ition r :
2nd Pﬁf,g wu sitepoint

o Mac O

Build Your Own

Database Driven Website
Using PHP & MySQL

Juek uinay Ag

A Practical Step-by-Step Guide

Build Your Own Database Driven Website
Using PHP and MySQL
(First 4 Chapters)

Thank you for downloading the first four chapters of Kevin
Yank’s Build Your Own Database Driven Website Using PHP and
MySQL.

This excerpt encapsulates the Summary of Contents, Information
about the Author and SitePoint, Table of Contents, Introduction,
and the first four chapters of the book.

We hope you find this information useful in evaluating the book.

For more information, visit sitepoint.com

http://www.sitepoint.com/books/?bookid=More

Summary of Contents of this Excerpt

INtroductionoiiiiiiiiiii e 1
L. Installation ... 7
2. Getting Started with MySQL ... 35
3. Getting Started with PHP ... 49
4. Publishing MySQL Data on the Web ... 69

Summary of Additional Book Contents

5. Relational Database Design.............cccccocooiiiiiiiiiiiin. 85
6. A Content Management SyStemccccocoiiviiiiciiiinnnnnnn 99
7. Content Formatting and Submission ... 121
8. MySQL Administrationcccoccooviiiiiiiiiiiii, 137
9. Advanced SQL ..o 153
10. Advanced PHP ..o 169
I'1. Storing Binary Data in MySQL ... 185
12. Cookies and Sessions in PHPcccccoiiiiiiinn. 197
A, MySQL Syntax.......cccoooiiiiiiiiiiiiiiii 211
B. MySQL Functionscccocooiiiiiiiiiiiiiic 233
C. MySQL Column Typescccooiviiiiiiiiiiiiiiiiicccc, 251
D. PHP Functions for Working with MySQL 261

Build Your Own Database
Driven Website using PHP &
MySQL

by Kevin Yank

Build Your Own Database Driven Website using PHP & MySQL
by Kevin Yanlk

Copyright © 2003 SitePoint Pty. Ltd.

Editor: Georgina Laidlaw
Cover Design: Julian Carroll
Printing History:

First Edition: August 2001
Second Edition: February 2003

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

w\ sitepoint

Published by SitePoint Pty. Ltd.

Suite 6, 50 Regent Street Richmond
VIC Australia 3121.
Web: www sitepoint.com
E-Mail: business@sitepoint.com

ISBN 0-9579218-1-0
Printed and bound in the United States of America

About the Author

Kevin Yank is the Technical Business Director for SitePoint, author of numerous
well received tutorials and articles, and editor of the SitePoint Tech Times, an ex-
tremely popular technically-oriented newsletter for Web developers.

Before graduating from McGill University in Montreal with a Bachelor of Com-
puter Engineering, Kevin was not only a budding Web developer himself, but
also an active advisor for the Sausage Software Web Development Forums, and
writer of several practical guides on advanced HTML and JavaScript.

These days, when he's not discovering new technologies, writing books, or
catching up on sleep, Kevin can be found helping other up-and-coming Web de-
velopers in the SitePoint Forums.

About SitePoint

SitePoint is a modern day publisher with a particular focus on Web development.
Publishing activities are focused around three main areas:

sitepoint.com: Online resource for Web designers and developers.
SitePoint Books: Printed books available directly through sitepoint.com.

SitePoint Email Newsletters: Enlightening editorials, articles, reviews, and case
studies.

A big part of SitePoint is the Community Forums, located at sitepointforums.com.
Frequented by tens of thousands of Web developers, SitePoint Forums serve as
a central discussion hub for Web professionals worldwide.

Visit SitePoint at http:/www.sitepoint.comy.

http://www.sitepoint.com/

To my parents, Cheryl and Richard,
for making all this possible.

ii

Table of Contents

INtrodUuCtioneviiiiiiiiiii s 1
Who Should Read This Bookcccoccoii 2
What's In This Bookccooo 2
The Book's Web Site ... 5

The Code Archivecccoiii 5
Updates and Errataccccoviiiiiiiiiiiiiiiiiieeiiieceee 5
The SitePoint Forumsccooiiiii 5
The SitePoint Tech Times ... 6
Your Feedback ... 6

1. Installationoooiiiiiiiiiiiiiin 7
Welcome to the Show ..., 7
Windows Installationccccciiiiii 8

Installing MySQL ... 8
Installing PHP ... 11
Linux Installationcccccoommiiiiiiiiiiiiiiii e 16
Installing MySQL ... 17
Installing PHP ... 21
Mac OS X Installationc.coeeeiiiiiimiiiiiieee 24
Installing MySQL ... 24
Installing PHP ... 26
Mac OS X and UniXcooeeiiimiiiiiiiiiiiiiiiieeeeniccceeee 27
Post-Installation Setup Taskscccoviiiiiiiiim, 27
If Your Web Host Provides PHP and MySQL 29
Your First PHP Script ... 30
SUMMATY ..o 32

2. Getting Started with MySQLcccceiiriimiiiiiimiiiiiiniiniiineneiraernesanenne 35
An Introduction to Databasescoooveveiiiiiiiiin 35
Logging On to MySQL ... 37
SO What's SQL? ..o 40
Creating a Databasecccooiiiiiiiiiiii 40
Creating a Table ... 41
Inserting Data into a Tablecoooooo 43
Viewing Stored Dataccoooooiiiiiiii 44
Modifying Stored Datacoocooiiiiiiiiiiii 46
Deleting Stored Datacccccoiiiiiiiiiiiiiii e 47

SUMIAIY ..ot 47

Build Your Own Database Driven Website using PHP & MySQL

3. Getting Started with PHPccccceiriiiiiiiiiiiniiiiiiiiiiniciicnrcricnncreineeees 49
Introducing PHP ... 49
Basic Syntax and Commandscccocoiiiiiiiiii 51
Variables and Operatorscccoooiiiiiiiiiiiiiiiicc e 52
AAITAYS .ttt 54
User Interaction and Formscccciiiiiii 55
Control STIUCLUIESooiiiiiiiiiiiiiiiiiiie e 59
Multipurpose Pagesccccooiiiiiiiiiiii 63
SUMIMAIY L. 67

4. Publishing MySQL Data on the Webcccccceevriimniiiriinnicrninenncnnieenenne 69
A Look Back at First Principlesooooii 69
Connecting to MySQL with PHP ... 71
Sending SQL Queries with PHP 73
Handling SELECT Result Setsccooocciiiiii, 74
Inserting Data into the Database 77
A Challenge ... 80
SUMMATY ..o 80
“Homework” SOIUtioNooviiiiiiiiiiee e 80

5. Relational Database Designcccccevreerreerreerreerieenieerieenieeeieereeeeeeeeen. 85
Giving Credit where Credit is Due ..., 85
Rule of Thumb: Keep Things Separatecccoooiiiiii. 87
Dealing with Multiple Tablescccccoiiiii 89
Simple Data Relationshipscoeeiiimiiiiiiiiic 93
Many-to-Many Relationshipscccooiii 95
SUMMATY ... 98

6. A Content Management Systemccccouvrviniiiiiiiiiinniinnnnnniiceeenennennnne 99
The Front Page ... 100
Managing AUthOrScccooiiiiiiiiiii 102
Deleting AUtROISccoiiiiiiiiiiiiiii e 103
Adding AUthoOrS ...t 104
Editing AUthorsoccoiiiiiiii 105

Magic QUOTESoeiiiiiiiiiiiiiiiiiii e 107
Managing CategOYIEsccouuviiiiiiiiiiiiiiiiiiie e 108
Managing JOKes ... 109

Searching for Jokesocoiiiiiii 109

AddIng JOKEScoooiiiiiiiiiiiiii 113

Editing and Deleting Jokesc.oocoiii 119
SUMMATY ... 119

iv

Build Your Own Database Driven Website using PHP & MySQL

7. Content Formatting and Submissionc.cceveiriivuniiriienniiriieeniinnnnnne. 121
Out with the Old ... 122
Regular EXPressionsccccciiiiiiiiiiiiiiiiiiiiiiiicce e 123
String Replacement with Regular Expressionscooe. 126

Boldface and Italic Textcccccooiiiiiii 126
Paragraphs ..o 127
Hyperlinks ... 128
Matching Tagscccovviiiiiiiii 130
Splitting Text into Pages ... 131
Putting it all Together ..., 133
Automatic Content SUbmissionccccciiiiiiii 135
SUMIMNALY L.t 136

8. MySQL AdMIinistrationccceeerrrrueiiininnniirinniinrinmieriissessisesessrsanes 137

Backing up MySQL Databasesccoooiiiii 138
Standard Backups Aren't Enough 138
Database Backups using mysqldumpooo 139
Incremental Backups using Update Logsccco 140

MySQL Access Controlcoociiiiiiiiiiii 142
Using GRANT ..., 143
Using REVOKE ... 145
Access Control TIPS ..ooooeeviiiiiiiiiiii 146
Locked Out? ... 148

Checking and Repairing MySQL Data Files 149

SUMMATY ..o 152

Ve V7Y 1T« 1Y 0] PPN 153
Sorting SELECT Query Resultsccccooiiiiii 153
Setting LIMITSs ..., 155
LOCKIng TABLESccooiiiiiicc 156
Column and Table Name Aliasescc.ccooiiiiii 158
GROUPing SELECT Resultscccccccoiiiiiiiiii 161
LEFT JOINSoooiiiiiiiii e, 163
Limiting Results with HAVING ..., 165
SUMMATY ...t 166

10. Advanced PHPcoiriiiiiiiiiiiiitcnnitenntecntessncesne et sneees 169
Server-Side Includes with PHP ... 170

Increasing Security with Includes ... 171
Semi-Dynamic Pagescccccciiiiiiii 173
Handling File Uploadsccccccoiiiiiii, 177

Assigning Unique File Names ... 180

Recording Uploaded Files in the Database 181

Build Your Own Database Driven Website using PHP & MySQL

Email in PHP ... e 182
SUMIMNAIY L.t 184
11. Storing Binary Data in MySQLc.cccceeiriimnnieriimeiernimeiernisessessesansenns 185
Binary Column Typescccooiiiii 186
Storing Files ... 187
Viewing Stored Files ... 188
The Complete Scriptccoooiiiiiiiiii 191
Advanced Considerationseiiiieeeiiiiiiiiiiieeeee e eeeeeaeens 195
MySQL Packet Sizeccoooiiiiiiiiiiiii 195

PHP Script Timeoutccccoiiiiiiiii 195
SUMMATY ... 196
12. Cookies and Sessions in PHPcccccccvviviiiiiiiiiiiiiiiiiinnn. 197
COOKILS it 197
PHP S@SSIONS ..cceiiiiieiiieieeei e 201
A Simple Shopping Cartccccooiiiiiiiiiiii 204
SUMMATY ..o 209
A. MySQL SYNaX .ccovvvniiiiiniiiiiiiiiiiiieiiiiiieeiiiiceriieeeineeermeeerssiecerssnes 211
ALTER TABLE ... 211
ANALYZE TABLEooiiiiii 214
CREATE DATABASE ..., 214
CREATE INDEX ..ottt 214
CREATE TABLE ..o 215
DELETE .. 217
DESCRIBE ... 217
DROP DATABASE ..ottt 217
DROP INDEX ... 217
DROP TABLE ... 218
2 7N SRR 218
GRANT 218
INSERT Lo 219
LOAD DATA INFILEooiiiiiiiiiiiiiiiiiiiiiiiiinee 220
LOCK/UNLOCK TABLESouiiiiiiiiiiiiiiiiee 221
OPTIMIZE TABLE ..ottt 221
RENAME TABLEoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 222
REPLACE ... 222
REVOKE ...ttt 223
SELECT ..ot 223
JOINS Lo 227

SET oo 228
SHOW Lo 229

vi

Build Your Own Database Driven Website using PHP & MySQL

UPDATE ... 231
USE Lo 231
B. MySQL FUNCLIONS .cvuuveiiirnniiiiiiniiiiniiniiiriimuiisiimmisiimmissimsssssmsesesssses 233
Control Flow Functionscccccoiii 233
Mathematical Functionsc.ooo 233
String FUNCHIONS ... 236
Date and Time Functions ... 241
Miscellaneous Functions ... 246
Functions for Use with GROUP BY Clausesccccccooiinn, 249
C. MySQL ColUMN TYPES .eeveriiiiiiiiiiruniiiiiiiiittiiiuiiies e esceresiasiessesesecssnans 251
Numerical Typescccccooiiiiiiiiii 252
Character TYPesooooiiiiiiiiii 254
Date/Time Typesc..ccooiiiiiiiiiiii 257
D. PHP Functions for Working with MySQLc.cccccverreerreenneeneeeneeeneeenn 261
mysql_affected _1ows ... 261
YSL_ClOSE ..o 261
IYSL_COMMECT ..t 262
mysql_create_db ... 262
mysql_data_seel ... 262
mysql_db_name ... 263
mysql_db_query ... 263
mysql_drop_db ... 263
IYSL_EIITIO .ottt 264
INYSL_GITOL ...ttt 264
MySql_eSCape_StIINGoooiiiiiiiiiiiiiiiiiiie i 264
mysql_fetch_array ... 264
mysql_fetch_assoc ... 265
mysql_fetch_field ... 265
mysql_fetch_lengths ... 266
mysql_fetch_object ... 266
mysql_fetch_row ... 266
mysql_field_flags ... 266
mysql_field_Jen ... 266
mysql_field_name ... 267
mysql_field_seek ... 267
mysql_field_table ... 267
mysql_field_type ... 267
mysql_free_result ... 267
mysql_get_client_info ... 268
mysql_get_host_info ... 268

vii

Build Your Own Database Driven Website using PHP & MySQL

mysql_get_proto_info ... 268
mysql_get_server_info ... 268
mySQl_INSert_id ..o 268
mysql_list_dbs ... 269
mysql_list_fields ... 269
mysql_list_tables ... 269
mysql_num_fields ... 269
INYSLNUIN_TOWS ...ttt 270
IYSL_PCONINECT ...ttt 270
IYSL_QUETY Lo 270
MySQLTesult ... 270
mysql_select_db ... 271
mysql_tablename ... 271
mysql_unbuffered_query ... 271
INAeX ..o 273

viii

Introduction

“Content is king.” Cliché, yes; but it has never been more true. Once you've
mastered HTML and learned a few neat tricks in JavaScript and Dynamic HTML,
you can probably design a pretty impressive-looking Website. But your next task
must be to fill that fancy page layout with some real information. Any site that
successfully attracts repeat visitors has to have fresh and constantly updated
content. In the world of traditional site building, that means HTML files—and
lots of 'em.

The problem is that, more often than not, the people who provide the content
for a site are not the same people who handle its design. Frequently, the content
provider doesn't even know HTML. How, then, is the content to get from the
provider onto the Website? Not every company can afford to staff a full-time
Webmaster, and most Webmasters have better things to do than copying Word
files into HTML templates anyway.

Maintenance of a content-driven site can be a real pain, too. Many sites (perhaps
yours?) feel locked into a dry, outdated design because rewriting those hundreds
of HTML files to reflect a new look would take forever. Server-side includes
(SSIs) can help alleviate the burden a little, but you still end up with hundreds
of files that need to be maintained should you wish to make a fundamental change
to your site.

The solution to these headaches is database-driven site design. By achieving
complete separation between your site's design and the content you want to
present, you can work with each without disturbing the other. Instead of writing
an HTML file for every page of your site, you only need to write a page for each
kind of information you want to be able to present. Instead of endlessly pasting
new content into your tired page layouts, create a simple content management
system that allows the writers to post new content themselves without a lick of
HTML!

In this book, I'll provide you with a hands-on look at what's involved in building
a database-driven Website. We'll use two tools for this, both of which may be
new to you: the PHP scripting language and the MySQL relational database
management system. If your Web host provides PHP and MySQL support, you're
in great shape. If not, we'll be looking at the setup procedures under Linux,
Windows, and Mac OS X, so don't sweat it.

Introduction

Who Should Read This Book

This book is aimed at intermediate or advanced Web designers looking to make
the leap into server-side programming. You'll be expected to be comfortable with
simple HTML, as I'll make use of it without much in the way of explanation. No
knowledge of JavaScript is assumed or required, but if you do know JavaScript,
you'll find it will make learning PHP a breeze.

By the end of this book, you can expect to have a grasp of what's involved in
setting up and building a database-driven Website. If you follow the examples,
you'll also learn the basics of PHP (a server-side scripting language that gives you
easy access to a database, and a lot more) and Structured Query Language
(SQL — the standard language for interacting with relational databases) as sup-
ported by MySQL, one of the most popular free database engines available today.
Most importantly, you'll come away with everything you need to get started on
your very own database-driven site in no time!

What's In This Book

This book comprises the following 12 chapters. Read them in order from beginning
to end to gain a complete understanding of the subject, or skip around if you
need a refresher on a particular topic.

Chapter I ~ Before you can start building your database-driven Web presence,
you must first ensure that you have the right tools for the job. In
this first chapter, I'll tell you where to obtain the two essential
components you'll need: the PHP scripting language and the MySQL
database management system. I'll step you through the setup pro-
cedures on Windows, Linux, and Mac OS X, and show you how to
test that PHP is operational on your Web server.

Chapter2 Although I'm sure you'll be anxious to get started building dynamic
Web pages, I'll begin with an introduction to databases in general,
and the MySQL relational database management system in partic-
ular. If you've never worked with a relational database before, this
should definitely be an enlightening chapter that will whet your
appetite for things to come! In the process, we'll build up a simple
database to be used in later chapters.

Chapter3 ~ Here's where the fun really starts. In this chapter, I'll introduce you
to the PHP scripting language, which can be easily used to build

What's In This Book

dynamic Web pages that present up-to-the-moment information to
your visitors. Readers with previous programming experience will
probably be able to get away with a quick skim of this chapter, as
I explain the essentials of the language from the ground up. This is
a must-read chapter for beginners, however, as the rest of this book
relies heavily on the basic concepts presented here.

Chapter4 In this chapter we bring together PHP and MySQL, which you'll
have seen separately in the previous two chapters, to create some
of your first database-driven Web pages. We'll explore the basic
techniques of using PHP to retrieve information from a database
and display it on the Web in real time. I'll also show you how to
use PHP to create Web-based forms for adding new entries to, and
modifying existing information in, a MySQL database on-the-fly.

Chapter5 Although we'll have worked with a very simple sample database in
the previous chapters, most database-driven Websites require the
storage of more complex forms of data than we'll have dealt with
so far. Far too many database-driven Website designs are abandoned
midstream, or are forced to start again from the beginning, because
of mistakes made early on, during the design of the database struc-
ture. In this critical chapter, I'll teach the essential principles of good
database design, emphasizing the importance of data normalization.
If you don't know what that means, then this is definitely an import-
ant chapter for you to read!

Chapter 6 In many ways the climax of the book, this chapter is the big payoff
for all you frustrated site builders who are tired of updating hundreds
of pages whenever you need to make a change to a site's design. I'll
walk you through the code for a basic content management system
that allows you to manage a database of jokes, their categories, and
their authors. A system like this can be used to manage simple
content on your Website, and with a few modifications you should
be able to build a Web administration system that will have your
content providers submitting content for publication on your site
in no time - all without having to know a shred of HTML!

Chapter 7 Just because you're implementing a nice, easy tool to allow site ad-
ministrators to add content to your site without their knowing
HTML, doesn't mean you have to restrict that content to plain,
unformatted text. In this chapter, I'll show you some neat tweaks
you can make to the page that displays the contents of your data-

Introduction

Chapter 8

Chapter 9

Chapter 10

Chapter 11

base—tweaks that allow it to incorporate simple formatting such
as bold or italicized text, among other things. I'll also show you a
simple way to safely make a content submission form directly
available to your content providers, so that they can submit new
content directly into your system for publication, pending an admin-
istrator's approval.

While MySQL is a good, simple database solution for those who
don't need many frills, it does have some complexities of its own
that you'll need to understand if you're going to rely on a MySQL
database to store your content. In this section, I'll teach you how
to perform backups of, and manage access to, your MySQL database.
In addition to a couple of inside tricks (like what to do if you forget
your MySQL password), I'll explain how to repair a MySQL database
that has become damaged in a server crash.

In Chapter 5 we saw what was involved in modelling complex rela-
tionships between pieces of information in a relational database like
MySQL. Although the theory was quite sound, putting these con-
cepts into practice requires that you learn a few more tricks of
Structured Query Language. In this chapter, I'll cover some of the
more advanced features of this language to get you juggling complex
data like a pro.

PHP lets you do a lot more than just retrieve, display, insert, and
update information stored in a MySQL database. In this chapter,
I'll give you a peek at some other interesting things you can do with
PHP, such as server-side includes, handling file uploads, and sending
email. As we'll see, these features are really useful for improving the
performance and security of your database-driven site, as well as
sending feedback to your visitors.

Some of the most interesting applications of database-driven Web
design include some juggling of binary files. Online file storage ser-
vices like the now-defunct iDrive, are prime examples, but a system
as simple as a personal photo gallery can benefit from storing binary
files (e.g. pictures) in a database for retrieval and management on
the fly. In this chapter, we develop a simple online file storage and
viewing system and learn the ins and outs of working with binary

data in MySQL.

The Book's Web Site

Chapter12 One of the most hyped new features in PHP 4.0 was built-in support
for sessions. But what are sessions? How are they related to cookies,
a long-suffering technology for preserving stored data on the Web?
What makes persistent data so important in current ecommerce
systems and other Web applications? This chapter answers all those
questions by explaining how PHP supports both cookies and ses-
sions, and exploring the link between the two. At the end of this
chapter, we'll develop a simple shopping cart system to demonstrate
their use.

The Book's Web Site

Located at http:/www.sitepoint.com/books/, the Website supporting this book
will give you access to the following facilities:

The Code Archive

As you progress through the text, you'll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in the book.

Updates and Errata

No book is perfect, and even though this is a second edition, I expect that
watchful readers will be able to spot at least one or two mistakes before the end
of this one. Also, PHP and MySQL (and even the Web in general) are moving
targets, constantly undergoing changes with each new release. The Errata page
on the book's Website will always have the latest information about known typo-
graphical and code errors, and necessary updates for changes to PHP and MySQL.

The SitePoint Forums

While I've made every attempt to anticipate any questions you may have and
answer them in this book, there is no way that any book could cover everything
there is to know about PHP and MySQL. If you have a question about anything
in this book that needs answering, the best place to go for a quick answer is ht-
tp://www.sitepointforums.com/. Not only will you find a vibrant and knowledge-
able PHP community there, but you'll occasionally even find me, the author,
there in my spare hours.

http://www.sitepoint.com/books/
http://www.sitepointforums.com/
http://www.sitepointforums.com/

Introduction

The SitePoint Tech Times

In addition to books like this one, I write a free, biweekly (that's every two weeks)
email newsletter called The SitePoint Tech Times. In it, I write about the latest
news, product releases, trends, tips, and techniques for all technical aspects of
Web development. If nothing else, you'll get useful PHP articles and tips, but if
you're interested in learning other languages, you'll find it especially useful. Sign
up to the Tech Times (and other SitePoint newsletters) at http:/www.site-
point.com/newsletter;.

Your Feedback

If you can't find your answer through the forums, or if you wish to contact me
for any other reason, the best place to write is <books@sitepoint.com>. We have
a well-manned email support system set up to track your inquiries, and if our
support staff is unable to answer your question, they send it straight to me.
Suggestions for improvement as well as notices of any mistakes you may find are
especially welcome.

And so, without further ado, let's get started!

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/newsletter/

Installation

Welcome to the Show

Over the course of this book, it will be my job to guide you as you take your first
steps beyond the HTML world of client-side site design. Together we'll explore
what it takes to build the kind of large, content-driven sites that are so successful
today, but which can be a real headache to maintain if they aren't done right.

Before we get started, you need to gather together the tools you'll need for the
job. In this first chapter, I'll guide you as you download and set up the two soft-
ware packages you'll need: PHP and MySQL.

PHP is a server-side scripting language. You can think of it as a "plug-in" for your
Web server that will allow it to do more than just send plain Web pages when
browsers request them. With PHP installed, your Web server will be able to read
a new kind of file (called a PHP script) that can do things like retrieve up-to-
the-minute information from a database and insert it into a Web page before
sending it to the browser that requested it. PHP is completely free to download
and use.

To retrieve information from a database, you first need to have a database. That's
where MySQL comes in. MySQL is a relational database management system,
or RDBMS. Exactly what role it plays and how it works we'll get into later, but
basically it's a software package that is very good at the organization and manage-
ment of large amounts of information. MySQL also makes that information really

Installation

easy to access with server-side scripting languages like PHP. MySQL is released
under the GNU General Public License (GPL), and is thus free for most uses on
all of the platforms it supports. This includes most Unix-based platforms, like
Linux and even Mac OS X, as well as Windows.

If you're lucky, your current Web host may already have installed MySQL and
PHP on your Web server for you. If that's the case, much of this chapter will not
apply to you, and you can skip straight to the section called “If Your Web Host
Provides PHP and MySQL” to make sure your setup is ship shape.

Everything we'll discuss in this book may be done on a Windows- or Unix-based'
server. The installation procedure will differ in accordance with the type of server
you have at your disposal. The next few sections deal with installation on a
Windows-based Web server, installation under Linux, and installation on Mac
OS X. Unless you're especially curious, you need only read the section that applies
to you.

Windows Installation
Installing MySQL

As I mentioned above, MySQL may be downloaded free of charge. Simply proceed
to http://www.mysql.com/downloads/ and choose the recommended stable release
(as of this writing, it is MySQL 3.23). On the MySQL 3.23 download page, under
the heading of Windows downloads, click the Download link next to the latest version
of MySQL (3.23.54 as of this writing). After downloading the file (it's about
I3MB as of this writing), unzip it and run the setup.exe program contained
therein.

Once installed, MySQL is ready to roll (barring a couple of configuration tasks
that we'll look at shortly), except for one minor issue that only affects you if
you're running Windows NT, 2000, XP, or .NET Server. If you use any of those
operating systems, find a file called my-small.cnf in the directory to which you
just installed MySQL. Copy it to the root of your C: drive and rename it to
my.cnf. See the following sidebar if you have any trouble working with . cnf files
on your Windows system.

"From this point forward, I'll refer to all Unix-style platforms supported by PHP and MySQL, such
as Linux, FreeBSD, and Mac OS X, with the collective name 'Unix'.

http://www.mysql.com/downloads/

Installing MySQL

Working with .cnf files in Windows

It just so happens that files ending in .cnf have a special meaning to Windows, so even
if you have Windows configured to show file extensions, the my-small.cnf file will still
appear as simply my-small with a special icon. Windows actually expects these files to
contain SpeedDial links for Microsoft NetMeeting.

Assuming you don't use NetMeeting (or at least you don't use its SpeedDial facility) you
can remove this file type from your system, enabling you to work with these files normally:

I. Open the Windows Registry Editor (in WinNT/2000/XP/.NET, click Start, Run...,
and then type regedt32.exe to launch it, in Win9x/ME run regedit.exe instead).

2. Navigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Classes branch of the registry,
where you'll find a list of all the registered file types on the system.

3. Select the .cnf key and choose Edit, Delete from the menu to remove it.
4. Log out and log back in, or restart Windows for the change to take effect.

If you prefer not to mess with the file types on your system, however, you should still be
able to open the files in Notepad to edit them and you can rename it to my .cnf by renaming
the SpeedDial link icon to my (Windows will maintain the .cnf extension automatically).

If you don't like the idea of a MySQL configuration file sitting in the root of your
C: drive, you can instead name it my.ini and put it in your Windows directory
(e.g. D: \WINDOWS or D: \WINNT if Windows is installed on drive D:). Whichever
you choose, open the file in Notepad and look for the following lines:

#basedir
#datadir

d:/mysql/
d:/mysqgl/data/

Uncomment these lines by removing the # symbol at the start, and change the
paths to point to your MySQL installation directory, using slashes (/) instead of
backslashes (\). For instance, I changed the lines on my system to read as follows:

basedir
datadir

d:/Program Files/MySQL/
d:/Program Files/MySQL/data/

With that change made, save the file and close Notepad. MySQL will now run
on your Windows N'T/2000/XP system! If you're using Windows 95/98/ME, this
step is not necessary—MySQL will run just fine as-installed.

Just like your Web server, MySQL is a program that should be run in the back-
ground so that it may respond to requests for information at any time. The

Installation

server program may be found in the bin subfolder of the folder into which you
installed MySQL. To make things complicated, however, there are actually sev-
eral versions of the MySQL server to choose from:

[mysqld.exe This is the basic version of MySQL if you run Windows 95, 98,
or ME. It includes support for all advanced features, and includes debug code
to provide additional information in the case of a crash (if your system is set
up to debug programs). As a result of this code, however, the server might
run a little slow, and I've generally found that MySQL is so stable that crashes
aren't really a concern.

O mysqld-opt.exe This version of the server lacks a few of the advanced features
of the basic server, and does not include the debug code. It's optimized to run
quickly on today's processors. For beginners, the advanced features are not a
big concern. You certainly won't be using them while you complete the tasks
in this book. This is the version of choice for beginners running Windows 95,
98, or ME.

[mysqgld-nt.exe This version of the server is compiled and optimized like
mysqld-opt, but is designed to run under Windows NT/2000/XP/.NET as a
service. If you're using any of those operating systems, this is probably the
server for you.

(O mysqgld-max.exe This version is like mysqld-opt, but contains advanced fea-
tures that support transactions.

O mysqgld-max-nt.exe This version's similar to mysqld-nt, but has advanced
features that support transactions.

All these versions were installed for you in the bin directory. If you're running
on Win98x/ME I recommend sticking with mysql-opt for now—move to mysqld-
max if you ever need the advanced features. On Windows NT/2000/XP/.NET,
mysqld-nt is my recommendation. Upgrade to mysqld-max-nt when you need
more advanced features.

Starting MySQL is also a little different under WinN'T/2000/XP/.NET, but this
time let's start with the procedure for Win95/98/ME. Open an MS-DOS Com-
mand Prompt? and proceed to the MySQL bin directory, and run your chosen
server program:

’If you're unfamiliar with the workings of the Command Prompt, check out my article Kev's Command
Prompt Cheat Sheet [http:/www.sitepoint.com/article/846] to get familiar with how it works before
you proceed further.

10

http://www.sitepoint.com/article/846
http://www.sitepoint.com/article/846

Installing PHP

C:\mysqgl\bin>mysqld-opt

Don't be surprised when you receive another command prompt. This command
launches the server program so that it runs in the background, even after you
close the command prompt. If you press Ctrl-Alt-Del to pull up the task list, you
should see the MySQL server listed as one of the tasks that's active on your sys-
tem.

To ensure that the server is started whenever Windows starts, you might want
to create a short cut to the program and put it in your Startup folder. This is just
like creating a short cut to any other program on your system.

On WinNT/2000/XP/.NET, you must install MySQL as a system service. Fortu-
nately, this is very easy to do. Simply open a Command Prompt (under Aceessories
in the Start Menu) and run your chosen server program with the --install op-
tion:

C:\mysqgl\bin>mysqld-nt --install
Service successfully installed.

This will install MySQL as a service that will be started the next time you reboot
Windows. To manually start MySQL without having to reboot, just type this
command (which can be run from any directory):

C:\>net start mysql
The MySQL service is starting.
The MySQL service was started successfully.

To verify that the MySQL server is running properly, press Ctrl-Alt-Del and open
the Task List. If all is well, the server program should be listed on the Processes
tab.

Installing PHP

The next step is to install PHP. At the time of this writing, PHP 4.x has become
well-established as the version of choice; however, some old servers still use PHP
3.x (usually because nobody has bothered to update it). I'll cover the installation
of PHP 4.3.0 here, so be aware that if you're still working with PHP 3.x there
may be some differences.

Download PHP for free from http:/www.php.net/downloads.php. You'll want
the Windows Binaries package, and be sure to grab the version that includes both
the CGI binary and the server API versions if you have a choice.

11

http://www.php.net/downloads.php

Installation

In addition to PHP itself, you will need a Web server such as Internet Informa-
tion Services (IIS), Apache, Sambar or OmniHTTPD. PHP was designed to run
as a plug-in for existing Web server software. To test dynamic Web pages with
PHP, you'll need to equip your own computer with Web server software, so that
PHP has something to plug into. If you have Windows 2000, XP Professional®,
or .NET Server, then install IIS (if it's not already on your system): open Control
Panel, Add/Remove Programs, Add/Remove Windows Components, and select IS from
the list of components. If you're not lucky enough to have IIS at your disposal,
you can instead use a free 3rd party Web server like Apache. I'll give instructions
for both options in detail.

First, whether you have 11S or not, complete these steps:

1.

Unzip the file you downloaded into a directory of your choice. I recommend
C:\PHP and will refer to this directory from here onward, but feel free to
choose another directory if you like.

Find the file called php4ts.dll in the PHP folder and copy it to the System32
subfolder of your Windows folder (e.g. C: \Windows\System32).

Find the file called php.ini-dist in the PHP folder and copy it to your
Windows folder. Once there, rename it to php.ini.

Open the php.ini file in your favourite text editor (use WordPad if Notepad
doesn't display the file properly). It's a large file with a lot of confusing op-
tions, but look for a line that begins with extension_dir and set it so that
it points to your PHP folder:

extension_dir = C:\PHP

A little further down, look for a line that starts with session.save_path
and set it to your Windows TEMP folder:

session.save_path = C:\WINDOWS\TEMP

Save the changes you made and close your text editor.

Now, if you have 1IS, follow these instructions:

1.

In the Windows Control Panel, open Administrative Tools, Internet Information
Services.

3Windows XP Home Edition does not come with IIS.

12

Installing PHP

2. In the tree view, expand the entry labelled local computer, then under Web
Sites look for Default Web Site (unless you have virtual hosts set up, in which
case, choose the site you want to add PHP support to). Right-click on the
site and choose Properties.

3. Click the ISAPI Filters tab, and click Add.... In the Filter Name field, type PHP,
and in the Executable field, browse for the file called php4isapi.dll in the
sapi subfolder of your PHP folder (e.g. C: \PHP\sapi\php4isapi.dll). Click
OK.

4. Click the Home Directory tab, and click the Configuration... button. On the
Mappings tab click Add. Again choose your php4isapi.dl1l file as the execut-
able and type .php in the extension box (including the '."). Leave everything
else unchanged and click OK. If you want your Web server to treat other
file extensions as PHP files (. php3, .php4, and . phtml are common choices),
repeat this step for each extension. Click OK to close the Application Config-
uration window.

5. Click the Documents tab, and click the Add... button. Type index.php as the
Default Document Name and click OK. This will ensure that a file called in-
dex.php will be displayed as the default document in a given folder on your
site. You may also want to add entries for index.php3 and index.phtml.

6. Click OK to close the Web Site Properties window. Close the Internet Information
Services window.

7. Again, in the Control Panel under Administrative Tools, open Services. Look for
the World Wide Web Publishing service near the bottom of the list. Right-click
on it and choose Restart to restart IIS with the new configuration options.
Close the Services window.

8. You're done! PHP is installed!

If you don't have IIS, you'll first need to install some other Web server. For our
purposes I'll assume you have downloaded and installed Apache server from ht-
tp+/httpd.apache.org/; however, PHP can also be installed on Sambar Server’,
OmniHTTPD", and others. I recommend Apache 1.3 for now, but if you want
to use Apache 2.0, be sure to read the following sidebar.

http://www.sambar.com/
"http://www.omnicron.ca/httpd/

13

http://httpd.apache.org/
http://httpd.apache.org/
http://www.sambar.com/
http://www.omnicron.ca/httpd/

Installation

PHP and Apache 2.x in Windows

As of this writing, the PHP team continues to insist that support for running PHP on
Apache 2.0 is experimental only. There are a number of bugs that arise within PHP when
it is run on an Apache 2.0 server, and on Windows especially, installation can be problem-
atic. That said, many people are running PHP on Apache 2.0 quite successfully, and the
bugs that do exist probably won't affect you if you're just setting up a low-traffic testing
server.

The instructions below apply to both Apache 1.3 and Apache 2.0; however, it is possible
that after configuring Apache 2.0 to use PHP, the server will fail to start. It is also possible
that it will start, but that it will fail to process PHP scripts. In both cases, an error message
should appear when you start Apache and/or in the Apache error log file.

This problem is caused by the fact that Apache 2.0 is a server still very much under devel-
opment. With each minor release they put out, they tend to break compatibility with all
server plug-in modules (such as PHP) that were compiled to work with the previous version.
On Unix, this isn't such a big deal because people tend to compile PHP for themselves,
so they simply re-compile PHP at the same time they're compiling the new release of
Apache and PHP adapts accordingly. Unfortunately, on Windows, where people are used
to simply downloading pre-compiled files, the situation is different.

The php4apache2.dl1l file that is distributed with PHP will only work on versions of
Apache 2.0 up to the one that was current at the time that version of PHP was released.
So if you run into problems, the version of PHP you're using is probably older than the
version of Apache you're using. This problem can often be fixed by downloading the very
latest version of PHP; however, every time a new release of Apache 2.0 comes out, the
current release of PHP will be incompatible until they get around to updating it.

Should you ever install a later version of Apache and break compatibility with the latest

PHP build, you should be able to download a 'work-in-progress' version of PHP and grab

just the files you need (those responsible for the PHP-Apache interface). Information
Vil

about doing this can be found in the PHP bug database™".

Once you've downloaded and installed Apache according to the instructions in-
cluded with it, open http://localhost/ in your Web browser, to make sure it
works properly. If you don't see a Web page explaining that Apache was success-
fully installed, then either you haven't run Apache yet, or your installation is
faulty. Check the documentation and make sure Apache is running properly before
you install PHP.

If you've made sure Apache is up and running, you can add PHP support:

Viihttp://bugs.php. net/bug.php?id=17826

14

http://bugs.php.net/bug.php?id=17826

Installing PHP

1. Onyour Start Menu, choose Programs, Apache HT'TP Server, Configure Apache
Server, Edit Configuration. This will open the httpd.conf file in Notepad.

2. All of the options in this long and intimidating configuration file should have
been set up correctly by the Apache install program. All you need to do is
add the following three lines to the very bottom of the file:

LoadModule php4_module c:/php/sapi/php4apache.dll
AddType application/x-httpd-php .php .php3 .phtml
AddType application/x-httpd-php-source .phps

Make sure the LoadModule line points to the appropriate file in the PHP
installation directory on your system, and note the use of slashes (/) instead
of backslashes (\).

Important

If you're using Apache 2.0 or later, the LoadModule line needs to point
to php4apache2.d1l instead of php4apache.dll.

3. Next, look for the line that begins with DirectoryIndex. This line tells
Apache what file names to use when it looks for the default page for a given
directory. You'll see the usual index.html and so forth, but you need to add
index.php, index.php3, and index.phtml to that list if they're not there
already:

DirectoryIndex index.html ... index.php index.php3 index.phtml
4. Save your changes and close Notepad.

5. Restart Apache by choosing Programs, Apache HTTP Server, Control Apache
Server, Restart on the Start menu (or type NET STOP Apache & & NET
START Apache at the command prompt). If all is well, Apache will start
up again without complaint.

6. You're done! PHP is installed!

With MySQL and PHP installed, you're ready to proceed to the section called
“Post-Installation Setup Tasks”.

15

Installation

Linux Installation

This section covers the procedure for installing PHP and MySQL under most
current distributions of Linux. These instructions were tested under the latest
version Debian Linux (3.0); however, they should work on other distributions
such as RedHat and Mandrake without much trouble. The steps involved will
be very similar, if not identical.

As a user of one of the handful of Linux distributions available, you may be
tempted to download and install packaged distributions of PHP and MySQL.
Debian users will be used to installing software using the apt-get utility, while
other distributions often rely on RPM packages. These prepackaged versions of
software are really easy to install; unfortunately, they also limit the software
configuration options available to you. If you already have MySQL and PHP in-
stalled in packaged form, then feel free to proceed with those versions, and skip
forward to the section called “Post-Installation Setup Tasks”. If you encounter
any problems, you can always return here to uninstall the packaged versions and
reinstall PHP and MySQL by hand.

Since many Linux distributions will automatically install PHP and MySQL for
you, your first step should be to remove any old packaged versions of PHP and
MySQL from your system. If one exists, use your distribution's graphical software
manager to remove all packages with php or mysqgl in their names.

If your distribution doesn't have a graphical software manager, or if you didn't
install a graphical user interface for your server, you can remove these from the
command line. You'll need to be logged in as the root user to issue the commands
to do this. Note that in the following commands, shell# represents the shell
prompt, and shouldn't be typed in.

In Debian, you can use apt-get to remove the relevant packages:
shell#apt-get remove mysql-server

shell#apt-get remove mysql-client

shell#apt-get remove php4

In RedHat or Mandrake, you can use the rpm command-line utility:

shell#rpm -e mysql
shell#rpm -e php

If any of these commands tell you that the package in question is not installed,
don't worry about it unless you know for a fact that it is. In such cases, it will be

16

Installing MySQL

necessary for you to remove the offending item by hand. Seek help from an ex-
perienced user if you don't know how. If the last command runs successfully (i.e.
no message is displayed), then you did indeed have an RPM version of PHP in-
stalled, and you'll need to do one more thing to get rid of it entirely. Open your
Apache configuration file (usually /etc/httpd/conf/httpd.conf) in your favour-
ite text editor and look for the two lines shown here. They usually appear in
separate sections of the file, so don't worry if they're not together. The path of
the 1ibphp4.so file may also be slightly different (e.g. extramodules instead of
just modules). If you can't find them, don't worry — it just means that the
package utility was smart enough to remove them for you.

LoadModule php4 module modules/libphp4.so
AddModule mod_php4.c

These lines are responsible for telling Apache to load PHP as a plug-in module.
Since you just uninstalled that module, you'll need to get rid of these lines to
malke sure Apache keeps working properly. You can comment out these lines by
adding a hash (#) at the beginning of both lines.

To make sure Apache is still in working order, you should now restart it without
the PHP plug-in:

shell#apachectl graceful

With everything neat and tidy, you're ready to download and install MySQL and
PHP.

Installing MySQL

MySQL is freely available for Linux from http://www.mysql.com/. Download the
latest stable release (listed as recommended on the download page); as of this
writing this is MySQL 3.23.54a, which you'll find at http:/www.mysql.com/down-
loads/mysql-3.23.html. You should grab the Linux (x86, libc6) version under Binary
packages in the Linux downloads section.

With the program downloaded (it was about 9.4MB as of this writing), you
should make sure you're logged in as root before proceeding with the installation,
unless you only want to install MySQL in your own home directory. To begin,
move to /usr/local (unless you want to install MySQL elsewhere for some
reason) and unpack the downloaded file to create the MySQL directory (replace
version with the full version of your MySQL download to match the downloaded
file name on your system):

17

http://www.mysql.com/
http://www.mysql.com/downloads/mysql-3.23.html
http://www.mysql.com/downloads/mysql-3.23.html

Installation

shell#cd /usr/local
shell#tar xfz mysql-version.tar.gz

Next, create a symbolic link to the mysql-version directory with the name mysql
to make accessing the directory easier, then enter the directory:

shell#1ln -s mysql-version mysql
shell#cd mysql

MySQL is now installed, but before it can do anything useful its database files
need to be installed too. Still in the new mysql directory, type the following
command:

shell#scripts/mysql_install_db

With MySQL installed and ready to store information, all that's left is to get the
server running on your computer. While you can run the server as the root user,
or even as yourself (if, for example, you installed the server in your own home
directory), the best idea is to set up on the system a special user whose sole pur-
pose is to run the MySQL server. This will remove any possibility of someone
using the MySQL server as a way to break into the rest of your system. To create
a special MySQL user, you'll need to log in as root and type the following com-
mands:

shell#groupadd mysql
shell#useradd -g mysql mysql

By default, MySQL stores all database information in the data subdirectory of
the directory to which it was installed®. We want to make it so that nobody can
access that directory except our new MySQL user. Still assuming you installed
MySQL to the /usr/local/mysql directory, you can use these commands:

shell#cd /usr/local/mysql
shell#chown -R mysql data
shell#chgrp -R mysql .

shell#chmod -R go-rwx data

Now everything's set for you to launch the MySQL server for the first time. From
the MySQL directory, type the following command:

shell#bin/safe_mysqld --user=mysql &

“Until recently, it used the var subdirectory.

18

Installing MySQL

If you see the message mysql daemon ended, then the MySQL server was preven-
ted from starting. The error message should have been written to a file called
hostname .err (where hostname is your machine's host name) in MySQL's data
directory. You'll usually find that this happens because another MySQL server
is already running on your computer.

If the MySQL server was launched without complaint, the server will run (just
like your Web or FTP server) until your computer is shut down. To test that the
server is running properly, type the following command:

shell#bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed.
If you receive an error message, something has gone wrong. Again, check the
hostname .err file to see if the MySQL server output an error message while
starting up. If you retrace your steps to make sure you followed the process de-
scribed above, and this doesn't solve the problem, a post to the SitePoint Forums”
will help you pin it down in no time.

If you want your MySQL server to run automatically whenever the system is
running (just like your Web server probably does), you'll have to set it up to do
so. In the support-files subdirectory of the MySQL directory, you'll find a
script called mysql.server that can be added to your system start-up routines
to do this.

First of all, assuming you've set up a special MySQL user to run the MySQL
server, you'll need to tell the MySQL server to start as that user by default. To
do this, create in your system's /etc directory a file called my.cnf that contains
these two lines:

[mysqld]
user=mysql

Now, when you run safe_mysqld or mysql.server to start the MySQL server,
it will launch as user mysql automatically. You can test this by stopping MySQL,
and then running mysql.server with the start argument:

shell#bin/mysqladmin -u root shutdown
shell#chmod u+x support-files/mysql.server
shell#support-files/mysql.server start

*httpy//www.sitepointforums.com/

19

http://www.sitepointforums.com/

Installation

Dealing with “@HOSTNAME@: command not found”

In recent versions of MySQL as of this writing, mysql.server may spit out an error
message along the lines of “@HOSTNAME@: command not found”. This error is the result
of a bug in the binary distribution of MySQL for Linux, and can be easily remedied. Simply
open mysql.server in your favourite text editor and find the single occurrence of the
string @HOSTNAME in the file. Replace it with /bin/hostname, to point to the program on
your server that will output the machine's host name. Save that change, shutdown MySQL
again, and try starting it using mysgql.server start. This time, it should work.

Request the server's status using mysgladmin as before to make sure it's running
correctly.

All that's left to do is to set up your system to run mysql.server automatically
at start-up (to launch the server) and at shutdown (to terminate the server). This
is a highly operating system-dependant task. If you're not sure of how to do it,
you'd be best to ask someone who knows. The following commands, however,
will do the trick for most versions of Linux:

shell#cp /usr/local/mysql/support-files/mysql.server /etc/init.d/
shell#cd /etc/init.d

shell#chmod 755 mysql.server

shell#cd /etc/rc2.d

shell#1ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rc3.d

shell#1ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rc5.d

shell#1ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rco0.d

shell#1ln -s ../init.d/mysql.server KO1mysql

That's it! To test that this works, reboot your system and request the status of
the server as before.

One final thing you might like to do for convenience's sake is to place the MySQL
client programs, which you'll use to administer your MySQL server later on, in
the system path. To this end, you can place symbolic links to mysql, mysqladmin,
and mysqldump in your /usr/local/bin directory:

shell#1n -s /usr/local/mysql/bin/mysql /usr/local/bin/mysql
shell#ln -s /usr/local/mysql/bin/mysqladmin
/usr/local/bin/mysqladmin

shell#ln -s /usr/local/mysql/bin/mysqldump
/usr/local/bin/mysqldump

20

Installing PHP

Installing PHP

As mentioned above, PHP is not really a program in and of itself. Instead, it's a
plug-in module for your Web server (probably Apache). There are actually three
ways to install the PHP plug-in for Apache:

@ As a CGI program that Apache runs every time it needs to process a PHP-
enhanced Web page.

[As an Apache module compiled right into the Apache program.
@ As an Apache module loaded by Apache each time it starts up.

The first option is the easiest to install and set up, but it requires Apache to
launch PHP as a program on your computer every time a PHP page is requested.
This activity can really slow down the response time of your Web server, especially
if more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but
since you're likely to have Apache installed already, you'd probably prefer to avoid
having to download, recompile, and reinstall it from scratch. For this reason, we'll
use the third option.

To start, download the PHP Complete Source Code package from ht-
tp:/www.php.net/. At the time of this writing, PHP 4.x has become well-estab-
lished as the version of choice; however, some old servers still use PHP 3.x (usually
because nobody has bothered to update it). I'll be covering the installation of
PHP 4.3.0 here, so be aware that if you still work with PHP 3.x there may be
some minor differences.

The file you downloaded should be called php-version.tar.gz. To begin, we'll
extract the files it contains (the shell% prompt is to represent that you can run
these steps without being logged in as root):

shell%tar xfz php-version.tar.gz
shell%cd php-version

To install PHP as a loadable Apache module, you'll need the Apache apxs pro-
gram. This comes with most versions of Apache, but if you're using the copy that
was installed with your distribution of Linux, you may need to install the Apache
development RPM package to access Apache apxs. You should be able to install
this package by whatever means your software distribution provides. For example,

21

http://www.php.net/
http://www.php.net/

Installation

on Debian Linux, you can use apt-get to install it as follows (you'll have to log
in as root first):

shell#apt-get install apache-dev

By default, RedHat and Mandrake will install the program as /usr/sbin/apxs,
so if you see this file, you know it's installed.

For the rest of the install procedure, you'll need to be logged in as the root user
so you can make changes to the Apache configuration files.

The next step is to configure the PHP installation program by telling it which
options you want to enable, and where it should find the programs it needs to
know about (like Apache and MySQL). Unless you know exactly what you're
doing, simply type the command like this (all on one line):

shell#./configure --prefix=/usr/local/php --with-apxs
--enable-magic-quotes

Important

If you're using Apache 2.0 or later, you need to type - -with-apxs2 instead
of - -with-apxs to enable support for Apache 2.0. As of this writing, this
support is still experimental and is not recommended for production sites.
As a result of the ongoing work on this front, you may need to download
the latest pre-release (unstable) version of PHP to get it working with
the latest release of Apache 2.0, but it's worth trying the stable release
version first.

For full instructions on how to download the latest pre-release version
of PHP, see http://www.php.net/anoncvs.php.

Again, check for any error messages and install any files it identifies as missing.
On Mandrake 8.0, for example, it complained that the lex command wasn't
found. I searched for “lex” in the Mandrake package list and it came up with
flex, which it described as a program for matching patterns of text used in many
programs' build processes. Once that was installed, the configuration process
went without a hitch. After you watch several screens of tests scroll by, you'll be
returned to the command prompt. The following two commands will compile
and then install PHP. Take a coffee break: this will take some time.

shell#make
shell#make install

22

http://www.php.net/anoncvs.php

Installing PHP

As of this writing, the make command often ends with a warning message about
the function tempnam being dangerous (the exact wording will vary with your
configuration), and is often mistaken as a sign that the process has failed. Don't
worry — the warning is normal, and you can safely proceed with make install.

Upon completion of make install, PHP is installed in /usr/local/php (unless
you specified a different directory with the --prefix option of the configure
script above), with one important exception — its configuration file, php.ini.
PHP comes with two sample php.ini files called php.ini-dist and php.ini-
recommended. Copy these files from your installation work directory to the
/usr/local/php/lib directory, then make a copy of the php.ini-dist file and
call it php.ini:

shell#cp php.ini* /usr/local/php/1lib/
shell#cd /usr/local/php/lib
shell#cp php.ini-dist php.ini

You may now delete the directory from which you compiled PHP — it's no longer
needed.

We'll worry about fine-tuning php.ini shortly. For now, we need to tweak
Apache's configuration to make it more PHP-friendly. Open your Apache ht-
tpd.conf configuration file (usually under /etc/apache/ or /etc/httpd/ if
you're using your Linux distribution's copy of Apache) in your favourite text ed-
itor.

Next, look for the line that begins with DirectoryIndex. In certain distributions,
this may be in a separate file called commonhttpd.conf. This line tells Apache
what file names to use when it looks for the default page for a given directory.
You'll see the usual index.html and so forth, but you need to add index.php,
index.php3, and index.phtml to that list if they're not there already:

DirectoryIndex index.html ... index.php index.php3 index.phtml

Finally, go right to the bottom of the file (again, this should go in commonht-
tpd.conf if you have such a file) and add these lines, to tell Apache which file
extensions should be seen as PHP files:

AddType application/x-httpd-php .php .php3 .phtml
AddType application/x-httpd-php-source .phps

That should do it! Save your changes and restart your Apache server. If all things
go according to plan, Apache should start up without any error messages. If you

23

Installation

run into any trouble, the helpful folks in the SitePoint Forums" i (myself included)
will be happy to help.

Mac OS X Installation

As of version 10.2 (Jaguar), Mac OS X distinguishes itself by being the only
consumer OS to install both Apache and PHP as components of every standard
installation. That said, the version of PHP provided is a little out-of-date, and
you'll need to install the MySQL database as well.

In this section, I'll briefly cover what's involved in setting up up-to-date versions
of PHP and MySQL on Mac OS X. Before doing that, however, I'll ask you to
make sure that the Apache Web server built into your Mac OS X installation is
enabled.

1. Click to pull down the Apple menu.
2. Choose System Preferences from the menu.
3. Select Sharing from the System Preferences panel.

4. If the Sharing preference panel says Web Sharing Off, click the Start button
to launch the Apache Web server.

5. Exit the System Preferences program.

With this procedure complete, Apache will be automatically run at start-up on
your system from now on. You're now ready to enhance this server by installing

PHP and MySQL!

Installing MySQL

Apple maintains a fairly comprehensive guide to installing MySQL on Mac OS
X on its Mac OS X Internet Developer site”. In this section, I'll attempt to boil
down this information to the essentials to permit you to get started as quickly
as possible.

" http://www.sitepointforums.com/

W http://developer.apple.com/internet/macosx/osdb.html

24

http://www.sitepointforums.com/
http://developer.apple.com/internet/macosx/osdb.html

Installing MySQL

First of all, if you happen to be running Mac OS X Server, MySQL is already
installed for you. You can run Applications/Utilities/MySQL Manager to access
it. More likely, however, you are using the client version of Mac OS X.

To install MySQL on the client version of Mac OS X, begin by downloading the
Mac OS X 'pkg' format installation package from http://www.entropy.ch/soft-
ware/MacOSx/mysql/. As of this writing, that site is the official source of MySQL
for Mac OS X; however, MySQL AB (the developers of MySQL) have announced
that they plan to take over distribution of this version beginning in February
2003, very soon after this book goes to print. You may, therefore, need to visit
the download section of http://www.mysql.com/ to obtain an up-to-date installa-
tion package (and possibly updated installation instructions) by the time you
read this.

Download and unpack the mysql-version.pkg.tar.gz file to obtain the
mysql-version.pkg installation file, then double-click it to install MySQL.

Now, unlike most . pkg installations, MySQL requires some further configuration
before it's ready to run on your system. Complete the following steps:

1. If you're running a version of Mac OS X older than 10.2 (Jaguar), you need
to create a special user on your system that can run the server securely (this
is already done for you on Mac OS 10.2 or later). To do this, open a Terminal
window and type the following commands (don't type shell# — that's just
there to represent the prompt displayed by the terminal):

shell%sudo niutil -create / /groups/mysql

shell%sudo niutil -createprop / /groups/mysql gid 401
shell%sudo niutil -create / /users/mysql

shell%sudo niutil -createprop / /users/mysql gid 401

shell%sudo niutil -createprop / /users/mysql uid 401

This creates a new user called mysql as well as a new user group for that user,
also called mysql. You'll need to provide the administrator password for the
first of these commands. Once the user is created, assign it a password of
your choice by typing this command:

shell%sudo passwd mysql

2. Next, you need to initialize MySQL's databases. In a Terminal window, type
the following commands (and provide the administrator password if you are
prompted):

shell%cd /usr/local/mysql
shell%sudo ./scripts/mysql_install_db

25

http://www.entropy.ch/software/MacOSx/mysql/
http://www.entropy.ch/software/MacOSx/mysql/
http://www.mysql.com/

Installation

3. Finally, you must assign permissions to the mysql directory to prevent unau-
thorized access to it by anyone except the mysql user:

shell%ssudo chown -R mysql /usr/local/mysql/*

4. With all the configuration done, you can launch the MySQL server with this
command:

shell%sudo /usr/local/mysql/bin/safe_mysqld --user=mysql &

5. Presumably, you'll want your system to automatically launch the MySQL
server at start-up. You can download, extract, and run mysql-star-
tupitem.pkg.tar.gz from http://www.entropy.ch/software/MacOSx/mysql/
to make this happen — that's all there is to it!

Installing PHP

As with MySQL, a Mac OS X version of PHP is not available from the official
Website, but from a third party. Again, Apple also maintains a Web page detailing

the installation procedure™""" (although in this case, it is somewhat out of date).

Download the latest version of libphp4.so.tar.gz from http:/www.en-
tropy.ch/software/macosx/php/. It may be named libphp4.so-version.tar.gz;
if so, rename it to 1ibphp4.so.tar.gz before proceeding with the following steps:

1. Double-click the downloaded file to extract 1ibphp4.so onto your desktop.

2. Open a new Terminal window and type this command to move the file to
the Apache configuration directory:

shell%sudo mv Desktop/libphp4.so /usr/libexec/httpd/
Provide the administrator password if you are prompted.

3. Go to the /etc/httpd directory and run the Apache module configuration
program (apxs) to install or upgrade to the new module with the following
commands:

shell%cd /etc/httpd
shell%sudo apxs -e -a -n php4 libexec/httpd/libphp4.so

Wilih ttp://developer.apple.com/internet/macosx/php.html

26

http://www.entropy.ch/software/MacOSx/mysql/
http://developer.apple.com/internet/macosx/php.html
http://www.entropy.ch/software/macosx/php/
http://www.entropy.ch/software/macosx/php/

Mac OS X and Unix

4. Add aline telling Apache which file extensions to treat as PHP scripts to the
httpd.conf configuration file with the following command (which you must
type all on one line):

shell%secho 'echo "AddType application/x-httpd-php .php .php3"
>> [etc/httpd/httpd.conf' | sudo sh -s'

5. Finally, restart Apache with the new PHP module in place:

shell%sudo apachectl graceful

Mac 0OS X and Unix

Because Mac OS X is based on the BSD operating system, much of its internals
work just like any other Unix-like OS (e.g. Linux). From this point on in the
book, owners of Mac OS X servers can follow the instructions provided for
Unix/Linux systems unless otherwise indicated. No separate instructions are
provided for Mac OS X unless they differ from those for other Unix-like systems.

Post-Installation Setup Tasks

No matter which operating system you're running, once PHP is installed and the
MySQL server is in operation, the very first thing you need to do is assign a root
password for MySQL. MySQL lets only authorized users view and manipulate
the information stored in its databases, so you'll need to tell MySQL who is an
authorized user, and who isn't. When MySQL is first installed, it's configured
with a user named root that has access to do pretty much any task without even
entering a password. Your first task should be to assign a password to the root
user so that unauthorized users can't tamper with your databases.

It's important to realize that MySQL, just like a Web server or an FTP server,
can be accessed from any computer on the same network. If you're working on
a computer connected to the Internet that means anyone in the world could try
to connect to your MySQL server! The need to pick a hard-to-guess password
should be immediately obvious!

To set a root password for MySQL, type the following command in the bin dir-
ectory of your MySQL installation (include the quotes):

mysgladmin -u root password “your new password"

To make sure MySQL has registered this change, you should tell it to reload its
list of authorized users and passwords:

27

Installation

mysqladmin -u root reload

If this command returns an error message to tell you that access was denied, don't
worry: this just means the password has already taken effect.

To try out your new password, request that the MySQL server tell you its current
status:

mysqladmin -u root -p status

Enter your password when prompted. You should see a brief message that provides
information about the server and its current status. The -u root argument tells
the program that you want to be identified as the MySQL user called root. The
-p argument tells the program to prompt you for your password before it tries
to connect. The status argument just tells it that you're interested in viewing
the system status.

If at any time you want to shut down the MySQL server, you can use the com-
mand below. Notice the same -u root and -p arguments as before:

mysqladmin -u root -p shutdown

With your MySQL database system safe from intrusion, all that's left is to con-
figure PHP. To do this, we'll use a text file called php.ini. If you installed PHP
under Windows, you should already have copied php.ini into your Windows
directory. If you installed PHP under Linux using the instructions above, you
should already have copied php.ini into the PHP 1ib folder (/usr/loc-
al/php/1lib), or wherever you chose to put it.

No php.ini on Mac OS X?

Mac OS X distributions of PHP don't come with a php. ini file by default; you can usually
just let it use its own default settings. If you're happy to do this, you can go ahead and
skip the rest of this section. If not, you can pinch a copy of php.ini-dist from the
Windows Binary distribution at http:/www.php.net/, rename it to php.ini, and place it
in /usr/local/lib (which you may have to create).

Open php.ini in your favourite text editor and have a glance through it. Most
of the settings are pretty well explained, and most of the default settings are just
fine for our purposes. Just check to make sure that your settings match these:

Off
on

register_globals
magic_quotes_gpc

28

http://www.php.net/

If Your Web Host Provides PHP and MySQL

doc_root = the root document folder of your Web server’
extension_dir = the directory where you installed PHP®

Save the changes to php.ini, and then restart your Web server. To restart Apache
under Linux, log in as root and type this command:

shell#apachectl graceful

You're done! Now you just need to test to make sure everything's working (see
the section called “Your First PHP Script”).

If Your Web Host Provides PHP and MySQL

If the host that provides you with Web space has already installed and set up
MySQL and PHP for you and you just want to learn how to use them, there
really isn't a lot you need to do. Now would be a good time to get in touch with
your host and request any information you may need to access these services.

Specifically, you'll need a user name and password to access the MySQL server
they've set up for you. They'll probably have provided an empty database for you
to use as well, which prevents you from interfering with the databases of other
users who share the same MySQL server, and you'll want to know the name of
your database.

There are two ways you can access the MySQL server directly. Firstly, you can
use telnet or secure shell (SSH) to log in to the host. You can then use the MySQL
client programs (mysql, mysqladmin, mysqldump) installed there to interact with
the MySQL server directly. The second method is to install those client programs
onto your own computer, and have them connect to the MySQL server. Your
Web host may support one, both, or neither of these methods, so you'll need to
ask.

If your host allows you to log in by telnet or SSH to do your work, you'll need a
user name and password for the login, in addition to those you'll use to access

>The "root document folder" of a Web server is the folder on the server computer where you must
place a file to make it available in the root of your Website. On IIS servers, this is usually c:\inet-
pub\wwwroot, unless you have specifically set it to something else. On Apache servers, this is often
the htdocs folder in the Apache installation directory unless you set it to something else yourself.
Many Unix distributions use other locations when installing their packaged version of Apache; examples
include /var/www and /home/httpd.

6Usua\lly c:\php on Windows, and /usr/local/php on Unix.

29

Installation

the MySQL server (they can be different). Be sure to ask for both sets of inform-
ation.

If they support remote access to the MySQL server, you'll want to download a
program that lets you connect to, and interact with, the server. This book assumes
you've downloaded from http://www.mysql.com/ a binary distribution of MySQL
that includes the three client programs (mysql, mysqladmin, and mysqldump).
Free packages are available for Windows, Linux and other operating systems.
Installation basically consists of finding the three programs and putting them in
a convenient place. The rest of the package, which includes the MySQL server,
can be freely discarded. If ’Zou prefer a more graphical interface, download

something like MySQLGUI". I'd really recommend getting comfortable with
the basic client programs first, though as the commands you use with them will
be similar to those you'll include in your PHP scripts to access MySQL databases.

Many less expensive Web hosts these days support neither telnet/SSH access,
nor direct access to their MySQL servers. Instead, they normally provide a man-
agement console that allows you to browse and edit your database through your
Web browser (though some actually expect you to install one yourself, which I'll
cover briefly in Chapter 2). Although this is a fairly convenient and not overly
restrictive solution, it doesn't help you learn. Instead, I'd recommend you install
a MySQL server on your own system to experiment with, especially in the next
chapter. Once you're comfortable working with your learning server, you can start
using the server provided by your Web host with the Web-based management
console. See the previous sections for instructions on installing MySQL under
Windows, Linux, and Mac OS X.

Your First PHP Script

It would be unfair of me to help you get everything installed and not even give
you a taste of what a PHP-driven Web page looks like until Chapter 3, so here's
a little something to whet your appetite.

Open up your favourite text or HTML editor and create a new file called
today.php. Windows users should note that, to save a file with a . php extension
in Notepad, you'll need to either select All Files as the file type, or surround the
file name with quotes in the Save As dialogue; otherwise, Notepad will helpfully
save the file as today.php.txt, which won't work. Mac OS users are advised not
to use TextEdit to edit .php files, as it saves them in Rich Text Format with an

Bl ttp/fwww.mysql.com/products/mysqlgui/

30

http://www.mysql.com/
http://www.mysql.com/products/mysqlgui/

Your First PHP Script

invisible . rtf file name extension. Learn to use the vi editor in a Terminal win-
dow or obtain an editor that can save .php files as plain text.

Whichever editor you use, type this into the file:

<html>

<head>

<title>Today's Date</title>

</head>

<body>

<p>Today's Date (according to this Web server) is
<?php

echo(date('l, F dS Y.'));

?></p>
</body>
</html>

If you prefer, you can download this file along with the rest of the code in this
book in the code archive. See the Introduction for details on how to download
the archive.

Save this material, and place it on your Website as you would any regular HTML
file, then view it in your browser. Note that if you view the file on your own
machine, you cannot use the File, Open feature of your browser, because your Web
server must intervene to interpret the PHP code in the file. Instead, you must
move the file into the root document folder of your Web server software (e.g.
C:\inetpub\wwwroot\ in IIS, or C:\Apache Group\Apache\htdocs\ in Apache
for Windows), then load it into your browser by typing http://local-
host/today.php. This process allows the Web server to run the PHP code in the
file and replace it with the date before it's sent to the Web browser. Figure 1.1
shows what the output should look like.

31

Installation

Figure 1.1. Output of today.php

‘2 Today's Date - Microsoft Internet Explorer E|[E|E|

File Edit ‘Wiew Faworites Tools Help

Address @ hitkp: [webmasterbase, comjexamplestoday a0

Today's Date (according to thizs Web server) 13 MMonday,
Tune 11th 2001

@ Done a Internet

Pretty neat, huh? If you use the View Source feature in your browser, all you'll see
is a regular HTML file with the date in it. The PHP code (everything between
<?php and ?> in the code above) has been interpreted by the Web server and
converted to normal text before it's sent to your browser. The beauty of PHP,
and other server-side scripting languages, is that the Web browser doesn't have
to know anything about it — the Web server does all the work!

And don't worry too much about the exact code I used in this example. Before
too long you'll know it like the back of your hand.

If you don't see the date, then something is wrong with the PHP support in your
Web server. Use View Source in your browser to look at the code of the page.
You'll probably see the PHP code there in the page. Since the browser doesn't
understand PHP, it just sees <?php ... ?>as one long, invalid HTML tag, which
it ignores. Make sure that PHP support has been properly installed on your Web
server, either in accordance with the instructions provided in previous sections
of this chapter, or by your Web host.

Summary

You should now have everything you need to get MySQL and PHP installed on
your Web Server. If the little example above didn't work (for example, if the raw
PHP code appeared instead of the date), something went wrong with your setup
procedure. Drop by the SitePoint Forums™" and we'll be glad to help you figure
out the problem!

Y httpy//www.sitepointforums.com/

32

http://www.sitepointforums.com/

Summary

In Chapter 2, you'll learn the basics of relational databases and get started
working with MySQL. If you've never even touched a database before, I promise
you it'll be a real eye opener!

33

34

Getting Started with MySQL

In Chapter 1, we installed and set up two software programs: PHP and MySQL.
In this chapter, we'll learn how to work with MySQL databases using Structured
Query Language (SQL).

An Introduction to Databases

As I've already explained, PHP is a server-side scripting language that lets you
insert into your Web pages instructions that your Web server software (be it
Apache, IIS, or whatever) will execute before it sends those pages to browsers
that request them. In a brief example, I showed how it was possible to insert the
current date into a Web page every time it was requested.

Now that's all well and good, but things really get interesting when a database is
added to the mix. A database server (in our case, MySQL) is a program that can
store large amounts of information in an organized format that's easily accessible
through scripting languages like PHP. For example, you could tell PHP to look
in the database for a list of jokes that you'd like to appear on your Website.

In this example, the jokes would be stored entirely in the database. The advantages
of this approach would be twofold. First, instead of having to write an HTML
file for each of your jokes, you could write a single PHP file that was designed to
fetch any joke out of the database and display it. Second, adding a joke to your
Website would be a simple matter of inserting the joke into the database. The

Getting Started with MySQL

PHP code would take care of the rest, automatically displaying the new joke
along with the others when it fetched the list from the database.

Let's run with this example as we look at how data is stored in a database. A
database is composed of one or more tables, each of which contains a list of
things. For our joke database, we'd probably start with a table called Jokes that
would contain a list of jokes. Each table in a database has one or more columns,
or fields. Each column holds a certain piece of information about each item in
the table. In our example, our Jokes table might have columns for the text of the
jokes, and the dates on which the jokes were added to the database. Each joke
that we stored in this table would then be said to be a row in the table. These
rows and columns form a table that looks like Figure 2.1.

Figure 2.1. Structure of a typical database table

Column Calumn Column
1 1 1
JokeText JokeDate
Row — 1 Why did the 2000-04-01
chicken... ?
Row = 2 "Knock-knock!" 2000-02-22

“Who's there 2"

Notice that, in addition to columns for the joke text (JokeText) and the date of
the joke (JokeDate), I included a column named ID. As a matter of good design,
a database table should always provide a way to identify uniquely each of its
rows. Since it's possible that a single joke could be entered more than once on
the same date, the JokeText and JokeDate columns can't be relied upon to tell
all the jokes apart. The function of the ID column, therefore, is to assign a unique
number to each joke, so we have an easy way to refer to them, and to keep track
of which joke is which. Such database design issues will be covered in greater
depth in Chapter 5.

So, to review, the above is a three-column table with two rows, or entries. Each
row in the table contains three fields, one for each column in the table: the joke's
ID, its text, and the date of the joke. With this basic terminology under our belts,
we're ready to get started with MySQL.

36

Logging On to MySQL

Logging On to MySQL

The standard interface for working with MySQL databases is to connect to the
MySQL server software (which you set up in Chapter 1) and type commands
one at a time. To make this connection to the server, you'll need the MySQL
client program. If you installed the MySQL server software yourself, either under
Windows or under some brand of UNIX, you already have this program installed
in the same location as the server program. Under Linux, for example, the program
is called mysql and is located by default in the /usr/local/mysql/bin directory.
Under Windows, the program is called mysql.exe and is located by default in
the C:\mysql\bin directory.

If you didn't set up the MySQL server yourself (if, for example, you'll be working
on your Web host's MySQL server), there are two ways to connect to the MySQL
server. The first is to use Telnet or a Secure Shell (SSH) connection to log into
your Web host's server, and then run mysql from there. The second is to download
and install the MySQL client software from http://www.mysql.com/ (available
free for Windows and Linux) on your own computer, and use it to connect to
the MySQL server over the Internet. Both methods work well, and your Web
host may support one, the other, or both — you'll need to ask.

Warning

Many Web hosts do not allow direct access to their MySQL servers over
the Internet for security reasons. If your host has adopted this policy
(you'll have to ask them if you're not sure), installing the MySQL client
software on your own computer won't do you any good. Instead, you'll
need to install a Web-based MySQL administration script onto your site.
phpMyAdmin” is the most popular one available; indeed, many Web
hosts will configure your account with a copy of phpMyAdmin for you.

While Web-based MySQL administration systems provide a convenient,
graphical interface for working with your MySQL databases, it is still
important to learn the basics of MySQL's command-line interface. The
commands you use in this interface are the very same commands you'll
have to include in your PHP code later in this book. I therefore recom-
mend going back to Chapter 1 and installing MySQL on your own com-
puter so you can complete the exercises in this chapter before getting
comfortable with your Web-based administration interface.

iihttp://www.phpmyadmin.net/

37

http://www.mysql.com/
http://www.phpmyadmin.net/

Getting Started with MySQL

Whichever method and operating system you use, you'll end up at a command
line, ready to run the MySQL client program and connect to your MySQL server.
Here's what you should type:

mysql -h hostname —u username -p

You need to replace hostname with the host name or IP address of the computer
on which the MySQL server is running. If the client program is run on the same
computer as the server, you can actually leave off the -h hostname part of the
command instead of typing -h localhost or—h 127.0.0.1. username should be
your MySQL user name. If you installed the MySQL sexver yourself, this will
just be root. If you're using your Web host's MySQL server, this should be the
MySQL user name they assigned you.

The -p argument tells the program to prompt you for your password, which it
should do as soon as you enter the command above. If you set up the MySQL
server yourself, this password is the root password you chose in Chapter 1. If
you're using your Web host's MySQL server, this should be the MySQL password
they gave you.

If you typed everything properly, the MySQL client program will introduce itself
and then dump you on the MySQL command line:

mysql>

Now, the MySQL server can actually keep track of more than one database. This
allows a Web host to set up a single MySQL server for use by several of its sub-
scribers , for example. So your next step should be to choose a database with
which to work. First, let's retrieve a list of databases on the current server. Type
this command (don't forget the semicolon!), and press Enter.

mysql>SHOW DATABASES;

MySQL will show you a list of the databases on the server. If this is a brand new
server (i.e. if you installed this server yourself in Chapter 1), the list should look
like this:

fhoccccoooas +
| Database |
fhoccccoooas +
| mysql I
| test |
fhoccccoooas +

2 rows in set (0.11 sec)

38

Logging On to MySQL

The MySQL server uses the first database, called mysql, to keep track of users,
their passwords, and what they're allowed to do. We'll steer clear of this database
for the time being, and come back to it in Chapter 8 when we discuss MySQL
Administration. The second database, called test, is a sample database. You can
actually get rid of this database. I won't be referring to it in this book, and we'll
create our own example database momentarily. Deleting something in MySQL
is called "dropping" it, and the command for doing so is appropriately named:

mysql>DROP DATABASE test;

If you type this command and press Enter, MySQL will obediently delete the
database, saying "Query OK" in confirmation. Notice that you're not prompted
with any kind of "are you sure?" message. You have to be very careful to type
your commands correctly in MySQL because, as this example shows, you can
obliterate your entire database—along with all the information it contains—with
one single command!

Before we go any further, let's learn a couple of things about the MySQL command
line. As you may have noticed, all commands in MySQL are terminated by a
semicolon (;). If you forget the semicolon, MySQL will think you haven't finished
typing your command, and will let you continue to type on another line:

mysql>SHOW
->DATABASES;

MySQL shows you that it's waiting for you to type more of your command by
changing the prompt from mysql> to ->. For long commands, this can be handy,
as it allows you to spread your commands out over several lines.

If you get halfway through a command and realize you made a mistake early on,
you may want to cancel the current command entirely and start over from scratch.
To do this, type \c and press Enter:

mysql>DROP DATABASE\c
mysql>

MySQL will completely ignore the command you had begun to type, and will go
back to the prompt to wait for another command.

Finally, if at any time you want to exit the MySQL client program, just type quit
or exit (either one will work). This is the only command that doesn't need a
semicolon, but you can use one if you want to.

39

Getting Started with MySQL

mysql>quit
Bye

So what's SQL?

The set of commands we'll use to tell MySQL what to do for the rest of this book
is part of a standard called Structured Query Language, or SQL (pronounced
either "sequel" or "ess-cue-ell' — take your pick). Commands in SQL are also
called queries (I'll use these two terms interchangeably in this book).

SQL is the standard language for interacting with most databases, so even if you
move from MySQL to a database like Microsoft SQL Server in the future, you'll
find that most of the commands are identical. It's important that you understand
the distinction between SQL and MySQL. MySQL is the database server software
that you're using. SQL is the language that you use to interact with that database.

Creating a Database

Those of you who are working on your Web host's MySQL server have probably
already been assigned a database with which to work. Sit tight, we'll get back to
you in a moment. Those of you running a MySQL server that you installed
yourselves will need to create your own database. It's just as easy to create a
database as it is to delete one:

mysql>CREATE DATABASE jokes;

I chose to name the database jokes, because that fits with the example we're using.
Feel free to give the database any name you like, though. Those of you working
on your Web host's MySQL server will probably have no choice in what to name
your database, since it will usually already have been created for you.

Now that we have a database, we need to tell MySQL that we want to use it.
Again, the command isn't too hard to remember:

mysql>USE jokes;

You're now ready to use your database. Since a database is empty until you add
some tables to it, our first order of business will be to create a table that will hold
our jokes.

40

Creating a Table

Creating a Table

The SQL commands we've encountered so far have been reasonably simple, but
as tables are so flexible, it takes a more complicated command to create them.
The basic form of the command is as follows:

mysql>CREATE TABLE table_name (
-> column_1_name column_1_type column_1_details,
-> column_2_name column_2_type column_2_details,
->

)3

Let's return to our example Jokes table. Recall that it had three columns: ID (a
number), JokeText (the text of the joke), and JokeDate (the date the joke was
entered). The command to create this table looks like this:

mysql>CREATE TABLE Jokes (
-> ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> JokeText TEXT,
-> JokeDate DATE NOT NULL

->);
It looks pretty scary, huh? Let's break it down:

@ The first line is fairly simple: it says that we want to create a new table called
Jokes.

@ The second line says that we want a column called ID that will contain an
integer (INT), that is, a whole number. The rest of this line deals with special
details for this column. First, this column is not allowed to be left blank (NOT
NULL). Next, if we don't specify any value in particular when we add a new
entry to the table, we want MySQL to pick a value that is one more than the
highest value in the table so far (AUTO_INCREMENT). Finally, this column is to
act as a unique identifier for the entries in this table, so all values in this
column must be unique (PRIMARY KEY).

[The third line is super-simple; it says that we want a column called JokeText,
which will contain text (TEXT).

A The fourth line defines our last column, called JokeDate, which will contain
data of type DATE, and which cannot be left blank (NOT NULL).

Note that, while you're free to type your SQL commands in upper or lower case,
a MySQL server running on a UNIX-based system will be case-sensitive when it

41

Getting Started with MySQL

comes to database and table names, as these correspond to directories and files
in the MySQL data directory. Otherwise, MySQL is completely case-insensitive,
but for one exception: table, column, and other names must be spelled exactly
the same when they're used more than once in the same command.

Note also that we assigned a specific type of data to each column we created. ID
will contain integers, JokeText will contain text, and JokeDate will contain dates.
MySQL requires you to specify a data type for each column in advance. Not only
does this help keep your data organized, but it allows you to compare the values
within a column in powerful ways, as we'll see later. For a complete list of suppor-
ted MySQL data types, see Appendix C.

Now, if you typed the above command correctly, MySQL will respond with Query
OK and your first table will be created. If you made a typing mistake, MySQL
will tell you there was a problem with the query you typed, and will try to give
you some indication of where it had trouble understanding what you meant.

For such a complicated command, Query OK is a pretty boring response. Let's
have a look at your new table to make sure it was created properly. Type the
following command:

mysql>SHOW TABLES;

The response should look like this:

bocccocoocoococoooooo +
| Tables in jokes |
fbscccocoocoococoooooo +
| Jokes |
fbscccocoocoococoooooo +

1 row in set

This is a list of all the tables in our database (which I named jokes above). The
list contains only one table: the Jokes table we just created. So far everything
looks good. Let's have a closer look at the Jokes table itself:

mysql>DESCRIBE Jokes;

bsccococcoocoo froccocoocooc Fommea - Foemm - fbocococcococooooc dbsccococcococoocococoooo +
| Field | Type | Null | Key | Default | Extra |
bsccococcoocoo froccocoocooc Fommea - Foemm - fbocococcococooooc dbsccococcococoocococoooo +
ID	int(11)		PRI	NULL	auto_increment
JokeText	text	YES		NuLL	
JokeDate	date			0000-00-00	
bsccococcoocoo froccocoocooc Fommea - Foemm - fbocococcococooooc dbsccococcococoocococoooo +

3 rows in set

42

Inserting Data into a Table

As we can see, there are three columns (or fields) in this table, which appear as
the 3 rows in this table of results. The details are somewhat cryptic, but if you
look at them closely for a while you should be able to figure out what most of
them mean. Don't worry about it too much, though. We've got better things to
do, like adding some jokes to our table!

We need to look at just one more thing before we get to that, though: deleting
a table. This task is as frighteningly easy as deleting a database. In fact, the
command is almost identical:

mysql>DROP TABLE tableName;

Inserting Data into a Table

Our database is created and our table is built; all that's left is to put some actual
jokes into our database. The command for inserting data into our database is
called, appropriately enough, INSERT. There are two basic forms of this command:

mysql>INSERT INTO table_name SET

-> columnName1 = valueil,
-> columnName2 = value2,
>0

->;

mysgl>INSERT INTO table_name
-> (columnNamel, columnName2, ...)
-> VALUES (valuel, value2, ...);

So, to add a joke to our table, we can choose from either of these commands:

mysql>INSERT INTO Jokes SET
->JokeText = "Why did the chicken cross the road? To get to
"> the other side!",
->JokeDate = "2000-04-01";

mysql>INSERT INTO Jokes
->(JokeText, JokeDate) VALUES (
->"Why did the chicken cross the road? To get to the other

"> side!",
->"2000-04-01"
->);

Note that in the second form of the INSERT command, the order in which you
list the columns must match the order in which you list the values. Otherwise,
the order of the columns doesn't matter, as long as you give values for all required

43

Getting Started with MySQL

fields. Now that you know how to add entries to a table, let's see how we can
view those entries.

Viewing Stored Data

The command we use to view data stored in your database tables, SELECT, is the
most complicated command in the SQL language. The reason for this complexity
is that the chief strength of a database is its flexibility in data retrieval and
presentation. As, at this point in our experience with databases, we need only
fairly simple lists of results, we'll just consider the simpler forms of the SELECT
command. This command will list everything stored in the Jokes table:

mysql>SELECT * FROM Jokes;

Read aloud, this command says "select everything from Jokes". If you try this
command, your results will resemble this:

I I I I e
------------ R i
| ID | JokeText

| JokeDate |
I I I I e
------------ R i

| 1 | Why did the chicken cross the road? To get to the
other side! | 2000-04-01 |

1 row in set (0.05 sec)

It looks a little disorganised because the text in the JokeText column is too long
for the table to fit properly on the screen. For this reason, you might want to tell
MySQL to leave out the JokeText column. The command for doing this is as
follows:

mysql>SELECT ID, JokeDate FROM Jokes;

This time instead of telling it to "select everything", we told it precisely which
columns we wanted to see. The results look like this:

fhocccdfcccoccooaoos +
| ID | JokeDate |
fhocccdfcccoccooaoos +
| 1 | 2000-04-01 |
fhocccdfcccoccooaoos +

1 row in set (0.00 sec)

44

Viewing Stored Data

Not bad, but we'd like to see at least some of the joke text, wouldn't we? In addi-
tion to listing the columns that we want the SELECT command to show us, we
can modify those columns with functions. One function, called LEFT, lets us tell
MySQL to display up to a specified maximum number of characters when it
displays a column. For example, let's say we wanted to see only the first 20
characters of the JokeText column:

mysql>SELECT ID, LEFT(JokeText,20), JokeDate FROM Jokes;

o ooodfccocooccooooooooooo0oooe ffocococococoocoooo +
| ID | LEFT(JokeText,20) | JokeDate |
o ooodfccocooccooooooooooo0oooe ffocococococoocoooo +
| 1 | Why did the chicken | 2000-04-01 |
o ooodfccocooccooooooooooo0oooe ffocococococoocoooo +

1 row in set (0.05 sec)

See how that worked? Another useful function is COUNT, which simply lets us
count the number of results returned. So, for example, if we wanted to find out
how many jokes were stored in our table, we could use the following command:

mysql>SELECT COUNT(*) FROM Jokes;

o +
| COUNT(*) |
o +
| 1 |
o +

1 row in set (0.06 sec)

As you can see, we have just one joke in our table. So far, all our examples have
fetched all the entries in the table. But if we add what's called a WHERE clause
(for reasons that will become obvious in a moment) to a SELECT command, we
can limit which entries are returned as results. Consider this example:

mysql>SELECT COUNT(*) FROM Jokes WHERE JokeDate >= "2000-01-01";

This query will count the number of jokes that have dates "greater than or equal
to" January Ist, 2000. "Greater than or equal to", when dealing with dates, means
"on or after". Another variation on this theme lets you search for entries that
contain a certain piece of text. Check out this query:

mysql>SELECT JokeText FROM Jokes WHERE JokeText LIKE "%chicken%";

This query displays the text of all jokes that contain the word "chicken" in their
JokeText column. The LIKE keyword tells MySQL that the named column must
match the given pattern. In this case, the pattern we've used is "%chicken%". The

45

Getting Started with MySQL

% signs here indicate that the word "chicken" may be preceded and/or followed
by any string of text.

Additional conditions may also be combined in the WHERE clause to further restrict
results. For example, to display knock-knock jokes from April 2000 only, we
could use the following query:

mysql>SELECT JokeText FROM Jokes WHERE
->JokeText LIKE "%knock%" AND
->JokeDate >= "2000-04-01" AND
->JokeDate < "2000-05-01";

Enter a few more jokes into the table and experiment with SELECT statements a
little. A good familiarity with the SELECT statement will come in handy later in
this book.

There's a lot more you can do with the SELECT statement, but we'll save looking
at some of its more advanced features for later, when we need them.

Modifying Stored Data

Having entered your data into a database table, you might like to change it.
Whether you want to correct a spelling mistake, or change the date attached to
a joke, such alterations are made using the UPDATE command. This command
contains elements of the INSERT command (that set column values) and of the
SELECT command (that pick out entries to modify). The general form of the UP-
DATE command is as follows:

mysql>UPDATE table_name SET
-> col_name = new_value,
->WHERE conditions;

So, for example, if we wanted to change the date on the joke we entered above,
we'd use the following command:

mysql>UPDATE Jokes SET JokeDate="1990-04-01" WHERE ID=1;

Here's where that ID column comes in handy. It allows us to easily single out a
joke for changes. The WHERE clause here works just like it does in the SELECT
command. This next command, for example, changes the date of all entries that
contain the word "chicken":

mysql>UPDATE Jokes SET JokeDate="1990-04-01"
->WHERE JokeText LIKE "%chicken%";

46

Deleting Stored Data

Deleting Stored Data

The deletion of entries in SQL is dangerously easy, which, if you haven't noticed
yet, is a recurring theme. Here's the command syntax:

mysql>DELETE FROM table_name WHERE conditons;

So to delete all chicken jokes from your table, you'd use the following query:

mysql>DELETE FROM Jokes WHERE JokeText LIKE "Schicken%";

One thing to note is that the WHERE clause is actually optional. You should be
very careful, however, if you leave it off, as the DELETE command will then apply
to all entries in the table. This command will empty the Jokes table in one fell
SWoop:

mysql>DELETE FROM Jokes;

Scary, huh?

Summary

There's a lot more to the MySQL database system and the SQL language than
the few basic commands we've looked at here, but these commands are by far
the most commonly used. So far we've only worked with a single table. To realize
the true power of a relational database, we'll also need to learn how to use multiple
tables together to represent potentially complex relationships between database
entities.

We'll cover all this and more in Chapter 5, where we'll discuss database design
principles, and look at some more advanced examples. For now, though, we've
accomplished our objective, and you can comfortably interact with MySQL using
the command line interface. In Chapter 3, the fun continues as we delve into the
PHP sexver-side scripting language, and use it to create dynamic Web pages. If
you like, you can practice with MySQL a little before you move on, by creating
a decent-sized Jokes table — this knowledge will come in handy in Chapter 4!

47

48

Getting Started with PHP

In Chapter 2, we learned how to use the MySQL database engine to store a list
of jokes in a simple database (composed of a single table named Jokes). To do
so, we used the MySQL command-line client to enter SQL commands (queries).
In this chapter, we'll introduce the PHP server-side scripting language. In addition
to the basic features we'll explore here, this language has full support for commu-
nication with MySQL databases.

Introducing PHP

As we've discussed previously, PHP is a server-side scripting language. This concept
is not obvious, especially if you're used to designing pages with just HTML and
JavaScript. A server-side scripting language is similar to JavaScript in many ways,
as they both allow you to embed little programs (scripts) into the HTML of a
Web page. When executed, such scripts allow you to control what will actually

appear in the browser window with more flexibility than is possible using straight
HTML.

The key difference between JavaScript and PHP is simple. JavaScript is interpreted
by the Web browser once the Web page that contains the script has been
downloaded. Meanwhile, server-side scripting languages like PHP are interpreted
by the Web server before the page is even sent to the browser. And, once it's in-
terpreted, the results of the script replace the PHP code in the Web page itself,
so all the browser sees is a standard HTML file. The script is processed entirely
by the server, hence the designation: server-side scripting language.

Getting Started with PHP

Let's look back at the today.php example presented in Chapter 1:

<html>

<head>

<title>Today's Date</title>

</head>

<body>

<p>Today's Date (according to this Web server) is
<?php

echo(date("l, F dS Y."));

?7></p>
</body>
</html>

Most of this is plain HTML. The line between <?php and ?>, however, is written
in PHP. <?php means "begin PHP code", and ?> means "end PHP code". The
Web server is asked to interpret everything between these two delimiters, and
to convert it to regular HTML code before it sends the Web page to the requesting
browser. The browser is presented with something like this:

<html>

<head>

<title>Today's Date</title>

</head>

<body>

<p>Today's Date (according to this Web server) is
Wednesday, May 30th 2001.</p>

</body>

</html>

Notice that all signs of the PHP code have disappeared. In its place, the output
of the script has appeared, and looks just like standard HTML. This example
demonstrates several advantages of server-side scripting:

[No browser compatibility issues. PHP scripts are interpreted by the Web
server and nothing else, so you don't have to worry about whether the language
you're using will be supported by your visitors' browsers.

[Access to server-side resources. In the above example, we placed the date
according to the Web server into the Web page. If we had inserted the date
using JavaScript, we would only be able to display the date according to the
computer on which the Web browser was running. Now, while this isn't an
especially impressive example of the exploitation of server-side resources, we

50

Basic Syntax and Commands

could just as easily have inserted some other information that would be
available only to a script running on the Web server. An example might be
information stored in a MySQL database that runs on the Web server com-
puter.

@ Reduced load on the client. JavaScript can slow significantly the display of
a Web page on slower computers, as the browser must run the script before
it can display the Web page. With server-side scripting, this burden is passed
to the Web server machine.

Basic Syntax and Commands

PHP syntax will be very familiar to anyone with an understanding of C, C++,
Java, JavaScript, Perl, or any other C-derived language. A PHP script consists of
a series of commands, or statements, each of which is an instruction that the
Web server must follow before it can proceed to the next. PHP statements, like
those in the above-mentioned languages, are always terminated by a semicolon

G)-
This is a typical PHP statement:
echo("This is a test!");

This statement invokes a built-in function called echo and passes it a string of
text: This is a test! Built-in functions can be thought of as things
that PHP knows how to do without us having to spell out the details. PHP has
a lot of built-in functions that let us do everything from sending email, to working
with information that's stored in various types of databases. The echo function,
however, simply takes the text that it's given, and places it into the HTML code
of the page at the current location. Consider the following (echo.php in the code
package):

<html>

<head>

<title> Simple PHP Example </title>

</head>

<body>

<p><?php echo('This is a test!'); ?></p>
</body>

</html>

If you paste this code into a file called echo. php and place it on your Web server,
a browser that views the page will see this:

51

Getting Started with PHP

<html>

<head>

<title> Simple PHP Example </title>
</head>

<body>

<p>This is a test!</p>
</body>

</html>

Notice that the string of text contained HTML tags (and), which is
perfectly acceptable.

You may wonder why we need to surround the string of text with both parentheses
(()) and single quotes (' '). Quotes are used to mark the beginning and end of
strings of text in PHP, so their presence is fully justified. The parentheses serve
a dual purpose. First, they indicate that echo is a function that you want to call.
Second, they mark the beginning and end of a list of parameters that you wish
to provide, in order to tell the function what to do. In the case of the echo
function, you need only provide the string of text that you want to appear on
the page. Later on, we'll look at functions that take more than one parameter,
and we'll separate those parameters with commas. We'll also consider functions
that take no parameters at all, for which we'll still need the parentheses, though
we won't type anything between them.

Variables and Operators

Variables in PHP are identical to variables in most other programming languages.
For the uninitiated, a variable is a name given to an imaginary box into which
any value may be placed. The following statement creates a variable called
$testvariable (all variable names in PHP begin with a dollar sign) and assigns
it a value of 3:

$testvariable = 3;

PHP is a loosely typed language. This means that a single variable may contain
any type of data, be it a number, a string of text, or some other kind of value,
and may change types over its lifetime. So the following statement, if it appears
after the statement above, assigns a new value to our existing $testvariable.
In the process, the variable changes type: where it used to contain a number, it
now contains a string of text:

$testvariable = "Three";

52

Variables and Operators

The equals sign we used in the last two statements is called the assignment op-
erator, as it is used to assign values to variables. Other operators may be used
to perform various mathematical operations on values:

$testvariable = 1 + 1; // Assigns a value of 2
$testvariable = 1 - 1; // Assigns a value of O
$testvariable = 2 * 2; // Assigns a value of 4
$testvariable = 2 / 2; // Assigns a value of 1

The lines above each end with a comment. Comments are a way to describe what
your code is doing—they insert explanatory text into your code, and tell the PHP
interpreter to ignore it. Comments begin with // and they finish at the end of
the same line. You might be familiar with /* */ style comments in other lan-
guages—these work in PHP as well. I'll be using comments throughout the rest
of this book to help explain what the code I present is doing.

Now, to get back to the four statements above, the operators we used are called
the arithmetic operators, and allow you to add, subtract, multiply, and divide
numbers. Among others, there is also an operator that sticks strings of text togeth-
er, called the concatenation operator:

$testvariable = "Hi " . "there!";
// Assigns a value of "Hi there!"

Variables may be used almost anywhere that you use an actual value. Consider
these examples:

$var1 = 'PHP'; // Assigns a value of "PHP" to $vari
$var2 = 5; // Assigns a value of 5 to $var2
$var3 = $var2 + 1; // Assigns a value of 6 to $var3
$var2 = $vart; // Assigns a value of "PHP" to $var2
echo($vart); // Outputs "PHP"

echo($var2); // Outputs "PHP"

echo($var3); // Outputs 6

echo($vart . ' rules!'); // Outputs "PHP rules!"

echo("$var1 rules!"); // Outputs "PHP rules!"

echo('$vari1 rules!'); // Outputs '$vari rules!'

Notice the last two lines in particular. You can include the name of a variable
right inside a text string, and have the value inserted in its place if you surround
the string with double quotes. This process of converting variable names to their
values is known in technical circles as variable interpolation. However, as the
last line demonstrates, a string surrounded with single quotes will not interpolate
variable names within the string.

53

Getting Started with PHP

Arrays

An array is a special kind of variable that contains multiple values. If you think
of a variable as a box that contains a value, then an array can be thought of as a
box with compartments, where each compartment is able to store an individual
value.

The simplest way to create an array in PHP is with the built-in array function:
$myarray = array('one', 2, 'three');

This code creates an array called $myarray that contains four values: 'one', 2,
and 'three'. Just like an ordinary variable, each space in an array can contain
any type of value. In this case, the first and third spaces contain strings, while
the second contains a number.

To get at a value stored in an array, you need to know its index. Typically, arrays
use numbers, starting with zero, as indices to point to the values they contain.
That is, the first value (or element) of an array has index 0, the second has index
1, the third has index 2, and so on. In general, therefore, the index of the nth
element of an array is n-1. Once you know the index of the value you're interested
in, you can get that value by placing the index in square brackets following the
array variable name:

echo($myarray[0]); // Outputs "one"
echo($myarray[1]); // Outputs "2"
echo($myarray[2]); // Outputs "three"

You can also use the index in square brackets to create new elements, or assign
new values to existing array elements:

$myarray[1] "two'; // Assign a new value
$myarray[3] = 'four'; // Create a new element

You can add elements to the end of an array by using the assignment operator
as usual, except with empty square brackets following the variable name:

$myarray[] = 'the fifth element';
echo($myarray[4]); // Outputs "the fifth element"”

Array indices don't always have to be numbers; that is just the most common
choice. You can also use strings as indices to create what is called an associative
array. This type of array is called associative because it associates values with
meaningful indices. In this example, we associate a date with each of three names:

54

User Interaction and Forms

$birthdays['Kevin'] = '1978-04-12"';
$birthdays|['Stephanie'] = '1980-05-16";
$birthdays['David'] = '1983-09-09';

Now if we want to know Kevin's birthday, we just look it up using the name as
the index:

echo('My birthday is: ' . $birthdays['Kevin']);

This type of array is especially important when it comes to user interaction in
PHP, as we'll see in the next section. I'll also demonstrate other uses of arrays
throughout this book.

User Interaction and Forms

For many applications of PHP, the ability to interact with users who view the
Web page is essential. Veterans of JavaScript tend to think in terms of event
handlers, which let you react directly to the actions of the user — for example,
the movement of the mouse over a link on the page. Server-side scripting languages
such as PHP have a more limited scope when it comes to user interaction. As
PHP code is activated when a page is requested from the server, user interaction
can occur only in a back-and-forth fashion: the user sends requests to the server,
and the server replies with dynamically generated pages.

The key to creating interactivity with PHP is to understand the techniques we
can use to send information about a user's interaction along with his or her request
for a new Web page. PHP makes this fairly easy, as we'll now see.

The simplest method we can use to send information along with a page request
uses the URL query string. If you've ever seen a URL with a question mark fol-
lowing the file name, you've witnessed this technique in use. Let's look at an easy
example. Create a regular HTML file called welcome1.html (no .php file extension
is required, since there will be no PHP code in this file) and insert this link:

Hi, I'm Kevin!

This is a link to a file called welcome1.php, but as well as linking to the file, we're
also passing a variable along with the page request. The variable is passed as part
of the query string, which is the portion of the URL that follows the question
mark. The variable is called name and its value is Kevin. To restate, we have cre-
ated a link that loads welcome1 . php, and informs the PHP code contained in the
file that name equals Kevin.

55

Getting Started with PHP

To really understand the results of this process, we need to look at welcome1.php.
Create it as a new HTML file, but this time note the .php extension — this tells
the Web server that it can expect to interpret some PHP code in the file. In the
body of this new file, type:

<?php
$name = $ GET['name'];
echo("Welcome to our Website, $name!");
2>

Now, if you use the link in the first file to load this second file, you'll see that
the page says "Welcome to our Website, Kevin!"

PHP automatically creates an array variable called $_GET' that contains any values
passed in the query string. $_GET is an associative array, so the value of the name
variable passed in the query string can be accessed as $_GET['name "']. Our script
assigns this value to an ordinary PHP variable ($name) and then displays it as
part of a text string using the echo function.

register_globals before PHP 4.2

In versions of PHP prior to 4.2, the register_globals setting in php.ini was set to On
by default. This setting tells PHP to create automatically ordinary variables for all the
values supplied in the request. In the previous example, the $name = $_GET['name'];
line is completely unnecessary if the register_globals setting were set to On, since PHP
would do it automatically. Although the convenience of this feature was one aspect of
PHP that helped to make it such a popular language in the first place, novice developers
could easily leave security holes in sensitive scripts with it enabled.

For a full discussion of the issues surrounding register_globals, see my article Write
Secure Scripts with PHP 4.2!" at sitepoint.com.

You can pass more than one value in the query string. Let's look at a slightly
more complex version of the same example. Change the link in the HTML file
to read as follows (this is welcome2.html in the code archive):

 Hi,
I'm Kevin Yank!

"Prior to PHP 4.1, this variable was called $HTTP_GET_VARS. This variable name remains in current
PHP versions for backwards compatibility. If your server has an older version of PHP installed, or if
you're writing a script that must be compatible with older versions, you should use $HTTP_GET_VARS
instead of $_GET.

ihttp://www.sitepoim.com/article.php/75 8

56

http://www.sitepoint.com/article.php/758
http://www.sitepoint.com/article.php/758

User Interaction and Forms

This time, we'll pass two variables: firstname and lastname. The variables are
separated in the query string by an ampersand (&). You can pass even more
variables by separating each name=value pair from the next with an ampersand.

As before, we can use the two variable values in our welcome.php file (this is
welcome2.php in the code archive):

<?php

$firstname = $ GET['firstname'];

$lastname = $ GET['lastname'];

echo("Welcome to my Website, $firstname $lastname!");
7>

This is all well and good, but we still have yet to achieve our goal of true user
interaction, where the user can actually enter arbitrary information and have it
processed by PHP. To continue with our example of a personalized welcome
message, we'd like to allow the user to actually type his or her name and have it

appear in the message. To allow the user to type in a value, we'll need to use an
HTML form.

Here's the code (welcome3.html):

<form action="welcome3.php" method="get">

First Name: <input type="text" name="firstname" />

Last Name: <input type="text" name="lastname" />

<input type="submit" value="GO" />

</form>

Note

Don't be alarmed at the slashes that appear in some of these tags (e.g.

). The new XHTML standard for coding Web pages calls for these
in any tag that does not have a closing tag, which includes <input> and

 tags, among others. Current browsers do not require you to use the
slashes, of course, but for the sake of standards-compliance, the HTML
code in this book will observe this recommendation. Feel free to leave
the slashes out if you prefer — I agree that they're not especially nice to
look at.

This form has the exact same effect as the second link we looked at (with
firstname=Kevin&lastname=Yank in the query string), except that you can enter
whatever names you like. When you click the submit button (which has a label
of "GQ"), the browser will load welcome3.php and automatically add the variables
and their values to the query string for you. It retrieves the names of the variables

57

Getting Started with PHP

from the name attributes of the input type="text" tags, and it obtains the values
from the information the user typed into the text fields.

The method attribute of the form tag is used to tell the browser how to send the
variables and their values along with the request. A value of get (as used above)
causes them to be passed in the query string (and appear in PHP's $_GET array),
but there is an alternative. It's not always desirable—or even technically feas-
ible—to have the values appear in the query string. What if we included a <tex-
tarea> tag in the form, to let the user enter a large amount of text? A URL that
contained several paragraphs of text in the query string would be ridiculously
long, and would exceed by far the maximum length of the URL in today's browsers.
The alternative is for the browser to pass the information invisibly, behind the
scenes. The code for this looks exactly the same, but where we set the form
method to get in the last example, here we set it to post (welcome4.html):

<form action="welcome4.php" method="post">

First Name: <input type="text" name="firstname" />

Last Name: <input type="text" name="lastname" />

<input type="submit" value="GO" />

</form>

As we're no longer sending the variables as part of the query string, they no longer
appear in PHP's $_GET array. Instead, they are placed in another array reserved
especially for 'posted’ form variables: $_POST2. We must therefore modify wel-
come3.php to retrieve the values from this new array (welcome4.php):

<?php

$firstname = $ POST['firstname'];

$lastname = $ POST['lastname'];

echo("Welcome to my Website, $firstname $lastname!");
?>

This form is functionally identical to the previous one. The only difference is
that the URL of the page that's loaded when the user clicks the "GO" button will
not have a query string. On the one hand, this lets you include large values, or
sensitive values (like passwords) in the data that's submitted by the form, without
their appearing in the query string. On the other hand, if the user bookmarks
the page that results from the form's submission, that bookmark will be useless,
as it doesn't contain the submitted values. This, incidentally, is the main reason
that search engines like Google” use the query string to submit search terms. If

2Prior to PHP 4.1, 'posted' form variables were available in the $HTTP_POST_VARS array. This array
remains available in current versions of PHP for backwards compatibility.

i ttpy//www.google.com/

58

http://www.google.com/

Control Structures

you bookmark a search results page on AltaVista, you can use that bookmark to

perform the same search again later, because the search terms are contained in
the URL.

Sometimes, you want access to a variable without having to worry about whether
it was sent as palt of the query string or a form post. In cases like these, the
special $_REQUEST? array comes in handy. It contains all the variables that appear
in both $_GET and $_POST. With this variable, we can modify welcome4.php one
more time so that it can receive the first and last names of the user from either
source (welcome5.php):

<?php
$firstname = $ REQUEST['firstname'];
$lastname = $ REQUEST['lastname'];

echo("Welcome to my Website, $firstname $lastname!");
7>

That covers the basics of using forms to produce rudimentary user interaction
with PHP. I'll cover more advanced issues and techniques in later examples.

Control Structures

All the examples of PHP code that we've seen so far have been either simple, one-
statement scripts that output a string of text to the Web page, or have been series
of statements that were to be executed one after the other in order. If you've ever
written programs in any other languages (be they JavaScript, C, or BASIC) you
already know that practical programs are rarely so simple.

PHP, just like any other programming language, provides facilities that allow us
to affect the flow of control in a script. That is, the language contains special
statements that permit you to deviate from the one-after-another execution order
that has dominated our examples so far. Such statements are called control
structures. Don't get it? Don't worry! A few examples will illustrate perfectly.

The most basic, and most often-used, control structure is the if-else statement.
Here's what it looks like:

if (condition) {
// Statement(s) to be executed if
// condition is true.

} else {

3$_REQUEST is not available in versions of PHP prior to PHP 4.1.

59

Getting Started with PHP

// (Optional) Statement(s) to be
// executed if condition is false.

}

This control structure lets us tell PHP to execute one set of statements or another,
depending on whether some condition is true or false. If you'll indulge my vanity
for a moment, here's an example that shows a twist on the welcome1.php file we
created earlier:

$name = $ REQUEST['name'];

if ($name == 'Kevin') {

echo('Welcome, oh glorious leader!');
} else {

echo("Welcome, $name!");
}

Now, if the name variable passed to the page has a value of Kevin, a special mes-
sage will be displayed. Otherwise, the normal message will be displayed and will
contain the name that the user entered.

As indicated in the code structure above, the else clause (that part of the if-
else statement that says what to do if the condition is false) is optional. Let's
say you wanted to display the special message above only if the appropriate name
was entered, but otherwise, you didn't want to display any message. Here's how
the code would look:

$name = $ REQUEST['name'];
if ($name == 'Kevin') {
echo('Welcome, oh glorious leader!');

}

The == used in the condition above is the PHP equal-to operator that's used to
compare two values to see whether they're equal.

Important

Remember to type the double-equals, because if you were to use a single
equals sign you'd be using the assignment operator discussed above. So,
instead of comparing the variable to the designated value, instead, you'd
assign a new value to the variable (an operation which, incidentally,
evaluates as true). This would not only cause the condition always to be
true, but might also change the value in the variable you're checking,
which could cause all sorts of problems.

60

Control Structures

Conditions can be more complex than a single comparison for equality. Recall
that we modified welcome1.php to take a first and last name. If we wanted to
display a special message only for a particular person, we'd have to check the
values of both names (welcome6.php):

$firstname = $ REQUEST['firstname'];
$lastname = $ REQUEST['lastname'];

if ($firstname == 'Kevin' and $lastname == 'Yank') {
echo('Welcome, oh glorious leader!');
} else {

echo("Welcome to my Website, $firstname $lastname!");

}

This condition will be true if and only if $firstname has a value of Kevin and
$lastname has a value of Yank. The word and in the above condition makes the
whole condition true only if both of the comparisons evaluate to true. Another
such operator is or, which makes the whole condition true if one or both of two
simple conditions are true. If you're more familiar with the JavaScript or C forms
of these operators (&& and | | for and and or respectively), they work in PHP as
well.

We'll look at more complicated comparisons as the need arises. For the time being,
a general familiarity with the if-else statement is sufficient.

Another often-used PHP control structure is the while loop. Where the if-else
statement allowed us to choose whether or not to execute a set of statements
depending on some condition, the while loop allows us to use a condition to
determine how many times we'll execute repeatedly a set of statements. Here's
what a while loop looks like:

while (condition) {
/| statement(s) to execute over
// and over as long as condition
// remains true

}

The while loop works very similarly to an if-else statement without an else
clause. The difference arises when the condition is true and the statement(s) are
executed. Instead of continuing the execution with the statement that follows
the closing brace (}), the condition is checked again. If the condition is still true,
then the statement(s) are executed a second time, and a third, and will continue
to be executed as long as the condition remains true. The first time the condition
evaluates false (whether it's the first time it's checked, or the one-hundred-and-

61

Getting Started with PHP

first), execution jumps immediately to the next statement following the while
loop, after the closing brace.

Loops like these come in handy whenever you're working with long lists of things
(such as jokes stored in a database... hint-hint!), but for now we'll illustrate with
a trivial example: counting to ten. This script is available as count10.php in the
code archive.

$count = 1;

while ($count <= 10) {
echo("$count ");
$count++;

}

It looks a bit frightening, I know, but let me talk you through it line by line. The
first line creates a variable called $count and assigns it a value of 1. The second
line is the start of a while loop, the condition for which is that the value of $count
is less than or equal (<=) to 10. The third and fourth lines make up the body of
the while loop, and will be executed over and over, as long as that condition
holds true. The third line simply outputs the value of $count followed by a space.
The fourth line adds one to the value of $count ($count++ is a short cut for
$count = $count + 1—both will work).

So here's what happens when this piece of code is executed. The first time the
condition is checked, the value of $count is 1, so the condition is definitely true.
The value of $count (1) is output, and $count is given a new value of 2. The
condition is still true the second time it is checked, so the value (2) is output and
a new value (3) is assigned. This process continues, outputting the values 3, 4,
5,6,7,8,9,and 10. Finally, $count is given a value of 11, and the condition is
false, which ends the loop. The net result of the code is to output the string "1
2345678910 "

The condition in this example used a new operator: <= (less than or equal).
Other numerical comparison operators of this type include >= (greater than or
equal), < (less than), > (greater than), and != (not equal). That last one also
works when comparing text strings, by the way.

Another type of loop that is designed specifically to handle examples like that
above, where we are counting through a series of values until some condition is
met, is called a for loop. Here's what they look like:

for (initialize; condition; update) {
/| statement(s) to execute over
// and over as long as condition

62

Multipurpose Pages

// remains true after each update

}

Here's what the above while loop example looks like when implemented as a for
loop:

for ($count = 1; $count <= 10; $count++) {
echo("$count ");

}

As you can see, the statements that initialize and increment the $count variable
join the condition on the first line of the for loop. Although the code is a little
harder to read at first glance, having everything to do with controlling the loop
in the same place actually makes it easier to understand once you're used to the
syntax. Many of the examples in this book will use for loops, so you'll have plenty
of opportunity to practice reading them.

Multipurpose Pages

Let's say you wanted to construct your site so that it showed the visitor's name
at the top of every page. With our custom welcome message example above, we're
halfway there already. Here are the problems we'll need to overcome to extend
the example into what we need:

[We need the name on every page of the site, not just on one.
@ We have no control over which page of our site users will view first.

The first problem isn't too hard to overcome. Once we have the user's name in a
variable on one page, we can pass it with any request to another page by adding
the name to the query string of all links®*:

<a href="newpage.php?name=<?php echo(urlencode($_GET['name']));
?>"> A link

Notice that we've embedded PHP code right in the middle of an HTML tag. This
is perfectly legal, and will work just fine. A short cut exists for those times when
you simply want to echo a PHP value in the middle of your HTML code. The
short cut looks like this:

*If this sounds like a lot of work to you, it is. Don't worry; we'll learn much more practical methods
for sharing variables between pages in Chapter 12.

63

Getting Started with PHP

<a href="newpage.php?name=<?=urlencode($_GET['name'])?>"> A link

The tags <?= ... ?> perform the same function as the much longer code <?php
echo(...); ?>. Thisis a handy short cut that I'll use several times through
the rest of this book.

You're familiar with the echo function, but urlencode is probably new to you.
This function takes any special characters in the string (for example, spaces) and
converts them into the special codes they need to be in order to appear in the
query string. For example, if the $name variable had a value of "Kevin Yank",
then, as spaces are not allowed in the query string, the output of urlencode (and
thus the string output by echo) would be "Kevin+Yank". PHP would then auto-
matically convert it back when it created the $_GET variable in newpage.php.

Okay, so we've got the user's name being passed with every link in our site. Now
all we need is to get that name in the first place. In our welcome message example,
we had a special HTML page with a form in it that prompted the user for his or
her name. The problem with this (identified by the second point above) is that
we couldn't—nor would we wish to—force the user to enter our Website by that
page every time he or she visited our site.

The solution is to have every page of our site check to see if a name has been
specified, and prompt the user for a name if necessary This means that every
page of our site will either display its content, or prompt the user to enter a name,
depending on whether the $name variable is found to have a value. If this is be-
ginning to sound to you like a good place for an if-else statement, you're a
quick study!

We'll refer to pages that can decide whether to display one thing or another as
multipurpose pages. The code of a multipurpose page looks something like this:

<html>
<head>
<title> Multipurpose Page Outline </title>
</head>
<body>

<?php if (condition) { ?>

<!-- HTML content to display if condition is true -->

>Again, if you're dreading the thought of adding PHP code to prompt the user for a name to every
page of your site, don't fret; we'll cover a more practical way to do this later.

64

Multipurpose Pages

<?php } else { ?>
<!-- HTML content to display if condition is false -->
<?php } ?>

</body>
</html>

This code may confuse you at first, but in fact this is just a normal if-else
statement with HTML code sections that depend on the condition, instead of
PHP statements. This example illustrates one of the big selling points of PHP:
that you can switch in and out of "PHP mode" whenever you like. If you think
of <?php as the command to switch into "PHP mode", and ?> as the command
to go back into "normal HTML mode", the above example should make perfect
sense.

There's an alternate form of the if-else statement that can make your code
more readable in situations like this. Here's the outline for a multipurpose page
using the alternate if-else form:

<html>

<head>

<title> Multi-Purpose Page Outline </title>

</head>

<body>

<?php if (condition): ?>

<!-- HTML content to display if condition is true -->
<?php else: ?>

<!-- HTML content to display if condition is false -->

<?php endif; ?>

</body>
</html>

Okay, now that we have all the tools we need in hand, let's look at a sample page
of our site (samplepage.php in the code archive):

65

Getting Started with PHP

<html>
<head>
<title> Sample Page </title>
</head>
<body>

<?php if (!isset($_GET['name'])): ?>

<!-- No name has been provided, so we
prompt the user for one. -->

<form action="<?=$_SERVER['PHP_SELF']?>" method="get">
Please enter your name: <input type="text" name="name" />
<input type="submit" value="GO" />

</form>

<?php else: ?>
<p>Your name: <?=$ GET['name']?></p>

<p>This paragraph contains a
<a href="newpage.php?name=<?=urlencode($_GET['name'])?>"
>link that passes the name variable on to the next
document.</p>

<?php endif; ?>

</body>
</html>

There are two new tricks in the above code, but overall you should be fairly
comfortable with the way it works. First of all, we're using a new function called
isset in the condition. This function returns (outputs) a value of true if the
variable it is given has been assigned a value (i.e. if a name has been provided in
this example), and false if the variable does not exist (i.e. if a name has not yet
been given). The exclamation mark (also known as the negation operator, or
the not operator), which appears before the name of the function, reverses the
returned value from true to false, or vice-versa. Thus, the form is displayed when
the $ GET['name'] variable is not set.

The second new trick is the use of the variable $_SERVER[' PHP_SELF '] to specify
the action attribute of the <form> tag. Like $_GET, $_POST, and $_REQUEST,
$_SERVER is an array variable that is automatically created by PHP. $_SERVER
contains a whole bunch of information supplied by your Web server. In particular,
$_SERVER['PHP_SELF '] will always be set to the URL of the current page. This

66

Summary

gives us an easy way to create a form that, when submitted, will load the very
same page, but this time with the $name variable specified.®

If we structure all the pages on our site in this way, visitors will be prompted for
their name by the first page they attempt to view, whichever page this happens
to be. Once they enter their name and click "GO", they'll be presented with the
exact page they requested. The name they entered is then passed in the query
string of every link from that point onward, ensuring that they are prompted
only once.

Summary

In this chapter, we've had a taste of the PHP server-side scripting language by
exploring all the basic language features: statements, variables, operators, and
control structures. The sample applications we've seen have been reasonably
simple, but don't let that dissuade you. The real power of PHP is in the hundreds
of built-in functions that let you access data in a MySQL database, send email,
dynamically generate images, and even create Adobe Acrobat PDF files on the

fly.

In Chapter 4, we'll delve into the MySQL functions in PHP, to show how to
publish the joke database that we created in Chapter 2 on the Web. This chapter
will set the scene for the ultimate goal of this book—creating a complete content
management system for your Website in PHP and MySQL.

5The $_SERVER array was introduced in PHP 4.1. In previous versions of PHP, these values were
available in an array called $HTTP_SERVER_VARS. Also, when register_globals is set to On in the
php.ini file (the default setting in PHP versions prior to 4.2), $_SERVER['PHP_SELF '] was available
simply as $PHP_SELF.

67

68

Publishing MySQL Data on the Web

This is it—the stuff you signed up for! In this chapter, you'll learn how to take
information stored in a database and display it on a Web page for all to see. So
far you have installed and learned the basics of MySQL, a relational database
engine, and PHP, a server-side scripting language. Now you'll see how to use
these two new tools together to create a true database-driven Website!

A Look Back at First Principles

Before we leap forward, it's worth a brief look back to remind you of our ultimate
goal. We have two powerful, new tools at our disposal: the PHP scripting language,
and the MySQL database engine. It's important to understand how these two
will fit together.

The whole idea of a database-driven Website is to allow the content of the site
to reside in a database, and for that content to be dynamically pulled from the
database to create Web pages for people to view with a regular Web browser. So
on one end of the system you have a visitor to your site who uses a Web browser
toload http://www.yoursite.com/, and expects to view a standard HTML Web
page. On the other end you have the content of your site, which sits in one or
more tables in a MySQL database that understands only how to respond to SQL
queries (commands).

Publishing MySQL Data on the Web

Figure 4.1. PHP retrieves MySQL data to produce Web pages

e

b Server)
Obtain rogamie
Data PHP
-——a| YWeb Browser
> i
My SEL o

Page

\ / Request

As shown in Figure 4.1, the PHP scripting language is the go-between that speaks
both languages. It processes the page request and fetches the data from the
MySQL database, then spits it out dynamically as the nicely-formatted HTML
page that the browser expects. With PHP, you can write the presentation aspects
of your site (the fancy graphics and page layouts) as "templates” in regular HTML.
Where the content belongs in those templates, you use some PHP code to connect
to the MySQL database and—using SQL queries just like those you used to create
a table of jokes in Chapter 2—retrieve and display some content in its place.

Just so it's clear and fresh in your mind, this is what will happen when someone
visits a page on your database-driven Website:

@ The visitor's Web browser requests the Web page using a standard URL.

@ The Web server software (Apache, IIS, or whatever) recognizes that the re-
quested file is a PHP script, and so the server interprets the file using its PHP
plug-in, before responding to the page request.

@ Certain PHP commands (which you have yet to learn) connect to the MySQL
database and request the content that belongs in the Web page.

@ The MySQL database responds by sending the requested content to the PHP
script.

@ The PHP script stores the content into one or more PHP variables, and then
uses the now-familiar echo function to output the content as part of the Web

page.

70

Connecting to MySQL with PHP

@ The PHP plug-in finishes up by handing a copy of the HTML it has created
to the Web server.

O The Web server sends the HTML to the Web browser as it would a plain
HTML file, except that instead of coming directly from an HTML file, the
page is the output provided by the PHP plug-in.

Connecting to MySQL with PHP

Before you can get content out of your MySQL database for inclusion in a Web
page, you must first know how to establish a connection to MySQL from inside
a PHP script. Back in Chapter 2, you used a program called mysql that allowed
you to make such a connection. PHP has no need of any special program, however;
support for connecting to MySQL is built right into the language. The following
PHP function call establishes the connection:

mysgl connect(address, username, password);

Here, address is the IP address or host name of the computer on which the
MySQL server software is running ("localhost" if it's running on the same
computer as the Web server software), and username and password are the same
MySQL user name and password you used to connect to the MySQL server in
Chapter 2.

You may remember that functions in PHP usually return (output) a value when
they are called. Don't worry if this doesn't ring any bells for you—it's a detail that
I glossed over when I first discussed functions. In addition to doing something
useful when they are called, most functions output a value, and that value may
be stored in a variable for later use. The mysql _connect function shown above,
for example, returns a number that identifies the connection that has been estab-
lished. Since we intend to make use of the connection, we should hold onto this
value. Here's an example of how we might connect to our MySQL server.

$dbcnx = mysql connect('localhost', 'root', 'mypasswd');

As described above, the values of the three function parameters may differ for
your MySQL server. What's important to see here is that the value returned by
mysql_connect (which we'll call a connection identifier) is stored in a variable
named $dbcnx.

As the MySQL server is a completely separate piece of software, we must consider
the possibility that the server is unavailable or inaccessible due to a network
outage, or because the username/password combination you provided is not ac-

71

Publishing MySQL Data on the Web

cepted by the server. In such cases, the mysql_connect function doesn't return
a connection identifier, as no connection is established. Instead, it returns false.
This allows us to react to such failures using an if statement:

$dbcnx = @mysql connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {
echo('<p>Unable to connect to the '
'database server at this time.</p>');
exit();

}

There are three new tricks in the above code fragment. First, we have placed an
@ symbol in front of the mysql_connect function. Many functions, including
mysql_connect, automatically display ugly error messages when they fail. Placing
the @ symbol (also known as the error suppression operator) in front of the
function name tells the function to fail silently, allowing us to display our own,
friendlier error message.

Next, we put an exclamation point in front of the $dbcnx variable in the condition
of the if statement. The exclamation point is the PHP negation operator, which
basically flips a false value to true, or a true value to false. Thus, if the connection
fails and mysql_connect returns false, !$dbcnx will evaluate to true, and cause
the statements in the body of our if statement to be executed. Alternatively, if
a connection was made, the connection identifier stored in $dbcnx will evaluate
to true (any number other than zero is considered "true" in PHP), so !$dbcnx
will evaluate to false, and the statements in the if statement will not be executed.

The last new trick is the exit function, which is the first example that we've en-
countered of a function that takes no parameters. All this function does is cause
PHP to stop reading the page at this point. This is a good response to a failed
database connection, because in most cases the page will be unable to display
any useful information without that connection.

As in Chapter 2, once a connection is established, the next step is to select the
database with which you want to work. Let's say we want to work with the joke
database we created in Chapter 2. The database we created was called jokes. Se-
lecting that database in PHP is just a matter of another function call:

mysgl select_db('jokes', $dbcnx);

Notice we use the $dbcnx variable that contains the database connection identi-
fier to tell the function which database connection to use. This parameter is ac-
tually optional. When it's omitted, the function will automatically use the link
identifier for the last connection opened. This function returns true when it's

72

Sending SQL Queries with PHP

successful and false if an error occurs. Once again, it's prudent to use an if
statement to handle errors:

if (! @mysql select db('jokes')) {
die('<p>Unable to locate the joke '
'database at this time.</p>');

}

Notice that this time, instead of assigning the result of the function to a variable
and then checking if the variable is true or false, I have simply used the function
call itself as the condition. This may look a little strange, but it's a very commonly
used short cut. To check if the condition is true or false, PHP executes the function
and then checks its return value—exactly what we need to happen.

Another short cut I've used here is the die function. die works just like echo,
except that the script exits after it. So calling die is equivalent to a call to echo
followed by a call to exit, which is what we used for mysql_connect above.

With a connection established and a database selected, we are now ready to begin
using the data stored in the database.

Sending SQL Queries with PHP

In Chapter 2, we connected to the MySQL database server using a program called
mysql that allowed us to type SQL queries (commands) and view the results of
those queries immediately. In PHP, a similar mechanism exists: the mysql_query
function.

mysql _query(query, connection id);

Here query is a string that contains the SQL command we want to execute. As
with mysql_select_db, the connection identifier parameter is optional.

What this function returns will depend on the type of query being sent. For most
SQL commands, mysql_query returns either true or false to indicate success or
failure respectively. Consider the following example, which attempts to create
the Jokes table we created in Chapter 2:

$sgql = 'CREATE TABLE Jokes (
ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
JokeText TEXT,
JokeDate DATE NOT NULL
)"
if (@mysql _query($sql)) {

73

Publishing MySQL Data on the Web

echo('<p>Jokes table successfully created!</p>');
} else {
die('<p>Error creating Jokes table: '
mysql_error() . '</p>');

}

Again, we use the @ trick to suppress any error messages produced by mysql_query,
and instead print out a friendlier error message of our own. The mysql_error
function used here returns a string of text that describes the last error message
that was sent by the MySQL server.

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data),
MySQL also keeps track of the number of table rows (entries) that were affected
by the query. Consider the SQL command below, which we used in Chapter 2
to set the dates of all jokes that contained the word "chicken":

$sgl = "UPDATE Jokes SET JokeDate='1990-04-01'
WHERE JokeText LIKE 'Schicken%'";

When we execute this query, we can use the mysql_affected_rows function to
view the number of rows that were affected by this update:

if (emysql query($sql)) {

echo('<p>Update affected ' . mysql_affected_rows()
" rows.</p>');
} else {
die('<p>Error performing update: ' . mysql_error()
'</p>');

}

SELECT queries are treated a little differently, since they can retrieve a lot of data,
and PHP must provide ways to handle that information.

Handling SELECT Result Sets

For most SQL queries, the mysql_query function returns either true (success) or
false (failure). For SELECT queries this just isn't enough. You'll recall that SELECT
queries are used to view stored data in the database. In addition to indicating
whether the query succeeded or failed, PHP must also receive the results of the
query. As a result, when it processes a SELECT query, mysql_query returns a
number that identifies a result set, which contains a list of all the rows (entries)
returned from the query. False is still returned if the query fails for any reason.

74

Handling SELECT Result Sets

$result = @mysql_query('SELECT JokeText FROM Jokes');
if (!$result) {
die('<p>Error performing query: ' . mysql_error()
'</p>');
}

Provided no error was encountered in processing the query, the above code will
place a result set that contains the text of all the jokes stored in the Jokes table
into the variable $result. As there's no practical limit on the number of jokes
in the database, that result set can be pretty big.

We mentioned before that the while loop is a useful control structure for dealing
with large amounts of data. Here's an outline of the code to process the rows in
a result set one at a time:

while ($row = mysql_fetch_array($result)) {
// process the row...

}

The condition for the while loop probably doesn't much resemble the conditions
you're used to, so let me explain how it works. Consider the condition as a
statement all by itself:

$row = mysql fetch array($result);

The mysql_fetch_array function accepts a result set as a parameter (stored in
the $result variable in this case), and returns the next row in the result set as
an array (see Chapter 3 for a discussion of arrays). When there are no more rows
in the result set, mysql fetch_array instead returns false.

Now, the above statement assigns a value to the $row variable, but at the same
time the whole statement itself takes on that same value. This is what lets you
use the statement as a condition in the while loop. Since a while loop will keep
looping until its condition evaluates to false, this loop will occur as many times
as there are rows in the result set, with $row taking on the value of the next row
each time the loop executes. All that's left is to figure out how to get the values
out of the $row variable each time the loop runs.

Rows of a result set are represented as associative arrays. The indices are named
after the table columns in the result set. If $row is a row in our result set, then
$row['JokeText'] is the value in the JokeText column of that row. So here's
what our while loop should look like if we want to print the text of all the jokes
in our database:

75

Publishing MySQL Data on the Web

while ($row = mysql_fetch_array($result)) {
echo('<p>' . $row['JokeText'] . '</p>");
}

To summarize, here's the complete code of a PHP Web page that will connect
to our database, fetch the text of all the jokes in the database, and display them
in HTML paragraphs. The code of this example is available as jokelist.php in
the code archive.

<html>

<head>

<title> Our List of Jokes </title>
</head>

<body>

<?php

// Connect to the database server
$dbcnx = @mysql _connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {
die('<p>Unable to connect to the '
'database server at this time.</p>');
}

// Select the jokes database
if (! @mysql_select_db('jokes')) {
die('<p>Unable to locate the joke '
'database at this time.</p>');
}

7>

<p> Here are all the jokes in our database: </p>
<blockquote>

<?php

// Request the text of all the jokes
$result = @mysql _query('SELECT JokeText FROM Jokes');
if (!$result) {
die('<p>Error performing query: ' . mysql _error()
</p>');
}

// Display the text of each joke in a paragraph
while ($row = mysql fetch_array($result)) {
echo('<p>' . $row['JokeText'] . '</p>');

}

76

Inserting Data into the Database

7>
</blockquote>
</body>
</html>

Inserting Data into the Database

In this section, we'll see how we can use all the tools at our disposal to allow vis-
itors to our site to add their own jokes to the database. If you enjoy a challenge,
you might want to try to figure this out on your own before you read any further.
There is little new material in this section. It's mostly just a sample application
of everything we've learned so far.

If you want to let visitors to your site type in new jokes, you'll obviously need a
form. Here's the code for a form that will fit the bill:

<form action="<?=$ SERVER['PHP_SELF']?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>

</form>

As we've seen before, this form, when submitted, will load the very same page
(because we used the $_SERVER['PHP_SELF'] variable for the form's action at-
tribute), but with two variables attached to the request. The first, joketext, will
contain the text of the joke as typed into the text area. The second, submitjoke,
will always contain the value "SUBMIT"; the presence of this variable is a signal
that a joke has been submitted. Both of these variables will appear in the $_POST
and $_REQUEST arrays created by PHP.

To insert the submitted joke into the database, we just use mysql_query to run
an INSERT query, using the $joketext variable for the value to be submitted:

if (isset($_POST['submitjoke'])) {
$joketext = $ POST['joketext'];
$sgl = "INSERT INTO Jokes SET
JokeText='$joketext',
JokeDate=CURDATE()";
if (@mysqgl query($sql)) {
echo('<p>Your joke has been added.</p>');
} else {
echo('<p>Error adding submitted joke: '

77

Publishing MySQL Data on the Web

mysql _error() . '</p>');
}
}

The one new trick in this whole example is shown here in bold. The MySQL
function CURDATE () is used here to assign the current date as the value of the
JokeDate column. MySQL actually has dozens of these functions, but we'll only
introduce them as required. For a complete function reference, refer to Appendix
B.

We now have the code that will allow a user to type a joke and add it to our
database. All that remains is to slot it into our existing joke viewing page in a
useful fashion. Since most users will only want to view our jokes, we don't want
to mar our page with a big, ugly form unless the user expresses an interest in
adding a new joke. For this reason, our application is well suited for implement-
ation as a multipurpose page. Here's the code (available as jokes.php in the code
archive):

<html>
<head>
<title> The Internet Joke Database </title>
</head>
<body>
<?php
if (isset($_GET['addjoke']l)): // If the user wants to add a joke
7>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>
</form>
<?php

else: // Default page display

// Connect to the database server
$dbcnx = @mysql_connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {
die('<p>Unable to connect to the '
'database server at this time.</p>');

}

// Select the jokes database

78

Inserting Data into the Database

if (! @mysql_select_db('jokes')) {
die('<p>Unable to locate the joke '
'database at this time.</p>');

}

// If a joke has been submitted,
// add it to the database.
if (isset($_POST['submitjoke'])) {
$joketext = $ POST['joketext'];
$sql = "INSERT INTO Jokes SET
JokeText="'$joketext"',
JokeDate=CURDATE()";
if (@mysql_query($sql)) {
echo('<p>Your joke has been added.</p>');
} else {
echo('<p>Error adding submitted joke: '
mysql_error() . '</p>');
}
}

echo('<p> Here are all the jokes in our database: </p>');

// Request the text of all the jokes
$result = @mysql_query('SELECT JokeText FROM Jokes');
if (!$result) {
die('<p>Error performing query: '
mysql _error() . '</p>');

}

// Display the text of each joke in a paragraph
while ($row = mysql fetch_array($result)) {
echo('<p>' . $row['JokeText'] . '</p>');

}

// When clicked, this link will load this page

// with the joke submission form displayed.

echo('<p><a href="' . $ SERVER['PHP_SELF']
'?addjoke=1">Add a Joke!</p>');

endif;
7>

</body>
</html>

79

Publishing MySQL Data on the Web

There we go! With a single file that contains a little PHP code we're able to view
existing jokes in, and add new jokes to, our MySQL database.

A Challenge

As homework, see if you can figure out how to put a link labelled "Delete this
Joke" next to each joke on the page that, when clicked, will remove that joke from
the database and display the updated joke list. Here are a few hints to get you
started:

[You'll still be able to do it all in a single multipurpose page.

QA You'll need to use the SQL DELETE command, which we learned about in
Chapter 2.

@ This is the tough one. To delete a particular joke, you'll need to be able to
identify it uniquely. The ID column in the Jokes table was designed to serve
this purpose. You're going to have to pass the ID of the joke to be deleted
with the request to delete a joke. The query string of the "Delete this Joke"
link is a perfect place to put this value.

If you think you have the answer, or if you'd just like to see the solution, turn
the page. Good luck!

Summary

In this chapter, you learned some new PHP functions that allow you to interface
with a MySQL database server. Using these functions, you built your first data-
base-driven Website, which published the jokes database online, and allowed
visitors to add jokes of their own to it.

In Chapter 5, we go back to the MySQL command line. We'll learn how to use
relational database principles and advanced SQL queries to represent more
complex types of information, and give our visitors credit for the jokes they add!

“Homework” Solution

Here's the solution to the "homework" challenge posed above. These changes
were required to insert a "Delete this Joke" link next to each joke:

[Previously, we passed an $addjoke variable with our "Add a Joke!" link at the
bottom of the page to signal that our script should display the joke entry form,

80

“Homework” Solution

instead of the usual list of jokes. In a similar fashion, we pass a deletejoke
variable with our "Delete this Joke" link to indicate our desire to have a joke

deleted.

@ For each joke, we fetch the ID column from the database, along with the
JokeText column, so that we know which ID is associated with each joke in
the database.

O We set the value of the $_GET['deletejoke'] variable to the ID of the joke
that we're deleting. To do this, we insert the ID value fetched from the data-
base into the HTML code for the "Delete this Joke" link of each joke.

[Using an if statement, we watch to see if $_GET['deletejoke'] is set to a
particular value (through the isset function) when the page loads. If it is,
we use the value to which it is set (the ID of the joke to be deleted) in an SQL
DELETE statement that deletes the joke in question.

Here's the complete code, which is also available as challege.php in the code
archive. If you have any questions, don't hesitate to post them in the SitePoint
Forums'!

<html>
<head>
<title> The Internet Joke Database </title>
</head>
<body>
<?php
if (isset($_GET['addjoke']l)): // If the user wants to add a joke
7>

<form action="<?=$_ SERVER['PHP_SELF']?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>
</form>
<?php

else: // Default page display

// Connect to the database server
$dbcnx = @mysql _connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {

"http://www.sitepointforums.com/

81

http://www.sitepointforums.com/
http://www.sitepointforums.com/

Publishing MySQL Data on the Web

die('<p>Unable to connect to the '
'database server at this time.</p>');

}

// Select the jokes database
if (! @mysql_select_db('jokes')) {
die('<p>Unable to locate the joke '
'database at this time.</p>');

}

// If a joke has been submitted,
// add it to the database.
if (isset($_POST['submitjoke'])) {
$joketext = $ POST['joketext'];
$sql = "INSERT INTO Jokes SET
JokeText='$joketext"',
JokeDate=CURDATE()";
if (@mysql_query($sql)) {
echo('<p>Your joke has been added.</p>');
} else {
echo('<p>Error adding submitted joke: '
mysql_error() . '</p>');
}

}

// If a joke has been deleted,
// remove it from the database.
if (isset($_GET['deletejoke']l)) {
$jokeid = $ GET['deletejoke'];
$sql = 'DELETE FROM Jokes
WHERE ID=$jokeid';
if (@mysql_query($sql)) {
echo('<p>The joke has been deleted.</p>');
} else {
echo('<p>Error deleting joke: '
mysql_error() . '</p>');
}
}

echo('<p> Here are all the jokes in our database:

// Request the ID and text of all the jokes

</p>");

$result = @mysql_query('SELECT ID, JokeText FROM Jokes');

if (!$result) {
die('<p>Error performing query: '
mysql _error() . '</p>');

82

“Homework” Solution

7>

}

// Display the text of each joke in a paragraph
// with a "Delete this Joke" link next to each.
while ($row = mysql fetch_array($result)) {
$jokeid = $row['ID'];
$joketext = $row['JokeText'];
echo('<p>' . $joketext
'<a href="' . $_SERVER['PHP_SELF']
'?deletejoke=' . $jokeid . '">'
'Delete this Joke</p>');
}

// When clicked, this link will load this page

// with the joke submission form displayed.

echo('<p><a href="' . $ SERVER['PHP_SELF']
'?addjoke=1">Add a Joke!</p>');

endif;

</body>
</html>

83

84

What’s Next?

If you've enjoyed the first four chapters of Build Your Own
Database Driven Website Using PHP & MySQL, why not keep
reading?

Explore the storage of binary data in MySQL, learn about cookies
and sessions in PHP, and benefit from a handy set of PHP and
MySQL reference tables that include PHP and MySQL syntax,
functions, column types, and more.

In the next 8 chapters, you’ll learn how to

0 Build a working Content Management System (CMS)
Build an ecommerce shopping cart
Automatically send email in response to user requests
Build a Web-based file repository or photo gallery

Utilize sessions and cookies to track site visitors

0 N N S

And a whole lot more...

You shouldn’t be without this amazing, hands-on desk reference!

Pick up vour copy from sitepoint.com today!

“Kevin Yank has the extraordinary ability to introduce a new level of
clarity and simplicity to a powerful technology like MySQL. This book is
a must-have for all Webmasters.”

— Matt Wagner, MySQL.com

http://www.sitepoint.com/books/?bookid=More

84

Index

Symbols

negation operator in PHP, 66, 72
=
inequality operator in PHP, 62
around strings in PHP, 53
$_COOKIE, 198
$ FILES, 178, 187
$_GET, 56
$_POST, 58
$_REQUEST, 59
$_SERVER
HTTP_USER_AGENT, 190
$_SESSION, 203
%
modulus operator in MySQL, 234
wildcard for LIKE operator, 46
&& (see and operator)

around strings in PHP, 52, 53

0
calling PHP functions, 52

in regular expressions, 125

in regular expressions, 125
multiplication operator in PHP, 53

addition operator in PHP, 53
in regular expressions, 125

subtraction operator in PHP, 53

concatenation operator in PHP, 53
in regular expressions, 126

string concatenation operator in
PHP, 112
.cnf files, 9
.htaccess
protecting directories with, 100
/
division operator in PHP, 53
/* ¥/
comments in PHP, 53
//
comments in PHP, 53
on the MySQL command line, 39
terminating PHP statements, 51
<
<=
less than or equal in PHP, 62
less than in PHP, 62
<?=7?>
PHP expression delimiters, 64
<?php ?>
PHP code delimiters, 50, 65
assignment operator in PHP, 53
equal-to operator in PHP, 60
>
>=
greater than or equal in PHP, 62
greater than in PHP, 62
?
in regular expressions, 125
@
error suppression operator in PHP,
72
\c
on the MySQL command line, 39
\n
line feed character in PHP, 110

Index

\r

carriage return character in PHP, 110
\t

tab character in PHP, 110
|| (see or operator)

A

adding CMS items with PHP, 104
addslashes, 107
and mysql_escape_string, 264
aliases
for columns and tables, 158-161
ALTER TABLE, 86, 89, 211
ANALYZE TABLE, 214
and operator, 61
Apache 2.0
compatibility with PHP, 14
array
PHP function, 54, 116, 205
arrays, 54
associative, 54
indices, 54
looping through elements, 117-118
processing when submitted, 115
submitting in a form, 114
AUTO_INCREMENT, 41
obtaining last assigned value, 116

B

BINARY, 252
BLOB types, 186

C

cancelling a query, 39

case sensitivity
in SQL queries, 41

categories
assigning to CMS items with PHP,
109

database design for, 95
managing with PHP, 108
character entities, 106
code archive, 5
columns, 36
(see also fields)
setting data types, 42
command prompt
in Windows, 10
commands
MySQL (see queries)
comments, 53
concurrent database operations, 156
connecting
to MySQL with PHP, 71
connection identifiers, 71
content management systems, 99
content submissions
accepting from visitors, 135
control structures, 59
cookies, 197-201
browser-enforced limits, 201
deleting, 199, 199
saving after browser sessions, 199
setting, 199
copy, 174
count
PHP function, 117, 132, 206
CREATE DATABASE, 40, 214
alternative to mysql_create_db, 262
CREATE INDEX, 214
(see also ALTER TABLE)
CREATE TABLE, 41, 186, 215
cron, 142, 177
CURDATE, 78

D

data relationships, 93
many-to-many, 95
many-to-one, 93
one-to-many, 93

274

one-to-one, 93
database anomalies

delete anomalies, 87

update anomalies, 87
database server, 35
databases, 35

creating, 40

designing, 85

listing, 38

mysql database, 39

storing content in, 35, 69

using, 40
DELETE, 47, 104, 217

rows affected by, 74
deleting CMS items with PHP, 80, 103
DESCRIBE, 42, 86, 217
die, 73
DROP DATABASE, 39, 217
DROP INDEX, 217

(see also ALTER TABLE)
DROP TABLE, 43, 218

E

echo, 51

editing CMS items with PHP, 105
else statements (see if-else statements)
email

sending with PHP, 182-184
enctype

attribute of form tags, 177
ereg, 123
ereg_replace, 126
eregi, 124

eregi_replace, 126
escaping special characters, 107, 129

in regular expressions, 125, 127, 128
exit

in PHP, 72

on the MySQL command line, 39
EXPLAIN, 218
explode, 132

F

fclose, 174
fields, 36
(see also columns)
files
accessing with PHP, 173
storing in MySQL, 187
flow of control (see control structures)
fopen, 174
for loops, 62, 205
forced rows, 164
foreach loops, 118
formatting content, 121
forms
submission methods, 58
fread, 174
functions
(see also PHP, built-in functions)
parameters, 52

return values, 71
fwrite, 174

G

GRANT, 143, 218
examples of use, 144
group-by functions (see

functions)

summary

H

header, 189, 191
(see also HT'TP headers)
HTML
stripping out of content, 122
htmlspecialchars, 103, 106, 122
HTTP headers, 189
content-disposition, 189
content-length, 189
content-type, 189
cookie, 198

Index

location, 191
set-cookie, 198, 198

I

ID columns, 36, 41
(see also primary keys)
if-else statements, 59
include, 171, 172
InnoDB tables, 158
INSERT, 43, 105, 219
(see also REPLACE)
and TIMESTAMP columns, 258
IGNORE, 119
rows affected by, 74
is_uploaded._file, 181, 187

J
joins, 91, 227
inner joins, 227
left joins, 163-165
(see also outer joins)
natural joins, 228
outer joins, 228

L

line breaks

platform-specific issues, 127
LOAD DATA INFILE, 220
LOCK TABLES, 157, 221
look-up tables, 96

queries using, 97

M

magic quotes, 107

and mysql_escape_string, 264
mail, 182
MAX_FILE_SIZE

hidden form field, 179

my.cnf, 8, 19
max_allowed_packet, 195
my.ini (see my.cnf)
myisamchk, 150
MySQL, 2, 7
administration, 137
assigning a root password, 27
backing up data, 138
(see also update logs)
command-line client, 37
controlling access to, 142
tips, 146
data files, 150
getting started with, 35
installing
in Linux, 17
in Windows, 8
killing server process, 148
logging on to, 37
lost password recovery, 148
password, 38
removing packaged versions, 16
repairing corrupt data files, 149
tips, 151
restoring backed up data, 139, 142
running automatically at start-up,
11,19
transaction support, 158
user name, 38
MySQL column types, 251
BIGINT, 253
BLOB, 256
CHAR, 254
DATE, 257
DATETIME, 258
DECIMAL, 254
DOUBLE, 253
ENUM, 135, 256
FLOAT, 253
for binary data, 186
INT, 41, 252
LONGBLOB, 256

276

LONGTEXT, 256 CURDATE, 245

MEDIUMBLOB, 256 CURRENT _DATE, 245

MEDIUMINT, 252 CURRENT _TIME, 245

MEDIUMTEXT, 256 CURRENT _TIMESTAMP, 245, 246

SET, 257 CURTIME, 245

SMALLINT, 252 DATABASE, 246

TEXT, 41, 256 DATE_ADD, 242

TEXT vs. BLOB types, 186 DATE_FORMAT, 244

TIME, 258 DATE_SUB, 242

TIMESTAMP, 258 DAYNAME, 241

TINYBLOB, 255 DAYOFMONTH, 241

TINYINT, 252 DAYOFWEEK, 241

TINYTEXT, 255 DAYOFYEAR, 241

VARCHAR, 255 DECODE, 247

YEAR, 258 DEGREES, 236
MySQL functions, 233 ELT, 239

ABS, 233 ENCODE, 247

ACOS, 235 ENCRYPT, 247

ADDDATE, 242 EXP, 234

ASCII, 236 EXPORT_SET, 240

ASIN, 235 FIELD, 239

ATAN, 235, 235 FIND_IN_SET, 240

ATAN2, 235 FLOOR, 234

AVG, 249 FORMAT, 247

BENCHMARK, 248 FROM_DAYS, 244

BIN, 236 FROM_UNIXTIME, 246

BIT_AND, 250 GET_LOCK, 248

BIT LENGTH, 237 GREATEST, 236

BIT _OR, 250 HEX, 237

CASE, 233, 233 HOUR, 242

CEILING, 234 IF, 233

CHAR, 237 IFNULL, 233

CHAR_LENGTH, 237 INET _ATON, 248

CHARACTER _LENGTH, 237 INET _NTOA, 248

CONCAT, 237 INSERT, 239

CONCAT WS, 237 INSTR, 237

CONNECTION 1D, 248 LAST _INSERT 1D, 247

CONYV, 236 LCASE, 240

COS, 235 LEAST, 236

COT, 235 LEFT, 45, 238

COUNT, 45, 161, 249, 249 LENGTH, 237

omitting NULLs, 164 LOAD_FILE, 240

277

Index

LOCATE, 237, 237
LOG, 234

LOG10, 234

LPAD, 238

LTRIM, 238
MAKE_SET, 240
MDS5, 247

MID, 238

MIN, 249

MINUTE, 242
MOD, 234
MONTH, 241
MONTHNAME, 241
NOW, 245

NULLIF, 233

OCT, 236
OCTET_LENGTH, 237
ORD, 236
PASSWORD, 246
PERIOD_ADD, 242
PERIOD_DIFF, 242
PI, 235

POSITION, 237
POW, 235

POWER, 235
QUARTER, 241
RADIANS, 236
RAND, 236
RELEASE_LOCK, 248
REPEAT, 239
REPLACE, 239
REVERSE, 239
RIGHT, 238
ROUND, 234, 234
RPAD, 238

RTRIM, 238
SEC_TO_TIME, 246
SECOND, 242
SESSION_USER, 246
SIGN, 234

SIN, 235
SOUNDEX, 239

SPACE, 239
SQRT, 235
STD, 249
STDDEV, 249
SUBDATE, 242
SUBSTRING, 238, 238

SUBSTRING_INDEX, 238

SUM, 249
SYSDATE, 245
SYSTEM_USER, 246
TAN, 235
TIME_FORMAT, 245
TIME_TO_SEC, 246
TO_DAYS, 243
TRIM, 239
TRUNCATE, 236
UCASE, 240

UNIX _TIMESTAMP, 246

USER, 246
VERSION, 248
WEEK, 241
WEEKDAY, 241
YEAR, 241
YEARWEEK, 242
mysql.server, 19

mysql_affected_rows, 74, 261, 262

mysql_close, 261
mysql_connect, 71, 262
mysql_create_db, 262
mysql_db_name, 263, 269
mysql_db_query, 263
mysql_drop_db, 263
mysql_ermo, 264
mysql_error, 74, 264
mysql_escape_string, 264
mysql_fetch_array, 75, 264
mysql_fetch_assoc, 265
mysql_fetch_field, 265
mysql_fetch_lengths, 266
mysql_fetch_object, 266
mysql_fetch_row, 266
mysql_field_flags, 266

278

mysql_field_len, 266 P
mysql_field_name, 267 PHP. 2. 7
mysql_field_seek, 267 b i 51
mysql_field_table, 267 asic §yntax, -
mysql_field_type, 267 bulljn-m functlons., 51
mysql:free__result, 267 gettmg started with, 49
mysql_get_client_info, 268 mnst al}}ng 21
mysql_get_host_info, 268 m V\lfr_lug’ 1
mysql_get_proto_info, 268 1 YVINdows, _
mysql_get_server_info, 268 w¥th Apache for Windows, 13
mysql_insert_id, 116, 219, 268 Wltb 1IS, 12 .
mysql_list_dbs, 269 removing packaged versions, 16
mysql_list_tables, 269 php.lzllll,\/% 2 (2)?; X 98
mysql_num_fields, 269 and iviac 4 ’
mysql_num_rows, 270 femall settings, 182
mysql_pconnect, 270 mclude_path, 172
mysql_query, 73, 270 post_max_size, 179

using result sets from, 74 session setup, .202
mysql_result, 270 upload_max_fl.lemze, 179
mysql_select_db, 72, 271 huﬂof&tmp—gg’ 178
mysql_tablename, 271 IP;RI;MXRYHE%Y 41
mysql_unbuffered_query, 271) ’
mysqld.exe primary keys, 96

choosing MySQL server version, 10 multi-column, 97

mysqldump, 139 Q

N queries, 40

NOT NULL, 41, 135 cancelling, 39

number format. 205 case sensitivity, 41
- ’ query string, 55

quit
O on the MySQL command line, 39
operators, 53
(see also individual entries for oper- R

ators) f al i .
arithmetic, 53 referential integrity

concatenation, 53 i‘n MySQL, 103
OPTIMIZE TABLE, 221 register_globals, 56

tor, 61 regular expressions, 123
oF operator capturing matched text, 128

string replacement with, 126

279

Index

relationships (see data relationships)
RENAME TABLE, 222
(see also ALTER TABLE)
REPLACE, 222
result sets, 74
REVOKE, 145, 223
examples of use, 146
rows, 36
counting
in MySQL, 45
deleting, 47
updating, 46

S

search engines, 109
SELECT, 44, 102, 223-228
aliases in, 160
building dynamically with PHP, 111
GROUP BY clause, 162, 226
grouping results, 161-162
HAVING clause, 165, 226
INTO clause, 225
LEFT JOIN ... ON, 164
LIKE operator, 45, 112
LIMIT clause, 155
limiting number of results, 155
ORDER BY clause, 154, 226
SELECT DISTINCT, 87
sorting results, 153
WHERE clause, 45, 226
with multiple tables, 89
semi-dynamic pages, 173-177
server side includes
increasing security with, 171
server-side includes, 170
server-side languages, 49
advantages of, 50
compared to JavaScript, 49
session_destroy, 203
session_start, 203
sessions, 201-203

SET, 228
setcookie, 198, 199, 201
short-circuit evaluation, 181
SHOW, 229
SHOW DATABASES, 38
SHOW TABLES, 42
special characters, 106
(see also escaping special characters)
split, 131
spliti, 132
SQL (see Structured Query Language)
statements, 51
str_replace, 130
stripslashes, 108
strlen, 189
strpos, 191
Structured Query Language, 2, 40
sub-selects, 217
summary functions, 161, 249
(see also MySQL functions)

T

tables, 36
counting number of entries, 45
creating, 41
deleting, 43
deleting entries, 47
inserting data, 43
listing, 42
locking, 156
relationships between, 88
separating data with, 87
structural overview, 36
temporary, 215
updating entries, 46
viewing entries, 44
task scheduler, 142, 176
time, 199
transactions, 158

280

U

unlink, 174
UNLOCK TABLES, 157, 221
unset, 208
UNSIGNED, 251
UPDATE, 46, 106, 231
and TIMESTAMP columns, 258
rows affected by, 74
WHERE clause, 46
update logs, 140
managing, 141
uploading files, 177-182
with unique file names, 180

urlencode, 64
USE, 40, 231

\Y

variables, 52
interpolation in PHP strings, 53

A\

while loops, 61, 117

X

XHTML, 57

Z

ZEROFILL, 251

281

	Build Your Own Database Driven Website using PHP & MySQL
	Table of Contents
	Introduction
	Who Should Read This Book
	What's In This Book
	The Book's Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Tech Times
	Your Feedback

	Installation
	Welcome to the Show
	Windows Installation
	Installing MySQL
	Installing PHP

	Linux Installation
	Installing MySQL
	Installing PHP

	Mac OS X Installation
	Installing MySQL
	Installing PHP
	Mac OS X and Unix

	Post-Installation Setup Tasks
	If Your Web Host Provides PHP and MySQL
	Your First PHP Script
	Summary

	Getting Started with MySQL
	An Introduction to Databases
	Logging On to MySQL
	So what's SQL?
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Summary

	Getting Started with PHP
	Introducing PHP
	Basic Syntax and Commands
	Variables and Operators
	Arrays
	User Interaction and Forms
	Control Structures
	Multipurpose Pages
	Summary

	Publishing MySQL Data on the Web
	A Look Back at First Principles
	Connecting to MySQL with PHP
	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	A Challenge
	Summary
	“Homework” Solution

	What’s Next?
	Index

