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Preface

Traditional data mining methods are designed to deal with “static”
databases, i.e. databases where the ordering of records (or other database
objects) has nothing to do with the patterns of interest. Though the assump-
tion of order irrelevance may be sufficiently accurate in some applications,
there are certainly many other cases, where sequential information, such as
a time-stamp associated with every record, can significantly enhance our
knowledge about the mined data. One example is a series of stock values:
a specific closing price recorded yesterday has a completely different mean-
ing than the same value a year ago. Since most today’s databases already
include temporal data in the form of “date created”, “date modified”, and
other time-related fields, the only problem is how to exploit this valuable
information to our benefit. In other words, the question we are currently
facing is: How to mine time series data?

The purpose of this volume is to present some recent advances in pre-
processing, mining, and interpretation of temporal data that is stored by
modern information systems. Adding the time dimension to a database
produces a Time Series Database (TSDB) and introduces new aspects and
challenges to the tasks of data mining and knowledge discovery. These new
challenges include: finding the most efficient representation of time series
data, measuring similarity of time series, detecting change points in time
series, and time series classification and clustering. Some of these problems
have been treated in the past by experts in time series analysis. However,
statistical methods of time series analysis are focused on sequences of values
representing a single numeric variable (e.g., price of a specific stock). In a
real-world database, a time-stamped record may include several numerical
and nominal attributes, which may depend not only on the time dimension
but also on each other. To make the data mining task even more com-
plicated, the objects in a time series may represent some complex graph
structures rather than vectors of feature-values.

vii
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viii Preface

Our book covers the state-of-the-art research in several areas of time
series data mining. Specific problems challenged by the authors of this
volume are as follows.

Representation of Time Series. Efficient and effective representation
of time series is a key to successful discovery of time-related patterns.
The most frequently used representation of single-variable time series is
piecewise linear approximation, where the original points are reduced to
a set of straight lines (“segments”). Chapter 1 by Eamonn Keogh, Selina
Chu, David Hart, and Michael Pazzani provides an extensive and compar-
ative overview of existing techniques for time series segmentation. In the
view of shortcomings of existing approaches, the same chapter introduces
an improved segmentation algorithm called SWAB (Sliding Window and
Bottom-up).

Indexing and Retrieval of Time Series. Since each time series is char-
acterized by a large, potentially unlimited number of points, finding two
identical time series for any phenomenon is hopeless. Thus, researchers have
been looking for sets of similar data sequences that differ only slightly from
each other. The problem of retrieving similar series arises in many areas such
as marketing and stock data analysis, meteorological studies, and medical
diagnosis. An overview of current methods for efficient retrieval of time
series is presented in Chapter 2 by Magnus Lie Hetland. Chapter 3 (by
Eugene Fink and Kevin B. Pratt) presents a new method for fast compres-
sion and indexing of time series. A robust similarity measure for retrieval of
noisy time series is described and evaluated by Michail Vlachos, Dimitrios
Gunopulos, and Gautam Das in Chapter 4.

Change Detection in Time Series. The problem of change point detec-
tion in a sequence of values has been studied in the past, especially in the
context of time series segmentation (see above). However, the nature of
real-world time series may be much more complex, involving multivariate
and even graph data. Chapter 5 (by Gil Zeira, Oded Maimon, Mark Last,
and Lior Rokach) covers the problem of change detection in a classification
model induced by a data mining algorithm from time series data. A change
detection procedure for detecting abnormal events in time series of graphs
is presented by Horst Bunke and Miro Kraetzl in Chapter 6. The procedure
is applied to abnormal event detection in a computer network.

Classification of Time Series. Rather than partitioning a time series
into segments, one can see each time series, or any other sequence of data
points, as a single object. Classification and clustering of such complex
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Preface ix

“objects” may be particularly beneficial for the areas of process con-
trol, intrusion detection, and character recognition. In Chapter 7, Carlos
J. Alonso González and Juan J. Rodŕıguez Diez present a new method for
early classification of multivariate time series. Their method is capable of
learning from series of variable length and able of providing a classification
when only part of the series is presented to the classifier. A novel concept of
representing time series by median strings (see Chapter 8, by Xiaoyi Jiang,
Horst Bunke, and Janos Csirik) opens new opportunities for applying clas-
sification and clustering methods of data mining to sequential data.

As indicated above, the area of mining time series databases still
includes many unexplored and insufficiently explored issues. Specific sug-
gestions for future research can be found in individual chapters. In general,
we believe that interesting and useful results can be obtained by applying
the methods described in this book to real-world sets of sequential data.
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CHAPTER 1

SEGMENTING TIME SERIES: A SURVEY AND
NOVEL APPROACH

Eamonn Keogh

Computer Science & Engineering Department, University of California —
Riverside, Riverside, California 92521, USA

E-mail: eamonn@cs.ucr.edu

Selina Chu, David Hart, and Michael Pazzani

Department of Information and Computer Science, University of California,
Irvine, California 92697, USA

E-mail: {selina, dhart, pazzani}@ics.uci.edu

In recent years, there has been an explosion of interest in mining time
series databases. As with most computer science problems, representa-
tion of the data is the key to efficient and effective solutions. One of the
most commonly used representations is piecewise linear approximation.
This representation has been used by various researchers to support clus-
tering, classification, indexing and association rule mining of time series
data. A variety of algorithms have been proposed to obtain this represen-
tation, with several algorithms having been independently rediscovered
several times. In this chapter, we undertake the first extensive review
and empirical comparison of all proposed techniques. We show that all
these algorithms have fatal flaws from a data mining perspective. We
introduce a novel algorithm that we empirically show to be superior to
all others in the literature.

Keywords: Time series; data mining; piecewise linear approximation;
segmentation; regression.

1. Introduction

In recent years, there has been an explosion of interest in mining time
series databases. As with most computer science problems, representation
of the data is the key to efficient and effective solutions. Several high level

1
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(a) (b)

Fig. 1. Two time series and their piecewise linear representation. (a) Space Shuttle
Telemetry. (b) Electrocardiogram (ECG).

representations of time series have been proposed, including Fourier Trans-
forms [Agrawal et al. (1993), Keogh et al. (2000)], Wavelets [Chan and Fu
(1999)], Symbolic Mappings [Agrawal et al. (1995), Das et al. (1998), Perng
et al. (2000)] and Piecewise Linear Representation (PLR). In this work,
we confine our attention to PLR, perhaps the most frequently used repre-
sentation [Ge and Smyth (2001), Last et al. (2001), Hunter and McIntosh
(1999), Koski et al. (1995), Keogh and Pazzani (1998), Keogh and Pazzani
(1999), Keogh and Smyth (1997), Lavrenko et al. (2000), Li et al. (1998),
Osaki et al. (1999), Park et al. (2001), Park et al. (1999), Qu et al. (1998),
Shatkay (1995), Shatkay and Zdonik (1996), Vullings et al. (1997), Wang
and Wang (2000)].

Intuitively, Piecewise Linear Representation refers to the approximation
of a time series T , of length n, with K straight lines (hereafter known as
segments). Figure 1 contains two examples. Because K is typically much
smaller that n, this representation makes the storage, transmission and
computation of the data more efficient. Specifically, in the context of data
mining, the piecewise linear representation has been used to:

• Support fast exact similarly search [Keogh et al. (2000)].
• Support novel distance measures for time series, including “fuzzy queries”

[Shatkay (1995), Shatkay and Zdonik (1996)], weighted queries [Keogh
and Pazzani (1998)], multiresolution queries [Wang and Wang (2000),
Li et al. (1998)], dynamic time warping [Park et al. (1999)] and relevance
feedback [Keogh and Pazzani (1999)].

• Support concurrent mining of text and time series [Lavrenko et al.
(2000)].

• Support novel clustering and classification algorithms [Keogh and
Pazzani (1998)].

• Support change point detection [Sugiura and Ogden (1994), Ge and
Smyth (2001)].
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Surprisingly, in spite of the ubiquity of this representation, with the
exception of [Shatkay (1995)], there has been little attempt to understand
and compare the algorithms that produce it. Indeed, there does not even
appear to be a consensus on what to call such an algorithm. For clarity, we
will refer to these types of algorithm, which input a time series and return
a piecewise linear representation, as segmentation algorithms.

The segmentation problem can be framed in several ways.

• Given a time series T , produce the best representation using only K
segments.

• Given a time series T , produce the best representation such that the maxi-
mum error for any segment does not exceed some user-specified threshold,
max error.

• Given a time series T , produce the best representation such that the
combined error of all segments is less than some user-specified threshold,
total max error.

As we shall see in later sections, not all algorithms can support all these
specifications.

Segmentation algorithms can also be classified as batch or online. This is
an important distinction because many data mining problems are inherently
dynamic [Vullings et al. (1997), Koski et al. (1995)].

Data mining researchers, who needed to produce a piecewise linear
approximation, have typically either independently rediscovered an algo-
rithm or used an approach suggested in related literature. For example,
from the fields of cartography or computer graphics [Douglas and Peucker
(1973), Heckbert and Garland (1997), Ramer (1972)].

In this chapter, we review the three major segmentation approaches
in the literature and provide an extensive empirical evaluation on a very
heterogeneous collection of datasets from finance, medicine, manufacturing
and science. The major result of these experiments is that only online algo-
rithm in the literature produces very poor approximations of the data, and
that the only algorithm that consistently produces high quality results and
scales linearly in the size of the data is a batch algorithm. These results
motivated us to introduce a new online algorithm that scales linearly in the
size of the data set, is online, and produces high quality approximations.

The rest of the chapter is organized as follows. In Section 2, we provide
an extensive review of the algorithms in the literature. We explain the basic
approaches, and the various modifications and extensions by data miners. In
Section 3, we provide a detailed empirical comparison of all the algorithms.
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We will show that the most popular algorithms used by data miners can in
fact produce very poor approximations of the data. The results will be used
to motivate the need for a new algorithm that we will introduce and validate
in Section 4. Section 5 offers conclusions and directions for future work.

2. Background and Related Work

In this section, we describe the three major approaches to time series seg-
mentation in detail. Almost all the algorithms have 2 and 3 dimensional
analogues, which ironically seem to be better understood. A discussion of
the higher dimensional cases is beyond the scope of this chapter. We refer
the interested reader to [Heckbert and Garland (1997)], which contains an
excellent survey.

Although appearing under different names and with slightly different
implementation details, most time series segmentation algorithms can be
grouped into one of the following three categories:

• Sliding Windows: A segment is grown until it exceeds some error bound.
The process repeats with the next data point not included in the newly
approximated segment.

• Top-Down: The time series is recursively partitioned until some stopping
criteria is met.

• Bottom-Up: Starting from the finest possible approximation, segments
are merged until some stopping criteria is met.

Table 1 contains the notation used in this chapter.

Table 1. Notation.

T A time series in the form t1, t2, . . . , tn
T [a : b] The subsection of T from a to b, ta, ta+1, . . . , tb
Seg TS A piecewise linear approximation of a time series of length n

with K segments. Individual segments can be addressed with
Seg TS(i).

create segment(T ) A function that takes in a time series and returns a linear segment
approximation of it.

calculate error(T ) A function that takes in a time series and returns the
approximation error of the linear segment approximation of it.

Given that we are going to approximate a time series with straight lines,
there are at least two ways we can find the approximating line.
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• Linear Interpolation: Here the approximating line for the subsequence
T[a : b] is simply the line connecting ta and tb. This can be obtained in
constant time.

• Linear Regression: Here the approximating line for the subsequence
T[a : b] is taken to be the best fitting line in the least squares sense
[Shatkay (1995)]. This can be obtained in time linear in the length of
segment.

The two techniques are illustrated in Figure 2. Linear interpolation
tends to closely align the endpoint of consecutive segments, giving the piece-
wise approximation a “smooth” look. In contrast, piecewise linear regression
can produce a very disjointed look on some datasets. The aesthetic superi-
ority of linear interpolation, together with its low computational complex-
ity has made it the technique of choice in computer graphic applications
[Heckbert and Garland (1997)]. However, the quality of the approximating
line, in terms of Euclidean distance, is generally inferior to the regression
approach.

In this chapter, we deliberately keep our descriptions of algorithms at a
high level, so that either technique can be imagined as the approximation
technique. In particular, the pseudocode function create segment(T) can
be imagined as using interpolation, regression or any other technique.

All segmentation algorithms also need some method to evaluate the
quality of fit for a potential segment. A measure commonly used in conjunc-
tion with linear regression is the sum of squares, or the residual error. This is
calculated by taking all the vertical differences between the best-fit line and
the actual data points, squaring them and then summing them together.
Another commonly used measure of goodness of fit is the distance between
the best fit line and the data point furthest away in the vertical direction

Linear
Interpolation

Linear
Regression

Fig. 2. Two 10-segment approximations of electrocardiogram data. The approxima-
tion created using linear interpolation has a smooth aesthetically appealing appearance
because all the endpoints of the segments are aligned. Linear regression, in contrast, pro-
duces a slightly disjointed appearance but a tighter approximation in terms of residual
error.
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(i.e. the L∞ norm between the line and the data). As before, we have
kept our descriptions of the algorithms general enough to encompass any
error measure. In particular, the pseudocode function calculate error(T)

can be imagined as using any sum of squares, furthest point, or any other
measure.

2.1. The Sliding Window Algorithm

The Sliding Window algorithm works by anchoring the left point of a poten-
tial segment at the first data point of a time series, then attempting to
approximate the data to the right with increasing longer segments. At some
point i, the error for the potential segment is greater than the user-specified
threshold, so the subsequence from the anchor to i − 1 is transformed into
a segment. The anchor is moved to location i, and the process repeats until
the entire time series has been transformed into a piecewise linear approx-
imation. The pseudocode for the algorithm is shown in Table 2.

The Sliding Window algorithm is attractive because of its great sim-
plicity, intuitiveness and particularly the fact that it is an online algorithm.
Several variations and optimizations of the basic algorithm have been pro-
posed. Koski et al. noted that on ECG data it is possible to speed up the
algorithm by incrementing the variable i by “leaps of length k” instead of
1. For k = 15 (at 400 Hz), the algorithm is 15 times faster with little effect
on the output accuracy [Koski et al. (1995)].

Depending on the error measure used, there may be other optimizations
possible. Vullings et al. noted that since the residual error is monotonically
non-decreasing with the addition of more data points, one does not have
to test every value of i from 2 to the final chosen value [Vullings et al.
(1997)]. They suggest initially setting i to s, where s is the mean length
of the previous segments. If the guess was pessimistic (the measured error

Table 2. The generic Sliding Window algorithm.

AlgorithmAlgorithmAlgorithm Seg TS = Sliding Window(T, max error)
anchor = 1;
while not finished segmenting time serieswhile not finished segmenting time serieswhile not finished segmenting time series
i = 2;
whilewhilewhile calculate error(T[anchor: anchor + i ]) < max error

i = i + 1;
end;end;end;
Seg TS = concat(Seg TS, create segment(T[anchor: anchor

+ (i - 1)]);anchor = anchor + i;
end;end;end;
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is still less than max error) then the algorithm continues to increment i

as in the classic algorithm. Otherwise they begin to decrement i until the
measured error is less than max error. This optimization can greatly speed
up the algorithm if the mean length of segments is large in relation to
the standard deviation of their length. The monotonically non-decreasing
property of residual error also allows binary search for the length of the
segment. Surprisingly, no one we are aware of has suggested this.

The Sliding Window algorithm can give pathologically poor results
under some circumstances, particularly if the time series in question con-
tains abrupt level changes. Most researchers have not reported this [Qu
et al. (1998), Wang and Wang (2000)], perhaps because they tested the
algorithm on stock market data, and its relative performance is best on
noisy data. Shatkay (1995), in contrast, does notice the problem and gives
elegant examples and explanations [Shatkay (1995)]. They consider three
variants of the basic algorithm, each designed to be robust to a certain
case, but they underline the difficulty of producing a single variant of the
algorithm that is robust to arbitrary data sources.

Park et al. (2001) suggested modifying the algorithm to create “mono-
tonically changing” segments [Park et al. (2001)]. That is, all segments con-
sist of data points of the form of t1 ≤ t2 ≤ · · · ≤ tn or t1 ≥ t2 ≥ · · · ≥ tn.
This modification worked well on the smooth synthetic dataset it was
demonstrated on. But on real world datasets with any amount of noise,
the approximation is greatly overfragmented.

Variations on the Sliding Window algorithm are particularly popular
with the medical community (where it is known as FAN or SAPA), since
patient monitoring is inherently an online task [Ishijima et al. (1983), Koski
et al. (1995), McKee et al. (1994), Vullings et al. (1997)].

2.2. The Top-Down Algorithm

The Top-Down algorithm works by considering every possible partitioning
of the times series and splitting it at the best location. Both subsections
are then tested to see if their approximation error is below some user-
specified threshold. If not, the algorithm recursively continues to split the
subsequences until all the segments have approximation errors below the
threshold. The pseudocode for the algorithm is shown in Table 3.

Variations on the Top-Down algorithm (including the 2-dimensional
case) were independently introduced in several fields in the early 1970’s.
In cartography, it is known as the Douglas-Peucker algorithm [Douglas and
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Table 3. The generic Top-Down algorithm.

AlgorithmAlgorithmAlgorithm Seg TS = Top Down(T, max error)
best so far = inf;
forforfor i = 2 tototo length(T) - 2 // Find the best splitting point.
improvement in approximation = improvement splitting here(T, i);
ififif improvement in approximation < best so far

breakpoint = i;
best so far = improvement in approximation;

end;end;end;
end;end;end;

// Recursively split the left segment if necessary.
ififif calculate error(T[1:breakpoint]) > max error

Seg TS = Top Down(T[1:breakpoint]);
end;end;end;

// Recursively split the right segment if necessary.
ififif calculate error(T[breakpoint + 1:length(T)]) > max error

Seg TS = Top Down(T[breakpoint + 1:length(T)]);
end;end;end;

Peucker (1973)]; in image processing, it is known as Ramer’s algorithm
[Ramer (1972)]. Most researchers in the machine learning/data mining com-
munity are introduced to the algorithm in the classic textbook by Duda and
Harts, which calls it “Iterative End-Points Fits” [Duda and Hart (1973)].

In the data mining community, the algorithm has been used by [Li et al.
(1998)] to support a framework for mining sequence databases at multiple
abstraction levels. Shatkay and Zdonik use it (after considering alternatives
such as Sliding Windows) to support approximate queries in time series
databases [Shatkay and Zdonik (1996)].

Park et al. introduced a modification where they first perform a scan
over the entire dataset marking every peak and valley [Park et al. (1999)].
These extreme points used to create an initial segmentation, and the Top-
Down algorithm is applied to each of the segments (in case the error on an
individual segment was still too high). They then use the segmentation to
support a special case of dynamic time warping. This modification worked
well on the smooth synthetic dataset it was demonstrated on. But on real
world data sets with any amount of noise, the approximation is greatly
overfragmented.

Lavrenko et al. uses the Top-Down algorithm to support the concurrent
mining of text and time series [Lavrenko et al. (2000)]. They attempt to
discover the influence of news stories on financial markets. Their algorithm
contains some interesting modifications including a novel stopping criteria
based on the t-test.
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Finally Smyth and Ge use the algorithm to produce a representation
that can support a Hidden Markov Model approach to both change point
detection and pattern matching [Ge and Smyth (2001)].

2.3. The Bottom-Up Algorithm

The Bottom-Up algorithm is the natural complement to the Top-Down
algorithm. The algorithm begins by creating the finest possible approxima-
tion of the time series, so that n/2 segments are used to approximate the n-
length time series. Next, the cost of merging each pair of adjacent segments
is calculated, and the algorithm begins to iteratively merge the lowest cost
pair until a stopping criteria is met. When the pair of adjacent segments i

and i + 1 are merged, the algorithm needs to perform some bookkeeping.
First, the cost of merging the new segment with its right neighbor must be
calculated. In addition, the cost of merging the i− 1 segments with its new
larger neighbor must be recalculated. The pseudocode for the algorithm is
shown in Table 4.

Two and three-dimensional analogues of this algorithm are common in
the field of computer graphics where they are called decimation methods
[Heckbert and Garland (1997)]. In data mining, the algorithm has been
used extensively by two of the current authors to support a variety of time
series data mining tasks [Keogh and Pazzani (1999), Keogh and Pazzani
(1998), Keogh and Smyth (1997)]. In medicine, the algorithm was used
by Hunter and McIntosh to provide the high level representation for their
medical pattern matching system [Hunter and McIntosh (1999)].

Table 4. The generic Bottom-Up algorithm.

AlgorithmAlgorithmAlgorithm Seg TS = Bottom Up(T, max error)
forforfor i = 1 : 2 : length(T) // Create initial fine approximation.

Seg TS = concat(Seg TS, create segment(T[i: i + 1 ]));
end;end;end;
forforfor i = 1 : length(Seg TS) - 1 // Find merging costs.

merge cost(i) = calculate error([merge(Seg TS(i), Seg TS(i + 1))]);
end;end;end;
whilewhilewhile min(merge cost) < max error // While not finished.

p = min(merge cost); // Find ‘‘cheapest’’ pair to merge.
Seg TS(p) = merge(Seg TS(p), Seg TS(p + 1)); // Merge them.
delete(Seg TS(p + 1)); // Update records.
merge cost(p) = calculate error(merge(Seg TS(p), Seg TS(p + 1)));
merge cost(p - 1) = calculate error(merge(Seg TS(p - 1), Seg TS(p)));

end;end;end;
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2.4. Feature Comparison of the Major Algorithms

We have deliberately deferred the discussion of the running times of the
algorithms until now, when the reader’s intuition for the various approaches
are more developed. The running time for each approach is data dependent.
For that reason, we discuss both a worst-case time that gives an upper
bound and a best-case time that gives a lower bound for each approach.

We use the standard notation of Ω(f(n)) for a lower bound, O(f(n)) for
an upper bound, and θ(f(n)) for a function that is both a lower and upper
bound.

Definitions and Assumptions. The number of data points is n, the
number of segments we plan to create is K, and thus the average segment
length is L = n/K. The actual length of segments created by an algorithm
varies and we will refer to the lengths as Li.

All algorithms, except top-down, perform considerably worse if we allow
any of the LI to become very large (say n/4), so we assume that the algo-
rithms limit the maximum length L to some multiple of the average length.
It is trivial to code the algorithms to enforce this, so the time analysis that
follows is exact when the algorithm includes this limit. Empirical results
show, however, that the segments generated (with no limit on length) are
tightly clustered around the average length, so this limit has little effect in
practice.

We assume that for each set S of points, we compute a best segment
and compute the error in θ(n) time. This reflects the way these algorithms
are coded in practice, which is to use a packaged algorithm or function to
do linear regression. We note, however, that we believe one can produce
asymptotically faster algorithms if one custom codes linear regression (or
other best fit algorithms) to reuse computed values so that the computation
is done in less than O(n) time in subsequent steps. We leave that as a topic
for future work. In what follows, all computations of best segment and error
are assumed to be θ(n).

Top-Down. The best time for Top-Down occurs if each split occurs at
the midpoint of the data. The first iteration computes, for each split point
i, the best line for points [1, i] and for points [i+1, n]. This takes θ(n) for
each split point, or θ(n2) total for all split points. The next iteration finds
split points for [1, n/2] and for [n/2 + 1, n]. This gives a recurrence T (n) =
2T(n/2) + θ(n2) where we have T (2) = c, and this solves to T (n) = Ω(n2).
This is a lower bound because we assumed the data has the best possible
split points.
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The worst time occurs if the computed split point is always at one side
(leaving just 2 points on one side), rather than the middle. The recurrence
is T (n) = T (n − 2) + θ(n2) We must stop after K iterations, giving a time
of O(n2K).

Sliding Windows. For this algorithm, we compute best segments for
larger and larger windows, going from 2 up to at most cL (by the assumption
we discussed above). The maximum time to compute a single segment is
∑cL

i=2 θ(i) = θ(L2). The number of segments can be as few as n/cL = K/c

or as many as K. The time is thus θ(L2K) or θ(Ln). This is both a best
case and worst case bound.

Bottom-Up. The first iteration computes the segment through each
pair of points and the costs of merging adjacent segments. This is easily
seen to take O(n) time. In the following iterations, we look up the minimum
error pair i and i + 1 to merge; merge the pair into a new segment Snew;
delete from a heap (keeping track of costs is best done with a heap) the
costs of merging segments i−1 and i and merging segments i+1 and i+2;
compute the costs of merging Snew with Si−1 and with Si−2; and insert
these costs into our heap of costs. The time to look up the best cost is θ(1)
and the time to add and delete costs from the heap is O(log n). (The time
to construct the heap is O(n).)

In the best case, the merged segments always have about equal length,
and the final segments have length L. The time to merge a set of length 2
segments, which will end up being one length L segment, into half as many
segments is θ(L) (for the time to compute the best segment for every pair
of merged segments), not counting heap operations. Each iteration takes
the same time repeating θ(log L) times gives a segment of size L.

The number of times we produce length L segments is K, so the total
time is Ω(K L log L) = Ω(n log n/K). The heap operations may take as
much as O(n log n). For a lower bound we have proven just Ω(n log n/K).

In the worst case, the merges always involve a short and long segment,
and the final segments are mostly of length cL. The time to compute the
cost of merging a length 2 segment with a length i segment is θ(i), and the
time to reach a length cL segment is

∑cL
i=2 θ(i) = θ(L2). There are at most

n/cL such segments to compute, so the time is n/cL × θ(L2) = O(Ln).
(Time for heap operations is inconsequential.) This complexity study is
summarized in Table 5.

In addition to the time complexity there are other features a practitioner
might consider when choosing an algorithm. First there is the question of
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Table 5. A feature summary for the 3 major algorithms.

Algorithm User can Online Complexity
specify1

Top-Down E, ME, K No O(n2K)
Bottom-Up E, ME, K No O(Ln)
Sliding Window E Yes O(Ln)

1KEY: E → Maximum error for a given segment, ME →
Maximum error for a given segment for entire time series,
K → Number of segments.

whether the algorithm is online or batch. Secondly, there is the question
of how the user can specify the quality of desired approximation. With
trivial modifications the Bottom-Up algorithm allows the user to specify
the desired value of K, the maximum error per segment, or total error
of the approximation. A (non-recursive) implementation of Top-Down can
also be made to support all three options. However Sliding Window only
allows the maximum error per segment to be specified.

3. Empirical Comparison of the Major
Segmentation Algorithms

In this section, we will provide an extensive empirical comparison of the
three major algorithms. It is possible to create artificial datasets that allow
one of the algorithms to achieve zero error (by any measure), but forces
the other two approaches to produce arbitrarily poor approximations. In
contrast, testing on purely random data forces the all algorithms to pro-
duce essentially the same results. To overcome the potential for biased
results, we tested the algorithms on a very diverse collection of datasets.
These datasets where chosen to represent the extremes along the fol-
lowing dimensions, stationary/non-stationary, noisy/smooth, cyclical/non-
cyclical, symmetric/asymmetric, etc. In addition, the data sets represent
the diverse areas in which data miners apply their algorithms, includ-
ing finance, medicine, manufacturing and science. Figure 3 illustrates the
10 datasets used in the experiments.

3.1. Experimental Methodology

For simplicity and brevity, we only include the linear regression versions
of the algorithms in our study. Since linear regression minimizes the sum
of squares error, it also minimizes the Euclidean distance (the Euclidean
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(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Fig. 3. The 10 datasets used in the experiments. (i) Radio Waves. (ii) Exchange
Rates. (iii) Tickwise II. (iv) Tickwise I. (v) Water Level. (vi) Manufacturing. (vii) ECG.
(viii) Noisy Sine Cubed. (ix) Sine Cube. (x) Space Shuttle.

distance is just the square root of the sum of squares). Euclidean dis-
tance, or some measure derived from it, is by far the most common metric
used in data mining of time series [Agrawal et al. (1993), Agrawal et al.
(1995), Chan and Fu (1999), Das et al. (1998), Keogh et al. (2000), Keogh
and Pazzani (1999), Keogh and Pazzani (1998), Keogh and Smyth (1997),
Qu et al. (1998), Wang and Wang (2000)]. The linear interpolation ver-
sions of the algorithms, by definition, will always have a greater sum of
squares error.

We immediately encounter a problem when attempting to compare the
algorithms. We cannot compare them for a fixed number of segments, since
Sliding Windows does not allow one to specify the number of segments.
Instead we give each of the algorithms a fixed max error and measure the
total error of the entire piecewise approximation.

The performance of the algorithms depends on the value of max error.
As max error goes to zero all the algorithms have the same performance,
since they would produce n/2 segments with no error. At the opposite end,
as max error becomes very large, the algorithms once again will all have
the same performance, since they all simply approximate T with a single
best-fit line. Instead, we must test the relative performance for some rea-
sonable value of max error, a value that achieves a good trade off between
compression and fidelity. Because this “reasonable value” is subjective and
dependent on the data mining application and the data itself, we did the fol-
lowing. We chose what we considered a “reasonable value” of max error for
each dataset, and then we bracketed it with 6 values separated by powers of
two. The lowest of these values tends to produce an over-fragmented approx-
imation, and the highest tends to produce a very coarse approximation. So
in general, the performance in the mid-range of the 6 values should be
considered most important. Figure 4 illustrates this idea.
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Too fine an
approximation 

“Correct”
approximation 

Too coarse an
approximation 

max_error = E × 24

max_error = E × 25

max_error = E × 26

max_error = E × 21

max_error = E × 22

max_error = E × 23

Fig. 4. We are most interested in comparing the segmentation algorithms at the set-
ting of the user-defined threshold max error that produces an intuitively correct level
of approximation. Since this setting is subjective we chose a value for E, such that
max error = E × 2i (i = 1 to 6), brackets the range of reasonable approximations.

Since we are only interested in the relative performance of the algo-
rithms, for each setting of max error on each data set, we normalized the
performance of the 3 algorithms by dividing by the error of the worst per-
forming approach.

3.2. Experimental Results

The experimental results are summarized in Figure 5. The most obvious
result is the generally poor quality of the Sliding Windows algorithm. With
a few exceptions, it is the worse performing algorithm, usually by a large
amount.

Comparing the results for Sine cubed and Noisy Sine supports our con-
jecture that the noisier a dataset, the less difference one can expect between
algorithms. This suggests that one should exercise caution in attempting
to generalize the performance of an algorithm that has only been demon-
strated on a single noisy dataset [Qu et al. (1998), Wang and Wang (2000)].
Top-Down does occasionally beat Bottom-Up, but only by small amount.
On the other hand Bottom-Up often significantly out performs Top-Down,
especially on the ECG, Manufacturing and Water Level data sets.

4. A New Approach

Given the noted shortcomings of the major segmentation algorithms, we
investigated alternative techniques. The main problem with the Sliding
Windows algorithm is its inability to look ahead, lacking the global view
of its offline (batch) counterparts. The Bottom-Up and the Top-Down
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Fig. 5. A comparison of the three major times series segmentation algorithms, on ten
diverse datasets, over a range in parameters. Each experimental result (i.e. a triplet of
histogram bars) is normalized by dividing by the performance of the worst algorithm on
that experiment.

approaches produce better results, but are offline and require the scan-
ning of the entire data set. This is impractical or may even be unfeasible in
a data-mining context, where the data are in the order of terabytes or arrive
in continuous streams. We therefore introduce a novel approach in which
we capture the online nature of Sliding Windows and yet retain the supe-
riority of Bottom-Up. We call our new algorithm SWAB (Sliding Window
and Bottom-up).

4.1. The SWAB Segmentation Algorithm

The SWAB algorithm keeps a buffer of size w. The buffer size should ini-
tially be chosen so that there is enough data to create about 5 or 6 segments.
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Bottom-Up is applied to the data in the buffer and the leftmost segment
is reported. The data corresponding to the reported segment is removed
from the buffer and more datapoints are read in. The number of datapoints
read in depends on the structure of the incoming data. This process is per-
formed by the Best Line function, which is basically just classic Sliding
Windows. These points are incorporated into the buffer and Bottom-Up is
applied again. This process of applying Bottom-Up to the buffer, report-
ing the leftmost segment, and reading in the next “best fit” subsequence is
repeated as long as data arrives (potentially forever).

The intuition behind the algorithm is this. The Best Line function
finds data corresponding to a single segment using the (relatively poor)
Sliding Windows and gives it to the buffer. As the data moves through the
buffer the (relatively good) Bottom-Up algorithm is given a chance to refine
the segmentation, because it has a “semi-global” view of the data. By the
time the data is ejected from the buffer, the segmentation breakpoints are
usually the same as the ones the batch version of Bottom-Up would have
chosen. Table 6 shows the pseudo code for the algorithm.

Table 6. The SWAB (Sliding Window and Bottom-up) algorithm.

AlgorithmAlgorithmAlgorithm Seg TS = SWAB(max error, seg num) // seg num is a small integer,
i.e. 5 or 6
read in w number of data pointsread in w number of data pointsread in w number of data points // Enough to approximate
lower bound = w / 2; // seg num of segments.
upper bound = 2 * w;
whilewhilewhile data at input

T = Bottom Up(w, max error) // Call the Bottom-Up algorithm.
Seg TS = CONCAT(SEG TS, T(1));
w = TAKEOUT(w, w′); // Deletes w′ points in T(1) from w.
ififif data at input // Add w′′ points from BEST LINE() to w.

w = CONCAT(w, BEST LINE(max error));
{check upper and lower bound, adjust if necessary}

elseelseelse // flush approximated segments from buffer.
Seg TS = CONCAT(SEG TS, (T - T(1)))

end;end;end;
end;end;end;
FunctionFunctionFunction S = BEST LINE(max error) // returns S points to approximate.
whilewhilewhile error ≤ max error // next potential segment.

read in one additional data point, d, into S
S = CONCAT(S, d);
error = approx segment(S);

end while;end while;end while;
returnreturnreturn S;
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Using the buffer allows us to gain a “semi-global” view of the data set for
Bottom-Up. However, it important to impose upper and lower bounds on
the size of the window. A buffer that is allowed to grow arbitrarily large will
revert our algorithm to pure Bottom-Up, but a small buffer will deteriorate
it to Sliding Windows, allowing excessive fragmentation may occur. In our
algorithm, we used an upper (and lower) bound of twice (and half) of the
initial buffer.

Our algorithm can be seen as operating on a continuum between the
two extremes of Sliding Windows and Bottom-Up. The surprising result
(demonstrated below) is that by allowing the buffer to contain just 5 or
6 times the data normally contained by is a single segment, the algorithm
produces essentially the same results as Bottom-Up, yet is able process
a never-ending stream of data. Our new algorithm requires only a small,
constant amount of memory, and the time complexity is a small constant
factor worse than that of the standard Bottom-Up algorithm.

4.2. Experimental Validation

We repeated the experiments in Section 3, this time comparing the new
algorithm with pure (batch) Bottom-Up and classic Sliding Windows. The
result, summarized in Figure 6, is that the new algorithm produces results
that are essentiality identical to Bottom-Up. The reader may be surprised
that SWAB can sometimes be slightly better than Bottom-Up. The reason
why this can occur is because SWAB is exploring a slight larger search
space. Every segment in Bottom-Up must have an even number of data-
points, since it was created by merging other segments that also had an even
number of segments. The only possible exception is the rightmost segment,
which can have an even number of segments if the original time series had
an odd length. Since this happens multiple times for SWAB, it is effectively
searching a slight larger search space.

5. Conclusions and Future Directions

We have seen the first extensive review and empirical comparison of time
series segmentation algorithms from a data mining perspective. We have
shown the most popular approach, Sliding Windows, generally produces
very poor results, and that while the second most popular approach, Top-
Down, can produce reasonable results, it does not scale well. In contrast,
the least well known, Bottom-Up approach produces excellent results and
scales linearly with the size of the dataset.
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Fig. 6. A comparison of the SWAB algorithm with pure (batch) Bottom-Up and classic
Sliding Windows, on ten diverse datasets, over a range in parameters. Each experimental
result (i.e. a triplet of histogram bars) is normalized by dividing by the performance of
the worst algorithm on that experiment.

In addition, we have introduced SWAB, a new online algorithm, which
scales linearly with the size of the dataset, requires only constant space and
produces high quality approximations of the data.

There are several directions in which this work could be expanded.

• The performance of Bottom-Up is particularly surprising given that it
explores a smaller space of representations. Because the initialization
phase of the algorithm begins with all line segments having length two,
all merged segments will also have even lengths. In contrast the two
other algorithms allow segments to have odd or even lengths. It would be
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interesting to see if removing this limitation of Bottom-Up can improve
its performance further.

• For simplicity and brevity, we have assumed that the inner loop of the
SWAB algorithm simply invokes the Bottom-Up algorithm each time.
This clearly results in some computation redundancy. We believe we may
be able to reuse calculations from previous invocations of Bottom-Up,
thus achieving speedup.

Reproducible Results Statement: In the interests of competitive
scientific inquiry, all datasets and code used in this work are freely available
at the University of California Riverside, Time Series Data Mining Archive
{www.cs.ucr.edu/∼eamonn/TSDMA/index.html}.

References

1. Agrawal, R., Faloutsos, C., and Swami, A. (1993). Efficient Similarity Search
in Sequence Databases. Proceedings of the 4th Conference on Foundations of
Data Organization and Algorithms, pp. 69–84.

2. Agrawal, R., Lin, K.I., Sawhney, H.S., and Shim, K. (1995). Fast Similarity
Search in the Presence of Noise, Scaling, and Translation in Times-Series
Databases. Proceedings of 21th International Conference on Very Large Data
Bases, pp. 490–501.

3. Chan, K. and Fu, W. (1999). Efficient Time Series Matching by Wavelets.
Proceedings of the 15th IEEE International Conference on Data Engineering,
pp. 126–133.

4. Das, G., Lin, K. Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule
Discovery from Time Series. Proceedings of the 3rd International Conference
of Knowledge Discovery and Data Mining, pp. 16–22.

5. Douglas, D.H. and Peucker, T.K. (1973). Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or its Caricature.
Canadian Cartographer, 10(2) December, pp. 112–122.

6. Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis.
Wiley, New York.

7. Ge, X. and Smyth P. (2001). Segmental Semi-Markov Models for Endpoint
Detection in Plasma Etching. IEEE Transactions on Semiconductor Engi-
neering.

8. Heckbert, P.S. and Garland, M. (1997). Survey of Polygonal Surface Simpli-
fication Algorithms, Multiresolution Surface Modeling Course. Proceedings
of the 24th International Conference on Computer Graphics and Interactive
Techniques.

9. Hunter, J. and McIntosh, N. (1999). Knowledge-Based Event Detection in
Complex Time Series Data. Artificial Intelligence in Medicine, Springer,
pp. 271–280.



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap01

20 E. Keogh, S. Chu, D. Hart and M. Pazzani

10. Ishijima, M.. et al. (1983). Scan-Along Polygonal Approximation for Data
Compression of Electrocardiograms. IEEE Transactions on Biomedical Engi-
neering (BME), 30(11), 723–729.

11. Koski, A., Juhola, M., and Meriste, M. (1995). Syntactic Recognition of ECG
Signals By Attributed Finite Automata. Pattern Recognition, 28(12), 1927–
1940.

12. Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2000). Dimen-
sionality Reduction for Fast Similarity Search in Large Time Series
Databases. Journal of Knowledge and Information Systems, 3(3), 263–286.

13. Keogh, E. and Pazzani, M. (1998). An Enhanced Representation of Time
Series which Allows Fast and Accurate Classification, Clustering and Rele-
vance Feedback. Proceedings of the 4th International Conference of Knowl-
edge Discovery and Data Mining, AAAI Press, pp. 239–241.

14. Keogh, E. and Pazzani, M. (1999). Relevance Feedback Retrieval of Time
Series Data. Proceedings of the 22th Annual International ACM-SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 183–190.

15. Keogh, E. and Smyth, P. (1997). A Probabilistic Approach to Fast Pattern
Matching in Time Series Databases. Proceedings of the 3rd International Con-
ference of Knowledge Discovery and Data Mining, pp. 24–20.

16. Last, M., Klein, Y., and Kandel, A. (2001). Knowledge Discovery in Time
Series Databases. IEEE Transactions on Systems, Man, and Cybernetics,
31B(1), 160–169.

17. Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., and Allan, J.
(2000). Mining of Concurrent Text and Time Series. Proceedings of the 6th
International Conference on Knowledge Discovery and Data Mining, 37–44.

18. Li, C,. Yu, P., and Castelli, V. (1998). MALM: A Framework for Mining
Sequence Database at Multiple Abstraction Levels. Proceedings of the 9th
International Conference on Information and Knowledge Management, pp.
267–272.

19. McKee, J.J, Evans, N.E, and Owens, F.J (1994). Efficient Implementation of
the Fan/SAPA-2 Algorithm Using Fixed Point Arithmetic. Automedica, 16,
109–117.

20. Osaki, R., Shimada, M., and Uehara, K. (1999). Extraction of Primitive
Motion for Human Motion Recognition. Proceedings of the 2nd International
Conference on Discovery Science, pp. 351–352.

21. Park, S., Kim, S.W, and Chu, W.W (2001). Segment-Based Approach for
Subsequence Searches in Sequence Databases. Proceedings of the 16th ACM
Symposium on Applied Computing, pp. 248–252.

22. Park, S., Lee, D., and Chu, W.W (1999). Fast Retrieval of Similar Subse-
quences in Long Sequence Databases. Proceedings of the 3rd IEEE Knowledge
and Data Engineering Exchange Workshop.

23. Pavlidis, T. (1976). Waveform Segmentation Through Functional Approxi-
mation. IEEE Transactions on Computers, pp. 689–697.

24. Perng, C., Wang, H., Zhang, S., and Parker, S. (2000). Landmarks: A New
Model for Similarity-Based Pattern Querying in Time Series Databases. Pro-
ceedings of 16th International Conference on Data Engineering, pp. 33–45.



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap01

Segmenting Time Series: A Survey and Novel Approach 21

25. Qu, Y., Wang, C., and Wang, S. (1998). Supporting Fast Search in
Time Series for Movement Patterns in Multiples Scales, Proceedings of the
7th International Conference on Information and Knowledge Management,
pp. 251–258.

26. Ramer, U. (1972). An Iterative Procedure for the Polygonal Approximation
of Planar Curves. Computer Graphics and Image Processing, 1, 244–256.

27. Shatkay, H. (1995). Approximate Queries and Representations for Large
Data Sequences. Technical Report cs-95-03, Department of Computer Sci-
ence, Brown University.

28. Shatkay, H. and Zdonik, S. (1996). Approximate Queries and Representa-
tions for Large Data Sequences. Proceedings of the 12th IEEE International
Conference on Data Engineering, pp. 546–553.

29. Sugiura, N. and Ogden, R.T (1994). Testing Change-Points with Linear
Trend. Communications in Statistics B: Simulation and Computation, 23,
287–322.

30. Vullings, H.J L.M., Verhaegen, M.H.G., and Verbruggen H.B. (1997). ECG
Segmentation Using Time-Warping. Proceedings of the 2nd International
Symposium on Intelligent Data Analysis, pp. 275–286.

31. Wang, C. and Wang, S. (2000). Supporting Content-Based Searches on Time
Series Via Approximation. Proceedings of the 12th International Conference
on Scientific and Statistical Database Management, pp. 69–81.



This page intentionally left blank



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap02

CHAPTER 2

A SURVEY OF RECENT METHODS FOR EFFICIENT
RETRIEVAL OF SIMILAR TIME SEQUENCES

Magnus Lie Hetland

Norwegian University of Science and Technology
Sem Sælands vei 7–9

NO-7491 Trondheim, Norway
E-mail: magnus@hetland.org

Time sequences occur in many applications, ranging from science and
technology to business and entertainment. In many of these applica-
tions, searching through large, unstructured databases based on sample
sequences is often desirable. Such similarity-based retrieval has attracted
a great deal of attention in recent years. Although several different
approaches have appeared, most are based on the common premise of
dimensionality reduction and spatial access methods. This chapter gives
an overview of recent research and shows how the methods fit into a
general context of signature extraction.

Keywords: Information retrieval; sequence databases; similarity search;
spatial indexing; time sequences.

1. Introduction

Time sequences arise in many applications—any applications that involve
storing sensor inputs, or sampling a value that changes over time. A problem
which has received an increasing amount of attention lately is the problem
of similarity retrieval in databases of time sequences, so-called “query by
example.” Some uses of this are [Agrawal et al. (1993)]:

• Identifying companies with similar patterns of growth.
• Determining products with similar selling patterns.
• Discovering stocks with similar movement in stock prices.

23
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• Finding out whether a musical score is similar to one of a set of copy-
righted scores.

• Finding portions of seismic waves that are not similar to spot geological
irregularities.

Applications range from medicine, through economy, to scientific disci-
plines such as meteorology and astrophysics [Faloutsos et al. (1994), Yi and
Faloutsos (2000)].

The running times of simple algorithms for comparing time sequences
are generally polynomial in the length of both sequences, typically linear or
quadratic. To find the correct offset of a query in a large database, a naive
sequential scan will require a number of such comparisons that is linear in
the length of the database. This means that, given a query of length m and
a database of length n, the search will have a time complexity of O(nm),
or even O(nm2) or worse. For large databases this is clearly unacceptable.

Many methods are known for performing this sort of query in the domain
of strings over finite alphabets, but with time sequences there are a few extra
issues to deal with:

• The range of values is not generally finite, or even discrete.
• The sampling rate may not be constant.
• The presence of noise in various forms makes it necessary to support very

flexible similarity measures.

This chapter describes some of the recent advances that have been made
in this field; methods that allow for indexing of time sequences using flexible
similarity measures that are invariant under a wide range of transformations
and error sources.

The chapter is structured as follows: Section 2 gives a more formal
presentation of the problem of similarity-based retrieval and the so-called
dimensionality curse; Section 3 describes the general approach of signature
based retrieval, or shrink and search, as well as three specific methods using
this approach; Section 4 shows some other approaches, while Section 5
concludes the chapter. Finally, Appendix gives an overview of some basic
distance measures.1

1The term “distance” is used loosely in this paper. A distance measure is simply the
inverse of a similarity measure and is not required to obey the metric axioms.
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1.1. Terminology and Notation

A time sequence �x = 〈x1 = (v1, t1), . . . , xn = (vn, tn)〉 is an ordered col-
lection of elements xi, each consisting of a value vi and a timestamp ti.
Abusing the notation slightly, the value of xi may be referred to as xi.

For some retrieval methods, the values may be taken from a finite class
of values [Mannila and Ronkainen (1997)], or may have more than one
dimension [Lee et al. (2000)], but it is generally assumed that the values
are real numbers. This assumption is a requirement for most of the methods
described in this chapter.

The only requirement of the timestamps is that they be non-decreasing
(or, in some applications, strictly increasing) with respect to the sequence
indices:

ti ≤ tj ⇔ i ≤ j. (1)

In some methods, an additional assumption is that the elements are
equi-spaced: for every two consecutive elements xi and xi+1 we have

ti+1 − ti = ∆, (2)

where ∆ (the sampling rate of �x) is a (positive) constant. If the actual
sampling rate is not important, ∆ may be normalized to 1, and t1 to 0. It
is also possible to resample the sequence to make the elements equi-spaced,
when required.

The length of a time sequence �x is its cardinality, written as |�x|. The
contiguous subsequence of �x containing elements xi to xj (inclusive) is
written xi:j . A signature of a sequence �x is some structure that somehow
represents �x, yet is simpler than �x. In the context of this chapter, such
a signature will always be a vector of fixed size k. (For a more thorough
discussion of signatures, see Section 3.) Such a signature is written x. For
a summary of the notation, see Table 1.

Table 1. Notation.

�x A sequence
x̃ A signature of �x
xi Element number i of �x
xi:j Elements i to j (inclusive) of �x
|�x| The length of �x
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2. The Problem

The problem of retrieving similar time sequences may be stated as follows:
Given a sequence �q, a set of time sequences X, a (non-negative) distance
measure d, and a tolerance threshold ε, find the set R of sequences closer
to �q than ε, or, more precisely:

R = {�x ∈ X|d(�q, �x) ≤ ε}. (3)

Alternatively, one might wish to find the k nearest neighbours of �q, which
amounts to setting ε so that |R| = k. The parameter ε is typically supplied
by the user, while the distance function d is domain-dependent. Several
distance measures will be described rather informally in this chapter. For
more formal definitions, see Appendix.

Figure 1 illustrates the problem for Euclidean distance in two dimen-
sions. In this example, the vector �x will be included in the result set R,
while �y will not.

A useful variation of the problem is to find a set of subsequences of the
sequences in X. This, in the basic case, requires comparing �q not only to
all elements of X, but to all possible subsequences.2

If a method retrieves a subset S of R, the wrongly dismissed sequences
in R − S are called false dismissals. Conversely, if S is a superset of R, the
sequences in S − R are called false alarms.

Fig. 1. Similarity retrieval.

2Except in the description of LCS in Appendix, subsequence means contiguous subse-
quence, or segment.



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap02

A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences 27

2.1. Robust Distance Measures

The choice of distance measure is highly domain dependent, and in some
cases a simple Lp norm such as Euclidean distance may be sufficient. How-
ever, in many cases, this may be too brittle [Keogh and Pazzani (1999b)]
since it does not tolerate such transformations as scaling, warping, or trans-
lation along either axis. Many of the newer retrieval methods focus on using
more robust distance measures, which are invariant under such transforma-
tions as time warping (see Appendix for details) without loss of perfor-
mance.

2.2. Good Indexing Methods

Faloutsos et al. (1994) list the following desirable properties for an indexing
method:

(i) It should be faster than a sequential scan.
(ii) It should incur little space overhead.
(iii) It should allow queries of various length.
(iv) It should allow insertions and deletions without rebuilding the index.
(v) It should be correct: No false dismissals must occur.

To achieve high performance, the number of false alarms should also be
low. Keogh et al. (2001b) add the following criteria to the list above:

(vi) It should be possible to build the index in reasonable time.
(vii) The index should preferably be able to handle more than one distance

measure.

2.3. Spatial Indices and the Dimensionality Curse

The general problem of similarity based retrieval is well known in the field of
information retrieval, and many indexing methods exist to process queries
efficiently [Baeza-Yates and Ribeiro-Neto (1999)]. However, certain prop-
erties of time sequences make the standard methods unsuitable. The fact
that the value ranges of the sequences usually are continuous, and that
the elements may not be equi-spaced, makes it difficult to use standard
text-indexing techniques such as suffix-trees. One of the most promising
techniques is multidimensional indexing (R-trees [Guttman (1984)], for
instance), in which the objects in question are multidimensional vectors,
and similar objects can be retrieved in sublinear time. One requirement of
such spatial access methods is that the distance measure must be monotonic



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap02

28 M. L. Hetland

in all dimensions, usually satisfied through the somewhat stricter require-
ment of the triangle inequality (d(�x, �z) ≤ d(�x, �y) + d(�y, �z)).

One important problem that occurs when trying to index sequences with
spatial access methods is the so-called dimensionality curse: Spatial indices
typically work only when the number of dimensions is low [Chakrabarti
and Mehrotra (1999)]. This makes it unfeasible to code the entire sequence
directly as a vector in an indexed space.

The general solution to this problem is dimensionality reduction: to
condense the original sequences into signatures in a signature space of low
dimensionality, in a manner which, to some extent, preserves the distances
between them. One can then index the signature space.

3. Signature Based Similarity Search

A time sequence �x of length n can be considered a vector or point in an
n-dimensional space. Techniques exist (spatial access methods, such as the
R-tree and variants [Chakrabarti and Mehrotra (1999), Wang and Perng
(2001), Sellis et al. (1987)] for indexing such data. The problem is that
the performance of such methods degrades considerably even for relatively
low dimensionalities [Chakrabarti and Mehrotra (1999)]; the number of
dimensions that can be handled is usually several orders of magnitude lower
than the number of data points in a typical time sequence.

A general solution described by Faloutsos et al. (1994; 1997) is to extract
a low-dimensional signature from each sequence, and to index the signature
space. This shrink and search approach is illustrated in Figure 2.

Fig. 2. The signature based approach.
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An important result given by Faloutsos et al. (1994) is the proof that in
order to guarantee completeness (no false dismissals), the distance function
used in the signature space must underestimate the true distance mea-
sure, or:

dk(x̃, ỹ) ≤ d(�x, �y). (4)

This requirement is called the bounding lemma. Assuming that (1.4)
holds, an intuitive way of stating the resulting situation is: “if two signa-
tures are far apart, we know the corresponding [sequences] must also be far
apart” [Faloutsos et al. (1997)]. This, of course, means that there will be
no false dismissals. To minimise the number of false alarms, we want dk to
approximate d as closely as possible. The bounding lemma is illustrated in
Figure 3.

This general method of dimensionality reduction may be summed up as
follows [Keogh et al. (2001b)]:

1. Establish a distance measure d from a domain expert.
2. Design a dimensionality reduction technique to produce signatures of

length k, where k can be efficiently handled by a standard spatial access
method.

3. Produce a distance measure dk over the k-dimensional signature space,
and prove that it obeys the bounding condition (4).

In some applications, the requirement in (4) is relaxed, allowing for a
small number of false dismissals in exchange for increased performance.
Such methods are called approximate.

The dimensionality reduction may in itself be used to speed up the
sequential scan, and some methods (such as the piecewise linear approxi-
mation of Keogh et al., which is described in Section 4.2) rely only on this,
without using any index structure.

Fig. 3. An intuitive view of the bounding lemma.
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Methods exist for finding signatures of arbitrary objects, given the dis-
tances between them [Faloutsos and Lin (1995), Wang et al. (1999)], but
in the following I will concentrate on methods that exploit the structure of
the time series to achieve good approximations.

3.1. A Simple Example

As an example of the signature based scheme, consider the two sequences
shown in Figure 4.

The sequences, �x and �y, are compared using the L1 measure (Manhattan
distance), which is simply the sum of the absolute distances between each
aligning pair of values. A simple signature in this scheme is the prefix of
length 2, as indicated by the shaded area in the figure. As shown in Figure 5,
these signatures may be interpreted as points in a two-dimensional plane,
which can be indexed with some standard spatial indexing method. It is
also clear that the signature distance will underestimate the real distance
between the sequences, since the remaining summands of the real distance
must all be positive.

Fig. 4. Comparing two sequences.

Fig. 5. A simple signature distance.
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Fig. 6. An example time sequence.

Although correct, this simple signature extraction technique is not par-
ticularly precise. The signature extraction methods introduced in the fol-
lowing sections take into account more information about the full sequence
shape, and therefore lead to fewer false alarms.

Figure 6 shows a time series containing measurements of atmospheric
pressure. In the following three sections, the methods described will be
applied to this sequence, and the resulting simplified sequence (recon-
structed from the extracted signature) will be shown superimposed on the
original.

3.2. Spectral Signatures

Some of the methods presented in this section are not very recent, but
introduce some of the main concepts used by newer approaches.

Agrawal et al. (1993) introduce a method called the F -index in which a
signature is extracted from the frequency domain of a sequence. Underlying
their approach are two key observations:

• Most real-world time sequences can be faithfully represented by their
strongest Fourier coefficients.

• Euclidean distance is preserved in the frequency domain (Parseval’s
Theorem [Shatkay (1995)]).

Based on this, they suggest performing the Discrete Fourier Transform
on each sequence, and using a vector consisting of the sequence’s k first
amplitude coefficients as its signature. Euclidean distance in the signa-
ture space will then underestimate the real Euclidean distance between
the sequences, as required.

Figure 7 shows an approximated time sequence, reconstructed from a
signature consisting of the original sequence’s ten first Fourier components.

This basic method allows only for whole-sequence matching. In 1994,
Faloutsos et al. introduce the ST -index, an improvement on the F -index
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Fig. 7. A sequence reconstructed from a spectral signature.

that makes subsequence matching possible. The main steps of the approach
are as follows:

1. For each position in the database, extract a window of length w, and
create a spectral signature (a point) for it.

Each point will be close to the previous, because the contents of the
sliding window change slowly. The points for one sequence will therefore
constitute a trail in signature space.

2. Partition the trails into suitable (multidimensional) Minimal Bounding
Rectangles (MBRs), according to some heuristic.

3. Store the MBRs in a spatial index structure.

To search for subsequences similar to a query �q of length w, simply
look up all MBRs that intersect a hypersphere with radius ε around the
signature point q̃. This is guaranteed not to produce any false dismissals,
because if a point is within a radius of ε of q̃, it cannot possibly be contained
in an MBR that does not intersect the hypersphere.

To search for sequences longer than w, split the query into w-length
segments, search for each of them, and intersect the result sets. Because
a sequence in the result set R cannot be closer to the full query sequence
than it is to any one of the window signatures, it has to be close to all of
them, that is, contained in all the result sets.

These two papers [Agrawal et al. (1993) and Faloutsos et al. (1994)]
are seminal; several newer approaches are based on them. For example,
Rafiei and Mendelzon (1997) show how the method can be made more
robust by allowing various transformations in the comparison, and Chan
and Fu (1999) show how the Discrete Wavelet Transform (DWT) can be
used instead of the Discrete Fourier Transform (DFT), and that the DWT
method is empirically superior. See Wu et al. (2000) for a comparison
between similarity search based on DFT and DWT.
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3.3. Piecewise Constant Approximation

An approach independently introduced by Yi and Faloutsos (2000) and
Keogh et al. (2001b), Keogh and Pazzani (2000) is to divide each sequence
into k segments of equal length, and to use the average value of each seg-
ment as a coordinate of a k-dimensional signature vector. Keogh et al. call
the method Piecewise Constant Approximation, or PCA. This deceptively
simple dimensionality reduction technique has several advantages [Keogh
et al. (2001b)]: The transform itself is faster than most other transforms,
it is easy to understand and implement, it supports more flexible distance
measures than Euclidean distance, and the index can be built in linear time.

Figure 8 shows an approximated time sequence, reconstructed from a
ten-dimensional PCA signature.

Yi and Faloutsos (2000) also show that this signature can be used with
arbitrary Lp norms without changing the index structure, which is some-
thing no previous method [such as Agrawal et al. (1993; 1995), Faloutsos
et al. (1994; 1997), Rafiei and Mendelzon (1997), or Yi et al. (1998)] could
accomplish. This means that the distance measure may be specified by the
user. Preprocessing to make the index more robust in the face of such trans-
formations as offset translation, amplitude scaling, and time scaling can also
be performed.

Keogh et al. demonstrate that the representation can also be used with
the so-called weighted Euclidean distance, where each part of the sequence
has a different weight.

Empirically, the PCA methods seem promising: Yi and Faloutsos
demonstrate up to a ten times speedup over methods based on the discrete
wavelet transform. Keogh et al. do not achieve similar speedups, but point
to the fact that the structure allows for more flexible distance measures
than many of the competing methods.

Keogh et al. (2001a) later propose an improved version of the PCA, the
so-called Adaptive Piecewise Constant Approximation, or APCA. This is

Fig. 8. A sequence reconstructed from a PCA signature.
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similar to the PCA, except that the segments need not be of equal length.
Thus regions with great fluctuations may be represented with several short
segments, while reasonably featureless regions may be represented with
fewer, long segments. The main contribution of this representation is that
it is a more effective compression than the PCA, while still representing the
original faithfully.

Two distance measures are developed for the APCA, one which is guar-
anteed to underestimate Euclidean distance, and one which can be cal-
culated more efficiently, but which may generate some false dismissals. It
is also shown that this technique, like the PCA, can handle arbitrary Lp

norms. The empirical data suggest that the APCA outperforms both meth-
ods based on the discrete Fourier transform, and methods based on the dis-
crete wavelet transform with a speedup of one to two orders of magnitude.

In a recent paper, Keogh (2002) develops a distance measure that is
a lower bound for dynamic time warping, and uses the PCA approach to
index it. The distance measure is based on the assumption that the allowed
warping is restricted, which is often the case in real applications. Under this
assumption, Keogh constructs two warped versions of the sequence to be
indexed: An upper and a lower limit. The PCA signatures of these limits are
then extracted, and together with Keogh’s distance measure form an exact
index (one with no false dismissals) with high precision. Keogh performs
extensive empirical experiments, and his method clearly outperforms any
other existing method for indexing time warping.

3.4. Landmark Methods

In 1997, Keogh and Smyth introduce a probabilistic method for sequence
retrieval, where the features extracted are characteristic parts of the
sequence, so-called feature shapes. Keogh (1997) uses a similar landmark
based technique. Both these methods also use the dimensionality reduction
technique of piecewise linear approximation (see Section 4.2) as a prepro-
cessing step. The methods are based on finding similar landmark features
(or shapes) in the target sequences, ignoring shifting and scaling within
given limits. The technique is shown to be significantly faster than sequen-
tial scanning (about an order of magnitude), which may be accounted for by
the compression of the piecewise linear approximation. One of the contribu-
tions of the method is that it is one of the first that allows some longitudinal
scaling.

A more recent paper by Perng et al. (2000) introduces a more general
landmark model. In its most general form, the model allows any point of
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Fig. 9. A landmark approximation.

great importance to be identified as a landmark. The specific form used
in the paper defines an nth order landmark of a one-dimensional function
to be a point where the function’s nth derivative is zero. Thus, first-order
landmarks are extrema, second-order landmarks are inflection points, and so
forth. A smothing technique is also introduced, which lets certain landmarks
be overshadowed by others. For instance, local extrema representing small
fluctuations may not be as important as a global maximum or minimum.

Figure 9 shows an approximated time sequence, reconstructed from a
twelve-dimensional landmark signature.

One of the main contributions of Perng et al. (2000) is to show that for
suitable selections of landmark features, the model is invariant with respect
to the following transformations:

• Shifting
• Uniform amplitude scaling
• Uniform time scaling
• Non-uniform time scaling (time warping)
• Non-uniform amplitude scaling

It is also possible to allow for several of these transformations at once,
by using the intersection of the features allowed for each of them. This
makes the method quite flexible and robust, although as the number of
transformations allowed increases, the number of features will decrease;
consequently, the index will be less precise.

A particularly simple landmark based method (which can be seen as a
special case of the general landmark method) is introduced by Kim et al.
(2001). They show that by extracting the minimum, maximum, and the
first and last elements of a sequence, one gets a (rather crude) signature
that is invariant to time warping. However, since time warping distance
does not obey the triangle inequality [Yi et al. (1998)], it cannot be used
directly. This problem is solved by developing a new distance measure that
underestimates the time warping distance while simultaneously satisfying
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the triangle inequality. Note that this method does not achieve results com-
parable to those of Keogh (2002).

4. Other Approaches

Not all recent methods rely on spatial access methods. This section contains
a sampling of other approaches.

4.1. Using Suffix Trees to Avoid Redundant Computation

Baeza-Yates and Gonnet (1999) and Park et al. (2000) independently intro-
duce the idea of using suffix trees [Gusfield (1997)] to avoid duplicate cal-
culations when using dynamic programming to compare a query sequence
with other sequences in a database. Baeza-Yates and Gonnet use edit dis-
tance (see Appendix for details), while Park et al. use time warping.

The basic idea of the approach is as follows: When comparing two
sequences �x and �y with dynamic programming, a subtask will be to compare
their prefixes x1:i and y1:j . If two other sequences are compared that have
identical prefixes to these (for instance, the query and another sequence
from the database), the same calculations will have to be performed again.
If a sequential search for subsequence matches is performed, the cost may
easily become prohibitive.

To avoid this, all the sequences in the database are indexed with a suffix
tree. A suffix tree stores all the suffixes of a sequence, with identical pre-
fixes stored only once. By performing a depth-first traversal of the suffix
tree one can access every suffix (which is equivalent to each possible subse-
quence position) and backtrack to reuse the calculations that have already
been performed for the prefix that the current and the next candidate sub-
sequence share.

Baeza-Yates and Gonnet assume that the sequences are strings over
a finite alphabet; Park et al. avoid this assumption by classifying each
sequence element into one of a finite set of categories. Both methods achieve
subquadratic running times.

4.2. Data Reduction through Piecewise Linear
Approximation

Keogh et al. have introduced a dimensionality reduction technique using
piecewise linear approximation of the original sequence data [Keogh (1997),
Keogh and Pazzani (1998), Keogh and Pazzani (1999a), Keogh and Pazzani
(1999b), Keogh and Smyth (1997)]. This reduces the number of data
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points by a compression factor typically in the range from 10 to 600 for
real data [Keogh (1997)], outperforming methods based on the Discrete
Fourier Transform by one to three orders of magnitude [Keogh and Pazzani
(1999b)]. This approximation is shown to be valid under several distance
measures, including dynamic time warping distance [Keogh and Pazzani
(1999b)]. An enhanced representation is introduced in [Keogh and Pazzani
(1998)], where every line segment in the approximation is augmented with
a weight representing its relative importance; for instance, a combined
sequence may be constructed representing a class of sequences, and some
line segments may be more representative of the class than others.

4.3. Search Space Pruning through Subsequence Hashing

Keogh and Pazzani (1999a) describe an indexing method based on hashing,
in addition to the piecewise linear approximation. An equi-spaced template
grid window is moved across the sequence, and for each position a hash key
is generated to decide into which bin the corresponding subsequence is put.
The hash key is simply a binary string, where 1 means that the sequence
is predominantly increasing in the corresponding part of the template grid,
while 0 means that it is decreasing. These bin keys may then be used during
a search, to prune away entire bins without examining their contents. To get
more benefit from the bin pruning, the bins are arranged in a best-first order.

5. Conclusion

This chapter has sought to give an overview of recent advances in the field of
similarity based retrieval in time sequence databases. First, the problem of
similarity search and the desired properties of robust distance measures and
good indexing methods were outlined. Then, the general approach of signa-
ture based similarity search was described. Following the general descrip-
tion, three specific signature extraction approaches were discussed: Spectral
signatures, based on Fourier components (or wavelet components); piece-
wise constant approximation, and the related method adaptive piecewise
constant approximation; and landmark methods, based on the extraction of
significant points in a sequence. Finally, some methods that are not based
on signature extraction were mentioned.

Although the field of time sequence indexing has received much atten-
tion and is now a relatively mature field [Keogh et al. (2002)] there are still
areas where further research might be warranted. Two such areas are (1)
thorough empirical comparisons and (2) applications in data mining.
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The published methods have undergone thorough empirical tests that
evaluate their performance (usually by comparing them to sequential scan,
and, in some cases, to the basic spectral signature methods), but comparing
the results is not a trivial task—in most cases it might not even be very
meaningful, since variations in performance may be due to implementation
details, available hardware, and several other factors that may not be inher-
ent in the indexing methods themselves. Implementing several of the most
promising methods and testing them on real world problems (under similar
conditions) might lead to new insights, not only about their relative perfor-
mances in general, but also about which methods are best suited for which
problems. Although some comparisons have been made [such as in Wu et al.
(2000) and, in the more general context of spatial similarity search, in Weber
et al. (1998)], little research seems to have been published on this topic.

Data mining in time series databases is a relatively new field [Keogh
et al. (2002)]. Most current mining methods are based on a full, linear scan
of the sequence data. While this may seem unavoidable, constructing an
index of the data could make it possible to perform this full data traversal
only once, and later perform several data mining passes that only use the
index to perform their work. It has been argued that data mining should
be interactive [Das et al. (1998)], in which case such techniques could prove
useful. Some publications can be found about using time sequence indexing
for data mining purposes [such as Keogh et al. (2002), where a method is
presented for mining patterns using a suffix tree index] but there is still a
potential for combining existing sequence mining techniques with existing
methods for similarity-based retrieval.

Appendix Distance Measures

Faloutsos et al. (1997) describe a general framework for sequence distance
measures [a similar framework can be found in Jagadish et al. (1995)].
They show that many common distance measures can be expressed in the
following form:

d(�x, �y) = min
{

minT1,T2∈T {c(T1) + c(T2) + d(T1(�x), T2(�y))}
d0(�x, �y).

(5)

T is a set of allowable transformations, c(Ti) is the cost of performing
the transformation Ti, Ti(�x) is the sequence resulting from performing the
transformation Ti on �x, and d0 is a so-called base distance, typically calcu-
lated in linear time. For instance, Lp norms (such as Manhattan distance
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and Euclidean distance) results when T = ∅ and

d0(�x �y) = Lp = p

√
∑l

i=1
|xi − yi|p (6)

where |�x| = |�y| = l.
Editing distance (or Levenshtein distance) is the weight of the mini-

mum sequence of editing operations needed to transform one sequence into
another [Sankoff and Kruskal (1999)]. It is usually defined on strings (or
equi-spaced time sequences), but Mannila and Ronkainen (1997) show how
to generalise this measure to general (non equi-spaced) time sequences. In
the framework given above, editing distance may be defined as:

ded(�x, �y) = min






c(del(x1)) + ded(x2:m, �y)
c(del(y1)) + ded(�x, y2:n)
c(sub(x1 y1)) + ded(x2:m, y2:n)

(7)

where m = |�x|, n = |�y|, del(x1) and del(y1) stand for deleting the first
elements of �x and �y, respectively, and sub (x1, y1) stands for substituting
the first element of �x with the first element of �y.

A distance function with time warping allows non-uniform scaling along
the time axis, or, in sequence terms, stuttering. Stuttering occurs when
an element from one of the sequences is repeated several times. A typical
distance measure is:

dtw(�x, �y) = d0(x1, y1) + min






dtw(�x, y2:n) (�x – stutter),
dtw(x2:m, �y) (�y – stutter),
dtw(x2:m, y2:n) (no stutter).

(8)

Both ded and dtw can be computed in quadratic time (O(mn)) using
dynamic programming [Cormen et al. (1993), Sankoff and Kruskal (1999)]:
An m×n table D is filled iteratively so that D[i, j] = d(x1:i, y1:j). The final
distance d(�x, �y), is found in D[m, n].

The Longest Common Subsequence (LCS) measure [Cormen et al.
(1993)], dlcs(�x, �y), is the length of the longest sequence �s which is a
(possibly non-contiguous) subsequence of both �x and �y, in other words:

dlcs(�x, �y) = max
{|�s |∣∣�s ⊆ �x,�s ⊆ �y

}
. (9)

In some applications the measure is normalised by dividing by
max(|�x|, |�y|), giving a distance in the range [0, 1]. dlcs(�x, �y) may be calcu-
lated using dynamic programming, in a manner quite similar to ded.
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CHAPTER 3

INDEXING OF COMPRESSED TIME SERIES

Eugene Fink
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We describe a procedure for identifying major minima and maxima of
a time series, and present two applications of this procedure. The first
application is fast compression of a series, by selecting major extrema
and discarding the other points. The compression algorithm runs in lin-
ear time and takes constant memory. The second application is indexing
of compressed series by their major extrema, and retrieval of series sim-
ilar to a given pattern. The retrieval procedure searches for the series
whose compressed representation is similar to the compressed pattern. It
allows the user to control the trade-off between the speed and accuracy
of retrieval. We show the effectiveness of the compression and retrieval
for stock charts, meteorological data, and electroencephalograms.

Keywords: Time series; compression; fast retrieval; similarity measures.

1. Introduction

We view a time series as a sequence of values measured at equal intervals;
for example, the series in Figure 1 includes the values 20, 22, 25, 22, and
so on. We describe a compression procedure based on extraction of certain
important minima and maxima from a series. For example, we can compress
the series in Figure 1 by extracting the circled minima and maxima, and
discarding the other points. We also propose a measure of similarity between

43
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Fig. 1. Example of a time series.

Table 1. Data sets used in the experiments.

Data set Description Number of Points Total number
series per series of points

Stock prices 98 stocks, 2.3 years 98 610 60,000

Air and sea 68 buoys, 18 years, 136 1,800–6,600 450,000
Temperatures 2 sensors per buoy

Wind speeds 12 stations, 18 years 12 6,570 79,000

EEG 64 electrodes, 1 second 64 256 16,000

series and show that it works well with compressed data. Finally, we present
a technique for indexing and retrieval of compressed series; we have tested
it on four data sets (Table 1), which are publicly available through the
Internet.

Stock prices: We have used stocks from the Standard and Poor’s 100
listing of large companies for the period from January 1998 to April 2000.
We have downloaded daily prices from America Online, discarded newly
listed and de-listed stocks, and used ninety-eight stocks in the experiments.

Air and sea temperatures: We have experimented with daily temperature
readings by sixty-eight buoys in the Pacific Ocean, from 1980 to 1998,
downloaded from the Knowledge Discovery archive at the University of
California at Irvine (kdd.ics.uci.edu).

Wind speeds: We have used daily wind speeds from twelve sites in
Ireland, from 1961 to 1978, obtained from an archive at Carnegie Mellon
University (lib.stat.cmu.edu/datasets).

Electroencephalograms: We have utilized EEG obtained by Henri
Begleiter at the Neurodynamics Laboratory of the SUNY Health Center
at Brooklyn. These data are from sixty-four electrodes at standard points
on the scalp; we have downloaded them from an archive at the University
of California at Irvine (kdd.ics.uci.edu).
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2. Previous Work

We review related work on the comparison and indexing of time series.

Feature sets. Researchers have considered various feature sets for com-
pressing time series and measuring similarity between them. They have
extensively studied Fourier transforms, which allow fast compression [Singh
and McAtackney (1998), Sheikholeslami et al. (1998), Stoffer (1999), Yi
et al. (2000)], however, this technique has several disadvantages. In par-
ticular, it smoothes local extrema, which may lead to a loss of important
information, and it does not work well for erratic series [Ikeda et al. (1999)].
Chan and his colleagues applied Haar wavelet transforms to time series and
showed several advantages of this technique over Fourier transforms [Chan
and Fu 1999, Chanet al. (2003)].

Guralnik and Srivastava (1999) considered the problem of detecting a
change in the trend of a data stream, and developed a technique for finding
“change points” in a series. Last et al. (2001) proposed a general frame-
work for knowledge discovery in time series, which included representa-
tion of a series by its key features, such as slope and signal-to-noise ratio.
They described a technique for computing these features and identifying
the points of change in the feature values.

Researchers have also studied the use of small alphabets for compression
of time series, and applied string matching to the pattern search [Agrawal
et al. (1995), Huang and Yu (1999), Andr-Jnsson and Badal (1997), Lam
and Wong (1998), Park et al. (1999), Qu et al. (1998)]. For example,
Guralnik et al. (1997) compressed stock prices using a nine-letter alphabet.
Singh and McAtackney (1998) represented stock prices, particle dynam-
ics, and stellar light intensity using a three-letter alphabet. Lin and Risch
(1998) used a two-letter alphabet to encode major spikes in a series. Das et
al. (1998) utilized an alphabet of primitive shapes for efficient compression.
These techniques give a high compression rate, but their descriptive power
is limited, which makes them inapplicable in many domains.

Perng et al. (2000) investigated a compression technique based on
extraction of “landmark points,” which included local minima and max-
ima. Keogh and Pazzani (1997; 1998) used the endpoints of best-fit line
segments to compress a series. Keogh et al. (2001) reviewed the compres-
sion techniques based on approximation of a time series by a sequence of
straight segments. We describe an alternative compression technique, based
on selection of important minima and maxima.
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Similarity measures. Several researchers have defined similarity as
the distance between points in a feature space. For example, Caraca-Valente
and Lopez-Chavarrias (2000) used Euclidean distance between feature vec-
tors containing angle of knee movement and muscle strength, and Lee et al.
(2000) applied Euclidean distance to compare feature vectors containing
color, texture, and shape of video data. This technique works well when all
features have the same units of scale [Goldin and Kanellakis (1995)], but it
is often ineffective for combining disparate features.

An alternative definition of similarity is based on bounding rectan-
gles; two series are similar if their bounding rectangles are similar. It
allows fast pruning of clearly dissimilar series [Perng et al. (2000), Lee
et al. (2000)], but it is less effective for selecting the most similar series.

The envelope-count technique is based on dividing a series into short seg-
ments, called envelopes, and defining a yes/no similarity for each envelope.
Two series are similar within an envelope if their point-by-point differences
are within a certain threshold. The overall similarity is measured by the
number of envelopes where the series are similar [Agrawal et al. (1996)].
This measure allows fast computation of similarity, and it can be adapted
for noisy and missing data [Das et al. (1997), Bollobas et al. (1997)].

Finally, we can measure a point-by-point similarity of two series and
then aggregate these measures, which often requires interpolation of missing
points. For example, Keogh and Pazzani (1998) used linear interpolation
with this technique, and Perng et al. (2000) applied cubic approximation.
Keogh and Pazzani (2000) also described a point-by-point similarity with
modified Euclidean distance, which does not require interpolation.

Indexing and retrieval. Researchers have studied a variety of tech-
niques for indexing of time series. For example, Deng (1998) applied kd-
trees to arrange series by their significant features, Chan and Fu (1999)
combined wavelet transforms with R-trees, and Bozkaya and her col-
leagues used vantage-point trees for indexing series by numeric features
[Bozkaya et al. (1997), Bozkaya and Özsoyoglu (1999)]. Park et al. (2001)
indexed series by their local extrema and by properties of the segments
between consecutive extrema. Li et al. (1998) proposed a retrieval technique
based on a multi-level abstraction hierarchy of features. Aggarwal and Yu
(2000) considered grid structures, but found that the grid performance is
often no better than exhaustive search. They also showed that exhaustive
search among compressed series is often faster than sophisticated indexing
techniques.
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3. Important Points

We compress a time series by selecting some of its minima and maxima,
and dropping the other points (Figure 2). The intuitive idea is to discard
minor fluctuations and keep major minima and maxima. We control the
compression rate with a parameter R, which is always greater than one;
an increase of R leads to selection of fewer points. A point am of a series
a1, . . . , an is an important minimum if there are indices i and j, where
i ≤ m ≤ j, such that

• am is the minimum among ai, . . . , aj , and
• ai/am ≥ R and aj/am ≥ R.

Intuitively, am is the minimal value of some segment ai, . . . , aj , and the end-
point values of this segment are much larger than am (Figure 3). Similarly,
am is an important maximum if there are indices i and j, where i ≤ m ≤ j,

such that

• am is the minimum among ai, . . . , aj , and
• am/ai ≥ R and am/aj ≥ R.

In Figure 4, we give a procedure for selecting important points, which
takes linear time and constant memory. It outputs the values and indices
of all important points, as well as the first and last point of the series.
This procedure can process new points as they arrive, without storing the

1.0

0.9

1.0

0.9

Fig. 2. Important points for 91% compression (left) and 94% compression (right).

i jtime i jtime

am

am · R

am /R

am

Fig. 3. Important minimum (left) and important maximum (right).



April 22, 2004 16:58 WSPC/Trim Size: 9in x 6in for Review Volume Chap03

48 E. Fink and K. B. Pratt

IMPORTANT-POINTS—Top-level function for finding important points.
The input is a time series a1, . . . , an; the output is the
values and indices of the selected important points.

output (a1, 1)
i = FIND-FIRST
if i < n and ai > a1 then i = FIND-MAXIMUM(i)
while i < n do

i = FIND-MINIMUM(i)
i = FIND-MAXIMUM(i)

output (an, n)

FIND-FIRST—Find the first important point.
iMin = 1; iMax = 1; i = 2
while i < n and ai/aiMin < R and aiMax/ai < R do

if ai < aiMin then iMin = i

if ai > aiMax then iMax = i

i = i + 1
if iMin < iMax

then output (aiMin,iMin)
else output (aiMax,iMax)

return i

FIND-MINIMUM(i)—Find the first important maximum after the ith point.
iMin = i

while i < n and ai/aiMin < R do
if ai < aiMin then iMin = i

i = i + 1
if i < n or aiMin < ai then output (aiMin, iMin)
return i

FIND-MAXIMUM(i)—Find the first important maximum after the ith point.
iMax = i

while i < n and aiMax/ai < R do
if ai > aiMax then iMax = i

i = i + 1
if i < n or aiMax > ai then output (aiMax, iMax)
return i

Fig. 4. Compression procedure. We process a series a1, . . . , an and use a global variable
n to represent its size. The procedure outputs the values and indices of the selected points.

original series; for example, it can compress a live electroencephalogram
without waiting until the end of the data collection. We have implemented
it in Visual Basic 6 and tested on a 300-MHz PC; for an n-point series, the
compression time is 14 · n microseconds.
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We have applied the compression procedure to the data sets in Table 1,
and compared it with two simple techniques: equally spaced points and
randomly selected points. We have experimented with different compression
rates, which are defined as the percentage of points removed from a series.
For example, “eighty-percent compression” means that we select 20% of
points and discard the other 80%.

For each compression technique, we have measured the difference
between the original series and the compressed series. We have considered
three measures of difference between the original series, a1, . . . , an, and the
series interpolated from the compressed version, b1, . . . , bn.

Mean difference: 1
n · ∑n

i=1 |ai − bi|.

Maximum difference: maxi∈[1,...,n] |ai − bi|.

Root mean square difference:
√

1
n · ∑n

i=1(ai − bi)2.

We summarize the results in Table 2, which shows that important points
are significantly more accurate than the two simple methods.

4. Similarity Measures

We define similarity between time series, which underlies the retrieval pro-
cedure. We measure similarity on a zero-to-one scale; zero means no likeness
and one means perfect likeness. We review three basic measures of similar-
ity and then propose a new measure. First, we define similarity between
two numbers, a and b:

sim(a, b) = 1 − |a − b|
|a| + |b| .

The mean similarity between two series, a1, . . . , an and b1, . . . , bn, is the
mean of their point-by-point similarity:

1
n

·
n∑

i=1

sim(ai, bi).

We also define the root mean square similarity:
√
√
√
√ 1

n
·

n∑

i=1

sim(ai, bi)2.

In addition, we consider the correlation coefficient, which is a standard
statistical measure of similarity. It ranges from −1 to 1, but we can convert
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Table 2. Accuracy of three compression techniques. We give the average difference between an original series and its compressed
version using the three difference measures; smaller differences correspond to more accurate compression.

Mean difference Maximum difference Root mean square diff.

important fixed random important fixed random important fixed random
points points points points points points points points points

Eighty percent compression
Stock prices 0.02 0.03 0.04 0.70 1.70 1.60 0.05 0.14 0.14
Air temp. 0.01 0.03 0.03 0.33 0.77 0.72 0.03 0.10 0.10
Sea temp. 0.01 0.03 0.03 0.35 0.81 0.75 0.03 0.10 0.10
Wind speeds 0.02 0.03 0.03 0.04 1.09 1.01 0.04 0.05 0.05
EEG 0.03 0.06 0.07 0.68 1.08 1.00 0.10 0.18 0.17

Ninety percent compression
Stock prices 0.03 0.06 0.07 1.10 1.70 1.70 0.08 0.21 0.21
Air temp. 0.02 0.05 0.05 0.64 0.80 0.78 0.08 0.16 0.14
Sea temp. 0.01 0.04 0.05 0.60 0.83 0.82 0.07 0.16 0.14
Wind speeds 0.03 0.04 0.04 0.06 1.09 1.03 0.05 0.06 0.06
EEG 0.08 0.13 0.12 0.82 1.10 1.09 0.17 0.27 0.24

Ninety-five percent compression
Stock prices 0.05 0.10 0.12 1.30 1.80 1.80 0.11 0.32 0.30
Air temp. 0.03 0.09 0.08 0.74 0.83 0.83 0.12 0.23 0.21
Sea temp. 0.03 0.08 0.08 0.78 0.85 0.85 0.12 0.23 0.21
Wind speeds 0.05 0.04 0.04 0.08 1.09 1.10 0.07 0.08 0.08
EEG 0.13 0.17 0.16 0.90 1.10 1.10 0.24 0.31 0.28
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–a b a

psim (a,b)
1

Fig. 5. Peak similarity of numbers a and b, where |a| ≥ |b|.

it to the zero-to-one scale by adding one and dividing by two. For series
a1, . . . , an and b1, . . . , bn, with mean values ma = (a1 + · · · + an)/n and
mb = (b1 + · · · + bn)/n, the correlation coefficient is

∑n
i=1(ai − ma) · (bi − mb)

√∑n
i=1(ai − ma)2 · ∑n

i=1(bi − mb)2

We next define a new similarity measure, called the peak similarity. For
numbers a and b, their peak similarity is

psim(a, b) = 1 − |a − b|
2 · max(|a|, |b|) .

In Figure 5, we show the meaning of this definition for |a| ≥ |b|, based on
the illustrated triangle. We draw the vertical line through b to the intersec-
tion with the triangle’s side; the ordinate of the intersection is the similarity
of a and b. The peak similarity of two series is the mean similarity of their
points (psim(a1, b1) + · · · + psim(an, bn))/n.

We next give an empirical comparison of the four similarity measures.
For each series, we have found the five most similar series, and then deter-
mined the mean difference between the given series and the other five.
In Table 3, we summarize the results and compare them with the perfect
exhaustive-search selection and with random selection. The results show
that the peak similarity performs better than the other measures, and that
the correlation coefficient is the least effective.

We have also used the four similarity measures to identify close matches
for each series, and compared the results with ground-truth neighborhoods.
For stocks, we have considered small neighborhoods formed by industry sub-
groups, as well as large neighborhoods formed by industry groups, accord-
ing to Standard and Poor’s classification. For air and sea temperatures, we
have used geographic proximity to define two ground-truth neighborhoods.
The first neighborhood is the 1 × 5 rectangle in the grid of buoys, and
the second is the 3 × 5 rectangle. For wind speeds, we have also used geo-
graphic proximity; the first neighborhood includes all sites within 70 miles,
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Table 3. Differences between selected similar series. For each given series, we have selected the five most similar series, and then measured
the mean difference between the given series and the other five. Smaller differences correspond to better selection. We also show the running
times of selecting similar series.

Similarity Comp. Stock prices Sea temperatures Air temperatures Wind speeds EEG
measure rate

Mean Max Time Mean Max Time Mean Max Time Mean Max Time Mean Max Time
diff. diff. (sec) diff. diff. (sec) diff. diff. (sec) diff. diff. (sec) diff. diff. (sec)

Perfect selection 0.094 0.437 0.016 0.072 0.024 0.121 0.021 0.136 0.038 0.170
Random selection 0.287 1.453 0.078 0.215 0.070 0.235 0.029 0.185 0.072 0.370

Peak 90% 0.103 0.429 0.024 0.018 0.068 0.021 0.029 0.103 0.022 0.023 0.138 0.016 0.052 0.241 0.015
Similarity 95% 0.110 0.534 0.022 0.019 0.073 0.019 0.030 0.136 0.020 0.023 0.148 0.016 0.063 0.306 0.015

Mean 90% 0.110 0.525 0.026 0.026 0.092 0.022 0.031 0.134 0.022 0.023 0.137 0.017 0.055 0.279 0.016
Similarity 95% 0.126 0.570 0.024 0.033 0.112 0.021 0.037 0.152 0.022 0.025 0.152 0.017 0.066 0.323 0.014

Root mean 90% 0.103 0.497 0.026 0.024 0.090 0.022 0.030 0.133 0.022 0.023 0.134 0.017 0.051 0.261 0.016
Square sim. 95% 0.115 0.588 0.024 0.031 0.106 0.021 0.035 0.147 0.022 0.023 0.153 0.017 0.064 0.317 0.014

Correlation 90% 0.206 1.019 0.048 0.054 0.162 0.044 0.051 0.214 0.046 0.024 0.138 0.042 0.056 0.281 0.030
Coefficient 95% 0.210 1.101 0.045 0.063 0.179 0.042 0.051 0.224 0.043 0.024 0.154 0.033 0.068 0.349 0.028
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and the second includes the sites within 140 miles. For electroencephalo-
grams, the first neighborhood is the 3×3 rectangle in the grid of electrodes,
and the second is the 5 × 5 rectangle.

For each series, we have found the five closest matches, and then
determined the average number of matches that belong to the same
neighborhood. In Table 4, we give the results and compare them with the
perfect selection and random selection; larger numbers correspond to better
selections.

The results show that the peak similarity is usually more effective than
the other three similarities. If we use the 90% compression, the peak simi-
larity gives better selection than the other similarity measures for the stock
prices, air and sea temperatures, and eeg; however, it gives worse results
for the wind speeds. If we use the 95% compression, the peak similarity out-
performs the other measures on the stocks, temperatures, eeg, and large-
neighborhood selection for the wind speeds; however, it loses to the mean
similarity and correlation coefficient on the small-neighborhood selection
for the wind speeds.

We have also checked how well the peak similarity of original series
correlates with the peak similarity of their compressed versions (Figure 6).
We have observed a good linear correlation, which gracefully degrades with
an increase of compression rate.

5. Pattern Retrieval

We give an algorithm that inputs a pattern series and retrieves similar series
from a database. It includes three steps: identifying a “prominent feature”
of the pattern, finding similar features in the database, and comparing the
pattern with each series that has a similar feature.

We begin by defining a leg of a series, which is the segment between
two consecutive important points. For each leg, we store the values listed
in Figure 7, denoted vl, vr, il, ir, ratio, and length; we give an example of
these values in Figure 8. The prominent leg of a pattern is the leg with the
greatest endpoint ratio.

The retrieval procedure inputs a pattern and searches for similar seg-
ments in a database (Figure 9). First, it finds the pattern leg with the
greatest endpoint ratio, denoted ratiop, and determines the length of this
leg, lengthp. Next, it identifies all legs in the database that have a similar
endpoint ratio and length. A leg is considered similar to the pattern leg
if its ratio is between ratiop/C and ratiop · C, and its length is between
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Table 4. Finding members of the same neighborhood. For each series, we have found the five closest
matches, and then determined the average number of the series among them that belong to the same
ground-truth neighborhood.

Similarity Comp. Stocks Sea temp. Air temp. Wind speeds EEG
Measure rate

1 2 1 2 1 2 1 2 1 2

Perfect selection 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Random selection 0.07 0.29 0.11 0.40 0.10 0.40 0.74 2.27 0.35 1.03

Peak 90% 0.22 0.62 0.54 1.09 0.49 0.89 1.16 2.83 1.81 2.81
Similarity 95% 0.21 0.55 0.65 1.18 0.48 0.82 1.50 2.83 1.59 2.25

Mean 90% 0.18 0.55 0.28 0.85 0.34 0.77 1.33 2.92 1.05 1.98
Similarity 95% 0.12 0.47 0.17 0.75 0.25 0.65 1.58 2.66 0.36 0.90

Root mean 90% 0.14 0.53 0.32 0.88 0.34 0.83 1.50 2.92 1.20 2.19
Square sim. 95% 0.17 0.35 0.20 0.77 0.26 0.71 1.33 2.75 0.36 0.90

Correlation 90% 0.15 0.39 0.25 0.82 0.49 0.74 1.33 2.92 1.16 2.24
Coefficient 95% 0.19 0.50 0.29 0.72 0.34 0.60 1.51 2.75 0.68 1.65
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Fig. 6. Correlation between the peak similarity of original series and the peak similarity
of their compressed versions. We show the correlation for three compression rates: 80%,
90%, and 95%.

vl value of the left important point of the leg
vr value of the right important point of the leg
il index of the left important point
ir index of the right important point
ratio ratio of the endpoints, defined as vr/vl
length length of the leg, defined as ir – il

Fig. 7. Basic data for a leg.

lengthp/D and lengthp · D, where C and D are parameters for controlling
the search.

We index all legs in the database by their ratio and length using a range
tree, which is a standard structure for indexing points by two co-ordinates
[Edelsbrunner (1981), Samet (1990)]. If the total number of legs is l, and
the number of retrieved legs with an appropriate ratio and length is k, then
the retrieval time is O(k + lg l).
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Finally, the procedure identifies the segments that contain the selected
legs (Figure 10) and computes their similarity to the pattern. If the simi-
larity is above a given threshold T, the procedure outputs the segment as
a match. In Figure 11, we give an example of a stock-price pattern and
similar segments retrieved from the stock database.

0            5           10          15          20          25 30
time

1.6

1.4

1.2

1.0

0.8

0.6

vl = 0.6
vr = 1.4
il = 9
ir =15
ratio = 2.33
length = 6

vl = 1.6
vr = 1.0
il = 21
ir = 27
ratio = 0.62
length = 6

0            5           10          15          20          25 30
time

1.6

1.4

1.2

1.0

0.8

0.6

vl = 0.6
vr = 1.4
il = 9
ir =15
ratio = 2.33
length = 6

vl = 1.6
vr = 1.0
il = 21
ir = 27
ratio = 0.62
length = 6

Fig. 8. Example legs. We show the basic data for the two legs marked by thick lines.

PATTERN-RETRIEVAL
The procedure inputs a pattern series and searches a time-series
database; the output is a list of segments from the database that match
the pattern.

Identify the pattern leg p with the greatest endpoint ratio, denoted ratiop. Deter-
mine the length of this pattern leg, denoted lengthp.

Find all legs in the database that satisfy the following conditions:

• their endpoint ratios are between ratiop/C and ratiop · C, and
• their lengths are between lengthp/D and lengthp · D.

For each leg in the set of selected legs:
Identify the segment corresponding to the pattern (Figure 10).
Compute the similarity between the segment and the pattern.
If the similarity is above the threshold T , then output the segment.

Fig. 9. Search for segments similar to a given pattern. We use three parameters to con-
trol the search: maximal ratio deviation C, maximal length deviation D, and similarity
threshold T .

(a) Prominent
     leg in a pattern.

(c) Align the right
     end of these legs.

(d) Identify the respective
     segment in the series.

(b) Similar leg
      in a series.

Fig. 10. Identifying a segment that may match the pattern.
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pattern

Fig. 11. Example of retrieved stock charts.

(b) Dissimilar legs. (c) Extended legs.(a) Prominent
     leg of a pattern.

Fig. 12. Example of extended legs. The pattern (a) matches the series (b), but the
pattern’s prominent leg has no equivalent in the series. If we identify the extended legs
(c), the prominent leg matches one of them.

The described procedure can miss a matching segment that does not
have a leg corresponding to the pattern’s prominent leg. We illustrate
this problem in Figure 12, where the prominent leg of the pattern has no
equivalent in the matching series. To avoid this problem, we introduce the
notion of an extended leg, which is a segment that would be a leg under a
higher compression rate (Figure 12c). Formally, points ai and aj of a series
a1, . . . , an form an extended upward leg if

• ai is a local minimum, and aj is a local maximum, and
• for every m ∈ [i, j], we have ai < am < aj .

The definition of an extended downward leg is similar.
We identify all extended legs, and index them in the same way as nor-

mal legs. The advantage of this approach is more accurate retrieval, and
the disadvantage is a larger indexing structure. In Figure 13, we give an
algorithm for identifying upward extended legs; the procedure for finding
downward extended legs is similar. We assume that normal upward legs in
the input series are numbered from 1 to l. First, the procedure processes
important maxima; for each maximum irk, it identifies the next larger max-
imum and stores its index in next[k]. Second, it uses this information to
identify extended legs. The running time of the first part is linear in the
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EXTENDED-LEGS
The input is the list of legs in a series; the output is a list of all extended
legs.
initialize an empty stack S of leg indices

PUSH(S, 1)
for k = 2 to l do

while S is not empty and irTOP(S) < irk do
next[TOP(S)] = k; POP(S)

PUSH(k)
while S is not empty do

next[TOP(S)] = NIL; POP(S)
initialize an empty list of extended legs
for k = 1 to l − 1 do

m = next[k]
while m is not NIL do

add (ilk, irm) to the list of extended legs
m = next[m]

Fig. 13. Identifying extended legs. We assume that normal legs are numbered 1 to l.

number of normal legs, and the time of the second part is linear in the
number of extended legs.

To evaluate the retrieval accuracy, we have compared the retrieval
results with the matches identified by a slow exhaustive search. We have
ranked the matches found by the retrieval algorithm from most to least
similar. In Figures 14 and 15, we plot the ranks of matches found by the
fast algorithm versus the ranks of exhaustive-search matches. For instance,
if the fast algorithm has found only three among seven closest matches, the
graph includes the point (3, 7). Note that the fast algorithm never returns
“false positives” since it verifies each candidate match.

The retrieval time grows linearly with the pattern length and with the
number of candidate segments identified at the initial step of the retrieval
algorithm. If we increase C and D, the procedure finds more candidates and
misses fewer matchers, but the retrieval takes more time. In Table 5, we give
the mean number of candidate segments in the retrieval experiments, for
three different values of C and D; note that this number does not depend
on the pattern length.

We have measured the speed of a Visual-Basic implementation on a 300-
MHz PC. If the pattern has m legs, and the procedure identifies k candidate
matches, then the retrieval time is 70 · m · k microseconds. For the stock
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Fig. 14. Retrieval of stock charts. The horizontal axes show the ranks of matches
retrieved by the fast algorithm. The vertical axes are the ranks assigned to the same
matches by the exhaustive search. If the fast algorithm has found all matches, the graph
is a forty-five degree line; otherwise, it is steeper.

database with 60,000 points, the retrieval takes from 0.1 to 2.5 seconds. For
the database of air and sea temperatures, which includes 450,000 points,
the time is between 1 and 10 seconds.

6. Concluding Remarks

The main results include a procedure for compressing time series, indexing
of compressed series by their prominent features, and retrieval of series
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Fig. 15. Retrieval of weather and electroencephalogram patterns. The horizontal axes
show the similarity ranks assigned by the fast algorithm, and the vertical axes are the
exhaustive-search ranks.

whose compressed representation is similar to the compressed pattern.
The experiments have shown the effectiveness of this technique for index-
ing of stock prices, weather data, and electroencephalograms. We plan to
apply it to other time-series domains and study the factors that affect its
effectiveness.

We are working on an extended version of the compression procedure,
which will assign different importance levels to the extrema of time series,
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Table 5. Average number of the candidate segments that match a pattern’s prominent
leg. The retrieval algorithm identifies these candidates and then compares them with the
pattern. The number of candidates depends on the search parameters C and D.

Search Stock Air and sea Wind speeds EEG
parameters prices temperatures

C = D = 1.5 270 1,300 970 40
C = D = 2 440 2,590 1,680 70
C = D = 5 1,090 11,230 2,510 220

and allow construction of a hierarchical indexing structure [Gandhi (2003)].
We also aim to extend the developed technique for finding patterns that
are stretched over time, and apply it to identifying periodic patterns, such
as weather cycles.
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We present techniques for the analysis and retrieval of time-series under
conditions of noise. This is an important topic because the data obtained
using various sensors (examples include GPS data or video tracking data)
are typically noisy. The performance of previously used measures is gen-
erally degraded under noisy conditions. Here we formalize non-metric
similarity functions based on the Longest Common Subsequence that
are very robust to noise. Furthermore they provide an intuitive notion of
similarity between time-series by giving more weight to the similar por-
tions of the sequences. Stretching of sequences in time is allowed, as well
as global translating of the sequences in space. Efficient approximate
algorithms that compute these similarity measures are also provided.
We compare these new methods to the widely used Euclidean and Time
Warping distance functions (for real and synthetic data) and show the
superiority of our approach, especially under the strong presence of noise.
We prove a weaker version of the triangle inequality and employ it in
an indexing structure to Answer nearest neighbor queries. Finally, we
present experimental results that validate the accuracy and efficiency of
our approach.

Keywords: Longest Common Subsequence; time-series; spatio-temporal;
outliers; time warping.
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1. Introduction

We consider the problem of discovering similar time-series, especially under
the presence of noise. Time-series data come up in a variety of domains,
including stock market analysis, environmental data, telecommunication
data, medical and financial data. Web data that count the number of clicks
on given sites, or model the usage of different pages are also modeled as
time series.

In the last few years, the advances in mobile computing, sensor and GPS
technology have made it possible to collect large amounts of spatiotempo-
ral data and there is increasing interest to perform data analysis tasks over
this data [4]. For example, in mobile computing, users equipped with mobile
devices move in space and register their location at different time instants
to spatiotemporal databases via wireless links. In environmental informa-
tion systems, tracking animals and weather conditions is very common and
large datasets can be created by storing locations of observed objects over
time. Other examples of the data that we are interested in include features
extracted from video clips, sign language recognition, and so on.

Data analysis in such data includes determining and finding objects that
moved in a similar way or followed a certain motion pattern. Therefore, the
objective is to cluster different objects into similar groups, or to classify an
object based on a set of known examples. The problem is hard, because the
similarity model should allow for imprecise matches.

In general the time-series will be obtained during a tracking procedure,
with the aid of devices such as GPS transmitters, data gloves etc. Here also
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Fig. 1. Examples of video-tracked data representing 2 instances of the word ‘athens’.
Start & ending contain many outliers.
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lies the main obstacle of such data; they may contain a significant amount
of outliers (Figure 1) or in other words incorrect data measurements.

We argue that the use of non-metric distance functions is prefer-
able, since such functions can effectively ‘ignore’ the noisy sections of the
sequences.

The rest of the chapter is organized as follows. In section 2 we will review
the most prevalent similarity measures used in time-series databases, we
will demonstrate the need for non-metric distance functions and we will also
consider related work. In section 3 we formalize the new similarity functions
by extending the Longest Common Subsequence (LCSS) model. Section 4
demonstrates efficient algorithms to compute these functions and section 5
elaborates on the indexing structure. Section 6 provides the experimental
validation of the accuracy and efficiency of the proposed approach. Finally,
section 7 concludes the chapter.

2. Background

Indexing of time-series has concentrated great attention in the research
community, especially in the last decade, and this can partly be attributed
to the explosion of database sizes. Characteristic examples are environmen-
tal data collected on a daily basis or satellite image databases of the earth1.
If we would like to allow the user to explore these vast databases, we should
organize the data in such a way, so that one can retrieve accurately and
efficiently the data of interest.

More specifically, our objective is the automatic classification of time-
series using Nearest Neighbor Classification (NNC). In NNC the time-series
query is classified according to the majority of its nearest neighbors. The
NNC is conceptually a simple technique, but provides very good results
in practical situations. This classification technique is particularly suited
for our setting, since we are going to use a non-metric distance function.
Furthermore, the technique has good theoretical properties; it has been
shown that the one nearest neighbor rule has asymptotic error rate that is
at most twice the Bayes error rate [13].

So, the problem we consider is: “Given a database D of time-series and
a query Q (not already in the database), find the sequence T that is closest
to Q.” We need to define the following:

1. A realistic distance function that will match the user’s perception of
what is considered similar.

1http://www.terraserver.com
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2. An efficient indexing scheme, which will speed up the user queries.

We will briefly discuss some issues associated with these two topics.

2.1. Time Series Similarity Measures

The simplest approach to define the distance between two sequences is to
map each sequence into a vector and then use a p-norm to calculate their
distance. The p-norm distance between two n-dimensional vectors �x and �y

is defined as:

Lp(�x, �y) =

(
n∑

i=1

|xi − yi|p
) 1

p

For p = 2 it is the well known Euclidean distance and for p = 1 the
Manhattan distance.

Most of the related work on time-series has concentrated on the use of
some metric Lp Norm. The advantage of this simple model is that it allows
efficient indexing by a dimensionality reduction technique [2,15,19,44]. On
the other hand the model cannot deal well with outliers and is very sensi-
tive to small distortions in the time axis. There are a number of interesting
extensions to the above model to support various transformations such as
scaling [10,36], shifting [10,21], normalization [21] and moving average [36].
Other recent works on indexing time series data for similarity queries assum-
ing the Euclidean model include [25,26]. A domain independent framework
for defining queries in terms of similarity of objects is presented in [24].
In [29], Lee et al. propose methods to index sequences of multidimensional
points. The similarity model is based on the Euclidean distance and they
extend the ideas presented by Faloutsos et al. in [16], by computing the
distances between multidimensional Minimum Bounding Rectangles.

Another, more flexible way to describe similar but out-of-phase
sequences can be achieved by using the Dynamic Time Warping (DTW)
[38]. Berndt and Clifford [5] were the first that introduced this measure in
the datamining community. Recent works on DTW are [27,31,45]. DTW has
been first used to match signals in speech recognition [38]. DTW between
two sequences A and B is described by the following equation:

DTW (A, B) = Dbase(am, bn) + min{DTW (Head(A), Head(B)),

DTW (Head(A), B),DTW (A, Head(B))}
where Dbase is some Lp Norm and Head(A) of a sequence A are all the
elements of A except for am, the last one.
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Fig. 2. The support of out-of-phase matching is important. However, the DTW
matches all points (so, the outliers as well), therefore distorting the true distance
between sequences. The LCSS model can support time-shifting and efficiently ignore
the noisy parts.

The difficulties imposed by DTW include the fact that it is a non-metric
distance function and also that its performance deteriorates in the presence
of large amount of outliers (Figure 2). Although the flexibility provided by
DTW is very important, nonetheless DTW is not the appropriate distance
function for noisy data, since by matching all the points, it also matches
the outliers distorting the true distance between the sequences.

Another technique to describe the similarity is to find the longest com-
mon subsequence (LCSS) of two sequences and then define the distance
using the length of this subsequence [3,7,12,41]. The LCSS shows how
well the two sequences can match one another if we are allowed to stretch
them but we cannot rearrange the sequence of values. Since the values are
real numbers, we typically allow approximate matching, rather than exact
matching. A technique similar to our work is that of Agrawal et al. [3]. In
this chapter the authors propose an algorithm for finding an approxima-
tion of the LCSS between two time-series, allowing local scaling (that is,
different parts of each sequence can be scaled by a different factor before
matching). In [7,12] fast probabilistic algorithms to compute the LCSS of
two time series are presented.

Other techniques to define time series similarity are based on extracting
certain features (Landmarks [32] or signatures [14]) from each time-series
and then use these features to define the similarity. An interesting approach
to represent a time series using the direction of the sequence at regular time
intervals is presented in [35]. Ge and Smyth [18] present an alternative
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approach for sequence similarity that is based on probabilistic matching,
using Hidden Markov Models. However the scalability properties of this
approach have not been investigated yet. A recent work that proposes a
method to cluster trajectory data is due to Gaffney and Smyth [17]. They
use a variation of the EM (expectation maximization) algorithm to cluster
small sets of trajectories. However, their method is a model based approach
that usually has scalability problems.

The most related paper to our work is the Bozkaya et al. [8]. They dis-
cuss how to define similarity measures for sequences of multidimensional
points using a restricted version of the edit distance which is equivalent to
the LCCS. Also, they present two efficient methods to index the sequences
for similarity retrieval. However, they focus on sequences of feature vectors
extracted from images and they do not discuss transformations or approx-
imate methods to compute the similarity.

Lately, there has been some work on indexing moving objects to answer
spatial proximity queries (range and nearest neighbor queries) [1,28,39].
Also, in [33], Pfoser et al. present index methods to answer topological
and navigational queries in a database that stores trajectories of moving
objects. However these works do not consider a global similarity model
between sequences but they concentrate on finding objects that are close to
query locations during a time instant, or time period that is also specified
by the query.

2.2. Indexing Time Series

Indexing refers to the organization of data in such a way, so as not only to
group together similar items, but also to facilitate the pruning of irrelevant
data. The second part is greatly affected from the fact whether our distance
function is metric or not.

Definition 1. A distance function d(x, y) between two objects x and y is
metric when it complies to the following properties:

1. Positivity, d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.
2. Symmetry, d(x, y) = d(y, x).
3. Triangle Inequality, d(x, y) + d(y, z) ≥ d(x, z).

Example: The Euclidean distance is a metric distance function. The
pruning power of such a function can be shown in the following exam-
ple(Figure 3); Assume we have a set of sequences, including sequences Seq1,
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Pairwise Distances
Seq1

Seq1

Seq2

Seq3

0

20

110

20

0

90

110

90
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Seq2 Seq3 Query

Seq 1

Seq 2

Seq 3

Fig. 3. Pruning power of triangle inequality.

Seq2, and Seq3, and we have already recorded their pair-wise distances in a
table. Suppose we pose a query Q, and we want to find the closest sequence
to Q. Assume we have already found a sequence, best-match-so-far, whose
distance from Q is 20. Comparing the query sequence Q to Seq2 yields
D(Q,Seq2) = 150. However, because D(Seq2,Seq1) = 20 and it is true that:
D(Q,Seq1) ≥ D(Q,Seq2) − D(Seq2,Seq1) ⇒ D(Q,Seq1) ≥ 150 − 20 = 130
we can safely prune Seq1, since it is not going to offer a better solution.
Similarly, we can prune Seq3.

We are going to use non-metric distance functions. This choice imposes
difficulties on how to prune data in an index, since we cannot apply the
technique outlined above. As a result it is much more difficult to design
efficient indexing techniques for non-metric distance functions. In the next
section we show that despite this fundamental drawback it is important to
use non-metric distance functions in conditions of noise. In section 5 we will
also show that the proper choice of a distance measure can overcome this
drawback to some degree.

2.3. Motivation for Non-Metric Distance Functions

Distance functions that are robust to extremely noisy data will typically
violate the triangular inequality. These functions achieve this by not con-
sidering the most dissimilar parts of the objects. Moreover, they are useful,
because they represent an accurate model of the human perception, since
when comparing any kind of data (images, time-series etc), we mostly focus
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on the portions that are similar and we are willing to pay less attention to
regions of great dissimilarity.

Non-metric distances are used nowadays in many domains, such as string
(DNA) matching, collaborative filtering (where customers are matched
with stored ‘prototypical’ customers) and retrieval of similar images from
databases. Furthermore, psychology research suggests that human similar-
ity judgments are also non-metric.

For this kind of data we need distance functions that can address the
following issues:

• Different Sampling Rates or different speeds. The time-series that
we obtain, are not guaranteed to be the outcome of sampling at fixed
time intervals. The sensors collecting the data may fail for some period
of time, leading to inconsistent sampling rates. Moreover, two time series
moving at exactly the similar way, but one moving at twice the speed of
the other will result (most probably) to a very large Euclidean distance.

• Outliers. Noise might be introduced due to anomaly in the sensor col-
lecting the data or can be attributed to human ‘failure’ (e.g. jerky move-
ment during a tracking process). In this case the Euclidean distance will
completely fail and result to very large distance, even though this differ-
ence may be found in only a few points.

• Different lengths. Euclidean distance deals with time-series of equal
length. In the case of different lengths we have to decide whether to
truncate the longer series, or pad with zeros the shorter etc. In general
its use gets complicated and the distance notion more vague.

• Efficiency. The similarity model has to be sufficiently complex to express
the user’s notion of similarity, yet simple enough to allow efficient com-
putation of the similarity.

To cope with these challenges we use the Longest Common Subsequence
(LCSS) model. The LCSS is a variation of the edit distance [30,37]. The
basic idea is to match two sequences by allowing them to stretch, without
rearranging the sequence of the elements but allowing some elements to be
unmatched.

A simple extension of the LCSS model is not sufficient, because (for
example) this model cannot deal with parallel movements. Therefore, we
extend it in order to address similar problems. So, in our similarity model
we consider a set of translations and we find the translation that yields the
optimal solution to the LCSS problem.
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3. Similarity Measures Based on LCSS

3.1. Original Notion of LCSS

Suppose that we have two time series A = (a1, a2, . . . , an) and B =
(b1, b2, . . . , bm). For A let Head(A) = (a1, a2, . . . , an−1). Similarly, for B.

Definition 2. The LCSS between A and B is defined as follows:

LCSS(A, B) =






0 if A or B empty,

1 + LCSS(Head(A), B)) if an = bn,

max(LCSS(Head(A), B), otherwise.

LCSS(A, Head(B)))

The above definition is recursive and would require exponential time to
compute. However, there is a better solution that can be offered in O(m∗n)
time, using dynamic programming.

Dynamic Programming Solution [11,42]

The LCSS problem can easily be solved in quadratic time and space. The
basic idea behind this solution lies in the fact that the problem of the
sequence matching can be dissected in smaller problems, which can be com-
bined after they are solved optimally. So, what we have to do is, solve a
smaller instance of the problem (with fewer points) and then continue by
adding new points to our sequence and modify accordingly the LCSS.

Now the solution can be found by solving the following equation using
dynamic programming (Figure 4):

LCSS[i, j] =






0 if i = 0,

0 if j = 0,

1 + LCSS[i − 1, j − 1] if ai = bi,

max(LCSS[i − 1, j], LCSS[i, j − 1]) otherwise.

where LCSS[i, j] denotes the longest common subsequence between the first
i elements of sequence A and the first j elements of sequence B. Finally,
LCSS[n, m] will give us the length of the longest common subsequence
between the two sequences A and B.

The same dynamic programming technique can be employed in order to
find the Warping Distance between two sequences.
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Fig. 4. Solving the LCSS problem using dynamic programming. The gray area indicates
the elements that are examined if we confine our search window. The solution provided
is still the same.

3.2. Extending the LCSS Model

Having seen that there exists an efficient way to compute the LCSS between
two sequences, we extend this notion in order to define a new, more flexible,
similarity measure. The LCSS model matches exact values, however in our
model we want to allow more flexible matching between two sequences,
when the values are within certain range. Moreover, in certain applications,
the stretching that is being provided by the LCSS algorithm needs only to
be within a certain range, too.

We assume that the measurements of the time-series are at fixed and
discrete time intervals. If this is not the case then we can use interpolation
[23,34].

Definition 3. Given an integer δ and a real positive number ε, we define
the LCSSδ,ε(A, B) as follows:

LCSSδ,ε(A, B) =






0 if A or B is empty

1 + LCSSδ,ε(Head(A), Head(B))

if |an − bn| < ε and |n − m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A, Head(B)))

otherwise



April 26, 2004 16:8 WSPC/Trim Size: 9in x 6in for Review Volume chap04

Indexing Time-Series under Conditions of Noise 77

Fig. 5. The notion of the LCSS matching within a region of δ & ε for a sequence. The
points of the two sequences within the gray region can be matched by the extended LCSS
function.

The constant δ controls how far in time we can go in order to match a
given point from one sequence to a point in another sequence. The constant
ε is the matching threshold (see Figure 5).

The first similarity function is based on the LCSS and the idea is to
allow time stretching. Then, objects that are close in space at different
time instants can be matched if the time instants are also close.

Definition 4. We define the similarity function S1 between two sequences
A and B, given δ and ε, as follows:

S1(δ, ε, A, B) =
LCSSδ,ε(A, B)

min(n.m)

Essentially, using this measure if there is a matching point within the
region ε we increase the LCSS by one.

We use function S1 to define another, more flexible, similarity measure.
First, we consider the set of translations. A translation simply causes a
vertical shift either up or down. Let F be the family of translations. Then a
function fc belongs to F if fc(A) = (ax,1 + c, . . . , ax,n + c). Next, we define
a second notion of the similarity based on the above family of functions.

Definition 5. Given δ, ε and the family F of translations, we define the
similarity function S2 between two sequences A and B, as follows:

S2(δ, ε, A, B) = max
fc∈F

S1(δ, ε, A, fc(B))
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Fig. 6. Translation of sequence A.

So the similarity functions S1 and S2 range from 0 to 1. Therefore we
can define the distance function between two sequences as follows:

Definition 6. Given δ, ε and two sequences A and B we define the following
distance functions:

D1(δ, ε, A, B) = 1 − S1(δ, ε, A, B)

and

D2(δ, ε, A, B) = 1 − S2(δ, ε, A, B)

Note that D1 and D2 are symmetric. LCSSδ,ε(A, B) is equal to
LCSSδ,ε(B, A) and the transformation that we use in D2 is translation
which preserves the symmetric property.

By allowing translations, we can detect similarities between movements
that are parallel, but not identical. In addition, the LCSS model allows
stretching and displacement in time, so we can detect similarities in move-
ments that happen with different speeds, or at different times. In Figure 6
we show an example where a sequence A matches another sequence B after
a translation is applied.

The similarity function S2 is a significant improvement over the S1,
because: (i) now we can detect parallel movements, (ii) the use of normal-
ization does not guarantee that we will get the best match between two
time-series. Usually, because of the significant amount of noise, the average
value and/or the standard deviation of the time-series that are being used in
the normalization process can be distorted leading to improper translations.

3.3. Differences between DTW and LCSS

Time Warping and the LCSS share many similarities. Here, we argue that
the LCSS is a better similarity function for correctly identifying noisy
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sequences and the reasons are:

1. Taking under consideration that a large portion of the sequences may
be just outliers, we need a similarity function that will be robust under
noisy conditions and will not match the incorrect parts. This property
of the LCSS is depicted in the Figure 7. Time Warping by matching all
elements is also going to try and match the outliers which, most likely,
is going to distort the real distance between the examined sequences.

In Figure 8 we can see an example of a hierarchical clustering pro-
duced by the DTW and the LCSS distances between four time-series.

Fig. 7. Using the LCSS we only match the similar portions, avoiding the outliers.

Fig. 8. Hierarchical clustering of time series with significant amount of outliers. Left:
The presence of many outliers in the beginning and the end of the sequences leads
to incorrect clustering. DTW is not robust under noisy conditions. Right: The LCSS
focusing on the common parts achieves the correct clustering.
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Fig. 9. Left: Two sequences and their mean values. Right: After normalization. Obvi-
ously an even better matching can be found for the two sequences.

The sequences represent data collected through a video tracking process
(see Section 6). The DTW fails to distinguish the two classes of words, due
to the great amount of outliers, especially in the beginning and in the end of
the sequences. Using the Euclidean distance we obtain even worse results.
Using the LCSS similarity measure we can obtain the most intuitive clus-
tering as shown in the same figure. Even though the ending portion of the
Boston 2 time-series differs significantly from the Boston 1 sequence, the
LCSS correctly focuses on the start of the sequence, therefore producing
the correct grouping of the four time-series.

2. Simply normalizing the time-series (by subtracting the average value)
does not guarantee that we will achieve the best match (Figure 9). How-
ever, we are going to show in the following section, that we can try a
set of translations which will provably give us the optimal matching (or
close to optimal, within some user defined error bound).

4. Efficient Algorithms to Compute the Similarity

4.1. Computing the Similarity Function S1

To compute the similarity functions S1 we have to run a LCSS compu-
tation for the two sequences. The LCSS can be computed by a dynamic
programming algorithm in O(n∗m) time. However we only allow matchings
when the difference in the indices is at most δ, and this allows the use of a
faster algorithm. The following lemma has been shown in [12].

Lemma 1. Given two sequences A and B, with |A| = n and |B| = m, we
can find the LCSSδ,ε(A,B) in O(δ(n + m)) time.
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If δ is small, the dynamic programming algorithm is very efficient.
However, for some applications δ may need to be large. In this case, we
can speed-up the above computation using random sampling. Given two
sequences A and B, we compute two subsets RA and RB by sampling each
sequence. Then we use the dynamic programming algorithm to compute
the LCSS on RA and RB. We can show that, with high probability, the
result of the algorithm over the samples, is a good approximation of the
actual value. We describe this technique in detail in [40].

4.2. Computing the Similarity Function S2

We now consider the more complex similarity function S2. Here, given
two sequences A, B, and constants δ, ε, we have to find the translation fc

that maximizes the length of the longest common subsequence of A, fc(B)
(LCSSδ,ε(A, fc(B)) over all possible translations.

A one dimensional translation fc is a function that adds a constant to
all the elements of a 1-dimensional sequence: fc(x1, . . . , xm) = (x1 + c, . . . ,

xm + c).
Let the length of sequences A and B be n and m respectively. Let us

also assume that the translation fc1 is the translation that, when applied
to B, gives a longest common subsequence LCSSδ,ε(A, fc1(B)) = a, and
it is also the translation that maximizes the length of the longest common
subsequence:

LCSSδ,ε(A, fc1(B)) = max
c∈R

LCSSδ,ε(A, fc(B)).

The key observation is that, although there is an infinite number of
translations that we can apply to B, each translation fc results to a longest
common subsequence between A and fc(B), and there is a finite set of
possible longest common subsequences. In this section we show that we can
efficiently enumerate a finite set of translations, such that this set provably
includes a translation that maximizes the length of the longest common
subsequence of A and fc(B).

A translation by c′, applied to B can be thought of as a linear transfor-
mation of the form f(bi) = bi + c′. Such a transformation will allow bi to
be matched to all aj for which |i − j| < δ, and aj − ε ≤ f(bi) ≤ aj + ε.

It is instructive to view this as a stabbing problem: Consider the
O(δ(n+m)) vertical line segments ((bi, aj −ε), (bi, aj +ε)), where |i−j| < δ

(Figure 10).
These line segments are on a two dimensional plane, where on the x axis

we put elements of B and on the y axis we put elements of A. For every
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Fig. 10. An example of a translation. By applying the translation to a sequence and
executing LCSS for δ = 1 we can achieve perfect matching.

pair of elements bi, aj in A and B that are within δ positions from each
other (and therefore can be matched by the LCSS algorithm if their values
are within ε), we create a vertical line segment that is centered at the point
(bi, aj) and extends ε above and below this point. Since each element in A

can be matched with at most 2δ + 1 elements in B, the total number of
such line segments is O(δn).

A translation fc′ in one dimension is a function of the form fc′(bi) =
bi+c′. Therefore, in the plane we described above, fc′(bi) is a line of slope 1.
After translating B by fc′ , an element bi of B can be matched to an element
aj of A if and only if the line fc′(x) = x + c′ intersects the line segment
((bi, aj − ε), (bi, aj + ε)).

Therefore each line of slope 1 defines a set of possible matchings between
the elements of sequences A and B. The number of intersected line seg-
ments is actually an upper bound on the length of the longest common
subsequence because the ordering of the elements is ignored. However, two
different translations can result to different longest common subsequences
only if the respective lines intersect a different set of line segments. For
example, the translations f0(x) = x and f2(x) = x+2 in Figure 10 intersect
different sets of line segments and result to longest common subsequences
of different length.

The following lemma gives a bound on the number of possible different
longest common subsequences by bounding the number of possible different
sets of line segments that are intersected by lines of slope 1.

Lemma 2. Given two one dimensional sequences A, B, there are O(δ(n +
m)) lines of slope 1 that intersect different sets of line segments.
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Proof: Let fc′(x) = x+c′ be a line of slope 1. If we move this line slightly to
the left or to the right, it still intersects the same number of line segments,
unless we cross an endpoint of a line segment. In this case, the set of inter-
sected line segments increases or decreases by one. There are O(δ(n + m))
endpoints. A line of slope 1 that sweeps all the endpoints will therefore
intersect at most O(δ(n + m)) different sets of line segments during the
sweep.

In addition, we can enumerate the O(δ(n+m)) translations that produce
different sets of potential matchings by finding the lines of slope 1 that
pass through the endpoints. Each such translation corresponds to a line
fc′(x) = x + c′. This set of O(δ(n + m)) translations gives all possible
matchings for a longest common subsequence of A, B. Since running the
LCSS algorithm takes O(δ(n + m)) we have shown the following theorem:

Theorem 1. Given two sequences A and B, with |A| = n and |B| = m,
we can compute the S2(δ, ε, A, B) in O((n + m)2δ2) time.

4.3. An Efficient Approximate Algorithm

Theorem 1 gives an exact algorithm for computing S2, but this algorithm
runs in quadratic time. In this section we present a much more efficient
approximate algorithm. The key in our technique is that we can bound the
difference between the sets of line segments that different lines of slope 1
intersect, based on how far apart the lines are.

Let us consider the O(δ(n + m)) translations that result to different
sets of intersected line segments. Each translation is a line of the form
fc′(x) = x + c′. Let us sort these translations by c′. For a given translation
fc′ , let Lfc′ be the set of line segments it intersects. The following lemma
shows that neighbor translations in this order intersect similar sets of line
segments.

Lemma 3. Let f1(x) = x+c′
1, . . . , fN (x) = x+c′

N be the different transla-
tions for sequences Ax and Bx, where c′

1 ≤ · · · ≤ c′
N . Then the symmetric

difference Lfi∆Lfj ≤ |i − j|.

Proof: Without loss of generality, assume i < j. The difference between fi

and fi+1 is simply that we cross one additional endpoint. This means that
we have to either add or subtract one line segment to Lfi to get Lfi+1. By
repeating this step (j − i) times we create Lfj .
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Fig. 11. If we can afford to be within a certain error range then we don’t have to try
all translations.

We can now prove our main theorem:

Theorem 2. Given two sequences A and B, with |A| = n and |B| = m

(suppose m < n), and a constant 0 < β < 1, we can find an approxima-
tion AS2δ,β(A, B) of the similarity S2(δ, ε, A, B) such that S2(δ, ε, A, B) −
AS2δ,β(A, B) < β in O(nδ2/β) time.

Proof: Let a = S2(δ, ε, A, B). There exists a translation fi such that Lfi

is a superset of the matches in the optimal LCSS of A and B. In addition,
by the previous lemma, there are 2b translations (fi−b, . . . , fi+b) that have
at most b different matchings from the optimal.

Therefore, if we use the translations fib, for i = 1, . . . ,
[

δn
b

]
in the order-

ing described above, we are within b different matchings from the opti-
mal matching of A and B (Figure 11). We can find these translations in
O(δn log n) time if we find and sort all the translations.

Alternatively, we can find these translations in O( δn
b δn) time if we run

[ δn
b ] quantile operations.

So we have a total of δn
b translations and setting b = βn completes the

proof.

Given sequences A, B with lengths n, m respectively (m < n), and con-
stants δ, β, ε, the approximation algorithm works as follows:

(i) Find all sets of translations for sequences A and B.
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(ii) Find the iβn-th quantiles for this set, 1 ≤ i ≤ 2δ
β .

(iii) Run the LCSSδ,ε algorithm on A and B, for the computed 2δ
β set of

translations.
(iv) Return the highest result.

5. Indexing Trajectories for Similarity Retrieval

In this section we show how to use the hierarchical tree of a clustering
algorithm in order to efficiently answer nearest neighbor queries in a dataset
of sequences.

The distance function D2 is not a metric because it does not obey
the triangle inequality. This makes the use of traditional indexing tech-
niques difficult. An example is shown in Figure 12, where we observe
that LCSS(δ, ε, A, B) = 1 and LCSS(δ, ε, B, C) = 1, therefore the
respective distances are both zero. However, obviously D2(δ, ε, A, C) >

D2(δ, ε, A, B) + D2(δ, ε, B, C) = 0 + 0.
We can however prove a weaker version of the triangle inequality, which

can help us avoid examining a large portion of the database objects. First
we define:

LCSSδ,ε,F (A, B) = max
fc∈F

LCSSδ,ε(A, fc(B))

Clearly,

D2(δ, ε, A, B) = 1 − LCSSδ,ε,F (A, B)
min(|A|, |B|)

Fig. 12. An example where the triangle inequality does not hold for the new LCSS
model.
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(as before, F is the set of translations). Now we can show the following
lemma:

Lemma 4. Given trajectories A,B,C:

LCSSδ,2ε(A, C) > LCSSδ,ε,F (A, B) + LCSSδ,ε,F (B, C) − |B|
where |B| is the length of sequence B.

Proof: Clearly, if an element of A can match an element of B within
ε, and the same element of B matches an element of C within ε, then
the element of A can also match the element of C within 2ε. Since there
are at least |B| − (|B| − LCSSδ,ε,F (A, B)) − (|B| − LCSSδ,ε,F (B, C)) ele-
ments of B that match with elements of A and with elements of C, it
follows that LCSSδ,2ε,F (A, C) > |B| − (|B| − LCSSδ,ε,F (A, B)) − (|B| −
LCSSδ,ε,F (B, C)) = LCSSδ,ε,F (A, B) + LCSSδ,ε,F (B, C) − |B|.

5.1. Indexing Structure

We first partition all the sequences into sets according to length, so that
the longest sequence in each set is at most a times the shortest (typically
we use a = 2.) We apply a hierarchical clustering algorithm on each set,
and we use the tree that the algorithm produced as follows:

For every node C of the tree we store the medoid (MC) of
each cluster. The medoid is the sequence that has the minimum dis-
tance (or maximum LCSS) from every other sequence in the clus-
ter: maxvi∈C minvj∈C LCSSδ,ε,F (vi, vj , e). So given the tree and a query
sequence Q, we want to examine whether to follow the subtree that is
rooted at C. However, from the previous lemma we know that for any
sequence B in C:

LCSSδ,ε,F (B, Q) < |B| + LCSSδ,2ε,F (MC , Q) − LCSSδ,ε,F (MC , B)

or in terms of distance:

D2(δ, ε, B, Q) = 1 − LCSSδ,ε,F (B, Q)
min(|B|, |Q|)

> 1 − |B|
min(|B|, |Q|) − LCSSδ,2ε,F (Mc, Q)

min(|B|, |Q|)
+

LCSSδ,ε,F (Mc, B)
min(|B|, |Q|) .
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In order to provide a lower bound we have to maximize the expression
|B| − LCSSδ,ε,F (Mc, B). Therefore, for every node of the tree along with
the medoid we have to keep the sequence rc that maximizes this expression.
If the length of the query is smaller than the shortest length of the sequences
we are currently considering we use that, otherwise we use the minimum
and maximum lengths to obtain an approximate result.

5.2. Searching the Index Tree for Nearest Trajectories

We assume that we search an index tree that contains time-series with
minimum length, min l and maximum length, max l. For simplicity we dis-
cuss the algorithm for the 1-Nearest Neighbor query, where given a query
sequence Q we try to find the sequence in the set that is the most similar
to Q. The search procedure takes as input a node N in the tree, the query
Q and the distance to the closest time-series found so far. For each of the
children C, we check if the child is a single sequence or a cluster. In case
that it is a sequence, we just compare its distance to Q with the current
nearest sequence. If it is a cluster, we check the length of the query and we
choose the appropriate value for min(|B|, |Q|). Then we compute a lower
bound L to the distance of the query with any sequence in the cluster and
we compare the result with the distance of the current nearest neighbor
mindist. We need to examine this cluster only if L is smaller than mindist.

In our scheme we use an approximate algorithm to compute the
LCSSδ,ε,F . Consequently, the value of LCSSδ,ε,F (MC , B)/min(|B|, |Q|)
that we compute can be up to β times higher than the exact value. There-
fore, since we use the approximate algorithm of section 3.2 for indexing
trajectories, we have to subtract β∗ min(|MC |, |Q|)/min(|B|, |Q|) from the
bound we compute for D2(δ, ε, B, Q).

6. Experimental Evaluation

We implemented the proposed approximation and indexing techniques as
they are described in the previous sections and here we present experimen-
tal results evaluating our techniques. We describe the datasets and then
we continue by presenting the results. The purpose of our experiments is
twofold: first, to evaluate the efficiency and accuracy of the approximation
algorithm presented in Section 4 and second to evaluate the indexing tech-
nique that we discussed in the previous section. Our experiments were run
on a PC Pentium III at 1 GHz with 128 MB RAM and 60 GB hard disk.
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6.1. Time and Accuracy Experiments

Here we present the results of some experiments using the approximation
algorithm to compute the similarity function S2. Our dataset here comes
from marine mammals’ satellite tracking data2. It consists of sequences of
geographic locations of various marine animals (dolphins, sea lions, whales,
etc) tracked over different periods of time, that range from one to three
months (SEALS dataset). The length of the sequences is close to 100.

In Table 1 we show the computed similarity between a pair of sequences
in the SEALS dataset. We run the exact and the approximate algorithm
for different values of δ and ε and we report here some indicative results. K

is the number of times the approximate algorithm invokes the LCSS proce-
dure (that is, the number of translations c that we try). As we can see using
only a few translation we get very good results. We got similar results for
synthetic datasets. Also, in Table 2 we report the running times to com-
pute the similarity measure between two sequences of the same dataset. The
approximation algorithm uses again from 15 to 60 different runs. The run-
ning time of the approximation algorithm is much faster even for K = 60.

As can be observed from the experimental results, the running times of
the approximation algorithm is not proportional to the number of runs (K).
This is achieved by reusing the results of previous translations and termi-
nating early the execution of the current translation, if it is not going to
yield a better result. The main conclusion of the above experiments is that
the approximation algorithm can provide a very tractable time vs accu-
racy trade-off for computing the similarity between two sequences, when
the similarity is defined using the LCSS model.

Table 1. Similarity values between two sequences from our SEALS
dataset.

Similarity Error(%)
for K = 60

δ E Exact Approximate for K tries

15 30 60

2 0.25 0.71134 0.65974 0.71134 0.696701 1.4639
2 0.5 0.907216 0.886598 0.893608 0.9 0.7216
4 0.25 0.71230 0.680619 0.700206 0.698041 1.2094
4 0.5 0.927835 0.908763 0.865979 0.922577 0.5258
6 0.25 0.72459 0.669072 0.698763 0.71134 1.325
6 0.5 0.938144 0.938 0.919794 0.92087 1.7274

2http://whale.wheelock.edu/whalenet-stuff/stop cover.html
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Table 2. Running time between two sequences from the SEALS
dataset.

Running Time (sec) Error(%)
for K = 60

δ E Exact Approximate for K tries

15 30 60

2 0.25 0.06 0.0038 0.006 0.00911 6.586
2 0.5 0.04 0.0032 0.00441 0.00921 4.343
4 0.25 0.17 0.0581 0.00822 0.01482 11.470
4 0.5 0.1 0.00481 0.00641 0.01031 9.699
6 0.25 0.331 0.00731 0.01151 0.01933 17.123
6 0.5 0.301 0.0062 0.00921 0.01332 22.597

6.2. Clustering using the Approximation Algorithm

We compare the clustering performance of our method to the widely used
Euclidean and DTW distance functions. Specifically:

(i) The Euclidean distance is only defined for sequences of the same length
(and the lengths of our sequences vary considerably). We tried to offer
the best possible comparison between every pair of sequences, by slid-
ing the shorter of the two sequences across the longer one and recording
their minimum distance. Like this we can get the best possible results
out of the Euclidean method, imposing some time overhead. However,
the computation of the Euclidean distance is the least complicated
one.

(ii) The DTW can be used to match sequences of different length. In both
DTW and Euclidean we normalized the data before computing the
distances. Our method does not need any normalization, since it com-
putes the necessary translations.

(iii) For LCSS we used a randomized version with and without sampling,
and for various values of δ. The time and the correct clusterings repre-
sent the average values of 15 runs of the experiment. This is necessary
due to the randomized nature of our approach.

6.2.1. Determining the Values for δ and ε

The choice of values for the parameters δ and ε are clearly dependent on
the application and the dataset. For most datasets we had at our disposal
we discovered that setting δ to more than 20–30% of the sequences length
did not yield significant improvement. Furthermore, after some point the
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Fig. 13. In most datasets, the similarity stabilizes around a certain point after a
value of δ.

similarity stabilizes to a certain value (Figure 13). The determination of ε

is application dependent. In our experiments we used a value equal to some
percentage (usually 0.3–0.5) of the smallest standard deviation between
the two sequences that were examined at any time, which yielded good and
intuitive results. Nevertheless, when we use the index the value of ε has to
be the same for all pairs of sequences.

If we want to provide more accurate results of the similarity between
the two sequences, we can use weighted matching. This will allow us to give
more gravity to the points that match very closely and less gravity to the
points that match marginally within the search area of ε. Such matching
functions can be found in Figure 14. If two sequence points match for very
small ε, then we increase the LCSS by 1, otherwise we increase by some
amount in the range r, where 0 ≤ r < 1.

6.2.2. Experiment 1 — Video Tracking Data

These time series represent the X and Y position of a human tracking
feature (e.g. tip of finger). In conjunction with a “spelling program” the
user can “write” various words [20]. In this experiment we used only the X
coordinates and we kept 3 recordings for 5 different words. The data cor-
respond to the following words: ‘athens’, ‘berlin’, ‘london’, ‘boston’, ‘paris’.
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Fig. 14. Performing unweighted and weighted matching in order to provide more accu-
racy in the matching between sequences.

The average length of the series is around 1100 points. The shortest one is
834 points and the longest one 1719 points.

To determine the efficiency of each method we performed hierarchical
clustering after computing the N(N − 1)/2 pairwise distances for all three
distance functions. We evaluate the total time required by each method, as
well as the quality of the clustering, based on our knowledge of which word
each sequence actually represents. We take all possible pairs of words (in
this case 5 ∗ 4/2 = 10 pairs) and use the clustering algorithm to partition
them into two classes. While at the lower levels of the dendrogram the
clustering is subjective, the top level should provide an accurate division
into two classes. We clustered using single, complete and average linkage.
Since the best results for every distance function are produced using the
complete linkage, we report only the results for this approach (Table 3,
Fig. 15). The same experiment is conducted with the rest of the datasets.
Experiments have been conducted for different sample sizes and values of
δ (as a percentage of the original series length).

The results with the Euclidean and the Time Warping distance have
many classification errors. For the LCSS the only real variations in the
clustering are for sample sizes s ≤ 10% (Figure 16). Still the average incor-
rect clusterings for these cases were constantly less than 2 (<1.85). For 15%
sampling or more, there were no errors.

6.2.3. Experiment 2 — Australian Sign Language Dataset (ASL)3

The dataset consists of various parameters (such as the X ,Y, Z hand
position, roll, pitch, yaw, thumb bend etc) tracked while different writers

3http://kdd.ics.uci.edu
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Table 3. Results using the video tracking data some
values of sample size s and δ.

Distance function Time (sec) Correct clusterings
(out of 10)

complete linkage

Euclidean 31.28 2
DTW 227.162 5
S2:

s-5%, δ-25% 2.645 8.45
s-10%, δ-25% 8.240 9.85
s-15%, δ-25% 15.789 10
s-20%, δ-25% 28.113 10

Fig. 15. Time required to compute the pairwise distance computations for various sam-
ple sizes and values of δ.

sign one the 95 words of the ASL. These series are relatively short
(50–100 points). We used only the X coordinates and collected 5 recordings
of the following 10 words: ‘Norway’, ‘cold’, ‘crazy’, ‘eat’, ‘forget’, ‘happy’,
‘innocent’, ‘later’, ‘lose’, ‘spend’. This is the experiment conducted also in
[27]. Examples of this dataset can be seen in Figure 17.

In this experiment all distance functions do not depict significant clus-
tering accuracy, and the reason is that we used only 1 parameter out of
the possible 10. Therefore accuracy is compromised. Specifically, the per-
formance of the LCSS in this experiment is similar to the DTW (both rec-
ognized correctly 20 clusters). So both present equivalent accuracy levels,
which is expected, since this dataset does not contain excessive noise and
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Fig. 16. Average number of correct clusterings (out of 10) for 15 runs of the algorithm
using different sample sizes and δ values.

Fig. 17. Three recordings of the word ‘norway’ in the Australian Sign Language. The
graph depicts the x position of the writer’s hand.

furthermore the data seem to be already normalized and rescaled within
the range [−1, . . . , 1]. Therefore in this experiment we used also the sim-
ilarity function S1 (no translation), since the translations were not going
to achieve any further improvement (Table 4, Figure 18). Sampling is only
performed down to 75% of the series length (these sequences are already
short). As a consequence, even though we don’t gain much in accuracy, our
execution time is comparable to the Euclidean (without performing any
translations).



April 26, 2004 16:8 WSPC/Trim Size: 9in x 6in for Review Volume chap04

94 M. Vlachos, D. Gunopulos and G. Das

Table 4. Results for ASL data and ASL with added noise.

Distance function Time (sec) Correct clusterings Correct clusterings
(out of 45) (out of 45)

ASL ASL with noise

Euclidean 2.170 15 1
DTW 8.092 20 2
S1:
s-75%, δ-40% 1.200 15.450 9.933
s-75%, δ-100% 2.297 19.231 10.4667
s-100%, δ-40% 1.345 16.080 12.00
s-100%, δ-100% 2.650 20.00 12.00

Fig. 18. ASL data: Time required to compute the pairwise distances of the 45 combi-
nations (same for ASL and ASL with noise).

6.2.4. Experiment 3 — ASL with Added Noise

We added noise at every sequence of the ASL at a random starting point
and for duration equal to the 15% of the series length. The noise was added
using the function: 〈�xnoise, �ynoise〉 = 〈�x, �y〉 + randn ∗ rangeV alues, where
randn produces a random number, chosen from a normal distribution with
mean zero and variance one, and rangeValues is the range of values on X or
Y coordinates. In this last experiment we wanted to see how the addition of
noise would affect the performance of the three distance functions. Again,
the running time is the same as with the original ASL data.
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Fig. 19. Noisy ASL data: The correct clusterings of the LCSS method using complete
linkage.

The LCSS proves to be more robust than the Euclidean and the DTW
under noisy conditions (Table 4, Figures 17 and 18). The Euclidean again
performed poorly, recognizing only 1 cluster, the DTW recognized 2 and
the LCSS up to 12 clusters (consistently recognizing more than 6 clusters).
These results are a strong indication that the models based on LCSS are
generally more robust to noise.

6.3. Evaluating the Quality and Efficiency of the Indexing
Technique

In this part of our experiments we evaluated the efficiency and effective-
ness of the proposed indexing scheme. We performed tests over datasets of
different sizes and different number of clusters. To generate large realistic
datasets, we used real sequences (from the SEALS and ASL datasets) as
“seeds” to create larger datasets that follow the same patterns. To perform
tests, we used queries that do not have exact matches in the database, but
on the other hand are similar to some of the existing sequences. For each
experiment we run 100 different queries and we report the averaged results.

We have tested the index performance for different number of clusters
in a dataset consisting of a total of 2000 sequences. We executed a set of
K-Nearest Neighbor (K-NN) queries for K 1, 5, 10, 15 and 20 and we plot
the fraction of the dataset that has to be examined in order to guarantee
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Fig. 20. Performance for increasing number of Nearest Neighbors.

Fig. 21. Index performance for variable number of data clusters.

that we have found the best match for the K-NN query. Note that in this
fraction we included the medoids that we check during the search since they
are also part of the dataset.

In Figure 20 we show some results for K-Nearest Neighbor queries. We
used datasets with 5, 8 and 10 clusters. As we can see the results indicate
that the algorithm has good performance even for queries with large K.
We also performed similar experiments where we varied the number of
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clusters in the datasets (Figure 21). As the number of clusters increased
the performance of the algorithm improved considerably. This behavior is
expected and it is similar to the behavior of recent proposed index structures
for high dimensional data [6,9,22]. On the other hand if the dataset has no
clusters, the performance of the algorithm degrades, since the majority of
the sequences have almost the same distance to the query. This behavior
follows again the same pattern of high dimensional indexing methods [6,43].

7. Conclusions

We have presented efficient techniques to accurately compute the simi-
larity between time-series with significant amount of noise. Our distance
measure is based on the LCSS model and performs very well for noisy sig-
nals. Since the exact computation is inefficient, we presented approximate
algorithms with provable performance bounds. Moreover, we presented an
efficient index structure, which is based on hierarchical clustering, for sim-
ilarity (nearest neighbor) queries. The distance that we use is not a metric
and therefore the triangle inequality does not hold. However, we prove that
a similar inequality holds (although a weaker one) that allows to prune
parts of the datasets without any false dismissals.

Our experiments indicate that the approximation algorithm can be used
to get an accurate and fast estimation of the distance between two time-
series even under noisy conditions. Also, results from the index evaluation
show that we can achieve good speed-ups for searching similar sequences
comparing with the brute force linear scan.

We plan to investigate biased sampling to improve the running time of
the approximation algorithms, especially when full rigid transformations
(e.g. shifting, scaling and rotation) are necessary. Another approach to
index time-series for similarity retrieval is to use embeddings and map the
set of sequences to points in a low dimensional Euclidean space [15]. The
challenge of course is to find an embedding that approximately preserves the
original pairwise distances and gives good approximate results to similarity
queries.
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Most classification methods are based on the assumption that the
historic data involved in building and verifying the model is the best
estimator of what will happen in the future. One important factor that
must not be set aside is the time factor. As more data is accumulated
into the problem domain, incrementally over time, one must examine
whether the new data agrees with the previous datasets and make the
relevant assumptions about the future. This work presents a new change
detection methodology, with a set of statistical estimators. These changes
can be detected independently of the data mining algorithm, which is
used for constructing the corresponding model. By implementing the
novel approach on a set of artificially generated datasets, all significant
changes were detected in the relevant periods. Also, in the real-world
datasets evaluation, the method produced similar results.

Keywords: Classification; incremental learning; time series; change
detection; info-fuzzy network.
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1. Introduction

As mass of data is incrementally accumulated into large databases over
time, we tend to believe that the new data “acts” somehow resembling to
the prior knowledge we have on the operation or facts that it describes.
Change detection in time series is not a new subject and it has always been
a topic of continued interest. For instance, Jones et al. [17] have developed
a change detection model mechanism for serially correlated multivariate
data. Yao [39] has estimated the number of change points in time series
using the BIC criterion. However the change detection in classification is
still not well elaborated.

There are many algorithms and methods that deal with the incremental
learning problem, which is concerned with updating an induced model upon
receiving new data. These methods are specific to the underlying data min-
ing model. For example: Utgoff’s method for incremental induction of deci-
sion trees (ITI) [35,36], Wei-Min Shen’s semi-incremental learning method
(CDL4) [34], David W. Cheung technique for updating association rules in
large databases [5], Alfonso Gerevini’s network constraints updating tech-
nique [12], Byoung-Tak Zhang’s method for feedforwarding neural networks
(SELF) [40], simple Backpropagation algorithm for neural networks [27],
Liu and Setiono’s incremental feature selection (LVI) [24] and more.

The main topic in most incremental learning theories is how the model
(this could be a set of rules, a decision tree, neural networks, and so on) is
refined or reconstructed efficiently as new amounts of data is encountered.
This problem has been challenged by many of the algorithms mentioned
above, and many of them performed significantly better than running the
algorithm from scratch, generally when the records were received on-line
and changes had a low magnitude. An important question that one must
examine whenever a new mass of data is accumulated is “Is it really wise to
keep on re-constructing or verifying the current model, when everything or
something in our notion of the model could have significantly changed?” In
other words, the main problem is not how to reconstruct better, but rather
how to detect a change in a model based on a time series database.

Some researchers have proposed various representations of the problem
of large time changing databases and populations including:

• Defining robustness and discovering robust knowledge from data-
bases [15] or learning stable concepts [13] in domains with hidden changes
in concepts.

• Identifying and modeling a persistent drift in a database [11].
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• Adapting to Concept and Population Drift [14,18,19,21,34].
• Activity Monitoring [9].

Rather than challenging the problem of detecting significant changes, the
above methods deal directly with data mining in changing environment.

This chapter introduces a novel methodology for detecting a significant
change in a classification model of data mining, by identifying distinct cat-
egories of changes and implementing a set of statistical estimators. The
major contribution of our change detection procedure (as will be described
in later sections), is the ability to make a confident claim that the model
that was pre-built based on a sufficiently large dataset is no longer valid for
any future use such as prediction, rule induction, etc., and consequently, a
new model must be constructed.

The rest of the chapter is organized as follows. In Section 2, we present
our change detection procedure in data mining models, by defining the data
mining classification model characteristics (2.1), describing the variety of
possible significant changes (2.2), definition of the hypothesis testing (2.3),
and the methodology for the change detection procedure (2.4). In Section 3,
we describe an experimental evaluation of the change detection method-
ology by introducing artificial changes in databases and implementing the
change detection methodology to identify these changes. Section 4 describes
evaluation of the change detection methodology on real-world datasets.
Section 5 presents validation of the work’s assumptions and Section 6 con-
cludes this chapter by summing-up the main contributions of our method,
and presenting several options for future research in implementation and
extension of our methodology.

2. Change Detection in Classification Models
of Data Mining

2.1. Classification Model Characteristics

Classification is the task which involves constructing a model predicting the
(usually categorical) label of a classifying attribute and using it to classify
new data. The induced classification model can be represented as a set of
rules (see the RISE system [8], the BMA method for rule induction [6],
PARULEL and PARADISER etc.), a decision tree (see [34–36] ), neural
networks (see [35]), information-theoretic connectionists networks (see IFN
[25]) and so on.

Given a database D which consist of X set of records. The data mining
model M is one that by using an algorithm (G) generates a set of hypothesis
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tests H within the available hypothesis space, which generalize the relation-
ship between a set of candidate input variables and the target variable. The
following notation is a general description of the data mining classification
modeling task: Given a database D, containing a complete set of records
X = (A|T ), where A is a vector of candidate input variables (attributes
from the examined phenomenon, which might have some influence on the
target concept), and T is a target variable (i.e. the target concept). Find
the best set of hypothesis H within the available hypothesis space, which
generalize the relationship between a set of candidate input variables and
the target variable (e.g. the model M) using some Data Mining algorithm.
Each record is regarded as a complete set of conjunction between attributes
and a target concept (or variable), such as

Xi = (A1i = a1j(1), A2i = a2j(2), . . . , Ani = anj(n), Ti = tj′).

A = (A1, A2 . . . An) is a known set of attributes of the desired phenomenon
and T (also noted in DM literature as Y ) is a known discrete or continuous
target variable or concept. The goal for the classification task is to generate
best set of hypotheses to describe the model M using an algorithm G. To
simplify, this means, generating the following general equation:

MG : A ¬ T̂ . (1)

It is obvious that not all attributes are proved to be statistically signif-
icant in order to be included in the set of hypothesizes.

In most algorithms, the database D is divided into two parts — learning
(Dlearn) and validation (Dval) sets. The first is supposed to hold enough
information for assembling a statistically significant and stable model based
on the DM algorithm. The second part is supposed to ensure that the
algorithm performs its goals by validation of the built models on unseen
records. Evaluating the prediction accuracy of any model M , which is built
by a classification algorithm G, is commonly performed, by estimating the
Validation Error Rate of the examined model.

When the database D is not fixed but, alternatively, accumulated over
time, the classification task should be altered: in every period K, a new set
of records XK is accumulated to the database. dK will be the notation for
the set of records XK that was added in the start of period K, and DK will
be the notation for the accumulated database Dk =

⋃
dk. Therefore, given

a database DK , containing a complete set of records XK , generate the best
set of hypothesis HK to describe the accumulated model MK , and a new
question is encountered: is MK,G = MK+1,G, in every K = 1, . . . , k?
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As noted before, most existing methods have dealt with “how can the
model M be updated efficiently when a new period K is encountered?” or
“How can we adapt to the time factor?”, rather than asking the following
questions:

• “Was the model significantly changed during the period K?”
• “What was the nature of the change?”
• “Should we consider several of the past periods as redundant or not

required in order for an algorithm G to generate a better model M?”

Hence, the objective of this work is: define and evaluate a change detec-
tion methodology for identifying a significant change that happened during
period K in a classification model, which was incrementally built over peri-
ods 1 to K−1, based on the data that was accumulated during the period K.

2.2. Variety of Changes

There are various significant changes, which might occur when inducing
the model M using the algorithm G. There are several possible causes for
significant changes in the data mining model:

(i) A change in the probability distribution of one or more of the input
attributes (A). For example, if a database in periods 1 to K−1, consists
of 45% males and 55% females, while in period K all records represent
males.

(ii) A change in the distribution of the target variable (T ). For example, in
the case of examining the rate of failures in a final exam based on the
characteristics of the students in consecutive years. If in the year 1999
the average failure rate was 20% and in the year 2000 was 40%, then a
change in the target distribution has occurred.

A change in the “patterns” (rules), which define the relationship of the
input attributes to the target variable. That is a change in the model M ,
derived from a change in a set of hypothesis in H. For instance, in the case
of examining the rate of failures in final exams based on the characteristics
of the students in the course of consecutive years, if in years 1999 male
students had 60% failures and female students had 5% failures, and in
year 2000 the situation was the opposite, then it is obvious that there was
a change in the patterns of behavior. This work defines this cause for a
significant change in a Data Mining model M by the following definition:
A change C is encountered in the period K if the validation error of the
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model MK−1 (the model that is based on DK−1) on the database DK−1 is
significantly different from the validation error rate of the model MK−1 over
dK . dK consists of the accumulated set of records obtained in period K.

Inconsistency of the DM algorithm. The basic assumption is that the
DM algorithms in use were proven to be consistent and therefore are not
prone to be a major cause for a change in the model. Although, this option
should not be omitted, this work does not intend to deal with consistency
or inconsistency measures of existing DM algorithms. We just point out
here that the DM algorithm that was chosen for our experiments (IFN)
was shown to be stable in our previous work [21].

As noted in sub-section 2.1, the data mining model is generally described
as: MG : A ¬ T̂ , that is a relationship between A and T . The first cause is
explained via a change in the set of attributes A, which can also cause a
change in the target variable. For example, if the percent of women will rise
from 50% to 80% and women drink more white wine than men, than the
overall percent of white wine consumption (T ) will also increase. This can
also affect the overall error rate of the data mining model if most rules were
generated for men. Also, if the cause of a change in the relevant period is
a change in the target variable (e.g., France has stopped producing white
wine, and the percent of white wine consumption has dropped from 50%
to 30%), it is possible that the rules relating the relevant attributes to the
target variable(s) will be affected.

Since it is not trivial to identify the dominant cause of change, this
work claims that a variety of possible changes might occur in a relevant

Table 1. Definition of the variety of changes in a data mining model.

Rules A T Description

− − − No change.
− − + A change in the target variable.
− + − A change in the attribute variable(s).
− + + A change in the target and in the input variable(s).
+ − − A change in “patterns” (rules) of the data mining

model.
+ − + A change in “patterns” (rules) of the data mining

model, and a change in the target variable.
+ + − A change in “patterns” (rules) of the data mining

model, and a change in the input variable(s).
+ + + A change in “patterns” (rules) of the data mining

model, and a change in the target and the input
variables.
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period. The change can be caused by one of the three causes that were
mentioned above or a simple combination of them. Table 1 presents the
possible combinations of significant causes in a given period.

The definition of the variety of possible changes in a data-mining model
is quite a new concept. As noted, several researchers tended to deal with
concept change, population change, activity monitoring, etc. The notion
that all three major causes interact and affect each other is quite new and
it is tested and validated in this work for the first time.

2.3. Statistical Hypothesis Testing

In order to determine whether or not a significant change has occurred in
period K, a set of statistical estimators is presented in this chapter. The
use of these estimators is subject to several conditions:

1. Every period contains a sufficient amount of training data in order to
rebuild a model for that specific period. The decision of whether a period
contains sufficient number of records should be based on the classifica-
tion algorithm in use, the inherent noisiness of the training data, the
acceptable difference between the training and validation error rates,
and so on.

2. The same DM algorithm is used in all periods to build the classification
model (e.g., C4.5 or IFN).

3. The same method is used for estimating the validation error rate in all
periods (e.g., 5-fold or 10-fold cross validation, 1/3 holdout, etc.).

Detecting a change in “patterns” (rules). “Patterns” (rules) define the
relationship between input and target variables. Since massive data streams
are usually involved in building an incremental model, we can safely assume
that the true validation error rate of a given incremental model is accurately
estimated by the previous K−1 periods. Therefore, a change in the rules (R)
is encountered during period K if the validation error of the model MK−1

(the model that is based on DK−1) on the database DK−1 is significantly
different from the validation error rate of the model MK−1 over dK (the
records obtained during period K).

Therefore, the parameter of interest for the statistical hypothesis testing
is the true validation error rate and the null hypothesis is as follows:

H0 : êMK−1,K = êMK−1,K−1,

H1 : êMK−1,K �= êMK−1,K−1,
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where:
êMK−1,K−1 is the validation error rate of model MK−1 measured on

DK−1 set of records (the standard validation error of the model).
êMK−1,K is the validation error rate of the aggregated model MK−1 on

the set of records dK .

In order to detect a significant difference between the two error rates it
is needed to test the following statistic (two sided hypothesis):

|d̂| = |êMK−1,K − êMK−1,K−1|,

σ̂2
d =

êMK−1,K − (1 − êMK−1,K)
nK

+
êMK−1,K−1(1 − êMK−1,K−1)

n
K−1(val)

,

If |d̂| ≥ z(1−α/2) · √
σ̂2

d, then reject H0. A change has occured in period K.

nK−1(val) = |DK−1(val)| is the number of records which were selected for
validation from periods 1, . . . , K−1 and nK = |dK | is the number of records
in period K.

The foundations for the above way of hypothesis testing when comparing
error rates of classification algorithms can be found in [29].

Detecting changes in variable distributions. The second statistical
test is Pearson’s chi-square statistic for comparing multinomial variables
(see [28]). This test examines whether a sample of the variable distribu-
tion is drawn from the matching probability distribution known as the true
distribution of that variable. The objective of this estimator in the change
detection procedure is to validate our assumption that the distribution of
an input or a target variable has significantly changed in statistical sense.
Again, since massive data streams are usually involved in building an incre-
mental model, it is safe to assume that the stationary distribution of any
variable in a given incremental model can be accurately estimated by the
previous K − 1 periods.

The following null hypothesis is tested for every variable of interest X:

H0: the variable X’s distribution is stationary (time-invariant).
H1: otherwise.

The decision is based on the following formula:

X2
p = nK ·

j∑

i=1

(xiK/nK − xiK−1/nK−1)2

xiK−1/nK−1
, (2)

where:
nK is the number of records in the Kth period.
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nK−1 is the number of records in periods 1, . . . , K − 1.
xiK is the number of records in the ith class of variable X in the K

period.
xiK−1 is the number of records in the ith class of variable X in periods

1, . . . , K − 1.

If X2
p > χ2

1−α(j − 1), where j is the number of classes of the tested
variable, then the null hypothesis that the variable X’s distribution has
been stationary in period K like in the previous periods is rejected.

The explanation of Pearson’s statistical hypothesis testing is provided
in [28].

2.4. Methodology

This section describes the algorithmic usage of the previous estimators:

Inputs:
• G is the DM algorithm used for constructing the classification model

(e.g., C4.5 or IFN).
• M is the classification model constructed by the DM algorithm (e.g., a

decision tree).
• V is the validation method in use (e.g., 5-fold cross-validation).
• K is the cumulative number of periods in a data stream.
• α is the desired significance level for the change detection procedure (the

probability of a false alarm when no actual change is present).

Outputs:
• CD(α) is the error-based change detection estimator (1 – p-value).
• XP (α) is the Pearson’s chi-square estimator of distribution change

(1 – p-value).

2.5. Change Detection Procedure

Stage 1:

For periods K − 1 build the model MK−1 using the DM algorithm G.
Define the data set DK−1(val).
Count the number of records nK−1 = |DK−1(val)|.
Calculate the validation error rate êMK−1,K−1 according to the valida-

tion method V .
Calculate xiK−1, nK−1 for every input and target variable existing in

periods 1, . . . , K − 1.
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Stage 2:

For period K, define the set of records dK .
Count the number of records nK = |dK |.
Calculate êMK−1,K according to the validation method V .
Calculate the difference

d = ABS(êMK−1,K − êMK−1,K−1), σ̂2
d, H0 = z(1−α/2) ·

√
σ̂2

d·

Calculate and Return CD(α).

Stage 3:

For every input and target variable existing in periods 1, . . . , K:
Calculate: xiK , nK and X2

p .
Calculate and Return XP (α).

It is obvious that the complexity of this procedure is at most O(nK).
Also, it is very easy to store information about the distributions of target
and input variables in order to simplify the change detection methodology.

Based on the outputs of the change detection procedure, the user can
make a distinction between the eight possible variations of a change in
the data mining classification model (see sub-section above). Knowing the
causes of the change (if any), the user of this new methodology can act in
several ways, including reapplying the algorithm from scratch to the new
data, absorb the new period and update the model by using an incremental
algorithm, make K ′ = K + 1 and perform the change detection procedure
again for the next period, explore the type of the change and its magnitude
and effect on other characteristics of the DM model, and incorporate other
known methods dealing with the specific change(s) detected. One may also
apply multiple model approaches such as boosting, voting, bagging, etc.

The methodology is not restricted to databases with a constant number
of variables. The basic assumption is that if the addition of a new variable
will influence the relationship between the target variable and the input
variables in a manner that changes the validation accuracy, it will be iden-
tified as a significant change.

The procedure has three major stages. The first one is designed to per-
form initialization of the procedure. The second stage is aimed at detecting
a significant change in the “patterns” (rules) of the pre-built data-mining
model, as described in the previous section. The third stage is designated to
test whether the distribution of one or more variable(s) in the set of input
or target variable(s) has changed.
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The basic assumption for using this procedure is the use of sufficient
statistics for a run of the algorithm in every period. As indicated above, if
this assumption is not valid, it is necessary to merge two or more periods
to maintain statistically significant outcomes.

3. Experimental Evaluation

3.1. Design of Experiments

In order to evaluate the change detection algorithm, a set of artificially
generated datasets were built based on the following characteristics:

• Pre-determined definition and distribution of all variables (candidate
input and target).

• Pre-determined set of rules.
• Pure random generation of records.
• Non-correlated datasets (between periods).
• Minimal randomly generated noise.
• No missing data.

In all generated datasets, we have introduced and tested a series of
artificially non-correlated changes of various types.

All datasets were mined with the IFN (Information-Fuzzy Network)
program (version 1.2 beta), based on the Information-Theoretic Fuzzy
Approach to Knowledge Discovery in Databases [Maimon and Last (2000)].
This novel method, developed by Mark Last and Oded Maimon was shown
to have better dimensionality reduction capability, interpretability, and sta-
bility than other data mining methods [e.g., see Last et al. (2002)] and was
therefore found suitable for this study.

This chapter uses two sets of experiments to evaluate the performance
of the change detection procedure:

• The first set is aimed to estimate the hit rate (also called the “true
positive rate”) of the change detection methodology. Twenty four differ-
ent changes in two different databases were designed under the rules
mentioned above in order to confirm the expected outcomes of the
change detection procedure. Table 2 below summarizes the distribution
of the artificially generated changes in experiments on Database#1 and
Database#2.

• All changes were tested independently under the minimum 5% confi-
dence level by the following set of hypothesis. All hypotheses were tested
separately with the purpose of evaluating the relationship of all tests.
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• Also, 12 non-correlated sets of experiments, which do not contain any
change, were implemented in order to estimate the actual 1st type error
rate (α) — the “detection” of a change that doesn’t occur. This error is
also called “false positive rate” or “false alarm rate”.

The expected outcomes of the hypothesis testing on the various types
of changes are described in the following tables.

It is expected that every uncorrelated change implemented will lead to
the associated outcome of the relevant test as indicated in Tables 3 and 4.

The second part of the experiments on artificially generated datasets
evaluated the change detection procedure on time series data. During the
third and sixth periods (out of seven consecutive periods) two changes (in
classification “rules”) were introduced into the database and implemented
disregarding the previous and the consecutive periods. It is expected that

Table 2. Distribution of the artificially generated changes in experiment part1.

Change in A Change in Y Change in the “Rules” Total

Database #1 4 2 6 12
Database #2 4 2 6 12

Sum 8 4 12 24

Table 3. Change Detection in Rules (CD).

Change in A Change in T Change in the “patterns”
(rules)

CD (5%) TRUE/FALSE
(N/A)

TRUE/FALSE
(N/A)

TRUE

Table 4. Pearson’s estimator for comparing distributions of variables (XP).

Database section tested Change in A Change in T Change in the
“patterns” (rules)

Candidate
Variables XP(5%) TRUE TRUE/FALSE

(N/A)
TRUE/FALSE
(N/A)

Target
Variables XP(5%) TRUE/FALSE

(N/A)
TRUE TRUE/FALSE

(N/A)
Candidate & Target
Variables XP(5%) TRUE TRUE TRUE/FALSE

(N/A)
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the Change Detection Procedure will reveal the changes in these periods
only and not in any other period.

3.2. Results — Part 1 (Hit Rate and False Alarm Rate)

Based on the 24 change detection trials the following accumulated results
have been obtained, as described thoroughly in Tables 5 and 6:

• All artificial changes in the “patterns” (rules) relating the input variables
to the target variable were detected by the CD (5%) procedure. The
average detection rate of CD was 100% meaning that all changes were
recognized as significant by the procedure.

• Two trials generated by an artificial change in the target variable were
detected by the CD procedure. The average detection rate of CD in these
trials was 100%.

• According to the XP hypothesis testing, 50% of changes in the candidate
input variables produced a change in the target variable, resulting in an
average detection rate of 100% for input attributes and 98% for the target
attribute.

• All the changes, which were mainly introduced to affect the target vari-
able, were recognized as significant by the XP procedure.

• All the changes, which were mainly introduced to affect the relationship
between the target and the candidate input variables, were recognized as
significant by the XP procedure, with an average of 100% detection rate.

• The actual 2nd type error (false negative) rate of the change detection
methodology in this experiment is 0%. No change was left undetected by
the methodology.

• The actual 1st type error (false alarm) rate of the change detection
methodology in these experiments is up to 6%. When implementing the
methodology in trials which do not include changes, the CD estimator
did not produce false alarms (0% error rate) and the XP estimator failed
to produce accurate estimation in only five out of 84 tests (5.9%).

To conclude this part of the experiments with various possible changes
in the data mining model, the following assumptions are validated by the
results which were described above: a major change can cause secondary
effects and generate other changes. The Change Detection procedure can
detect these changes with theoretically and actually low Type 1 and Type 2
error rates.
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Table 5. Average detection rate of the 24 trials (all signif-
icant attributes included in XP).

Type of change: A T R Average

Number of changes: 8 4 12 24
CD 67% 99% 100% 90%
XP(candidate) 100% 100%
XP(target) 100% 100% 100%
XP(target+candidate) 99% 98% 98% 99%

Table 6. Distribution of 5% significance out-
comes in the 24 trials.

Type of change: A T R sum

Number of changes: 8 4 12 24
CD 0 3 12 15
XP(candidate) 4 4
XP(target) 1 9 10
XP(target+candidate) 4 3 3 10

3.3. Results — Part 2 (Time Series Data)

Table 7 and Figure 1 describe the outcomes of applying the IFN algorithm
to seven consecutive periods from the same artificially generated database
(Database#1), with two changes introduced, and using the change detection
methodology to detect significant changes that have occurred during these
periods.

The results of the experiment can be summarized as follows:

• All changes are detected by the change detection procedure only in the
relevant period where the corresponding change has occurred.

• Whenever CD attained a significant level (above 5%), XP also reached a
significant value (more than 5%).

• The effect of the change decreases after one period for CD (when the
change occurs in period K, the significance level in period K + 1 is most
similar to period K − 1). Hence, after one period, if a change is not
properly detected, it will be absorbed and discarded.

• The XP estimator of distribution change in input and target variables is
quite sensitive to the effect of any change.

These results support the assumptions that a change in the target vari-
able does not necessarily affect the classification “rules” of the database and
that a change can mainly be detected in the first period after its occurrence.
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Table 7. Results of the CD hypothesis testing on an artificially generated time series database.

Period Change CD XP

introduced eMK−1,K eMK−1,K−1 d H(95%) 1 − p-value 1 − p-value

1 No — — — — — —
2 No 20.30% 24.00% 3.70% 4.30% 91.90% 92.50%
3 Yes 32.80% 19.80% 13.00% 3.20% 100.00% 100.00%
4 No 26.60% 24.60% 2.00% 2.80% 88.20% 100.00%
5 No 26.30% 26.40% 0.10% 2.50% 52.60% 99.90%
6 Yes 18.80% 27.20% 8.40% 2.20% 100.00% 100.00%
7 No 22.10% 22.00% 0.10% 2.00% 53.40% 52.80%
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Fig. 1. Summary of implementing the change detection methodology on an artificially
generated time series database (1 − p-value).

Table 8. Influence of discarding the detected change (Illustration).

Candidate Variable Prediction Match

Products Holidays Periods 1–5 Period 6

0 * 1 1 Yes
1 * 1 1 Yes
2 * 1 1 Yes
3 * 1 1 Yes
4 0 0 1 No

1 1 1 Yes
5 0 1 1 Yes

1 1 1 Yes
6 * 0 0 Yes
7 * 0 0 Yes
8 * 0 0 Yes

If our procedure detects a change in period K of a time series, the incre-
mentally built classification model should be modified accordingly. Modifi-
cation methods could be one of the following [see Last (2002)]: (a) rebuild
a new model based on period K only; (b) combine the DM model from
periods 1, . . . , K, with a new model by using a voting schema (unified,
exponential smoothing, any weighted majority, deterministic choice, etc.)
in order to improve predictive accuracy in the future; (c) add j more periods
in order to rebuild a model based on periods K, . . . , K + j.

In order to illustrate the influence of discarding a detected change, we
look at the rules induced from the database by the IFN algorithm before
and after the second change has occurred (Period 6).
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It can be shown by a simple calculation that if all rules have the same
frequency (that is assuming a uniform distribution of all input variables),
the expected increase in the error rate as a result of the change in Period 6
is 9% (1 : 11).

4. A Real-World Case Study

4.1. Dataset Description

In this section, we apply our change detection method to a real-world time
series dataset. The objectives for the case study are: (1) determine whether
or not our method detects changes, which have occurred during some time
periods; (2) determine whether or not our method produces “false alarms”
while the dataset’s characteristics do not change over time significantly.

The dataset has been obtained from a large manufacturing plant in
Israel representing daily production orders of products. From now on this
dataset will be referred as “Manufacturing”.

The candidate input attributes are: Catalog number
group (CATGRP) — a discrete categorical variable; Market code group
(MRKTCODE) — a discrete categorical variable; Customer code group
(CUSTOMERGRP) — a discrete categorical variable; Processing duration
(DURATION) — a discrete categorical variable which represents the pro-
cessing times as disjoint intervals of variable size; Time left to operate in
order to meet demand (TIME TO OPERATE) — a discrete categorical
variable which stands for the amount of time between the starting date of
the production order and its due date. Each value represents a distinct time
interval; Quantity (QUANTITY) — a categorical discrete variable which
describes the quantity of items in a production order. Each value represents
a distinct quantity interval. The target variable indicates whether the order
was delivered on time or not (0 or 1).

The time series database in this case study consists of records of pro-
duction orders accumulated over a period of several months. The ‘Manu-
facturing’ database was extracted from a continuous production sequence.
Without further knowledge of the process or any other relevant informa-
tion about the nature of change of that process, we may assume that no
significant changes of the operation characteristics are expected over such
a short period of time.

Presentation and Analysis of Results. Table 9 and Figure 2 describe
the results of applying the IFN algorithm to six consecutive months in the
‘Manufacturing’ database and using our change detection methodology to
detect significant changes that have occurred during these months.
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The XP statistics, as described in Table 9 and Figure 2, refer only to
the target variable (delivery on time). The magnitude of change in the can-
didate input variables as evaluated across the monthly intervals is shown
in Table 10.

Table 9. Results of the CD hypothesis testing on the ‘Manufacturing’ database

Month CD XP

eMK−1,K
eMK−1,K−1 d H(95%) 1 − p-value 1 − p-value

1 — — — — — —
2 14.10% 12.10% 2.00% 4.80% 58.50% 78.30%
3 11.70% 10.40% 1.30% 3.40% 54.40% 98.80%
4 10.60% 9.10% 1.50% 2.90% 68.60% 76.50%
5 11.90% 10.10% 1.80% 2.80% 78.90% 100.00%
6 6.60% 8.90% 2.30% 2.30% 95.00% 63.10%
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Fig. 2. Summary of implementing the change detection methodology on ‘Manufactur-
ing’ database (1 − p-value).

Table 10. XP confidence level of all independent and dependent variables
in ‘Manufacturing’ database (1 − p-value).

CAT MRKT Duration Time to Quantity Customer
GRP Code operate GRP

Domain 18 19 19 19 15 18
Month 2 100% 100% 100% 100% 100% 100%
Month 3 100% 100% 100% 100% 100% 100%
Month 4 100% 99.8% 100% 100% 100% 100%
Month 5 100% 99.9% 100% 100% 100% 100%
Month 6 100% 100% 100% 100% 100% 100%
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According to the change detection methodology, during all six consecu-
tive months there was no significant change in the rules describing the rela-
tionships between the candidate and the target variables (which is our main
interest). Nevertheless, it is easy to notice that major changes have been
revealed by the XP statistic in distributions of most target and candidate
input variables. One can expect that variables with a large number of values
need greater data sets in order to reduce the variation of their distribution
across periods. However, this phenomenon has not affected the CD statistic.

An interesting phenomenon is the increasing rate of the CD confidence
level from month 2 to month 6. In order to further investigate whether a
change in frequency distribution has still occurred during the six consecu-
tive months without resulting in a significant CD confidence level, we have
validated the sixth month on the fifth and the first months. Table 11 and
Figure 3 describe the outcomes of the change detection methodology.

Implementing the change detection methodology by validating the sixth
month on the fifth and the first month did not produce contradicting results.
That is, the CD confidence level of both months ranges only within ±8%
from the original CD estimation based on the all five previous months.
Furthermore, although XP produced extremely high confidence levels indi-
cating a drastic change in the distribution of all candidate and target vari-
ables, the data mining model was not affected, and it kept producing similar
validation error rates (which were statistically evaluated by CD).

The following statements summarize the case study’s detailed results:

• Our expectation that in the ‘Manufacturing’ database, there are no sig-
nificant changes in the relationship between the candidate input variables
and the target variable over time, is validated by the change detection

Table 11. Outcomes of XP by validating the sixth month on the fifth and the first month
in ‘Manufacturing’ database (p-value).

CAT MRKT Duration Time Quantity Customer Target
GRP Code to Operate GRP

Metric XP domain 18 19 19 19 15 18 2
(1 − p-value) month

5 validated by
month 6

100% 100% 100% 100% 100% 100% 98.4%

month
1 validated by
month 6

100% 100% 100% 100% 100% 100% 100%

months 1 to
5 validated by
month 6

100% 100% 100% 100% 100% 100% 63.1%
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Fig. 3. CD confidence level (1−p-value) outcomes of validating the sixth month on the
fifth and the first month in ‘Manufacturing’ database.

procedure. No results of the changed detection metric (CD) exceeding
the 95% confidence level were produced in any period. This means that
no “false alarms” were issued by the procedure.

• Statistically significant changes in the distributions of the candidate
input (independent) variables and the target (dependent) variable across
monthly intervals have not generated a significant change in the rules,
which are induced from the database.

• The CD metric implemented by our method can also be used to determine
whether an incrementally built model is stable. If we are applying a stable
data mining algorithm, like the Info-Fuzzy Network, to an accumulated
amount of data, it should produce increasing confidence levels of the CD
metric over the initial periods of the time series, as more data supports
the induced classification model.

Thus the results obtained from a real-world time series database confirm
the conclusions of the experiments on artificial datasets with respect to
reliability of the proposed change detection methodology.

5. Conclusions and Future Work

As mentioned above, most methods of batch learning are based on the
assumption that the training data involved in building and verifying the
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model is the best estimator of what will happen in the future. An impor-
tant factor that must not be set aside is the time factor. As more data is
accumulated in a time series database, incrementally over time, one must
examine whether the data in a new period agrees with the data in previous
periods and take the relevant decisions about learning in the future. This
work presents a novel change detection method for detecting significant
changes in classification models induced from continuously accumulated
data streams by batch learning methods.

The following statements can summarize the major contributions of this
work to the area of data mining and knowledge discovery in databases:

(i) This work defines three main causes for a statistically significant
change in a data-mining model:

• A change in the probability distribution of one or more of candidate
input variables A.

• A change in the distribution of the target variable T .
• A change in the “patterns” (rules), which define the relationship

of the candidate input to the target variable. That is, a change in
the model M .

This work has shown that although there are three main causes for
significant changes in the data-mining models, it is common that these
main causes co-exist in the same data stream, deriving eight possible
combinations for a significant change in a classification model induced
from time series data. Moreover, these causes affect each other in a
manner and magnitude that depend on the database being mined and
the algorithm in use.

(ii) The change can be detected by the change detection procedure using a
three-stage validation technique. This technique is designed to detect
all possible significant changes.

(iii) The change detection method relies on the implementation of two
statistical tests:

(a) Change Detection hypothesis testing (CD) of every period K,
based on the definition of a significant change C in classification
“rules”, with respect to the previous K − 1 periods.

(b) Pearson’s estimator (XP) for testing matching proportions of vari-
ables to detect a significant change in the probability distribution
of candidate input and target attributes.
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(iv) The effect of a change is relevant and can be mainly detected in
the period of change. If not detected, the influence of a change in
a database can be absorbed in successive periods.

(v) All procedures, hypothesis tests and definitions, were validated on
artificially generated databases and on a real-world database.

(vi) The change detection procedure has low computational costs. Its com-
plexity is O(nK), where nK is the total number of validation records in
K periods, since it requires only testing whether the new data agrees
with the model induced from previously aggregated data.

(vii) The CD metric can also be used to determine whether an incremen-
tally built model is stable. In our real-world experiment, stability of
info-fuzzy network has been confirmed by the increasing confidence
levels over initial periods of the data stream.

The Change Detection Procedure, with the use of the statistical estima-
tors, can detect significant changes in classification models of data mining.
These changes can be detected independently of the data mining algorithm
used (e.g., C4.5 and ID3 by Quinlan, KS2, ITI and DMTI by Utgoff, IFN
by Last and Maimon, IDTM by Kohavi, Shen’s CDL4, etc. ), or the induced
classification model (rules, decision trees, networks, etc.). As change detec-
tion is quite a new application area in the field of data mining, many future
issues could be developed, including the following:

(i) Implementing meta-learning techniques according to the cause(s) and
magnitude(s) of a change(s) detected in period K for combining sev-
eral models, such as: exponential smoothing, voting weights based on
the CD confidence level, ignoring old or problematic periods, etc.

(ii) Increasing the granularity of significant changes. There should be sev-
eral sub-types of changes with various magnitudes of the model struc-
ture and parameters that could be identified by the change detection
procedure, in order to give the user extra information about the mined
time series.

(iii) Integrating the change detection methodology in an existing data min-
ing algorithm. As indicated above, the change detection procedure’s
complexity is only O(n). One can implement this procedure in an
existing incremental (online) learning algorithm, which will continue
efficiently rebuilding an existing model if the procedure does not indi-
cate a significant change in the newly obtained data. This option is
also applicable for meta-learning and multi-model methods.
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(iv) Using the CD statistical hypothesis testing for continuous monitoring
of specific attributes.

(v) Using the CD statistical estimator or its variations as a metric for
measuring the stability of an incrementally built data mining model.

(vi) Further analysis of the relationship between the two error rates α (false
positive) and β (false negative) and its impact on the performance of
the change detection procedure.

(vii) Further validation of the Change Detection Procedure on other DM

models, algorithms, and data types.
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Graphs are widely used in science and engineering. In this chapter, the
problem of detecting abnormal events in times series of graphs is inves-
tigated. A number of graph similarity measures are introduced. These
measures are useful to quantitatively characterize the degree of change
between two graphs in a time series. Based on any of the introduced
graph similarity measures, an abnormal change is detected if the simi-
larity between two consecutive graphs in a time series falls below a given
threshold. The approach proposed in this chapter is not geared towards
any particular application. However, to demonstrate its feasibility, its
application to abnormal event detection in the context of computer net-
works monitoring is studied.

Keywords: Graph; time series of graphs; graph similarity; abnormal
event detection; computer network monitoring.

1. Introduction

Graphs are a powerful and flexible data structure useful for the represen-
tation of objects and concepts in many disciplines of science and engineer-
ing. In a graph representation, the nodes typically model objects, object
parts, or object properties, while the edges describe relations between the
nodes, for example, temporal, spatial, or conceptual dependencies between
the objects that are modelled through the nodes. Examples of applications
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where graph representations have been successfully used include chemical
structure analysis [1], molecular biology [2], software engineering [3], and
database retrieval [4]. In artificial intelligence, graphs have been success-
fully applied to case-based reasoning [5], machine learning [6], planning [7],
knowledge representation [8], and data mining [9]. Also in computer vision
and pattern recognition graphs are widely used. Particular applications
include character recognition [10], graphics recognition [11], shape analysis
[12], and object classification [13].

In many artificial intelligence applications object representations in
terms of feature vectors or lists of attribute-value pairs are used [14]. On the
one hand, graphs have a much higher representational power than feature
vectors and attribute-value lists as they are able to model not only unary,
but higher order relations and dependencies between various entities. On
the other hand, many operations on graphs are computationally much more
costly than equivalent operations on feature vectors and attribute-value
lists. For example, computing the dissimilarity, or distance, of two objects
that are represented through feature vectors is an operation that is linear
in the number of features, but computing the edit distance of two graphs
in exponential in the number of their nodes [15].

In this chapter we focus on a special class of graphs that is character-
ized by a low computational complexity with regard to a number of oper-
ations. Hence this class of graphs offers the high representational power
of graphs together with the low computational complexity typically found
with feature vector representations. The computational efficiency of the
graph operations results from constraining the graphs to have unique node
labels. In particular we are concerned with time series of graphs. In such
series, each individual graph represents the state of an object, or a system,
at a particular point of time. The task under consideration is the detection
of abnormal events, i.e. the detection of abnormal change of the state of
the system when going from one point in time to the next.

Data mining is generally concerned with the detection and extraction
of meaningful patterns and rules from large amounts of data [16,17]. Clas-
sification is considered to be one of the main subfields of data mining [18].
The goal of classification is to assign an unknown object to one out of a
given number of classes, or categories. Obviously, the task considered in
the present paper is a particular instance of classification, where the transi-
tions between the individual elements of a given sequence of graphs are to
be classified as normal or abnormal. From the general point of view, such
a classification may serve as the first step of a more complex data mining
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and knowledge extraction process that is able to infer hitherto hidden rela-
tionships between normal and abnormal events in time series.

The procedures introduced in this chapter do not make any particular
assumptions about the underlying problem domain. In other words, the
given sequence of graphs may represent any time series of objects or sys-
tems. However, to demonstrate the feasibility of the proposed approach, a
special problem in the area of computer network monitoring is considered
[19]. In this application each graph in a sequence represents a computer
network at a certain point of time, for example, at a certain time each day.
Changes of the network are captured using a graph distance measure. Hence
a sequence of graph similarity values is derived from a given time series of
graphs. Each similarity value is an indicator of the degree of change that
occurred to the network between two consecutive points of time. In this
sequence of similarity values abnormal change can be detected by means of
thresholding and similar techniques. That is, it is assumed that an abnor-
mal change has occurred if the similarity between two consecutive graphs
is below a given threshold.

There are other applications where complex systems, which change their
behaviour or properties over time, are modelled through graphs. Examples
of such systems include electrical power grids [20], regulatory networks con-
trolling the mammalian cell cycle [21], and co-authorship and citation net-
works in science [22]. The formal tools introduced in this chapter can also
be used in these applications to detect abnormal change in the system’s
behaviour.

The remainder of this chapter is organized as follows. In Section 2 our
basic terminology is introduced. Graph similarity measures based on graph
spectra are presented in Section 3. Another approach to measuring graph
similarity, using graph edit distance, is discussed in Section 4. The median
of a set, or sequence, of graphs is introduced in Section 5, and its use for
the classification of events in a sequence of graphs is discussed in Section 6.
Then in Section 7 the application of the similarity measures introduced in
the previous sections to the detection of abnormal change in communication
networks is discussed. Finally, some conclusions are drawn in Section 8.

2. Preliminaries

A graph G = (V, E) consists of a finite set of vertices V and finite set of edges
E which are pairs of vertices; a pair of vertices denotes the endpoints of an
edge. Two vertices u, v ∈ V are said to be adjacent if they are endpoints of



April 22, 2004 16:59 WSPC/Trim Size: 9in x 6in for Review Volume Chap06

130 H. Bunke and M. Kraetzl

the same edge [23]. Edges in G can be directed. In this case edge (u, v) ∈ E

originates at node u ∈ V and terminates at node v ∈ V .
Objects such as vertices or edges (or their combinations) associated with

a graph are referred to as elements of the graph. A weight is a function whose
domain is a set of graph elements in G. The domain can be restricted to that
of edge or vertex elements only, where the function is referred to as edge-
weight or vertex-weight respectively. A weight whose domain is all vertices
and edges is called total. Values of weight assigned to elements in G may
be numerical (e.g. the amount of traffic in a computer network as values of
edge-weight), or symbolic (e.g. node identifiers as values of vertex-weight).
The set of possible values in the range of the weight function are called
attributes. A unique labeling is a one-to-one weight, for a vertex-weight
this serves to uniquely identify vertices of a graph. A graph with a unique
labeling is called a labeled graph.

The graph G = (V,E,wV , wE) is vertex-labeled with weight wV :
V → LV assigning vertex identifier attributes LV to individual vertices,
where the value of an assigned vertex-weight is wV (u) for vertex u. Fur-
thermore, wV (u) �= wV (v),∀u, v ∈ V, uv since the graphs in our applica-
tion possess unique vertex-labelings. Edges are also weighted with weight
wE : E → R+. The notation wG

E is used to indicate that edge weight wE

belongs to graph G. The number of vertices in G = (V, E) is denoted by
|V |, and likewise the number of edges is denoted by |E|.

3. Analysis of Graph Spectra

One of the known approaches to the measurement of change in a time
series of graphs is through the analysis of graph spectra. Algebraic aspects
of spectral graph theory are useful in the analysis of graphs [24–27]. There
are several ways of associating matrix spectra (sets of all eigenvalues) with
a given weighted graph G. The most obvious way is to investigate the
structure of a finite digraph G by analyzing the spectrum of its adjacency
matrix AG. Note that AG is not a symmetric matrix for directed graphs
because weight may not be a symmetric function.

For a given ordering of the set of n vertices V in a graph G = (V, E),
one can investigate the spectrum σ(G) = {λ1, λ2, . . . , λn}, where λi are the
eigenvalues of the weighted adjacency matrix AG. Obviously, σ(G) does
not depend on the ordering of V . Also, the matrix spectrum does not
change under any nonsingular transformation. Since the adjacency matrices
have nonnegative entries, the class of all isospectral graphs (graphs having
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identical spectra) must be relatively small. Because of that fact, and because
isomorphic graphs are isospectral, one might expect that classes of isospec-
tral and isomorphic graphs coincide. However, it can be shown that the
class of isospectral graphs is larger [24].

It is easy to verify that by (arbitrary) assignment of xi’s in an eigenvec-
tor x = [x1, x2, . . . , xn] of AG to n various vertices in V , the components of
x can be interpreted as positive vertex-weight values (attributes) of the cor-
responding vertices in the digraph G. This property is extremely useful in
finding connectivity components of G, and in various clustering, coarsening,
or graph condensing implementations [28].

A different approach to graph spectra for undirected graphs [25,29,30]
investigates the eigenvalues of the Laplace matrix LG = DG−AG, where the
degree matrix DG of graph G is defined as DG = diag{∑

v∈V wG
E(u, v)|u ∈

VG}. Note that in the unweighted case, diagonal elements of DG are sim-
ply the vertex degrees of indexed vertices V . It follows that the Laplacian
spectrum is always nonnegative, and that the number of zero eigenvalues
of LG equals the number of connectivity components of G. In the case of
digraphs, the Laplacian is defined as LG = DG − (AG + AT

G) (in order to
ensure that σ(LG) ⊆ {0}∪R+). The second smallest eigenvalue (called the
algebraic connectivity of G) provides graph connectivity information and
is always smaller or equal to the vertex connectivity of G [30]. Laplacian
spectra of graphs have many applications in graph partitions, isoperimetric
problems, semidefinite programming, random walks on graphs, and infinite
graphs [25,29].

The relationship between graph spectra and graph distance measures
can be established using an eigenvalue interpretation [27]. Consider the
weighted graph matching problem for two graphs G = (VG, EG) and H =
(VH , EH), where |VG| = |VH | = n, with positive edge-weights wG

E and wH
E ,

which is defined as finding a one-to-one function Φ: VG → VH such that
the graph distance function:

dist(Φ) =
∑

u∈VG,v∈VH

[
wG

E(u, v) − wH
E (Φ(u), Φ(v))

]2
(3.1)

is minimal. This is equivalent to finding a permutation matrix P that min-
imises J(P) = ||PAGPT − AH ||2, where AG and AH are the (weighted)
adjacency matrices of the two graphs, and ‖ · ‖ is the ordinary Euclidean
matrix norm. Notice that this graph matching problem is computationally
expensive because it is a combinatorial optimisation problem.
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In the case of two graphs G and H with the same vertex set V , and
(different) edge-weights wG

E and wH
E , the (Umeyama) graph distance is

expressed as:

dist(G, H) =
∑

u,v∈V

[
wG

E(u, v) − wH
E (u, v)

]2
. (3.2)

In spite of the computational difficulty of finding a permutation matrix
P which minimises J(P), in the restricted case of orthogonal (permutation)
matrices, one can use the spectra (eigendecompositions) of the adjacency
matrices AG and AH . In fact, for Hermitian matrices A,B ∈ Mnn(R)
with corresponding spectra σ(A) = {α1 > α2 > · · · > αn} and σ(B) =
{β1 > β2 > · · · > βn}, and with eigendecompositions A = UADAUT

A and
B = UBDBUT

B(U(·) are unitary, and D(·) are diagonal matrices):
n∑

i=1

(ai − bi)2 = min
Q

‖ QAQT − B ‖2, (3.3)

where the minimum is taken over all unitary matrices Q. Equation (3.3)
justifies the use of the adjacency matrix spectra; given two weighted graphs
G and H with respective spectra

σ(AG) = {λ1, λ2, . . . , λn1} and σ(AH) = {µ1, µ2, . . . , µn2},

the k largest positive eigenvalues are incorporated into the graph distance
measure [26] as:

dist(G, H) =

√
√
√
√

∑k
i=1(λi − µi)2

min
{∑k

i=1 λ2
i ,

∑k
j=1 µ2

j

} , (3.4)

where k is an arbitrary summation limit, but empirical studies in pattern
recognition and image analysis show that k ≈ 20 is a good choice. Notice
that similar approaches to distance measures can be applied to the case of
Laplacian spectra.

4. Graph Edit Distance

In this section we introduce a graph distance measure, termed graph edit
distance ged, that is based on graph edit operations. This distance measure
evaluates the sequence of edit operations required to modify an input graph
such that it becomes isomorphic to some reference graph. This can include
the possible insertion and deletion of edges and vertices, in addition to
weight value substitutions [31]. Generally, ged algorithms assign costs to
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each of the edit operations and use efficient tree search techniques to identify
the sequence of edit operations resulting in the lowest total edit cost [15,32].
The resultant lowest total edit cost is a measure of the distance between
the two graphs.

In general graph matching problems with unlabeled graphs, a unique
sequence of edit operations does not exist due to the occurrence of multiple
possible vertex mappings. The ged algorithms are required to search for
the edit sequence that results in a minimum edit cost. However, for the
class of graphs introduced in Section 2, vertex-weight value substitution is
not a valid edit operation because vertex-weight values are unique. As a
result, the combinatorial search reduces to the simple identification of ele-
ments (vertices and edges) inserted or deleted from one graph G to produce
the other graph H. The implementation requires linear time in size of the
problem.

If the cost associated with the insertion or deletion of individual ele-
ments is one, and edge-weight value substitution is not considered (i.e.,
we consider the topology only), the edit sequence cost becomes the differ-
ence between the total number of elements in both graphs, and all graph
elements in common.

Using the above cost function, let G =
(
VG, EG, wG

V , wG
V

)
and H =(

VH , EH , wH
V wH

V

)
be two graphs the similarity of which is to be evaluated.

The graph edit distance d1(G, H) describing topological change that takes
place when going from graph G to H then becomes:

d1(G, H) = |VG| + |VH | − 2|VG ∩ VH | + |EG| + |EH | − 2|EG ∩ EH |. (4.1)

Clearly the edit distance, as a measure of topology change, increases
with increasing degree of change. Edit distance d1(G, H) is bounded below
by d1(G, H) = 0 when H and G are isomorphic (i.e., there is no change),
and above by d1(G, H) = |VG| + |VH | + |EG| + |EH | when G ∪ H = ∅, the
case where the graphs are completely different.

In the second graph edit distance measure studied in this paper, we
consider not only change in graph topology, but also in edge weight. For
this purpose, we assign a cost c to each vertex deletion and insertion, where
c > 0 is a constant. The cost of changing weight wG

E(e) on edge e ∈ EG into
wH

E (e) on e ∈ EH is defined as
∣
∣wG

E(e) − wH
E (e)

∣
∣. To simplify our notation

we let our graphs be completely connected (i.e., there is an edge e ∈ EH

between any two vertices in G and an edge e ∈ EH between any two vertices
in H) and assign a weight equal to zero to edge e ∈ EG (e ∈ EH) if this edge
does not exist in G(H). Hence substitution of edge weights, edge deletions,
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and edge insertions can be treated uniformly. Note that the deletion of an
edge e ∈ EG with weight wG

E(e) has a cost equal to wG
E(e). Similarly the

insertion of an edge e ∈ EH has the weight of that edge, wH
E (e), assigned

as its cost. Consequently, the graph edit distance under this cost function
becomes

d2(G, H) = c[|VG| + |VH | − 2|VG ∩ VH |] +
∑

e∈EG∩EH

|wG
E(e) − wH

E (e)|

+
∑

e∈EG\(EG∩EH)

wG
E(e) +

∑

e∈EH\(EG∩EH)

wH
E (e). (4.2)

The constant c is a parameter that allows us to weight the importance
of a vertex deletion or insertion relatively to the weight changes on the
edges.

5. Median Graphs

Intuitively speaking, the median of a sequence of graphs S = (G1, . . . , Gn)
is a single graph that represents the given Gi’s in the best possible manner.
Using any of the available graph distance measures, for example, d1(G, H)
or d2(G, H) introduced in Section 4, the median of a sequence of graphs
S is defined as a graph that minimises the sum of the edit distances to all
members of sequence S. Formally, let U be the family of all graphs that
can be constructed using labels from LV for vertices and real numbers for
edges. Then Ḡ is a median graph of the sequence S = (G1, . . . , Gn) if:

Ḡ = arg min
G∈U

n∑

i=1

d(G, Gi). (5.1)

If we constrain Ḡ to be a member of S then the graph that satisfies
Eq. (5.1) is called the set median of S. In a general context where node labels
are not unique a set median is usually easier to compute than a median
graph. However, in the context of the present paper where we have uniquely
labelled graphs, we will exclusively focus on median graph computation and
its application to abnormal change detection. It is to be noted that median
graphs need not be unique.

The term “median graph” is used because the median x̄ of an ordered
sequence of real numbers (x1, . . . , xn), which is defined as

if n is even, then x̄ = median(x1, . . . , xn) = xn/2,

else x̄ = median(x1, . . . xn) = x�n/2�
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has a similar property as the median of a sequence of graphs: it minimises
the sum of distances to all elements of the given sequence i.e., it minimises
the expression

∑n
i=1 |x̄ − xi|.

Next we describe a procedure for the computation of the median G

of a sequence of graphs (G1, . . . , Gn) using the topological graph distance
measure d1 defined in Eq. (4.1). Let G = (V, E) with V =

⋃n
i=1 Vi and E =

⋃n
i=1 Ei. Furthermore, let C(u) denote the total number of occurrences of

vertex u in V1, . . . , Vn. Formally, C(u) is defined by the following procedure:

C(u) = 0;
for i = 1 to n do
if u ∈ Vi then C(u) = C(u) + 1

An analogous procedure can be defined for the edges (u, v) ∈ E:

C(u, v) = 0;
for i = 1 to n do
if (u, v) ∈ Ei then C(u, v) = C(u, v) + 1

Next we define graph Ḡ = (V̄ , Ē) where:

V̄ = {u|u ∈ V ∧ C(u) > n/2},

Ē = {(u, v)|(u, v) ∈ E ∧ C(u, v) > n/2}.

Then it can be proven that Ḡ is a median of sequence (G1, . . . , Gn) [33].
Consequently, a practical procedure for computing the median of sequence
S of graphs is as follows. We consider the union of all vertices and all
edges in S. For each vertex u a counter, C(u), and for each edge (u, v) a
counter, C(u, v), is defined. For each instance of vertex u (and edge (u, v))
in sequence S, C(u) (and C(u, v)) is incremented by one. Finally, vertex u

(edge (u, v)) is included in Ḡ if C(u) > n/2 (C(u, v) > n/2). Obviously,
this procedure is linear in the number of vertices and edges, and in the
number of graphs in S. In contrast to the general method discussed in [34],
which is computationally very costly, it can be expected that the procedure
introduced in this paper can handle long sequences of large graphs.

In [34] it was shown that the median of a set of graphs is not necessarily
unique. It is easy to see that the median graph computed by the procedure
introduced in this section is always unique. However, note that the condition
C(u) > n/2 and C(u, v) > n/2 can be relaxed by inclusion of a vertex, or
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an edge, in G if C(u) = n/2, or C(u, v) = n/2, respectively. Obviously, any
graph resulting from this relaxed procedure is also a median of sequence S.
Consequently, for the graph distance measure d1 used in this section, several
medians for a given sequence of graphs may exist. They result from either
inclusion or non-inclusion of a vertex u (or an edge (u, v)) with C(u) = n/2
(or C(u, v) = n/2) in G.

An example of the situation where the median graph of a sequence is not
unique is shown in Figure 1. Here we have the choice for both vertex 0 and
3 and their incident edges of either including or not in the median graph.
This leads to a total of nine possible median graphs depicted in Figure 2.

Another property worth mentioning is the convergence property of the
median under distance d1. That is, for any given sequence S = (G1, . . . , Gn)
of graphs,

median(G1, . . . , Gn) = median(G1, . . . , Gn, median(G1, . . . , Gn)).

Clearly, each vertex u and each edge (u, v) occurring in sequence S is
included in the median if and only if it occurs in k > n/2 graphs. Hence,
adding its median number of occurrences to set S will result in a median
that is identical to the median of S. For example, Ḡ1 shown in Figure 2 is
a median of (G1, G2) in Figure 1, but Ḡ1 is also a median of the sequence
(Ḡ1, G1, G2).

In the remainder of this section we derive a procedure for median
graph computation using the generalized graph distance measure d2 defined
in Eq. (4.2). We start again from S = (G1, . . . , Gn), G = (V, E) with
V =

⋃n
i=1 Vi and E =

⋃n
i=1 Ei, and let C(u) and C(u, v) be the same as

introduced before.
Let graph Ĝ = (V̂ , Ê, ŵE) be defined as follows:

V̂ = {u|u ∈ V ∧ C(u) > n/2},

Ê = {(u, v)|u, v ∈ V̂ },

ŵE(u, v) = median{wGi

Ei
(u, v)|i = 1, . . . , n}.

Then it can be proven that graph Ĝ is a median of sequence S under d2 [33].

1 3

0 21

2G1:

G2:

Fig. 1. Two graphs (G1, G2).
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21

0

Fig. 2. All possible medians of the sequence (G1, G2) from Fig. 1.

Comparing the median graph construction procedure for d1 with the one
for d2, we notice that the former is a special case of the latter, constraining
edge weights to assume only binary values. Edge weight zero (or one) indi-
cates the absence (or presence) of an edge. Including an edge (u, v) in the
median graph Ḡ because it occurs in more than n/2 of the given graphs
is equivalent to labeling that edge in Ĝ with the median of the weights
assigned to it in the given graphs.

The median of a set of numbers according to Eq. (5.2) is unique. Hence
when constructing a median graph under graph distance measure d2, there
will be no ambiguity in edge weights. But the non-uniqueness of the exis-
tence of vertices observed for graph distance measure d1 still exists under
d2. The convergence property holds also for d2, because for any sequence
of edge weights (x1, . . . , xk) one has:

median(x1, . . . , xk) = median(x1, . . . , xk, median(x1, . . . , xk)).
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Fig. 3. Three graphs (G1, G2, G3).

:Ĝ 1

4

3

2
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1

3

Fig. 4. The median of (G1, G2, G3) in Fig. 3 using d2.

We conclude this section with an example of median graph under graph
distance d2. Three different graphs G1, G2, and G3 are shown in Figure 3.
Their median is unique and is displayed in Figure 4.

6. Median Graphs and Abnormal Change Detection in
Sequences of Graphs

The measures defined in Sections 3 and 4 can be applied to consecutive
graphs in a time series of graphs (G1, . . . , Gn) to detect abnormal change.
That is, values of d(Gi−1, Gi) are computed for i = 2, . . . , n, and the change
from time i − 1 to i is classified abnormal if d(Gi−1, Gi) is larger than a
certain threshold. However, it can be argued that measuring network change
only between consecutive points of time is potentially vulnerable to noise,
i.e., the random appearance or disappearance of some vertices together
with some random fluctuation of the edge weights may lead to a graph
distance larger than the chosen threshold, though these changes are not
really significant.

One expects a more robust change detection procedure is obtained
through the use of median graphs. In statistical signal processing the median
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filter is widely used for removing impulsive noise. A median filter is com-
puted by sliding a window of length L over data values in a time series.
At each step the output to this process is the median of values within
the window. This process is also termed the running median [35]. In the
following we discuss four different approaches to abnormal change detec-
tion that utilise median filters. All these approaches assume that a time
series of graphs (G1, . . . , Gn, Gn+1, . . .) is given. The median graph of a
subsequence of these graphs can be computed using either graph distance
measure d1 or d2.

6.1. Median vs. Single Graph, Adjacent in Time (msa)

Given the time series of graphs, we compute the median graph in a window
of length L, where L is a parameter that is to be specified by the user
dependent on the underlying application. Let G̃n be the median of the
sequence (Gn−L+1, . . . , Gn). Then d(G̃n, Gn+1) can be used to measure
abnormal change. We classify the change between Gn and Gn+1 as abnormal
if d(G̃n, Gn+1) is larger than some threshold.

Increased robustness can be expected if we take the average deviation
ϕ, of graphs (Gn−L+1, . . . , Gn) into account. We compute

ϕ =
1
L

n∑

i=n−L+1

d(G̃n, Gi) (6.1)

and classify the change between Gn and Gn+1 abnormal if

d(G̃n, Gn+1) ≥ αϕ (6.2)

where α is a parameter that needs to be determined from examples of
normal and abnormal change. Note that the median G̃n is, by definition, a
graph that minimises ϕ in Eq. (6.1).

In Section 5 it was pointed out that G̃n is not necessarily unique. If
several instances of G̃n1 , . . . , G̃n1 of G̃n exist, one can apply Eqs. (6.1)
and (6.2) on all of them. This will result in a series of values ϕ1, . . . , ϕ1

and a series of values d(G̃n1 , Gn+1), . . . , d(G̃n1 , Gn+1). Under a conservative
scheme, an abnormal change will be reported if d(G̃n1 , Gn−1) ≥ αϕ1 ∧· · ·∧
d(G̃nt , Gn+1) ≥ αϕt.

By contrast a more sensitive change detector is obtained if a change is
reported as soon as there exists at least one i for which

d(G̃ni
, Gn+1) ≥ αϕi, 1 ≤ i ≤ t.
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6.2. Median vs. Median Graph, Adjacent in Time (mma)

Here we compute two median graphs, G̃1 and G̃2, in windows
of length L1 and L2, respectively, i.e., G̃1 is the median of the
sequence (Gn−L1+1, . . . , Gn) and G̃2 is the median of the sequence
(Gn+1, . . . , Gn+L2). We measure now the abnormal change between time
n and n + 1 by means of d(G̃1, G̃2). That is, we compute ϕ1 and ϕ2 for
each of the two windows using Eq. (6.1) and classify the change from Gn

to Gn+1 as abnormal if

d(G̃1, G̃2) ≥ α

[
L1ϕ1 + L2ϕ2

L1 + L2

]

.

Measure mma can be expected even more robust against noise and out-
liers than measure msa. If the considered median graphs are not unique,
similar techniques (discussed for measure msa) can be applied.

6.3. Median vs. Single Graph, Distant in Time (msd)

If graph changes are evolving rather slowly over time, it may be better
not to compare two consecutive graphs, Gn and Gn+1, with each other,
but Gn and Gn+l, where l > 1. Instead of msa, as proposed above, we
use d(G̃n, Gn+1) as a measure of change between Gn and Gn+l, where l

is a parameter defined by the user and is dependent on the underlying
application.

6.4. Median vs. Median Graph, Distant in Time (mmd)

This measure is a combination of the measures mma and msd. We use
G̃1 as defined for mma, and let G̃2 = median(Gn+l+1, . . . , Gn+l+L2). Then
d(G̃1, G̃2) can serve as a measure of change between time n and n + l + 1.
Obviously, Eqs. (6.1) and (6.2) can be adapted to msd and mmd similarly to
the way they are adapted to mma.

7. Application to Computer Network Monitoring

7.1. Problem Description

In managing large enterprise data networks, the ability to measure net-
work changes in order to detect abnormal trends is an important perfor-
mance monitoring function [36]. The early detection of abnormal network
events and trends can provide advance warning of possible fault conditions
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[37], or at least assist with identifying the causes and locations of known
problems.

Network performance monitoring typically uses statistical techniques to
analyse variations in traffic distribution [38,39], or changes in topology [40].
Visualisation techniques are also widely used to monitor changes in network
performance [41]. To complement these approaches, specific measures of
change at the network level in both logical connectivity and traffic variations
are useful in highlighting when and where abnormal events may occur in
the network [42]. Using these measures, other network management tools
may then be focused on problem regions of the network for more detailed
analysis.

In the previous sections, various graph similarity measures are intro-
duced. The aim of the study described in the present section is to identify
whether using these techniques, significant changes in logical connectivity
or traffic distributions can be observed between large groups of users com-
municating over a wide area data network. This data network interconnects
some 120,000 users around Australia. For the purposes of this study, a net-
work management probe was attached to a physical link on the wide area
network backbone and collected traffic statistics of all data traffic operating
over the link. From this information a logical network of users communi-
cating over the physical link is constructed.

Communications between user groups (business domains) within the
logical network over any one day is represented as a directed graph. Edge
direction indicates the direction of traffic transmitted between two adjacent
nodes (business domains) in the network, with edge-weight indicating the
amount of traffic carried. A subsequent graph can then describe communi-
cations within the same network for the following day. This second graph
can then be compared with the original graph, using a measure of graph
distance between the two graphs, to indicate the degree of change occur-
ring in the logical network. The more dissimilar the graphs, the greater the
graph distance value. By continuing network observations over subsequent
days, the graph distance scores provide a trend of the logical network’s
relative dynamic behaviour as it evolves over time.

In the study described in this section, log files were collected continu-
ously over the period 9 July 1999 to 24 December 1999. Weekends, pub-
lic holidays and days where probe data was unavailable were removed to
produce a final set of 102 log files representing the successive business
days’ traffic. The graph distance measures examined in this paper pro-
duce a distance score indicating the dissimilarity between two given graphs.
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Successive graphs derived from the 102 log files of the network data set are
compared using the various graph distance measures to produce a set of
distance scores representing the change experienced in the network from
one day to the next.

7.2. Experimental Results

Figures 5 and 6 represent the outcomes of connectivity and traffic (weighted
graph) spectral distances, respectively, as introduced in Section 3, applied
to the time series of graphs derived from the network data. In spite of the
less intuitive interpretation of these graph distance measures, there exists
reasonable correlation with the peaks of other distance measures and far
less sensitivity to daily variations using this approach (see below).

Figure 7 shows results for edit distance applied to consecutive graphs
of the time series for the topology only measure d1. This measure produces
three significant peaks (on days 25, 65 and 90). The figure also shows sev-
eral secondary peaks that may also indicate events of potential interest.
Also, there is significant minor fluctuation throughout the whole data set
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Fig. 8. Consecutive day using measure d2.

appearing as background noise. Figure 8 shows the results for distance mea-
sure d2 being applied to consecutive graphs in the time series. Whilst this
measure considers both topology and traffic, it does not appear to provide
any additional indicators of change additional to those found using the
topology only measure. The main difference with this measure is that it
has increased the amplitude of the first two peaks so that they now appear
as major peaks. This suggests that these peaks were a result of network
change consisting of large change in edge weights.

The findings for this technique indicate that the application of measures
to consecutive graphs in a time series is most suited for detecting daily
fluctuations in network behaviour. This is especially useful for identifying
outliers in a time series of graphs. Ideally, it would be desirable that each
point of significant change be validated against known performance anoma-
lies. Unfortunately, information generated by the network management
system of the network under observation is not sufficient for validation
purposes, because all data used in the experiments were collected from a
network under real operating conditions. That is, the data are unlabelled
as there is no ‘super-instance’ that would know whether a network change
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that has occurred is normal or abnormal. This shortfall of useful informa-
tion for validation of network fault and performance anomalies is common
[43]. Visualisation tools have been used to assist with validating some of
the major changes by observing the network before and after a significant
change event. More work needs to be done in producing a reliable, validated
data set.

A number of additional experiments using median graphs have been
reported in [44]. In these experiments it was demonstrated that using the
median graph, computed over a running window of the considered time
series, rather than individual graphs has a smoothing effect, which reduces
the influence of outliers.

8. Conclusion

Graphs are one of the most popular data structures in computer science
and related fields. This chapter has examined a special class of graphs that
are characterised by the existence of unique node labels. This property
greatly reduces the computational complexity of many graph operations
and allows a user to deal with large sets of graphs, each consisting of many
nodes and edges. Furthermore, a number of graph distance measures have
been analysed. They are based on eigenvalues from spectral graph theory
and graph edit distance. A novel concept that can be used to measure the
similarity of graphs is median graph. The median of a set, or a sequence, S,
of graphs is a graph that minimises the average edit distance to all members
in S. Thus the median can be regarded as the best single representative of
a given set or sequence of graphs.

Abnormal events in a sequence of graphs representing elements of a
time dependent process can be detected by computing the distance of
consecutive pairs of graphs in the sequence. If the distance is larger than a
threshold than it can be concluded that an abnormal event has occurred.
Alternatively, to make the abnormal change detection procedure more
robust against noise and outliers, one can compute the median of the
time series of graphs over a window of a given span, and compare it to
an individual graph, or the median of a sequence of graphs, following that
window.

None of the formal concepts introduced in this paper is geared towards
a particular application. However, to demonstrate their usefulness in prac-
tice, an application in computer network monitoring was studied in this
chapter. Communication transactions, collected by a network management
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system between logical nodes occurring over periodic time intervals are
represented as a series of weighted graphs. The graph distance measures
introduced in this chapter are used to assess the changes in communication
between user groups over successive time intervals. Using these data in a
number of experiments, the usefulness of the proposed concepts could be
established. As a practical implication, the proposed methods have the
potential to relive human network operators from the need to continu-
ally monitor a network, if connectivity and traffic patterns can be shown
to be similar to the activity over previous time periods. Alternatively, if
traffic volumes are seen to abruptly increase or decrease over the physi-
cal link, network operators are able to more readily identify the individ-
ual user groups contributing to this change in aggregated traffic. Future
work will concentrate on enhancing the present tools for computer network
monitoring and identifying other application areas for the proposed formal
concepts.
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CHAPTER 7

BOOSTING INTERVAL-BASED LITERALS: VARIABLE
LENGTH AND EARLY CLASSIFICATION∗
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This work presents a system for supervised time series classification,
capable of learning from series of different length and able of providing
a classification when only part of the series are presented to the clas-
sifier. The induced classifiers consist of a linear combination of literals,
obtained by boosting base classifiers that contain only one literal. Never-
theless, these literals are specifically designed for the task at hand and
they test properties of fragments of the time series on temporal inter-
vals. The method had already been developed for fixed length time series.
This work exploits the symbolic nature of the classifier to add it two new
features. First, the system has been slightly modified in order that it is
now able to learn directly from variable length time series. Second, the
classifier can be used to identify partial time series. This “early classi-
fication” is essential in some task, like on line supervision or diagnosis,
where it is necessary to give an alarm signal as soon as possible. Several
experiments on different data test are presented, which illustrate that
the proposed method is highly competitive with previous approaches in
terms of classification accuracy.

Keywords: Interval based literal; boosting; time series classification;
machine learning.
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1. Introduction

Multivariate time series classification is useful in those classification tasks
where time is an important dimension. Instances of these kind of tasks
may be found in very different domains, for example analysis of biomedi-
cal signals [Kubat et al. (1998)], diagnosis of continuous dynamic systems
[Alonso González and Rodŕıguez Diez (1999)] or data mining in tempo-
ral databases [Berndt and Clifford (1996)]. Time series classification may
be addressed like an static classification problem, extracting features of
the series through some kind of preprocessing, and using some conven-
tional machine learning method. However, this approach has several draw-
backs [Kadous (1999)]: the preprocessing techniques are usually ad hoc and
domain specific, and the descriptions obtained using these features can be
hard to understand. The design of specific machine learning methods for
the induction of time series classifiers allows for the construction of more
comprehensible classifiers in a more efficient way because, firstly, they may
manage comprehensible temporal concepts difficult to capture by the pre-
processing technique — for instance the concept of permanence in a region
for certain amount of time — and secondly, there are several heuristics
applicable to temporal domains that preprocessing methods fails to exploit.

The method for learning time series classifiers that we propose in this
work is based on literals over temporal intervals (such as increases or always
in region) and boosting (a method for the generation of ensembles of classi-
fiers from base or weak classifiers) [Schapire (1999)] and was first introduced
in [Rodŕıguez et al. (2000)]. The input for this learning task consist of a
set of examples and associated class labels, where each example consists of
one or more time series. Although the series are often referred to as vari-
ables, since they vary over time, form a machine learning point of view,
each point of each series is an attribute of the example. The output of
the learning task is a weighted combination of literals, reflecting the fact
that the based classifiers consist of clauses with only one literal. These base
classifiers are inspired by the good results of works using ensembles of very
simple classifiers [Schapire (1999)], sometimes named stumps.

Although the method has already been tested over several data set
[Rodŕıguez et al. (2001)] providing very accurate classifiers, it imposes two
restrictions that limits its application to real problems. On the one hand,
it requires that all the time series were of the same length, which is not the
case in every task, as the Auslan example (Australian sign language, see
Section 6.4) [Kadous (1999)] illustrates. On the other hand, it requires as
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an input the completed time series to be classified. This may be a severe
drawback if the classifiers are to be use on line in a dynamic environment
and a classification is needed as soon as possible. This work shows how the
original method can be extended to cope with these weaknesses.

Regarding variable length time series, it is always possible to prepro-
cess the data set in order to obtain a new one with fixed length series.
Nevertheless, this cannot be considered as a generic solution, because, usu-
ally, the own length of the series provides essential information for its clas-
sification. The method can now be used with variable length series because
the literals are allowed to abstain (that is, the result of their evaluation can
be true, false or an abstention) if the series is not long enough to evaluate
some literal. A variant of boosting that can work with base classifiers with
abstentions is used.

Regarding the classification of partial examples, or early classification,
the system has been modified to add it the capacity of assigning a prelim-
inary classification to an incomplete example. This feature is crucial when
the examples to classify are being generated dynamically and the time nec-
essary to generate an example is long. For instance, consider a supervision
task of a dynamic system. In this case, the example to classify is the current
state, considering the historical values of the variables. For this problem, it
is necessary to indicate a possible problem as soon as possible. In order to
confirm the problem, it will be necessary to wait and see how the variables
evolve. Hence, it is necessary to obtain classifications using as input series
of different lengths. Again, the capability of the literals to abstain allows
tackling this problem.

The rest of the chapter is organized as follows. Section 2 is a brief intro-
duction to boosting, suited to our method. The base classifiers, interval
literals, are described in Section 3. Sections 4 and 5 deal, respectively, with
variable length series and early classification. Section 6 presents experimen-
tal results. Finally, we give some concluding remarks in Section 7.

2. Boosting

At present, an active research topic is the use of ensembles of classifiers.
They are obtained by generating and combining base classifiers, constructed
using other machine learning methods. The target of these ensembles is to
increase the accuracy with respect to the base classifiers.

One of the most popular methods for creating ensembles is boosting
[Schapire (1999)], a family of methods, of which AdaBoost is the most
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prominent member. They work by assigning a weight to each example.
Initially, all the examples have the same weight. In each iteration a base
(also named weak) classifier is constructed, according to the distribution of
weights. Afterwards, the weight of each example is readjusted, based on the
correctness of the class assigned to the example by the base classifier. The
final result is obtained by weighted votes of the base classifiers.

AdaBoost is only for binary problems, but there are several methods of
extending AdaBoost to the multiclass case. Figure 1 shows AdaBoost.MH1

[Schapire and Singer (1998)]. Each instance xi belongs to a domain X

and has an associated label yi, which belongs to a finite label space Y .
AdaBoost.MH associates a weight to each combination of examples and
labels. The base learner generates a base hypothesis ht, according to the
weights. A real value, αt, the weight of the base classifier, is selected. Then,
the weights are readjusted. For y, l ∈ Y, y[l] is defined as

y[l] =
{

+1 if l = y,

−1 if l �= y.

Two open questions are how to select αt and how to train the weak
learner. The first question is addressed in [Schapire and Singer (1998)]. For
two class problems, If the base classifier returns a value in {−1, +1}, then

Given (x1, y1), . . . , (xm, ym) where xi ∈ X, yi ∈ Y

Initialize D1(i, l) = 1/(mk)
For t = 1, . . . , T :

• Train weak learner using distribution Dt

• Get weak hypothesis ht : X × Y → R
• Choose αt ∈ R
• Update

Dt+1(i, l) = Dt(i, l) exp(−αtyi[l] ht(xi, l))/Zt

where Zt is a normalization factor (chosen so that Dt+1

will be a distribution)

Output the final hypothesis

Fig. 1. AdaBoost.MH [Schapire and Singer (1998)].

1Although AdaBoost.MH also considers multilabel problems (an example can be simul-
taneously of several classes), the version presented here does not include this case.
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the best is

α =
1
2
ln

(
W+

W−

)

.

Where W+ and W− are, respectively, the sum of the weights of the
examples well and bad classified.

For the last question, how to train the base learner, it must be a multi-
class learner, and we want to use binary learners (only one literal). Then, for
each iteration, we train the weak learner using a binary problem: one class
(selected randomly) against the others. The output of this weak learner,
hB

t (x) is binary. On the other hand, we do not generate a unique αt, but
for each class, l, an αtl is selected. They are selected considering how
good is the weak learner for discriminating between the class l and the
rest of classes. This is a binary problem so the selection of the values can
be done as indicated in [Schapire and Singer (1998)]. Now, we can define
ht(x, l) = αtlh

B
t (x) and αt = 1 and we use AdaBoost.MH.

3. Interval Based Literals

Figure 2 shows a classification of the predicates used to describe the series.
Point based predicates use only one point of the series:

• point le(Example, Variable, Point, Threshold) it is true if, for the Example,
the value of the Variable at the Point is less or equal than Threshold.

Note that a learner that only uses this predicate is equivalent to an
attribute-value learning algorithm. This predicate is introduced to test the
results obtained with boosting without using interval based predicates.

Two kinds of interval predicates are used: relative and region based. Rel-
ative predicates consider the differences between the values in the interval.
Region based predicates are based on the presence of the values of a variable
in a region during an interval. This section only introduces the predicates
[Rodŕıguez et al. (2001)] gives a more detailed description, including how
to select them efficiently.

Region based: Sometimes, always, true_percentage

Relative: increases, decreases, stays
Interval based

Point based: point_le

Predicates

Fig. 2. Classification of the predicates.
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3.1. Relative Predicates

A natural way of describing series is to indicate when they increase, decrease
or stay. These predicates deal with these concepts:

• increases(Example, Variable, Beginning, End, Value). It is true, for the
Example, if the difference between the values of the Variable for End and
Beginning is greater or equal than Value.

• decreases(Example, Variable, Beginning, End, Value).
• stays(Example, Variable, Beginning, End, Value). It is true, for the Example,

if the range of values of the Variable in the interval is less or equal than
Value.

Frequently, series are noisy and, hence, a strict definition of increases
and decreases in an interval i.e., the relation holds for all the points in the
interval, is not useful. It is possible to filter the series prior to the learning
process, but we believe that a system for time series classification must not
rely on the assumption that the data is clean. For these two predicates we
consider what happens only in the extremes of the interval. The parameter
Value is necessary for indicating the amount of change.

For the predicate stays it is neither useful to use a strict definition. In
this case all the points in the interval are considered. The parameter Value
is used to indicate the maximum allowed difference between the values in
the interval.

3.2. Region Based Predicates

The selection and definition of these predicates is based in the ones used in
a visual rule language for dynamic systems [Alonso González and Rodŕıguez
Diez (1999)]. These predicates are:

• always(Example, Variable, Region, Beginning, End). It is true, for the Exam-
ple, if the Variable is always in this Region in the interval between Begin-
ning and End.

• sometimes(Example, Variable, Region, Beginning, End).
• true percentage(Example, Variable, Region, Beginning, End, Percentage). It

is true, for the Example, if the percentage of the time between Beginning
and End where the variable is in Region is greater or equal to Percentage.

Once that it is decided to work with temporal intervals, the use and
definition of the predicates always and sometimes is natural, due to the fact
that they are the extension of the conjunction and disjunction to intervals.
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Since one appears too demanding and the other too flexible, a third one has
been introduced, true percentage. It is a “relaxed always” (or a “restricted
sometimes”). The additional parameter indicates the degree of flexibility
(or restriction).

Regions. The regions that appear in the previous predicates are inter-
vals in the domain of values of the variable. In some cases the definitions
of these regions can be obtained from an expert, as background knowledge.
Otherwise, they can be obtained with a discretization preprocess, which
obtains r disjoint, consecutive intervals. The regions considered are these
r intervals (equality tests) and others formed by the union of the intervals
1, . . . , i (less or equal tests).

The reasons for fixing the regions before the classifier induction, instead
of obtaining them while inducing, are efficiency and comprehensibility.
The literals are easier to understand if the regions are few, fixed and not
overlapped.

3.3. Classifier Example

Table 1 shows a classifier. It was obtained from the data set CBF
(Section 6.1). This classifier is composed by 10 base classifiers. The first
column shows the literal. For each class in the data set there is another
column, with the weight associated to the literal for that class.

In order to classify a new example, a weight is calculated for each class,
and then the example is assigned to the class with greater weight. Initially,
the weight of each class is 0. For each base classifier, the literal is evaluated.
If it is true, then, for each class, its weight is updated adding the weight of

Table 1. Classifier example, for the CBF data set (Section 6.1). For each literal,
a weight is associated to every class.

Literal Cylinder Bell Funnel

true percentage(E, x, 1 4, 4, 36, 95) −0.552084 3.431576 −0.543762
not true percentage(E, x, 1 4, 16, 80, 40) 1.336955 0.297363 −0.527967
true percentage(E, x, 3, 49, 113, 25) −0.783590 −0.624340 1.104166
decreases(E, x, 34, 50, 1.20) −0.179658 0.180668 0.771224
not true percentage(E, x, 4, 14, 78, 15) 0.899025 −0.234799 −0.534271
decreases(E, x, 35, 51, 1.20) −0.289225 −0.477789 0.832881
decreases(E, x, 32, 64, 0.60) −0.028495 −0.462483 0.733433
not true percentage(E, x, 3, 12, 76, 15) 0.971446 −0.676715 −0.248722
true percentage(E, x, 1 4, 18, 34, 95) 0.085362 3.103075 −0.351317
true percentage(E, x, 1 3, 34, 38, 30) 0.041179 2.053417 0.134683
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the class for the literal. If the literal is false, then the weight of the class
for the literal is subtracted from the weight of the class.

The first literal in the table “true percentage(E, x, 1 4, 4, 36, 95)” has
associated for each class the weights −0.55, 3.43 and −0.54. This means
that if the literal is true (false), it is likely that the class is (not) the second
one. This literal is not useful for discriminating between the first and the
third class.

4. Variable Length Series

Due to the method used to select the literals that forms the base classi-
fiers, the learning system that we have introduced in the preceding sections
requires series of equal length. Consequently, to apply it to series of differ-
ent lengths, it is necessary to preprocess the data, normalizing the length
of the series.

There are several methods, more or less complex, that allow normalizing
the length of a set of series. These methods, which preprocess the data set,
can be adequate for some domains. However, the use of these methods is
not a general solution, because they destroy a piece of information that may
be useful for the classification: the own length of the series. Therefore, it is
important that the learning method can deal with variable length series. Of
course, it can still be used with preprocessed data sets of uniform length.

To learn from series of variable length, we have opted for a slight mod-
ification of the learning algorithm, that allow a literal to inhibit — or
abstain — when there are not enough data for its evaluation. This modifi-
cation also requires some change on the boosting method. With the basic
boosting method, for binary problems, the base classifiers return +1 or
−1. Nevertheless, there are variants that use confidence-rated predictions
[Schapire and Singer (1998)]. In this case, the base learner returns a real
value: the sign indicates the classification and the absolute value the confi-
dence in this prediction. A special case consists in the use of three values:
−1, 0 and +1. The value 0 indicates that that base classifier abstains. The
value of α is again selected as

α =
1
2
ln

(
W+

W−

)

.

Until now, a literal could be true or false, because all the series had the
same length. If the series are of different lengths, there will be literals with
intervals that are after the end of the shortest series. For these cases, the
result of the evaluation of the literal could be an abstention, a 0, but due
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to the nature of the literals it will not always be 0. If the end of the series
is before the beginning the interval, the result will be 0. If the end of the
series is in the interval, the result depends on the predicate:

• For increases and decreases the result will be always 0, because only the
extremes of the interval are considered.

• For stays the result will be −1 if the available points are not in the allowed
range. In other case the result will be 0.

• For always, the result will be −1 if there is some available point in the
interval that is out of the region. In other case the result will be 0.

• For sometimes, the result will be 1 if there is some available point in the
interval that is out of the region. In other case the result will be 0.

• For true percentage, the result will be 1 if the series has already enough
points in the interval inside the region. In other case the result will be 0.

5. Early Classification

The capability of obtaining an initial classification as soon as the available
data give some cue about the possible class they belong to, is a very desir-
able property if the classifiers are to be used in a dynamic environment were
data are generated and analyzed on line. Now, the setting is different to
the variable length series learning problem of the previous paragraph: the
classifier has already been obtained, maybe form series of different length,
and the variations occur on the length of the series to be classified, from
partial examples to full series.

Somewhat surprisingly, this early classification ability can be obtained
without modifying the learning method, exploiting the same ideas that
allow learning from series of different length. When a partial example is
presented to the classifier some of its literals can be evaluated, because their
intervals refer to areas that are already available in the example. Certainly,
some literals cannot be evaluated because the intervals that they refer to
are still not available for the example: its value is still unknown. Given
that the classifier consists of a linear combination of literals, the simple
omission of literals with unknown value allows to obtain a classification
from the available data. The classification given to a partial example will
be the linear combination of those literals that have known results.

A very simple approach to identify literals with unknown values would
be to abstain whenever there are point values that are still unknown for
the example. Nevertheless, if the values of some points in the interval are
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known, it is sometimes possible to know the result of the literal. This is done
in a similar way than when evaluating literals for variable length series.

6. Experimental Validation

The characteristics of the data sets used to evaluate the behavior of the
learning systems are summarized in Table 2. If a training test partition
it specified, the results are obtained by averaging 5 experiments. In other
case, 10 fold stratified cross validation was used.

Table 3 shows the obtained results for different data sets with different
combination of predicates. The setting named Relative uses the predicates
increases, decreases and stays. The setting Interval also includes these liter-
als, and true percentage. It does not include always and sometimes, because
they can be considered as special cases of true percentage.

Normally, 100 literals were used. For some data sets this value is
more than enough, and it shows clearly that the method does not over-
fit. Nevertheless, the results of some data set can be improved using more

Table 2. Characteristics of the data sets.

Classes Variables Examples Training/ Length
Test

Min. Average Max.

CBF 3 1 798 10 fold CV 128 128.00 128
CBF-Var 3 1 798 10 fold CV 64 95.75 128
Control 6 1 600 10 fold CV 60 60.00 60
Control-Var 6 1 600 10 fold CV 30 44.86 60
Trace 16 4 1600 800/800 67 82.49 99
Auslan 10 8 200 10 fold CV 33 49.34 102

Table 3. Results (error rates) for the different data sets using the different literals.

Data set Literals Point Relative Always/ True Interval
sometimes percentage

CBF 100 3.51 2.28 1.38 0.63 0.50
CBF-Var 100 3.49 1.61 2.75 1.25 1.13
Control 100 4.00 1.17 1.00 1.33 0.83
Control-Var 100 13.00 7.00 5.00 4.83 5.00
Trace 100 72.00 3.00 3.83 8.70 0.78
Trace 200 70.98 0.03 2.65 6.78 0.20
Gloves 100 8.00 5.50 5.50 3.00 4.50
Gloves 200 7.50 6.50 3.50 2.50 2.50
Gloves 300 5.00 4.00 4.50 2.50 1.50
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Table 4. Early Classification. Results (error rates) for the different data sets using
the different literals.

Data set Percentage Point Relative Always/ True Interval
sometimes percentage

CBF 60 4.51 4.65 2.63 1.39 0.88
CBF 80 4.26 2.70 2.01 0.50 0.75
CBF-Var 60 4.11 1.86 3.12 1.87 1.61
CBF-Var 80 3.49 1.87 2.75 1.25 1.00
Control 60 42.17 17.33 30.17 35.00 34.33
Control 80 11.67 3.50 1.67 1.17 1.00
Control-Var 60 22.50 20.67 20.33 19.00 17.17
Control-Var 80 13.00 7.17 5.00 5.33 5.00
Trace 60 83.33 32.00 55.48 47.73 37.10
Trace 80 70.95 0.45 5.45 7.68 0.63
Gloves 60 5.00 4.00 4.50 3.00 1.50
Gloves 80 5.00 4.00 4.50 2.50 1.50

literals. Table 3 also shows for these data sets the obtained results using
more iterations.

An interesting issue of these results is that the error rate achieved using
point based literals are always the worst; a detailed study of this topic
for fixed length time series can be found in [Rodriguez et al. (2001)]. The
obtained results for the setting named Interval are the better or very close
to the better results. The comparison between relative and region based
literal clearly indicates that its adequacy depends on the data set.

Table 4 shows some results for early classification. The considered
lengths are expressed in terms of the percentage of the length of the longest
series in the data set. The table shows early classification results for 60%
and 80%. Again, the usefulness of interval literals is clearly confirmed.

The rest of this section contains a detailed discussion for each data set,
including its description, the results for boosting point based and interval
based literals and another known results for the data set.

6.1. CBF (Cylinder, Bell and Funnel)

This is an artificial problem, introduced in [Saito (1994)]. The learning task
is to distinguish between three classes: cylinder (c), bell (b) or funnel (f).
Examples are generated using the following functions:

c(t) = (6 + η) · χ[a,b](t) + ε(t),

b(t) = (6 + η) · χ[a,b](t) · (t − a)/(b − a) + ε(t),

f(t) = (6 + η) · χ[a,b](t) · (b − t)/(b − a) + ε(t)
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Fig. 3. Examples of the CBF data set. Two examples of the same class are shown in
each graph.
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where

χ[a,b] =
{

0 if t < a ∨ t > b,

1 if a ≤ t ≤ b,

and η and ε(t) are obtained from a standard normal distribution N(0, 1),
a is an integer obtained from a uniform distribution in [16, 32] and b − a

is another integer obtained from another uniform distribution in [32, 96].
The examples are generated evaluating those functions for t = 1, 2, . . . , 128.
Figure 3 shows some examples of this data set.

The obtained results are shown in Figure 4(A). Two kinds of graphs
are used. The first one shows the error rate as a function of the number of
literals. The second also shows the error rate, but in this case using early
classification and the maximum number of considered literals. The error
rate is shown as a function of the percentage of the length of the series.
In each graph, two results are plotted, one using point based literals and
another using interval based literals. The results are also shown in Table 5.
For early classification, the results obtained with the 60% of the series
length are very close to those obtained with the full series.
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Fig. 4. Error graphs for the CBF data set.
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Table 5. Results for the CBF data set.

10 20 30 40 50 60 70 80 90 100

Error/Number of Literals
Points 8.67 6.02 5.64 4.51 4.39 3.64 3.64 3.15 3.02 3.51
Intervals 3.63 1.64 1.00 0.75 0.75 0.88 0.50 0.75 0.50 0.50

Error/Series Length Percentage
Points 67.17 48.15 35.85 27.10 10.13 4.51 3.39 4.26 3.77 3.51
Intervals 67.19 53.78 34.34 15.44 5.04 0.88 0.88 0.75 0.38 0.50

Table 6. Results for the CBF-Var data set.

10 20 30 40 50 60 70 80 90 100

Error/Number of literals
Points 8.75 5.24 4.37 3.25 4.01 3.98 3.99 4.00 4.12 3.49
Intervals 4.11 2.99 2.13 1.75 1.50 1.25 1.13 1.25 1.13 1.13

Error/Series length percentage
Points 68.30 49.02 37.99 22.22 5.62 4.11 3.37 3.49 3.49 3.49
Intervals 65.84 54.38 32.83 16.67 3.25 1.61 1.00 1.00 1.13 1.13

The error reported in [Kadous (1999)] is 1.9, using event extraction,
event clustering and decision trees. Our results using interval based literals
are better than this value using 20 or more literals. Moreover, our method
is able to obtain a better result than 1.9, 0.88, using early classification
with 100 literals when only 60% of the series length is available.

Variable Length Version. All the examples of the CBF data set have
the same length. In order to check the method for variable length series, the
data set was altered. For each example, a random number of values were
deleted from its end. The maximum number of values eliminated is 64,
the half of the original length. The obtained results for this new data set,
named CBF-Var, are shown in Figure 4(B) and in Table 6. When using a
variable length data set and early classification, the series length percentage
in graphs and tables are relative to the length of the longest series in the
data set. For instance, in this data set 25% corresponds to the first 32 points
of each series, because the longest series have 128 points.

An interesting issue is that the obtained results with this altered data
set are still better than the results reported in [Kadous (1999)] using the
original data set.
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6.2. Control Charts

In this data set there are six different classes of control charts, synthetically
generated by the process in [Alcock and Manolopoulos (1999)]. Each time
series is of length n = 60, and it is defined by y(t), with 1 ≤ t ≤ n:

• Normal: y(t) = m + rs. Where m = 30, s = 2 and r is a random number
in [−3,3].

• Cyclic: y(t) = m + rs + a sin(2πt/T ). a and T are in [10,15].
• Increasing: y(t) = m + rs + gt. g is in [0.2,0.5].
• Decreasing: y(t) = m + rs − gt.
• Upward: y(t) = m+ rs+kx. x is in [7.5,20] and k = 0 before time t3 and

1 after this time. t3 is in [n/3, 2n/3].
• Downward: y(t) = m + rs − kx.

Figure 5 shows two examples of each class. The data used was obtained
from the UCI KDD Archive [Hettich and Bay (1999)]. The results are shown
in Figure 6(A) and in Table 7. The results are clearly better for interval
based literals, with the exception of early classification with very short
fragments. This is possibly due to the fact that most of the literals refer to
intervals that are after these initial fragments. In any case, early classifica-
tion is not useful with so short fragments, because the error rates are too
large.

Variable Length Version. The Control data set was also altered to a
variable length variant, Control-Var. In this case the resulting series have
lengths between 30 and 60. The results are shown in Figure 6(B) and in
Table 8.

6.3. Trace

This dataset is introduced in [Roverso (2000)]. It is proposed as a bench-
mark for classification systems of temporal patterns in the process industry.
This data set was generated artificially. There are four variables, and each
variable has two behaviors, as shown in Figure 7. The combination of the
behaviors of the variables produces 16 different classes. For this data set it
is specified a training/test partition.

The length of the series is between 268 and 394. The running times
of the algorithms depend on the length of the series, so the data set was
preprocessed, averaging the values in groups of four. The lengths of the
examples in the resulting data set have lengths between 67 and 99.
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Fig. 5. Examples of the Control data set. Two examples of the same class are shown
in each graph.

The results are shown in Figure 8 and in Table 9. For this data set,
boosting point based literals is not able to learn anything useful, the error
is always greater than 70%. Nevertheless, using boosting of interval based
literals and more than 80 literals, the error is less than 1%. For early classi-
fication, the error is under 1% with the 80% of the series length. The result
reported in [Roverso (2000)], using recurrent neural networks and wavelets
is an error of 1.4%, but 4.5% of the examples are not assigned to any class.
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Fig. 6. Error graphs for the Control data set.

Table 7. Results for the Control data set.

10 20 30 40 50 60 70 80 90 100

Error/Number of literals
Points 20.83 13.83 9.50 7.33 6.50 5.50 4.67 4.17 4.33 4.00
Intervals 4.50 1.67 1.33 1.17 1.17 1.00 1.00 1.00 0.83 0.83

Error/Series length percentage
Points 63.17 54.00 48.00 46.17 45.00 42.17 28.50 11.67 4.67 4.00
Intervals 87.00 56.17 45.17 47.00 41.33 34.33 6.67 1.00 0.67 0.83

Table 8. Results for the Control-Var data set.

10 20 30 40 50 60 70 80 90 100

Error/Number of literals
Points 30.33 22.83 15.83 15.17 13.00 13.67 12.83 12.50 13.17 13.00
Intervals 6.50 6.50 6.00 5.50 5.83 5.67 5.33 5.33 5.50 5.00

Error/Series length percentage
Points 65.00 51.67 43.67 41.50 31.00 22.50 12.83 13.00 13.00 13.00
Intervals 74.67 48.17 41.50 40.00 31.33 17.17 5.50 5.00 5.00 5.00
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Fig. 7. Trace data set. Each example is composed by four variables, and each variable
has two possible behaviors. In the graphs, two examples of each behavior are shown.
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Table 9. Results for the Trace data set.

Error/Number of literals

Literals 20 40 60 80 100 120 140 160 180 200

Points 72.63 73.83 72.78 72.40 72.00 72.25 71.70 70.45 70.55 70.98
Intervals 7.30 2.20 1.05 0.98 0.78 0.53 0.43 0.28 0.25 0.20

Error/Series length percentage

Percentage 10 20 30 40 50 60 70 80 90 100

Points 93.63 92.48 89.20 88.28 85.48 83.32 72.13 70.95 70.98 70.98
Intervals 93.75 88.15 75.05 73.05 58.05 37.10 6.90 0.63 0.28 0.20
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Fig. 9. Error graphs for the Auslan data set.

6.4. Auslan

Auslan is the Australian sign language, the language of the Australian deaf
community. Instances of the signs were collected using an instrumented
glove [Kadous (1999)]. Each example is composed by 8 series: x, y and z

position, wrist roll, thumb, fore, middle and ring finger bend. There are
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Table 10. Results for the Auslan data set.

Error/Number of literals

Literals 30 60 90 120 150 180 210 240 270 300

Points 16.50 11.50 8.00 8.50 8.00 8.00 7.50 6.50 6.00 5.00
Intervals 11.00 7.50 4.00 4.00 3.50 3.00 3.00 2.50 2.00 1.50

Error/Series length percentage

Percentage 10 20 30 40 50 60 70 80 90 100

Points 76.00 42.00 10.00 5.50 5.00 5.00 5.00 5.00 5.00 5.00
Intervals 82.50 41.50 13.00 3.50 2.00 1.50 1.50 1.50 1.50 1.50

10 classes and 20 examples of each class. The minimum length is 33 and
the maximum is 102.

The results are shown in Figure 9 and in Table 10. The best result
reported in [Kadous (1999)] is an error of 2.50, using event extraction,
event clustering and Näıve Bayes Classifiers. Our result is 1.5 using 300
interval based literals.

With respect to the results for early classification, it is necessary to
consider two facts. First, for this problem it is not practical to use early
classification, because the examples are generated very quickly. The second
fact is that the used percentage is for the longest series, and in this data
set the lengths vary a lot. Hence, the obtained results for a length of 50%,
include many examples that are already completed.

7. Conclusions

This chapter has presented a novel approach to the induction of multivariate
time series classifiers. It summarizes a supervised learning method that
works boosting very simple base classifiers. From only one literal, the base
classifiers, boosting creates classifiers consisting of a linear combination of
literals.

The learning method is highly domain independent, because it only
makes use of very general techniques, like boosting, and only employs very
generic descriptions of the time series, interval based literals. In this work we
have resorted to two kind of interval predicates: relative and region based.
Relative predicates consider the evolution of the values in the interval, while
region based predicates consider the occurrence of the values of a variable in
a region during an interval. These kind of predicates, specifically design for
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time series although essentially domain independent, allows the assembly
of very accurate classifiers.

Experiments on different data sets show that in terms of error rate
the proposed method is highly competitive with previous approaches. On
several data sets, it achieves better than all previously reported results
we are aware of. Moreover, although the strength of the method is based
on boosting, the experimental results using point based predicates show
that the incorporation of interval predicates can improve significantly the
obtained classifiers, especially when using less iterations.

An important aspect of the learning method is that it can deal directly
with variable length series. As we have shown, the simple mechanism of
allowing that the evaluation of a literal may give as a result an absten-
tion when there are not enough data to evaluate the literal, make pos-
sible to learn from series of different length. The symbolic nature of the
base classifiers facilitates their capacity to abstain. It also requires the
use of a boosting method able to work with abstentions in the base
classifiers.

Another feature of the method is the ability to classify incomplete exam-
ples. This early classification is indispensable for some applications, when
the time necessary to generate an example can be rather big, and where
it is not an option to wait until the full example is available. It is impor-
tant to notice that this early classification does not influence the learning
process. Particularly, it is relevant the fact that in order to get early clas-
sifiers there are neither necessary additional classifiers nor more complex
classifiers. This early classification capacity is another consequence of the
symbolic nature of the classifier. Nevertheless, an open issue is if it would
be possible to obtain better results for early classification by modifying the
learning process. For instance, literals with later intervals could be some-
what penalized.

An interesting advantage of the method is its simplicity. From a user
point of view, the method has only one free parameter, the number of iter-
ations. Moreover, the classifiers created with more iterations includes the
previously obtained. Hence, it is possible (i) to select only an initial frag-
ment of the final classifier and (ii) to continue adding literals to a previously
obtained classifier. Although less important, from the programmer point of
view the method is also rather simple. The implementation of boosting
stumps is one of the easiest among classification methods.

The main focus of this work has been classification accuracy, at the
expenses of classifier comprehensibility. There are methods that produce
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more comprehensible models than weighted literals, such as decision trees
or rules, and literals over intervals can also be used with these models.
A first attempt to learn rules of literals is described in [Rodŕıguez et al.
(2000)], where we obtained less accurate but more comprehensible clas-
sifiers. Nevertheless, the use of these literals with other learning models
requires more research.

Finally, a short remark about the suitability of the method for time
series classification. Since the only properties of the series that are consid-
ered for their classification are the attributes tested by the interval based lit-
erals, the method will be adequate as long as the series may be discriminated
according to what happens in intervals. Hence, although the experimental
results are rather good, they cannot be generalized for arbitrary data sets.
Nevertheless, this learning framework can be used with other kinds of lit-
erals, more suited for the problem at hand. For instance [Rodŕıguez and
Alonso (2000)] uses literals based on distances between series.
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Time series can be effectively represented by strings. The median con-
cept is useful in various contexts. In this chapter its adaptation to the
domain of strings is discussed. We introduce the notion of median string
and provide related theoretical results. Then, we give a review of algo-
rithmic procedures for efficiently computing median strings. Some exper-
imental results will be reported to demonstrate the median concept and
to compare some of the considered algorithms.

Keywords: String distance; set median string; generalized median string;
online handwritten digits.

1. Introduction

Strings provide a simple and yet powerful representation scheme for sequen-
tial data. In particular time series can be effectively represented by strings.
Numerous applications have been found in a broad range of fields including
computer vision [2], speech recognition, and molecular biology [13,34].

173
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A large number of operations and algorithms have been proposed to
deal with strings [1,5,13,34,36]. Some of them are inherent to the special
nature of strings such as the shortest common superstring and the longest
common substring, while others are adapted from other domains.

In data mining, clustering and machine learning, a typical task is to
represent a set of (similar) objects by means of a single prototype. Interest-
ing applications of the median concept have been demonstrated in dealing
with 2D shapes [16, 33], binary feature maps [23], 3D rotation [9], geomet-
ric features (points, lines, or 3D frames) [32], brain models [12], anatomical
structures [37], and facial images [31]. In this paper we discuss the adapta-
tion of the median concept to the domain of strings.

The median concept is useful in various contexts. It represents a funda-
mental quantity in statistics. In sensor fusion, multisensory measurements
of some quantity are averaged to produce the best estimate. Averaging the
results of several classifiers is used in multiple classifier systems in order to
achieve more reliable classifications.

The outline of the chapter is as follows. We first formally introduce the
median string problem in Section 2 and provide some related theoretical
results in Section 3. Sections 4 and 5 are devoted to algorithmic procedures
for efficiently computing set median and generalized median strings. In
Section 6 we report experimental results to demonstrate the median concept
and to compare some of the considered algorithms. Finally, some discussions
conclude this paper.

2. Median String Problem

Assuming an alphabet Σ of symbols, a string x is simply a sequence of
symbols from Σ, i.e. x = x1x2 · · ·xn where xi ∈ Σ for i = 1, . . . , n. Given
the space U of all strings over Σ, we need a distance function d(p, q) to
measure the dissimilarity between two strings p, q ∈ U . Let S be a set of
N strings from U . The essential information of S is captured by a string
p̄ ∈ U that minimizes the sum of distances of p̄ to all strings from S, also
called the consensus error ES(p):

p̄ = arg min
p∈U

ES(p), where ES(p) =
∑

q∈S

d(p, q).

The string p̄ is called a generalized median of S. If the search is con-
strained to the given set S, the resultant string

p̂ = arg min
p∈S

ES(p)
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is called a set median of S. For a given set S, neither the generalized median
nor the set median is necessarily unique. This definition was introduced by
Kohonen [20]. Note that different terminology has been used in the liter-
ature. In [13] the set median string and the generalized median string are
termed center string and Steiner string, respectively. In [24] the generalized
median was called consensus sequence.

Different possibility is mentioned by Kohonen [20] too. This is the par-
allel of mean from elementary statistics. Here we would like to search for
p′ that minimizes

∑

q∈S

d2(p′, q).

Martinez-Hinarejos et al. [27] returned to this definition and investigated
the possibility of using mean instead of median.

Note that in a broad sense, the median string concept is related to the
center of gravity of a collection of masses. While the latter represents the
point where all the weight of the masses can be considered to be concen-
trated, the median string corresponds to a single representation of strings
based on a string distance.

Several string distance functions have been proposed in the literature.
The most popular one is doubtlessly the Levenshtein edit distance. Let
A = a1a2 · · · an and B = b1b2 · · · bm be two words over Σ. The Levenshtein
edit distance d(A, B) is defined in terms of elementary edit operations which
are required to transform A into B. Usually, three different types of edit
operations are considered, namely (1) substitution of a symbol a ∈ A by a
symbol b ∈ B, a �= b, (2) insertion of a symbol a ∈ Σ in B, and (3) deletion
of a symbol a ∈ A. Symbolically, we write a → b for a substitution, ε → a

for an insertion, and a → ε for a deletion. To model the fact that some
distortions may be more likely than others, costs of edit operations, c(a →
b), c(ε → a), and c(a → ε), are introduced. Let s = l1l2 · · · lk be a sequence
of edit operations transforming A into B. We define the cost of this sequence
by c(s) =

∑k
i=1 c(li). Given two strings A and B, the Levenshtein edit

distance is given by

d(A, B) = min{c(s) | s is a sequence of edit operations

transforming A into B}.

To illustrate the Levenshtein edit distance, let us consider two words
A = median and B = mean built on the English alphabet. Examples of
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sequences of edit operations transforming A into B are:

• s1 = d → a, i → n, a → ε, n → ε,
• s2 = d → a, i → ε, a → ε,
• s3 = d → ε, i → ε.

Under the edit cost c(a → ε) = c(ε → a) = c(a → b) = 1, a �= b, s3

represents the optimal sequence with the minimum total cost 2 for trans-
forming median into mean among all possible transformations. Therefore,
we observe d(median, mean) = 2.

In [38] an algorithm is proposed to compute the Levenshtein edit dis-
tance by means of dynamic programming. Other algorithms are discussed in
[13,34,36]. Further string distance functions are known from the literature,
for instance, normalized edit distance [28], maximum posterior probability
distance [20], feature distance [20], and others [8]. The Levenshtein edit
distance is by far the most popular one. Actually, some of the algorithms
we discuss later are tightly coupled to this particular distance function.

3. Theoretical Results

In this section we summarize some theoretical results related to median
strings. The generalized median is a more general concept and usually a
better representation of the given strings than the set median. From a prac-
tical point of view, the set median can be regarded an approximate solution
of the generalized median. As such it may serve as the start for an iterative
refinement process to find more accurate approximations. Interestingly, we
have the following result (see [13] for a proof):

Theorem 1. Assume that the string distance function satisfies the triangle
inequality. Then ES(p̂)/ES(p̄) ≤ 2 − 2/|S|.

That is, the set median has a consensus error relative to S that is at
most 2 − 2/|S| times the consensus error of the generalized median string.

Independent of the distance function we can always find the set median
of N strings by means of 1

2N(N − 1) pairwise distance computations. This
computational burden can be further reduced by making use of special
properties of the distance function (e.g. metric) or resorting to approximate
procedures. Section 4 will present examples of these approaches.

Compared to set median strings, the computation of generalized median
strings represents a much more demanding task. This is due to the
huge search space which is substantially larger than that for determining
the set median string. This intuitive understanding of the computational
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complexity is supported by the following theoretical results. Under the two
conditions:

• every edit operation has cost one, i.e., c(a → b) = c(ε → a) =
c(a → ε) = 1,

• the alphabet is not of fixed size.

It is proved in [15] that computing the generalized median string is
NP-hard. Sim and Park [35] proved that the problem is NP-hard for finite
alphabet and for a metric distance matrix. Another result comes from com-
putational biology. The optimal evolutionary tree problem there turns out
to be equivalent to the problem of computing generalized median strings
if the tree structure is a star (a tree with n + 1 nodes, n of them being
leaves). In [39] it is proved that in this particular case the optimal evolu-
tionary tree problem is NP-hard. The distance function used is problem
dependent and does not even satisfy the triangle inequality. All these theo-
retical results indicate the inherent difficulty in finding generalized median
strings. Not surprisingly, the algorithms we will discuss in Section 5 are
either exponential or approximate.

4. Fast Computation of Set Median Strings

The naive computation of set median requires O(N2) distance computa-
tions. Considering the relatively high computational cost of each individ-
ual string distance, this straightforward approach may not be appropriate,
especially in the case of a large number of strings. The problem of fast set
median search can be tackled by making use of properties of metric distance
functions or developing approximate algorithms. Several solutions [19,30]
have been suggested for fast set median search in arbitrary spaces. They
apply to the domain of strings as well.

4.1. Exact Set Median Search in Metric Spaces

In many applications the underlying string distance function is a metric
which satisfies:

(i) d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q,
(ii) d(p, q) = d(q, p),
(iii) d(p, q) + d(q, r) ≥ d(p, r).
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A property of metrics is:

|d(p, r) − d(r, q)| ≤ d(p, q), ∀p, q, r ∈ S,

which can be utilized to reduce the number of string distance computations.
The approach proposed in [19] partitions the input set S into subsets

Su (used), Se (eliminated), and Sa (alive). The set Sa keeps track of those
strings that have not been fully evaluated yet; initially Sa = S. A lower
bound g(p) is computed for each string p in Sa, i.e., the consensus error of
p satisfies:

ES(p) =
∑

q∈S

d(p, q) ≥ g(p).

Clearly, strings with small g values are potentially better candidates for
set median. For this reason the string p with the smallest g(p) value among
all strings in Sa is transferred from Sa to Su. Then, the consensus error
ES(p) is computed and, if necessary, the current best median candidate p∗

is updated. Then, the lower bound g is computed for all strings that are
alive, and those whose g is not smaller than ES(p∗) are moved from Sa

to Se. They will not be considered as median candidates any longer. This
process is repeated until Sa becomes empty.

In each iteration, the consensus error for p with the smallest g value is
computed by:

ES(p) =
∑

q∈Su

d(p, q) +
∑

q∈Se∪(Sa−{p})

d(p, q).

Using (1) the term d(p, q) in the second summation is estimated by:

d(p, q) ≥ |d(p, r) − d(r, q)|, ∀r ∈ Su.

Taking all strings of Su into account, we obtain the lower bound:

ES(p) ≥
∑

q∈Su

d(p, q) +
∑

q∈Se∪(Sa−{p})

max
rεSu

|d(p, r) − d(r, q)| = g(p).

The critical point here is to see that all the distances in this lower
bound are concerned with p and strings from Su, and were therefore already
computed before. When strings in Sa are eliminated (moved to Su), their
consensus errors need not to be computed in future. This fact results in sav-
ing of distance computations. In addition to (2), two other lower bounds
within the same algorithmic framework are given in [19]. They differ in the
resulting ratio of the number of distance computations and the remain-
ing overhead, with the lower bound (2) requiring the smallest amount of
distance computations.
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Ideally, the distance function is desired to be a metric, in order to match
the human intuition of similarity. The triangle inequality excludes the case
in which d(p, r) and d(r, q) are both small, but d(p, q) is very large. In prac-
tice, however, there may exist distance functions which do not satisfy the
triangle inequality. To judge the suitability of these distance functions, the
work [6] suggests quasi-metrics with a relaxed triangle inequality. Instead
of the strict triangle inequality, the relation:

d(p, r) + d(r, q) ≥ d(p, q)
1 + ε

is required now. Here ε is a small nonnegative constant. As long as ε is not
very large, the relaxed triangle inequality still retains the human intuition
of similarity. Note that the strict triangle inequality is a special case with
ε = 0. The fast set median search procedure [19] sketched above easily
extends to quasi-metrics. In this case the relationship (1) is replaced by:

d(p, q) ≥ max
(

d(p, r)
1 + ε

− d(q, r),
d(q, r)
1 + ε

− d(p, r)
)

, ∀p, q, r ∈ S

which can be used in the same manner to establish a lower bound g(p).

4.2. Approximate Set Median Search in Arbitrary Spaces

Another approach to fast set median search makes no assumption on the
distance function and covers therefore non-metrics as well. The idea of this
approximate algorithm is simple. Instead of computing the sum of distances
of each string to all the other strings of S to select the best one, only a
subset of S is used to obtain an estimation of the consensus error [30]. The
algorithm first calculates such estimations and then calculates the exact
consensus errors only for strings that have low estimations.

This approximate algorithm proceeds in two steps. First, a random sub-
set Sr of Nr strings is selected from S. For each string p of S, the consensus
error ESr

(p) relative to Sr is computed and serves as an estimation of the
consensus error ES(p). In the second step Nt strings with the lowest con-
sensus error estimations are chosen. The exact consensus error ES(p) is
computed for the Nt strings and the string with the minimum ES(p) is
regarded the (approximate) set median string of S.

5. Computation of Generalized Median Strings

While the set median problem is characterized by selecting one particular
member out of a given set of strings, the computation of generalized median
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strings is inherently constructive. The theoretical results from Section 3
about computational complexity indicate the fundamental difficulties we
are faced with. In the following we describe various algorithms for comput-
ing generalized median strings. Not surprisingly, they are either of expo-
nential complexity or approximate.

5.1. An Exact Algorithm and Its Variants

An algorithm for the exact computation of generalized median strings under
the Levenshtein distance is given in [21]. Let ε be the empty string and
Σ′ = Σ ∪ {ε} the extended alphabet. We define:

δ(r1, r2, . . . , rN ) = min
v∈Σ′

[c(v → r1) + c(v → r2) + · · · + c(v → rN )].

The operator δ can be interpreted as a voting function, as it determines
the best value v at a given stage of computation. Finding an optimal value
of v requires an exhaustive search over Σ′ in the most general case, but in
practice the cost function is often simple such that a shortcut can be taken
and the choice of the optimal v is not costly.

Having defined δ this way, the generalized median string can be com-
puted by means of dynamic programming in an N -dimensional array, sim-
ilarly to string edit distance computation [38]. For the sake of notational
simplicity, we only discuss the case N = 3. Assume the three input strings
be u1u2 · · ·ul, v1v2 · · · vm, and w1w2 · · ·wn. A three-dimensional distance
table of dimension l × m × n is constructed as follows:

Initialization: d0,0,0 = 0;
Iteration:

di,j,k = min






di−1,j−1,k−1 + δ(ui, vj , wk)
di−1,j−1,k + δ(ui, vj , ε)
di−1,j,k−1 + δ(ui, ε, wk)
di−1,j,k + δ(ui, ε, ε)
di,j−1,k−1 + δ(ε, vj , wk)
di,j−1,k + δ(ε, vj , ε)
di,j,k−1 + δ(ε, ε, wk)











0 ≤ i ≤ l

0 ≤ j ≤ m

0 ≤ k ≤ n






End: if (i = l) ∧ (j = m) ∧ (k = n)

The computation requires O(lmn) time and space. The path in the
distance table that leads from d0,0,0 to dl,m,n defines the generalized
median string p̄ with dl,m,n being the consensus error ES(p̄). Note that
a generalization to arbitrary N is straightforward. If the strings of S are
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of length O(n), both the time and space complexity amounts to O(nN ) in
this case.

Despite of its mathematical elegance the exact algorithm above is
impractical because of the exponential complexity. There have been efforts
to shorten the computation time using heuristics or domain-specific knowl-
edge. Such an approach from [24] assumes that the string of S be quite
similar. Under reasonable constraints on the cost function (c(a → ε) =
c(ε → a) = 1 and c(a → b) nonnegative), the generalized median string
p̄ satisfies ES(p̄) ≤ k with k being a small number. In this case the opti-
mal dynamic programming path must be close to the main diagonal in
the distance table. Therefore only part of the n-dimensional table needs
to be considered. Details of the restricted search can be found in [24]. Its
asymptotic time complexity is O(nkN ). While this remains exponential, k is
typically much smaller than n, resulting in a substantial speedup compared
to the full search of the original algorithm [21].

We may also use any domain-specific knowledge to limit the search
space. An example is the approach in the context of classifier combination
for handwritten sentence recognition [25]. An ensemble of classifiers provide
multiple classification results of a scanned text. Then, the consensus string
is expected to yield the best overall recognition performance. The input
strings from the individual classifiers are associated with additional infor-
mation of position, i.e. the location of each individual word in a sequence of
handwritten words. Obviously, it is very unlikely that a word at the begin-
ning of a sequence corresponds to a word at the end of another sequence.
More generally, only words at a similar position in the text image are mean-
ingful candidates for being matched to each other. The work [25] makes use
of this observation to exclude a large portion of the full N -dimensional
search space from consideration.

5.2. Approximate Algorithms

Because of the NP-hardness of generalized median string computation,
efforts have been undertaken to develop approximate approaches which
provide suboptimal solutions in reasonable time. In this section we will
discuss several algorithms of this class.

5.2.1. Greedy Algorithms

The following algorithm was proposed by Casacuberta and de Antoni
[4]. Starting from an empty string, a greedy algorithm constructs an
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p̄0 = ε;
for l = 1; ; l + + {

a1 = arg min
a∈Σ

ES(p̄l−1a);

p̄l = p̄l−1al;
if (termination criterion fulfilled) break;

}
choose prefix of p̄l for output;

Fig. 1. General framework of greedy algorithms.

approximate generalized median string p̄ symbol by symbol. When we are
going to generate the l-th symbol al (l ≥ 1), the substring a1 · · · al−1 (ε for
l = 1) has already been determined. Then, each symbol from Σ is considered
as a candidate for al. All the candidates are evaluated and the final decision
of al is made by selecting the best candidate. The process is continued until
a termination criterion is fulfilled.

A general framework of greedy algorithms is given in Figure 1. There
are several possible choices for the termination criterion and the prefix.
The greedy algorithm proposed in [4] stops the iterative construction pro-
cess when ES(p̄l) > ES(p̄l−1). Then, p̄l−1 is regarded the approximate
generalized median string. Alternatively, the author of [22] suggests the
termination criterion l = maxp∈S |p|. The output is the prefix of p̄l with
the smallest consensus error relative to S. For both variants a suitable data
structure [4] enables a time complexity of O(n2N |Σ|) for the Levenshtein
distance. The space complexity amounts to O(nN |Σ|).

In the general framework in Figure 1 nothing is stated about how to
select al if there exist multiple symbols from Σ with the same value of
ES(p̄l−1a). Besides a simple random choice, the history of the selection
process can be taken into account to make a more reliable decision [22].

5.2.2. Genetic Search

Genetic search techniques are motived by concepts from the theory of bio-
logical evolution. They are general-purpose optimization methods that have
been successfully applied to a large number of complex tasks. In [17] two
genetic algorithms are proposed to construct generalized median strings.
The first approach is based on a straightforward representation of strings
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in terms of chromosomes by one-dimensional arrays of varying lengths con-
sisting of symbols from Σ. The string “median”, for instance, is coded as
chromosome

m e d i a n

Given a set S of N input strings of length O(n) each, the fitness func-
tion is simply defined by the consensus error of a chromosome string. The
roulette wheel selection is used to create offspring. For crossover the single-
point operator is applied. With a mutation probability either deletion,
insertion or substitution is performed at each position of a chromosome.
The input strings are used as part of the initial population. The rest of
the initial population is filled by randomly selecting some input strings and
applying the mutation operator on them. The population evolution process
terminates if one of the following two criteria is fulfilled. The first crite-
rion is that the maximal number of generations has been reached. Second,
if the population becomes very homogeneous, the process terminates as well.
The homogeneity is measured by means of the average and the variance of
the fitness values of a population. If their product is smaller than a pre-
specified threshold, the population is considered enough homogeneous to
stop the evolution. Let P denote the population size and p the replacement
percentage. When using the Levenshtein edit distance, the time complexity
of this genetic algorithm amounts to O(Nn2pP ) per generation.

The genetic algorithm above requires quite a large number of string dis-
tance computations due to the fitness function evaluation in each iteration.
For better computational efficiency a second genetic algorithm is designed
using a more elaborate chromosome coding scheme of strings; see [17] for
details. The time complexity becomes O(NnmpP ), m << n, implying a
substantial speedup.

5.2.3. Perturbation-Based Iterative Refinement

The set median represents an approximation of the generalized median
string. The greedy algorithms and the genetic search techniques also give
approximate solutions. An approximate solution p̄ can be further improved
by an iterative process of systematic perturbations. This idea was first
suggested in [20]. But no algorithmic details are specified there. A concrete
algorithm for realizing systematic perturbations is given in [26]. For each
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position i, the following operations are performed:

(i) Build perturbations

• Substitution: Replace the i-th symbol of p̄ by each symbol of Σ in
turn and choose the resulting string x with the smallest consensus
error relative to S.

• Insertion: Insert each symbol of Σ in turn at the i-th position of p̄

and choose the resulting string y with the smallest consensus error
relative to S.

• Deletion: Delete the i-th symbol of p̄ to generate z.

(ii) Replace p̄ by the one from {p̄, x, y, z} with the smallest consensus error
relative to S.

For the Levenshtein distance one global iteration that handles all posi-
tions of the initial p̄ needs O(n3N |Σ|) time. The process is repeated until
there is more improvement possible.

5.3. Dynamic Computation of Generalized Median Strings

In a dynamic context we are faced with the situation of a steady arrival of
new data items, represented by strings. At each point of time, t, the set St

of existing strings is incremented by a new string, resulting in St+1, and
its generalized median string is to be computed. Doubtlessly, a trivial solu-
tion consists in applying any of the approaches discussed above to St+1. By
doing this, however, we compute the generalized median string of St+1 from
scratch without utilizing any knowledge about St, in particular its general-
ized median string. All algorithms for computing generalized median strings
are of such a static nature and thus not optimal in a dynamic context. The
work [18] proposes a genuinely dynamic approach, in which the update
scheme only considers the generalized median string of St together with
the new data item, but not the individual members of St.

The inspiration for the algorithm comes from a fundamental fact
in real space. Under the distance function d(pi, pj) = (pi − pj) ·
(pi − pj), i.e. the squared Euclidean distance of pi and pj ,
the generalized median of a given set St = {p1, p2, . . . , pt} of
t points is the well-known mean:

p̄t =
1
t

·
t∑

i=1

pi.
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When an additional point pt+1 is added to St, the resultant new set St+1 =
St ∪ {pt+1} has the generalized median

p̄t+1 =
1

t + 1
·

t+1∑

i=1

pi =
t

t + 1
· p̄t +

1
t + 1

· pt+1

which is the so-called weighted mean of p̄t and pt+1 satisfying

d(p̄t+1, p̄t) =
1

t + 1
· d(p̄t, pt+1),

d(p̄t+1, P̄t+1) =
t

t + 1
· d(p̄t, pt+1).

Geometrically, p̄t+1 is a point on the straight line segment connecting p̄t

and pt+1 that has distances 1/(t + 1) · d(p̄t, pt+1) and 1/(t + 1) · d(p̄t, pt+1)
to p̄t and pt+1, respectively.

On a heuristic basis the special case in real space can be extended to
the domain of strings. Given a set St = {p1, p2, . . . , pt} of t strings and
its generalized median p̄t, the generalized median of a new set St+1 =
St ∪{pt+1} is estimated by a weighted mean of p̄t and pt+1, i.e. by a string
p̄t+1 such that

d(p̄t+1, p̄t) = α · d(p̄t, pt+1),

d(p̄t+1, pt+1) = (1 − α) · d(p̄t, pt+1)

where α ∈ [0, 1]. In real space α takes the value 1/(t + 1). For strings,
however, we have no possibility to specify α in advance. Therefore, we
resort to a search procedure. Remember that our goal is to find p̄t+1 that
minimizes the consensus error relative to St+1. To determine the optimal
α value a series of α values 0, 1/k, . . . , (k − 1)/k is probed and the α value
that results in the smallest consensus error is chosen.

The dynamic algorithm uses the method described in [3] for computing
the weighted mean of two strings. It is an extension of the Levenshtein
distance computation [38].

6. Experimental Evaluation

In this section we report some experimental results to demonstrate the
median string concept and to compare some of the computational proce-
dures described above. The used data are online handwritten digits from a
subset1 of the UNIPEN database [14]. An online handwritten digit is a time

1Available at ftp: //ftp.ics.uci.edu/pub/machine-learning-databases/pendigits/.
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sequence of 2D points recorded from a person’s writing on a special tablet.
Each digit is originally given as a sequence d = (x1, y1, t1), . . . , (xk, yk, tk) of
points in the xy-plane, where tk is the time of recording the kth point during
writing a digit. In order to transform such a sequence of points into a string,
we first resample the given data points such that the distance between any
consecutive pair of points has a constant value ∆. That is, d is transformed
into sequence d′ = (x̄1, ȳ1), . . . , (x̄l, ȳl) where |(x̄i+1, ȳi+1)−(x̄i, ȳi)| = ∆ for
i = 1, . . . , l − 1. Then, a string s = a1a2 · · · al−1 is generated from sequence
d′ where ai is the vector pointing from (x̄i, ȳi) to (x̄i+1, ȳi+1). In our exper-
iments we fixed ∆ = 7 so that the digit strings have between 40 and 100
points.

The costs of the edit operations are defined as follows: c(a → ε) =
c(ε → a) = |a| = ∆, c(a → b) = |a − b|. Notice that the minimum cost of a
substitution is equal to zero (if and only if a = b), while the maximum cost is
2∆. The latter case occurs if a and b are parallel and have opposite direction.

We conducted experiments using 10 samples of digit 1, 2 and 3 each,
and 98 samples of digit 6, see Figure 2 for an illustration (for space
reasons only ten samples of digit 6 are shown there). The results of
four algorithms are shown in Figure 3: the genetic algorithm [17] (GA,
Section 5.2.2), the dynamic algorithm [18] (Section 5.3), the greedy algo-
rithm [4] (Section 5.2.1), and the set median. For comparison purpose the
consensus error ES and the computation time t in seconds on a SUN Ultra60
workstation are also listed in Figure 3. Note that the consensus errors of
digit 6 are substantially larger than those of the other digits because of
the definition of consensus error as the sum, but not the average, of the
distances to all input samples.

The best results are achieved by GA, followed by the dynamic approach.
Except for digit 1, the greedy algorithm reveals some weakness. Looking
at the median for digits 2, 3 and 6 it seems that the iterative process ter-
minates too early, resulting in a string (digit) much shorter than it should
be. The reason lies in the simple termination criterion defined in [4]. It
works well for the (short) words used there, but obviously encounters diffi-
culties in dealing with longer strings occurring in our study. At first glance,
the dynamic approach needs more computation time than the greedy algo-
rithm. But one has to take into account that the recorded time is the total
time of the dynamic process of adding one sample to the existing set each
time, starting from a set consisting of the first sample. Therefore, totally
9 (97) generalized medians have effectively been computed for digits 1/2/3
(6). Taking the actual computation time for each update step of the whole
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Fig. 2. Samples of digits 1, 2, 3 and 6, respectively.

dynamic process into account, the dynamic algorithm is attractive com-
pared to static ones such as the greedy algorithm. If we use the static
greedy algorithm to handle the same dynamic process, then the computa-
tion for digit 3, for instance, would require 46.10 seconds in contrast to 22.8
seconds of the dynamic approach. Considering the computational efficiency
alone, set median is the best among the compared methods. But the gener-
alized median string is a more precise abstraction of the given set of strings
with a smaller consensus error.



April 22, 2004 16:59 WSPC/Trim Size: 9in x 6in for Review Volume Chap08

188 X. Jiang, H. Bunke and J. Csirik

 26.48 0 100 151.9
 124.5

 100

0

52.29

 46.66 0 82.92
 159.1

 100

0

30.47

 70  60  50  40  30  20  10 0
 151.1

 100

0

 61.63

0

51.15

 30.32 0 98.06
 106.8

 100

0

50.75

 30.84 0 71.94
147.6

100

0

31.99

 60  50  40  30  20  10 0
 147.6

 100

0

0 10 20 30 40 50 60 70 80 90
79.24

0

50.88

0 100 143.5
 140.1

 100

0

52.05

0 10 20 30 40 50 60 70
 160.9

 100

0

36.6

 100 0
 171. 5

 100

0

11.69

 40 0 94.26
 133

 100

0

74.13

 62.85 0 100 147.5
 154.6

 100

0

76

 64.54 0 100 161.7
 188

 100

0

59

 154.9  100 0 96
 223

 200

 100

0

95.62

10 0 10 20 30 40 50 60

10 0 10 20 30 40 50

64.56

0

52.26

Fig. 3. Median computation of digits.

7. Discussions and Conclusion

In this paper we have reviewed the concept of median string. Particularly,
we have briefly described several procedures for computing median strings.
Experimental results were reported to demonstrate the median concept in
dealing with a special case of time series, namely online handwritten digits,
and to compare some of the discussed algorithms.
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Table 1. Characteristic of median computation algorithms.

Algorithm String distance
(original paper)

Extension
to arbitrary

distance

Handling
weighted
median

Handling
center
median

Exact algorithm and its
variants [21,24,25]

Levenshtein No Yes No

Greedy algorithms
[4,22]

Levenshtein Yes Yes Yes

Genetic algorithm [17] Levenshtein Yes Yes Yes
Dynamic algorithm [18] Levenshtein No Yes No
perturbation-based

iterative refinement
[20,26]

Arbitrary
distance

N/A Yes Yes

The majority of the algorithms described in this paper are based on
the Levenshtein edit distance. The algorithms’ applicability to an arbitrary
string distance function is summarized in Table 1. Note that an extension
to an arbitrary string distance function usually means a computational
complexity different from that for the Levenshtein edit distance.

In the definition of median string, all the input strings have a uniform
weight of one. If necessary, this basic definition can be easily extended to
weighted median string to model the situation where each string has an
individual importance, confidence, etc. Given the weights wq, q ∈ S, the
weighted generalized median string is simply

p̄ = arg min
p∈U

∑

q=S

wq · d(p, q).

All the computational procedures discussed before can be modified to
handle this extension in a straightforward manner.

The generalized median string represents one way of capturing the essen-
tial characteristics of a set of strings. There do exist other possibilities. One
example is the so-called center string [15] defined by:

p∗ = arg min
p∈U

max
q∈S

d(p, q).

It is important to note that the same term is used in [13] to denote the
set median string. Under the two conditions given in Section 3, it is proved
in [15] that computing the center string is NP-hard. Another result is given
in [7] where the NP-hardness of the center string problem is proved for
the special case of a binary alphabet (i.e., Σ = {0, 1}) and the Hamming
string distance. The ability of the algorithms to compute the center string
is summarized in Table 1.
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Another issue of general interest is concerned with cyclic strings. Sev-
eral methods have been proposed to efficiently compute the Levenshtein
distance of cyclic strings [10,11,29]. It remains an open problem to deter-
mine medians of this kind of strings.
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