
Beginning Game
Development with
Amazon Lumberyard

Create 3D Games Using Amazon
Lumberyard and Lua
—
Jaken Chandler Herman

Beginning Game
Development with

Amazon Lumberyard
Create 3D Games Using

Amazon Lumberyard and Lua

Jaken Chandler Herman

Beginning Game Development with Amazon Lumberyard: Create 3D
Games Using Amazon Lumberyard and Lua

ISBN-13 (pbk): 978-1-4842-5072-3 ISBN-13 (electronic): 978-1-4842-5073-0
https://doi.org/10.1007/978-1-4842-5073-0

Copyright © 2019 by Jaken Chandler Herman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5072-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Jaken Chandler Herman
Conroe, TX, USA

https://doi.org/10.1007/978-1-4842-5073-0

To my amazing wife, family,
and friends for supporting me

along this journey.

v

Table of Contents

Chapter 1: Install and Setup of Amazon Lumberyard ���������������������������1

Required Components Outside of the Lumberyard Engine �����������������������������������1

Installing Visual Studio ��2

Installing the Amazon Lumberyard Engine ���4

Express Install ���5

Custom Install ��6

Running the Lumberyard Editor ��12

Summary���12

Chapter 2: Navigating the Engine ���13

Open the Engine ��13

Pane Navigation ��17

Introduction to the Viewport ��18

Snapping Panes ���21

Introduction to the Asset Browser ���23

Time-Saving Key Bindings ��35

Chapter 3: Creating Your First Project ��39

Opening the Project Configurator ��39

Creating Your First Project ��41

Creating a Project Through the Project Configurator �������������������������������������42

Creating a Project Through the CLI ��46

About the Author ���ix

About the Technical Reviewer ���xi

vi

Setting Default Projects ��48

Gems ���49

Enabling Gems ���49

Creating Gems ���55

Advanced Project Settings ��56

Levels ��59

Creating a New Level���59

Deleting a Level ���62

Changing Levels ��63

Chapter 4: Terrain ���65

Getting Started ��66

Heightmaps ���67

Importing Heightmaps ���68

Changing Heightmap Properties ��70

Painting Your Own Heightmap ���72

Adding a Pop of Color ��79

Texture Layers ���80

Terrain Texture Layers Editor ���81

Painting Texture Layers onto Your Terrain ��87

Using Megatextures ���91

Vegetation ���93

Time of Day ���98

Chapter 5: Entities and Slices ���103

Verifying the Project Structure ��103

Entities and the Entity Outliner ���104

Child and Parent Entities ���110

Table of ConTenTsTable of ConTenTs

vii

The Pinned Inspector ��112

Slices ��114

Instantiating Slices ��116

Creating Your Player ��117

Chapter 6: Components ��121

Adding Components to an Entity ���121

The AnimGraph and Actor Components ��124

The Attachment Component ��128

The Fog Volume Component ���133

The Wind Volume Component ���137

The Particle Component ��140

The Transform Component ��142

Chapter 7: Creating the Enemy ���145

Creating an Enemy That Always Exists ���145

Creating an Enemy AI Trigger ��146

Creating an Enemy AI Navigation Area ��150

Creating an Enemy AI Spawn Point ���155

Creating Enemy Patrol Waypoints ���158

Creating More AI Characters ���162

Tidying Up Our AI Entities ��163

Chapter 8: Beginning Lua Scripting ��167

Comments ���168

Variables ���169

Conditionals ��172

Operators ��173

Table of ConTenTsTable of ConTenTs

viii

Loops ��176

While Loop ���177

For Loop ���177

Repeat Until Loop ��179

Arrays ��179

Functions ��182

Classes ��184

Custom Inputs ���187

Chapter 9: Polishing Your Game ���191

Lens Flare ���191

Particle Manager ���195

Audio and Sound Effects ���200

Chapter 10: Setting Up a User Interface ���205

Creating a Canvas ���206

Creating a Script Canvas ���209

Adding the Script Canvas to Our Game ���217

Chapter 11: Exporting the Game ���219

Creating a PC Build ���219

Creating a Console Build ���223

Xbox ���223

PlayStation ��224

Final Thoughts ���226

Index ���229

Table of ConTenTsTable of ConTenTs

ix

About the Author

Jaken Chandler Herman is a software

engineer living in Texas. Jaken holds a bachelor

of science in computer science with a focus

on software engineering from Sam Houston

State University. Outside of university, Jaken

worked as a software engineering contractor at

NASA. He has worked with many different and

new technologies and has an ever- expanding

wealth of information on all topics related to

programming. In game development, he has

academic experience as well as hands-on hobbyist experience having

created many mobile-based games, a side- scrolling platformer, and a

racing game.

xi

About the Technical Reviewer

Dominique Regalado is a computer

science graduate from Sam Houston

State University with interests in full stack

architecture, cloud platform technologies,

and game development. She currently

works as an associate software engineer, so

providing insight for those new to software

development is one of her passions. She has

attended hackathons, career fairs, and even

the renowned Grace Hopper convention to

spread knowledge. Assisting in the authoring of this book was just another

great opportunity to learn about a new engine while passing along the

knowledge discovered.

1© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_1

CHAPTER 1

Install and Setup of
Amazon Lumberyard
You are about to embark on an amazing journey. A journey in which you

will be creating your very first video game in Amazon Lumberyard. This

will be an extremely rewarding and likely humbling experience. Through

my many failed attempts at creating video games when I first began

working on them, I often found myself having so much information thrown

at me that it was seemingly impossible to figure out where to start, what

pieces of the information were actually important to my specific project,

and where to look for advice and questions along the way.

Lucky for you, however, this book will walk you through everything,

from the beginning all the way to the game over screen. Before we can

begin, we need to go through the setup process.

 Required Components Outside
of the Lumberyard Engine
Amazon Lumberyard requires a few components outside of those that come

packaged with it. One of the great things about Amazon Lumberyard is that

the required components are completely free, so you do not need to worry

about any additional costs in your game development endeavors. You can

develop a video game on a AAA engine completely and 100% for free.

2

Note AAA, pronounced “Triple-A,” is an informal classification used
for video games typically to denote higher budgets and higher quality
of development. Think of AAA as a way of saying “Blockbuster,” as
you would with movies. While in this book we likely won’t build a AAA
game, Amazon Lumberyard easily supports developing such games.

There are a few optional components, however, that do have a price

tag attached to them, but for the purposes of this book, we will ensure that

everything is free of charge along the way.

 Installing Visual Studio
The first component we will install and set up is going to be Visual Studio,

an IDE made by Microsoft.

Note IDE stands for “Integrated Development Environment,”
which is just a software application that aids programmers (like you)
in creating their own software. These integrated development
environments typically consist of tools like a source-code editor
(like a notepad), debugging system, and a build automation suite, to
name a few.

Installing Visual Studio will allow us to select certain C++ development

packages that Amazon Lumberyard will require for compiling the game

code. Don’t worry, we are not going to be writing any C++ in this project;

the engine just requires C++ compilers and libraries to be installed.

On your web browser of choice, navigate to https://visualstudio.

microsoft.com. Note that there will be many options for Visual Studio.

Microsoft typically releases a new edition every other year, so at the time of

your reading this, there may be a new edition out. For this book, we will be

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

3

using Visual Studio 2017 although any future editions will still suffice when

the 2017 edition becomes antiquated. Do not get too hung up on editions

of external software; if Amazon Lumberyard supports it, just take the latest

version.

Be careful not to download Visual Studio Code. While both are made

by Microsoft, Visual Studio and Visual Studio Code are not the same

application. Visual Studio Code is a more lightweight text editor that has

some debugging features, and Visual Studio is a fully fledged IDE packed

with features for developing, testing, and deploying projects built in many

different frameworks and languages. Visual Studio Code will not come

bundled with the necessary development components that Visual Studio

provides.

Under the area labeled “Visual Studio IDE,” click “Download for

Windows,” and you will be greeted with three options: Community,

Professional, and Enterprise. Any of these will work, but for the purposes

of this text, we will be selecting the Community edition (as it is the free

option). Professional and Enterprise editions are more feature-rich and

suitable for more advanced software development outside of the scope

for development of a simple game. For new developers, the environment

may be more overwhelming than necessary. Select “Community,” and your

download will begin.

Run the .exe executable that you just downloaded in order to install the

Visual Studio Installer. If prompted by a window asking, “Do you want to

allow this app to make changes to your device?”, select “Yes.” You will now

be looking at the main GUI for the Visual Studio Installer.

Note GuI stands for “Graphical user Interface,” and it is exactly
that – an interface with graphics that allows users to interact with
software systems through means of visual indicators like graphical
icons, buttons, and photos.

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

4

This is where we will select what we need, where to install what we

need on our machine, and what we feel comfortable leaving behind. Select

the tiles “Desktop development with C++,” “Game Development with C++,”

and “Linux Development with C++,” pictured in Figure 1-1, then select

“Install” in the bottom-right corner of the window.

You will now have a working copy of Visual Studio as well as the

required C++ additional components installed on your machine.

 Installing the Amazon Lumberyard Engine
Now that we have Visual Studio Community 2017 installed, it is time to

install and set up the main software program we will be using throughout

the book – Amazon Lumberyard. Navigate to https://aws.amazon.com/

lumberyard/downloads. Click the button that says “Download Now” under

the tile currently titled as “Lumberyard Beta 1.17,” but just remember that

version numbers do change, so the page title may be different at the time

of your reading this. Download the latest version of Amazon Lumberyard

and launch the executable when prompted, keeping in mind that it is

required that you will be using a Windows machine running Windows

operating system 7 or higher.

Currently, Amazon Lumberyard is not wholly supported on Macintosh

systems, despite Lumberyard Mac Support Files available on the download

Figure 1-1. These tiles represent the required C++ components
needed to compile game code in Amazon Lumberyard

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

https://aws.amazon.com/lumberyard/downloads
https://aws.amazon.com/lumberyard/downloads

5

page. This download will include some source code and tools required

to build and run the Lumberyard game engine for developers creating

macOS, iOS, and Android games on a Macintosh. However, the Asset

Processor, Lumberyard Editor, and Remote Shader Compiler will require

Windows 7 or later in order to build game assets and edit levels. If you want

to run commands from your Macintosh’s terminal, you must have access

to a computer with a version of Amazon Lumberyard installed.

Note Any hardships you may encounter along the way of your
environment setup can likely be resolved by navigating to the Amazon
Lumberyard documentation currently available at https://docs.
aws.amazon.com/lumberyard. If a solution still cannot be found,
try developer forums like https://gamedev.amazon.com/
forums or even the popular Game Development stack Exchange QA
site, https://gamedev.stackexchange.com, searching via the
“lumberyard-engine” question tag.

Once you have downloaded the LumberyardInstaller[versionnumber].

exe file, navigate to it in your file system and double-click it in order to

launch the executable. After the initial install process, click the button

that says “Launch Lumberyard Setup Assistant.” The Lumberyard Setup

Assistant will greet you with two options: express install and custom

install.

 Express Install
Express install will give you everything you need to get started with the

Amazon Lumberyard Editor, and it will allow you the option to come back

to the Setup Assistant later to add in any plugins you may want, as well

as SDKs that you may need to add to your project that were previously

unconsidered.

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

https://docs.aws.amazon.com/lumberyard
https://docs.aws.amazon.com/lumberyard
https://gamedev.amazon.com/forums
https://gamedev.amazon.com/forums
https://gamedev.stackexchange.com

6

Note sDK stands for “software Development Kit,” which is a set of
development tools that allows developers to create applications for
certain software frameworks, platforms, or packages. for example,
the development of an Android app on a Java platform requires
developers to install the Java sDK.

 Custom Install
Custom install allows you to select any plugins or SDKs at the time of your

installing Amazon Lumberyard. For the purpose of the project, we will

want to select this installation type. Click the orange Customize button

in the Custom Install tile in the Lumberyard Setup Assistant, shown in

Figure 1-2.

Figure 1-2. The first interaction with Amazon Lumberyard Setup
Assistant we will have – selecting a custom install

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

7

You will be presented with a few groups of checkboxes. Each item

on the left submenu is a group, and each group will have a selection of

checkboxes that relate to that group’s categorical text.

 Get Started

First the Get Started tab will pop up, and there will be a subtitle What do

you want to do with Lumberyard? displayed. By default, the “Run your

game project” and “Run the Lumberyard Editor and tools” options will

be selected. If these options are not selected, go ahead and select them

now, along with the “Compile the game code,” “Compile the engine and

asset pipeline,” and “Compile the Lumberyard Editor and tools” options,

as these will be the five options we will need. We are not going to select

any other options for now. Under the subtitle Visual Studio Version in the

“Get Started” group we are already on, we are going to choose the “Visual

Studio 2017” option (deselect any other version if chosen by default).

Again, keep in mind that because Visual Studio versions will change, you

should select the option that corresponds to the Visual Studio platform you

installed earlier in the chapter. Figure 1-3 shows which selections we will

have made in the “Get Started” group, assuming “Run your game project”

and “Run the Lumberyard Editor and tools” options were already selected.

Click the orange next button in the bottom right corner to advance to

the next group of the Amazon Lumberyard Setup Assistant, titled Install

Software.

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

8

 Install Software

The required software for Amazon Lumberyard includes Microsoft DirectX

Redistributable, which allows multimedia-rich applications to run on

Windows-based machines, as well as Visual C++ Redistributable for Visual

Studio 20XX and Visual Studio 20XX. Note here that I put “20XX” because

you will need the Redistributable packages for whichever Visual Studio

platform you chose to use. This package will install runtime components

that are required to run C++ applications, which Amazon Lumberyard will

be building in the background.

Ensure that all fields under the required software subtitle are installed,

by checking the “Status” column of those fields. If the software is installed,

you will see a green check mark in this column, and if the software is

not installed, you will see a red X. If the software is partially installed, or

perhaps the version of the software is out of date or deprecated, you will see

a yellow warning sign. All three of these symbols are shown in Figure 1- 4.

Figure 1-3. The necessary selections to make in the “Get Started”
group of the Amazon Lumberyard Setup Assistant

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

9

Optional software includes Audiokinetic Wwise LTX Authoring Tool,

which is an advanced, interactive sound engine for games, FFmpeg, which

is video encoding software, and SpeedTree for Lumberyard, which is a

program for modeling and real-time rendering of trees and plants. We will

not be opting to install any of the optional software for our game; thus, we

will just leave these programs uninstalled and ignore this section of the

Amazon Lumberyard Setup Assistant.

Once your required software packages are all installed and showing the

green check-mark indicator, click the orange Next button in the bottom

right-hand corner of the screen to move on to the Install Required SDKs

group of the Setup Assistant.

 Install Required SDKs

Need a break? This is one of the easiest steps of the entire setup of Amazon

Lumberyard. This is where we will install all of our required SDKs,

including SQLite, RapidJSON, MD5, and, of course, Lua. The Amazon

Lumberyard Setup Assistant has made this step a breeze by adding a

“Install all” button at the top of this group. You will see a button titled

“Browse” above the “Install all” button next to an entry field titled “Third-

party path.” Click the “Browse” button, and select the directory in which

you would like to install all these SDKs. If you are okay installing them

in the default location, do not worry about this step. Go ahead and click

the “Install all” button now, shown in Figure 1-5, in order to install all the

required SDKs for our game development process.

Figure 1-4. The status column of required and optional software
fields shows a green check mark if the software is installed, a red “X”
if the software is not installed, or a yellow warning indicator if the
software is partially installed or requiring an update

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

10

Grab some popcorn, this may take a while. You can see the progress

of your SDK downloads in the bottom left-hand side of the Lumberyard

Setup Assistant window, shown in Figure 1-6. Like the “Install Software”

group earlier, the Required SDKs table has a column labeled “Status” that

will show the green check mark if the SDK has been installed, a yellow

warning indicator of the SDK has only been partially installed or requiring

an update, or a red “X” if the SDK is not installed.

Once all your required SDKs have been installed, click the orange Next

button in the bottom right-hand corner of the screen to move on to the

Install optional SDKs group of the Setup Assistant.

 Install Optional SDKs

Like the “Install Required SDKs” group, there will be an entry field labeled

“Third-party path” and a “Browse” button in order for you to select where

you’d like any optional SDKs to be installed; however, unlike the “Install

Required SDKs” group, there is no convenient “Install all” button. That is

okay, as there is only one of the optional SDKs we will need. At the time

of writing this, the Clang SDK is considered optional in the Lumberyard

Setup Assistant, but it is required to create new projects and open them in

the Lumberyard Editor. Select the orange “Install SDK” button next to the

Figure 1-5. The required SDKs are the easiest part to install when
setting up Amazon Lumberyard, due to this “Install all” button

Figure 1-6. The SDK download progress bar shows the percentage of
required SDKs that have successfully been downloaded

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

11

Clang option, shown in Figure 1-7, if you do not already have a version of

Clang on your computer. Again, you will see the blue progress bar in the

bottom left-hand corner of your screen while the SDK installs. As stated

earlier, we will not be using any other optional SDKs, although, after you

have finished the book and have become an Amazon Lumberyard wizard,

I would highly recommend you come back and install some of these SDKs

to implement some more advanced functionality into your project.

One of the more interesting optional SDKs is the Twitch Commerce

SDK, which provides access to social functions, login, chat, and other APIs

associated with the famous livestreaming service Twitch.

Because we will not be utilizing anymore of the available optional

SDKs, select the orange Next button in the bottom right-hand corner of the

screen to continue to the “Install Plugins” group.

 Install Plugins

In the “Install Plugins” group, we have the option to install popular

content creation software like various versions of Autodesk Maya, Adobe

Photoshop, and Autodesk Max, as well as RC Shell Commands. We also

have the option, instead of installing these programs, to locate them on

our hard drive if we were to have them already installed on our machines.

Figure 1-7. While the Lumberyard Setup Assistant claims that Clang
is an optional SDK, it is required to built your project and engine

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

12

We are not going to need any of these plugins for the purposes of this

project, although I would again recommend that you come back to this

page and experiment once you are more familiar with the engine.

Click the orange Next button in the bottom right-hand corner of the

screen to continue to the final group of the Amazon Lumberyard Setup

Assistant – “Summary.”

Install Optional Software The final group of the Amazon Lumberyard

Setup Assistant will give you one final option to install any optional

software you may want. Do not worry, you will be able to come back to the

Setup Assistant even after it is closed in order to install these again later

in the future. You will now be able to launch the editor, configure a new

project, or enable gems, which are extensions of Amazon Lumberyard.

For now, let’s click the orange Close button in the bottom right-hand

corner of the screen to finalize our setup.

 Running the Lumberyard Editor
Next, we will run the Lumberyard Editor. Press the Windows key, type

“Lumberyard Editor,” and select the Lumberyard Editor Icon to launch

the software. You may, depending on your user status on your personal

machine, be greeted with a Windows Defender Firewall Security alert

saying that some features of the application have been blocked. In order

to allows all editor features to work as intended, select the “Allow Access”

button if this happens.

 Summary
Congratulations, you have just completed the setup of the Amazon

Lumberyard engine. In the next chapter, we will learn to navigate the

engine, focusing on helpful keyboard shortcuts, pane navigation, and other

general terminology related to the program.

ChApTEr 1 InsTALL AnD sETup of AmAzon LumBEryArD

13© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_2

CHAPTER 2

Navigating the Engine
Now that you have Amazon Lumberyard installed on your computer, this

chapter will walk you through the layout of the engine. We are going to talk

about pane navigation, some useful hot keys to help you stay more efficient

in your work, and some terminology of engine-related topics. We still will

not be creating any game elements or logic yet, as it will be more beneficial

for us to navigate through the environment and learn the ins and outs of the

Amazon Lumberyard engine before we try to jump into development mode.

 Open the Engine
The first, most obvious step we will need to take is opening up the engine.

While it sounds easy enough, there are a few different ways to do it, and

there are some conflicts that arise if you have multiple versions of Visual

Studio on your computer. Because Amazon Lumberyard is in beta, it is

possible that these conflicts will be resolved within the next year or two,

but for now, let us walk through the process of opening the engine in a few

different ways.

14

Note Beta is the second phase of the software development life
cycle. The beta phase generally begins when software is seemingly
complete but likely contains a few unknown bugs. The benefit of beta
testing is that it allows users to find bugs by using the software in a
way the developers previously had not thought of.

The first method, and likely the easiest if your computer only has one

version of Visual Studio, is through the start menu. Click the Windows icon

or press the Windows key on your keyboard to open the start menu. Type

“Lumberyard Editor” and select the gray Amazon Lumberyard logo, shown

in Figure 2-1.

If all goes well, you may automatically be signed in to your Amazon

account. If you are not automatically signed in, the startup of the

Lumberyard engine may prompt an Amazon Login at this point. If you

have made it to this stage, you have started up the engine, and you are

ready to get to work. If this fits your case, move on to the next section, titled

“INSERT_TITLE_HERE.” If this did not work for you, keep reading, and we

will come to a solution.

If you got an error message saying, “An error occurred while loading

gems … please build the current project before attempting to run Asset

Processor again”, shown in Figure 2-2, followed by an error about the

Figure 2-1. While the Lumberyard Setup Assistant claims that Clang
is an optional SDK, it is required to built your project and engine

ChapTer 2 NavigaTiNg The eNgiNe

15

CrySystem not initializing properly and the CrySystem not being able to

initialize, do not panic. This is a very solvable problem.

Open up Powershell by clicking the Windows icon or by pressing the

Windows key on your keyboard, type “Powershell,” and select the blue

Powershell icon.

Navigate to the Amazon Lumberyard dev directory by running the

following commands:

cd C:\

cd Amazon\Lumberyard\1.17.0.0\dev

Figure 2-2. A common error to receive when first running the
Amazon Lumberyard Editor states “To continue, please build the
current project before attempting to run Asset Processor again”

ChapTer 2 NavigaTiNg The eNgiNe

16

Then, run the lmbr_waf batch file to build the game and engine. Even

though we have not created a game project, Amazon Lumberyard comes

packaged with a game demo, so we will build this as well as the engine. To

run the batch file, run the following command in your Powershell:

.\lmbr_waf game_and_engine

The process of building the game and engine may take a while, so grab

a cup of coffee and prepare to watch a few online videos while you wait (or

read ahead). Once the build is complete, attempt to open the Lumberyard

Editor again through the start menu. If everything worked out, you have

the engine running and you are ready to begin. If that’s you, move on to the

next section titled “INSERT_TITLE_HERE.” If you are still getting the same

error message from Figure 2-2, there is another remedy to the situation, so

do not worry. If you do not still have your Powershell open, reopen it from

the start menu (or via the keyboard combination Windows key + “X” at the

same time, then “I”) and run the following commands to navigate to the

Amazon Lumberyard dev\Bin64vc141 directory:

cd C:\

cd Amazon\Lumberyard\1.17.0.0\dev\Bin64vc141

Next, run the editor.exe executable file to launch the editor:

.\editor.exe

The editor will begin to open and will succeed this time. The reason

this works is because if you were getting the error in Figure 2-2 before,

it was due to the Asset Processor’s inability to load the dynamic library

in the directory Amazon\Lumberyard\1.17.0.0\dev\Bin64vc140, which

the Amazon Lumberyard Editor sometimes uses by default. Bin64vc140

DLLs are from Visual Studio 2015, and for this book, we have chosen to

use Visual Studio 2017; therefore, we need Bin64vc141 DLLs. Feel free

to continue to the next section titled “INSERT_TITLE_HERE,” while I go

through one more method of opening the Amazon Lumberyard Editor.

ChapTer 2 NavigaTiNg The eNgiNe

17

Note a DLL, also known as a dynamic-link library, is like an
executable file, but they are not directly executable. DLLs are
Microsoft’s implementation of a shared library. They contain
functions, classes, variables, and other components that an .exe or
another DLL uses. So, while users cannot run DLLs directly, other
programs can use them as references.

Another way to open the editor outside of the main way, which I

showed you earlier in the chapter, is through the Amazon Lumberyard

Setup Assistant. If you look back at Chapter 1, in the “Summary” group,

there is an option at the top of the screen with an orange button that says,

“Launch Editor.” Clicking this button will do exactly that.

 Pane Navigation
Now that the Amazon Lumberyard Editor is open, it is time to dig in and

play around a little bit. You will see a window that says, “Welcome to

Lumberyard,” which has options for creating new levels, opening existing

levels, and changing your current project. Amazon comes installed with

a starter game that allows seasoned game developers a chance to play

around with the engine without having to come up with an idea for a

new game, create new artwork, and sink tons of time and energy into the

project. For now, we’re going to ignore this, so click the “x” in the top

right- hand corner of this window. Now you will have an empty editor

with no entities, no game artwork or wireframes in the viewport window,

nothing in the console, and nothing in the Asset Browser. If any of that

terminology went over your head, don’t worry, I am going to introduce you

to all of it in this chapter.

ChapTer 2 NavigaTiNg The eNgiNe

18

 Introduction to the Viewport
To start off, allow me to introduce to you the first, most useful window in

the entire Lumberyard editor – the viewport. The viewport is where we will

align, place, scale, and add all entities and objects to our game. It is also

where the game will be played when the “Play Game” button is selected.

The viewport is the large window in the middle of the editor. While it looks

deceptively simple, navigating the viewport can be tricky at times to get an

object in the proper alignment with your camera and therefore will take a

bit of practice, so let us go over a few controls that will help you work more

productively while making your game.

First, click and hold the right-click button on your mouse within

the viewport, and while holding, drag your mouse around. As you will

notice, this allows you to look around the viewport as if you were standing

stationary in one spot of the viewport. This comes in handy when you need

to look at entities from multiple different angles.

In order to zoom in and out on the viewport in order to get an up-close

of an object, or perhaps to back out far enough to see your game from

bird’s-eye view, scroll down on your mouse scroll wheel or your trackpad

for zooming in, and scroll up on your mouse scroll wheel or trackpad for

zooming out. Think of this as either pulling the objects closer by scrolling

down or pushing the objects in the viewport away by scrolling up.

To select an object within the viewport rather than the Entity Outliner,

left-click the object within the viewport, and your object will be highlighted

in both the viewport and the Entity Outliner. You can now use various tools

in the toolbars we will discuss further in this chapter to modify this object.

If you want to make changes to multiple objects at once, simply hold down

your left-click button and drag along the viewport. This will select any

objects that exists in the rectangle your mouse has just created, with your

starting point being the angle opposite of your endpoint.

There will be a point in time that your game gets so many objects it

may be hard to find the one you want, and even when you do find the

ChapTer 2 NavigaTiNg The eNgiNe

19

object, it may be obstructed by some other object within the game. At the

top of the viewport, there is a search bar. Searching for the object name

will temporarily remove all other objects from the viewport except for the

object you are looking for, pictured in Figure 2-3. You will now have an

isolated environment to work on the sole object you have searched for. It

is important for me to note that if you have created a reusable slice (which

we will talk about in a later chapter), searching in this bar will isolate the

viewport to all slices that share the same name.

The last item we will talk about regarding the viewport is the “Toggle

display helpers” tool, which lives in the far-right corner of the viewport

whose icon is a question mark. This tool will come in handy for objects and

entities that do not have materials or skins but still need to be acted upon.

For example, a camera, enemy spawner, or a Lua script, to name a few.

Pictured in Figure 2-4 on the left side is a shot of the viewport looking at an

enemy spawner with a Lua script without the display helpers toggled on.

On the right side is that same area of the viewport with the enemy spawner

Figure 2-3. Searching for an object in the viewport will temporarily
remove all other objects in order to have a more isolated workspace

ChapTer 2 NavigaTiNg The eNgiNe

20

and Lua script with the display helpers toggled on. You can see how it

would be helpful to have these helpers toggled on when you are wanting to

manipulate objects without skins or materials, but you can also probably

understand that always having display helpers toggled can muddle up your

viewport rather quickly.

Figure 2-4. The left side shows an area in the viewport without
display helpers toggled on, while the right side shows the same area
within the viewport with display helpers toggled on. We can now see
there is an object in this spot, but we can also gather that there will
be many non-skinned objects that can clutter the viewport if display
helpers are constantly toggled on.

ChapTer 2 NavigaTiNg The eNgiNe

21

 Snapping Panes
On the left side of every window, tool, editor, toolbar, etc., in Amazon

Lumberyard, there are three vertical dots. Holding down left-click will

allow you to unsnap the pane (if it is already snapped) and either move

it to its own window or snap it to a different area within the editor. While

holding down left-click on the three vertical dots, drag the pane to an area

where you would like to drop it, and you will see white bars on the top,

bottom, left, and right of the area. Dragging the pane to one of these bars

will turn the bar orange, as shown in the left photograph in Figure 2-5, and

when you release the pane, it will be snapped to whichever bar was orange.

Alternatively, if you are like me, you would rather have your panes as

“Tabs” rather than see everything all at once. While holding down left-click

and dragging your pane, in the middle of the area you drag the pane over,

you will see what looks like a folder with three tabs, as shown in the right

photograph in Figure 2-5. Drag the pane to that icon until it turns orange,

then let go. Your pane will now be a tab option within the area you have

snapped it to.

ChapTer 2 NavigaTiNg The eNgiNe

22

This is a feature that makes Amazon Lumberyard such a nice tool

to work with, because you can customize the editor yourself to suit your

needs, wants, and preferences. You should feel comfortable customizing

your workspace. Do not worry about ending up with a final product that

seems unmanageable, as at any time you can reset the Lumberyard Editor

to use the default layout. This will restore your windows, tools, and editors

to the default view that you will see when opening the editor for the first

time. In order to reset the workspace to the default view configuration, go

to the menu bar at the top of the editor, select “View,” then “Layouts,” then

“Restore Default Layout.”

Figure 2-5. The left side shows the Asset Browser pane being snapped
to the right side of the area currently completely occupied by the Entity
Outliner. It should be noted you also have the option of snapping
this pane to the top, left, or bottom of this area as well. The right side
shows the Asset Browser pane being snapped as a “tab” to the area
currently occupied by the Entity Outliner.

ChapTer 2 NavigaTiNg The eNgiNe

23

 Introduction to the Asset Browser
The two panes that will be used the most in your game development with

Amazon Lumberyard career are the Asset Browser window and the Entity

Outliner window. While they are two different panes, they will frequently

get used together. Because the Entity Outliner window will take further

explanation when we discuss entities and slices, we will talk about it in a

future chapter.

First, we are going to talk about the Asset Browser. The Asset Browser

shows all your project assets in a source folder and file view to allow for

ease of access and interaction with these assets. By default, the Asset

Browser is typically open and snapped to the left side of your Editor

workspace; however, if it is not, press Alt+T and select “Asset Browser”

from the drop-down list. Alternatively, go to the menu bar, click “Tools,”

and select “Asset Browser” from the drop-down list.

The Asset Browser will show you all files and folders contained

within your Asset Processor Platform configuration file located at C:\

Amazon\<LumberyardVersion>\dev\AssetProcessorPlatformConfig.ini.

You should not have to make many changes to this file for the purposes of

this text, as we will be utilizing gems and assets that come with the engine

which are included in this file by default. If there are changes you need

to make due to adding your own assets that you have either created or

purchased online, you can edit the file in your text editor of choice, and the

instructions are detailed within the file itself as comments.

In the Asset Browser window, files that are usable within the

Lumberyard Editor will appear in white text, while non-usable files such

as .exe executables or .zip files will appear in gray, as the editor will not

process these file types. There are certain file types that will contain

products that make up the file, and the Asset Browser will therefore display

these asset files with their products shown as children. For example,

Filmbox files (.fbx) can contain animations, meshes, actor files and more

as shown in Figure 2-6.

ChapTer 2 NavigaTiNg The eNgiNe

24

One useful feature you can utilize when trying to locate an asset within

the Asset Browser is the filter feature. The first, most obvious way to filter

assets would be to search for them directly by name using the search bar

in the tool’s window. This will likely be the most common way of filtering

out specific assets and files you need; however, there will be other times

when you do not know the asset by name, but you do know the type. Lucky

for you, the Asset Browser has a filter by asset type feature that can be used

either stand-alone or in tandem with the search-by-name function. On the

far right-hand side of the search bar on the Asset Browser window, there

will be a funnel icon. When you click the icon, you have the option to filter

what appears in the Asset Browser by the asset type, as shown in Figure 2- 7.

Figure 2-6. The Asset Browser will display assets along with any
product files that make up that asset

Figure 2-7. The filter by asset type tool is a handy way to display only
assets of a certain type within the Asset Browser window

ChapTer 2 NavigaTiNg The eNgiNe

25

Right-clicking assets in the Asset Browser will display a context menu

that will give you some common options such as “Open in Explorer,” “Copy

Path to Clipboard,” and “Copy Name to Clipboard” to name a few. These

context menu options will change depending on the type of file you have

selected. For example, right-clicking a .lua script file will present you with

the option to open the script file within the Lumberyard LUA Editor. If you

have source control such as Git, SVN, TFS, or some other version control

software enabled on your project or on assets within the project, right-

clicking the file in the Asset Browser will bring up a dialog with options

related to source control, such as “Check Out,” “Undo Check Out,” “Get

Latest Version,” and “Add To Source Control” for files that have not yet

been added to your repository.

Next, let’s look at a few common buttons we will be using throughout

the process of creating our game. We will start by going over buttons in

the toolbar. The Lumberyard Editor provides a toolbar that makes various

tools and features within the software easily accessible to the user. By

default, the toolbar is docked at the top of the editor and includes all

sub-toolbars, the EditMode toolbar, the Object toolbar, and the Editors

toolbar. You can drag toolbars to dock them vertically on the edges of the

editor, dock them to the bottom of the editor, or undock them completely,

as they are fully customizable. Because they are customizable, note that it

is possible to hide or show any sub-toolbars at any point in time by right-

clicking the menu bar and selecting the toolbar you would like to hide or

show. This is also how you can choose which views or modes to display.

 Navigating the EditMode Toolbar

To begin, we will start by going over buttons on the “EditMode Toolbar,”

shown in Figure 2-8.

ChapTer 2 NavigaTiNg The eNgiNe

26

From left to right, the first two buttons (A and B) do similar things. The

first reverts the last command the user has input into the editor. Think

of this as an undo button. Similarly, the second button will apply the last

command, so if the user decided to undo something, they would click

the first button, and if they changed their mind, they can click the second

button to reapply the last command.

The next two buttons also perform similar actions, but we will not be

using these actions in this book, so I will go over them very briefly. When

an object is selected, you can click the first button (C), to begin linking

that object to another. When you click another object, the object initially

selected and the recently selected objects will be linked together. In order

to break this link, or unlink the two objects, you can click the second

button (D) while having the object selected.

The next five buttons are the translation tools. These are the tools that

will likely be used the most throughout this entire project, so we need to

be familiar and comfortable with using them. The first, (E), is the “Select”

tool. This is selected by default, and when clicking an object or entity in the

viewport, it will simply select the entity or object and put its information

in the entity inspector, which we will talk about later in the chapter. The

next button, (F), is the move tool. Moving objects and entities in Amazon

lumberyard is not as simple as clicking and dragging them. The move

tool will give us three arrows: one following the x-axis, one following the

y-axis, and the last following the z-axis. Selecting one of these arrows then

dragging will allow us to move that object along which ever axis’ arrow we

have selected.

Figure 2-8. The EditMode toolbar contains features that will
make viewport navigation much simpler, as well as entity-sizing,
placement, running the game, and general level editing tools

ChapTer 2 NavigaTiNg The eNgiNe

27

The next button, (G), is the rotate tool. This tool provides a handy

way to rotate objects in the viewport around any axis you want without

accidentally rotating around another. When selected, you will be given

three circles, each whose centers are the x-, y-, and z-axes. When holding

down the red circle, you can rotate the object around the x-axis; when

holding down the blue circle, you can rotate the object around the z-axis;

and when holding down the green circle, you can rotate around the y-axis.

You are also given a white circle that encompasses all of these, which

allows you to rotate the axes themselves. The next translation tool, button

(H), is the scale tool. When the scale tool is selected, clicking an object in

the viewport will show you the x-, y-, and z-axes of the object with boxes

at the ends of the axes. While holding the box, you can drag your mouse

along the whichever axis the box belongs to in order to expand or contract

the object along that axis. The final tool in the translation tool group,

button (I), is the “Select Terrain” tool. We will be talking about terrain

extensively in another chapter, so for now – just know that the Select

Terrain tool is used to select or rotate terrain within the editor’s viewport.

The next button (J) is another very important button in our game

creation process. It is the “Play Game” button, and it will allow us to do

exactly that. There is nothing better than working on a new object or script

in our game, clicking that button, and getting to play with it. Just know

that once this button is clicked, your mouse will no longer be usable in the

Lumberyard Editor, as it will be constrained to the viewport window where

the game will be in play mode. To exit the game and free up your mouse

and keyboard, press the “Esc” button on your keyboard.

The next item on the EditMode toolbar (K) is another item we will not

be using. It is a drop-down list that allows you to change the reference

coordinate system between view, local, parent, world, and a custom

coordinate system that you can set up.

Items (L), (M), (N), and (O) all do similar things and will change

automatically when using any of the five translation tools we talked

about earlier. Selecting (L) will allows you to specify the axis constraint

ChapTer 2 NavigaTiNg The eNgiNe

28

to lock to the x-axis. For example, if you were to move an object using the

translation move tool (F), clicking the x-axis arrow to move the object will

automatically select the “Constrain to x-axis” tool. Similarly, (M) and (N)

will allow you to specify the axis constraint to lock to the y- and z-axes,

respectively. Button (O) sets the axis constraint to lock to the XY plane.

Because these will automatically be selected when using other tools, we do

not need to worry much about knowing when to select each of these.

The last set of tools on the EditMode toolbar (P), (Q), (R), (S), and (T)

are called the “Object Placement tools.” These tools will be used when

placing new objects and entities into the viewport, selecting their locations

within your game, and will be a tremendous help to you when moving

them around.

 Navigating the Object Toolbar

The next toolbar we will be looking at is the “Object toolbar,” pictured in

Figure 2-9, and it includes a myriad of tools for object manipulation as well

as object alignment within the viewport.

Most of the buttons in the Object toolbar will be grayed out and un-

selectable unless there is an object or entity selected in the Entity Outliner

window, which we discussed more in depth earlier in the chapter. That

is because the functionality of these tools relies on manipulating and

aligning objects, so if there is no entity or object selected, the tool will have

no parameters to act on.

Figure 2-9. The Object toolbar contains features and tools that allow
you to manipulate and align game objects with ease

ChapTer 2 NavigaTiNg The eNgiNe

29

The first button on the Object toolbar, button (A), is the “Go to selected

object” button. When you have an object or entity selected in the Entity

Outliner window and click the “Go to selected object” button, the viewport

will center the selected object within the view. As your game grows, this

button will become increasingly important, as your game will typically

contain many objects as work on your project progresses.

The next button (B), the “Align to object” button, will align the

selection to an object by having a source object chosen in the Entity

Outliner window, selecting the tool from the Object toolbar, and then

clicking the target object to align with. The next tool is also an alignment

tool; however, instead of aligning one object to another, button (C), the

“Align to grid” tool will snap the object to the grid in the viewport. Because

the transform tools will allow you to move objects anywhere in the

viewport, games that require objects to be aligned or require symmetry

can be difficult without the “Align to grid” tool. In order to use the “Align

to grid” tool, you will need to have an object selected in the Entity Outliner

window already, and upon clicking the button in the toolbar, the object

will snap to the grid.

The fourth button on the Object toolbar, button (D), is the “Set object

height” button, which is self-explanatory. When an object is selected in the

Entity Outliner window, click the “Set object height” button, and a small

window will pop out with an input field that allows you to give the selected

object a numeric height, positive or negative. An object with a negative

height will be placed below the terrain.

Button (E) is a little bit trickier to use. This is the “Align object to

surface” button. To use this tool, select an object in the Entity Outliner

window, click the “Align object to surface” button in the Object toolbar,

and hold down the Ctrl button on your keyboard while moving your mouse

in the viewport. The object will move along the terrain surface, even in

places where the terrain forms hills or dips – the object will follow.

Buttons (F) and (G) are similar in functionality. When an object

is selected in the Entity Outliner window, if the selected object is not

ChapTer 2 NavigaTiNg The eNgiNe

30

already locked, clicking button (F), the “Lock Selection” button, will lock

the object, making in incapable of being moved, scaled, or rotated. If the

selected object is already locked, clicking button (F) will unlock the object,

re-enabling transformation capabilities. Button (G), the “Unlock All” tool,

will unlock all locked objects simultaneously.

The final button on the Object toolbar, button (H), is the “Vertex

Snapping” tool. When this tool is selected, vertices on object are displayed

in purple. If you click and hold one of these purple vertices, you can drag it

to another purple vertex on a different object in order to snap two objects

together at any two vertices between the objects.

 Navigating the Editors Toolbar

The last toolbar we will tour will be one that we will not frequently use

throughout this project; however, I still feel it is necessary to be introduced

to it for future projects. The “Editors toolbar,” shown in Figure 2-10,

contains buttons that open a variety of different editors that Amazon

Lumberyard offers, including the Terrain Editor, User Interface Editor, and

Time of Day Editors, to name a few.

Because the Editors toolbar opens various editor tools within Amazon

Lumberyard, you will likely have to flip back to Figure 2-10 every so often

to refer to which button I am discussing, as they do not have quite as

simple of functionality as the Object toolbar or the EditMode toolbars do.

Figure 2-10. The Editors toolbar allows you to access various editor
tools

ChapTer 2 NavigaTiNg The eNgiNe

31

The first in the fairly short list of editors on the toolbar, button (A), will

open the Material Editor, shown in Figure 2-11, which is the principal tool

that will be used to create materials, set opacity and lighting effects for

material objects, set shader parameters, and more advanced functionality

that we will not cover in this book.

Because there is so much functionality within this editor, I will not be

discussing each button contained within it; however, I will go over some

useful tools it is comprised of and some tools that you will perhaps use

early on in your game development journey. As you become more familiar

with game development throughout the course of this book and onward, I

encourage you to come back to this editor as well as all future editor panes

we will look at and experiment with the myriad of options and capabilities

they offer.

Figure 2-11. Along with creating materials, the Material Editor
allows you to set many advanced properties on object materials such
as texture mapping, shader parameters, tessellation, and more

ChapTer 2 NavigaTiNg The eNgiNe

32

If we look in the far-left pane of the editor, you can see a list of all

available materials that you have loaded into your project. Selecting one

of these listed materials will load the object into the Material Editor that

will then allow you to edit its properties. Some of the common things

you would edit here would be things like the opacity of the material; for

example, if you have some blue-colored material, you could set the opacity

to 50% or so to make a hologram style object. Another group of settings

you may frequently be editing here in the Material Editor is the “Lighting

Settings.” These tools allow you to have blank spots in your material emit

light or color, and if you choose to utilize this capability, the Material

Editor allows you to choose the emissive color as well as intensity and

smoothness of that emission. Other common settings you may like to

make changes to would be things like the shader and surface type of your

material, and all the settings I have just been discussing can be changed

in the two panes you see to the right of the list pane and underneath the

material artwork within the Material Editor window.

Let’s look at the toolbar, where there are some tools that will help us

navigate within the Material Editor window itself. Specifically, let’s look at

the first five tools on the toolbar, as the rest of the buttons on the toolbar

are more intuitive (save, copy, paste, and other familiar functions).

The first three buttons at the top of the Material Editor window will

require that you have an object or multiple objects selected in the Entity

Outliner window. The first button allows you to select a material from

the menu and apply that material to all selected objects from the Entity

Outliner. The next button will allow you to reset the material on the

selected objects to the default material.

The fourth button on the Material Editor window toolbar, the button

whose icon is an eyedropper, is the one that is likely the most useful tool

on the toolbar. Before selecting this tool, be sure you have the Material

Editor window moved enough so that you can still see your viewport

in the background. Select the “Pick Material from Object” tool, then in

your viewport, select an entity whose material you would like to edit the

ChapTer 2 NavigaTiNg The eNgiNe

33

properties of. The Material Editor will then load the properties from the

selected object into the window for tinkering.

The next item in the toolbar of the Material Editor window and the

final item we will talk about is a drop-down that will change the list in the

far-left pane of materials to edit. Options will include “All Materials,” which

will show you all possible materials you have loaded into your project,

and “Used In Level,” which will only show you materials that you have

utilized thus far in the current level you have loaded. We will talk about

projects in levels in a future chapter; just note that it may be best to select

the “Used In Level” option when tinkering in the Material Editor window,

as many of our materials may be similarly named, and we would not want

to unconsciously edit a material in a different level that we assume may be

the correct material from the current level.

Back to the Editors toolbar, click the icon of a running person, and this

will Open the EMotion FX Animation Editor (B), shown in Figure 2-12.

Figure 2-12. The EMotion FX Animation Editor allows you to
animate characters in Amazon Lumberyard, whether they be a
character the player controls or an AI-driven character that interacts
with the level

ChapTer 2 NavigaTiNg The eNgiNe

34

Note as of amazon Lumberyard version Number 1.17.0, the
eMotion FX animation editor, which from now on i will just call
the “animation editor,” is in preview release, so it is subject to
change. Because of this, and the fact that we will not be using the
animation editor within this book, i will not be detailing how to use
the functionality of this tool. i will say, however, that in order to use
the animation editor to build a character, you will need to have used
Maya or some similar tool to link skinned models with an animation
skeleton and then import that character into the animation editor to
specify which animations you want your character to have.

The next button on the Editors toolbar, button (C), will open the

Track View editor which will help you add a certain level of polish and

professionalism to your game that will make it stand out among the rest.

The Track View editor is the main tool you will use to create, as well as set

and manage all cinematic sequences or animation events. The Track View

editor is used to control the entities, cameras and variables part of your

animations or cinematics, and create scripts to trigger animations. Similar

to the EMotion FX Animation Editor, the Track View editor has many

advanced functionalities you may learn to use as part of more complex

projects. The official Lumberyard documentation provides thorough

descriptions for these functionalities.

The next button on the Editors toolbar, button (D), will open the

Audio Controls editor which will allow you to create controls and make

connections between ATL Controls and middleware controls.

ChapTer 2 NavigaTiNg The eNgiNe

35

Note aTL stands for audio Transaction Layer, which is an
abstraction layer that allows your game to communicate events and
actions to the audio system. This will give you the ability to change
quickly manipulate audio mappings without having to update the
game’s integration of controls.

The Audio Controls editor is split into three different areas. On the far

left is your ATL Controls pane. This is a view of controls that exist within

your project. The next, middle area called the “Inspector” pane will show

all properties present on the control you have selected in the ATL Controls

pane. The last area on the far right is a list of controls created in an audio

middleware authoring application like Audiokinetic’s Wwise.

The remaining buttons on the Editors toolbar will be covered in

depth in future chapters. Buttons (E), (F), (H), and (I), the Terrain Editor,

Terrain Texture Layers Editor, Time of Day Editor, and Sun Trajectory tool,

respectively, will be discussed in detail in Chapter 4. Button (G), which

opens the particle editor, will be discussed in detail in Chapter 9. Lastly,

Button (J) opens the User Interface Editor, or UI Editor, which will be

discussed in depth in Chapter 10.

 Time-Saving Key Bindings
Before the computer mouse as we know it today was first brought

to market in the 1960s, everything done on computers was done by

keystrokes. There is something to be said about doing your work by

keystroke alone, and in fact – many programmers prefer it. While we

cannot develop games without the aide of a mouse, there are a few

navigation tricks we can use by utilizing keystrokes only, as well as a few

editors we can open. For that reason, I have built a table in Figure 2-13

of some of the most popular key bindings that I have found to be the

ChapTer 2 NavigaTiNg The eNgiNe

36

most useful to me personally while working in the Amazon Lumberyard

Editor. By no means is this a comprehensive list, as there are far more key

bindings than these. Note that many of the standard key combinations

will work in Amazon Lumberyard as well such as Ctrl+Z to undo, Ctrl+C to

copy, Ctrl+V to paste, and so on.

A Moves the viewer left in the viewport

S Moves the viewer backwards in the viewport

W Moves the viewer forward in the viewport

D Moves the viewer right in the viewport

Q Moves the viewer up in the viewport

E Moves the viewer down in the viewport

M Opens the Material Editor, discussed earlier in the
chapter

T Opens the Track Editor, discussed earlier in the
chapter

R When an object is selected within the viewport or in
the Entity Outliner window, pressing R will select
the object’s parent if one exists.

` Opens the console window

Ctrl+O Opens the “Open Level” dialog

Ctrl+S Saves the current Level

Ctrl+G Enters game mode, which will allow you to test the
progress of the game thus far, similar to the “Play
Game” button on the EditMode toolbar discussed
earlier in the chapter.

Figure 2-13. Keyboard shortcuts are a great way to stay productive
when the mouse is otherwise occupied

ChapTer 2 NavigaTiNg The eNgiNe

37

You now know the ins and outs of the Amazon Lumberyard Editor

and many of the tools associated with it. You have also been able to

successfully open the Lumberyard Editor and know many workarounds

and fixes for common problems when doing so.

In the next chapter, we will create our first project as well as our first

level. We are going to discuss what gems are, how to enable them, how to

build the game as well as the engine, and more.

ChapTer 2 NavigaTiNg The eNgiNe

39© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_3

CHAPTER 3

Creating Your
First Project
We have installed the Lumberyard engine, Editor, Setup Assistant, and

Project Configurator. We have also gone over various toolbars, tools, panes,

and shortcuts within the Lumberyard Editor. Now that we covered the

basic fundamentals to the Lumberyard engine, it is time to finally create

something. In this chapter, all the fun begins. We are going to create our

very first project and discuss how to use the Project Configurator in order

to customize what components we have at our disposal. We are going to

talk about compiling the project as well as the engine, how to create levels

and how levels relate to projects as a whole.

 Opening the Project Configurator
Installed alongside the Amazon Lumberyard Setup Assistant and

Lumberyard Editor is the Lumberyard Project Configurator. Amazon

Lumberyard is comprised of many different component projects that

work in tandem to create the final project. This may feel different to you

as a user, as typically when working with other programs, you can create

a project, work in the project, save, and build the project all from a single

window within the application. While this may take some time to get used

to, do not worry – it all feels natural the more you work with the platform.

40

Let’s get started. We will start by opening the Project Configurator

which, again, can be opened by taking two different routes. We are going

to walk through both processes to opening the Project Configurator so that

you have the ability to choose which one is your favorite on your own, and

that will mostly depend on whether you are a command-line junkie or not.

The first method would be to either click the Windows icon in the

bottom-left corner or press the Windows key on your keyboard in order

to open the start menu. Type “Project Configurator” and click the purple

icon that shows up. Alternatively, if you are running a version of Windows

where the Cortana helper is on your taskbar, you can ask her to open it for

you, or type “Project Configurator” in her search bar.

The next method of opening the Project Configurator is through the

command line. Because I am used to using source control, compiling code

and building projects from the command line so often, I tend to prefer

using commands to navigating user interfaces. If that is not something you

are interested in, skip to the next section of the book. Open Powershell by

pressing the Windows key on your keyboard and the “X” button on your

keyboard at the same time. This will open the Power User Tasks menu.

Press “I” on your keyboard to open up Powershell. Navigate to the Amazon

Lumberyard “dev” directory by running the command:

cd C:\Amazon\Lumberyard\1.17.0.0\dev

Keep in mind that if your instance of Amazon Lumberyard is installed

on a drive other than your C: drive, you will need to modify that command

a little bit. Similarly, if you have a different version of Amazon Lumberyard

installed on your machine, you will need to replace the “1.17.0.0” portion

of that command with the version number you have installed locally.

Now, think back to Chapter 2. If your Lumberyard Editor opened without

having to navigate to the “Bin64vc141” directory, then to open the Project

Configurator, you will run the following command:

.\Bin64vc140\ProjectConfigurator.exe

Chapter 3 Creating Your First projeCt

41

And if you did have to navigate to the “Bin64vc141” directory, then you

will open the Project Configurator by running the following command:

.\Bin64vc141\ProjectConfigurator.exe

It should not take long for the Project Configurator to open, and when

it does, it will look like Figure 3-1.

 Creating Your First Project
Now that we have successfully opened the Project Configurator, it is time

to get to what this chapter is all about – creating our first project. There are

two ways of creating a project in Amazon Lumberyard:

• Through the Project Configurator user interface tool

• Through the command-line tools provided by Amazon

Lumberyard

Once again, we are going to walk through both methods. I would

highly recommend, however, that even if you are planning to use the

command-line interface, you read through the Project Configurator

method, as there will be information contained within it about project

Figure 3-1. The user interface of the Project Configurator’s main
window is extremely simple, showing you all projects on your
machine with buttons navigating to more advanced functionality

Chapter 3 Creating Your First projeCt

42

templates. Another useful piece of information that will be contained

within the Project Configurator section will be what the tools are doing in

the background when a new project is being created.

 Creating a Project Through the Project
Configurator
Upon opening the Project Configurator, you will see small cards for

each Amazon Lumberyard project you have on your machine. Note that

because Amazon Lumberyard comes bundled with different starter

projects, you should already have some sample projects listed here. Not

shown in Figure 3-1 is a button in the very top-right corner of the Project

Configurator that says, “Set as default,” which we will discuss more in

detail later.

For now, we are going to ignore these sample projects and begin

learning the ins and outs of the Project Configurator by creating our very

own first project. At the top of the Project Configurator next to the bold

header that reads “Select a project” is a blue button that says, “Create new.”

Select the “Create new” button, and you will be greeted with two

options – Default and Empty, as shown in Figure 3-2.

Chapter 3 Creating Your First projeCt

43

The Empty Template has the bare minimum features that are required

just to load and run a game project. This should only be selected by

advanced users of Amazon Lumberyard who know exactly what gems to

enable and what advanced settings to change to fit their needs. There are

four features that come loaded on the Empty Template:

• CryLegacy, which enables the editor and launcher to

load game projects that contain legacy code

• The Maestro gem which grants the user access to the

use of cinematic features

• The LyShine gem which will provide the user with

necessary access to the User Interface system within

Amazon Lumberyard

Figure 3-2. These are your two options for creating a new project,
Default, which includes many common components, and Empty
which is a completely bare-bones project for advanced users

Chapter 3 Creating Your First projeCt

44

• Legacy Game Interface, which will enable the launcher

and the Lumberyard Editor to load a game project that

contains legacy interface code

Note “Legacy” is a fancy way of saying “outdated, but still in
use.” anything related to computing can be considered legacy like
hardware, programming languages, or tools that are either no long in
production, no longer in maintenance, or simply no longer in business
but are still being used in projects.

The Default Template builds on the Empty Template, meaning it

comes bundled with all the features that the Empty Template has while

having more gems enabled to provide basic game development features.

The Default Template comes loaded with the following:

• Camera, which is massively important in your game

development. This gem will provide a basic camera

component for runtime rendering.

• Gestures, which allows gesture-based input for mobile

devices or 2-in-1 devices that support gesture inputs

like tap, hold, drag, swipe, and more.

• HttpRequestor, which will allow you to make HTTP and

HTTPS requests from within your game.

• In-App Purchases, which will include the in-app

purchasing APIs for iOS and Android mobile platforms.

• Physics Entities, which is a legacy gem, but provides

you with the ability to simulate physical events like

gravity, for example.

• Primitive Assets, which provides primitive objects that

are already physics enabled.

Chapter 3 Creating Your First projeCt

45

• ChatPlay, which provides a framework to create game

interactions between spectators and broadcasters on

the popular video streaming platform Twitch. This

gem includes support for polls, surveys, and chat

commands.

• Amazon GameLift, which makes it easier for you to

use Amazon GameLift in Lumberyard. GameLift is an

AWS service that provides many support methods for

multiplayer games.

• Cloud Canvas, which provides visual scripting to AWS

services like DynamoDB, Lambda, Cognito, SQS, and

more AWS services.

• Input Management Framework is an important gem if

you want to have multiple input methods like different

gamepads and keyboard layouts. This gem provides

a framework for managing such cross-platform game

inputs.

• PBS Reference Materials, which includes a set of

shading reference materials and texture assets.

• All four of the components that are preloaded on the

Empty Template.

When a project is created using the Default Template, the project

will also include a simple level for experimentation which will have a

camera, a single light source, and primitive objects. Because we would

like a good starting point for our game, let us select the “Default” option in

the “Create new project” window, name the project “MyFirstGame,” and

click the blue “Create project” button in the bottom-right corner of the

window. The process of creating a new project takes a bit of time, so

sit back and relax while Amazon Lumberyard gets your project ready.

Chapter 3 Creating Your First projeCt

46

Why does it take so long? What is it doing? When a new project is created

in the Project Configurator using the Default Template, multiple things are

happening. The Project Configurator will create a new project using the

DefaultTemplate, which is in the directory:

\dev\ProjectTemplates\DefaultTemplate

Everything in the template’s code directory, located at

\dev\ProjectTemplates\DefaultTemplate\code\DefaultTemplate

will be copied into your new project’s code directory, located at

\dev\code\MyFirstGame

All other contents of the template folder that are not code components,

located in

\dev\ProjectTemplates\DefaultTemplate

will be copied into your new project’s directory, located in

\dev\MyFirstGame

The DefaultTemplate references are replaced in both new

MyFirstGame directories with the name of the new project, including all file

names and contents. Note that in all the preceding directories, assume you

are already in your Lumberyard versions directory, which we navigated to

earlier at C:\Amazon\Lumberyard\<lumberyard_version>.

 Creating a Project Through the CLI
Another method we can use to create projects is, of course, via the

command-line interface. When projects are created through the

command-line interface, the template they are generated from is the

Default Template. To create a project through the command line, open

your Powershell either by searching for it in the start menu or by using the

Chapter 3 Creating Your First projeCt

47

key-combination Windows key + “X,” then “I.” Change directories to your

Lumberyard dev directory, as we have done earlier in the chapter:

cd C:\Amazon\Lumberyard\<lumberyard_Version>\dev

Now change directories to whichever Bin64vc14X folder that has been

working for you (Bin64vc140 for Visual Studio 2015, Bin64vc141 for Visual

Studio 2017+):

cd Bin64vc14X

This folder is, of course, where the Lumberyard Editor executable file

is found, but it is also home to an executable called lmbr, which handles a

myriad of project tasks such as creating projects; setting projects as active

(as we will see later); creating, enabling, and disabling gems; and more.

Note gems are more easily thought of as “plugins.” a gem is a
package that contains game assets or code that you can use in your
project. When creating a new project, you can select which gems you
would like to include and which you would like to exclude. this allows
you to create gems that are reusable from project to project while still
providing the ability to pick and choose what aspects of the project
you feel as if you can leave behind.

Enter the following command to create your project, which we will

name “MyFirstProject” to be consistent with the name we used in the

project configurator:

.\lmbr projects create MyFirstProject

Once you get a response from your command line that says “Project

‘MyFirstProject’ successfully created,” you are done, as your project has

been created.

Chapter 3 Creating Your First projeCt

48

 Setting Default Projects
Once you have a project created, you will need to set it as the default

project in order to open it. When I first began working with Amazon

Lumberyard, this came as a bit of a surprise to me, as most other software

allows you to simply “Open [a different] project” from the File menu in the

menu bar. Amazon Lumberyard does not offer this option; rather it offers

a “Switch Project” option in the File menu which will open the Project

Configurator and this closes the editor as the two cannot be running

simultaneously. Setting a project as the default project in the Project

Configurator is as simple as clicking the blue “Set as default” button in the

top-right corner of the Project Configurator while having the project’s card

selected, as shown in Figure 3-3.

Of course, this section would not be complete without detailing how

to set the project as the default project via the command-line interface.

Change your directory to the Bin64vc14X directory by using the process

outlined in the “Create a Project through the CLI” subsection earlier in the

chapter, then run the following command:

.\lmbr projects set-active MyFirstGame

Figure 3-3. These are your two options for creating a new project,
Default, which includes many common components, and Empty
which is a completely bare-bones project for advanced users

Chapter 3 Creating Your First projeCt

49

Once you have run the command, you will not get a response back

from your command line unless it errored out, which should only happen

if your command had a typo. Your project will now be set to the default

project. From this point on, any time you attempt to open the Amazon

Lumberyard Editor, this will be the project that is loaded. At any point in

time, if you would like to change your default project to another, simply

repeat the preceding steps replacing “MyFirstGame” with the name of the

game project you would like to be set as the default.

 Gems
As previously mentioned, gems are like plugins you can enable or

disable on your project to take reusable code and assets from one project

and implement them in another. If you look back at Figure 3-1 earlier

in the chapter, you may be able to tell that options to enable gems or

view advanced settings are not available to all projects in the Project

Configurator. In order to enable or disable gems and view advanced

settings for a project, that project must be selected in order to make

changes. This, however, does not mean that when a project is selected in

the Project Configurator, it is now the default project; it simply means that

you are loading the gems and settings currently enabled on that project.

 Enabling Gems
Enabling gems through the Project Configurator User Interface is the

easiest method, so let us explore this method first. To begin, select the

project you would like to enable gems on. For the purposes of this text, we

will continue with “MyFirstGame.” From here, you will see the option to

enable gems on this project, as shown in Figure 3-4. Click this button, and

a window will pop up allowing you to select or deselect gems from

your project.

Chapter 3 Creating Your First projeCt

50

There is a search bar in the top-right corner of this window if you know

the name of the gem you want to change the status of. If you are unsure

of the gem’s name or you are just discovering the other available gems,

however, you can scroll through the list available to you in the center of

the window. Each gem has its own row with three important pieces of

information on it. First, at the far left of each gem row, there is a checkbox.

If the checkbox is selected, this gem is already enabled on your project. If

the checkbox is unselected, this gem has not been enabled. The middle

column of each gem row is the gem artwork and description, telling

you exactly what the gem provides for your project. To the right, the last

column of each gem row lists the dependencies required for this gem to

run properly. If a gem is selected that has dependencies, you will also need

to ensure that you enable the dependency gems as well.

For our project, most of the gems necessary will already be enabled

because we opted to use the Default Project template when creating our

project. There is, however, one gem we would like to enable that will give

us artwork and character models provided by Amazon Lumberyard to get

started. Search in the gem window “Starter Game Gem,” enable it, and

click the blue “Save” button in the top-right corner of the window.

Another method of enabling gems is through the command line, and

there are many different commands to create gems and modify a project’s

use of gems. To run these commands, we will need to be in either the

Bin64vc140 or Bin64vc141 directory (depending on which version of Visual

Studio you have enabled). Navigate to this directory by using the following

Figure 3-4. The easiest way to enable and disable gems is through the
Project Configurator User Interface tool

Chapter 3 Creating Your First projeCt

51

command, replacing <Bin_Version> with whichever directory you have

had success with in earlier sections of this book:

Amazon\Lumberyard\<Lumberyard_Version>\dev\<Bin_Version>

From this directory, we can run many different commands to modify

gem status on our project. In order to see a list of gems available for your

use, run the command:

.\lmbr gems list

If you would like to see which gems are already installed or enabled on

a specified project, you can modify this command by adding the -project

flag, followed by the name of the project you would like to see the list of

gems for. For our game, “MyFirstGame,” that command would be the

following:

.\lmbr gems list -project MyFirstGame

To enable gems on your project via the command line, you replace

“list” in the preceding commands with “enable,” followed by the project

name to enable the gem on, then followed by the gem name that you

would like to enable. This will install the latest version of the named gem

on the named project:

.\lmbr gems enable MyFirstGame <Gem_Name>

As stated earlier in the chapter, for our “MyFirstGame” project, most

of the necessary gems will be enabled already due to our choice of using

the Default Project template when creating our project; therefore, we only

need to enable the “Starter Game Gem” provided by Amazon Lumberyard

to get started. Run the following command to enable the Starter Game

Gem in our project:

.\lmbr gems enable MyFirstGame StarterGameGem

Chapter 3 Creating Your First projeCt

52

You should see confirmation text in your command-line window

that says something along the lines of “Successfully enabled Gem

StarterGameGem.” You will also notice that running this command will

enable all dependent gems required by the Starter Game Gem as well,

such as LmbrCentral and EMotionFX.

There may come a time where you want to enable a specific version of

a gem rather than enabling the latest version by default. This can be done

by modifying the enable command by adding the -version flag, followed

by the version you would like to enable, like so:

.\lmbr gems enable <Project_Name> <Gem_Name> -version <Version_

Number>

Disabling a gem on a project by means of the command line is very

similar to enabling gems. In order to disable a given gem on a project, you

would run the following command:

.\lmbr gems disable <Project_Name> <Gem_Name>

The gem you named will be disabled from on the project you named,

but it should be mentioned that the dependencies that were enabled

to support the newly disabled gem will not be disabled by running the

preceding command. If you are confident that the dependencies were

only used for the gem you are disabling, you can disable dependencies

alongside gems by modifying the preceding command, adding the

-disable-deps flag, like so:

.\lmbr gems disable <Project_Name> <Gem_Name> -disable-deps

When gems are enabled or disabled within a game project, in the

background, the Project Configurator updates the list of enabled gems that

is maintained in a JSON file called gems.json located in the game’s project

directory:

Amazon\Lumberyard\<Lumberyard_Version>\dev\<Game_Project_Name>

Chapter 3 Creating Your First projeCt

53

Enabling or disabling gems will also update the Game.xml and Editor.

xml files, which tell Amazon Lumberyard to load the required DLL files for

the gems that you have enabled in the Project Configurator, which are in

the directory:

Amazon\Lumberyard\<Lumberyard_Version>\dev\<Game_Project_Name>\Config

Note json stands for “javascript object notation,” which is a
type of file used to store data with key-value pairs. it is very easy to
read these files as humans, but more importantly, it is very easy for
machines to generate and parse these files.

XML stands for “eXtensible Markup Language,” which is a tool used
for storing and transporting data that is both software and hardware
independent. similar to htML, XML is a markup language. the
difference between XML and htML is that XML was designed to
carry data, while htML was designed to display data. XML tags do
not need to be predefined, which is why it is a great tool to use for
multiple different applications with differing use cases.

Because these background files get updated when a change is made

to your project, any time you make changes to gem statuses or advanced

settings, you will need to rebuild your game via the command line before

opening the Lumberyard Editor. Failing to build the game after changes

have been made to gems could result in errors on the startup of the editor.

As a safety precaution, I typically also recommend rebuilding the engine

and the game every time a change is made outside of the editor just to

ensure that nothing goes wrong when you are ready to begin working.

At the time of writing this book, there is only one method for building

your game project, and that is through the command line by running

the Lmbr.exe file. If you have been following the user interface methods

Chapter 3 Creating Your First projeCt

54

of performing actions throughout this book and find the command line

daunting – fear not, this is a very simple process. The first thing we will

need to do open up Powershell by pressing the Windows key + X to open

the Power User Tasks menu, then press “I.” The next task we will perform

will be to navigate to our version of Amazon Lumberyard’s dev directory

which we have done many times before by running the command:

cd C:\Amazon\Lumberyard\<Lumberyard_Verion>\dev

Once we are in the Lumberyard dev directory, we will need to first

configure the project by running the following command:

.\lmbr_waf configure

When the project configuration has completed, we will run the

lmbr_waf command again, this time replacing “configure” with the build

command. In the following, I will be running the command for Visual

Studio 2017. If you have a different version of Visual Studio installed on

your machine, replace “2017” in the following command with the correct

year version you have installed:

.\lmbr_waf build_win_x64_vs2017_profile -p game

Earlier I mentioned that I would advise you to build both the game

and the engine when project changes are made. The preceding command

will only handle the building of the game. To build the engine alongside

building the game, run the following command:

.\lmbr_waf build_win_x64_vs2017_profile -p game_and_engine

Depending on your last build, these commands may take quite a while

to run.

Chapter 3 Creating Your First projeCt

55

 Creating Gems
Because there will be times that you would like to reuse code snippets or

assets that you have created from one project to another, we need to go

over how to package those components into a gem for reusability.

First, think of a good name for your gem. For this example, we will use

the name “MyNewGem.” Then, in whichever Bin64vc140 or Bin64vc141

directory that has been allowing you success, run the following command:

.\lmbr gems create MyNewGem

A new gem folder will be created within the Amazon\<Version>\dev\

Gems directory, titled “MyNewGem.” If you would like the gem folder name

to be different than that of the gem’s name, you can modify the preceding

command by adding on the -out-folder flag, followed by the directory

name you would like to use instead:

.\lmbr gems create MyNewGem -out-folder gems\<some_other_name>

If you would like to specify the version number of the gem you are

creating, you can also add the -version flag to the command. Keep in

mind version numbers must be in three parts, such as version 1.0.0 instead

of version 1.0. To create a gem with a specified version number, run the

following command, replacing <Version_Number> with whichever version

of the gem you are creating:

.\lmbr gems create MyNewGem -version <Version_Number>

Now when you navigate to the directory of this newly created gem,

you will see two folders: Assets and Code. Any reusable assets you have

can be copied into the assets folder, and any reusable code you have can

be copied into the code folder. You can also add a PNG image file called

“MyNewGem_gem.png” into the gem directory to have artwork associated

with your gem when it is viewed through the Project Configurator User

Interface.

Chapter 3 Creating Your First projeCt

56

 Advanced Project Settings
There are many settings that can be changed in a project by way of the

advanced project settings window, also called the System Entity Editor. To

open the System Entity Editor, navigate to the Project Configurator, select a

project, and select the option “Advanced Settings,” shown in Figure 3-5.

When the System Entity Editor launches, you will see the main

interface has two tabs – the System Entity tab as well as the Memory

Settings tab. On the left side of Figure 3-6, you will see what the System

Entity tab looks like, and on the right side of Figure 3-6, you will see what

the Memory Settings tab looks like.

Figure 3-5. Change advanced settings on both your game as well as
the editor from the System Entity Editor, accessible from the Project
Configurator User Interface

Chapter 3 Creating Your First projeCt

57

By default, when the System Entity Editor launches, the System Entity

tab will be the selected tab, meaning the default view will be the System

Entity view.

In the top of the System Entity tab, you will see two drop-down menus.

The first allows you to decide which game project you are changing

settings on, while the second selects the configuration, either game or

editor, whose settings will be changed. Then, you will see the tabs that

provide you the option to switch between viewing the System Entity

window and the Memory Settings window. Below these tabs is where

the real configuration begins. To add a settings component, click the

Figure 3-6. The two settings tabs available in the System Entity
Editor. On the left, the System Entity tab, and on the right, the Memory
Settings Tab.

Chapter 3 Creating Your First projeCt

58

button that reads “Add Component.” This will provide a list of available

components alongside a search bar that allows you to quickly find the

specific component you are looking for. Below the “Add Component”

button, you will see that each component already enabled on your

project will have its own card. A card with no inputs means there are no

available customizations you can make to a component, while a card with

inputs will allow you to change the given input’s settings. For example,

in Figure 3-6, the “CryPhysics Manager” has no available settings to

change, while the “CloudGemFramework” has inputs that will allow you to

configure the “Thread Count” as well as the “First Thread CPU” options.

For our game, the only changes we will make to the settings will be on

the Input System component. In the System Entity Editor window on the

System Entity tab, search “Input System.” In the Input System card, we will

deselect “Motion,” “Touch,” and “Virtual Keyboard,” shown in Figure 3- 7,

as our game will only support the Keyboard and Mouse input devices.

Once you have finished this book, if you would like to extend your game

for mobile devices, feel free to come back to this System Entity Editor and

re-enable the “Touch” input system.

Figure 3-7. For the purposes of this text, we only need to have
the Keyboard and Mouse option selected for the “Input System”
component

Chapter 3 Creating Your First projeCt

59

We will opt to not make any changes to the Memory Settings of the

project, as the default settings are typically sufficient for most projects.

Click the gray “Save” button in the bottom right-hand corner of the System

Entity Editor window to save our changes.

 Levels
At this point, we have created a new project, changed advanced settings

to suit our needs, enabled gems that will help us get started, and set the

project as the default project. Now, it’s time to add our first level. Before we

do that, allow me to detail what a level is and how it differs from a project.

Level files are the system in which Amazon Lumberyard organizes the

content of your games. Level files will contain all scripts, terrain changes,

and support files that hold game data required for the level to run in the

game. Per game, there will only be one project, but there will be many

levels. Levels do not require a “default” setting to open and change like

projects do. Unlike most other functions in Amazon Lumberyard, levels are

only created from the user interface without a command-line counterpart

and are created through the Lumberyard Editor rather than through their

own configurator or setup assistant.

 Creating a New Level
To begin, we first need to open the Amazon Lumberyard following the

steps laid out in Chapter 2 of this book. When the editor opens, you will be

greeted with a welcome window with the options “New Level” and “Open

Level.” Select the option “New Level” to create your first level. If you have

already closed the welcome window, however, there are still two other

ways you can create a level.

The first, go to the main menu at the top of the screen, and select “File,”

then “New Level.” The second, use the keyboard combination option by

Chapter 3 Creating Your First projeCt

60

pressing Ctrl+N simultaneously. Figure 3-8 shows the “New Level Creation

Window,” which contains five options.

The first option is the level name input field. Level names cannot use

spaces or any special characters aside from hyphens (-) and underscores

(_). Alphanumeric characters are the accepted characters for level names.

For our project, we will name our level “Level_1.” Type this into the

“Name” field now.

The next option allows you to select the folder the level is created in.

By default, Amazon Lumberyard will create the level file within the project

directory, in this case:

 C:\Amazon\<Lumberyard_Version>\dev\MyFirstGame\Levels\<Level_Name>

While you have the privilege to change this directory, I will opt to leave

the folder location as the default location.

Figure 3-8. The New Level Creation Window is a very simple dialog
to navigate through

Chapter 3 Creating Your First projeCt

61

The third option when creating a new level is a checkbox that sets the

status for the “Use Terrain” property. Not all games will use terrain, so

this option along with the next two options can be disabled. Our game,

however, will have terrain, so we need to ensure that this checkbox is

selected.

The fourth option allows you to change the terrain’s heightmap

resolution. As we will see in Chapter 4, Amazon Lumberyard provides us

with some sample heightmaps with the resolution of 512x512 pixels. While

heightmaps can be generated easily for any heightmap resolution setting,

let’s change this value to 512x512 so we can use the artwork provided to us

by the engine.

The fifth and final option to change when creating a level is the “Meters

Per Texel” option. This sounds a bit more daunting than it really is and is

more easily explained by simply tinkering around with the Terrain Editor

(which we will explore in Chapter 4). Meters per texel is the distance

between to vertices on the game grid, in meters. If the meters per texel

value is set to 8, for example, that would mean there is a grid point every 8

meters. Larger meters per texel values will create a larger terrain; however,

the detail quality will decrease for the same heightmap resolution. In other

words, “Terrain Size” is determined by multiplying the meters per texel by

the heightmap resolution. For our purposes, let us select 1 meter per texel

(if not already set by default), and we can see in the helper text below the

meters per texel drop-down that our Terrain Size will be 512 x 512 meters.

Click the gray “OK” button in the bottom right-hand corner of the

“New Level” window to save our changes. You will now be greeted with

a window that allows you to set the Texture Dimensions as shown in

Figure 3-9. This window will calculate texels per meter by dividing the

selected Texture Dimensions by the Terrain Size set in the “New Level”

creation window. Select the option 4096 x 4096 which will provide us with

8 texels per meter, and click the gray “OK” button in the bottom right-hand

corner of the screen.

Chapter 3 Creating Your First projeCt

62

Congratulations! You have just created your first level. You will now

have an empty level with a flat terrain in your level file, as shown in your

viewport.

 Deleting a Level
Suppose you have created a level that you feel no longer has a place in

your game. How do you get rid of this level entirely? While there is no

option through the editor to remove the level, we can delete levels by going

through the file system. We have two options for doing this.

The first method for deleting a level relies on the command line. Open

Powershell by using the key-combination Windows key + X, then “I.”

Navigate to your levels directory by running the following command:

cd C:\Amazon\<Lumberyard_Version>\dev\<Game_Name>\Levels\

To see the list of levels you have the option of deleting, you can run the

command ls in Powershell or dir in command line. Now, to delete the

level, just run the following command, replacing <Level_Name> with the

name of the level you would like to delete:

rm <Level_Name>

Figure 3-9. Selecting a Terrain Texture Dimension will calculate the
Texels per meter your project will use by dividing the selected Texture
Dimensions by the Terrain Size

Chapter 3 Creating Your First projeCt

63

You will likely get a warning saying that the level has children and the

recurse parameter was not specified. Because we want to remove the level

as well as all of the children associated with it, we can type “A” and press

“Enter” in order to agree to deleting all of the named level’s children. At

this point if you are unaware of what children are, do not worry – we will

talk about parent-child entity relationships in Chapter 5.

The second method for deleting a level is a more user-interface

friendly method. Open your File Explorer, and navigate to the directory:

C:\Amazon\<Lumberyard_Version>\dev\<Game_Name>\Levels\

Now, select the level you would like to delete and either select the

“Home” tab and click the “Delete” option, signified by the red “X,” or

right- click the level folder and select the “Delete” option.

 Changing Levels
To change the level currently loaded in the editor, there are two options.

The first, navigate to the menu bar at the top of the screen and select

“File,” followed by “Open Level….” You will now see a window with a list of

levels your project is associated with, as shown in Figure 3-10. The second

method is to use the keyboard combination option by pressing Ctrl+O

simultaneously to open the same window.

Chapter 3 Creating Your First projeCt

64

As projects grow, the number of levels associated with that project will

increase. Because of this, the “Open a Level” window provides a search bar

that allows you to search for the level you would like to load by name.

Now that you have learned all about the basic components – projects,

gems, and levels – we now know how to get started with the development

of your first game. Chapter 4 will walk you through terrain development,

which will give our game project a very polished, professional look.

Figure 3-10. The “Open a Level” window allows you to change the
currently loaded level in the Lumberyard Editor

Chapter 3 Creating Your First projeCt

65© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_4

CHAPTER 4

Terrain
This is the chapter where things begin to get fun. We are finally going to

dig in, get our hands dirty, and work on creating the very first aspects of

our game. Before we create a character entity and enemies and scripts,

let us create a stunning terrain for them to interact with that will give our

game a polished, professional look. In this chapter, we will discuss what a

heightmap is, how to use them in Amazon Lumberyard, as well as how to

create your own. We will talk about both textures and megatextures and

focus on how they can be used to paint your terrain in such a way that will

make them look realistic. We will go over how to give your terrain realistic

depth and polish by adding vegetation while also discussing the downfalls

of over-vegetating your game. We will also talk about sun patterns and

setting the time of day.

As we go through this chapter, keep in mind I will merely be telling

you how to create terrain, but as this is a creative aspect of the game rather

than technical, I will not be detailing specifics on what vegetation to use,

how high your mountains should be, or the time of day in which your

game will be set. This will allow you to use your artistic capacity to create a

game that is completely and truly your own, allowing you the imaginative

freedom to explore the Lumberyard engine.

66

 Getting Started
To begin, open the project we created in Chapter 3 called “MyFirstGame”

by opening the Lumberyard Editor using your preferred method described

in Chapter 2. Remember that this project must be set as the default to be

loaded into the editor. Once the Lumberyard Editor has loaded, select

the “Level_1” level that was also created in Chapter 3. Terrain editing will

be handled through the “Terrain Editor,” which was briefly mentioned in

Chapter 2. There are two ways to open the Terrain Editor.

The first and likely the easiest way to open the Terrain Editor is through

the Editors toolbar. Select the “Terrain Editor” button, indicated by an icon

with a mountain and a cloud on it, as pictured in Figure 4-1.

The next method of opening the Terrain Editor is to either navigate

to the menu bar and click the “Tools” option or use the keyboard key-

combination “Alt+T.” Once the tools menu is showing, select the “Terrain

Editor” option from the drop-down list. Depending on which version of

Amazon Lumberyard you are running, this editor may already be enabled.

The Terrain Editor will now be open, showing a flat heightmap, as shown

in Figure 4-2.

Figure 4-1. Opening the Terrain Editor through the Editors toolbar
is likely the easiest method of opening the tool, assuming the Editors
toolbar is displayed in your editor window

Chapter 4 terrain

67

 Heightmaps
The first aspect of terrain editing we will discuss will be heightmaps. A

heightmap, sometimes referred to as a heightfield in other applications, is

a raster image that contains pixels which store elevation data for surfaces.

The beauty of using heightmaps is that they are reusable from level to

level, as once your heightmap is created, it can then be exported from one

level, then imported to another. This will allow ease of continuity from

level to level that both speeds up your development time and requires

substantially less memory for the given level of detail provided.

Figure 4-2. The Terrain Editor allows you to create professional
terrain for your game project

Chapter 4 terrain

68

Note a raster image, also known as a bitmap, is a grid of pixels
that compose an image. think of a collection of multiple small
squares, each with their own color that come together to make up a
larger picture.

Heightmaps will always be black-and-white monochrome images,

where black will signify no elevation, or flatness, and white will signify the

highest elevation possible. Different shades of gray will, of course, signify

elevations along some spectrum that are both lower than the highest

possible elevation and higher than the lowest elevation. For example, a

heightmap that is mostly black in color will result in a fairly flat terrain,

whereas a brighter heightmap with very few or no black coloration will

result in a very elevated, mountainous terrain.

 Importing Heightmaps
Because Amazon Lumberyard comes packaged with a sample heightmap,

I will walk you through how to import heightmaps into your game. Keep

in mind, however, that it is not necessary that you follow along with these

steps if you plan on creating your own heightmap which I will go over later

in this section. To begin importing a premade heightmap from within the

Terrain Editor, navigate to the menu bar and click “File” to display a drop-

down, and from the options, select “Import Heightmap….” This will open

a Windows Explorer window in your game’s current directory. Navigate

to the directory in Amazon\Lumberyard\<Lumberyard_Version>\dev\

StarterGame, then select “Textures” followed by “Heightmaps.”

As you can see, there will be three options available to you: AM_Terre_

HM_01, AM_Terre_HM_02, and FTUI_heightmap_Test. From left to right,

the far-left option, AM_Terre_HM_01 is going to by far have the most

elevation and rockiness, as the heightmap is mostly white in color. The

Chapter 4 terrain

69

next, AM_Terre_HM_02 has some white around the edges with clouds of

gray, resulting in a balanced level of elevation and rockiness. The final

option, FTUI_heightmap_Test is nearly black with extremely light gray

clouds brushing along the edges which will result in a predominately flat

surface. Let us choose the second option, AM_Terre_HM_02, then select

“Open” to load the heightmap into the Terrain Editor.

You will get a warning with the following text:

Image dimensions do not match dimensions of heightmap.
Image size is 2048x2048, Heightmap size is 512x512. Would
you like to clip the image, resize it, or cancel?

Typically, you would want to resize your heightmap to fit using some

external graphics application before importing the heightmap to your

project. However, in our case, let us experiment with each of these options.

The “Clip” option will remove any elevation values that exist outside the

boundary of your project’s current existing heightmap. The “Resize”

option will either shrink or stretch elevation values to fit into your

project’s current existing heightmap. Resizing could make your terrain

blocky- looking and unprofessional, but in this case, we are going to choose

the “Resize” option and experiment with the result. Feel free to use the

“Clip” option if you so choose.

As you can see, your viewport will now be filled with mountainous

terrain that is likely extremely sharp and far too tall to be realistic. No

worries, this is where a little bit of Lumberyard know-how will come in

handy. As a default, Amazon Lumberyard sets the terrain’s maximum

height to 1024 meters. In fact, there are many heightmap properties

that are set by default in Lumberyard. Lucky for us, these values are

changeable, and they are very easy to change.

Chapter 4 terrain

70

 Changing Heightmap Properties
From the Terrain Editor window, in the menu bar select “Modify,” and you

will see all the heightmap properties available to change. The one we are

particularly interested in for our example is the “Set Terrain Max Height”

option. Click “Set Terrain Max Height,” and a small dialog window will

appear. We can now tell Lumberyard we would like our tallest mountain to

be 225 meters tall, then click “OK” to lock in the value. In order to see this

change reflected, however, you will need to reimport the heightmap from

earlier. You should now see a very realistic looking terrain with just the

right amount of rockiness.

While we are on the subject of heightmaps and heightmap properties,

let’s discuss a few of the other options from the “Modify” menu bar

option in the Terrain Editor window. The first, “Make Isle,” will sink the

heightmap so that is surrounded by ocean. Keep in mind, however, that

when this option is selected, its effects cannot be undone. I would advise

that if you intend to experiment with this functionality that you save your

level beforehand, so that you can test it out without having to worry about

messing anything you have already created. The next option from the

“Modify” menu bar option is the “Remove Ocean” option. Selecting this

option does not actually remove the ocean; however, it simply sets the

ocean’s level to -100,000 meters, so it is completely out of view. Following

the “Remove Ocean” option is the “Set Ocean Height” option, which

allows you to set the height of the ocean in meters. After that, we have

the “Set Terrain Max Height” option, which we have already used, but

again it just sets the maximum height in meters for the tallest mountain

on your terrain. Next, the “Set Unit Size” option will allow you to set the

meters- per- texel size of the heightmap, which we covered in Chapter 3.

The next few options are options that will likely get used the most,

as they offer capabilities to polish your terrain by making it look more

realistic. The first of these, “Flatten,” will flatten terrain either to a higher

point or lower point within the viewport, depending on whether a positive

Chapter 4 terrain

71

or negative value is given. Following “Flatten” is “Smooth,” which will

attempt to move hard edges from a heightmap. Select this option when

your mountains look unrealistically jagged or sharp. For the purposes of

the example game, I will go ahead and select this option. As you can see,

when this option is selected, your terrain softens out, making it look more

and more realistic. This is an action that can be repeated multiple times.

While “Smooth” will remove all of the hard edges from your heightmap, the

next option “Smooth Slope” will only attempt to remove hard edges from

steep areas, and the “Smooth Beaches/Coast” option will only attempt to

remove hard edges from flatter areas of your heightmap.

The next option “Normalize” is interesting because it will guarantee

that every shade of gray from white to black on the grayscale spectrum

is used between zero and the height value you have specified for “Max

Height.” The next two options reduce the range of the heightmap

mountains: the first “(Light)” will make all heightmap mountains slightly

smaller, while the second “(Heavy)” will make the heightmap mountains a

great deal smaller.

If at any point you decide that you would like a clean slate to wipe all

the heightmap data you created, the next option is appropriately named

“Erase Terrain,” and it will do just that. This option will delete any and

all heightmap data you have input into the Terrain Editor. The final two

options are “Resize Terrain” and “Invert Terrain.” “Invert Terrain” will

take all white spots on your heightmap and turn them black and take

all black spots on your heightmap and turn them white. Shades of gray

will of course be flipped as well from light to dark and from dark to light.

This will result in the same terrain you had, just inverted, in other words,

rocky, mountainous terrain will result in a terrain with deep cave-like

valleys. “Resize Terrain” allows you the option to change your heightmap

resolution as well as your meters per texel in a separate window, shown in

Figure 4-3.

Chapter 4 terrain

72

 Painting Your Own Heightmap
We are going to tap into your creative side a bit in this section. While

importing existing heightmaps is easy, it does not allow us the freedom

of creating our own terrain that we can be proud of and say we did all on

our own. If you have a heightmap imported already, erase it by using the

“Erase Terrain” option within modify menu, discussed in the previous

section to give us a fresh heightmap canvas to create on.

To paint your heightmap, open the Terrain Editor to the freshly clean

heightmap view, and hover your mouse over the viewport behind the

Terrain Editor. You will see either a single green circle (if your brush’s

inside radius is equal to your brush’s outside radius) or two green circles

if your radii are different. By clicking and dragging, you can modify your

terrain this way, but the easiest way is to paint directly to the heightmap, as

you have a larger canvas. Painting terrain directly to the viewport can result

in blocky terrain that is isolated to one area of your game area, which is not

optimal.

Figure 4-3. In the heightmap properties, you can choose the option
to resize your terrain’s heightmap resolution. Keep in mind, however,
that doing so will result in the undo-queue being cleared

Chapter 4 terrain

73

When hovering your mouse over the heightmap canvas, you will see

a yellow circle, as shown in Figure 4-4. Clicking and dragging along the

heightmap canvas will paint terrain which you can see as reflected by

the change in grayscale color on the areas in which you have just painted

terrain.

While developing, there will be times when you want to do different

things with your brush to create different details. You may not always want

to create mountain ranges, for example, you may want to flatten out some

rocky object you’ve just created. The capability to change what type of

brush you are currently using as well as the ability to change other aspects

of your brush settings are available on the far-right side of the Terrain

Editor window in a section called “Brush Settings,” as shown in Figure 4-5.

Figure 4-4. The yellow circle indicates where on the heightmap grid
you are about to make modifications to your terrain

Chapter 4 terrain

74

To begin, there are four main buttons at the top named “Flatten,”

“Smooth,” “Rise/Lower,” and “Pick Height.” Selecting one of the first three

of these options will load a different terrain brush, which will allow you to

create different terrain features, while selecting the “Pick Height” button

will allow you to change the height value of your brush based on the height

of another space of terrain.

Figure 4-5. The Brush Settings section of the Terrain Editor window
allows you to change various aspects of the current terrain brush you
are using

Chapter 4 terrain

75

The “Flatten” brush will flatten terrain at a specified height and

diameter when the brush is drawn on the heightmap editor. The specified

height can be changed three ways:

• Type the height value in the “Height” input box below

the brush buttons.

• Use the “Height” slider to change the height value.

• Use the “Pick Height” button, which will enable an

eyedropper tool. When you click the area in the terrain

whose height you would like to select, you will notice

that both the “Height” input box as well as the “Height”

slider values will update to reflect the height at the

specified location in the terrain.

The “Rise/Lower” brush allows you to either decrease or increase

terrain in the location the brush is clicked and dragged across, which is

what you would use to create mountains or hills, for example. The last of

the main terrain brushes, “Smooth,” can be clicked and dragged across

selected areas in the terrain where sharp gradients exist in order to smooth

over those areas. This will allow you to smoothen out only targeted,

selected areas, while the “Smooth” option in the heightmap properties

settings will smoothen out your entire terrain. Both “Flatten” and “Rise/

Lower” have several customizable buttons for you to utilize while building

your terrain that utilize slider bar adjustment as well as input box.

“Outside Radius” will increase or decrease the outer most edge of your

brush for larger or smaller additions to your terrain. This can be adjusted

by either the slider bar by clicking and dragging to resize or using the input

box. The input box allows you to either type your chosen size or use the

increase or decrease arrows to change the size.

“Inside Radius” behaves similarly but is for the innermost radius of

your brush. Think of this as the “peak” of your mountain. The smaller your

inner radius the more of a peak you will create. Meanwhile the larger your

Chapter 4 terrain

76

inner radius the shape will resemble more of a column. Adjusting this size

can be done using the slider or input box in the same way as previously

stated for “Outside Radius.” This is not adjustable for “Smooth” and “Pick

Height” brushes.

Note When increasing the radii of your brush, the size of the “inner
radius” will never increase larger than your “Outside radius.” the
largest your “inner radius” can be is equal to the “Outside radius.”
the slider bar is built in such a way that when increasing the “inner
radius” to the same size or larger than the “Outside radius,” the size
of the “Outside radius” will dynamically adjust as well.

Directly between the radius adjustment sections is a checkbox for

“Sync all Radius for all Types.” When selected, this option will hold your

radius settings across the “Flatten,” “Smooth,” and “Rise/Lower” brush

settings for uniformity and can be selected while in “Smooth” and “Pick

Height” brushes.

“Hardness” adjusts how much of an impression your brush will

make. When the hardness is lower, the terrain will be softer, but when the

hardness is increased, the sharper the jump will be between outer and

inner radii. Think of this as the difference between a rolling hill and a lone

mountain. The “Hardness” of your brush in conjunction with the radii

settings will form very different terrains.

“Height” is the setting that adjusts how high the terrain is raised or

lowered depending on your other brush settings. This behaves differently

regarding the size of your radii and hardness. “Smooth” does not allow

customization of this option, while it is available to adjust for “Pick Height”

and is the only adjustable button for that brush.

“Noise Settings” is an option to turn on for only the “Flatten” and

“Rise/Lower” brushes. This will add random adjustments to the terrain for

a more natural look.

Chapter 4 terrain

77

“Reposition Objects” and “Reposition Vegetation” can be selected

to adjust your objects or vegetation to realign with the newly modified

terrain. This will keep both on top of your terrain. We will discuss adding

objects in a later chapter and adding vegetation later in this chapter.

Once you are familiar with the brush settings, take the time to

experiment with each of them, remembering that you can easily erase any

changes you make completely by using the option “Erase Terrain” in the

modify drop-down menu. Once you have a terrain that you have created

all on your own, let us suppose you would like to take that terrain and

export the heightmap for use in future levels. In the menu bar, select “File,”

then “Export Heightmap.” Amazon Lumberyard will open a Windows File

Explorer window that will allow you to save the location of your heightmap.

Save it in the default directory that it opens to as “MyHeightmap.bt,” and

click “Save.” To test that your new heightmap was exported properly,

feel free to use the “Erase Terrain” method, followed by the “Import

Heightmap” function outlined earlier in the chapter.

Otherwise, if you would rather want to let the Amazon Lumberyard

Editor handle your terrain editing for you, this is entirely possible. In the

menu bar, select the “Tools” option, and you will see in the drop-down

list there will be an item for “Generate Terrain….” Select the “Generate

Terrain” option from the drop-down list, and a terrain generator window

will appear, as shown in Figure 4-6.

Chapter 4 terrain

78

You will notice that the terrain generator has many options to

experiment with before generation. The first of these, “Feature Size

(Frequency),” changes the number of peaks your generated terrain will

have. For example, if you change this selection to the lowest option, your

terrain generator will likely create a heightmap terrain with one mountain,

whereas if you set this value to the highest option, it is likely your terrain

will be extremely rocky.

The next option is “Bumpiness / Noise (Fade),” which in my opinion

is best left at its default setting. This changes the amount of variation in

height your terrain will have. Too little noise and your terrain will look very

soft, smooth, and almost cartoon, while having too much noise will leave

your terrain looking like a spiky ball.

Next is the “Slope Detail (Passes)” option, which will change the level

of detail slopes of mountains and hills will have. If you are attempting to

create a desert scene, you may opt to set this value slightly on the lower

side, as you will not want a great deal of rockiness. Alternatively, if you are

creating a rocky mountain with jagged cliffs and edges, you will want this

setting to be high. Essentially, the number that corresponds with the slider

Figure 4-6. The Terrain Generation tool is for those who want to
generate a professional looking terrain at the click of a button

Chapter 4 terrain

79

will determine the number of times the slope detail effect is applied to the

terrain to generate.

The next setting that can be changed in the terrain generator window is

the “Seed (Random Base)” option, which will allow you to set the amount

of random variation to be applied to the heightmap that will be generated.

The higher the seed, the more variation the generated terrain will have.

The second-to-last option, “Slope Smoothing (Blur Passes)” does

exactly what it sounds like. It will smoothen out slopes when the terrain

is generated. The slider corresponds to the number of times that the

smoothing effect is applied to the noise filter.

The last two options are similar, as both deal with the sharpness of

the generated terrain. “Sharpness (Exp. Base)” sets the sharpness of the

surface, while “Sharpness (Freq. Step)” allows you to set the number of

times the sharpness filter is applied to the generated terrain.

Keep in mind that if you so choose to use the terrain generator instead

of importing a heightmap or painting your own heightmap, you will still

have the ability to export the terrain for use in future levels. It is also

important to note that the Amazon Lumberyard Editor does not require

you to erase the existing terrain before generating a new one, the generator

will clear all heightmap data prior to generating new terrain.

 Adding a Pop of Color
Now that we have nice mountainous terrain, we need to add some realistic

color to it, like some grassy greens or sandy beiges. We can do this easily by

using megatextures provided by Amazon Lumberyard or by painting them

ourselves using texture layer painters. Let us get started by introducing

what texture layers are, how to create them, and how to use them, then

we will move on to using megatextures, in addition to how to import and

export textures to be used across levels.

Chapter 4 terrain

80

 Texture Layers
Texture layers will be used when we want to create terrain coloration that

does not already exist in some premade megatexture, which we will talk

about later. The great thing about creating texture coloration in Amazon

Lumberyard is that it provides you the ability to manipulate layers in order

to establish rules like wanting a specific green color to be below a certain

elevation; when you begin painting that color onto your terrain, if your

brush touches any height about that elevation constraint, the texture will

not be applied. Another reason using texture layers is preferred is that if

you want to remove all areas of a certain color or texture rather than having

to change your brush and find all of the areas with that texture or color,

you can just remove that layer and immediately all instances will all vanish

while leaving all color and texture you do want to be there remaining.

To get started, we first need to ensure that the textures provided by

Amazon Lumberyard have been pulled into our game appropriately. While

this should be handled when the StarterGame gem is added to the project,

Amazon Lumberyard is still in beta, so it is always a good idea to double

check things that should be handled by automation. In your file explorer,

navigate to your project’s textures directory, located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame\

textures

If either this folder does not exist, this folder is empty, or this folder

does not contain a folder titled “Natural” or “Terrain,” you will need to

follow the following steps. If this folder contains “Natural,” “Terrain,”

and “Heightmaps” folders, feel free to skip ahead to the next section. To

manually get the resources provided by Amazon Lumberyard into your

project’s texture directory, navigate to the StarterGame Textures directory,

located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame\Textures

Chapter 4 terrain

81

Once in this location, use the keyboard key-combination Ctrl+A to

select all items within this folder followed by the key-combination Ctrl+C

simultaneously to copy all the selected items. Navigate back to your

project’s textures directory, and paste the items into the directory by using

the keyboard combination Ctrl+V. Keep in mind, you will likely need to

close the Amazon Lumberyard Editor throughout this process in order to

allow these materials and assets to update appropriately within the editor

for later use.

 Terrain Texture Layers Editor
Before we begin painting textures onto our terrain, we need to set up layer

definitions. While you can do this at any point in time, it is recommended

to do it before you begin working on terrain coloration so that you do not

have to keep flipping back and forth between different tools within the

Lumberyard Editor. To begin, open the Terrain Texture Layers Editor by

selecting the “Tools” selection in the Terrain Editor followed by selecting

the “Terrain Texture Layers” option. Alternatively, if your Editors toolbar is

visible, select the “Open Terrain Texture Layers Editor” option, shown in

Figure 4-7.

When the Terrain Texture Layers Editor is open, as you can tell from

Figure 4-8, there are many options to select from the left-side menu, and

you will already have one default layer, which will be the gray color that

currently covers your terrain.

Figure 4-7. Opening the Terrain Texture Layers Editor through
the Editors toolbar is likely the easiest method of opening the tool,
assuming the Editors toolbar is displayed in your editor window

Chapter 4 terrain

82

To start, let us go over the options that are available within the Terrain

Texture Layers Editor left-side menu. As you can likely tell, each task is

associated with a group that helps organize the list of tasks. The first group

list is the “Layer Tasks” group.

The first task, “Add Layer,” creates a new terrain texture layer with

default settings. To rename this newly created layer, double-click the name

of the layer (by default this will be named “NewLayer”) and assign it a new

name. There are two settings that will need to be changed that will affect

the look of your terrain layer: the texture and the material.

To change the material of a texture layer, click the link text in the

“Material” column of the layer you would like to change the material of.

This will open a window to the Material Editor, which was discussed in

Chapter 2. Select the material you would like to use for your layer, then

close the Material Editor window. You will notice that the material change

will not yet be reflected in the Terrain Texture Layers Editor. To assign the

material that was selected in the Material Editor to the selected layer, click

the “Assign Material” option in the left-side menu of the Terrain Texture

Layers Editor, and the material listed on the layer should now be updated.

To change the layer texture of a texture layer, select the layer, then in

the left-side menu of the Terrain Texture Layers Editor, choose the option

Figure 4-8. The Terrain Texture Layers Editor is used for organizing
texture layers, assigning materials to certain layers, and setting the
layer indexes across your project

Chapter 4 terrain

83

“Change Layer Texture.” This will open a window titled “Pick Texture,”

shown in Figure 4-9.

From this view, select the texture (.tif) file you would like to assign

to the selected texture layer from the Natural/Terrain directory that we

ensured existed in our project earlier in the chapter. Once you have

selected the terrain texture file you would like to assign, click the orange

“OK” button in the bottom right-hand corner of the window. You will

notice that unlike assigning materials, the texture file will automatically be

applied to the texture layer without any further effort to put forward.

The next option on the left-side menu of the Terrain Texture Layers

Editor is the “Delete Layer” button, which is self-explanatory. Keep in

mind when deleting texture layers that it is required to have at least one

texture layer left over, so this button will do nothing if clicked when there is

only one existing texture layer. Also keep in mind that this will not remove

any painted areas that already exist on your game terrain.

Figure 4-9. The Pick Texture window allows you to preview the
texture file before assigning it to a texture layer

Chapter 4 terrain

84

The next two options work together to set the layer indexes in the list

of texture layers, named “Move Layer Up” and “Move Layer Down.” To

use these, select a layer from the list, and click either the “Move Layer Up”

option if you would like the layer to be higher in the list of texture layers or

the “Move Layer Down” option to place the layer lower on the list.

The next left-side menu option is the “Assign Material” option which,

as we have already discussed, will assign a selected material file to the

selected texture layer.

The next two options allow you to use splat maps, which we will not

be using for the purposes of this text; however, I will still walk through the

process of assigning and importing them. Like the material assignment

process, the use of splat maps requires a certain order of operations to be

utilized. First, you need to assign splat maps to a texture layer by selecting

the layer and clicking the “Assign Splat Map” option. This will open a

Windows File Explorer window that you will use to navigate to the splat

map bitmap file. Once the file is selected, click the “Open” button in the

File Explorer. Similar to the material assignment process, you should not

yet see any change being indicated until selecting the “Import Splat Maps”

option from the left-side menu, which will rebuild the weight map for the

terrain using the splat maps you have just assigned.

Note a splat map is an 8-bit bitmap file that contains weight
information for the terrain map vertices. these files are monochrome
images similar to heightmaps, but unlike holding height data like a
heightmap would, these hold weight data for a certain texture layer.

The next item in the left-side menu of the Terrain Texture Layers Editor

is the “Layer Info” group which is not directly editable. This group just

holds information about the layer size as well as the surface type count.

Following the Layer Info is the layer texture group, which we discussed

how to change earlier in this section.

Chapter 4 terrain

85

The final group in the menu is titled “Options,” which only contains

a checkbox titled “Show Preview,” which is selected by default. When

this checkbox is selected, you will see a preview of what the texture will

look like on each layer from the list of all layers. When the checkbox

is unselected, you will only see a list of layer names and information,

without the texture previews available. The difference in having this option

selected and unselected is demonstrated in Figure 4-10, where the left-side

image shows the “Show Preview” option being selected and the right-side

image shows the “Show Preview” option being unselected.

When creating your game, it is obvious that you would not want to

redefine all the texture layer settings that you have used in one level to

another level. It would be more efficient to combine all layer settings into

a file, then, when a new level is created, import that file in order to reuse

those layer settings. Amazon Lumberyard supports this texture layer

Figure 4-10. Having the “Show Preview” option selected shows you
what texture is assigned to a layer; however, it does limit the amount
of layers you can see at a glance

Chapter 4 terrain

86

export capability by clicking the icon that looks like two arrows pointing to

the right, just below the “X” close button, shown in Figure 4-11. This will

display a selection menu with the options “File,” “Layer,” and “Preview.”

Select the “File” option, and either press “E” on your keyboard or select

the option “Export Layers….” A Windows File Explorer window will appear,

allowing you to select the directory in which you would like to save your

texture layer settings file, which will be denoted by the filename suffix

“∗.lay”.

Importing these layer texture files requires a similar process. Select the

same menu icon from the Terrain Texture Layers Editor, once again select

“the “File” option, this time however, instead of pressing “E” or selecting

“Export Layers…” press “I” or select the option “Import Layers….” This

will open a Windows File Explorer window that will allow you to select the

“∗.lay” texture layer file to import. Once you have selected the file, select

“Open,” and the layers will be imported to the Layers Editor window. When

texture layers are imported, the “Show Preview” button will be deselected,

so if you would like to see previews for the newly imported texture layers,

you will have to reselect the “Show Preview” option.

Close the texture editor once you’ve created some textures you want

to use for the game. Once you do, if you click the “Terrain Texture” button

from the viewport, you will now see your added layers.

Figure 4-11. The two arrows pointing to the right underneath the “X”
close button in the Terrain Texture Layers Editor displays a menu list
of useful tools

Chapter 4 terrain

87

 Painting Texture Layers onto Your Terrain
Now that we have some texture layers defined, it is time to paint them

onto our game’s terrain to see what they look like in action. To do so,

open the Terrain Tool by going to “Tools” in the menu bar of the Amazon

Lumberyard Editor and selecting the “Terrain Tool” option. The Terrain

Tool has seven options for terrain modification: “Modify,” “Holes,”

“Vegetation,” “Environment,” “Layer Painter,” “Move Area,” and “Mini Map.”

Selecting the “Modify” option will give you the same terrain

modification tool that you would see in the Terrain Editor, discussed

earlier in the chapter. The “Holes” option allows you to essentially erase

an area of terrain by making or removing holes that exist within the

terrain. “Vegetation” will give you the ability to add grass, trees, and other

vegetation to your game, which we will talk about in depth further on in

the chapter. “Environment” allows you to set a myriad of terrain settings,

each with self-explanatory properties such as “Water Material,” “Fog view

distance,” and “Moon Size,” to name a few. There are many environment

modifications you can add to your game, and with more practice, you will

become familiar with them. The option in the Terrain Tools window that

we are interested in for painting our texture layers onto our terrain is the

“Layer Painter” option. Select “Layer Painter” now, and the window will

change to display the layer painter tools, as shown in Figure 4-12.

Chapter 4 terrain

88

There are two groups of settings within the Layer Painter window:

“Brush Settings” and “Layer” settings. Before we begin painting our layers

onto our game terrain, let us look at what some of these options will

change.

 Brush Settings

The first option, “Radius,” will set the radius of the paint brush used to

paint the texture onto the terrain. The higher the radius, the more area on

the terrain will be affected. Use a lower radius setting for painting more

detailed areas of your terrain. You can change the radius by either typing

the numeric value of the radius within the radius input box, using the

slider associated with the radius input, or by using the keyboard shortcuts

“[” to increase the brush size or “]” to decrease the brush size.

Figure 4-12. The Layer Painter editor allows you to tweak brush
settings and paint layers created in the Terrain Texture Layers Editor
onto your game’s terrain

Chapter 4 terrain

89

Each layer can have its own color. For example, if you have three layers

of grass with the same texture, you can set each of these layers to have a

different shade of green which will make your terrain look more realistic.

The next option in the brush settings group is “Color Opacity,” which lets

you specify how much color will come through when applying the layer

to your terrain. If you think of the brush as a paint brush in real life, the

“Color” opacity setting essentially would describe how hard the brush is

pressed down onto the canvas. The higher the color opacity (or the harder

the brush is pressed down), the more color will come through onto the

terrain, while a lower setting will result in a fainter coloration. Similarly,

the next option in the brush settings group “Detail Intensity” allows you

to specify how detailed you would like your painted texture to be when

applying the layer to the terrain. For both the color intensity and the detail

intensity, you can use the slider associated with each to set their values, or

you can use keyboard shortcuts.

To increase or decrease detail intensity via keyboard shortcuts, use

Ctrl+] to increase the detail intensity or Ctrl+[to decrease the detail

intensity. To increase or decrease color opacity via keyboard shortcuts, use

Shift+] to increase the color opacity or Shift+[to decrease the color opacity.

It is likely that there will be times in which you would like to increase or

decrease both = settings simultaneously. To do this, use the keyboard

command combination Shift+Ctrl+[to decrease both the detail intensity

and color opacity settings or Shift+Ctrl+] to increase both the detail

intensity and color opacity settings.

The next option in the brush settings will be the “Mask by Layer

Altitude and Slope” checkbox. This setting works in tandem with the

Altitude and Slope values which can be set in the layer settings for a

specific layer. This option will set the material to only be painted between

the layer’s Altitude and Slope settings, which we will talk about more when

we talk about layer settings. The “Mask by” option in the brush settings

group tells the “Mask by Layer Altitude and Slope” which layer’s Altitude

and Slope values to consider when painting terrain.

Chapter 4 terrain

90

 Layer Settings

The first of the layer settings “Brightness” allows you to modify how bright

the coloration of the material will be when painted onto the terrain. When

this is changed, you need to click the “Save Layer” button to apply the

changes. This can be reset at any point by selecting the “Reset” button. To

change the color of a layer, click the color box in order to open the color

selector which will modify the base color of the selected layer.

The next setting in the Layer Settings section is “Altitude,” which allows

you to set the altitude range at which you would like to mask the terrain for

painting. For example, if your minimum altitude is 20 and your maximum

altitude is 40 and you attempt to paint this texture layer onto an area in

the terrain whose altitude is 20 or below or 40 or above, the brush will not

be applied, as these altitudes are outside the specified boundaries. These

“Altitude” and “Slope” settings are the values the brush setting “Mask by

Layer Altitude and Slope” uses. Keep in mind each layer will have its own

altitude and slope values.

Similar to the “Altitude” setting, the “Slope” setting allows you to set

the slope range at which you would like to mask the terrain for painting.

The numeric value in this slope setting will reflect the number of degrees

in the slope. Brush strokes will only be applied to slopes within the

specified range.

To change settings for different layers, select the layer from the layer list

directly below the Altitude and Slope setting areas. Double-clicking a layer

will open the Terrain Texture Layers Editor with the clicked layer selected

within the editor.

If there is one main layer you would like to have across your entire

terrain, the final option in the Layer Painter options “Flood” will allow you

to do so. By clicking the button labeled “Flood,” the selected layer will be

applied across the entire game terrain.

Chapter 4 terrain

91

 Using Megatextures
Megatextures, or megaterrain textures, are a great way to cover the entire

terrain all at once – if you have one available. Lucky for us, Amazon

Lumberyard comes packaged with a megaterrain texture we can use. While

textures from a megaterrain texture will be visible from any distance in the

game, the quality of the terrain will be low until the camera moves closer

to the terrain, at which point the megaterrain texture is replaced by terrain

textures with a higher level of detail.

To import a megaterrain texture, open the Terrain Editor using the

steps discussed earlier in the chapter, then click “Tools” in the menu bar,

followed by the “Export/Import Megaterrain Texture” option, to display

the window shown in Figure 4-13. Depending on what version of Amazon

Lumberyard you have, you may not see this option. If this is the case, click

“Game” in the menu bar, followed by “Terrain.”

At the left, you will see a square titled “Select Tiles,” with only one tile

available. That is the result of our choosing to set meters per texel to 1 in

Chapter 3 when we created the level. If your meters per texel setting was

Figure 4-13. The user interface for importing and exporting
megaterrain textures in Amazon Lumberyard

Chapter 4 terrain

92

higher than 1, you would have multiple tiles to select here – each of which

can have their own megaterrain texture.

At the bottom-left corner of the window is a “Change tile resolution”

button that will allow you to change the resolution of the terrain tile in this

window. Before this button will be active, you must select a tile sector so

the engine knows which section of the terrain you would like to modify.

To continue with importing the megatexture, select the single tile from

the “Select Tiles” section, then click the “Import” button on the “Export/

Import Megaterrain” window, and a Windows File Explorer window will

appear. Find the file called FTUE_MegaTexture_02 located at

 Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame\

textures\Terrain

Select this file, and click “Open.” You will see that your terrain in the

viewport will be entirely enveloped with this megatexture that you have

selected. Click “Close” when you are done.

Exporting megaterrain textures follows a similar process. Open the

Terrain Editor, click the “Tools” button in the menu bar, followed by the

“Export/Import Megaterrain Texture” option to open the window shown

in Figure 4-13. Select the tile that has the megatexture you would like to

export on it, then click the “Export” button. This will open a Windows

File Explorer window so that you can choose the directory in which the

megatexture is saved.

Chapter 4 terrain

93

 Vegetation
We now have realistic looking terrain and a coloration that makes it look

professional, but we are still missing one thing that will make our terrain

stand out above others – vegetation. We need rocks, trees, and grass if we

want our terrain look like a real place.

Before we begin, we need to make sure we have the vegetation objects

provided by Amazon Lumberyard within our “MyFirstGame” directory.

Similar to the situation we discussed earlier in the chapter about terrain

heightmaps and megatextures, this process should be handled by the

Project Configurator, but as Amazon Lumberyard is in beta, it is possible

and common for this step to be skipped. Navigate to your “MyFirstGame”

directory to see if a folder called “Objects” exists. If the folder either does

not exist, or the folder exists but is empty, navigate to the StarterGame dev

directory located here:

Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame

Select the “Objects” folder, press the keyboard combination Ctrl+C to

copy the folder, then navigate back to your “MyFirstGame” directory located at

Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame\

Paste the copied folder into your “MyFirstGame” directory by using the

keyboard combination Ctrl+V. Keep in mind you may want to restart your

Amazon Lumberyard Editor if it is currently running and does not reflect

any changes.

To begin adding vegetation to your terrain, first open the vegetation

editor by going to the menu bar and selecting “Tools,” followed by “Terrain

Tool.” From the button group on the Terrain Tool, select “Vegetation” to

open a window, as shown in Figure 4-14. Depending on what version of

Amazon Lumberyard you have, you may not see this option. If this is the

case, click “Game” in the menu bar, followed by “Terrain,” followed once

more by “Edit Vegetation.”

Chapter 4 terrain

94

As you will see, there are several buttons at the top of the vegetation

editor. The first, most important button is the “Add Vegetation Object”

button. Selecting this will bring up a window that allows you to select

which vegetation object (found in the Objects folder we ensured existed

in our directory) you would like to add to your terrain. Select the object

and click the orange “OK” button in the bottom right-hand corner of

the screen. For reference, most vegetation objects will be in the Objects

directory:

MyFirstGame\Objects\Natural\Vegetation

The Objects\Natural directory will also have caves, rocks, and other

items you can use to spruce up your terrain, but for now we will focus

solely on vegetation. I will add the object am_cedar_group.cgf.

You will see that your list of objects in the vegetation editor will

now be updated to have the object you have selected be listed. You may

notice that it will be under a drop-down called “Default.” This is called

a vegetation category, and it is one way Amazon Lumberyard helps you

Figure 4-14. The vegetation editor allows you to add professional
level vegetation to your terrain. On the left, settings for which
vegetation you will be painting onto the terrain. On the right, the
option to remove duplicated vegetation and preview which vegetation
will be painted.

Chapter 4 terrain

95

create more natural looking terrain by allowing you to paint multiple types

of vegetation onto your terrain at once, blending the objects naturally. By

selecting the entire category, all objects that exist within that category will

be modified or painted at the same time, while selecting a single object

within that category will only modify or paint the object selected.

Selecting a vegetation object or category will bring up a myriad of

settings that can be changed on that object or category, as shown in

Figure 4-15.

There are several settings for vegetation, but we will start off with the

basics. The first, “Size,” changes the height of the object you will paint.

When creating your terrain vegetation, you should keep in mind that in real

life, trees are almost never all exactly the same height, so you should use the

second setting “+ - SizeVar”, which lets you set a value for height variation.

This will enhance your vegetation details. For example, if you use “15” for

size and “5” for SizeVar, all trees you paint will be between 10 and 20 height,

as the size variation is set to the size + or - the size variation value.

Figure 4-15. Selecting a vegetation object will enable you to make
many changes to that object

Chapter 4 terrain

96

The next thing to consider when painting terrain vegetation is that if

all of your trees are aligned with their bases at the same angle, your terrain

will not look natural. Check the “RandomRotation” box on the object’s

settings in order to tell Amazon Lumberyard to rotate each vegetation

object to a different degree. This, paired with the size variation, will allow

you to create more natural looking terrain.

When you are ready to begin painting your vegetation objects onto

your terrain, change the Brush Radius setting in the vegetation editor

either by using the slider or by typing the value into the Brush Radius input

box, then click the gray “Paint Objects” button. Click and drag along your

viewport, and watch your terrain come to life. Be mindful, however, to only

paint vegetation in areas that your game character will be encountering.

For example, if your character will be walking down a road, maybe only

heavily vegetate the sides of the road in which your character will be

traveling. Creating too many vegetation objects will take an immense

amount of processing power and may make your game slower.

Of the many buttons at the top of the vegetation editor, the next is

“Clone Vegetation Object.” To use this, select a vegetation object from your

list, and click the “Clone Vegetation Object” button to make an exact copy

of the selected vegetation object.

The next button is “Replace Vegetation Object.” If you paint your

terrain with a certain type of flowers, for example, the am_grass_flower_

white_group.cgf vegetation object, and decide that your terrain would

actually be better off with purple flowers, this button will allow you to

replace all instances of white flowers with purple flowers without having to

erase your vegetation and start over. To do so, select the vegetation object

you would like to replace, the “Replace Vegetation Object” button, and

select a new vegetation object to replace it with – for our example, this

would be the am_grass_flower_purple_group.cgf object, then click the

orange “OK” button at the bottom of the window.

Chapter 4 terrain

97

When you added your first vegetation object, Amazon Lumberyard

automatically created a “Default” category for you. The next button “Add

Vegetation Category” allows you to manually create categories so that you

can organize your vegetation objects a bit nicer. For example, you could

create a vegetation category called “Grasses” and another vegetation

category called “Trees,” and so on, in order to have all of your grasses or

trees in their own category. This will make creating vegetative terrains

much simpler, as you will be able to easily identify the location of all of

your vegetation objects.

The next option, “Remove Vegetation Object,” does exactly what it

says. When a vegetation object or category is selected and the “Remove

Vegetation Object” button is selected, the object or category will be

removed from the list, and all of the instances in which that object or

category exists on the terrain will also be cleared.

“Export Vegetation” is the next option, and it will be useful for you if

you have made many tweaks and changes to the vegetation objects in your

list or if you have set up your categories in a way that you would like to

reuse. Similarly, the next button, “Import Vegetation,” allows you to take

previously exported vegetation and import it to your current level

for reuse.

Use the next option sparingly, as it is “Distribute Vegetation on Whole

Terrain.” Whatever vegetation object or vegetation category you have

currently selected will be placed randomly across the entire terrain when

this button is selected, which as we discussed earlier, depending on the

vegetation object could cause serious performance issues. This should

only be used for something like grass or rocks.

The next option is “Clear Terrain,” and it should be used when you

want to clear all instances of the selected vegetation object or category

from the terrain, but you would still like to have the vegetation object or

category in the list of available objects.

Chapter 4 terrain

98

“Scale Vegetation” is the next button in the group. With a vegetation

object or category selected, click the “Scale Vegetation” button to increase

the height of previously existing terrain objects. While you can change the

size and size variation of vegetation objects to be painted, this is how you

will change the size of terrain objects that have already been painted.

With two vegetation objects selected, the next button allows you

to merge the two objects into one vegetation object. It is the “Merge

Vegetation” button.

Last but not least, “Put Selection into Category” is the final option.

When an object is selected that does not already exist within a category,

selecting this button will provide you the ability to assign the object to a

category. Alternatively, you are able to drag the object into the desired

category as well.

Take some time to experiment with the vegetation of your game – it

is what will set your project apart from others. There are many vegetation

objects that Amazon Lumberyard provides – so you should be able to

create gorgeous terrain in no time.

 Time of Day
In the world you create, you may want to change how long your days are.

For example, you may want to only have 2 in-game hours be daylight in

order for your character to collect resources to survive the 22-hour eerie

night. There are two primary tools to change daytime settings – the Time

of Day Editor and the Sun Trajectory tool. Because the Time of Day Editor

is such a complex tool, we will start off focusing on the Sun Trajectory tool,

then we will discuss a few aspects of the Time of Day Editor.

To open the editor for modifying Sun Trajectory settings, first open

the Terrain Editor following the steps detailed earlier in the chapter. Next,

in the menu bar choose the “Tools” option, followed by “Sun Trajectory

tool…” in the drop-down list, which will open a window that looks like

Figure 4-16.

Chapter 4 terrain

99

On the left, there is a window full of red arrows in a line. This line is

the trajectory that your game’s sun will follow. The red arrows point in the

direction in which your sun will travel along this path. If you have already

created Sun Trajectory settings, you can use the “Import” button in the

bottom left-hand corner of the window to pull those settings in quickly.

Similarly, once you have made changes to your current Sun Trajectory

settings, clicking the “Export” button in the bottom left-hand corner of the

screen will allow you to export settings for use in future levels.

One of the main Sun Trajectory tool settings controls you will want to

recognize is the “Time of Day.” Changing the time of day here will set the

time that the game will start at. Keep in mind that all times within both

the Sun Trajectory tool as well as the Time of Day Editor are in 24-hour

time. You can change the time of day either by using the slider or typing a

24- hour formatted time within the “Time of Day” input box.

Figure 4-16. The Sun Trajectory tool is a simple user interface that
allows you to edit how long your days will be, and how your sun will
travel through your game

Chapter 4 terrain

100

The next two settings that we will likely want to change will be the “Sun

Direction” and “NorthPole .. Equator .. SouthPole” settings. By moving

the slider for “Sun Direction,” you will be able to see in real time the

sun’s trajectory change in the left-hand side of the Sun Trajectory editor.

Similarly, when you move the slider for “NorthPole .. Equator .. SouthPole,”

you will see the trajectory change as well. Changing these two settings

together will change the tilt of your “planet,” affecting where and how your

sun will travel around it.

The final settings we will change are the “Moon/Sun Shadow

Transition” settings. This is what will allow us to change how long days

and nights are. The first setting is “Dawn Time,” and this allows you to set

a specific time in which dawn will begin. Using the input box allows you to

input a specific time, while using the slider allows you to experiment with

this setting a bit more, changing how many hours past midnight (00:00)

you would like dawn to begin. The next setting is “Dawn Duration,” which

will be in minutes. This setting will allow you to set how long you would

like the transition between dawn and daytime to be. Again, you can either

use the input box to specify the number of minutes dawn should last,

or you can use the slider to experiment. The last two of the Moon/Sun

Shadow Transition settings will do the same thing as the first two; however,

instead of modifying the dawn times and transitions, you will be modifying

the dusk times and transitions.

All of these “Moon/Sun Shadow Transition” settings will update the

daytime graph that you will see at the bottom of the Sun Trajectory tool.

The yellow area in this graph will indicate the daytime time span, the

purple/blue area will indicate the nighttime time span, and the black areas

will indicate either the dawn or dusk transitions between nighttime and

daytime. Close out the Sun Trajectory tool.

The last editor we will use to modify our game’s terrain is the Time of

Day Editor which, as previously stated, is a fairly complex editor, so we will

only discuss how to change a few of the more important settings; it is still

Chapter 4 terrain

101

highly encouraged that you experiment on your own for many of the

other settings.

From the Lumberyard Editor menu bar, open the Time of Day Editor

by selecting “Tools,” followed by “Other,” and lastly selecting the “Time of

Day” option. Alternatively, if your Editors toolbar is enabled, you can click

the “Time of Day” Editor button, as shown in Figure 4-17.

Once the Time of Day Editor is open, you will see a window that has

many settings to change and looks like Figure 4-18.

Figure 4-17. The Editors toolbar is the simplest way to open the Time
of Day Editor

Figure 4-18. The Time of Day Editor allows you to make many
advanced changes to your game’s daytime and nighttime settings

Chapter 4 terrain

102

While this editor has many options, it is rather intuitive since it is

mostly full of sliders that are all relatively self-explanatory. There are two

that I would like to point out that you do not necessarily need; however,

they will add a nice professional touch to your game.

The first is the “Sun color” setting, which is the first option to change

in the “Parameters” group on the right-hand side of the screen. Why would

you want to change the color of the sun? Well, if your game is an icy-

kingdom, you may want the light from the sun to emit a light-blue color to

give your environment more of a colder look. Alternatively, if your game is

on a beach or another warm oasis, you could change your color to more of

a red-orange hue that will make the environment look warmer. To change

this setting, click on the colored square next to “Sun color” which will

bring up a color picker. Once your color has been selected, click the “OK”

button in the bottom right-hand corner of the screen.

The second setting I would like to point out from the “Parameters”

group are the “Fog” settings. If you are working on a game that perhaps

has a haunted graveyard or swamp, consider changing the color of your

fog to a greenish color by clicking the colored square next to “Color” under

the fog category to open a color picker. Once your color has been selected,

click the “OK” button in the bottom right-hand corner of the screen. This is

also where you can change the fog density and height.

Now that you have a gorgeous terrain created full of color, vegetation,

water, and mountains, I think it is finally time to talk about adding a

character so you can get in and explore the world you have been creating.

In the next chapter, we will add a character player, props, and buildings

and discuss everything you will need to know about entities and slices.

Chapter 4 terrain

103© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_5

CHAPTER 5

Entities and Slices
We now have professional terrain that is ready to be explored. Before we

can explore this terrain, however, we need to create a character that we

can control. To do that, we need to understand what entities, child entities,

and slices are. More importantly, we need to know how to add these to our

game and package them in such a way they can be reused in future levels.

By the end of this chapter, you will have props lining your game terrain as

well as a character that you can control in order to interact with your game

objects. Amazon Lumberyard’s starter game project comes packaged with

assets that we can use to learn the engine – such as a boxes, robots, rocks,

doors, walls, and more – including the character that we will use.

 Verifying the Project Structure
Before we begin, like the terrain heightmaps and megatextures, we need

to make sure the starter game objects were pulled into our “MyFirstGame”

directory properly when we added the StarterGame gem in the Project

Configurator. As I stated in Chapter 4, the Project Configurator should

have handled this step; however, as Amazon Lumberyard is in beta, it is

not uncommon for the configurator to skip a few steps, so we need to go

manually verify that this was handled.

First, open your project directory, located in

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame

104

There are two folders in this directory we need to look for. The first

folder is named “Objects.” Verify that this folder exists and is not empty.

The second folder is named “slices.” Verify that this folder also exists and

is also not empty. If both or either of these folders either do not exist or are

empty, navigate to the StarterGame directory, located in

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame

Click the “Objects” folder, then while holding the Ctrl button on your

keyboard, select the “slices” folder. Navigate back to your project directory

and either right-click the empty space within the directory and choose

“Paste” or use the keyboard key-command Ctrl+V to paste these folders

into your project directory. Keep in mind that if both folders existed but

were empty, or if one folder existed but was empty, you will get a warning

that a folder with the given name already exists. Select the “Replace”

option to replace the existing folder with the copied “Objects” and “slices”

folders within your project directory. If you already have the Amazon

Lumberyard Editor open, I would recommend restarting it at this point.

 Entities and the Entity Outliner
Any game element that will appear in the Entity Outliner, which we will

discuss further in the chapter, is classified as an “Entity” or a “Slice.”

Entities are just game objects that we can move around and interact with.

For example, props like boxes, buildings, camera objects, and even player

objects are all considered entities.

If your Amazon Lumberyard is not currently open, open it now using

the steps outlined in Chapter 2. To begin working with entities, objects,

and slices, we need to discuss the area of the editor that these will be

displayed in – the Entity Outliner.

Chapter 5 entities and sliCes

105

By default, the Entity Outliner is open and is docked to the left side of

the screen. If your Entity Outliner is not open and docked by default, or if

you have accidentally closed it and are unsure of how to reopen it, navigate

to the “Tools” option of the menu bar, and select “Entity Outliner” to open

the Entity Outliner, shown in Figure 5-1.

As you will notice, because of the template choice we made when

creating our project, our Entity Outliner window already has an entity,

“DefaultLevelSetup.” Each entity within your project will have its own row

in the Entity Outliner, and each of these entities will have a few options and

indicators associated with them.

The first item you will see to the far left of the entity row will be an

icon that indicates what type the entity is (i.e., an object or a slice). The

following table contains different icon indicators as well as what they

describe.

Figure 5-1. The Entity Outliner will show all entities and slices
that exist on your game. This is the easiest place to handle the
management of your entities.

Chapter 5 entities and sliCes

106

Icon Description

White cube a white cube indicates entities that are stand-alone entities,

i.e., they are not part of a slice or a child to another entity.

Blue cube entities that are indicated by a blue cube are entities that are

part of a slice instance.

Orange cube entities that are indicated by an orange cube have different

component property values than the source slice; in other

words, these entities have “overrides.”

lines entities that have lines associated with them, whether

that line be coming from, or going to, the entity indicates a

parent-child hierarchy between the entities.

dot in bottom- right

corner of cube

When an entity icon contains a dot in the bottom right-hand

corner of the icon cube, this indicates that this is a parent

entity that contains a child entity with an override.

dark row shading shaded rows indicate an entity that is a slice root, which will

be discussed later in the chapter.

The next items you will see on the entity row will be the entity name,

followed by an eye icon as well as a lock icon to the right of the name.

Selecting the eye icon will hide the entity from the viewport of your project

but will not remove the entity from the game. This functionality is handy

when you have multiple entities that look similar, because you can toggle

the view on and off to discover which entity you have selected in the

list. When the entity is not already visible in the viewport because it has

previously been hidden, the icon will be an eye with a diagonal line through

it. Selecting this icon will make the entity reappear within the viewport.

The lock icon to the far right of the entity row will prevent the entity

from being modified in any way. This is useful when you have worked

hard to get an entity just the way you would like it and want to prevent

Chapter 5 entities and sliCes

107

accidental slips of the mouse or deletions. Once an entity is locked,

nothing can be changed on it except for its locked status – meaning you

can always unlock the entity when you are ready to make changes again.

These icons in the entity row are not the only changes you can make

to entities from the Entity Outliner, however. Right-clicking an entity gives

you a wide array of options, as shown in Figure 5-2.

The first option on this list, “Create entity,” actually has nothing to do

with the selected entity at all. This option will show up even if you do not

right-click an entity row but instead right-click anywhere within the Entity

Outliner window. When selected, Amazon Lumberyard will create a new

empty entity and place it into the Entity Outliner. It will be a 1x1x1 default

entity with no material or actions associated with it. Using this option is

not the only way to create an entity in Amazon Lumberyard, however.

Figure 5-2. Each entity within the Entity Outliner will have certain
options associated with it. To access these options, right-click the
entity from the Entity Outliner window.

Chapter 5 entities and sliCes

108

It is also possible to add an entity from the Asset Browser window, which

was discussed in length in Chapter 2.

To add an entity or slice to your game from the Asset Browser window,

navigate to the entity you would like to add in the Asset Browser list, then

click and drag the object into the Entity Outliner window, and the entity

will be placed in your game. Alternatively, you can click and drag the

object directly into the viewport to add entities or slices to your game.

The next option on this list is “Create child entity.” This option allows

you to tie two entities together. Any time the parent entity is moved,

modified, or deleted, the child object will also be moved, modified, or

deleted. Keep in mind, however, that because child entities are not parent

entities, they can move freely without affecting the parent entity’s position

or status.

We will discuss the next two options “Create Slice…” and “Instantiate

Slice…” later in the chapter when we talk about slices. The next option,

duplicate, does exactly what it says. When this option is selected, the

entity will be duplicated onto the viewport and within the Entity Outliner

window. This does not link the entity to the newly duplicated in any way,

so think of this as a copy-paste entity.

Next is “Delete,” and there are actually two ways of handling this. You

can either use this option to right-click the entity and select “Delete” to

remove entities from the viewport and Entity Outliner, or you can select the

entity and press the “Delete” button on your keyboard. If the deleted entity

is a parent entity, the child objects associated with it will also be deleted

when this option is selected.

After “Delete” is “Open Pinned Inspector,” which we will discuss later

in the chapter. This option is followed by “Rename,” which like “Delete”

can be handled in multiple ways. The first way to rename an entity would

be to right-click the entity within the Entity Outliner and select this

“Rename” option. The second is to double-click the entity name within

the Entity Outliner window in slow succession. The third way to rename an

Chapter 5 entities and sliCes

109

entity or slice is through the inspector which, again, we will discuss later in

the chapter.

The final option in the entity selection window is “Find in Viewport.”

This is another helpful way to see which entity you are modifying when

you have multiple entities in your game. As your game grows, your Entity

Outliner will fill up with a large number of entities. Selecting this option

will highlight the entity within the viewport window, so you know exactly

which entity you are modifying.

If we look above the list of entities within the Entity Outliner window,

we see three tools we can use to filter our list of entities a little bit better.

The first, most obvious tool is the search bar, at the far top left of the Entity

Outliner window. If you know the name of the entity you would like to

modify, you can search the name here to narrow down your list.

The next option, the one whose icon is a filter, allows you to filter

entities by components that they contain. Components can be added and

removed from within the inspector.

The next, and final, far-right option at the top of the Entity Outliner

window contains the sort options for the Entity Outliner list, shown in

Figure 5-3.

Figure 5-3. The Entity Outliner sort menu allows you to change the
order in which entities are listed, helping you find the entity you need
faster

Chapter 5 entities and sliCes

110

The first option, “Sort: Manually”, will be used when you want to

rearrange the order of entities yourself. When this option is enabled, if

entity X is listed below entity Y, but you would prefer that it be listed above

entity Y, right-click entity X and select the option “Move Up.” Similarly,

if entity X is listed above entity Y, but you would like it to be listed below

entity Y, right-click entity X and select the “Move Down” option.

The next two options will sort entities alphabetically either in order

from A to Z or from Z to A, depending on which of the two options is

selected. It should be noted that an entity who is a child of another entity

will be sorted alphabetically by its parent entity. We will discuss child and

parent entities in the next section of this chapter.

The next two options from the Entity Outliner sort menu are

checkboxes that will help you find elements in the Entity Outliner from

your viewport. If “Scroll to Selected” is marked as active, selecting an entity

from within the viewport window will scroll either up or down, depending

on where the entity is listed in the Entity Outliner so that it is accessible for

editing quickly from the Entity Outliner list.

“Expand Selected” is useful when you have a great deal of child entities

in your game. When this option is marked as active, selecting an entity

from within the viewport window will expand the entity’s parent entity,

displaying the list of child entities it contains, if any. If the entity is not part

of a child-parent contract, this function serves no real purpose.

 Child and Parent Entities
We have mentioned child entities and parent entities quite a bit this

chapter, but we still have not discussed what they are or why we would use

them. A child entity is an entity that is created or modified to be linked to

another existing entity, whereas a parent entity is an entity that has other

entities linked to it. While this sounds a bit confusing at first, it will actually

make more sense when you play around with this functionality. Any time

Chapter 5 entities and sliCes

111

an entity is marked as the child of another entity, any scaling or other

transformative changes that are made to the parent entity are also reflected

to all of its child entities.

For example, if you were to create a hollow box out of four rectangle

entities, you could link three of the box’s edges to one parent edge. Any

time you would move the parent edge, all child edges would follow along.

Any time you were to make the parent edge larger, all child edges would

scale to match. This will keep you from having to make multiple changes

to many different entities when working with a group that should all have

relative uniformity. Keep in mind, however, that making transformative

changes to a child entity will not be reflected to the parent.

A child entity can also be a parent entity, as well. Think of this

hierarchy of parent-child entities by using the real-world example of

grandparents. A parent can have a child, and that child can have a child,

and so on. Changes made to any parent entity that contains child entities

will be reflected to those child entities, but that change will never travel

upward to the grandparents unless that change is directly made to the

grandparent entities.

There are multiple different ways to create a child entity. The first, most

obvious option would be to right-click the entity which you would like to

be the parent entity, and select the option “Create child entity….” A child

entity will be created, and you can add components to it, rename it, and

modify it according to your preference.

Another method of creating a child entity would be to click and drag an

asset from the Asset Browser window and drop the entity onto an existing

entity, which you would like to be the parent entity. If you have already

created the entity and would like to change it from being independent to

be a child entity, click and drag the entity name from the Entity Outliner

list and drop it onto the entity name which you would like to be the parent

entity. The final way to create a child entity is through the entity Pinned

Inspector, which we will discuss in the next section.

Chapter 5 entities and sliCes

112

 The Pinned Inspector
Earlier in the chapter, we briefly mentioned the entity Pinned Inspector,

which was an option from the drop-down list we were shown when right-

clicking an entity name from the entity list in the Entity Outliner window.

Pick an entity from your list, or if one does not exist yet, create one and

open the Pinned Inspector window, shown in Figure 5-4.

Directly beneath the title bar of the inspector that contains the entity’s

name is a green icon. This icon allows you to modify which icon you would

like to represent the entity. Selecting this icon will drop down a select list

with two options: “Set Default Icon” and “Set Custom Icon.” By default, the

Figure 5-4. An entity’s Pinned Inspector window shows you all active
components on an entity and allows you to modify them

Chapter 5 entities and sliCes

113

icon will already be the default icon, so clicking this option without first

selecting a new icon to represent the entity will do nothing. If, however, the

icon had been previously changed to a custom icon, selecting this option

will revert the icon to the default entity icon. Selecting the “Set Custom

Icon” option will open a new window that allows you to pick a custom

entity icon, if you have any custom icons created for your project.

The next element on the Pinned Inspector is the “Name” field, which

allows you to rename your entity from this window rather than doing it via

right-clicking the entity and choosing the “Rename” option.

After the “Name” field is the “Status” field, which allows you to change

the status of the selected entity via the drop-down list shown in Figure 5-5.

This will allow you to set entities as only being active when gameplay

mode is not currently enabled, that is, you can set entities to “editor only”

mode. By default, entities will start as active within a level. Selecting

the drop-down menu for changing the status of entities will reveal the

following options:

Option Description

start active entity will be active when the level starts. this is the default option.

start inactive entity will be inactive when the level starts.

editor only the entity will only be active in editing mode. When gameplay

mode begins, the entity will be marked as inactive.

Figure 5-5. The “Status” field within the entity Pinned Inspector
window allows you to change the status of entities

Chapter 5 entities and sliCes

114

After the “Status” field is the “Add Component” button. We will

discuss components further in Chapter 6, but let us briefly explore the

functionality of this button. Clicking the “Add Component” button

will serve a drop-down list of all of your component options. To add a

component, just choose the component from the list, and it will be added

to your entity’s component list.

The next area of the inspector is a list of components that exist on

the entity, with a variety of options that can be changed on each of these

components. The first item within this area is a search bar, which will

search through the list of components on an entity by component name.

Components names who do not match the search query will temporarily

be hidden.

Every entity, even basic blank entities, will contain at least one

component – the transform component. We will discuss the transform

component in more detail in Chapter 6 when we discuss components in

depth.

 Slices
Throughout the course of not only this chapter but previous chapters as

well, I have mentioned slices without going into much detail about what

they are, or how they can be used to reuse entity groups easily.

A slice is merely an assortment of entities that is stored as a single

asset object that can be reused across multiple levels within a project, or

even across multiple different projects. For this to make more sense, let us

create a slice before discussing them any further.

To create a slice, select one or more entities (if more than one, press

Ctrl and select multiple) in the Entity Outliner, then right-click one of the

selected entities, and choose the option “Create slice….” A “Save As…”

Windows Explorer window will appear, allowing you to give your slice

a name. Name this slice “My First Slice” and click the “Save” button.

Chapter 5 entities and sliCes

115

Slices are saved as .slice files within your game project directory by default;

however, when creating slices, you can choose to save them to another

location although it is not recommended.

If only one entity was selected to create the slice or if the entities

selected to create the slice existed with a parent-child relationship, the

slice should have been created with no issue. You will get an error message

saying that the slice could not be created, shown in Figure 5-6, if you

attempt to create a slice from two or more entities that have no parent-

child relationship.

The reason this will appear is because if the two entities do not

have any relationship to one another and you attempt to create a slice

containing the two of them, Amazon Lumberyard does not know which

entity’s transform component you would like to use by default. As we

stated earlier in the chapter, every entity will have a transform component.

While this is true, a child entity will inherit the transform component

properties of its parent, meaning there is one transform “root.” This is why

when the parent entity is moved along the x-, y-, or z-axis, the child entity

is moved as well.

Figure 5-6. The “Cannot Create Slice” message will appear when no
single transform root is defined. Single transform root entities can be
created from this message by clicking the “Yes” button.

Chapter 5 entities and sliCes

116

You can either have Amazon Lumberyard create a transform root

entity by clicking the “Yes” button in the bottom right-hand corner of the

“Cannot Create Slice” message window, or, if you would like to define the

transform root yourself, click the “Cancel” button.

To define the transform root yourself, choose one of the selected

entities to be the parent of the others. Once you have decided which entity

will be the parent and have created the parent-child relationship between

the entities, attempt to make the slice again, and the “Cannot Create Slice”

message window will no longer appear, as a single transform root will have

been defined.

Slices are not only a great way to group together entities into a

single asset object, they also can contain instances of other slices. When

experimenting with slice creation, I urge you to create a slice that contains

an instance of at least one other slice.

 Instantiating Slices
To utilize slices that exist within your project’s directory, we will need

to learn how to load instances of these slices into our project level. This

process of loading instances of slices is also known as “instantiating”

slices. There are three ways to instantiate slices.

If your viewport’s camera is positioned in a location that you would

like for a slice to be instantiated, click and drag a slice asset from the Asset

Browser window onto the viewport. The slice will be instantiated at the

location at which you release the click.

The second way of instantiating a slice is by right-clicking in the

viewport to display the select menu. Select the “Instantiate Slice” option

from the pop-up list. The “Pick Slice” dialog box will appear, allowing you

to navigate to the slice file to instantiate. Once the slice is selected, click the

“OK” button in the bottom right-hand corner of the window, and the slice

will have been instantiated.

Chapter 5 entities and sliCes

117

The third and final way of instantiating a slice is similar to the second

method; however, instead of right-clicking in the viewport area to display

the select menu, we will right-click an area inside of the Entity Outliner

window to display the same menu. Selecting the “Instantiate Slice” option

from the pop-up list will load the same “Pick Slice” dialog box as option

two offered up and following the same steps as option two will yield the

same result.

 Creating Your Player
Let us experiment with this by instantiating our first slice into Amazon

Lumberyard. The engine provides a player character slice that we can use

in our game that will allow us to get a head start in our game development

process. Keep in mind that because slices are modifiable, this character

slice can be given a new skin, new physics components, new sound effects,

and more.

To instantiate your character player slice, right-click an area within the

Entity Outliner window and select the “Instantiate slice…” button to open

the “Pick Slice” dialog box. In the search bar, type “PlayerSlice_EFX” to

reveal the slice file that exists within the MyFirstGame/Slices directory, as

shown in Figure 5-7.

Figure 5-7. The playerslice_efx.slice file is a character player slice
provided by Amazon Lumberyard that we can use to kick-start our
game project

Chapter 5 entities and sliCes

118

You will notice that when clicking the “Play Game” button, your

character will not be controllable at this point. This is due to the slice

components missing some files that we did not copy over from the

StarterGame folder. We did not copy them over on purpose, as in Chapter 6

when we discuss components, we will get some hands-on experience with

creating the components ourselves.

Now that your character has been added to the game, we need to

add some props for our character to interact with. Amazon Lumberyard

provides a great deal of prop-like slices that we can use to spruce up our

game. Take some time before moving on to the next chapter to initiate

some prop-slices from the MyFirstGame/Slices folder and create a world

for your character to explore, as shown in Figure 5-8.

Keep in mind that if all of your entities and slices that are dropped into

your viewport or instantiated via the Entity Outliner window have a mesh

consisting of only gray squares, your Project Configurator may not have

copied the necessary materials over from the StarterGame directory, so

you may need to do this manually.

Figure 5-8. Amazon Lumberyard provides many slices you can use
as building blocks to learn how to create games and to jump-start
your game development journey

Chapter 5 entities and sliCes

119

Copy the “Materials” folder from the StarterGame project directory,

located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame\

Materials

Once you have the “Materials” folder in your clipboard, navigate to

your MyFirstGame directory, located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame\

Once you have navigated to the MyFirstGame directory, use the

keyboard key-command Ctrl+V to paste the folder into your MyFirstGame

directory.

If the meshes do not update on your assets immediately, restart

Amazon Lumberyard and the changes should be reflected.

Now that you have a firm understanding of what entities and slices

are, you have your own character created, and you have props for your

character to interact with, it is time to breathe life into your character.

In Chapter 6 we will discuss entity components so we can control our

character and learn the necessary skills to create adventurous levels.

Chapter 5 entities and sliCes

121© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_6

CHAPTER 6

Components
Entities make up the core content of an entire game project in Amazon

Lumberyard, but components are arguably the most important thing

you need to know about when creating a game – as they are what make

entities come to life. Entities in Amazon Lumberyard are merely identifiers

that link to a collection of components. Entities have no functionality

associated with them on their own – their functionality comes from the

components added to them.

Components in Lumberyard will each provide independent

functionality for things like artificial intelligence, gameplay, physics,

environment, and more. Keep in mind that some components will only

be available through gems, so after reading through this chapter, it may

behoove you to open your Project Configurator and scroll through some

optional components you might like to experiment with.

 Adding Components to an Entity
To add a component to an entity, right-click the entity and select the

“Open Pinned Inspector” option from the menu that pops up. Click the

“Add Component” button directly above the list of components, as shown

in Figure 6-1.

122

Once you’ve clicked the “Add Component” button, a list of all available

components will appear with a search bar, allowing you to search for and

find a specific component quickly if you know the name of the component

already.

The component list will be grouped by the category in which the

component belongs. I will briefly give a description of what each component

is; however, I will only go in depth about components that we will be using

in our project. Keep in mind by the time of your reading this text, more

components may exist, but the ones I detail will likely still remain.

To start, let us look at what AI components are available for our use.

AI Components

Behavior Tree Loads and runs Modular Behavior Tree references on the

selected entity. Modular Behavior Trees, or MBTs, are

collections of ideas for creating what behavior your artificial

intelligent entities in your game should do. Without writing any

code, MBTs allow you to describe AI behaviors.

Navigation Navigation is used on artificial intelligent entities for accepting

navigation commands for pathfinding and following. This can

be used in our game later on and will be discussed in more

detail in Chapter 7.

Figure 6-1. Click the “Add Component” button in the entity Pinned
Inspector window to add components to entities

(continued)

ChApTer 6 CoMpoNeNTs

123

AI Components

Navigation Area Navigation area allows you to add a constraint on which area

of your game is navigable by your artificial intelligence.

Navigation Seed Navigation seeds are used to fine-tune artificial intelligence

accessibility. For example, if there is a large rock that an

artificial intelligence could not climb that exists within the

navigation area, you could exclude the rocky area from the

navigation seed to mark that area as an inaccessible area.

The next group of components is the animation group.

Animation Components

Actor The Actor component is used to create characters in your

game. You must use an Actor component to create your

controllable character in your game.

AnimGraph AnimGraph is used to add animation graphs and motion sets

to your player character. This must be used in tandem with an

Actor component.

Attachment This component is used to attach entities to a joint on the

skeleton of another parent entity. For example, this is how we

can attach a weapon to our player character, as we will see

later in the chapter.

Simple Motion The simple Motion component is used to play motions without

the use of animation graph files.

ChApTer 6 CoMpoNeNTs

124

 The AnimGraph and Actor Components
Before moving onto the next group of components, let us take this time

to add some of these animation components that we will need to add to

our player character. We will also look at an interesting caveat that exists

between certain components along the way. The first component we

will need to add, as the preceding table states, is the “Actor” component.

However, because the AnimGraph component requires an Actor

component to exist on an entity, let us add the AnimGraph component

first to see what happens.

Right-click our player slice from the Entity Outliner window and select

the “Open Pinned Inspector” option. Click the “Add Component” button

that is shown in Figure 6-1, then in the search bar that appears, type

“AnimGraph” to filter the list of available components to only show the

AnimGraph component.

Select AnimGraph to add this component to our slice. As you will

notice in Figure 6-2, components that require other components to exist

on an entity will display a yellow triangle with an exclamation mark in

them with a warning message that states: “This component is missing a

required component service and has been disabled.”

Below the warning message, there will be a button labeled “Add

Required Component” that will allow you to add any and all components

that must coexist with the component at hand. Click the “Add Required

Component” button now to show a list of all required components.

As we can see, the AnimGraph component only requires that an Actor

component also exists on the entity or slice, so click the “Actor” option now

to add the Actor component to our player character slice as well.

ChApTer 6 CoMpoNeNTs

125

As you can tell from Figure 6-2, there are a few things that need

to be linked up in the AnimGraph component in order to get the full

functionality of the component. The first, the “Anim graph” field, will

require you to locate a .ANIMGRAPH file on your computer, which holds

animation graphs. These can be created and edited through the Animation

Editor window; however, Amazon Lumberyard provides us with one we

can use to get up and running quicker. Keep in mind that this animation

graph may not be suitable for all characters you may create in your

projects; however, it will provide a great reference for you to learn how to

create your own animation graphs.

To locate this .ANIMGRAPH file, we first need to verify that the

animations folder from the StarterGame project directory has been added

to our MyFirstGame project directory, and if it has not, we need to copy it

over at this point. First, navigate to the following location to check to see if

a folder titled “animations” not only exists but is also not empty:

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame

Figure 6-2. Components that require other components will be
disabled until all required components have been added to the entity
or slice that they are being added to

ChApTer 6 CoMpoNeNTs

126

If the folder does not exist in the preceding directory or if the folder

exists and is empty, navigate to the StarterGame project directory, located in

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame

Select the animations folder, and use the keyboard key-combination

Ctrl+C to copy the folder to your machine’s clipboard. Now that you

have the animations folder copied, go back to your MyFirstGame project

directory and use the keyboard key-combination Ctrl+V to paste the

animations folder to your directory.

While we are at it, let us go ahead and take the scripts, scriptcanvas,

and libs folders as well. If you already have non-empty scripts,

scriptcanvas, and libs folders in your MyFirstGame project directory, feel

free to skip this step – but if you either do not have these folders, or the

folders are empty, go to the StarterGame project directory located above,

and copy the folders titled “Scripts,” “scriptcanvas,” as well as “libs” by

selecting the folders and using the keyboard key-combination Ctrl+C.

Navigate back to your MyFirstGame directory, and paste the folders

into your directory by using the keyboard key-combination Ctrl+V. Now

that we have what we need for our Actor and AnimGraph components, we

will restart our Amazon Lumberyard Editor.

Once your editor has restarted, we need to get back to the window

where we could link up our animation graphs to our character slice, as was

shown in Figure 6-2. Right-click our player slice from the Entity Outliner

window and select the “Open Pinned Inspector” option.

You will notice to the right of each of the fields in the AnimGraph

component there will be three options. The first option, whose icon is “…”,

allows you to browse through your file system to locate the .ANIMGRAPH

file we just moved over into our project directory. The second option,

whose icon is a running person, will open up the Animation Editor

window. This would be useful if you did not have an existing .ANIMGRAPH

file, as you can create one directly from the AnimGraph component. Keep

in mind, if you already have an .ANIMGRAPH file linked to the AnimGraph

ChApTer 6 CoMpoNeNTs

127

component, clicking this button will open the Animation Editor window to

allow you to edit the currently linked animation graph file. The next option

is an “X,” and it will allow you to clear any asset that is linked up in the

AnimGraph component.

For now, we need to link our .ANIMGRAPH file, so we will select the

“…” icon to the right of the “Anim graph” input which will open a window

titled “Pick EMotion FX Anim Graph.” From this window, search for

“JackAnimGraph.animgraph”, and select the asset whose name matches

the search criteria. Select the orange “OK” button in the bottom right-hand

corner of the window to link this .ANMIGRAPH file to our AnimGraph

component.

The next field we need to fill out is the “Motion set asset” field. Select

the “…” icon to locate the .motionset file we just moved over from the

StarterGame directory, and a window will appear titled “Pick EMotion

FX Motion Set.” In the search bar of this window, type “JackMotionSet.

motionset”, and select the asset whose name matches the search criteria.

Click the orange “OK” button in the bottom right-hand corner to link the

.motionset asset to our AnimGraph component’s “Motion set asset” field.

Once the motion set asset is applied to the component, you will notice

that the “Active motion set” input will be prefilled with the newly added

.motionset asset, and we can now make modifications to the parameters

on the AnimGraph component. These parameters include things like

“Speed,” “CanDoubleJump,” “TurnSpeed,” and more. For now, I will opt

to leave these parameters alone; however, I encourage you to tinker with

them to make your character’s motion set unique.

Because our AnimGraph component required an Actor component,

all we need to do now is link the actor asset that we moved over from the

StarterGame project directory to the Actor component.

To do this, in the “Actor asset” input on the Actor component, click the

“…” icon to open a window titled “Pick EMotion FX Actor.” In the search

bar, type “Jack,” and select the option titled “jack (EMotion FX Actor),”

ChApTer 6 CoMpoNeNTs

128

then select the orange “OK” button in the bottom right-hand corner of the

screen. The actor asset will now be linked to our Actor component.

If you click the “Play Game” button, you will now be able to control

your character. W to move forward, S to move backward, A to move left, D

to move right, and spacebar to jump. You can also connect a gamepad like

a PlayStation or Xbox controller to control your character as well. Later in

the chapter, we will look at how you can make changes to what buttons

control certain aspects of your character, but for now, we will move on to

the next component.

 The Attachment Component
As stated in the table for the Animation group of components, the

attachment component is used to attach entities to a joint on the skeleton

of another parent entity. Our player slice contains a “PlasmaRifle” slice that

I would like to attach to the right hand of our character “Jack.” To do this,

right-click the “PlasmaRifle” slice in the Entity Outliner window and select

the “Open Pinned Inspector” option, then select the “Add Component”

button. Search for “Attachment” in the search bar that appears, and select

the component that pops up.

An attachment component will now be added to our PlasmaRifle slice;

now all we need to do is tell the component which entity we would like it

to attach to. Because I am right-handed, I would like to attach the rifle to

Jack’s right hand, but feel free to attach it to his left. To do so, in the “Target

entity” input on the attachment component, select the crosshair logo,

then select Jack either in the viewport or in the Entity Outliner window.

Selecting the crosshair logo allows you to choose which entity you would

like to attach to without having to dig through a list of entities in the Entity

Outliner list – you can just do it through the viewport.

Now that Jack is selected as the target entity for our attachment

component, we need to specify which of Jack’s joints we would like to

ChApTer 6 CoMpoNeNTs

129

attach to. In the “Joint name” input, select the drop-down menu to display

a list of all possible joints. Again, I will be selecting the right hand, so I will

choose the option titled “Jack:r_hand”.

Below the Target entity and Joint name inputs, you do have the option

to offset the position, rotation, and scale of the PlasmaRifle slice, but the

defaults are sufficient in our case. After the offset inputs, we have the

option to set the PlasmaRifle to be attached initially or not. If you would

not like your character to start with a weapon, you can un-click this value;

however, I would like to get into the action as fast as I can, so I will opt to

leave the “Attached initially” option selected.

Once your weapon is attached to Jack, your attachment component

should look like Figure 6-3. To verify that your weapon looks good on your

character and that no position, rotation, or scaling offsets are needed, click

the “Play Game” button to inspect your handiwork.

Now that we have successfully made it through all of the animation

components, let us take a look at the next group of available components –

the audio components. Because we will cover audio in depth in a later

chapter, I will define what each component does but will not show

examples as these components will be utilized in a further chapter.

Figure 6-3. The attachment component allows you to attach entities
and slices to other entities and slices

ChApTer 6 CoMpoNeNTs

130

Audio Components

Audio Area Environment Allows you to apply environment effects to sounds

that entities trigger.

Audio Environment Used to apply environmental effects like echoing or

reverberation.

Audio Listener only one audio listener per game is allowed. This

component will place a simulated microphone in the

environment.

Audio Preload Allows you to load and unload Audio Transition Layer

preloads either automatically or manually.

Audio Proxy required if multiple audio components are added to

an entity.

Audio RTPC provides real-time parameter control capabilities.

rTpCs are variables that can be set at run time to

provide the capability to tweak sounds in-game.

Audio Switch provides ATL switch functionality, which allows

you to specify that different sounds can come out

of different entities. For example, a “GroundType”

switch could have different audio values for grass,

gravel, and water.

Audio Trigger provides play/stop features that can be executed on

demand when an in-game action occurs.

ChApTer 6 CoMpoNeNTs

131

The next group of components to choose from in the Pinned Inspector

window are the Camera components, which only consist of two simple

components:

Camera Components

Camera This component should be used on entities that will be used as

cameras. To use this component, you must have the “Camera

Framework Gem” enabled on your project.

Camera Rig Used to modify behaviors to drive your camera entity. This

component also requires the “Camera Framework Gem” be

enabled on your project.

In our player slice, we have a camera entity that has a camera

component attached to it already. We are going to modify this component,

however, to increase our field of view for our camera from the default 45.0

degrees to 75.0 degrees.

To do this, right-click the camera entity in the Entity Outliner that

exists within our player slice, and select the “Open Pinned Inspector”

option. Either scroll down until you find the camera component, or search

“Camera” in the search bar beneath the “Add Component” button. In the

input labeled “Field of view,” change the default text from 45.0 to 75.0. This

will allow us to see more of what is going on in the game when walking

around our world with our character. Your camera component should now

match Figure 6-4.

ChApTer 6 CoMpoNeNTs

132

You may also notice that this camera entity has many Lua scripts

associated. We will modify these when we introduce Lua scripting in

Chapter 8.

The next component group available to choose from in the Pinned

Inspector is the “Editor” group, which only contains a single component.

Editor Components

Comment The comment component is strictly for you, the developer.

It will allow you to add a comment to an entity that will not

have any effect on in-game content. Think of this as a way of

keeping notes within entities.

The next component group also only contains one component. This

is a component that we will be using to add another level of detail and

professionalism to our game.

Environment Components

Fog Volume The Fog Volume component is used to create a fog-like effect

within your game. This component must be used in tandem

with the Box shape component.

Figure 6-4. The camera component should be added to entities that
will be used as in-game cameras

ChApTer 6 CoMpoNeNTs

133

 The Fog Volume Component
Let us add some fog to our game. I will opt to create fog directly where my

player character is standing, and keep in mind that this is something that

you can do to match your taste on your own, so our outcomes for fog will

be different. You may like yours a different color or perhaps denser, and

that is okay. I will create a green fog around my character as if it were some

sort of noxious gas. My character is currently in a maze I created from

entities that Amazon Lumberyard provides, and now I will add green foggy

gas all in the maze area to make it seem like my character must escape

some lab accident gone wrong.

To do this, we first need to add a new entity to our game to hold the Fog

Volume component. Right-click in the Entity Outliner window and select

“Create Entity.” Now right-click the empty new entity and select “Open

Pinned Inspector.” Select the “Add component” button, then search “Fog

Volume” in the search bar and select the option that pops up. Alternatively,

you can scroll to the “Environment” section of the components list and

select the Fog Volume component that way.

Once the Fog Volume component has been added to your entity, as

stated in the preceding table, and as you will notice on the Fog Volume

component within your game, the Box Shape component is a required

counterpart, so we need to add this component now. At the bottom of the

Fog Volume component area in the Pinned Inspector, click the button

labeled “Add Required Component,” followed by the sole “Box Shape”

option that pops up.

On the Fog Volume component, we are going to change a few

properties while leaving some of them at their default settings. I highly

recommend you tinker with all of the properties on the Fog Volume

component to see what they do and to experiment with them, but for the

purposes of this text, we will only be changing a few properties.

ChApTer 6 CoMpoNeNTs

134

The first property we will change is “Volume type,” which can either

be an ellipsoid or cuboid. This merely specifies the shape of the fog, and

because my maze is rectangular and I want the entire maze area to be

filled, I will choose the cuboid volume type. To do this, click the drop-

down menu for volume type and select “Cuboid”.

The next property I will change is going to be the “Color” property,

which allows you to specify the color of the fog via a color picker that is

attached. Because I want my fog to represent a green noxious gas, I will

change the color to RGB 0, 255, 0. To do this, click the white square next

to the “Color” input, and a color picker will pop up. Feel free to choose a

gray, red, blue, or any other color you want to make your game unique.

Also, keep in mind that in the Time of Day Editor, you can set a global fog

color as well as other global fog properties. If you already have a global

color defined in the Time of Day Editor, you can choose to check the input

box for the “Use global fog color” option in the Fog Volume component. If

this box is selected, any value in the color field of the component will be

ignored, and the global Time of Day fog color will be used.

The last property we will change on this component is the “Fog

Density.” I do not want fog so thick that my character would not be able to

see through it, so I will change this option to 0.01 by typing in the input box

next to the fog density input label.

Now that I have my fog set up, I just need to use the transform tools

we described in Chapter 2 to make the fog area match the space and size

of my maze. Take time now to get your fog to the size, space, color, and

density that you would like it to be for your game. This will add an extra

level of quality to your game.

When you have finished this step, your Fog Volume component should

look something like the left side of Figure 6-5, and your game should look

similar to the right side of Figure 6-5, with minor differences in fog color,

density, vegetation patters, and choice of entities used to create an area for

your character to interact with.

ChApTer 6 CoMpoNeNTs

135

Now that our game has a nice, professional touch to it, let us take a

look at the next available component group – the gameplay group.

Gameplay Components

Input The input component allows you to set key bindings, mouse

bindings, and game controller bindings for input events in

your game.

Random Timed
Spawner

The random Time spawner component allows you to spawn

a slice at a specified interval to a random position inside

specified boundaries. We will look at this further in Chapter 7.

Simple State This component allows you to create a simple state machine.

Spawner Allows you to spawn slices, whether design-time or dynamic

at an entity’s location.

Tag The tag component allows you to apply labels, also known

as “tags,” to an entity. These tags can be used to filter and

target entities with certain traits.

Figure 6-5. The Fog Volume component allows you to add fog or gas
to your game environment, as shown in the photo on the right. In the
photo on the left, we see some of the modifiable properties of the Fog
Volume component.

ChApTer 6 CoMpoNeNTs

136

The next component group, the “Networking” group only contains a

single component.

Networking Components

Network Binding This component allows you to specify whether or not an

entity is able to be replicated across the network.

The next component group is the Physics component group.

Physics Components

Character Physics Adds physical behaviors to character entities (players and

enemies).

Constraint Creates physical constraints between an entity and its

target.

Force Volume This component is used to apply physical force to objects.

Mesh Collider The mesh collider component allows you to define the

shape that collision detection will take place in.

Primitive Collider A simple collider that is used with a shape component for

collision detection.

Rigid Body Physics This component should be used to represent solid objects

that move realistically when interacted with.

Static Physics This component should be used to represent unmovable

objects like walls or boundaries.

Wind Volume The wind volume component creates volumes that

are affected by wind, which should be used to affect

vegetation and other physical objects.

ChApTer 6 CoMpoNeNTs

137

 The Wind Volume Component
To add wind to our game, let us create an entity and add the wind volume

component to that entity. We have to keep in mind that the wind volume

component must be used with either a Box Shape component or a Sphere

Shape component.

To begin, right-click inside the Entity Outliner window, then choose

the option “Create Entity.” Once your entity has been created, right-click

the entity, then choose “Open Pinned Inspector.” In the name field, change

the default entity name to “Wind,” so we will be able to identify this entity

later on.

Next, click the “Add Component” button, then type “Wind Volume” to

narrow the search results down to only the wind volume component, then

choose the wind volume component to add it to your entity.

When your wind volume component is added to your wind entity,

the component will be disabled by default, as it will be missing a required

component service. To add the required component, select the “Add

Required Component” button, followed by either “Box Shape” or “Sphere

Shape” – whichever one you choose is up to you.

To set the area that the wind will affect, change the dimensions of

your shape in the dimensions area of the component. For my game, I will

set a fairly small area to be windy – and I have chosen to use a Box Shape

component, so I will set my X, Y, and Z dimensions to be 5.0 meters each.

Now that I have an area for the wind to affect, we can set some of

the properties on the wind volume component. First, make sure that

the “Visible” property is checked so we can actually see the wind and so

that it will interact with the vegetation of your game. The next property

is the “Falloff” property, which will affect the speed of the wind from the

center of the entity to the edge of the shape component’s volume. Set this

property to 0.5 by either typing the value into the input box next to the

“Falloff” label or by using the slider to the right of the input box.

ChApTer 6 CoMpoNeNTs

138

The next property we can change is the speed property, which

obviously will allow you to set the speed of the wind. Feel free to set your

wind speed to whatever you would like, depending on how windy you

would like your game area to be. I would like mine to be extremely windy,

so I will set the speed to 40 m/s.

The next property, air resistance, will cause objects moving through

the windy area to slow down. Set this value to whatever you would like. For

my example, I will set this property to 5.0. After air resistance is air density.

Objects with lower density will rise, while objects with a higher density

will sink. Set this value to whatever you would like. Once again, for my

example, I will set this property to 5.0.

Finally, we need to define the direction of the wind in meters per

second along the box shape’s axes. To create an omnidirectional wind, you

can leave the values for all three axes, X, Y, and Z, to 0. For my example, I

will leave these values at 0 for an omnidirectional wind. When you have

finished adding the wind volume component, it will look something like

Figure 6-6.

Figure 6-6. The wind volume component allows you to add wind to
your game alongside a Box Shape or Sphere Shape component

ChApTer 6 CoMpoNeNTs

139

Now that we have added wind to our game, let us move on to the next

component group, the rendering group.

Rendering Components

Area Light Use this component to light an area.

Decal Used to place a component on an entity, given a decal

material file.

Environment Probe This component is used to achieve a proper visual

quality for a given space.

Geometry Cache This component will render mesh data and can be used

to play animations from Alembic files, which is a type of

computer graphics interchange framework.

High Quality Shadow This component can be used to give an entity its own

shadow map that will allow you to achieve a higher

resolution shadow than you would get with a global

shadow map.

Lens Flare This component allows you to place a lens flare on an

entity.

Mesh The mesh component should be used to add visual

geometry to and entity.

Particle This component will place a particle emitter on an entity.

entities can have more than 1 particle components.

Point Light This component will create a point of light.

Projector Light This component will project light when added to an

entity.

ChApTer 6 CoMpoNeNTs

140

 The Particle Component
Another level of detail we can add to our game that will make it stand out

as a professional development is a particle emitter. Amazon Lumberyard

provides us with a particle emitter that is actually a flock of flying birds. Let

us add some birds to our game now.

To begin, right-click inside the Entity Outliner window, then choose

the option “Create Entity.” Once your entity has been created, right-click

the entity, then choose “Open Pinned Inspector.” In the name field, change

the default entity name to “Birds,” so we will be able to identify this entity

later on.

Next, click the “Add Component” button, then search “Particle”

to narrow down the search results. Select “Particle” to add a particle

component to our new “Birds” entity. To the right of the “Particle effect

library,” you will see an icon with three dots. When you click this button, a

new window will appear titled “Pick Particles.”

The particle XML file we would like to use is located in MyFirstGame\

libs\particles. Navigate through the directory to find birds.xml, or just

search “birds.xml” in the search bar at the top of the window. Select the

birds.xml file, then click the orange “OK” button in the bottom right-hand

corner of the window.

In the “Emitters” property drop-down box, select “Birds.BirdsFlying,”

and make sure that both the “Visible” and “Enable” properties are

checked. Your game will now have birds flying around. Keep in mind, if

you would like your game to be more saturated, you can add more than

one particle component to an entity.

Once you have added the particle component to your entity, your

component will look something like Figure 6-7.

ChApTer 6 CoMpoNeNTs

141

Let us move on to the next component group, the scripting group.

Scripting Components

Lua Script Add programming logic to an entity in the form of a Lua

script. We will use these in Chapter 8.

Script Canvas This component can be used to add a script to an entity.

Trigger Area This component provides standard triggering services in

tandem with shape components as its boundaries.

The final component group we will discuss will be the user interface

component group.

UI Components

UI Canvas Asset Ref This component allows you to associate a UI canvas with

an entity in a level.

UI Canvas Proxy Ref This component allows you to associate an entity in a

level with a different entity that is managing a UI canvas.

UI Canvas on Mesh The component lets you place a UI canvas on an entity in

the world that your player can interact with.

Figure 6-7. The particle component can be used to add another level
of detail to your game by adding a particle emitter

ChApTer 6 CoMpoNeNTs

142

For now, we will not worry about adding any of the UI components, as

all of our user interface work will be added in Chapter 10.

 The Transform Component
As mentioned briefly in Chapter 5, the transform component, shown in

Figure 6-8, will exist on every entity you create by default. The transform

component does not belong to any component group, it merely exists on

its own. The transform component will store all values for scaling, rotation,

and translations, as well as information about which entity is the parent

entity of the currently inspected entity, if any parent entity exists. If you

have skipped ahead to this chapter and are unfamiliar with parent-child

entity relationships, I would highly recommend going back and reading

Chapter 5 of this book.

As stated previously in Chapter 5, we can essentially “create” a child

entity from an existing entity by clicking the reticle icon next to the

“Parent entity” field on the entity inspector. Once this button has been

selected, we need to choose which entity we would like to be the parent

Figure 6-8. The transform component will exist on every entity that is
created within Amazon Lumberyard

ChApTer 6 CoMpoNeNTs

143

by either selecting its name from the list of entities in the Entity Outliner

window or by selecting the entity directly from the viewport. By selecting a

parent entity for the currently inspected entity, Amazon Lumberyard will

create a reference link between the two entities to add the parent-child

relationship.

If your entity has a parent entity and you would like to remove the

reference to the parent entity from the inspector window, select the “X”

button to the right of the reticle icon you just used. By clicking this button,

Amazon Lumberyard will remove the reference link between the two

entities, making them independent of one another.

Now that we have added multiple components to our game and to our

player character, it is time to create someone for our character to interact

with – the enemy. In the next chapter, we will look at creating our first

enemy.

ChApTer 6 CoMpoNeNTs

145© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_7

CHAPTER 7

Creating the Enemy
Now that we have learned all about entities and components, let us take a

look at how we can tie in these concepts to create an enemy for our player

character. We will look at how to do this using two different methods.

The first method we will explore will be to just create an enemy entity

from a preexisting slice provided by Amazon Lumberyard that will exist

from the minute you click the “Play Game” button in the editor.

The second method will be to utilize the use of enemy spawners, AI

navigators, and AI triggers. Keep in mind, all of the artwork and scripting

for the enemy character that we will use will be the assets that are provided

for us by the Amazon Lumberyard engine.

Ready to have an evil robotic enemy that your player character must

tiptoe around the maze with, ready to defeat your character mercilessly on

sight? Let’s go!

 Creating an Enemy That Always Exists
To begin, let us create an enemy that does not rely on spawners or patrol

areas within your game. This enemy will merely stand in place until your

character comes into sight, then they will attack.

To do this, instantiate a slice either by right-clicking in the viewport or

the Entity Outliner window and selecting the option “Instantiate slice.” In

the window that appears labeled “Pick Slice,” navigate to the slice named

146

ai_walker_efx.slice, which is provided by Amazon Lumberyard. This

slice will be located in the directory MyFirstGame/slices. Alternatively,

you can use the search bar at the top of the “Pick Slice” window and search

for ai_walker_efx. Select the slice, then click the orange “OK” button in

the bottom right-hand corner of the window. Your slice will now have been

added to your game.

Another way we could have added this slice to our game is by opening

the Asset Browser by selecting “Tools” in the top menu bar, followed by

“Asset Browser.” Once the Asset Browser is open, navigate to the ai_walker_

efx.slice file, or enter it into the search bar at the top of the Asset Browser.

Click and drag the slice into the viewport to add the enemy to your game.

When you click the “Play Game” button and navigate your character

to the area in which this enemy is standing, the enemy will open fire and

try to diminish your life points. While it is a good start, this is not the best

way to implement an enemy into your game. Let us take a look at another

method of adding enemies.

 Creating an Enemy AI Trigger
For our enemy artificial intelligence to spawn in an appropriate location at

an appropriate time, we need to set up some boundaries that will trigger

the spawner to activate. When our player character enters the area, the

spawner will be triggered and our enemy will be spawned.

To begin, we need to add the debug manager provided by Amazon

Lumberyard into our list of entities. This slice will manage some of the

artificial intelligence script’s functional behavior. This slice is located in

MyFirstGame/Slices.

Open the Asset Browser by selecting “Tools” in the top menu bar,

followed by “Asset Browser.” Once selected, this should add another

panel on the side of the viewport (or add a new window). Once the Asset

Browser is open, search for debug_manager.slice, or navigate to it

Chapter 7 Creating the enemy

147

under MyFirstGame/Slices. Drag the debug_manager.slice file into the

viewport to add it to the game.

Now that the debug manager has been added to the game, we need

to add our trigger entity. In the Entity Outliner window or in the viewport

area, right-click and choose the option “Create entity.” Once the entity has

been created, right-click it and select the option “Open Pinned Inspector.”

Rename the entity “AiTrigger,” so we will know which entity in our Entity

Outliner list holds our AI trigger later on. You can name it anything you

want, but I recommend sticking with “AiTrigger” for tutorial purposes.

Before adding the trigger area component to our AiTrigger entity,

we need to specify the boundaries of the trigger. To do this, we need

to add a Box Shape component to our entity. To do so, click the “Add

Component” button, and search for “Box Shape” in the search bar. Click

the “Box Shape” component to add it to our AiTrigger entity. Once the Box

Shape component has been added to the entity, we need to specify the

dimensions. Because I would like to have a nice tall area that we can both

see when editing and trigger when playing as our character, let us set the X

and Y dimensions to 20 meters each and the Z dimension to 10 meters. To

do this, type the size values in each of the corresponding x-, y-, and z-axis

inputs to the right of the “Dimensions” label.

When we are setting up our trigger area, it would be best if we could

see the area in which we are setting the trigger. To enable the area visibility,

make sure the checkbox next to the “Visible” label in the Box Shape

component is checked. Because we do not want our player character to

know where the boundaries of the trigger area are, make sure the checkbox

next to the “Game View” label in the Box Shape component is unchecked.

Use the move tool in the EditMode toolbar to position the trigger area

in a location that you think would be best for your game. You should be

able to see the area as in Figure 7-1. If you are unable to see the box area in

your viewport, click the ? icon in the upper right-hand corner of the

viewport ().

Chapter 7 Creating the enemy

148

When positioning the Box Shape component, be aware that the

player controller needs to start outside of the AI trigger area in order to

activate the spawner. If the game starts with the player character inside the

boundaries of the trigger area, the player will need to leave the area, then

reenter the area to trigger the AI. For my game, I have placed the AI trigger

area just to the right of my player character, so if my player makes a right

turn through my maze, it will activate the AI trigger, and the spawner will

toggle (once we add it).

Now that we have our boundaries created, we can add the trigger area

component to our AiTrigger entity. Click the “Add Component” button,

then under “Scripting,” choose “Trigger Area,” or just type “Trigger Area”

in the search bar. Click “Trigger Area” to add the component to the entity.

Now, in the trigger area component, under the label “Tag Filters,” click

the “+” button next to the “Required tags” label. A new “Required tag”

element will be added to the “Required tags” list under “Tag Filters.” In the

input area next to the label “[0],” type “PlayerCharacter.” Your trigger area

component should look like Figure 7-2.

Figure 7-1. The Box Shape component is used here to create the
boundaries for our AI trigger area

Chapter 7 Creating the enemy

149

Next, we need to add the Lua script provided by Amazon Lumberyard

that will trigger the AI spawn. In the next chapter, we will look at how to

modify Lua scripts and create scripts of our own, but for now, let us just

use the scripts we have provided. To add a Lua script to our AiTrigger

entity, click the “Add Component” button, then under “Scripting,” click

“Lua Script,” or just query for “Lua Script” in the search bar. Click “Lua

Script” to add the component to the entity.

Once the Lua script component has been added to the entity, we need

to link up the correct script to the entity. Next to the area labeled “Script,”

click the browse button, denoted by the icon with three horizontal dots.

A new window will pop up titled “Pick Lua Script,” then choose the

AISpawnTrigger.lua file. The file will be located under MyFirstGame/

Scripts/AI/AISpawnTrigger.lua, or you can just search for

“AISpawnTrigger.lua” in the search bar of the “Pick Lua Script” window.

Select the file, then click the orange “OK” button in the bottom right-hand

corner of the screen. Now, under the “Properties” area in the “Lua Script”

component, type “Group0” into the “AISpawnGroup” input box. Your

scripts component should look like Figure 7-3.

Figure 7-2. The trigger area component for your AiTrigger entity
should contain a required tag “PlayerCharacter”

Chapter 7 Creating the enemy

150

Now when your player character enters the trigger area defined by

the Box Shape component on our AiTrigger entity, the AI scripts in the

group will be activated. When the player character leaves the box shape

boundaries, the scripts will be deactivated.

 Creating an Enemy AI Navigation Area
We have now defined an area in which the player will trigger the AI

spawner for the enemy to appear when the player character gets too close.

Now, we need to provide an AI navigation area, which is the area that is

traversable for all artificially intelligent characters. Think of this as the

boundaries in which the enemies can move through. AI characters will use

this AI navigation area to find their way through the play space of the game.

The first thing we need to do is add an entity by right-clicking in either

the Entity Outliner window or the viewport and selecting the option

“Create entity.” Once the entity is created, right-click the entity and select

the option “Open Pinned Inspector.” Once the Pinned Inspector is opened,

we need to give this entity a name.

In the input field directly to the right of the label “Name,” type

“AiNavigationArea.” Now, on our AiNavigationArea entity, we need to add

the navigation area component. To do so, click the “Add Component”

button in the Pinned Inspector for the AiNavigationArea entity. Under the

Figure 7-3. The AISpawnGroup should be set to Group0, and the Lua
Script “Script” property should be set to AISpawnTrigger.lua for our
AiTrigger entity

Chapter 7 Creating the enemy

151

AI component group, select Navigation Area, or just search “Navigation

Area” in the search bar, then select the component “Navigation Area” to

add the component to your entity.

Because a polygon prism shape component is required for the

navigation area to work, the navigation area component will be disabled

by default. In the component, click the button “Add Required Component,”

followed by “Polygon Prism Shape.”

Right-click your AiNavigationArea entity within the Entity Outliner

window, then select “Find in Viewport” to zoom into the newly created

component. If your setup has been done correctly up to this point, your

entity should look similar to Figure 7-4.

In the Pinned Inspector for your AiNavigationArea entity, inside the

Navigation Area component we have just added to the entity, click the +

icon to the far right of the “Agent Types” label to add a new agent type to

the component. The new agent type you have just added will have a label

of “[0]” and a drop-down box to the right of it. Click the drop-down box,

and choose the option “MediumSizedCharacters.”

Figure 7-4. The initial setup of the AI Navigation Area component
entity should look similar to this photo when first created

Chapter 7 Creating the enemy

152

Now let us focus our attention to the polygon prism shape

component – specifically the height. We need to make the height a large

enough area for our AI characters to explore. In the input box to the right of

the “Height” label, change the value to 5.0 meters instead of the default 1.0

meters.

To be able to see the defined path data for AI navigation, we need

to set the MediumSizedCharacters view agent type property to be

“true.” To do this, navigate to the very top of Amazon Lumberyard in

the menu bar, and select the “Game” menu, followed by the “AI” menu.

In the AI menu, navigate to the “View Agent Type” menu, and select

“MediumSizedCharacters” (once selected, a blue check mark will appear

next to the option). A blue box will now appear within the navigation area

that you have created. The AI characters will use this blue section to define

path data to move around in the game space. If done correctly, your entity

will now appear like the one in Figure 7-5.

Figure 7-5. The blue area allows you to visualize the path data for AI
characters

Chapter 7 Creating the enemy

153

Next, we need to align our AI navigation area entity to another object

in order to make it easier for us to create a walkable path. Because my

game example is set up as a maze of sorts, I will align my AI navigation area

entity to one of my walls in a corner.

Note if the blue box does not appear in your game, try using the
keyboard key-command Ctrl + e simultaneously, or navigate to the
menu bar, select “game,” and “export to engine.”

To do this, first make sure the Object toolbar is visible by right clicking

the toolbar area. If the “Object Toolbar” option does not have a check mark

beside it, select this option now. If this option does have a check mark

beside it, your object toolbar is already visible. Select the “Align to object”

button on the object toolbar (), then click the wall or other entity you

would like to align the navigation area to.

Once your navigation area is aligned to an object, select the entity, and

you will see that the corners of the entity are red and labeled in increasing

numeric order from 0 to 3. Select and drag each vertex to create a

perimeter of the area in which you would like your AI to be able to navigate

through. When you have completed this step, your entity should now

look something like Figure 7-6. Make sure your AiNavigationArea entity is

lowered all the way to the ground so that path information will be defined.

If path information is not defined, your enemy artificial intelligence

characters will have nowhere to be able to roam. You can verify that your

entity is touching the ground by the blue area defining the path data.

Chapter 7 Creating the enemy

154

As you will likely notice, my path has two walls inside the walkable

area. If my enemy were able to walk around my entire maze and game,

there would be many elements that would potentially get in the way of my

enemy’s walking. However, because the blue path tells the enemy artificial

intelligence that the wall is a viable, walkable path, my AI can try to walk in

this area and has potential to get stuck.

To prevent this, select any entities within your walkable path, then

right-click them, and select the option “Open Pinned Inspector.” Next,

look in the transform component of that entity, and enable the “Static”

property, as shown in Figure 7-7. This will tell the navigation AI that the

space these entities take up should not be included in the viable path

options.

Figure 7-6. Drag the red vertices on your Navigation Area
component to set the navigation area to be larger. Make sure the
blue area appears in your viewport, as this is how enemy artificial
intelligence will determine path data.

Chapter 7 Creating the enemy

155

 Creating an Enemy AI Spawn Point
We have our trigger for when it should happen, we have created the area

that the enemy can navigate through when it happens, now all we need

is the actual spawn point that the enemy will propagate from. A spawn

point defines the precise location that the enemy artificial intelligence will

appear once our player character has entered our AI trigger perimeter.

To begin, we first need to create an entity by right-clicking inside either

the Entity Outliner window or the viewport, then selecting the option

“Create entity.” Once our entity has been created, right-click it and select

the option “Open Pinned Inspector.”

Inside the Pinned Inspector window for our newly created entity, let us

change the name of the entity to something meaningful like “AiSpawner1”

by entering the name in the input box directly to the right of the “Name”

label.

Now that we have our entity set up, we need to add the AI spawner

component to it. Click the “Add Component” button within the entity’s

Pinned Inspector window. Navigate to the “Spawner” component, either

by looking under the “Gameplay” component group or by searching

for the component in the search box at the top of the screen. Next, click

“Spawner” to add the component to your entity.

Figure 7-7. Static entities will be excluded from the viable path
options for AI navigation areas

Chapter 7 Creating the enemy

156

To declare which entity will spawn from this spawner component, we

need to select the dynamic slice for enemy AI. This is provided to us by

Amazon Lumberyard, but keep in mind that you will be able to use any

slice you would like or any slice you create. For the sake of this text, I will

use the provided entities. To the right of the input box that is beside the

“Dynamic slice” label, click the icon with three dots in order to select the

dynamic slice associated with the spawner.

When clicking this button, a window will appear titled “Pick Dynamic

slice.” Navigate to MyFirstGame\slices, then select the slice named

“ai_slice.slice”. Alternatively, you can search for “ai_slice.slice” in

the search bar at the top of the “Pick Dynamic slice” window. With the slice

select, click the orange “OK” button in the bottom right-hand corner of the

window.

In order to ensure the AI slice is not spawned when the game begins,

but rather when the player character enters the AI trigger area, make sure

the “Spawn on activate” property is set to false by unchecking the checkbox

next to the “Spawn on activate” label. The next property, “Destroy on

deactivate,” is up to you to decide. When your player character leaves the

AI trigger area, if you would like the enemy AI to be destroyed, mark this

checkbox. If you would like your AI enemy to persist after your character

has left the AI trigger area, leave this checkbox unmarked. For my game, I

think it would be best to destroy enemies when my player character leaves

the trigger area, so I will set this value to true.

If you have set up your spawner component correctly up to this point,

it should look similar to Figure 7-8.

Figure 7-8. The spawner component should look similar to this
photo if created correctly

Chapter 7 Creating the enemy

157

The spawner component is not the only needed component,

however, to enable enemy AI spawn points. We also need to add a Lua

script provided by Amazon Lumberyard. To begin, add the “Lua Script”

component to your AiSpawer1 entity by clicking the “Add Component”

button. Next, under the “Scripting” component group, click “Lua Script,” or

just search for “Lua Script” on the top of the “Add Component” window.

Once you have selected “Lua Script,” the component will be added to

your entity. To the right of the input box directly beside the “Script” label,

click the button whose icon is three dots in order to browse for the script

file you would like to add.

A new window will appear titled “Pick Lua Script.” Navigate to

MyFirstGame\Scripts\AI and select AISpawner.lua, or just search

for AISpawner.lua in the search bar at the top of this window. With

AISpawner.lua selected, click the orange “OK” button in the bottom

right-hand corner of this window to link the script with our Lua script

component.

You will likely notice that quite a few new property items are now

available on the Lua script component. We will discuss why this happens

in Chapter 8, but for now let us move on to modifying these properties to

the necessary values required to continue.

In the input box directly to the right of the “GroupId” label, input the

value “Group0,” as we did in our AI trigger area’s spawn group property.

This will link the spawner component on our AiSpawner1 entity to the

AiTrigger entity’s Lua script component. This tells the trigger what group

ID it should be spawning. If done correctly, your Lua script should look like

Figure 7-9.

Chapter 7 Creating the enemy

158

Click the “Play Game” button, and walk your player character through

your AI trigger area. If all of the steps were followed correctly, a killer

enemy robot will appear ready to fight your player character in a match to

the death.

 Creating Enemy Patrol Waypoints
You may notice that when your player character enters the AI trigger area,

the enemy artificial intelligence will spawn, but this enemy will not walk

around and patrol the AI navigation area that we created in the navigation

area section. In this section, we will learn how to add AI patrol points,

which will define the path the enemy should walk along as it patrols our

game area. To do this, we will need to place AI waypoints.

Figure 7-9. The final Lua script component on your AiSpawner1
entity must have “Group0” in the group ID, or it must at least be
named the same as your AiTrigger entity’s spawn group property.

Chapter 7 Creating the enemy

159

To begin, we first need to create an entity by right-clicking inside either

the Entity Outliner window or the viewport, then selecting the option

“Create entity.” Once our entity has been created, right-click it and select

the option “Open Pinned Inspector.”

Inside the Pinned Inspector window for our newly created entity, let us

change the name of the entity to something meaningful like “AiWaypoint1”

by entering the name in the input box directly to the right of the “Name”

label.

Because this entity will only represent one waypoint for our enemy

AI to navigate through, we need to create another waypoint entity a short

distance away from our AiWaypoint1 entity. Follow the preceding steps,

but instead of naming the entity “AiWaypoint1,” this time, name the entity

“AiWaypoint2.” Create two more waypoint entities, named “AiWaypoint3”

and “AiWaypoint4,” and make a patrol pattern similar to the one in

Figure 7-10.

Figure 7-10. Set up multiple AI waypoints for your enemy character
to patrol. Make sure the waypoints are within the AI navigation area.

Chapter 7 Creating the enemy

160

Once you have your waypoints created for your enemy AI to navigate

through, in your Entity Outliner window, right-click the entity we created

in the last section named “AiSpawner1” and select the option “Open

Pinned Inspector.”

In the Pinned Inspector window for “AiSpawner1,” click the “Add

Component” button, and under the AI component group, select

“Waypoints,” or search for “Waypoints” in the search bar at the top of the

window and select the “Waypoints” option that appears. Once you have

selected “Waypoints,” the component will be added to your “AiSpawner1”

entity.

In the waypoint component area, make sure that the “Sentry?” and

“Lazy Sentry?” properties are both unchecked. This will allow the enemy

artificial intelligence to patrol between the waypoints you have created.

If the “Sentry?” property is selected, your enemy AI will stand in one

place, turning occasionally to face different directions. This can be used

for another AI enemy who is “standing guard” in a particular area, but for

now, we want an enemy AI who patrols, so this needs to be unselected. If

the “Lazy Sentry?” option is selected, the enemy AI will only look in the

direction it faced when it was spawned.

In the “Waypoints” area of the waypoint component, click the “+”

button seven times to add six waypoint elements to the component. The

waypoints added will be labeled “[0],” “[1],” “[2],” “[3],” “[4],” “[5],” “[6}” with

7 empty inputs next to them.

The reason we added seven waypoint elements when we only have

four waypoint entities is because we are defining the path they will

walk along. In our case, we want our enemy to go from AiWaypoint1 to

AiWaypoint2, then from AiWaypoint2 to AiWaypoint3, then AiWaypoint3

to AiWaypoint4. This is three waypoint routes; therefore, in order to

have our enemy walk the path there and back, we need to specify seven

waypoint elements in our waypoint component.

Chapter 7 Creating the enemy

161

Click the “Pick” button next to the waypoint element input field

labeled “[0],” which is denoted by a reticle icon , then select the

“AiWaypoint1” entity in either the viewport or the Entity Outliner window.

Do this for each waypoint element in the waypoint component in the

following order: AiWaypoint1, AiWaypoint2, AiWaypoint3, AiWaypoint4,

AiWaypoint3, AiWaypoint2, AiWaypoint1.

When this sequence is properly followed, this will cause our AI

enemy to walk from our AiWaypoint1 to AiWaypoint2 to AiWaypoint3

to AiWaypoint4, at which point our enemy will turn around and walk

from AiWaypoint4 to AiWaypoint3 to AiWaypoint2 and finally back to

AiWaypoint1. Then, the sequence will restart, beginning with the first

waypoint in the group. When your waypoints have all been selected in the

waypoints component, your waypoints component should look similar to

Figure 7-11.

Keep in mind that when waypoints are not set, the enemy AI will

operate in sentry mode regardless of whether or not the Sentry? or Lazy

Sentry? properties are checked. This means our enemy would stand in

their spawn point and turn periodically.

Figure 7-11. With waypoint elements defined, our enemy AI will
navigate through the path we desire. Ensure that Sentry? and Lazy
Sentry? are unchecked, or else the waypoint elements will be ignored.

Chapter 7 Creating the enemy

162

Click the “Play Game” button, and have your player character enter the

AI trigger area we have defined. Now, your enemy will be patrolling the AI

navigation area, so be careful not to get caught – or else.

 Creating More AI Characters
To create more AI characters, follow all of the same preceding steps for the

AI trigger area, AI navigation area, and the AI spawner. The only difference

you will need to do is set up different waypoint areas, so your second AI

enemy will patrol a different area of your game.

A quick way of having the trigger area, navigation area, and spawner

settings to be replicated is to duplicate the first AI entities you have already

created, then move them to a different location in the game. For my

example, I will only duplicate the spawner and use the same navigation

area and trigger area as my first AI spawn point uses.

To duplicate the AiSpawner1 entity, right-click the entity, then choose

the option “Duplicate.” By default, your newly duplicated entity will share a

name with the parent entity from which it was created. Right-click this new

entity, and choose the option “Open Pinned Inspector.” In the input box

directly to the right of the “Name” label, enter the name “AiSpawner2.”

With the entity inspector still open for AiSpawner2, you will likely

notice that all of the patrol waypoints were duplicated as well. Because we

would like our second enemy to patrol a different area, or at least patrol via

a new path, we need to clear all existing waypoints from our AiSpawner2

entity’s waypoint component.

Directly to the right of the “Waypoints” label in the waypoints

component, you will see another label that reads “7 elements.” To the right

of this label, there is a button whose icon is a square (). Clicking this

square button will remove all existing waypoints from the AiSpawner2

entity. Do this now so we can create new waypoints for our new enemy.

Chapter 7 Creating the enemy

163

Follow the steps in the previous section of this chapter to create

waypoints for this new AiSpawner2 entity. Keep in mind you could create

more, fewer, or the same number of waypoints for this new enemy to

patrol through. For my game, I will only have my second enemy AI patrol

an area with two waypoints, named “AiWaypoint5” and “AiWaypoint6.”

Using the “Move” tool, move the AiSpawner2 entity to an area within the

AiNavigationArea different than where the AiSpawner1 currently occupies.

 Tidying Up Our AI Entities
As you can likely tell, the more enemies we add, the more waypoints we

will have. This can quickly muddy up our Entity Outliner window, and we

may begin to confuse which AI waypoints and spawners belong to which

AI enemy.

To remedy this, we will create parent entities for each of our enemies

as well as a parent entity for all enemies as a group, because the navigation

area and the trigger are shared.

To begin, right-click in the viewport or in the Entity Outliner window

and select the “Create entity” option. This new entity will be the parent

entity for the entities pertaining to the first enemy AI character. Right-click

this new entity and select the option “Open Pinned Inspector.” In the input

box directly to the right of the “Name” label, input the value “Enemy 1.”

Now, in the Entity Outliner window, hold down your Ctrl button on

your keyboard, and select all entities relating to your first enemy artificial

intelligence, excluding the AiTrigger and the AiNavigationArea. For my

game example, these entities would be “AiSpawner1” and “AiWaypoint”

entities number 1 through 4. When all of your first AI enemy associated

entities are selected, drag them over the new “Enemy 1” parent entity in

the Entity Outliner window.

Chapter 7 Creating the enemy

164

Next, right-click in the viewport or the Entity Outliner window and

select the “Create entity” option. This new entity will be the parent entity

for the entities pertaining to the second enemy AI character. Right-click

this new entity and select the option “Open Pinned Inspector.” In the

“Name” input field, input the value “Enemy 2.”

In the Entity Outliner window, hold down the Ctrl button on your

keyboard, and this time, select all entities that relate to your second

enemy artificial intelligence, once again excluding the AiTrigger and the

AiNavigationArea entities. For my game example, these entities would be

“AiSpawner2” and “AiWaypoint” entities 5 and 6. When all of the second AI

enemy associated entities are selected, drag them over the new “Enemy 2”

parent entity in the Entity Outliner window.

While this is a fairly organized structure for our enemy entities, we

could potentially still have a cluttered Entity Outliner window when the

number of entities increases. Because of this, we need to create a parent

entity that will contain all of our enemy AI characters.

Right-click in the viewport or the Entity Outliner window and select the

“Create entity” option, then open the Pinned Inspector for this entity by

right-clicking it and choosing the option “Open Pinned Inspector.” Rename

the entity to “Enemies,” by entering the value “Enemies” in the “Name”

input field in the Pinned Inspector.

In the Entity Outliner window, hold down your Ctrl button on your

keyboard, then select all enemy AI entities that you have created, this

time including the AiTrigger and AiNavigationArea entities. For my game

example, these entities would be “Enemy 1,” “Enemy 2,” “AiTrigger,” and

“AiNavigationArea.”

With your enemy entities selected, drag these entities into the

“Enemies” entity. If you have followed the steps correctly, your Entity

Outliner window should be extremely organized and will allow you to

collapse all enemy AI-related entities into a single row on the Entity

Chapter 7 Creating the enemy

165

Outliner window. For larger and more complex projects, grouping

entities in this manner helps organize the overall game development. The

structure will look similar to Figure 7-12.

Congratulations, you have now added enemies to your game. Your

player character will now have an objective – stay alive and silence the

enemy. In the next chapter, we will look at the Lua scripting language and

see how we can utilize it to edit some of our scripts to add new properties

to components, change what certain input buttons will affect, and more.

Figure 7-12. The organizational structure of our enemy AI should
have one parent entity that holds all enemies, and enemy parent
entities that hold entities relating to specific enemies

Chapter 7 Creating the enemy

167© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_8

CHAPTER 8

Beginning Lua
Scripting
To add custom functionality for input controls, enemy controls, and

other various gameplay values, we need to harness the powers of the Lua

programming language. In this chapter, we will first have a programming

in Lua crash course, then we will look at in-game examples for Amazon

Lumberyard. In these examples, we will modify our player character’s

camera control script as well as the enemy AI spawner script.

In the crash course, we will learn about comments in Lua, both

writing and invoking functions, loops, collections, variables, conditional

statements, operators, and of course – classes. While this may not be

enough information to write entire software packages or suites in the Lua

language, it will give us a good enough basis to edit and manage game

scripts. In the beginning of this chapter, we take a break from working

directly in Amazon Lumberyard and explore the Lua programming

language, ending the chapter with examples that directly affect our in-

game components.

To follow along with the code examples in this chapter, begin by

selecting “Tools” in the menu bar of Amazon Lumberyard, followed

by selecting the “Lua Editor” option. With the Lua Editor tool open, select

the “File” option in the menu bar, followed by the “New” option. A new file

will be created that you can use to follow along in the book.

168

The more we modify game scripts provided to us by Amazon

Lumberyard, the more proficient we will be in both the Lua programming

language as well as writing custom game scripts for Lumberyard. Do not

be discouraged if this chapter of the book is harder for you to understand

or follow at first. In time, your understanding for programming concepts

will develop into a skill that you feel comfortable using. If you are already

a programmer, this chapter should be a breeze for you – giving you a new

language to harness at the same time.

 Comments
The first aspect of Lua we will discuss is comments. Comments are

annotations in source code that is easily readable by other programmers.

Comments are typically added to take notes within the source code about

the code to follow and are ignored by compilers and interpreters.

To create a comment in your Lua code, prefix your comment with two

dashes ("--"), followed by a space, then your comment. For example, if I

wanted to say “this is a comment” inside of my source code, I would type it

as follows:

-- this is a comment:

The comment will be ignored by compilers and interpreters.

Comments are a great way to write code descriptions as well as algorithmic

descriptions inside the source code so other programmers do not need to

reference external documentation. Because of this, we sometimes need

to write comments that extend to multiple lines. To do this, after your

two dashes, instead of placing a whitespace character, place two opening

square brackets ("[") followed by your comment. To close the comment

block, suffix your comment with two closing square brackets ("]"). For

example, if I wanted to write a comment that says “Author: Jaken Herman

Chapter 8 Beginning Lua SCripting

169

/ The following code controls character spawning”, I would write the

following:

--[[Author: Jaken Herman

 The following code controls character spawning

]]

 Variables
To store values within our code, we can define a variable, which associates

an identifier, or name, with the value and assigns it to a storage location

in memory. These variables can hold many different types of values,

including functions, which we will discuss later.

Variable identifiers can be composed of alphanumeric characters

as well as the underscore character, but no other special characters are

syntactically correct. These identifiers must start with either a letter or an

underscore character and never a digit.

Because Lua is a case-sensitive language, so you must be wary of upper

and lowercased characters. In other words, a variable named "VariableA"

cannot be referenced by calling "variableA", because the "V" in the

beginning of the variable name is capitalized, while the "v" in the variable

reference is lowercase.

While in many programming languages we must declare the type of

data the variable will store, we do not need to do so in Lua, as the language

is dynamically typed, so variables themselves do not have types – but the

values they store do. Not only can values be stored in variables, but they

can also be passed into functions as parameters, and they can also be

returned as results from functional operations.

There are eight basic types of data that a Lua value can be, and you can

wrap a value in the Lua function "type()" to discover the type of the given

value. For example, you could run "type(true)" and receive the value

"boolean" back.

Chapter 8 Beginning Lua SCripting

170

Lua Data types

nil Similar to "null" in other programming languages, nil is used to

determine whether or not the value has data or no data.

Boolean a Boolean type is a simple true or false state. these values are typically

used for checking conditions, which we will discuss later in the chapter.

number the number data type represents floating point values.

String Strings are used to represent an array of characters. every word in this

book would be considered a string.

Function We will discuss functions later in the chapter. Functions represent

methods written in Lua and help perform more complex tasks. this

includes various computations and algorithms.

userdata the userdata data type offers an area in memory with no predefined

operations in Lua.

thread thread data types are used to represent threads of execution that do

not depend on one another and are used to implement routines that run

in tandem.

table represents arrays, sets, records, graphs, and other types of basic

collections in Lua. tables can hold any value except for a nil value.

Although Lua variables do not have data types, there are three types of

variables depending on the scope of the variable:

• A global variable is a variable that is accessible by the

program as a whole. All variables are considered to be

global unless they are explicitly typed as local variables.

• A local variable is one that is declared with the keyword

"local" and whose scope is limited within the

functions inside their scope.

Chapter 8 Beginning Lua SCripting

171

• The third type of variable is a table field, which,

as stated earlier, is a type of variable that can store

anything except for a nil state.

Variables are first defined, then initialized. This process can either

be carried out on two different lines or on one line at the same time. For

example, to define a local variable named "my_variable", we would write

the code as follows:

-- variable definition:

local my_variable

The next step in the variable declaration process would be to initialize

the variable. To initialize a variable that is already defined, we would write

the code as follows:

-- variable initialization

my_variable = "this is my variable"

As stated earlier, we can merge this process into one line of code,

definition, and initialization simultaneously. To do so, the code would look

like this:

-- variable definition and initialization at the same time:

local my_variable = "this is my variable"

As stated before in this section, we can wrap a value in the Lua

function "type()" to get the type of the value. For another example of

that function invocation, let us see what a Lua interpreter will give us back

when we invoke "type()" with the parameter "my_variable":

>> local my_variable = "this is my variable"

>> type(my_variable)

>> string

Chapter 8 Beginning Lua SCripting

172

Because "my_variable" is an identifier that points to a location in

memory storing the value "this is my variable", what really gets

passed into the "type()" invocation would really be “type("this is my

variable")”. Because "this is my variable" is an array of characters,

which is what a string data type is defined as, the type function returns

back "string".

 Conditionals
A conditional is a structure that a programmer can use to only perform

an action in code if a particular condition, or set of conditions, is met.

To perform these conditional checks, we can use if/else statements. To

write an "if" statement, just type the word "if", followed by a conditional

check encapsulated in parentheses, followed by the word "then". After the

"then" comes the code you would like to run if the condition is met.

"if" statements can also be followed by "else" statements, which will

execute some other block of code if the condition in the "if" statement

is not evaluated to be true. The "else" statement is completely optional,

however. Another optional addendum you can make to your "if"

statement is an "elseif" statement, which will make another evaluation.

You can combine as many "elseif" statements to your code as you would

like.

Regardless of whether or not "else" or "elseif" statements are used,

you always close out if/else statements with the "end" keyword. Let us

look at an example of conditional statements in Lua. We will first declare a

variable "my_variable" and assign it to the value 50. We will then check if

the value is greater than 90 which, of course, it is not. We will make another

check to see if the value is less than 45 which, again, it is not. Finally, we

will resort to the default code being executed in the "else" statement, as

no conditions were met:

Chapter 8 Beginning Lua SCripting

173

local my_variable = 50

if(my_variable > 90)

then

 -- execute this code if my_variable is greater than 90

elseif(my_variable < 45)

then

 -- execute this code if my_variable is less than 45

else

 -- if neither previous condition is true, execute this code

end

It should be noted that if/else statements can be “nested” inside of

another if/else statement. For example, if you make one conditional

check, in the code block that should then be executed, you could make

another check within that code block.

 Operators
Based on the previous section regarding conditionals, Lua operators are

essential in creating the checks needed in those code blocks. For example,

in our if/else statements we used the less-than and greater-than symbols

to check conditions. While these operators’ uses are inherent, there may be

certain operators that are not as simple to use. For example, what if in the

preceding example, we wanted to check to see if my_variable was equal to 50?

We cannot do "if(my_variable = 50)", because a single equals

sign denotes assignment (setting the value to 50 in this case), not equality

comparison. To check equality, we would use the double equals sign (==).

To correctly check if "my_variable" was 50, we would execute the following

code:

if(my_variable == 50)

Chapter 8 Beginning Lua SCripting

174

Now, what if we wanted to check if "my_variable" was explicitly not

50? To check non-equality, we would use the symbol tilde followed by an

equals sign. For example:

if(my_variable ~= 50)

These are just two of the six relational operators in Lua. Relational

operators will always evaluate to a boolean data type. In other words, every

time a relational operator is used, the data that will be returned by the

evaluation will be either true or false. The following table shows all of the

relational operators with a description of what each of them do.

== Checks if the value of the left-side quantity and the right-side quantity are
equal.

~= Checks if the value of the left-side quantity and the right-side quantity are
not equal.

< Checks if the value of the left-side quantity is less than the value of the
right- side quantity.

> Checks if the value of the left-side quantity is greater than the value of the
right-side quantity.

<= Checks if the value of the left-side quantity is less than or equal to the value
of the right-side quantity.

>= Checks if the value of the left-side quantity is greater than or equal to the
value of the right-side quantity.

Relational operators are not the only types of operators in Lua,

however. There are also logical operators and arithmetic operators. Logical

operators are another group of operators whose values will always be

evaluated to a boolean (true/false) data type.

Chapter 8 Beginning Lua SCripting

175

Logical operators are typically used in connection with relational

operators or with variables that hold Boolean values. A list of the three

logical operators is as follows.

and If both of the operands represent something that is true, the condition becomes
true. If only one condition is true and the other is not, the condition becomes
false. In other words (true and true) = true, while (true and false) = false. This is
clearer in the context of an if statement. If I only want a code block to execute
if a number is less than 50 and greater than 25, this operator comes in handy:
if(my_variable < 50 and my_variable > 25) then ...

or If at least one of the two operands represent something that is true, the
condition becomes true.

not This operator is used to reverse the logical state of its operand. In other words:
not false

will evaluate to true.

Finally, the arithmetic operators supported by the Lua language are

similar to typical everyday arithmetic operators.

+ Computes the sum of the left-hand quantity and the right-hand quantity.

- When used between two operands, this operator subtracts the right-hand
quantity from the left-hand quantity.
When used to the left side of one operand, this “unary” operator will act as a
negation, i.e., –50.

* Computes the product of the left-hand quantity and the right-hand quantity.

/ Computes the quotient of the left-hand quantity and the right-hand quantity.

% Provides the remainder after a division has been performed on the left-hand
quantity and the right-hand quantity.

^ Computes the exponent result of the left-hand quantity and the right-hand
quantity.

Chapter 8 Beginning Lua SCripting

176

 Loops
Suppose you have a block of code that you would like to execute multiple

times until a point in which a condition is met. Statements inside the loop

will be executed in sequential order. There are three main loop types that

Lua provides programmers. The following table defines each of the loop

types, and later in this section, we will provide examples of each.

while A while loop will repeat a code block, while the condition in question
is true. When the condition in question becomes false, the code will
terminate.

for A for loop will repeat a code block X amount of times, where X
represents a variable that will either increase or decrease as the
code block executes. This will be further explained later in the
section.

repeat until The repeat until loop will execute a given block of code until a point
in time in which the condition in question is met. This is similar to a
while loop, although a while loop is guaranteed to execute at least
once.

Loops can be nested inside of another loop. In other words, you can

use one or more loop inside of any other loop type. One thing that should

be considered heavily when implementing loops is the concept of an

infinite loop. An infinite loop is a loop that will not terminate, as it does

not provide any exit routine. In other words, the condition in which the

loop should stop can never be met. The loop will repeat continually until

the operating system running the code terminates the program. If your

loop should create a certain number of objects yet errors out and becomes

an infinite loop, your computer may be bogged down by the new lack of

memory (as more and more objects will be created as the loop continues).

Chapter 8 Beginning Lua SCripting

177

 While Loop
As stated earlier, the while loop allows you to repeat a block of code so

long as the condition in question is true. For example, if I wanted to loop

through every number from 1 to 10 and print the result out, I would write a

while loop as follows:

i = 0

while(i <= 20)

do

 print(i)

 i = i+1

end

As you can likely tell, my "i=i+1" statement is what keeps the while

loop from being an infinite loop. Without that statement, this block of code

would continue to print "0". But because I incremented our variable, we

can guarantee that the loop will not enter into an infinite state, and it will

print each number from 1 to 20.

 For Loop
For loops are interesting, as they allow you to declare and initialize control

variables from within the for-loop syntax. In the "while" example earlier,

we had to declare and initialize our "i" variable before using it in the loop.

For loops have this step built in, and thus they are better suited for looping

through values 0–20. For loops are the best control structure to repeat a

block of code a specific number of times.

The syntax may be slightly confusing at first, but it gets easier the

more you use it. Directly after writing "for", this is where you declare and

initialize your control variable. To follow our preceding example, we would

put "i=0". The next step is where you declare how many times your loop

should run.

Chapter 8 Beginning Lua SCripting

178

If your loop should count in descending order, this is where you would

put your minimum value, whereas if your loop will count in ascending

order, this is where you would put your maximum value. In other words,

for our example, we want our "i" value to increase in ascending order, so

we need to place the max value here, which is 20.

The last step of a for loop is to define how much your control variable

needs to increment or decrement. For example, in our last example of our

"while" loop, we had to add in a statement that said "i = i+1". Well, in

our for loop, we simply need to put "1" in the top of our loop to declare

that our control variable should increment by 1. If we were looping in

descending order, we would put -1 in this value.

Let us take a look at the for-loop syntax, which will again count the

numbers from 0 to 20:

for i = 0,20,1

do

 print(i)

end

The preceding code will do the exact same thing that our while

loop did in the previous example, but this allows us to make the code

block inside the loop a bit more succinct. What if we wanted to count in

descending order from 20 to 0 while only printing even values? In this case,

instead of decrementing by 1, we would want to decrement by 2 so that our

code does not print any odd values.

The code for this is similar to our code in our ascending-order

example, and in fact, we do not even need to modify the code block, we

simply need to modify the first line of our for loop:

for i = 20,0,-2

do

 print(i)

end

Chapter 8 Beginning Lua SCripting

179

 Repeat Until Loop
Similar to a "while" loop, the repeat until loop is slightly different from

both "for" and "while" loops, as the condition the compiler will check

against is at the bottom of the loop instead of the top.

Syntactically, all you need to do for a repeat until loop is write the

word "repeat", followed by the code block you would like to execute.

Once you are done defining the code that will be repeated, place your

"until" condition at the bottom of the code.

If the condition is false, the code will run again until the condition is

evaluated to be true. Let us take a look at a repeat until code example

solving the same problem as our other two loops have – printing all

numbers from 0 to 20:

i = 0

repeat

 print(i)

 i = i + 1

until(i > 20)

As you can tell, we once again had to declare and initialize the variable

outside of our loop structure as well as increment and modify the variable

from within the loop. The reason this loop can be dangerous at times is

because developers may often overlook that they need to increment the

control variable, at which time an infinite loop would be created.

 Arrays
If you need to store a collection of data within a variable, you could use

an array. An array is a collection of ordered objects. These arrays are

implemented using tables that can be accessed by integer-based indices.

Chapter 8 Beginning Lua SCripting

180

Array sizes are not fixed, so we can add as many values to these arrays

as we would like, assuming that our system provides us enough memory to

store the amount of values that we need to store.

To create an array that holds the string values “banana,” “apple,” and

“orange” stored in a variable called "fruits," we would write the code as

follows:

fruits = {"banana", "apple", "orange"}

The preceding array is an example of a one-dimensional array. This

is a simple table structure that could be viewed and interpreted as the

following table.

1 banana

2 apple

3 orange

Notice that my index in the preceding table starts at “1.” For most

programming languages, arrays indices begin at 0, but in Lua, indexing will

generally start at index 1. It is possible, however, to create objects at index

0, and, in fact, it is also possible to create objects that would be negatively

indexed. For example, if I wanted to store a fruit value in our fruits array in

the index location -1, I would write the code as follows:

fruits[-1] = "kiwi"

I would not suggest this; I would suggest that you stick to the standard

default indexing that Lua provides, but I wanted to at least explain the

options that are available to you. Assuming we did not modify our fruits

array to add the kiwi, we could loop through our fruits array to print each

fruit contained within by running the following code:

Chapter 8 Beginning Lua SCripting

181

for i = 1,3,1

do

 print(fruits[i])

end

What if we only had two fruits in our array but left our for loop in the

preceding example the same? While many other programming languages

would throw an exception and terminate the code execution, Lua will

return back a "nil" value if an array index is out of bounds.

Keep in mind that because arrays can store any data type, that means

that arrays can also store instances of themselves. In this situation, you

would be creating what is called a multidimensional array. To create a

2D array that contains fruits with their colors, you could write the code as

follows:

fruits = {

 {"banana", "yellow" },

 {"apple", "red" },

 {"orange", "orange" }

}

In this case, if we knew “apple” was in position fruits[2], to get the

color of that fruit, we would access it by the code:

fruits[2][2] -- evaluates "red"

So, if we wanted to loop through each of our fruit, print out the name

of the fruit followed by the color of the fruit, we could nest a for loop and

access our multidimensional array as follows:

for i = 1,3,1

do

 for j = 1,2,1

 do

Chapter 8 Beginning Lua SCripting

182

 print(fruits[i][j])

 end

end

The preceding code will yield the results:

banana

yellow

apple

red

orange

orange

 Functions
A function in programming is a block of code that is grouped together to

perform a specific task. If you have one large program that runs your code

sequentially, you can likely break some of the tasks up into functions –

especially the code blocks that are repetitive.

We have actually been using a function in all of the previous code

examples, perhaps without you even knowing it. We have been invoking

the "print()" function which, of course, takes in a parameter of any data

type and outputs the string value of that parameter to the console.

All functions are invoked the same way, by typing the name of the

function, followed by a set of parentheses. You may notice, however, that

not all functions require data to be passed into them. Data passed into

functions are known as “arguments” or “parameters.” Functions are not

required to accept parameters unless they are explicitly defined to accept

them. To make a function called "add()" that takes two parameters

(number_a and number_b) and returns the sum of these two values, we

would write the code as follows:

Chapter 8 Beginning Lua SCripting

183

function add(number_a,number_b)

 result = number_a + number_b

 return result

end

When using "add()", we would need to assign the result to a variable

for it to be meaningful. For example, to get the result of 2 + 3 and store it

into a variable called "my_sum", we would write the following code:

 my_sum = add(2,3)

 print(my_sum) -- will print "5"

We also need to keep in mind that variables declared and initialized

within a function will not be accessible in other areas of our code, as the

variable would be out of scope. The "result" variable in our example will

only be accessible in our "add()" function, as it is scoped to exist within

that block of code.

We can also pass in functions as parameters to other functions. Let us

say we wanted to write a custom print function that would print out “The

result of your function call is : ____”, where the blank space would be filled

with whatever the result of the function call is. First, let us define a custom

function called "resultPrint()":

function resultPrint(result)

 print("The result of your function call is :", result)

end

Then, if we wanted to pair this with our call to "add()", we would

modify add() to call our function instead of returning the result. Our end

product would look like this:

function add(number_a,number_b,resultPrint)

 result = number_a + number_b

 resultPrint(result)

end

Chapter 8 Beginning Lua SCripting

184

function resultPrint(result)

 print("The result of your function call is :", result)

end

Now, even though the "result" variable is scoped to our "add()"

function, because we pass it into another function as a parameter, it is

available for use in another function. This time, instead of saving the result

of "add()" and calling "print(my_sum)" like our previous example, we can

just execute the code like so:

add(2,3, resultPrint)

 Classes
Classes allow you to make a model for creating objects that share common

traits such as properties and methods. For example, if we use the example

of “animal” for a class, we can provide properties for the sound the animal

makes and the color the animal is.

Let us define an example Animal class code block that has a function

called "getSound()":

Animal = {}

function Animal:new(o, sound, color, name)

 o = o or {}

 setmetatable(o, self)

 self.__index = self

 self.sound = sound

 self.name = name

 self.color =color

 return o

end

Chapter 8 Beginning Lua SCripting

185

function Animal:getSound()

 print("The ", self.name, " goes ", self.sound)

end

Now that our class is defined, we can create a new Animal object. In

order to define an object that will represent a black dog (which, of course,

makes the noise “bark”), then get the sound that our dog makes in a

formatted order, we would write the code as follows:

a = Animal:new(nil, "bark", "black", "dog")

a:getSound()

Because classes are so reusable and customizable, we begin to see

their usefulness when it comes to game development. For example, in

Chapter 7, when we selected a Lua script file to be linked with the Lua

script component on our enemy AI spawner, more definable properties

were added to the component. This happened because the code that

we linked with the component declares those properties as necessary

properties that the AI spawner would use. If we look at the following code,

we see that these properties are defined in the aispawner class. Building

onto that, we see what type these properties should hold, whether they

be boolean, string, or number values. We also see that these values have

default values set, so we do not place the burden on the game developer to

necessarily have to define these.

local aispawner =

{

 Properties =

 {

 Enabled = { default = true },

 OverrideDebugManager = { default = false },

 GroupId = { default = "", description = ". . ." },

 AlertId = { default = "", description = ". . ." },

 SpawnInCombat = { default = false, description = ". . ." },

Chapter 8 Beginning Lua SCripting

186

 Teleport =

 {

 IsTeleportedIn = { default = false },

 SpawnEffect = { default = "SpawnTeleportIn", description =

". . ." },

 SpawnDelay = { default = 0.5, description = ". . .",

suffix = " s" },

 SpawnDelayVariance = { default = 1.0, description = ". . .",

suffix = " s" },

 DelayBeforeActualSpawn = { default = 0.5, description =

". . .", suffix = " s" },

 },

 DeathMessageTarget = {default = EntityId(), description =

". . ."},

 DeathMessage = {default = "", description = ". . ." },

 },

 Data_GroupCountForAlive = "_alive";

 Data_GroupCountForActive = "_active";

 Data_GroupCountForDead = "_dead";

}

The preceding code, of course, is not the full aispawner class, but it is

a portion of the class definition, and it is the only part that we will modify.

In my game, when my enemy is to spawn, I would prefer that the enemy

spawn immediately rather than have the half-second delay.

To enforce this, let us change the default value on the "SpawnDelay"

variable within aispawner.Properties.Teleport to 0. To modify this

value, either open the file within your favorite text editor, or use Amazon

Lumberyard’s built-in code editor. Right-click your enemy AISpawner

entity, and choose the option “Open Pinned Inspector.” In the component

list, find your Lua script component, then next to your script input, select

the button that is denoted by the icon that looks like a set of braces (“{}”).

Chapter 8 Beginning Lua SCripting

187

When you click this button, a new window will appear titled “Lua

Editor,” and changes to the script file may now be made. The “SpawnDelay"

change we would like to make will be on line 17 of the provided

AISpawner.Lua file. Use the keyboard key-combination Ctrl+S to save your

changes.

 Custom Inputs
As you create your own games, you will likely want to hook up custom

input events to your character or your camera controller. For my example

game, I would like to create an input event to reset the camera to its

default location and height. Amazon Lumberyard’s scripts for the camera

controller allows you to zoom in and out of your character by pressing the

keypad number 8 and the keypad number 2, respectively. We are going

to create a custom input that allows you to press the keypad number 0 to

reset the camera to its default settings.

To begin, within the Entity Outliner window, right-click your camera

entity which will exist within the slice “PlayerSlice_EMFX,” then select the

option “Open Pinned Inspector.” In the “Add Component” list, find the

component named “Lua Script-CameraController,” then open the script in

the Lua Editor window by clicking the button whose icon is a set of braces.

Within the cameracontroller:OnActivate() function (Line 73), add

the following two lines of code below the existing code:

self.debugNumPad0EventId = GameplayNotificationId(self.

entityId, "NumPad0", "float");

self.debugNumPad0Handler = GameplayNotificationBus.

Connect(self, self.debugNumPad0EventId);

Then, within the cameracontroller:OnEventBegin() function

(Line 523), add the conditional check code inside of the existing

Chapter 8 Beginning Lua SCripting

188

conditional check for whether or not the TransitionTimer property is less

than or equal to 0.0 (roughly line 571 of cameracontroller.Lua):

elseif (busId == self.debugNumPad0EventId) then

 self.CurrentSettings:CopySettings(self.TransitionToSettings);

 debugCamMovement = true;

Use the keyboard key-command Ctrl+S to save your changes to the

camera controller script, then close the Lua Editor window, returning to

the Amazon Lumberyard Editor.

Next, with the Pinned Inspector still open for your camera entity, click

the “Add Component” button to add a new Lua script to the entity. Search

for “Lua Script” in the search bar, then select “Lua Script” to add the

component to your entity.

In your newly added Lua script component, click the button indicated

by three dots next to the “Script” input to search for the script file you

would like to link. In the “Pick Lua Script” window, search for “held.Lua”,

then click the orange “OK” button in the bottom right-hand corner of the

window. Two new properties will become available to you at this point –

IncomingInputEventName and OutgoingGameplayEventName. In both

of these input fields, type “NumPad0”. Close the Pinned Inspector for your

camera entity.

The final step in adding custom camera inputs to your game is to

modify the input manager that the camera controller references. In the

Entity Outliner window, within your “PlayerSlice_EMFX” slice, right-click

the entity named “InputManager,” then select the option “Open Pinned

Inspector.”

In the list of components on your “InputManager” entity, find the

“Input” component. To the right of the input labeled “Input to event

bindings,” select the button whose icon is a joystick, directly to the right of

the “browse” button. This button will open the “Input Bindings Editor.” In

the input bindings editor, click the “+” button to the far right of the “Input

Event Groups” item to add a new input event group.

Chapter 8 Beginning Lua SCripting

189

By default, your new input event will be named “<Unspecified Event>.”

Scroll down to this event, then expand it by clicking the triangle to the left

of the name of the input event. There will be two options for you to modify:

Event Name and Event Generators. In the “Event Name” input, type

“NumPad0”.

To the far right of the “Event Generators” input, select the “+” button

to add a new event generator. A new window will appear titled “Class to

create.” Make sure the drop-down for the class type has the value “Input”

selected, then click the “OK” button in the bottom right-hand corner of the

screen.

Now that an event generator exists, you will need to expand the “Event

Generators” input in order to modify your newly created generator by

clicking the triangle directly to the left of the event generators group. By

default, the generator will be set to “gamepad_button_a,” but as we would

like this to be for the keyboard numpad 0 button, we need to modify this.

Expand the “gamepad_button_a” generator, then change the “Input Device

Type” to “keyboard.” In the “Input Name” field, change the drop-down box

to have the value “keyboard_key_numpad_0” selected.

Leave the “Dead zone” input at 0.2, as it will default to, but change

the “Event value multiplier” input to 0.1 to match the other inputs for the

keyboard numpad. Use the keyboard key-command Ctrl+S to save your

input bindings changes. You have now successfully created the keyboard

mapping to reset the camera. If the steps have been followed appropriately

up to this point, your new input binding should look like Figure 8-1.

Chapter 8 Beginning Lua SCripting

190

Now, click the “Play Game” button and experiment with your new

custom input binding. To test your inputs, first use the keypad number 2 if

you have one on your keyboard in order to zoom out from your character,

then press the keypad number 0 to reset your camera to its default settings.

This chapter served as a crash course in the Lua programming

language that was not necessarily intended to teach you how to create

large software suites in Lua, but rather it was intended to teach you enough

to be able to interpret and modify Lua scripts that Amazon Lumberyard

provides, at which point you will learn to create your own scripts over time.

You should also take time to experiment with the input bindings to

make your game support popular gaming controllers.

Figure 8-1. The NumPad0 input binding must have the Input Device
Type set to “keyboard” and the Input Name set to “keyboard_key_
numpad_0”

Chapter 8 Beginning Lua SCripting

191© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_9

CHAPTER 9

Polishing Your Game
We have now finished going over how to modify scripts available within

Amazon Lumberyard and how to create custom scripts. Now with our fully

functional game, we can polish it and add details to make it stand out. For

this chapter, we will solely be using assets that are provided by the Amazon

Lumberyard engine including lens flares, game sounds, and particle

managers that are built specifically for the enemy AI and player character

slices we have been utilizing up to this point.

 Lens Flare
The technique of using a lens flare has become fairly common within the

past few years, mainly due to its ability to introduce a sense of realism into

images, games, and video. An artificial lens flare mimics what happens

when light (usually from the sun) is distributed in a camera’s lens system.

To add a lens flare to our game to add a layer of authenticity, we first

need to create an empty entity that will house our lens flare component. To

do this, right-click in either the viewport or the Entity Outliner window and

choose the option “Create entity.”

Right-click your newly created entity and select the option “Open

Pinned Inspector.” In the Pinned Inspector window, in the input box to the

right of the label “Name,” type “Lens Flare” to name your entity.

192

Once your entity is appropriately named, click the “Add Component”

button to open the list of available components to add to an entity. In the

“Rendering” component group, select the “Lens Flare” component, or

alternatively type “Lens Flare” into the search bar in order to drill down

to the component faster, then select the component to add it to your lens

flare entity.

Now in the “Lens Flare” component you have just added to your entity,

select the button indicated by three dots directly to the right of the input

labeled “Library.” A new window will pop up titled “Pick Lens Flare.”

Find the XML file “sunlensflare.xml” in the following directory:

MyFirstGame\libs\flares\

Alternatively, you could find the file by typing “sunlensflare.xml”

in the search bar directly under the “Pick Lens Flare” window title. Select

the file, as shown in Figure 9-1, then click the orange “OK” button in the

bottom right-hand corner of the screen.

Figure 9-1. Amazon Lumberyard provides two options for lens
flare XML files. For our sunlight lens flare example, we want to use
sunlensflare.xml, as shown here.

Chapter 9 polishing Your game

193

Now, in the input box directly to the right of the input labeled “Library,”

you should see “sunlensflare.” In the next input area, labeled “Lens Flare,”

the drop-down box will contain two different values for our use. By default,

the “Lens Flare” input value will be set to “LensFlares.ChromaticRing,”

and for our example, this is the flare I will choose to use. Feel free to

experiment with this input and change the option to “LensFlares.SunFlare”

to see which you prefer.

Next, in the input group “Flare Settings,” we should change the “Size”

field to “2.5” rather than the default value “1” in order to make our lens

flare more dramatic. To position our lens flare to be attached to the sun,

make sure that the checkbox next to the input labeled “Attach to sun” is

checked.

The final modification I would like to make on our lens flare

component is to give it a blueish hue. In the “Color Settings” input group,

next to the right of the input labeled “Tint,” click the white square to open

the color picker. In the input labeled “Red” within the color picker, set the

value to 102. In the inputs labeled “Green” and “Blue” within the color

picker, set the values to 161 and 255, respectively. Once done selecting

your color, click the “X” button in the top right-hand corner of the “Select

Color” window.

If you have set up your lens flare component correctly up to this point,

your component should look like Figure 9-2.

Chapter 9 polishing Your game

194

When playing your game, you may not immediately notice how much

value your lens flare component adds to the overall level of detail within

the game. To see what your game looked like before adding your lens flare

component, uncheck the “Visible” checkbox in your lens flare entity’s lens

flare component temporarily, then click the play game button to play your

game. Point your camera up at the sun and move it around a bit, then press

escape to exit your game. Re-enable the lens flare component by setting

the “Visible” checkbox to be checked, then repeat the previous steps. You

should notice a nice, professional looking lens flare within your game. Your

before and after should look similar to Figure 9-3.

Figure 9-2. The lens flare component should have the ChromaticRing
lens flare selected, the size value set to 2.5, the “Attach to sun”
checkbox checked, and the color tint to RGB value 102, 161, 255

Chapter 9 polishing Your game

195

 Particle Manager
Next, we will add the particle manager slice that has been provided to us

by Amazon Lumberyard. While this particle manager is tightly linked to

the slices and entities that have been provided, you can always take this

manager and link it to other entities such as other guns that you have

created.

The particle manager is a slice that provides a wide array of visual

effects in your game like while you are shooting or hit effects like where

the bullet impacts. This will improve the experience of the combat system

within the game as well as the overall feel of the game.

To add the particle manager slice, open your Asset Browser window

by navigating to the top menu bar and selecting “Tools,” followed by “Asset

Browser.” In the Asset Browser window, navigate to MyFirstGame\slices\

particle_manager.slice, or search for "particle_manager.slice" in the

Figure 9-3. The lens flare component will add an extra layer of detail
and professionalism to your game. On the left was our game before
adding the lens flare, and on the right is our game with the lens flare
component added.

Chapter 9 polishing Your game

196

search bar at the top of the Asset Browser window. Once you have selected

"particle_manager.slice", drag it into either the viewport or the Entity

Outliner window.

No positioning is required for the particle manager to work as

intended, so at this point, we are done. Use the keyboard key-command

Ctrl+S to save your level, then click the “Play Game” button to see your

particle manager in action.

If the particle manager was added correctly, you will notice a charred

effect on walls (among other various hit effects), as well as bullet-emission

effects as shown in Figure 9-4. On the left side of Figure 9-4 is what

happened before adding the particle manager, and on the right side is what

happens when the particle manager is present in your game.

Figure 9-4. The particle_manager.slice slice provides a high level of
detail and polish to our game by adding visual effects when certain
actions occur

Chapter 9 polishing Your game

197

While this pre-packaged particle manager slice is tailored specifically

for the guns, AI characters, and player character also pre-packaged by

Amazon Lumberyard, we can easily reuse this slice in our own games with

custom guns, characters, and AI characters.

Upon further inspection of this particle manager, we see that it is

merely made up of particle spawners. In other words, it is made up of

entities that have a spawner component associated that will spawn some

other slice which has the particle component associated with it. These

particles are made up of XML files exactly like the birds.xml particle file we

used in Chapter 6.

If you select the ParticleManager drop-down, you will notice that the

particle manager contains a slice called “ParticleSpawner_LaserEnd.” If

we open the Pinned Inspector for this slice, it contains a spawner which

spawns the slice “ParticleLaserEnd.” When we open the inspector for

the slice “ParticleLaserEnd,” we will find a particle component that uses

the particle effect library “weaponfx” with an emitter set to “Explosions.

LaserImpact”. There are also scripts involved with each of these slices

which are modifiable for the user.

If we select the drop-down for this particle effect library, we can see the

wide array of options we have at our disposal, such as lazer muzzles, lazer

enemy impact, and more. To edit and extend these particle effect libraries,

we need to first open the particle editor.

To open the particle editor, in the top menu bar of Amazon

Lumberyard, select “Tools,” followed by “Particle Editor.” In the particle

editor, we need to specify which particle library we would like to make

changes to. For our example, we are going to change the WeaponFX library

and change the coloration and size of some of the particle emitters.

When our laser makes impact with an object, instead of being a

small white explosion, let us make it be a larger pink explosion, to add

some more color and size variation to our game. Keep in mind, you can

change as much about these particle libraries as you would like, but for

my example, I will only be changing the colors. Before we move on, I

Chapter 9 polishing Your game

198

would also like to point out that this editor is also where you will add more

emitters to extend certain particle libraries. These changes will then be

reflected in the XML file that the particle components reference. We will

get to that later in the chapter.

To import a particle library to the particle editor, click the “File” option

in the top menu bar of the particle editor window, followed by “Import.”

Alternatively, you can also use the keyboard key-command Ctrl+I. A new

window will appear titled “Pick Particles.” In this window, navigate to

MyFirstGame\libs\particles, or search for "weaponfx.xml", and select

"weaponfx.xml". When you have the WeaponFX particle library selected,

click the orange “OK” button in the bottom right-hand corner of the

screen.

Now, in the “Libraries” pane of your particle editor, you will see the

different WeaponFX emitters that have already been created. Because we

want to change the color of the laser on impact of an object, select the

“LaserImpact” emitter that exists in the “Explosions” emitter group.

In the “Attributes” pane, this is where we can make changes to rotation,

size, coloration, and other customizable options. Click “Particles” inside

the attributes pane of the particle editor window to open the particle

options group.

Next to “Color,” select the color picker and change the color to

whatever color you would like – in my example, I will be using a pink color.

Close the color picker, then click “Size” inside the attributes pane of the

particle editor window to open the size options group.

Next to the “SizeX” label, change this input to “5.” Notice how the

“SizeY” and “SizeZ” values also get updated. This is because the “Lock

Aspect Ratio” checkbox is selected. If you would like your laser impact

emitter not to be the same size on all axes, deselect the “Lock Aspect Ratio”

checkbox.

Once you have made these changes to the LaserImpact particle

emitter, your attributes pane for “LaserImpact” in the particle editor

window should look like Figure 9-5.

Chapter 9 polishing Your game

199

Use the keyboard key-command Ctrl+S to save the changes. When you

close the particle editor and run your game, you will now see that when

shooting a wall or some other object, the impact of your laser will now be a

larger pink explosion rather than a small white explosion.

These changes, however, will not look the same when shooting an

enemy AI. To make these changes match on impact of an enemy character,

you need to make the same changes you made to the LaserImpact particle

emitter on the LaserImpactEnemy particle emitter.

Figure 9-5. Particle emitters are extremely customizable. The image
shows that we have changed the color and size of the LaserImpact
emitter. Note that the “Texture” and “Material” for this particle
emitter can also be changed here.

Chapter 9 polishing Your game

200

To add a new emitter to the Weapon FX particle library, reopen the

particle editor by going to “Tools” in the menu bar, followed by “Particle

Editor.” Reimport the Weapon FX library if needed, then under the

“WeaponFX” library in the “Libraries” pane, right-click an empty area and

hover over “Add new,” then select the option “Add particle.”

A new particle emitter will then be created, and you can customize

which materials and textures you would like in the “Particles” option group

in the “Attributes” panel. This emitter, upon saving the Weapon FX library,

will be available in the emitters drop-down menu in particle components

when the Weapon FX particle library is selected.

 Audio and Sound Effects
The player character slice as well as the enemy slices and various other

environment slices we added to our game already have certain sound

effects associated with them. Because Amazon Lumberyard is still in

development, however, sometimes the project configurator does not move

over all necessary assets when the “StarterGame” gem is added to your

project – and thus, you may not hear these associated sound effects.

To import these sound effects manually, first close any instances of

the Amazon Lumberyard Editor that you have open, if any. Next, open a

Windows Explorer window, and navigate to the StarterGame directory

located here:

Amazon\Lumberyard\<Lumberyard-Version>\dev\StarterGame

Click the folder named “Sounds,” then right-click and select the “Copy”

option, or use the keyboard key-command Ctrl+C to copy the folder that

contains all of the provided sound effect assets.

Next, navigate to your MyFirstGame project directory, located here:

Amazon\Lumberyard\1.17.0.0\dev\MyFirstGame

Chapter 9 polishing Your game

201

Right-click inside your directory, and select the “Paste” option, or

use the keyboard key-command Ctrl+V to paste the folder containing the

provided sound effect assets into your MyFirstGame project directory.

Once the assets have been manually imported to your MyFirstGame

project, reopen the Amazon Lumberyard Editor, and click “Play Game.”

Your game will now have all sound effects that are associated with the

slices it contains.

To create sounds of your own, or to modify the sound effects

that Amazon Lumberyard has provided, you will need to utilize the

Audiokinetic Wwise LTX software that Amazon Lumberyard includes in

the Lumberyard Setup Assistant. As this tool is out of the scope of this

book, we will not discuss specifics on how to use it; rather, you should

use the provided Wwise LTX documentation by opening the “Wwise LTX

Authoring Tool,” then pressing “F1.”

To polish our game audio a bit further, let us discuss the Audio Area

Environment component. Suppose in our game we have a cavern. In this

cavern, all triggered sounds should have a reverberating effect, as the

sound waves would bounce off of the cavern walls. To do this, we first need

to establish a trigger area.

To begin, either in the viewport or the Entity Outliner window, right-

click and choose the option “Create entity.” Right-click your newly created

entity, and select the option “Open Pinned Inspector.” Inside the Pinned

Inspector window, change the “Name” input to “ReverbTrigger,” so we

know what this entity will represent.

Next, click the “Add Component” button, and under the “Scripting”

component group, select “Trigger Area,” or search for “Trigger Area” in the

search bar at the top. Once the trigger area component has been added

to your “ReverbTrigger” entity, we need to also supply the required shape

component that will be the outline of the trigger area. Press the “Add

Required Component” button inside the trigger area component, then

choose “Box Shape.”

Chapter 9 polishing Your game

202

By default, your Box Shape component will be small – 1x1x1 meters.

Because this area is meant to represent a cave or cavern, this area will need

to be large – as large as the cave itself. If you do not have a cave created in

your game yet, that is ok – you can make on later. For now, we will have

to use our imagination and say that the cave is 20 meters on all axes. In

the Box Shape component, change the “Dimensions” for X, Y, and Z all to

“20.0m”.

Once your box shape and trigger area have been created, move your

ReverbTrigger entity to an area on the map in which you would like to have

a reverberating sound effect on all audio events that are triggered.

The second step to the process of adding audio area environments is

creating another entity that links to the trigger entity we just created. To do

this, right-click in either the Entity Outliner window or the viewport, and

choose the option “Create entity.” On your newly created entity, right-click

and select “Open Pinned Inspector.”

In the “Name” input field, change the default entity name to

“ReverbEffect.” Next, click the “Add Component” button, and under the

“Audio” component group, choose “Audio Area Environment,” or just

search for “Audio Area Environment” in the search bar at the top of the

window.

Similar to the trigger area component we just added, the Audio Area

Environment component will also require a shape component to be added

to the entity as well. Click the “Add Required Component” in the “Audio

Area Environment” component pane, and choose the option “Box Shape.”

By default, the dimensions of this box shape will also be 1x1x1 meters,

but to match our trigger area’s Box Shape component, we will change the

dimensions for the x-, y-, and z-axes to “20.0m”.

In the “Audio Area Environment” component, find the label “Broad-

phase trigger area,” then next to that input, choose the button whose icon

is a reticle in order to use the picker tool. With the picker tool enabled,

click the “ReverbTrigger” entity you created earlier in this section. This will

link the Audio Area Environment component to the ReverbTrigger area.

Chapter 9 polishing Your game

203

Finally, next to the input labeled “Environment Name,” choose the

browse button, whose icon is three dots. A new window will appear labeled

“Choose Environment….” Navigate to startergame/_envFX/reverb,

or search for “reverb” in the search bar at the top of the window. Select

“reverb,” then click the gray “OK” button in the bottom right-hand corner

of the window.

If all steps have been followed correctly up to this point, your Audio

Area Environment component as well as your Box Shape component on

your “ReverbEffect” entity should look like Figure 9-6.

Click the “Play Game” button, or use the keyboard key-command

Ctrl+G to play your game now. Enter the ReverbTrigger area, and listen to

the reverberating sound effect on all triggered audio within this area.

Because these two entities are linked together, for organizational

purposes it is best if we reduce them to one item in the Entity Outliner

window. To do this, right-click inside the Entity Outliner window or the

viewport, and choose the option “Create entity.” Right-click this newly

created entity, and choose the option “Open Pinned Inspector.”

Figure 9-6. A reverb effect will now be heard when our player
character enters the area defined by the ReverbTrigger entity

Chapter 9 polishing Your game

204

Change the “Name” input for this entity from the default name to

“Reverb.” Close the Pinned Inspector. Next, drag both the ReverbTrigger

entity as well as the ReverbEffect entity into the Reverb entity to make the

Reverb entity a parent of the two.

Alternatively, to make the parent-child link between these entities from

within the Pinned Inspector window, right-click either the ReverbTrigger

entity or the ReverbEffect entity, and choose the option “Open Pinned

Inspector.” In the transform component of this entity, to the right of the

“Parent entity” input, choose the button whose icon is a reticle in order to

enable the entity picker tool.

With the entity picker tool enabled, click the “Reverb” entity we just

created. This will create parent-child link between the selected entity

and the “Reverb” entity. Repeat this step for whichever entity you did not

initially select between the two reverb-related entities.

If the preceding steps were followed appropriately, your “Reverb”

entity should look similar to Figure 9-7 in the Entity Outliner window.

We have now added a bit of polish to our game. It is looking

professional – but there is one final step we need before we can call this

game complete: a user interface.

Figure 9-7. Keep related entities grouped by creating a parent-child
link between them

Chapter 9 polishing Your game

205© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_10

CHAPTER 10

Setting Up a User
Interface
When we run our game, the level starts immediately. However, you can

imagine most modern games typically start with a title menu with the

name of the game as well as a button we can click to start the gameplay.

In this chapter, we will explore the process of creating a user interface (UI)

using canvases, Script Canvases, and the UI Editor. Before we begin, we

first need to make sure that UI assets provided by Amazon Lumberyard

are in our game project. While we will be creating our own user interface

rather than using the provided UI, we still need to bring these assets over,

as the player character contains a head-up display that would be beneficial

to gameplay.

To obtain these assets, first navigate to your MyFirstGame project

directory, located at

Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame

If you have a folder in this project directory named “UI” that both

exists and is not empty, feel free to skip to the next section in this chapter.

If you either do not have this folder in your project directory, or the folder

is empty, follow these next few steps.

Navigate to the Amazon Lumberyard StarterGame directory, located at

Amazon\Lumberyard\<Lumberyard_Version>\dev\StarterGame

206

Select the “UI” folder, then right-click it, and choose the “Copy” option.

Alternatively, you can select the “UI” folder and use the keyboard key-

command Ctrl+C to copy the UI folder to your clipboard.

Once the folder has been copied, navigate back to your MyFirstGame

project directory, right-click inside the directory, and choose the “Paste”

option – or just use the keyboard key-command Ctrl+V to paste the UI

folder into your project directory.

Now any UI elements that are referenced by the player character slice

will be present when running “MyFirstGame.”

 Creating a Canvas
To begin working on our start screen, we first need a UI canvas to work with.

To begin, we first need to open the UI Editor. There are a few different ways

to open the UI Editor. The first is to navigate to the “Tools” menu in the top

menu bar of Amazon Lumberyard’s editor and choose the option “UI Editor.”

The second option is via the Editors toolbar by clicking the UI Editor button

(). To open the Editors toolbar, right-click any area inside the toolbar area

and make sure the “Editors toolbar” option has a check mark next to it.

Once the UI Editor has been opened, we need to create a new canvas

file. To do this, click “File” in the menu bar at the top of the UI Editor

window, followed by the “New Canvas” option, or just use the keyboard

key-command Ctrl+N.

In the “Hierarchy” pane of the UI Editor window, we need to add a slice

from the slice library provided by Amazon Lumberyard. The slice we need

to add is a text element that will display the name of our game to the user.

Right-click inside the hierarchy pane and choose the option “New,”

followed by “Element from Slice Library,” once again followed by “Text.”

You will notice that more options have now become available to you in the

“Properties” pane of the UI Editor; this includes “Text,” “Color,” “Font size,”

and more underneath the “Text” properties category on the right side of

the editor window.

Chapter 10 Setting Up a USer interfaCe

207

Now you can style your game title and name your game. For this

example, we are going to use a red text that says “My First Game” in large

64-point font. In the input box next to the “Text” label, I will change the

default “My string” to “My First Game.” In the color picker directly to the

right of the “Color” label, I will change the RGB input value to “255, 0, 0”.

Finally, in the “Font size” input to the right of the “Font size” label, I will

change the default “32.0” to “64.0”.

Because we will be adding another element to this canvas, we are

going to move the title text from the center. To change this, in the “Top”

input of the “Anchors” section, I will change the default value from “50%”

to “25%.” Feel free to move the title to wherever you think may fit your

game style. If your text element was added correctly to your canvas, it

should look similar to Figure 10-1.

Figure 10-1. The text element on your UI canvas is one of the first
things your player will see upon entering your game. Make sure it
looks nice!

Chapter 10 Setting Up a USer interfaCe

208

The next thing we need to add to our canvas is a button element that,

when clicked, will begin our game. To do this, right-click in the hierarchy

pane and select the “New” option, followed by “Element from Slice

Library,” followed once more by “Button.”

In the hierarchy pane, you will notice that the button element contains

a text element nested within it. This text element holds the button label,

which defaults to “Button.” To change this to “Start Game,” click the

text element that is a child of the newly added button element. In the

properties pane, in the “Text” properties group, change the input labeled

“Text” from the default “Button” to “Start Game.” Keep in mind here you

could also make adjustments to the text coloration, size, font, and all other

text-based attributes you could change in the previous text element.

Back in the hierarchy pane, select the button element we just added in

the previous step, and feel free to change these and customize your button

to your liking. Once you have customized the button to your liking, we

will add a little bit of functionality to it. We need to add a click action that

will start the game when the button is clicked. In the button properties

“Button” group, under the “Actions” array, in the input labeled “Click,” add

the text “StartGamePressed”.

If the steps were followed correctly, your button actions properties

should look like Figure 10-2.

Figure 10-2. Adding the “StartGamePressed” click action is
important for this button to be useful – we will find out why later in
the chapter

Chapter 10 Setting Up a USer interfaCe

209

Save your canvas by using the keyboard key-command Ctrl+S or by

navigating to “File” in the menu bar, followed by “Save Canvas As.” Name

your canvas “StartScreenCanvas” in the MyFirstGame\UI directory, and

make sure that the “Save as type” is “∗.uicanvas”. Close the UI Editor

window.

 Creating a Script Canvas
Script Canvas is a chart-based scripting environment that is used to

create game behaviors and logic within Amazon Lumberyard. The main

advantage to the Script Canvas environment is that you can use it to create

scripts for your game’s logic without knowing how to code.

To begin, open the Script Canvas editor by selecting “Tools” in the top

menu bar of Amazon Lumberyard, followed by “Script Canvas.” As this

Script Canvas environment is a visual-based way to create scripts, I will

first explain the necessary steps, then follow each step with a figure so you

are able to visualize what the Script Canvas chart should look like.

To start a Script Canvas, we first need to add an “On Graph Start” node

which does not require an input to function. To do this, in the node palette,

navigate to the “Utilities” node group and find “On Graph Start,” or type

“On Graph Start” in the search bar within the node palette. Drag the “On

Graph Start” node into the empty area that currently says, “Use the File

Menu or drag out a node from the Node Palette to create a new script.” The

area will now be replaced with a Script Canvas with one node element –

the “On Graph Start” node – as shown in Figure 10-3.

Chapter 10 Setting Up a USer interfaCe

210

An important thing to consider is that Script Canvases need to be

thought of as “flows.” For example, what happens after our “On Graph Start”

node is the next “step” in sequence and it needs to be linked to the “Out”

parameter on the “On Graph Start” node. To link two nodes, connect the

“Out” parameter of the previous node to the “In” parameter of the next node.

In our example, the next node we need is the “Load Canvas” node

so we can load the canvas we just created after our game begins. In the

node palette, find the “Load Canvas” node by navigating to the “UI Canvas

Manager” node group or by typing “Load Canvas” into the search bar

within the node palette. There are two different “Load Canvas” node

options. The “Load Canvas” node we need is specifically filed under the UI

Canvas Manager node group. Select this node and drag it into our Script

Canvas, and connect the “Out” parameter of the “On Graph Start” node

to the “In” parameter of the “Load Canvas” node by clicking and dragging

between the two.

In the “Pathname” input on the load canvas node, input the file path

to the canvas we just created in “MyFirstGame\UI”. Because the game

assets are stored in the “MyFirstGame” directory, it is only necessary to

begin the path with “UI,” so for the example canvas we created earlier, this

“Pathname” input would be “UI\StartScreenCanvas.uicanvas”.

If all steps have been followed correctly up to this point, your Script

Canvas will now look like Figure 10-4. Note the link between the “Out”

parameter of the “On Graph Start” node and the “In” Parameter of the UI

Figure 10-3. The “On Graph Start” node will be the start to our UI
Script Canvas

Chapter 10 Setting Up a USer interfaCe

211

Canvas Manager “Load Canvas” node. If this link does not exist, the Script

Canvas flow will not work correctly and the execution of the flow will be

abruptly stopped.

If you were to add this Script Canvas to an entity at this point, the

created canvas would appear, but any input events from the user would

not be captured appropriately. We do not want our user to be able to play

the game while the start menu is still visible. For this reason, we need our

canvas to consume all input events (keyboard button presses or mouse

clicks).

To enable this functionality, in the node palette, find the “Set Is

Consuming All Input Events” node by navigating to the “UI Animation”

node group, or by typing “Set Is Consuming All Input Events” into the

search bar within the node palette. Drag the “Set Is Consuming All Input

Events” node into the Script Canvas, and attach the “Out” parameter of the

“Load Canvas” node to the “In” parameter of the “Set Is Consuming All

Input Events” node.

This node specifically requires two links to be made. Because the “Set

Is Consuming All Input Events” node requires a source to know when to

consume input events, we need to link the “Canvas EntityID” variable on

our canvas loader node to the “Source” variable in our input consumer

Figure 10-4. Linking the “On Graph Start” node with our “Load
Canvas” node will load the canvas provided in the “Pathname” input
after the game has started

Chapter 10 Setting Up a USer interfaCe

212

node. Finally, we need to ensure that the checkbox next to the “Consume”

label is selected.

If all steps have been followed correctly up to this point, your Script

Canvas should look similar to Figure 10-5. Note here, not only is the “Set

Is Consuming All Input Events” node linked to the “Load Canvas” node

by input and output parameters, it is also linked by the “Canvas EntityID”

variable on the canvas loader and the “Source” variable on the “Set Is

Consuming All Input Events” node. Also note that because the “Load

Canvas” node is already linked to the “On Graph Start” node, we do not

need to link the “Set Is Consuming All Input Events” node to the “On

Graph Start” node directly.

Now that input events will be consumed and our cursor can be used to

select our “Start Game” button, we need to ensure that the cursor is visible

to the user. In the Script Canvas, the value determining whether or not our

cursor is visible is by a counter that presumably defaults to 0. If the cursor’s

visible counter is 0 or below, the cursor will not display. If the cursor’s

visible counter is greater than 0, the cursor will be displayed. In our logic

flow, we need to increment the cursor visible counter by 1 after the “Set Is

Consuming All Input Events” node is fired.

Figure 10-5. Because our “Load Canvas” node is already linked to
the “On Graph Start” node, we do not need to explicitly link our new
“Set Is Consuming All Input Events” node to it. Our input consumer
node is linked to the canvas loader node by both input/output
parameters and by the entity id and source variables. Make sure the
“Consume” checkbox is checked!

Chapter 10 Setting Up a USer interfaCe

213

In the node palette, navigate to the UI cursor node group and find

“Increment Visible Counter,” or just search for “Increment Visible Counter”

from within the search bar in the node palette. Drag the “Increment Visible

Counter” node into our Script Canvas, and link the out parameter of “Set

Is Consuming All Input Events” to the input parameter of the “Increment

Visible Counter” node. If these steps were followed correctly, your Script

Canvas will now look like Figure 10-6.

Now that our cursor is visible – we need to finally link our “Start Game”

button to our Script Canvas. To do this, we need to add an “On Action”

node that will listen for action events on a given canvas.

In the node palette, navigate to “On Action” in the “UI Canvas” node

group, or just search “On Action” in the node palette search bar. Drag

the “On Action” node into the Script Canvas. In the node inspector pane

for this node, ensure that the “Display Connection Controls” checkbox is

selected as shown in Figure 10-7.

Figure 10-6. The “Increment Visible Counter” node is required to
have a visible cursor in your user interface

Figure 10-7. The “Display Connection Controls” property on the “UI
Canvas / On Action” node must be selected to hook up action events

Chapter 10 Setting Up a USer interfaCe

214

Next, connect the out parameter of the “Load Canvas” node to the

“Connect” parameter of the “UI Canvas” node that is a parent of the “On

Action” node. Also connect the “Canvas EntityID” variable on the “Load

Canvas” node to the “Source” variable on the “UI Canvas” parent node.

If all steps have been followed up to this point, your Script Canvas

should look like Figure 10-8.

Because we only have one canvas button and thus only one action to

listen for, we can move forward in our Script Canvas without having to

specify which action we are listening for. When the “Start Game” button

is clicked, we want to hide the start screen and allow the user to begin

playing our game.

To do this, we need to add an “Unload Canvas” node to our Script

Canvas. In the node palette, in the “UI Canvas Manager” node group, look

for “Unload Canvas,” or just search for “Unload Canvas” in the search bar

of the node palette. Drag the “Unload Canvas” node into the Script Canvas

we have created up to this point.

Hook up the “OnDisconnected” parameter of the “UI Canvas” node

to the “In” parameter of the “Unload Canvas” node. Also link the “Out”

parameter of the “On Action” node that exists within the “UI Canvas”

Figure 10-8. No changes were made to the “On Action” node in this
iteration of the Script Canvas, but rather in the “UI Canvas” node that
is a parent node of the “On Action” node

Chapter 10 Setting Up a USer interfaCe

215

node to the “In” parameter of the “Unload Canvas” node. Lastly, link the

“Canvas EntityID” from the “Load Canvas” node to the “Canvas EntityID”

on the “Unload Canvas Node.”

If the steps were followed correctly up to this point, your Script Canvas

should look similar to Figure 10-9. Keep in mind, as we add more and

more nodes, this Script Canvas will get slightly more complex, and the

links may be harder to follow from here on out.

Now when our “Start Game” button is clicked, our canvas will unload,

and we can begin to play our game. There is one problem, however. Our UI

cursor will still be visible while playing our game, because our UI cursor’s

visible counter will still be set to a value greater than 0.

The “Set Is Consuming All Input Events” property will automatically

be unloaded because it was tied to the “Load Canvas” node, which was

linked to the “Unload Canvas” node. To decrement our UI cursor’s visible

counter when the UI canvas is unloaded, we need to add one final node –

“Decrement Visible Counter.”

Figure 10-9. The Unload Canvas node will have two input
connections, from the UI Canvas OnDisconnect property as well as
the ouput property on the On Action node. The Canvas EntityID needs
to be linked with the Load Canvas node so that the same canvas that
was loaded is unloaded.

Chapter 10 Setting Up a USer interfaCe

216

To begin, in the node palette, under the “UI Cursor” node group,

look for the node named “Decrement Visible Counter,” or just search for

“Decrement Visible Counter” from the search bar within the node palette.

Drag the “Decrement Visible Counter” node into the Script Canvas, and

link the “Out” parameter from “Unload Canvas” to the “In” parameter of

the “Decrement Visible Counter” node.

If the steps were followed correctly up to this point, your Script Canvas

should look similar to Figure 10-10.

To save your Script Canvas, click the “File” menu option in the menu

bar within the Script Canvas editor, then select the option “Save As.” Name

your Script Canvas “StartScreenScriptCanvas” inside the MyFirstGame\

scriptcanvas directory, and make sure the “Save as type” is set to

“∗.scriptcanvas” and close the editor.

Figure 10-10. The “Decrement Visible Counter” node needs to have
its input parameter linked with the “Unload Canvas” node’s output
parameter. In this case, when the UI canvas (our start screen) is
unloaded, our UI cursor will no longer be visible, as our player will be
ready to play the game.

Chapter 10 Setting Up a USer interfaCe

217

 Adding the Script Canvas to Our Game
To add the Script Canvas we just created to our game, we first need an

entity to house the Script Canvas component. Right-click in either the

Entity Outliner window or the viewport, and select the option “Create

Entity.”

Right-click this newly created entity, and choose the option “Open

Pinned Inspector.” In the “Name” input, change the default name to “Start

Screen” so we know what this entity represents later in development.

Click the “Add Component” button from within the Pinned Inspector

for this “Start Screen” entity. Under the “Scripting” component group, click

“Script Canvas,” or just search for “Script Canvas” in the search bar of the

“Add Component” window.

Next to the input labeled “Script Canvas Asset,” click the browse

button, whose icon is three dots in order to navigate to our newly created

Script Canvas file. A new window will appear titled “Pick Script Canvas.”

Navigate to MyFirstGame\scriptcanvas\StartScreenScriptCanvas.

scriptcanvas, or just search for “StartScreenScriptCanvas”. Select the

“StartScreenScriptCanvas” option and click the orange “OK” button in the

bottom right-hand corner of the screen.

Use the keyboard key-command Ctrl+S to save your level, followed by

Ctrl+G to start playing your game. Notice how all inputs for your player

character are ignored because your start screen is visible. This is due to the

handiwork of the “Set Is Consuming All Input Events” node.

Click the “Start Game” button we created to dismiss the start screen,

and begin playing your game. Your final start screen should look similar

to Figure 10-11 if you followed all of the preceding steps exactly. Keep in

mind that if you made customizations outside of what we changed within

this text, your start screen may slightly vary in look and feel.

Chapter 10 Setting Up a USer interfaCe

218

In this chapter we learned how to use the UI Editor as well as the Script

Canvas editor to create UI canvases and Script Canvases. We learned how

Script Canvases can be utilized to create game logic without the use of

code and leveraged this functionality to create a start screen that will occur

before gameplay does.

At this point, our game is as good as complete. We have a player

character, enemies, props, sound effects, particles, vegetation, terrain, and

even an interactive user interface. We are now on the final step – exporting

the game so you can share it with your friends.

Figure 10-11. Our start screen user interface displays the name of
the game in large red text and provides a button to start the game. All
input prior to clicking the “Start Game” button is consumed by the
start screen.

Chapter 10 Setting Up a USer interfaCe

219© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0_11

CHAPTER 11

Exporting the Game
You have done it. You have created your game. Congratulations! Now, all

that is left for you to do is export that game so you can share it with your

friends and family, or so you can upload it to an online portfolio that you

can share with potential employers. In this chapter, we will walk through

the steps necessary to export your game for PC, Xbox, and PlayStation

platforms.

 Creating a PC Build
Exporting your game to an executable file will package all necessary

data files so that your game will be able to run without the need to have

Amazon Lumberyard installed. To begin this process, first open Amazon

Lumberyard.

With Amazon Lumberyard open, navigate to the top menu bar of the

editor window, and choose the option “Game,” followed by “Export to

Engine.” After the Amazon Lumberyard Editor exports the game to the

engine, a pop-up alert will appear with the text “The level was successfully

exported”, as shown in Figure 11-1.

220

Click the gray “OK” button in the bottom right-hand corner of this alert

window to dismiss it. At this point, it may seem as if nothing interesting

happened, because your editor window will look the same as it did prior to

exporting the game.

To see what happened when clicking “Export to Engine,” we need

to open the Windows Explorer file manager to find the game launcher

executable file our editor just generated. This launcher file will be stored

in the same directory as the “Editor.exe” executable file that opens our

Lumberyard Editor.

If you are running Visual Studio 2015 or earlier, navigate to this

directory, located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\Bin64vc140

If you are running Visual Studio 2017 or later, navigate to this directory,

located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\Bin64vc141

Once in this directory, you may have to scroll for a while before finding

the file named “MyFirstGameLauncher”, as shown in Figure 11-2. If you

named your game something other than “MyFirstGame”, this file will be

named whatever you named your game with the prefix “Launcher”.

Figure 11-1. If Amazon Lumberyard successfully exports the game to
engine, this alert window will appear

Chapter 11 exporting the game

221

Double-click this file to open your game. When you first run your

game, you will notice that you are greeted with a black screen, no UI, no

sounds, and no real indication of how to start your game. Here, we can

open the developer console within our game to specify which level we

would like to play. Keep in mind, we will learn how to set the default level

later in this chapter, but it is necessary that you know how to manually

change the level from within the developer console.

With your game launched, while looking at the black screen, press

the tilde key (~) to launch the developer console. Type “map Level_1”, or

whatever you named your level, and wait for your launcher to load the

level that you specified. Note here that the “map” command can be used to

change levels at any point in your game.

This is not a great solution, however. When our player starts their

game, they will be expecting a start menu and a default level to begin – not

some blank screen and a console. To set the default level, or map, in the

Lumberyard engine, we need to navigate back to our project directory,

located at

C:\Amazon\Lumberyard\<Lumberyard_Version>\dev\MyFirstGame

In this directory, look for a configuration file named “autoexec.cfg”.

If this file does not exist, create it by using the “New item” button in the

Windows Explorer window. If the file does exist, open the file in your text

editor of choice.

Figure 11-2. The Executable File will have the extension “.exe” and a
file type named “Application”

Chapter 11 exporting the game

222

In the first line of this autoexec configuration file, type “map Level_1”,

which will tell the launcher that the level named Level_1 is the default level

to run when our launcher first loads. Save the file and close it.

Navigate back to the Bin64vc140 directory if you have Visual Studio

2015 or below or to the Bin64vc141 directory if you have Visual Studio

2017 or later, then double-click your “MyFirstGameLauncher.exe” file to

relaunch your game. Now, your default level will be loaded, as shown in

Figure 11-3, and your player can begin playing the game.

Note to exit your game, press the tilde (~) button to enter the
developer console and type the command “quit.”

Keep in mind that any further changes you decide to make in your

game within the Amazon Lumberyard Editor will require you to repeat the

preceding steps for exporting your game. If these steps are not repeated,

Figure 11-3. Your completed game can now be opened as a stand-
alone file

Chapter 11 exporting the game

223

any changes made to your game will not be reflected when launching the

game from the launcher executable file.

 Creating a Console Build
PC is a great gaming platform, but what about the consoles that are built

solely to play video games on? Well, because Amazon Lumberyard is such

a new platform, the process for building to Xbox and PlayStation requires

certain steps that will be provided by Amazon.

 Xbox
To begin debugging and building to the Xbox platform, you must first

become a licensed Microsoft Xbox Developer. To become a licensed

Xbox developer, you must first apply to the ID@Xbox program by visiting

www.xbox.com/en-US/developers/id/apply and filling out the form.

Information you will need to provide will be information about your

studio such as company name, studio web site, engines used (Amazon

Lumberyard), and more.

Once your application has been submitted, you will need to wait for

Microsoft to respond to the application regarding your acceptance to

the program. Upon your acceptance to the program, you will then need

to e-mail your name, studio name, and the licensed e-mail address to

lumberyard-consoles@amazon.com.

Amazon will likely respond within 2 weeks regarding your next steps

in your Xbox development process. Because the process will differ from

developer to developer, this is as much information as I can give on the

subject matter. If Amazon has not responded to your request within 2

weeks, it is likely that your e-mail may have been buried in a backlog – so

feel free to send a follow-up e-mail regarding the status of your inquiry.

A simple template for this e-mail for your use would look something

like Figure 11-4.

Chapter 11 exporting the game

https://www.xbox.com/en-US/developers/id/apply

224

 PlayStation
To begin debugging and building to the PlayStation platform, you must first

become a licensed Sony Interactive Entertainment Developer through the

SIE DevNet Network. To become a licensed Sony Interactive Entertainment

developer, you must first apply to the program by visiting https://

partners.playstation.com/apex/PO_AccountAppliPTR?lang=en

and filling out the form. Information you will need to provide will be

To whom it may concern,

Per the Frequently Asked Questions page –
(https://aws.amazon.com/lumberyard/faq/), I have provided my studio
information below for review. Please advise me on the next steps I will need to
take in order to begin building Amazon Lumberyard games to my Xbox locally for
testing as well as the steps I will need to create a build for releasing my game.

I am a registered Microsoft Xbox Developer with the ID@Xbox program, and my
studio information is as follows:

Name: (Your Name)

Studio Name: (Studio Name)

Licensed Email: (Email)

If there is any further information you need from me, please let me know at your
earliest convenience.

I eagerly await your response,

(Your Name)

Figure 11-4. A template for your e-mail to lumberyard-consoles@
amazon.com regarding Xbox development.

Chapter 11 exporting the game

https://partners.playstation.com/apex/PO_AccountAppliPTR?lang=en
https://partners.playstation.com/apex/PO_AccountAppliPTR?lang=en

225

information about your studio such as company name, studio web site,

proposed distribution types (physical, digital), and more.

Once your application has been submitted, you will need to wait for

Sony Interactive Entertainment to respond to the application regarding

your acceptance to the program. Upon your acceptance to the program,

you will then need to e-mail your name, studio name, and the licensed

e-mail address to lumberyard-consoles@amazon.com.

Amazon will likely respond within 2 weeks regarding your next steps

in your PlayStation development process. Because the process will differ

from developer to developer, this is as much information as I can give on

the subject matter. If Amazon has not responded to your request within 2

weeks, it is likely that your e-mail may have been buried in a backlog – so

feel free to send a follow-up e-mail regarding the status of your inquiry.

A simple template for this e-mail for your use would look something

like Figure 11-5.

Chapter 11 exporting the game

226

 Final Thoughts
Completing a video game is not an easy task, so at this point, you should

have a sense of pride that you were able to make it through the process. At

this point, you can add more levels to your game in order to lengthen your

user’s gameplay time and make the game harder as the game progresses,

keeping your player excited and challenged by your game.

You can also add more detail to your user interface or terrain. Perhaps

this is the time when you explore multiplayer functionality or even

cinematics. There is so much constant potential for improvement in your

To whom it may concern,

Per the Frequently Asked Questions page – (https://aws.amazon.com/lumberyard/faq/), I
have provided my studio information below for review. Please advise me on the next
steps I will need to take in order to begin building Amazon Lumberyard games to my
PlayStation locally for testing as well as the steps I will need to create a build for releasing
my game.

I am a registered Sony Interactive Entertainment Developer through the DIE DevNet
program, and my studio information is as follows:

Name: (Your Name)

Studio Name: (Studio Name)

Licensed Email: (Email)

If there is any further information you need from me, please let me know at your earliest
convenience.

I eagerly await your response,

(Your Name)

Figure 11-5. A template for your e-mail to lumberyard-consoles@
amazon.com regarding PlayStation development

Chapter 11 exporting the game

227

game development career. The one thing that is important throughout the

entire process is that you should never stop learning.

Congratulations, you have just completed your very first game – as well

as this book. Your journey is not over, however. This book will have given

you the steps to get a brief introduction to game development in Amazon

Lumberyard, and I hope you continue with your journey and create the

next hit game.

Chapter 11 exporting the game

229© Jaken Chandler Herman 2019
J. C. Herman, Beginning Game Development with Amazon Lumberyard,
https://doi.org/10.1007/978-1-4842-5073-0

Index

A
Amazon Lumberyard engine, 1

custom installation, 6
Get Started tap, 8, 9
Lumberyard editor, 12
optional SDK, 11, 12
plugins installation, 11
SDK download

progress bar, 10, 11
setup assistant, 6
software fields, 8, 9

express installation, 5
installation, 4, 5
required components, 1
Visual Studio, 2–4

Animation Editor, 34
AnimGraph and actor

components, 124–128
Arithmetic operators, 175
Arrays, 179–182
Artificial intelligence (AI)

enemy AI navigation area,
creation, 150–155

enemy AI spawn point,
creation, 155–158

enemy AI trigger,
creation, 146–150

Asset Browser window, 23

EditMode toolbar, 25–28
editors toolbar

abstraction layer, 35
buttons, 30
far-left pane, 32
material editor, 31

file location, 23
filter assets, 24
material editor window, 33–37
object toolbar, 28–30
product files, 24
selection, 23
toolbar, 25

Attachment component, 128
audio components, 129, 130
camera components, 131
editor, 132
entities and slices, 129
environment components, 132
in-game cameras, 132
PlasmaRifle slice, 128

Audio and sound effects, 200–204
Audio components, 129, 130
Audio Transaction Layer (ATL), 35

B
Beta, 14
Bitmap, see Raster image

https://doi.org/10.1007/978-1-4842-5073-0

230

C
Camera components, 131
Canvas

hierarchy pane, 206, 208
properties pane, 206
StartGamePressed, 208
styles, 207
text element, 207
tool menu, 206

Child and parent
entities, 110, 111

Classes, 184–187
Command-line

interface (CLI), 46, 47
Components

animation group, 123, 124
AnimGraph and actor, 124–128
attachment (see Attachment

component)
component list, 122, 123
entity Pinned Inspector

window, 122
independent functionality, 121
fog (see Fog volume component)
particle, 140–142
transform, 142, 143
wind volume, 137–140

Custom inputs, 187–190

D
Dark row shading, 106
Dynamic-link library (DLL), 17

E
EditMode toolbar, 25–28
Editor component, 132
EMotion FX

Animation Editor, 33
Enemy creation

AI navigation area, 150
blue box, 153
component, 151
drag points, 154
entity creation, 150
initial setup, 151
object toolbar, 153
path data, 152
polygon prism shape

component, 151
static entities, 155

AI spawn point, 155–158
AI trigger, 146

AISpawnGroup, 150
asset browser tool, 146
box shape

component, 148
EditMode toolbar, 147
entities, 147
game view label, 147
PlayerCharacter, 149
scripting level, 149

characters, 162, 163
entities, 163–165
exist mode, 145, 146
patrol waypoints, 158–162
play game button, 145

INDEX

231

Entities and entity outliner
child and parent entities, 110, 111
child entity list, 108
DefaultLevelSetup, 105
delete option, 108
entity selection

window, 109
filter entities, 109
game objects, 104
icon indicators and

description, 105, 106
Pinned Inspector, 112–115
sort menu, 109, 110
wide array options, 107

Environment components, 132
eXtensible Markup Language

(XML), 53

F
Fog volume component, 133

color properties, 134
entity, 133
fog/gas, 135
gameplay, 135
networking, 136
physics component, 136
properties, 133
transform tools, 134

Functions, 182–184

G
Gameplay component, 135
Gems

creation, 55
enable/disable method, 49

command line, 50–54
search bar, 50
user interface tool, 50

Gems project, 47
Graphical user interface (GUI), 3

H
Heightmaps

brush settings section, 74
generation tool, 78
importing, 68, 69
inner and outside radius, 76
monochrome images, 68
paint option, 72–79
properties, 72–75
raster image, 67

I
Integrated development

environment (IDE), 2

J, K
JavaScript Object

Notation (JSON), 53

L
Legacy, 44
Lens flare

ChromaticRing component, 194
components, 191–195

Index

232

extra layer, 195
modification, 193
sunlensflare.xml, 192
XML files, 192

Logical operators, 174
Loops

infinite loop, 176
for loop, 177–179
repeat until loop, 179
types, 176
while loop, 177

Lua scripting, 167
arrays, 179–182
classes, 184–187
comments, 168, 169
conditionals, 172, 173
custom inputs, 187–190
data types, 170
functions, 182–184
loops, 176–179
operators, 173–176
variables, 169–172

M
Megatextures/megaterrain

textures, 91–93
Modular behavior

trees (MBTs), 122

N
Navigation seeds, 123
Networking components, 136

O
Object toolbar, 28–30

P, Q
Pane navigation

asset browser (see Asset browser
window)

engine
beta, 13
editor.exe executable file, 16
error message, 14
Powershell icon, 15
setup assistant, 14
viewport, 18–21

snapping panes, 21, 22
Particle component, 140–142
Particle manager, 195–200
Patrol Waypoints, 158–162
PC build

autoexec.cfg file, 221
editor window, 219, 220
executable file, 220, 221
PlayStation, 224–226
project directory, 221
stand-alone file, 222
Xbox, 223, 224

Physics component, 136
Pinned inspector, 112–115
Project configurator

advanced project settings window
input system component, 58
system entity tab and

memory settings Tab, 57

Lens flare (cont.)

INDEX

233

user interface, 56–60
bare-bones project, 43
command line, 40, 41
command-line interface, 46, 47
creation of new project

default template features, 44
empty template features, 43
template’s code directory, 46

default projects, 48–50
gems, 49
level files

changing levels, 63, 64
checkbox, 61
delete, 62
folder selection, 60
meters per texel option, 61
name input field, 60
selection of Terrain texture

dimension, 62
terrain’s heightmap

resolution, 61
user interface, 59

plugins, 47
project creation, 41, 42
switch project option, 48
user interface of, 41
windows information, 39

Project structure, 103, 104

R
Raster image, 68
Relational operators, 174
Rendering components, 139

S
Script Canvas

on action node, 214
adding to game, 217, 218
consume checkbox, 212
creation, 209
decrement visible counter

node, 216
display connection controls

property, 213
increment visible counter

node, 213
load canvas node, 210
On Graph Start node, 209
Pathname input, 211
tool selection, 209
Unload Canvas node, 215

Scripting components, 141
Slices, 105, 114

building blocks, 118
character player, 117–119
creation, 114
instantiation, 116, 117
message window, 115
MyFirstGame directory, 119
parent-child relationship, 115
playerslice_efx.slice file, 117
StarterGame directory, 118
transform root option, 116

Snapping panes, 21, 22
Software Development

Kit (SDK), 6
Splat map, 84

Index

234

T
Terrain editor, 65

create professional terrain, 67
editors toolbar, 66
heightmaps

brush settings section, 74
generation tool, 78
import option, 68, 69
inner and outside radius, 76
monochrome images, 68
paint option, 72–79
properties, 70–73
raster image, 67
yellow circle indicates, 73

megatextures, 91–93
pop of color, 79
texture, 80
time of day editor and Sun

trajectory tool, 98–102
vegetation, 93–99

Texture layers
coloration, 80, 81
file explorer, 80
paint menu option

brush layer, 88, 89
layer painter editor, 88
layer settings, 90, 91
modification tool, 87

StarterGame Textures
directory, 80

Terrain editor
assign material option, 84
editors toolbar, 81
layer info menu, 84

layer tasks, 82
left-side menu, 83
menu list, 86
organizing texture layers, 82
pick texture window, 83
show preview option, 85
splat maps, 84

Time of day editor and Sun
trajectory tool, 98–102

Time-saving key bindings, 35–37
Transform component, 142, 143

U
User interface (UI), 205

canvas, 206
component, 142
MyFirstGame project

directory, 205
Script Canvas (see Script Canvas)
StarterGame directory, 205

V
Vegetation editor, 93–99
Viewport, 18–21
Visual Studio, 2–4

W
Wind volume component, 137–140

X, Y, Z
Xbox, 223, 224

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Install and Setup of Amazon Lumberyard
	Required Components Outside of the Lumberyard Engine
	Installing Visual Studio

	Installing the Amazon Lumberyard Engine
	Express Install
	Custom Install
	Get Started
	Install Software
	Install Required SDKs
	Install Optional SDKs
	Install Plugins

	Running the Lumberyard Editor
	Summary

	Chapter 2: Navigating the Engine
	Open the Engine
	Pane Navigation
	Introduction to the Viewport
	Snapping Panes
	Introduction to the Asset Browser
	Navigating the EditMode Toolbar
	Navigating the Object Toolbar
	Navigating the Editors Toolbar

	Time-Saving Key Bindings

	Chapter 3: Creating Your First Project
	Opening the Project Configurator
	Creating Your First Project
	Creating a Project Through the Project Configurator
	Creating a Project Through the CLI

	Setting Default Projects
	Gems
	Enabling Gems
	Creating Gems

	Advanced Project Settings
	Levels
	Creating a New Level
	Deleting a Level
	Changing Levels

	Chapter 4: Terrain
	Getting Started
	Heightmaps
	Importing Heightmaps
	Changing Heightmap Properties
	Painting Your Own Heightmap

	Adding a Pop of Color
	Texture Layers
	Terrain Texture Layers Editor
	Painting Texture Layers onto Your Terrain
	Brush Settings
	Layer Settings

	Using Megatextures

	Vegetation
	Time of Day

	Chapter 5: Entities and Slices
	Verifying the Project Structure
	Entities and the Entity Outliner
	Child and Parent Entities
	The Pinned Inspector
	Slices
	Instantiating Slices
	Creating Your Player

	Chapter 6: Components
	Adding Components to an Entity
	The AnimGraph and Actor Components
	The Attachment Component
	The Fog Volume Component
	The Wind Volume Component
	The Particle Component
	The Transform Component

	Chapter 7: Creating the Enemy
	Creating an Enemy That Always Exists
	Creating an Enemy AI Trigger
	Creating an Enemy AI Navigation Area
	Creating an Enemy AI Spawn Point
	Creating Enemy Patrol Waypoints
	Creating More AI Characters
	Tidying Up Our AI Entities

	Chapter 8: Beginning Lua Scripting
	Comments
	Variables
	Conditionals
	Operators
	Loops
	While Loop
	For Loop
	Repeat Until Loop

	Arrays
	Functions
	Classes
	Custom Inputs

	Chapter 9: Polishing Your Game
	Lens Flare
	Particle Manager
	Audio and Sound Effects

	Chapter 10: Setting Up a User Interface
	Creating a Canvas
	Creating a Script Canvas
	Adding the Script Canvas to Our Game

	Chapter 11: Exporting the Game
	Creating a PC Build
	Creating a Console Build
	Xbox
	PlayStation

	Final Thoughts

	Index

