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1. Introduction

In this article we will be concerned with arithmetic operations in the finite
field GF(2™). In particular, we examine methods of exploiting parallelism to
improve the speed of exponentiation.

We can think of the elements in GF(2") as being n-tuples which form an n
dimensional vector space over GF(2). If

lgiﬂz,ﬁ’ e }52"‘1

is a basis for this space then we call it a normal basis and we call 3 a generator of
the normal basis. It is well known ([1]) that GF(2") contains a normal basis for
every n > 1. For a € GF(2™) let (ag,a;,...,a,_;) be the coordinate vector of a

relative to the ordered normal basis N generated by §. It follows that a? then has
coordinate vector (a,_;,85,8y,--,8p_g), SO squaring is simply a cyclic shift of the

vector representation of a¢. In a hardware implementation squaring an element
takes one clock cycle and so is negligible. For the remainder of this article we will
assume that squaring an element is “free’’.

2. Discrete exponentiation

Suppose that we want to compute a® € GF(2") where
n—1 .
e = }'a;2°, a; €{0,1},
=0

Then

n—1 a2

af = ] o
1=}

n—1
and this requires A = { ¥'a,)—1 multiplications. On average for randomly chosen
1=0
. n . T . :
e, A will be about rY and so we require —;—L- multiplications to do the exponentia-

tion. We now examine ways of doing better.
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Select a positive integer k and rewrite the exponent e as

Ex
e= J b2~
1=0

k~ .

where b; = 37 a;i4; 27, Of course, each b; can be represented by a binary k-tuple
7=0

over Zy which we represent by b;,. We now rewrite e in the form

[

€= ) 2 Ci,w 2¥ w, C;y € {0,1}
wezi\jo) | =0

Example 1. If e = 2104+28 4274264944281 9141 and & = 2 then
e = (1)2104+(1)284+-(1+2) 28+(1)2%+(2) 22 +(1+2)2°

or
e = (2194+284-2%)(14(0)2)+22(0(1) +2) +(28+2%) (1+2)

[=1-1 '
Ifwelet Nw) = 37 Ci, 2% then
1=0

2Nw)w

af=a”

— H(a)\(w))w
On average A(w) will have —kn—k nonzero terms in it and, hence, will require
;2
Lk-—-l multiplications to evaluate. Since w is represented by a binary k-tuple, w
k2

| &

will have on average 5 mon-zero terms and require ——1 multiplications to evalu-

) k T
ate B¥. Therefore, to evaluate & ®¥ we need ¢ = —-}——}—7—2] multiplications.

p2k

Finally, to compute «® we need t multiplications for each w € Zzl‘\{O} and then

— 0

282 multiplications to multiply the results together. In total we require

: k s
M(k) = (28—1) {212 ol ok_o
(k) =(2°~1) {k2k+2 }+
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_ok_nl_n ok
= (2 1){162,‘&2 1}»1

If we use 2°—1 processors in parallel to evaluate each oM®¥ simultaneously
then the number of multiplications is on average
k

n k
(%) K2k 2

multiplications.

Example 2. For n = 2'° and various values of k we compute M(k) and T(k).

Kk M(k) T(k)
6 293 -

5 244 37

4 254 30

3 315 48

M(k) is minimized by k = 5 and T(k) by k = 4.

Example 3. For n = 2'% and various values of k we compute M (k) and T(k).

ko M) T(k)
11 15165 2052

10 10638 1031

9 9055 527

8 8924 288

~1

9605 201

6 10877 234

M(k) is minimized by k£ = 8 and T(k) by &k =T.
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A more extensive tabulation of the functions M(k) and T(k) is given in the
appendix. It appears at least for small values of n that M(k) and T'(k) are
minimized for £ about logz\/ﬁ .

Summary

In this paper, we have examined techiques for exponentiating in GF(2%).
These techniques take advantage of parallelism in exponentiation and use
processor/time tradeoffs to greatly improve the speed. A more complete study of
this problem and other techniques for exploiting parallelism in operation in

GF(2") is presented in [2].
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Appendix

Table 1 below lists the values of k which minimize M (k) and T(k) for vari-
ous values of n where n is a power of 2. Table 2 below is similar for values of n
in increment of 100.

k for Min Min value
n M(k) T(k) M) T(k)
64 3 3 21 8
128 3 3 39 10
256 4 3 74 16
512 4 4 134 22
1024 5 3 243 30
2048 5 5 442 43
4006 6 5 797 56
8192 6 5 1469 81
Table 1
k for Min Min value
n M(k) T(k) M{k) T(k)
100 3 3 31 9
200 3 3 60 13
300 4 3 84 18
400 4 4 107 20
500 4 4 131 21
600 4 4 154 23
700 4 4 178 24
800 5 4 200 26
900 5 4 219 28
1000 5 4 239 29
1100 5 4 258 31
1200 b} 4 278 32
1300 5 4 207 34
1400 5 4 316 35
1500 b) 4 33 37
1600 5 4 359 39
1700 b 4 374 40
1800 5 5 394 41
1900 5 5 413 42
2000 5 5 433 43
Table 2
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