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Abstract. CT-images acquired by mobile C-arm devices can contain
artefacts caused by positioning errors. We propose a data driven method
based on iterative 3D-reconstruction and 2D/3D-registration to correct
projection data inconsistencies. With a 2D/3D-registration algorithm,
transformations are computed to align the acquired projection images
to a previously reconstructed volume. In an iterative procedure, the re-
construction algorithm uses the results of the registration step. This al-
gorithm also reduces small motion artefacts within 3D-reconstructions.
Experiments with simulated projections from real patient data show the
feasibility of the proposed method. In addition, experiments with real
projection data acquired with an experimental robotised C-arm device
have been performed with promising results.

1 Introduction

Modern mobile C-arm devices allow for intraoperative 3D-reconstruction. Un-
fortunately, compared to conventional (fixed) CT-scanners, 3D-reconstructions
from these devices show greater artefacts due to hardware tradeoffs required
for mobile usage. Inconsistencies caused by noise, mechanical flex, geometric
distortions, patient motion and errors in positioning the C-arm affect the 3D-
reconstruction results. In this paper we present a method to compensate for
positioning error inconsistencies in projection data. This approach is also capa-
ble of eliminating small motion artefacts within 3D-reconstructions by modelling
them as a virtual x-ray camera repositioning.

Forward projection registration algorithms have been successfully used to
compensate for motion in SPECT imaging [1]. Inspired by this work, we now
combine a conventional rigid 2D/3D-registration algorithm with an iterative re-
construction algorithm. To our best knowledge, this approach has not been used
for cone beam 3D-reconstruction before.

We use the averaging nature of algebraic 3D-reconstruction techniques to
correct the position and orientation of the acquired projections by means of reg-
istration. In the 2D/3D-registration step, 3D-transformations of the positions of
the x-ray cameras are calculated to minimize a distance measure between the
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acquired projections and a set of forward projections. The forward projections
are digital reconstructed radiographs (DRR) generated from the previously re-
constructed volume through virtual x-ray cameras at new positions. As a result,
an iterative reconstruction scheme arises which is robust with respect to small
positional error and rigid motion artefacts.

2 Method

Cone beam 3D-reconstruction with algebraic methods can be formulated as the
following linear least-squares problem: find f ∈ Rn

+ such that

R (f) = ‖Af − b‖ = min! (1)

where A denotes a projection-operator (also called system matrix) simulating the
cone beam projections, f the reconstruction volume, n the image size, and b the
measured projections. In a first step only positional errors of the C-arm device
are considered. Assuming that x-ray camera transformations can be modeled as
3D rigid object motion transformations, this leads to the following minimization
problem:

J

(
f
Φ

)
=

M∑
i=1

‖Aif( Φi) − bi‖ = min! (2)

Here Ai denotes the i-th part of the projection operator simulating one cone
beam projection image bi, M the number of acquired projection images and Φi

the 3D rigid motion transformation of the reconstructed object with six degrees
of freedom. An equation similiar to Eqn.(2) is minimized in an iterative procedure
to compensate for motion in SPECT imaging [2]. Our approach is to first solve
Eqn.(1) with a reconstruction algorithm. In a second step the motion parameters
of Eqn.(2) are estimated with a rigid 2D/3D-registration algorithm by employing
an appropriate distance measure [3]. The motion parameters are then used to
correct the x-ray camera positions. In the next iteration, the reconstruction
algorithm uses the information from the corrected projections to compute a new
least-squares solution with respect to all projection equations given in Eqn.(1).
This procedure is then iteratively repeated until some convergence criteria are
fulfilled. The corrected projection positions obtained with this method represent
an equal or better projection geometry with respect to the used distance measure,
since we initialize the registration algorithm with the projection positions given
by the C-arm device. For reasons of clarity and completeness a short description
of the employed reconstruction algorithm and details of the 2D/3D-registration
algorithm are given.

2.1 3D-Reconstruction Algorithm

The algebraic reconstruction technique (ART) was used for 3D-reconstruction.
Let gi(λ; b; ·), G(λ; b; ·) : Rn → Rn be the applications of:

gi(λ; b; f) = f − λ
〈f, ai〉 − bi

‖ai‖2 ai, i = 1, · · · , m, (3)
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G(λ; b; f) = (g1 ◦ · · · ◦ gm)(λ; b; x), (4)

where ai denotes the i-th row of the system matrix A and bi the i-th element of
the measured projection image. Letting λ denote a relaxation parameter, the al-
gorithm of Kaczmarz calculates a limit point for the following iteration equation:

f0 ∈ Rn; k = 0, 1, 2, ...; fk+1 = G(λ; b; fk). (5)

Censor et. al [4] proved that for sufficiently small values of λ the algorithm con-
verges to a least squares solution of a weighted version of Eqn.(1). This technique
has the advantage that it is able to employ a former reconstruction result in order
to compute a new least squares solution. For further details and enhancements
regarding the reconstruction of inconsistent projection data we refer to [5].

2.2 2D/3D-Registration

2D/3D-registration algorithms are conventionally used to find the transforma-
tion between intraoperative 2D radiographs and a preoperative CT-volume. In
our application we have two significant advantages over conventional 2D/3D-
registration scenarios, since the imaged object does not change and we have a
good initialization of the position in case of positional error correction. The main
building blocks of these algorithms are the distance measure and the optimiza-
tion scheme [3]. We only consider intensity based distance measures which do
not require prior segmentation. We tested the sum of squared distances (SSD)
for minimizing the positional inconsistencies. We also tested a gradient-based
correlation distance measure [3]. In this case, the cost function to be optimized
C = 1

2 (Cx + Cy) is calculated as the average of the normalized cross corre-
lations of the partial derivatives of the projection and DRR image intensities.
Prx(x, y) = ∂Pr(x,y)

∂x and Pry(x, y) = ∂Pr(x,y)
∂y denote the partial derivatives of

image intensities, and Prx and Pry denote their mean values.

Cx =

∑
x,y(Prx(x, y) − Prx)(Drrx(x, y) − Drrx)√∑

x,y(Prx(x, y) − Prx)2
√∑

x,y(Drrx(x, y) − Drrx)2
(6)

The gradient cost function seems to be more robust with respect to positional
inconsistencies in the data. In addition, problems caused by different image gen-
eration processes of DRRs and real projections are resolved as well.

The optimization was carried out in a hierarchical multi-level approach: a
pyramid of images is constructed by down-sampling and filtering the image at
multiples of 2 and the optimization is run for each level of the pyramid. This
allows for a robust and fast optimization, since evaluating the cost function at
lower levels is computationally very cheap.

The values of the cost functions for transformation parameters varying around
the optimum found by the 2D/3D-registration algorithm have been plotted in
Fig. 1. They all show a relatively smooth, monotonically increasing function
with a unique maximum and an appropriate convergence range in the vicinity
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of the found value. Also, one can see that out-of-plane parameters (here the x-
deviation) usually cannot be determined as accurately as other parameters due
to the projection geometry [6]. A variant of the Hooke-Jeeves pattern-search [7]
was used as an optimization-scheme. To avoid double function evaluations the
function values were cached in a hash table as described in [8].
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Fig. 1. Cost function values for the proximal femur experiment as a function of devia-
tion from the optimal value found by the 2D/3D-registration algorithm. The upper row
shows the values of SSD distance measure for deviations of the translational parame-
ters (x, y, z). The lower row shows the values of gradient cost function for deviations
of two transformation parameters: (x, y), (y, θx), (y, θy).

2.3 Implementation Details and Computation Time

All algorithms were implemented in C++ and parallelized with OpenMP [9].
When using several processor cores, a almost linear speedup has been observed
since all employed algorithms are inherently parallel. The registration of one
projection image (Fig. 3, 5682 pixel) took around 30s-40s for a 2563 volume
and 3 image pyramid levels. For fast DRR generation a shear warp factorization
algorithm [6] was used. A typical complete registration iteration on our test sys-
tem (Dual Xeon 5160, 16 GB Ram) took around 780s for a 2563 dataset and
100 projections (5682). One iteration of our software based reconstruction algo-
rithm (double precision) took around 180s. To allow for intraoperative usage, a
clear reduction of computation time must be obtained. Since DRR generation is
the most time consuming part of the registration algorithm, our future imple-
mentation will make use of GPU based algorithms (e.g. 3D texture based DRR
generation, GPU based reconstruction algorithms).

The entries of the system matrix A were determined by discretizing the ray
beam with a trilinear interpolation coefficient approach [10]. The reconstruction
volume was also optimized by a block structure such as to speed up memory
access in order to enable a fast set up of the system matrix equations [10].
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2.4 Clinical- and C-Arm Projection Data Experiments

We generated DRR’s (100 projections, 568x568, 180 degree angle range) from
a clinical dataset (512x512x200) of a distal femur bone. After resampling the
dataset to an isotrope 2563-grid, we perturbed all camera positions T Cam

World to
T pertCam

World (max ±10mm, max ±1deg). The perturbed projections were generated
from a different DRR generator as the one employed in the registration process
in order to simulate the different image generation process. In a first experiment
we measured the registration accuracy by registering 400 perturbed DRRs to
the original volume. The euler angle representation of the deviation matrix Tm
was used for evaluation.

TmCam
regCam = T World

regCamT Cam
World (7)

We applied the iterative correction process to the perturbed data and in each
step, we ran 5 ART-iterations to reconstruct the object. The projections where
then iteratively registered to the previous reconstruction result.

The real projection data was acquired with a robotized experimental C-arm [11]
from Ziehm-Imaging (Fig. 2). The position of the C-arm is known from the direct
kinematics. In addition this C-arm can be arbitrarily positioned to a point in its
working space by computing the inverse kinematics solution described in [12].

In the first experiment a sawbone model of the proximal femur was imaged
in a planar angular orbit (50 projections, 568x568, 180 degree angle range). A
sequential ART algorithm with a small relaxation parameter (λ = 0.25) was
used for reconstruction. After 6 ART-iterations per step, the original projection
images were registered to the reconstruction result, and subsequently a new
reconstruction was started.

Fig. 2. Left: the robotized C-arm prototype. Middle: determination of the geometrical
distortions using bi-variate polynomials. Right: projection image of the rat skull lying
in a cup with calibration grid.

In a second experiment we imaged a rat skull (60 projections, 568x568, 135
degree angle range). In this experiment, the geometric distortion was corrected
using bi-variate polynomials of degree five [8]. The coefficients were determined
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using a calibration object placed on the image intensifier (Fig. 2). This step
becomes obsolete for the next version of the robotized C-arm device which will
be equipped with digital flat panel detector technology, where no geometrical
distortions occur.

3 Results

The registration accuracy of the clinical data experiment showed medium rota-
tional deviations of 0.137 (x), 0.0134 (y) and 0.07 (z) degree and medium transla-
tional deviations of 0.05 (x), 0.70 (y), 0.35 (z) mm. In addition the visualization of
the 2D/3D-registration results showed a clear positional error reduction (Fig. 3).
In order to evaluate the correction algorithm results, we used the reconstruction
residual (1), which is a direct measure for inconsistencies in the projection data.
For the clinical dataset (Fig. 6) the residual dropped from initially 17019 to 7421
after 10 complete iterations (original data 2375).

Fig. 3. Registration of one projection image with its DRR (top row unregistered) of
the clinical distal femur bone (left), the sawbone proximal femur bone (middle) and
the rat skull lying in a small cup (right)

Fig. 5 shows the reconstruction residual of the proximal femur experiment.
The residual declines after each reconstruction-registration step. This gives evi-
dence that the calculated positions lead to a more consistent reconstruction and
in succession to a more accurate registration. In the rat skull experiment, a fast
decline of the residiual could be observed, due to the prior removal of geometric
distortions. Also a siginficant improvement in reconstruction quality could be
observed after one iteration (Fig. 4) of the proposed correction scheme.
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Fig. 4. Reconstructed slices from a proximal femur sawbone model and a rat skull. The
respective left slice shows the uncorrected reconstruction result. Artefacts appearing as
doubled, blurred edges and holes are significantly reduced by the iterative correction
process (sawbone 7 iterations, rat skull 1 iteration).
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Fig. 5. Plot of the reconstruction residual (proximal femur experiment) in dependency
of the reconstruction and registration iterations

Fig. 6. Results from the clinical dataset of the distal femur. Reconstruction from
original data, the volume rendering is clipped and visualized with a modified opacity
function (left). Axial slice from the initial reconstruction from perturbed data (middle).
Same slice after 10 iterations of the proposed algorithm (right).
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4 Discussion

In this paper we have implemented a new method for positional error and mo-
tion compensation by integrating a 2D/3D-registration algorithm into a cone
beam 3D-reconstruction framework. In all experiments, the inconsistencies were
clearly reduced resulting in significantly improved reconstructions. In the case
of simulated projections, perturbing the projection data has the effect that the
position and orientation of the original object is also slightly modified. This dis-
turbes a simple comparison. We plan to perform a rigid registration of the two
volumes to allow for a direct comparison of the reconstruction results. The effect
of slight positional changes of the reconstructed object due to the correction
process can be also an issue for intraoperative navigation applications, since the
reconstruction result is sometimes directly used for registration free navigation.
To allow an intraoperative usage, the registration and reconstruction time must
be in the range of two minutes. This is achievable by using GPU based algo-
rithms and modern parallel hardware. Another important issue is registration
accuracy. When performing position correction the use of subsequent projection
image subsets should improve registration accuracy and robustness. Also slight
changes of intrinsic x-ray camera parameters should be taken into account to
model the twisting and bending of the C-arm.
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