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Abstract. The question of conceptual representation has received con-
siderable attention in philosophy, neuroscience and embodied evolved
agents. Numerous theories on the interpretation of the term ‘represen-
tation’ exist, and many arguments have been made for and against the
existence of representations in animate and animat agents. Our work
studies this question in evolved artificial embodied agents in a quanti-
tatively rigorous manner, for the first time. We develop two measures,
based on information theory, to account for representations. These mea-
sures are studied by applying them to evolved agents performing a vi-
sual categorization, generalized XOR task. Our results show that having
quantitative measures still leaves one with arbitrary “threshold values”
decisions which permit wide freedom in determining the existence of
representations. However, and more importantly, our results show that
information-theoretic measures can still be used efficiently to identify
discriminative neural patterns and internal structures that characterize
a representation, if the latter is formed.

1 Introduction

Internal representations are thought to play a central role in our understanding
of cognitive behavior and information processing of intelligent agents. Yet, the
idea that representations actually exist in the brains of animate or animat agents
has been seriously challenged by many. For example, Brooks [1] has proposed
a bottom-up approach to building agents that are able to react in real time in
their environment, while having no central model representing the world. Cliff
and Noble [2] point to the lack of evidence of representations in artificial evolved
systems solving simple visual tasks, where the term ‘representation’ denotes a
sub-network’s pattern of activity which marks an external object or event to the
rest of the network. Rather much like Pfeifer and Scheier [3], they suggested that
the workings of agents could be best understood by studying the dynamics of
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sensory-motor coordination between the agent and the environment. The use-
fulness of the notion of representations has also been a focus of much debate in
cognitive neuroscience, e.g., [4,5,6].

One classical way to search for representations in cognitive neuroscience re-
search is to look for an emergence of a “correlational structure” in the patterns
of neural activity studied [4,6]. Intuitively, this is tantamount to the assertion
that representation of an object corresponds to neural activity that marks its
existence, but is indifferent to the different instances of it. Another interesting ap-
proach, termed in information theoretic notions, has been suggested by Usher [7],
where Shannon mutual information is used to characterize the information that a
concept/representation carries about external items. These investigations, how-
ever, have studied representations in standard connectionist networks, or have
remained on a conceptual and philosophical level. Given this long-time and
fundamental controversy in cognitive neuroscience, the present work
studies, in a quantitative manner, the question of representation in
embodied evolved agents. The agents studied evolve to solve a generalized
XOR task by successfully categorizing visual stimuli. This task was chosen be-
cause it is known as a non-trivial evolutionary benchmark challenge [8], and
because it is characterized by vanishing correlations in the sensory input read-
ings, on the background of which the formation of a structure in neural activity
is necessary and may be readily assessed. Moreover, by this we avoid wrong con-
clusions using neural networks, which can exploit first-order correlations between
input and output and by that ignore higher-order configurational information [5].

Our goals in this work are twofold: One is to gauge whether repre-
sentations are indeed formed in our agents. The other more important
one is to capitalize on the simplicity and transparency of evolved agent
models and develop rigorous and quantitative measures of “represen-
tation”. The latter should serve as working rulers in future studies
of this fundamental issue. The paper is organized as follows. We begin by
describing the model and experimental protocol by which we evolve the agents.
In Sect. 3 we present two quantitative approaches for defining and measuring
representations, and describe the results obtained when these methods are ap-
plied to the evolved agents. Finally, in Sect. 4, we discuss the implications of our
findings for measuring and understanding representation in embodied agents.

2 Methods

The model environment (world) is a 14.0 × 14.0 × 2 three dimensional semi
continuous simulated arena, where the arena’s length and width are continuous
while the height is discrete. The world contains two types of resources, 10 food
items and 10 poison items. The resources are randomly scattered in a 10.0×10.0
central resources zone. Each resource type has a shape comprised of two circular
pellets (each pellet radius can be either 0.02 or 0.08), placed one on top of the
other with a common center point (Fig. 1a,c). The agent behavioral task is eating
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Fig. 1. The model outline. (a) A top view of the simulated world. An agent (gray
circle) looking at two food items (white circles) and at two poison items (black circles)
through a 5 sub-slices scan sensor. (b) The projected sensor retina (box) along with the
photoreceptors values (numbers). (c) Resources shapes in the generalized XOR task

as much food as possible while avoiding poison. The agent is initially placed at
a random location in the arena and eats a resource by simply colliding into it.

The agent consists of three main systems: a scan sensor, constantly giving
readings of the environment; a synchronous continuous feed-forward neural net-
work, processing the sensor input and producing two output signals; and a motor
system, comprising of two independent wheels on either side of the agent’s cylin-
drical body (0.15 radius), each driven by one output motor neuron. The sensor is
mounted in front of the agent’s body and processes a 3D distal resource stimuli
to form a 2D retinal image. The sensor looks ahead for a distance of 3, accep-
tance angle of 90 ◦ and a height of 2. The sensor retina is realized as an array of
10 photoreceptors (Fig. 1b), each activated by the existence of a resource in the
corresponding sensor’s sub-slice. A photoreceptor value is set to the amount of
total projections from its corresponding sub-slice, yielding a real number in the
range of [0,1] (Fig. 1a,b).

A synchronous continuous feed-forward neural network realizes the agent’s
neurocontroller. We use several network architectures with 1-2 hidden layers. The
network acquires its inputs from 10 dedicated sensory neurons, each transmitting
the value of one photoreceptor. The output layer is composed of two output
neurons, which control the agent’s wheels. All network neurons set their activities
according to: Vi(t) = g(hi(t)), where Vi(t) and hi(t) denote neuron i’s activity
and field (input vector sum) at network update t correspondingly, and g(x) is
the sigmoid function g(x) = 1/(1 + e−β(x−θi)), where β = 4 is the squashing
factor and θi is a bias term, set in the genome for each neuron.

The agent motion is determined by its speed and orientation which are set
by the wheels velocities and their difference, correspondingly. The agent speed is
between -1 and 1 world units per time step, and its turn angle is in the interval
of [-36 ◦,36 ◦].
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An agent’s lifetime lasts 50 sensory-motor cycles, followed by a normalized
fitness score calculated as the number of food items it has consumed minus the
number of poison items it has eaten. An evolution run lasts 10,000 generations. In
each generation a population of 100 agents is evaluated, then the parents of the
next generation are chosen with probability proportional to the agents fitness.
At the end of an evolution session the precise fitness of an agent is assessed over
1,000 epochs. The agent’s genetic encoding is a string of real valued numbers
describing the neurocontroller synaptic weights and the neurons’ bias terms θi.
The initial genes values are randomly chosen in the range of -1 and 1, and have
no limits during the evolution run. The genetic operators employed are uniform
crossover with probability of 0.35 and mutation with probability of 0.02 and
range of [-0.6,0.6].

The experiment we conducted (generalized XOR task) is designed to chal-
lenge the agents with a ‘visual’ generalized XOR problem. 5 food items have
a common shape of large pellet (0.08) placed underneath a small one (0.02)
(food10). The remaining 5 food items have the opposite arrangement (food01).
Similarly, there are two types of poison: 5 poison items have large lower and
upper pellets (poison11), while the rest of the poison items have small pellets
(poison00) (Fig. 1c). Hence, the agent has to solve the generalized XOR problem
in order to distinguish successfully food from poison. We evolve two kinds of
neurocontrollers, one with a single hidden layer with 5 neurons (xor-5-2), and
another with two hidden layers, the first with 6 neurons and the second with 4
neurons (xor-6-4-2).

3 Results

3.1 Performance

Direct evolution failed to come up with a good solution for the generalized XOR
problem (fitness of 0.2421 and 0.2563 for xor-5-2 and xor-6-4-2, correspond-
ingly1), therefore we used incremental evolution [9]. This is executed by having
large pellets with radiuses of 0.1 (instead of 0.08) and small pellets with a sig-
nificantly reduced size in the initial stage of the evolution, and then gradually
modifying the pellets sizes to their original values as the incremental evolution
successfully progresses. Indeed, this technique succeeds and proper agents are
evolved (fitness of 0.3275 and 0.3770 for xor-5-2 and xor-6-4-2, correspond-
ingly). Further analysis focuses on these two agents, which exhibit a well ad-
justed behavior, circling the arena in order to keep within the resource zone,
avoiding poison, turning to food on either side and then moving with full speed
ahead towards it.

1 The maximal fitness feasible can be roughly estimated by viewing an agent evolved in
a poison-less world with a single food type. Here, the best evolved individual attains
fitness of 0.4272, having a neurocontroller of one hidden layer with 4 neurons.
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Fig. 2. Left and right output motor neurons’ receptive fields in response to food
stimuli, for agent xor-6-4-2’s. (a) Left and right responses to food01. (b) Left and
right responses to food10. Each bar marks the neuron’s activation level in response to
a food stimuli in a particular distance and orientation

3.2 Behavioral Analysis

A first clue to representations in embodied agents can be obtained from a be-
havioral analysis. If distinct behavioral responses are found to different types of
food (or poison), the search for food representation, that is indifferent of food
type, turns irrelevant since representation is not used to constitute an akin be-
havior. Conversely, if similar behavioral responses to both types of a resource
are observed, it supports the possibility that a joint internal representation is
formed.

In order to compare the agent behavior to the different resources types, we
measured the output neurons’ receptive fields. This was done by recording their
activation levels while introducing, one at a time, all possible resource instances
in the agent’s field of view (110 discrete locations for each resource type). As
can be clearly seen (Fig. 2), there is significant similarity in agent xor-6-4-2’s
output neurons receptive fields, both with regard to food types and with regard
to poison types (not shown). This affirms that the agent acts similarly in response
to the different types of food and similarly for the different types of poison (an
analogous conclusion is made regarding agent xor-5-2).

3.3 Entropy in Embedded Agents

An ideal method for studying the relationship between objects and their neural
representations, in face of a stochastic noisy environment, is information theory.
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It provides a rigorous and quantitative approach to measure the high order
correlations that are typical to the type of non linear processing performed by
neurocontrollers. Usher [7] has suggested a quantification of representation that
is based on the mutual information between a coherent state of the system and
the input stimuli in the environment. Following this approach, we develop a
novel information related measure of representations in agents. Let us denote
S ∈ {sf , sp} where S = sf if the object stimuli is food and S = sp if it is poison.
Similarly, denote F ∈ {f01, f10} and P ∈ {p00, p11}. Let R = {r1, . . . , rn} denote
the set of n coherent states of the neural system examined. To identify these
states in the experiments reported below, we applied a K-means algorithm to the
neural activities recorded over 2000 agent’s life trials (epochs), using a Euclidean
norm. The ri’s are obtained as the centroids of neural activities clusters. Each
neural activity vector is tagged by the most central object in the agent’s view,
e.g., as food10 or poison11. Using this notation we calculate the conditional
entropy of S given R [10]

H(S|R) =
n∑

i=1

p(ri)H(S|R = ri) = −
n∑

i=1

∑

j=f,p

p(ri)p(sj |ri) log2 p(sj |ri) . (1)

This measure expresses the uncertainty of knowing whether food or poison
was spotted given the activity pattern of the sub-network examined. It obtains
values in the range of 0 to 1. If food and poison yield distinct activity patterns,
H(S|R) will obtain vanishing values. On the other hand, similar activity patterns
for both food and poison would yield high H(S|R) values close to 1.

Importantly, this measure alone cannot account for a representation since
low H(S|R) values may be obtained when activity patterns for the two food
types (or poison types) are different. Since this case does not capture the no-
tion of representation, H(S|R) must be complemented with a measure of the
difference in activity patterns within different types of food or poison. There-
fore, food representation should be described as the difference between H(S|R)
and the entropy H(F |R), computed likewise using food instances only. Since the
representation of food (poison) may lay in the activity of a subset of the neurons
examined, we define the Euclidean Entropy Measures (EEM) for the subset T ,

EEMf(T ) = H(F |RT )−H(S|RT ) and EEMp(T ) = H(P |RT )−H(S|RT ) (2)

where RT is a set of clusters obtained using K-means with Euclidean norm
over the neuronal activities of all neurons in the subset T . This measure can
take values in the range of [−1, 1]. It obtains a value of 1 when the responses
for the different types of food (poison) are identical and the responses for food
are completely different from those to poison, therefore denoting that a true
representation of food (or poison) has been formed. A value of -1 is given when
there are indistinguishable neural activities for food and for poison but distinct
activities between both types of food (poison). In the case of random activity
patterns, a value of zero is obtained.

Figure 3 shows the values of EEM calculated for all relevant sub-networks of
the xor-6-4-2’s hidden layers. It shows that EEMp values are relatively constant
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Fig. 3. Euclidean Entropy Measures for agent xor-6-4-2. EEMf (solid) and EEMp

(dotted) for (a) first hidden layer and (b) second hidden layer. A sub-network label
(x-axes) denotes its configuration, where 1 means that the corresponding neuron exists
in the sub-network. Since some neurons have a constant activity (i.e., neurons 2 and
4 in the first hidden layer and neuron 4 in the second hidden layer), only the relevant
subsets for each layer are presented

across all subsets, yielding a distributed poison representation. On the other
hand, EEMf values are more variable and gain their maximum in few subsets,
each having only few neurons, indicating a more localized food representation
(qualitatively similar results were obtained for agent xor-5-2).

In order to provide an index for each layer and each resource we further define

EEM∗ = max
T

EEM(T ) , (3)

to measure the maximal EEM over all possible subsets. We calculated four
EEM∗ values for agent xor-6-4-2 (for food and for poison representations in
each of its two hidden layers), which are generally low (0.181 for food and 0.127
for poison in the first layer, and 0.051 for food and 0.101 for poison in the sec-
ond layer). This results from high H(F |R) and H(P |R) values but high H(S|R)
values (in the range [0.79,0.94]), indicating almost optimal food or poison unifi-
cation but a poor food-poison separation.

The first hidden layer EEM∗ values are higher than those of the second
hidden layer, especially for food. One may speculate that the second hidden
layer is strongly affected by the motoric constraints (e.g., same left turn for food
on the left and for poison in the center), thus resource representation is more
likely to form in the first hidden layer, yielding these higher EEM∗ values.

3.4 Extracting Representations Using Information Bottleneck with
Side Information

EEM assumes that the representation lies in a Euclidean metric on the single
neuron firing patterns. An alternative approach, is to cluster patterns
of activities based on their functional relevance. This approach was for-
mally defined and analyzed in [11], using the Information Bottleneck method
with Side Information (IBSI). IBSI allows to search for structures in neural
activities that are relevant to the discrimination between food and poison, but
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Fig. 4. IBSI joint probabilities. (a) P (S, R) and (b) P (F, R) means and SEM cal-
culated on agent xor-6-4-2’s first hidden layer. Clusters were obtained by applying
the sequential-IBSI hard clustering algorithm with γ = 1 and number of clusters= 3.
Similar results were obtained for wide range of γ values and number of clusters

not to the discrimination between different types of food or poison. IBSI can be
thought of as a clustering analysis procedure that operates on the conditional
distributions P (S|R = r) and P (F |R = r) rather than on the neural activities
R. It therefore pre-assumes no particular metric between neural activity patterns
at the clustering phase, and thus allows to test various kinds of metrics, rather
than to use them as the basis for clustering.

Applied to the problem at hand, IBSI searches for clusters that compress
well a discrete set of neural activities X into a set of clusters R, while maintaining
information about S and removing information about F (similarly about P ),

IBSIf = min
p(r|x)

I(X; R) − β[I(R; S) − γI(R; F )] , (4)

where β and γ are tradeoff parameters functioning as Lagrange multipliers (see
[11] for details). Inspection of the resulting set of clustered distributions P (S, R)
and P (F, R) reveals a clear discrimination between food and poison (Fig. 4a)
while hardly providing any knowledge about the different types of food (Fig. 4b).

It should be noted that both our EEM∗ and IBSI measures calculate very
similar information theoretic measures2. However, EEM∗ is obtained by max-
imizing over clusters that are formed using an Euclidean measure over neural
activities, while IBSI is obtained by directly maximizing the weighted difference
of informations. To compare the two measures on the same scale, we computed
the difference of entropies used for EEM (Eq. 2), over the clusters obtained from
IBSI (where T is the whole layer). IBSI achieved higher values than those ob-
tained with EEM (0.5898 for food and 0.5990 for poison in xor-6-4-2’s first
hidden layer, and 0.2246 for food and 0.2049 in the second hidden layer). One
hypothesis regarding the large values observed in the first hidden layer is that
it uses another (non-Euclidean) metric to solve the generalized XOR task while
the second hidden layer metric is more similar to the Euclidean metric since

2 In fact for γ = 1 and β → ∞ these measures become equivalent up to a constant
H(F ) − H(S).
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Fig. 5. IBSI food representations of agent xor-6-4-2. Mean and SEM of the neural
activities in the most informative cluster (gray bars) and in the remaining clusters
(white bars) for (a) the first hidden layer and for (b) the second hidden layer. Only
neurons with variable (and hence informative) activity are presented

is must refer to the motor actions to be executed. Another possibility is that
the second hidden layer values bounds are smaller since the same motor actions
should result from food and poison stimuli at different parts of the visual field.

After IBSI was used to extract functionally relevant clusters of neural ac-
tivities, we turn to identify the nature of food and poison representations in the
hidden layers neurons. To this end, we focus on the most informative cluster,
defined as the cluster with majority of food stimulated responses, that maxi-
mizes the single-symbol information DKL[p(s|r)||p(s)] − DKL[p(f |r)||p(f)] (and
similarly for poison) where DKL is the Kullback-Liebler divergence [10]. We first
compare the mean neural activities in this cluster with the remaining activities.
Figure 5 demonstrates this comparison for agent xor-6-4-2, and reveals that
the mean activities of neurons 1, 3 and 6 in the first hidden layer
and neuron 2 in the second hidden layer are significantly different
in this cluster than in the remaining ones (p <0.001 using t-test). This
indicates that the activities of these isolated neurons is discriminative (quali-
tatively analogous results are obtained for agent xor-5-2). Moreover, several
pairs of neurons were found to have cluster specific correlations that
were not observed in their baseline activities, which were found to be statis-
tically significant using standard statistical test for correlation difference (for
example, correlation coefficients of r1=0.485 and r2=-0.075 for neurons 2 and
3 in agent xor-6-4-2’s second hidden layer, yielding p of 0.0156). This suggests
that food representations lies not only in single neurons activities but also in
function specific correlations.

4 Conclusions

This study raises two major questions: a) Are representations created in em-
bodied evolved agents? and b) Can these representations be rigorously defined
and measured? To answer these questions, we define two measures, EEM and
IBSI-based, aimed to quantitatively and rigorously score inner representations.
These two measures differ in their fundamental premises; the first assumes an
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Euclidean metric between the neural activities, while the latter has no specific
underlying metric assumption. The EEM measure produces low values for all
agents and layers studied while IBSI values are significantly higher, but firm
conclusions about the existence or non-existence of representations remain sub-
ject to arbitrary “threshold value” decisions. However, we demonstrate that us-
ing these quantitative approaches leads to the identification of several important
representational characteristics, including localized and distributed structures,
discriminative neural activity patterns and cross-neuronal interactions. While
much remains to be done in future studies, this work clearly shows that it’s high
time to corroborate the ongoing important conceptual debate about representa-
tions with a rigorous, quantitative investigation.
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