
4.	if(	head1==NULL	&&	head2==NULL	)
5.	return	1;
6.	else	if(	(head1==NULL)	||(head2==NULL)	||	(head1->value!=head2->value)	)
7.	return	0;
8.	else
9.	return	compareList(head1->next,head2->next);
10.	}
	
Analysis:
Line	4-5:	List	 is	compared	recursively.	Moreover,	 if	we	reach	 the	end	of	 the	 list	and	both	 the	 lists	are
null.	Then	both	the	lists	are	equal	and	so	return	1.
Line	6-7:	List	 is	 compared	 recursively.	 If	 either	one	of	 the	 list	 is	 empty	or	 the	value	of	corresponding
nodes	is	unequal,	then	this	function	will	return	0.
Line	9:	Recursively	calls	compare	list	function	for	the	next	node	of	the	current	nodes.
	



Compare	List
Example	7.19:
1.	int	compareList2(NodePtr	head1,	NodePtr	head2)
2.	{
3.	while(	head1!=NULL	&&	head2!=NULL	)
4.	{
5.	if(head1->value!=head2->value)
6.	return	0;
7.	head1=head1->next;
8.	head2=head2->next;
9.	}
10.	if(head1==head2)
11.	{
12.	return	1;
13.	}
14.	else
15.	{
16.	return	0;
17.	}
18.	}
Analysis:
Line	3-9:	Both	the	lists	are	traversed	until	one	list	is	empty	or	there	value	of	the	corresponding	node	is
unequal.
Line	11-17:	If	both	 the	 list	are	reached	to	 the	end,	which	means	both	 the	list	are	equal	so	return	1	else
return	0.
	

Find	Length
	
Example	7.20:	Find	the	length	of	given	linked	list.
1.	int	findLength(NodePtr	head)
2.	{
3.	int	count	=	0;
4.	while	(head)
5.	{
6.	count++;
7.	head	=	head->next;
8.	}
9.	return	count;
10.	}
	
Analysis:	Length	of	linked	list	is	found	by	traversing	the	list	until	we	reach	the	end	of	list.
	

Nth	Node	from	Beginning



	
Example	7.21:
1.	NodePtr	nthNodeFromBegining(NodePtr	head,	int	index)
2.	{
3.	int	count	=	0;
4.	while	(head	&&	count	<	index-1)
5.	{
6.	count++;
7.	head	=	head->next;
8.	}
9.
10.	if	(head)
11.	return	head;
12.	else
13.	return	NULL;
14.	}
	
Analysis:	Nth	node	can	be	found	by	traversing	the	list	N-1	number	of	time	and	then	return	the	node	if	it	is
not	NULL	else	return	NULL.
	

Nth	Node	from	End
Example	7.22:
1.	NodePtr	nthNodeFromEnd(NodePtr	head,	int	index)
2.	{
3.	int	size	=	findLength(head);
4.	int	startIndex;
5.	if	(size	&&	size	<	index)
6.	{
7.	printf("list	does	not	have	%	elements",	index);
8.	return	NULL;
9.	}
10.	startIndex	=	size	-	index	+	1;
11.	return	nthNodeFromBegining(head,	startIndex);
12.	}
	
Analysis:	First,	 find	 the	 length	of	 list,	 then	nth	node	 from	end	will	 be	 (length	–	nth	+1)	node	 from	 the
beginning.
	
Example	7.23:
1.	NodePtr	nthNodeFromEnd(NodePtr	head,	int	index)
2.	{
3.	int	count	=	0;
4.	NodePtr	temp	=	NULL;
5.	NodePtr	curr	=	head;



6.	while	(curr	&&	count	<	index	-	1)
7.	{
8.	count++;
9.	curr	=	curr->next;
10.	}
11.
12.	if	(!curr)
13.	return	NULL;
14.
15.	temp	=	head;
16.
17.	while	(curr)
18.	{
19.	temp	=	temp->next;
20.	curr	=	curr->next;
21.	}
22.	return	temp;
23.	}
	
Analysis:	Second	approach	is	to	use	two	pointers	one	is	N	steps	/	nodes	ahead	of	the	other	when	forward
pointer	reach	the	end	of	the	list	then	the	backward	pointer	will	point	to	the	desired	node.
	
Example	7.24
1.	NodePtr	nthNodeFromEnd(NodePtr	head,	int	index)
2.	{
3.	static	int	count=0;
4.	NodePtr	retval;
5.
6.	if	(!head)
7.	return	NULL;
8.
9.	retval	=	nthNodeFromEnd3(head->next,	index);
10.	if	(retval)
11.	return	retval;
12.
13.	count++;
14.	if	(count	==	index)
15.	return	head;
16.	else
17.	return	NULL;
18.	}
	

Loop	Detect
1.	Traverse	through	the	list.



2.	If	the	current	node	is	not	present	in	the	Hash-Table	then	insert	it	into	the	Hash-Table.
3.	If	the	current	node	is	already	in	the	hashtable	then	we	have	a	loop.
	

Loop	Detect
We	have	to	find	if	there	is	a	loop	in	the	linked	list.	There	are	two	ways	to	find	if	there	is	a	loop	in	a	linked
list.	One	way	is	called	“Slow	pointer	and	fast	pointer	approach	(SPFP)”	the	other	is	called	“Reverse	list
approach”.	Both	approaches	are	linear	in	nature,	but	still	in	SPFP	approach,	we	do	not	require	to	modify
the	linked	list	so	it	is	preferred.

Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	a	loop,	then	return	1	if	not,	then	return	0.	Use	slow	pointer
fast	pointer	approach.
	
	

Example	7.25:
1.	int	LoopDetect(NodePtr	head)
2.	{
3.	printf("loop	detect");
4.	NodePtr	slowPtr;
5.	NodePtr	fastPtr;
6.	slowPtr=fastPtr=head;
7.
8.	while(fastPtr->next&&fastPtr->next->next)
9.	{
10.	slowPtr=slowPtr->next;
11.	fastPtr=fastPtr->next->next;



12.	if(slowPtr==fastPtr)
13.	{
14.	return	1;
15.	}
16.	}
17.	return	0;
18.	}
	
Analysis:
Line	8-16:	The	list	is	traversed	with	two	pointers,	one	is	slow	pointer	and	another	is	fast	pointer.	Slow
pointer	 always	moves	one-step.	Fast	pointer	 always	moves	 two	 steps.	 If	 there	 is	no	 loop,	 then	control
will	come	out	of	while	loop.	So	return	0.
	
Line	12-15:	If	there	is	a	loop,	then	there	came	a	point	in	a	loop	where	the	fast	pointer	will	come	and	try	to
pass	slow	pointer.	When	this	point	arrives,	we	come	to	know	that	there	is	a	loop	in	the	list.	So	return	1.
	

Reverse	List	Loop	Detect
Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	a	loop,	then	return	1	if	not,	then	return	0.	Use	reverse	list
approach.
	
Example	7.26:
1.	int	ReverseListLoopDetect(NodePtr	head)
2.	{
3.	NodePtr*	ptrHead=&head;
4.	NodePtr	head2=head;
5.	reverseList(ptrHead);
6.	if(*ptrHead==head2)
7.	{
8.	reverseList(ptrHead);
9.	return	1;
10.	}
11.	else
12.	{
13.	reverseList(ptrHead);
14.	return	0;
15.	}
16.	}
	
Analysis:
Line	5:	reverse	the	list	at	this	line.
Line	6:	compare	the	reversed	list	head	pointer	to	the	current	list	head	pointer.
Line	8-9:	If	the	head	of	reversed	list	and	the	original	list,	are	same	then	reverse	the	list	back	and	return	1.
Line	13-14:	If	the	head	of	the	reversed	list	and	the	original	list	are	not	same	then	reverse	the	list	back	and
return	0.	Which	means	there	is	no	loop.



	

Loop	Type	Detect
Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	no	loop,	then	return	0,	if	there	is	loop	return	1,	if	the	list
is	circular	then	2.	Use	slow	pointer	fast	pointer	approach.
	
Example	7.27:
1.	int	LoopTypeDetect(NodePtr	const	head)
2.	{
3.	printf("loop	detect");
4.	NodePtr	slowPtr;
5.	NodePtr	fastPtr;
6.
7.	slowPtr=fastPtr=head;
8.	while(fastPtr->next	&&	fastPtr->next->next)
9.	{
10.
11.	slowPtr=slowPtr->next;
12.	fastPtr=fastPtr->next->next;
13.
14.	if(head==fastPtr->next	||	head==fastPtr->next->next)
15.	{
16.	return	2;
17.	}
18.	if(slowPtr==fastPtr)
19.	{
20.	return	1;
21.	}
22.	}
23.	return	0;
24.	}
	
Analysis:	This	program	is	same	as	the	loop	detect	program	except	Line	14-17.
Line	 14-17:	 If	 fast	 pointer	 reaches	 to	 the	 head	 of	 the	 list,	 then	 this	 means	 that	 there	 is	 a	 loop	 at	 the
beginning	of	the	list.
	

Remove	Loop
	
Example	7.28:
1.	void	RemoveLoop(NodePtr*	ptrHead)
2.	{
3.	int	loopLength;
4.	NodePtr	slowPtr,fastPtr,	head;
5.	slowPtr=fastPtr=head=*ptrHead;



6.	NodePtr	loopNode=NULL;
7.	while(fastPtr->next	&&	fastPtr->next->next	)
8.	{
9.	fastPtr=fastPtr->next->next;
10.	slowPtr=slowPtr->next;
11.
12.	if(fastPtr==slowPtr	||	fastPtr->next==slowPtr)
13.	{
14.	loopNode=slowPtr;
15.	break;
16.	}
17.	}
18.	if(loopNode)
19.	{
20.	NodePtr	temp=loopNode->next;
21.	loopLength=1;
22.	while(temp!=loopNode)
23.	{
24.	loopLength++;
25.	temp=temp->next;
26.	}
27.	temp=head;
28.	NodePtr	breakNode=head;
29.
30.	for(int	i=1;i<loopLength;i++)
31.	{
32.	breakNode=breakNode->next;
33.	}
34.
35.	while(temp	!=	breakNode->next)
36.	{
37.	temp=temp->next;
38.	breakNode=breakNode->next;
39.	}
40.	breakNode->next=NULL;
41.	}
42.	}
	
Analysis:
Loop	through	the	list	by	two	pointer,	one	fast	pointer	and	one	slow	pointer.	Fast	pointer	jumps	two	nodes
at	 a	 time	 and	 slow	pointer	 jump	 one	 node	 at	 a	 time.	The	 point	where	 these	 two	 pointer	 intersect	 is	 a
pointer	in	the	loop.
Then	since	we	have	a	pointer	in	a	loop,	we	can	find	the	length	of	the	loop.
	
Take	a	pointer	breakNode	that	point	 to	 the	head	of	 the	 linked	list.	 Increment	 the	 list	by	loop	length	and



then	 increment	 the	head	and	breakNode	pointer	until	both	are	equal.	When	you	have	a	breakNode	 then
assign	its	next	to	NULL.
	
There	is	one	more	solution	possible	to	find	the	break	point.	The	point	where	slow	pointer	and	fast	pointer
meets	 in	 loop,	call	 it	 loop	point.	Start	one	pointer	 from	head	and	other	 from	loop	point	 increment	both
one-step	at	a	 time	 they	will	meet	at	 the	 loop	point.	Mark	 the	next	of	 loop	point	null	and	you	are	done.
(This	can	be	proved	mathematically)
	

Find	Intersection

Example	7.29:
1.	NodePtr	findIntersection(NodePtr	head,	NodePtr	head2)
2.	{
3.	int	l1=0;
4.	int	l2=0;
5.	NodePtr	tempHead=head;
6.	NodePtr	tempHead2=head2;
7.
8.	while(tempHead)
9.	{
10.	l1++;
11.	tempHead=tempHead->next;
12.	}
13.	while(tempHead2)
14.	{
15.	l2++;
16.	tempHead2=tempHead2->next;
17.	}
18.
19.	int	diff;
20.	if(l1<12)
21.	{
22.	NodePtr	temp=head;
23.	head=head2;
24.	head2=temp;
25.	diff=l2-l1;
26.	}
27.	else
28.	{



29.	diff=l1-l2;
30.	}
31.
32.	for(;diff>0;diff--)
33.	{
34.	head=head->next;
35.	}
36.	while(head!=head2)
37.	{
38.	head=head->next;
39.	head2=head2->next;
40.	}
41.
42.	return	head;
43.	}
	
Analysis:	Find	length	of	both	the	lists.	Find	the	difference	of	length	of	both	the	lists.	Increment	the	longer
list	by	diff	steps,	then	increment	both	the	lists	and	get	the	intersection	point.
	



Doubly	Linked	List
In	a	Doubly	Linked	list,	there	are	two	pointers	in	each	node.	These	pointers	are	called	prev	and	next.	The
prev	pointer	of	the	node	will	point	to	the	node	before	it	and	the	next	pointer	will	point	to	the	node	next	to
the	given	node.

	
Let	us	look	at	Node	in	this	example	the	value	is	of	type	int,	but	it	can	be	of	some	other	data-type.	The	two
link	pointers	are	prev	and	next.	We	have	typedef	the	Node*	to	NodePtr	so	that	our	code	looks	clean.
	
struct	Node{

int	value;
struct	Node	*next;
struct	Node	*prev;

};
	
typedef	Node*	NodePtr;
	

	
Search	in	a	single	linked	list	can	be	only	done	in	one	direction.	Since	all	elements	in	the	list	has	reference
to	the	next	item	in	the	list.	Therefore,	traversal	of	linked	list	is	linear	in	nature.
	
In	a	doubly	linked	list,	we	keep	track	of	both	head	of	the	linked	list	and	tail	of	linked	list.
	
Note:	For	a	doubly	linked	list,	few	cases	need	to	keep	in	mind	while	coding:

·	Zero	element	case	(head	and	tail	both	can	be	modified)
·	Only	element	case	(head	and	tail	both	can	be	modified)
·	First	element	(head	can	be	modified)
·	General	case
·	The	last	element	(tail	can	be	modified)

	
Note:	Any	program	that	is	likely	to	change	head	pointer	or	tail	pointer	is	to	be	passed	as	a	double	pointer,
which	is	pointing	to	head	or	tail	pointer.
	

Traversing	Linked	List



Basic	 operation	 of	 a	 linked	 list	 requires	 traversing	 a	 linked	 list.	 The	 various	 operations	 that	 we	 can
perform	on	linked	lists,	many	of	these	operations	require	list	traversal:

·	Insert	an	element	in	the	list,	this	operation	is	used	to	create	a	linked	list.
·	Print	various	elements	of	the	list.
·	Search	an	element	in	the	list.
·	Delete	an	element	from	the	list.
·	Reverse	a	linked	list.

	
You	cannot	use	Head	to	traverse	a	linked	list	because	if	we	use	the	head,	then	we	lose	the	nodes	of	the
list.	We	have	to	use	another	pointer	variable	of	same	data-type	as	the	head.
	
The	list	traversal	code	is	mentioned	next.
NodePtr	current	=	head;
	
while	(current	!=	NULL)	{

/*	Process	current	node	*/
current	=	current->next;

}
	
For	any	linked	list	there	are	only	three	cases	zero	element,	one	element,	and	generally
Any	program	that	is	likely	to	change	the	head	pointer	is	to	be	passed	a	double	pointer
	
For	doubly	linked	list,	we	have	a	few	more	things
1.	NULL	values	(head	and	tail	both	can	be	modified)
2.	Only	element	(head	and	tail	both	can	be	modified)
3.	First	element	(head	can	be	modified)
4.	General	case
5.	Last	element	(tail	can	be	modified)
	



	
1.	struct	Node{
2.	int	value;
3.	struct	Node	*next;
4.	struct	Node	*prev;
5.	};
6.	typedef	Node*	NodePtr;

Insert	Node
Example	7.30:
1.	/*	INSERT	VALUE	IN	FRONT	*/
2.	int	insertNode(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)
3.	{
4.	printf("\n	INSERT	NODE\n");
5.	NodePtr	temp=(NodePtr)malloc(sizeof(Node));
6.	if(!temp)
7.	return	0;
8.	NodePtr	head=*ptrHead;
9.	if(!head)
10	.	{
11.	temp->value=value;
12.	temp->next=NULL;
13.	temp->prev=NULL;
14.	*ptrTail=temp;
15.	*ptrHead=temp;
16.	}
17.	else
18.	{
19.	temp->value=value;
20.	temp->next=head;
21.	temp->prev=NULL;
22.	head->prev=temp;
23.	*ptrHead=temp;
24.	}
25.	return	1;
26.	}
Analysis:	Insert	in	double	linked	list	is	same	as	insert	in	a	singly	linked	list.	Create	a	node	assign	NULL
to	prev	pointer	of	the	node.	Then	point	next	to	the	start	of	the	list.	If	the	list	is	empty	then	ptrTail	will	point



to	the	node.

Sorted	Insert	Decreasing

Example	7.31:
1.	//SORTED	INSERT	DECREASING
2.	int	sortedInsert(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)
3.	{
4.	printf("\nsorted	insert\n");
5.	NodePtr	temp=(NodePtr)malloc(sizeof(Node));
6.	if(!temp)
7.	return	0;
8.	temp->value=value;
9.	NodePtr	head=*ptrHead;
10.	if(!head)//first	element
11.	{
12.	temp->next=NULL;
13.	temp->prev=NULL;
14.	*ptrHead=temp;
15.	*ptrTail=temp;
16.	return	1;
17.	}
18.	if(head->value	<=	value)//at	the	begining
19.	{



20.	temp->next=head;
21.	temp->prev=NULL;
22.	head->prev=temp;
23.	*ptrHead=temp;
24.	return	1;
25.	}
26.	while(head->next	&&	head->next->value	>	value)//treversal
27.	{
28.	head=head->next;
29.	}
30.	if(!head->next)//at	the	end
31.	{
32.	*ptrTail=temp;
33.	temp->next=NULL;
34.	temp->prev=head;
35.	head->next=temp;
36.	}
37.	else///all	other
38.	{
39.	temp->next=head->next;
40.	temp->prev=head;
41.	head->next=temp;
42.	temp->next->prev=temp;
43.	}
44.	return	1;
45.	}
	
Analysis:	Find	the	proper	location	of	the	node	and	add	it	to	the	list.	Manage	next	and	prev	pointer	of	the
node	so	that	list	always	remain	double	linked	list.
	
Example	7.32:
1.	/*
2.	Print	A	singly	linked	list
3.	*/
4.	void	printList(NodePtr	head)
5.	{
6.	printf("List	is	::	");
7.	while(head!=NULL)
8.	{
9.	printf("	%d	",head->value);
10.	head=head->next;
11.	}
12.	printf("\n");
13.	}
	



Analysis:	Print	list	is	same	as	just	traversing	the	list	and	printing	the	values	of	the	nodes.
	

Reverse	a	doubly	linked	List	iteratively
	
Example	7.33:
1.	/*
2.	Reverse	a	doubly	linked	List	iteratively
3.	*/
4.
5.	void	reverseList(Node	**ptrHead,	Node	**ptrTail)
6.	{
7.	NodePtr	head=*ptrHead;
8.	NodePtr	tempNode;
9.	while(head)
10.	{
11.	tempNode=head->next;
12.	head->next=head->prev;
13.	head->prev=tempNode;
14.	if(!head->prev)
15.	{
16.	*ptrTail=*ptrHead;
17.	*ptrHead=head;
18.	return;
19.	}
20.	head=head->prev;
21.	}
22.	return;
23.	}
	
Analysis:	Traverse	the	list	and	swap	next	and	prev	pointer	of	each	node.	When	you	have	reached	to	the
end	of	the	list	swap	ptrTail	and	ptrHead	pointers.
	
Example	7.34:	Delete	a	singly	linked	list
1.	void	deleteList(NodePtr*	ptrHead,	NodePtr*	ptrTail)
2.	{
3.	printf("\ndeleteList\n");
4.	NodePtr	deleteMe=*ptrHead;
5.	NodePtr	nextNode;
6.	while(deleteMe!=NULL)
7.	{
8.	nextNode=deleteMe->next;
9.	free(deleteMe);
10.	deleteMe=nextNode;
11.	}



12.	*ptrTail=ptrHead=NULL;
13.	}
	
Analysis:	Traverse	the	list	and	delete	each	node	of	the	list	one	by	one.
	

Delete	a	node	given	its	pointer

Example	7.35:
1.	void	deleteNodePtr(NodePtr*	ptrHead,	NodePtr*	ptrTail,	NodePtr	ptrDel)
2.	{
3.	printf("\ndeleteNode\n");
4.	NodePtr	currNode=*ptrHead;
5.	NodePtr	nextNode;
6.
7.	if(ptrDel==NULL	||	currNode	==NULL)
8.	return;
9.
10.	if(currNode==ptrDel)//first	node
11.	{
12.	deleteMe	=	currNode;



13.	currNode=currNode->next;
14.	free(deleteMe);
15.	*ptrHead	=	currNode;
16.	if(	currNode)
17.	currNode->prev=NULL;
18.	else
19.	*ptrTail=NULL;
20.	return;
21.	}
22.	while(currNode!=NULL)
23.	{
24.	nextNode=currNode->next;
25.	if(nextNode==ptrDel)//node	to	be	deleated
26.	{
27.	currNode->next=nextNode->next;
28.	nextNode->next->prev=currNode;
29.	if(nextNode==*ptrTail)
30.	*ptrTail=nextNode->prev;//last	node
31.	free(nextNode);
32.	}
33.	else
34.	{
35.	currNode=nextNode;
36.	}
37.	}
38.	}
	
Analysis:	Traverse	the	list	find	the	node	that	need	to	be	deleted.	Then	remove	it	and	adjust	next	pointer	of
the	node	before	it	and	prev	pointer	of	the	node	next	to	it.

Remove	Duplicate
Example	7.36:
1.	/*	Remove	Duplicate	*/
2.	void	removeDuplicate(Node	*head)
3.	{
4.	NodePtr	deleteMe;
5.	while(head)
6.	{
7.	if((head->next)	&&	head->value==head->next->value)
8.	{
9.	deleteMe=head->next;
10.	head->next=deleteMe->next;
11.	head->next->prev=head;
12.	if(deleteMe	==	tail)
13.	{



14.	tail	=	curr;
15.	}
16.	free(deleteMe);
17.	}
18.	else
19.	{
20.	head=head->next;
21.	}
22.	}
23.	}
	
Analysis:	Remove	duplicate	 is	 same	 as	 single	 linked	 list	 case.	Consider	 the	 list	 as	 sorted	 remove	 the
repeated	value	nodes	of	the	list.
	

Copy	List	Reversed
Example	7.37:
1.	void	copyListReversed(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	tempNode=NULL;
5.	NodePtr	tempNode2=NULL;
6.	while(head)
7.	{
8.	tempNode2=(NodePtr)malloc(sizeof(Node));
9.	tempNode2->value=head->value;
10.	tempNode2->next=tempNode;
11.	tempNode2->prev=NULL;
12.	tempNode->prev=tempNode2;
13.	tempNode=tempNode2;
14.	head=head->next;
15.	}
16.	*ptrHead2=tempNode;
17.	}
	
Analysis:	Traverse	through	the	list	and	copy	the	value	of	the	nodes	into	another	list.	Always	add	the	next
node	value	to	the	start	of	the	new	list	there	by	forming	a	reversed	list.
	

Copy	List
Example	7.38:
1.	void	copyList(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	headNode=NULL;



5.	NodePtr	tailNode=NULL;
6.	NodePtr	tempNode=NULL;
7.	if(head==NULL)
8.	return;
9.	headNode=(NodePtr)malloc(sizeof(Node));
10.	tailNode=headNode;
11.	headNode->value=head->value;
12.	headNode->next=NULL;
13.	headNode->prev=NULL;
14.	head=head->next;
15.	while(head)
16.	{
17.	tempNode=(NodePtr)malloc(sizeof(Node));
18.	tempNode->value=head->value;
19.	tempNode->next=NULL;
20.	tailNode->next=tempNode;
21.	tempNode->prev=tailNode;
22.	tailNode=tailNode->next;
23.	head=head->next;
24.	}
25.	*ptrHead2=headNode;
26.	}
	
Analysis:	Traverse	the	list,	value	of	the	nodes	are	added	to	another	list	always	at	the	end.	Use	tail	pointer
to	keep	track	of	the	end	of	the	new	list.
	



Circular	Linked	List
This	type	is	similar	to	the	singly	linked	list	except	that	the	last	element	points	to	the	first	node	of	the	list.
The	link	portion	of	the	last	node	contains	the	address	of	the	first	node.
	

	
	

typedef	struct	Node{
int	value;
struct	Node*	next;

}Node_t;
	
typedef	Node_t*	NodePtr;

	

Insert	element	in	front



	
Example	7.39:
1.	/*	Insert	element	in	front	*/
2.	int	insertNodeAtFront(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)
3.	{
4.	printf("	\n	INSERT	NODE	AT	FRONT\n");
5.	NodePtr	temp	=	(NodePtr)malloc(sizeof(Node_t));
6.	if	(!temp)
7.	return	0;
8.	temp->value	=	value;
9.	NodePtr	head	=	*ptrHead;
10.	NodePtr	tail	=	*ptrTail;
11.	if	(!head)
12.	{
13.	temp->next	=	temp;
14.	*ptrTail	=	temp;
15.	*ptrHead	=	temp;
16.	}
17.	else
18.	{
19.	temp->next	=	head;
20.	tail->next	=	temp;
21.	*ptrHead	=	temp;
22.	}
23.	return	1;
24.	}
	
Analysis:
Line	11-16:	When	the	list	is	empty,	the	node	is	created.	Head	and	tail	is	pointing	to	this	node.
Line	17-22:	New	node	is	created	its	next	will	point	 to	head	and	head	will	point	 to	this	new	node.	Tail
nodes	next	will	point	to	the	new	node.
	

Insert	element	at	the	end
Example	7.40:
1.	/*	Insert	element	at	the	end	*/
2.	int	insertNodeAtEnd(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)



3.	{
4.	printf("\n	INSERT	NODE	AT	END\n");
5.	NodePtr	temp	=	(NodePtr)malloc(sizeof(Node_t));
6.	if	(!temp)
7.	return	0;
8.	temp->value	=	value;
9.	NodePtr	head	=	*ptrHead;
10.	NodePtr	tail	=	*ptrTail;
11.	if	(!head)
12.	{
13.	temp->next	=	temp;
14.	*ptrTail	=	temp;
15.	*ptrHead	=	temp;
16.	}
17.	else
18.	{
19.	temp->next	=	head;
20.	tail->next	=	temp;
21.	*ptrTail	=	temp;
22.	}
23.	return	1;
24.	}
	
Analysis:	Adding	node	at	the	end	is	same	as	adding	at	the	beginning.	Just	need	to	modify	tail	pointer	in
place	of	the	head	pointer.
	

PrintList
Example	7.41:
1.	/*	Print	A	singly	linked	list	*/
2.	void	printList(NodePtr	head)
3.	{
4.	printf("LIST	IS::	");
5.	NodePtr	currNode	=	head;
6.	if	(currNode	!=	NULL)
7.	{
8.	printf("	%d	",	currNode->value);
9.	currNode	=	currNode->next;
10.	}
11.	while	(currNode	!=	head)
12.	{
13.	printf("	%d	",	currNode->value);
14.	currNode	=	currNode->next;
15.	}
16.	}



	
Analysis:	In	circular	list,	end	of	list	is	not	there	so	we	cannot	check	with	NULL.	In	place	of	NULL	head	is
used	to	check	end	of	the	list.
	

Delete	List
Example	7.42:
1.	/*	Delete	a	circular	linked	list	*/
2.	void	deleteList(NodePtr*	ptrHead)
3.	{
4.	printf("\n	DELETE	LIST	\n");
5.	NodePtr	const	head	=	*ptrHead;
6.	NodePtr	currNode	=	*ptrHead;
7.	NodePtr	nextNode;
8.	if	(currNode	!=	NULL)
9.	{
10.	nextNode	=	currNode->next;
11.	free(currNode);
12.	currNode	=	nextNode;
13.	}
14.	while	(currNode	!=	head)
15.	{
16.	nextNode	=	currNode->next;
17.	free(currNode);
18.	currNode	=	nextNode;
19.	}
20.	*ptrHead	=	NULL;
21.	}
	
Analysis:	Traverse	through	the	list	and	delete	nodes	until	you	reach	the	start	of	the	list.
	

Delete	a	node	given	its	pointer



Example	7.43:
1.	/*	Delete	a	node	given	its	pointer	*/
2.	void	deleteNodePtr(NodePtr*	ptrHead,	NodePtr*	ptrTail,	NodePtr	ptrDel)
3.	{
4.	printf("\n	DELETE	NODE	GIVEN	ITS	POINTER	\n");
5.	if	(ptrDel	==	NULL	||	ptrHead	==	NULL	||	ptrTail	==	NULL)
6.	return;
7.	NodePtr	head	=	*ptrHead;
8.	NodePtr	tail	=	*ptrTail;
9.	NodePtr	currNode	=	head;
10.	NodePtr	prevNode;
11.	if	(head	==	NULL	||	tail	==	NULL)
12.	return;
13.	if	(currNode	==	ptrDel)/*	one	element	and	first	element	case	*/
14.	{
15.	if	(currNode->next	==	currNode)
16.	{
17.	*ptrHead	=	NULL;
18.	*ptrTail	=	NULL;
19.	free(currNode);
20.	return;
21.	}
22.	else
23.	{
24.	*ptrHead	=	currNode->next;
25.	tail->next	=	currNode->next;
26.	free(currNode);
27.	return;
28.	}
29.	}



30.	prevNode	=	currNode;
31.	currNode	=	currNode->next;
32.	while	(currNode	!=	head)
33.	{
34.	if	(currNode	==	ptrDel)
35.	{
36.	if	(currNode	==	tail)/*	tail	change	case	*/
37.	*ptrTail	=	prevNode;
38.	prevNode->next	=	currNode->next;
39.	free(currNode);
40.	return;
41.	}
42.	prevNode	=	currNode;
43.	currNode	=	currNode->next;
44.	}
45.	}
	
Analysis:	Find	the	node	that	need	to	free.	Only	difference	 is	 that	while	 traversing	the	 list	end	of	 list	 is
tracked	by	the	head	pointer	in	place	of	NULL.
	

Delete	a	node	given	its	value
Example	7.44:
1.	/*	Delete	a	node	given	its	value	*/
2.	void	deleteNodeValue(NodePtr*	ptrHead,	NodePtr*	ptrTail,	int	value)
3.	{
4.	printf("\n	DELETE	NODE	GIVEN	ITS	VALUE	\n");
5.	if	(ptrHead	==	NULL	||	ptrTail	==	NULL)
6.	return;
7.	NodePtr	head	=	*ptrHead;
8.	NodePtr	tail	=	*ptrTail;
9.	NodePtr	currNode	=	head;
10.	NodePtr	prevNode;
11.	if	(head	==	NULL	||	tail	==	NULL)
12.	return;
13.	if	(currNode->value	==	value)/*	one	element	and	first	element	case	*/
14.	{
15.	if	(currNode->next	==	currNode)
16.	{
17.	*ptrHead	=	NULL;
18.	*ptrTail	=	NULL;
19.	free(currNode);
20.	return;
21.	}
22.	else



23.	{
24.	*ptrHead	=	currNode->next;
25.	tail->next	=	currNode->next;
26.	free(currNode);
27.	return;
28.	}
29.	}
30.	prevNode	=	currNode;
31.	currNode	=	currNode->next;
32.	while	(currNode	!=	head)
33.	{
34.	if	(currNode->value	==	value)
35.	{
36.	if	(currNode	==	tail)/*	tail	change	case	*/
37.	*ptrTail	=	prevNode;
38.	prevNode->next	=	currNode->next;
39.	free(currNode);
40.	return;
41.	}
42.	prevNode	=	currNode;
43.	currNode	=	currNode->next;
44.	}
45.	}
	
Analysis:	Find	the	node	that	need	to	free.	Only	difference	 is	 that	while	 traversing	the	 list	end	of	 list	 is
tracked	by	the	head	pointer	in	place	of	NULL.
	

Remove	Duplicate
Example	7.45:
1.	/*	Remove	Duplicate	*/
2.	void	removeDuplicate(NodePtr*	ptrHead,	NodePtr*	ptrTail)
3.	{
4.	printf("\n	Remove	Duplicate	\n");
5.	NodePtr	head	=	*ptrHead;
6.	NodePtr	current	=	head;
7.	NodePtr	deleteMe;
8.	if	(!head)
9.	return;
10.	while	(current->next	!=	head)
11.	{
12.	if	(current->value	==	current->next->value)
13.	{
14.	deleteMe	=	current->next;
15.	current->next	=	deleteMe->next;



16.	if	(deleteMe	==	*ptrTail)
17.	{
18.	*ptrTail	=	current;
19.	}
20.	free(deleteMe);
21.	}
22.	else
23.	{
24.	current	=	current->next;
25.	}
26.	}
27.	}
Analysis:	Considering	the	list	is	sorted,	repeated	value	nodes	would	be	removed.	Only	difference	is	that
while	traversing	the	list	end	of	the	traversal	is	not	checked	with	NULL	it	is	checked	by	head	pointer.
	

Copy	List	Reversed
Example	7.46:
1.	/*	Copy	List	*/
2.	void	copyListReversed(NodePtr	head,	NodePtr*	newPtrHead,	NodePtr*	newPtrTail)
3.	{
4.	printf("\n	COPY	LIST	REVERSED	\n");
5.	NodePtr	curr	=	head;
6.	if	(curr)
7.	{
8.	insertNodeAtFront(newPtrHead,	newPtrTail,	curr->value);
9.	curr	=	curr->next;
10.	}
11.	while	(curr	!=	head)
12.	{
13.	insertNodeAtFront(newPtrHead,	newPtrTail,	curr->value);
14.	curr	=	curr->next;
15.	}
16.	}
	
Analysis:	The	list	is	traversed	and	nodes	are	added	to	new	list	at	the	beginning.	There	by	making	the	new
list	reverse	of	the	given	list.
	

Copy	List
Example	7.47:
1.	void	copyList(NodePtr	head,	NodePtr*	newPtrHead,	NodePtr*	newPtrTail)
2.	{
3.	printf("\n	COPY	LIST	\n");
4.	NodePtr	curr	=	head;



5.	if	(curr)
6.	{
7.	insertNodeAtEnd(newPtrHead,	newPtrTail,	curr->value);
8.	curr	=	curr->next;
9.	}
10.	while	(curr	!=	head)
11.	{
12.	insertNodeAtEnd(newPtrHead,	newPtrTail,	curr->value);
13.	curr	=	curr->next;
14.	}
15.	}
	
Analysis:List	is	traversed	and	nodes	are	added	to	the	new	list	at	the	end.	There	by	making	the	list	whose
value	are	same	as	the	input	list.
	



Doubly	Circular	list
1.	For	any	linked	list	there	are	only	three	cases	zero	element,	one	element,	general	case
2.	Any	program	which	is	likely	to	change	the	head	pointer	is	to	be	passed	a	double	pointer
3.	To	doubly	linked	list	we	have	a	few	more	things

a)	NULL	values
b)	Only	element	(it	generally	introduces	an	if	statement	with	null)
c)	Always	an	“if”	before	“while”.	Which	will	check	from	this	head.
d)	General	case	(check	with	the	initial	head	kept)
e)	Avoid	using	recursion	solutions	it	makes	life	harder

STL	implement	list	using	a	double	circular	list.
	

Insert	Node
Example	7.48:	Insert	value	at	the	front	of	the	list.
1.	#include<stdio.h>
2.	#include<stdlib.h>
3.
4.	struct	Node{
5.	int	value;
6.	struct	Node	*next;
7.	struct	Node	*prev;
8.	};
9.	typedef	Node*	NodePtr;
10.
11.	//	Insert	value	in	front
12.	int	insertNode(NodePtr*	ptrHead,	int	value)
13.	{
14.	printf("\n	INSERT	NODE\n");
15.	NodePtr	temp=(NodePtr)malloc(sizeof(Node));
16.	if(!temp)
17.	return	0;
18.	NodePtr	head=*ptrHead;
19.	if(!head)
20.	{
21.	temp->value=value;
22.	temp->next=temp;
23.	temp->prev=temp;
24.	*ptrHead=temp;



25.	}
26.	else
27.	{
28.	temp->value=value;
29.	temp->next=head;
30.	temp->prev=head->prev;
31.	temp->prev->next	=	temp
32.	head->prev=temp;
33.	*ptrHead=temp;
34.	}
35.	return	1;
36.	}
	

Delete	NodePtr
Example	7.49:
1.	/*
2.	Delete	a	node	given	its	pointer
3.	*/
4.
5.	void	deleteNodePtr(NodePtr*	ptrHead,	NodePtr	ptrDel)
6.	{
7.	printf("\ndeleteNode\n");
8.	NodePtr	currNode=*ptrHead;
9.	NodePtr	head=*ptrHead;
10.	NodePtr	nextNode,prevNode;
11.
12.	if(ptrDel==NULL	||!(*ptrHead))
13.	return;
14.
15.	if(currNode==ptrDel)//first	node
16.	{
17.	if(currNode->next==currNode)//only	node
18.	{
19.	*ptrHead=NULL;
20.	free(currNode);
21.	return;
22.	}
23.	else
24.	{
25.	prevNode=currNode->prev;
26.	*ptrHead=nextNode=currNode->next;
27.	prevNode->next=nextNode;
28.	nextNode->prev=prevNode;
29.	return;



30.	}
31.	}
32.	currNode	=	currNode->next;
33.	while(currNode!=head)
34.	{
35.	if(currNode==ptrDel)
36.	{
37.	prevNode=currNode->prev;
38.	nextNode=currNode->next;
39.	prevNode->next=nextNode;
40.	nextNode->prev=prevNode;
41.	free(currNode);
42.	return;
43.	}
44.	currNode	=	currNode->next;
45.	}
46.	}
	
Analysis:	Delete	node	in	a	doubly	circular	linked	list	is	just	same	as	delete	node	in	a	circular	linked	list.
Just	few	extra	prev	pointer	need	to	be	adjusted.
	

Remove	Duplicate
Example	7.50:
1.	void	removeDuplicate(NodePtr	head)
2.	{
3.	NodePtr	deleteMe;
4.	NodePtr	const	tagHead=head;
5.
6.	if(!head)
7.	return;
8.
9.	head=head->next;
10.
11.	while(head!=tagHead)
12.	{
13.	if(head==head->next)//this	check	is	to	prevent	only	one	node	to	be	deleted
14.	break;
15.	if((head->next)	&&	head->value==head->next->value)
16.	{
17.	deleteMe=head->next;
18.	head->next=deleteMe->next;
19.	head->next->prev=head;
20.	free(deleteMe);
21.	}



22.	else
23.	{
24.	//check	for	tail
25.	head=head->next;
26.	}
27.	}
28.	}
	
Analysis:	Remove	duplicate	 is	 same	as	 remove	duplicate	 in	 a	 circular	 linked	 list.	 Just	 one	more	prev
pointer	need	to	be	adjusted.
	

Copy	List	Reversed
Example	7.51:
1.	void	copyListReversed(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	tempNode=NULL;
5.	NodePtr	tempNode2=NULL;
6.	NodePtr	const	head2=head;
7.
8.	if(head)
9.	{
10.	tempNode2=(NodePtr)malloc(sizeof(Node));
11.	tempNode2->value=head->value;
12.	tempNode2->next=tempNode;
13.	tempNode2->prev=NULL;
14.	tempNode=tempNode2;
15.	head=head->next;
16.	}
17.
18.	while(head!=head2)
19.	{
20.	tempNode2=(NodePtr)malloc(sizeof(Node));
21.	tempNode2->value=head->value;
22.	tempNode2->next=tempNode;
23.	tempNode2->prev=NULL;
24.	tempNode=tempNode2;
25.	head=head->next;
26.	}
27.	*ptrHead2=tempNode;
28.	}
	
Analysis:	Copy	list	is	similar	to	copy	list	in	a	circular	list.	Just	prev	pointer	also	need	to	be	adjusted.
	



Copy	List
Example	7.52:
1.	void	copyList(NodePtr	head,	NodePtr*	ptrHead2)
2.	{
3.	printf("copy	list");
4.	NodePtr	headNode=NULL
5.	NodePtr	tempNode=NULL;
6.	NodePtr	const	tagHead=head;
7.	NodePtr	tailNode;
8.
9.	if(head==NULL)
10.	return;
11.
12.	tailNode=headNode=(NodePtr)malloc(sizeof(Node));
13.	headNode->value=head->value;
14.	headNode->next=headNode;
15.	headNode->prev=headNode;
16.	head=head->next;
17.
18.	while(head!=tagHead)
19.	{
20.	tempNode=(NodePtr)malloc(sizeof(Node));
21.	tempNode->value=head->value;
22.	tailNode->next=tempNode;
23.	tempNode->prev=tailNode;
24.	tempNode->next=headNode;
25.	headNode->prev=tempNode;
26.	head=head->next;
27.	}
28.	*ptrHead2=headNode;
29.	}
	
Analysis:	Copy	list	is	similar	to	copy	list	in	a	circular	list.	Just	prev	pointer	also	need	to	be	adjusted.
	



Exercise

1)	 Insert	an	element	kth	 position	 from	 the	 start	of	 linked	 list.	Return	1	 if	 success	and	 if	 list	 is	not	 long
enough,	then	return	-1.
Hint:	Take	a	pointer	advance	it	K	steps	forward,	then	inserts	the	node.

	
2)	 Insert	 an	 element	 kth	 position	 from	 the	 end	of	 linked	 list.	Return	1	 if	 success	 and	 if	 list	 is	 not	 long

enough,	then	return	-1.
Hint:	Take	a	pointer	advance	it	K	steps	forward,	then	take	another	pointer	and	advance	both	of	them
simultaneously,	so	that	when	the	first	pointer	reach	the	end	of	a	linked	list	that	is	the	point	where	you
need	to	insert	the	node.

	
3)	Consider	there	is	a	loop	in	a	linked	list,	Write	a	program	to	remove	loop	if	there	is	a	loop	in	this	linked

list.
	
4)	In	the	above	SearchList	program	return,	the	count	of	how	many	instances	of	same	value	found	else	if

value	not	 found	 then	 return	 0.	For	 example,	 if	 the	 value	 passed	 is	 “4”.	The	 elements	 in	 the	 list	 are
1,2,4,3	&	4.	The	program	should	return	2.
Hint:	In	place	of	return	1	in	the	above	program	increment	a	counter	and	then	return	counter	at	the	end.

	
5)	 Given	 two	 linked	 list	 head,	 pointer	 and	 they	 meet	 at	 some	 point	 and	 need	 to	 find	 the	 point	 of

intersection.	However,	in	place	of	the	end	of	both	the	linked	list	to	be	a	null	pointer	there	is	a	loop.
	

	
6)	If	linked	list	having	a	loop	is	given.	Count	the	number	of	nodes	in	the	linked	list
	
7)	We	were	supposed	to	write	the	complete	code	for	the	addition	of	polynomials	using	Linked	Lists.
	
8)	Given	two	linked	lists.	We	have	to	find	that	whether	the	data	in	one	is	reverse	that	of	data	in	another.

No	extra	space	should	be	used	and	traverse	the	linked	lists	only	once.
	
9)	Find	the	middle	element	in	a	singly	linked	list.	Tell	the	complexity	of	your	solution.

Hint:-
·	Approach	1:	find	the	length	of	linked	list.	Then	find	the	middle	element	and	return	it.
·	Approach	2:	 use	 two	 pointer	 one	will	move	 fast	 and	 one	will	move	 slow	make	 sure	 you	 handle

border	case	properly.	(Even	length	and	odd	length	linked	list	cases.)
	
10)	Print	list	in	reverse	order.

Hint:	Use	recursion.
	





CHAPTER	8:	STACK
	



Introduction
A	 stack	 is	 a	 basic	 data	 structure	 that	 organized	 items	 in	 last-in-first-out	 (LIFO)	manner.	 Last	 element
inserted	in	a	stack	will	be	the	first	to	be	removed	from	it.
	
The	real-life	analogy	of	the	stack	is	"chapattis	in	hotpot",	"stack	of	plates".	Imagine	a	stack	of	plates	in	a
dining	area	everybody	takes	a	plate	at	the	top	of	the	stack,	thereby	uncovering	the	next	plate	for	the	next
person.
	
Stack	allow	to	only	access	the	top	element.	The	elements	that	are	at	the	bottom	of	the	stack	are	the	one	that
is	going	to	stay	in	the	stack	for	the	longest	time.
	

Computer	science	also	has	 the	common	example	of	a	stack.	Function	call	stack	 is	a	good	example	of	a
stack.	 Function	 main()	 calls	 function	 foo()	 and	 then	 foo()	 calls	 bar().	 These	 function	 calls	 are
implemented	using	stack	first	bar()	exists,	then	go()	and	then	finally	main().
	
As	we	navigate	from	web	page	to	web	page,	the	URL	of	web	pages	are	kept	in	a	stack,	with	the	current
page	URL	at	the	top.	If	we	click	back	button,	then	each	URL	entry	is	popped	one	by	one.
	



The	Stack	Abstract	Data	Type
Stack	abstract	data	type	is	defined	as	a	structure,	which	follows	LIFO	or	last-in-first-out	for	the	elements,
added	to	it.
	
The	stack	should	support	the	following	operation:

1.	Push():	which	add	a	single	element	at	the	top	of	the	stack
2.	Pop():	which	remove	a	single	element	from	the	top	of	a	stack.
3.	Top():	Reads	the	value	of	the	top	element	of	the	stack	(does	not	remove	it)
4.	isEmpty():	Returns	1	if	stack	is	empty
5.	Size():	returns	the	number	of	elements	in	a	stack.

	
	

	
void	push(int	n);
Add	n	to	the	top	of	a	stack.
	
int	pop();
Remove	the	top	element	of	the	stack	and	return	it	to	the	caller	function.
	
The	stack	can	be	implemented	using	an	array	or	a	linked	list.
In	array	case,	there	are	two	types	of	implementations

·	One	in	which	array	size	is	fixed,	so	it	the	capacity	of	the	stack.
·	Another	approach	is	variable	size	array	in	which	memory	of	the	array	is	allocated	using	malloc	and

when	the	array	is	filled	the	size	if	doubled	using	realloc	(when	the	stack	size	decreases	below	half
the	capacity	is	again	reduced	using	realloc).



In	case	of	a	linked	list,	there	is	no	limit	of	number	of	elements.
When	a	stack	is	implemented,	using	an	array	top	of	the	stack	is	managed	using	an	index	variable	called
top.
	
When	a	stack	is	implemented	using	a	linked	list,	push()	and	pop()	is	implemented	using	insert	at	the	head
of	the	linked	list	and	remove	from	the	head	of	the	linked	list.
	



Stack	using	Array	(Macro)

Implement	a	stack	using	a	fixed	length	array.
	
Example	8.1:
#define	MAX_WIDTH	50
	
typedef	struct	stack{

int	top;
int	data[MAX_WIDTH];

}Stack;
	
The	capacity	of	the	stack	is	defined	by	MAX_WIDTH	compile	time	constant.
Stack	 is	 defined	 which	 will	 contain	 the	 array	 to	 store	 the	 data	 and	 index	 to	 indicate	 the	 number	 of
elements	in	the	stack.
	
void	StackInitialize(Stack*	stk)
{

stk->top	=	-1;
}
	
Number	of	elements	in	the	stack	is	governed	by	the	“top”	index	and	top	is	initialized	to	-1	when	a	stack	is
initialized.	Top	index	value	of	-1	indicates	that	the	stack	is	empty	in	the	beginning.
	
void	StackPush(Stack*	stk,	int	value)
{

if	(stk->top	<	MAX_WIDTH	-	1)
{
stk->top++;
stk->data[stk->top]	=	value;
//printf("value	push	:	%d	\n",	value);
}
else
{
printf("stack	overflow\n");
}

}
	
StackPush()	 function	 checks	 whether	 the	 stack	 has	 enough	 space	 to	 store	 one	 more	 element,	 then	 it
increases	the	"top"	by	one.	Finally	sort	the	data	in	the	stack	"data"	array.	In	case,	stack	is	full	then	"stack
overflow"	message	is	printed	and	that	value	will	not	be	added	to	the	stack	and	will	be	ignored.
	
int	StackPop(Stack*	stk)
{

if	(stk->top	>=	0)



{
int	value	=	stk->data[stk->top];
stk->top--;
//printf("value	pop	:	%d	\n",	value);
return	value;
}
printf("stack	empty\n");
return	0;

}
	
The	StackPop()	function	is	 implemented,	first	 it	will	check	that	 there	are	some	elements	in	the	stack	by
checking	its	top	index.	If	some	element	is	there	in	the	stack,	then	it	will	store	the	top	most	element	value	in
a	variable	"value".	The	top	index	is	reduced	by	one.	Finally,	that	value	is	returned.
	
int	StackTop(Stack*	stk)
{

int	value	=	stk->data[stk->top];
return	value;

}
	
StackTop()	function	returns	the	value	of	stored	in	the	top	element	of	stack	(does	not	remove	it)
	
int	StackIsEmpty(Stack*	stk)
{

return(stk->top	==	-1);
}
	
StackIsEmpty()	 function	 returns	1	 if	 stack	 is	empty	or	0	 in	all	other	cases.	By	comparing	 the	 top	 index
value	with	-1.
	
int	StackSize(Stack*	stk)
{

return(stk->top	+	1);
}
	
StackSize()	 function	 returns	 the	 number	 of	 elements	 in	 the	 stack.	 It	 just	 returns	 "top+1".	As	 the	 top	 is
referring	the	array	index	of	the	stack	top	variable	so	we	need	to	add	one	to	it.
	
Analysis:
·	The	user	of	the	stack	will	create	a	stack	local	variable.
·	Then	will	init	it.
·	Use	push()	and	pop()	functions	to	add	/	remove	variables	to	the	stack.
·	Read	the	top	element	using	the	top()	function	call.
·	Query	regarding	size	of	the	stack	using	size()	function	call
·	Query	if	stack	is	empty	using	isEmpty()	function	call



	



Stack	using	Array	(Dynamic	memory)

Create	a	stack	using	an	array,	but	the	memory	of	the	array	need	to	be	taken	from	heap/	or	the	memory	need
to	be	dynamically	allocated.
	
Example	8.2:
1.	#include	"stdio.h"
2.	#include	"stdlib.h"
3.
4.	typedef	struct	stack{
5.	int	top;
6.	int	*	data;
7.	int	max;
8.	}Stack;
9.
10.	void	StackInitialize(Stack*	stk,	int	size)
11.	{
12.	stk->data	=	(int*)malloc(size	*	sizeof(int));
13.	stk->top	=	-1;
14.	stk->max	=	size;
15.	}
16.
17.	int	main()
18.	{
19.	Stack	s;
20.	StackInitialize(&s,	10);
21.	for	(int	i	=	0;	i	<	20;	i++)
22.	StackPush	(&s,	i);
23.	for	(int	i	=	0;	i	<	20;	i++)
24.	StackPop(&s);
25.	return	0;
26.	}
	
Analysis:
Line	1:	4-8:	stack	structure	is	defined	which	contain	its	“top”	index,	A	pointer	data	that	will	be	used	to
point	 to	memory	allocated	using	malloc	 in	Line	12.	We	keep	track	of	 the	capacity	of	an	array	 in	a	max
variable	of	a	stack	structure.
	
Line	 10:	 in	 init()	 function,	 we	 are	 passing	 the	 stack	 pointer	 and	 the	 size	 of	 memory	 that	 need	 to	 be
allocated	to	the	stack.
	
Line	 12:	 we	 are	 allocating	 the	 memory	 sufficient	 to	 store	 "size"	 number	 of	 integer	 s.	 Moreover,	 this
memory	location	is	stored	in	the	data	field	of	a	stack	structure.	Max	is	set	to	the	size	of	the	stack	passed.
	
Line	19-20:	Stack	variable	is	created	and	initialized,	a	stack	is	initialized	so	that	it	will	be	able	to	contain



at	most	10	elements.
	
Line	22:	push	is	used	to	add	elements	to	the	stack.
	
Line	24:	pop	is	used	to	read	and	remove	the	top	element	of	the	stack.
	
Note:	All	 the	other	 function	 like,	StackPush(),	StackPop(),	StackIsEmpty(),	StackSize()	 and	StackTop()
will	work	for	dynamically	allocated	stack	array	too.
	



Stack	using	Array	(Growing	capacity	implementation)

In	the	above	dynamic	array	implementation	of	a	stack.	Make	the	capacity	of	stack	variable	so	that	when	it
is	nearly	filled,	then	double	the	capacity	of	the	stack.
	
Example	8.3:
1.	void	StackPush(Stack*	stk,	int	value)
2.	{
3.
4.	if	(stk->top	<	stk->max	-	1)
5.	{
6.	stk->top++;
7.	stk->data[stk->top]	=	value;
8.	printf("value	push	:	%d	\n",	value);
9.	}
10.	else
11.	{
12.	stk->max	=	stk->max	*	2;
13.	stk->data	=	(int*)realloc(stk->data,	stk->max	*	sizeof(int));	14.	printf("stack	size	doubled");
15.	StackPush(stk,	value);
16.	}
17.	}
	
Analysis:
Line	12:	In	this	line,	we	are	doubling	the	max	capacity	variable	of	the	stack.
	
Line	13:	Size	of	the	memory	is	reallocated	to	a	bigger	value	in	this	line.	The	realloc	function	is	used	to
increase	 or	 decrease	 the	 size	 of	 memory	 allocated.	 All	 the	 data	 on	 the	 stack	 is	 copied	 into	 the	 new
location.
	
Line	15:	finally	the	StackPush()	function	is	called	recursively	to	push	the	value	into	the	increased	capacity
stack.
	



Stack	using	Array	(Growing-Reducing	capacity	implementation)

You	can	also	write	a	program,	which	can	reduce	the	size	of	a	dynamic	array	by	two	when	the	number	of
elements	fall	below	max/2.
	
You	do	not	want	 to	 let	 the	 capacity	of	 the	 stack	below	 the	 initially	 allocated	 size.	You	can	define	min
length	when	init	is	called.
	
Example	8.4:
1.	typedef	struct	stack{
2.	int	top;
3.	int	*	data;
4.	int	max;
5.	int	min;
6.	}Stack;
7.
8.	void	initStack(Stack*	stk,	int	size)
9.	{
10.	stk->data	=	(int*)malloc(size	*	sizeof(int));
11.	stk->top	=	-1;
12.	stk->max	=	size;
13.	stk->min	=	size;
14.	}
15.
16.	int	StackPop	(Stack*	stk)
17.	{
18.	if	(stk->top	>=	0)
19.	{
20.	int	value	=	stk->data[stk->top];
21.	stk->top--;
22.	if	(stk->top	<	(stk->max	/	2)	&&	stk->max	>	stk->min)
23.	{
24.	stk->max	=	stk->max	/	2;
25.	stk->data	=	(int*)realloc(stk->data,	stk->max	*	sizeof(int));	26.	printf("stack	size	halfed");
27.	}
28.	printf("value	pop	:	%d	\n",	value);
29.	return	value;
30.	}
31.	printf("stack	empty\n");
32.	}
33.
34.	int	main()
35.	{
36.	Stack	s;
37.	initStack(&s,	10);



38.	for	(int	i	=	0;	i	<	20;	i++)
39.	StackPush(&s,	i);
40.	for	(int	i	=	0;	i	<	20;	i++)
41.	StackPop(&s);
42.	return	0;
43.	}
	
Analysis:
Line	 22:	 the	 size	 of	 the	 stack	 is	 checked	 if	 it	 goes	 below	 half	 of	 the	 capacity	 and	 is	 greater	 than	 the
minimum	size.
Line	 23-25:	 the	 capacity	 of	 the	 stack	 is	 divided	 by	 2	 and	memory	 is	 reallocated	 to	 point	 to	 half	 size
memory.
	



Stack	using	linked	list

Example	8.5:
1.	#include<stdlib.h>
2.	#include<stdio.h>
3.
4.	struct	stackNode_t{
5.	int	value;
6.	stackNode_t	*next;
7.	};
8.	typedef	stackNode_t*	stackPtr;
9.	#define	ERROR_VALUE	-99999
	
1.	void	StackPush(stackPtr*	dPtrHead,	int	value)
2.	{
3.	stackPtr	tempNode=(stackPtr)malloc(sizeof(stackNode_t));
4.	if(!tempNode)
5.	{
6.	Printf("memory	shortage	unable	to	push");
7.	return;
8.	}
9.	tempNode->value=value;
10.	tempNode->next=*dPtrHead;
11.	*dPtrHead=tempNode;
12.	}
	
Analysis:	Stack	implemented	using	a	linked	list	is	simply	insertion	and	deletion	at	the	head	of	the	linked
list.
In	StackPush()	function,	memory	is	created	for	one	node.	Then	the	value	is	stored	into	that	node.	Finally,
the	node	is	inserted	at	the	beginning	of	the	list.
	

PopNode
Implement	popNode	function	that	will	return	a	first	node	pointer	of	the	stack
	
Example	8.6:
1.	stackPtr	popNode(stackPtr*	dPtrHead)	//free	the	returned	node	yourself
2.	{
3.	stackPtr	deleteMe;
4.	if(*dPtrHead)
5.	{
6.	deleteMe=*dPtrHead;
7.	*dPtrHead=deleteMe->next;
8.	return	deleteMe;
9.	}



10.	else
11.	{
12.	printf("stack	empty	\n");
13.	return	NULL;
14.	}
15.	}
	
Analysis:
Line	 1-15:	 popNode()	 function	will	 take	 the	 first	 element	 of	 the	 list	 and	will	 return	 its	 pointer	 to	 the
caller.	The	caller	of	this	function	will	be	responsible	for	the	deletion	of	the	memory.
Line	13:	In	case	the	stack	is	empty,	NULL	will	be	returned.

Pop
Example	8.7:	Implement	the	pop	function	that	will	return	the	value	at	the	top	of	the	stack.
1.	int	pop(stackPtr*	dPtrHead)//free	the	returned	node	yourself
2.	{
3.	stackPtr	deleteMe;
4.	int	value;
5.	if(*dPtrHead)
6.	{
7.	deleteMe=*dPtrHead;
8.	*dPtrHead=deleteMe->next;
9.	value	=	deleteMe->data;
10.	free(deleteMe);
11.	return	value;
12.	}
13.	else
14.	{
15.	printf("stack	empty	\n");
16.	return	ERROR_VALUE;
17.	}
18.	}
	
Analysis:
Line	 1-18:	 in	 pop()	 function	 first	 element	 of	 the	 list	 is	 pointed	 by	 a	 temporary	 pointer	 variable
"deleteMe".	The	value	of	the	first	node	is	stored	into	a	local	variable	"value".	Head	of	the	list	will	point
to	the	next	element.	Then	the	memory	pointed	by	deleteMe	will	be	freed	using	free()	and	finally	value	is
returned.
Line	16:	In	case	stack	is	empty,	ERROR_VALUE	will	be	returned.
	



Problems	in	Stack

Balanced	Parenthesis
Example	8.8:	 Stacks	 can	 be	 used	 to	 check	 a	 program	 for	 balanced	 symbols	 (such	 as	 {},	 (),	 []).	 The
closing	symbol	should	be	matched	with	the	most	recently	seen	opening	symbol.	Example:	{()}	 is	 legal,
{()({})}	is	legal,	but	{((}	and	{(})	are	not	legal
	
int	isBalancedParenthesis	(char*	expn)
{

Stack	stk;
StackInitialize(&stk);
int	i	=	0;
char	ch;
while	((ch	=	expn[i++])	!=	'\0')
{
switch	(ch)
{
case	'{':
case	'[':
case	'(':
StackPush(&stk,ch);
break;

	
case	'}':
if	(StackPop(&stk)	!=	'{')
return	0;
break;

	
case	']':
if	(StackPop(&stk)	!=	'[')
return	0;
break;

	
case	')':
if	(StackPop(&stk)	!=	'(')
return	0;
break;
}
}
return	StackIsEmpty(&stk);

}
	
Analysis:
Traverse	the	input	string	when	we	get	an	opening	parenthesis	we	push	it	into	stack.	When	we	get	a	closing



parenthesis	then	we	pop	a	parenthesis	from	the	stack	and	compare	if	it	is	the	corresponding	to	the	one	on
the	closing	parenthesis.
We	return	0	/	error	if	there	is	a	mismatch	of	parenthesis.	If	at	the	end	of	the	whole	staring	traversal,	we
reached	to	the	end	of	the	string	and	the	stack	is	empty	then	we	have	balanced	parenthesis.
	
int	main()
{

char	expn[50]	=	"{()}";
int	value	=	isBalancedParenthesis	(expn);
printf("\n	Given	Expn:	%s\n",	expn);
printf("\n	Result	after	isParenthesisMatched:	%d\n",	value);
return	0;

}
	

Infix,	Prefix	and	Postfix	Expressions
When	we	 have	 an	 algebraic	 expression	 like	A	 +	B	 then	we	 know	 that	 the	 variable	 is	 being	 added	 to
variable	 B.	 This	 type	 of	 expression	 is	 called	 infix	 expression	 because	 the	 operator	 “+”	 is	 between
operands	A	and	operand	B.
	
Now	consider	another	infix	expression	A	+	B	*	C.	In	the	expression	there	is	a	problem	that	in	which	order
+	and	*	works.	Does	A	and	B	are	added	first	and	then	the	result	is	multiplied.	Or	B	and	C	are	multiplied
first	and	then	the	result	is	added	to	A.	This	makes	the	expression	ambiguous.	To	deal	with	this	ambiguity
we	define	the	precedence	rule	or	use	parentheses	to	remove	ambiguity.
	
So	 if	we	want	 to	multiply	B	and	C	first	and	 then	add	the	result	 to	A.	Then	the	same	expression	can	be
written	unambiguously	using	parentheses	as	A	+	(B	*	C).	On	the	other	hand,	if	we	want	to	add	A	and	B
first	and	 then	 the	sum	will	be	multiplied	by	C	we	will	write	 it	as	 (A	+	B)	*	C.	Therefore,	 in	 the	 infix
expression	to	make	the	expression	unambiguous,	we	need	parenthesis.
Infix	expression:	In	this	notation,	we	place	operator	in	the	middle	of	the	operands.
<	operand	>	<	operator	>	<	operand	>
	
Prefix	expressions:	In	this	notation,	we	place	operator	at	the	beginning	of	the	operands.
<	operator	>	<	operand	>	<	operand	>
	
Postfix	expression:	In	this	notation,	we	place	operator	at	the	end	of	the	operands.
<	operand	>	<	operand	>	<	operator	>
	
Infix	Expression Prefix	Expression Postfix	Expression

A	+	B +	A	B A	B	+

A	+	(B	*	C) +	A	*	B	C A	B	C	*	+

(A	+	B)	*	C *	+	ABC A	B	+	C	*

	



Now	comes	the	most	obvious	question	why	we	need	so	unnatural	Prefix	or	Postfix	expressions	when	we
already	have	infix	expressions	which	words	just	fine	for	us.
	
The	 answer	 to	 this	 is	 that	 infix	 expressions	 are	 ambiguous	 and	 they	 need	 parenthesis	 to	 make	 them
unambiguous.	While	postfix	and	prefix	notations	do	not	need	any	parenthesis.

Infix-to-Postfix	Conversion
Example	8.9:
void	infixToPostfix(char*	expn,char*	output)
{

Stack	stk;
StackInitialize(&stk);
char	ch,	op;
int	i	=	0;
int	index	=0;
int	digit	=	0;
while	((ch	=	expn[i++])	!=	'\0')
{
if	(isdigit(ch))
{
output[index++]	=	ch;
digit=1;
}
else
{
if(digit)
{
output[index++]	=	'	';
digit	=	0;
}
switch	(ch)
{
case	'+':
case	'-':
case	'*':
case	'/':
case	'%':
case	' '̂:
while	(!StackIsEmpty(&stk)	&&	precedence(ch)	<=	precedence(StackTop(&stk)))
{
op	=	StackPop(&stk);
output[index++]	=	op;
output[index++]	=	'	';
}
StackPush(&stk,	ch);



break;
case	'(':
StackPush(&stk,	ch);
break;
case	')':
while	(!StackIsEmpty(&stk)	&&	(op	=	StackPop(&stk))	!=	'(')
{
output[index++]	=	op;
output[index++]	=	'	';
}
break;
}
}
}
while	(!StackIsEmpty(&stk))
{
op	=	StackPop(&stk);
output[index++]	=	op;
output[index++]	=	'	';
}
output[index++]	=	'\0';

}
int	precedence(char	x)
{

if	(x	==	'(')
return(0);
if	(x	==	'+'	||	x	==	'-')
return(1);
if	(x	==	'*'	||	x	==	'/'	||	x	==	'%')
return(2);
if	(x	==	' '̂)
return(3);
return(4);

}
	
Analysis:
1.	Print	operands	in	the	same	order	as	they	arrive.
2.	If	the	stack	is	empty	or	contains	a	left	parenthesis	“(”	on	top,	we	should	push	the	incoming	operator	in
the	stack.
3.	If	the	incoming	symbol	is	a	left	parenthesis	”(”,	push	left	parenthesis	in	the	stack.
4.	If	the	incoming	symbol	is	a	right	parenthesis	“)”,	pop	from	the	stack	and	print	the	operators	till	you	see
a	left	parenthesis	“)”.	Discard	the	pair	of	parentheses.
5.	If	the	precedence	of	incoming	symbol	is	higher	than	the	operator	at	the	top	of	the	stack,	then	push	it	to
the	stack.
6.	If	the	incoming	symbol	has	an	equal	precedence	compared	to	the	top	of	the	stack	use	association.	If	the



association	is	left	to	right,	then	pop	and	print	the	symbol	at	the	top	of	the	stack	and	then	push	the	incoming
operator.	If	the	association	is	right	to	left,	then	push	the	incoming	operator.
7.	If	the	precedence	of	incoming	symbol	is	lower	than	the	operator	on	the	top	of	the	stack,	then	pop	and
print	 the	 top	 operator.	 Then	 compare	 the	 incoming	 operator	 against	 the	 new	 operator	 at	 the	 top	 of	 the
stack.
8.	At	the	end	of	the	expression,	pop	and	print	all	operators	on	the	stack.
	

Infix-to-Prefix	Conversion
Example	8.10:
void	infixToPrefix(char*	expn,char*	output)
{

reverseString(expn);
replaceParanthesis(expn);
infixToPostfix(expn,	output);
reverseString(output);

}
	
void	reverseString(char	*a)
{

int	lower=0;
int	upper=strlen(a)-1;
char	tempChar;
while(lower<upper)
{
tempChar=a[lower];
a[lower]=a[upper];
a[upper]=tempChar;

	
lower++;
upper--;
}

}
	
void	replaceParanthesis(char	*a)
{

int	lower=0;
int	upper=strlen(a)-1;
char	tempChar;
while(lower<=upper)
{
if(a[lower]	==	'(')
a[lower]	=	')';
else	if(a[lower]	==	')')
a[lower]	=	'(';



lower++;
}

}
	
int	main()
{

char	expn[50]	=	"10	+	((3))	*	5	/	(16	-	4)";
printf("\n	Given	Expn:	%s\n",	expn);
infixToPostFix(expn);

	
char	expn2[50]	=	"(5	*	3)	 	̂(4	-	2)";
printf("\n	Given	Expn:	%s\n",	expn2);
infixToPostFix(expn2);

	
return	0;

}
	
Analysis:
1.Reverse	the	given	infix	expression.
2.Replace	'('	with	')'	and	')'	with	'('	in	the	reversed	expression.
3.Now	apply	infix	to	postfix	subroutine	already	discussed.
4.Reverse	the	generated	postfix	expression	and	this	will	give	required	prefix	expression.

Postfix	Evaluate
Write	a	postfixEvaluate()	function	to	evaluate	a	postfix	expression.
Such	as:	1	2	+	3	4	+	*
	
Example	8.11:
int	postfixEvaluate(char*	postfx)
{

Stack	s;
StackInitialize(&s);
int	i	=	0,	op1,	op2;
char	ch;
int	digit	=	0;
int	value	=	0;
while	((ch	=	postfx[i++])	!=	'\0')
{
if	(isdigit(ch))
{
digit	=	1;
value	=	value	*	10	+	(ch	-	'0');
}
else	if	(ch	==	'	')
{



if	(digit	==	1)
{
StackPush(&s,	value);	/*	Push	the	operand	*/
digit	=	0;
value	=	0;
}
}
else
{
op2	=	StackPop(&s);
op1	=	StackPop(&s);
switch	(ch)
{
case	'+':	StackPush(&s,	op1	+	op2);	break;
case	'-':	StackPush(&s,	op1	-	op2);	break;
case	'*':	StackPush(&s,	op1	*	op2);	break;
case	'/':	StackPush(&s,	op1	/	op2);	break;
}
}
}
return	StackTop(&s);

}
	
int	main()
{

char	postfx[50]	=	"6	5	2	3	+	8	*	+	3	+	*";
int	value	=	postfixEvaluate	(postfx);
printf("\n	Given	Postfix	Expn:	%s\n",	postfx);
printf("\n	Result	after	Evaluation:	%d\n",	value);
return	0;

}
	
Analysis:
1)	Create	a	stack	to	store	values	or	operands.
2)	Scan	through	the	given	expression	and	do	following	for	each	element:

a)	If	the	element	is	a	number,	then	push	it	into	the	stack.
b)	 If	 the	 element	 is	 an	 operator,	 then	 pop	 values	 from	 the	 stack.	 Evaluate	 the	 operator	 over	 the

values	and	push	the	result	into	the	stack.
3)	When	the	expression	is	scanned	completely,	the	number	in	the	stack	is	the	result.
	

Min	stack
Design	a	stack	in	which	get	minimum	value	in	stack	should	also	work	in	O(1)	Time	Complexity.
	
Hint:	Keep	two	stack	one	will	be	general	stack,	which	will	just	keep	the	elements.	The	second	will	keep



the	min	value.
1.	Push:	Push	an	element	to	the	top	of	stack1.	Compare	the	new	value	with	the	value	at	the	top	of	the

stack2.	 If	 the	 new	 value	 is	 smaller,	 then	 push	 the	 new	 value	 into	 stack2.	Alternatively,	 push	 the
value	at	the	top	of	the	stack2	to	itself	once	more.

2.	Pop:	Pop	an	element	from	top	of	stack1	and	return.	Pop	an	element	from	top	of	stack2	too.
3.	Min:	Read	from	the	top	of	the	stack2	this	value	will	be	the	min.

	

Palindrome	string
Find	if	given	string	is	a	palindrome	or	not	using	a	stack.
Definition	 of	 palindrome:	 A	 palindrome	 is	 a	 sequence	 of	 characters,	 which	 is	 same	 backward,	 or
forward.
Eg.	“AAABBBCCCBBBAAA”,	“ABA”	&	“ABBA”
	
Hint:	Push	characters	 to	 the	stack	until	 the	half-length	of	 the	string.	Then	pop	 these	characters	and	 then
compare.	Make	sure	you	take	care	of	the	odd	length	and	even	length.
	

Reverse	Stack
Given	a	stack	how	to	reverse	the	elements	of	the	stack	without	using	any	other	data-structure.	You	cannot
use	another	stack	too.
Time	Complexity	and	Space	Complexity	is	wrong,	it	is	O(n)	for	both	cases.
	
Hint:	 Use	 recursion	 (system	 stack.)	 When	 you	 go	 inside	 the	 stack	 pop	 elements	 from	 stack	 in	 each
subsequent	 call	 until	 stack	 is	 empty.	 Then	 push	 these	 elements	 one	 by	 one	 when	 coming	 out	 of	 the
recursion.	The	elements	will	be	reversed.
	
Example	8.12:
void	reverseStack(Stack*	stk)
{

int	data;
if	(StackIsEmpty(stk))
return;
data	=	StackPop(stk);
reverseStack(stk);
insertAtBottom(stk,	data);

}
	

Insert	At	Bottom
Example	8.13:
void	insertAtBottom(Stack*	stk,	int	value)
{

if	(StackIsEmpty(stk))
StackPush(stk,	value);



else
{
int	temp	=	StackPop(stk);
insertAtBottom(stk,	value);
StackPush(stk,	temp);
}

}
	

Depth-First	Search	with	a	Stack
In	a	depth-first	search,	we	traverse	down	a	path	until	we	get	a	dead	end;	then	we	backtrack	by	popping	a
stack	to	get	an	alternative	path.
·	Create	a	stack
·	Create	a	start	point
·	Push	the	start	point	onto	the	stack
·	While	(value	searching	not	found	and	the	stack	is	not	empty)

o	Pop	the	stack
o	Find	all	possible	points	after	the	one	which	we	just	tried
o	Push	these	points	onto	the	stack

	

Stack	using	a	queue
How	to	implement	a	stack	using	a	queue.	Analyse	the	running	time	of	the	stack	operations.
	
See	queue	chapter	for	this.
	

Two	stacks	using	single	array
Example	8.14:	How	to	implement	two	stacks	using	one	single	array.
#define	MAX_SIZE	50
	
typedef	struct	stack{

int	top1;
int	top2;
int	data[MAX_SIZE];

}Stack;
	
void	StackInitialize(Stack*	stk)
{

stk->top1	=	-1;
stk->top2	=	MAX_SIZE;

}
	
void	StackPush1	(Stack*	stk,	int	data)
{



if	(stk->top1	<	stk->top2	-	1)
{
stk->data[++stk->top1]	=	data;
}
else
{
printf	("Stack	is	Full!\n");
}

}
	
int	StackPop1	(Stack*	stk)
{

if	(stk->top1	>=	0)
{
int	value	=	stk->data[stk->top1--];
printf	("%d	is	being	popped	from	Stack	1\n",	value);
return	value;
}
else
{
printf	("Stack	Empty!	Cannot	Pop\n");
}
return	INT_MIN;

}
	
void	StackPush2	(Stack*	stk,	int	data)
{

if	(stk->top1	<	stk->top2	-	1)
{
stk->data[--stk->top2]	=	data;
}
else
{
printf	("Stack	is	Full!\n");
}

}
	
int	StackPop2	(Stack*	stk)
{

if	(stk->top2	<	MAX_SIZE)
{
int	value	=	stk->data[stk->top2++];
printf	("%d	is	being	popped	from	Stack	2\n",	value);
return	value;
}



else
{
printf	("Stack	Empty!	Cannot	Pop\n");
}
return	INT_MIN;

}
Analysis:	Same	array	is	used	to	implement	two	stack.	First	stack	is	filled	from	the	beginning	of	the	array
and	second	stack	is	filled	from	the	end	of	the	array.	Overflow	and	underflow	conditions	need	to	be	taken
care	of	carefully.
	

Stock	Span	Problem

	
Approach	1:
int*	StockSpanRange(int	arr[],	int	size)
{

int	*SR	=	(int*)malloc(size	*	sizeof(int));
SR[0]	=	1;

	
for	(int	i	=	1;	i	<	size;	i++)
{
SR[i]	=	1;
for	(int	j	=	i	-	1;	(j	>=	0)	&&	(arr[i]	>=	arr[j]);	j--)
SR[i]++;
}
return	SR;

}
	
Approach	2:
int*	StockSpanRange	(int	arr[],	int	size)
{

Stack	stk;
int	*SR	=	(int*)malloc(size	*	sizeof(int));
StackInitialize(&stk);



StackPush(&stk,	0);
SR[0]	=	1;

	
for	(int	i	=	1;	i	<	size;	i++)
{
while	(!StackIsEmpty(&stk)	&&	arr[StackTop(&stk)]	<=	arr[i])
{
StackPop(&stk);
}
SR[i]	=	(StackIsEmpty(&stk))	?	(i	+	1)	:	(i	-	StackTop(&stk));
StackPush(&stk,	i);
}
return	SR;

}
	

Get	Max	Rectangular	Area	in	a	Histogram

Approach	1
int	GetMaxArea(int	arr[],	int	size)
{

int	maxArea	=	-1;
int	currArea;
int	minHeight	=	0;
for	(int	i	=	1;	i	<	size;	i++)
{
minHeight	=	arr[i];
for	(int	j	=	i	-	1;	j	>=	0;	j--)
{
if	(minHeight	>	arr[j])
minHeight	=	arr[j];

	
currArea	=	minHeight	*	(i	-	j	+	1);

	
if	(maxArea	<	currArea)
maxArea	=	currArea;



}
}
return	maxArea;

}
	
Approach	2:	Divide	and	conquer
	
Approach	3
int	GetMaxArea(int	arr[],	int	size)
{

Stack	stk;
StackInitialize(&stk);
int	maxArea	=	0;
int	top;
int	topArea;
int	i	=	0;
while	(i	<	size)
{
while	(	(i	<	size)	&&	(StackIsEmpty(&stk)	||	arr[StackTop(&stk)]	<=	arr[i])	)
{
StackPush(&stk,	i);
i++;
}
while	(	!StackIsEmpty(&stk)	&&	(	i	==	size	||	arr[StackTop(&stk)]	>	arr[i])	)
{
top	=	StackTop(&stk);
StackPop(&stk);
topArea	=	arr[top]	*	(StackIsEmpty(&stk)	?	i	:	i	-	StackTop(&stk)	-	1);
if	(maxArea	<	topArea)
maxArea	=	topArea;
}
}
return	maxArea;

}
	



Pros	and	cons	of	array	and	linked	list	implementation	of	stack.
Linked	lists:	List	implementation	uses	1	pointer	extra	memory	per	item.	There	is	no	size	restriction.
	
Arrays:	Allocated	a	constant	amount	of	space,	when	the	stack	is	nearly	empty,	then	lost	of	space	is	waste
as	it	is	not	used.	Maximum	size	is	determined	when	the	stack	is	created.
	



Uses	of	Stack
·	Recursion	can	also	be	done	using	stack.	(In	place	of	the	system	stack)
·	The	function	call	is	implemented	using	stack.
·	Some	problems	when	we	want	to	reverse	a	sequence,	we	just	push	everything	in	stack	and	pop	from	it.
·	Grammar	 checking,	 balance	 parenthesis,	 infix	 to	 postfix	 conversion,	 postfix	 evaluation	 of	 expression

etc.
	



Exercise
Ex	1:	Converting	Decimal	Numbers	to	Binary	Numbers	using	stack	data	structure.
	
Hint:	store	reminders	into	the	stack	and	then	print	the	stack.
	
Ex	2:	Convert	an	infix	expression	to	prefix	expression.
	
Hint:	Reverse	given	expression,	Apply	infix	to	postfix,	and	then	reverse	the	expression	again.

Step	1.	Reverse	the	infix	expression.
5^E+D*)C^B+A(

Step	2.	Make	Every	'('	as	')'	and	every	')'	as	'('
5^E+D*(C^B+A)

Step	3.	Convert	an	expression	to	postfix	form.
Step	4.	Reverse	the	expression.

+*+A^BCD^E5
	
Ex	3:	Write	an	HTML	opening	tag	and	closing	tag-matching	program.
Hint:	parenthesis	matching.
	
Ex	4:	Write	a	function	that	will	do	Postfix	to	Infix	Conversion
	
Ex	5:	:	Write	a	function	that	will	do	Prefix	to	Infix	Conversion
	
Ex	6	 :	Write	 a	 palindrome	matching	 function,	which	 ignore	 characters	 other	 than	English	 alphabet	 and
digits.	String	"Madam,	I'm	Adam."	should	return	true.
	

http://scanftree.com/Data_Structure/postfix-to-infix
http://scanftree.com/Data_Structure/prefix-to-infix




CHAPTER	9:	QUEUE
	



Introduction
A	queue	 is	 a	basic	data	 structure	 that	organized	 items	 in	 first-in-first-out	 (FIFO)	manner.	First	 element
inserted	into	a	queue	will	be	the	first	to	be	removed.	It	is	also	known	as	"first-come-first-served".
	
The	real	life	analogy	of	queue	is	typical	lines	in	which	we	all	participate	time	to	time.

·	We	wait	in	a	line	of	railway	reservation	counter.
·	We	wait	in	the	cafeteria	line	(to	pop	a	plate	from	“stack	of	plates”).
·	We	wait	in	a	queue	when	we	call	to	some	customer	case.

	
The	elements,	which	are	at	the	front	of	the	queue,	are	the	one,	which	stayed	in	the	queue	for	the	longest
time.
	

	
Computer	science	also	has	common	examples	of	queues.	We	issue	a	print	command	from	our	office	to	a
single	printer	per	floor,	print	task	is	lined	up	in	a	printer	queue.	The	print	command	that	was	issued	first
will	be	printed	before	the	next	commands	in	line.
	
In	 addition	 to	 printing	 queues,	 operating	 system	 is	 also	 using	 different	 queues	 to	 control	 process
scheduling.	Processes	are	added	to	processing	queue,	which	is	used	by	an	operating	system	for	various
scheduling	algorithms.
	
Soon	we	will	be	reading	about	graphs	and	will	come	to	know	about	breadth-first	traversal,	which	uses	a
queue.
	



The	Queue	Abstract	Data	Type
Queue	abstract	data	type	is	defined	as	a	structure	that	follows	FIFO	or	first-in-first-out	for	the	elements
added	to	it.
Queue	should	support	the	following	operation:
1.	enqueue():	Which	add	a	single	element	at	the	back	of	a	queue
2.	dequeue():	Which	remove	a	single	element	from	the	front	of	a	queue.
3.	isEmpty():	Returns	1	if	the	queue	is	empty
4.	size():	Returns	the	number	of	elements	in	a	queue.
	



Queue	Using	Array

Example	9.1:
#define	SIZE	100
#define	ERROR_VALUE	-999
	
typedef	struct	Queue_t{

int	front;
int	back;
int	size;
int	data[SIZE];

}Queue;
	
void	QueueInitialize(Queue*	que)
{

que->back	=	0;
que->front	=	0;
que->size	=	0;

}
	
int	QueueIsEmpty(Queue*	que)
{

return	que->size	==	0;
}
	
int	QueueSize(Queue*	que)
{

return	que->size;
}
	
void	Enqueue(Queue*	que,	int	value)
{

if	(que->size	>=	SIZE	)



{
printf("\n	Queue	is	full.");
return;
}
else
{
que->size++;
que->data[que->back]	=	value;
que->back	=	(++(que->back))	%	(SIZE	-	1);
//printf("\n	enqueue:	%d	",	value);
}

}
	
int	Dequeue(Queue*	que)
{

int	value;
if	(que->size	<=	0)
{
printf("\n	Queue	is	empty.");
return	ERROR_VALUE;
}
else
{
que->size--;
value	=	que->data[que->front];
que->front	=	(++(que->front))	%	(SIZE	-	1);
}
return	value;

}
	
int	main()
{

Queue	que;
QueueInitialize(&que);
for	(int	i	=	0;	i	<	20;	i++)
{
Enqueue(&que,i);
}
for	(int	i	=	0;	i	<	20;	i++)
{
Dequeue(&que);
}
return	0;

}
	



Analysis:
1.	Hear	queue	is	created	from	an	array	of	size	100.
2.	QueueInitialize	function	initialize	the	number	of	element	in	queue	to	zero.	By	assigning	front,	back	and

size	of	queue	to	zero.
3.	Enqueue	insert	one	element	at	the	back	of	the	queue.
4.	Dequeue	delete	one	element	from	the	front	of	the	queue.



Queue	Using	linked	list
struct	queueNode_t{

int	value;
queueNode_t	*next;

};
typedef	queueNode_t*	queuePtr;
#define	ERROR_VALUE	-99999
	
A	node	of	a	queue	using	linked	list	looks	same	as	linked	list.
	

Enqueue
Enqueue	 into	 a	 queue	 using	 linked	 list.	Nodes	 are	 added	 to	 the	 end	 of	 the	 linked	 list.	Below	diagram
indicates	how	a	new	node	is	added	to	the	list.	The	tail	is	modified	every	time	when	a	new	value	is	added
to	 the	queue.	However,	 the	head	 is	also	updated	 in	 the	case	when	 there	 is	no	element	 in	 the	queue	and
when	that	first	element	is	added	to	the	queue	both	head	and	tail	will	be	pointing	to	it.

	
Example	9.2:
1.	void	enqueue(queuePtr*	dPtrHead,queuePtr*	dPtrTail,int	value)
2.	{



3.	queuePtr	tempNode=(queuePtr)malloc(sizeof(queueNode_t));
4.	if(!tempNode)
5.	{
6.	Printf("memory	shortage	unable	to	enqueue");
7.	return;
8.	}
9.	tempNode->value=value;
10.	tempNode->next=NULL;
11.	if(*dPtrHead==NULL)
12.	{
13.	*dPtrTail=tempNode;
14.	*dPtrHead=tempNode;
15.	}
16.	else
17.	{
18.	(*dPtrTail)->next=tempNode;
19.	*dPtrTail=tempNode;
20.	}
21.	}
	
Analysis:	Enqueue	operation	add	one	element	at	the	end	of	the	Queue	(linked	list).
	

Dequeue

In	this	we	need	the	tail	pointer	as	it	may	be	the	case	there	was	only	one	element	in	the	list	and	the	tail
pointer	will	also	be	modified	in	case	of	the	dequeue.
	
Example	9.3:
1.	int	dequeue(queuePtr*	dPtrHead,queuePtr*	dPtrTail)



2.	{
3.	int	value;
4.	queuePtr	deleteMe;
5.	if(*dPtrHead)
6.	{
7.	deleteMe=*dPtrHead;
8.	*dPtrHead=deleteMe->next;
9.	value=deleteMe->value;
10.	free(deleteMe);
11.	if(*dPtrHead==NULL)
12.	*dPtrTail=NULL;
13.	return	value;
14.	}
15.	else
16.	{
17.	Printf("queue	empty	\n");
18.	return	ERROR_VALUE;
19.	}
20.	}
	
Analysis:	Dequeue	operation	removes	first	node	from	the	start	of	the	queue(	linked	list).



Problems	in	Queue

Queue	using	a	stack
How	to	implement	a	queue	using	a	stack.	You	can	use	more	than	one	stack.
	
Solution:	We	can	use	two	stack	to	implement	queue.	We	need	to	simulate	first	in	first	our	using	stack.
a)	Enqueue	Operation:	new	elements	are	added	to	the	top	of	first	stack.
b)	Dequeue	Operation:	elements	are	popped	from	the	second	stack.	When	second	stack	is	empty	then	all

the	elements	of	first	stack	are	popped	and	pushed	into	second	stack	one	by	one.
	
Example	9.4:
#include	"Stack.h"
	
typedef	struct	SQueue_t
{

Stack	stk1;
Stack	stk2;

}SQueue;
	
void	QueueInitialize(SQueue*	que)
{

StackInitialize(&que->stk1);
StackInitialize(&que->stk2);

}
	
void	Enqueue(SQueue*	que,	int	value)
{

StackPush(&que->stk1,	value);
}
	
int	Dequeue(SQueue*	que)
{

int	value;
if	(!StackIsEmpty(&que->stk2))
return	StackPop(&que->stk2);
while	(!StackIsEmpty(&que->stk1))
{
value	=	StackPop(&que->stk1);
StackPush(&que->stk2,	value);
}
return	StackPop(&que->stk2);

}
	
int	main()



{
SQueue	que;
QueueInitialize(&que);
Enqueue(&que,1);
Enqueue(&que,	11);
Enqueue(&que,	111);
printf("%d	",	Dequeue(&que));
printf("%d	",	Dequeue(&que));
printf("%d	",	Dequeue(&que));

}
	

Stack	using	a	Queue
Implement	stack	using	a	queue.
	
Solution	1:	use	two	queue
Push:	enqueue	new	elements	to	queue1.
Pop:	while	size	of	queue1	is	bigger	than	1.	Push	all	items	from	queue	1	to	queue	2	except	the	last	item.
Switch	the	name	of	queue	1	and	queue	2.	And	return	the	last	item.
Push	operation	is	O(1)	and	Pop	operation	is	O(n)
	
Solution	2:	This	same	can	be	done	using	just	one	queue.
Push:	enqueue	the	element	to	queue.
Pop:	 find	 the	 size	 of	 queue.	 If	 size	 is	 zero	 then	 return	 error.	 If	 size	 is	 positive	 then	 dequeue	 size-	 1
elements	from	the	queue	and	again	enqueue	to	the	same	queue.	At	last,	dequeue	the	next	element	and	return
it.
Push	operation	is	O(1)	and	Pop	operation	is	O(n)
	
Solution	3:	In	the	above	solutions	the	push	is	efficient	and	pop	is	un	efficient	can	we	make	pop	efficient
O(1)	and	push	inefficient	O(n)
Push	 :	 enqueue	 new	 elements	 to	 queue2.	 Then	 enqueue	 all	 the	 elements	 of	 queue	 1	 to	 queue	 2.	 Then
switch	names	of	queue1	and	queue	2.
Pop:	dequeue	from	queue1
Push	operation	is	O(n)	and	Pop	operation	is	O(1)
	

Reverse	a	stack
Reverse	a	stack	using	a	queue
Solution:
a)	Pop	all	the	elements	of	stack	and	enqueue	them	into	a	queue.
b)	Then	dequeue	all	the	elements	of	the	queue	into	stack
c)	We	have	the	elements	of	the	stack	reversed.
	

Reverse	a	queue



Reverse	a	queue	using	a	stack
Solution:
a)	Dequeue	all	the	elements	of	the	queue	into	stack
b)	Then	pop	all	the	elements	of	stack	and	enqueue	them	into	a	queue.
c)	We	have	the	elements	of	the	queue	reversed.
	

Breadth-First	Search	with	a	Queue
In	 breadth-first	 search,	 we	 explore	 all	 the	 nearest	 nodes	 first	 by	 finding	 all	 possible	 successors	 and
enqueue	them	to	a	queue.
a)	Create	a	queue
b)	Create	a	start	point
c)	Enqueue	the	start	point	onto	the	queue
d)	while	(value	searching	not	found	and	the	queue	is	not	empty)

o	Dequeue	from	the	queue
o	Find	all	possible	points	after	the	last	one	tried
o	Enqueue	these	points	onto	the	queue

	

Josephus	problem
There	are	n	people	 standing	 in	 a	queue	waiting	 to	be	 executed.	The	counting	begins	 at	 the	 front	of	 the
queue.	 In	each	step,	k	number	of	people	are	dequeued	and	again	enqueued	one	by	one	 from	 the	queue.
Then	 the	 next	 person	 is	 executed.	 The	 execution	 proceeds	 around	 the	 circle	 until	 only	 the	 last	 person
remains,	who	is	given	freedom.
	
Find	that	position	where	you	want	to	stand	and	gain	your	freedom.
	
Solution:
1)	Just	insert	integer	for	1	to	k	in	a	queue.	(corresponds	to	k	people)
2)	Define	a	Kpop()	function	such	that	it	will	dequeue	and	enqueue	the	queue	k-1	times	and	then	dequeue

one	more	time.	(This	man	is	dead.)
3)	Repeat	second	step	until	size	of	queue	is	1.
4)	Print	the	value	in	the	last	element.	This	is	the	solution.
	



Exercise

1)	 Implement	 queue	 using	 dynamic	memory	 allocation.	 Such	 that	 the	 implementation	 should	 follow	 the
following	constraints.
a)	The	user	 should	use	memory	allocation	 from	 the	heap	using	malloc()	 function.	 In	 the	above	code

make	this	change	in	the	init()	function.	In	this,	you	need	to	take	care	of	the	max	value	in	the	queue
structure.	(You	do	not	need	#	define).

	
b)	Once	you	are	done	with	the	above	exercise	and	you	are	able	to	test	your	queue.	Then	you	can	add

some	 more	 complexity	 to	 your	 code.	 In	 enqueue()	 function	 when	 the	 queue	 is	 full	 in	 place	 of
printing	“Queue	is	full”	you	should	allocate	more	space	using	realloc()	function	call.

	
c)	Once	you	are	done	with	the	above	exercise.	Now	in	dequeue	function	once	you	are	below	half	of	the

capacity	of	the	queue,	you	need	to	decrease	the	size	of	the	queue	by	half.	You	should	add	one	more
variable	"min"	to	queue	structure	so	that	you	can	track	what	is	the	original	value	capacity	passed	at
init()	function.	Moreover,	the	capacity	of	the	queue	will	not	go	below	the	value	passed	in	the	init()
function.

	
(If	you	are	not	able	to	solve	the	above	exercise,	then	have	a	look	into	stack	chapter,	where	we	have
done	similar	for	stack)

	
2)	Implement	the	below	function	for	the	queue:

a.	IsEmpty:	This	is	left	as	an	exercise	for	the	user.	Take	a	variable,	which	will	take	care	of	the	size
of	a	queue	if	the	value	of	that	variable	is	zero,	isEmpty	should	return	1	(true).	If	the	queue	is	not
empty,	then	it	should	return	0	(false).

	
b.	Size:	Use	the	size	variable	to	be	used	under	size	function	call.	Size()	function	should	return	the

number	of	elements	in	the	queue.
	
3)	Implement	stack	using	a	queue.	Write	a	program	for	this	problem.	You	can	use	just	one	queue.
	
4)	Write	a	program	to	Reverse	a	stack	using	queue
	
5)	Write	a	program	to	Reverse	a	queue	using	stack
	
6)	Write	a	program	to	solve	Josephus	problem	(algo	already	discussed.).	There	are	n	people	standing	in	a

queue	waiting	to	be	executed.	The	counting	begins	at	the	front	of	the	queue.	In	each	step,	k	number	of
people	are	dequeued	and	again	enqueued	one	by	one	from	the	queue.	Then	the	next	person	is	executed.
The	elimination	proceeds	around	the	circle	until	only	the	last	person	remains,	who	is	given	freedom.
Find	that	position	where	you	want	to	stand	and	gain	your	freedom.

	
7)	Write	a	CompStack()	function	which	takes	a	pointer	to	two	stack	structure	as	an	argument	and	return

true	 or	 false	 depending	 upon	whether	 all	 the	 elements	 of	 the	 stack	 are	 equal	 or	 not.	You	 are	 given
isEqual(int,	int	)	which	will	compare	and	return	1	if	both	values	are	equal	and	0	if	they	are	different.



	



CHAPTER	10:	TREE
	



Introduction
We	have	already	read	about	various	linear	data	structures	like	an	array,	linked	list,	stack,	queue	etc.
Both	array	and	linked	list	have	a	drawback	of	linear	time	required	for	searching	an	element.
	
A	 tree	 is	 a	nonlinear	data	 structure,	which	 is	 used	 to	 represent	 hierarchical	 relationships	 (parent-child
relationship).	Each	node	is	connected	by	another	node	by	directed	edges.
	
Example	1:	Tree	in	organization

	
Example	2:	Tree	in	a	file	system

	



Terminology	in	tree

	
	
Root:	The	root	of	the	tree	is	the	only	node	without	any	incoming	edges.	It	is	the	top	node	of	a	tree.
	
Node:	It	is	a	fundamental	element	of	a	tree.	Each	node	has	data	and	two	pointers,	which	point	to	null	or
its	child.
	
Edge:	It	is	also	a	fundamental	part	of	a	tree,	which	is	used	to	connect	two	nodes.
	
Path:	A	path	is	an	ordered	list	of	nodes	that	are	connected	by	edges.
	
Leaf:	A	leaf	node	is	a	node	that	has	no	children.
	
Height	of	the	tree:	The	height	of	a	tree	is	the	number	of	edges	on	the	longest	path	between	the	root	and	a
leaf.
	
The	level	of	node:	The	level	of	a	node	is	the	number	of	edges	on	the	path	from	the	root	node	to	that	node.



	
Children:	Nodes	that	have	incoming	edges	from	the	same	node	to	be	said	to	be	the	children	of	that	node.
	
Parent:	Node	is	a	parent	of	all	the	child	nodes,	which	are	linked	by	outgoing	edges.
	
Sibling:	Nodes	in	the	tree	that	are	children	of	the	same	parent	are	said	to	be	siblings
	
Ancestor:	A	node	reachable	by	repeated	moving	from	child	to	parent.
	



Binary	Tree
A	binary	tree	is	a	type	tree	in	which	each	node	has	at	most	two	children	(0,	1	or	2),	which	are	referred	to
as	the	left	child	and	the	right	child.
	
Below	is	a	node	of	the	binary	tree	with	"a"	stored	as	data	and	whose	left	child	(lChild)	and	whose	right
child	(rchild)	both	pointing	towards	NULL.

Below	is	a	structure	used	to	define	node,	we	have	typedef	node	pointer	to	treeptr
	
struct	treeNode_t{

int	value;
treeNode_t	*	lChild;
treeNode_t	*	rChild;

};
typedef	treeNode_t*	treePtr;
	
Below	is	a	binary	tree	whose	nodes	contains	data	from	1	to	10
	

	
	
In	the	rest	of	the	book,	binary	tree	will	be	represented	as	below:



Properties	of	Binary	tree	are:
1.	The	maximum	number	of	nodes	on	level	i	of	a	binary	tree	is	2i	,	where	i	>=	1
2.	The	maximum	number	of	nodes	in	a	binary	tree	of	depth	k	is	2k+1,	where	k	>=	1
3.	There	is	exactly	one	path	from	the	root	to	any	nodes	in	a	tree.
4.	A	tree	with	N	nodes	have	exactly	N-1	edges	connecting	these	nodes.
5.	The	height	of	a	complete	binary	tree	of	N	nodes	is	log2N.
	



Types	of	Binary	trees

Complete	binary	tree
In	a	complete	binary	 tree,	every	 level	except	 the	 last	one	 is	completely	filled.	All	nodes	 in	 the	 left	are
filled	first,	then	the	right	one.
A	binary	heap	is	an	example	of	a	complete	binary	tree.

Full/	Strictly	binary	tree
The	full	binary	tree	is	a	binary	tree	in	which	each	node	has	exactly	zero	or	two	children.

Perfect	binary	tree
The	perfect	binary	 tree	 is	 a	 type	of	 full	binary	 tree	 in	which	each	non-leaf	node	has	exactly	 two	child
nodes.
All	leaf	nodes	have	identical	path	length	and	all	possible	node	slots	are	occupied



Right	skewed	binary	tree
A	binary	tree	in	which	each	node	is	having	either	a	right	child	or	no	child	(leaf)	is	called	as	right	skewed
binary	tree

Left	skewed	binary	tree
A	binary	tree	in	which	each	node	is	having	either	a	left	child	or	no	child	(leaf)	is	called	as	Left	skewed
binary	tree

Height-balanced	Binary	Tree
A	height-balanced	binary	tree	is	a	binary	tree	such	that	the	left	&	right	subtrees	for	any	given	node	differ
in	height	by	max	one.
	
Note:	Each	complete	binary	tree	is	a	height-balanced	binary	tree



AVL	tree	and	RB	tree	are	an	example	of	height	balanced	tree	we	will	discuss	these	trees	in	advance	tree
topic.
	



Problems	in	Binary	Tree

Create	a	Complete	binary	tree
Create	a	binary	tree	given	a	list	of	values	in	an	array.
Solution:	Since	there	is	no	order	defined	in	a	binary	tree,	so	nodes	can	be	inserted	in	any	order	so	it	can
be	a	skewed	binary	tree.	But	it	is	inefficient	to	do	anything	in	a	skewed	binary	tree	so	we	will	create	a
Complete	binary	tree.	At	each	node,	the	middle	value	stored	in	the	array	is	assigned	to	node	and	left	of
array	is	passed	to	the	left	child	of	the	node	to	create	left	sub-tree.	And	right	portion	of	array	is	passed	to
right	child	of	the	node	to	crate	right	sub-tree.
	
Example	10.1:
treePtr	CompleteBinaryTree(int*	arr,	int	start,	int	size)
{

treePtr	root	=	NULL;
	

root	=	createNode(arr[start]);
	

int	left	=	2	*	start	+	1;
int	right	=	2	*	start	+	2;

	
if	(left	<	size)
root->lChild	=	CompleteBinaryTree(arr,	left,	size);
if	(right	<	size)
root->rChild	=	CompleteBinaryTree(arr,	right,	size);

	
return	root;

}
	
treePtr	createNode(int	val)
{

treePtr	root	=	(treePtr)malloc(sizeof(treeNode_t));
root->value	=	val;
root->lChild	=	root->rChild	=	NULL;
return	root;

}
	
int	main()
{

treePtr	root	=	NULL;
int	A[]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
root	=	CompleteBinaryTree(A,	0,	10);
return	0;

}
	



Complexity	Analysis:
This	is	an	efficient	algorithm	for	creating	a	complete	binary	tree.
Time	Complexity:	O(n)	,	Space	Complexity:	O(n)
	

Pre-Order	Traversal
Traversal	is	a	process	of	visiting	each	node	of	a	tree.	In	Pre-Order	Traversal	parent	is	visited/traversed
first,	then	left	child	and	right	child.	Pre-Order	traversal	is	a	type	of	depth-first	traversal.

Solution:	Preorder	traversal	is	done	using	recursion.	At	each	node,	first	the	value	stored	in	it	is	printed
and	then	followed	by	the	value	of	left	child	and	right	child.	At	each	node	its	value	is	printed	followed	by
calling	printTree()	function	to	its	left	and	right	child	to	print	left	and	right	sub-tree.
	
Example	10.2:
1.	void	printPreorder	(treePtr	root)	/*	pre	order	*/
2.	{
3.	if(root)
4.	{
5.	printf("%d	",	root->value);
6.	printPreorder	(root->lChild);
7.	printPreorder	(root->rChild);
8.	}
9.	}
	
Output:
6	4	2	1	3	5	8	7	9	10
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	
Note:	When	there	is	an	algorithm	in	which	all	nodes	are	traversed,	then	complexity	cannot	be	less	than
O(n).	When	there	is	a	large	portion	of	the	tree	that	is	not	traversed	then	complexity	reduces.
	



Post-Order	Traversal
In	Post-Order	Traversal	left	child	is	visited/traversed	first,	then	right	child	and	last	parent
Post-Order	traversal	is	a	type	of	depth-first	traversal.

Solution:	In	post	order	traversal,	first,	 the	left	child	is	traversed	then	right	child	and	in	the	end,	current
node	value	is	printed	to	the	screen.
	
	
Example	10.3:
1.	void	printPostorder(treePtr	root)	/*	post	order	*/
2.	{
3.	if(root)
4.	{
5.	printPostorder	(root->lChild);
6.	printPostorder	(root->rChild);
7.	printf("%d	",	root->value);
8.	}
9.	}
	
Output:
1	3	2	5	4	7	10	9	8	6
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

In-Order	Traversal
In	In-Order	Traversal,	left	child	is	visited/traversed	first,	then	the	parent	and	last	right	child
In-Order	traversal	is	a	type	of	depth-first	traversal.	The	output	of	In-Order	traversal	of	BST	is	a	sorted
list.
	
Solution:	In	In-Order	traversal,	first	the	value	of	left	child	is	traversed,	then	the	value	of	node	is	printed
to	the	screen	and	then	the	value	of	right	child	is	traversed.



Example	10.4:
1.	void	printInorder	(treePtr	root)	/*	in	order	*/
2.	{
3.	if(root)
4.	{
5.	printInorder	(root->lChild);
6.	printf(“%d	“,	root->value);
7.	printInorder	(root->rChild);
8.	}
9.	}
	
Output:
1	2	3	4	5	6	7	8	9	10
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	
Note:	Pre-Order,	Post-Order,	and	In-Order	traversal	are	for	all	binary	trees.	They	can	be	used	to	traverse
any	kind	of	a	binary	tree.
	

Level	order	traversal	/	Breadth	First	traversal
Write	C	code	 to	 implement	 level	order	 traversal	of	a	 tree.	Such	 that	nodes	at	depth	k	 is	printed	before
nodes	at	depth	k+1.



	
Solution:	Level	order	traversal	or	Breadth	First	traversal	of	a	tree	is	done	using	a	queue.	At	the	start,	the
root	 node	 pointer	 is	 added	 to	 queue.	The	 traversal	 of	 tree	 happens	 until	 its	 queue	 is	 empty.	When	we
traverse	the	tree,	we	first	dequeue	an	element	from	the	queue,	print	the	value	stored	in	that	node	and	then
its	left	child	and	right	child	will	be	added	to	the	queue.
	
Example	10.5:
1.	void	printBredthFirst(treePtr	root)
2.	{
3.	std::queue<treePtr>	que;
4.	treePtr	temp;
5.	que.push(root);
6.	while(!que.empty())
7.	{
8.	temp=	que.front();
9.	que.pop();
10.	printf(“	%d	”,	temp->value);
11.	if(temp->lChild)
12.	que.push(temp->lChild);
13.	if(temp->rChild)
14.	que.push(temp->rChild);
15.	}
16.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Print	Depth	First	without	using	the	recursion	/	system	stack.
Solution:	Depth	first	traversal	of	the	tree	is	done	using	recursion	by	using	system	stack.	The	same	can	be
done	using	stack.	In	the	start,	root	node	pointer	is	added	to	the	stack.	The	whole	tree	is	traversed	until	the
stack	is	empty.	In	each	iteration,	an	element	is	popped	from	the	stack	its	value	is	printed	to	screen.	Then
right	child	and	then	left	child	of	the	node	is	added	to	stack.
	



Example	10.6:
1.	void	printDepthFirst(treePtr	root)
2.	{
3.	std::stack<treePtr>	st;
4.	treePtr	temp;
5.	st.push(root);
6.	while(!st.empty()	)
7.	{
8.	temp=st.top();
9.	st.pop();
10.	printf(	“	%d	”,	temp->value);
11.	if(temp->rChild)
12.	st.push(temp->rChild);
13.	if(temp->lChild)
14.	st.push(temp->lChild);
15.	}
16.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Tree	Depth
Solution:	Depth	 is	 tree	 is	 calculated	 recursively	by	 traversing	 left	 and	 right	 child	 of	 the	 root.	At	 each
level	of	traversal	depth	of	left	child	is	calculated	and	depth	of	right	child	is	calculated.	The	greater	depth
among	the	left	and	right	child	is	added	by	one	(which	is	the	depth	of	the	current	node)	and	this	value	is
returned.
	
	
	
Example	10.7:
1.	int	treeDepth(treePtr	root)
2.	{
3.	if(!root)
4.	return	0;
5.	else
6.	{
7.	int	lDepth=treeDepth(root->lChild);
8.	int	rDepth=treeDepth(root->rChild);
9.	if(lDepth	>	rDepth)
10.	return	lDepth+1;
11.	else
12.	return	rDepth+1;
13.	}
14.	}
	



Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Nth	Pre-Order
Solution:	We	want	 to	 print	 the	 node	 that	will	 be	 at	 the	 nth	 index	when	we	 print	 the	 tree	 in	 PreOrder
traversal.	Therefore,	we	keep	a	counter	 to	keep	 track	of	 the	 index.	When	 the	counter	 is	equal	 to	 index,
then	we	print	the	value	and	return	the	Nth	PreOrder	index	node.
	
Example	10.8:
1.	treePtr	NthPreOrder(treePtr	root,	int	index)/*	pre	order	*/
2.	{
3.	static	int	counter=0;
4.	treePtr	temp=NULL;
5.	if(root)
6.	{
7.	counter	++;
8.	if(counter	==	index)
9.	{
10.	printf("	%d	",	root->value);
11.	return	root;
12.	}
13.	temp=NthPreOrder(root->lChild,index);
14.	if(temp)
15.	return	temp;
16.	temp=NthPreOrder(root->rChild,index);
17.	if(temp)
18.	return	temp;
19.	}
20.	return	NULL;
21.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Nth	Post	Order
Solution:	We	want	 to	print	 the	node	 that	will	 be	 at	 the	nth	 index	when	we	print	 the	 tree	 in	post	 order
traversal.	Therefore,	we	keep	a	counter	to	keep	track	of	the	index,	but	at	this	time,	we	will	increment	the
counter	after	left	child	and	right	child	traversal.	When	the	counter	is	equal	to	index,	we	print	the	value	and
return	the	nth	post	order	node.
	
Example	10.9
1.	treePtr	NthPostOrder(treePtr	root,	int	index)/*	post	order	*/
2.	{
3.	static	int	count=0;
4.	treePtr	temp=NULL;



5.	if(root)
6.	{
7.	temp=NthPostOrder(root->lChild,index);
8.	if(temp)
9.	return	temp;
10.	temp=NthPostOrder(root->rChild,index);
11.	if(temp)
12.	return	temp;
13.	count++;
14.	if(count	==	index)
15.	{
16.	printf("	%d	“,	root->value);
17.	return	root;
18.	}
19.	}
20.	return	NULL;
21.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Nth	In	Order
Solution:We	want	 to	print	 the	node,	which	will	 be	 at	 the	nth	 index	when	we	print	 the	 tree	 in	 in-order
traversal.	Therefore,	we	keep	a	counter	to	keep	track	of	the	index,	but	at	this	time,	we	will	increment	the
counter	after	left	child	traversal	but	before	the	right	child	traversal.	When	the	counter	is	equal	to	index,
then	we	print	the	value	and	return	the	nth	in-order	index	node.
	
Program	10.10:
1.	treePtr	NthInOrder(treePtr	root,	int	index)/*	in	order	*/
2.	{
3.	static	int	count=0;
4.	treePtr	temp=NULL;
	
5.	if(root)
6.	{
7.	temp=NthInOrder(root->lChild,index);
8.	if(temp)
9.	return	temp;
10.	count++;
11.	if(count	==	index)
12.	{
13.	printf("%d	“,	root->value);
14.	return	root;
15.	}
16.



17.	temp=NthInOrder(root->rChild,index);
18.	if(temp)
19.	return	temp;
20.	}
21.	return	NULL;
22.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)

Copy	Tree
Solution:	Copy	tree	is	done	by	copy	nodes	of	the	input	tree	at	each	level	of	the	traversal	of	the	tree.	At
each	level	of	the	traversal	of	nodes	of	tree,	a	new	node	is	created	and	the	value	of	the	input	tree	node	is
copied	to	it.	The	left	child	tree	is	copied	recursively	and	then	pointer	to	new	subtree	is	returned	which
will	be	assigned	to	the	left	child	of	the	current	new	node.	Similarly	for	the	right	child	too.	Finally,	the	tree
is	copied.
	
Example	10.11:
1.	treePtr	copyTree(treePtr	root)
2.	{
3.	treePtr	temp;
4.	if(root	!=	NULL)
5.	{
6.	temp=(treePtr)malloc(sizeof(treeNode_t));
7.	if(!temp)
8.	return	NULL;
9.	temp->value=root->value;
10.	temp->lChild=copyTree(root->lChild);
11.	temp->rChild=copyTree(root->rChild);
12.	return	temp;
13.	}
14.	else
15.	return	NULL;
16.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)

Copy	Mirror	Tree
Solution:	Copy,	mirror	image	of	the	tree	is	done	same	as	copy	tree,	but	in	place	of	left	child	pointing	to
the	tree	formed	by	left	child	traversal	of	input	tree,	this	time	left	child	points	to	the	tree	formed	by	right
child	traversal.	Similarly	right	child	point	to	the	traversal	of	the	left	child	of	the	input	tree.
	
Example	10.12:
1.	treePtr	copyMirrorTree(treePtr	root)
2.	{
3.	treePtr	temp;



4.	if(root	!=	NULL)
5.	{
6.	temp=(treePtr)malloc(sizeof(treeNode_t));
7.	if(!temp)
8.	return	NULL;
9.	temp->value=root->value;
10.	temp->lChild=copyMirrorTree(root->rChild);
11.	temp->rChild=copyMirrorTree(root->lChild);
12.	return	temp;
13.	}
14.	else
15.	return	NULL;
16.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Number	of	Element
Solution:	Number	of	nodes	at	the	right	child	and	the	number	of	nodes	at	the	left	child	is	added	by	one	and
we	get	the	total	number	of	nodes	in	any	tree/sub-tree.
	
Example	10.13:
1.	int	numElement(treePtr	root)
2.	{
3.	if(!root)
4.	return	0;
5.	else
6.	return	(1	+	numElement(root->rChild)	+	numElement(root->lChild)	);
7	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Number	of	Leaf	nodes
Solution:	If	we	add	 the	number	of	 leaf	node	 in	 the	right	child	with	 the	number	of	 leaf	nodes	 in	 the	 left
child,	we	will	get	the	total	number	of	leaf	node	in	any	tree	or	subtree.
	
Example	10.14:
1.	int	numLeafs(treePtr	root)
2.	{
3.	if(!root)
4.	return	0;
5.	if(	!root->lChild	&&	!root	->	rChild	)
6.	return	1;
7.	else



8.	return	(numLeafs(root->rChild)	+	numLeafs(root->lChild)	);
9.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Print	Mirror
Solution:	Print	mirror	tree	is	very	simple	in	place	of	printing	the	left	child	first	print	the	right	child	first
so	that	the	tree	is	printed	is	PreOrder	traversal	of	mirror	of	the	input	tree.
	
Example	10.15:
1.	void	printMirror(treePtr	root)	/*	pre	order	*/
2.	{
3.	if(root	!=	NULL)
4.	{
5.	printf("	%d	",	root->value);
6.	printMirror(root->rChild);
7.	printMirror(root->lChild);
8.	return;
9.	}
10.	else
11.	return;
12.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Identical
Solution:	Two	trees	have	identical	values	if	at	each	level	the	value	is	equal.
	
Example	10.16:
1.	int	identical(treePtr	root1,	treePtr	root2)
2.	{
3.	if(!root1	&&	!root2)
4.	return	1;
5.	else	if(!root1	||	!root2)
6.	return	0;
7.	else
8.	 return	 (	 identical(root1->lChild,	 root2->lChild)	 &&	 identical(root1->rChild,	 root2->rChild)	 &&
(root1->value	==	root2->value));
9.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Free	Tree



Solution:	The	tree	is	traversed	and	nodes	of	tree	are	freed	in	such	a	manner	such	that	all	child	nodes	are
freed	before	it.
	
Example	10.17:
1.	treePtr	freeTree(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	root->lChild=freeTree(root->lChild);
6.	root->rChild=freeTree(root->rChild);
7.	if(root->lChild	==	NULL&&root->rChild	==	NULL)
8.	{
9.	free(root);
10.	return	NULL;
11.	}
12.	}
13.	return	NULL;
14.	}
	
1.	void	freeTree(treePtr*	rootPtr)
2.	{
3.	*rootPtr=freeTree(*rootPtr);
4.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Tree	to	List	Rec
Solution:	Tree	to	the	list	is	done	recursively.	At	each	node,	we	will	suppose	that	the	tree	to	list	function
will	do	its	job	for	the	left	child	and	right	child.	Then	we	will	combine	the	result	of	the	left	child	and	right
child	 traversal.	We	need	a	head	and	 tail	 pointer	of	 the	 left	 list	 and	 right	 list	 to	 combine	 them	with	 the
current	node.	In	the	process	of	 integration,	 the	current	node	will	be	added	to	the	tail	of	 the	left	 list	and
current	node	will	be	added	to	the	head	to	the	right	list.	Head	of	the	left	list	will	become	the	head	of	the
newly	formed	list	and	tail	of	the	right	list	will	become	the	tail	of	the	newly	created	list.
	
Example	10.18:
treePtr	treeToListRec(treePtr	curr)
{

treePtr	Head,	Tail,	tempHead;
if(!curr)
return	NULL;

	
if(curr->lChild	==	NULL	&&	curr->rChild	==	NULL)
{
curr->lChild	=	curr;



curr->rChild	=	curr;
return	root;
}
if(curr->lChild)
{
Head	=	treeToListRec(curr->lChild);
Tail	=	Head->lChild;
curr->lChild	=	Tail;
Tail->rChild	=	curr;
}
else
Head=curr;

	
if(curr->rChild)
{
tempHead	=	treeToListRec(curr->rChild);
Tail	=	tempHead->lChild;
curr->rChild	=	tempHead;
tempHead->lChild	=	curr;
}
else
Tail	=	curr;

	
Head->lChild	=	Tail;
Tail->rChild	=	Head;
return	Head;

}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Print	all	the	paths
Print	all	the	paths	from	the	roots	to	the	leaf
	
Solution:	Whenever	we	traverse	a	node,	we	add	that	node	to	the	list.	When	we	reach	a	leaf,	we	print	the
whole	list.	When	we	return	from	a	function,	then	we	remove	the	element	that	was	added	to	the	list	when
we	entered	this	function.
Example	10.19:
1.	void	printList(list<int>	L1)
2.	{
3.	list<int>::iterator	iterB=	L1.begin();
4.	list<int>::iterator	iterE	=	L1.end();
5.	while(iterB	!=	iterE)
6.	{
7.	cout<<(*iterB)<<"	";



8.	iterB++;
9.	}
10.	cout<<endl;
11.	}
	
1.	void	printPath(treePtr	head,	list<int>&	L1)
2.	{
3.	if(!head)
4.	return;
5.	If(head->rChild	==	null	||	head->lChild	==	null)
6.	{
7.	printList(L1);
8.	L1.pop_back();
9.	return;
10.	}
11.	L1.push_back(head->value);
12.	printPath(head->rChild,L1);
13.	printPath(head->lChild,L1);
14.	L1.pop_back();
15.	}
	
1.	void	printPathWrapper(treePtr	head)
2.	{
3.	list<int>	L1;
4.	printPath(head,L1);
5.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Least	Common	Ancestor
Solution:	We	 recursively	 traverse	 the	 nodes	 of	 a	 binary	 tree.	 If	 we	 find	 any	 one	 of	 the	 node	we	 are
searching	 for	 then	we	 return	 that	 node.	And	when	we	get	both	 the	 left	 and	 right	 as	 some	valid	pointer
location	other	than	NULL,	we	will	return	that	node	as	the	common	ancestor.
	
Example	10.20:
1.	treePtr	LCA(treePtr	root,	treePtr	firstPtr,	treePtr	secondPtr)
2.	{
3.	treePtr	left,	right;
4.
5.	if	(root	==	NULL)
6.	return	NULL;
7.
8.	if	(root	==	firstPtr	||	root	==	secondPtr)
9.	return	root;



10.
11.	left	=	LCA(root->lChild,	firstPtr,	secondPtr);
12.	right	=	LCA(root->rChild,	firstPtr,	secondPtr);
13.
14.	if	(left	&&	right)
15.	return	root;
16.	else	if	(left)
17.	return	left;
18.	else
19.	return	right;
20.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Find	Max	in	Binary	Tree
Solution:	We	recursively	traverse	the	nodes	of	a	binary	tree.	We	will	find	the	maximum	value	in	the	left
and	right	subtree	of	any	node	then	will	compare	the	value	with	the	value	of	the	current	node	and	finally
return	the	largest	of	the	three	values.
	
Example	10.21:
1.	int	findMaxBT(treePtr	root)
2.	{
3.	int	max;
4.	int	left,	right;
5.
6.	if	(root	==	NULL)
7.	return	INT_MIN;
8.
9.	max	=	root->value;
10.
11.	left	=	findMaxBT(root->lChild);
12.	right	=	findMaxBT(root->rChild);
13.
14.	if	(left	>	max)
15.	max	=	left;
16.	if	(right	>	max)
17.	max	=	right;
18.
19.	return	max;
20.	}
	

Search	value	in	a	Binary	Tree
Solution:	To	 find	 if	 some	value	 is	 there	 in	 a	 binary	 tree	or	 not	 is	 done	using	 exhaustive	 search	of	 the



binary	tree.	First,	the	value	of	current	node	is	compared	with	the	value	that	we	are	looking	for.	Then	it	is
compared	recursively	inside	the	left	child	and	right	child.
	
Example	10.22:
1.	int	searchBT(treePtr	root,	int	value)
2.	{
3.	int	max;
4.	int	left,	right;
5.
6.	if	(root	==	NULL)
7.	return	0;
8.
9.	if(root->value==	value)
10.	return	1;
11.
12.	left	=	searchBT(root->lChild,	value);
13.	if	(left)
14.	return	1;
15.
16.	right	=	searchBT(root->rChild,	value);
17.	if	(right)
18.	return	1;
19.
20.	return	0;
21.	}
	

Maximum	Depth	in	a	Binary	Tree
Solution:	To	find	the	maximum	depth	of	a	binary	tree	we	need	to	find	the	depth	of	the	left	tree	and	depth
of	right	tree	then	we	need	to	store	the	value	and	increment	it	by	one	so	that	we	get	depth	of	the	given	node.
	
Example	10.23:
1.	int	maxDepthBT(treePtr	root)
2.	{
3.	int	max;
4.	int	left,	right;
5.
6.	if	(root	==	NULL)
7.	return	0;
8.
9.	left	=	findMaxBT(root->lChild);
10.	right	=	findMaxBT(root->rChild);
11.
12.	if	(left	>	max)
13.	max	=	left;



14.	if	(right	>	max)
15.	max	=	right;
16.
17.	return	max+1;
18.	}
	

Number	of	Full	Nodes	in	a	BT
Solution:	A	full	node	is	a	node	that	have	both	left	and	right	child.	We	will	recursively	travers	the	whole
tree	and	will	increase	the	count	of	full	node	as	we	find	them.
	
Example	10.24:
1.	int	numFullNodesBT(treePtr	root)
2.	{
3.	int	count=0;
4.	int	left,	right;
5.
6.	if	(root	==	NULL)
7.	return	0;
8.
9.	left	=	findMaxBT(root->lChild);
10.	right	=	findMaxBT(root->rChild);
11.
12.	count	=	left	+	right;
13.
14.	if(root->lChild	&&	root->rChild)//this	line	can	be	changed	to	solve	many	problems.
15.	count++;
16.
17.	return	count;
18.	}
	

Maximum	Length	Path	in	a	BT/	Diameter	of	BT
Solution:	To	find	the	diameter	of	BT	we	need	to	find	the	depth	of	left	child	and	right	child	then	will	add
these	 two	 values	 and	 increment	 it	 by	 one	 so	 that	 we	 will	 get	 the	 maximum	 length	 path	 (diameter
candidate)	which	contains	the	current	node.	Then	we	will	find	max	length	path	in	the	left	child	sub-tree.
And	will	find	the	max	length	path	in	the	right	child	sub-tree.	Finally,	we	will	compare	the	three	values	and
return	the	maximum	value	out	of	these	this	will	be	the	diameter	of	the	Binary	tree.
	
Example	10.25:
1.	int	maxLengthPathBT(treePtr	root)//diameter
2.	{
3.	int	max;
4.	int	leftPath,	rightPath;
5.	int	leftMax,	rightMax;



6.
7.	if	(root	==	NULL)
8.	return	0;
9.
10.	leftPath	=	maxDepthBT(root->lChild);
11.	rightPath	=	maxDepthBT(root->rChild);
12.
13.	max	=	leftPath	+	rightPath	+	1;
14.
15.	leftMax	=	maxLengthPathBT(root->lChild);
16.	rightMax	=	maxLengthPathBT(root->rChild);
17.
18.	if	(leftMax	>	max)
19.	max	=	leftMax;
20.
21.	if	(rightMax	>	max)
22.	max	=	rightMax;
23.
24.	return	max;
25.	}
	

Sum	of	All	nodes	in	a	BT
Solution:	We	will	 find	 the	 sum	of	all	 the	nodes	 recursively.	 sumAllBT()	will	 return	 the	 sum	of	all	 the
node	of	left	and	right	subtree	then	will	add	the	value	of	current	node	and	will	return	the	final	sum.
	
Example	10.26:
1.	int	sumAllBT(treePtr	root)
2.	{
3.	int	sum;
4.	int	left,	right;
5.
6.	if	(root	==	NULL)
7.	return	0;
8.
9.	left	=	sumAllBT(root->lChild);
10.	right	=	sumAllBT(root->rChild);
11.
12.	sum	=	left	+	right	+	root->value;
13.
14.	return	sum;
15.	}
	

Iterative	Pre-order



Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data	structure.
Example	10.27:
1.	#define	maxStackSize	100
2.	void	iterativePreorder(treePtr	root)
3.	{
4.	struct	structStack{
5.	treePtr	ptr;
6.	int	visited;
7.	};
8.	treePtr	tempRoot=NULL;
9.	int	tempVisit=0;
10.	structStack	stack[maxStackSize];
11.	int	top=1;
12.	stack[top].ptr=root;
13.	stack[top].visited=0;
14.	while(top)
15.	{
16.	tempRoot=stack[top].ptr;
17.	tempVisit=stack[top].visited;
18.	top--;
19.	if(tempVisit)
20.	{
21.	printf("[	%d	]",	tempRoot->value);
22.	}
23.	else
24.	{
25.	if(tempRoot->rChild	!=	NULL)	/*	right	child	always	goes	first	then	left	child	*/
26.	{
27.	top++;
28.	stack[top].ptr=tempRoot->rChild;
29.	stack[top].visited=0;
30.	}
31.	if(tempRoot->lChild	!=	NULL)
32.	{
33.	top++;
34.	stack[top].ptr=tempRoot->lChild;
35.	stack[top].visited=0;
36.	}
37.	top++;
38.	stack[top].ptr=tempRoot;
39.	stack[top].visited=1;
40.	}
41.	}
42.	}
	



Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Iterative	Post-order
Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data	structure.
Example	10.28:
1.	void	iterativePostorder(treePtr	root)
2.	{
3.	struct	structStack{
4.	treePtr	ptr;
5.	int	visited;
6.	};
7.	treePtr	tempRoot=NULL;
8.	int	tempVisit=0;
9.	structStack	stack[maxStackSize];
10.	int	top=1;
11.	stack[top].ptr=root;
12.	stack[top].visited=0;
13.	while(top)
14.	{
15.	tempRoot=stack[top].ptr;
16.	tempVisit=stack[top].visited;
17.	top--;
18.	if(tempVisit)
19.	{
20.	printf("[	%d	]",	tempRoot->value);
21.	}
22.	else
23.	{
24.	top++;
25.	stack[top].ptr=tempRoot;
26.	stack[top].visited=1;
27.	if(tempRoot->rChild	!=	NULL)	/*	right	chld	always	goes	first	then	right	child	*/
28.	{
29.	top++;
30.	stack[top].ptr=tempRoot->rChild;
31.	stack[top].visited=0;
32.	}
33.	if(tempRoot->lChild	!=	NULL)
34.	{
35.	top++;
36.	stack[top].ptr=tempRoot->lChild;
37.	stack[top].visited=0;
38.	}
39.	}



40.	}
41.	}
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)

Iterative	In-order
Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data	structure.
	
Example	10.29:
1.	void	iterativeInorder(treePtr	root)
2.	{
3.	struct	structStack{
4.	treePtr	ptr;
5.	int	visited;
6.	};
7.	treePtr	tempRoot=NULL;
8.	int	tempVisit=0;
9.	structStack	stack[maxStackSize];
10.	int	top=1;
11.	stack[top].ptr=root;
12.	stack[top].visited=0;
13.	while(top)
14.	{
15.	tempRoot=stack[top].ptr;
16.	tempVisit=stack[top].visited;
17.	top--;
18.	if(tempVisit)
19.	{
20.	printf("[	%d	]",	tempRoot->value);
21.	}
22.	else
23.	{
24.	if(tempRoot->rChild	!=	NULL)	/*	right	chld	always	goes	first	then	right	child	*/
25.	{
26.	top++;
27.	stack[top].ptr=tempRoot->rChild;
28.	stack[top].visited=0;
29.	}
30.	top++;
31.	stack[top].ptr=tempRoot;
32.	stack[top].visited=1;
33.	if(tempRoot->lChild	!=	NULL)
34.	{
35.	top++;
36.	stack[top].ptr=tempRoot->lChild;
37.	stack[top].visited=0;



38.	}
39.	}
40.	}
41.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	



Binary	Search	Tree	(BST)
A	binary	search	tree	(BST)	is	a	binary	tree	on	which	nodes	are	ordered	in	the	following	way:

·	The	key	in	the	left	subtree	is	less	than	the	key	in	its	parent	node.
·	The	key	in	the	right	subtree	is	greater	the	key	in	its	parent	node.
·	No	duplicate	key	allowed.

	
Note:	 there	 can	 be	 two	 separate	 key	 and	 value	 fields	 in	 the	 tree	 node.	 But	 for	 simplicity,	 we	 are
considering	value	as	the	key.	All	problems	in	the	binary	search	tree	are	solved	using	this	supposition	that
the	value	in	the	node	is	key	for	the	tree.
	
Note:	Since	binary	search	tree	is	a	binary	tree	to	all	the	above	algorithm	of	a	binary	tree	are	applicable	to
a	binary	search	tree.
	



Problems	in	Binary	Search	Tree	(BST)
All	binary	tree	algorithms	are	valid	for	binary	search	tree	too.
	

Create	a	binary	search	tree
Create	a	binary	tree	given	list	of	values	in	an	array	in	sorted	order
	
Solution:	Since	the	elements	in	the	array	are	in	sorted	order	and	we	want	to	create	a	binary	search	tree	in
which	left	subtree	nodes	are	having	values	less	than	the	current	node	and	right	subtree	nodes	have	value
greater	than	the	value	of	the	current	node.
	
We	have	to	find	the	middle	node	to	create	a	current	node	and	send	the	rest	of	the	array	to	construct	left	and
right	subtree.
	
Example	10.30:
treePtr	CreateBinaryTree	(int*	arr,	int	start,	int	end)
{

treePtr	root=	NULL;
if	(start	>	end)
return	NULL;
	
int	mid	=	(	start	+	end	)	/	2;
root	=	createNode(arr[mid]);
root	->left	=	CreateBinaryTree	(arr,	start,	mid-1);
root	->right	=	CreateBinaryTree	(arr,	mid+1,	end);
return	root;

}
	
treePtr	createNode(int	val)
{

treePtr	root	=	(treePtr)malloc(sizeof(treeNode_t));
root->value	=	val;
root->lChild	=	root->rChild	=	NULL;
return	root;

}
	
int	main()
{

treePtr	root	=	NULL;
int	A[]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
root	=	CreateBinarySearchTree	(	A,	0,	10);
return	0;

}
	



Insertion
Nodes	with	key	6,4,2,5,1,3,8,7,9,10	are	inserted	in	a	tree.	Below	is	step	by	step	tree	after	inserting	nodes
in	the	order.

	
	



	
Solution:	 Smaller	 values	will	 be	 added	 to	 the	 left	 child	 sub-tree	 of	 a	 node	 and	 greater	 value	will	 be
added	to	the	right	child	sub-tree	of	the	current	node.
	
Example	10.31:
1.	treePtr	insertNode(int	value,	treePtr	root)
2.	{
3.	if(root	==	NULL)
4.	{
5.	root=(treePtr)malloc(sizeof(treeNode_t));
6.	if(root	==	NULL)
7.	{
8.	printf("filled	memory	shortage	");



9.	return	root;
10.	}
11.	root->value=value;
12.	root->lChild=root->rChild=NULL;
13.	}
14.	else
15.	{
16.	if(root->value	>	value)
17.	{
18.	root->lChild=insertNode(value,	root->lChild);
19.	}
20.	else
21.	{
22.	root->rChild=insertNode(value,	root->rChild);
23.	}
24.	}
25.	return	root;
26.	}
	
1.	void	insertNode(int	value,	treePtr	*	ptrRoot)
2.	{
3.	*ptrRoot	=	insertNode(value,*ptrRoot);
4.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Find	Node
Find	the	node	with	the	value	given.
	
Solution:	The	value	greater	than	the	current	node	value	will	be	in	the	right	child	sub-tree	and	the	value
smaller	than	the	current	node	is	in	the	left	child	sub-tree.
	
Example	10.32:
1.	treePtr	findNode(treePtr	root,	int	value)
2.	{
3.	if(!root)
4.	return	NULL;
5.	if(root->value	==	value)
6.	return	root;
7.	else
8.	{
9.	if(root->value	>	value)
10.	return	findNode(root->lChild,	value);
11.	else



12.	return	findNode(root->rChild,	value);
13.	}
14.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	

Find	Node	Iterative
Solution:	The	value	greater	than	the	current	node	value	will	be	in	the	right	child	sub-tree	and	the	value
smaller	than	the	current	node	is	in	the	left	child	sub-tree.	We	can	find	a	value	by	traversing	the	left	or	right
subtree	iteratively.
	
Example	10.33:
1.	treePtr	findNodeIterative(treePtr	root,	int	value)	/*	iterative	*/
2.	{
3.	while(root)
4.	{
5.	if(root->value	==	value)
6.	return	root;
7.	else	if(root->value	>	value)
8.	root=root->lChild;
9.	else
10.	root=root->rChild;
11.	}
12.	return	NULL;
13.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	
Example	10.34:	Operators	are	generally	read	from	left	to	right
1.	treePtr	findNodeIterative_optimized(treePtr	root,	int	value)
2.	{
3.	while(root	&&	root->value	!=	value)
4.	(root->value	>	value)?	root	=	root->lChild	:	root=root->rChild;
5.	return	root;
6.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Find	Min
Find	the	node	with	the	minimum	value.



	
Solution:	left	most	child	of	the	tree	will	be	the	node	with	the	minimum	value.
	
Example	10.35:
1.	treePtr	findMin(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	while(root->lChild)
6.	{
7.	root=root->lChild;
8.	}
9.	}
10.	return	root;
11.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	

Find	Min	Recursive
Find	the	node	with	a	minimum	value,	provide	a	recursive	solution.
	
Example	10.36:
1.	treePtr	findMinRec(treePtr	root)
2.	{
3.	if(!root)
4.	return	NULL;
5.	if(root->lChild	==	NULL)
6.	return	root;
7.	else
8.	return	findMinRec(root->lChild);
9.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Find	Max



Find	the	node	in	the	tree	with	the	maximum	value.

Solution:	Right	most	node	of	the	tree	will	be	the	node	with	the	maximum	value.
	
Example	10.37:
1.	treePtr	findMax(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	while(root->rChild)
6.	{
7.	root=root->rChild;
8.	}
9.	}
10.	return	root;
11.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	

Find	Max	Recursive
Find	the	node	in	the	tree	with	the	maximum	value,	provide	a	recursive	solution.
	
Example	10.38:
1.	treePtr	findMaxRec(treePtr	root)
2.	{
3.	if(!root)
4.	return	NULL;
5.	if(root->rChild	==	NULL)
6.	return	root;
7.	else
8.	return	findMaxRec(root->rChild);
9.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Max	Value



Example	10.39:
1.	int	maxValue(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	while(root->rChild)
6.	{
7.	root=root->rChild;
8.	}
9.	return	root->value;
10.	}
11.	return	-999;
12.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)

Min	Value
Example	10.40:
1.	int	minValue(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	while(root->lChild)
6.	{
7.	root=root->lChild;
8.	}
9.	return	root->value;
10.	}
11.	return	-999;
12.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	

Is	tree	a	BST
Solution:	At	each	node	we	check,	max	value	of	left	subtree	is	smaller	than	the	value	of	current	node	and
min	value	of	right	subtree	is	greater	than	the	current	node.
	
Example	10.41:
1.	int	isBST(treePtr	root)
2.	{
3.	if(!root)
4.	return	1;
5.	if(root->lChild	&&	maxValue(root->lChild)	>	root->value	)
6.	return	0;



7.	if(root->rChild	&&	minValue(root->rChild)	<=	root->value	)
8.	return	0;
9.	return	(isBST(root->lChild)	&&	isBST(root->rChild));
10.	}
	
Complexity	Analysis:	Time	Complexity:	O(n2),	Space	Complexity:	O(n)
	
The	above	solution	is	correct	but	it	is	not	efficient	as	same	tree	nodes	are	traversed	many	times.
	
Solution:	Another	better	solution	will	be	the	one	in	which	we	will	look	into	each	node	only	once.	This	is
done	by	narrowing	the	range.	We	will	be	using	an	isBSTUtil()	function	which	take	the	max	and	min	range
of	the	values	of	the	nodes.	The	initial	value	of	min	and	max	will	be	INT_MIN	and	INT_MAX.
	
Example	10.42:
1.	int	isBSTUtil(treePtr	root,	int	min,	int	max)
2.	{
3.	if(!root)
4.	return	1;
5.
6.	if(root->value	<	min	||	root->value	>	max)
7.	return	0;
8.
9.	return	isBSTUtil(root->lChild,	min,	root->value)	&&	isBSTUtil(root->rChild,root->value+1,	max);
10.	}
11.
12.	int	isBST(treePtr	root)
13.	{
14.	return	isBSTUtil(root,	INT_MIN,	INT_MAX);
15.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)	for	stack
	
Solution:	Above	method	is	correct	and	efficient	but	there	is	another	easy	method	to	do	the	same.	We	can
do	in-order	traversal	of	nodes	and	see	if	we	are	getting	a	strictly	increasing	sequence
	
Example	10.43:
1.	int	isBST(treePtr	root,	int*	value	)/*	in	order	traversal	*/
2.	{
3.	int	ret;
4.	if(root)
5.	{
6.	ret	=	isBST(root->lChild,value);
7.	if(!ret)
8.	return	0;
9.



10.	if(*value	>	root->value)
11.	return	0;
12.
13.	*value	=	root->value;
14.
15.	ret	=	isBST(root->rChild,value);
16.	if(!ret)
17.	return	0;
18.	}
19.	return	1;
20.	}
	
Complexity	Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)	for	stack
	

Delete	Node
Description:	Remove	the	node	x	from	the	binary	search	tree,	making	the	necessary,	reorganize	nodes	of
binary	search	tree	to	maintain	its	properties.
	
There	are	three	cases	in	delete	node,	let	us	call	the	node	that	need	to	be	deleted	as	x.
Case	1:	node	x	has	no	children.	Just	delete	it	(i.e.	Change	parent	node	so	that	it	does	not	point	to	x)
Case	2:	node	x	has	one	child.	Splice	out	x	by	linking	x’s	parent	to	x’s	child
Case	3:	node	x	has	two	children.	Splice	out	the	x’s	successor	and	replace	x	with	x’s	successor
	
When	the	node	to	be	deleted	have	no	children
This	is	a	trivial	case	we	directly	delete	the	node	and	return	null.
	
When	the	node	to	be	deleted	have	only	one	child.
In	this	case,	we	save	the	child	in	a	temp	variable,	then	delete	current	node,	and	finally	return	the	child.
	



	
	
When	the	node	to	be	deleted	has	two	children.
	

	
Example	10.44:
1.	void	deleteNode(treePtr*	rootPtr,	int	value)
2.	{
3.	*rootPtr=deleteNode(*rootPtr,	value);
4.	}
	
1.treePtr	deleteNode(treePtr	root,	int	value)
2.{
3.	treePtr	temp=NULL;
4.	if(root)
5.	{
6.	if(root->value	==	value)



7.	{
8.	if(root->lChild	==	NULL	&&	root->rChild	==	NULL)
9.	{
10.	free(root);
11.	return	NULL;
12.	}
13.	else
14.	{
15.	if(root->lChild	==	NULL)
16.	{
17.	temp=root->rChild;
18.	free(root);
19.	return	temp;
20.	}
21.	if(root->rChild	==	NULL)
22.	{
23.	temp=root->lChild;
24.	free(root);
25.	return	temp;
26.	}
27.	temp=findMin(root->rChild);
28.	root->value=temp->value;
29.	root->rChild=deleteNode(root->rChild,temp->value);
30.	}
31.	}
32.	else
33.	{
34.	if(root->value	>	value)
35.	{
36.	root->lChild=deleteNode(root->lChild,value);
37.	}
38.	else
39.	{
40.	root->rChild=deleteNode(root->rChild,value);
41.	}
42.	}
43.	}
44.	return	root;
45.}
	
Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(n)
	

Least	Common	Ancestor
In	a	tree	T.	The	least	common	ancestor	between	two	nodes	n1	and	n2	is	defined	as	the	lowest	node	in	T



that	has	both	n1	and	n2	as	descendants.
	
Example	10.45:
1.	treePtr	LcaBST(treePtr	root,	treePtr	firstPtr,	treePtr	secondPtr)
2.	{
3.	if(!firstPtr	||	!secondPtr	||	!root)
4.	{
5.	return	root;
6.	}
7.
8.	if(root->value	>	firstPtr->value	&&
9.	root->value	>	secondPtr->value)
10.	{
11.	return	LcaBST(root->lChild,	firstPtr,	secondPtr);
12.	}
13.	if(root->value	<	firstPtr->value	&&
14.	root->value	<	secondPtr->value)
15.	{
16.	return	LcaBST(root->rChild,	firstPtr,	secondPtr);
17.	}
18.	return	root;
19.	}
	

Path	Length
Given	two	nodes,	find	the	path	length	between	them.
	
Solution:	This	problem	solution	is	simply	finding	the	least	common	ancestor	of	the	two	node	and	then	find
the	length	of	each	of	node	from	their	parent.
	
Example	10.46:
1.	int	pathLength(treePtr	root,	treePtr	firstPtr,	treePtr	secondPtr)
2.	{
3.	treePtr	parent	=	LcaBST(root,	firstPtr,	secondPtr);
4.	int	first	=	findNodeDepth(parent,	firstPtr);
5.	int	second	=	findNodeDepth(parent,	secondPtr);
6.	return	first	+	second;
7.	}
	
1.	int	findNodeDepth(treePtr	root,	treePtr	dstPtr)
2.	{
3.	int	value;
4.	if	(!root	||	!dstPtr)
5.	return	-1;
6.



7.	if	(root->value	==	dstPtr->value)
8.	return	0;
9.	else
10.	{
11.	if	(root->value	>	dstPtr->value)
12.	value	=	findNodeDepth(root->lChild,	dstPtr);
13.	else
14.	value	=	findNodeDepth(root->rChild,	dstPtr);
15.
16.	if	(value	!=	-1)
17.	return	(value	+	1);
18.	}
19.	}
	

Trim	the	Tree	nodes	which	are	Outside	Range
Given	a	range	as	min,	max.	We	need	to	delete	all	the	nodes	of	the	tree	that	are	out	of	this	range.
	
Solution:	Traverse	the	tree	and	each	node	that	is	having	value	outside	the	range	will	delete	itself.	All	the
deletion	will	happen	from	inside	out	so	we	do	not	have	to	care	about	the	children	of	a	node	as	if	they	are
out	of	range	then	they	already	had	deleted	themselves.
	
Example	10.47:
1.	treePtr	trimOutsideRange(treePtr	root,	int	min,	int	max)
2.	{
3.	treePtr	tempNode;
4.	if	(root	==	NULL)
5.	return	NULL;
6.
7.	root->lChild=trimOutsideRange(root->lChild,	min,	max);
8.	root->rChild=trimOutsideRange(root->rChild,	min,	max);
9.
10.	if	(root->value	<	min)
11.	{
12.	tempNode	=	root->rChild;
13.	delete	root;
14.	return	tempNode;
15.	}
16.
17.	if	(root->value	>	max)
18.	{
19.	tempNode	=	root->lChild;
20.	delete	root;
21.	return	tempNode;
22.	}



23.
24.	return	root;
25.	}
	

Print	Tree	nodes	which	are	in	Range
Print	only	those	nodes	of	the	tree	whose	value	is	in	the	range	given.
	
Solution:	Just	normal	inorder	traversal	and	at	the	time	of	printing	we	will	check	if	the	value	is	inside	the
range	provided.
	
Example	10.48:
1.	void	printInRange(treePtr	root,	int	min,	int	max)
2.	{
3.	if(!root)
4.	return;
5.
6.	printInRange(root->lChild,	min,	max);
7.
8.	if(root->value	>=	min	&&	root->value	<=	max)
9.	printf("	%d	",	root->value);
10.
11.	printInRange(root->rChild,	min,	max);
12.	}
	

Find	Ceil	and	Floor	value	inside	BST	given	key
Given	a	tree	and	a	value	we	need	to	find	the	ceil	value	of	node	in	tree	which	is	smaller	than	the	given
value	and	need	to	find	the	floor	value	of	node	in	tree	which	is	bigger.	Our	aim	is	to	find	ceil	and	floor
value	as	close	as	possible	then	the	given	value.
	
Example	10.49:
1.	void	CeilFloorBST(treePtr	root,	int	value,	int*	ceil,	int*	floor	)
2.	{
3.	while	(root)
4.	{
5.	if	(root->value	==	value)
6.	{
7.	*ceil	=	root->value;
8.	*floor	=	root->value;
9.	break;
10.	}
11.	else	if	(root->value	>	value)
12.	{
13.	*ceil	=	root->value;



14.	root	=	root->lChild;
15.	}
16.	else
17.	{
18.	*floor	=	root->value;
19.	root	=	root->rChild;
20.	}
21.	}
22.	}
	

Tree	to	Doubly	Linked	list
We	need	to	convert	a	binary	tree	to	double	linked	list.	Such	that	the	inorder	traversal	of	the	tree	is	saved
as	a	sequence	of	node	in	double	linked	list.
	
Solution:	We	will	use	TreeToList()	function.	At	each	node	we	will	call	TreeToList()	function	for	both	left
child	and	right	child.	These	two	function	call	will	create	double	linked	list	of	left	child	and	right	child
respectively.	 Then	we	 just	 have	 to	worry	 about	 the	 current	 node.	We	will	 append	 the	 two	 linked	 list
formed	by	the	recursive	call	and	the	join	them	and	the	final	list	is	prepared.
	
Example	10.50:
1.	void	connect(treePtr	a,	treePtr	b)
2.	{
3.	a->rChild=b;
4.	b->lChild=a;
5.	}
	
1.	treePtr	append(treePtr	a,	treePtr	b)
2.	{
3.	treePtr	aLast,	bLast;
4.	if	(a	==	NULL)
5.	return(b);
6.	if	(b	==	NULL)
7.	return(a);
8.	aLast	=	a->lChild;
9.	bLast	=	b->lChild;
10.	connect(aLast,	b);
11.	connect(bLast,	a);
12.	return	(a);
13.	}
	
1.	treePtr	treeToList(treePtr	root)
2.	{
3.	treePtr	aList,	bList;
4.	if	(root	==	NULL)



5.	return	(NULL);
6.	aList	=	treeToList(root->lChild);
7.	bList	=	treeToList(root->rChild);
8.	root->lChild	=	root;
9.	root->rChild	=	root;
10.	aList	=	append(aList,	root);
11.	aList	=	append(aList,	bList);
12.	return	(aList);
13.	}
	
Analysis:	Time	Complexity:	O(n),	Space	Complexity:	O(1)
	



Exercise
1.	Construct	a	tree	given	its	in-order	and	pre-order	traversal	strings.

o	inorder	:	1	2	3	4	5	6	7	8	9	10
o	pre-order:	6	4	2	1	3	5	8	7	9	10

	
2.	Construct	a	tree	given	its	in-order	and	post-order	traversal	strings.

o	inorder:	1	2	3	4	5	6	7	8	9	10
o	post-order:	1	3	2	5	4	7	10	9	8	6

	
3.	Write	a	delete	node	function	in	Binary	tree.
	
4.	Write	a	function	print	depth	first	 in	a	binary	tree	without	using	system	stack	(use	STL	queue	or	stack

etc.)
Hint:	you	may	want	to	keep	another	element	to	tree	node	like	visited	flag.

	
5.	Check	whether	a	given	Binary	Tree	is	Complete	or	not

o	In	a	complete	binary	tree,	every	level	except	the	last	one	is	completely	filled.	All	nodes	in	the	left
are	filled	first,	then	the	right	one.

	
6.	Check	whether	a	given	Binary	Tree	is	Full/	Strictly	binary	tree	or	not

o	The	full	binary	tree	is	a	binary	tree	in	which	each	node	has	zero	or	two	children.



7.	Check	whether	a	given	Binary	Tree	is	a	Perfect	binary	tree	or	not
o	The	perfect	binary	tree-	is	a	type	of	full	binary	trees	in	which	each	non-leaf	node	has	exactly	two

child	nodes.
	

8.	Check	whether	a	given	Binary	Tree	is	Height-balanced	Binary	Tree	or	not
o	A	height-balanced	binary	tree	is	a	binary	tree	such	that	the	left	&	right	subtrees	for	any	given	node

differ	in	height	by	no	more	than	one

9.	Isomorphic:	two	trees	are	isomorphic	if	they	have	the	same	shape,	it	does	not	matter	what	the	value	is.
Write	a	program	to	find	if	two	given	tree	are	isomorphic	or	not.

	
10.	The	worst-case	runtime	Complexity	of	building	a	BST	with	n	nodes

o	O(n2)
o	O(n	*	log	n)
o	O(n)
o	O(logn)

	
11.	The	worst-case	runtime	Complexity	of	insertion	into	a	BST	with	n	nodes	is

o	O(n2)
o	O(n	*	log	n)
o	O(n)
o	O(logn)

	
12.	The	worst-case	runtime	Complexity	of	a	search	of	a	value	in	a	BST	with	n	nodes.

o	O(n2)
o	O(n	*	log	n)
o	O(n)
o	O(logn)

	
13.	Which	of	the	following	traversals	always	gives	the	sorted	sequence	of	the	elements	in	a	BST?

o	Preorder
o	Ignored
o	Postorder
o	Undefined



	
14.	The	height	of	a	Binary	Search	Tree	with	n	nodes	in	the	worst	case?

o	O(n	*	log	n)
o	O(n)
o	O(logn)
o	O(1)

	
15.	Try	to	optimize	the	above	solution	to	give	a	DFS	traversal	without	using	recursion	use	some	stack	or

queue.
	
16.	This	is	an	open	exercise	for	the	readers.	Every	algorithm	that	is	solved	using	recursion	(system	stack)

can	 also	 be	 solved	 using	 user	 defined	 or	 library	 defined	 (STL)	 stack.	 So	 try	 to	 figure	 out	what	 all
algorithms,	which	are	using	recursion	and	try	to	figure	out	how	you	will	do	this	same	issue	using	user
layer	stack.

	
17.	In	a	binary	tree,	print	the	nodes	in	zigzag	order.	In	the	first	level,	nodes	are	printed	in	the	left	to	right

order.	In	the	second	level,	nodes	are	printed	in	right	to	left	and	in	the	third	level	again	in	the	order	left
to	right.
Hint:	Use	two	stacks.	Pop	from	first	stack	and	push	into	another	stack.	Swap	the	stacks	alternatively.

	
18.	Find	nth	smallest	element	in	a	binary	search	tree.

Hint:	Nth	inorder	in	a	binary	tree.
	
19.	Find	the	floor	value	of	key,	which	is	inside	a	BST.
	
20.	Find	the	Ceil	value	of	key,	which	is	inside	a	BST.
	
21.	What	is	Time	Complexity	of	the	below	code:
void	DFS(treePtr	head)
{

treePtr	curr	=	head,	*prev;
int	count	=	0;
while	(curr	&&	!	curr->visited)
{
count++;
if	(curr->lChild	&&	!	curr->lChild->visited)
{
curr=	curr->lChild;
}
else	if	(curr->rChild	&&	!	curr->rChild->visited)
{
curr=	curr->rChild;
}
else
{



printf("%d	",	curr->value);
curr->visited	=	1;
curr	=	head;
}
}
printf("\n	count	is	:	%d	",count);

}





CHAPTER	11:	PRIORITY	QUEUE
	



Introduction
A	Priority-Queue	also	knows	as	Binary-Heap,	is	a	variant	of	queue.	Items	are	removed	from	the	start	of
the	 queue	 but	 in	 a	 Priority-Queue,	 the	 logical	 ordering	 of	 objects	 is	 determined	 by	 their	 priority.	 The
highest	priority	item	are	at	the	front	of	the	Priority-Queue.	When	you	enqueue	an	item	to	Priority-Queue
the	 new	 item	 can	more	 to	 the	 front	 of	 the	 queue.	A	 Priority-Queue	 is	 a	 very	 important	 data	 structure.
Priority-Queue	 is	 used	 in	 various	 Graph	 algorithms	 like	 Prim’s	 Algorithm	 and	 Dijkstra’s	 algorithm.
Priority-Queue	is	also	used	in	the	timer	implementation	etc.
	
A	 Priority-Queue	 is	 implemented	 using	 a	 Heap	 (Binary	 Heap).	 A	 Heap	 data	 structure	 is	 an	 array	 of
elements	that	can	be	observed	as	a	complete	binary	tree.	The	tree	is	completely	filled	on	all	levels	except
possibly	the	lowest.	Heap	satisfies	the	heap	ordering	property.	A	heap	is	a	complete	binary	tree	so	 the
height	of	tree	with	N	nodes	is	always	O(logn).
	

	
A	heap	is	not	a	sorted	structure	and	can	be	regarded	as	partially	ordered.	As	you	see	from	the	picture,
there	is	no	relationship	among	nodes	at	any	given	level,	even	among	the	siblings.
	
Heap	is	implemented	using	an	array.	In	addition,	because	heap	is	a	complete	binary	tree,	the	left	child	of	a
parent	(at	position	x)	is	the	node	that	is	found	in	position	2x	in	the	array.	Similarly,	the	right	child	of	the
parent	is	at	position	2x+1	in	the	array.	To	find	the	parent	of	any	node	in	the	heap,	we	can	simply	division.
Given	the	index	y	of	a	node,	the	parent	index	will	by	y/2.

http://en.wikipedia.org/wiki/Prim%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Types	of	Heap
There	are	two	types	of	heap	and	the	type	depends	on	the	ordering	of	the	elements.	The	ordering	can	be
done	in	two	ways:	Min-Heap	and	Max-Heap
	

Max	Heap
Max-Heap:	the	value	of	each	node	is	less	than	or	equal	to	the	value	of	its	parent,	with	the	largest-value
element	at	the	root.

Max	Heap	Operations
Insert O(logn)
DeleteMax O(logn)
Remove O(logn)
FindMax O(1)
	

Min	Heap
Min-Heap:	the	value	of	each	node	is	greater	than	or	equal	to	the	value	of	its	parent,	with	the	minimum-
value	element	at	the	root.

Use	it	whenever	you	need	quick	access	to	the	smallest	item,	because	that	item	will	always	be	at	the	root
of	the	tree	or	the	first	element	in	the	array.	However,	the	remainder	of	the	array	is	kept	partially	sorted.
Thus,	instant	access	is	only	possible	for	the	smallest	item.
	
Min	Heap	Operations



Insert O(logn)
DeleteMin O(logn)
Remove O(logn)
FindMin O(1)
	
Throughout	 this	chapter,	 the	word	"heap"	will	always	refer	 to	a	max-heap.	The	 implementation	of	min-
heap	is	left	for	the	user	to	do	it	as	an	exercise.
	



Heap	ADT	Operations
The	basic	operations	of	binary	heap	are	as	follows:
	
Binary	Heap Create	a	new	empty	binary	heap O(1)
Insert Adding	a	new	element	to	the	heap O(logn)
DeleteMax Delete	the	maximum	element	form	the	heap. O(logn)
FindMax Find	the	maximum	element	in	the	heap. O(1)
isEmpty return	true	if	the	heap	is	empty	else	return	false O(1)
Size Return	the	number	of	elements	in	the	heap. O(1)
BuildHeap Build	a	new	heap	from	the	array	of	elements O(logn)
	



Operation	on	Heap

Create	Heap	from	an	array
1.	Starts	by	putting	the	elements	to	an	array.
2.	Starting	 from	 the	middle	 of	 the	 array	move	 downward	 towards	 the	 start	 of	 the	 array.	At	 each	 step,

compare	parent	value	with	its	left	child	and	right	child.	Then	restore	the	heap	property	by	shifting	the
parent	 value	with	 its	 largest-value	 child.	 Such	 that	 the	 parent	 value	will	 always	 be	 greater	 than	 or
equal	to	left	child	and	right	child.

3.	For	all	elements	from	middle	of	the	array	to	the	start	of	the	array.	We	will	compare	and	shift	until	we
reach	to	the	leaf	nodes.	The	Time	Complexity	of	build	heap	is	O(N).

	

	
Given	 an	 array	 as	 input	 to	 create	 heap
function.	 Value	 of	 index	 i	 is	 compared
with	value	of	its	children	nodes	that	is	at
index	(	i*2	+	1	)	and	(	i*2	+	2	).	Middle
of	array	N/2	that	is	index	3	is	comapred
with	index	7.	 If	 the	 children	node	 value
is	 greater	 than	 parent	 node	 then	 the
value	will	be	swapped.
	

	
Similarly,	 value	 of	 index	 2	 is	 compared
with	 index	 5	 and	 6.	 The	 largest	 of	 the
value	 is	 7	 which	 will	 be	 swapped	 with
the	value	at	the	index	2.
	



	
Similarly,	 value	 of	 index	 1	 is	 compared
with	 index	 3	 and	 4	 The	 largest	 of	 the
value	 is	 8	 which	 will	 be	 swapped	 with
the	value	at	the	index	1.
	

	
Proclate	 down	 function	 is	 used	 to
subsequently	adjest	the	value	replased	in
the	 previous	 step	 by	 comparing	 it	 with
its	children	nodes.
	

	
Now	 value	 at	 index	 0	 is	 comared	 with
index	1	and	2.	8	is	the	largest	value	so	it
swapped	with	the	value	at	index	0.
	



	
Proclate	 down	 function	 is	 used	 to
further	 compare	 the	 value	 at	 index	 1
with	its	children	nodes	at	index	3	and	4.
	

	
In	the	end	max	heap	is	created.
	

	
Example	11.1:
PtrHeap	BuildHeap(int	*arr,int	size,int	capacity)
{

PtrHeap	pHeap=(PtrHeap)malloc(sizeof(Heap));
pHeap->Size	=	size;
pHeap->Capacity	=	capacity;
pHeap->Array	=	arr;

	
for(int	i=(pHeap->Size)/2;i>0;i--)
ProclateDown(pHeap->Array,i,pHeap->Size);

	
return	pHeap;

}
	
void	ProclateDown(int	*arr,int	position,int	size)
{

int	lChild=2*position+1;



int	rChild=lChild+1;
int	small=-1;

	
if(lChild	<	size)
small	=	lChild;

	
if(	rChild	<	size	&&	arr[rChild]	<	arr[lChild]	)
small	=	rChild;

	
if(small!=-1	&&	arr[small]<	arr[position])
{
int	temp	=	arr[position];
arr[position]	=	arr[small];
arr[small]	=	temp;
ProclateDown(arr,small,size);
}

}
	

Initializing	an	empty	Heap
Example	11.2:
void	HeapInitialize(PtrHeap	pHeap,int	capacity)
{

pHeap->Size=0;
pHeap->Capacity=	capacity;
pHeap->Array=(int*)malloc((capacity)*sizeof(int));

}
	

Enqueue	/	Insert
1.	Add	the	new	element	at	the	end	of	the	array.	This	keeps	the	structure	as	a	complete	binary	tree,	but	it

might	no	longer	be	a	heap	since	the	new	element	might	have	a	value	greater	than	its	parent	value.
2.	Swap	the	new	element	with	its	parent	until	it	has	value	greater	than	its	parent	value.
3.	Step	2	will	terminate	when	the	new	element	reaches	the	root	or	when	the	new	element's	parent	have	a

value	greater	than	or	equal	to	the	new	element's	value.
	
Let	us	take	an	example	of	the	Max	heap	created	in	the	above	example.



Let	us	take	an	example	by	inserting	element	with	value	9	to	the	heap.	The	element	is	added	to	the	end	of
the	heap	array.	Now	the	value	will	be	proclate	up	by	comparing	it	with	the	parent.	The	value	is	added	to
index	8	and	its	parent	will	be	(N-1)/2	=	index	3.
	
	

	
Since	the	value	9	is	greater	than	4	it	will	be	swapped
with	it.
	

	
Proclate	 up	 is	 used	 and	 the	 value	 is	 moved	 up	 till
heap	property	is	satisfied.
	



	
Now	 the	 value	 at	 index	 1	 is	 compared	with	 index	 0
and	to	satisfy	heap	property	it	is	further	swapped.
	

	
Now	 finally	 max	 heap	 is	 created	 by	 inserting	 new
node.
	

	
Example	11.3:
void	HeapInsert(PtrHeap	pHeap,int	value)
{

pHeap->Array[pHeap->Size]=value;
ProclateUp(pHeap->Array,pHeap->Size);
pHeap->Size++;

}
	
void	ProclateUp(int	*arr,int	position)
{

int	parent=(position	–	1)/2;
	

if(position	!=	0)
{
if(arr[parent]	>arr[position])
{
int	temp	=	arr[position];
arr[position]	=	arr[parent];
arr[parent]	=	temp;

	
ProclateUp(arr,parent);
}



}
}
	

Dequeue	/	Delete
1.	Copy	the	value	at	the	root	of	the	heap	to	the	variable	used	to	return	a	value.
2.	Copy	the	 last	element	of	 the	heap	to	 the	root,	and	 then	reduce	 the	size	of	heap	by	1.	This	element	 is

called	the	"out-of-place"	element.
3.	Restore	heap	property	by	swapping	the	out-of-place	element	with	its	greatest-value	child.	Repeat	this

process	until	the	out-of-place	element	reaches	a	leaf	or	it	has	a	value	that	is	greater	or	equal	to	all	its
children.

4.	Return	the	answer	that	was	saved	in	Step	1.
	
To	dequeue	an	element	from	heap	its	top	value	is	swapped	to	the	end	of	the	heap	array	and	size	of	heap	is
reduced	by	1.
	

	
Since	end	of	the	heap	value	is	copied	to
head	 of	 heap.	 Heap	 property	 is
disturbed	 so	we	 need	 to	 again	 proclate
down	 by	 comparing	 node	 with	 its
children	nodes	to	restore	heap	property.
	

	



Proclate	 down	continued	by	 comparing
with	its	children	nodes.
	

	
Proclate	down

	
Proclate	down	Complete



	
Example	11.4:
int	HeapDelete(PtrHeap	pHeap)
{

int	value=(pHeap->Array[0);
pHeap->Array[0]=pHeap->Array[pHeap->Size	-1];
pHeap->Size--;
ProclateDown(pHeap->Array,0,pHeap->Size);
return	value;

}
	



Heap-Sort
1.	Use	create	heap	function	to	build	a	max	heap	from	the	given	array	of	elements.	This	operation	will	take

O(N)	time.
2.	Dequeue	the	max	value	from	the	heap	and	store	this	value	to	the	end	of	the	array	at	location	arr[size-1]

a)	Copy	the	value	at	the	root	of	the	heap	to	end	of	the	array.
b)	Copy	 the	 last	 element	 of	 the	 heap	 to	 the	 root,	 and	 then	 reduce	 the	 size	 of	 heap	 by	 1.	This

element	is	called	the	"out-of-place"	element.
c)	 Restore	 heap	 property	 by	 swapping	 the	 out-of-place	 element	with	 its	 greatest-value	 child.

Repeat	 this	 process	 until	 the	 out-of-place	 element	 reaches	 a	 leaf	 or	 it	 has	 a	 value	 that	 is
greater	or	equal	to	all	its	children

3.	Repeat	this	operation	until	there	is	just	one	element	in	the	heap.
	
Let	us	take	example	of	the	heap	that	we	had	created	at	the	start	of	the	chapter.	Heap	sort	is	algorithm	starts
by	creating	a	heap	of	 the	given	array	 that	 is	done	 in	 linear	 time.	Then	at	each	step	head	of	 the	heap	 is
swapped	with	the	end	of	the	heap	and	the	heap	size	is	reduced	by	1.	Then	proclate	down	is	used	to	restore
the	heap	property.	In	addition,	this	same	is	done	multiple	times	until	the	heap	contain	just	one	element.
	





	
	
	
	

	
Example	11.5:
void	HeapSort(int	*arr,	int	size)
{

int	temp;
for	(int	i	=	size/2;	i>0;	i--)
ProclateDown(arr,	i,	size);
while	(size)
{
temp	=	arr[0];
arr[0]	=	arr[size	-	1];
arr[size	-	1]	=	temp;
size--;
ProclateDown(arr,	0,	size);
}



}
	
void	ProclateDown(int	*arr,int	position,int	size)
{

int	lChild=2*position	+	1;
int	rChild=lChild+1;
int	small=-1;

	
if(lChild	<	size)
small	=	lChild;
if(	rChild	<	size	&&	compare(	arr[rChild],	arr[lChild]	))//compare	function	decide	min
{
small	=	rChild;
}

	
if(small!=-1	&&	compare(	arr[small],	arr[position]	))
{
int	temp	=	arr[position];
arr[position]	=	arr[small];
arr[small]	=	temp;
ProclateDown(arr,small,size);
}

}
	
//Swap,	when	the	parent	is	less	than	child,	will	give	max	heap.
//Swap	when	a	parent	is	greater	then	a	child.	it	will	give	min	heap.
int	compare(int	parentVal,	int	childVal)
{

return	(parentVal	<	childVal);
}
	
int	main()
{

int	a[10]	=	{	4,	5,	3,	2,	6,	7,	11,	8,	9,	10	};
heapSort(a,	sizeof(a)	/	sizeof(int));

}
	
Data	structure Array
Worst	Case	Time	Complexity O(nlogn)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(1)
	
Note:	Heap-Sort	is	not	a	Stable	sort	and	do	not	require	any	extra	space	for	sorting	a	list.



	



Uses	of	Heap
1.	Heapsort:	One	of	the	best	sorting	methods	being	in-place	and	log(N)	time	complexity	in	all	scenarios.
	
2.	Selection	algorithms:	 Finding	 the	min,	max,	 both	 the	min	 and	max,	median,	 or	 even	 the	 kth	 largest

element	can	be	done	in	linear	time	(often	constant	time)	using	heaps.
	
3.	 Priority	 Queues:	 Heap	 Implemented	 priority	 queues	 are	 used	 in	 Graph	 algorithms	 like	 Prim’s

Algorithm	and	Dijkstra’s	algorithm.	A	heap	 is	 a	 useful	 data	 structure	when	 you	 need	 to	 remove	 the
object	with	the	highest	(or	lowest)	priority.	Schedulers,	timers

	
4.	Graph	algorithms:	By	using	heaps	as	 internal	 traversal	data	structures,	 run	 time	will	be	reduced	by

polynomial	order.	Examples	of	such	problems	are	Prim's	minimal
	
5.	 Because	 of	 the	 lack	 of	 pointers,	 the	 operations	 are	 faster	 than	 a	 binary	 tree.	 Also,	 some	 more

complicated	heaps	(such	as	binomial)	can	be	merged	efficiently,	which	is	not	easy	to	do	for	a	binary
tree.

	

http://en.wikipedia.org/wiki/Prim%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Problems	in	Heap

Kth	Smallest	in	a	Min	Heap
Just	call	DeleteMin()	operation	K-1	times	and	then	again	call	DeleteMin()	 this	 last	operation	will	give
Kth	smallest	value.	Time	Complexity	O(KlogN)

Kth	Largest	in	a	Max	Heap
Just	call	DeleteMax()	operation	K-1	times	and	then	again	call	DeleteMax	()	this	last	operation	will	give
Kth	smallest	value.	Time	Complexity	O(KlogN)
	

100	Largest	in	a	Stream
There	are	billions	of	integers	coming	out	of	a	stream	some	getInt()	function	is	providing	integers	one	by
one.	How	would	you	determine	the	largest	100	numbers?
	
Solution:	Large	hundred	(or	smallest	hundred	etc.)	such	problems	are	solved	very	easily	using	a	Heap.	In
our	case,	we	will	create	a	min	heap.
1.	First	from	100	first	integers	builds	a	min	heap.
2.	Then	for	each	coming	integer	compare	if	it	is	greater	than	the	top	of	the	min	heap.
3.	If	not,	then	look	for	next	integer	.	If	yes,	then	remove	the	top	min	value	from	the	min	heap	then	insert	the

new	value	at	the	top	of	the	heap	and	use	procolateDown	and	move	it	to	its	proper	position	down	the
heap.

4.	Every	time	you	have	largest	100	values	stored	in	your	head
	

Merge	two	Heap
How	can	we	merge	two	heaps?
	
Solution:	There	is	no	single	solution	for	this.	Let	us	suppose	the	size	of	the	bigger	heap	is	N	and	the	size
of	the	smaller	heap	is	M.
1.	If	both	heaps	are	comparable	size,	then	put	both	heap	arrays	in	same	bigger	arrays.	Alternatively,	in	one

of	 the	arrays	 if	 they	are	big	 enough.	Then	apply	CreateHeap()	 function	which	will	 take	 theta(N+M)
time.

2.	If	M	is	much	smaller	than	N	then	enqueue()	each	element	of	M	array	one	by	one	to	N	heap.	This	will
take	O(MlogN)	the	worst	case	or	O(M)	best	case.

	

Min	/	Max	Heap	using	function	pointer
Example	11.6:	 Same	 heap	 data	 structure	 can	 be	 used	 to	 create	 both	min	 heap	 and	max	 heap	 only	 the
compare	function	will	change.
	
typedef	struct	Heap_t{

int	Capacity;
int	Size;
int	*Array;



bool(*compare)(int,	int);
}Heap;
	
void	HeapInitialize(PtrHeap	pHeap,	int	capacity,	bool(*comp)(int,	int))
{

pHeap->Size	=	0;
pHeap->Capacity	=	capacity;
pHeap->Array	=	(int*)malloc((capacity)*sizeof(int));
pHeap->compare	=	comp;

}
	
void	HeapInsert(PtrHeap	pHeap,	int	value)
{

pHeap->Array[pHeap->Size]	=	value;
ProclateUp(pHeap->Array,	pHeap->Size,pHeap->compare);
pHeap->Size++;

}
	
void	ProclateUp(int	*arr,	int	position,	bool(*comp)(int,	int))
{

int	parent	=	(position	-	1)	/	2;
	

if	(position	!=	0)
{
if	(comp(arr[parent],	arr[position]))
{
int	temp	=	arr[position];
arr[position]	=	arr[parent];
arr[parent]	=	temp;
ProclateUp(arr,	parent);
}
}

}
	
void	ProclateDown(int	*arr,	int	position,	int	size,	bool(*comp)(int,	int))
{

int	lChild	=	2	*	position	+	1;
int	rChild	=	lChild	+	1;
int	small	=	-1;

	
if	(lChild	<	size)
small	=	lChild;

	
if	(rChild	<	size	&&	comp(arr[rChild],	arr[lChild]))
small	=	rChild;



	
if	(small	!=	-1	&&	comp(arr[small],	arr[position]))
{
int	temp	=	arr[position];
arr[position]	=	arr[small];
arr[small]	=	temp;
ProclateDown(arr,	small,	size);
}

}
	
int	HeapDelete(PtrHeap	pHeap)
{

int	value	=	(pHeap->Array[0]);
pHeap->Array[0]	=	pHeap->Array[pHeap->Size	-	1];
pHeap->Size--;
ProclateDown(pHeap->Array,	0,	pHeap->Size,pHeap->compare);
return	value;

}
	
//	Greater	used	as	comparator,	swap	when	parent	is	greater	then	child,	min	heap
bool	Greater(int	a,	int	b)
{

return	a	>	b;
}
	
//	Smaller	used	as	comparator,	swap	when	parent	is	smaller	then	child,	max	heap
bool	Smaller(int	a,	int	b)
{

return	a	<	b;
}
	
int	HeapSize(PtrHeap	pHeap)
{

return	pHeap->Size;
}
	

Get	Median	function
Example	11.7:	Give	a	data	structure,	which	will	provide	median	of	given	values	in	constant	time.
Solution:	We	will	be	using	two	heap	one	min	heap	and	other	max	heap.	First,	there	will	be	a	max	heap,
which	will	contain	the	first	half	of	data,	and	there	will	be	another	min	heap,	which	will	contain	the	second
half	of	the	data.	Max	heap	will	contain	the	smaller	half	of	the	data	and	its	max	value,	which	is	at	the	top	of
the	heap,	will	be	the	median	contender.	Similarly,	the	Min	heap	will	contain	the	larger	values	of	the	data
and	its	min	value,	which	is	at	its	top,	will	contain	the	median	contender.	We	will	keep	track	of	the	size	of
heaps.	Whenever	we	insert	a	value	to	heap,	we	will	make	sure	that	the	size	of	two	heaps	differs	by	max



one	element,	otherwise	we	will	pop	one	element	from	one	and	insert	into	another	to	keep	them	balanced.
	
void	MedianHeapInit(MedianHeap*	heap)
{

HeapInitialize(&heap->minHeap,	100,	Greater);
HeapInitialize(&heap->maxHeap,	100,	Smaller);

}
	
void	MedianHeapInsert(MedianHeap*	heap,	int	value)
{

if	(HeapSize(&heap->maxHeap)	==	0	||	HeapTop(&heap->maxHeap)	>=	value	)
{
HeapInsert(&heap->maxHeap,	value);
}
else
{
HeapInsert(&heap->minHeap,	value);
}
//size	balancing
if	(HeapSize(&heap->maxHeap)	>	HeapSize(&heap->minHeap)	+	1)
{
value	=	HeapDelete(&heap->maxHeap);
HeapInsert(&heap->minHeap,	value);
}
if	(HeapSize(&heap->minHeap)	>	HeapSize(&heap->maxHeap)	+	1)
{
value	=	HeapDelete(&heap->minHeap);
HeapInsert(&heap->maxHeap,	value);
}

}
	
int	getMedian(MedianHeap*	heap)
{

if	(HeapSize(&heap->maxHeap)	==	0	&&	HeapSize(&heap->minHeap)	==	0)
return	INT_MIN;

	
if	(HeapSize(&heap->maxHeap)	==	HeapSize(&heap->minHeap))
return	(HeapTop(&heap->maxHeap)	+	HeapTop(&heap->minHeap))	/	2;
else	if	(HeapSize(&heap->maxHeap)	>	HeapSize(&heap->minHeap))
return	HeapTop(&heap->maxHeap);
else
return	HeapTop(&heap->minHeap);

}
	
int	main()



{
int	arr[]	=	{	1,	9,	2,	8,	3,	7,	4,	6,	5,	1,	9,	2,	8,	3,	7,	4,	6,	5,	10,	10	};

	
MedianHeap	heap;
MedianHeapInit(&heap);
for	(int	i	=	0;	i	<	20;	i++)
{
MedianHeapInsert(&heap,	arr[i]);
printf("Median	after	insertion	of	%d	is	%d	\n",	arr[i],	getMedian(&heap));
}
return	0;

}
	

Is	Min	Heap
Given	an	array	find	if	it	is	a	binary	Heap	is	Min	Heap
	
Example	11.8:
int	IsMinHeap(int	arr[],	int	size)
{

for	(int	i	=	0;	i	<=	(size	-	2)	/	2;	i++)
{
if	(2	*	i	+	1	<	size)
{
if	(arr[i]	>	arr[2	*	i	+	1])
return	0;
}
if	(2	*	i	+	2<size)
{
if	(arr[i]	>	arr[2	*	i	+	2])
return	0;
}
}
return	1;

}
	

Is	Max	Heap
Given	an	array	find	if	it	is	a	binary	Heap	Max	heap
	
Example	11.9:
int	IsMaxHeap(int	arr[],	int	size)
{

for	(int	i	=	0;	i	<=	(size	-	2)	/	2;	i++)
{



if	(2	*	i	+	1	<	size)
{
if	(arr[i]	<	arr[2	*	i	+	1])
return	0;
}
if	(2	*	i	+	2	<	size)
{
if	(arr[i]	<	arr[2	*	i	+	2])
return	0;
}
}
return	1;

}
	

Traversal	in	Heap
Heaps	are	not	designed	to	 traverse	 to	find	some	element	 they	are	made	to	get	min	or	max	element	fast.
Still	if	you	want	to	traverse	a	heap	just	traverse	the	array	sequentially.	This	traversal	will	be	level	order
traversal.	This	traversal	will	have	linear	Time	Complexity.
	

Deleting	Arbitrary	element	from	Min	Heap
Heap	 is	not	designed	 to	delete	an	arbitrary	element,	but	still	 if	you	want	 to	do	so.	Find	 the	element	by
linear	search	in	the	heap	array.	Replace	it	with	the	value	stored	at	the	end	of	the	Heap	value.	Reduce	the
size	of	the	heap	by	one.	Compare	the	new	inserted	value	with	its	parent.	If	 its	value	is	smaller	than	the
parent	value,	then	percolate	up.	Else	if	its	value	is	greater	than	its	left	and	right	child	then	percolate	down.
Time	Complexity	is	O(logn)
	

Deleting	Kth	element	from	Min	Heap
Heap	is	not	designed	to	delete	an	arbitrary	element,	but	still	if	you	want	to	do	so.	Replace	the	kth	value
with	the	value	stored	at	the	end	of	the	Heap	value.	Reduce	the	size	of	the	heap	by	one.	Compare	the	new
inserted	value	with	its	parent.	If	its	value	is	smaller	than	the	parent	value,	then	percolate	up.	Else	if	 its
value	is	greater	than	its	left	and	right	child	then	percolate	down.	Time	Complexity	is	O(logn)
	

Print	value	in	Range	in	Min	Heap
Linearly	traverse	through	the	heap	and	print	the	value	that	are	in	the	given	range.
	



Exercise
	
1.	What	is	the	worst-case	runtime	Complexity	of	finding	the	smallest	item	in	a	min-heap?
	
2.	Find	max	in	a	min	heap.

Hint:	normal	search	in	the	complete	array.	There	is	one	more	optimization	you	can	search	from	the	mid
of	the	array	at	index	N/2

	
3.	What	is	the	worst-case	time	Complexity	of	finding	the	largest	item	in	a	min-heap?
	
4.	What	is	the	worst-case	time	Complexity	of	deleteMin	in	a	min-heap?
	
5.	What	is	the	worst-case	time	Complexity	of	building	a	heap	by	insertion?
	
6.	Is	a	heap	full	or	complete	binary	tree?
	
7.	What	is	the	worst	time	runtime	Complexity	of	sorting	an	array	of	N	elements	using	heapsort?
	
8.	Given	a	sequence	of	numbers:	1,	2,	3,	4,	5,	6,	7,	8,	9

a.	Draw	a	binary	Min-heap	by	inserting	the	above	numbers	one	by	one
b.	Also	draw	the	tree	that	will	be	formed	after	calling	Dequeue()	on	this	heap

	
9.	Given	a	sequence	of	numbers:	1,	2,	3,	4,	5,	6,	7,	8,	9

a.	Draw	a	binary	Max-heap	by	inserting	the	above	numbers	one	by	one
b.	Also	draw	the	tree	that	will	be	formed	after	calling	Dequeue()	on	this	heap

	
10.	Given	a	sequence	of	numbers:	3,	9,	5,	4,	8,	1,	5,	2,	7,	6.	Construct	a	Min-heap	by	calling	CreateHeap

function.
	
11.	Show	an	array	that	would	be	the	result	after	the	call	to	deleteMin()	on	this	heap
	
12.	Given	an	array:	[3,	9,	5,	4,	8,	1,	5,	2,	7,	6].	Apply	heapify	over	this	to	make	a	min	heap	and	sort	the

elements	in	decreasing	order?
	
13.	In	Heap-Sort	once	a	root	element	has	been	put	in	its	final	position,	how	much	time	does	it	take	to	re-

heapify	 the	 structure	 so	 that	 the	 next	 removal	 can	 take	 place?	 In	 other	 words,	 what	 is	 the	 Time
Complexity	of	a	single	element	removal	from	the	heap	of	size	N?

	
14.	What	do	you	think	the	overall	Time	Complexity	for	heapsort	is?	Why	do	you	feel	this	way?
	





CHAPTER	12:	HASH-TABLE
	



Introduction
In	 the	 previous	 chapter,	 we	 have	 looked	 into	 various	 searching	 techniques.	 Consider	 a	 problem	 of
searching	a	value	in	an	array.	If	the	array	is	not	sorted	then	we	have	no	other	option	but	to	look	into	every
element	one	by	one	so	 the	searching	Time	Complexity	will	be	O(n).	 If	 the	array	 is	 sorted	 then	we	can
search	the	value	we	are	looking	for	in	O(logn)	logarithmic	time	using	binary	search.
	
What	if	we	have	a	function	that	can	tell	us	the	location/index	of	the	value	we	are	looking	for	in	the	array?
We	can	directly	go	into	that	location	and	tell	whether	our	object	we	are	searching	for	is	present	or	not	in
just	O(1)	constant	time.	Such	a	function	is	called	a	Hash	function.
	
In	 real	 life	when	a	 letter	 is	handed	over	 to	a	postman,	by	 looking	at	 the	address	on	 the	 letter,	postman
precisely	knows	to	which	house	this	letter	needs	to	be	delivered.	He	is	not	going	to	ask	for	a	person	door
to	door.

The	process	of	storing	objects	using	a	hash	function	is	as	follows:
1.	Create	an	array	of	size	M	to	store	objects,	this	array	is	called	Hash-Table.
2.	Find	a	hash	code	of	an	object	by	passing	it	through	the	hash	function.
3.	Take	module	of	hash	code	by	the	size	of	Hashtable	to	get	the	index	of	the	table	where	objects	will	be
stored.
4.	Finally	store	these	objects	in	the	designated	index.
	
	
The	process	of	searching	objects	in	Hash-Table	using	a	hash	function	is	as	follows:
1.	Find	a	hash	code	of	the	object	we	are	searching	for	by	passing	it	through	the	hash	function.
2.	 Take	module	 of	 hash	 code	 by	 the	 size	 of	Hashtable	 to	 get	 the	 index	 of	 the	 table	where	 objects	 are
stored.
3.	Finally,	retrieve	the	object	from	the	designated	index.
	



Hash-Table
A	Hash-Table	is	a	data	structure,	which	maps	keys	to	values.	Each	position	of	the	Hash-Table	is	called	a
slot.	The	Hash-Table	uses	a	hash	 function	 to	calculate	an	 index	of	an	array	of	 slots.	We	use	 the	Hash-
Table	when	the	number	of	keys	actually	stored	is	small	relatively	to	the	number	of	possible	keys.
	

Hash-Table	Abstract	Data	Type	(ADT)
ADT	of	Hash-Table	contains	the	following	functions:
1.	Insert(x),	add	object	x	to	the	data	set.
2.	Delete(x),	delete	object	x	from	the	data	set.
3.	Search(x),	search	object	x	in	data	set.
	

Hash	Function
A	hash	function	is	a	function,	which	generates	an	index	in	a	table	for	a	given	object.
	
An	ideal	hash	function	should	generate	a	unique	index	for	every	object	is	called	the	perfect	hash	function.
	
Example	12.1:	Most	simple	hash	function
unsigned	int	Hash(int	key,	int	tableSize)//division	method
{

unsigned	int	hashValue	=	0;
hashValue	=	key;
return	hashValue	%	tableSize;

}
	
There	are	many	hash	functions,	but	this	is	the	minimum	that	it	should	do.	Various	hash	generation	logics
will	be	added	to	this	function	to	generate	a	better	hash.
	

Properties	of	good	hash	function:
1.	 It	 should	 provide	 a	 uniform	 distribution	 of	 hash	 values.	 A	 non-uniform	 distribution	 increased	 the

number	of	collisions	and	the	cost	of	resolving	them.
2.	Choose	 a	 hash	 function,	which	 can	 be	 computed	 quickly	 and	 returns	 values	within	 the	 range	 of	 the

Hash-Table.
3.	 Chose	 a	 hash	 function	 with	 a	 good	 collision	 resolution	 algorithm	 which	 can	 be	 used	 to	 compute

alternative	index	if	the	collision	occurs.
4.	Choose	a	hash	function,	which	uses	the	necessary	information	provided	in	the	key.
5.	It	should	have	high	load	factor	for	a	given	set	of	keys.

Load	Factor
Load	factor	=	Number	of	elements	in	Hash-Table	/	Hash-Table	size
	
Based	 on	 the	 above	 definition,	 Load	 factor	 tells	 whether	 the	 hash	 function	 is	 distributing	 the	 keys
uniformly	or	not.	Therefore,	it	helps	in	determining	the	efficiency	of	the	hashing	function.	It	also	works	as



decision	parameter	when	we	want	to	expand	or	rehash	the	existing	Hash-Table	entries.
	

Collisions
When	a	hash	function	generates	the	same	index	for	the	two	or	more	different	objects,	the	problem	known
as	the	collision.	Ideally,	hash	function	should	return	a	unique	address	for	each	key,	but	practically	it	is	not
possible.
	

Collision	Resolution	Techniques
Hash	collisions	are	practically	unavoidable	when	hashing	large	number	of	objects.	Techniques,	which	are
used	to	find	the	alternate	location	in	the	Hash-Table,	is	called	collision	resolution.	There	are	a	number	of
collision	resolution	techniques	to	handle	the	collision	in	hashing.
	
Most	common	and	widely	used	techniques	are:
·	Open	addressing
·	Separate	chaining
	



Hashing	with	Open	Addressing

When	 using	 linear	 open	 addressing,	 the	 Hash-Table	 is	 represented	 by	 a	 one-dimensional	 array	 with
indices	that	range	from	0	to	the	desired	table	size-1.
	
One	method	of	 resolving	collision	 is	 the	 look	 into	a	Hash-Table	and	find	another	 free	slot	 the	hold	 the
object	that	have	caused	the	collision.	A	simple	way	is	to	move	from	one	slot	to	another	in	some	sequential
order	until	we	find	a	free	space.	This	collision	resolution	process	is	called	Open	Addressing.
	

Linear	Probing
In	Linear	Probing,	we	try	to	resolve	the	collision	of	an	index	of	a	Hash-Table	by	sequentially	searching
the	Hash-Table	free	location.	Let	us	suppose,	if	k	is	the	index	retrieved	from	the	hash	function.	If	the	kth
index	is	already	filled	then	we	will	look	for	(k+1)	%M,	then	(k+2)	%M	and	so	on.	When	we	get	a	free
slot,	we	will	insert	the	object	into	that	free	slot.
	
Example	12.2:	The	resolver	function	of	linear	probing
int	resolverFun(int	i)
{

return	i;
}
	

Quadratic	Probing
In	 Quadratic	 Probing,	 we	 try	 to	 resolve	 the	 collision	 of	 the	 index	 of	 a	 Hash-Table	 by	 quadratic	 ally
increasing	the	search	index	free	location.	Let	us	suppose,	if	k	is	the	index	retrieved	from	the	hash	function.
If	the	kth	index	is	already	filled	then	we	will	look	for	(k+1^2)	%M,	then	(k+2^2)	%M	and	so	on.	When
we	get	a	free	slot,	we	will	insert	the	object	into	that	free	slot.
	
Example	12.3:	The	resolver	function	of	quadratic	probing
int	resolverFun(int	i)
{

return	i	*	i;
}
	
Table	size	should	be	a	prime	number	to	prevent	early	looping	should	not	be	too	close	to	2powN
	

Linear	Probing	implementation
Example	12.4:	Below	is	a	linear	probing	collision	resolution	Hash-Table	implementation.
#define	TABLE_SIZE	50
#define	EMPTY_NODE	-1
#define	LAZY_DELETED	-2
	
Table	 array	 size	 will	 be	 50	 and	 we	 have	 defined	 two	 constant	 values	 EMPTY_NODE	 and
LAZY_DELETED.



unsigned	int	ComputeHash(int	key,	int	tableSize)//division	method
{

unsigned	int	hashValue	=	0;
hashValue	=	key;
return	hashValue	%	tableSize;

}
	
This	is	the	most	simple	hash	generation	function,	which	just	take	the	modulus	of	the	key.
int	ResolverFun(int	i)
{

return	i;
}
	
When	the	hash	index	is	already	occupied	by	some	element	the	value	will	be	placed	in	some	other	location
to	find	that	new	location	resolver	function	is	used.
struct	hashash_t{

int	tableSize;
int*	intArray;

};
typedef	hashash_t*	hashPtr;
	
Hash-Table	has	two	component	one	is	table	size	and	other	is	pointer	to	array.
hashPtr	HashInitialize()
{

hashPtr	hash;
hash	=	(hashPtr)malloc(sizeof(hashash_t));

	
hash->tableSize	=	TABLE_SIZE;
hash->intArray	=	(int*)malloc(hash->tableSize*sizeof(int));

	
for	(int	i	=	0;	i<hash->tableSize;	i++)
hash->intArray[i]	=	EMPTY_NODE;

	
return	hash;

}
	
HashInitialize	is	 the	first	function,	which	will	 initialize	 the	Hash-Table.	This	 is	 the	first	function	called
after	a	Hash-Table	before	any	insert,	search	or	delete	operation.
	
Example	12.5:
int	HashInsert(hashPtr	hash,	int	value)
{

int	hashValue	=	ComputeHash(value,	hash->tableSize);
int	i	=	0;
for	(i	=	0;	i	<	hash->tableSize;	i++)



{
	

if	 (hash->intArray[hashValue]	 ==	 EMPTY_NODE	 ||	 hash->intArray[hashValue]	 ==
LAZY_DELETED)

{
hash->intArray[hashValue]	=	value;
return	1;
}
hashValue	=	hashValue	+	ResolverFun(i);
hashValue	=	hashValue	%	hash->tableSize;
}
return	-1;

}
	
An	insert	node	function	is	used	to	add	values	to	the	array.	First	hash	is	calculated.	Then	we	try	to	place
that	value	in	the	Hash-Table.	We	look	for	empty	node	or	lazy	deleted	node	to	insert	value.	In	case	insert
did	not	success,	we	try	new	location	using	a	resolver	function.
	
Example	12.6:
int	HashFind(hashPtr	hash,	int	value)
{

int	hashValue	=	ComputeHash(value,	hash->tableSize);
for	(int	i	=	0;	i	<	hash->tableSize;	i++)
{
if	(hash->intArray[hashValue]	==	value	||	hash->intArray[hashValue]	==	EMPTY_NODE)
{
break;
}
hashValue	=	hashValue	+	ResolverFun(i);
hashValue	=	hashValue	%	hash->tableSize;
}

	
if	(hash->intArray[hashValue]	==	value)
return	hashValue;
else
return	-1;//value	not	found

}
	
Find	node	function	is	used	to	search	values	in	the	array.	First	hash	is	calculated.	Then	we	try	to	find	that
value	in	the	Hash-Table.	We	look	for	over	desired	value	or	empty	node.	In	case	we	find	the	value	that	we
are	looking,	then	we	return	that	value	or	we	return	-1.	We	use	a	resolver	function	to	find	the	next	probable
index	to	search.
	
Example	12.7:
int	HashDelete(hashPtr	hash,	int	value)



{
int	hashValue	=	ComputeHash(value,	hash->tableSize);

	
for	(int	i	=	0;	i	<	hash->tableSize;	i++)
{
if	(hash->intArray[hashValue]	==	EMPTY_NODE)
return	-1;

	
if	(hash->intArray[hashValue]	==	value)
{
hash->intArray[hashValue]	=	LAZY_DELETED;
return	1;//deleted	properly
}

	
hashValue	=	hashValue	+	ResolverFun(i);
hashValue	=	hashValue%hash->tableSize;
}
return	-1;	//value	not	found

}
	
Delete	node	function	is	used	to	delete	values	from	a	Hashtable.	We	do	not	actually	delete	the	value	we
just	mark	that	value	as	LAZY_DELETED.	Same	as	the	insert	and	search	we	use	resolverFun	to	find	the
next	probable	location	of	the	key.
	
Example	12.8:
void	PrintHash(hashPtr	hash,	int	tableSize)//print	key	wise	values
{

for	(int	i	=	0;	i<	hash->tableSize;	i++)
printf("index	%d	value	::	%d	\n",	i,	hash->intArray[i]);

}
	
int	main()
{

hashPtr	myHash	=	HashInitialize();
for	(int	i	=	100;	i	<	110;	i++)
HashInsert(myHash,	i);
printf("search	100	::	%d	\n",	HashFind(myHash,	100));
printf("remove	100	::	%d	\n",	HashDelete(myHash,	100));
printf("search	100	::	%d	\n",	HashFind(myHash,	100));
printf("remove	100	::	%d	\n",	HashDelete(myHash,	100));
PrintHash(myHash,	TABLE_SIZE);

}
	

Quadratic	Probing	implementation.



Everything	will	be	same	as	linear	probing	implementation	only	resolver	function	will	be	changed.
int	resolverFun(int	i)
{

return	i	*	i;
}
	



Hashing	with	Separate-Chaining
Another	method	for	collision	resolution	is	based	on	an	idea	of	putting	the	keys	that	collide	in	a	linked	list.
This	method	is	called	separate	chaining.	To	speed	up	search	we	use	Insertion-Sort	or	keeping	the	linked
list	sorted.

Separate	Chaining	implementation
‘
Example	12.9:	Below	is	separate	chaining	implementation	of	hash	tables.
#define	TABLE_SIZE	517
#define	TABLE_BITS	9
	
struct	listNode_t{

int	value;
listNode_t*	next;

};
	
typedef	listNode_t*	ptrList;
	
struct	hashTable_t{

int	tableSize;
ptrList*	listArray;//double	pointer

};
typedef	hashTable_t*	hashPtr;
	
unsigned	int	ComputeHash(int	key,	int	tableSize)//division	method
{

unsigned	int	hashValue	=	0;
hashValue	=	key;
return	hashValue	%	tableSize;

}
	
hashPtr	HashInitialize(int	size)



{
hashPtr	hTable	=	(hashPtr)malloc(sizeof(hashTable_t));
hTable->tableSize	=	size;
hTable->listArray	=	(ptrList*)malloc(hTable->tableSize	*	sizeof(ptrList));

	
for	(int	i	=	0;	i<hTable->tableSize;	i++)
hTable->listArray[i]	=	NULL;
return	hTable;

}
	
void	PrintHash(hashPtr	hTable,	int	tableSize)//print	key	wise	values
{

for	(int	i	=	0;	i<hTable->tableSize;	i++)
{
printf("\n	Printing	for	index	value	::(	%d	)	List	of	value	printing	::	",	i);
ptrList	head	=	hTable->listArray[i];
while	(head)
{
printf("	%d	",	head->value);
head	=	head->next;
}
}

}
	
int	HashFind(hashPtr	hTable,	int	value)
{

ptrList	possition;
int	index	=	ComputeHash(value,	hTable->tableSize);
possition	=	hTable->listArray[index];
while	(possition	&&	possition->value	!=	value)
{
possition	=	possition->next;
}
return	!(possition	==	NULL);

}
	
void	HashInsert(hashPtr	hTable,	int	value)
{

int	index	=	ComputeHash(value,	hTable->tableSize);
ptrList	tempPtr	=	(ptrList)malloc(sizeof(listNode_t));
tempPtr->value	=	value;
tempPtr->next	=	hTable->listArray[index];
hTable->listArray[index]	=	tempPtr;

}
	



int	HashDelete(hashPtr	hTable,	int	value)
{

ptrList	currNode,	nextNode;
int	index	=	ComputeHash(value,	hTable->tableSize);
currNode	=	hTable->listArray[index];

	
if	(currNode	&&	currNode->value	==	value)
{
hTable->listArray[index]	=	currNode->next;
free(currNode);
return	1;
}
while	(currNode)
{
nextNode	=	currNode->next;
if	(nextNode	&&	nextNode->value	==	value)
{
currNode->next	=	nextNode->next;
free(nextNode);
return	1;
}
else
{
currNode	=	nextNode;
}
}
return	0;

}
	
int	main()
{

hashPtr	myTable	=	HashInitialize(TABLE_SIZE);
for	(int	i	=	100;	i	<	110;	i++)
HashInsert(myTable,	i);
printf("search	100	::	%d	\n",	HashFind(myTable,	100));
printf("remove	100	::	%d	\n",	HashDelete(myTable,	100));
printf("search	100	::	%d	\n",	HashFind(myTable,	100));
printf("remove	100	::	%d	\n",	HashDelete(myTable,	100));
PrintHash(myTable,	TABLE_SIZE);

}
	
Note:	 It	 is	 important	 to	note	 that	 the	 size	of	 the	“skip”	must	be	 such	 that	 all	 the	 slots	 in	 the	 table	will
eventually	be	occupied.	Otherwise,	part	of	the	table	will	be	unused.	To	ensure	this,	it	is	often	suggested
that	the	table	size	being	a	prime	number.	This	is	the	reason	we	have	been	using	11	in	our	examples.
	



Problems	in	Hashing

Anagram	solver
An	anagram	is	a	word	or	phrase	formed	by	reordering	the	letters	of	another	word	or	phrase.
	
Example	12.10:	Two	words	are	anagram	if	they	are	of	same	size	and	their	characters	are	same.
int	isAnagram(char	str1[],	char	str2[])
{

int	curr	=	0;
int	size1	=	strlen(str1);
int	size2	=	strlen(str2);
if	(size1	!=	size2)
return	0;
hashPtr	pHash	=	HashInitialize();

	
while	(str1[curr])
{
HashInsert(pHash,	str1[curr]);
curr++;
}
curr	=	0;

	
while	(str2[curr])
{
if	(!HashDelete(pHash,	str2[curr]))
return	0;
curr++;
}
return	1;

}
	

Remove	Duplicate
Remove	duplicates	in	an	array	of	numbers.
	
Solution:	We	can	use	a	second	array	or	the	same	array,	as	the	output	array.	In	the	below	example	Hash-
Table	is	used	to	solve	this	problem.
	
Example	12.11:
void	removeDuplicate(char	str[])
{

int	curr	=	0,	end	=	0;
int	size	=	strlen(str);
hashPtr	pHash	=	HashInitialize();



	
while	(str[curr])
{
if	(!HashFind(pHash,	str[curr]))
{
str[end++]	=	str[curr];
HashInsert(pHash,	str[curr]);
}
curr++;
}
str[end]	=	'\0';

}
	

Find	Missing
Example	12.12:	Find	the	missing	number	in	the	list	of	integers.
int	findMissing(int	arr[],	int	size)
{

int	curr	=	0;
int	n	=	size	+	1;
hashPtr	pHash	=	HashInitialize();

	
while	(arr[curr])
{
HashInsert(pHash,	arr[curr]);
curr++;
}

	
for(curr	=	1;	curr	<=	n;	curr++)
{
if	(!HashFind(pHash,	curr))
return	curr;
}
return	1;

}
	

Print	Repeating
Example	12.13:	Print	the	repeating	integer	in	a	list	of	integers.
void	printRepeating(int	arr[],	int	size)
{

int	i;
hashPtr	pHash	=	HashInitialize();
	
printf("Repeating	elements	are	");



for	(i	=	0;	i	<	size;	i++)
{
if	(HashFind(pHash,	arr[i]))
printf("	%d	",	arr[i]);
else
HashInsert(pHash,	arr[i]);
}

}
	

Print	First	Repeating
Example	12.14:	Same	as	the	above	problem	in	this	we	need	to	print	the	first	repeating	number.	Caution
should	be	taken	to	find	the	first	repeating	number.	It	should	be	the	number	which	is	repeating.	For	example
1,2,3,2,1.	The	answer	should	be	1	as	it	is	the	first	number,	which	is	repeating.
void	printFirstRepeating(int	arr[],	int	size)
{

int	i;
hashPtr	pHash	=	HashInitialize();

	
for	(i	=	0;	i	<	size;	i++)
{
HashInsert(pHash,	arr[i]);
}
for	(i	=	0;	i	<	size;	i++)
{
HashDelete(pHash,	arr[i]);

	
if	(HashFind(pHash,	arr[i]))
{
printf("First	Repeating	number	is	:	%d	",	arr[i]);
return;
}
}

}
	



Exercise
1.	Design	a	number	(ID)	generator	system	that	generate	numbers	between	0-99999999	(8-digits).

The	system	should	support	two	functions:
a)	int	getNumber();
b)	int	requestNumber();

	
getNumber()	function	should	find	out	a	number	that	is	not	assigned,	then	marks	it	as	assigned	and	return
that	number.
requestNumber()	function	checks	the	number	is	assigned	or	not.	If	it	is	assigned	returns	0,	else	marks	it
as	assigned	and	return	1.
	
Hint:	You	can	keep	a	counter	 for	assigning	numbers.	Whenever	 there	 is	a	getNumber()	call	you	will
check	if	 that	number	 is	already	assigned	in	a	Hash-Table.	If	 it	 is	already	assigned,	 then	increase	 the
counter	 and	 check	 again.	 If	 you	 find	 a	 number	 not	 in	 the	 Hash-Table	 then	 add	 it	 to	 Hashtable	 and
increase	the	counter.
requestNumber()	will	look	in	the	Hash-Table	if	the	number	is	already	taken,	then	it	will	return	0	else	it
will	return	1	and	mark	that	number	as	taken	inside	the	Hash-Table.

	
2.	Given	a	large	string,	find	the	most	occurring	words	in	the	string.	What	is	the	Time	Complexity	of	the

above	solution?
Hint:-

a.	Create	a	Hashtable	which	will	keep	track	of	<word,	frequency>
b.	Iterate	through	the	string	and	keep	track	of	word	frequency	by	inserting	into	Hash-Table.
c.	 When	 we	 have	 a	 new	 word,	 we	 will	 insert	 it	 into	 the	 Hashtable	 with	 frequency	 1.	 For	 all

repetition	of	the	word,	we	will	increase	the	frequency.
d.	We	can	keep	track	of	the	most	occurring	words	whenever	we	are	increasing	the	frequency	we	can

see	if	this	is	the	most	occurring	word	or	not.
e.	The	Time	Complexity	is	O(n)	where	n	is	the	number	of	words	in	the	string	and	Space	Complexity

is	the	O(m)	where	m	is	the	unique	words	in	the	string.
	
3.	In	the	above	question,	What	if	you	are	given	whole	work	of	OSCAR	WILDE,	most	popular	playwrights

in	the	early	1890s.
Hint:-

a.	Who	knows	how	many	books	are	there,	let	us	assume	there	is	a	lot	and	we	cannot	put	everything
in	memory.	First,	we	need	a	Streaming	Library	so	 that	we	can	read	section	by	section	 in	each
document.	Then	we	need	 a	 tokenizer,	which	will	 give	words	 to	 our	 program.	 In	 addition,	we
need	some	sort	of	dictionary	let	us	say	we	will	use	HashTable.

b.	What	you	need	is	-	1.	A	streaming	library	tokenizer,	2.	A	tokenizer	3.	A	hashmap
Method:
1.	Use	streamers	to	find	a	stream	of	the	given	words
2.	Tokenize	the	input	text
3.	If	the	stemmed	word	is	in	hash	map,	increment	its	frequency	count	else	adds	a	word	to	hash
map	with	frequency	1

c.	We	can	improve	the	performance	by	looking	into	parallel	computing.	We	can	use	the	map-reduce



to	solve	this	problem.	Multiple	nodes	will	read	and	process	multiple	documents.	Once	they	are
done	with	their	processing,	then	we	can	use	reduce	to	merge	them.

	
4.	In	the	above	question,	What	if	we	wanted	to	find	the	most	common	PHRASE	in	his	writings.

Hint:-	We	 can	 keep	 <phrase,	 frequency>	 Hash-Table	 and	 do	 the	 same	 process	 of	 the	 2nd	 and	 3rd
problems.

	
5.	Write	a	hashing	algorithm	for	strings.

Hint:	Use	Horner's	method
int	hornerHash	(char*	key,	int	tableSize	)
{

int	size	=	strlen(key);
int	h	=	0;
int	i;
for	(i=0;	i	<	size	;	i++)
{
h	=	(32	*	h	+	key[i])	%	tableSize;
}
return	h;

}
	

6.	Pick	two	data	structures	to	use	in	implementing	a	Map.	Describe	lookup,	insert,	&	delete	operations.
Give	time	&	Space	Complexity	for	each.	Give	pros	&	cons	for	each.
Hint:-
a)	Linked	List

I.	Insert	is	O(1)
II.	Delete	is	O(1)
III.	Lookup	is	O(1)	auxiliary	and	O(N)	worst	case.
IV.	Pros:	Fast	inserts	and	deletes,	can	use	for	any	data	type.
V.	Cons:	Slow	lookups.

b)	Balanced	Search	Tree	(RB	Tree)
I.	Insert	is	O(logn)
II.	Delete	is	O(logn)
III.	Lookup	is	O(logn)
IV.	Pros:	Reasonably	fast	inserts/deletes	and	lookups.
V.	Cons:	Data	needs	to	have	order	defined	on	it.

	





CHAPTER	13:	GRAPHS
	



Introduction
In	this	chapter,	we	will	study	about	Graphs.	Graphs	can	be	used	to	represent	many	interesting	things	in	the
real	world.	Flights	from	cities	 to	cities,	 rods	connecting	various	 town	and	cities.	Even	 the	sequence	of
steps	that	we	take	to	become	ready	for	jobs	daily,	or	even	a	sequence	of	classes	that	we	take	to	become	a
graduate	 in	computer	science.	Once	we	have	a	good	representation	of	 the	map,	 then	we	use	a	standard
graph	algorithms	to	solve	many	interesting	problems	of	real	life.
	
The	 flight	 connection	between	major	 cities	of	 India	 can	also	be	 represented	by	 the	below	graph.	Each
node	is	a	city	and	each	edge	is	a	straight	flight	path	from	one	city	to	another.	You	may	want	to	go	from
Delhi	 to	Chennai,	 if	given	 this	data	 in	good	 representation	 to	 a	 computer,	 through	graph	algorithms	 the
computer	may	propose	shortest,	quickest	or	cheapest	path	from	soured	to	destination.

Google	map	that	we	use	is	also	a	big	graph	of	lots	of	nodes	and	edges.	Then	suggest	shortest	and	quickest
path	to	the	user.
Graph	Definitions
A	Graph	is	represented	by	G	where	G	=	(V,	E),	where	V	is	a	finite	set	of	points	called	Vertices	and	E	is	a
finite	set	of	Edges.
	
Each	edge	is	a	tuple	(u,	v)	where	u,	v	∈	V.	There	can	be	a	third	component	weight	to	the	tuple.	Weight	is
cost	to	go	from	one	vertex	to	another.
	
Edge	 in	a	graph	can	be	directed	or	undirected.	 If	 the	edges	of	graph	are	one	way	 it	 is	called	Directed
graph	or	Digraph.	The	graph	whose	edges	are	two	ways	are	called	Undirected	graph	or	just	graph.
	
A	Path	 is	a	sequence	of	edges	between	 two	vertices.	The	 length	of	a	path	 is	defined	as	 the	sum	of	 the
weight	of	all	the	edges	in	the	path.
	
Two	vertices	u	and	v	are	adjacent	if	there	is	an	edge	whose	endpoints	are	u	and	v.
	
In	the	below	graph:
V	=	{	V1,	V2,	V3,	V4,	V5,	V6,	V7,	V8,	V9	}	,



E	=	

The	in-degree	of	a	vertex	v,	Doneted	by	indeg(v)	is	the	number	of	incoming	edges	to	the	vertex	v.	The
out-degree	of	a	vertex	v,	Doneted	by	outdeg(v)	is	the	number	of	outgoing	edges	of	a	vertex	v.	The	degree
of	a	vertex	v,	Doneted	by	deg(v)	is	the	total	number	of	edges	whose	one	endpoint	is	v.
	
deg(v)	=	Indeg	(v)	+	outdeg	(v)
	
In	the	above	graph
deg(V4)=3,	indeg(V4)=2	and	outdeg(V4)=1
	
A	Cycle	is	a	path	that	starts	and	ends	at	the	same	vertex	and	include	at	least	one	vertex.
	
An	edge	is	a	Self-Loop	if	two	if	its	two	endpoints	coincide.	This	is	a	form	of	a	cycle.
	
A	vertex	v	is	Reachable	 from	vertex	u	or	“u	reaches	v”	if	 there	is	a	path	from	u	to	v.	In	an	undirected
graph	if	v	is	reachable	from	u	then	u	is	reachable	from	v.	However,	in	a	directed	graph	it	is	possible	that	u
reaches	v	but	there	is	no	path	from	v	to	u.
	
A	graph	is	Connected	if	for	any	two	vertices	there	is	a	path	between	them.
	
A	Forest	is	a	graph	without	cycles.
A	Sub-Graph	of	a	graph	G	is	a	graph	whose	vertices	and	edges	are	a	subset	of	the	vertices	and	edges	of
G.
	
A	Spanning	Sub-Graph	of	G	is	a	graph	that	connects	all	the	vertices	of	G.
	
A	Tree	is	a	acyclic	connected	graph.
	
A	Spanning	tree	of	a	graph	is	a	spanning	sub-graph,	which	is	also	a	tree	that	means,	a	connected	graph,
which	connects	all	the	vertices	of	graph	and	that,	does	not	have	a	cycle.



	



Graph	Representation
In	this	section,	we	introduce	the	data	structure	for	representing	a	graph.	In	the	below	representations	we
maintain	a	collection	to	store	edges	and	vertices	of	the	graph.
	



Adjacency	Matrix
One	of	 the	ways	 to	 represent	 a	 graph	 is	 to	 use	 two-dimensional	matrix.	Each	 combination	of	 row	and
column	represent	a	vertex	in	the	graph.	The	value	stored	at	the	location	row	v	and	column	w	is	the	edge
from	vertex	v	to	vertex	w.	The	nodes	that	are	connected	by	an	edge	are	called	adjacent	nodes.	This	matrix
is	used	to	store	adjacent	relation	so	it	is	called	the	Adjacency	Matrix.	In	the	below	diagram,	we	have	a
graph	and	its	Adjacency	matrix.

	
In	the	above	graph,	each	node	has	weight	1	so	the	adjacency	matrix	has	just	1s	or	0s.	If	the	edges	are	of
different,	weights	that	that	weight	will	be	filled	in	the	matrix.
	
Pros:	Adjacency	matrix	implementation	is	simple.	Adding/Removing	an	edge	between	two	vertices	is	just
O(1).	Query	if	there	is	an	edge	between	two	vertices	is	also	O(1)
	
Cons:	It	always	consumes	O(V2)	space,	which	is	an	inefficient	way	to	store	when	a	graph	is	a	sparse.
Sparse	Matrix:	 In	 a	 huge	 graph,	 each	 node	 is	 connected	 with	 fewer	 nodes.	 So	 most	 of	 the	 places	 in
adjacency	matrix	 are	 empty.	 Such	matrix	 is	 called	 sparse	matrix.	 In	most	 of	 the	 real	 world	 problems
adjacency	matrix	is	not	a	good	choice	for	sore	graph	data.
	



Adjacency	List
A	more	space	efficient	way	of	storing	graph	is	adjacency	list.	In	adjacency	list	of	pointers	to	a	linked	list
node.	Each	pointer	corresponds	to	vertices	in	a	graph.	Each	pointer	will	then	point	to	the	vertices,	which
are	connected	to	it	and	store	this	as	a	list.
In	the	below	diagram	node	2	is	connected	to	1,	3	and	4.	Therefore,	the	pointer	at	location	2	is	pointing	to
a	list	that	contain	1,	3	and	4.

The	adjacency	list	helps	us	to	represent	a	sparse	graph.	An	adjacency	list	representation	also	allows	us	to
find	 all	 the	 vertices	 that	 are	 directly	 connected	 to	 any	 vertices	 by	 just	 one	 link	 list	 scan.	 In	 all	 our
programs,	we	are	going	to	use	the	adjacency	list	to	store	the	graph.
	
Below	is	C	code	for	adjacency	list	representation	of	an	undirected	graph:
	
Example	13.1:
struct	ListNode{

int	weight;
int	index;
ListNode*	next;

};
typedef	ListNode*	ListPtr;
	
typedef	struct	Graph_t{

ListPtr*	dpHead;
int	count;

}	Graph;
typedef	Graph*	GraphPtr;
	
void	GraphInit(GraphPtr	pGraph,	int	nodeCount)//one	extra	sentinel	for	ease
{

ListPtr*	dpHead	=	(ListPtr*)malloc((nodeCount)	*	sizeof(ListPtr));
for(int	i=0;	i<=nodeCount;	i++)
dpHead[i]	=	NULL;
pGraph->dpHead	=	dpHead;
pGraph->count	=	nodeCount;



}
	
int	GraphInsert(GraphPtr	G,	int	src,	int	dst,	int	weight)
{

ListPtr	temp	=	(ListPtr)malloc(sizeof(ListNode));
temp->weight	=	weight;
temp->index=dst;
temp->next	=	G->dpHead[src];
G->dpHead[src]=temp;
return	1;

}
	
void	UndirectedGraphInsert(GraphPtr	G,	int	src,	int	dst,	int	weight)
{

GraphInsert(	G,	src,	dst,	weight);
GraphInsert(	G,	dst,	src,	weight);

}
	
void	GraphPrint(GraphPtr	G)
{

int	count	=	G->count,	index;
for	(index	=	0;	index	<	count;	index++)
{
ListPtr	head	=	G->dpHead[index];
printf("\n	Adjacency	list	of	index	%d	are	[	",	index);
while(head)
{
printf("	%d	",	head->index);
head	=	head->next;
}
printf("	]\n");
}

}
	
int	main()
{

int	nodeCount=8;
Graph	gph;
GraphInit(&gph,nodeCount);
UndirectedGraphInsert(&gph,	0,1,1);
UndirectedGraphInsert(&gph,	0,2,1);
UndirectedGraphInsert(&gph,	0,3,1);
UndirectedGraphInsert(&gph,	1,4,1);
UndirectedGraphInsert(&gph,	2,5,1);
UndirectedGraphInsert(&gph,	3,6,1);



UndirectedGraphInsert(&gph,	4,7,1);
UndirectedGraphInsert(&gph,	5,7,1);
UndirectedGraphInsert(&gph,	6,7,1);
GraphPrint(&gph);
return	0;

}
	



Graph	traversals
The	Depth	first	search	(DFS)	and	Breadth	first	search	(BFS)	are	the	two	algorithms	used	to	traverse	a
graph.	These	same	algorithms	can	also	be	used	to	find	some	node	in	the	graph,	find	if	a	node	is	reachable
etc.
	
Traversal	is	the	process	of	exploring	a	graph	by	examining	all	its	edges	and	vertices.
	
A	list	of	some	of	the	problems	that	are	solved	using	graph	traversal	are:
1.	Determining	a	path	from	vertex	u	to	vertex	v,	or	report	an	error	if	there	is	no	such	path.
2.	Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from	vertex	s	to	all	the	other	vertices	of

the	graph.
3.	Testing	of	a	graph	G	is	connected.
4.	Finding	a	spanning	tree	of	a	Graph.
5.	Finding	if	there	is	some	cycle	in	the	graph.
	



Depth	First	Traversal
The	DFS	algorithm	we	start	from	starting	point	and	go	into	depth	of	graph	until	we	reach	a	dead	end	and
then	move	up	 to	parent	node	(Backtrack).	 In	DFS,	we	use	stack	 to	get	 the	next	vertex	 to	start	a	search.
Alternatively,	we	can	use	recursion	(system	stack)	to	do	the	same.
	

Algorithm	steps	for	DFS
1.	Push	the	starting	node	in	the	stack.
2.	Loop	until	the	stack	is	empty.
3.	Pop	the	node	from	the	stack	inside	loop	call	this	node	current.
4.	Process	the	current	node.	//Print,	etc.
5.	Traverse	all	the	child	nodes	of	the	current	node	and	push	them	into	stack.
6.	Repeat	steps	3	to	5	until	the	stack	is	empty.
	

Stack	based	implementation	of	DFS
Example	13.2:
void	DFSStack(GraphPtr	G)
{

int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
int	curr;
Stack	stk;
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;
StackInitialize(&stk);
visited[0]	=	1;
StackPush(&stk,0);

	
while	(!StackIsEmpty(&stk))
{
curr	=	StackPop(&stk);
printf("	%d	",curr);

	



ListPtr	head	=	G->dpHead[curr];
while(head)
{
if(!visited[head->index])
{
visited[head->index]	=	1;
StackPush(&stk,	head->index);
}
head	=	head->next;
}
}

}
	

Recursion	based	implementation	of	DFS
Example	13.3:
void	DFSRec(GraphPtr	G,	int	index,	int*	visited)
{

printf("	%d	",	index);
ListPtr	head	=	G->dpHead[index];
while(head)
{
if(!visited[head->index])
{
visited[head->index]	=	1;
DFSRec(	G,	head->index,	visited);
}
head	=	head->next;
}

}
	
void	DFS(GraphPtr	G)
{

int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;

	
for	(int	i	=	0;	i	<	count;	i++)
if	(visited[i]	==	0)
{
visited[i]	=	1;
DFSRec(G,	i,	visited);
}

}



	



Breadth	First	Traversal
In	BFS	 algorithm,	 a	 graph	 is	 traversed	 in	 layer-by-layer	 fashion.	 The	 graph	 is	 traversed	 closer	 to	 the
starting	point.	The	queue	is	used	to	implement	BFS.

Algorithm	steps	for	BFS
1.	Push	the	starting	node	into	the	Queue.
2.	Loop	until	the	Queue	is	empty.
3.	Remove	a	node	from	the	Queue	inside	loop,	call	this	node	current.
4.	Process	the	current	node.//print	etc.
5.	Traverse	all	the	child	nodes	of	the	current	node	and	push	them	into	Queue.
6.	Repeat	steps	3	to	5	until	Queue	is	empty.
	
Example	13.4:
void	BFSQueue(GraphPtr	G,	int	index,	int*	visited)
{

int	curr;
Queue	que;
QueueInitialize(&que);

	
visited[index]	=	1;
Enqueue(&que,index);

	
while(!QueueIsEmpty(&que))
{
curr=Dequeue(&que);
printf("	%d	",	curr);
ListPtr	head	=	G->dpHead[curr];
while(head)
{
if(!visited[head->index])
{



visited[head->index]	=	1;
Enqueue(	&que,head->index);
}
head	=	head->next;
}
}

}
	
void	BFS(GraphPtr	G)
{

int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;

	
for	(int	i	=	0;	i	<	count;	i++)
if	(visited[i]	==	0)
BFSQueue(G,	i,	visited);

}
	
A	runtime	analysis	of	DFS	and	BFS	traversal	is	O(n+m)	time,	where	n	is	the	number	of	edges	reachable
from	source	node	and	m	is	the	number	of	edges	incident	on	s.
	
The	following	problems	have	O(m+n)	time	performance:
1.	Determining	a	path	from	vertex	u	to	vertex	v,	or	report	an	error	if	there	is	no	such	path.
2.	Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from	vertex	s	to	all	the	other	vertices	of

the	graph.
3.	Testing	of	a	graph	G	is	connected.
4.	Finding	a	spanning	tree	of	a	Graph.
5.	Finding	if	there	is	some	cycle	in	the	graph.
	



Problems	in	Graph

Determining	a	path	from	vertex	u	to	vertex	v
IF	there	is	a	path	from	u	to	v	and	we	are	doing	DFS	from	u	then	v	must	be	visited.	If	there	is	no	path	then
report	an	error.
	
Example	13.5:
int	PathExist(GraphPtr	G,	int	src,	int	dst)
{

int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;
visited[src]	=	1;
DFSRec	(G,	src,	visited);
return	visited[dst];

}
	

Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from	vertex
s	to	all	the	other	vertices	of	the	graph
Look	for	single	source	shortest	path	algorithm	for	each	edge	cost	as	1	unit.
	

Testing	of	a	graph	G	is	connected.
Do	DFS	 search	 start	 from	 any	 arbitrary	 vertex.	 Find	 if	 there	 is	 a	 vertex	 that	 is	 not	 visited.	 If	 all	 the
vertices	are	visited	then	it	is	a	connected	graph.
	
Example	13.6:
int	isConnected(GraphPtr	G)
{

int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;
visited[0]	=	1;
DFSRec(G,0,	visited);
for	(int	i	=	0;	i	<	count;	i++)
if(visited[i]	==	0)
return	0;
return	1;

}
	

Finding	if	there	is	some	cycle	in	the	graph.



Modify	DFS	problem	and	get	this	done.
	



Directed	Acyclic	Graph
A	Directed	 Acyclic	 Graph	 (DAG)	 is	 a	 directed	 graph	 with	 no	 cycle.	 A	 DAG	 represent	 relationship,
which	is	more	general	than	a	tree.	Below	is	an	example	of	DAG,	this	is	how	someone	becomes	ready	for
work.	There	are	N	other	 real	 life	examples	of	DAG	such	as	coerces	selection	 to	being	graduated	from
college



Topological	Sort
A	 topological	 sort	 is	 a	 method	 of	 ordering	 the	 nodes	 of	 a	 directed	 graph	 in	 which	 nodes	 represent
activities	 and	 the	 edges	 represent	 dependency	 among	 those	 tasks.	For	 topological	 sorting	 to	work	 it	 is
required	that	the	graph	should	be	a	DAG	which	means	it	should	not	have	any	cycle.	Just	use	DFS	to	get
topological	sorting.
	
Example	13.7:
void	TopologicalSort(GraphPtr	G)
{

Stack	stk;
StackInitialize(&stk);
int	count	=	G->count;
int*	visited	=	(int*)malloc((count)*sizeof(int));
for	(int	i	=	0;	i	<	count;	i++)
visited[i]	=	0;
for	(int	i	=	0;	i	<	count;	i++)
if	(visited[i]	==	0)
{
visited[i]	=	1;
TopologicalSortDFS(G,	i,	visited,	&stk);
}
while	(!StackIsEmpty(&stk))
printf("	%d	",StackPop(&stk));

}
	
void	TopologicalSortDFS(GraphPtr	G,	int	index,	int*	visited,	Stack*	stk)
{

ListPtr	head	=	G->dpHead[index];
while(head)
{
if(!visited[head->index])
{
visited[head->index]	=	1;
TopologicalSortDFS(	G,	head->index,	visited,	stk);
}
head	=	head->next;
}
StackPush(stk,index);

}
	



Minimum	Spanning	Trees	(MST)
A	Spanning	Tree	of	a	graph	G	is	a	tree	that	contains	all	the	edges	of	the	Graph	G.
A	Minimum	Spanning	Tree	is	a	tree	whose	sum	of	length/weight	of	edges	is	minimum	as	possible.
	
For	example,	 if	you	want	to	setup	communication	between	a	set	of	cities,	 then	you	may	want	 to	use	the
least	amount	of	wire	as	possible.	MST	can	be	used	to	find	the	network	path	and	wire	cost	estimate.

	

Prim’s	Algorithm	for	MST
Prim’s	algorithm	grows	a	single	tree	T,	one	edge	at	a	time,	until	it	becomes	a	spanning	tree.
We	initialize	T	with	zero	edges.	U	with	single	node.	Where	T	is	spanning	tree	edges	set	and	U	is	spanning
tree	vertex	set.
	
At	each	step,	Prim’s	algorithm	adds	the	smallest	value	edge	with	one	endpoint	in	U	and	other	not	in	us.
Since	each	edge	adds	one	new	vertex	to	U,	after	n	−	1	additions,	U	contain	all	the	vertices	of	the	spanning
tree	and	T	becomes	a	spanning	tree.
	
Example	13.8:
//	Returns	the	MST	by	Prim’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Prim(G)

T	=	{}
Let	r	be	any	vertex	in	G
U	=	{r}
for	i	=	1	to	|V|	-	1	do
e	=	minimum-weight	edge	(u,	v)
With	u	in	U	and	v	in	V-U
U	=	U	+	{v}



T	=	T	+	{e}
return	T

	
Prim’s	Algorithm	using	a	priority	queue	(min	heap)	to	get	the	closest	fringe	vertex
Time	Complexity	will	be	O(m	log	n)	where	n	vertices	and	m	edges	of	the	MST.
	
Example	13.9:
void	PrimMST(GraphPtr	G)
{

int	i,src=1;
int	count	=	G->count;//	Get	the	number	of	vertices	in	graph
int*	distance=	(int*)malloc((count)*sizeof(int));
int*	path=	(int*)malloc((count)*sizeof(int));

	
Heap	que;
HeapInitialize(&que,	100);

	
for	(	i	=	0;	i	<	count;	i++)
distance[i]	=	-1;

	
ListPtr	head;
Edge	e;
e.src	=	src;
e.dst	=	src;
e.weight	=	0;
HeapInsert(&que,e);
distance[src]=0;
path[src]=-1;
Edge	curr;
while(que.Size)
{
curr=HeapDeleteMin(&que);
head	=	G->dpHead[curr.dst];

	
while(head)
{
int	disUpdate	=	head->weight;
if(distance[head->index]	==	-1	||	distance[head->index]	>	disUpdate	)
{
distance[head->index]	=	disUpdate;
path[head->index]=curr.dst;
e.src	=	curr.dst;
e.dst	=	head->index;
e.weight	=	distance[head->index];
HeapInsert(	&que,e);



}
head	=	head->next;
}
}
for(int	i=0;i<count;i++)
printf("%d	to	%d	weight	%d	\n",	path[i],	i	,	distance[i]);

}
	

Kruskal’s	Algorithm
Kruskal’s	Algorithm	repeatedly	chooses	the	smallest-weight	edge	that	does	not	form	a	cycle.
Sort	the	edges	in	non-decreasing	order	of	cost:	c	(e1)	≤	c	(e2)	≤	·	·	·	≤	c	(em).
Set	T	to	be	the	empty	tree.	Add	edges	to	tree	one	by	one	if	it	does	not	create	a	cycle.
	
Example	13.10:
//	Returns	the	MST	by	Kruskal’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Kruskal(G)

Sort	the	edges	E	by	their	weights
T	=	{}
while	|T	|	+	1	<	|V	|	do
e	=	next	edge	in	E
if	T	+	{e}	does	not	have	a	cycle	then
T	=	T	+	{e}
return	T

	
Kruskal’s	Algorithm	is	O(E	log	V)	using	efficient	cycle	detection.
	



Shortest	Path	Algorithms	in	Graph

Single	Source	Shortest	Path
For	a	graph	G=	(V,	E),	 the	single	source	shortest	path	problem	is	 to	find	the	shortest	path	from	a	given
source	vertex	s	to	all	the	vertices	of	V.

Single	Source	Shortest	Path	for	unweighted	Graph.
Find	single	source	shortest	path	for	unweighted	graph	or	a	graph	whose	all	the	vertices	have	same	weight.
	
Example	13.11:
void	ShortestPath(GraphPtr	G,	int	src)
{

int	curr;
int	count	=	G->count;
int*	distance=	(int*)malloc((count)*sizeof(int));
int*	path=	(int*)malloc((count)*sizeof(int));

	
Queue	que;
QueueInitialize(&que);

	
for	(int	i	=	0;	i	<	count;	i++)
distance[i]	=	-1;

	
Enqueue(&que,src);
distance[src]=0;

	
while(!QueueIsEmpty(&que))
{
curr=Dequeue(&que);
ListPtr	head	=	G->dpHead[curr];
while(head)
{
if(distance[head->index]	==	-1)
{
distance[head->index]	=	distance[curr]	+	1;
path[head->index]=curr;
Enqueue(	&que,head->index);
}
head	=	head->next;
}
}
for(int	i=0;i<count;i++)
printf("%d	to	%d	weight	%d	\n",	path[i],	i	,	distance[i]);

}



	

Dijkstra’s	algorithm
Dijkstra’s	algorithm	for	single-source	shortest	path	problem	for	weighted	edges	with	no	negative	weight.
Given	a	weighted	connected	graph	G,	 find	 shortest	 paths	 from	 the	 source	vertex	 s	 to	 each	of	 the	other
vertices.Dijkstra’s	algorithm	is	similar	to	prims	algorithm.	It	maintains	a	set	of	nodes	for	which	shortest
path	is	known.

	
The	algorithm	starts	by	keeping	track	of	the	distance	of	each	node	and	its	parents.	All	the	distance	is	set	to
infinite	in	the	beginning	as	we	do	not	know	the	actual	path	to	the	nodes	and	parents	of	all	the	vertices	are
set	to	null.	All	the	vertices	are	added	to	a	priority	queue	(min	heap	implementation)
At	each	step	algorithm	takes	one	vertex	from	the	priority	queue	(which	will	be	the	source	vertex	in	the
beginning).	Then	update	the	distance	array	corresponding	to	all	the	adjacent	vertices.	When	the	queue	is
empty,	then	we	will	have	the	distance	and	parent	array	fully	populated.
	
Example	13.12:
//	Solves	SSSP	by	Dijkstra’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	with	no	negative	weights,	and	source	vertex	v
//	Output:	The	length	and	path	from	s	to	every	v
	
Algorithm	Dijkstra(G,	s)

for	each	v	in	V	do
D[v]	=	infinite	//	Unknown	distance
P[v]	=	null	//unknown	previous	node
add	v	to	PQ	//adding	all	nodes	to	priority	queue

	
D[source]	=	0	//	Distance	from	source	to	source

	
while	(PQ	is	not	empty)
u	=	vertex	from	PQ	with	smallest	D[u]
remove	u	from	PQ
for	each	v	adjacent	from	u	do
alt	=	D[u]	+	length	(	u	,	v)



if	alt	<	D[v]	then
D[v]	=	alt
P[v]	=	u
Return	D[]	,	P[]

	
Time	Complexity	will	be	O(|E|log|V|)
	
Note:	Dijkstra’s	algorithm	does	not	work	for	graphs	with	negative	edges	weight.
Note:	Dijkstra’s	algorithm	is	applicable	to	both	undirected	and	directed	graphs.
	
Example	13.13:
void	DijkstraShortestPath(GraphPtr	G,	int	src)
{

Edge	curr;
int	i;
int	count	=	G->count;

	
int*	distance=	(int*)malloc((count)*sizeof(int));
int*	path=	(int*)malloc((count)*sizeof(int));

	
Heap	que;
HeapInitialize(&que,	100);

	
for	(	i	=	0;	i	<	count;	i++)
distance[i]	=	-1;

	
ListPtr	head;
Edge	e;
e.src	=	src;
e.dst	=	src;
e.weight	=	0;

	
HeapInsert(&que,e);
distance[src]=0;
path[src]=-1;

	
while(que.Size)
{
curr=HeapDeleteMin(&que);
head	=	G->dpHead[curr.dst];
while(head)
{
int	disUpdate	=	distance[curr.dst]	+	head->weight;
if(distance[head->index]	==	-1	||	distance[head->index]	>	disUpdate	)
{



distance[head->index]	=	disUpdate;
path[head->index]=curr.dst;
e.src	=	curr.dst;
e.dst	=	head->index;
e.weight	=	distance[head->index];
HeapInsert(	&que,e);
}
head	=	head->next;
}
}
for(int	i=0;i<count;i++)
printf("%d	to	%d	weight	%d	\n",	path[i],	i	,	distance[i]);

}
	

Bellman	Ford	Shortest	Path
The	bellman	ford	algorithm	works	even	when	 there	are	negative	weight	edges	 in	 the	graph.	 It	does	not
work	if	there	is	some	cycle	in	the	graph	whose	total	weight	is	negative.
	
Example	13.14:
#define	INF	123456789
void	BellmanFordShortestPath(GraphPtr	G,	int	src)
{

int	curr;
int	count	=	G->count;

	
int*	distance=	(int*)malloc((count)*sizeof(int));
int*	path=	(int*)malloc((count)*sizeof(int));

	
for	(int	i	=	0;	i	<	count;	i++)
distance[i]	=	INF;

	
distance[src]=0;

	
for	(int	i	=	0;	i	<	count	-1;	i++)
{
for	(int	j	=	0;	j	<	count;	j++)
{
ListPtr	head	=	G->dpHead[j];
while(head)
{
int	newDistance	=	distance[j]+	head->weight;
if(distance[head->index]	>	newDistance)
{
distance[head->index]	=	newDistance;



path[head->index]=j;
}
head	=	head->next;
}
}
}
for(int	i=0;i<count;i++)
printf("%d	to	%d	weight	%d	\n",	path[i],	i	,	distance[i]);

}
	

All	Pairs	Shortest	Paths
Given	a	weighted	graph	G(V,	E),	the	all	pair	shortest	path	problem	is	to	find	the	shortest	path	between	all
pairs	of	vertices	u,	v	є	V.
	
Execute	n	instances	of	single	source	shortest	path	algorithm	for	each	vertex	of	the	graph.
The	complexity	of	this	algorithm	will	be	O(n3)
	



Exercise
1.	In	the	entire	path-finding	algorithm,	we	have	created	a	path	array	that	just	store	immediate	parent	of	a

node,	print	the	complete	path	for	it.
	
2.	All	the	functions	are	implemented	considering	as	if	the	graph	is	represented	by	adjacency	list.	To	write

all	those	functions	for	graph	representation	as	adjacency	matrix.
	
3.	Given	a	start	string,	end	string	and	a	set	of	strings,	find	if	there	exists	a	path	between	the	start	string	and

end	string	via	the	set	of	strings.
	

A	path	exists	if	we	can	get	from	start	string	to	end	the	string	by	changing	(no	addition/removal)	only
one	character	at	a	time.	The	restriction	is	that	the	new	string	generated	after	changing	one	character	has
to	be	in	the	set.
	
Start:	"cog"
End:	"bad"
Set:	["bag",	"cag",	"cat",	"fag",	"con",	"rat",	"sat",	"fog"]
One	of	the	paths:	"cog"	->	"fog"	->	"fag"	->	"bag"	->	"bad"

	





CHAPTER	14:	STRING	ALGORITHMS
	



Introduction
String	in	C	language	is	an	array	of	character.	We	use	string	algorithm	in	so	many	tasks,	when	we	are	using
some	copy-paste,	some	string	replacement,	and	some	string	search.	When	we	are	using	some	dictionary
program,	we	 are	 using	 string	 algorithms.	When	we	 are	 searching	 something	 in	 google	we	 are	 passing
some	information	that	is	also	a	string	and	that	will	further	convert	and	processed	by	google.
	
Note:	This	chapter	is	very	important	for	the	interview	point	of	view	as	many	interview	problems	are	from
this	chapter.
	



String	Matching
Every	word	processing	program	has	 a	 search	 function	 in	which	you	 can	 search	 all	 occurrences	of	 any
particular	word	in	a	long	text	file.	For	this,	we	need	string-matching	algorithms.
	

Brute	Force	Search
We	have	a	pattern	that	we	want	to	search	in	the	text.	The	pattern	is	of	length	m	and	the	text	is	of	length	n.
Where	m	<	n.
	
The	brute	force	search	algorithm	will	check	the	pattern	at	all	possible	value	of	“i”	in	the	text	where	the
value	of	“i”	range	from	0	to	n-m.	The	pattern	is	compared	with	the	text,	character	by	character	from	left	to
right.	When	 a	mismatch	 is	 detected,	 then	 pattern	 is	 compared	 by	 shifting	 the	 compare	window	by	 one
character.
	
Example	14.1:
int	BruteForceSearch(char	*text,	char	*pattern)
{

int	i=0,	j=0,	count	=	0;
const	int	n	=	strlen(text);
const	int	m	=	strlen(pattern);

	
while	(i<=n-m)
{
j=0;
while	(j<m	&&	pattern[j]==	text[i+j])
j++;
if	(j==m)
return(i);
i++;
}
return	-1;

}
Worst	case	Time	Complexity	of	the	algorithm	is	O(m*n),	we	got	the	pattern	at	the	end	of	the	text	or	we
did	not	get	the	pattern	at	all.
Best	case	Time	Complexity	of	this	algorithm	is	O(m)	,	the	average	Time	Complexity	of	this	algorithm	is
O(n)
	

Robin-Karp	algorithm
Robin-Karp	algorithm	is	somewhat	similar	to	the	brute	force	algorithm.	Because	the	pattern	is	compared
to	 each	 textbox.	 Instead	 of	 pattern	 at	 each	 position	 a	 hash	 code	 is	 compared,	 only	 one	 comparison	 is
performed.	The	hash	code	of	 the	pattern	 is	compared	with	 the	hash	code	of	 the	 text	window.	We	try	 to
keep	the	hash	code	as	unique	as	possible.
	



The	two	features	of	good	hash	code	are:
·	The	collision	should	be	excluded	as	much	as	possible.
·	The	hash	code	of	text	must	be	calculated	in	constant	time.

	
A	collision	occurs	when	hash	code	matches,	but	the	pattern	does	not.
Calculation	in	constant	time,	one	member	leaves	the	window	and	a	new	number	enters	a	window.
	
Multiplication	by	2	is	same	as	left	shift	operation.	Multiplication	by	2m-1	is	same	as	left	shift	m-1	times.
We	want	this	multiple	times	so	just	store	it	in	variable	pow(m)	=	2m-1
	
We	do	not	want	to	do	big	multiplication	operations	so	modular	operation	with	a	prime	number	is	used.
	
Example	14.2:
int	RobinKarp(char	*text,	char	*pattern)
{

int	n=strlen(text);
int	m=strlen(pattern);
int	i,	j;
int	prime	=	101;
int	powm=1;
int	TextHash=0,	PatternHash=0;

	
if(m==0	||	m>n)
return	-1;

	
for	(i	=	0;	i	<	m-1;	i++)
powm	=	(powm	<<	1)	%	prime;

	
for	(i	=	0;	i	<	m;	i++)
{
PatternHash	=	((PatternHash	<<	1)	+	pattern[i])	%	prime;
TextHash	=	((TextHash	<<	1)	+	text[i])	%	prime;
}

	
for(	i=0;i<=(n-m);i++)
{
if(TextHash	==	PatternHash)
{
for	(j	=	0;	j	<	m;	j++)
{
if	(text[i+j]	!=	pattern[j])
break;
}

	
if	(j	==	m)



return	i;
}
TextHash	=	(((TextHash	-	text[i]*powm)	<<	1)	+	text[i+m])	%	prime;

	
if	(TextHash	<	0)
TextHash	=	(TextHash	+	prime);
}
return	-1;

}
	

Knuth-Morris-Pratt	algorithm
After	 a	 shift	 of	 the	 pattern,	 the	 brute	 force	 algorithm	 forgotten	 all	 the	 information	 about	 the	 previous
matched	symbols.	This	is	because	of	which	its	worst	case	Time	Complexity	is	O(mn).
	
The	 Knuth-Morris-Pratt	 algorithm	 make	 use	 of	 this	 information	 that	 is	 computed	 in	 the	 previous
comparison.	It	never	re	compares	the	whole	text.
	
It	uses	pre-processing	of	the	pattern.	The	pre-processing	takes	O(m)	time	and	whole	algorithm	is	O(n)
	
Pre-processing	step:	we	try	to	find	the	border	of	the	pattern	at	a	different	prefix	of	the	pattern.
	
A	prefix	is	a	string	that	comes	at	the	start	of	a	string.
A	proper	prefix	is	a	prefix	that	is	not	the	complete	string.	Its	length	is	less	than	the	length	of	the	string.
A	suffix	is	a	string	that	comes	at	the	end	of	a	string.
A	proper	suffix	is	a	suffix	that	is	not	the	complete	string.	Its	length	is	less	than	the	length	of	the	string.
A	border	is	a	string	that	is	both	proper	prefix	and	a	proper	suffix.

	
Example	14.3:
void	KMPPreprocess(char*	pattern,	int*	ShiftArr)
{

const	int	m	=	strlen(pattern);
int	i	=	0,	j	=	-1;
ShiftArr[i]	=	-1;
while(i	<	m)
{
while(j	>=	0	&&	pattern[i]	!=	pattern[j])
j	=	ShiftArr[j];
i++;



j++;
ShiftArr[i]	=	j;
}

}
	
We	have	to	loop	outer	loop	for	the	text	and	inner	loop	for	the	pattern	when	we	have	matched	the	text	and
pattern	mismatch,	we	shift	the	text	such	that	the	widest	border	is	considered	and	then	the	rest	of	the	pattern
matching	is	resumed	after	this	shift.	If	again	a	mismatch	happens	then	the	next	mismatch	is	taken.

Example	14.4:
int	KMP(char	*text,	char	*pattern)
{

int	i=0,	j=0,	count	=	0;
const	int	n	=	strlen(text);
const	int	m	=	strlen(pattern);

	
int*	ShiftArr	=	(int	*)calloc(m+1,	sizeof(int));

	
KMPPreprocess(pattern,ShiftArr);

	
while	(i<n)
{
while	(j>=0	&&	text[i]!=pattern[j])
j=ShiftArr[j];
i++;
j++;
if	(j==m)
{
return	(i	-	m);
}
}
return	-1;

}
	
Example	14.5:	Use	the	same	KMP	algorithm	to	find	the	number	of	occurrences	of	the	pattern	in	a	text.
int	KMPFindCount(char	*text,	char	*pattern)
{



int	i=0,	j=0,	count	=	0;
const	int	n	=	strlen(text);
const	int	m	=	strlen(pattern);
int*	ShiftArr	=	(int	*)calloc(m+1,	sizeof(int));

	
KMPPreprocess(pattern,ShiftArr);
while	(i<n)
{
while	(j>=0	&&	text[i]!=pattern[j])
j=ShiftArr[j];

	
i++;
j++;

	
if	(j==m)
{
count++;
j=ShiftArr[j];
}
}
return	count;

}
	



Dictionary	/	Symbol	Table
A	symbol	table	is	a	mapping	between	a	string	(	key)	and	a	value	that	can	be	of	any	type.	A	value	can	be	an
integer	such	as	occurrence	count,	dictionary	meaning	of	a	word	and	so	on.
	

Binary	Search	Tree	(BST)	for	Strings
Binary	Search	Tree	(BST)	is	the	simplest	way	to	implement	symbol	table.	Simple	strcmp()	function	can
be	used	to	compare	two	strings.	If	all	the	keys	are	random,	and	the	tree	is	balanced.	Then	on	an	average
key	lookup	can	be	done	in	O(logn)	time.

Below	 is	 an	 implementation	 of	 binary	 search	 tree	 to	 store	 string	 as	 key.	 This	 will	 keep	 track	 of	 the
occurrence	count	of	words	in	a	text.
	
Example	14.6:
1.	#include<stdio.h>
2.	#include<stdlib.h>
3.	#include<string.h>
4.	#include<iostream>
5.	using	namespace	std;
6.
7.	struct	treeNode_t{
8.	char*	value;
9.	int	count;
10.	treeNode_t*	lChild;
11.	treeNode_t*	rChild;
12.	};
13.
14.	typedef	treeNode_t*	treePtr;
	
1.	void	printTree(treePtr	root)/*	pre	order	*/
2.	{
3.	if(root)
4.	{
5.	cout<<"	value	is	::"<<root->value;



6.	cout<<"	count	is	::	"<<root->count<<endl;
7.	printTree(root->lChild);
8.	printTree(root->rChild);
9.	}
10.	}
	
1.	treePtr	insertNode(char	*value,	treePtr	root)
2.	{
3.	int	compare;
4.	if(root==NULL)
5.	{
6.	root=(treePtr)malloc(sizeof(treeNode_t));
7.	if(root==NULL)
8.	{
9.	printf("fallel	memory	shortage	...");
10.	return	root;
11.	}
12.	root->value=(char*)malloc((1+strlen(value))*sizeof(char));
13.	strcpy(root->value,value);
14.	root->lChild=root->rChild=NULL;
15.	root->count=1;
16.	}
17.	else
18.	{
19.	compare=strcmp(root->value,value);
20.	if(compare==0)
21.	{
22.	root->count++;
23.	}
24.	else	if(compare==1)
25.	{
26.	root->lChild=insertNode(value,root->lChild);
27.	}
28.	else
29.	{
30.	root->rChild=insertNode(value,root->rChild);
31.	}
32.	}
33.	return	root;
34.	}
	
1.	void	insertNode(char*	value,	treePtr	*	ptrRoot)
2.	{
3.	*ptrRoot	=	insertNode(value,*ptrRoot);
4.	}



	
1.	void	freeTree(treePtr*	rootPtr)
2.	{
3.	*rootPtr=freeTree(*rootPtr);
4.	}
	
1.	treePtr	freeTree(treePtr	root)
2.	{
3.	if(root)
4.	{
5.	freeTree(root->lChild);
6.	freeTree(root->rChild);
7.	free(root->value);
8.	free(root);
9.	}
10.	return	NULL;
11.	}
	
1.	treePtr	findNode(treePtr	root,	char*	value)
2.	{
3.	int	compare;
4.	if(!root)
5.	return	NULL;
6.	compare=strcmp(root->value,value);
7.	if(compare==0)
8.	return	root;
9.	else
10.	{
11.	if(compare==1)
12.	return	findNode(root->lChild,value);
13.	else
14.	return	findNode(root->rChild,value);
15.	}
16.	}
	
1.	int	frequency(treePtr	root,	char*	value)
2.	{
3.	int	compare;
4.	if(!root)
5.	return	0;
6.	compare=strcmp(root->value,value);
7.	if(compare==0)
8.	return	root->count;
9.	else
10.	{



11.	if(compare==1)
12.	return	frequency(root->lChild,value);
13.	else
14.	return	frequency(root->rChild,value);
15.	}
16.	}
	
1.	int	getword(char*	a,	FILE*	fp)
2.	{
3.	int	i=0;
4.	while(1)
5.	{
6.	a[i]=getc(fp);
7.	if(a[i]==EOF)
8.	{
9.	a[i]='\0';
10.	return	0;
11.	}
12.	else	if(a[i]=='	'||a[i]=='\t'||a[i]=='\n')
13.	{
14.	a[i]='\0';
15.	return	1;
16.	}
17.	i++;
18.	}
19.	}
	
1.	int	main()
2.	{
3.
4.	treePtr	root=NULL;
5.	treePtr	temp=NULL;
6.	FILE*	fp=fopen("binaryString.cpp","r");
7.	char	a[100];
8.	while(getword(a,fp))
9.	{
10.	root=insertNode(a,root);
11.	}
12.	printTree(root);
13.	printf("\n");
14.	cout<<"quency	returned	::	"<<frequency(root,"&&");
15.	printf("\n");
16.	}
	



Hash-Table
The	Hash-Table	is	another	data	structure	that	can	be	used	for	symbol	table	implementation.	Below	Hash-
Table	diagram,	we	can	see	the	name	of	that	person	is	taken	as	the	key,	and	their	meaning	is	the	value	of	the
search.	The	first	key	is	converted	into	a	hash	code	by	passing	it	to	appropriate	hash	function.	Inside	hash
function	the	size	of	Hash-Table	is	also	passed,	which	is	used	to	find	the	actual	index	where	values	will	be
stored.	Finally,	the	value	that	is	meaning	of	name	is	stored	in	the	Hash-Table,	or	you	can	store	a	reference
to	the	string	which	store	meaning	can	be	stored	into	the	Hash-Table.

	
Hash-Table	has	an	excellent	lookup	of	O(1).
	
Let	 us	 suppose	we	want	 to	 implement	 autocomplete	 the	 box	 feature	 of	Google	 search.	When	 you	 type
some	string	to	search	in	google,	it	propose	some	complete	string	even	before	you	have	done	typing.	BST
cannot	solve	this	problem	as	related	strings	can	be	in	both	right	and	left	subtree.
	
The	Hash-Table	is	also	not	suited	for	 this	 job.	One	cannot	perform	a	partial	match	or	range	query	on	a
Hash-Table.	Hash	 function	 transforms	 string	 to	 a	 number.	A	good	hash	 function	will	 give	 a	 distributed
hash	code	even	for	partial	string	and	there	is	no	way	to	relate	two	strings	in	a	Hash-Table.
	
Trie	and	Ternary	Search	tree	are	a	special	kind	of	tree	that	solves	partial	match	and	range	query	problem
well.
	

Trie
Trie	is	a	tree,	in	which	we	store	only	one	character	at	each	node.	This	final	key	value	pair	is	stored	in	the
leaves.	Each	node	has	R	children,	one	for	each	possible	character.	For	simplicity	purpose,	let	us	consider
that	the	character	set	is	26,	corresponds	to	different	characters	of	English	alphabets.
	
Trie	 is	 an	 efficient	 data	 structure.	 Using	 Trie,	 we	 can	 search	 the	 key	 in	 O(M)	 time.	Where	M	 is	 the
maximum	string	length.	Trie	is	also	suitable	for	solving	partial	match	and	range	query	problems.
	



Example	14.7:
1.	#include<iostream>
2.	using	namespace	std;
3.	struct	trieNode_t{
4.	int	flag;
5.	char	ch;
6.	trieNode_t*	child[26];
7.	};
8.	typedef	trieNode_t*	triePtr;
	
1.	triePtr	createNode()
2.	{
3.	triePtr	temp=(triePtr)malloc(sizeof(trieNode_t));
4.	for(int	i=0;i<26;i++)
5.	temp->child[i]==NULL;
6.	return	temp;
7.	}
	
1.	void	myToLower(char*	str)
2.	{
3.	int	length=strlen(str);
4.	for(int	i=0;i<length;i++)
5.	str[i]=tolower(str[i]);
6.	}
	
7.	void	trie(triePtr	root,	char	*str)
8.	{



9.	if(*(str+1)=='\0')
10.	{
11.	if(root->child[*str-'a']==NULL)
12.	{
13.	root->child[*str-'a']=createNode();
14.	}
15.	root->child[*str-'a']->flag=1;
16.	root->child[*str-'a']->ch=*str;
17.	return;
18.	}
19.	else
20.	{
21.	if(root->child[*str-'a']==NULL)
22.	{
23.	root->child[*str-'a']=createNode();
24.	root->child[*str-'a']->flag=0;
25.	}
26.	root->child[*str-'a']->ch=*str;
27.	trie(root->child[*str-'a'],(str	+	1));
28.	}
29.	}
	
1.	triePtr	trieInsert(triePtr	root,	char	*str)
2.	{
3.	myToLower(str);
4.	if(str==NULL	||	*str=='\0')
5.	return	root;
6.	if(root==NULL)
7.	{
8.	root=createNode();
9.	trie(root,str);
10.	}
11.	else
12.	{
13.	trie(root,str);
14.	}
15.	return	root;
16.	}
	
1.	int	findNode(triePtr	root,	char*	str)
2.	{
3.	myToLower(str);
4.	if(str==NULL)
5.	{
6.	cout	<<"node	found"<<endl;



7.	return	0;
8.	}
9.	if(root==NULL)
10.	{
11.	cout	<<"node	found"<<endl;
12.	return	0;
13.	}
14.	while(root->child[*str	-	'a']&&	*(str+1)!='\0'	&&	root->child[*str	-	'a']->ch	==	*str	)
15.	{
16.	root=root->child[*str	-	'a'];
17.	str++;
18.	}
19.	//char	does	not	match	or	char	index	child	does	not	exist
20.	if(	!root->child[*str	-	'a']	||	root->child[*str	-	'a']->ch	!=	*str)
21.	{
22.	cout	<<"node	not	found"<<endl;
23.	return	0;
24.	}
25.	if(	*(str+1)=='\0')
26.	{
27.	if(root->child[*str	-	'a']->ch	==	*str	&&	root->child[*str	-	'a']->flag==1)
28.	{
29.	cout	<<"node	found"<<endl;
30.	return	1;
31.	}
32.	}
33.	cout	<<"node	not	found"<<endl;
34.	return	0;
35.	}
	
1.	int	main()
2.	{
3.	triePtr	root=NULL;
4.	char	a[]="hemant";
5.	char	b[]="heman";
6.	char	c[]="hemantjain";
7.	char	d[]="jain";
8.	root	=	trieInsert(root,a);
9.	root	=	trieInsert(root,d);
10.	printf(“%s”,findNode(root,a));
11.	printf(“%s”,findNode(root,b));
12.	printf(“%s”,findNode(root,c));
13.	printf(“%s”,findNode(root,d));
14.	}
	



Ternary	Search	Trie/	Ternary	Search	Tree
Tries	have	a	very	good	search	performance	of	O(M)	where	M	is	the	maximum	size	of	the	search	string.
However,	 tries	 have	 a	 very	 high	 space	 requirement.	 Every	 node	 Trie	 contains	 references	 to	 multiple
nodes,	each	reference	corresponds	to	possible	characters	of	the	key.	To	avoid	this	high	space	requirement
Ternary	Search	Trie	(TST)	is	used.
	
A	 TST	 avoid	 the	 heavy	 space	 requirement	 of	 the	 traditional	 Trie	 while	 still	 keeping	 many	 of	 its
advantages.	 In	 a	TST,	 each	node	 contains	 a	 character,	 an	 end	of	key	 indicator,	 and	 three	pointers.	The
three	 pointers	 are	 corresponding	 to	 current	 char	 hold	 by	 the	 node	 (equal),	 characters	 less	 than	 and
character	greater	than.
	
The	Time	Complexity	of	ternary	search	tree	operation	is	proportional	to	the	height	of	the	ternary	search
tree.	In	the	worst	case,	we	need	to	traverse	up	to	3	times	that	many	links.	However,	this	case	is	rare.
	
Therefore,	TST	is	a	very	good	solution	for	implementing	Symbol	Table,	Partial	match	and	range	query.

	
	
Example	14.8:
struct	Node
{

char	data;
unsigned	isLastChar	:	1;
struct	Node	*left,	*equal,	*right;

};
typedef	Node*	NodePtr;
	
NodePtr	newNode(char	data)
{

NodePtr	temp	=	(NodePtr)malloc(sizeof(struct	Node));



temp->data	=	data;
temp->isLastChar	=	0;
temp->left	=	temp->equal	=	temp->right	=	NULL;
return	temp;

}
	
void	insert(	NodePtr*	root,	char	*word)
{

if	(!(*root))
*root	=	newNode(*word);

	
if	((*word)	<	(*root)->data)
insert(&((*root)->left),	word);
else	if	((*word)	>	(*root)->data)
insert(&((*root)->right),	word);
else
{
if	(*(word	+	1))
insert(&((*root)->equal),	word	+	1);
else
(*root)->isLastChar	=	1;
}

}
	
int	searchTST(NodePtr	root,	char	*word)
{

if	(!root)
return	0;

	
if	(*word	<	(root)->data)
return	searchTST(root->left,	word);
else	if	(*word	>(root)->data)
return	searchTST(root->right,	word);
else
{
if	(*(word	+	1)	==	'\0')
return	root->isLastChar;

	
return	searchTST(root->equal,	word	+	1);
}

}
	
int	searchTSTWrapper(NodePtr	root,	char	*word)
{

int	ret	=	searchTST(root,word);



printf("	%s	:	",	word);
ret	?	printf("Found\n")	:	printf("Not	Found\n");
return	ret;

}
	
int	main()
{

NodePtr	root	=	NULL;
insert(&root,	"banana");
insert(&root,	"apple");
insert(&root,	"mango");
	
printf("\nSearch	results	for	apple,	banana,	grapes	and	mango	:\n");
searchTSTWrapper(root,	"apple");
searchTSTWrapper(root,	"banana");
searchTSTWrapper(root,	"grapes");
searchTSTWrapper(root,	"mango");
return	0;

}
	



Problems	in	String

Regular	Expression	Matching
Implement	regular	expression	matching	with	the	support	of	‘?’	and	‘*’	special	character.
‘?’	Matches	any	single	character.
‘*’	Matches	zero	or	more	of	the	preceding	element.
	
Example	14.9:
int	matchExpUtil(char*	exp,	char*	str,	int	i,	int	j)
{

if	(i	==	strlen(exp)	&&	j	==	strlen(str))
return	1;

	
if	((i	==	strlen(exp)	&&	j	!=	strlen(str))
||	(i	!=	strlen(exp)	&&	j	==	strlen(str)))
return	0;

	
if	(exp[i]	==	'?'	||	exp[i]	==	str[j])
return	matchExpUtil(exp,	str,	i	+	1,	j	+	1);

	
if	(exp[i]	==	'*')
return	matchExpUtil(exp,	str,	i	+	1,	j)	||	matchExpUtil(exp,	str,	i,	j	+	1)
||	matchExpUtil(exp,	str,	i	+	1,	j	+	1);
return	0;

}
int	matchExp(char*	exp,	char*	str)
{

return	matchExpUtil(exp,	str,	0,	0);
}
	

Order	Matching
Given	a	long	text	string	and	a	pattern	string.	Find	if	the	characters	of	pattern	string	are	in	the	same	order	in
text	string.	Eg.	Text	String:	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Pattern	string:	JOST
	
Example	14.10:
int	match(char*	source,	char*	pattern)
{

int	iSource	=	0;
int	iPattern	=	0;
int	sourceLen	=	strlen(source);
int	patternLen	=	strlen(pattern);

	



for	(iSource	=	0;	iSource	<	sourceLen;	iSource++)	{
if	(source[iSource]	==	pattern[iPattern])	{
iPattern++;
}
if	(iPattern	==	patternLen)	{
return	1;
}
}
return	0;

}
	

ASCII	to	Integer	Conversion
Write	a	function	that	take	integer	as	a	char	array	and	convert	it	into	an	int.
	
Example	14.11:
1.	int	myAtoi(const	char*	str)
2.	{
3.	int	value=0;
4.	while(*str)
5.	{
6.	value=(value<<3)+(value<<1)+(*str	-	'0');
7.	str++;
8.	}
9.	return	value;
10.	}
	

Unique	Characters
Write	a	function	that	will	take	a	string	as	input	and	return	1	if	it	contain	unique	characters	else	return	0.
	
Example	14.12:
int	isUniqueChar(char*	s)
{

int	bitarr	=	0;
int	size=	strlen(s);
for	(int	i	=	0;	i	<	size;	i++)
{
char	c	=	s[i];
if	('A'	<=	c	&&	'Z'	>=	c)
{
c	=	c	-	'A';
}
else	if	('a'	<=	c	&&	'z'	>=	c)
{



c	=	c	-	'a';
}
else
{
printf("Unknown	Char!\n");
return	0;
}

	
if	(bitarr	&	(1	<<	c))
{
printf("Duplicate	detected!\n");
return	0;
}
bitarr	|=	(1	<<	c);
}
printf("No	duplicate	detected!\n");
return	1;

}
	

To	Upper	Case
Write	a	function	that	will	convert	all	lower	case	letters	in	a	string	to	upper	case.
Example	14.13:	ToUpper
1.	char	ToUpper(char	s)
2.	{
3.	if(s>=97	&&	s<=(97+25))
4.	s=s-32;
5.	return	s;
6.	}

To	Lower	Case
Write	a	function	that	will	convert	upper	case	letter	in	a	string	to	lower	case
	
Example	14.14:	ToLower
1.	char	ToLower(char	s)
2.	{
3.	if(s>=65	&&	s<=(65+25))
4.	s=s+32;
5.	return	s;
6.	}
	

Permutation	Check
Write	a	function	to	check	if	two	strings	are	permutation	of	each	other.
	



Example	14.15:
bool	isPermutation(char*	s1,	char*	s2)
{

int	count[256];
int	length	=	strlen(s1);
if	(strlen(s2)	!=	length)
{
printf("is	permutation	return	false\n");
return	false;
}
for	(int	i	=	0;	i	<	256;	i++)
{
count[i]	=	0;
}

	
for	(int	i	=	0;	i	<	length;	i++)
{
char	ch	=	s1[i];
count[ch]++;
ch	=	s2[i];
count[ch]--;
}

	
for	(int	i	=	0;	i	<	length;	i++)
{
if	(count[i])
{
printf("is	permutation	return	false\n");
return	false;
}
}
printf("is	permutation	return	true\n");
return	true;

}
	

Palindrome	Check
Given	a	string	as	an	array	of	characters	find	if	the	string	is	a	palindrome	or	not?
	
Example	14.16:
int	isPalindrome(char*	str)
{

int	i=0,j=strlen(str)-1;
while(i<j	&&	str[i]	==	str[j])
{



i++;
j--;
}
if(i<j)
{
printf("String	is	not	a	Palindrome");
return	0;
}
else
{
printf("String	is	a	Palindrome");
return	1;
}

}
	
Time	Complexity	is	O(n)	and	Space	Complexity	is	O(1)
	

Integer	to	ASCII	Conversion
Write	a	function	that	convert	and	integer	into	a	char	array.
	
Example	14.17:
1.	void	myItoa(char*	buffer,	int	value,)
2.	{
3.	static	int	index=-1;
4.	int	remender=value%10;
5.	value/=10;
6.	if(value)
7.	myItoa(buffer,	value);
8.	buffer[++index]='0'+	remender;
9.	buffer[index+1]='\0';
10.	}
	

ASCII	to	float	Conversion
Write	a	function	that	take	float	as	a	char	array	and	convert	it	into	a	float.
	
Example	14.18:
float	MyAtof(char*	str)
{

float	num	=	0.0F;
float	fraction	=	0.1F;
int	decimalStart	=	0;
int	size	=	strlen(str);

	



for	(int	i	=	0;	i	<	size;	i++)
{
if	(str[i]	==	'.')
{
decimalStart	=	1;
continue;
}
if	(!decimalStart)
{
num	=	(num	*	10)	+	(str[i]	-	'0');
}
else
{
num	+=	(str[i]	-	'0')	*	fraction;
fraction	*=	0.1F;
}
}
return	num;

}
	

Reverse	Case	function
Write	 a	 function	 that	will	 convert	Lower	 case	 letter	 in	 a	 string	 to	 upper	 case	 and	 upper	 case	 letter	 to
lower	case.
	
Example	14.19:
/*	lower	to	upper	*/
char	LowerUpper(char	s)
{

if(s>=97	&&	s<=(97+25))
s=s-32;
else	if(s>=65	&&	s<=(65+25))
s=s+32;
return	s;

}

String	Copy	function
Write	a	function	to	copy	string	provided	as	a	source	 in	 the	array	provided	as	destination,	 including	 the
terminating	null	character.
	
Example	14.20:
1.	char*	myStrcpy(char*	dst,	char*	src)
2.	{
3.	char*	ptr=dst;
4.	while(*dst++=*src++);



5.	return	ptr;
6.	}
	

Power	function
Write	a	function	which	will	calculate	xn,	Taking	x	and	n	as	argument.
	
Example	14.21:	Power	function
1.	int	pow(int	x,	int	n)
2.	{
3.	int	value;
4.	if(n==0)
5.	return(1);
6.	else	if(n%2==0)
7.	{
8.	value=pow(x,n/2);
9.	return(value*value);
10.	}
11.	else
12.	{
13.	value=pow(x,n/2);
14.	return(x*value*value);
15.	}
16.	}
	

String	Compare	function
Write	a	function	strcmp()	to	compare	two	strings.	The	function	return	values	should	be:
The	return	value	is	0	indicates	that	both	first	and	second	strings	are	equal.
The	return	value	is	negative	indicates	the	first	string	is	less	than	the	second	string.
The	return	value	is	positive	indicates	that	the	first	string	is	greater	than	the	second	string.
	
Example	14.22:
1.	int	myStrcmp(char	*a,	char*	b)
2.	{
3.	while((*a)==(*b))
4.	{
5.	if(*a=='\0')
6.	return	0;
7.	a++;
8.	b++;
9.	}
10.	if(*a=='\0')
11.	return	-1;
12.	if(*b=='\0')



13.	return	1;
14.	int	value=(*a-*b);
15.	return	value;
16.	}
	

Substring	function
Write	a	C	function	that	will	copy	first	n	character	from	a	source	string	to	the	destination	string.
	
Example	14.23:
1.	char*	mySubstr(char*	src,	char*	dst,	int	n)
2.	{
3.	int	count=n;
4.	char*	ptr=dst;
5.	do
6.	{
7.	n--;
8.	if(n==0)
9.	{
10.	ptr[count-1]='\0';
11.	break;
12.	}
13.	else
14.	{
15.	dst++=src++;
16.	}
17.	}	while(src);
18.	return	ptr;
19.	}
	

String	duplicate	function
Write	a	C	function	that	will	return	a	pointer	to	a	new	string	that	is	a	duplicate	of	the	input	string.	Memory
for	the	new	string	is	obtained	with	malloc	and	freed	with	free.
	
Example	14.24:
1.	char*	myStrdup(char	*src)
2.	{
3.	char*	dst=(char*)malloc((strlen(src)+1)*	sizeof(char));
4.	char*	ptr=dst;
5.	while(*dst++=*src++);
6.	return	ptr;
7.	}
	

Memcpy	Function



The	function	Memcpy	function	copies	n	characters	from	the	source	array	to	destination	array.
	
Example	14.25:
1.	void	mymemcpy(void	*destPtr,	const	void	*srcPtr,	int	size)
2.	{
3.	char	*destTemp=(char*)destPtr;
4.	const	char	*srcTemp=(char*)srcPtr;
5.	while(size--)
6.	{
7.	*destTemp++=*srcTemp++;
8.	}
9.	}
	

Reverse	N	characters
	
Example	14.26:	Reverse	first	N	characters	of	a	string
1.	void	reverse	(char	*s,	int	N)
2.	{
3.	char	*p,	*q;
4.	char	t;
5.	for	(p	=	s,	q	=	s+N-1;	p	<	q;	++p,	--q)	{
6.	t	=	*q;
7.	*q	=	*p;
8.	*p	=	t;
9.	}
10.	}
	

Memmove	Function
The	 function	Memmove	 function	 copies	 n	 characters	 from	 the	 source	 array	 to	destination	 array.	 It	 also
takes	case	if	the	source	and	destination	memory	arrays	overlaps.
	
Example	14.27:
1.	void	mymemmove(void	*from,	void	*to,	size_t	size)
2.	{
3.	char	*destTemp=(char*)to;
4.	char	*srcTemp=(char*)from;
5.	size_t	i;
6.	if(from	==	to)
7.	{
8.	//	Nothing	to	copy!
9.	}
10.	else	if(from	>	to)
11.	{



12.	for(i	=	0;	i	<	size;	i++)
13.	destTemp[i]	=	srcTemp[i];
14.	}
15.	else
16.	{
17.	for(i	=	size-1;	i	>=	0;	i--)
18.	destTemp[i]	=	srcTemp[i];
19.	}
20.	#ifdef	BIG_ENDIAN
21.	reverse	(destTemp,	size);
22.	#endif
23.	}
	

String	Length	function
Write	a	C	function	to	find	the	length	of	the	char	array,	string	passed	as	argument.
	
Example	14.28:
1.	int	myStrlen(char*	src)
2.	{
3.	int	length=0;
4.	while(*src!='\0')
5.	{
6.	length++;
7.	}
8.	return	length;
16.	}
	

String	Concatenate	function
Write	a	c	function	to	concatenate	two	strings.	Assuming	that	first	string	has	enough	space	for	the	second
string.
Example	14.29:
1.	char*	strcat(char*	s1,	char*	s2)
2.	{
3.	char*	ptr=s1;
4.	while(*s1++);
5.	while(*s2!='\0')
6.	*s1++=*s2++;
7.	return	ptr;
8.	}

Reverse	String
Example	14.30:	Reverse	all	the	characters	of	a	string.
void	reverseString(char	*a,int	lower,int	upper)



{
char	tempChar;
while(lower<upper)
{
tempChar=a[lower];
a[lower]=a[upper];
a[upper]=tempChar;
lower++;
upper--;
}

}
	

Reverse	Words
Example	14.31:	Reverse	order	of	words	in	a	string	sentence.
void	reverseWords(char	*a)
{

int	length=	strlen(a);
int	lower,upper=-1;
lower=0;

	
for(int	i=0;i<=length;i++)
{
if(a[i]=='	'||a[i]=='\0')
{
reverseString(a,lower,upper);
lower=i+1;
upper=i;
}
else
{
upper++;
}
}
reverseString(a,0,length-1);	//-1	because	we	do	not	want	to	reverse	‘\0’

}
	

Print	Anagram
Example	14.32:	Given	a	string	as	character	array,	print	all	the	anagram	of	the	string.
void	printAnagram	(char	*a)
{

int	n=strlen(a);
printAnagram	(a,n,n);

}



	
void	printAnagram	(char	*a,int	max,	int	n)
{

if(max==1)
printString(a,n);

	
for(int	i=-1;i<max-1;i++)
{
if(i!=-1)
a[i]^=a[max-1]^=a[i]^=a[max-1];
printAnagram(a,max-1,n);
if(i!=-1)
a[i]^=a[max-1]^=a[i]^=a[max-1];
}

}
	

Shuffle	String
Example	14.33:	Write	a	program	to	convert	array	ABCDE12345	to	A1B2C3D4E5
void	shuffle(char	ar[],int	n)
{

int	count=0;
int	k=1;
char	temp='\0';
for(int	i=1;i<n;i=i+2)
{
temp=ar[i];
k=i;
do{
k=(2*k)%(2*n-1);
temp^=ar[k]^=temp^=ar[k];
count++;
}while(i!=k);
	
if(count	==	(2*n-2))
{
break;
}
}

}
	

Binary	Addition
Example	14.34:	Given	two	binary	string,	find	the	sum	of	these	two	binary	strings.
char*	addBinary(char*	first,	char*	second)	{



int	size1	=	strlen(first);
int	size2	=	strlen(second);
int	totalIndex;
char*	total;
if(size1>size2)
{
total	=	(char*)	malloc((size1+2)*sizeof(char));
totalIndex	=	size1;
}
else
{
total	=	(char*)	malloc((size2+2)*sizeof(char));
totalIndex	=	size2;
}
total[totalIndex	+	1]	=	'\0';
int	carry	=0	;
int	curr	=	0;
size1--;
size2--;
while(size1	>=0	||	size2	>=0)
{
int	firstValue	=	(size1	<	0)	?	0	:	first[size1]-'0';
int	secondValue	=	(size2	<	0)?	0:	second[size2]-'0';
int	sum	=	firstValue	+	secondValue	+	carry;

	
carry	=	sum	>>	1;
sum	=	sum	&	1;

	
total[totalIndex]	=	(sum==0)	?	'0'	:	'1';

	
totalIndex--;
size1--;
size2--;
}
total[totalIndex]	=	(carry==0)	?	'0'	:	'1';
return	total;

}
	

Remove	All	Spaces
Example	14.35:	Write	a	C	function	to	remove	all	spaces	from	a	string.
void	removeSpaces(char*	str)
{

char*	to	=	str;
char*	from	=	str;



	
if	(str	==	NULL)
return;

	
while	(*from	!=	'\0')
{
if	(*from	==	'	')
{
from++;
continue;
}

	
*to	=	*from;
from++;
to++;
}
*to	=	'\0';

}
	



Exercise
	
1.	Given	a	string,	find	the	longest	substring	without	reputed	characters.
	
2.	The	function	memset()	copies	ch	into	the	first	'n'	characters	of	the	string
	
3.	Serialize	a	collection	of	 string	 into	a	 single	 string	and	de	serializes	 the	string	 into	 that	collection	of

strings.
	
4.	Write	a	smart	input	function	that	take	20	characters	as	input	from	the	user.	Without	cutting	some	word.

User	input:	“Harry	Potter	must	not	go”
First	20	chars:	“Harry	Potter	must	no”
Smart	input:	“Harry	Potter	must”

	
5.	Write	a	code	that	returns	if	a	string	is	palindrome	and	it	should	return	true	for	below	inputs	too.

Stella	won	no	wallets.
No,	it	is	open	on	one	position.
Rise	to	vote,	Sir.
Won't	lovers	revolt	now?

	
6.	Write	 an	ASCII	 to	 integer	 function	 that	 ignore	 the	 non-integral	 character	 and	 give	 the	 integer	 .	 For

example,	if	the	input	is	“12AS5”	it	should	return	125.
	
7.	Write	code	that	would	parse	a	Bash	brace	expansion.

Example:	the	expression	"(a,b,c)d,e"	and	would	output	all	the	possible	strings:	ad,	bd,	cd,	e
	
8.	Given	a	string	write	a	function	to	return	the	length	of	the	longest	substring	with	only	unique	characters
	
9.	Replace	all	occurrences	of	"a"	with	"the"
	
10.	Replace	all	occurrences	of	%20	with	'	'.

E.g.	Input:	www.Hello%20World.com
Output:	www.Hello	World.	com

	
11.	Write	 an	expansion	 function	 that	will	 take	an	 input	 string	 like	 "1..5,8,11..14,18,20,26..30"	and	will

print	"1,2,3,4,5,8,11,12,13,14,18,20,26,27,28,29,30"
	
12.	Suppose	you	have	a	string	like	"Thisisasentence".	Write	a	function	that	would	separate	these	words.

And	will	print	whole	sentence	with	spaces.
	
13.	Given	three	string	str1,	str2	and	str3.	Write	a	complement	function	to	find	the	smallest	sub-sequence	in

str1	which	contains	all	the	characters	in	str2	and	but	not	those	in	str3.
	
14.	Given	two	strings	A	and	B,	find	whether	any	anagram	of	string	A	is	a	sub	string	of	string	B.

http://www.careercup.com/question?id=6753840
http://www.Hello


For	eg:	If	A	=	xyz	and	B	=	afdgzyxksldfm	then	the	program	should	return	true.
	

15.	 Given	 a	 string,	 find	 whether	 it	 contains	 any	 permutation	 of	 another	 string.	 For	 example,	 given
"abcdefgh"	and	"ba",	the	function	should	return	true,	because	"abcdefgh"	has	substring	"ab",	which	is	a
permutation	of	the	given	string	"ba".

	
16.	Give	an	algorithm	which	removes	the	occurrence	of	“a”	by	“bc”	from	a	string?	The	algorithm	must	be

in-place.
	
17.	Given	a	string,	"1010101010"	in	base2	convert	it	into	string	with	base4.	Do	not	use	an	extra	space.
	





CHAPTER	15:	ALGORITHM	DESIGN
TECHNIQUES

	



Introduction
In	real	life	when	we	are	asked	to	do	some	work,	we	try	to	correlate	it	with	our	experience	and	then	try	to
solve	it.	Similarly,	when	we	get	a	new	problem	to	solve.	We	first	try	to	find	the	similarity	of	the	current
problem	with	some	problems	for	which	we	already	know	the	solution.	Then	solve	 the	current	problem
and	get	our	desired	result.
	
This	method	provides	following	benefits:
1)	It	provides	a	template	for	solving	a	wide	range	of	problems.
2)	It	provides	us	the	idea	of	the	suitable	data	structure	for	the	problem.
3)	It	helps	us	in	analysing,	space	and	Time	Complexity	of	algorithms.
	
In	 the	 previous	 chapters,	we	 have	 used	 various	 algorithms	 to	 solve	 different	 kind	 of	 problems.	 In	 this
chapter,	we	will	read	about	various	techniques	of	solving	algorithmic	problems.
	
Various	Algorithm	design	techniques	are:
1)	Brute	Force
2)	Greedy	Algorithms
3)	Divide-and-Conquer,	Decrease-and-Conquer
4)	Dynamic	Programming
5)	Reduction	/	Transform-and-Conquer
6)	Backtracking	and	Branch-and-Bound
	



Brute	Force	Algorithm
Brute	Force	is	a	straightforward	approach	of	solving	a	problem	based	on	the	problem	statement.	It	is	one
of	the	easiest	approaches	to	solve	a	particular	problem.	It	is	useful	for	solving	small	size	dataset	problem.
	
Some	examples	of	brute	force	algorithms	are:
·	Bubble-Sort
·	Selection-Sort
·	Sequential	search	in	an	array
·	Computing	pow(a,	n)	by	multiplying	a,	n	times.
·	Convex	hull	problem
·	String	matching
·	Exhaustive	search:	Traveling	salesman,	Knapsack,	and	Assignment	problems
	



Greedy	Algorithm
In	 greedy	 algorithm,	 solution	 is	 constructed	 through	 a	 sequence	 of	 steps.	At	 each	 step,	 choice	 is	made
which	 is	 locally	 optimal.	 Greedy	 algorithms	 are	 generally	 used	 to	 solve	 optimization	 problems.	 We
always	take	the	next	data	to	be	processed	depending	upon	the	dataset	which	we	have	already	processed
and	then	choose	the	next	optimum	data	to	be	processed.	Greedy	algorithms	does	not	always	give	optimum
solution.
	
Some	examples	of	brute	force	algorithms	are:
·	Minimal	spanning	tree:	Prim’s	algorithm,	Kruskal’s	algorithm
·	Dijkstra’s	algorithm	for	single-source	shortest	path	problem
·	Greedy	algorithm	for	the	Knapsack	problem
·	The	coin	exchange	problem
·	Huffman	trees	for	optimal	encoding
	



Divide-and-Conquer,	Decrease-and-Conquer
Divide-and-Conquer	algorithms	involve	basic	three	steps,	first	split	the	problem	into	several	smaller	sub-
problems,	second	solve	each	sub	problem	and	then	finally	combine	the	sub	problems	results	to	produce
the	result.
	
In	 divide-and-conquer	 the	 size	 of	 the	 problem	 is	 reduced	 by	 a	 factor	 (half,	 one-third,	 etc.),	While	 in
decrease-and-conquer	the	size	of	the	problem	is	reduced	by	a	constant.
	
Examples	of	divide-and-conquer	algorithms:
·	Merge-Sort	algorithm	(using	recursion)
·	Quicksort	algorithm	(using	recursion)
·	Computing	the	length	of	the	longest	path	in	a	binary	tree	(using	recursion)
·	Computing	Fibonacci	numbers	(using	recursion)
·	Quick-hull
	
Examples	of	decrease-and-conquer	algorithms:
·	Computing	pow(a,	n)	by	calculating	pow(a,	n/2)	using	recursion.
·	Binary	search	in	a	sorted	array	(using	recursion)
·	Searching	in	BST
·	Insertion-Sort
·	Graph	traversal	algorithms	(DFS	and	BFS)
·	Topological	sort
·	Warshall’s	algorithm	(using	recursion)
·	Permutations	(Minimal	change	approach,	Johnson-Trotter	algorithm)
·	Computing	a	median,	Topological	sorting,	Fake-coin	problem	(Ternary	search)

Consider	the	problem	of	exponentiation:	Compute	xn
	
Brute	Force: n-1	multiplications
Divide	and	conquer: T(n)	=	2*T(n/2)	+	1	=	n-1
Decrease	by	one: T	(n)	=	T	(n-1)	+	1	=	n-1

Decrease	by	constant	factor:
T	(n)	=	T	(n/a)	+	a-1
=	(a-1)	n
=	n	when	a	=	2



Dynamic	Programming
While	solving	problems	using	Divide-and-Conquer	method,	 there	may	be	a	case	when	recursively	sub-
problems	can	result	in	the	same	computation	being	performed	multiple	times.	This	problem	arises	when
there	are	identical	sub-problems	arise	repeatedly	in	a	recursion.
	
Dynamic	programming	is	used	to	avoid	the	requirement	of	repeated	calculation	of	same	sub-problem.	In
this	method,	we	usually	store	the	result	of	sub	-	problems	in	a	table	and	refer	that	table	to	find	if	we	have
already	calculated	the	solution	of	sub	-	problems	before	calculating	it	again.
	
Dynamic	programming	is	a	bottom	up	technique	in	which	the	smaller	sub-problems	are	solved	first	and
the	result	of	these	are	sued	to	find	the	solution	of	the	larger	sub-problems.
	
Examples:
·	Fibonacci	numbers	computed	by	iteration.
·	Warshall’s	algorithm	for	transitive	closure	implemented	by	iterations
·	Floyd’s	algorithms	for	all-pairs	shortest	paths

	
int	fibonacci(int	n)
{

if	(n	<=	1)
return	n;
return	fibonacci(n	-	1)	+	fibonacci(n	-	2);

}

Using	divide	and	conquer	the	same	sub	problem	is	solved	again	and	again,	which	reduce	the	performance
of	the	algorithm.	This	algorithm	has	an	exponential	Time	Complexity	and	linear	Space	Complexity.
	
int	fibo(int	n)
{

int	first	=	0,	second	=	1;
int	temp,	i;

	
if	(n	==	0)



return	first;
else	if	(n	==	1)
return	second;

	
for	(i	=	2;	i	<=	n;	i++)
{
temp	=	first	+	second;
first	=	second;
second	=	temp;
}
return	temp;

}
	
Using	this	algorithm,	we	will	get	Fibonacci	in	linear	Time	Complexity	and	constant	Space	Complexity.
	



Reduction	/	Transform-and-Conquer
These	methods	works	as	two-stage	procedure.	First,	the	problem	is	transformed	into	a	known	problem	for
which	we	know	optimal	solution.	In	the	second	stage,	the	problem	is	solved.
	
The	most	common	types	of	transformation	are	sort	of	an	array.
	
For	example:	Given	an	array	of	numbers	finds	the	two	closest	number.
	
The	brute	force	solution	for	this	problem	will	take	distance	between	each	element	in	the	array	and	will	try
to	keep	the	minimum	distance	pair,	this	approach	will	have	a	Time	Complexity	of	O(n2)

Transform	and	conquer	 solution,	will	be	 first	 sort	 the	array	 in	O(nlogn)	 time	 and	 then	 find	 the	 closest
number	by	scanning	the	array	in	another	O(n).	Which	will	give	the	total	Time	Complexity	of	O(nlogn).
	
Examples:
·	Gaussian	elimination
·	Heaps	and	Heapsort
	



Backtracking
In	real	life,	let	us	suppose	someone	gave	you	a	lock	with	a	number	(three	digit	lock,	number	range	from	1
to	9).	You	do	not	have	the	exact	password	key	for	the	lock.	You	need	to	test	every	combination	until	you
got	 the	right	one.	Obviously,	you	need	to	test	starting	from	something	like	“111”,	 then	“112”	and	so	on.
Moreover,	you	will	get	your	key	before	you	reach	“999”.	Therefore,	what	you	are	doing	is	backtracking.
	
Suppose	the	lock	produce	some	sound	“click”	correct	digit	is	selected	for	any	level.	If	we	can	listen	to
this	sound	such	intelligence/	heuristics	will	help	you	to	reach	your	goal	much	faster.	These	functions	are
called	Pruning	function	or	bounding	functions.
	
Backtracking	 is	 a	method	by	which	 solution	 is	 found	by	exhaustively	 searching	 through	 large	but	 finite
number	of	states,	with	some	pruning	or	bounding	function	that	will	narrow	down	our	search.	For	all	the
problems	like	(NP	hard	problems)	for	which	there	does	not	exist	any	other	method	we	use	backtracking.
	
Backtracking	problems	have	the	following	components:
1.	Initial	state
2.	Target	/	Goal	state
3.	Intermediate	states
4.	Path	from	the	initial	state	to	the	target	/	goal	state
5.	Operators	to	get	from	one	state	to	another
6.	Pruning	function	(optional)
	
The	 solving	process	of	backtracking	algorithm	starts	with	 the	construction	of	 state’s	 tree,	whose	nodes
represents	the	states.	The	root	node	is	the	initial	state	and	one	or	more	leaf	node	will	be	our	target	state.
Each	edge	of	 the	 tree	 represents	 some	operation.	The	solution	 is	obtained	by	 searching	 the	 tree	until	 a
Target	state	is	found.
	
Backtracking	uses	depth-first	search:
1)	Store	the	initial	state	in	a	stack
2)	While	the	stack	is	not	empty,	repeat:
3)	Read	a	node	from	the	stack.
4)	While	there	are	available	operators,	do:

a.	Apply	an	operator	to	generate	a	child
b.	If	the	child	is	a	goal	state	–	return	solution
c.	If	it	is	a	new	state,	and	pruning	function	does	not	discard	it	push	the	child	into	the	stack.

	
There	are	three	monks	and	three	demons	at	one	side	of	a	river.	We	want	to	move	all	of	them	to	the	other
side	using	a	small	boat.	The	boat	can	carry	only	two	persons	at	a	time.	Given	if	on	any	shore	the	number
of	demons	will	be	more	than	monks	then	they	will	eat	the	monks.	How	can	we	move	all	of	these	people	to
the	other	side	of	the	river	safely?
	
Same	as	the	above	problem	there	is	a	farmer	who	has	a	goat,	a	cabbage	and	a	wolf.	If	the	farmer	leaves,
goat	with	cabbage,	goat	will	eat	the	cabbage.	If	the	farmer	leaves	wolf	alone	with	goat,	wolf	will	kill	the
goat.	How	can	the	farmer	move	all	his	belongings	to	the	other	side	of	the	river?



	
You	are	given	two	jugs,	a	4-gallon	one	and	a	3-gallon	one.	There	are	no	measuring	markers	on	jugs.	A	tap
can	be	used	to	fill	the	jugs	with	water.	How	can	you	get	2	gallons	of	water	in	the	4-gallon	jug?
	



Branch-and-bound
Branch	and	bound	method	is	used	when	we	can	evaluate	cost	of	visiting	each	node	by	a	utility	functions.
At	each	step,	we	choose	the	node	with	lowest	cost	to	proceed	further.	Branch-and	bound	algorithms	are
implemented	using	a	priority	queue.	In	branch	and	bound,	we	traverse	the	nodes	in	breadth-first	manner.
	



A*	Algorithm
A*	is	sort	of	an	elaboration	on	branch-and-bound.	In	branch-and-bound,	at	each	iteration	we	expand	the
shortest	path	that	we	have	found	so	far.	In	A*,	instead	of	just	picking	the	path	with	the	shortest	length	so
far,	we	pick	the	path	with	the	shortest	estimated	total	length	from	start	 to	goal,	where	the	total	length	is
estimated	as	length	traversed	so	far	plus	a	heuristic	estimate	of	the	remaining	distance	from	the	goal.

Branch-and-bound	will	always	find	an	optimal	solution,	which	is	shortest	path.	A*	will	always	find	an
optimal	 solution	 if	 the	heuristic	 is	 correct.	Choosing	a	good	heuristic	 is	 the	most	 important	 part	 of	A*
algorithm.
	



Conclusion
Usually	a	given	problem	can	be	solved	using	a	number	of	methods,	however	it	is	not	wise	to	settle	for	the
first	method	that	comes	to	our	mind.	Some	methods	result	in	much	more	efficient	solutions	than	others.
	
For	 example	 the	 Fibonacci	 numbers	 calculated	 recursively	 (	 decrease-and-conquer	 approach),	 and
computed	by	iterations	(dynamic	programming).	In	the	first	case	the	complexity	is	O(2n),	and	in	the	other
case	the	complexity	is	O(n).
	
Another	example,	consider	sorting	based	on	the	Insertion-Sort	and	basic	bubble	sort.	For	almost	sorted
files,	 Insertion-Sort	 will	 give	 almost	 linear	 complexity,	 while	 bubble	 sort	 sorting	 algorithms	 have
quadratic	complexity.
	
So	the	most	important	question	is,	how	to	choose	the	best	method	?
First,	you	should	understand	the	problem	statement.
Second	by	knowing	various	problems	and	their	solutions.
	





CHAPTER	16:	BRUTE	FORCE	ALGORITHM
	



Introduction
Brute	Force	is	a	straightforward	approach	of	solving	a	problem	based	on	the	problem	statement.	It	is	one
of	the	easiest	approaches	to	solve	a	particular	problem.	It	is	useful	for	solving	small	size	dataset	problem.
	
Many	times,	other	algorithm	techniques	can	be	used	to	get	a	better	solution	of	the	same	problem.
	
Some	examples	of	brute	force	algorithms	are:
·	Bubble-Sort
·	Selection-Sort
·	Sequential	search	in	an	array
·	Computing	pow	(a,	n)	by	multiplying	a,	n	times.
·	Convex	hull	problem
·	String	matching
·	Exhaustive	search
·	Traveling	salesman
·	Knapsack
·	Assignment	problems
	



Problems	in	Brute	Force	Algorithm

Bubble-Sort
In	Bubble-Sort,	adjacent	elements	of	the	list	are	compared	and	are	exchanged	if	they	are	out	of	order.
//	Sorts	a	given	array	by	Bubble	Sort
//	Input:	An	array	A	of	orderable	elements
//	Output:	Array	A[0..n	-	1]	sorted	in	ascending	order
	
Algorithm	BubbleSort(A[0..n	-	1])

sorted	=	false
while	!sorted	do
sorted	=	true
for	j	=	0	to	n	-	2	do
if	A[j]	>	A[j	+	1]	then
swap	A[j]	and	A[j	+	1]
sorted	=	false

	
The	Time	Complexity	of	the	algorithm	is	Θ(n2)
	

Selection-Sort
The	entire	given	list	of	N	elements	is	traversed	to	find	its	smallest	element	and	exchange	it	with	the	first
element.	Then,	 the	 list	 is	 traversed	 again	 to	 find	 the	 second	 element	 and	 exchanged	 it	with	 the	 second
element.	After	N-1	passes,	the	list	will	be	fully	sorted.
	
//Sorts	a	given	array	by	selection	sort
//Input:	An	array	A[0..n-1]	of	orderable	elements
//Output:	Array	A[0..n-1]	sorted	in	ascending	order
Algorithm	SelectionSort	(A[0..n-1])

for	i	=	0	to	n	-	2	do
min	=	i
for	j	=	i	+	1	to	n	-	1	do
if	A[j]	<	A[min]
min	=	j
swap	A[i]	and	A[min]

	
The	Time	Complexity	of	the	algorithm	is	Θ(n2)
	

Sequential	Search
The	algorithm	compares	consecutive	elements	of	a	given	list	with	a	given	search	keyword	until	either	a
match	is	found	or	the	list	is	exhausted.
	
Algorithm	SequentialSearch	(A[0..n],	K)

i	=	0



While	A	[i]	≠	K	do
i	=	i	+	1
if	i	<	n
return	i
else
return	-1

	
Worst	case	Time	Complexity	is	Θ(n).
	

Computing	POW	(a,	n)
Computing	an	(a	>	0,	and	n	is	a	nonnegative	integer	)	based	on	the	definition	of	exponentiation.
N-1	multiplications	are	required	in	brute	force	method.
	
//	Input:	A	real	number	a	and	an	integer	n	=	0
//	Output:	a	power	n
	
Algorithm	Power(a,	n)

result	=	1
for	i	=	1	to	n	do
result	=	result	*	a
return	result

The	algorithm	requires	Θ(n)
	

String	matching
A	brute	force	string	matching	algorithm	takes	two	inputs,	first	text	consists	of	n	characters	and	a	pattern
consist	of	m	character	 (m<=n).	The	algorithm	starts	by	comparing	 the	pattern	with	 the	beginning	of	 the
text.	Each	 character	 of	 the	 patters	 is	 compared	 to	 the	 corresponding	 character	 of	 the	 text.	Comparison
starts	from	left	to	right	until	all	the	characters	are	matched	or	a	mismatch	is	found.	The	same	process	is
repeated	until	a	match	is	found.	Each	time	the	comparison	starts	one	position	to	the	right.
	
//Input:	An	array	T[0..n	-	1]	of	n	characters	representing	a	text
//	an	array	P[0..m	-	1]	of	m	characters	representing	a	pattern
//Output:	The	position	of	the	first	character	in	the	text	that	starts	the	first
//	matching	substring	if	the	search	is	successful	and	-1	otherwise.
Algorithm	BruteForceStringMatch	(T[0..n	-	1],	P[0..m	-	1])

for	i	=	0	to	n	-	m	do
j	=	0
while	j	<	m	and	P[j]	=	T[i	+	j]	do
j	=	j	+	1
if	j	=	m	then
return	i
return	-1

	



In	the	worst	case,	the	algorithm	is	O(mn).
	

Closest-Pair	Brute-Force	Algorithm
The	closest-pair	problem	is	to	find	the	two	closest	points	in	a	set	of	n	points	in	a	2-dimensional	space.
A	brute	force	implementation	of	this	problem	computes	the	distance	between	each	pair	of	distinct	points
and	find	the	smallest	distance	pair.
	
//	Finds	two	closest	points	by	brute	force
//	Input:	A	list	P	of	n	>=	2	points
//	Output:	The	closest	pair
Algorithm	BruteForceClosestPair(P)

dmin	=	infinite
for	i	=	1	to	n	-	1	do
for	j	=	i	+	1	to	n	do
d	=	 	+	
if	d	<	dmin	then
dmin	=	d
imin	=	i
jmin	=	j
return	imin,	jmin

	
In	the	Time	Complexity	of	the	algorithm	is	Θ(n2)
	

Convex-Hull	Problem
Convex-hull	of	a	set	of	points	is	the	smallest	convex	polygon	containing	all	the	points.	All	the	points	of
the	set	will	lie	on	the	convex	hull	or	inside	the	convex	hull.	Illustrate	the	rubber-band	interpretation	of	the
convex	hull.	The	convex-hull	of	a	set	of	points	is	a	subset	of	points	in	the	given	sets.
	
How	to	find	this	subset?
Answer:	The	rest	of	the	points	of	the	set	are	all	on	one	side.
	



Two	points	(x1,	y1),	(x2,	y2)	make	the	line	ax	+	by	=	c
Where	a	=	y2-y1,	b	=	x1-x2,	and	c	=	x1y2	-	y1x2
	
And	divides	the	plane	by	ax	+	by	-	c	<	0	and	ax	+	by	-	c	>	0
So	we	need	to	only	check	ax	+	by	-	c	for	the	rest	of	the	points
	
If	we	find	all	the	points	in	the	set	lies	one	side	of	the	line	with	either	all	have	ax	+	by	-	c	<	0	or	all	the
points	have	ax	+	by	-	c	>	0	then	we	will	add	these	points	to	the	desired	convex	hull	point	set.
	
For	each	of	n	(n	-1)	/2	pairs	of	distinct	points,	one	needs	to	find	the	sign	of	ax	+	by	-	c	in	each	of	the	other
n	-	2	points.
What	is	the	worst-case	cost	of	the	algorithm?	O(n3)
	
for	i=0	to	n-1

for	j=0	to	n-1
if	(xi,yi)	!=(xj,yj)
draw	a	line	from	(xi,yi)	to	(xj,yj)
for	k=0	to	n-1
if(i!=k	and	j!=k)
if	(	all	other	points	lie	on	the	same	side	of	the	line	(xi,yi)	and	(xj,yj))
add	(xi,yi)	to	(xj,yj)	to	the	convex	hull	set

Exhaustive	Search
Exhaustive	search	is	a	brute	force	approach	applies	to	combinatorial	problems.
In	 exhaustive	 search,	 we	 generate	 all	 the	 possible	 combinations.	 See	 if	 the	 combinations	 satisfy	 the
problem	constraints	and	then	finding	the	desired	solution.
	
Examples	of	exhaustive	search	are:
·	Traveling	salesman	problem
·	Knapsack	problem
·	Assignment	problem
	

Traveling	Salesman	Problem	(TSP)
In	 the	 traveling	salesman	problem	we	need	 to	 find	 the	shortest	 tour	 through	a	given	set	of	N	cities	 that
salesman	visits	each	city	exactly	once	before	returning	to	the	city	where	he	started.
	
Alternatively:	Finding	the	shortest	Hamiltonian	circuit	in	a	weighted	connected	graph.	A	cycle	that	passes
through	all	the	vertices	of	the	graph	exactly	once.



Tours	where	A	is	starting	city:
	
Tour	Cost
A→B→C→D→A	1+3+6+5	=	15
A→B→D→C→A	1+4+6+8	=	19
A→C→B→D→A	8+3+4+5	=	20
A→C→D→B→A	8+6+4+1	=	19
A→D→B→C→A	5+4+3+8	=	20
A→D→C→B→A	5+6+3+1	=	15
	
Algorithm	TSP

Select	a	city
MinTourCost	=	infinite
For	(	All	permutations	of	cities	)	do
If(	LengthOfPathSinglePermutation	<	MinTourCost	)
MinTourCost	=	LengthOfPath

	
Total	number	of	possible	combinations	=	(n-1)!
Cost	for	calculating	the	path=	Θ(n)
So	the	total	cost	for	finding	the	shortest	path=	Θ(n!)
	

Knapsack	Problem
Given	an	item	with	cost	C1,	C2,...,	Cn,	and	volume	V1,	V2,...,	Vn	and	knapsack	of	capacity	Vmax,	find	the
most	valuable	(max	∑Cj)	that	fit	in	the	knapsack	(∑Vj	≤	Vmax).
	
The	 solution	 is	 one	 of	 all	 the	 subset	 of	 the	 set	 of	 object	 taking	 1	 to	 n	 objects	 at	 a	 time,	 so	 the	 Time
Complexity	will	be	O(2n)
	
Algorithm	KnapsackBruteForce

MaxProfit	=	0
For	(	All	permutations	of	objects	)	do
CurrProfit	=	sum	of	objects	selected
If(	MaxProfit	<	CurrProfit	)



MaxProfit	=	CurrProfit
Store	the	current	set	of	objects	selected

	



Conclusion
Brute	force	is	the	first	algorithm	that	comes	into	mind	when	we	see	some	problem.	They	are	the	simplest
algorithms	 that	 are	 very	 easy	 to	 understand.	 However,	 these	 algorithms	 rarely	 provide	 an	 optimum
solution.	Many	 cases	we	will	 find	 other	 effective	 algorithm	 that	 is	more	 efficient	 than	 the	 brute	 force
method.
This	is	the	most	simple	to	understand	the	kind	of	problem	solving	technique.
	
	



	
	



CHAPTER	17:	GREEDY	ALGORITHM
	



Introduction
Greedy	algorithms	are	generally	used	to	solve	optimization	problems.	To	find	the	solution	that	minimizes
or	maximizes	some	value	(cost/profit/count	etc.).
	
In	 greedy	 algorithm,	 solution	 is	 constructed	 through	 a	 sequence	 of	 steps.	At	 each	 step,	 choice	 is	made
which	is	locally	optimal.	We	always	take	the	next	data	to	be	processed	depending	upon	the	dataset	which
we	have	already	processed	and	then	choose	the	next	optimum	data	to	be	processed.
	
Greedy	algorithms	does	not	always	give	optimum	solution.	For	some	problems,	greedy	algorithm	gives	an
optimal	solution.	For	most,	they	do	not,	but	can	be	useful	for	fast	approximations.
	
Greedy	is	a	strategy	that	works	well	on	optimization	problems	with	the	following	characteristics:
1.	Greedy	choice:	A	global	optimum	can	be	arrived	at	by	selecting	a	local	optimum.
2.	 Optimal	 substructure:	 An	 optimal	 solution	 to	 the	 problem	 is	 made	 from	 optimal	 solutions	 of	 sub
problems.
	
Some	examples	of	brute	force	algorithms	are:
Optimal	solutions:
·	Minimal	spanning	tree:

o	Prim’s	algorithm,
o	Kruskal’s	algorithm

·	Dijkstra’s	algorithm	for	single-source	shortest	path
·	Huffman	trees	for	optimal	encoding
·	Scheduling	problems
	
Approximate	solutions:
·	Greedy	algorithm	for	the	Knapsack	problem
·	Coin	exchange	problem
	



Problems	on	Greedy	Algorithm

Coin	exchange	problem
How	can	a	given	amount	of	money	N	be	made	with	the	least	number	of	coins	of	given	Doneminations	D=
{d1…	dn}?
	
The	Indian	coin	system	{5,	10,	20,	25,	50,100}
	
Suppose	we	want	to	give	change	of	a	certain	amount	of	40	paisa.
	
We	can	make	a	solution	by	repeatedly	choosing	a	coin	≤	to	the	current	amount,	resulting	in	a	new	amount.
The	greedy	solution	always	choose	the	largest	value	coin	without	exceeding	the	total	amount.
	
For	40	paisa:	{25,	10,	and	5}
The	optimal	solution	will	be	{20,	20}
The	greedy	algorithm	did	not	give	us	optimal	solution,	but	it	gave	a	fair	approximation.
	
Algorithm	MAKE-CHANGE	(N)

C	=	{5,	20,	25,	50,	100}	//	constant.
S	=	{}	//	set	that	will	hold	the	solution	set.
Value	=	N
WHILE	Value	!=	0
x	=	largest	item	in	set	C	such	that	x	<	Value
IF	no	such	item	THEN
RETURN	"No	Solution"
S	=	S	+	x
Value	=	Value	-	x
RETURN	S

	

Minimum	Spanning	Tree
A	spanning	tree	of	a	connected	graph	is	a	tree	containing	all	the	vertices.
A	 minimum	 spanning	 tree	 of	 a	 weighted	 graph	 is	 a	 spanning	 tree	 with	 the	 smallest	 sum	 of	 the	 edge
weights.



Prim’s	Algorithm
Prim’s	algorithm	grows	a	single	tree	T,	one	edge	at	a	time,	until	it	becomes	a	spanning	tree.
We	initialize	T	with	zero	edges.	U	with	single	node.	Where	T	is	spanning	tree	edges	set	and	U	is	spanning
tree	vertex	set.
	
At	each	step,	Prim’s	algorithm	adds	the	smallest	value	edge	with	one	endpoint	in	U	and	other	not	in	us.
Since	each	edge	adds	one	new	vertex	to	U,	after	n	−	1	additions,	U	contain	all	the	vertices	of	the	spanning
tree	and	T	becomes	a	spanning	tree.
	
//	Returns	the	MST	by	Prim’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Prim(G)

T	=	{}
Let	r	be	any	vertex	in	G
U	=	{r}
for	i	=	1	to	|V|	-	1	do
e	=	minimum-weight	edge	(u,	v)
With	u	in	U	and	v	in	V-U
U	=	U	+	{v}
T	=	T	+	{e}
return	T

	
Prim’s	Algorithm	using	a	priority	queue	(min	heap)	to	get	the	closest	fringe	vertex
Time	Complexity	will	be	O(m	log	n)	where	n	vertices	and	m	edges	of	the	MST.
	

Kruskal’s	Algorithm
Kruskal’s	 Algorithm	 is	 used	 to	 create	 minimum	 spanning	 tree.	 Spanning	 tree	 is	 created	 by	 choosing
smallest	weight	edge	that	does	not	form	a	cycle.	Repeat	this	process	until	all	the	edges	from	the	original
set	is	exhausted.
	
Sort	the	edges	in	non-decreasing	order	of	cost:	c	(e1)	≤	c	(e2)	≤	·	·	·	≤	c	(em).
Set	T	to	be	the	empty	tree.	Add	edges	to	tree	one	by	one	if	it	does	not	create	a	cycle.	(	If	the	new	edge
form	cycle	then	ignore	that	edge.)
	
//	Returns	the	MST	by	Kruskal’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Kruskal(G)

Sort	the	edges	E	by	their	weights
T	=	{}



while	|T	|	+	1	<	|V	|	do
e	=	next	edge	in	E
if	T	+	{e}	does	not	have	a	cycle	then
T	=	T	+	{e}
return	T

	
Kruskal’s	Algorithm	is	O(E	log	V)	using	efficient	cycle	detection.
	

Dijkstra’s	algorithm	for	single-source	shortest	path	problem
Dijkstra’s	algorithm	for	single-source	shortest	path	problem	for	weighted	edges	with	no	negative	weight.
It	determine	the	length	of	the	shortest	path	from	the	source	to	each	of	the	other	nodes	of	the	graph.
	
Given	a	weighted	graph	G,	we	need	to	find	shortest	paths	from	the	source	vertex	s	 to	each	of	 the	other
vertices.
	

The	algorithm	starts	by	keeping	track	of	the	distance	of	each	node	and	its	parents.	All	the	distance	is	set	to
infinite	in	the	beginning	as	we	do	not	know	the	actual	path	to	the	nodes	and	parents	of	all	the	vertices	are
set	to	null.	All	the	vertices	are	added	to	a	priority	queue	(min	heap	implementation)
At	each	step	algorithm	takes	one	vertex	from	the	priority	queue	(which	will	be	the	source	vertex	in	the
beginning).	Then	update	the	distance	array	corresponding	to	all	the	adjacent	vertices.	When	the	queue	is
empty,	then	we	will	have	the	distance	and	parent	array	fully	populated.
	
//	Solves	SSSP	by	Dijkstra’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	with	no	negative	weights,	and	source	vertex	v
//	Output:	The	length	and	path	from	s	to	every	v
	
Algorithm	Dijkstra(G,	s)

for	each	v	in	V	do
D[v]	=	infinite	//	Unknown	distance
P[v]	=	null	//unknown	previous	node
add	v	to	PQ	//adding	all	nodes	to	priority	queue

	



D[source]	=	0	//	Distance	from	source	to	source
	

while	(Q	is	not	empty)
u	=	vertex	from	PQ	with	smallest	D[u]
remove	u	from	PQ
for	each	v	adjacent	from	u	do
alt	=	D[u]	+	length	(	u	,	v)
if	alt	<	D[v]	then
D[v]	=	alt
P[v]	=	u
Return	D[]	,	P[]

Time	Complexity	will	be	O(|E|log|V|).
	
Note:	Dijkstra’s	algorithm	does	not	work	for	graphs	with	negative	edges	weight.
Note:	Dijkstra’s	algorithm	is	applicable	to	both	undirected	and	directed	graphs.
	

Huffman	trees	for	optimal	encoding
Coding	is	an	assignment	of	bit	strings	of	alphabet	characters.
	
There	are	two	types	of	encoding:
·	Fixed-length	encoding	(eg.,	ASCII)
·	Variable-length	encoding	(eg.,	Huffman	code)
	
Variable	 length	 encoding	 can	only	work	on	prefix	 free	 encoding.	Which	means	 that	 no	 code	word	 is	 a
prefix	of	another	code	word.
	
Huffman	codes	are	the	best	prefix	free	code.	Any	binary	tree	with	edges	labelled	as	0	and	1	will	produce
a	prefix	free	code	of	characters	assigned	to	its	leaf	nodes.
	
Huffman’s	 algorithm	 is	 used	 to	 construct	 a	 binary	 tree	whose	 leaf	 value	 is	 assigned	 a	 code,	which	 is
optimal	 for	 the	 compression	of	 the	whole	 text	 need	 to	 be	 processed.	For	 example,	 the	most	 frequently
occurring	words	will	get	the	smallest	code	so	that	the	final	encoded	text	is	compressed.
	
Initialize	n	one-node	trees	with	words	and	the	tree	weights	with	their	frequencies.	Join	the	two	binary	tree
with	smallest	weight	into	one	and	the	weight	of	the	new	formed	tree	as	the	sum	of	weight	of	the	two	small
trees.	Repeat	the	above	process	N-1	times	and	when	there	is	just	one	big	tree	left	you	are	done.
	
Mark	edges	leading	to	left	and	right	subtrees	with	0’s	and	1’s,	respectively.
	
Word Frequency
Apple 30
Banana 25
Mango 21
Orange 14



Pineapple 10
	

Word Value Code
Apple 30 11
Banana 25 10
Mango 21 01
Orange 14 001
Pineapple 10 000
	
It	is	clear	that	more	frequency	words	gets	smaller	Huffman’s	code.
	
//	Computes	optimal	prefix	code.
//	Input:	Array	W	of	character	probabilities
//	Output:	The	Huffman	tree.
	
Algorithm	Huffman(C[0..n	-	1],	W[0..n	-	1])

PQ	=	{}	//	priority	queue
for	i	=	0	to	n	-	1	do
T.char	=	C[i]
T.weight	=	W[i]
add	T	to	priority	queue	PQ

	
for	i	=	0	to	n	-	2	do
L	=	remove	min	from	PQ
R	=	remove	min	from	PQ
T	=	node	with	children	L	and	R
T.weight	=	L.weight	+	R.weight
add	T	to	priority	queue	PQ
return	T

	
The	Time	Complexity	is	O(nlogn).



	

Activity	Selection	Problem
Suppose	 that	 activities	 require	 exclusive	use	of	 common	 resources,	 and	you	want	 to	 schedule	 as	many
activities	as	possible.
	
Let	S	=	{a1,...,	an}	be	a	set	of	n	activities.
	
Each	activity	ai	needs	the	resource	during	a	time	starting	at	si	and	finishing	before	fi,	i.e.,	during	[si,	fi).
The	optimization	problem	is	to	select	the	non-overlapping	largest	set	of	activities	from	S.
	
We	assume	that	activities	S	=	{a1,...,	an}	are	sorted	in	finish	time	f1	≤	f2	≤	...	fn-1	≤	fn	(this	can	be	done
in	Θ(n	log	n)).
	
Example
Consider	these	activities:

I 1 2 3 4 5 6 7 8 9 10 11

S[i] 1 3 0 5 3 5 6 8 8 2 11

F[i] 4 5 6 7 8 9 10 11 12 13 14

	
Here	is	a	graphic	representation:

	
We	chose	an	activity	that	start	first,	and	then	look	for	the	next	activity	that	starts	after	it	is	finished.	This
could	result	in	{a4,	a7,	a8},	but	this	solution	is	not	optimal.
An	optimal	 solution	 is	 {a1,	 a3,	 a6,	 a8}.	 (It	maximizes	 the	objective	 function	of	 a	 number	of	 activities



scheduled.)
Another	one	is	{a2,	a5,	a7,	a9}.	(Optimal	solutions	are	not	necessarily	unique.)
How	do	we	find	(one	of)	these	optimal	solutions?	Let	us	consider	it	as	a	dynamic	programming	problem...
	
We	are	trying	to	optimize	the	number	of	activities.	Let	us	be	greedy!

·	The	more	time	left	after	running	an	activity,	the	more	activities	we	can	fit	in.
·	If	we	choose	the	first	activity	to	finish,	the	more	time	will	be	left.
·	Since	activities	are	sorted	by	finish	time,	we	will	always	start	with	a1.
·	Then	we	can	solve	the	single	sub	problem	of	activity	scheduling	in	this	remaining	time.

	
Algorithm	ActivitySelection(S[],	F[],	N)

Sort	S[]	and	F	[]	in	increasing	order	of	finishing	time
A	=	{a1}
K	=	1
For	m	=	2	to	N	do
If	S[m]	>=	F[k]
A	=	A	+	{am}
K	=	m
Return	A

	

Knapsack	Problem
A	thief	enters	a	store	and	sees	a	number	of	items	with	their	cost	and	weight	mentioned.	His	Knapsack	can
hold	a	max	weight.	What	should	he	steal	to	maximize	profit?
	

Fractional	Knapsack	problem
A	thief	can	take	a	fraction	of	an	item	(they	are	divisible	substances,	like	gold	powder).
	

	
The	 fractional	 knapsack	 problem	 has	 a	 greedy	 solution	 one	 should	 first	 sort	 the	 items	 in	 term	 of	 cost
density	against	weight.	Then	fill	up	as	much	of	 the	most	valuable	substance	by	weight	as	one	can	hold,
then	as	much	of	the	next	most	valuable	substance,	etc.	Until	W	is	reached.
	



Item A B C
Cost 300 190 180
Weight 3 2 2
Cost/weight 100 95 90
	
For	a	knapsack	of	capacity	of	4	kg.
The	optimum	solution	of	the	above	will	take	3kg	of	A	and	1	kg	of	B.
	
Algorithm	FractionalKnapsack(W[],	C[],	Wk)

For	i	=	1	to	n	do
X[i]	=	0
Weight	=	0
//Use	Max	heap
H	=	BuildMaxHeap(C/W)
While	Weight	<	Wk	do
i	=	H.GetMax()
If(Weight	+	W[i]	<=	Wk)	do
X[i]	=	1
Weight	=	Weight	+	W[i]
Else
X[i]	=	(Wk	–	Weight)/W[i]
Weight	=	Wk
Return	X

	

0/1	Knapsack	Problem
A	thief	can	only	take	or	leave	the	item.	He	cannot	take	a	fraction.
A	greedy	 strategy	 same	 as	 above	 could	 result	 in	 empty	 space,	 reducing	 the	 overall	 cost	 density	 of	 the
knapsack.
	
In	the	above	example,	after	choosing	object	A	there	is	no	place	for	B	or	C	so	there	leaves	empty	space	of
1kg.	Moreover,	the	result	of	the	greedy	solution	is	not	optimal.
The	 optimal	 solution	will	 be	when	we	 take	 object	B	 and	C.	This	 problem	 can	 be	 solved	 by	 dynamic
programming	that	we	will	see	in	the	coming	chapter.
	



	



CHAPTER	18:	DIVIDE-AND-CONQUER,
DECREASE-AND-CONQUER

	



Introduction
Divide-and-Conquer	algorithms	works	by	 recursively	breaking	down	a	problem	 into	 two	or	more	 sub-
problems	 (divide),	 until	 these	 sub	 problems	 become	 simple	 enough	 so	 that	 can	 be	 solved	 directly
(conquer).	The	solution	of	these	sub	problems	is	then	combined	to	give	a	solution	of	the	original	problem.
	
Divide-and-Conquer	algorithms	involve	basic	three	steps
1.	Divide	the	problem	into	smaller	problems.
2.	Conquer	by	solving	these	problems.
3.	Combine	these	results	together.
	
In	 divide-and-conquer	 the	 size	 of	 the	 problem	 is	 reduced	 by	 a	 factor	 (half,	 one-third	 etc.),	While	 in
decrease-and-conquer	the	size	of	the	problem	is	reduced	by	a	constant.
	

Examples	of	divide-and-conquer	algorithms:
·	Merge-Sort	algorithm	(recursion)
·	Quicksort	algorithm	(recursion)
·	Computing	the	length	of	the	longest	path	in	a	binary	tree	(recursion)
·	Computing	Fibonacci	numbers	(recursion)
·	Convex	Hull
	
Examples	of	decrease-and-conquer	algorithms:
·	Computing	POW(a,	n)	by	calculating	POW(a,	n/2)	using	recursion
·	Binary	search	in	a	sorted	array	(recursion)
·	Searching	in	BST
·	Insertion-Sort
·	Graph	traversal	algorithms	(DFS	and	BFS)
·	Topological	sort
·	Warshall’s	algorithm	(recursion)
·	Permutations	(Minimal	change	approach,	Johnson-Trotter	algorithm)



·	Fake-coin	problem	(Ternary	search)
·	Computing	a	median
	



General	Divide-and-Conquer	Recurrence
T(n)	=	aT(n/b)	+	f	(n)
·	Where	a	≥	1	and	b	>	1.
·	"n"	is	the	size	of	a	problem.
·	"a"	is	a	number	of	sub-problem	in	the	recursion.
·	“n/b”	is	the	size	of	each	sub-problem.
·	"f(n)"	is	the	cost	of	the	division	of	the	problem	into	sub	problem	or	merge	of	the	results	of	sub-problem

to	get	the	result.
	



Master	Theorem
The	master	theorem	solves	recurrence	relations	of	the	form:
T(n)	=	aT(n/b)	+	f	(n)
	
It	is	possible	to	determine	an	asymptotic	tight	bound	in	these	three	cases:
Case	1:	when	 )	and	constant	ϵ	>	1,	then	the	final	Time	Complexity	will	be:

	
Case	2:	when	 )	and	constant	k	≥	0,	then	the	final	Time	Complexity	will	be:

)
	
Case	3:	when	 	and	constant	ϵ	>	1,	Then	the	final	Time	Complexity	will	be:
T(n)	=	Ɵ(f(n))

Modified	Master	theorem:	This	is	a	shortcut	to	solving	the	same	problem	easily	and	fast.	If	the	recurrence
relation	is	in	the	form	of	T(n)	=	a	T(n/b)	+	dxs
	

	
Example	1:	Take	an	example	of	Merge-Sort,	T(n)	=	2T(n/2)	+	n
Sol:-
Logba	=	log22	=	1



)
Case	2	applies	and	 )
T(n)	=	Ɵ(n	log	(n))
	
Example	2:	Binary	Search	T(n)	=	T(n/2)	+	O(1)	
Logba	=	log21	=	0

)
Case	2	applies	and	 )
T(n)	=	Ɵ(log	(n))
	
Example	3:	Binary	tree	traversal	T(n)	=	2T(n/2)	+	O(1 )
Logba	=	log22	=	1

)
Case	1	applies	and	
T(n)	=	Ɵ(n)
	



Problems	on	Divide-and-Conquer	Algorithm

Merge-Sort	algorithm
	

//	Sorts	a	given	array	by	mergesort
//	Input:	An	array	A	of	orderable	elements
//	Output:	Array	A[0..n	−	1]	in	ascending	order

Algorithm	Mergesort(A[0..n	−	1])
if	n	≤	1	then
return;
copy	A[0..⌊n/2⌋	−	1]	to	B[0..⌊n/2⌋	−	1]
copy	A[⌊n/2⌋..n	−	1]	to	C[0..⌈n/2⌉	−	1]
Mergesort(B)
Mergesort(C)
Merge(B,	C,	A)

	
//	Merges	two	sorted	arrays	into	one	array
//	Input:	Sorted	arrays	B	and	C
//	Output:	Sorted	array	A
	
Algorithm	Merge(B[0..p	−	1],	C[0..q	−	1],	A[0..p	+	q	−	1])

i	=	0
j	=	0
for	k	=	0	to	p	+	q	−	1	do
if	i	<	p	and	(j	=	q	or	B[i]	≤	C[j])	then
A[k]	=	B[i]
i	=	i	+	1
else
A[k]	=	C[j]
j	=	j	+	1



	
Time	Complexity:	O(nlogn)	,	Space	Complexity:	O(n)
The	Time	Complexity	of	Merge-Sort	is	O(nlogn)	in	all	3	cases	(worst,	average	and	best)	as	Merge-Sort
always	divides	the	array	into	two	halves	and	take	linear	time	to	merge	two	halves.
	
It	requires	the	equal	amount	of	additional	space	as	the	unsorted	list.	Hence,	it	is	not	at	all	recommended
for	searching	large	unsorted	lists.
	

Quick-Sort

	

	
//	Sorts	a	subarray	by	quicksort
//	Input:	An	subarray	of	A
//	Output:	Array	A[l..r]	in	ascending	order
Algorithm	Quicksort(A[l..r])

if	l	<	r	then
p	←	Partition(A[l..r])	//	p	is	index	of	pivot
Quicksort(A[l..p	−	1])
Quicksort(A[p	+	1..r])

	
//	Partitions	a	subarray	using	A[..]	as	pivot



//	Input:	Subarray	of	A
//	Output:	Final	position	of	pivot
Algorithm	Partition(A[],	left,	right)

pivot	=	A[left]
lower	=	left
upper=	right
while	lower	<	upper
while	A[lower]	<=	pivot
lower	=	lower	+	1
while	A[upper]	>	pivot
upper	=	upper	–	1
if	lower	<	upper	then
swap	A[lower]	and	A[upper]
swap	A[lower]	and	A[upper]	//upper	is	the	pivot	position
return	upper

	
Worst	Case	Time	Complexity:	O(n2)
Best	Case	Time	Complexity:	O(nlogn)
Average	Time	Complexity:	O(nlogn)
Space	Complexity:	O(nlogn)
The	space	required	by	Quick-Sort	is	very	less,	only	O(nlogn)	additional	space	is	required.
Quicksort	is	not	a	stable	sorting	technique,	so	it	might	change	the	occurrence	of	two	similar	elements	in
the	list	while	sorting.
	

External	Sorting
External	sorting	is	also	done	using	divide	and	conquer	algorithm.
	

	



Binary	Search
We	get	the	middle	point	from	the	sorted	array	and	start	comparing	with	the	desired	value.
Note:	Binary	search	requires	the	array	to	be	sorted	otherwise	binary	search	cannot	be	applied.
	
//	Searches	a	value	in	a	sorted	array	using	binary	search
//	Input:	An	sorted	array	A	and	a	key	K
//	Output:	The	index	of	K	or	−1
Algorithm	BinarySearch(A[0..N	−	1],	N,	K)

low	=	0
high	=	N-1
while	low	<=	high	do
mid	=	⌊	(low	+	high)/2⌋
if	K	=	A[mid]	then
return	mid
else	if	A[mid]	<	K
low	=	mid	+	1
else
high	=	mid	-	1
return	−1

	
//	Searches	a	value	in	a	sorted	array	using	binary	search
//	Input:	An	sorted	array	A	and	a	key	K
//	Output:	The	index	of	K	or	−1
Algorithm	BinarySearch(A[],	low,	high,	K)

If	low	>	high
return	-1
mid	=	⌊	(low	+	high)/2⌋
if	K	=	A[mid]	then
return	mid
else	if	A[mid]	<	K
return	BinarySearch(A[],mid	+	1,	high,	K)
else
return	BinarySearch(A[],low,	mid	-	1,	K)

	
Time	Complexity:	O(logn).	If	you	notice	the	above	programs,	you	see	that	we	always	take	half	input	and
throwing	out	the	other	half.	So	the	recurrence	relation	for	binary	search	is	T	(n)	=	T	(n/2)	+	c.	Using	a
divide	and	conquer	master	theorem,	we	get	T	(n)	=	O(logn).
Space	Complexity:	O(1)

Power	function
//	Compute	Nth	power	of	X	using	divode	and	conquer	using	recursion
//	Input:	Value	X	and	power	N
//	Output:	Power(	X,	N)
	



Algorithm	Power(	X,	N)
If	N	=	0
Return	1
Else	if	N	%	2	==	0
Value	=	Power(X,	N/2)
Return	Value	*	Value
Else
Value	=	Power(X,	N/2)
Return	Value	*	Value	*	X

	

Convex	Hull
Sort	points	by	X-coordinates.	Divide	points	into	equal	halves	A	and	B.	Recursively	compute	HA	and	HB.
Merge	HA	and	HB	to	obtain	CH

LowerTangent(HA,	HB)
A	=	rightmost	point	of	HA
B	=	leftmost	point	of	HB
While	ab	is	not	a	lower	tangent	for	HA	and	HB	do

While	ab	is	not	a	lower	tangent	to	HA	do
a	=	a	−	1	(move	a	clockwise)
While	ab	is	not	a	lower	tangent	to	HB	do
b	=	b	+	1	(move	b	counterclockwise)

Return	ab
	
Similarly	find	upper	tangent	and	combine	the	two	hulls.
	



	
Initial	sorting	takes	O(nlogn)	time
Recurrence	relation	T	(N)	=	2T	(N/2)	+	O(N)
Where,	O(N)	time	for	tangent	computation	inside	merging
Final	Time	Complexity	will	be	T	(N)	=	O(nlogn).
	

Closest	Pair
Given	N	points	in	2-dimensional	plane,	find	two	points	whose	mutual	distance	is	smallest.
	

	
A	brute	force	algorithm	takes	every	point	and	find	its	distance	with	all	the	other	points	in	the	plane.	Then
keep	track	of	the	minimum	distance	points	and	minimum	distance.	The	closest	pair	will	be	found	in	O(n2)
time.
	
Let	us	suppose	there	is	a	vertical	line,	which	divide	the	graph	into	two	separate	parts	(let	us	call	it	left
and	right	part).	The	brute	force	algorithm,	we	will	notice	that	we	are	comparing	all	the	points	in	the	left
half	with	the	points	in	the	right	half.	This	is	the	point	where	we	are	doing	some	extra	work.
	



To	find	the	minimum	we	need	to	consider	only	three	cases:
1)	Closest	pair	in	the	right	half
2)	Closest	pair	in	the	left	half.
3)	Closest	pair	in	the	boundary	region	of	the	two	halves.	(Grey)
	
Every	time	we	will	divide	the	space	S	into	two	parts	S1	and	S2	by	a	vertical	line.	Recursively	we	will
compute	the	closest	pair	in	both	S1	and	S2.	Let	us	call	minimum	distance	in	space	S1	as	δ1	and	minimum
distance	in	space	S2	as	δ2.
	
We	will	find	δ	=	min	(δ1,	δ2)
	
Now	we	will	find	the	closest	pair	in	the	boundary	region.	By	taking	one	point	each	from	S1	and	S2	in	the
boundary	range	of	δ	width	on	both	sides.
The	candidate	pair	of	point	(p,	q)	where	p	Є	S1	and	q	Є	S2.

We	can	find	the	points,	which	lie	in	this	region	in	linear	time	O(N)	by	just	scanning	through	all	the	points,
and	finding	that	all	points	lie	in	this	region.
	
Now	we	can	sort	them	in	increasing	order	in	Y-axis	in	just	O(nlogn)	time.	Then	scan	through	them	and	get
the	minimum	in	just	one	extra	linear	pass.	Closest	pair	cannot	be	far	apart	from	each	other.
	
Let	us	look	into	the	next	figure.



Then	the	question	is	how	many	points	we	need	to	compare.	We	need	to	compare	the	points	sorted	in	Y-
axis	only	in	the	range	of	δ.	Therefore,	the	number	of	points	will	come	down	to	only	6	points.
	

By	doing	this,	we	are	getting	equation.
T(N)	=	2T(N/2)	+	N	+	NlogN	+	6N	=	O(n(logn)2)
	
Can	we	optimize	this	further?
Yes
	
Initially,	when	we	are	sorting	the	points	in	X	coordinate	we	are	sorting	them	in	Y	coordinate	too.
When	 we	 divide	 the	 problem,	 then	 we	 traverse	 through	 the	 Y	 coordinate	 list	 too,	 and	 construct	 the
corresponding	Y	coordinate	list	for	both	S1	and	S2.	Then	pass	that	list	to	them.
	
Since	we	have	the	Y	coordinate	list	passed	to	a	function	the	δ	region	points	can	be	found	sorted	in	the	Y
coordinates	in	just	one	single	pass	in	just	O(N)	time.
	
T(N)	=	2T(N/2)	+	N	+	N	+	6N	=	O(nlogn)
	
//	Finds	closest	pair	of	points
//	Input:	A	set	of	n	points	sorted	by	coordinates
//	Output:	Distance	between	closest	pair
Algorithm	ClosestPair(P)

if	n	<	2	then
return	∞
else	if	n	=	2	then
return	distance	between	pair
else
m	=	median	value	for	x	coordinate	δ	1	=	ClosestPair(points	with	x	<	m)
δ	2	=	ClosestPair(points	with	x	>	m)
δ	=	min(δ	1,	δ	2)	δ	3	=	process	points	with	m	−δ	<	x	<	m	+	δ



return	min(δ,	δ	3)
First	pre-process	the	points	by	sorting	them	in	X	and	Y	coordinates.	Use	two	separate	lists	to	keep	these
sorted	points.
	
Before	recursively	solving	sub-problem	pass	the	sorted	list	for	that	sub-problem.



	



CHAPTER	19:	DYNAMIC	PROGRAMMING
	



Introduction
While	solving	problems	using	Divide-and-Conquer	method,	 there	may	be	a	case	when	recursively	sub-
problems	can	result	in	the	same	computation	being	performed	multiple	times.	This	problem	arises	when
there	are	identical	sub-problems	arise	repeatedly	in	a	recursion.
	
Dynamic	programming	is	used	to	avoid	the	requirement	of	repeated	calculation	of	same	sub-problem.	In
this	method,	we	usually	store	the	result	of	sub	-	problems	in	some	data	structure	(like	a	table)	and	refer	it
to	find	if	we	have	already	calculated	the	solution	of	sub	-	problems	before	calculating	it	again.
	
Dynamic	programming	is	applied	to	solve	problems	with	the	following	properties:
1.	Optimal	Substructure:	An	optimal	solution	constructed	from	the	optimal	solutions	of	its	sub-problems.
2.	Overlapping	Sub	problems:	While	calculating	the	optimal	solution	of	sub	problems	same	computation
is	repeated	again	and	again.
	
Examples:
1.	Fibonacci	numbers	computed	by	iteration.
2.	Assembly-line	Scheduling
3.	Matrix-chain	Multiplication
4.	0/1	Knapsack	Problem
5.	Longest	Common	Subsequence
6.	Optimal	Binary	Tree
7.	Warshall’s	algorithm	for	transitive	closure	implemented	by	iterations
8.	Floyd’s	algorithms	for	all-pairs	shortest	paths
9.	Optimal	Polygon	Triangulation
10.	Floyd-Warshall’s	Algorithm
	
Steps	for	solving	/	recognizing	if	DP	applies.
1.	Optimal	Substructure:	Try	to	find	if	there	is	a	recursive	relation	between	problem	and	sub-problem.
2.	Write	recursive	relation	of	the	problem.	(Observe	Overlapping	Sub	problems	at	this	step.)
3.	Compute	the	value	of	sub	problems	in	a	bottom	up	fashion	and	store	this	value	in	some	table.
4.	Construct	the	optimal	solution	from	the	value	stored	in	step	3.
5.	Repeat	step	3	and	4	until	you	get	your	solution.
	



Problems	on	Dynamic	programming	Algorithm

Fibonacci	numbers
int	fibonacci(int	n)
{

if	(n	<=	1)
return	n;
return	fibonacci(n	-	1)	+	fibonacci(n	-	2);

}

Using	divide	and	conquer	same	sub-problem	is	solved	again	and	again,	which	reduce	the	performance	of
the	algorithm.	This	algorithm	has	an	exponential	Time	Complexity.
Same	problem	of	Fibonacci	can	be	solved	in	linear	time	if	we	sort	the	results	of	sub	problems.
	
int	fibonacci	(int	n)
{

int	first	=	0,	second	=	1;
int	temp,	i;

	
if	(n	==	0)
return	first;
else	if	(n	==	1)
return	second;

	
for	(i	=	2;	i	<=	n;	i++)
{
temp	=	first	+	second;
first	=	second;
second	=	temp;
}
return	temp;

}
	
Using	this	algorithm,	we	will	get	Fibonacci	in	linear	Time	Complexity	and	constant	Space	Complexity.



	

Assembly-line	Scheduling

We	consider	 the	problem	of	calculating	 the	 least	amount	of	 time	necessary	 to	build	a	car	when	using	a
manufacturing	chain	with	two	assembling	lines,	as	shown	in	the	figure
The	problem	variables:
·	e[i]:	entry	time	in	assembly	line	i
·	x[i]:	exit	time	from	assembly	line	i
·	a[i,j]:	Time	required	at	station	S[i,j]	(assembly	line	i,	stage	j)
·	t[i,j]:	Time	required	to	transit	from	station	S[i,j]	to	the	other	assembly	line
	
Your	program	must	calculate:
·	The	least	amount	of	time	needed	to	build	a	car
·	The	list	of	stations	to	traverse	in	order	to	assemble	a	car	as	fast	as	possible.
	
The	manufacturing	chain	will	have	no	more	than	50	stations.
	
If	 we	 want	 to	 solve	 this	 problem	 in	 the	 brute	 force	 approach,	 there	 will	 be	 in	 total	 2n	 Different
combinations	so	the	Time	Complexity	will	be	O(2n)
	
Step	1:	Characterizing	the	structure	of	the	optimal	solution
To	calculate	the	fastest	assembly	time,	we	only	need	to	know	the	fastest	time	to	S1;n	and	the	fastest	time
to	S2;n,	including	the	assembly	time	for	the	nth	part.	Then	we	choose	between	the	two	exiting	points	by
taking	into	consideration	the	extra	time	required,	x1	and	x2.	To	compute	the	fastest	time	to	S1;n	we	only
need	to	know	the	fastest	time	to	S1;n1	and	to	S2;n1.	Then	there	are	only	two	choices...
	
Step	2:	A	recursive	definition	of	the	values	to	be	computed
	

	

	



Step	3:	Computing	the	fastest	time	finally,	compute	f*	as
Step	4:	Computing	the	fastest	path	compute	as	li[j]	as	the	choice	made	for	fi[j]	(whether	the	first	or	the
second	term	gives	the	minimum).	Also,	compute	the	choice	for	f*	as	l*.
	
FASTEST-WAY(a,	t,	e,	x,	n)

f1[1]	←	e1	+	a1,1
f2[1]	←e2	+	a2,1
for	j	←	2	to	n
do	if	f1[j	-	1]	+	a1,j	≤	f2[j	-	1]	+	t2,j-1	+	a1,j
then	f1[j]	←	f1[j	-	1]	+	a1,	j
l1[j]	←	1
else	f1[j]	←	f2[j	-	1]	+	t2,j-1	+	a1,j
l1[j]	←	2
if	f2[j	-	1]	+	a2,j	≤	f1[j	-	1]	+	t1,j-1	+	a2,j
then	f2[j]	←	f2[j	-	1]	+	a2,j
l2[j]	←	2
else	f2[j]	∞	f1[j	-	1]	+	t1,j-1	+	a2,j
l2[j]	←	1
if	f1[n]	+	x1	≤	f2[n]	+	x2

then	f*	=	f1[n]	+	x1
l*	=	1
else	f*	=	f2[n]	+	x2
l*	=	2

	

Matrix	chain	multiplication
Same	problem	is	also	known	as	Matrix	Chain	Ordering	Problem	or	Optimal-parenthesization	of	matrix
problem.
	
Given	a	sequence	of	matrices,	M	=	M1,…,	Mn.	The	goal	of	this	problem	is	to	find	the	most	efficient	way
to	multiply	these	matrices.	The	guild	is	not	to	perform	the	actual	multiplication,	but	to	decide	the	sequence
of	the	matrix	multiplications,	so	that	the	result	will	be	calculated	in	minimal	operations.
	
To	compute	the	product	of	 two	matrices	of	dimensions	pXq	and	qXr,	pqr	number	of	operations	will	be
required.	Matrix	multiplication	operations	are	associative	in	nature.	Therefore,	matrix	multiplication	can
be	done	in	many	ways.
For	example,	M1,	M2,	M3	and	M4,	can	be	fully	parenthesized	as:
(	M1·	(M2·	(M3·M4)))
(	M1·	((	M2·M3)·	M4))
((	M1·M2)·	(M3·M4))
(((	M1·M2)·	M3)·	M4)
((	M1·	(M2·M3))·	M4)
	
For	example,
Let	M1	dimensions	are	10	×	100,	M2	dimensions	are	100	×	10,	and	M3	dimensions	are	10	×	50.



((M1·M2)·	M3)	=	(10*100*10)	+	(10*10*50)	=	15000
(M1·	(M2·M3)	=	(100*10*50)	+	(10*100*50)	=	100000
	
Therefore,	 in	 this	problem	we	need	 to	parenthesize	 the	matrix	 chain	 so	 that	 total	multiplication	cost	 is
minimized.
	
Given	a	sequence	of	n	matrices	M1,	M2,…	Mn.	And	their	dimensions	are	p0,	p1,	p2,…,	pn.
Where	matrix	Ai	 has	 dimension	 pi	 −	 1	 ×	 pi	 for	 1	 ≤	 i	 ≤	 n.	Determine	 the	 order	 of	multiplication	 that
minimizes	the	total	number	of	multiplications.
	
If	 you	 try	 to	 solve	 this	 problem	 using	 the	 brute	 -	 force	 method,	 then	 you	 will	 find	 all	 possible
parenthesization.	 Then	will	 compute	 the	 cost	 of	multiplication.	 Then	will	 pick	 the	 best	 solution.	 This
approach	will	be	exponential	in	nature.
There	is	an	insufficiency	in	the	brute	force	approach.	Take	an	example	of	M1,	M2,…,	Mn.	When	you	have
calculated	 that	 ((M1·M2)	 ·	M3)	 is	 better	 than	 (M1·	 (M2·M3)	 so	 there	 is	 no	 point	 of	 calculating	 then
combinations	of	(M1·	(M2·M3)	with	(M4,	M5….	Mn).
	
Optimal	substructure:
Assume	that	M	(1,	N)	is	the	optimum	cost	of	production	of	the	M1,…,	Mn.
	
An	array	p	[]	to	record	the	dimensions	of	the	matrices.
P	[0]	=	row	of	the	M1
p[i]	=	col	of	Mi	1<=i<=N
	
For	some	k
M(1,N)	=	M(1,K)	+	M(K+1,N)	+	p0*pk*pn
	
If	M	(1,	N)	is	minimal	then	both	M	(1,	K)	&	M	(K+1,	N)	are	minimal.
	
Otherwise,	if	there	is	some	M’(1,	K)	is	there	whose	cost	is	less	than	M	(1..	K),	then	M	(1..	N)	can't	be
minimal	and	there	is	a	more	optimal	solution	possible.
	
For	some	general	i	and	j.
M(i,j)	=	M(i,K)	+	M(K+1,j)	+	pi-1*pk*pj
	
Recurrence	relation:

M(i,j)	=	
	
Overlapping	Sub	problems:
	



Directly	calling	recursive	function	will	lead	to	calculation	of	same	sub-problem	multiple	times.	This	will
lead	to	exponential	solution.
	
Algorithm	MatrixChainMultiplication(p[])

for	i	:=	1	to	n
M[i,	i]	:=	0;
for	l	=	2	to	n	//	l	is	the	moving	line
for	i	=	1	to	n	−	l	+1
j	=	i	+	l	−	1;
M[i,	j]	=	
i	≤	k	<	j

	
Time	Complexity	will	O(n3
Constructing	optimal	parenthesis	Solution
	
Use	 another	 table	 s[1..n,	 1..n].	 Each	 entry	 s[i,	 j]	 records	 the	 value	 of	 k	 such	 that	 the	 optimal
parenthesization	of	Mi	Mi+1...Mj	splits	the	product	between	Mk	and	Mk+1.
	
Algorithm	MatrixChainMultiplication(p[])
for	i	:=	1	to	n

M[i,	i]	:=	0;
for	l	=	2	to	n	//	l	is	the	moving	line

for	i	=	1	to	n	−	l	+1
j	=	i	+	l	−	1;
M[i,	j]	=	
i	≤	k	<	j
S[i,	j]	=	
i	≤	k	<	j

	
Algorithm	MatrixChainMultiplication(p[])

for	i	:=	1	to	n



M[i,	i]	:=	0;
for	l	=	2	to	n	//	l	is	the	moving	line
for	i	=	1	to	n	−	l	+1
j	=	i	+	l	−	1;
for	k	=	i	to	j
if(	(
M[i,	j]	=	(
S[i,	j]	=	k

	
Algorithm	PrintOptimalParenthesis(s[],	i,	j)

If	i	=	j
Print	Ai
Else
Print	“(”
PrintOptimalParenthesis(s[],	i,s[i,	j])
PrintOptimalParenthesis(s[],	s[i,	j],j)
Print	“)”

	

Longest	Common	Subsequence
Let	X	=	{x1,	x2,….,	xm}	is	a	sequence	of	characters.	And	Y	=	{y1,	y2,…,	yn}	is	another	sequence.
Z	is	a	subsequence	of	X	if	it	can	be	driven	by	deleting	some	elements	of	X.	Z	is	a	subsequence	of	Y	if	it
can	be	driven	by	deleting	some	elements	form	Y.	Z	is	LCS	of	it	is	subsequence	to	both	X	and	Y,	and	there
is	no	subsequence	whose	length	is	greater	than	Z.
	
Optimal	Substructure:
	
Let	X	=	<	x1,	x2,	...,	xm	>	and	Y	=	<	y1,	y2,	...,	yn	>	be	two	sequences,	and	let	Z	=	<	z1,	z2,	...,	zk	>	be	a
LCS	of	X	and	Y.
	
·	If	xm	=	yn,	then	zk	=	xm	=	yn	⇒	Zk−1	is	a	LCS	of	Xm−1	and	Yn−1
·	If	xm	!=	yn,	then:

o	zk	!=	xm	⇒	Z	is	an	LCS	of	Xm−1	and	Y.
o	zk	!=	yn	⇒	Z	is	an	LCS	of	X	and	Yn−1.

	
Recurrence	relation
Let	c[i,	j]	be	the	length	of	the	longest	common	subsequence	between	X	=	{x1,	x2,….,	xi}	and	Y	=	{y1,	y2,
…,	yj}.
Then	c[n,	m]	contains	the	length	of	an	LCS	of	X	and	Y
	

	
Algorithm	LCS(X[],	m,	Y[],	n)



for	i	=	1	to	m
c[i,0]	=	0
for	j	=	1	to	n
c[0,j]	=	0;
for	i	=	1	to	m
for	j	=	1	to	n
if	X[i]	==	Y[j]
c[i,j]	=	c[i-1,j-1]	+	1
b[i,j]	=	↖
else
if	c[i-1,j]	≥	c[i,j-1]
c[i,j]	=	c[i-1,j]
b[i,j]	=	↑
else
c[i,j]	=	c[i,j-1]
b[i,j]	=	←

	
Algorithm	PrintLCS(b[],X[],	i,	j)

if	i	=	0
return
if	j	=	0
return
if	b[i,	j]	=	↖
PrintLCS	(b[],X[],	i	−	1,	j	−	1)
print	X[i]
else	if	b[i,	j]	=	↑
PrintLCS	(b[],X[],	i	−	1,	j)
else
PrintLCS	(b[],X[],	i,	j	−	1)

	

Coin	Exchanging	problem
How	can	a	given	amount	of	money	N	be	made	with	the	least	number	of	coins	of	given	Doneminations	D=
{d1…	dn}?
	
For	example,	Indian	coin	system	{5,	10,	20,	25,	50,100}.	Suppose	we	want	to	give	change	of	a	certain
amount	of	40	paisa.
	
We	can	make	a	solution	by	repeatedly	choosing	a	coin	≤	to	the	current	amount,	resulting	in	a	new	amount.
The	greedy	solution	always	choose	the	largest	coin	value	possible.
For	40	paisa:	{25,	10,	and	5}
	
This	is	how	billions	of	people	around	the	globe	do	change	every	day.	That	is	an	approximate	solution	of
the	problem.	But	this	is	not	the	optimal	way,	the	optimal	solution	for	the	above	problem	is	{20,	20}
	



Step	(I):	Characterize	the	structure	of	a	coin-change	solution.
Define	C	[j]	to	be	the	minimum	number	of	coins	we	need	to	make	a	change	for	j	cents.
	
If	 we	 knew	 that	 an	 optimal	 solution	 for	 the	 problem	 of	 making	 change	 for	 j	 cents	 used	 a	 coin	 of
Donemination	di,	we	would	have:
C[j]	=	1+C[j	−	di]
	
Strep	(II):	Recursively	defines	the	value	of	an	optimal	solution.
	

	
Step	(III):	Compute	values	in	a	bottom-up	fashion.
Algorithm	CoinExchange(n,	d[],	k)

C[0]	=	0
for	j	=	1	to	n	do
C[j]	=	infinite
for	i	=	1	to	k	do
if	j	<	di	and	1+C[j	−	di]	<	C[j]	then
C[j]	=	1+C[j	−	di]
return	C

	
Complexity:	O(nk)
	
Step	(iv):	Construct	an	optimal	solution
We	use	an	additional	array	Done[1..	n],	where	Done[j]	is	the	Donemination	of	a	coin	used	in	an	optimal
solution.
Algorithm	CoinExchange(n,	d[],	k)

C[0]	=	0
for	j	=	1	to	n	do
C[j]	=	infinite
for	i	=	1	to	k	do
if	j	<	di	and	1+C[j	−	di]	<	C[j]	then
C[j]	=	1+C[j	−	di]
Done[j]	=	di
return	C

	
Algorithm	PrintCoins(	Done[],	j)

if	j	>	0
PrintCoins	(Done,	j	−Done[j])
print	Done[j]

	
	



	



CHAPTER	20:	BACKTRACKING	AND
BRANCH-AND-BOUND

	



Introduction
Suppose	the	lock	produce	some	sound	“click”	correct	digit	is	selected	for	any	level.	You	just	will	find	the
first	digit,	 then	find	the	second	digit,	 then	find	the	third	digit	and	done.	This	will	be	a	greedy	algorithm
and	you	will	find	the	solution	very	quickly.
	
However,	let	us	suppose	the	lock	is	some	old	one	and	it	creates	same	sound	not	only	at	the	correct	digit
but	 at	 some	 other	 digits.	 Therefore,	when	 you	 are	 trying	 to	 find	 the	 digit	 of	 the	 first	 ring,	 then	 it	may
product	sound	at	multiple	instances.	So	at	this	point	you	are	not	directly	going	straight	to	the	solution,	but
you	need	to	test	various	states	and	in	case	those	states	are	not	the	solution	you	are	looking	for,	then	you
need	to	backtrack	one	step	at	a	time	and	find	the	next	solution.	Sure,	this	intelligence/	heuristics	of	click
sound	 will	 help	 you	 to	 reach	 your	 goal	 much	 faster.	 These	 functions	 are	 called	 Pruning	 function	 or
bounding	functions.
	



Problems	on	Backtracking	Algorithm

N	Queens	Problem
There	 are	N	 queens	 given,	 you	 need	 to	 arrange	 them	 in	 a	NxN	 chessboard,	 such	 that	 no	 queen	 should
attach	each	other.
	
void	print(int	*Q,	int	n)
{

for	(	int	i	=	0;	i<	n;	i++)
printf("	%d	",Q[i]);

}
	
int	Feasible(int	*Q,	int	k)
{

for	(	int	i	=	0;	i<	k;	i++)
{
if(Q[k]	==	Q[i]	||	abs(Q[i]	-	Q[k])	==	abs(i-k))
return	0;
}
return	1;

}
	
void	NQueens(int*	Q,	int	k,	int	n)
{

if(	k	==	n)
{
print(	Q,	n);
return;
}
for	(	int	i	=	0;	i<	n;	i++)
{
Q[k]=i;
if(Feasible(Q,	k))
NQueens(Q,	k+1,	n);
}

}
	
int	main()
{

int	Q[8];
NQueens(Q,0,8);
return	0;

}
	



Tower	of	Hanoi
The	Tower	of	Hanoi	puzzle,	disks	need	to	be	moved	from	one	pillar	to	another	such	that	any	large	disk
cannot	rest	above	any	small	disk.
	
This	is	a	famous	puzzle	in	the	programming	world,	its	origins	can	be	tracked	back	to	India.
"There	 is	a	story	about	an	Indian	 temple	 in	Kashi	Viswanathan	which	contains	a	 large	room	with	 three
timeworn	 posts	 in	 it	 surrounded	 by	 64	 golden	 disks.	 Brahmin	 priests,	 acting	 out	 the	 command	 of	 an
ancient	Hindu	prophecy,	 have	 been	moving	 these	 disks,	 in	 accordance	with	 the	 immutable	 rules	 of	 the
Brahma	 the	creator	of	universe,	 since	 the	beginning	of	 time.	The	puzzle	 is	 therefore	also	known	as	 the
Tower	of	Brahma	puzzle.	According	to	the	prophecy,	when	the	last	move	of	the	puzzle	will	be	completed,
the	world	will	end."	;)	;)	;)

void	towers(int	num,	char	from,	char	to,	char	temp)	{
if	(num	<	1)
return;
	
towers(num	-	1,	from,	temp,	to);	printf("\n	Move	disk	%d	from	peg	%c	to	peg	%c",	num,	from,	to);
towers(num	-	1,	temp,	to,	from);	}

int	main()
{

int	num=10;
printf("The	sequence	of	moves	involved	in	the	Tower	of	Hanoi	are	:\n");
towers(num,	'A',	'C',	'B');
return	0;

}
	





CHAPTER	21:	COMPLEXITY	THEORY	AND	NP
COMPLETENESS



Introduction
Computational	 complexity	 is	 the	 measurement	 of	 how	 much	 resources	 are	 required	 to	 solve	 some
problem.
	
There	are	two	types	of	resources:
1.	Time:	how	many	steps	it	takes	to	solve	a	problem
2.	Space:	how	much	memory	it	takes	to	solve	a	problem.
	



Decision	problem

Much	of	Complexity	 theory	deals	with	decision	problems.	A	decision	problem	always	has	a	yes	or	no
answer.
	
Many	problems	can	be	converted	to	a	decision	problem	that	have	answered	as	yes	or	no.	For	example:
1.	Searching:	The	problem	of	searching	element	can	be	a	decision	problem	if	we	ask	to	find	if	a	particular

number	is	there	in	the	list.
	
2.	Sorting	of	 list	 and	 find	 if	 the	 list	 is	 sorted	you	 can	make	a	decision	problem	 is	 the	 list	 is	 sorted	 in

increasing	order	or	not?
	
3.	Graph	colouring	algorithms:	this	is	also	can	be	converted	to	a	decision	problem.	Can	we	do	the	graph

colouring	by	using	X	number	of	colours?
	
4.	Hamiltonian	cycle:	Is	 there	is	a	path	from	all	 the	nodes,	each	node	is	visited	exactly	once	and	come

back	to	the	starting	node	without	breaking?
	



Complexity	Classes
Problems	are	divided	into	many	classes	such	that	how	difficult	to	solve	them	or	how	difficult	to	find	if	the
given	solution	is	correct	or	not.
	



Class	P	problems
The	class	P	consists	of	a	set	of	problems	that	can	be	solved	in	polynomial	time.	The	complexity	of	a	P
problem	is	O(nk)	Where	n	is	input	size	and	k	is	some	constant	(it	cannot	depend	on	n).
	
Class	 P	Definition:	 The	 class	 P	 contains	 all	 decision	 problems	 for	which	 a	 Turing	machine	 algorithm
leads	to	the	“yes/no”	answer	in	a	definite	number	of	steps	bounded	by	a	polynomial	function.
For	example:
Given	a	sequence	a1,	a2,	a3….	an.	Find	if	a	number	X	is	in	this	array.
We	can	search,	the	number	X	in	this	array	in	linear	time	(polynomial	time)
	
Another	example:
Given	a	sequence	a1,	a2,	a3….	an.	If	we	are	asked	to	sort	the	sequence.
We	can	sort	and	array	in	polynomial	time	using	Bubble-Sort,	this	is	also	linear	time.
	
Note:	O(logn)	is	also	polynomial.	Any	algorithm	that	has	complexity	less	than	some	polynomial	function
is	also	polynomial.
	
Some	problem	of	P	class	is:
1.	Shortest	path
2.	Minimum	spanning	tree
3.	Maximum	problem.
4.	Max	flow	graph	problem.
5.	Convex	hull
	



Class	NP	problems
Set	 of	 problems	 for	which	 there	 is	 a	 polynomial	 time	 checking	 algorithm.	Given	 a	 solution	 if	we	 can
check	in	a	polynomial	time	if	that	solution	is	correct	or	not	then,	the	problem	is	NP	problem.
	
Class	NP	Definition:	The	class	NP	contains	all	decision	problems	for	which,	given	a	solution,	there	exists
a	polynomial	time	“proof”	or	“certificate”	that	can	verify	if	the	solution	is	the	right	“yes/no”	answer

Note:	There	is	no	guarantee	that	you	will	be	able	to	solve	this	problem	in	polynomial	time.	However,	if	a
problem	is	an	NP	problem,	then	you	can	verify	an	answer	in	polynomial	time.
	
NP	does	not	means	“non-polynomial”.	Actually,	 it	 is	“Non-Deterministic	Polynomial”	 type	of	problem.
They	 are	 the	 kind	 of	 problems	 that	 can	 be	 solved	 in	 polynomial	 time	 by	 a	 Non-Deterministic	 Turing
machine.	At	each	point,	all	the	possibilities	are	executed	in	parallel.	If	there	are	n	possible	choices,	then
all	n	cases	will	be	executed	in	parallel.	We	do	not	have	non-deterministic	computers.	Do	not	confuse	it
with	parallel	computing	because	the	number	of	CPU	is	limited	in	parallel	computing	it	may	be	16	core	or
32	core,	but	it	cannot	be	N-Core.
	
In	short	NP	problems	are	those	problems	for	which,	if	a	solution	is	given.	We	can	verify	that	solution	(if	it
is	correct	or	not)	in	polynomial	time.
	

Boolean	Satisfiability	problem
A	Boolean	formula	is	satisfied	if	there	exist	some	assignment	of	the	values	0	and	1	to	its	variables	that
causes	it	to	evaluate	to	1.
	

There	are	in	total	N	Different	Boolean	Variables	A1,	A2…	AN.	There	are	an	M	number	of	brackets.	Each
bracket	has	K	variables.
	
There	 is	N	variable	 so	 the	number	of	 solutions	will	 be	2n	 In	 addition,	 to	 verify	 if	 the	 solutions	 really
evaluate	the	equation	to	1	will	take	total	2n	*	km	steps
Given	solution	of	this	problem	you	can	find	if	the	formula	satisfies	or	not	in	KM	steps.
	

Hamiltonian	cycle
Hamiltonian	cycle	 is	a	path	 from	all	 the	nodes	of	a	graph,	each	node	 is	visited	exactly	once	 and	 come
back	to	the	starting	node	without	breaking.
Is	an	NP	problem,	if	you	have	a	solution	to	it,	then	you	just	need	to	see	if	all	the	nodes	are	there	in	the	path



and	you	came	back	to	where	you	started	and	you	are	done?	The	checking	is	done	in	linear	time	and	you
are	done.	Determining	whether	a	directed	graph	has	a	Hamiltonian	cycle	does	not	have	a	polynomial	time
algorithm.	O(n!)	However,	 if	someone	have	given	you	a	sequence	of	vertices,	determining	whether	 that
sequence	forms	a	Hamiltonian	cycle	can	be	done	 in	polynomial	 time	(Linear	 time).	Hamiltonian	cycles
are	in	NP
	

Clique	Problem
In	 a	 graph	 given	 is	 there	 is	 a	 clique	 of	 size	 K	 or	 more.	 A	 clique	 is	 a	 subset	 of	 nodes	 that	 are	 fully
connected	to	each	other.	This	problem	is	NP	problem.	Given	a	set	of	nodes,	you	can	very	easily	find	out
whether	it	is	a	clique	or	not.
For	example:

Prime	Number
Finding	Prime	number	is	NP.	Given	a	solution,	it	is	easy	to	find	if	it	is	a	Prime	or	not	in	polynomial	time.
Finding	prime	numbers	is	important	as	cryptography	heavily	uses	prime	numbers.
	
int	isPrime(int	n){

int	answer	=	(n>1)?	1:	0;
	

for(int	i	=	2;	i*i	<=	n;	++i)	{
if(n%i	==	0)	{
answer	=	0;
break;
}
}
return	answer;

}
	
Checking	will	 happen	 until	 the	 square	 root	 of	 number	 so	 the	 Time	Complexity	will	 be	O(√n).	Hence,
prime	number	finding	is	an	NP	problem	as	we	can	verify	the	solution	in	polynomial	time.



	
Graph	theory	have	wonderful	set	of	problems
•	Shortest	path	algorithms?
•	Longest	path	is	NP	complete.
•	Eulerian	tours	is	a	polynomial	time	problem.
•	Hamiltonian	tours	is	a	NP	complete
	



Class	co-NP
Set	 of	 problems	 for	which	 there	 is	 a	 polynomial	 time	 checking	 algorithm.	Given	 a	 solution,	 if	we	 can
check	in	a	polynomial	time	if	that	solution	is	incorrect	the	problem	is	co-NP	problem.
	
Class	 co-NP	 Definition:	 The	 class	 co-NP	 contains	 all	 decision	 problems	 such	 that	 there	 exists	 a
polynomial	time	proof	that	can	verify	if	the	problem	does	not	have	the	right	“yes/no”	answer.

Class	P	is	Subset	of	Class	NP
All	problems	that	are	P	also	are	NP	(P	 	NP).	Problem	set	P	is	a	subset	of	problem	set	NP.
Searching
If	we	have	some	number	sequence	a1,	a2,	a3….	an.	We	already	know	that	searching	a	number	X	inside
this	array	is	of	type	P.
If	it	is	given	that	number	X	is	inside	this	sequence,	then	we	can	verify	by	looking	into	every	entry	again
and	find	if	the	answer	is	correct	in	polynomial	time	(linear	time.)
Sorting
Another	example	of	sorting	a	number	sequence,	if	it	is	given	that	the	array	b1,	b2,	b3..	bn	is	a	sorted	then
we	can	loop	through	this	given	array	and	find	if	the	list	is	really	sorted	in	polynomial	time	(linear	time
again.)
	



NP–Hard:
A	problem	is	NP-Hard	if	all	the	problems	in	NP	can	be	reduced	to	it	in	polynomial	time.



NP–Complete	Problems
Set	of	problem	is	NP-Complete	if	it	is	an	NP	problem	and	an	NP-Hard	problem.
It	should	follow	both	the	properties:
1)	Its	solutions	can	be	verified	in	a	polynomial	time.
2)	All	problems	of	NP	are	reduced	to	NP	complete	problems	in	polynomial	time.
	
You	can	always	reduce	any	NP	problem	into	NP-Complete	in	polynomial	time.	Moreover,	when	you	get
the	answer	to	the	problem,	then	you	can	verify	this	solution	in	polynomial	time.

	
Any	NP	problem	is	polynomial	reduced	to	NP-Complete	problem,	 if	we	can	find	a	solution	to	a	single
NP-Complete	problem	 in	polynomial	 time,	 then	we	can	solve	all	 the	NP	problems	 in	polynomial	 time.
However,	so	far	no	one	is	able	to	find	any	solution	of	NP-Complete	problem	in	polynomial	time.
P	≠	NP
	



Reduction

It	is	a	process	of	transformation	of	one	problem	into	another	problem.	The	transformation	time	should	be
polynomial.	If	a	problem	A	is	transformed	into	B	and	we	know	the	solution	of	B	in	polynomial	time,	then
A	can	also	be	solved	in	polynomial	time.
For	example,
Quadratic	Equation	Solver:	We	have	a	Quadratic	Equation	Solver,	which	solves	equation	of	the	form	ax2
+	bx+c	=	0.	It	takes	Input	a,	b,	c	and	generate	output	r1,	r2.
Now	try	 to	solve	a	 linear	equation	2x+4=0.	Using	reduction	second	equation	can	be	 transformed	to	 the
first	equation.
2x+4	=	0x2	+	2x	+	4	=	0
	
ATLAS:	We	have	an	atlas	and	we	need	to	colour	maps	so	that	no	two	countries	have	the	same	colour.	Let
us	suppose	below	is	the	various	countries.	In	addition,	different	pattern	represents	different	colour.
	

	
We	can	see	that	same	problem	of	atlas	colouring	can	be	reduced	to	graph	colouring	and	if	we	know	the
solution	of	graph	colouring	then	same	solution	can	work	for	atlas	colouring	too.	Where	each	node	of	the
graph	represents	one	country	and	the	adjacent	country	relation	is	represented	by	the	edges	between	nodes.

The	sorting	problem	reduces	(≤)	to	Convex	Hull	problem.
SAT	reduces	(≤)	to	3SAT
	

Traveling	Salesman	Problem	(TSP)



The	traveling	salesman	problem	tries	to	find	the	shortest	tour	through	a	given	set	of	n	cities	that	visits	each
city	exactly	once	before	returning	to	the	city	where	it	started.
Alternatively	 find	 the	 shortest	Hamiltonian	 circuit	 in	 a	weighted	 connected	 graph.	A	 cycle	 that	 passes
through	all	the	vertices	of	the	graph	exactly	once.
	
Algorithm	TSP
Select	a	city
MinTourCost	=	infinite
For	(	All	permutations	of	cities	)	do

If(	LengthOfPathSinglePermutation	<	MinTourCost	)
MinTourCost	=	LengthOfPath

	
Total	number	of	possible	combinations	=	(n-1)!
Cost	for	calculating	the	path:	Θ(n)
So	the	total	cost	for	finding	the	shortest	path:	Θ(n!)
	
It	 is	 an	NP-Hard	 problem	 there	 is	 no	 efficient	 algorithm	 to	 find	 its	 solution.	 Even	 if	 some	 solution	 is
given,	 it	 is	 equally	 hard	 to	 verify	 that	 this	 is	 a	 correct	 solution	 or	 not.	 However,	 some	 approximate
algorithms	can	be	used	to	find	a	good	solution.	We	will	not	always	get	 the	best	solution,	but	will	get	a
good	solution.
	
Our	 approximate	 algorithm	 is	 based	 on	 the	 minimum	 spanning	 tree	 problem.	 In	 which	 we	 have	 to
construct	a	tree	from	a	graph	such	that	every	node	is	connected	by	edges	of	the	graph	and	the	total	sum	of
the	cost	of	all	the	edges	it	minimum.
	

	
In	the	above	diagram,	we	have	a	group	of	cities	(each	city	is	represented	by	a	circle.)	Which	are	located
in	the	grid	and	the	distance	between	the	cities	is	same	as	per	the	actual	distance.	And	there	is	a	path	from
each	city	to	another	city	which	is	a	straight	path	from	one	to	another.
	



	
We	have	made	a	minimum	spanning	tree	for	the	above	city	graph.
	
What	we	want	 to	prove	 that	 the	 shortest	path	 in	a	TSP	will	 always	be	greater	 than	 the	 length	of	MST.
Since	 in	MST	 all	 nodes	 are	 connected	 to	 the	 next	 node,	which	 is	 also	 the	minimum	distance	 from	 the
group	of	node.	Therefore,	to	make	it	a	path	without	repeating	the	nodes	we	need	to	go	directly	from	one
node	to	other	without	following	MST.	At	that	point,	when	we	are	not	following	MST	we	are	choosing	an
edge,	which	is	grater,	then	the	edges	provided	by	MST.	So	TSP	path	will	always	be	greater	than	or	equal
to	MST	path.

	
Now	let	us	take	a	path	from	starting	node	and	traverse	each	node	on	the	way	given	above	and	then	come
back	to	the	starting	node.	The	total	cost	of	the	path	is	2MST.	The	only	difference	is	that	we	are	visiting
many	nodes	multiple	times.



	
Now	let	us	change	our	traversal	algorithm	so	that	it	will	become	TSP	in	our	traversal,	we	did	not	visit	an
already	visited	node	we	will	skip	them	and	will	visit	the	next	unvisited	node.	In	this	algorithm,	we	will
reach	 the	next	node	by	as	 shorter	path.	 (The	 sum	of	 the	 length	of	 all	 the	 edges	of	 a	polygon	 is	 always
greater	than	a	single	edge.)	Ultimately,	we	will	get	the	TSP	and	its	path	length	is	no	more	than	twice	the
optimal	solution.	Therefore,	the	proposed	algorithm	gives	a	good	result.
	



End	Note
Nobody	 has	 come	 up	with	 such	 a	 polynomial-time	 algorithm	 to	 solve	 a	NP-Complete	 problem.	Many
important	algorithms	depends	upon	it.	However,	at	the	same	time	nobody	has	proven	that	no	polynomial
time	 algorithm	 is	 possible.	There	 is	 a	million	US	dollars	 for	 anyone	who	 can	do	 either	 solve	 any	NP
Complete	problem	in	polynomial	 time.	The	whole	economy	of	 the	world	will	 fall	as	most	of	 the	banks
depends	on	public	key	encryption	will	be	easy	to	break	if	P=NP	solution	is	found.
	





CHAPTER	22:	INTERVIEW	STRATEGY
	



Introduction
Success	in	tech	interview	depends	on	so	many	factors,	your	non-technical	skills,	your	technical	skills,	etc.
Above	all	the	interviewers	should	be	convinced	that	they	would	enjoy	working	with	you.
	



Resume
A	good	resume	is	one	that	communicate	your	skills	and	accomplishments	in	a	clear	and	effective	way.
	
A	good	resume	format	has	the	following	attributes:
1.	 Multiple	 Columns:	 Multiple	 columns	 make	 it	 easier	 for	 someone	 to	 skim	 your	 company	 name,

positions,	collage,	and	other	key	facts.
2.	Brief:	Interviewer	is	going	to	spend	about	30	Sec	reading	your	resume.	You	should	just	focus	on	the

highlights.	One	page	is	all	you	need,	but	if	you	are	10+	years	of	experience,	then	you	can	justify	two
pages.

3.	No	Junk:	No	objective,	No	oath,	Summary	section/Key	skills	 section	may	be	 fine,	 if	your	 resume	 is
short	and	concise	then	you	do	not	need	a	summary	section.

4.	Use	Tables:	You	can	use	tables,	but	it	should	not	waste	space.
5.	Highlights:	highlights	should	be	short.	Keep	your	highlights	to	one-liner.
6.	 Neat:	 Keep	 your	 resume	 neat	 and	 clean.	 Use	 appropriate	 Fonts	 and	 Formatting.	 Bold	 to	 represent

highlights	and	maybe	italics	in	some	places.
	



Nontechnical	questions
Prepare	for	various	non-technical	questions.	The	first	 thing	to	do	is	 to	prepare	answers	of	any	question
that	is	related	to	your	resume.	The	interviewer	is	going	to	look	into	it	and	ask	a	few	questions	to	get	an
idea	about	you.	So	go	through	all	the	past/current	job	and	projects	and	make	sure	you	know	about	them
and	your	role.
	
These	questions	may	be	like:
1.	What	was	the	most	challenging	activity	you	have	done	in	project	ABC?
2.	What	did	you	learn	from	project	ABC?
3.	What	are	your	responsibilities	in	the	current	job?
4.	What	was	the	most	interesting	thing	you	have	done	in	your	current	job?
5.	Which	course	in	university	did	you	like	most	and	why?
	



Technical	questions
Solving	 a	 technical	 question	 is	 not	 just	 about	 knowing	 the	 algorithms	 and	 designing	 a	 good	 software
system.	The	interviewer	wants	to	know	you	approach	towards	any	given	problem.
	
Many	people	make	mistakes,	as	they	do	not	ask	clarifying	questions	about	a	given	problem.	They	assume
many	things	and	begin	working	with	 that.	Well	 the	 truth	 is	 the	 interviewer	 to	actually	expect	you	to	ask
constraints	questions.	There	is	lot	of	data	that	is	missing	that	you	need	to	collect	from	your	interviewer
before	beginning	to	solve	a	problem.
	
For	example,	Let	us	suppose	the	interviewer	ask	you	to	give	a	best	sorting	algorithm.
Some	 interviewee	 will	 directly	 jump	 to	 Quick-Sort	O(nlogn).	 Oops,	 mistake	 you	 need	 to	 ask	 many
questions	before	beginning	to	solve	this	problem.
	
Questions:
1.	What	kind	of	data	we	are	going	to	sort?	Are	they	integers?
2.	How	much	data	are	we	going	to	sort?
3.	What	exactly	is	this	data	about?
4.	What	kind	of	data-structure	used	to	hold	this	data?
5.	Can	we	modify	the	given	data-structure?	And	more…?
	
Answer:
1.	Yes,	they	are	integers.
2.	May	be	thousands.
3.	They	store	a	person’s	age.
4.	Data	are	given	in	the	form	of	some	array.
5.	No,	you	cannot	modify	the	data	structure	provided.
	
Ok	from	the	first	answer,	we	will	deduce	that	the	data	is	integer.	The	data	is	not	so	big	it	just	contains	a
few	thousand	entries.	The	third	answer	is	interesting	from	this	we	deduce	that	the	range	of	data	is	1-150.
Data	is	provided	in	an	array.	From	fifths	answer	we	deduce	that	we	have	to	create	our	own	data	structure
and	we	cannot	modify	the	array	provided.	So	finally,	we	conclude,	we	can	just	use	bucket	sort	to	sort	the
data.	The	range	is	just	1-150	so	we	need	just	151-capacity	integral	array.	Data	is	under	thousands	so	we
do	not	have	to	worry	about	data	overflow	and	we	get	the	solution	in	linear	time	O(N).
	



	



CHAPTER	23:	SYSTEM	DESIGN



System	Design
The	section	we	will	look	into	questions	in	which	interviewer	asks	to	design	a	high-level	architecture	of
any	software	system.
	
Note:	-	This	is	an	advance	chapter	It	may	be	that	the	user	is	not	able	to	understand	it	completely.	I	would
suggest	 that	 give	 it	 some	 time	 read	 the	 chapter	 and	 try	 to	 read	 online.	The	more	 time	 you	 give	 to	 this
chapter	the	better	understanding	you	will	get.	It	may	also	help	if	you	give	multiple	rounds	of	reading.
	
There	are	two	kinds	of	questions	in	this	and	which	will	be	asked	depends	on	the	type	of	companies.	The
first	kind	of	questions	 is	 to	design	 some	kind	of	elevator	 system,	valet	parking	system,	etc.	 In	 this,	 the
interviewer	just	wants	to	test	how	well	you	are	able	to	design	a	system,	especially	how	well	your	classes
are	interacting.
	
The	 Second	 kind	 of	 system	design	 problems	 is	more	 interesting,	 in	which	 the	 interviewer	 asks	 you	 to
design	some	kind	of	website	or	some	kind	of	service	or	some	API	interface.	For	example,	design	google
search	engine	or	design	some	feature	of	Facebook	like	how	friends	mapping	is	done	on	Facebook,	design
a	 web-based	 game	 that	 allows	 4	 people	 play	 poker	 etc.	 They	 are	 interesting	 one	 and	 in	 this,	 the
interviewer	can	ask	about	scalability	aspect.
	
Now	comes	a	question	to	our	mind,	how	would	you	design	google	search	engine	in	10-15	minutes?	Well,
the	answer	is	you	cannot.	It	took	many	days	if	not	years	by	a	group	of	a	smart	engineer	to	design	google
search	engine.	The	interviewer	is	expecting	a	Higher-level	architecture	of	the	system	that	can	address	the
given	Use-Cases	 and	 Constraints	 of	 the	 problem	 in	 hand.	 There	 is	 no	 single	 right	 solution.	 The	 same
problem	can	be	solved	in	a	number	of	ways.	The	most	important	thing	is	that	you	should	be	able	to	justify
your	solution.
	



System	Design	Process
Let	us	look	into	a	5	Steps	approach	for	solving	system	design	problems:
1.	Use	Cases	Generation
2.	Constraints	and	Analysis
3.	Basic	Design
4.	Bottlenecks
5.	Scalability
	

Use	Cases
Just	 like	 algorithm	 design	 problems,	 the	 system	 design	 questions	 are	 also	most	 likely	weakly	 defined.
There	is	so	much	information	that	is	missing	and	without	this,	the	design	is	impossible.	So	first	thing	in	the
design	process	is	to	gather	all	the	possible	use	cases.	You	should	ask	questions	to	the	interviewer	to	find
the	use	case	of	the	system.	The	interviewer	wants	to	see	your	requirement	gathering	capability.	Same	as
algorithm	questions	never	assume	things,	which	are	not	stated.
	

Constraints	and	Analysis
This	 is	 the	step	in	which	you	will	define	various	constraints	of	 the	system	and	then	analyse	 them.	Your
system	design	will	depend	on	the	analysis	that	you	do	in	this	step.	In	this	step,	you	need	to	find	answers	to
questions	like.	How	many	users	will	be	using	the	system?	What	kind	of	data	that	we	are	going	to	store?
Etc.
	

Basic	Design
In	this	step,	you	will	design	the	most	basic	design	of	the	system.	Draw	your	main	components	and	make
connections	between	them.	In	this	step,	you	need	to	design	a	system	with	the	supposition	that	there	is	no
memory	limitation	and	all	data	can	fit	in	one	single	machine.	You	should	be	able	to	justify	your	idea.	In
this	step,	you	need	to	handle	all	the	use-cases.
	

Bottlenecks	Analysis
In	 this	 step,	 you	 will	 find	 the	 one	 or	 more	 bottlenecks	 on	 the	 basic	 design	 you	 had	 proposed.	 The
“Scalability	 Theory”	 given	 below	will	 help	 to	 identify	 the	 bottlenecks.	 You	 need	 to	 know	 the	 below
theory	 which	 experts	 had	 developed	 over	 time.	 In	 this	 step,	 you	 will	 consider	 how	 much	 data	 your
proposed	system	can	handle,	memory	limitations	etc.
	

Scalability
In	this	step,	you	will	remove	all	the	bottlenecks	of	the	system	and	you	are	done.	There	may	be	multiple
iterations	between	“Bottlenecks	analysis”	and	“Scalability”	until	we	reach	our	final	solution.	We	will	be
reading	 various	 concepts	 like	 Vertical	 scaling,	 Horizontal	 scaling,	 Load-Balancer,	 Redundancy	 and
Caching	in	this	chapter.	“Scalability	Theory”	given	below	will	help	you	to	understand	these	concepts.
	



Scalability	Theory
In	 this	 section,	we	will	 be	 designing	 a	 generic	web	 server,	which	will	 be	 handling	 a	 large	 number	 of
requests.	You	can	imagine	it	as	some	sort	of	website	like	Facebook	in	which	large	number	of	users	are
accessing	it.

Vertical	scaling
Vertical	scaling	means	that	you	scale	by	adding	more	resources	(Higher	speed	CPU,	More	RAM	etc.)	To
your	existing	machine.
	
Vertical	scaling	has	its	own	limit	it	can	help	you	to	handle	more	load,	but	until	its	limit	is	reached,	then
we	have	to	go	for	horizontal	scaling.
	

Horizontal	scaling
Horizontal	scaling	means	that	you	scale	by	adding	more	machines	to	your	pool	of	resources.
	
Distribute	the	request	by	distributing	the	request	among	more	than	one	web	server.	In	doing	this	we	need
to	have	a	load	balancer,	which	will	distribute	the	request	among	the	servers.
	

Load	Balancer	(Application	layer)
Load	balancer	has	to	decide	which	server	should	serve	the	next	request.	So	distributing	the	load	can	be
made	using	different	strategies:
1.	Round	Robbin:	Round	robin	is	the	way	of	distributing	requests	in	a	sequential	fashion.	The	request	is

sent	 to	 the	server	1	 then	 the	next	 request	 is	sent	 to	server	2	and	so	on	until	we	reach	 the	end	of	 the
server	list.	Then	when	we	reach	the	end,	it	is	sent	again	to	server	1.	Round	robin	has	a	problem	that	a
server,	which	 is	already	busy,	may	get	another	 request.	Round	 robin	also	has	a	problem	with	sticky
sessions.	We	want	that	a	request	to	be	sent	to	the	same	server	the	next	time.

2.	Another	approach	is	to	select	server	corresponds	to	the	hash	value	of	the	data.	Find	the	hash	value	of
the	data,	mod	the	hash	value	by	the	number	of	servers.	Assign	the	job	to	a	machine	whose	value	we	got
after	mod.	Stick	session	problem	is	already	solved	in	hash	value	approach.	However,	the	problem	of
uneven	 load	 distribution	 is	 there,	 there	 is	 possible	 to	 have	 a	more	 load	 sent	 to	 a	 server,	 which	 is
already	busy.

3.	May	 be	 the	 load	 balancer	 know,	 how	much	 load	 each	 server	 has	 or	 how	 busy	 each	 the	 server	 is.



Moreover,	will	send	the	next	request	to	the	least	busy	server.
4.	The	server	can	be	a	specialized	one	serving	image	some	serving	video	and	some	serving	other	data.

Problems	of	Load	Balancing
Consider	a	customer	who	had	selected	some	items	in	his	buy	cart	on	Amazon.	When	he	selects	another
item	then	it	should	be	added	to	the	same	cart	so	it	should	be	sent	to	the	same	server.	In	addition,	the	user
profile	 that	 is	 saved	 to	 one	 server	 and	 if	 the	 user	 request	 reaches	 the	 other	 server	 his	 profile	will	 be
empty	this	is	also	not	a	good	idea.
	
This	 problem	 can	 be	 solved	 by	making	 the	 load	 balancer	 decide	 that	 a	 particular	 user	 request	would
always	go	to	the	same	server.	The	user	profile	and	cart	details	should	be	saved	in	some	database.
	
Stick	session:	same	sessions	should	lend	to	the	same	server.	How	to	get	this	done.	The	first	approach	is
that	we	store	the	IP	address	returned	by	load	balancing	into	a	cookie	and	then	use	this	IP	address	in	the
subsequent	requests.	However,	this	reveals	the	IP	address	of	the	server	to	the	world	that	we	do	not	want.
Therefore,	another	solution	is	that	we	use	some	session	id	that	is	a	number	that	the	load	balancer	knows
that	belongs	to	which	server.	By	this,	we	are	preventing	our	servers	being	exposed	to	the	outer	world	and
prevent	it	from	being	attacked.
	

Load	Balancer	(Database	layer)
1.	The	most	basic	approach	is	Round	Robin.	Data	is	distributed	in	a	circular	fashion.	First,	data	go	to	the

first	 database,	 the	 second	will	 go	 to	 the	 second	 database	 and	 so	 one.	Each	 database	 server	 had	 an
equal	load.	However,	it	has	a	disadvantage	that	the	data	lookup	is	complex.	And	need	a	large	lookup
table.

	
2.	Another	approach	is	to	divide	the	data	in	such	a	way	that	all	the	data	will	go	to	the	first	machine	until	it

reaches	 its	 maximum	 capacity.	 When	 maximum	 capacity	 is	 reached,	 then	 data	 goes	 to	 the	 second
machine	and	so	on.	This	approach	has	an	advantage	that	only	the	required	number	of	machines	is	used.
However,	it	has	a	disadvantage	that	the	data	lookup	is	complex.	And	need	a	large	lookup	table.

	
3.	Another	approach	is	to	select	database	corresponds	to	the	hash	value	of	the	data.	Find	the	hash	value	of

the	data.	Mod	the	hash	value	by	the	number	of	databases.	The	data	are	then	stored	in	the	database	value



we	got	after	modulus.	For	has	a	value	approach	we	do	not	require	any	lookup	table.	We	can	find	the
database,	 which	 is	 storing	 the	 data,	 by	 finding	 the	 hash	 value.	 However,	 the	 problem	 of	 uneven
distribution	of	data	is	there,	there	is	possible	to	have	a	more	data	sent	to	a	database,	which	has	already
reached	 its	maximum	capacity.	 In	 this	case,	we	need	 to	 find	a	better	 load-balancing	key	or	 split	 the
data	from	the	database	into	a	number	of	databases.

	
4.	 In	 the	hash	value,	based	distribution	of	data	 there	 is	no	 relation	between	 the	data	 that	 is	 stored	 in	a

particular	database.	Information	about	the	data	can	be	used	to	make	the	database	accessible	faster.	For
example,	 in	 social	 networking	 like	Facebook,	 if	 someone	who	 lives	 in	 India	 is	more	 likely	 to	have
friends	from	India.	And	someone	who	lives	in	the	USA	is	more	likely	to	have	friends	in	the	USA.

	
5.	Perhaps	location	aware	(approach	4)	and	the	hash	value	based	(approach	3)	distribution	of	data	may	be

the	best	approach	to	keep	the	data	so	that	it	can	take	advantage	of	both	the	approaches.	Country	code
and	user	ID	can	be	used	to	get	the	location	of	the	database.

	

Redundancy
There	is	one	problem	in	our	system,	there	is	a	redundancy	in	the	servers	but	our	load	balancer	is	now	our
single	point	of	 failure.	We	add	a	 secondary	 load	balancer	 in	case	 the	primary	 load	balancer	dies,	 then
secondary	load	balancer	becomes	primary	and	then	all	the	requests	will	be	handled	by	it.

	
Raid	 (Redundant	 Array	 of	 Inexpensive	 Disk):	 Raid	 is	 a	 technology	 to	 create	 redundancy	 in	 the
databases.	Multiple	hard	drives	are	used	to	replicate	data,	thereby	proving	redundancy.
	

Caching
A	cache	is	a	simple	key-value	store	and	it	should	reside	as	a	buffering	layer	between	your	application	and
your	data	storage.	Whenever	your	application	wants	 to	read,	 it	 first	 tries	 to	retrieve	 the	data	from	your
cache.	Only	if	data	is	not	present	in	the	cache,	then	only	it	tries	to	get	the	data	from	the	main	database.
	
Caching	improves	application	performance	by	storing	portion	of	data	in	memory	for	low-latency	access.
We	need	databases	and	access	to	the	database	is	slow,	so	we	use	multiple	types	of	caching	to	make	our
system	faster.	Database	servers	 itself	does	caching	so	do	 the	other	entities	 in	between	 the	user	and	 the
database.



	
Memcached:	It	is	a	server	software,	what	it	does	is	it	kept	whatever	you	access	in	memory.	It	can	run	on
the	same	server	as	the	webserver	or	it	can	run	on	a	separate	machine	all	together.
	
Redis:	It	is	a	data	server	based	on	NoSQL,	which	is	a	key-value	data	store.	Data	is	stored	as	the	value
with	 respect	 to	corresponding	key.	This	data	 is	 later	 retrieved	by	 the	use	of	 the	key.	Redis	 is	used	 for
caching	it	is	best	to	store	the	whole	object	as	one	instance	so	that	the	data	can	be	accessed	in	parallel	and
data	expiration	will	flush	out	the	whole	object.
	
There	is	a	problem	since	ram	is	finite,	then	the	cache	will	get	full.	The	expired	object	will	be	removed	so
everything	that	is	accessed	then	its	expiry	will	be	reset	and	if	there	is	an	object	that	is	not	used	for	some
time	then	it	was	deleted.	Cache	is	more	important	when	the	website	that	we	are	designing	is	more	read
heavier	than	a	write.

	

A	complete	web	server	implementation
The	summary	of	the	above	system.
1.	The	Web-Servers	of	scalable	web	service	is	hidden	behind	a	load	balancer.	The	load	balancer	evenly

distributes	load	across	all	the	servers.
2.	The	user	should	get	 the	same	result	 from	web-server	 regardless	which	server	 is	actually	serving	 the

request.	Therefore,	every	server	should	be	identical	to	each	other.	Servers	should	not	contain	any	data
like	session	information	or	user	profile.

3.	Session	need	to	be	stored	in	a	centralized	data	store	(DB)	which	is	accessible	to	all	the	servers.	Data
can	be	stored	in	some	external	database.	Redundancy	in	the	database	is	provided	by	raid	technology.

4.	The	database	is	slow,	so	we	need	a	cache.	In-memory	based	cache	like	Redis	or	Memcached.
5.	However,	the	cache	has	a	problem	of	expiring.	When	a	table	changes,	then	the	cache	is	outdated.
6.	For	Memcached	there	are	two	options:

a.	We	can	save	queries	to	the	DB
b.	We	can	save	the	whole	object	that	will	keep	us	close	to	web-server.

7.	CDN	(Content	delivery	networks)	can	be	used	to	provide	a	pre-processed	web	page.
	



Below	diagram	will	give	you	a	complete	picture	of	the	whole	system.
	



Design	simplified	Facebook
Design	simplified	Facebook	where	people	can	add	other	people	as	friends.	In	addition,	where	people	can
post	messages	and	that	messages	are	visible	on	their	friend’s	page.	The	design	should	be	such	that	it	can
handle	10	million	of	people.	There	may	be,	on	an	average	100	friends	each	person	has.	Every	day	each
person	posts	some	10	messages	on	an	average.
	

Use	Case
1.	A	user	can	create	their	own	profile.
2.	A	user	can	add	other	users	to	his	friend	list.
3.	Users	can	post	messages	to	their	timeline.
4.	The	system	should	display	posts	of	friends	to	the	display	board/timeline.
5.	People	can	like	a	post.
6.	People	can	share	their	friends	post	to	their	own	display	board/timeline.
	

Constraints
1.	Consider	a	whole	network	of	people	as	represented	by	a	graph.	Each	person	is	a	node	and	each	friend

relationship	is	an	edge	of	the	graph.
2.	Total	number	of	distinct	users	/	nodes:	10	million
3.	Total	number	of	distinct	friend’s	relationship	/	edges	in	the	graph:	100	*	10	million
4.	Number	of	messages	posted	by	a	single	user	per	day:	10
5.	Total	number	of	messages	posted	by	the	whole	network	per	day:	10	*	10	million
	

Basic	Design
Our	system	architecture	is	divided	into	two	parts:
1.	First,	the	web	server	that	will	handle	all	the	incoming	requests.
2.	The	second	database,	which	will	store	the	entire	person's	profile,	their	friend	relations	and	posts.

First,	three	requirements	creating	a	profile,	adding	friends,	posting	messages	are	written	some	information
to	the	database.	While	the	last	operation	is	reading	data	from	the	database.
	
The	system	will	look	like	this:
1.	Each	user	will	have	a	profile.
2.	There	will	be	a	list	of	friends	in	each	user	profile.



3.	Each	user	will	have	their	own	homepage	where	his	posts	will	be	visible.
	
A	user	 can	 like	 any	post	of	 their	 friend	and	 that	 likes	will	 reflect	on	 the	 actual	message	 shared	by	his
friend.
If	a	user	shares	some	post,	then	this	post	will	be	added	to	the	user	home	page	and	all	the	other	friends	of
the	user	will	see	this	post	as	a	new	post.
	

Bottleneck
A	 number	 of	 requests	 posted	 per	 day	 is	 100	million.	Approximate	 some	 1000	 request	 are	 posted	 per
second.	There	will	be	an	uneven	distribution	of	load	so	the	system	that	we	will	design	should	be	able	to
handle	a	few	thousand	requests	per	seconds.
	

Scalability
Since	there	is,	a	heavy	load	we	need	horizontal	scaling	many	web	servers	will	be	handling	the	requests.
In	doing	this	we	need	to	have	a	load	balancer,	which	will	distribute	the	request	among	the	servers.

	
This	approach	gives	us	a	flexibility	that	when	the	load	increases,	we	can	add	more	web	servers	to	handle
the	increased	load.
	
These	web	 servers	 are	 responsible	 for	handling	new	post	 added	by	 the	user.	They	are	 responsible	 for
generating	 various	 user	 homepage	 and	 timeline	 pages.	 In	 our	 diagram,	 the	 client	 is	 the	 web	 browser,
which	is	rendering	the	page	for	the	user.
	
We	need	to	store	data	about	user	profile,	Users	friend	list,	User-generated	posts,	User	like	statues	to	the
posts.
	
Let	us	find	out	how	much	storage	we	need	to	store	all	this	data.	The	total	number	of	users	10	million.	Let
us	 suppose	 each	 user	 is	 using	Facebook	 for	 5	 to	 6	 years,	 so	 the	 total	 number	 of	 posts	 that	 a	 user	 had
produced	in	this	whole	time	is	approximately	20,000	million	or	20	billion.	Let	us	suppose	each	message
consists	of	100	words	or	500	characters.	Let	us	assume	each	character	take	2	bytes.



	
Total	memory	required	=	20	*	500	*	2	billion	bytes.

=	20,000	billion	bytes
=	20,	000	GB
=	20	TB

	
1	gigabyte	(GB)	=	1	billion	bytes
1000	gigabytes	(GB)	=	1	Terabytes
	
Most	 of	 the	memory	 is	 taken	 from	 the	 posts	 and	 the	 user	 profile	 and	 friend	 list	 will	 take	 nominal	 as
compared	with	 the	 posts.	We	 can	 use	 a	 relational	 database	 like	 SQL	 to	 store	 this	 data.	 Facebook	 and
twitter	are	using	a	relational	database	to	store	their	data.

	
Responsiveness	 is	 key	 for	 social	 networking	 site.	 Databases	 have	 their	 own	 cache	 to	 increase	 their
performance.	Still	database	access	 is	slow	as	databases	are	stored	on	hard	drives	and	 they	are	slower
than	 RAM.	 Database	 performance	 can	 be	 increased	 by	 replication	 of	 the	 database.	 Requests	 can	 be
distributed	between	the	various	copies	of	the	databases.
	
Also,	there	will	be	more	reads	then	writes	in	the	database	so	there	can	be	multiple	slave	DB	which	are
used	for	reading	and	there	can	be	few	master	DB	for	writing.	Still	database	access	is	slow	to	we	will	use
some	caching	mechanism	 like	Memcached	 in	between	application	 server	and	database.	Highly	popular
users	and	their	home	page	will	always	remain	in	the	cache.
	
There	may	be	the	case	when	the	replication	no	longer	solves	the	performance	problem.	In	addition,	we
need	to	do	some	Geo-location	based	optimization	in	our	solution.
	
Again,	look	for	a	complete	diagram	in	the	scalability	theory	section.
	
If	 it	 were	 asked	 in	 the	 interview	 how	 you	 would	 store	 the	 data	 in	 the	 database.	 The	 schema	 of	 the
database	can	look	like:
Table	Users

·	User	Id
·	First	Name

Table	Posts
·	Post	Id



·	Last	Name
·	Email
·	Password
·	Gender
·	Birthday
·	Relationship

·	Author	Id
·	Date	of	Creation
·	Content

	

Table	Friends
·	Relation	Id
·	First	Friend	Id
·	Second	Friend	Id

Table	Likes
·	Id
·	Post	Id
·	User	Id

	





Design	Facebook	Friends	suggestion	function
Design	a	system	to	implement	a	friend	suggestion	functionality	of	Facebook,	with	millions	of	users.	The
algorithm	should	suggest	all	the	friends	of	the	immediate	friends	as	a	proposed	list	to	add	as	friends.
	

Use	Case
The	system	should	suggest	friends	of	the	friends	as	suggested	new	friends.
	

Constraint
Millions	of	user’s	lot	of	data	with	billions	of	relations.
	

Basic	Design
Forget	about	millions	of	users.	 Just	consider	 there	are	only	a	 few	persons	and	 they	are	connected	with
each	 other	 as	 friends.	Consider	 that	 people	 are	 represented	 by	 vertices	 of	 graphs	 and	 their	 friendship
relation	is	represented	by	edges.
	
Since	there	are	only	a	few	people,	then	we	can	keep	everything	in	memory	and	find	the	friend	suggestion
using	Breadth	First	Traversal.
We	just	need	to	find	the	nodes,	which	are	just	2	degrees	apart	from	the	starting	node.
	

Bottleneck
Since	there	are	millions	of	users,	we	cannot	have	everything	in	memory.	Since	there	are	millions	of	users,
we	cannot	keep	the	data	on	one	machine.	One	friends’	profiles	may	lie	on	many	different	machines.
	

Scalability
Since	there	are	millions	of	users,	their	user	profile	is	distributed	among	many	different	database	servers.
User	 profiles	 can	 be	 distributed	 depending	 upon	Geo-Location.	 The	 Indian	 users	 profile	will	 lie	 in	 a
server	located	in	India	and	US	citizen's	profile	lie	in	the	server	located	in	the	US.
	
Each	user	will	have	corresponding	User	Id	associated	with	them.	Some	portion	of	ID	can	be	used	to	get
Geo	location	of	the	user.	Another	portion	of	user	id	can	find	the	user	profile	on	that	server.
	
The	user	profile	is	not	that	frequently	updated	so	there	is	more	read	than	write.	So	single	master	writer	-
multiple	slave	reader	architecture	is	most	suitable	for	this	application.
	
The	application	server	can	process	the	data;	it	can	do	the	optimization	to	query	less	from	the	database	by
accumulating	user	list	to	be	processed.
	
class	system	{

private	map<int,	int>	personIdToMachineIdMap;
private	map<int,	Machine>	machineIdToMachineMap;



	
Machine	getMachine(int	machineId);
getPerson(int	personId)
{
int	machienId	=	personIdToMachienIdMap[personId];
Machine	m	=	machineIdToMachineMap[machienId];
return	m.getPersonWithId(personId);
}

}
	
Optimization:	Reduced	 the	 number	 of	 jumps	by	 first	 finding	 the	 list	 of	 friends	whose	 profile	 is	 on	 the
same	machine.	Then	send	the	find	next	degree	friends	query	that	will	return	the	list	of	next	level	friends.
By	doing,	this	work	is	distributed	among	various	machines.	Finally,	the	result	of	the	various	queries	will
be	merged,	and	then	friend	list	is	suggested.
	
Better	result:	You	can	calculate	the	degree	of	the	friends	with	the	friend	list.	The	person	who	is	a	friend	of
many	of	my	friends	is	more	likely	to	be	my	friend	than	the	person	who	is	just	a	friend	of	one	of	my	friends.
We	need	to	keep	track	of	the	friend	reference	counts	by	keeping	Hash-Table	for	the	friend	list	and	make
the	count	1	whenever	we	find	a	new	person	otherwise	increase	the	count	by	1.
	
If	we	want	to	take	advantage	of	caching,	then	we	need	to	add	some	database	cache	in	between.

	
There	can	be	multiple	web	servers,	which	will	be	querying	the	databases.	Also	multiple	users	who	are
accessing	 their	 Facebook	 profile	 and	 each	 one	 of	 them	 is	 proposed	with	 new	 friends	 list	 so	 the	 final
architecture	 is	 again	 same	as	 the	one	proposed	 in	 the	 complete	web	 server	 implemented	 in	 scalability
theory.
	



Design	a	shortening	service	like	Bitly

Use	Case
Basic	use	case:
1.	Shortening	takes	a	URL	and	returns	a	short	URL.
2.	Redirection	takes	a	short	URL	and	redirects	to	the	original	URL.
3.	Custom	URL.
4.	High	availability	of	the	system.
	
Additional	use	cases:
1.	Analytics
2.	Automatic	link	expiration.
3.	Manual	link	removal.
4.	Specific	company	URL.
5.	UI	or	just	API
	
Requirement	Analysis/	Math
First,	we	need	to	find	the	usage	pattern.
You	 can	 directly	 ask	 this	 data	 from	 the	 interviewer	 or	 you	 can	 derive	 it	 using	 some	 data	 that	 the
interviewer	provides.	Let	us	suppose	 that	 the	 interviewer	 tells	 that	 there	will	be	1	billion	 requests	per
month.	In	addition,	out	of	these	10%	times,	it	is	a	new	request	and	90%	of	the	time,	it	is	a	redirection	of
the	already	shortened	URL.	Let	us	write	down	the	data	that	we	get.
	
1.	1BN	requests	per	month
2.	10%	are	for	new	URL/shortening	and	90%	are	for	redirection.
3.	New	URLs	per	month	is	100MLN
4.	Requests	per	second	1BN/	(30*24*3600)	=	385.	Roughly,	you	can	assume	it	400	requests	per	seconds.
5.	Total	number	of	URLs	stored	in	5	years.

5*	12*	100	MLN	=	6BN	URLs	in	5	years.
6.	Let	us	suppose	the	space	required	by	each	URL	is	500bytes.
7.	Let	us	suppose	the	space	required	by	each	Hash	code	for	corresponding	URLs	is	6byte	long.
8.	Total	data	we	need	to	store	in	five	years.	3TBs	for	all	the	URLs	and	36gb	for	hashes

6,000,000,000	*	500	bytes	=	3	terabytes
6,000,000,000	*	6	bytes	=	36	gigabytes

9.	New	data	write	requests	per	second:	40	*	(500+6):	20k
	

Basic	design
Web	server:	provide	the	website	for	the	Bitly	service	where	users	can	generate	the	short	URL.
Application	Server:	provides	the	following	services:
1.	Shortening	service
2.	Redirection	service
3.	Key	=	Hash	Function	(URL)
	



Database	Server:
1.	Keep	track	of	hash	to	URL	mapping.
2.	Works	like	a	huge	Hash-Table	stores	the	new	mapping	and	retrieves	old	mapping	given	key.
	
Bottleneck
1.	Traffic	is	not	much
2.	Data	storage	can	be	a	problem.
	

Scalability
Application	Server:
1.	Start	with	the	single	machine.
2.	Test	how	far	it	takes	up.
3.	We	do	a	vertical	scaling	for	some	time.
4.	Add	load	balancer	and	a	cluster	of	machines	to	handle	spikes	and	to	increase	availability.
	
Data	Storage:
1.	Billions	of	objects
2.	Each	object	is	small
3.	There	is	no	relationship	between	objects
4.	Reads	are	more	than	write.
5.	3TBs	of	URLs	and	36GB	of	hash.
	
MySQL:
1.	Widely	used
2.	A	mature	technology
3.	Clean	scaling	paradigms	(master/slave,	master/	master)
4.	Used	by	Facebook,	google,	twitter	etc.
5.	Index	lookup	is	very	fast.
	
Mappings:	<Hash,	URL>
1.	Use	only	MySQL	table	with	two	fields.
2.	Create	a	unique	index	on	the	hash	we	want	to	hold	it	in	memory	to	speed	up	lookups.
3.	Vertical	scaling	of	MySQL	for	a	while
4.	Partition	of	data	into	many	partitions
5.	Master-slave	(read	from	slave	and	write	to	master.)
6.	Eventually,	partition	the	data	by	taking	the	first	character	of	the	hash	mod	the	number	of	partitions.
	



Stock	Query	Server
Implement	 a	 stock	query	 service	 that	 can	provide	 an	 interface	 to	get	 stock	price	 information	 like	open
price,	close	price,	highest	price,	 lowest	price	etc.	You	should	provide	an	interface	that	will	be	used	to
enter	these	data	and	interface	to	read	this	data.
	

Use	Case
There	will	be	two	interfaces	to	this	system.
1)	First	interface	to	add	daily	stock	price	information	to	the	system.
2)	Second	interface	to	read	stock	price	information	giving	the	date	and	stock	id	as	input.
	

Constraints
Let	us	suppose	the	system	will	be	used	by	thousands	of	users.	For	each	stock,	there	will	be	only	one	write
operation	per	day.	However,	for	every	stock	there	will	be	multiple	read	operations	per	day.	Therefore,
the	application	is	more	read	heavy	then	write	heavy.	The	solution	should	be	flexible	enough	so	that	if	new
data	fields	need	to	be	added	to	the	stock	they	can	easily	be	added	to	the	system.	The	solution	provided
should	be	secure.
	

Basic	Design
We	can	use	a	database	like	SQL	to	store	stock	data.	Client	can	access	the	database	using	the	web	server
interface.	Below	diagram	will	show	the	basic	architecture.
	

In	the	above	architecture,	the	user	can	access	the	database	using	web	service.	Any	number	of	flexibility
can	be	provided	for	the	use.	For	example,	what	is	the	max	price	of	some	stock	in	6	months	etc.?	At	the
same	time,	the	user	does	not	have	access	to	the	data	they	should	not	have.	We	can	provide	different	access
of	read	and	write	depending	on	the	normal	users	or	administrator.	Well-defined	rolling	back,	backing	up
data	and	security	features	are	provided	by	the	SQL	database.	The	above	architecture	is	easily	extendable
to	use	with	a	website	or	some	mobile	application.
	

Scalability
Since	we	have	1000’s	of	users,	then	having	a	single	web	server	and	a	single	database	is	not	extendable.
We	 need	 to	 distribute	 data	 among	 N	 number	 of	 Databases,	 which	 sit	 behind	 some	 load	 balancer.	 In



addition,	multiple	N	number	of	web	server	which	will	sit	behind	some	load	balancer.	Each	of	the	load
balancers	needs	to	be	provided	with	some	redundancy,	as	they	will	be	a	single	point	of	failure.	Finally,
the	 solution	will	 look	 like	below	diagram.	 (For	details,	 see	 scalability	 theory	explained	earlier	 in	 this
chapter)

	



Design	a	basic	search	engine	Database
You	are	given	millions	of	URLs;	how	would	you	create	your	database.	So	 that	given	a	query	 string	of
words,	how	to	find	the	URLs,	which	contain	all	the	words	of	the	query	string.	The	words	can	come	in	any
order.
	

Use	Case
1)	We	are	given	a	list	of	millions	of	URLs.
2)	 The	 user	 of	 the	 system	will	 provide	 query	 string.	 In	 addition,	 we	 need	 to	 return	 the	 URLs,	 which

contain	all	the	words	of	the	query	string.
3)	It	is	some	kind	of	search	engine	so	we	can	pre-process	the	data	and	make	our	database.
	

Requirement	Analysis
In	the	requirement	step,	you	need	to	find	out	how	many	users	are	going	to	use	this	search	engine.	In	our
case,	let	us	suppose	there	are	not	many	users	who	are	going	to	use	our	system	so	the	sour	main	concern	is
a	database.
Maybe	we	have	N	number	of	machines	that	can	be	used	to	fast	our	data	pre-processing.
	

Basic	Design
In	this	step,	we	will	make	the	basic	design	so	let	us	make	a	working	system	with	just	a	few	URLs.	How
would	you	find	the	required	URL	from	the	given	URLs,	which	contains	all	the	words	of	the	input	query
string?
We	can	make	a	Hash-Table	in	which	words	are	the	keys	and	document	ids	are	values.
“Hello”	->	{url1,	url2,	url3}
“World”	->	{url2,	url4,	url5}
To	search	 the	document,	which	contains	“hello	world”,	we	can	find	 the	 intersection	of	 the	 two	lists.	 In
addition,	url2	is	the	result.
	

Bottleneck
In	 this	 step,	we	will	 look	 back	 to	 our	 original	 problem	 in	which	 pre-processing	 of	millions	 of	URLs.
There	may	be	a	number	of	different	words	so	it	may	not	be	possible	to	keep	the	whole	Hash-Table	on	a
single	machine.	Therefore,	we	need	to	divide	the	Hash-Table	and	keep	it	on	a	separate	machine.
We	need	to	retrieve	the	URLs	that	match	a	given	word	efficiently.	So	that	we	can	find	the	intersection.
Pre-processing	all	the	millions,	URLs	by	single	machine	will	be	slow.	We	need	to	find	a	way	to	parallel
process	pre-processing	step.
	

Scalability
Let	us	look	into	the	problem	of	keeping	the	Hash-Table	in	different	databases.	One	solution	is	to	divide
the	words	alphabetically.	We	can	make	tables	corresponding	to	each	word.	Each	database	contains	tables
of	words	under	some	range.	For	example,	DB1	contains	all	the	words,	which	start	with	alphabet	“a”,	and
DB2	contains	all	the	words,	which	starts	with	the	alphabets	“b”	and	so	on.	Data	is	stored	in	the	database.



When	 a	 database	 reaches	 its	maximum	 capacity,	 the	 data	 is	 stored	 to	 next	machine	 and	 a	 tree	 kind	 of
structure	can	be	made.	Finding	 the	 list	of	URLs	corresponding	 to	some	word	 is	easy,	we	can	go	 to	 the
corresponding	 database	 and	 find	 the	 table	 and	 get	 all	 the	 data	 of	 that	 table.	 Finally,	 we	 can	 take	 the
intersection	of	the	result	of	various	words.	In	addition,	the	result	will	be	given	as	output.
	
Processing	of	the	millions	of	URLs	with	a	single	machine	is	slow.	Therefore,	we	can	divide	a	bunch	of
URL	processing	among	an	N	number	of	machines,	each	URL	processing	is	independent	of	each	other	and
the	final	Hash-Table	of	the	URLs	can	be	finally	combined.	This	approach	of	processing	independent	data
and	finally	combining	their	result	is	used	in	MapReduce.
	
MapReduce:	A	MapReduce	 divides	 the	 input	 dataset	 into	 independent	 chunks,	which	 are	 processed	 in
parallel.	Then	their	output	is	combined	to	get	the	result.

	



Design	a	basic	search	engine	Caching
Given	a	search	engine	database	implementation	which	supports	QuerySearch()	function	which	will	return
the	 best	 list	 of	 URLs	 based	 on	 the	words	 of	 the	 query.	 This	 time	 you	 need	 to	 design	 the	web	 server
implementation	of	 this	 such	 that	 there	are	N	number	of	 the	web	servers	 that	 are	 responding	 to	 the	user
queries.	Any	web	server	can	be	picked	at	 random.	QuerySearch()	 is	a	heavy	operation	so	you	need	 to
design,	caching	for	this	system	so	that	database	access	is	reduced.
	

Use	Case
1.	The	user	of	the	system	will	provide	query	string	and	system	will	respond	with	the	proper	list	of	URLs

corresponding	to	his	request.
2.	Given	that,	the	database	operations	are	very	heavy	we	need	to	minimize	them	by	caching	the	queries	at

the	web	server.
3.	We	need	to	keep	the	frequent	queries	in	the	cache	and	stale	queries	need	to	be	removed	from	the	cache.
4.	We	need	to	have	some	proper	refresh	mechanism	for	each	query.
	

Basic	Design
Let	us	lust	forget	about	an	N	number	of	machines	and	assume	that	QuerySearch()	operation	happens	on	a
single	machine.	Now	we	would	like	to	cache	queries.	Each	query	will	consist	of	some	string.	In	addition,
the	result	of	a	query	is	a	list	of	URLs.
	
We	need	to	have	a	quick	cache	lookup	so	that	we	can	get	the	result	of	the	Query	from	the	cache	if	 it	 is
present	there.	Also,	need	to	have	some	proper	refresh	mechanism	for	each	query.
The	Hash-Table	is	most	effective	to	keep	the	cache.	By	using	a	hash,	a	table	lookup	is	fast.	However,	if
the	cache	is	filled	how	you	would	remove	the	least	used	data	from	the	cache.
	
A	linked	list	can	be	used	to	remove	the	old	data.	You	can	keep	a	double	linked	list	to	manage	the	old	data
removal.	Whenever	a	data	is	accessed,	it	can	be	moved	to	the	front	of	the	linked	list	and	the	removal	can
happen	from	the	end	of	the	linked	list.
	
Taking	advantage	of	both	the	solutions,	we	can	keep	the	cache	in	a	linked	list	and	add	its	reference	to	the
Hash-Table.
	
Now	 the	 last	 problem	 of	 how	 to	 remove	 the	 data	 upon	 the	 expiry	 of	 it.	 For	 example,	most	 frequently
accessed	query	result	will	always	remain	in	the	linked	list	even	though	that	result	is	changed	and	if	it	is
accessed	again	from	the	database	then	it	will	give	some	updated	result.	For	this,	we	need	to	have	some
TTL	(time	to	live)	associated	with	each	query	depending	upon	the	result	of	URLs	we	get	from	each	query.
For	example,	some	weather	or	current	news	related	queries	should	have	a	TTL	of	days.	On	the	other	hand,
some	historic	data	should	have	a	long	TTL.	The	TTL	can	be	derived	from	how	frequently	the	URLs	are
changing	in	the	query	result.
	

Bottleneck
There	are	N	different	web	servers.	In	addition,	any	particular	query	can	be	served	by	any	server.



Data	access	should	be	fast.
	

Scalability
The	various	solutions	that	we	can	think	about	are:
	
Approach	1:
Servers	can	have	their	own	cache.	If	some	query	is	sent	to	Machine1,	it	will	catch	it	in	its	cache	when	the
same	query	is	sent	to	it	again	it	will	return	it	from	its	cache.	However,	if	some	query	is	sent	to	Machine1
first,	 it	will	cache	it	and	if	 the	same	query	is	sent	 to	Machine2,	 it	will	again	do	a	database	lookup	and
cache	 it	 to	 its	 own	 cache.	 This	 implementation	 is	 suboptimal	 as	 it	 is	 doing	more	 number	 of	 database
lookups	than	what	is	actually	required.
	
Approach	2:
Another	approach	is	that	each	machine	stores	identical	cache.	Whenever	some	database	access	happened
then	 the	same	cache	 is	updated	by	all	 the	web	servers.	This	approach	has	a	drawback	 that	whenever	a
data	is	updated	in	cache	same	cache	update	is	fired	to	all	the	N	web	servers.	Another	disadvantage	is	that
all	the	cache	stores	the	same	data	so	we	are	wasting	precious	cache	space.
	
Approach	3:
In	this	approach,	we	will	divide	our	cache	such	that	each	web	server	holds	a	different	part	of	the	cache.
When	a	query	reach	to	some	web	server	it	knows	which	webserver	actually	holds	the	cache	for	this	query
or	at	least	knows	that	which	server	is	supposed	to	keep	a	cache	of	the	particular	query.
To	do	this	we	need	a	hash-based	approach.	We	find	the	server,	which	serves	the	query,	by	just	finding	the
hash	(query)	percentage	N.
	
When	a	query	request	come	to	some	web	server,	it	will	find	the	webserver	corresponding	to	this	query	by
applying	the	formula.	It	will	ask	the	QuerySearch()	function	to	that	particular	server.	That	server	will	in
turn	will	query	the	database	if	required	or	provide	the	result	from	its	own	cache.
Now,	 regarding	 the	cache	expiration	and	old	cache	removal.	We	are	keeping	 the	TTL	corresponding	 to
each	 query	 so	 there	 can	 be	 a	 thread	 running	which	 looks	 for	 the	 expired	 data	 and	 remove	 it	 from	 the
cache.
In	addition,	combination	of	linked	list	and	Hash-Table	is	used	to	keep	the	cache	to	get	rid	of	less	accessed
data	when	the	cache	is	almost	full.
	
As	 a	 further	 improvement,	we	 can	 think	 of	 some	 sort	 of	Geo	 location	 aware	webserver	 selection	 and
cache	policy	so	that	query	related	to	India	is	more	supposed	to	be	done	in	India	and	query	related	to	china
is	supposed	to	come	more	from	china.
	



Duplicate	integer	in	millions	of	documents
Given	millions	of	documents	with	all	distinct	numbers,	find	the	number,	which	occurs	multiple	times.
	

Basic	Design
Consider	there	are	just	a	few	numbers,	and	we	want	to	find	the	duplicate	numbers.
	
The	first	approach	 is	 to	find	keep	a	sorted	 list	of	 the	numbers	and	see	 if	 the	next	read	number	matches
with	some	number	in	the	list.
	
Another	better	 approach	 is	 to	 find	a	hash	value	corresponding	 to	number	 and	add	 that	 the	number	 to	 a
Hash-Table.
	

Constraint
Millions	of	documents	and	there	is	no	range	of	number	so	we	cannot	keep	everything	in	memory.
	

Scalability
We	can	find	the	hash	value	for	all	the	integers	and	then	add	that	integer	to	its	corresponding	hash	value	file
or	database.	If	there	is	some	duplicate,	then	they	will	fall	in	the	same	file.	In	the	first	pass,	various	files
are	created	and	integers	are	distributed.
	
In	 the	second	pass	all,	 the	data	of	 the	 individual	 files	can	be	 loaded	 into	memory	and	sorted	 to	 find	 if
there	is	some	duplicate	value.
	
We	can	use	the	same	technique	explained	above	to	process	the	various	documents	of	integer	in	parallel	by
different	machines	and	then	combine	their	output	to	get	our	result	faster.
	



Zomato

Use	Case
1.	Given	a	location,	the	list	of	hotels	in	that	locality	needs	to	be	displayed.
2.	Given	a	hotel	name	that	hotel’s	rating,	review,	and	menu	need	to	be	displayed
3.	There	should	be	some	option	to	find	if	a	delivery	option	is	there	in	the	hotel.
4.	There	should	be	some	option	to	select	a	hotel	on	veg/non-veg	category.
5.	There	should	be	some	option	to	select	hotels,	which	serve	alcohol.
6.	The	user	should	be	able	to	add	reviews,	add	personal	ratings	to	the	hotels.
7.	The	user	has	some	account	or	can	access	as	guest.
8.	Users/Admin	should	be	able	to	add	new	hotels	to	the	system.
	

Constraints
1.	A	number	of	queries	per	second	suppose	100	queries	per	second.
2.	There	are	more	reads	than	writes.
3.	90%	of	the	time	there	is	read	operation	and	only	10%	of	the	time	there	is	a	write	operation.
4.	100	*	60	*	60	*	24	=	8,640,000
	

Basic	Design

The	scalability	will	be	same	as	that	of	the	examples	explained	above	in	the	case	of	basic	Facebook.	Same
concept	of	redundancy,	load	balancing,	scalability	etc.
	

Abstract	Design
Each	hotel	has	some	hotel	id	associated	with	it.
1.	Data	of	the	hotel	can	be	Name,	Address,	Rating,	Review	List,	Veg-Nonveg,	and	Alcohol	etc.
2.	The	region	is	a	field	in	the	address.
3.	Search:	When	a	user	does	a	region	based,	query	all	the	entries	of	the	hotels	in	that	region	need	to	be

displayed	to	the	user.
4.	Search:	User	should	be	able	to	search	specific	hotel.
5.	Add	Review/	Rating:	When	users	assess	a	hotel,	then	he	should	be	able	to	add	reviews	and	rating	for

the	hotel.
6.	Obviously	the	images	are	stored	in	CDN
	



Application	Service	layer
1.	Start	with	fewer	machines
2.	All	load	balancer	+	a	cluster	of	machines	over	time.
3.	Traffic	spike	handling.
4.	High	availability.
	
Data	Storage	Layer:
1.	Thousands	of	hotels.
2.	There	are	no	relationships	between	the	object.
3.	Reads	are	more	than	writing.
4.	Relational	database	option	is	MySQL
5.	Widely	used.
6.	Clear	scaling	paradigms.	(Master-Master	replication,	Master-Slave	replication)
7.	Index	lookups	are	very	fast.
	
One	optimization	that	we	can	assign	an	id	to	hotels	the	id	can	be	derived	from	the	locality	so	that	it	would
be	easy	to	find	hotels	in	that	locality.
	



YouTube

Scenarios
1.	Users	have	some	profile	according	to	which	content	is	shown.
2.	Content	thumbnails	are	shown	when	the	user	opens	the	YouTube	web	page.
3.	When	the	user	clicks	on	some	thumbnail,	then	that	video	is	played	on	flash	player.
	

Constraints
1.	Millions	of	users	are	going	to	use	this	service.
2.	200	million	video	requests	served	per	day.
3.	More	reads	than	writes.
	

Design
1.	YouTube	is	supposed	to	serve	huge	number	of	videos	for	which	it	has	video	serving	clusters.	A	single

video	can	be	served	from	multiple	servers	in	clusters	and	from	multiple	clusters	thereby	distributing
the	disk	read	which	increases	the	performance	of	the	system.

2.	 The	most	 popular	 videos	 are	 served	 from	CDN.	CDN	 is	more	 close	 to	 the	 user,	which	 reduce	 the
response	time.	This	also	reduce	the	load	to	the	video	serving	clusters.

3.	The	rest	of	the	metadata	of	the	video	is	served	from	other	servers,	as	the	user	is	not	much	interested	in
the	metadata.

4.	The	rest	of	the	application	will	be	same,	as	it	will	have	an	application	server,	database	servers,	load
balancer,	caching	etc.

5.	There	 is	more	read	than	write	so	 the	master	server	 topology	will	be	used.	Therefore,	 there	can	be	a
single	master	for	writing	and	multiple	slaves	for	reading.

6.	Master	 data	 is	 replicated	 to	 slaves.	 Since	 slaves	 are	 same	 as	master	 then	 the	master	 is	 down,	 then
slaves	can	be	promoted	to	make	as	master.

7.	Page	to	be	displayed	to	the	user	depends	on	his	subscribed	pages,	History	etc.
8.	Information	can	be	cached	in	the	Memcached	implemented	near	the	database	load	balancer.
	
	



	



Design	IRCTC

Scenario

1.	The	user	should	be	able	to	query	trains	between	two	stations.
2.	The	query	should	be	based	on	the	date,	quota,	from	and	to	the	station.
3.	The	user	should	be	able	to	see	the	availability	in	the	train	list	retrieved	from	the	above	query.
4.	The	user	should	be	able	to	book	tickets	for	the	available	seats.
	

Constraints
1.	 There	will	 be	 a	 huge	 number	 of	 people	 requesting	 the	 service.	 Let	 us	 suppose	 0.01	 percent	 of	 the

population	use	the	service	daily	once.
2.	Geo-Redundancy	should	be	provided.
3.	More	read	query/	request	then	writes	requests.
	

Design
1.	The	basic	architecture	from	the	scalability	theory	topic	can	be	used	here	too.
2.	There	should	be	a	huge	number	of	servers,	which	are	serving	the	users.
3.	There	should	be	multiple	servers	at	multiple	geo	 locations	 to	provide	geo-redundancy.	The	database

should	be	replicated	at	these	multiple	geo	locations.	There	may	be	multiple	servers	in	one	particular
zone	too.

4.	There	is	a	huge	number	of	read	query,	the	user	generally	does	a	large	number	of	query	to	find	the	seat
he	wants	to	book.	There	will	be	more	reads	then	write	so	master-slave.

5.	Queries	can	be	cached;	little	old	data	is	ok.
6.	All	the	search	will	be	served	by	slave	servers.
7.	When	we	book	a	ticket	then	transaction	goes	directly	to	the	master	server.	Locks	on	train	number	can	be

taken	to	prevent	race	conditions.	Once	a	lock	is	acquired	then	only	you	can	book	a	ticket.	Some	counts
can	be	used	to	avoid	unnecessary	locking	and	some	counter	can	be	used	for	this.

8.	Each	station	has	a	quota	in	train	and	seats	are	allocated	from	that	quota.
9.	Each	physical	train	will	have	two	train	ids	one	when	trans	go	from	source	to	destination	station	and	one

when	it	comes	back.	So	in	the	system,	there	will	be	two	train	ids.	Keeping	these	two	separate	ids	will
make	the	query	easier	to	implement.

10.	When	 final	 charting	 is	 done	 then	 each	 seat	 is	 swapped	 for	 the	 empty	 slots	 and	we	 try	 to	 find	 the
request	from	source	station	whose	destination	is	also	in	that	slot.	The	first	fit	is	allotted	that	seat.

11.	A	load	balancer	is	used	to	distribute	traffic.
12.	There	may	be	multiple	booking	servers	which	ask	for	a	booking	token	 to	 the	master	server.	Master

server	allocate	a	token	for	that	server	and	reserve	it	for	some	time.	When	all	the	user	information	is
filled	and	payment	is	done	then	only	it	allocates	real	seat	depending	upon	user	preference.

13.	Slave	server	will	handle	user	request	till	the	end.	Final	booking	request	with	the	user	payment	and	his
complete	information	will	go	to	the	master	server	and	the	corresponding	ticket	will	be	booked.

	



Alarm	Clock
How	would	you	design	an	alarm	clock?
	

Use	Case
Alarm	clock	should	have	all	the	functions	of	clock.	Should	be	able	to	show	time.
The	User	can	set	the	alarm	time
The	User	can	reset	the	alarm.
The	User	can	set	the	alarm.
	

Constrains
The	Granularity	of	alarm	can	be	15	min.
	

Test	Case
Set	the	alarm	at	some	time	6:00AM	and	set	it.
The	Alarm	should	work	at	6:00AM
Stop	the	alarm,	then	alarm	should	stop	ringing.
	

Design
There	can	be	a	clock	class,	which	manages	time	and	shoe	time	to	the	screen.
It	has	functions	getTime()	and	setTime()
Alarm	 Clock	 extends	 Clock,	 and	 have	 some	 more	 function	 like	 startAlarm(),	 stopAlarm(),
setAlarmTime(),	ring()
	

Implementation
A	timer	entry	will	run	for	granularity	of	15	min.	Alternatively,	one	min	depends	on	customer	requirement.
It	will	check	if	current	time	is	equal	to	alarm	time.	If	true	and	the	alarm	is	on	then	ring.
If	start	Alarm	is	called,	it	will	set	alarm	on
If	stop	alarm	is	called,	it	will	set	alarm	off.
	





Design	for	Elevator	of	a	building

Scenarios
A	typical	lift	has	buttons	(Elevator	buttons)	inside	the	cabin	to	let	the	user	who	got	the	lift	to	select	his/her
desired	 floor.	Similarly,	each	 floor	has	buttons	 (Floor	buttons)	 to	call	 the	 lift	 to	go	 floors	above	and	a
floor	below	respectively.	The	buttons	illuminate	indicating	the	request	is	accepted.	In	addition,	the	button
stops	illuminating	when	the	lift	reaches	the	requested	floor.
	
Use	cases:
User
•	Presses	the	floor	button	to	call	the	lift
•	Presses	the	elevator	button	to	move	to	the	desired	floor
	
Floor	Button	&	Elevator	Button
•	Illuminates	when	pressed	by	user
•	Places	an	elevator	request	when	pressed
	
Elevator
•	Moves	up/down	as	per	instruction
•	Opens/closes	the	door
	
	

Design
Each	button	press	results	in	an	elevator	request	which	has	to	be	served.	Each	of	these	requests	is	tracked
at	a	centralized	place.	Elevator	Requests,	the	class	that	stores,	elevator	requests	can	use	different	algo	to
schedule	the	elevator	requests.	The	elevator	is	managed	by	a	controller	class,	which	we	call	Elevator
Controller.	Elevator	controller	class	provide	instructions	to	the	elevator.	Elevator	controller	reads	the
next	elevator	request	to	be	processed	and	served.



The	button	is	an	abstract	class	defining	common	behaviour	like	illuminate,	doNotIlluminate.	FloorButton,
Elevator	Button	extends	Button	type	and	define	placeRequest	()	method	which	is	invoked	when	a	button	is
pressed.	When	a	floor	button	or	elevator	button	is	presses	a	requests	is	added	to	a	common	queue.
ElevatorController	reads	the	next	request	and	instruct	next	action	to	the	elevator.
	
How	can	we	extend	this	to	multiple	elevators?
	
In	the	single	elevator	scenario,	there	is	a	single	elevator	and	an	elevator	controller	and	a	common	server
where	 the	 floor	 requests	 and	 the	 elevator	 button	 request	 are	 stored.	Which	 are	 processed	 as	 per	 the
scheduling	algorithm.
	
To	extend	 this	 to	multiple	 elevator	 scenarios	 there	will	 still	 be	 single	 elevator	 controller.	Floor	based
requests	 can	 be	 served	 by	 any	 elevator	 whereas	 elevator	 button	 requests	 will	 be	 served	 only	 by	 the
elevator	to	whom	the	button	belongs.
	
FloorButton's	 placeRequest()	 adds	 a	 request	 to	 the	 common	 queue,	which	 is	 accessed	 by	 the	 elevator
controller	 thereby	 assigning	 the	 request	 to	 one	 of	 the	 elevators.	 ElevatorButton's	 placeRequest	 adds	 a
request	to	the	elevator	directly	as	it	is	supposed	to	serve	it.	Elevator	controller	will	be	running	various
algorithms	like	shortest	seek	etc.	to	decide	which	lift	is	supposed	to	handle	which	request.
	



Valet	parking	system
Design	a	valet	parking	system.
	

Use	Case
The	requirements	of	the	valet	parking	system	should	be:
1.	Given	a	Parking	lot	having	a	fixed	number	of	slots
2.	Where	a	car	can	enter	the	slot	if	there	is	a	free	slot	and	then	it	will	be	given	the	direction	of	the	free
slot.
3.	When	exiting	the	car	has	to	pay	the	fees	for	the	duration	of	the	time	it	uses	parking.
	

Constraints
1.	Parking	slots	come	in	multiple	sizes-	small,	mid	and	large
2.	Three	types	of	vehicles,	small,	mid,	large
3.	A	small	vehicle	can	park	in	a	small,	medium,	or	large	spot
4.	A	medium	vehicle	can	park	in	a	medium	or	large	spot
5.	A	large	vehicle	can	park	only	in	a	large	spot
	

Design	&	Implementation
The	parking	lot	will	have	the	following	interface
parkingLot{

Map<int,Space>	unreservedMap;
Map<int,Space>	reservedMap;

	
reserveSpace(Space)
{
//	It	will	find	if	there	is	space	in	the	unreserved	map
//	If	yes,	then	we	will	pick	that	element	and
//	put	into	the	reserved	map	with	the	current	time	value.
}

	
unreserveSpace(Space)
{
//	It	will	find	the	entry	in	reserve	map.	If	value	found	then
//	we	will	pick	that	Element	and	put	into	the	unreserved	map.
//	And	return	the	charge	units	with	the	current	time	value.
}

}
	



OO	design	for	a	McDonalds	shop
Let	us	start	with	the	description	of	how	the	McDonalds	shop	works.
1.	In	a	McDonalds	shop,	the	Customer	selects	the	burger	and	directly	places	the	order	with	the	cashier.
2.	 In	 a	 McDonalds	 shop,	 the	 Customer	 waits	 for	 the	 order	 ready	 notification.	 Customer	 upon	 being

notified	that	the	order	is	ready	collects	the	burger	himself.
	
There	are	three	different	actors	in	our	scenario	and	below	is	the	list	of	actions	they	do.
Customer
1.	Pays	the	cash	to	the	cashier	and	places	his	order,	get	a	token	number	and	receipt
2.	Waits	for	the	intimation	that	order	for	his	token	is	ready
3.	Upon	intimation/	notification,	he	collects	the	burger	and	enjoys	his	drink
	
Cashier
1.	Takes	an	order	and	payment	from	the	customer
2.	Upon	payment,	creates	an	order	and	places	it	into	the	order	queue
3.	Provide	token	and	receipt	to	the	customer
	
Cook
1.	Gets	the	next	order	from	the	queue
2.	Prepares	the	burger
3.	Places	the	burger	in	the	completed	order	queue
4.	Places	a	notification	that	order	for	token	is	ready
	



Object	oriented	design	for	a	Restaurant
Let	us	describe	how	the	restaurant	works.
1.	In	a	restaurant,	the	waiter	takes	order	from	the	customer.
2.	The	waiter	waits	for	the	order	to	be	ready	and	once	ready	serves	the	dishes	to	the	customer.
	
These	are	the	different	actors	in	the	model	and	I	have	listed	the	different	actions	against	each	actor
Customer
1.	Selects	the	dish	from	the	menu	and	call	upon	a	waiter
2.	Places	the	order
3.	Enjoys	his	meal	once	the	dish	is	served	on	his	plate
4.	Ask	for	the	bill
5.	Pays	for	the	services
	
Waiter
1.	Responds	to	the	customers	call	on	the	tables	he	is	waiting
2.	Takes	the	customer's	order
3.	Places	the	order	in	the	pending	order	queue
4.	Waits	for	the	order	ready	notifications
5.	Once	notification	is	received,	collects	the	dish	and	serves	the	dish	to	the	corresponding	customer
6.	Receives	the	bill	request	from	customer
7.	Asks	the	Cashier	to	prepare	the	bill
8.	Gives	the	bill	to	the	customer	and	accepts	the	payment
	
Cashier
1.	Accepts	the	prepared	bill	request	from	the	waiter	for	the	given	order	details
2.	Prepares	the	bills	and	hands	it	over	to	the	waiter
3.	Accepts	the	cash	from	the	waiter	towards	the	order
	
Cook
1.	Gets	the	next	order	from	the	pending	order	queue
2.	Prepares	the	dish	and	push	the	order	to	finished	order	queue
3.	Sends	a	notification	that	the	order	is	ready
	



Class	diagram	for	the	Restaurant.
	



Object	oriented	design	for	a	Library	system
A	 library	 has	 a	 set	 of	 books,	which	 the	 users	 can	 borrow	 for	 a	 certain	 period	 and	 return.	Users	may
choose	to	renew	the	return	date	if	they	feel	they	need	more	time	to	read	the	book.

The	typical	user	actions	with	this	online	library	would	be
·	Sign	in/register
·	Search	books
·	Borrow	books
·	Renew	books
·	Return	books
·	View	his	profile

The	online	 library	must	keep	 track	of	 the	different	books	 in	 the	 library	currently	available	 for	users	 to
borrow	and	the	books	already	borrowed	by	users.	Put	it	simply	the	inventory	should	be	managed.
	
The	various	components	of	the	system:
1.	User
2.	Librarian
3.	Library
4.	Book
5.	Transection
6.	Event	Manager
	
The	below	class	diagram,	which	depicts	how	these	components	inter-operates.
	

The	User	either	interacts	with	the	Librarian,	the	user	request,	return	or	renews	a	book.	The	Librarian	will



search	for	the	book	if	the	book	is	available	in	the	Library	then	issue	it	to	the	user.	A	Transection	will	be
created	 and	 added	 to	 the	Event	Manager.	Event	Manager	will	 support	 add	 transaction	 and	 send	 return
request	interface.	Once	the	book	is	overdue	then	the	event	manager	will	send	an	indication	to	the	student
that	the	book	needs	to	be	returned.	When	the	book	is	renewed	then	the	library	state	is	not	changed	but	the
Transection	detail	is	renewed	at	the	Event	Manager.
	



Suggest	a	shortest	path

Use	Case
The	user	had	some	coordinate	by	searching	the	coordinate	from	the	name.
Show	the	whole	map	considering	the	coordinate	as	its	centre.
Suggest	the	shortest	path	between	two	points.
	

Constraints
All	paths	are	positive	in	cost.
For	 simplicity,	 I	 am	 considering	 all	 paths	 are	 for	 vehicle	 only,	 no	 pedestrian	 (pedestrian	 can	walk	 in
either	direction	even	in	one-way	road.)
	

Design
The	whole	city	map	is	stored	as	a	graph	in	google.
	
We	need	to	find	the	map	by	looking	into	the	objects,	which	are	in	the	distance	shown	by	the	browser.
The	same	path	is	stored	as	directed	graph.	In	addition,	the	graph	that	needs	to	be	rendered	depends	on	the
zoom	level.	The	preferred	algorithm	is	a*	for	this	application	to	get	the	shortest	path.
Weight	=	h(x,	y)	+	g(x,	y)
	



Exercise
1.	Design	a	system	to	implement	social	networking	like	Facebook,	with	millions	of	users.	How	would	you

find	the	connection	between	two	people?
	
2.	Autocomplete	in	www.booking.com.	Design	autocomplete	feature	for	www.booking.com.
	
3.	 Instagram,	 Instagram	 is	 an	online	mobile-based	photo	 sharing,	video	 sharing	 service,	which	enables

users	to	take	pictures,	and	video	upload	them	to	the	server	and	share	them	on	social	networking	sites
like	Facebook	or	Twitter.
Note:	-	CDN	is	used	to	store	active	images.

	
4.	Monolithic	Website,	assume	you	have	a	monolithic	website	and	you	are	asked	to	architect	the	website

Hint:	-	Discuss	whole	scalability	theory	section	here.
	
5.	 Trip	Advisor:	 URL's	 are	 parsed;	 content	 is	 collected	 from	 various	 services,	 and	 then	 applied	 to	 a

template.
	
6.	Cinchcast:	Live	audio	streaming	for	business	to	do	conferences.
	
7.	BlogTalkRadio	:	Audio	social	network
	
8.	Client	based	recommendation	feature:	How	would	you	design	a	client	based	recommendation	feature

(based	on	customer	history)	on	 the	product	detail	page?	Design	Customers	who	viewed	item	A	also
view	item	B	and	item	C	in	an	online	shopping	portal.

	
9.	Car	 renting	system:	Design	a	car	 renting	system,	 including	reserving	a	car,	checking	 in	and	checking

out.	Consider	all	the	cases:	reserve	a	car,	then	check	out	successfully;	reserve	a	car,	but	the	car	is	sold
out	before	you	check	out.
Test	Cases:
a)	Try	to	reserve	a	car	for	more	than	one	person
b)	Try	to	reserve	a	car	that	is	sold	out
c)	Verify	 the	checkout	process.	After	 checking	out	 a	particular,	 you	 should	be	able	 to	 reserve	 it	 for

another	customer.
d)	Try	to	reserve	the	same	car	for	different	customers	in	different	dates

	
10.	Online	cab	booking	system	(like	Uber)

Admin	Module
a)	Admin	should	be	able	to	add	new	driver	/	taxi	details.
b)	 Should	 be	 able	 to	 calculate	 the	 amount	 that	 needs	 to	 be	 paid	 to	 the	 drivers.	Monthly,	weekly	 or

daily.
	

User	Module
a)	Should	be	able	to	choose	from	and	to	location.
b)	Available	Taxies	type,	along	with	fare	details.



c)	Select	a	Taxi	type
d)	Book	the	taxi.
e)	A	confirmation	message	for	the	booking.

	
Driver	Module
a)	A	driver	should	be	able	to	register	as	a	driver	to	Uber.
b)	When	a	job	is	displayed	to	the	driver,	he	should	be	able	to	accept	the	job.
c)	When	the	driver	reaches	to	the	customer	then	he	should	be	able	to	start	a	trip.
d)	When	the	driver	had	taken	the	customer	to	the	desired	location	then	he	should	stop	the	trip.
e)	The	driver	should	collect	the	fare	based	on	the	amount	displayed	in	the	app.
f)	The	driver	should	be	able	to	give	customer	feedback.

	
Note:	Just	assume	2	minutes	is	equal	to	1	KM.

	
11.	Online	teaching	system

a)	In	an	online	teaching	system,	there	are	n	number	of	teachers	and	each	one	teaches	only	one	subject	to
any	number	of	students.

b)	A	student	can	join	to	any	number	of	teachers	to	learn	those	subjects.
c)	Each	student	can	give	one	preference	through	which	he	can	get	updates	about	the	subject	or	class

timings	etc.
d)	Those	preferences	can	be	through	SMS	or	Twitter/Facebook	or	Email	etc.
e)	Design	above	system	and	draw	the	diagram	for	above.

	
12.	Customer	Order	Booking	System

Admin	Module
a)	Should	be	able	to	add/edit/delete	item,	along	with	quantity,	price,	and	unit.
b)	Should	be	able	to	see	all	orders.

	
Customer	Module
a)	Should	be	able	to	enter	his/her	details	for	shipping,	along	will	basic	information	like	name,	email,

contact	etc.
b)	Can	choose	item,	quantity
c)	Automatically	payable	price	should	be	generated	as	per	selected	item	and	quantity.
d)	Should	be	able	to	confirm	the	order.
e)	 After	 confirmation	 can	 see	 order	 confirmation	 report	 along	 with	 order	 number,	 which	 will	 be,

system	generated.
	
13.	Online	Movie	Booking	System

Admin	Module
a)	Should	be	able	 to	enter	all	movies,	which	have	been	released,	and	about	 to	release	 in	next	week

with	all	possible	details	like	theatre	location,	price,	show	timings	and	seats.
b)	Should	be	able	to	delete	movies,	which	are	no	longer	in	the	theatre.
c)	Can	see	a	number	of	booked	tickets	and	remaining	tickets	for	single	theatre	or	for	all	theatre.

	
User	Module



a)	User	 should	 be	 able	 to	 check	 all	 ongoing	movies	 in	 theatre	 along	with	 locations,	 availability	 of
seats,	price,	and	show	timings

b)	The	user	should	be	able	to	check	all	upcoming	movies	for	next	week	too.
c)	All	movies	those	are	running	on	theatre	should	be	available	for	booking	(one	ticket	or	more	than	one

ticket	can	be	booked).
d)	After	booking	user	should	see	the	confirmation	message	of	booking. 

	
14.	Design	 an	 online	Auction	 system	 (similar	 to	 e-bay).	 Functionalities	 include	 enlisting	 a	 product	 for

auction	by	bid	owner,	placing	the	bid	for	a	product	by	bidders,	Bid	winner	selection,	Notification	of
bid	winner	etc.).

	
	



	



APPENDIX



Appendix	A
	
Algorithms Time	Complexity
Binary	Search	in	a	sorted	array	of	N	elements O(logN)
Reversing	a	string	of	N	elements O(N)
Linear	search	in	an	unsorted	array	of	N	elements O(N)
Compare	two	strings	with	lengths	L1	and	L2 O(min(L1,	L2))
Computing	the	Nth	Fibonacci	number	using	dynamic	programming O(N)
Checking	if	a	string	of	N	characters	is	a	palindrome O(N)
Finding	a	string	in	another	string	using	the	Aho-Corasick	algorithm O(N)
Sorting	an	array	of	N	elements	using	Merge-Sort/Quick-Sort/Heap-Sort O(N	∗	logN)
Sorting	an	array	of	N	elements	using	Bubble-Sort O(N!)
Two	nested	loops	from	1	to	N O(N!)
The	Knapsack	problem	of	N	elements	with	capacity	M O(N	∗	N)
Finding	a	string	in	another	string	–	the	naive	approach O(L1	∗	L2)
Three	nested	loops	from	1	to	N O(N3)
Twenty-eight	nested	loops	…	you	get	the	idea O(N28)
Stack 	
Adding	a	value	to	the	top	of	a	stack O(1)
Removing	the	value	at	the	top	of	a	stack O(1)
Reversing	a	stack O(N)
Queue 	
Adding	a	value	to	end	of	the	queue O(1)
Removing	the	value	at	the	front	of	the	queue O(1)
Reversing	a	queue O()
Heap 	
Adding	a	value	to	the	heap O(logN)
Removing	the	value	at	the	top	of	the	heap O(logN)
Hash 	
Adding	a	value	to	a	hash O(1)
Checking	if	a	value	is	in	a	hash O(1)




