Adversarial Machine Learning

Synthesis Lectures on Artificial
Intelligence and Machine
Learning

Editors
Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Peter Stone, University of Texas at Austin

Adversarial Machine Learning
Yevgeniy Vorobeychik and Murat Kantarcioglu
2018

Strategic Voting
Reshef Meir
2018

Predicting Human Decision-Making: From Prediction to Action
Ariel Rosenfeld and Sarit Kraus
2018

Game Theory for Data Science: Eliciting Truthful Information
Boi Faltings and Goran Radanovic
2017

Multi-Objective Decision Making
Diederik M. Roijers and Shimon Whiteson
2017

Lifelong Machine Learning
Zhiyuan Chen and Bing Liu
2016

Statistical Relational Artificial Intelligence: Logic, Probability, and Computation
Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole
2016

Representing and Reasoning with Qualitative Preferences: Tools and Applications
Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

2016

Metric Learning
Aurélien Bellet, Amaury Habrard, and Marc Sebban
2015

Graph-Based Semi-Supervised Learning
Amarnag Subramanya and Partha Pratim Talukdar
2014

Robot Learning from Human Teachers
Sonia Chernova and Andrea L.. Thomaz
2014

General Game Playing
Michael Genesereth and Michael Thielscher
2014

Judgment Aggregation: A Primer
Davide Grossi and Gabriella Pigozzi
2014

An Introduction to Constraint-Based Temporal Reasoning
Roman Bartik, Robert A. Morris, and K. Brent Venable
2014

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
Rina Dechter
2013

Introduction to Intelligent Systems in Traffic and Transportation
Ana L.C. Bazzan and Franziska Kligl
2013

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics
Henry Hexmoor

2013

Case-Based Reasoning: A Concise Introduction

Beatriz Lépez
2013

iii

iv

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An Al Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game Theory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Derek Hoiem and Silvio Savarese

2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe

2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning
Csaba Szepesvari

2010

Data Integration: The Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007

Copyright © 2018 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Adversarial Machine Learning
Yevgeniy Vorobeychik and Murat Kantarcioglu

www.morganclaypool.com

ISBN: 9781681733951 paperback
ISBN: 9781681733968 ebook
ISBN: 9781681733982 epub
ISBN: 9781681733975 hardcover

DOI 10.2200/500861ED1V01Y201806 AIMO039

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #38
Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech

Peter Stone, University of Texas at Austin
Series ISSN
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

Adversarial Machine Learning

Yevgeniy Vorobeychik
Vanderbilt University

Murat Kantarcioglu
University of Texas, Dallas

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #38

L\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

The increasing abundance of large high-quality datasets, combined with significant technical
advances over the last several decades have made machine learning into a major tool employed
across a broad array of tasks including vision, language, finance, and security. However, success
has been accompanied with important new challenges: many applications of machine learning
are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous
driving. An adversary in these applications can be a malicious party aimed at causing congestion
or accidents, or may even model unusual situations that expose vulnerabilities in the prediction
engine. Other applications are adversarial because their task and/or the data they use are. For
example, an important class of problems in security involves detection, such as malware, spam,
and intrusion detection. The use of machine learning for detecting malicious entities creates an
incentive among adversaries to evade detection by changing their behavior or the content of
malicius objects they develop.

'The field of adversarial machine learning has emerged to study vulnerabilities of machine
learning approaches in adversarial settings and to develop techniques to make learning robust to
adversarial manipulation. This book provides a technical overview of this field. After reviewing
machine learning concepts and approaches, as well as common use cases of these in adversarial
settings, we present a general categorization of attacks on machine learning. We then address two
major categories of attacks and associated defenses: decision-time attacks, in which an adversary
changes the nature of instances seen by a learned model at the time of prediction in order to cause
errors, and poisoning or training time attacks, in which the actual training dataset is maliciously
modified. In our final chapter devoted to technical content, we discuss recent techniques for
attacks on deep learning, as well as approaches for improving robustness of deep neural networks.
We conclude with a discussion of several important issues in the area of adversarial learning that
in our view warrant further research.

Given the increasing interest in the area of adversarial machine learning, we hope this
book provides readers with the tools necessary to successfully engage in research and practice of
machine learning in adversarial settings.

KEYWORDS

adversarial machine learning, game theory, machine learning

Contents

Listof Figures xiii
Preface XV
Acknowledgments xvii
Introduction 1
Machine Learning Preliminaries 5
2.1 Supervised Learning 5
2.1.1 Regression Learning o il 6
2.1.2 Classification Learningo 7
2.1.3 PAC Learnability 8
2.1.4 Supervised Learning in Adversarial Settings 9
2.2 Unsupervised Learning 10
2.2.1 Clusteringt 10
2.2.2 Principal Component Analysis 11
2.2.3 Matrix Completion 11
2.2.4 Unsupervised Learning in Adversarial Settings 13
2.3 Reinforcement Learning i 14
2.3.1 Reinforcement Learning in Adversarial Settings 16
2.4 Bibliographic Notes i 16
Categories of Attacks on Machine Learning 19
3.1 Attack Timing 20
3.2 Information Available to the Attacker.............. 22
3.3 Attacker Goals 24
3.4 Bibliographic Notes i i 24
Attacksat Decision Time. il 27
41 Examples of Evasion Attacks on Machine Learning Models.............. 27

41.1 Attacks on Anomaly Detection: Polymorphic Blending 28

4.1.2 Attacks on PDF Malware Classifiersoouuuvneun .. 29

4.2 Modeling Decision-Time Attacks, 30
4.3 White-Box Decision-Time Attacks, 32
4.3.1 Attacks on Binary Classifiers: Adversarial Classifier Evasion 32
4.3.2 Decision-Time Attacks on Multiclass Classifiers 38
4.3.3 Decision-Time Attacks on Anomaly Detectors 40
4.3.4 Decision-Time Attacks on Clustering Models 40
4.3.5 Decision-Time Attacks on Regression Models 41
4.3.6 Decision-Time Attacks on Reinforcement Learning............... 44
4.4 Black-Box Decision-Time Attacks 45
4.4.1 A Taxonomy of Black-Box Attacks 45
4.4.2 Modeling Attacker Information Acquisition 48
4.4.3 Attacking Using an Approximate Model 49
4.5 Bibliographical Notes.............. i 50
Defending Against Decision-Time Attacks 53
5.1 Hardening Supervised Learning against Decision-Time Attacks 53
5.2 Optimal Evasion-Robust Classification 56
5.2.1 Optimal Evasion-Robust Sparse SVM 56
5.2.2 Evasion-Robust SVM against Free-Range Attacks................ 60
5.2.3 Evasion-Robust SVM against Restrained Attacks 62
5.2.4 Evasion-Robust Classification on Unrestricted Feature Spaces 63
5.2.5 Robustness to Adversarially Missing Features 64
5.3 Approximately Hardening Classifiers against Decision-Time Attacks 65
5.3.1 Relaxation Approaches 65
5.3.2 General-Purpose Defense: Iterative Retraining 67
5.4 Evasion-Robustness through Feature-Level Protection 69
5.5 Decision Randomization i il 69
551 Model 69
5.5.2 Optimal Randomized Operational Use of Classification............ 71
5.6 Evasion-Robust Regression o o o i il 73
5.7 Bibliographic Notes i 74
Data Poisoning Attacks 77
6.1 Modeling Poisoning Attacks, 78
6.2 Poisoning Attacks on Binary Classification............................ 78

6.2.1 Label-Flipping Attacks........ ... i 79

6.2.2 Poison Insertion Attackon Kernel SVM 81

6.3 Poisoning Attacks for Unsupervised Learning 84
6.3.1 Poisoning Attacks on Clustering, 84
6.3.2 Poisoning Attacks on Anomaly Detection 86
6.4 Poisoning Attack on Matrix Completion 87
6.4.1 AttackModel 87
6.4.2 Attacking Alternating Minimization 89
6.4.3 Attacking Nuclear Norm Minimization. 91
6.4.4 Mimicking Normal User Behaviors 92
6.5 A General Framework for Poisoning Attacks 93
6.6 Black-Box Poisoning Attacks ool 96
6.7 Bibliographic Notes i i 96
Defending Against Data Poisoning 99
7.1 Robust Learning through Data Sub-Sampling 99
7.2 Robust Learning through Outlier Removal 100
7.3 Robust Learning through Trimmed Optimization..................... 104
7.4 Robust Matrix Factorization i 106
7.4.1 Noise-Free Subspace Recovery............... 106
7.4.2 Dealingwith Noise o i 107
7.4.3 Efficient Robust Subspace Recovery 109
7.5 An Efficient Algorithm for Trimmed Optimization Problems 109
7.6 Bibliographic Notes i 110
Attacking and Defending Deep Learning 113
8.1 Neural Network Models i i .. 114
8.2 Attacks on Deep Neural Networks: Adversarial Examples............... 115
8.2.1 Ir-Norm Attacksottt 116
8.2.2 lso-Norm Attackst 119
8.2.3 o-Norm Attacksottt 121
8.2.4 Attacks in the Physical World 122
8.2.5 Black-Box Attacks....... i 123
8.3 Making Deep Learning Robust to Adversarial Examples 123
8.3.1 Robust Optimizationc.c.cuuuuuiieeneneeeennn... 123
83.2 Retraining 126
8.3.3 Distillation. ... 127
8.4 BibliographicNoteso oo il 127

The Road Ahead 131

9.1 Beyond Robust Optimizationoiiiiiiiiiiinnneeeenn. 131
9.2 Incomplete Information i 132
9.3 Confidence in Predictions i i 133
9.4 Randomization 133
9.5 Multiple Learners. 134
9.6 Modelsand Validation i i 134
Bibliography 137
Authors’ Biographies 149

1.1

2.1
2.2

3.1

4.1
4.2
4.3

5.1

6.1
6.2

8.1
8.2

xiii

List of Figures

Example of adversarial evasion in the context of phishing. Left: example
original phishing email; right: a reworded phishing email that is classified
as benign. 2

A schematic view of machine learning. 5

Screenshots of Udacity car simulations. Left: image input into the
autonomous controller. Right: car veers off the road after an attack which
compromises the operation of the controller. 9

A schematic representation of the distinction between decision-time
attacks (attacks on models) and poisoning attacks (attacks on algorithms). . .. 20

Ilustration of an evasion attack in Example 4.1. 32
INlustration of a decision-time attack on regression in Example 4.2. 41

A schematic of the hierarchy of black-box decision-time attacks. F denotes
the true feature space, f the true model used by the learner, A the actual
learning algorithm, and D the dataset on which f was learned by applying
A. f is an approximate (proxy) model, F' is an approximate feature space,
A a proxy algorithm, and D a proxy or partial dataset, with all proxies

derived or obtained where corresponding full information is unavailable. 46
Example: evasion-robust binary classification (Example 5.1). 55
INlustration of poisoned linear regression model. 79
An lattice of black-box data poisoning attacks on machine learning......... 97
A schematic representation of a deep neural network. 115

Hlustration of the CW [, attack. Left: original image (classified correctly
as a jeep). Middle: (magnified) adversarial noise. Right: perturbed image

(misclassified a5 2 MINIVAN). . oo\ttt ettt e i e 118

Xiv

8.3

8.4

Ilustration of the FGSM attack with € = 0.004. Left: original image

(classified correctly as a jeep). Middle: (magnified) adversarial noise.

Right: perturbed image (misclassified as a minivan). Note that the added

noise is substantially more perceptible for this attack than for the CW [,
attackin Figure 8.2. o 120

Ilustration of the iterative GSM attack, which uses eight gradient steps.
Left: original image (classified correctly as a jeep). Middle: (magnified)

adversarial noise. Right: perturbed image (misclassified as a minivan). 120

Preface

'The research area of adversarial machine learning has received a great deal of attention in recent
years, with much of this attention devoted to a phenomenon called adwversarial examples. In its
common form, an adversarial example takes an image and adds a small amount of distortion, of-
ten invisible to a human observer, which changes the predicted label ascribed to the image (such
as predicting gibbon instead of panda, to use the most famous example of this). Our book, how-
ever, is not exactly an exploration of adversarial examples. Rather, our goal is to explain the
field of adversarial machine learning far more broadly, considering supervised and unsupervised
learning, as well as attacks on training data (poisoning attacks) and attacks at decision (predic-
tion) time, of which adversarial examples are a special case. We attempt to convey foundational
concepts in this rapidly evolving field, as well as technical and conceptual advances. In partic-
ular, the flow of the book, beyond introductory materials, is to describe algorithmic techniques
used in attacking machine learning, followed by algorithmic advances in making machine learn-
ing robust to such attacks. Nevertheless, in the penultimate chapter we provide an overview of
some of the recent advances specific to the deep learning methods. While it is important to see
such methods within the broader area of adversarial learning, the motivation, techniques, and
empirical observations documented in this last chapter are most salient in the context of deep
neural networks (although many of the technical approaches are in principle quite general).

'This book assumes a great deal from the reader. While there is an introduction to ma-
chine learning concepts, terminology, and notations, some level of prior familiarity with ma-
chine learning is likely needed to fully grasp the technical content. Additionally, we expect a
certain degree of maturity with statistics and linear algebra, and some prior knowledge of opti-
mization (in particular, remarks about convex optimization, and discussions of techniques such
as gradient descent, assume familiarity with such concepts).

Yevgeniy Vorobeychik and Murat Kantarcioglu
June 2018

xvii

Acknowledgments

We wish to acknowledge the many colleagues and students who helped bring this book to life,
either by engaging with us in related research, or by commenting on some of the content either
in written or presented form, and correcting errors. In particular, we thank Bo Li, Chang Liu,
Aline Oprea for their contributions to some of the technical content and numerous related dis-
cussions. We are also indebted to a number of people for discussions on the topics presented in
this book, including Daniel Lowd, Pedro Domingos, Dawn Song, Patrick McDaniels, Milind
Tambe, Arunesh Sinha, and Michael Wellman. We are especially grateful to Matthew Sedam
for identifying a number of errors in the presentation, and to Scott Alfeld and Battista Biggio
for their suggestions that significantly improved the manuscript. Finally, we gratefully acknowl-
edge the funding sources which enabled both this book, and many related research articles: the
National Science Foundation (grant IIS-1649972), Army Research Office (grant W911NF-16-
1-0069), Office of Naval Research (grant N00014-15-1-2621), and the National Institutes of
Health (grant ROIHG006844).

Yevgeniy Vorobeychik and Murat Kantarcioglu
June 2018

CHAPTER 1

Introduction

As machine learning techniques have entered computing mainstream, their uses have multiplied.
Online advertising and algorithmic trading are now inconceivable without machine learning,
and machine learning techniques are increasingly finding their ways into health informatics,
fraud detection, computer vision, machine translation, and natural language understanding. Of
most importance to this book, however, is the increasing application that machine learning
techniques are finding in security in general, and cybersecurity in particular. The reason is that
security problems are, by definition, adversarial. There are the defenders—the good guys—for
example, network administrators, anti-virus companies, firewall manufacturers, computer users,
and the like, trying to maintain productivity despite external threats, and atackers—the bad
guys—who spread malware, send spam and phishing emails, hack into vulnerable computing
devices, steal data, or execute denial-of-service attacks, for whatever malicious ends they may
have.

A natural role for machine learning techniques in security applications is detection, ex-
amples of which include spam, malware, intrusion, and anomaly detection. Take detection of
malicious email (spam or phishing) as a prototypical example. We may start by obtaining a la-
beled dataset of benign and malicious (e.g., spam) emails, containing the email text and any
other relevant information (for example, using metadata such as the DNS registration informa-
tion for the sender IP). For illustration, let’s focus on email text as sole information about the
nature (malicious or benign) of the email. The dataset is transformed into feature vectors which
capture the text content, and numerical labels corresponding to the two classes (malicious vs.
benign). A common way to numerically represent a document is by using a bag-gf~words rep-
resentation. In a bag-of-words representation, we construct a dictionary of words which may
appear in emails, and then create a feature vector for a given email by considering how often
each word in the dictionary has appeared in the email text. In the simpler binary bag-of-words
representation, each feature simply indicates whether the corresponding word has appeared in
the email text; an alternative real-valued representation considers the number of times a word
appears in the email, or term frequency-inverse document frequency (tf-idf) [Rajaraman and
Ullman, 2012]. Once the dataset is encoded into a numeric format, we train a classifier to pre-
dict whether a new email is spam or phish based on the email text in its bag-of-words feature
representation.

For a large enough dataset, using state-of-the-art machine learning (classification) tools
can enable extremely effective spam or phishing email detection, with respect to an evaluation

2 1.INTRODUCTION

using past data. What makes this setting adversarial is that spam and phishing emails are gen-
erated deliberately, with specific goals in mind, by malicious actors. Said actors are decidedly
unhappy if their emails are detected and as a result fail to reach the intended destination (i.e.,
user mailboxes). The choice of the spammers is two-fold: either get out of the business of send-
ing spam, or change the way they construct the spam templates so as to evade spam detectors.
Such adversarial classifier evasion by spammers is a prototypical use case of adversarial machine
learning.

Figure 1.1 illustrates spam/phishing detector evasion through an example. In this case, a
malicious party had crafted a phishing email, shown in Figure 1.1 (left), which attempts to de-
ceive recipients into clicking on an embedded malicious link (the embedded link itself is stripped
in this illustration). Now, suppose that an effective spam detector is deployed, such that the
email on the left is categorized as malicious and filtered by the spam filter. The originator of
the phishing email can rewrite the text of the email, as shown in the example in Figure 1.1
(right). Considering the two emails side-by-side demonstrates the nature of the attack. On the

Greetings, Greetings,

After reviewing your Linkedin profile, our company Our company is looking to expand and after
would like to present you a part-time job offer as a reviewing your Linkedin profile, we would like
finance officer in your region. This job does not to present you a part-time job offer as a finance
require any previous experience. Here is a list of tasks officer in your region. This job does not require
that our employee should accomplish: any previous experience.

1. Receive payment from our customers into your
bank account.
2. Keep your commission fee of 10% from the
payment amount.
3. Send the rest of the payment to one of our
payment receivers in Europe via Moneygram or Thanks,
Western Union. Karen Hoffman,

Human Resource Manager.

For more details about this job offer, click here.

After enrollment you will be contacted by one
of our human resource staff.

For more details of the job, click here.
After enrolling to our-part time job you will be
contacted by one of our human resource staff.

Thanks,
Karen Hoffman.

Human Resource Manager.

Figure 1.1: Example of adversarial evasion in the context of phishing. Left: example original
phishing email; right: a reworded phishing email that is classified as benign.

one hand, the general message content still gets the primary point across, which communicates
the possibility of easy financial gain to the recipient, and still guides them to click on the em-
bedded malicious link. On the other hand, the message text is now sufficiently different from
the original as to no longer appear malicious to the spam detector learned on past data. This is

1.INTRODUCTION 3

typically accomplished by removing “spammy” words (that is, words that tend to increase the
maliciousness score of the detector) and potentially adding words which the detector treats as
benign (the latter strategy is often called the good-word attack [LLowd and Meek, 2005b]).

These two conflicting goals—evading detection while at the same time achieving original
attack goals—are central to evasion attacks in general. In malware detection, as in spam, the
attacker would wish to modify malware code to appear benign to a detector, while maintaining
the original or equivalent malicious functionality. In intrusion detection systems, a hacker would
wish to revise the automated tools and manual procedures so as to appear benign, but at the same
time still successfully execute the exploit.

While evasion attacks seem most natural in adversarial uses of machine learning, numer-
ous other examples illustrate that the scope of the adversarial machine learning problem is far
broader. For example, obtaining labeled training data with the purpose of learning detectors ex-
poses learning algorithms to poisoning attacks, whereby malicious actors manipulate data which
is subsequently used to train learning algorithms. Forensic analysis of malware or hacking at-
tempts may wish to use clustering in an attempt to categorize the nature of the attack, including
its attribution, but doing so may be susceptible to deliberate attacks which manipulate cluster
assignment by slightly changing the nature of attacks, causing mistaken categorization and attri-
bution. Moreover, adversarial learning also has broader scope than cybersecurity applications. In
physical security, for example, the problem of detecting malicious activity through video surveil-
lance is adversarial in nature: clever attackers may manipulate their appearance, or other factors
such as how they go about their malicious activity, to avoid detection. Similarly, credit card
fraud detection, which uses anomaly detection methods to determine whether a particular ac-
tivity is alarming due to its highly unexpected nature, may be susceptible to attacks which make
transactions appear typical for most credit card users. As yet another example, algorithmic trad-
ing techniques which use machine learning may be susceptible to exploitation by competitors
who make market transactions with the sole purpose of manipulating predicted prices, and using
the resulting arbitrage opportunities to make a profit (these are commonly known as spoofing
orders [Montgomery, 2016]).

Systematic study of adwersarial machine learning aims to formally investigate problems
introduced by the use of machine learning techniques in adversarial environments in which an
intelligent adversary attempts to exploit weaknesses in such techniques. The two general aspects
of this research endeavor are: (1) modeling and investigation of attacks on machine learning and
(2) developing learning techniques which are robust to adversarial manipulation.

In this book, we study a number of common problems in adversarial learning. We start
with an overview of standard machine learning approaches, with a discussion of how they can be
applied in adversarial settings (Chapter 2); this chapter allows us to fix notation, and provides
background to the core content of the book. Next, we present a categorization of attacks on
machine learning methods to provide a general, if not fully comprehensive, conceptual frame-
work for the detailed presentation which follows (Chapter 3). We then consider a problem of

4 1.INTRODUCTION

attacks on decisions made by learning models (Chapter 4), and subsequently proceed to dis-
cuss a number of techniques for making learning algorithms robust to such attacks (Chapter 5).
Thereafter, we consider the problem of poisoning the training data used by learning algorithms
(Chapter 6), followed by a discussion of techniques for making algorithms robust to poisoned
training data (Chapter 7). The final chapter of this book (Chapter 8) addresses a more recent
variation of the adversarial learning specifically dealing with deep neural networks in computer
vision problems. In this chapter, we provide an overview of the major classes of attacks on deep
learning models for computer vision, and present several approaches for learning more robust
deep learning models.

CHAPTER 2

Machine Learning
Preliminaries

To keep this book reasonably self-contained, we start with some machine learning basics. Ma-
chine learning is often broadly divided into three major areas: supervised learning, unsupervised
learning, and reinforcement learning. While in practice these divisions are not always clean, they
provide a good point of departure for our purposes.

We start by offering a schematic representation of learning, shown in Figure 2.1. In this
schematic representation, learning is viewed as a pipeline which starts with raw data, for ex-
ample, a collection of executable files, with associated labels indicating whether a file is benign
or malicious. This raw data is then processed to extract numeric features from each instance i,
obtaining an associated feature vector x; (for example, this could be a collection of binary vari-
ables indicating presence in an executable of particular system calls). This becomes processed data,
but henceforth we call it simply data, as it is to this processed dataset that we can apply learning
algorithms—the next step in the pipeline. Finally, the learning algorithm outputs a #odel, which
may be a mathematical model of the data (such as its distribution) or a function that predicts

labels on future instances.
Processed Learning Model
Data Algorithm ya

e e

Figure 2.1: A schematic view of machine learning.

2.1 SUPERVISED LEARNING

In supervised learning, you are given a model class F and a dataset D = {x;, y;}/_, of feature
vectors x; € X € R™, where X is the feature space, and labels y; from some label set). This
dataset is typically assumed to be generated i.i.d. from an unknown distribution P, i.e., (x;, ;) ~

P. The ultimate goal (the “holy grail”) is to find a model f* € F with the property that

E@y~pll(f(x), 1] = E@p~pll(f'(x).)] V f € F. 2.1)

6 2. MACHINE LEARNING PRELIMINARIES

where [(f(x), y), commonly called the Joss function, measures the error that f(x) makes in pre-
dicting the true label y. In simple terms, if there is some “true” function & we are trying to learn,
the goal is to find f € F which is as close to & as possible, given the constraints that the model
class imposes on us. Having this notion of a target function / in mind, we can restate (2.1) as

Exp[l(f(x). h(x)] = Ex~pll(f'(x). h(x))] ¥ f" € F. (2.2)

This special case may be somewhat easier to have in mind moving forward.

In practice, since P is unknown, we use the training data D in order to find a candi-
date f which is a good approximation of the labels actually observed in this data. This gives
rise to the following problem of minimizing empirical risk (commonly known as empirical risk
minimization, or ERM):

min L 1(f(x0). yi) + ye(f). (2.3)
i€D

where it is common to add a regularization term p(f') which penalizes the complexity of can-
didate models f (in the spirit of Occam’s razor that among multiple equally good models one
should favor the simpler one). Commonly, functions in the model class F have a parametric rep-
resentation, with parameters w in a real vector space. In this case, we typically write the ERIM
problem as
min Y 1(f(xiiw), yi) + yp(w). (2.4)
ieD
with regularization p(w) often taking the form of an /, norm of w, |[w||5; common examples
include /; norm, or lasso, ||w||1, and /, norm, ||w/|3.
Supervised learning is typically subdivided into two categories: regression, where labels are
real-valued, i.e., Y = R, and classification, where) is a finite set of labels. We briefly discuss
these next.

2.1.1 REGRESSION LEARNING

In regression learning, since the labels are real values, it is unlikely we will ever get them exactly
right. An appropriate loss function would penalize us for making predictions that are far from
the observed labels. Typically, this is captured by an /, norm:

I(f(x),y) = 1f(x) =l

Indeed, it is rarely useful to consider anything other than the /; norm or the /5 (Euclidean) norm
for this purpose.

To make regression learning more concrete, consider linear regression as an example. In
this case, the model class F is the set of all linear functions of dimension m, or, equivalently, the
set of all coefficients w € R™ and an offset or bias term, b € R, with an arbitrary linear func-

tion being f(x) = w'x +b = Y7L, w;x; + b. If we introduce an additional constant feature

2.1. SUPERVISED LEARNING 7
Xm+1 = 1, we can equivalently write the linear model as f(x) = w7 x; henceforth, we often use
the latter version. Our goal is to find some parametrization w to minimize error on training
data:
: T
min [i Vi)
i X070
1€D

The commonly used standard ordinary least squares (OLS) regression allows us to solve this
problem in closed form by setting the first derivative to zero using Euclidean (/) norm as the
loss function. Imposing /1 (lasso) regularization (i.e., adding ||w||; to the objective) will typically
result in a sparse model, where many of the feature weights w; = 0. With [, regularization
(Jlw||3), on the other hand (resulting in ridge regression), model coefficients shrink in magnitude,
but will in general not be exactly 0.

2.1.2 CLASSIFICATION LEARNING

In the most basic version of classification learning we have two classes. One convenient way to
encode these is) = {—1, +1}, and this encoding is particularly natural in adversarial settings,
where —1 means “benign” (normal emails, legitimate network traffic, etc.) while 41 corresponds
to “malicious” (spam, malware, intrusion attempt). This is convenient because we can now rep-
resent a classifier in the following form:

f(x) = sgn{g(x)},

where g(x) returns a real value. In other words, when g(x) is negative, we return —1 as the class,
while a positive g(x) implies that +1 is returned. 7his decomposition will be crucial to understand
the nature of many attacks on classification. We will call g(x) a classification score function, or simply
a score function.

In classification, the “ideal” loss function is typically an indicator function which is 1 if the
predicted label does not match the actual, and 0 otherwise (this is commonly known as the 0/1
loss). The main challenge with this loss function is that it is non-convex, making the empirical
risk minimization problem quite challenging. As a consequence, a number of alternatives are
commonly used instead.

One general approach is to use a score-based loss function which takes the score function
g(x) rather than f(x) as input. To see how such a loss function can be constructed, observe that
a classification decision is correct (i.e., f(x) = y) iff

yg(x) >0,

that is, both y and g(x) have the same sign. Moreover, whenever their signs differ, a larger
|¥g(x)| means that this difference is larger—in other words, a score function allows us to also as-
sign a magnitude of error. Thus, score-based loss functions are naturally represented by I (yg(x)).

8 2. MACHINE LEARNING PRELIMINARIES

As an example, the 0/1 loss becomes

1 it yg(x) =0

lo1(yg(x)) = 0 ow.

This, of course, remains non-convex. A typical approach is to use a convex relaxation of the
0/1 loss function in its place, resulting, for a g(x) which is convex in model parameters, in a
convex optimization problem. Common examples are Ainge loss, [, (yg(x)) = max{0,1 — yg(x)}
(used by support vector machines), and logistic loss, [} (yg(x)) = log(1 + e~¥¢™)) (used by a logistic
regression).

As an illustration, consider linear classification. In this case, g(x) = w
tion, and, just as in linear regression, we aim to find an optimal vector of feature weights w. If we
use the hinge loss along with /, regularization, we obtain the following optimization problem

for ERM:

T x is a linear func-

n}Hianax{O, L= yiw"xi} + ylwl3.
i€eD
which is just the optimization problem solved by the linear support vector machine [Bishop,
2011].
One way to generalize these ideas to multi-class classification problems is to define a
general scoring function g(x, y) for feature vector x and class label y. Classification decision is
then

J(x) = argmaxg(x, y).
yey

As an example, suppose that g(x, y) encodes the probability distribution over labels) given a
feature vector x, i.e., g(x, y) = Pr{y|x} (this is a common case for deep neural network models
for image classification, for example). Then f(x) becomes the most probable label y € V.

2.1.3 PACLEARNABILITY

Probably approximately correct (PAC) learnability is an important theoretical framework for (most
supervised) machine learning. Here, we present the idea specifically for binary classification.
Formally, let F be the class of possible classifiers which the defender considers (i.e., the de-
tender’s hypothesis or model class). Let (x, y) ~ P be instances, where x € X is an input feature
vector, and y is a label in {0, 1}. To simplify exposition, suppose that y = h(x) for some function
h(x) not necessarily in F (i.e., output is a deterministic function of input x, for example, the
true classification of x as either benign or malicious). Forany f € F,lete(f) = Pryp[f(x) #
h(x)] be the expected error of f w.r.t. P, and we define ex = infrez e(f) as the optimal (small-
est) error achievable by any function f € F. Let z” = {(x1, y1),..., (Xm, ym)} be data gener-
ated according to P and let Z™ be the set of all possible z™.

Definition 2.1 Let F be a class of functions mapping x to {0, 1}. A learning algorithm is a
function L : Up>1Z™ — F. We say that F is PAC learnable if there is a learning algorithm for

2.1. SUPERVISED LEARNING 9

F with the property that for any €, € (0, 1) and any P, there exists mg(e, §), such that for all
m > mo(€,8), Promple(L(z™)) < er + €} > 1 — 5. We say it is efficiently (polynomially) PAC
learnable if mg (e, §) is polynomial in 1/€ and 1/§ and there exists a learning algorithm for F
which runs in time polynomialin m, 1/¢, and 1/8.! We say that mg (e, §) is this algorithm’s sample
complexity. Henceforth, we will often omit the P4C modifier, and just use the term Jearnable to
mean PAC learnable. We will say that an algorithm that can obtain the PAC guarantees is a
PAC learning algorithms if the algorithm runs in polynomial time, and has polynomial sample
complexity, we call it a polynomial PAC learning algorithm.

2.1.4 SUPERVISED LEARNING IN ADVERSARIAL SETTINGS

Regression Learning in Adversarial Settings An example of the use of regression learning in
adversarial settings would be a parametric controller learned from observations of actual control
decisions—as has been shown in the context of autonomous driving. To simplify, suppose that we
learn a controller f(x) to predict a steering angle as a function of vision-based input (Figure 2.2,
left) captured into a feature vector x, as is done in end-to-end autonomous driving [Bojarski
et al., 2016, Chen and Huang, 2017]. The adversary may introduce small manipulations into
the image captured by the vision system, thereby modifying x to x’ to introduce an error in
the predicted steering angle f(x’) to maximize the difference from the true optimal angle y

(Figure 2.2, right).

Figure 2.2: Screenshots of Udacity car simulations. Left: image input into the autonomous con-
troller. Right: car veers off the road after an attack which compromises the operation of the
controller.

As another example, the learner may wish to predict the stock price f(x) as a function
of observables x. An adversary, aspiring to profit from the mistakes by the learner, may attempt
to influence the observed state x which is used to predict stock price by manipulating it into
another, x’, so that the predicted price in the next period is high. This may result in the learner

IThis definition is taken, in a slightly extended form, from Anthony and Bartlett [1999, Definition 2.1].

10 2. MACHINE LEARNING PRELIMINARIES

willing to buy the stock from the adversary at an inflated price, resulting in an effective arbitrage
opportunity for the adversary at the expense of the learner.

Classification Learning in Adversarial Settings Applying binary classification in adversar-
ial settings commonly amounts to distinguishing between benign and malicious instances. In
email filtering, for example, malicious instances would be spam, or phishing emails, while be-
nign would be regular email traffic [Bhowmick and Hazarika, 2018]. In malware detection,
malicious entities would be, naturally, malicious software, while benign instances would corre-
spond to non-malicious executables [Chau et al., 2011, Smutz and Stavrou, 2012, Srndi¢ and
Laskov, 2016, Tamersoy et al., 2014, Ye et al., 2017]. In credit card fraud, one would consider
specific features of credit card applications to determine whether the application is fraudulent
(malicious) or legitimate (benign) [Lebichot et al., 2016, Melo-Acosta et al., 2017]. In all these
cases, the adversary has an incentive to avoid being detected, and would wish to manipulate their
behavior so that it appears benign to the detector.

2.2 UNSUPERVISED LEARNING

In unsupervised learning a dataset is comprised of only the feature vectors, but has no labels: D =
{xi}. Consequently, problems in unsupervised learning are concerned with identifying aspects
of the joint distribution of observed features, rather than predicting a target label. However,
the line between supervised and unsupervised techniques may at times blur, as is the case with
matrix completion methods, where the goal is to predict unobserved matrix entries.

There are a number of specific problems that are commonly studied under the unsuper-
vised learning umbrella. We discuss three of these: clustering, principal component analysis, and
matrix completion.

2.2.1 CLUSTERING

One of the most familiar examples of unsupervised learning is the c/ustering task, in which the

feature vectors in a dataset are divided into a collection of subsets S, such that feature vectors in

each collection S € § are “close” to the mean feature vector of S for some measure of closeness.
Formally, clustering can be seen as solving the following optimization problem:

win) Y 1(xi,),

" Sesies

where S is a partition of D, and s an aggregation measure of the data in cluster S € S, for
example, its mean. A common version of this problem uses the /, norm as the loss function, and
a heuristic approximation of the associated problem is k-means clustering, where one iteratively
updates cluster means and moves data points to a cluster with the closest mean. However, other
variations are possible, and regularization can also be added to this problem to control model
complexity (such as the number of clusters formed, if this number is not specified up front).

2.2. UNSUPERVISED LEARNING 11

A more general approach is to learn a distribution over the dataset D. A well-known
example is a Gaussian Mixture Model, in which x; are assumed to be sampled i.i.d. from a
density which is a linear mixture of multi-variate Gaussian distributions. This approach is also
known as “soft clustering,” since each Gaussian in the mixture can be assumed to generate data
in a particular “cluster,” but we allow for uncertainty about cluster membership.

2.2.2 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) finds a collection of K < m orthonormal basis vectors
{vk}f=1 which are the k eigenvectors of the data matrix X, where each feature vector x; in
the dataset D is a row in this matrix. Equivalently, each vy solves

Vg = arg) max ||X(]I - Zv, Iy,
i=1

where I is the identity matrix.
Let V be the basis matrix produced by PCA, in which columns correspond to the eigen-
vectors vg. Then for any feature vector x, its m-dimensional reconstruction is

F=Vvvly

and the corresponding residual error (i.e., the error resulting from using PCA to approximate
the original feature vector x) is

Xe=x—%=({—=VVD)x.

Intuitively, we expect PCA to be effective if the original data can be effectively represented in a
K -dimensional subspace (where K is small relative to the original dimension m); in other words,
the magnitude of the residual error || x| is small.

2.2.3 MATRIX COMPLETION

To motivate the problem of matrix completion, consider a collaborative filtering problem faced
by Netflix. The goal is to predict how much a given user would like (or, more accurately, rate)
a given movie. One way to represent this problem is to imagine a large matrix M with n rows
corresponding to users and m columns to movies, where each matrix entry is the rating a user i
would give to a movie ;. Thus, our prediction problem can be equivalently viewed as predicting
the value of the ij th entry of this large matrix, which is otherwise very sparsely populated from
actual movie ratings provided by the users. The key insight is to hypothesize that the true un-
derlying matrix of ratings is low-rank; for example, movies tend to be rated similarly by similar
users. Consequently, we can decompose the true matrix as M = UV7 | where U and V have K
columns, and K is the rank of M. Our goal would be to obtain U and V such that U; VjT are

12 2. MACHINE LEARNING PRELIMINARIES

good approximations of observed entries of M, M;; (where Uj is the row vector denoting the i th
row of U and V; the row vector corresponding to the jth row of V).

To formalize, let M € R”*™ be a data matrix consisting of m rows and n columns. Mj; for
i € [n]and j € [m] would then correspond to the rating the i th user gives for the jth item. We
use Q = {(i, j) : M;j is observed} to denote all observed entries in M and assume that [Q] <
mn. We also use 2; € [m] and 2, < [n] for columns (rows) that are observed at the ith row
(jth column). The goal of matrix completion is to recover the complete matrix M from few
observations Mg [Candés and Recht, 2007].

'The matrix completion problem is in general ill-posed as it is impossible to complete an
arbitrary matrix with partial observations. As a result, additional assumptions are imposed on
the underlying data matrix M. One standard assumption is that M is very close to an n x m
rank-K matrix with K < min(n, m). Under such assumptions, the complete matrix M can be
recovered by solving the following optimization problem:

(nin IRaM —X)||%, s.t. rank(X) < K, (2.5)
where |A|Z =Y, ; A%l. denotes the squared Frobenious norm of matrix A and [Rq(A)];;
equals A;; if (i, j) € Q and 0 otherwise. Unfortunately, the feasible set in Eq. (2.5) is non-
convex, making the optimization problem difficult to solve. There has been an extensive literature
on approximately solving Eq. (2.5) and/or its surrogates that lead to two standard approaches:
alternating minimization and nuclear norm minimization. For the first approach, one considers

the following problem:

v B IR = UV +2y0 U + 2w VI - (2.6)
Equation (2.6) is equivalent to Eq. (2.5) when yy = yy = 0. In practice, people usually set both
regularization parameters yy and yy to be small positive constants in order to avoid large entries
in the completed matrix and also improve convergence. Since Eq. (2.6) is bi-convex in U and
V, an alternating minimization procedure can be applied, in which we iteratively optimize with
respect to U and V (each optimization problem is convex if we fix the other matrix).
Alternatively, one solves a nuclear-norm minimization problem

min [|ReM —X)|[F + 2y | X]|x, 2.7)
XeR#*m
where y > 0 is a regularization parameter and || X||x = Zfinlk(x) |o; (X)] is the nuclear norm of

X, which acts as a convex surrogate of the rank function. Equation (2.7) is a convex optimization
problem and can be solved using an iterative singular value thresholding algorithm [Cai et al.,
2010]. It can be shown that both methods in Eq. (2.6) and (2.7) provably approximate the true
underlying data matrix M under certain conditions [Candés and Recht, 2007, Jain et al., 2013].

2.2. UNSUPERVISED LEARNING 13
2.2.4 UNSUPERVISED LEARNING IN ADVERSARIAL SETTINGS

Two common uses of unsupervised learning in adversarial settings are attack clustering and
anomaly detection.

Clustering Clustering of attacks can be useful in malware forensic analysis, where different
malware variants are clustered, for example, to determine whether they are from the same fam-
ily [Hanna et al., 2013, Perdisci et al., 2013]. The technique could be important in identifying
variants of the same malware in cases where malware polymorphism had been used to hide the
malware from anti-virus tools. It can also be valuable in determining the origins of the malware
(such as malware authors).

Anomaly Detection In anomaly detection, one typically uses a collection of “normal” opera-
tional data to develop a model of “normal” system behavior. For example, one can collect traces
of routine network traffic in an organization, and identify a collection of statistics (features) of
this “normal” traffic. The ultimate goal is to identify behavior which is anomalous, suggesting
that it is either due to a system fault (in non-adversarial settings) or an attack, such as an in-
trusion. A number of variations of anomaly detection exist. Here we describe several concrete
examples which have been used in adversarial settings, and have also been subject to attacks.

One simple and surprisingly general anomaly detection approach is centroid anomaly de-
tection [Kloft and Laskov, 2012]. In this approach, one uses training data D to obtain a mean,
i =13 cpxi, and labels any new feature vector x, as anomalous if

lx —pllp = .

where r is an exogenously specified threshold, typically set to limit a false positive rate below a
target level. If p = 2 (as is common), we can rewrite the difference between x and p as

lox = mll3 = (x — pox —) = (x,x) —2{x,) + (1, p)

= (x,x) —%(X,in) + (%invézxi)
= (x, x) —%Z(x,xi) + nizZ(xi’xj)

i

i,j
2 1
= k(e x) = =3 k() + —) k(i x)),
i i,j

where k(:,-) is a kernel function which can represent a dot-product in a higher-dimensional
space and (x, y) represents the dot product of vectors x and y, and allows us to consider complex
nonlinear extensions of the original simple centroid approach.

Another useful property of a centroid anomaly detector is that we can update the mean

online as new (normal) data arrives. Formally, suppose that 1, is the mean computed from past

14 2. MACHINE LEARNING PRELIMINARIES

data, and a new data point x; has just arrived. The new estimate jt;41 can then be computed as

Mer1 = pr + Be(xr — [he),

where B, is the learning rate.

Another important class of anomaly detectors leverage an observation that normal behav-
ior (such as network traffic) often has a low intrinsic dimension [Lakhina et al., 2004]. The main
idea is to use PCA to identify a high-quality low-dimensional representation of the data, and
use the magnitude of the residual to determine anomalies. Such an anomaly detector flags an
observation x if the norm of its residual x, is too large (above a predefined threshold):

Ixel = II(T = VVD)x|| > r.

An example use case of PCA-based anomaly detectors is to identify anomalous traffic flow activ-
ity [Lakhina et al., 2004]. The setting they consider is where PCA-based anomalies correspond
to unusual origin-destination (OD) network flows. Specifically, let a matrix A represent which
OD flow uses which links; that is, A;s = 1 if flow f uses link i and 0 otherwise. Let a matrix
X represent observed flows over time, so that X, is the amount of traffic over an OD flow f
at time period 7. Then we can define Y = XA to represent time dynamics of flow over indi-
vidual links, with y(¢) the corresponding flow over links at time period ¢. If we assume that
Y is approximately K-rank, PCA would output the top K eigenvectors of Y. Let V represent
the associated matrix computed using PCA, as above. New flows y’ can then be determined
as anomalous or not by computing the residual y, = ||(I — VV7T)y|, and comparing it to the
threshold r. Lakhina et al. [2004] use the Q-statistic to determine the threshold at a predefined
1 — B confidence level.

A third variant of anomaly detection techniques uses n-grams, or sequences of n successive
entities in an object, to determine whether it is similar to a statistical model of normal objects.
To be more precise, suppose that we use the n-grams approach for anomaly-based network in-
trusion detection. We would start by collecting network data, and developing a statistical model
of normal. Let’s suppose that our analysis is at the level of packets (in practice, one can also
analyze sessions, files, etc). Ideally, we would use a feature representation with features corre-
sponding to all possible n-grams, and feature values corresponding to the frequency with which
the associated n-gram had been observed. For a new packet, we can then use a sliding window
to obtain its n-gram frequencies, and use conventional centroid anomaly detection to trigger
alerts. As this idea is not scalable when n becomes large, Wang et al. [2006] suggest instead
storing n-grams observed during training using a Bloom filter, and scoring only based on the
proportion of new n-grams contained in the packet at test time.

2.3 REINFORCEMENT LEARNING

We start by describing Markov Decision Processes (MDPs), which provide the mathematical
foundations for reinforcement learning (RL) [Sutton and Barto, 1998].

2.3. REINFORCEMENT LEARNING 15

A discrete-time discounted infinite-horizon MDP (which we focus on for simplicity of the
exposition) is described by a tuple [S, A4, T, r, §] where S is a set of states (which we assume is
finite here), A the set of actions (again, assumed finite), T the transition dynamics, where 72, =
Pr{s;+1 = s'|s; = s,a;, = a}, r(s, a) the expected reward function, and § € [0, 1) the discount

factor. Two central concepts in MDPs and RL are the value function, defined as
V(s) = max [r(s.a) + 8 Y _ T, V(s)
S/

and the Q-function, defined as

O(s.a) =r(s.a) + 8 Y T&V(S).

Conceptually, the value function captures the optimal discounted sum of rewards one can obtain
(i.e., if we follow an optimal policy), while the Q-function is the discounted reward if one takes
an action a in state s and follows an optimal policy thereafter. Notice that V(s) = max, Q(s,a).
There are a series of well-known ways to compute an optimal policy for MDPs, where a policy
is a mapping 7 : S — A from states to actions.” One example is value iteration, in which one
transforms the characterization of the value function above into an iterative procedure comput-
ing value function V;4(s) in iteration i + 1 as

Vig1(s) = max r(s.a)+8Y TaVi(s)
S/

We can initialize this process with an arbitrary value function, and it will always converge to
the true value function in the limit. Another alternative is to use policy iteration, where one
alternates policy evaluation (computing the value of the current policy) and improvement steps
(analogous to value iteration steps). Finally, one can compute the optimal value function using
linear programming. One can extract the optimal policy from a value function by simply finding
the maximizing action in each state.

In reinforcement learning, one knows S, A4, and 6, but not T or r. However, we can
nevertheless learn from experience to obtain, eventually, a policy which is close to optimal. A
number of algorithms exist for this purpose, the best known of which is perhaps Q-learning.
In Q-learning, one would initialize the Q-function in an arbitrary way. In an arbitrary iteration
i + 1, one has observed a state s; and takes an action a; according to some current policy which
ensures that any action can be taken in any state with positive probability. If we then observe a
reward r; 1 and next state s;41, we can update the Q-function as follows:

Qivi1(si,a;) = Qi(si.a;) + Biv1(rig1 + 5m§%X Qi(si+1,a) — Qi(si,ai)).

2For infinite-horizon discrete-time discounted MDPs, there always exists an optimal policy that is only a function of observed
state.

16 2. MACHINE LEARNING PRELIMINARIES

Now, a naive way to compute a policy based on this Q-function would be to simply take
the action in each state which maximizes Q; (s, @) in the current iteration i . However, this would
mean that no exploration takes place. One simple modification, called ¢;-greedy, would be to
use such a policy with probability 1 —¢;, and play a random action otherwise. €; could then
be decreased over time. Another idea would be to use the policy which plays an action a with

probability
TT; (Sv (1) X ﬂi Qi(s’ a)’

with B; increasing over time.

When RL is applied in structured domains (characteristic of many real applications), it
is common for states to be comprised of a collection of variables x = {x1,..., x,} (this is often
known as a factored representation of state). In this case, the policy cannot be reasonably repre-
sented as a lookup table. There are several common approaches to handle this. For example, one
can learn a parametric representation of the Q-function with parameters w, Q(x, a; w), and use
it to indirectly represent the policy, where 7(x) = argmax, Q(x,a; w).

2.3.1 REINFORCEMENT LEARNING IN ADVERSARIAL SETTINGS

One example of the use of reinforcement learning in (potentially) adversarial settings would be
autonomous control (e.g., self-driving cars) in the presence of adversaries who may impact ob-
served state. Since the optimal policy depends on state, modifications to state may then result in
poor decisions. Specific formal models of such attacks would leverage the factored state repre-
sentation: the attacker would typically only be able to modify a (small) subset of state variables
to lead a learned policy astray.

Indeed, such attacks actually are not specific to RL, and simply attack a particular policy
used (if known to the attacker). One could also attack during the learning process, to cause a
poor policy to be learned—for example, by affecting the observed rewards, as well as observed
states. In any case, the upshot of the attack would be to cause the RL-based autonomous agent
to make mistakes, potentially in a high-stakes situation, such as causing an autonomous car to
crash.

2.4 BIBLIOGRAPHICNOTES

Our discussion of machine learning generally, as well as that of specific techniques, is informed
by a number of well-known books on machine learning in general [Bishop, 2011, Hastie et al.,
2016], as well as the unparalleled text on reinforcement learning by Sutton and Barto [1998].
A foundational perspective on machine learning, including PAC learnability, can be found in
a wonderful theoretical treatment by Anthony and Bartlett [2009]. Similarly, Vapnik [1999]
offers a great foundational discussion of empirical risk minimization.

Our description of centroid-based anomaly detection is based on Kloft and Laskov [2012],
while we follow Lakhina et al. [2004] in discussing PCA-based anomaly detection. Our discus-

2.4. BIBLIOGRAPHICNOTES 17

sion of matrix completion closely follows Li et al. [2016], who in turn build on extensive prior
research on the topics of matrix factorization and completion [Candés and Recht, 2007, Gemulla
et al., 2011, Gentle, 2007, Sra and Dhillon, 2006].

A classic text on function approximation in markov-decision processes and reinforcement
learning is by Bertsekas and Tsitsiklis [1996], with numerous advances improving and extending
both the techniques and theoretical foundations [Boutilier et al., 1999, 2000, Guestrin et al.,
2003, St-Aubin et al., 2000].

CHAPTER 3

Categories of Attacks on
Machine Learning

In the previous chapter, we described in broad strokes the major machine learning paradigms,
as well as how they can be instantiated in adversarial settings. Adversarial machine learning
takes this a step further: our goal is not merely to understand how machine learning can be
used in adversarial settings (for example, for malware detection), but in what way such settings
introduce vulnerabilities into conventional learning approaches. A principled discussion of such
vulnerabilities centers around precise threat models. In this chapter, we present a general cat-
egorization of threat models, or attacks, in the context of machine learning. Our subsequent
detailed presentation of the specific attacks will be grounded in this categorization.

'There have been several attempts at categorizing attacks on machine learning algorithms.
'The categorization we propose is related to some of these, and aims to distill the most important
features of the attacks that we discuss. In particular, we classify attacks along three dimensions:
timing, information, and goals.

1. Timing: The first crucial consideration in modeling attacks is when the attack takes place.
This consideration leads to the following common dichotomy which is central to attacks
on machine learning: attacks on models (of which evasion attacks are the most prototypi-
cal cases) and attacks on algorithms (commonly known as poisoning attacks). Attacks on
models or, more precisely on decisions made by learned models, assume that the model has
already been learned, and the attacker now either changes its behavior, or makes changes
to the observed environment, to cause the model to make erroneous predictions. Poison-
ing attacks, in contrast, take place before models are trained, modifying a part of the data
used for training. This distinction is illustrated in Figure 3.1.

2. Information: The second important issue in modeling attacks is what information the
attacker has about the learning model or algorithm, a distinction which is commonly dis-
tilled into white-box vs. black-box attacks. In particular, white-box attacks assume that
either the model (in the case of attacks on decisions) or algorithm (in poisoning attacks)
is fully known to the adversary, whereas in black-box attacks the adversary has limited or
no information about these, although may obtain some of the information indirectly, for
example, through queries.

19

20 3. CATEGORIES OF ATTACKS ON MACHINE LEARNING

Ruw Data I » . » Processed
| Data

Learning

Algorithm

» Model
Vi

Training-time

(poisoning)
Attack

Decision-time

Attack

Figure 3.1: A schematic representation of the distinction between decision-time attacks (attacks
on models) and poisoning attacks (attacks on algorithms).

3. Goals: Attackers may have different reasons for attacking, such as evading detection or
reducing confidence in the algorithm. We differentiate two broad classes of attack goals:
targeted attacks and attacks on reliability of the learning method (or simply reliability attacks).
In a targeted attack, the attacker’s goal is to cause a mistake on specific instances of a
specific nature (for example, causing a learned function f to predict a specific erroneous
label / on an instance x). A reliability attack, in contrast, aims to degrate the perceived
reliability of the learning system by maximizing prediction error.

In Table 3.1 we summarize our categorization of attacks on machine learning.

Table 3.1: The three dimensions of attacks on machine learning

Attack Timing Decision time (e.g., evasion attack) vs. training time (poisoning)

Palav:te o dlbiitysntislo Ml VWhite-box vs. black-box attacks

Attack Goals Targeted attacks vs. reliability attacks

In the remainder of this chapter we discuss these three dimensions of attacks in greater
depth. The high-level organization of the book, however, centers largely on the first dichotomy
between attacks on models and poisoning attacks, which we view as the most fundamental dis-
tinction.

3.1 ATTACKTIMING

Attacks at Decision Time: Of all the attack classes we will consider, evasion attacks—a major
subclass of attacks which take place at decision time—are perhaps the most salient historically.
A well-known example of evasion is the evolution of spam email traffic, for example, when
spammers replace the letter “i” with a number “1” or a letter “I” in “Viagra” (which becomes

“Vlagra”).

3.1. ATTACKTIMING 21

In general, a classifier evasion attack on binary classifiers takes as input a classifier f(x)
and an “ideal” instance in feature space, X;zu, (i.e., this is what the adversary would wish to do
if there were no classifier to identify it as malicious). The attack then outputs another instance,
corresponding to a feature vector x’. If f(x’) = —1, evasion is successful, but it is possible that
the adversary fails to find an adequate evasion (in fact, it is necessary for any meaningful measure
of evasion-robustness of an algorithm that the adversary does not a/ways succeed to find an
evasion, no matter what f and x;4, are).

As an illustration, let us say that one wishes to detect spam email, and learns a classifier
S (x) for this purpose (where x is a vector representing features of an email). Now consider a
spammer who previously used a template corresponding to a feature vector X, and suppose
that f(xypam) labels it as “spam” (4-1), so that the spammer receives no responses. The spammer
would make modifications to the email to obtain an instance which in feature space looks like
x’ with the property that f(x’) = —1 (i.e., it’s classified as non-spam, and allowed to pass into
users’ mailboxes). But x” cannot be arbitrary: the adversary incurs a cost of modifying the original
instance X, to achieve x’, which could measure the cost of effort (to maintain functionality),
or effectiveness (for example, they may have to introduce spelling errors which would allow the
attacker to avoid detection, but would also reduce the chance that people will click on embedded
links).

Generalizing the idea behind evasion attacks, we can consider decision-time attacks on
multi-class classification. Let) be a finite set of labels, and suppose that for some instance
Xidea the predicted label is f(Xiza) = y. An attacker may wish to change this instance into
another, x’, either to effect an incorrect prediction (f(x") # y), or to cause the classifier to
predict a target label # = f(x’). Recently, such attacks have gained a great deal of attention
under the term adversarial examples, largely focusing on vision applications and deep neural
networks. A potential concern is that an attacker may attempt to cause an autonomous vehicle
relying on vision to crash by manipulating the perceived image of a road sign, such as a stop
sign (for example, by posting specially crafted stickers that appear to be graffiti to passers by
[Evtimov et al., 2018]). While this problem is a special case of decision-time attacks, the amount
of independent attention it has received warrants a separate chapter (Chapter 8).

Attacks on Training Data: The issue of learning with corrupted or noisy training data
has been a subject of considerable investigation in the machine learning and statistics commu-
nities for several decades. However, adversarial corruption of training data has received more
systematic consideration recently, particularly if we allow a non-negligible proportion of data
to be corrupted. The nature of poisoning attacks is that the adversary deliberately manipulates
the #raining data prior to training to cause the learning algorithm to make poor choices. An
important conceptual challenge with poisoning attacks is in defining the scope of adversarial
manipulation of training data, and the goals of the adversary in doing so. One common way to
sidestep these issues is to assume that the adversary can make arbitrary modifications to a small
subset of training data points. The goal would then be to design algorithms which are robust to

22 3. CATEGORIES OF ATTACKS ON MACHINE LEARNING

such arbitrary training data corruption, as long as the amount of corrupted data is sufficiently
small.

One can also consider more specific models of corruption which impose additional con-
straints on what the attacker may do. One common class of such attacks are labe/-flipping attacks,
where the adversary is allowed to change the labels of at most C data points in the training data.
Typically, such attacks have been considered in the context of classification, although one can
also modify regression labels. In most cases, one assumes that the algorithm and feature space
are known to the adversary (i.e., a white-box attack). Data poisoning can also be considered in
unsupervised learning settings, for example, when it is used in anomaly detection. In this case,
the adversary may make small modifications to observed normal behavior which now pollutes
the model used to detect anomalies, with the goal of ensuring that a future target attack is flagged
as benign.

3.2 INFORMATION AVAILABLE TO THE ATTACKER

One of the most important factors in attack modeling is information that the attacker has about
the system they are attacking. We draw a distinction between whife-box attacks, in which the
attacker knows everything there is to know, and &lack-box attacks, in which the attacker has
limited information.

White-box attacks assume that the adversary knows exact/y either the learned model (e.g.,
actual classifier) in the case of decision-time attacks, or the learning algorithm in the case of
poisoning attacks. This means, for example, that the adversary knows all the model parameters,
including features, and, in the case of poisoning attacks, the hyperparameters of the learning
algorithm. The assumption that the attacker has such intimate information about the learning
system can seem suspect. There are, however, important reasons to consider white-box attacks.
First, these offer a natural starting point from a learner’s perspective: if a learner can be robust
to white-box attacks, they are surely robust also to attacks which are informationally limited.
Second, from an attacker’s perspective, there may be a number of ways to indirectly obtain suf-
ficient information about a learned model to deploy a successful attack. Take a malware evasion
attack for example. Suppose that the set of features used is public information (such as through
published work), and datasets used to train a malware detector are public (or, alternatively, there
are public datasets which are sufficiently similar to the data actually used for training). Finally,
suppose that the learner uses a standard learning algorithm to learn the model, such as a ran-
dom forest, deep neural network, or support vector machine, and standard techniques to tune
hyperparameters, such as cross-validation. In this case, the attacker can obtain an identical, or
nearly identical, version of the detector as the one in actual use!

In black-box attacks, in contrast to white-box attacks, the adversary does not have precise
information about either the model or the algorithm used by the learner. An important modeling
challenge for black-box attacks is to model precisely whar information the attacker has about
either the learned model, or the algorithm.

3.2. INFORMATION AVAILABLE TO THE ATTACKER 23

In the context of decision-time black-box attacks, one approach is to consider a hierarchy
of information about the learned model available to the adversary. At one extreme, no infor-
mation is available to the adversary at all. A more informed adversary may have some training
data which is different from the data on which the actual model had been trained, but no in-
formation about the particular model class being learned, or features used. A more informed
attacker yet may know the model class and features, and perhaps the learning algorithm, but
have no training data, and an even more informed adversary may also have training data sam-
pled from the same distribution as the data used for learning. Finally, when this same adversary
has the actual training data used by the learning algorithm, the resulting attack is equivalent to a
white-box attack as discussed above, since the attacker can learn the exact model from the given
training data. One may observe that, unlike white-box attacks, there are many ways to model
black-box attacks. Indeed, others have suggested a term gray-box attack to indicate that the at-
tacker has some, albeit incomplete, information about the system they are attacking [Biggio and
Roli, 2018]. In this book, however, we will keep with the more conventional term of black-box
attacks to refer to the entire hierarchy, short of the white-box full information extreme.

'The information hierarchy above does not address a natural question: how does the at-
tacker come by the information about the model they are attacking (in the case of decision-time
attacks)? An important class of decision-time black-box attack models addresses this question
by allowing an attacker to have query access to the learned model. Specifically, given an arbitrary
instance, represented as a feature vector x, the adversary can obtain (query) the actual predicted
label y = f(x) for the unknown black-box model f. Commonly, and implicitly, such query
models also assume that the attacker knows both the model space (e.g., learning algorithm) and
teature space. Moreover, another practical limitation of this model is that f(x) is often impre-
cisely, or noisily observed given x. For example, suppose that the spammer sends a spam email
message. A non-response need not imply that it has been filtered—rather, it could be that users
simply disregarded the email. Nevertheless, such a query-based framework enables an elegant
theoretical study of what an attacker can accomplish with very limited information about the
learner.

Following similar principles as typical models of black-box attacks at decision-time, black-
box data poisoning attacks would allow for a range of knowledge about the algorithm used by the
defender. For example, at one extreme, the attacker may have no information at all about the
algorithm. A more informed attacker may know the algorithm, but not the hyperparameters
(such as the regularization weight, or the number of hidden layers in the neural network) or
features. A more informed attacker yet may know the algorithm, features, and hyperparameters,
but not the training data that the attacker attempts to poison.

24 3. CATEGORIES OF ATTACKS ON MACHINE LEARNING
3.3 ATTACKER GOALS

While attackers may have a broad number of possible goals for perpetrating an attack on the
machine learning systems, we distill attacks into two major categories in terms of attacker goals:
targeted attacks and reliability attacks.

Targeted attacks are characterized by a specific goal for the attacker with regard to model
decisions. For example, consider a decision-time attack on a multi-class classifier with a set of
possible labels £, and let x be a particular instance of interest to an attacker with a true label
y. A goal of a targeted attack in this case would be to effect a change in the label for x to a
specific target label t # y. More generally, a targeted attack is characterized by a subset of the
joint instance and (if relevant) label space S C (X x)) of datapoints that the attacker would
wish to change the decision for, along with target decision function D(x). In the most common
setting of targeted attacks on supervised learning, an attacker would aspire to induce predictions
on each (x, y) € S to be according to a target label function /(x).

Reliability attacks, on the other hand, attempt to maximize mistakes in decisions made
by learning with respect to ground truth. For example, in supervised learning, an attacker would
aim to maximize prediction error. In vision applications, such attacks, which have come to be
commonly called untargeted, would modify an image so as to cause an erroneous prediction (e.g.,
recognition of an object not in the image, such as mistaking an image of a stop sign for any other
road sign).

Our distinction between targeted and reliability attacks blurs when we consider binary
classification: in particular, reliability attacks now become a special case in which the target
labels /(x) are simply the alternative labels. More generally, we note that even the dichotomy
between targeted and reliability attacks is incomplete: for example, one may consider attacks in
which the goal is to avoid predictions of a particular class ozher than the correct label (sometimes
called a repulsive attacks). However, this problem is sufficiently esoteric that we feel justified in
focusing on our simplified categorization.

3.4 BIBLIOGRAPHICNOTES

Barreno et al. [2006] presented the first taxonomy of attacks on machine learning, while Bar-
reno et al. [2010] elaborate on this taxonomy to present a comprehensive categorization of such
attacks. This taxonomy also considers three dimensions of attacks. Their first dimension is essen-
tially identical to ours, albeit they identify it with attacker inffuence, rather than attack timing.
'The associated dichotomy in this category is causative vs. exploratory attacks. Causative attacks
described by Barreno et al. [2010] are identical to what we call poisoning attacks, whereas their
exploratory attacks seem largely aligned with our decision-time attacks. Their second and third
dimensions, however, are somewhat different from our categorization. The second dimension
in Barreno et al. [2010] is termed security violation, and distinguishes integrity and availability

attacks. Integrity attacks are those which cause false negatives (that is, which cause malicious

3.4. BIBLIOGRAPHICNOTES 25

instances to remain undetected), whereas availability attacks cause denial of service through false
positives (i.e., benign instances which are flagged as malicious as a result of the attack). We can
note that this category appears to be quite specific to binary classification, with an eye largely to
detection of malicious instances such as spam. The final dimension identified by Barreno et al.
[2010] is specificity, and here they differentiate between fargeted and indiscriminate attacks. The
notion of targeted attacks is similar to ours, while indiscriminate attacks are similar to what we
call refiability attack. The key difference is that indiscriminate attacks in Barreno et al. [2010]
terminology are broader: for example, these allow for a spammer to target a large set of spam in-
stances (but not benign instances), whereas the attacker’s goal in reliability attacks (according to
our definition) is simply to maximize prediction error on a// instances. Thus, we essentially col-
lapse two of the dimensions from Barreno et al. [2010] into the simpler dichotomy of two attack
goals (targeted vs. reliability attacks), and add a new dimension which distinguishes white-box
and black-box attacks.

Our categorization of black-box attacks at decision time is informed by the query-based
models of classifier evasion attacks [Lowd and Meek, 2005a, Nelson et al., 2012], as well as the
attacker information hierarchy elaborated by Biggio et al. [2013] and Srndic and Laskov [2014].
An analogous characterization of black-box poisoning attacks (somewhat applicable also to at-
tacks at decision time) is due to Suciu et al. [2018], who call it FAIL after their four dimensions of
attacker knowledge: Feature knowledge (which features are known to the attacker), Algorithm
knowledge (to what extent does the attacker know the learning algorithm), Instance knowledge
(what information the attacker has about the learner’s training data), and Leverage (which fea-
tures the attacker can modify). Finally, our categorization is also informed by a recent survey on
adversarial machine learning by Biggio and Roli [2018], and more generally by the broader lit-
erature on adversarial machine learning, including attacks specifically on deep learning models.
We present bibliographic notes on these efforts in later chapters, where we discuss attacks on
machine learning, and associated defenses, in greater depth.

27

CHAPTER 4

Attacks at Decision Time

In this chapter, we begin to consider decision-time attacks on machine learning. As we men-
tioned, prototypical examples of this problem are adversarial evasion of spam, phishing, and
malware detectors trained to distinguish between benign and malicious instances, with adver-
saries manipulating the nature of the objects, such as introducing clever word misspellings or
substitutions of code regions, in order to be misclassified as benign.

'The key challenge in analyzing robustness of learning approaches to decision-time attacks
is in modeling these attacks. A good model must account for the central tradeoff faced by an
attacker: introducing sufficient manipulation into the object (e.g., malware) to be misclassified
as benign as possible (we make this more precise below), while limiting changes to maintain
malicious functionality and minimize effort. In this chapter we introduce common mathematical
models of decision-time attacks, and associated algorithmic approaches for solving the non-
trivial problem of computing an optimal (or near-optimal) attack. In particular, we break the
modeling discussion into two subsections based on the information dimension in our attack
taxonomy: we start with white-box attacks, and discuss black-box attacks thereafter. Moreover,
we describe common models of white-box attacks for many of the major classes of learning
algorithms: starting with the decision-time attack on binary classifiers (commonly known as the
evasion attack), we generalize the model to multiclass classifiers, then proceed to describe attacks
on anomaly detection, clustering, regression, and, finally, reinforcement learning.

We begin by describing several examples of evasion attacks from the cybersecurity lit-
erature to illustrate the challenges involved in devising and executing such attacks in practice,
challenges which are typically abstracted away in mathematical models of decision-time attacks
that we turn to thereafter.

4.1 EXAMPLES OF EVASION ATTACKS ON MACHINE
LEARNING MODELS

We'll begin with several examples of evasion attacks—an important subclass of decision-time
attacks—which come from the cybersecurity literature. In an evasion attack, the learned model
is used to detect malicious behavior, such as an intrusion or a malicious executable, and the
attacker aims to change the characteristics of the attack to remain undetected.

The first example is the polymorphic blending attack, the target of which is an intrusion
detection system based on statistical anomaly detection. The second set of examples concerns
evasion attacks on Portable Document Format (PDF) malware classifiers. We describe several

28 4. ATTACKS AT DECISION TIME

instances of such attacks: one which can be viewed as a mimircy attack, as it simply attempts to
introduce benign characteristics into a malicious file (rather than removing malicious-looking
aspects), and another which automates the attack and can both add and remove PDF objects.

4.1.1 ATTACKS ON ANOMALY DETECTION: POLYMORPHIC
BLENDING

Malware polymorphism is a long-standing issue in signature-based malware and intrusion detec-
tion systems (IDSs). Since malware signatures tend to be somewhat rigid (looking for an exact,
or close match), attacks routinely look to make small modifications to malware code or pack-
aging (such as packing and obfuscation) to significantly modify a hash-based signature. While
such attack principles are clearly examples of evasion, they are not pertinent to machine learn-
ing. However, anomaly detection has been proposed as a way to resolve the issue of polymorphic
malware, since statistical properties of such instances tend to remain quite unlike typical net-
work traffic. Specifically, an anomaly detector in the IDS use case would flag malware as it is
being trasmitted over the network.

A generic way to think of anomaly detection systems is to translate entities being modeled
(such as network traffic in IDS) into a numeric feature vector, say, x. For example, a common
approach is to use n-grams, or features which correspond to sequences of n consecutive bytes,
as described in Section 2.2.4. The feature vector corresponding to a particular packet could then
be a series of frequencies of each possible n-gram appearing in the packet, or a binary vector
indicating for each n-gram whether it appears in the packet. In any case, we can then obtain a
data set of “normal” traffic, and model the distribution of the associated feature vectors. If we
add a likelihood threshold, we can flag any packets with likelihood (given the distribution of
normal data) below the threshold.

A simple (and rather common) way to instantiate such a scheme is to take the mean of the
normal traffic feature vector, i, and impose a threshold on the mean so thatany x : [|x — | > r
is flagged as abnormal (with r chosen to achieve a target low false-positive rate). This then
becomes an instance of centroid-based anomaly detection we discussed earlier in Section 2.2.4.

Now we can describe (briefly) polymorphic blending attacks. The goal of these is to create
polymorphic instances of malware (viewed as a sequence of packets), but also to achieve the feature
representation of the malware which is as close to normal as possible. Moreover, this needs to be
done without risking any deliterious effects on malicious functionality. One way to accomplish
this is by a combination of encryption, which substitutes characters common in normal packets
for those which are not, decryption, which can ensure that only normal n-grams are used by
storing a reverse mapping array with the ith entry having the normal character corresponding
to the ith attack character, and padding, which adds more normal bytes to the packet to make it
appear even more similar to a normal profile. At execution time, the decryptor then removes the
padding, and decrypts the attack packet. Such an attack on anomaly-based IDS was described
and evaluated in detail by Fogla et al. [2006].

4.1. EXAMPLES OF EVASION ATTACKS ON MACHINE LEARNING MODELS 29
4.1.2 ATTACKS ON PDF MALWARE CLASSIFIERS

In order to explain PDF malware classification and associated attacks, we first take a brief detour
into PDF document structure.

PDF Structure 'The PDF is an open standard format used to present content and layout on
different platforms. A PDF file structure consists of four parts: beader, body, cross-reference table
(CRT), and #railer. 'The header contains information such as the format version. The body is
the most important element of a PDF file, which comprises multiple objects that constitute the
content of the file. Each object in a PDF can be one of eight basic types: Boolean, Numeric,
String, Null, Name, Array, Dictionary, and Stream. Moreover, objects can be referenced from
other objects via indirect references. There are also other types of objects, such as JavaScript
which contains executable JavaScript code. The CRT indexes objects in the body, while the
trailer points to the CRT. The PDF file is parsed starting with the trailer, which contains the
location of the CRT, and then jumps directly to it, proceeding to parse the body of the PDF file

using object location information in the CRT.

PDFRate PDF Malware Detector 'The PDFRate classifier, developed by Smutz and Stavrou
[2012], uses a random forest algorithm, and employs PDF metadata and content features to
categorize benign and malicious PDF files. The metadata features include the size of a file, author
name, and creation date, while content-based features include position and counts of specific
keywords. Content-based features are extracted by using regular expressions. The features of

PDFRate are detailed by Smutz and Stavrou [2012].

Example Attacks on PDFRate Malware Detector We now briefly describe two attacks on
PDFRate. The regular expressions used by PDFRate to generate its features parse the PDF file
linearly from beginning to end to extract each feature. In some cases, when features are based
on values of a particular PDF object, such as “Author,” repeated entries are handled by ignoring
all but the last value appearing in the file.

One attack on PDFRate, described by Srndic and Laskov [2014], involves adding content
to a malicious PDF file to make it appear benign to the classifier. This attack leverages the
semantic gap between PDF readers and the linear file processing performed by the classifier.
Specifically, PDF readers following specification begin by reading the trailer, and then jump
directly to the CRT. Consequently, any content added erween the CRT and the trailer would
be ignored by a PDF reader, but would still be used to construct features using the PDFRate
feature extraction mechanism. While this attack cannot modify all features used by PDFRate,
it can change a large number of them. In order to determine which content to add, this attack
suggests two approaches: a mimicry attack and an attack based on gradient descent in feature
space. In the mimicry attack, features of a malicious PDF that can be modified through the
attack are transformed to mimic a target benign PDF file in feature space, and then content is
added to the malicious PDF to transform one feature at a time to the target value in feature

30 4. ATTACKS AT DECISION TIME

space (or as close to it as feasible). The gradient descent attack optimizes a weighted sum of
classification score for a differentiable proxy classifier (e.g., a support vector machine) and an
estimated density of benign files. The content is then added to the PDF to match the resulting
“optimal” feature vector as close as possible.

Another attack on PDFRate, EvadeML, described by Xu et al. [2016], uses genetic pro-
gramming to directly modify objects in a malicious PDF. EvadeML starts with a malicious
PDF which is correctly classified as malicious and aims to produce evasive variants which have
the same malicious behavior but are classified as benign. It assumes that the adversary has no
internal information about the target classifier, including features, training data, or the classifi-
cation algorithm. Rather, the adversary has black-box access to the target classifier, and it can
repeatedly submit PDF files to get corresponding classification scores. Based on the scores, the
adversary can adapt its strategy to craft evasive variants.

EvadeML employs genetic programming (GP) to search the space of possible PDF in-
stances to find ones that evade the classifier while maintaining malicious features. First, an initial
population is produced by randomly manipulating a malicious seed. As the seed contains multi-
ple PDF objects, each object is set to be a target and mutated with exogenously specified proba-
bility. The mutation is either a deletion, an insertion, or a swap operation. A deletion operation
deletes a target object from the seed malicious PDF file. An insertion operation inserts an object
from external benign PDF files (also provided exogenously) after the target object. EvadeML
uses three most benignly scoring PDF files for this purpose. A swap operation replaces the entry
of the target object with that of another object in the external benign PDFs.

After the population is initialized, each variant is assessed by the Cuckoo sand-
box [Guarnieri et al., 2012] and the target classifier to evaluate its fitness. The sandbox is used
to determine if a variant preserves malicious behavior. It opens and reads the variant PDF in a
virtual machine and detects malicious behaviors such as API or network anomalies, by detect-
ing malware signatures. The target classifier (PDFRate, for example) provides a classification
score for each variant. If the score is above a threshold, then the variant is classified as malicious.
Otherwise, it is classified as a benign PDF. If a variant is classified as benign but displays mali-
cious behavior, or if GP reaches the maximum number of generations, then GP terminates with
the variant achieving the best fitness score and the corresponding mutation trace is stored in a
pool for future population initialization. Otherwise, a subset of the population is selected for the
next generation based on their fitness evaluation. Afterward, the variants selected are randomly
manipulated to generate the next generation of the population.

'The attacks we described have been demonstrated to be remarkably successful. For exam-
ple, EvadeML was reported to have 100% evasion success rate [Xu et al., 2016].

4.2 MODELING DECISION-TIME ATTACKS

In order to understand decision-time attacks fundamentally and to allow us to reason about
these attacks in general, a number of attempts have been made to model them. Before getting

4.2. MODELING DECISION-TIME ATTACKS 31

into the mathematical details of several natural models of these attacks, we first describe these
conceptually, clarifying some terminology in the process.

An important aspect of a decision-time attack on machine learning, such as the adversarial
evasion attack discussed below, is that it is an attack on the machine learning model, and not on
the algorithm. For example, both a linear support vector machine and the perceptron algorithms
yield a linear classifier, f(x) = sgn(w” x), with feature weights w. From the perspective of a
decision-time attack, we only care about the end result, f(x), and not which algorithm produced
it. This is not to say that the learning algorithm is irrelevant to robustness of learning to such
attacks; rather, one can claim that a particular algorithm zends to generate more robust models
than another algorithm. However, for the purposes of discussing attacks, only the structure of
the model is relevant.

In a prototypical decision-time attack, an adversary is associated with a particular behavior
(e.g., a sequence of commands) or object (e.g., malware) which is being labeled by the learned
model as malicious and is thereby prevented from achieving its goal. In response, the adversary
makes modifications to said behavior or object aiming to accomplish two objectives: (a) fulfill a
malicious objective, such as compromising a host, and (b) significantly reduce the likelihood of
being flagged as malicious by the learned model. A related secondary objective is for the attacker
to minimize the amount of effort spent devising a successful attack.

To get some intuition about decision-time attacks, consider the following simple example.

Example4.1 Consider the following example of adversarial evasion, a decision-time attack on a
binary classifier which flags an instance (say, spam) as malicious or benign. In our example, there
is a single feature, which we simply call x. We use a score-based classifier (see Section 2.1.2),
f(x) = sgn{g(x)}, where g(x) = 2x — 1. In other words, an instance x is classified as spam
if g(x) =0, or x > 0.5, and non-spam otherwise. We visualize this in Figure 4.1, where the
dashed horizontal line represents the g(x) = 0 threshold for classifying an instance as malicious
vs. benign.

Now, suppose that the spammer created a spam email which is represented by a feature
Xspam = 0.7. The associated g(Xspam) = 0.4 > 0, as indicated by the heavy red lines in Fig-
ure 4.1. In the evasion attack, the spammer would change the spam email so that its corre-
sponding numerical feature x’ drops below 0.5, which will ensure that the resulting g(x') < 0
(light red lines in Figure 4.1). In other words, the spam email with feature x’ is now classified
as non-spam.

In the remainder of this chapter we describe how decision-time attacks are commonly
modeled and analyzed mathematically.

32 4. ATTACKS AT DECISION TIME
9(x) 4

g (xS[)Gm)

g(x) =0
gx) <0

-

’
X 0‘ 5 xspam

=

Figure 4.1: Illustration of an evasion attack in Example 4.1.

4.3 WHITE-BOX DECISION-TIME ATTACKS

A major challenge in modeling attacks is the question of what information about the learned
model the adversary possesses. We defer discussion of this for now and assume that the adversary
knows the model being attacked; that is, we start by considering whife-box attacks.

4.3.1 ATTACKS ON BINARY CLASSIFIERS: ADVERSARIAL CLASSIFIER
EVASION

A common abstraction of white-box evasion attacks on binary classifiers begins with three con-
structs. The first is the classifier, f(x) = sgn(g(x)) for some scoring function g(x). The second
construct is an adversarial feature vector x4 corresponding to the feature characteristics of the
behavior, or object, that the adversary wishes to use. Henceforth, we call x4 the ideal instance, in
the sense that this is the attack vector which would be used by the attacker if it were not flagged
as malicious by the classifier f(x). How do we know what x4 is? In practice, we take these to
be examples of previously observed attacks, and would consider how each of these would evade
the classifier. The third construct is the cost function, c(x,x4) which assigns a cost to an attack
characterized by a feature vector x. This cost is meant to capture the difficulty of modifying the
ideal instance x4 into x, which may stem from any source, including, crucially, any degrada-
tion of malicious functionality. Consequently, it is natural that c(x*, x4) = 0 (the adversary
incurs no cost for leaving the point unperturbed), and that cost of x would increase with dis-
tance from x* in feature space. Evasion attacks will, as we will see presently, aim to balance two
considerations: appearing benign to the classifier, either captured by g(x) <0 or f(x) = —1,
and minimizing cost ¢(x, x). Notice that adversarial evasion is fundamentally a zargeted attack
in our terminology, since the adversary wishes to have specific malicious instances classified as
benign.

4.3. WHITE-BOX DECISION-TIME ATTACKS 33

Attack Models 'The most common way to model evasion costs is by using /, distance,
A A
e, x7) = fx =xlp, (4.1)

or its weighted generalization

c(x, x4 = Zajlxj —x]‘-‘l|, (4.2)
J

where the weight «; aims to capture the difficulty of changing a feature j. Most commonly, /o,
I1, I3, or lsc norms are used (with p =0, 1, 2, and oo, respectively). We call all such variations of
cost functions distance-based, as they are based on a measure of distance (I, norm) in feature space
between a modified and original feature vector. An interesting variation on the distance-based
cost function is a separable cost function:

c(x, x4) = max{0, c1(x) — c2 (x4}, (4.3)

which assumes, roughly, that the cost incurred for generating an evasive instance x is indepen-
dent of the target instance x# (modulo the constraint the the final cost is non-negative).

A limitation of distance-based cost functions is that they fail to capture an important
feature of real attacks: substitutability or equivalence among attack features. Take spam detection
as an example. One common way to construct features of spam email text is by using a bag-of-
words representation, where each feature corresponds to the incidence of a particular word. In the
simplest case, a binary feature representation would simply have a 1 whenever the corresponding
word occurs in the email, and 0 otherwise. An attacker may substitute one word for another, say,
using a synonym, without significantly changing the semantics of the message. It is reasonable
that such feature cross-substitution attacks incur a zero cost. To model this, suppose each feature
J has an equivalence class Fj of other features which can be “freely” used as substitutes for j.
The cost function can then be represented as

c(x, x4 = Z min oj|xg — xf|, (4.4)

F; kGFjlx}f‘Gaxk:l

where @ is the exclusive-or, so that x;‘ ® xx = 1 ensures that we only substitute between dif-
ferent features rather than simply add features.

Whatever cost function one uses, the next question is how to represent the tradeoft faced
by the attacker between appearing benign to the classifier, and minimizing evasion cost. Perhaps
the most intuitive way to represent this is through the following optimization problem:

min[min{g(x), 0} + Ac(x. x4, (4.5)

where A is a parameter trading off the relative importance of appearing more benign and incur-
ring evasion costs. Notice that the min{g(x), 0} implies that the attacker obtains zero utility if

34 4. ATTACKS AT DECISION TIME

they are classified as malicious, but benefits from looking more benign (i.e., having a smaller
g(x)). This reflects typical evasion attacks in the security literature, where the attacks explicitly
aspire to appear as benign to the classifier as possible. However, this term also makes the opti-
mization non-convex even if the feature space and g(x) are convex. A natural convex relaxation
is the following alternative objective for the attacker:

rr&in[g(x) + Ae(x, xD)). (4.6)

Another modeling approach is to assume that the attacker cares solely about appearing
benign, without any concern about degree of benignness. This can be captured in a few essentially
equivalent models. One is the following optimization problem:

min c(x, x4) (4.72)

st.: f(x)=-1. (4.7b)

While this model is intuitive, it has the property that the attacker can a/ways succeed as long
as there exists some feature vector x which is classified by f(x) as benign. Consequently, this
model is most useful in the analysis of classifier vulnerability in a modified form where we also
impose a cost budget constraint, C. More precisely, suppose that x* solves Problem 4.7. The
attacker’s decision rule for choosing an attack feature vector x,¢y, is then
Xnew = x; if C(x*’xA) = ¢ (48)
x4 ow.
This is essentially the model used by Dalvi et al. [2004], who term the associated problem min-
imum cost camouflage.
An alternative way to look at this is to have the attacker solve the following optimization

problem:
min[f(x) + Ac(x, x4)] (4.9)

(note the replacement of g(x), which is real-valued, with f(x), which is binary). This problem
yields an equivalent decision rule for the attacker as the one we had just described, with the
budget constraint C = 2/A.

Yet another variation on this theme is the following optimization problem for the attacker:

Inxin g(x) (4108.)
st.: c(x,xd) <cC. (4.10Db)

This also imposes a cost budget constraint on the attacker, but rather than focusing on mini-

mizing the evasion cost, attempts to make an instance look as benign as possible.

4.3. WHITE-BOX DECISION-TIME ATTACKS 35

Several interesting variations on this last optimization framework consider a somewhat
more involved set of constraints on feasible modifications that the adversary can make, and re-
place the objective with the defender’s loss, /(g(x)). The first example, free-range attack, assumes
that the adversary has the freedom to move data anywhere in the feature space. The only knowl-
edge the adversary needs is the valid range of each feature. Let x7"** and x]’-"i” be the largest
and the smallest values that the j feature can take. An attack instance x is then bounded as
follows:

Crx"'™ < xij < Cpx"™* .V}, (4.11)

where Cy € [0, 1] controls the aggressiveness of attacks: Cy = 0 implies that no attack is possible,
while Cy = 1 corresponds to the most aggressive attacks involving the widest range of permitted
data movement.

'The second example, restrained attack, attempts to move the initial malicious feature vec-
tor x4 toward a particular target x’. The adversary can set x’ as a prototypical benign feature
vector, such as the estimated centroid of innocuous data, a data point sampled from the ob-
served innocuous data, or an artificial data point generated from the estimated innocuous data
distribution.

In most cases, the adversary cannot change x4 to x’ as desired since these would com-
promise malicious value of the attack. To capture this intuition, the restrained attack imposes
several constraints that the new evasive instances x must satisfy. First,

(x —xN)o(x! —x4) > 0.

A

'This ensures that modifications are in the same direction from x“ as the target. Furthermore,

this attack places an upper bound on the amount of displacement for attribute j as follows:
t

X

A 1

lxj —xf| < Ce[1—-Cs———

T =E x|+ [x

_ x41|
L) |xf; — xijl. (4.12)

where Cs, C¢ € [0, 1] model the relative loss of malicious utility in proportion to displacement
of original feature vector toward the target. Jointly, these parameters govern how aggressive the

Ix}; —xijl . . .
attack can be. The term 1 — CSW bounds the magnitude of the evasion attack relative
ij ij
to x4 in terms of the original distance between the target and ideal instances: the farther apart

these are, the smaller proportion of |x} — x]‘.4| can be affected by the attacker.

Computing Optimal Attacks Now that we have defined a number of stylized models of ad-
versary’s objectives in evading a classifier, the next question is: how can we actually solve these
optimization problems? We now address this question.

First, observe that if g(x) and ¢(x, x4) are convex in x, and x € R™ are continuous, al-
most all of the above formulations of the attacker’s decision problem are convex, and can there-
fore be solved using standard convex optimization techniques. As a simple example, suppose

36 4. ATTACKS AT DECISION TIME

that g(x) = w”x and ¢(x, x4) = ||x — x4||2 (the squared /» norm). Optimizing Problem (4.6)
would then yield a closed-form solution
2
x*=x4 - Zw.

A

More generally, however, the optimization problems may be non-convex. If we assume
that the feature space is real-valued and the objective is sufficiently smooth (e.g., has a differ-
entiable cost function and g(x)), one of the most basic techniques for solving these to obtain a
locally optimal solution is Gradient descent. To illustrate, suppose the attacker aims to optimize
Problem (4.6). If the gradient of the objective is

G(x) = Veg(x) + Vac(x, x4,
the gradient descent procedure would iteratively apply the following update steps:
X1 = X — B G(x), (4.13)

where B; is the update step. If g(x) and ¢ (x, x4) are sufficiently smooth, second-order methods,
such as Newton-Rhaphson, would be effective as well [Nocedal and Wright, 2006]. Of course,
both of these approaches would yield an optimal solution if the attacker’s problem is convex.

However, commonly the feature space is discrete, or even binary. A simple general-
purpose approach for tackling such problems is a set of methods we collectively call coordinate
greedy (CG). In CG, one first chooses a random order over the features, and then iteratively
attempts to change one feature at a time from the set of possibilities (we assume that this set is
finite, as is typically the case when features are discrete), choosing the best value for this feature
while keeping all others fixed. The process stops either after a fixed number of iterations, or when
it converges to a locally optimal solution.

Often, even a problem with discrete features can have enough special structure to admit
effective global optimization approaches. An example is the approach by Dalvi et al. [2004],
who describe a minimum cost camouflage attack, which can be optimally computed using an
integer linear program. To simplify discussion, we assume in this case that the feature space is
binary (the approach is more general in the original paper). Their attack is specific to a Naive
Bayes (NB) classifier (actually, its cost-sensitive generalization). The NB classifier computes the
probabilities p4(x) = Pr{y = +1|x} and p_(x) = 1 — p4(x), and predicts +1 iff

log(p+(x)) —log(p-(x)) > r

for some threshold r (which can be obtained, for example, by considering relative importance
of false positives and false negatives). Since for the NB classifier Pr{y = +1|x} = Pr{y =
+13[1; Prix;ly = +1}, and similarly Pr{y = —1|x} = Pr{y = —1}[]; Pr{x;|y = —1}, we
can rewrite the decision equivalently as

logPr{y = +1} + ZlogPr{xﬂy =41} —logPr{y = -1} — ZlogPr{xﬂy =—1}>r
J J

4.3. WHITE-BOX DECISION-TIME ATTACKS 37
or
> [logPrix;ly = +1} —log Pr{x;|y = —1}] > r’, (4.14)
J
where
r'=r— (logPr{y = +1} —logPr{y = —1}). (4.15)

Let us define L;(x;) =logPr{x;|y = +1} —logPrix;|y = 1}, L(x)=}_; L;(x;), and
gap(x) = L(x) —r’. gap(x) is significant as it captures the minimal transformation of the log
odds to yield a negative classification of the feature vector, which is to say, to get an instance to
be classified as benign rather than malicious. A crucial observation is that modifications to the
teatures impact classification decision independently through L; (x;). Moreover, we can define
the net impact of flipping the feature x; (changing it from 1 to 0, or from 0 to 1) as

Aj(x;) = Lj(1 —xj)— Lj(xj).

The attacker’s goal is, thus, to induce a total change to an original instance x classified as mali-
cious that exceeds gap(x).

Now we can formulate the attacker’s optimization problem as the following integer linear
program, in which z; are binary decision variables determining whether a feature j is modified:

min Z Z; (4.16a)

j
s.t.: Z Aj(x;l)zj > gap(x); z; € {0, 1}, (4.16b)
J

where x]A is the value of feature j in the original “ideal” adversarial instance x“. This is just
a variation of the Knapsack problem [Martello and Toth, 1990], and can be solved extremely
fast in practice, even though it is NP-Hard in theory Kellerer et al. [2004]. Finally, once the
minimum cost camouflage is computed, the result is compared to the adversary’s cost budget.
'The adversary only implements the associated manipulation x” if the modification from the
original ideal instance is below the cost budget.

Given the difficulty of achieving an optimal solution for the general adversarial optimiza-
tion problems, an alternative approach is to aim for algorithms achieving good worst-case ap-
proximation guarantees. There have been relatively few examples of this, but a noteworthy case
is an algorithm by Lowd and Meek [2005a] for solving Problem (4.7) with a uniform /; cost
function (i.e., oy = 1 for all i in cost function (4.2)). The algorithm starts with an arbitrary be-
nign instance, x = x~. It then repeats two loops until no further changes are possible: the first
loop attempts to flip each feature in x (the current feature vector) which is different from the
ideal instance x4; the second loop attempts to replace a pair of features which are different from
x4 with some other feature which is currently identical in x and x4 (but would thereby become

38 4. ATTACKS AT DECISION TIME

Algorithm 4.1 Lowd and Meek Approximation Algorithm for Evading Linear Classifiers

X < x~
repeat
Xlast < X
for each feature j € Cy do
ﬂip xj
if f(x) = +1 then
ﬂip Xj
end if
end for
for each triple of features j,k € Cy,l ¢ Cx do
flip x;, Xk, x;
if f(x) = +1 then
flip x;, Xk, x;
end if
end for
until x5, = x
return x

different). In either loop, a change is implemented iff the new feature vector is still classified
as benign. Notice that each such potential change in either loop would reduce the cost by 1.
The full algorithm is given in Algorithm 4.1, where Cy is the set of features which are different
between a feature vector x and the ideal instance x“. Lowd and Meek show that this algorithm
approximates the optimal solution to a factor of 2.

4.3.2 DECISION-TIME ATTACKS ON MULTICLASS CLASSIFIERS

Having introduced the basic concepts of decision-time attacks in the context of binary classifiers,
we now procede to generalize these to attacks on multiclass classifiers.

Starting with targeted attacks, suppose that the attacker aims to transform the ideal in-
stance x4 so that it is labeled as a target class . A natural, and very general, model of such

attacks is the following optimization problem:
minc(x, x?) st f(x) =1, (4.17)

where we can additionally impose a cost budget constraint as we had done above. If we wish
instead to consider a reliability attack, we can replace the constraint in model (4.17) with f(x) #
y, where y is the correct label.

4.3. WHITE-BOX DECISION-TIME ATTACKS 39

Typically, however, we have more structure on the multiclass classifier, as it can be com-
monly represented as

f(x) = arg max gy (x) (4.18)

for some score function g, (x) (observe that this is a direct generalization of score-based binary
classification, where f(x) = sgn{g(x)}). In that case, we can transform formulation (4.6) into

max[g;(x) — Ae(x, x)] (4.19)
for a targeted attack, or

mingy (x) + Ac(x, x4)] (4.20)

for a reliability attack (where y is the correct label for x).

Unfortunately, it turns out that this generalization of adversarial evasion to multiclass
classifiers is problematic. To illustrate, consider a targeted attack in which the attacker’s goal
is to ensure that f(x) =t for some target class z. When we solely maximize g,(x), however,
we may also inadvertently maximize g, (x) for some other class y # ¢, with the end result that
g:(x*) < g, (x*) for the optimal solution x* of Problem (4.19). In other words, the attacker
may fail to achieve its goal of inducing a classification of x* as a target class ¢.

To address this issue, observe that to obtain f(x) = ¢ the attacker needs the following
condition to hold:

gt(x)>g,(x) Vy#t.

We can increase robustness of targeted attacks by adding a safety margin of y into this condition,
obtaining
)=y zgx) Vy#r

Rewriting this, we have the condition that
max gy (x) — g:(x) < —y. (4.21)
y#t

Carlini and Wagner [2017] suggest replacing g;(x) in the objective of Problem (4.19) with a
function A(x;t) which has the property that h(x;t) < —y iff Condition (4.21) is satisfied (that
is, iff f(x) = ¢, with the added margin y). One of these which performed particularly well in
their experiments is

h(x;t) = max{—y, max gy (x) — g (%)} (4.22)
We consequently rewrite the optimization problem for the targeted attack as

min[h(x;1) + Ac(x, x4 (4.23)

40 4. ATTACKS AT DECISION TIME

An analogous transformation can be devised for reliability attacks. While the resulting opti-
mization problems are typically non-convex, standard methods, such as gradient descent or local
search, can be applied to solve them [Hoos and Stiitzle, 2004, Nocedal and Wright, 2006].

Attacks on multiclass classifiers have become particularly important with the study of
robustness of deep learning algorithms. We devote Chapter 8 entirely to this topic.

4.3.3 DECISION-TIME ATTACKS ON ANOMALY DETECTORS

Some of the well-known evasion attacks have been deployed not against classifiers, but against
anomaly detection systems. While there are typically major differences in the specific approaches
for anomaly detection and classification (the former being unsupervised, while the latter super-
vised), it turns out that decision-time attacks on anomaly detectors are essentially identical to
evasion attacks on binary classifiers.

To appreciate this, consider the centroid-based anomaly detector with a given u. As
discussed in Section 2.2.4, a feature vector x is viewed as anomalous if ||x — u|| > r. Now,
define g(x) = ||x — || — r. We can see that an instance x is classified as anomalous when
f(x) =sgn{g(x)} = +1 or, equivalently, when g(x) > 0. Consequently, all the attacks we dis-
cussed for binary classifiers are directly applicable here. Similarly, for PCA-based anomaly de-
tectors, we can define

() = lxell =r = T =VVI)x| -, (4.24)

where V (the matrix of eigenvectors produced by PCA) is now given, and again apply standard
techniques for binary classifier evasion.

4.3.4 DECISION-TIME ATTACKS ON CLUSTERING MODELS

Just as decision-time attacks on anomaly detectors are conceptually equivalent to evasion attacks
on binary classifiers, a natural class of decision-time attacks on clustering is equivalent to attacks
on multiclass classifiers.

Let us generically designate a clustering model by partitioning the entire feature space
X into K subsets {Si,...,Sk} corresponding to K clusters. An arbitrary feature vector x
then belongs to a cluster k ift x € Sg. Often, such a cluster assignment can be represented as
k € argmax, g,(x) for some g, (x). For example, suppose that the assignment is based on [,
distance from a cluster mean, with {1, ..., ik} being a collection of cluster means; the com-
mon k-means clustering approach is a special case with p = 2.'Then k € argmin,, ||x — uy |, =
argmaxy [|x — sy [|;". In other words, gy (x) = [lx — sy |

With this in mind, we can now define targeted and reliability attacks on clustering as

A

follows. In a targeted attack, the adversary aims to ensure that the instance x“ is miscategorized

to belong to a target cluster # with an associated cluster mean p,.! Similarly, we can define
IThere may be a question here that in clustering the specific cluster identity is not meaningful. However, note that once a

clustering model has been produced, it induces meaningful cluster identities, for example, as characterized by cluster means
M.

4.3. WHITE-BOX DECISION-TIME ATTACKS 41

a reliability attack as ensuring that the ideal instance no longer falls into its original (correct)
cluster y. Given the definition of g, (x) above, we can model such attacks on clustering in the
same way as we had modeled decision-time attacks on multiclass classifiers.

4.3.5 DECISION-TIME ATTACKS ON REGRESSION MODELS

In decision-time attacks on regression models the attacker, as before, will start with an ideal
feature vector x4, which it aims to transform into another, x’, to accomplish either a targeted or
reliability attack. In the targeted attack, the attacker has a target regression value ¢ and aims to
achieve the predicted value of the regression model, f(x’) as close as possible to ¢. In a reliability
attack, on the other hand, the attacker’s aim is to cause the prediction f(x’) to be far from the
correct prediction y.

We illustrate decision-time attacks on regression through the following example.

Example 4.2 Consider a regression function in one variable x shown in dashes in Figure 4.2,
with x4 the original ideal attack. Suppose the attacker aims to maximize prediction error after
a small modification of x“. In the figure, this can be accomplished by transforming x4 into x’,
with f(x’) 3> f(x4) (for example, skewing a stock price predictor to greatly overestimate the
price of a stock).

J(x) A
fx) - P
A //
f(xY) — ; ‘

>

x4 x' X
Figure 4.2: Illustration of a decision-time attack on regression in Example 4.2.

We can model targeted attacks by considering an adversarial loss function I4(f(x),7)
which measures, from the adversary’s perspective, the error induced by an adversarial instance
x with respect to the adversary’s prediction target . This allows us to recapture the canonical
tradeoff between achieving adversarial aims and minimizing the amount of manipulation faced
by adversaries executing decision-time attacks: the former part of the tradeoff is captured by the
loss function l4(-), while we can capture the latter using the same types of cost functions we

42 4. ATTACKS AT DECISION TIME
discussed above. Thus, the decision-time targeted attack in a regression setting can be modeled
using the following optimization problem:
min I (f(x). 1) + Ac(x, xD). (4.25)
'The analog for a reliability attack is
max [(f(x).y) = Ae(x. x4, (4.26)

where the attacker now attempts to maximize the learner’s loss function /(f(x), y). A common
special case for both the loss and the cost function is the squared /5 norm, i.e., l4(f(x),t) =
/() — 112 and ¢ (x, x4) = [lx — x4]2.

To offer a concrete illustration, let us consider an attack on a linear regression
model [Grosshans et al., 2013]. Suppose that, given a data point (x4, y) and a linear regres-
sion model f(x) = wT x, the attacker aims to bias the prediction toward a target . If we use
(squared) [, norm for both the attacker’s loss and cost functions, the attacker’s optimization
problem becomes

min wTx —1)% 4+ Alx —x4)2. (4.27)

Now, we can more generically apply this attack to a dataset {(x;‘l, ¥i)} with an associated
vector of corresponding targets ¢ (one for each (x71, y;)). Let us aggregate all feature vectors into
a feature matrix X4, and all labels into a label vector y. We can write the above optimization
problem in matrix form to find the optimal transformation of the feature matrix from X4 into
a new one X:

min XAw —)T (XAw —1) + A|X = XA . (4.28)

where ||X — X4|r is the Frobenius norm. We can use first-order conditions to characterize
the attacker’s optimal response to a fixed model parameter vector w; thus, equating the first
derivative to zero, we obtain:

X*w —nw! +X* = X4, (4.29)
or
X* = M 4+ ww) 1w +AX4). (4.30)
Using the Sherman-Morrison formula, we can equivalently write this as
X* =X = A+ [w) ' XAw -’ (4.31)

Each row i in X* thus becomes a transformation of an original ideal feature vector x# into an
attack x.

4.3. WHITE-BOX DECISION-TIME ATTACKS 43

Alfeld et al. [2016] present another interesting variant of attacks on regression models. In
particular, they consider attacks on linear autoregressive (AR) models, which are common mod-
els used for time series analysis and prediction, for example, in financial markets. Specifically,

Alfeld et al. [2016] describe attacks on order-d linear AR models of the form

d
Xj = Z W Xj—k, (4.32)
k=1

where x; € R is the scalar observation at time ;. In this context, the defender’s (learner’s) goal
is to make predictions at time j for the next & time steps, which can be done by applying
Equation (4.32) recursively. The attacker observes, and can modify, the d observations.

In formal notation, suppose that at an arbitrary point in time, the defender’s AR(d) model
makes use of the previous d observations denoted by x = (x_g4,...,x_1), where x_j refers to
the observation k time steps before the decision time point (i.e., if decision point is time j,
then this corresponds to x;_x in Equation (4.32)). The attacker can make modifications to the
observed values which inform the AR model, yielding the corrupted observations x” . At the
same time, modifying a vector of observations incurs a cost, ¢(x, x’).

Just as above, the attacker’s goals may be either a targeted attack or an attack on learner
reliability. We use the targeted attack as an example, where the attacker has a target vector of
predictions ¢ € R which it wishes to induce. Thus, if x”* are h-step predictions made by the
defender, the attacker’s corresponding loss is

x" — 1%, (4.33)

where |[u[|3, = u” Wu is the Mahalanobis norm. Just as in typical models of evasion attacks, it
is natural to model cost as a norm, such as squared /, distance:

c(x,x’) = ||x —x'|3. (4.34)

In this case, we can equivalently represent x’ = x + § for some attack vector §, with the cost
corresponding to ||§]3.

To significantly facilitate analysis of this problem, one can transform it into matrix-vector
notation. First, observe that x; 11 = Sx;, where S is the one-step transition matrix:

S 0p—1 I(h—l)X(h—l)T . (4.35)

T
0 O(h—d—l)xl w

Consequently, the vector of predictions starting at current time j = 0 and through time j =
h — 1 (i.e., over h time steps) is x;—; = S"x_; in our notation, where 8" denotes S to the power
h. Upon adversarial tampering §, we then obtain the tampered result

xp = SM(x_y + 29), (4.36)

44 4. ATTACKS AT DECISION TIME

where

7 — [Or—dyxa] (4.37)
Tixa

Just as discussed above, we can consider a number of attack model variations, with and
without constraints. One simple variation which admits a closed form solution is for the attacker
to solve the following optimization problem:

min IS" (x_1 + Z8) — t]|% + A[|8]|2. (4.38)

Observe that this is just the analog of the Problem 4.25 above, with L4 (f(x),t) = [|S"(x_1 +
Z8) — t||3, and c(x, x*) captured by the squared /, norm. The optimal solution is

§* = —(Q+21)7 "¢, (4.39)
where
Q= (8"2)TW(s"z) (4.40)
and
c =27 SMHTWTShx_, — 27 (S"TWTs. (4.41)

4.3.6 DECISION-TIME ATTACKS ON REINFORCEMENT LEARNING

A decision-time attack in the context of reinforcement learning would fundamentally be an at-
tack on the model learned using RL. Most directly, it is an attack on the po/icy, (x), which maps
an arbitrary state x into an action a or, if the policy is randomized, to a probability distribution
over actions A. The attacker attempts to make modifications to observed state x in a way that
leads the defender to make a poor action choice. Suppose that the attacker targets a particular
state x which it would transform in an attack to another state x’. Just as in the other attacks,
the attacker may have two goals: in a targeted attack, the attacker wants the learned policy 7 to
take a target action a;(x) (and the target action can be different for different states), while in a
reliability attack the attacker aims to cause the learner to take a different action from the one
taken by the learned policy 7 (x).

Considering targeted and reliability attacks defined above may appear unnatural for RL: a
more natural attack would seem to be to minimize either the direct reward for an action taken in
state x, or the expected future stream of rewards. We now show that if the learned model is near-
optimal, we can view such attacks equivalently as targeted attacks. Recall that the Q-function
Q(x,a) is defined precisely as the expected stream of future rewards in state x if action a is taken,

4.4. BLACK-BOX DECISION-TIME ATTACKS 45

followed subsequently by an optimal policy. If the attacker assumes that, indeed, the defender is
playing near-optimally, and if we define @ = arg min, Q(x, a), then the attack minimizing the
expected stream of rewards is equivalent to a targeted attack with the target action a,;(x) = a.
We can deal with the case where the attacker aims to minimize immediate reward similarly.

'The next question is: how can we fully model attacks on RL as optimization problems, and
how would we solve such problems? We now observe that the targeted and reliability attacks on
RL are essentially equivalent to such attacks on multiclass classifiers. To see this, observe that if
we assume a greedy policy with respect to a Q-function, then the policy can be defined as

m(x) = argmax Q(x,a). (4.42)
Now, if we treat a as a predicted class and define g,(x) = Q(x,a), we can rewrite this as
7(x) = argmax g, (x), (4.43)
a

which is identical to the score-based definition of multiclass classifiers we discussed earlier. Con-
sequently, we can implement targeted and reliability attacks on RL by using identical machinery
as for decision-time attacks against multiclass classifiers.

4.4 BLACK-BOXDECISION-TIME ATTACKS

White-box decision-time attacks highlight potential vulnerabilities of learning approaches.
However, they rely on an assumption that the attacker knows everything there is to know about
the system, an assumption which is clearly unrealistic. In order to fully understand vulnerabili-
ties, we now discuss situations where the attacker has only partial information about the learning
system, conventionally called black-box attacks.

There are two core issues in understanding black-box decision-time attacks: (1) how to
categorize partial information the attacker may have about the system and what can be accom-
plished with this information; and (2) how to model the way that the attacker can obtain in-
formation. We address the first question by describing a comprehensive taxonomy of black-box
decision-time attacks. We then discuss a natural guery framework within which an adversary can
obtain information about the learning model, focusing our discussion on the adversarial evasion

problem.

4.4.1 ATAXONOMY OF BLACK-BOXATTACKS

As we observed earlier, decision-time attacks are attacks on the learned model, f. Consequently,
black-box attacks are fundamentally about information that the attacker possesses, or can infer,
about the actual model f used by the learner.

In Figure 4.3, we present a visualization of our taxonomy of black-box decision-time at-
tacks. Given that decision-time attacks are attacks on models, the taxonomy is centered around

46 4. ATTACKS AT DECISION TIME

! Attacker Knows Features
(7 @ @J cD:u . Knows data;
proxy algorithm i

E ’@’@j Proxy/partial data E
| —
@ & @ i
N~ '

Less Informed (partial order)

No Useful

Information

Q
@ @ @ i Approximate Features

’ ’ i Knows everything
i @ @ @ but features
B ’ ’
(7
: Proxy/partial data;
: ,@,@ approximate features

A\

i @ @ ED:' @ Approx. features; E
: ’ proxy algorithm
i — Approx. features; :
i @} ED:' proxy/partial data; |
1 ’ i

proxy algorithm) \

Less Informed (partial order)

<

Figure 4.3: A schematic of the hierarchy of black-box decision-time attacks. F denotes the true
teature space, f the true model used by the learner, A the actual learning algorithm, and D
the dataset on which f was learned by applying A. f is an approximate (proxy) model, F is an
approximate feature space, A a proxy algorithm, and D a proxy or partial dataset, with all proxies
derived or obtained where corresponding full information is unavailable.

information the attacker may have about the model, including the feature space used. This serves
as the organizing principle behind our taxonomy.

In the white-box attack, the attacker knows both the feature space, which we denote by
F, and the true model f. Equivalently, it suffices for the attacker to know the dataset D with
teature set F on which the learner applied the algorithm A to derive the model f by running
A on D (assuming that A is deterministic). On the other hand, if any of F, D, and A are not
known exactly, the attacker can only obtain a proxy model f which approximates the true target

4.4. BLACK-BOX DECISION-TIME ATTACKS 47

model f. Additionally, an approximate model f can represent query access to a true model,
which we discuss in greater detail below.

Let’s start with an attacker who knows the feature set F. If the attacker also knows the
dataset, they can use a proxy algorithm to derive a proxy model f. Consequently, we arrive at
the information state [F, f] (attacker knows features, and has a proxy model). We generally
expect this approach to be quite effective in classification learning: as long as both f and f are
highly accurate, they are necessarily similar in expectation. Formally, suppose that /(x) is a true
function both f and f(x) try to fit using data D, and suppose the error rate of both f and fis
bounded by €. Then,

Pr{f(x) #f(0)} = Prilf(x) # h(x) A f(x) = h()]V [f(x) = h(x) A f(x) # h(0)]}
< PR/ (x) # h(x) A () = h()l} + Pr{lf(x) = h(x) A f(x) # h(0)]}
< Pr{/(x) # h(x)} + Pr{f (x) # h(x)} < 2e.

Now, even if the attacker only has a proxy dataset D, they can still infer a proxy model f by
running either the same algorithm as the learner, or a proxy, on D. Thus, we still arrive at the
information state [F, f]. The success of such an attack now depends largely on how good an
approximation D for the true data D; for example, if they are both large enough, and come from
a similar distribution over instances, we expect f to remain a good approximation of model f.2
Note that the same ideas can be used even if the attacker does not know the true feature
space, but only uses a proxy F. Now, whether they know the data or the algorithm, the attacker
can still obtain an approximate model f, yielding a somewhat lower information state [F, f]
than in the scenarios above. However, the difference between knowing F and F is vital: if the
proxy feature space is very different from F, the attack may be much less likely to succeed.
Moving further toward the no-information extreme, the attacker may only have knowl-
edge of F, the features. In this case, an attacker may still be able to execute a mimicry attack:
for example, given a raw malicious instance (such as malware), and a small collection of benign
instances, the attacker can attempt to manipulate the malicious instance directly to make its
features close to those for benign instances. A mimicry attack can also be executed with a proxy
feature set F, but here again it is unlikely to succeed unless Fisa sufficiently good proxy for
F. Finally, the attacker may know nothing about features, but may have query access to the
true model—an information state we also denote by f. In this case, the attacker may be able
to directly manipulate the malicious instance (for example, adding and removing objects from
a malicious PDF file), repeatedly querying the model to ascertain whether the modification
suffices to bypass the detector. This was the nature of the EvadeML attack [Xu et al., 2016].

2We note that this formalization only offers intuition about effectiveness of attacks designed against f in succeeding against
the true target f. Since the argument is about expectations, it is possible for two functions to be very similar in this sense,
but sufficiently different for purposes of attacks.

48 4. ATTACKS AT DECISION TIME
4.4.2 MODELING ATTACKER INFORMATION ACQUISITION

One of the earliest treatments of black-box attacks suggested a natural query model: the attacker
has black-box query access, whereby they can submit feature vectors x as input, and observe the
label f(x) assigned by the learner (for example, whether a classifier considers x as malicious).
Henceforth, we focus our discussion of query models on the problem of adversarial evasion of
binary classifiers.

'The most basic algorithmic problem in this query model, proposed by Lowd and Meek
[2005a], is to solve (either exactly, or approximately) the optimization problem (4.7) (minimiz-
ing weighted /; evasion cost, subject to being misclassified as benign) with a polynomial number
of queries to the classifier f(x). They term this problem ACRE Learnability (ACRE stands for
adversarial classifier reverse engineering). Lowd and Meek [2005a] show that this is NP-Hard if
the feature space is binary even when f(x) is linear. However, Algorithm 4.1 that we described
earlier in the context of white-box attacks can actually also be used in this query model, obtaining
a 2-approximation. A follow-up study on learnability showed that convex-inducing classifiers
are also approximately ACRE learnable, albeit over a continuous feature space [Nelson et al.,
2012].

'The advantage of the query model is that it does not aim to directly approximate the clas-
sifier f(x), but only “asks” a series of specific, but possibly costly questions (hence learnability in
terms of the number of queries, which is viewed as the costly operation). An alternative approach
one may consider is to first use queries to approximately learn (reverse engineer) f(x), and then
solve problem (4.7) (which no longer requires expensive queries). However, even learning linear
classifiers is NP-Hard unless the target function is also linear [Hoffgen et al., 1995], so this
route appears no less challenging.

Fortunately, from an attacker’s perspective the learning problem is very special: in our
query model, the labels correspond to actual classification decisions with no noise, and, more-
over, a classifier being reverse engineered has itself been learned! This property should be sufficient
to make reverse engineering easy.

To formalize this intuition, we can appeal to the well-known concept of polynomial learn-
ability. Recall from Chapter 2 that (informally) a hypothesis class F is learnable if we can com-
pute a nearly-optimal candidate from this class for an arbitrary distribution P over data. In our
context, learning will be performed at two levels: first, by the “defender,” who is trying to dis-
tinguish between good and bad instances, and second, by an “attacker,” who is trying to infer
the resulting classifier. We call the attacker’s learning task the reverse engineering problem, with
an additional restriction: we require the attacker to be within a small error, y, with respect to

the actual model f used by the defender.

Definition 4.3 We say that a distribution P over data (x, y) can be efficiently y-reverse en-
gineered using a hypothesis class F if there is an efficient learning algorithm L(:) for F with
the property that for any €,8 € (0, 1), there exists mg(e, §), such that for all m > mg(e, §),
Promple(L(z™)) <y +€e} = 1-46.

4.4. BLACK-BOX DECISION-TIME ATTACKS 49

As the following result demonstrates, efficient learning directly implies efficient O-reverse
engineering.

Theorem4.4 Suppose that F is polynomially (PAC) learnable, andlet f € F. Then any distribution
over (x,y) withx ~ P for some'P and 'y = f(x) can be efficiently O-reverse engineered.

This result is an immediate consequence of the definition of learnability. Thus, insofar as
we view the (empirical) efficiency of the defender’s learning algorithm as a practical prerequisite,
this result suggests that reverse engineering is easy in practice. Moreover, this idea also suggests
a general algorithmic approach for reverse engineering classifiers:

1. generate a polynomial number of feature vectors x,
2. query the classifier f for each x generated in step 1; this yields a dataset D = {x;, y;}, and
3. learn f from D using the same learning algorithm as applied by the defender.

'The key limitation, of course, is that this approach implicitly assumes that the attacker knows
the defender’s learning algorithm, as well as feature space. We can relax this restriction by using a
proxy algorithm A and a proxy feature space F for this procedure, but clearly it may significantly
degrade the effectiveness of the approach.

In a variation of this query model the adversary can observe classification scores g(x) for
queried instances x rather than only the classification decisions f(x). Since we can translate
classification scores into classification directly, all of the results about reverse engineering carry
over. In practice, however, the classification scores are typically easier to learn.

4.4.3 ATTACKING USING AN APPROXIMATE MODEL

Even if we are able to obtain a reasonably good estimate of the decision function f(x) or scoring
function g(x), it is never exactly correct. Let’s denote the approximation of the scoring function
by g(x). One approach is to simply use either F(x), or the approximate score g(x), in an opti-
mization problem used for white-box attacks. However, an attacker may wish to be somewhat
more conservative to ensure that the attack is most likely to succeed. We now describe an ap-
proach to explicitly account for such model uncertainty in the context of the special case of
adversarial evasion.

In an evasion attack, one way for the attacker to hedge against uncertainty is to incorporate
a term which scores similarity of a modified instance x to benign feature vectors. To this end,
the following intuition is helpful: we would expect that a successful attack should appear to be
reasonably likely to be benign, based on typical benign data. To make this precise, suppose that
pb(x) represents a density function of feature vectors x from the benign class. The attacker’s
optimization problem can then be modified by including the density term as follows (in the case

50 4. ATTACKS AT DECISION TIME
of Problem (4.6)):

min g(x) + Ac(x, x4) = Bpy (). (4.44)

Here, observe that in addition to the conventional tradeoff between attack goal (captured by
&(x)) and cost (captured by c(x, x4)), we attempt to also maximize the likelihood of x being
benign, based on the density of benign data pj(x).

One may naturally wonder how we can obtain (or approximate) the density function
Pp(x). One way, suggested by Biggio et al. [2013], is by applying kernel-based nonparamet-
ric density estimation, using a dataset of known benign instances D_, where

p) =3 k(= ;xi), (4.45)

ieD_

where k(-) is the kernel function, and / the kernel smoothness parameter.

4.5 BIBLIOGRAPHICAL NOTES

Important early examples of evasion attacks termed polymorphic blending attacks on anomlay
detection models are presented by Fogla et al. [2006], and then significantly generalized by
Fogla and Lee [2006]. Our discussion of polymorphic blending attacks attacks is based on these
efforts. The more recent attack on PDF malware classifiers using genetic programming was
described by Xu et al. [2016], which is the source of our discussion on that topic.

The earliest algorithmic treatments of classifier evasion are due to Dalvi et al. [2004] and
Lowd and Meek [2005a]. Dalvi et al. [2004] considered both the evasion attack which they
termed minimum cost camouflage, and the meta-problem of developing a more robust classifier
that we tackle in the next chapter. Lowd and Meek [2005a] introduce a number of seminal
models and results, including problem (4.7) as a model of the attacker’s decision problem, and the
ACRE learnability concept. They also propose algorithmic approaches to ACRE learnability for
linear classification models, including the two-approximation result for polynomial learnability
over a binary feature space. Nelson et al. [2012] extend ACRE learnability results by considering
convex-inducing classifiers—that is, classifiers which induce some convex classification region,
either for the positive or the negative examples. Our discussion of learning proxy models in a
black-box attack setting is closely related to the more recent discussion of black-box attacks and
transferability in deep learning [Papernot et al., 2016c].

Barreno et al. [2006] and Nelson et al. [2010] consider models of attacks on machine
learning, as well as the issue of “defending” classifiers, or amending standard algorithms to pro-
duce classifiers that are more robust to evasion. A number of efforts by Biggio et al. [2013,2014b]
introduce several variations of attack models and associated optimization problems [Zhang et al.,
2015], and were the first to develop attacks against nonlinear classification models. The separa-

ble cost function was introduced by Hardt et al. [2016]. Li and Vorobeychik [2014] discuss the

4.5. BIBLIOGRAPHICALNOTES 51

idea of feature substitution, and introduce a cost function to capture it. They also demonstrate
the deliterious impact that feature reduction may have on classifier robustness to evasion at-
tacks, particularly when features can be substituted for one another. Zhou et al. [2012] describe
free-range and restrained attack models.

Evasion attacks on multiclass classifiers have been studied largely in the context of deep
learning (see, e.g., Carlini and Wagner [2017]), where we borrow some of the modeling ideas).
We take these up in greater detail, with more comprehensive bibliographic notes, in Chapter 8.
'This, incidentally, is where we’ll also discuss evasion attacks against reinforcement learning mod-
els, which have not seen much work outside of deep reinforcement learning.

There has been relatively little work on evasion attacks against regression models. Our
discussion for linear regression follows Grosshans et al. [2013], who derive the attack in the more
general case which includes uncertainty about the attacker’s cost-sensitive learning model. We
omit both the cost-sensitive aspects of the model, and the associated uncertainty, to streamline
the discussion. In any case, arguably the more significant aspects that are uncertain to the learner
in the context of an evasion attack are (a) how the attacker trades off evasion cost and goals, and
(b) what the target is in the targeted attack. To the best of our knowledge, none of these issues
have been considered in prior literature. The attack on linear autoregressive models which we
describe is due to Alfeld et al. [2016].

Lowd and Meek [20052], along with foundational modeling ideas, also introduced the
first query-based black-box attack on classifiers, and follow-up work on ACRE learnability takes
the same modeling approach. Vorobeychik and Li [2014] discuss classifier reverse engineering
more generally, and the result about 0-reverse engineering of efficiently learned classifiers is due
to them. The definition of learnability in that section is adapted from Anthony and Bartlett
[2009].

53

CHAPTER 5

Defending Against
Decision-Time Attacks

In the previous chapter we discussed a number of classes of decision-time attacks on machine
learning models. In this chapter, we take up the natural follow-up question: how do we defend
against such attacks? As most of the literature on robust learning in the presence of decision-time
attacks is focused on supervised learning, our discussion will be restricted to this setting. Addi-
tionally, we deal with an important special case of such attacks in the context of deep learning
separately in Chapter 8.

We begin this chapter by providing a general conceptual foundation for the problem of
hardening supervised learning against decision-time attacks. The remainder of the chapter is
organized as follows.

1. Optimal Hardening of Binary Classifiers: this section addresses the problem of making
binary classifiers robust to decision-time (mostly, evasion) attacks, and focuses on several
important special cases which can be solved optimally.

2. Approximately Optimal Classifier Hardening: here, we present methods which are sig-
nificantly more scalable, and in some cases much more general, but are only approximately
optimal.

3. Decision Randomization: this part of the chapter describes how to develop an approach
which hardens general classes of binary classifiers through principled randomization.

4. Hardening Linear Regression: finally, we briefly describe a method for hardening linear
regression against decision-time attacks.

5.1 HARDENING SUPERVISED LEARNING AGAINST
DECISION-TIME ATTACKS

Let us first recall the learning objective when we are not concerned with adversarial data ma-
nipulation. This goal is to learn a function f with the property that

Ey~pl(f(x).)] S E@p~pll(f'(x).)] ¥ f'eF,

where P is the unknown distribution over data. The term E(y ,)~p[/(f(x),y)] is commonly
termed expected risk of a classifier f, and we denote it by R(f). In traditional learning, both

54 5. DEFENDING AGAINST DECISION-TIME ATTACKS

the training data, as well as future data on which we wish to make predictions, is distributed
according to P.

In adversarial supervised learning, we assume that there is a particular way the distribution
of future data is modified as compared to training data: for instances in an adversarial target
set § € X x), the adversary modifies the corresponding feature vectors to cause prediction
error (either to match another target label, as in a targeted attack, or to maximize error, as in a
reliability attack).

Let’s represent decision-time attacks abstractly as a function A(x; f) which maps feature
vectors, along with the learned model, to feature vectors, that is, taking original feature vectors
that they would ideally wish to use (as represented by the training data or the distribution P from
which it is drawn), and modifying them into new feature vectors aimed at changing the predicted
label of the learned function f. The resulting expected adversarial empirical risk, R4(f') for a
given function f is

Ra(f) = Exy)~pl(f(Alx:). »)I(x, y) €] « lj)ip{(x,y) €S}

+ EGey)~p[(f (), PI(x, y) 5] Pr{(x,y) £S5 G-V
(x,y)~P
Notice that we split the adversarial risk function into two parts: one corresponding to adversarial
instances, which behaves according to the model we encode by the function .4, and another for
non-adversarial instances which are unchanged. The goal is then to solve the adversarial empirical
risk minimization problem

ereig Ra(f). (5.2)

Of course, just as in traditional learning, Problem (5.2) cannot be solved without knowing
the distribution PP. Instead, we assume the existence of a training data set D = {x;, y; }_,, which
we use as a proxy. In particular, we define the adversarial empirical risk function R 4(f) as

Ra(f)= D> ISfAEOD+ D 1)) (5.3)

i€D:(x;,y;)€S i€D:(x;,y;)ES

Then, we approximate Equation (5.2) with the following optimization problem:

R = minRa(f) + p(f), (5.4)

where p(f) is a standard regularization function as in traditional learning, and 7%;*1 is the mini-
mum empirical adversarial risk.

A useful way to view the problem of hardening learning against decision-time attacks
is as a Stackelberg game. In a Stackelberg game, there are two players: a leader and a follower.
The leader moves first, making its strategic decision, which is then observed by (or becomes

known to) the follower. The follower then proceeds to make its own choice, at which point

5.1. HARDENING SUPERVISED LEARNING AGAINST DECISION-TIME ATTACKS 55

the game ends and the payoffs are realized to both players. In our setting, the leader is the
learner, whose strategic choice is the model f. The follower is the attacker, who observes f,
and chooses an optimal decision-time attack, which we represent by the mapping A(x;; f)
for each instance (x;, y;) € S, where {x;} encode the attacker’s original “ideal” feature vectors.
'The solution to the Stackelberg game is a Stackelberg equilibrium, in which the combination of

{fAAXG:)}ilxg,v)es) are such that

1. A(xi; f) is a best response to f for each i|(x;, y;) € S (that is, the attacker is optimizing
given x; and f, per one of the attack models in Chapter 4), and

2. f minimizes the adversarial empirical risk.

'The approaches we discuss in this chapter are either computing a Stackelberg equilibrium of this
game for some pre-defined attack model and learner, or approximating it.

Example 5.1 Consider a simple one-dimensional feature space x € [0, 1] and a data set of
two examples, D = {(0.25, benign), (0.75, malicious)}. Our goal is to find a threshold r on x
to robustly distinguish benign and malicious examples. In our case, any x > r is considered
malicious, and x < r is benign. Moreover, for any such threshold, the attacker would aim to
minimize the change in x necessary to be classified as benign, subject to a constraint that the
total change is at most 0.5 (corresponding to the Equation (4.7) with the additional budget
constraint C = 0.5). The example is visualized in Figure 5.1. Consider first a natural baseline in
which the threshold r = 0.5 is chosen to be equidistant from the benign and malicious instance
(this is an example of maximum margin classification which is at the root of support vector
machines Bishop [2011]). Since the attacker can easily change the instance to be just below
0.5, this threshold is not evasion-robust (the attacker can succeed in evading the classifier).
However, an alternative threshold r = 0.25 is robust: if we assume that the attacker breaks ties
in the learner’s favor, the attacker cannot successfully evade the classifier since they can change
the original feature by at most 0.5, and the learner will have perfect accuracy even after an evasion
attack.

|
5 0.75 1

0 ofs 0.
Benign

Figure 5.1: Example: evasion-robust binary classification (Example 5.1).

Malicious

Example 5.1 highlights an interesting issue of tie-breaking. In fact, we use a refinement
of the Stackelberg equilibrium concept known as a Strong Stackelberg equilibrium (SSE), where

56 5. DEFENDING AGAINST DECISION-TIME ATTACKS

ties among best responses for the attackers are broken in the learner’s favor [Tambe, 2011]. The
technical reason for this is that an SSE is always guaranteed to exist. A conceptual reason is
that it is typically possible for the learner to make small changes in its decision f to make the
attacker strictly prefer its equilibrium choice with minimal impact on the defender’s loss. For
example, if in Example 5.1 the attacker’s cost was C = 0.4, then the optimal threshold would
be r = 0.35, and the learner can always make r = 0.35 — € for an arbitrarily small € and ensure
that a successful attack is infeasible without sacrificing accuracy.

An important concern about the Stackelberg game model above is that the adversary may
not know the classifier f if it’s a black-box attack. However, note that if we are interested in
robust learning, it is reasonable to assume that the attack is white-box: first, the learner knows
the model f, and second, robustness to a white-box attack implies robustness to a black-box
attack. Another caveat is that the actual game is with respect to an unknown distribution of
the attackers. In practice, we can use the training dataset as a proxy for this distribution, as is
standard in learning.

5.2 OPTIMAL EVASION-ROBUST CLASSIFICATION

We begin discussion of approaches for hardening learning against decision-time attacks by con-
sidering optimal evasion-robust binary classification, in the sense of minimizing adversarial em-
pirical risk (AER). In this case it is useful to consider the data set as split into two parts: D,
which corresponds to instances with y; = +1 (malicious instances), and D_, corresponding to
yi = —1 or y; = 0 (bening instances, depending on how the classes are coded).

5.2.1 OPTIMAL EVASION-ROBUST SPARSE SVM

We start by presenting an optimal evasion-robust binary classification algorithm that can be
applied to most of the evasion attack models described in Chapter 4. This algorithm, due to Li
and Vorobeychik [2018], is specific to a linear support vector machine binary classifier with /4
regularization.

Since adversaries correspond to feature vectors x; which are malicious (and which we
interpret as the “ideal” instances x4 of the adversary), we henceforth refer to a given adversarial
instance by its index i. We now rewrite the adversarial empirical risk minimization problem
in the case of /; regularized SVM as a bi-level program in which the learner first chooses the
weights w and the attacker modifies malicious instances x; (i.e., i € D) into alternatives, X;,
in response:

5.2. OPTIMAL EVASION-ROBUST CLASSIFICATION 57

min dh=LwTx) + > L(Lw' %) + 8||wl], (5.5)
ieD_ i€D
st.: Vie D+,
z; = argmin l4(x, x;; w)
x|h(x;w)<0
~ { Zj Z; € Ci
X = .
Xi otherwise,

where lh(y,wa) = max{0, 1 — wax} is the hinge loss, I4(x,, x;;w) is an adversarial loss
function that the attacker wishes to minimize (which may depend on the learning parame-
ters w), subject to constraints 2(x; w) < 0, and C; is the set of feasible attacks for an adversarial
instance i. An example of the constraints & (x;w) <0 is wT x <0, that is, the attacker wishes
to ensure that they are classified as benign.

As we can see in the formulation, the decision of the attacker depends on whether or not
its budget constraints are satisfied by the optimal adversarial instance (for example, whether it’s
so far from the original malicious instance that its malicious utility is largely compromised).
This is represented by the constraint that X; = z; if z; € C;, and otherwise the attacker does
not change their original feature vector x;. A natural example of a budget constraint is C; =
{z|c(z,x;) < C}, where C is the attacker’s cost budget.

'The power of our approach and the formulation (5.5) is that it admits, in principle, an
arbitrary adversarial loss function l4(x, x;; w), and, consequently, an arbitrary cost function. The
methods described below will generalize as long as we have an algorithm for optimizing the
adversary’s loss given a classifier.

In order to solve the optimization problem (5.5) we now describe how to formulate it
as a (very large) mathematical program, and then propose several heuristic methods for mak-
ing it tractable. The first step is to observe that the hinge loss function and ||w||; can both be
easily linearized using standard methods. We therefore focus on the more challenging task of
expressing the adversarial decision in response to a classification choice w as a collection of linear
constraints.

Consider the adversary’s core optimization problem which computes

z; = argmin l4(x, x;; w) (5.6)
x|h(x;w)<0
when z; € C;, and with z; = x; otherwise.

Now define an auxiliary matrix 7 in which each column corresponds to a particular attack
teature vector x’, which we index using variables a; thus, Tj, corresponds to the value of feature
J in the attack feature vector with index a. Define another auxiliary binary matrix Q where
Qai = 1 iff the attack strategy a € C for the attack instance i.

Next, define a matrix L where L,; is the attacker’s loss from the strategy a for an adver-
sarial instance i. Finally, let z,; be a binary variable that selects exactly one feature vector a for

58 5. DEFENDING AGAINST DECISION-TIME ATTACKS

the adversarial instance i. First, we must have a constraint that z,; = 1 for exactly one strategy
a:) ,zai = 1V i. Now, suppose that the strategy a that is selected is the best available option
for the attack instance i; it may be below the cost budget, in which case this is the strategy used
by the adversary, or above budget, in which case x; is used. We can calculate the resulting value
of w!'%; inside the loss function corresponding to adversarial instances using

wi's = e = Zzain(QaiTa + (1 = Qai)xi). (5.7)

This expression introduces bilinear terms zqgiwT, but since zg4; are binary, these terms can be
linearized using McCormick inequalities [McCormick, 1976].

To ensure that z,; selects the strategy which minimizes the adversary’s loss /4(-) among
all feasible options, captured by the matrix L, we can introduce constraints

ZzaiLai <Lyi+M(1A—-ry) Va/a
a

where M is a large constant and r, is an indicator variable which is 1 for an attack strategy a
iff h(T,; w) < 0 (that is, if feature vector x associated with the attack a, satisfies the constraint
h(x; w) < 0). We can calculate r, for all a using constraints

(I =2ra)h(Ta: w) < 0.

'The resulting full mathematical programming formulation is shown below:

min Y max{0,1 - w'x;} + Y max{0.1+ e} + 8wl (5.8a)
I D ieDy

st.: Ya,i,j:zgi,rq €{0,1} (5.8b)
Zzi(a) =1 (5.8¢)
Vi:e = Zmai(QaiTa + (1 = Qai)xi) (5.8d)

a

Va,i,j:—Mzgi <mgij < Mzg; (5.8¢)
Va,i,j:wj — M(1 —z4i) <mgij < wj + M(1—2z4) (5.8f)
Va'.i) zaiLai < Lai + M(1=ra) (5.82)
Va: (1 —=2r))h(T,;w) <0. (5.8h)

Variables m; allow us to linearize the Constraints (5.7), replacing them with Constraints (5.8d)-
(5.8f). Constraint (5.8h) is the only nonlinear constraint remaining, and depends on the specific
form of the function /(7,; w); we deal with it below in two special cases of attack models.

As is, the resulting mathematical program is intractable for two reasons: first, the best
response must be computed (using a set of constraints above) for each adversarial instance i, of

5.2. OPTIMAL EVASION-ROBUST CLASSIFICATION 59

which there could be many, and second, we need a set of constraints for each feasible attack action
(feature vector) x (which we index by a). We can tackle the first problem by clustering the “ideal”
attack vectors x; into a set of clusters and using the mean of each cluster as the ideal attack x4 for
the representative attacker. This dramatically reduces the number of adversaries and, therefore,
the size of the problem. To tackle the second problem, following Li and Vorobeychik [2018], we
can use constraint generation to iteratively add strategies a into the above program by computing
optimal, or approximately optimal, attack strategy to add in each iteration.

Algorithm 5.2 AdversarialSparseSVM(X)

T =init() // initial set of attacks
D’ <« cluster(D)
wo < MILP(D', T)
w < Wy
while 7' changes do
fori € D do
t =computeAttack(x;, w)
T« TUt
end for
w <« MILP(D', T)
end while
return w

'The full iterative algorithm using clustering and constraint generation is shown in Algo-
rithm 5.2. The matrices Q and L in the mathematical program can be pre-computed in each
iteration using the matrix of strategies and corresponding 7', as well as the set of constraints C;.
'The computeAttack() function generates an optimal attack by solving (often approximately) the

optimization problem z; = argmin /4 (x, x;; w).
X€C;

Note that convergence of this algorithm is only guaranteed if the full feature space is
finite (although it need not be fast). When features are continuous, the constraint generation
algorithm need not converge at all, although it likely would in most cases reach a point where
new iterations result in very small changes to the classifier.

Next, we illustrate this approach in the context of two of the adversarial models described
in Chapter 4. As we show below, both can be formulated as mixed-integer linear programs.

The first model we consider, extending Problem (4.7) in Chapter 4, minimizes the ad-
versary’s cost ¢(x, x;) subject to the constraint that w”x < 0, that is, that the adversarial in-
stance is classified as benign. The extension discussed there is to also impose the cost con-
straint C; = {x|c(x,x;) < C}. In the notation above, this means that the adversary’s loss is just
La(x, xi;w) = c(x,x;). The cost budget constraint can be handled directly by the mathemati-
cal program described above. The nonlinear constraint (5.8h) now becomes (1 — 2r,)w’ T, < 0.

60 5. DEFENDING AGAINST DECISION-TIME ATTACKS

While this constraint again introduces bilinear terms, these can be linearized as well since 7, are
binary. In particular, we can replace it with the following constraints:

Va: Y wiTia <2 Tialaj
J J

Va,j :—Mrg <tzj < Mr,
Va,j:wj —M(l —ry) <tgj Sw; + M(1—ry),

(5.9)

where we introduce a new variable #,; to assist in linearization. The full mathematical program
for adversarial empirical risk minimization in a sparse SVM thus becomes a mixed-integer linear
program (MILP) in the context of this attack model. Finally, we can implement the iterative
constraint generation approach by executing a variant of the Lowd and Meek algorithm (Algo-
rithm 4.1) in each iteration in response to the classifier w computed in the prior iteration.

Our second example is the evasion attack model described by Equation (4.6). In this
case, adversarial loss becomes I4(x,x;; w) = wT x 4+ ¢(x, x;). There is no constraint C;, and
h(x;w) = 0, which also eliminates the nonlinear constraint (5.8h). The attacker’s best response
computation comupteAttack() can be calculated by using a coordinate greedy algorithm (see
Chapter 4). Thus, again, we obtain a MILP for computing an optimal learning algorithm for
minimizing adversarial empirical risk.

5.2.2 EVASION-ROBUST SVM AGAINST FREE-RANGE ATTACKS

Our next special case of robust learning considers the free-range attack described in the previous
chapter. An important characteristic of this attack is that the attacker’s goal is to maximize the
loss corresponding to adversarial instances in the training data (as a proxy for adversarial risk),
subject to a collection of linear constraints. This allows for a tractable extension of the linear
SVM optimization problem, where f(x) = w’x + b for the weight vector w and bias term b
(note that we make the bias explicit in this formulation, as the corresponding constant 1 feature
would not be subject to an attack).
We start with the adversarial hinge loss, defined as follows:

max max{0,1 — (w’ % + b)} if y; = +1
h(w,b,xi) = Xi

0,1+ w'x; +b)} ify; = —1 (5.10)
s.t. : Cfxmin < X < Cpxmax,

Following the standard SVM risk formulation, we then obtain
mi}? Z max {0, 1 + (wlx; + b)} + Z max max {0, 1 — wT% + b)} + Sllw|>. (5.11)
w, . . X
1€D— 1€D4

Combining cases for positive and negative instances, this is equivalent to:

1
min) maxmax {O, 1—yi(wlx; +b)— E(l + ywl (Fi —xi) '+ 8l|lw]|*. (5.12)

w,b = X
i

5.2. OPTIMAL EVASION-ROBUST CLASSIFICATION 61

'This is a disjoint bilinear problem with respect to w and ;. Here, we are interested in discovering
optimal assignment to X; for a given w.

'The first step is to note that the worst-case hinge loss for a given data point x; is obtained
when n; = X; — x; is chosen to minimize its contribution to the margin, which we can formulate
as the following linear program:

Igin%(l + yi)w’n;

' (5.13)
s.t.: Cr(x™" —x;) < mi < Cr(x™* —Xx;).

Next, taking the dual of this linear program we obtain a linear program with dual variables u;
and v;:
min Cf Zj <v,-j (xj’-"“x — x,-j) — Ujj (x;nin - xij))
s.t. : U —v; = %(1 + yi)w (5.14)
ui, v; > 0.

This allows us to write the adversarial version of the SVM optimization problem as

argmin) . max {O, 1—yi-(wlx; +b) + ti} + 8||w||?

w,b,t; u;,v;

s.t. i = Zj Cy (Uij(xjmax — Xij) — u,'j(xj'."i” — X,’j)) (5.15)
up —vp = 3(1+ yw
ui,v; > 0.

Adding a slack variable and linear constraints to remove the non-differentiality of the
hinge loss, we can finally rewrite the problem as the following quadratic program:

argmin Y&+ 8| wlf?
w,b.&; .t u;i,v;
s.t. & >0
G 21—y -whx +b)+14 (5.16)
ti>);Cy (Uij (X% — i) — g (X — xij))
up —vi = 5(1+ yp)w
ui,v; = 0.

62 5. DEFENDING AGAINST DECISION-TIME ATTACKS
5.2.3 [EVASION-ROBUST SVM AGAINST RESTRAINED ATTACKS

With the restrained attack model, we modify the hinge loss model and solve the problem fol-
lowing the same steps:

max max{0, | — (w? % +b)} ify; = +1
h(w,b,x;) = X
0,1+ (wTx; +b)} ify; = —1
s.t. (5.17)
~ Ixf—xl-l
|Xi —xi| < CE (1 —Cs |xi|+|xf|) o |xlt — x|

(xf —xi) o (Xi —x;) >0,

where o denotes the pointwise (Hadamard) product.
Again, the worst-case hinge loss is obtained by solving the following minimization prob-
lem, where n; = X; — x;:

n%li_n%(l + yHwly;
%! —x; |
s.t.: [ni] < Ce (1 —Cs M) o |xlz —X; (5.18)
(x} —x;j)on; = 0.

If we let

|xi; = xij
eii =Ce [1—Cs—2——— | (x!; — xi;)?
ij 3 (|xij| + |xitj ij ij
and multiply the first constraint above by x! — x; (thereby replacing the nonlinear |7;| absolute
value term with a set of equivalent linear inequalities), we obtain the following dual:

minzj ejjUjj
s.t. : (—ui +vi)o (x! —x;) =11 + yip)w (5.19)
ui, v; = 0.

The SVM risk minimization problem can now be rewritten as follows:

min Y, max{0,1—y; (wlx; +b) + t;} + §||w||?

w,b,t; u;,v;

s.t. i =) eijuij (5.20)
(—ui +vi) o (x! —x;) = 2(1 + yj)w
u;,v; > 0.

5.2. OPTIMAL EVASION-ROBUST CLASSIFICATION 63

Replacing the nonlinear hinge loss with linear constraints, we obtain the following
quadratic program:

min > ki + 81wl

w,b.&; .t u; v
S.r. & >0
&> 1—yi(w-x; +b)+1 (5.21)
i >) eijuif
(—ui +vi) o (xf —x;) = 2(1 + y)w
u;,v; > 0.

5.2.4 EVASION-ROBUST CLASSIFICATION ON UNRESTRICTED
FEATURE SPACES

A fairly general alternative approach to evasion-robust classification is offered by Briickner and
Scheffer [2011], who make an assumption that the feature space is unrestricted, i.e., X = R™.
Suppose that the adversary faces the optimization problem of the form

s _Z Law™ (xi +zi)) + A Z 0(z).
l€D+ i
where [4(-) and Q(:) are convex with z unconstrained, and the defender’s loss function and
regularizer are both strictly convex as well.! In particular, suppose that

0(z) = ||zilI3-

Then the following optimization problem characterizes the Stackelberg equilibrium decisions
by the learner and attacker (ignoring regularization by the learner, which can be added without
affecting the results):

Y 1@ @ el + Y 1w)

w,Ti€eDy ieD_

) 2
VieDy:1 = Xl(wT(xi + 7 |lw|?).

If the loss functions are convex and continuously differentiable, this problem can be solved using
Sequential Quadratic Programming (SQP).

There are several important limitations of this approach by Bruckner and Schaeffer. The
first crucial limitation is the assumption that an adversary can make arbitrary modifications.
This is trivially false when the classifier includes a bias feature but, more generally, it is quite

The original presentation in Bruckner and Schaefer is slightly more general. Here, we frame it in a way which is consistent
with the rest of our discussion of evasion attacks and defenses.

64 5. DEFENDING AGAINST DECISION-TIME ATTACKS

unusual for feature space to be unconstrained; typically, features have upper and lower bounds,
and if these are violated, the attack can be easily flagged. The second important limitation is the
assumption of strict convexity and continuous difterentiability of loss functions, which rules out
common loss functions, such as the hinge loss, as well as sparse (/1) regularization.

5.2.5 ROBUSTNESS TO ADVERSARIALLY MISSING FEATURES

One important special case of attacks is when, at prediction time, an adversarially chosen subset
of features is set to zero (or effectively removed). We now describe such an attack, and associated
defensive approach, in the context of SVMs. For a given data point (x, y), the attack maximizes
hinge loss subject to the constraint that at most K features are removed (set to zero). Letz; =1
encode the decision to remove jth feature (with z; = 0 otherwise). The attacker’s problem can
then be captured as the following optimization problem:

max max{0,1— yw? (x o (1 —2))}
z;€{0,1}

s.t.sz = K. (5.22)
J

Observe that the attacker will always delete the K features with the highest values of yw;x;.
Consequently, we can write the worst-case hinge loss as

V¢ (ywT x) = max{0,1 — ywTx + s}, (5.23)
where
s = max ywT (x o z2).

zZ; E{O,l},Zj z;=K

In addition, since the vertices of the polyhedron defined by } ©; z; = K are integral, we can relax
the integrality constraint on z;. Finally, we can change the order of multiplication to obtain

s =max y(w o x)TZ

st.: ze|o, 1],sz =K. (5.24)
J

Taking the dual of this linear program, we obtain

s =min Kz; + v
; ' (5.25)

st.: v>0, zi4+v=>yxouw.

5.3. APPROXIMATELY HARDENING CLASSIFIERS AGAINST DECISION-TIMEATTACKS 65

We can now simply plug this into the standard quadratic program for a linear SVM, with the
hinge loss replaced by its worst-case variant #*¢(yw7 x), obtaining

1
min §||w||% +C Zmax{O, 1—yiwlx; + ;)

s;i > Kz; + Zvij (5.26)
j

zi +v; > yi(wox;)
v; > 0.

Once the hinge loss term is appropriately linearized, this becomes a convex quadratic program.

5.3 APPROXIMATELY HARDENING CLASSIFIERS
AGAINST DECISION-TIME ATTACKS

Even when we are trying to find an optimal evasion-robust /inear classifier with respect to the
specific SVM loss function and /; regularization, the problem is exceptionally hard. Even the
more tractable approaches for optimal hardening of classifiers against evasion described above
make strong assumptions about the attacker, and/or the learning loss function, and are in any
case not particularly scalable.

'The approach taken in much prior work to address scalability limitations of directly opti-
mizing adversarial empirical risk has aimed at principled approximations. Such techniques fall
largely into three potentially overlapping categories:

1. relaxation of the adversarial risk function,
2. relaxation of feature space to continuous features, and
3. iterative retraining with adversarial data.

We first describe relaxation approaches (1 and 2), and then present an iterative retraining ap-
proach. Our description of relaxation methods keeps with the binary classification setting to
simplify discussion.

5.3.1 RELAXATION APPROACHES

A common relaxation of the adversarial risk function is to turn the game into a zero-sum en-
counter, as follows:

D USAEE) +D + Y), —1) <

i€Dy ieD_

Y max I(f(x).+D) + Y I(f(xi). 1),
i€D

xeS(x;) iep

(5.27)

66 5. DEFENDING AGAINST DECISION-TIME ATTACKS

where S(x;) imposes constraints on modification of x; (see, e.g., Teo et al. [2007]). A common
example of such a constraint is an /, norm bound | x — x;||5 < C for an exogenously specified
budget C of the attacker.

Consider the /o, norm constraints on the attacker as an illustration. Suppose that the
teature space is continuous, and consider a score-based variation of the loss function, /(yg(x)).
Letting x = x; + z for z : ||z||oc < C, the zero-sum relaxation becomes

D max L@l +2)+) l=g(x). (5.28)
i€D4

z <
I2lloo < =

Suppose g(x) = wl'x +b. Then g(x +z) = wlx + wlz + b, and max)<c (W7 (x; +
z) +b) = l(wTx; — C|w||; + b), if we make the natural assumption that the loss function I/(a)
is monotonically decreasing in a. Thus, adversarial empirical risk becomes

Raw)= > 1w x; +b—Cllwl) + Y I(—w”x; —b). (5.29)

i€Dy ieD_

In the case of the hinge loss /(yw”x) = max{0, 1 — yw” x} (as in support vector machines),
this expression now becomes

Ra(w)= Y max{0.1—wTx; —b+ Clwlli} + > max{0,1+w’x +b}. (5.30)

i€ED4 ieD_

Notice the interesting relationship between adversarial robustness to /o -norm attacks and sparse

regularization: adversarial robustness essentially implies a penalty on the /; norm of the weight

vector. In any case, we can solve this problem using linear programming. Moreover, we can

turther “pull” C|w||; out of the loss function, obtaining a standard /; regularized linear SVM.
When features are binary, we can modify this approach as follows. Observe that

max max{0,1 —wlx; —b+wlz} <max{l,1—wlx; —b}+ max wlz. (531)
zllco<C zllco<C

Thus, in the case of SVM,

Ra(w) < Z max{0,1 —w’ x; —b} + Z max{0,1 + w’ x; + b}
ieD, ieD_iy;=—1 (5.32)
+ | D4 max wlz.

Zlloo=<

We can further relax

max w!z < Cllw| (5.33)
lzllo<C

(applying the continuous feature relaxation 2 above) so that the attack, again, turns into a cor-

responding regularization of the model, and, again, we obtain a standard /; regularized linear

SVM.

5.3. APPROXIMATELY HARDENING CLASSIFIERS AGAINST DECISION-TIMEATTACKS 67

'These examples illustrate a very important and general connection between regularization
and evasion robustness [Russu et al., 2016, Xu et al., 2009b]. To formalize a general connection
consider an alternative relaxation of expression (5.27) into a robust optimization problem:

D ISACE L+ + D (). =D = Y max 1(f(x). o). (5.34)
ieD ¢

i€D ieD_

'That is, now we allow every instance in the domain to be a potential attacker. Further, suppose
again that the constraint set S(x;) = {z|||z — x; |, < C} as above. In this case, Xu et al. [2009b]
present the following result.

Theorem 5.2 The following optimization problems are equivalent:

min max max{0,1 — y;(wTz + b)}
wib 2 zllz=xillp<C

and
g;;;max{o, 1=y xi +b)} + Cllwllg,
1

where p and q are dual norms (i.e., % + é =1)

'This connection between robustness and regularization is quite powerful. However, the
precise connection articulated in Theorem 5.2 is specific to SVMs and the robust optimization
problem in which all instances can be adversarial. In practice, the robust optimization formula-
tion itself can be too conservative. Let’s return for the moment to our example earlier (Exam-
ple 5.1). First, suppose that C = 0.25. In this case, the optimal threshold r = 0.5 is the max-
imum margin decision rule precisely as we expect from Theorem 5.2 in the one-dimensional
special case (where all /, norms coincide). On the other hand, if C = 0.4, robust optimization
relaxation of the problem would predict that for any 0.25 <r < 0.75 we must make 1 error
(since at least one of the two data points will be able to jump across the treshold within the cost
budget), and consequently every such threshold is equally good. Of course, this is not the case
in the example, since the benign data point will not adversarially change its feature, and, indeed,
we can get 0 error by setting r = 0.3 (for example; the optimum is not unique).

5.3.2 GENERAL-PURPOSE DEFENSE: ITERATIVE RETRAINING

There is a very general approach for making supervised learning robust to adversarial evasion
that has existed in various forms for many years: retraining. The term “retraining” actually refers
to a number of different ideas, so henceforth we’ll call the specific algorithm below izerative
retraining. The idea is this: start by applying the standard learning algorithm of choice to training
data, followed by transforming each adversarial feature vector in the training data (i.e., each
i :(xi,y;) € S)according to A(x;; f), with the resulting transformed feature vector then added

68 5. DEFENDING AGAINST DECISION-TIME ATTACKS

to the data, and then iteratively repeating these two steps, either until convergence (or near-
convergence), or for a fixed number of iterations. Because of the considerable usefulness of this
very simple idea, we present the full iterative retraining algorithm (Algorithm 5.3).

Algorithm 5.3 Iterative Retraining

1: Input: training data D; evasion attack function A(x; f)
22 Nj<0OVi L Vi €Ty

3: repeat

4 f < Train(D U; N;)
55 v<0

6: fori:(xi,yi) €S do
7: x' = A(xi; f)

8 if x' ¢ N; then

9: v<—vuUx’

10: end if

11: N; < N; Ux’

122 end for
13: until TerminationCondition(v)

14: Output: Learned model f

An important part of Algorithm 5.3 is the TerminationCondition function. One natural
termination condition is that v = @, that is, in a given iteration, no new adversarial instances
are added to the data. It turns out that if the algorithm actually reaches this condition, the result
has the nice theoretical property that the empirical risk of the solution f is an upper bound on
optimal adversarial empirical risk.

Theorem 5.3 Suppose that Algorithm 5.3 has converged where no new adversarial instances can be
added, and let Ryetraining be the empirical risk after the last iteration. Then R < Rretraining-

An important thing to notice about the iterative retraining approach is that it does not
assume anything about adversarial behavior or learning algorithm. In particular, this idea ap-
plies in multi-class classification as well as regression settings. The caveat, of course, is that the
algorithm need not always converge, or may converge after a very large number of iterations,
effectively making the upper bound in Theorem 5.3 very loose. Nevertheless, considerable em-
pirical experience (e.g., Goodfellow et al. [2015], Li and Vorobeychik [2018]) suggests that this

simple idea can be quite effective in practice.

5.4. EVASION-ROBUSTNESS THROUGH FEATURE-LEVEL PROTECTION 69

5.4 EVASION-ROBUSTNESS THROUGH FEATURE-LEVEL
PROTECTION

An alternative way to induce robustness to evasion is to select a subset of features which are
“protected” (e.g., through redundancy or verification), so as to make these impossible for an
attacker to modify. This is clearly not universally useful, but is salient in many settings, such as
when features correspond to sensor measurements and adversarial attacks involve modifications
of these measurements (rather than actual behavior).

We can formalize this problem in the case of binary classification as follows:

min min Z max [(f(x),+1) + Z [(f(x;),—1),

€{0,1}": <B €S
Joreloymirli<B £ xeS(xi.r) ieDy =

where S(x;, r), the feasible set of attacks, now depends on the choice r of the features which are
“protected.”

Considering a linear classifier again along with a ||z||cc < C constraint on the adversary,
we can relax this problem to obtain

min max IwT (x; +z I(—wT x;
W' re0 <8 Z ¢ lzloos (Wit +2)+ lemz:_l (o)
rg;lzl(w x,>+|D+|CZ|w|r,
i€D

WEe can obtain an approximate solution to this by first computing an optimal w of the problem
with r; = 0 for all j, and then greedily selecting r; = 1 for B features with largest |w;|.

5.5 DECISION RANDOMIZATION

The vast majority of techniques for making machine learning robust to decision-time attacks
involve modifications of the training procedure to arrive at a more robust fixed model f € F.
Viewing the problem of hardening learning against such attacks through the lens of Stackel-
berg games, as we had done earlier, suggests another powerful tool, randomization, which has
been extensively leveraged by Stackelberg game models in physical security applications [Tambe,
2011]. In this section, we present a principled randomization scheme for supervised binary clas-
sification learning in the face of evasion attacks, based on the approach by Li and Vorobeychik
[2015].

5.5.1 MODEL

As in the conventional Stackelberg game that represents the adversarial classification problem,
the defender acts first, choosing the probability of flagging an instance as malicious, followed by
attackers (corresponding to malicious instances in the data) choosing optimal evasion strategies.

70 5. DEFENDING AGAINST DECISION-TIME ATTACKS

We denote the defender’s decision by a function g (x) which represents the probability of “acting”
on a feature vector x (e.g., labeling it as malicious). In the rest of this section, we assume that
feature vectors x are binary.

'The key idea behind the approach we now describe is to separate the problem of prediction
trom that of decisions based on predictions. For the former, we can apply conventional machine
learning to the training data D to obtain a probabilistic model, p(x). The semantics of this model
is the probability that x is an adversarial “ideal” feature vector given the current distribution of
malicious and benign behavior. In other words, this represents our belief about the attacker’s pref~
erences, and is only the first step for the defender. The second step is to identify an optimal
strategy about which instances x to actually label as malicious, which we allow to be stochastic.
This strategy would now take into account adversarial evasion.

To move forward, we now need an evasion attack model. While we discussed a number of
candidates in Chapter 4, none are adequate here because they all assume a deterministic classifier
- We now describe a natural adaptation of many of these in the setting with a stochastic decision
function for the defender.

Specifically, if the attacker with a preference for x (i.e., for whom x = x4 is the ideal
feature vector) chooses an alternative attack vector x’, we model the associated utility from suc-
cessfully bypassing defenses as V(x)Q(x, x’), where Q(x,x’) = e 81—l with || - || a norm
(we use Hamming distance), V(x) the value of the attack, and § the importance of being close
to the preferred x. The full utility function of an attacker with preference x for choosing another
input x” when the defense strategy is ¢ is then

px,x"1q) = V(x)Q(x,x") (1 — q(x)), (5.35)

since 1 — ¢(-) is the probability that the attacker successfully bypasses the defensive action. The
attacker then solves the following optimization problem:

v(x:q) = m@xu(x,x’;q). (5.36)

Now that we have described the decision model for the attacker, we can turn to the prob-
lem that the defender is solving. A natural goal for the defender is to maximize expected value of
benign traffic that is classified as benign, less the expected losses due to attacks that successfully
bypass the operator.

To formalize, we define the defender’s utility function Up(q, p) as follows:

Up(g. p) = Ex [(1 —q(x))(1 = p(x)) — p(x)v(x:q)]. (5.37)

To interpret the defender’s utility function, let us rewrite it for a special case when V(x) =1
and § = 0o (so that the attacker will always use the original feature vector x), reducing the
utility function to Ex[(1 —g(x))(1 — p(x)) — p(x)(1 — g(x))]. Since p(x) is constant, this is
equivalent to minimizing

5.5. DECISION RANDOMIZATION 71

Ex[g(x)(1 = p(x)) + p(x)(1 —q(x))],

which is just the expected misclassification error.

5.5.2 OPTIMAL RANDOMIZED OPERATIONAL USE OF
CLASSIFICATION

Given the Stackelberg game model of strategic interactions between a defender armed with a
classifier, and an attacker attempting to evade it we can now describe an algorithmic approach
for solving it. First, approximate the expected utility Up by taking the sample average utility
using the training data; we denote the result by Up. Using Up as the objective, we can maximize
it using the following linear program (LP):

max Up(q, p) (5.38a)

q
st.: 0<q(x)<1 VxelX (5.38b)
v(x;q) = pu(x,x";q) Vaxx'eX, (5.38¢)

where constraint (5.38¢) computes the attacker’s best response (optimal evasion of ¢), and X’ is
the full binary feature space.

It is readily apparent that the linear program (5.38) is not a practical solution approach
for two reasons: (a) ¢(x) must be defined over the entire feature space X’; and (b) the set of
constraints is quadratic in |X'|. Since with n features |X'| = 2", this LP is a non-starter.

The first step toward addressing the scalability issue is to represent ¢(x) using a set of
normalized basis functions, {¢; (x)}, where g(x) = }_; a;¢; (x). 'This allows us to focus on op-
timizing «;, a potentially tractable proposition if the set of basis functions is small. With this
representation, the LP now takes the following form:

min 3 e Elg; (0 (1 = p()] + E[V(x) p(x) Q(x.)] (5.39)
J
st:0(x) = eI =Y o (x) Vax' e X (5.39b)
PICTERE (5.39¢)
J

While we can reduce the number of variables in the optimization problem using a basis
representation ¢, we still retain the intractably large set of inequalities which compute the at-
tacker’s best response. To address this issue, suppose that we have an oracle A(x; g) which can
compute a best response x’ to a strategy ¢ for an attacker with an ideal attack x. Armed with
this oracle, we can use a constraint generation aproach to iteratively compute an (approximately)
optimal operational decision function g (Algorithm 5.4 below). The input to Algorithm 5.4 is
the feature matrix X in the training data, with X,,; denoting this feature matrix restricted to

72 5. DEFENDING AGAINST DECISION-TIME ATTACKS
Algorithm 5.4 OptimalRandomizedClassification(X)

¢ =ConstructBasis()
X <X
g < MASTER(X)
while true do
for x € X;,;do
x' = A(x;q)
X<~ XUux
end for
if All X’ € X then
return ¢
end if
g < MASTER(X)
end while

“bad” (malicious) instances. At the core of this algorithm is the MASTER linear program which
computes an attacker’s (approximate) best response using the modified LP (5.39), but using only
a small subset of all feature vectors as alternative attacks, which we denote by X The algorithm
begins with X’ initialized to only include feature vectors in the training data X. The first step
is to compute an optimal solution, ¢, with adversarial evasion restricted to X . Then, iteratively,
we compute an attacker’s best response x’ to the current solution g for each malicious instance
X € Xju4, adding it to X, rerun the MASTER linear program to recompute ¢, and repeat. The
process is terminated when we cannot generate any new constraints (i.e., the available constraints
already include best responses for the attacker for all malicious instances in training data).

'The approach described so far in principle addresses the scalability issues, but leaves two
key questions unanswered: (1) how do we construct the basis ¢, a problem which is of critical
importance to good quality approximation (the ConstructBasis() function in Algorithm 5.4);
and (2) how do we compute the attacker’s best response to g, represented above by an oracle
A(x, q). We discuss these next.

Basis Construction The main idea for the basis representation relies on harmonic (Fourier)
analysis of Boolean functions [Kahn et al., 1988, O’Donnell, 2008]. In particular, it is
known that every Boolean function f :{0,1}" — R can be uniquely represented as f(x) =
> SeBs ?SXS(X), where ys(x) = (—I)ST’C is a parity function on a given basis S € {0, 1}"", Bs
is the set containing all the bases S, and the corresponding Fourier coeflicients can be computed
as ?S = Ex[f(x)xs(x)] [De Wolf, 2008, O’Donnell, 2008]. The goal is to approximate ¢ (x)
using a Fourier basis. The core task is to compute a set of basis functions to be subsequently
used in optimizing ¢(x). The first step proposed by Li and Vorobeychik [2015] is to uniformly

randomly select K feature vectors x, use a traditional learning algorithm to obtain the p(x)

5.6. EVASION-ROBUST REGRESSION 73

vector over these, and solve the linear program (5.38) to compute g(x) restricted to these fea-
ture vectors. At this point, the same set of feature vectors can be used to approximate a Fourier

m
coefficient of this ¢(x) for an arbitrary basis § as = Z:I q(x") xs(x"). We can use this ex-
pression to compute a basis set S with the largest and smallest (largest in absolute value) Fourier

coeflicients using the following integer linear program (replacing the max with the min to get
the smallest coefficient):

K
1 Ky, k
max E};q(x)y (5.402)
S.t.: STxk =2yk 4 pk (5.40b)
rk =1-2n* (5.40¢)
yk ez, h* €{0,1}, 5 € {0, 1}". (5.40d)

'The final basis generation algorithm solves the integer linear program (5.40) for both
largest and smallest coefhicients iteratively, each time adding a constraint that rules out a previ-
ously generated basis, until the absolute value of the optimal solution is sufficiently small.

Computing Adversary’s Best Response 'The constraint generation algorithm described above
presumes the existance of an oracle A(x; ¢) which computes (or approximates) an optimal eva-
sion of ¢ (we call this a besz response to q) for an attacker that would prefer to use a feature vector
x. Note that since V(x) is fixed in the attacker’s evasion problem (because x is fixed), it can be
ignored.

While Li and Vorobeychik [2015] showed that the adversarial evasion problem is strongly
NP-Hard, they proposed an effective Greedy heuristic for solving it. This greedy heuristic starts
with x and iteratively flips features one at a time, flipping a feature that yields the greatest
decrease in g(x’) each time.

5.6 EVASION-ROBUST REGRESSION

We close this chapter by discussing an approach for developing evasion-robust regression, based
on the decision-time attack on regression discussed in Chapter 4 due to Grosshans et al. [2013].
Specifically, recall from Chapter 4 (Section 4.3.5) that the optimal attack on a linear regression
with parameter vector w is

X*w) =X -+ |w) '(Xw - 2)w?.

If we were to consider a Stackelberg equilbrium strategy for the learner, we can embed this into
the defender’s adversarial empirical risk minimization problem as follows:

n}vin()f*(w)w — X *ww —y) + y|wl3.

74 5. DEFENDING AGAINST DECISION-TIME ATTACKS

where we assume that the learner uses both /, loss and /, regularization. This problem is not
necessarily convex, but is smooth and can be approximately solved using nonlinear programming
solvers.

5.7 BIBLIOGRAPHICNOTES

As with evasion attack modeling, Dalvi et al. [2004] present the first significant advance in mod-
eling evasion attack and defense as a game, and offer an approach for making binary classification
more robust to evasion. As in many other examples of evasion-robust learning, their evaluation
was focused on spam email filtering. Both their game model, and solution approach, are quite
distinct from the Stackelberg game model we use. In particular, their algorithm first computes
an optimal attack to a conventionally learned model (a standard Naive Bayes classifier), and then
computes an optimal defense in response to this evasion attack. The approach, thus, is akin to
the first two iterations of asynchronomous best response dynamics in games [Fudenberg and
Levine, 1998], rather than computation of either a Stackelberg or a Nash equilibrium.

Teo et al. [2007] present what appears to be the first general approach for robust multi-
class SVM in the context of decision-time attacks. They model robustness as ensuring prediction
invariance to a set of possible manipulations (essentially, transforming the problem into robust
optimization), and extend the optimization problem for computing optimal support vector ma-
chine structured classifiers in this setting. The resulting quadratic program can be large if the
space of possible manipulations is large, but can be solved, in principle, using column genera-
tion techniques. Our discussion reduces their approach to the special case of binary classification
(which considerably simplifies it). We also frame the Teo et al. [2007] approach as using an up-
per bound approximation on the optimal classifier hardening problem based on the zero-sum
(worst-case loss) relaxation; this is unlike the original paper, which focuses directly on the worst-
case loss.

Briickner and Scheffer [2012], in their first foray into adversarial classification, model the
problem as a static game between the defender (learner) and attacker, rather than the Stackelberg
game which frames all of our discussion. However, in another effort, Briickner and Schefter
[2011] consider the Stackelberg game model; this is the approach we actually describe in this
chapter.

'The adversarial retraining idea has appeared a number of times in prior literature, in vary-
ing incarnations. Its iterative version is systematically described and analyzed by Li and Vorob-
eychik [2018], and is also discussed by Kantchelian et al. [2016], Grosse et al. [2017], and, in
passing, by Teo et al. [2007].

Our discussion of defense against free-range and retrained attacks follows Zhou et al.
[2012], who also introduced the associated evasion attack models we described in Chapter 4.
Li and Vorobeychik [2014, 2018] introduce both the feature cross-substitution attack discussed
in Chapter 4, and the mixed-integer linear programming approach for minimizing adversarial
empirical risk in the context of /; regularized SVM. Kantarcioglu et al. [2011] discusses how

5.7. BIBLIOGRAPHICNOTES 75

to apply Stackelberg game framework for feature subset selection (i.e., how to choose subset
of features that are resistant to adversarial attacks while providing good classification accuracy).
Ensemble classifier learning resistant against attacks from multiple adversaries that have differ-
ent evasion capabilities is discussed in Zhou and Kantarcioglu [2016]. In this work, different
classifiers that are optimal against different types of attackers are combined using a Stackelberg
game framework.

The connection between robust learning (in the minimax sense we describe here) was
first shown by Xu et al. [2009b], with follow-up approaches including Russu et al. [2016] and
Demontis et al. [2017a]; the latter used this connection to develop a robust Android malware
detector.

The idea of hardening learning against decision-time attacks by protecting specific ob-
served features is a special case of the approach by Alfeld et al. [2017] who consider a general
class of defensive actions which restrict the space of manipulations of the observed feature vector.

Our discussion of decision randomization in adversarial learning follows closely the ap-
proach by Li and Vorobeychik [2015], who are in turn inspired by the extensive literature on
randomization in Stackelberg models of security [Tambe, 2011].

Finally, our description of hardening linear regression against decision-time attacks is due
to Grosshans et al. [2013], who consider the more general problem in which the learner is un-
certain about cost parameters of the attacker’s model which represent the relative importance of
different data points to the attacker. We omit discussion of this more complex Bayesian frame-
work to significantly streamline presentation of their approach.

77

CHAPTER 6

Data Poisoning Attacks

Previously, we studied one broad class of attacks we term decision-time attacks, or attacks on
machine learning models. A crucial feature of such attacks is that they take place affer learning,
when the learned model is in operational use. We now turn to another broad class of attacks
which target the learning algorithms by tampering directly with data used for training these.

It is useful to consider several categories of poisoning attacks. We now define four such
categories which make important distinctions between adversary’s capabilities (what, precisely,
the adversary can modify about training data), and attack timing. In particular, while poisoning
attack models will typically either impose a constraint on the number of modifications or a
modification penalty, they may also constrain what can be modified about the data (e.g., feature
vectors and labels, only feature vectors, or only labels), and what kinds of modifications are
admissible (e.g., insertion only, or arbitrary modification).

* Label modification attacks: these attacks allow the adversary to modify solely the /abels in
supervised learning datasets, but for arbitrary data points, typically subject to a constraint
on the total modification cost (e.g., an upper bound on the number of labels that can be
changed). The common form of this attack is specific to binary classifiers, and is usually

known as a /abel flipping attack.

* Poison insertion attacks: in this case, the attacker can add a limited number of arbitrary
poisoned feature vectors, with a label they may or may not control (depending on the
specific threat model). In unsupervised learning settings, of course, labels do not exist, and
the adversary may only contaminate the feature vectors.

* Data modification attacks: in these attacks the attacker can modify feature vectors and/or
labels for an arbitrary subset of the training data.

* Boiling frog attacks: in these attacks, the defender is assumed to iteratively retrain a
model. Retraining, in turn, presents an opportunity for the attacker to stealthily guide
the model astray over time by injecting a small amount of poison each time so that it
makes minimal impact in a particular retraining iteration, but the incremental impact of
such attacks over time is significant. Boiling frog attacks can be applied in both super-
vised and unsupervised settings, although they have typically been studied in the context
of unsupervised learning problems.

In this chapter, we first discuss poisoning attacks restricted to binary classifiers which al-

low us to illustrate two categories of the attacks above: label-flipping attacks and insertion of

78 6. DATA POISONING ATTACKS

poisoned data, both specific to support vector machines. Next, we describe poisoning attacks
on three unsupervised methods: clustering, PCA, and matrix completion. The penultimate sec-
tion of this chapter connects data poisoning attacks to machine teaching, and describes a very
general framework for such attacks. Finally, we close the chapter with a discussion of black-box
poisoning attacks.

6.1 MODELING POISONING ATTACKS

Generically, a poisoning attack begins with a pristine training dataset, which we denote by
Dy, and transforms it into another, D. The learning algorithm is then trained on D. Just as
in decision-time attacks, the attacker may have two kinds of goals: targeted attacks, in which
they wish to induce target labels or decisions for a collection of feature vectors in a target set of
instances S, and reliability attacks, in which they wish to maximize prediction or decision error.

In a way analogous to the decision-time attacks, the attackers aspiring to poison a dataset
trade off two considerations: achieving a malicious objective and minimizing a measure of mod-
ification cost. We will capture the former with a generic attacker risk function R4(D, S), which
is often going to depend on the learning parameters w obtained by training the model on the
poisoned training data D, and where dependence on S will typically be omitted, as it is clear
from context. The cost function, in turn, will be denoted by ¢(Dy, D).

'The attacker’s optimization problem typically takes one of the following two forms:

mDin RA(D, S) + Ac(Dy, D) (6.1)
or
mDin R4(D, S)

(6.2)
st.: ¢(Dy,D)<C

for some exogenously specified modification cost budget C. Sometimes it will be more con-
venient to deal with the attacker’s uzility (which they try to maximize) rather than risk func-
tion (which is minimized). For this purpose, we define the attacker’s utility as Us(D, S) =
_R4(D,).

Consider a simple illustration of data poisoning in Figure 6.1. The three blue circles com-
prise “pristine” data on which a true model (lower line in black) can be learned. An attacker can
poison this dataset by adding a new datapoint, the red circle, which results in a new poisoned
model (dashed line in red) which is quite different from the true model.

6.2 POISONING ATTACKS ON BINARY CLASSIFICATION

Some of the most mature literature on poisoning attacks concerns binary classification problems.
As this literature also provides many of the foundations of other poisoning attacks, the binary
classification setting offers a natural starting point.

6.2. POISONING ATTACKS ON BINARY CLASSIFICATION 79

T A o
Add to Data

Figure 6.1: Illustration of poisoned linear regression model.

6.2.1 LABEL-FLIPPING ATTACKS

One of the most basic data poisoning attacks one can consider is to change labels for a subset
of datapoints in training data. The attacker’s goal in this attack is typically to maximize error
on unadulterated training data (i.e., data prior to modification); in our terminology, this is a
reliability attack. A common motivation behind label-flipping attacks is that datasets used for
security may be labeled externally (for example, one can use crowdsourcing to obtain labels for
phishing email data), and an attack can thus only pollute the collected labels, but not the feature
vectors.

Let Dy = {(xi, yi)} be the original “pristine” training data set. Suppose the attacker has
a label-flipping budget C, and the cost of flipping the label of a datapoint 7 is ¢;. Let z; = 1
denote the decision to flip the label of datapoint i, with z; = 0 the decision not to flip this label.
Thus, the attacker’s modification cost budget can be expressed as

¢(Do.D) =c(z) = Y _zic; < C. (6.3)

Let D = D(z) be the training dataset after a subset of labels chosen by z are flipped. In the most
basic variation of the label flipping attack commonly considered in the literature, the target
dataset is simply the original training dataset without malicious modification, that is, S = Dj.
Ignoring regularization, which can be handled through directly extending the expressions below,

80 6. DATA POISONING ATTACKS

the attacker’s optimization problem is then

max Us(D(2)) = ZI(J’if(XﬁD(Z)))
i€eD
s.t.:
f(D@) eargmax 3 1(if(x)) ©4)
4 (x;,yi)€D(2)

ZC,‘Z,‘ <C z;€ {0, 1}.
i

Following Xiao et al. [2012], we now approximate this bi-level problem by recasting it as
a single-level optimization problem. At the high level, the attacker aims to induce a large loss
of the classifier learned on pristine data, while inducing a classifier which fits well the poisoned
data. This can be formalized as

min Z I(yi f(xi:D(2))) — 1(yi f(xi3 Do))
(xi,yi)€D(2) (6.5)
s.t.: Zcizi <C 1z €{0,1}.

Next, we can represent this mathematical program equivalently by considering a new dataset D’
in which each datapoint x; is replicated, while the corresponding y; is flipped, so that y; 4, =
—y; for all i, and D’ has 2n datapoints. Let g; € {0, 1} represent which datapoint is chosen, so
that for all i, exactly one of ¢; and ¢; 4, equals 1. The optimization problem can thus be rewritten
as

rr;in Z qill(yi f(xi: D)) = 1(yi f (xi: Do))]

(x;,y;)€D’
s.t.:
gi +qi+n =1 VYi=1,...,n (6.6)
2n
Y cigi=C g {01},
i=n+1

As an illustration, we now specialize this problem to a label flipping attack on linear sup-
port vector machines. First, observe that f(x;;Dy), and associated loss for each data point in
D', can be pre-computed. Let n; be the corresponding (fixed) loss on a datapoint (x;, y;) € D'.

6.2. POISONING ATTACKS ON BINARY CLASSIFICATION 81
'The problem then becomes

min Y gile —mil + y w3

D (x;,y;)€D’
s.t. :
&>1—ywlx, ¢>0 (6.7)
gi +qi+n =1 Vi=1,...,n
2n
Y g =C g €{0.1}
i=n+1

'This results in an integer quadratic program. One approach for approximately optimizing it is
alternating minimization, where we alternate between two sub-problems in each iteration.

1. Fix ¢ and minimize over w and €. This becomes a standard quadratic program for a linear

SVM.

2. Fix w and €, and minimize over ¢, which is an integer linear program.

6.2.2 POISON INSERTION ATTACK ON KERNEL SVM

While label flipping attacks are a natural starting place to study poisoning of machine learning
models, another important class of attacks is when the adversary can insert a collection of data-
points corresponding to feature vectors of its choice, but does not control the labels assigned to
these. Consider, for example a spammer, who may choose the nature of spam to send, cognizant
of the fact that, in the future, this spam may be used to train a classifier to automatically detect
spam. To simplify discussion, we suppose that the adversary inserts only a single datapoint into a
training dataset; we can generalize the approach we describe next by having the adversary insert
multiple datapoints one at a time.

Consider an original (unaltered) training data set Dy which is then modified by adding
an instance (X, y.) in which the adversary can choose the feature vector x. but not the label y.,
resulting in a new dataset D. Let a target data set on which the adversary wishes to maximize
the learner’s risk be denoted by S as before. For the sake of simplifying the discussion, suppose
that S = (x7, yr), that is, a single target datapoint on which the adversary wishes to induce an
error. Observe that the training datset on which a model is learned will now become D(x.) =
Do U (x¢,). Moreover, by allowing the attacker to only add a single feature vector (with a given
label) to the data, we effectively impose a budget constraint of inserting a single datapoint; thus,
no further explicit discussion of the modification cost is necessary here.

Let fx,.(x) denote the function learned on D(x.). The adversary’s optimization problem
can then be formulated as

max Us (xe) = 7 fr (7). (6.9)

82 6. DATA POISONING ATTACKS

Just as above, we now illustrate this attack derived specifically for support vector machines,
and allow for arbitrary kernels. First, we introduce some new notation. For a datapoint (x;, y;)
in training data, define Q;(x,y) = y; yK(x;, x) for some Kernel function K(:,-). In particu-
lar, for (xr, yr), this becomes Q;7 = y; y7 K(xi, x7). As shown by Cauwenberghs and Poggio
[2001], the SVM loss function can be expressed as [(yr fx,. (x1)) = max{0, 1 — y7 fx . (x7)} =
max{0, —gr}, where

gr = Y 0irzi(xe) + Qer(xe)ze(xe) + yrblxe) — 1. (6.9)

i€Do

with z; and b the dual solutions of Kernel SVM (b is also the bias or intercept term, which we
represent explicitly here). Then,

Fre(¥) = zi(xe)yi K (xi, x) + b(xe). (6.10)

The approach to solving this problem, taken by Biggio et al. [2012], is to use gradient ascent,
deriving gradients based on the characterization of optimal SVM solutions.

'The first challenge which arises with a gradient ascent approach is that hinge loss is not
everywhere differentiable, and is constant whenever the defender classifies (x7, yr) correctly
and outside the SVM classification margin. To address this, we can replace the optimization by
a lower bound —g7, solving instead the following problem, where we omit the constant term,
and simplify notation by using x in place of x.:

mingr(x) =) Qirzi(x) + Qer (0)ze(x) + yrb(x). (6.11)

i€Dg

The corresponding gradient descent (since we are now minimizing) then involves iterative update
steps, where in iteration ¢ 4+ 1 we update x as follows:

x't = x! — B, Vgr(xh), (6.12)

where f; is the learning rate. Then, the gradient of g7 with respect to a given component k of
X is
0z; 00,1 0z b

==Y Oir— +zZe—— + Qe + YT (6.13)
. Xk Bxk 8xk 8xk

In order to make further progress, we again appeal to the special structure of the SVM.
Specifically, in the optimal solution of SVM, and the associated KKT conditions, the set of
training datapoints can be split into three subsets: R (reserve points, for which z; = 0), S (sup-
port vectors, for which 0 < z; < C, where C is the weight of the loss term relative to the reg-
ularization term), and E (error vectors, with z; = C). For each datapoint i in training data,

6.2. POISONING ATTACKS ON BINARY CLASSIFICATION 83
let
J€Do

From the SVM KKT conditions, foralli € R, g; > 0,fori € S, g; =0,andfori € R, g; < 0.
Moreover,

h = Z YjZj = 0. (615)
J€Do

Now, we attempt to change x so as to preserve solution optimality, which we can do if we
ensure that the sets R, S, and E remain the same. If this is the case, then for anyi € RUE,
0z; /0xx = 0, since z; must remain a constant. Consequently, for any i € S,

8gl aZ] anc 8b
I Zc in . = 1
e Z Qij g T G % T Vigg =0 (6.16)

and
0z;
1
an Z Yig— 8Xk (6 7)

Converting to matrix-vector notation, let 2 oS - S be the vector of partial derivatives of z; (x) with
respect to xi for all j € S, let Qs be a matrix of Q;; fori, j € S, and let ys be the vector of y;
fori € S. Finally, let Q5. be a vector of Q;. fori € S. We can then write these conditions as

L (618)
Xk Xy Xy
and
yTaZ_S =0 (6.19)
S 3xk ’ .

and can solve for 22 and 228 as follows:
0x dxj

b T 77! 0
Dk =—zc|: 0 s }) . (6.20)
[gT‘Z } ys Os B%i"

To complete the calculation of the gradient, we need 0Q;./0xx and dQ 1/ 9xk, which amounts
to taking derivatives of the Kernel function. The full algorithm then proceeds by iterating the
following two steps.

1. Learn SVM (perhaps incrementally) using Do U x; (the value of poisoned feature vector
x from previous step ¢) and

2. update x'*1 = x? — B,Vgr(x') using the gradient derived above.

84 6. DATA POISONING ATTACKS

6.3 POISONING ATTACKS FOR UNSUPERVISED
LEARNING

Unlike supervised learning, unsupervised settings involve a dataset comprised solely of feature
vectors D = {x;}. As before, we let the original “pristine” dataset be denoted by Dy, and let D
denote the transformed dataset (which may include new datapoints).

Three problems in adversarial unsupervised learning have received particular attention
in the context of poisoning: clustering (for example, when used to cluster malware), anomaly
detection, and matrix completion. We consider the first two in this section, and devote the
following section to an in-depth discussion of attacks on matrix completion.

6.3.1 POISONING ATTACKS ON CLUSTERING

A clustering algorithm can be generically represented as a mapping f(D) which takes a dataset
D as input and returns a cluster assignment. For many clustering algorithms, we can represent
a cluster assignment by a matrix Y where an entry y;x is the probability that a datapoint i is
assigned to a cluster k. In most common clustering algorithms, y;x are binary, indicating the
cluster assignments of datapoints. Let us denote the clustering assignment for a pristine dataset
Dy by Y. For a poisoned dataset D, let Y = f(D) be the resulting cluster assignment. To
simplify discussion, suppose that the attacker only modifies D.

As in supervised settings, we can consider two goals for the attacker: targeted and reli-
ability attacks. In a targeted attack, the attacker has a target clustering Yr, and they wish to
get as close to this target as possible. A special case would be a stealthy attack in which specific
target data points are clustered incorrectly without altering cluster assignments of other data.
In a reliability attack, the attacker wishes to maximally distort the cluster assignment based on
original data.

In order to devise meaningful measures of success for an attacker or the learner, we need
to account for the fact that the particular cluster identities are entirely arbitrary. In fact, what is
non-arbitrary is a joint assignment of feature vectors to the same cluster. We can capture this by
using Op = Yng instead of Yy as the outcome measure. Thus, if both i and j are in the same
cluster k, i.e., yoix = yojk = 1, then [Og];; = 1. Similarly, we define O = YY7 as the outcome
(pairwise assignment of players to the same cluster) for the clustering induced by the poisoning
attack, and Or = Y7 Y7, to represent the target outcome in a targeted attack.

We can formally model either attack by endowing an attacker with a risk function
R4(0g, O) with original and induced assignments as arguments. For a targeted attack, a natural
risk function is distance of induced clustering outcomes to the target outcome:

RA(OO’ O) = ”O - OT”F’ (621)

6.3. POISONING ATTACKS FOR UNSUPERVISED LEARNING 85

where || - ||F is the Frobenius norm. Similarly, for a reliability attack, the risk function can be
the similarity (negative distance) between the correct and induced outcomes:

R4(00.0) = —[|0 - Oo| . (6.22)

While the attacker aims to change the clustering outcome, they also face costs and/or
constraints associated with the attack. We can capture the costs of modifying training data by a
cost function:

¢(Do, D) = c(Xo,X) = [Xo — X] F, (6.23)

where X and X are the original and poisoned feature matrices. This gives rise to two alternative
formulations of the attack on clustering. The first minimizes a combination of loss and cost:

min R4(0p, 0(X)) + A¢(Xo. X). (6.24)

where we make explicit the dependence of the outcome clustering after poisoning on the poi-
soned dataset X. The second minimizes adversary’s risk subject to a cost constraint:

min R4 (0. 0(X))

(6.25)
s.t.: ¢(Xo,X) <C.

In general, the poisoning attack on clustering is extremely challenging computationally
because clustering itself is a highly non-trivial optimization problem. However, there are several
important special cases of such attacks for which effective heuristics have been proposed in prior
literature. The first is a reliability attack in which we wish to add a collection of C datapoints to a
dataset so as to maximally distort an original cluster assignment, in the context of agglomerative
clustering [Biggio et al., 2014a,b]. The idea is to add a single datapoint at a time in a way
that bridges a pair of nearby clusters. In particular, for k clusters we can define k — 1 bridges
from each cluster to its closest neighboring cluster. Taking the corresponding pairs of points,
we can define the shortest bridge as the shortest distance between any two points belonging to
different clusters. Adding a datapoint midway between these will make it most likely that the
corresponding two clusters are merged. Thus, by iteratively adding points, we can significantly
distort the original cluster assignment.

'The second special case is a targeted attack in which we target a specific collection of data-
points for which we wish to induce an incorrect clustering without affecting cluster assignments
of any other datapoints [Biggio et al., 2014b]. Suppose that x; is a feature vector which the
attacker aims to shift to a different cluster, and let d be the point in the target cluster closest to
x;. If our cost budget constraint is that no datapoint can be modified in /, norm by more than
C, we can transform x; into x; + y(d — x;) where y = min(1, C/|d — xi|2).

86 6. DATA POISONING ATTACKS
6.3.2 POISONING ATTACKS ON ANOMALY DETECTION

Attacks on Online Centroid Anomaly Detection The first attack we discuss is on centroid
anomaly detection, where the mean is computed online, and is due to Kloft and Laskov [2012].
Their attack falls into the category of boiling frog attacks we mentioned in the beginning of the
chapter. Specifically, they assume that the anomaly detector is periodically retrained as new data
is collected, and the adversary adds datapoints between each retraining iteration.

In this attack, the attacker has a target feature vector x7 which they wish to use in the
future, and would like to ensure that it is misclassified as normal. Formally, the goal is that
|xT — p¢]| = r at some learning iteration ¢, where u, is the centroid mean and r the threshold
of the centroid anomaly detector (see Chapter 2, Section 2.2.4 for details). In our terminology,
this is an zargeted attack, with the goal of the attacker represented by a target centroid mean pur
such that | x7 — url| =r.

Kloft and Laskov [2012] propose a greedy-optimal strategy for incrementally poisoning
online centroid-based anomaly detectors. Under this strategy, in each iteration when the attacker
is able to insert an attack instance into the training data, they insert an instance along the line
connecting the current centroid 1, with the attack target feature vector xr, and exactly on the
boundary of the normal region. Formally, suppose that the adversary can insert poison in itera-
tion 7 and definea = FL="4; as the unit direction from the mean /1, to x7. The greedy-optimal
attack in this iteration is then x” = p; + ra, which maximally displaces the centroid toward the
attack target, but remains in the normal region to ensure that it is not simply discarded by the
current anomaly detector.

PCA Next, we describe an example attack on PCA-based anomaly detectors (see Chapter 2,
Section 2.2.4 for details) based on Rubinstein et al. [2009]. In this setting, the attacker aims
to execute a denial-of-service (DoS) attack, which implies adding anomalous-looking traffic.
In our representation, this corresponds to adding an amount 8z to the original traffic, where §
is the strength of the attacker, and z the feature-level impact. If we assume that the attacker
knows corresponding future background traffic x, then the attacker would need to perturb the
resulting traffic x into x” = x + 8z to successfully execute the DoS attack. The attacker’s goal is
to maximize § in this future Do§ attack, by skewing or stretching the anomaly detector so that
the future attack appears normal.

In the poisoning attack, suppose that the attacker can modify the content of the original
data by adding a matrix X e X into the original dataset X, with the constraint that IX]: <C,
where C is the attacker’s budget constraint and X the set of feasible modifications. Let r be the
threshold of the anomaly detector. Then we can represent the attacker’s optimization problem
as

6.4. POISONING ATTACK ON MATRIX COMPLETION 87

max &

§,XeX

st.: V=PCAX +X) (6.26)
1@ = VVD)(x +82)| < r
X[, <C.

While this problem is intractable as is, we can approximate the objective as maximizing the
magnitude of the projected direction of the attack, |[(Xo + X)z||3, yielding

max [[(Xo + X)z[3
XeX ~ (6~27)
st.r |1 X]h = C.

'This problem, in turn, can be solved using projected gradient ascent (also known as projection
pursuit).

6.4 POISONING ATTACK ON MATRIX COMPLETION
6.41 ATTACKMODEL

In this section we describe the framework for poisoning matrix completion algorithms, based on
Li et al. [2016]. Recall from Chapter 2 that in the matrix completion problem, we begin with
an n x m matrix M in which rows correspond to n users and columns correspond to m items
(with the semantics that each user has an opinion about each item). However, we only observe
a small proportion of entries in M, corresponding to actual ratings, and the goal is to infer the
rest—that is, to complete the matrix.

In the attack model we now discuss, the attacker is capable of adding |« n] malicious users
to the training data matrix, and each malicious user is allowed to report its preference on at most
C items with each preference bounded in the range [—-A, A].

Let My € R denote the original data matrix and M € R” *" to denote the data matrix
of all n’ = an malicious users. Let © be the set of non-zero entries in M and ; < [m] be all
items that the ith malicious user rated. According to our attack models, Q| < C for every
i€{l,-.n'}and [|[M|max = max |Mij| < A. For an arbitrary matrix M, let be the subset
of entries that are observed, and recall from Section 2.2.3 that the notation Rg(M) means that
[Re(M)];; equals M;; if (i, j) € and 0 otherwise.

Let ©,(Mo: M) be the optimal solution computed jointly on the original and poisoned
data matrices (My; IVI) using regularization parameters y. For example, Eq. (2.6) becomes

@, (Mo; M) = argmin [|Re(Mo — UVT)[|% + [|Rg(M - TV)|%
U,u,v

+2yu (U3 + [T)1%) + 2pv V%, (6.28)

88 6. DATA POISONING ATTACKS

where the resulting © consists of low-rank latent factors U, U for normal and malicious users as
well as V for items. Simiarly, for the nuclear norm minimization formulation in Eq. (2.7), we
have

0, (My; M) = argmin [Ra(Mo — X)||7 + [Rg(M —X) |17 + 2y [(X; X)[l+. (6.29)
XX
Here, the si)lution is @ = (X, X).
LCE\ M(®) be the matrix estimated from the learfr\md model ©. For example, for Eq. (6.28)
we have M(®) = UV and fgr Eq. (6.29) we have M(®) = X. The goal of the attacker is to
find optimal malicious users M* such that

M* € argmax U(M(®, (Mo; M)). My). (6.30)
MeM
Here M = {M € R”*™ : |Q;| < C, |M|lmax < A} is the set of all feasible poisoning attacks dis-
cussed earlier in this section and U(M, M) denotes the attacker’s utility for diverting the collab-
orative filtering algorithm to predict M on an original data set M, with the help of few malicious
users M.

One can consider several objectives for the attacker in the context of poisoning matrix
completion. The first is a re/iability attack, in which the attacker wishes to maximize the error of
the collaborative filtering system. To formally define this attack objective, suppose that M is the
prediction of the collaborative filtering system without data poisoning attacks.! The attacker’s
risk function is then defined as the total amount of perturbation of predictions between M and
M (predictions after poisoning attacks) on unseen entries Q¢

U (Mg, M) = |[Rqc (M —M)|3. (6.31)

Another class of objectives we can consider are targeted attacks, in which the attacker
wishes to boost or reduce the popularity of a (subset) of items, respectively.” To formalize, sup-
pose S C [m] is the subset of items the attacker is interested in and w is a pre-specified weight
vector by the attacker with w; a weight of item j € S (positive for items whose rating the at-
tacker wishes to boost, and negative for those whose rating the attacker aims to reduce). The
utility function is

targeted (M MO) — Z Z wj i (632)

i=1jeS

Finally, we can consider a hybrid attack:

Ugy (Mo, M) = 1 U™ (Mo, M) + puo U2 (Mo, M), (6.33)
1Note that when the collaborative filtering algorithm and its parameters are set, M is a function of observed entries R (Mo).

2We remark here that the notion of targeted attacks we deal here does not quite fit into our definition of targeted attacks,
which assume a single target. We keep the simpler notion to simplify discussion, particularly as that accounts for the large
majority of targeted attacks, but note that a more general definition would consider target label sezs, in which any label in
the target set is satisfactory for the attacker.

6.4. POISONING ATTACK ON MATRIX COMPLETION 89

where . = (u1, 12) are coeflicients that trade off the two attack objectives (reliability and tar-
geted attacks). In addition, i could be negative, which models the case when the attacker wants
to leave a “light trace:” the attacker wants to make his item more popular while making the other
recommendations of the system less perturbed to avoid detection.

Next we describe practical algorithms to solve the optimization problem in Eq. (6.30).
We first consider the alternating minimization formulation in Eq. (6.28) and derive a projected
gradient ascent method that solves for the corresponding optimal attack strategy. Similar deriva-
tions are then extended to the nuclear norm minimization formulation in Eq. (6.29). Finally,
we discuss how to design malicious users that mimic normal user behavior in order to avoid
detection.

6.4.2 ATTACKING ALTERNATING MINIMIZATION

We now describe a projected gradient ascent (PGA) method for solving the optimization problem
in Eq. (6.30) with respect to the alternating minimization formulation in Eq. (6.28), which is
due to Li et al. [2016]. In particular, in iteration ¢ the algorithm updates M® a5 follows:

ME+HD = Projy, (1\71(’) + B, VUM, 1\71)) , (6.34)

where Projy(+) is the projection operator onto the feasible region M and f; is the step size in
iteration 7. Note that the estimated matrix M depends on the model ©, (Mo; M) learned on the
joint data matrix, which further depends on the malicious users M. Since the constraint set M
is highly non-convex, we can generate C items uniformly at random for each malicious user to
rate. The Projyg(-) operator then reduces to projecting each malicious users’ rating vector onto
an Lo, ball of diameter A, which can be easily evaluated by truncating all entries in M at the
level of £A.

We next show how to (approximately) compute VU (M, M). This is challenging because
one of the arguments in the loss function involves an implicit optimization problem. We first
apply chain rule to arrive at

VezU(Mg, M) = V50, (My; M)V U(Mg, M). (6.35)

The second gradient (with respect to @) is easy to evaluate, as all loss functions mentioned
in the previous section are smooth and differentiable. On the other hand, the first gradient
term is much harder to evaluate because @, () is an optimization procedure. Fortunately, we

can exploit the KKT conditions of the optimization problem @, () to approximately compute

90 6. DATA POISONING ATTACKS

Algorithm 6.5 Optimizing M via PGA

1: Input: Original partially observed n x m data matrix My, algorithm regularization parame-
ter y, attack budget parameters , C and A, attacker’s utility function U, step size {8:}72 ;.
2: Initialization: random M©® e M with both ratings and rated items uniformly sampled at
random; ¢ = 0.
while M® does not converge do
Compute the optimal solution @, (Mg; M®).
Compute gradient VezU(My, M) using Eq. (6.34).
Update: ME+D = ProjM(IVI(’) + B:V57U(Mo, M)).
t<rt+1
end while
Output: 7’ x m malicious matrix M®,

R B A

V50, (My; M). More specifically, the optimal solution @ = (U, U, V) of Eq. (6.28) satisfies

youi = Yy (Moij —u; v)v;:

JEQ;
. N =T
vu; = M-~—u~v'v';
YUl Z;(ij — U j)v; (6.36)
JEQ;
Yvovj = Z (MOij —ll;rvj)ui + Z (Mij _ﬁ;rvj)&i’
ieQ i€,

where u;, @i; are the i th rows (of dimension k) in U or U and v ; is the j th row (also of dimension
k) in V. Consequently, {u;,@;,v;} can be expressed as functions of the original and malicious
data matrices Mgy and M. Using the fact that (" x)a = (aa")x and My does not change with
M, we obtain

dui (M) _ 9 (VD)

A\ —1
@)
- ; — = I+ X v;i;
oMy, oM (ol +28) o

(6.37)
dv;(M) M\
Y (VVIk +Zy) uj.
Here Zg) and Z%,j) are defined as
Eg) = Z vjva,):%,j) = Z uiu] . (6.38)

jEQl’U?ZIi iGQ} U?i;

The full optimization algorithm can then be described in Algorithm 6.5.

6.4. POISONING ATTACK ON MATRIX COMPLETION 91
6.4.3 ATTACKING NUCLEAR NORM MINIMIZATION

We can also extend the projected gradient ascent algorithm described above to compute opti-
mal attack strategies for the nuclear norm minimization formulation in Eq. (6.29). Since the
objective in Eq. (6.29) is convex, the globally optimal solution ® = (X, X) can be obtained by
conventional convex optimization procedures such as proximal gradient descent (a.k.a. singular
value thresholding [Cai et al., 2010] for nuclear norm minimization). In addition, the resulting
estimation (X; i) is low rank due to the nuclear norm penalty [Candés and Recht, 2007].

Suppose (X; X) has rank p < min(n,m). We can use @' = (U, U,V, Y) as an alternative
characterization of the learned model with a reduced number of parameters. Here X = uX VT
and X = UEVT are singular value decompositions of X and X; that is, U € R"*°, U € R™'*¢,
V € R™*? have orthornormal columns and ¥ = diag(oy,:-- ,0,) is a non-negative diagonal
matrix.

To compute the gradient V47U (M, M), we again apply the chain rule to decompose the
gradient into two parts:

ViiU(Mo, M) = V0!, (Mo: M) Ve U(Mo. M). (6.39)

Similarly to Eq. (6.35), the second gradient term Ve U(M, M) is relatively easier to evaluate.
In the remainder of this section we focus on the computation of the first gradient term, which
involves partial derivatives of ® = (U, U, V,) with respect to malicious users M.

We begin with the KKT condition at the optimal solution ®' of Eq. (6.29). Unlike the
alternating minimization formulation, the nuclear norm function || - ||« is not everywhere differ-
entiable. As a result, the KKT condition relates the subdifferential of the nuclear norm function
-1 as o _

Rq.g (Mo; M] — [X; X]) € y|[X; X]|l«. (6.40)

Here [X;X] is the concatenated (n + n’) x m matrix of X and X. The subdifferential of the
nuclear norm function 9| - ||« is also known [Candeés and Recht, 2007]:

X[« ={UV' + W:UTW =WV =0,||[W|, < 1},

where X = UX VT is the singular value decomposition of X. Suppose {u;}, {@#;} and {v;} are
rows of U, U,V and W = {w;;}. We can then re-formulate the KKT condition Eq. (6.40) as
follows:

V(i,j) e, Moy =u; (T +yL)v; + ywij;

i.j)eQ, M i - (6.41)
Vi.j) Q. My =a] (E +yL)v; + yiij.

'This enables us to derive V3z® = Viz(u, @1, v, 0) (see Li et al. [2016] for further details).

92 6. DATA POISONING ATTACKS
Algorithm 6.6 Optimizing M via SGLD

1: Input: Original partially observed n x m data matrix My, algorithm regularization parame-
ter y, attack budget parameters o, C, and A, attacker’s utility function R, step size {;}72,
tuning parameter 8, number of SGLD iterations 7.
Prior setup: compute & = - 7" Mo;; and 67 = .- 372 (Moi; —§;)* forevery j € [n].
Initialization: sample I\A/ig.)) ~N (Ej,ajz) fori € [m'] and j € [n].
fort =0to T do

Compute the optimal solution @, (Mo; M®).

Compute gradient VezU(My, M) using Eq. (6.34).

Update M¢*D according to Eq. (6.45).
end for
Projection: find M* € argmin’MeMHM —M® [1%.
Output: n’ x m malicious matrix M*.

R B O R o

.
@

6.4.4 MIMICKING NORMAL USER BEHAVIORS

Normal users generally do not rate items uniformly at random. For example, some movies are
significantly more popular than others. As a result, malicious users that pick rated movies uni-
formly at random can be easily identified by running a 7-test against a known database consist-
ing of only normal users. To alleviate this issue, this section describes an alternative approach to
compute data poisoning attacks such that the resulting malicious users M mimic normal users
M, to avoid potential detection, while still achieving reasonably high utility U(Mo, M) for the
attacker. We use a Bayesian formulation to take both data poisoning and stealth objectives into
consideration. The prior distribution py (M) captures normal user behaviors and is defined as a
multivariate normal distribution

poM) = [T [N My 85,07, (6.42)

i=1j=1

where £ and 07 are mean and variance parameters for the rating of the jth item provided by
normal users. In practice, both parameters can be estimated using normal user matrix Mo as §; =
L3 Mgij and 02 = L 37| (Mo;; — &)%. On the other hand, the likelihood p(Mo|M) is
defined as

PO = - exp (LU, (6.43)

where UMy, M) = U (ﬁ(Qy(MO; M)), My) is one of the attacker utility models defined above
(for example, corresponding to the reliability attack), Z is a normalization constant, and o > 01is
a tuning parameter that trades off attack performance and stealth. A small p shifts the posterior
of M toward its prior, which makes the resulting attack strategy less effective but harder to detect,
and vice versa.

6.5. AGENERAL FRAMEWORK FOR POISONING ATTACKS 93

Given both prior and likelihood functions, an effective stealthy attack strategy M can be
obtained by sampling from its posterior distribution:

p(M[My) = PO(M)P(MOH\N’I)/P(MO)

& exp (Z Z (M —i— wUMp, M)) (6.44)

i=1j=1

Posterior sampling of Eq. (6.44) is intractable due to the implicit and complicated dependency of
the estimated matrix M on the malicious data M, that is, M = M(©, (My; M)). To circumvent
this problem, we can apply Stochastic Gradient Langevin Dynamics (SGLD) [Welling and Teh,
2011] to approximately sample M from its posterior distribution in Eq. (6.44). More specfically,
the SGLD algorithm iteratively computes a sequence of posterior samples {(M®},-4 and in
iteration ¢ the new sample M¢*1 is computed as

MDD = M©® 4+ B: (VNIng(M|M0)) + &4, (6.45)
where {B;}:>0 are step sizes and &, ~ N (0, B;I) are independent Gaussian noises injected at
each SGLD iteration. The gradient Vg7 log p(M|Mj) can be computed as

Viilog p(M[Mo) = —(M — E)~" + uVgU(Mo, M),

where ¥ = diag(0Z,---,07) and E is an m’ x n matrix with E;; = &; for i € [m'] and j €
[m]. The other gradient V~U (Mo, M) can be computed using the procedure in Sections 6.4.2
and 6.4.3. Finally, the sampled malicious matrix M@ is projected back onto the feasible set M
by selecting C items per user with the largest absolute rating and truncating ratings to the level
of {+A}. A high-level description of this method is given in Algorithm 6.6.

6.5 A GENERAL FRAMEWORK FOR POISONING
ATTACKS

We now describe a rather general approach for poisoning attacks that was introduced by Mei
and Zhu [2015a], and connected to the problem of machine teaching. This approach allows for
both the possibility of adding and modifying a collection of data which subsequently becomes
a part of the training data set. Moreover, it can, in principle, be applied in both supervised and
unsupervised learning settings, although for our description of this approach below it’s most
natural to consider a supervised learning problem.

Let’s start with the traditional learning problem which computes an optimal parametriza-
tion w and trades oft empirical risk and a regularization term. Let D be a dataset. Since the
poisoning attack modifies this dataset, we now explicitly represent everything (including w) as
a function of training data (original or modified). The traditional learning problem can then be

94 6. DATA POISONING ATTACKS

formulated as

w(D) € arg max > Liw) + yp(w). (6.46)
i€D
where /; (w) is the loss on a datapoint i and p(w) the regularization term. For example, in bi-
nary classification the loss could be /; (w) = I(y; g(x;; w)) for the label y; and classification score
g(xi;w). Suppose that both p(w) and /; (w) are strictly convex and twice continuously difter-
entiable. Mei and Zhu [2015a] consider the more general case by allowing constraints as a part
of the learner’s optimization problem, but our restriction allows a simpler presentation of the
approach.
Again, to distinguish the original “clean” dataset from the one produced by an attacker, we
let Dy denote the former, while D represents the latter. The attacker’s decision is then to create a
new dataset D, starting with Dy. In doing so, the attacker faces the tradeoff we described in the
beginning of the chapter: on the one hand the attacker wishes to minimize its own risk function,
R4(w(D)), where w(D) is the parameter produced by the learner when the training dataset D is
used; on the other hand, the attacker incurs a cost captured by the cost function ¢ (Do, D). Mei
and Zhu consider the following optimization problem as a formalization of this tradeoff:

min - R4(w(D)) + ¢(Do, D)

st.: w(D)e argmalei (w) + yp(w).
Y e

(6.47)

This is, of course, a challenging bi-level optimization problem. However, note that if the learner’s
problem is strictly convex, we can rewrite the constraint using the corresponding first-order
conditions:

. dli (w) Ip(w)
Vj, = 0. 6.48
/ Z 8w,- + Y 3wj ()

Suppose that D is the space of all feasible datasets that the attacker can generate (for
example, the attacker cannot delete data from Dy). We can then, in principle, optimize the
attacker’s objective using projected gradient descent, where the update in iteration ¢ + 1 is

D't = Projp [D' — B:VpRa(w(D)) — Vpe(D, Dy)]., (6.49)

and where f; is the learning rate. Vpc(D, Dy) can be computed directly from the analytic ex-
pression of ¢(-), and

Vo Ry(w(D)) = Vu Ra(w) o (6.50)

While Vy, R4(w) is also available directly from the analytic form of the attacker’s risk function,
8w is implicitly represented by the first-order conditions (which we presented as constraints

above).

6.5. AGENERAL FRAMEWORK FOR POISONING ATTACKS 95

Fortunately, we can take advantage of the implicit function theorem, which (under the
conditions we mention presently) allows us to compute this derivative. First, define the collection
of functions

li(w) | dp(w)

8wj 3U)J' '

fi(D,w) = (6.51)

1€D

We can collect these into a vector f(D, w), noting that f(D, w) = 0 represents the first-order
conditions above. Let

Ay Phw) | o)

= , 6.52
8wk ieD 8wj8wk Bwjawk ()

i.e., the Hessian of the original optimization problem for the learner, which we denote in the
corresponding matrix form simply by %, and let % be the partial derivative of f with respect
to the dataset D (we illustrate how this can be computed more concretely below); we denote the

corresponding matrix by df/9D. Then, if % is full rank (and therefore has an inverse), we can

compute
w af 1t af
D |:|:8w:| ap} ‘ (6.53)

To make things concrete, suppose that the attacker is attacking a logistic regression, and
is only able to modify the feature vectors in the dataset Dy. Thus, the attacker’s decision is to
compute a new feature matrix X, given the original feature matrix X and original binary labels
vo. Let ¢(Xp, X) = || X — X ||, the Frobenius norm of the difference between the attack and
original feature matrices. Consider a zargefed attack with a target parameter vector wr that the
attacker wishes the defender to learn. Thus, we let R4(w) = ||[w — wr||3.

Since the attacker is modifying only the existing feature vectors, the partial derivative
df/9D is composed of partial derivatives with respect to corresponding features k of each dat-
apoint i, df;/0x;. Since the regularizer does not depend on x, we omit this term (as it be-
comes zero), and focus on the loss term. The logistic loss function is /; (w) = [(yig(xi; w)) =
—log(o(yigi)), where gi = wlx; + band o(a) = 1/(1 + e7?) is the logistic function. A useful
fact is that the first derivative of the logistic function is 6'(a) = o(a)(1 — o(a)). Then, observe
that in this case,

S[iXow) ==Y "(1—0(yigi))yixi. (6.54)

Consequently,

a R
8){-],{ =o0(yigi))(1 —o(yigi)yixijwry — (1 —0o(y:igi)yil(j = k), (6.55)

where 1(j = k) is the identity function which is 1 if j = k and 0 otherwise.

96 6. DATA POISONING ATTACKS
6.6 BLACK-BOXPOISONING ATTACKS

All of our discussion of poisoning attacks in the preceding sections assumed that the attacker
knows everything there is to know about the system they are attacking—in other words, these
were white-box attacks. We now turn to the question of how feasible it is to deploy poisoning
attacks without such detailed knowledge. We therefore consider again the problem of &lack-
box attacks, now in the context of data poisoning. To be more precise, there are three pieces of
information that the attacker needs to know in a white-box poisoning attack: a feature space,
F, the dataset that the learner would have used before the poisoning attack, D (note that we
indicate by D the knowledge abou the dataset, rather than the dataset itself), and the algorithm
A used by the learner (including relevant hyperparameters).

Figure 6.2 presents an information lattice for black-box poisoning attacks, starting with
a white-box attack (full information). If the learner does not know the algorithm, a black-box
attack can use a proxy algorithm instead, and evaluate robustness of poisoning attacks with
respect to incorrect assumptions about the algorithm being used. If feature space is unknown, a
proxy feature space may also be used, although this is a severe limitation on the information that
the attacker possesses. However, the most significant limitation may be poor information about
the dataset being poisoned. If the proxy data is only partial data used by the learner, it is still
possible for the attacker to modify the instances (including labels) in the dataset (in principle,
anyway), but such attacks are clearly impossible without having some access to the training data.
Insertion attacks, on the other hand, can still be introduced, although their effectiveness is sure
to degrade if proxy data is not representative of actual training data used by the learner.

6.7 BIBLIOGRAPHICNOTES

'The problem of learning with noise has a long tradition in machine learning [Bshoutya et al.,
2002, Kearns and Li, 1993, Natarajan et al., 2013]. However, these are focused on worst-case
errors for a small number of samples, rather than specific algorithms for adversarial data poi-
soning. We tackle the issue of robust learning in the presence of adversarial poisoning attacks in
the next chapter.

Some of the earliest formal models and algorithmic approaches to poisoning attacks were
label-flipping attacks against binary classifiers (primarily, linear SVM). Our description is based
on Xiao et al. [2012]. An alternative approach is presented by Biggio et al. [2011], and Xiao
et al. [2015] present a unified treatment of both.

'The poisoning attack on support vector machines in which a single malicious feature vector
is added is due to Biggio et al. [2012]. This attack is rather restricted: only a single instance is
added to the data, and the adversary has no control over the label (for example, the adversary
may perform a carefully designed malicious or benign task, such as sending an email to the
recipient in an organization, but the learner subsequently ensures that these are labeled correctly

for training). If an adversary is able to add more than a single malicious instance to the training

6.7. BIBLIOGRAPHICNOTES 97

‘White-box Attacks

©BY
T

Proxy Algorithm Proxy Features } [Proxy Data }

5,0 (DRG0 RO
_—

)/%
Proxy Features Proxy Data |

o+ B8 (B0 ololg

Proxy
Features + Data

—

Proxy

Features + Data

T —N
=]
&

No Information

Figure 6.2: An lattice of black-box data poisoning attacks on machine learning.

data, they could apply the approach we described in a greedy fashion, adding one datapoint at
a time. A more general approach based on machine teaching (see below), on the other hand,
considers the impact of modifying the entire dataset.

In the unsupervised problem space, several approaches consider poisoning attacks on clus-
tering methods [Biggio et al., 2014a,b], and several deal with poisoning anomaly detectors [Kloft
and Laskov, 2012, Rubinstein et al., 2009]. As discussed above, the attack on conventional cen-
troid anomaly detection methods (which are quite generally used) is mathematically relatively
straightforward, and is due to Kloft and Laskov [2012]; however, we know of no existing attacks
on kernel-based centroid anomaly detectors. The attack on PCA-based anomaly detection is due
to Rubinstein et al. [2009]. Finally, the attacks on matrix completion (for example, as used in
recommender systems) are due to Li et al. [2016].

'The general approach for poisoning attacks, as well as the connection to machine teaching,
are due to Mei and Zhu [2015a]. A similar approach within the machine teaching framework has
also been explored by Mei and Zhu [2015b] in a specific attack on Latent Dirichlet Allocation
(LDA), particularly in the context of natural language topic modeling. Another recent general
approach to data poisoning in supervised learning settings is due to Koh and Liang [2017],

98 6. DATA POISONING ATTACKS

who use influence functions to study the impact of small perturbations in training datapoints on
learning, and apply this idea to poisoning deep learning. While a large portion of methods for
poisoning target classifiers, a recent attack considers linear regression [Jagiclski et al., 2018].

Our discussion of black-box approaches for poisoning attacks is closely connected to a
recent framework for categorizing information possessed by the attacker due to Suciu et al.
[2018]. They term this the FAIL framework, which we discussed earlier (Chapter 3, biblio-
graphic notes), where F corresponds to knowledge about feature space, 4 refers to knowledge
about the algorithm, 7 is what we call knowledge about data (they term it inszances), and L is
a reference to the attacker’s capability, which we here treat orthogonally (in their example, this
refers to which features the attacker can modify, an issue we mostly do not address, but this can
also consider limitations on the attacker such as what the data they can modify). Suciu et al.
[2018] also develop an effective targeted black-box poisoning attack algorithm, StingRay. The
high-level idea behind SzingRay is to use a collection of base datapoints (e.g., from the actual or
proxy dataset) which are labeled with a target label and are close to the target feature vector in
feature space. The adversary then modifies features in the base instance to move the associated
teature vector closer to the target. StingRay introduces several additional considerations into its
attack: first, it also attempts to minimize impact on other instances which are not the target (the
stealth consideration), and second, it ensures that it is not pruned by a detector which is meant
to sanitize the training data.

99

CHAPTER 7

Defending Against Data

Poisoning

Making machine learning algorithms robust against malicious noise in training data is one of
the classic problems in machine learning. We define this robust learning problem as follows. We
start with the pristine training dataset Dy of n labeled examples. Suppose that an unknown
proportion & of the dataset Dy is then corrupted arbitrarily (i.e., both feature vectors and labels
may be corrupted), resulting in a corrupted dataset D. The goal is to learn a model f on the
corrupted data D which is nearly as good (in terms of] say, prediction accuracy) as a model fo
learned on pristine data D.

We divide the algorithmic approaches for poisoning-robust learning into three categories.

1. Data sub-sampling: take many random sub-samples of D, learn a model on each using
the same learning algorithm, and choose the model with the smallest (training) error (e.g.,

Kearns and Li [1993]).

2. Outlier removal: identify and remove anomalous instances (outliers), and then learn the

model (e.g., Klivans et al. [2009]).

3. Trimmed optimization: (arguably, a variation on theme 2) minimize empirical risk while
pruning out the (1 — o)n datapoints with the largest error (e.g., Liu et al. [2017]).

In this chapter, we present example methods for defending against poisoning attacks for each
of these categories.

7.1 ROBUST LEARNING THROUGH DATA
SUB-SAMPLING

'The first approach we present is also one of the oldest. In a seminal paper, Kearns and Li [1993]
present one of the earliest approaches for robust classification. The key idea is that, if & is suf-
ficiently small compared to target error €, any polynomial time PAC learning algorithm can
be used (as a subroutine) to obtain a PAC learning algorithm when a fraction « of data has
malicious noise.

'The algorithm is given in Algorithm 7.7. This algorithm is actually slightly different from
the original idea by Kearns and Li [1993]: originally, one would take K samples of size m from

100 7. DEFENDING AGAINST DATA POISONING

Algorithm 7.7 Data Sub-sampling Algorithm

fori =1---K do
D; = Sample(D, m)
h; = Learn(D;)
e; = Error(h;, D;)
end for
i* = argmin; e;
return hi*.

an oracle, which generates malicious instances with probability . In contrast, we use a setup
that has become more conventional, starting with a dataset D, which has (at most) a fraction
a of poisoned instances. Then, we take K subsamples of size m from this dataset (which we
assume is sufficiently large, say, with at least Km instances). The Sample() function takes one
such subsample. Next, the Learn() function applies a learning algorithm. Finally, we measure
the training error e; of the hypothesis h; returned by the (non-robust) learning algorithm.
After K steps, the algorithm simply returns the hypothesis which obtained the smallest
training error. The key insight is that when the fraction of data poisoned, «, is very small, it is
very likely that one of the K samples contains no malicious samples, which would allow a good
learning algorithm to obtain a small training error. The following theorem formalizes this (see
Chapter 2 for the formal definition of a polynomial-time PAC learning algorithm in this theorem).

Theorem 7.1 Suppose Learn() implements a polynomial-time PAC learning algorithm, and m is
its sample complexity to achieve error € /2 with probability at least 1/2. Let o < (logm)/m, and
K > 2m?10g(3/8). Then, with probability at least 1 — § the (true) error of the solution computed by
Algorithm 7.7 is at most €.

While Algorithm 7.7 and the theoretical guarantee based on it are specific to binary clas-
sification, the algorithm itself is not difficult to generalize: in fact, we can simply replace the
function which computes error with any measure of risk on data, and the approach would di-
rectly extend to regression or, for that matter, to unsupervised learning which aims to minimize
some measure of empirical risk (such as maximizing likelihood of data).

7.2 ROBUST LEARNING THROUGH OUTLIER REMOVAL

The next general technique for dealing with poisoned data is to attempt to identify and remove
the malicious instances from the training data before learning. At the high level, approaches of
this type work as described in Algorithm 7.8.

Klivans et al. [2009] introduce a formal learning framework based on outlier detection
and removal. Suppose that the model class F is the class of origin-centered linear classifiers, i.e.,

7.2. ROBUST LEARNING THROUGH OUTLIER REMOVAL 101

Algorithm 7.8 Robust Learning Using Outlier Removal

Input: dataset D

Delean = RemoveOutliers(D)
h = Learn(D¢1ean)

return h

f(x) = sgn{wT x}. Klivans et al. [2009] then propose an algorithm for outlier removal based
on PCA, which leads to PAC-learning guarantees for a particular instance of Learn() described
below, albeit under relatively strong distributional assumptions.

Specifically, consider the RemoveOutliers() function. Klivans et al. [2009] suggest the
iterative approach for removing outliers in Algorithm 7.9. Intuitively, this algorithm iteratively

Algorithm 7.9 RemoveOutliers()
Input: dataset D

Dclean =D
repeat
— T
Define 4 =3 cp_ .. XX .

Find v, the eigenvector with the largest eigenvalue of A.

S: the set of feature vectors x € D with (v7 x)? > mlTogn.
Dclean ~D-S§

until S = @

return D.

projects the data into a single dimension with the highest variance, and removes all outliers along
this dimension. Their Learn() algorithm is just a simple averaging approach, which computes a
weight vector of a linear classifier as

w:|Dl | Z ViXi. (7.1)

This clearly results in a polynomial time algorithm. With this, they were able to prove the fol-
lowing result.

Theorem 7.2 S uppose that the distribution over feature vectors is uniform over a unit ball, and ma-
licious noisea < Q(€*/log(n/€)). Then, the algorithm above learns an origin-centered linear classifier
with accuracy of at least 1 — €.

Again, while the algorithm due to Klivans et al. [2009], and the theoretical guarantee, are
specific to linear classification, the idea is not difficult to generalize. Indeed, any other outlier

102 7. DEFENDING AGAINST DATA POISONING

detection approach may in principle be used, and in any case, once a clean dataset is obtained,
we can apply an arbitrary learning algorithm to it (of course, the theoretical result is specific to
linear classification).

Algorithm 7.10 Robust Learning with Micromodels

Input: dataset D, number of micromodels K
den <~ 0
{D;} = PartitionData(D, K)
fori =1to K do

hi = AD(D;)
end for
for x € D do

s(x) = 325 wihi(x)

if s(x) < r then

den <~ Dclean Ux

end if
end for
h = Learn(D,,,,,)
return h

Another approach for outlier removal, suggested by Cretu et al. [2008], makes use of
anomaly detection, and is actually designed specifically for robust anomaly detection in secu-
rity. Let AD(D) be an anomaly detector which takes a dataset D as input and returns a model
S (x) which outputs normal (-1) and anomalous (+1) for an arbitrary input x. Now, suppose we
partition the dataset D into a collection of subsets {D; }, and train an anomaly detector indepen-
dently for each D;. This provides us with a collection of detectors, {h; }, which Cretu et al. [2008]
term micromodels. We can now use the ensemble of /; to score each datapoint in D as normal
or anomalous. Specifically, for each x € D, let the score s(x) = >, w;h;(x) be the weighted
vote on this datapoint by all micromodels. We then remove x from D if s(x) > r, for some
predefined threshold r. Once the data has thereby been sanitized, we can learn the final model
(which could be a classifier, regression, or an anomaly detector) on the sanitized dataset.! The
tull algorithm for cleaning the data using micromodels is given by Algorithm 7.10.

A third idea for outlier removal as a means to sanitize data is due to Barreno et al. [2010],
and can be viewed as a variation on the notion of micromodels. Barreno et al. [2010] assume
that they start with a pristine training dataset D,, and consider adding an additional dataset
Z which may be partially poisoned. At the high level, they evaluate how much impact each

TWe note that Cretu et al. [2008] actually suggest splitting the original dataset into three parts: the first to learn the mi-
cromodels, the second which is sanitized and then used to learn the anomaly detector (or, in our case, any other learning
model), and the third for evaluation. We reframe their methodology so it can be used to sanitize the training data directly
(which is also used to learn the micromodels).

7.2. ROBUST LEARNING THROUGH OUTLIER REMOVAL 103

datapoint z € Z has on the marginal change in empirical risk of a learned model, an approach
that Barreno et al. [2010] term Reject on Negative Impact or RONI.

Algorithm 7.11 RONI Algorithm

Input: pristine dataset D,, new dataset Z
D <« D,
C = Sample(D,)
{(T;, Qi)} = PartitionData(D, —C, K)
forc € C do
s(¢) = FindShift(c, {(7;, @i)})
end for
a = Average({s(c)})
forz € Zdo
s(z) = FindShift(z, {(T;, Q:)})
if s(z) > 0ora —s(z) <r then
D« DUz
end if
end for
return D

Algorithm 7.12 FindShift()

fori =1to K do
h; = Learn(T;)
hi = Learn(7; U 2)
e; = Error(h,-, Q,)
é; = Error(h;, Q;)
end for
es0e = Average({e; })
40e = Average({¢;})

return e,,, — €,

Algorithm 7.11 presents the full RONI approach, where the function FindShift(), elab-
orated in Algorithm 7.12, returns the impact of a given datapoint z on average accuracy (equiv-
alently, error) over the collection of training and test subsamples.

The first step in RONI is to randomly sample a calibration dataset C from D,. Next, we
split the dataset D, — C into K randomly sampled pairs of training and test subsets, 7; and
Q;, respectively. We then take the average impact on accuracy that each ¢ € C has as a baseline
(since we assume that C is sampled from pristine data). Next, we iterative score each z € Z

104 7. DEFENDING AGAINST DATA POISONING

in a similar fashion in terms of its average impact on accuracy over the collection of 7; (used
for training) and Q; (used for evaluation) pairs. Finally, we filter any z which has a sufficiently
large (anomalous) negative impact on learning accuracy as compared to the baseline, where an
exogenously specified threshold r determines how conservative we are at doing such filtering.

7.3 ROBUST LEARNING THROUGH TRIMMED
OPTIMIZATION

We now illustrate the third approach for making machine learning robust to training data poi-
soning, trimmed optimization, in the context of linear regression learning.

'The specific approach we describe actually combines linear regression with PCA, and the
tull approach is given in Algorithm 7.13. In this algorithm, the first step performs PCA, and

Algorithm 7.13 Robust Principle Component Regression

Input: dataset D
B = findBasis(D)

w = learnLinearRegression(D, B),

the second learns the actual linear regression, using the PCA basis B. It is clear that both steps
need to be performed robustly. Right now, we focus on step 2, and assume that the basis B is
computed correctly. We deal with robust PCA in Section 7.4.

We now formalize the setup. We start with the pristine training dataset D, of n labeled
examples, (X., y.), where y. € R, which subsequently suffers from two types of corruption:
noise is added to feature vectors, and the adversary adds n; malicious examples (feature vectors
and labels) to mislead learning. Thus, & = n1/(n 4+ n1), and we define y = =L as the corruption
ratio, or the ratio of corrupted and pristine data. We assume that the adversary has full knowledge
of the learning algorithm. The learner’s goal is to learn a model on the corrupted dataset which
is similar to the true model. We assume that X, is low-rank with a basis B, and we assume that
the true model is the associated low-dimensional linear regression.

Formally, observed training data is generated as follows.

1. Ground truth: y, = X, w* = Uwy{;, where w* is the true model weight vector, wy; is its
low-dimensional representation, and U = X, B is the low-dimensional embedding of X,.

2. Noise: Xy = X, + N, where N is a noise matrix with |[N|eo < €; Yo = y« + ¢, where ¢
is 1.i.d. zero-mean Gaussian noise with variance o.

3. Corruption: The attacker adds n; adversarially crafted datapoints {x,, y.} to get (X, y),
which maximally skews prediction performance of low-dimensional linear regression.

7.3. ROBUST LEARNING THROUGH TRIMMED OPTIMIZATION 105

We now present the trimmed regression algorithm proposed by Liu et al. [2017]. To es-
timatey = X, w + e, we assume wy = Bw. Since X, = U, B, we convert the estimation prob-
lem of w from a high dimensional space to the estimation problem of wy in a low dimensional
space, such that y = Uwy + e. After computing an estimate Wy, we can convert it back to
get w = Bwy. Notice that this is analogous to standard principal component regression Jolliffe
[1982]. However, the adversary may corrupt n; rows in U to fool the learner to cause wrong es-
timation on Wy, and thus on w. The trimmed regression algorithm (Algorithm 7.14) addresses
this problem.

Algorithm 7.14 Trimmed Principal Component Regression
Input: X, B, y

1. Project X onto the span space of B and get U «<— XB .

2. Solve the following minimization problem to get wy
min Z{(yi —wwy)? fori =1,...,n+n1} (7.2)
wy i

where z(;) denotes the j-th smallest element in sequence z.

3. return W < Bwyg.

Intuitively, during the training process we trim out the top 71 samples that maximize the
difference between the observed response y; and the predicted response u; wy, where u; denotes
the i-th row of U. Since we know the variances of these differences are small (i.e., recall that
o is the variance of the random noise y — xw*), these samples corresponding to the largest
differences are more likely to be the adversarial ones. Trimmed optimization problems of this
kind appear at first to be quite intractable. In Section 7.5 we describe a scalable approach for
solving such problems.

Liu et al. [2017] prove the following result.

Theorem 7.3 Suppose that the basis B is given. Algorithm 7.14 returns W, such that for any real
value h > 1 and for some constant ¢ we have

2
Ex[(x(w— w*))z] < 402(1 + Mﬁ) logc (7.3)

with probability at least 1 — c - h2,

106 7. DEFENDING AGAINST DATA POISONING

Note that we can use a similar approach for robust learning more generally. The key idea
above is to trim the risk function to exclude n; outliers. While in context this was specialized
to the /5 regression loss without regularization, one can immediately consider a more general
version of the problem, where we minimize an arbitrary regularized risk, with a loss function
I(y, wT x) and [, regularization. Then, we can consider solving the following trimmed optimiza-
tion problem to achieve robustness:

n
n}uin Z{l(yi, wl x;) + Mwll? fori = 1,....n + ni}), (7.4)
j=1

where z(;), again, denotes the j-th smallest element in sequence z. As an example, we can apply
this idea to robust classification with loss functions of the form /(yw7 x).

74 ROBUST MATRIX FACTORIZATION

In this section, we discuss the approach by Liu et al. [2017] for recovering the low-rank subspace
of matrix. While this is of independent importance, it would also allow us to solve the robust
regression problem above.

Suppose that the observed and corrupted matrix X is generated as follows.

1. Ground truth: X, is the true low-rank matrix with a basis B.
2. Noise: Xg = X, + N, where N is a noise matrix with |N||s < €.

3. Corruption: The attacker adds n; adversarially crafted rows {x,} to get the observed
matrix X.

'The goal is to recover the true basis B of X.. For convenience, we let O denote the set of (un-
known) indices of the samples in X coming from Xy and A = {1, ...,n +n} — O the set of
indices for adversarial samples in X. For an index set Z and matrix M, M” denotes the sub-
matrix containing only rows in Z; similar notation is used for vectors.

7.4.1 NOISE-FREE SUBSPACE RECOVERY

We first consider an easier version of the robust subspace recorvery problem with N = 0 (that
is, no random noise is added to the matrix X,; however, there are still n; malicious instances).
In this case, we know that X© = X,. We assume that we know rank(X,.) = k (or have an upper
bound on it). Presently we show that there exists a sharp threshold 6 on n; such that whenever
ny < 6, we can recover the basis B exactly with high probability, whereas if ny > 6, the basis
cannot be recovered. To characterize this threshold, we define the cardinality of the maximal
rank k — 1 subspace MSy_(X.) as the optimal value of the following problem:

max 1Z| s.t. rank(X%) <k — 1. (7.5)

7.4. ROBUST MATRIX FACTORIZATION 107

Intuitively, the adversary can insert ny = n — MSk_;(X,) samples to form a rank k sub-
space, which does not span X,. The following theorem shows that in this case, there is indeed
no learner that can successfully recover the subspace of X,.

Theorem 7.4 Ifn; + MSk_1(X\) > n, then there exists an adversary such that no algorithm can
recover the basis B with probability > 1/2.

On the other hand, when 1 is below this threshold, we can use Algorithm 7.15 to recover
the subspace of X,.

Algorithm 7.15 Exact Recover Algorithm for Basis Recovery (Noisy-free)

We search for a subset Z of indices, such that |Z| = n, and rank(X%) = k
return a basis of X”.

Theorem 7.5 Ifny + MSk_1(Xy) < n, then Algorithm 7.15 recovers B for any adversary.

Theorems 7.4 and 7.5 together give the necessary and sufficient conditions for exact basis
recovery. It can be show that MS;_; (X.) > k — 1. Combining this with Theorem 7.4, we obtain
the following upper bound on y.

Corollary 7.6 Ify > 1 — k%l, then we can successfully recover the basis B.

7.4.2 DEALING WITH NOISE

We now consider the problem of robust PCA (basis recovery) when there is noise added to the
true matrix X,. Clearly, in order for us to recover the basis when there is malicious noise we
need to make sure that the problem can be solved even when no malicious noise is present. A
sufficient condition, which is subsequently imposed, is that X, is the unique optimal solution to
the following problem:

min|Xo — X|
X

(7.6)
s.t. rank(X') < k.

Note that this assumption is implied by the classical PCA problem [Eckart and Young, 1936,
Hotelling, 1933, Jolliffe, 2002].

Unless otherwise mentioned, we use || - || to denote the Frobenius norm. We put no addi-
tional restrictions on additive noise N except above. We focus on the optimal value of the above
problem, which we term the noise residual and denote by NR(Xo) = N. Noise residual is a key
component to characterize the necessary and sufficient conditions for exact basis recovery with

noise.

108 7. DEFENDING AGAINST DATA POISONING

Characterization of the defender’s ability to accurately recover the true basis B of X, after
the attacker adds 7, malicious instances stems from the attacker’s ability to mislead the defender
into thinking that some other basis, B, better represents X,. Intuitively, since the defender does
not know Xy, X, or which n; rows of the data matrix X are adversarial, this comes down to the
ability to identify the n — ny rows that correspond to the correct basis (note that it will suffice to
obtain the correct basis even if some adversarial rows are used, since the adversary may be forced
to align malicious examples with the correct basis to evade explicit detection). As we show below,
whether the defender can succeed is determined by the relationship between the noise residual
NR(Xy) and sub-matrix residual, denoted as SR(Xo), which is the value optimizing the following
problem:

. T =
in, IXo — UB|| (7.72)
s.t. rank(B) = k,BB' = I,,X,B'B £ X, (7.7b)
T2, nb | T =n—n. (7.7¢)

We now explain the above optimization problem. U and B are (n —n;) x k and k x m
matrices separately. Here B is a basis which the attacker “targets;” for convenience, we require
5 . SRl

B to be orthogonal (i.e., BB" = I, where I is the k-dimensional identity matrix). Since the
attacker succeeds only if they can induce a basis difterent from the true B, we require that B does
Sy . .- nl B . C
not span of X, which is equivalent to the condition that X,B" B # X.. Thus, this optimization
problem seeks n — ny rows of X,, where 7 is the corresponding index set. The objective is to
minimize the distance between X and the span space of the target basis B, (i.e., || X5 — UBJ|).

Algorithm 7.16 Exact Basis Recovery Algorithm
Solve the following optimization problem and get Z.

minzp, |[[X* — L||

s.t. tank(L) <k, ZC{l,...n+n(},|Z|=n (7.8)

return a basis of XZ.

To understand the importance of SR(Xy), consider Algorithm 7.16 for recovering the
basis B of X, If the optimal objective value of optimization problem (7.7), SR(Xo), exceeds the
noise NR(X), it follows that the defender can obtain the correct basis B using Algorithm 7.16,
as it yields a better low-rank approximation of X than any other basis. Else, it is, indeed, possible
for the adversary to induce an incorrect choice of a basis. The following theorem formalizes this
argument.

Theorem 7.7 If SR(Xo) < NR(Xy), then no algorithm can recover the exact subspace of X, with
probability > 1/2. If SR(Xo) > NR(Xo), then Algorithm 7.16 recovers the true basis.

7.5. AN EFFICIENT ALGORITHM FOR TRIMMED OPTIMIZATION PROBLEMS 109
7.4.3 EFFICIENT ROBUST SUBSPACE RECOVERY

Consider the objective function (7.8). Since rank(L) < k, we can rewrite L = UB” where U’s
and B’s shapes are n x k and m x k, respectively. Therefore, we can rewrite objective (7.8) as

min || X* —UB”|| st. |Z| =n (7.9)
Z,UB
which is equivalent to
%1,1}%121{||x,-—u,-B || fori =1,...n +ni}g, (7.10)
j=

where x; and u; denote the ith row of X and U respectively. We can solve Problem 7.10 using
alternating minimization, which iteratively optimizes the objective for U and B while fixing the
other. Specifically, in the ¢th iteration, we optimize for the following two objectives:

Ut = argming || X — UB™)7|| (7.11)
B't! = argming Z{Hx, - u;”+lBT|| fori =1,...,n+n1}. (7.12)
j=1

Notice that the second step computes the entire U regardless of the sub-matrix restriction. This
is because we need the entire U to be computed to update B. The key challenge is to compute
B’*! in each iteration, which is, again, a trimmed optimization problem.

7.5 ANEFFICIENT ALGORITHM FOR TRIMMED
OPTIMIZATION PROBLEMS

As illustrated above, an important tool for solving robust learning problems such as robust re-
gression and robust subspace recovery is the #rimmed optimization problem of the form

min D Ui fulx) fori =1,...n +n1}), (7.13)

Jj=1

where fy, (x;) computes the prediction over x; using parameters w, and /(-, -) is the loss function.
It can be shown that solving this problem is equivalent to solving

minw,rl Tntn, Z:l:{“ Til(yiy fw (Xi)) (7 14)
n+ny .
s.t. OE T < 1,21‘:1 T =n.

We can use the alternating minimization technique to solve this problem, by optimizing for w,
and 7; in an alternating fashion. We present this in Algorithm 7.17. In particular, this algorithm

110 7. DEFENDING AGAINST DATA POISONING

Algorithm 7.17 Trimmed Optimization

n+n;

1. Randomly assign 7; € {0, 1} fori = 1,...,n 4+ ny, such that) ;"' 1; = n;
. Optimize w < argminy, Y r2 "' 1(yi, fu(x:));
. Compute rank; as the rank of /(y;, fiy(x)) in the ascending order;

2

3

4. Set 1; < 1 for rank; < n, and 7; < 0 otherwise;
5. Go to 2 if any of 7; changes;

6

. return w.

iteratively seeks optimal values for w and 7, ..., Ty4n,, respectively. Optimizing for w is a stan-
dard learning problem. When optimizing 1, ..., Ty4n,, itis easy to see that ; = 1if1(y;, fu (x;))
is among the largest n; and ; = 0 otherwise. Therefore, optimizing for 71, ..., Ty4, is a simple
sorting step. While this algorithm is not guaranteed to converge to a globally optimal, it often
performs well in practice [Liu et al., 2017].

7.6 BIBLIOGRAPHICNOTES

As we stated in the opening sentence of this chapter, the problem of devising learning algo-
rithms which are robust to data corruption has been studied for several decades. Indeed, what is
new about data poisoning is a fair question. The key difference is largely about perspective. First,
the specific question of how to inject malicious noise (from an algorithmic perspective), which
we tackled in Chapter 6, is of relatively recent interest. But even when it comes to robust learn-
ing, there is a difference between the older research and the more recent approaches. Classical
methods generally assume that the fraction of training data which is malicious is extremely small,
compared, for example, to accuracy of the classifier. More recent approaches attempt to provide
algorithms and guarantees that work even when malicious noise fraction « is a non-negligible
proportion of the data.

A number of classical models of learning with malicious noise go back to the mid-1980s.
The earliest model (to our knowledge) is due to Valiant [1985], and was subsequently thor-
oughly analyzed by Kearns and Li [1993], whose algorithm we present as the data sub-sampling
approach; a similar algorithm for a related nasty noise model was proposed by Bshoutya et al.
[2002].

A number of subsequent efforts show that variations of linear classifiers in which the
weight vector is computed as w =) _; p; yi X;, where p; is the probability of data point i (ac-
cording to a Anown instance distribution), y; its label, and x; the feature vector, is robust to a

small amount of malicious noise [Kalai et al., 2008, Klivans et al., 2009, Servedio, 2003].

7.6. BIBLIOGRAPHICNOTES 111

Klivans et al. [2009] proposed the rather powerful and elegant outlier removal idea that we
describe, while the approach for detecting outliers based on micromodels was proposed by Cretu
etal. [2008]. The RONI algorithm due to Barreno et al. [2010] is closely related to micromodels,
but also has an interesting connection to trimmed optimization: this approach attempts to detect
outliers by making use of prediction error of the learned model, identifying those points as
outliers which introduce a high error. However, RONI has an important limitation in that it
assumes that the learner has access to an initial collection of good quality data. A more recent
approach by Steinhardt et al. [2017], framed as certifying robustness to data poisoning, is also
largely in the spirit of outlier detection.

'The trimmed optimization approach to robust learning is conceptually related to outlier re-
moval (it attempts to remove instances with high empirical loss with respect to a learned model),
but combines it with learning into an effectively single-shot procedure. A number of approaches
based on trimmed optimization have been developed to address the problem of learning with
malicious noise, both for linear regression [Liu et al., 2017, Xu et al., 2009a], as well as linear
classification [Feng et al., 2014]. Our discussion presents the approach by Liu et al. [2017],
which requires fewer assumptions compared to prior methods.

A somewhat orthogonal idea to the three classes of approaches we focus on, suggested by
Demontis et al. [2017b], is to use [oo-regularized SVM for increased robustness to poisoning
attacks. It is interesting that the same idea has been shown to yield robustness to evasion attacks
in which the attacker’s evasion cost is measured by /; regularization.

Finally, a number of approaches consider the problem of robust PCA [Liu et al., 2017,
Xu et al., 2012, 2013]. We present the approach by Liu et al. [2017], which has shown good

empirical performance compared to some of the others.

113

CHAPTER 8

Attacking and Defending
Deep Learning

In recent years, deep learning has made a considerable splash, having shown exceptional effec-
tiveness in applications ranging from computer vision to natural language processing [Goodfel-
low et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep
neural network models to small adversarial changes to inputs. While initially these were seen
largely as robustness tests rather than modeling actual attacks, the language of adversarial has
since often been taken more literally, for example, with explicit connections to security and safety
applications.

As the literature on adversarial deep learning recently emerged almost independently of
the earlier adversarial machine learning research, and is of considerable independent interest,
we focus this chapter solely on attacks on, and defenses of, deep learning. Nevertheless, the
content of this chapter is a special case of decision-time attacks, and associated defenses—in other
words, one must see this chapter as intimately tied to our discussion in Chapters 4 and 5. While
there have also been several approaches to poisoning attacks on deep learning, this literature is
somewhat less mature at the time of this writing, and we only remark on it in the bibliographic
notes to Chapter 6. Since vision applications have been the most important in the adversarial
deep learning literature, this chapter is framed in the context of such applications (which are
also, conveniently, easiest to visualize).

After a brief description of typical deep learning models, we discuss (decision-time) at-
tacks on deep neural networks. First, we frame such attacks, or adversarial examples, as general
tformal optimization problems. We then discuss three major classes of attacks, which we cate-
gorize in terms of the measure of distance they use to quantify the cost of a perturbation.

1. l,-norm attacks: in these attacks the attacker aims to minimize squared error between the
adversarial and original image. These typically result in a very small amount of noise added
to the image.

2. loo-norm attacks: this is perhaps the simplest class of attacks which aim to limit or mini-
mize the amount that any pixe/ is perturbed in order to achieve an adversary’s goal.

3. lp-norm attacks: these attacks minimize the number of modified pixels in the image.

114 8. ATTACKING AND DEFENDING DEEP LEARNING

After discussing the general attack methods in the context of digital images, we describe
approaches for making such attacks practical in the physical world: that is, adversarially modifying
physical objects which are misclassified after being processed into digital form.

Along with the attacks on deep learning, there emerged a number of approaches to mit-
igate against these. We describe three general approaches for protecting deep learning against
decision-time attacks.

1. Robust optimization: this is the most theoretically grounded approach, as it aims to di-
rectly embed robustness into learning. As such, robust optimization in principle allows
one to guarantee or certify robustness.

2. Retraining: the iterative retraining approach we discussed in Chapter 5 for decision-time
attacks can be directly applied to increase robustness of deep learning.

3. Distillation: this is a heuristic approach for making gradient-based attacks more difficult
to execute by effectively rescaling the output function to ensure that gradients become
unstable. It is worth noting that distillation can be defeated by state of the art attacks.

8.1 NEURALNETWORKMODELS

Deep learning makes use of neural network learning models, which transform an input feature
vector through a series of non-linear transformations, called /ayers, before producing a final an-
swer, which for classification is a probability distribution over the classes, while for regression
corresponds to real-valued predictions. What makes deep learning deep is the fact that one uses
many such non-linear transformation layers, where different layers may compute difterent kinds
of functions.

Formally, a deep neural network F(x) over a feature vector x is a composition

F(x) = Fyo Fy—10---0 Fi(x), 8.1)
where each layer Fj(z;_;) maps an output z;_; from the previous layer F;_; into a vector z; as
z1 = Fi(z1-1) = gWizi—1 + by), (8.2)

with W; and b; the weight matrix and bias vector parameters, respectively, and g(-) a non-
linear function, such as a (componentwise) sigmoid g(a) = 1/(1 + e?) or a rectified linear unit
(ReLU), g(a) = max(0, a). To simplify notation, henceforth we aggregate all of the parameters
W; and b; of the deep neural network model into a vector 6. We also often omit the explicit
dependence of F(x) on 0 unless it’s necessary for exposition.

In classification settings, the final output of the neural network is a probability distribution
p over the classes, i.e., p; > 0and) ; p; =1 for all classes i. This is typically accomplished
by having the final layer be a softmax function. To be precise, let Z(x) be the output of the

8.2. ATTACKS ON DEEP NEURAL NETWORKS: ADVERSARIAL EXAMPLES 115

penultimate layer, which is a real number Z; (x) for each class i. The final output for each class
is

o Zi(x)

Fi (X) = pi = SOftmaX(Z(X))i = W
J

(8.3)
A schematic structure of the deep neural network, which emphasizes this relationship, is shown
in Figure 8.1. Finally, the predicted class f(x) is the one with the largest probability p;, i.e.,

f(x) = argmax F; (x). (8.4)

In adversarial settings, one either considers the probabilistic output of the network F(x), or the
layer immediately below, Z(x), which has the corresponding real-valued outputs for each class
before they are squashed into a valid probability distribution by the softmax function.

Softmax
Z(x) Layer
Fx)

Input x

Figure 8.1: A schematic representation of a deep neural network.

8.2 ATTACKS ON DEEP NEURAL NETWORKS:
ADVERSARIAL EXAMPLES

We begin by considering white-box attacks, that is, attacks which assume full knowledge of the
deep learning model. We subsequently briefly discuss &/ack-box attacks.

In typical attacks on deep neural networks, one begins with an original clean image, xo,
and adds noise 7 to it in order to cause miscategorization, resulting in the adversarially corrupted
image x’, commonly known as an adversarial example. Clearly, adding sufficient noise will al-
ways effect a classification error. Consequently, one would either impose a constraint that 7 is
small, formalized by a norm-constraint of the form [|5|| < € for some exogenously specified ¢,
or minimize the norm of 7. The most common norms which quantify the amount of noise the
attacker may add are /5 (squared error), /o, (max-norm), and /o (number of pixels modified). We
discuss the attacks based on these norms below.

116 8. ATTACKING AND DEFENDING DEEP LEARNING

'There have been several formulations for the attacker optimization problem described in
the literature. The first of these, due to Szegedy et al. [2013], aims to minimize the norm of the
added adversarial noise 1 subject to the constraint that the image is misclassified into a target
(and incorrect) class yr:

min ||7]
n (8.5)
st.: f(xo+mn) =yr, xo+nel0,1]",

where the second ox constraint simply imposes a natural restriction that attacks generate a valid
image (with pixels normalized to be between 0 and 1). In our nomenclature, this is a targeted
attack. The corresponding reliability attack replaces the first constraint with f(xo + 1) # y, that
is, now the adversary attempts to cause misclassification as any class other than the correct label
).

In an alternative version of a reliability attack, proposed by Goodfellow et al. [2015], the
attacker’s objective is to maximize loss for the constructed image x" = x¢ + 1 with respect to
the true label y assigned to xq:

max [(F(xo + 1),). (8.6)
n:linll<e
Alternatively, the attacker may consider a targeted attack with a target class y7 within the same
framework, yielding the following optimization problem:

min nl(F(xo + 1), y7). (8.7)
n:linll<e
Perhaps the most important distinction between the different attack approaches proposed
in the context of deep learning is the norm that is used to measure the magnitude of adversarial
perturbations. Next, we discuss major classes of attacks for each of three norms: /5, /o, and /.

8.2.1 [,-NORM ATTACKS

Attacks in which an attacker is minimizing a Euclidean (/5) norm of the perturbation either to
cause misclassification as a target class (targeted attacks) or simply to cause an error (reliability
attack) are among the most potent in practice, and in some cases used as the core machinery for
optimizing with respect to other norms. We therefore begin our discussion of attacks against
deep learning with this class.

'The earliest example of an /5 attack on deep learning was a targeted attack proposed by
Szegedy etal. [2013]. The idea behind this attack is to replace the difficult-to-solve problem (8.5)
with a proxy, using the (squared) /; norm to quantify the error introduced by the attack:

mninc||n||§ + I(F(xo + 1), y1)

(8.8)
stt.: xo+nel0,1]".

8.2. ATTACKS ON DEEP NEURAL NETWORKS: ADVERSARIAL EXAMPLES 117

'The resulting box-contrained optimization problem can be solved using a host of standard tech-
niques for unconstrained optimization (with projection into the box constraint). We can further
optimize the coefficient ¢ using line search to find an adversarial example with the smallest /,
norm.

A more recent targeted /, attack was proposed by Carlini and Wagner [2017] (henceforth,
the CW attack), who improve the optimization algorithm by using a better objective function.

'The starting point for the CW attack is, again, the optimization problem (8.5). Their first
step is to reformulate the challenging constraint f(xo + 1) = y7. This is done by constructing
a function h(x¢ + 1; y7) such that h(xe + 1; yr) < 0iff f(xo + 1) = yr. They consider several
candidates for (-); the one which yields the best performance is

h(xo + m;yr) = max{0,£§X Z(xo +1)j — Z(xo + 0)ys}- (8.9)
T

As it turns out, using the raw Z(x) rather than the softmax-filtered probability distribution
F(x)—or the loss function with F(x) as an argument—makes the attack significantly more
robust to some of the defensive approaches, such as the distillation defense which we discuss
below.

'The next step in the CW attack is to reformulate the modified constrained optimization
problem by moving the constraint into the objective, analogously to what was done by Szegedy
et al., obtaining:

min Inll5 + ¢« h(xo+ 1. y1) (8.10)
st.: xo+mnel0,1]". (8.11)

'The I, attack then involves the standard gradient descent approach. The simplest way to
handle the box constraint is to simply include a projection method in gradient descent which
clips any intermediate image to the [0, 1] interval. It turns out that this attack with the objective
function above tends to have the best performance.! Finally, the parameter of the objective ¢
is chosen as the smallest such parameter which ensures that the attack is successful. A visual
illustration of the CW [, attack is shown in Figure 8.2.

Another technique for />-norm-based attacks, termed DeepFool, leverages a linear ap-
proximation of a Neural Network [Moosavi-Dezfooli et al., 2016a]. In contrast to the attacks
by Szegedy et al. [2013] and Carlini and Wagner [2017], DeepFool implements a reliability
attack.

To understand the DeepFool attack, we start by assuming that the classifier F(x) is linear,
ie., F(x) = Wx + b, and f(x) = argmax; Fj(x) as before. In this case, the optimal attack is a

nterestingly, in the original paper the main formulation of the attack involved another option which uses a change of
variables to eliminate the need for the box constraint. However, the results in the paper suggest that the simple projected
gradient descent tends to perform as well as, or better than, this variant for the specific objective function we discuss here.

118 8. ATTACKING AND DEFENDING DEEP LEARNING

Figure 8.2: Illustration of the CW [, attack. Left: original image (classified correctly as a jeep).
Middle: (magnified) adversarial noise. Right: perturbed image (misclassified as a minivan).

solution of the optimization problem

min || 7|3
n 2 . r (8.12)
s.t.: dk: wy (xo + 1) + b > wf(xO)(xo + 1) + bf(xo)

where wy is the kth row of W corresponding to the weight vector of Fi(x) = wgx + br. We
can characterize the optimal solution to this problem in closed form. Note that the attacker
succeeds if there is some k such that Fg(xo + 1) — Ff(xy) (X0 + 1) > 0 (we break the tie here
in the attacker’s favor). Define Fi(x) = Fi(x) — F, F(xo)(X). If we further define a hyperplane
corresponding to Fi (x) = 0, the shortest distance to this hyperplane from xo is

5 = | Fre(x0)|

= """ (8.13)
lwe — Wrxe)ll2

and the corresponding optimal 7 (moving 8¢ in the orthogonal unit direction toward the hy-
WE=Wr(xg) N -
perplane, m) is then

| Fk (xo)|
Me = = (Wk — W(xg))- (8.14)
lwe — wrxo)ll3 o
Since the goal of the attacker is to move to the nearest Fi(x) = 0 over all k (which is the easiest
way to get misclassified as some class other than f(xp)), the optimal solution to Problem 8.12
is then to first choose the closest alternative class

k* = arg n}cin Sk,
and then set n* = 1=, the optimal displacement vector 1 for the class k*.
'The ideas above, of course, do not immediately generalize to non-linear classifiers, such as

deep neural networks. However, DeepFool makes use of them in an iterative procedure which
repeatedly approximates each F (x) by a linear function using a Taylor approximation:

Fre(x;x0) & Fr(xe) + VF(x0) " x. (8.15)

8.2. ATTACKS ON DEEP NEURAL NETWORKS: ADVERSARIAL EXAMPLES 119

In this approximation, then, by = Fr(x;) and wx = V Fi(x;) for a particular x; obtained in
prior iteration ¢. The next iterate x;4; is then computed as

Xt+1 = X¢ + Ny, (8.16)

where 7, is the optimal solution as described above for the linear approximation of the neural
network function around the previously found x;. The iterative procedure terminates once x;

with f(x;) # f(xo) is found, and returns n = >, 1.

8.2.2 I,-NORM ATTACKS

One of the earliest approaches for reliability attacks on deep learning was proposed by Goodfel-
low et al. [2015], who termed it the fasz gradient sign method (FGSM). The goal of Goodfellow
et al. [2015] is to approximately solve problem (8.6) with the max-norm constraint. In other
words, the attacker’s goal is to induce prediction error by adding arbitrary noise 7 to an original
clean image x¢ with the constraint that ||7]je < €.

While the loss maximization problem (8.6) is difficult to solve exactly, the key idea in
FGSM is to linearize the loss around (x¢, y), where y is the correct label, obtaining

() = I(F(x0). y) + Vxl(F(x0), y)n. (8.17)

'The optimal solution to the linearized version is then to maximally distort by € independently
along each coordinate. This is done in the direction of the sign of the loss gradient for a reliability
attack:

n* = € sgn(Vxl(F(xo), y)). (8.18)

'The approach is also easy to apply in the context of a targeted attack: in this case, it is optimal to
distort each pixel in the opposite direction of loss with respect to a target class yr (corresponding
to gradient descent, rather than ascent):

n* = —esgn(Vxl(F(xo0), y1)). (8.19)

A visual illustration of the FGSM attack is shown in Figure 8.3.

It’s worth remarking that the FGSM attack is actually a special case of a more general
class of attacks where we impose a constraint ||5]|, < € for an arbitrary p [Lyu et al., 2015]. In
this case, the optimal solution for 1 generalizes to

(8.20)

- =esgn(Vxl(F(x0),y))(|Vxl(F(x0). y))|)

IVl (F(x0). y) g

where [, is the dual norm of /,, i.e.,

1
p

120 8. ATTACKING AND DEFENDING DEEP LEARNING

Figure 8.3: Illustration of the FGSM attack with € = 0.004. Left: original image (classified
correctly as a jeep). Middle: (magnified) adversarial noise. Right: perturbed image (misclassified
as a minivan). Note that the added noise is substantially more perceptible for this attack than
tor the CW [, attack in Figure 8.2.

The FGSM attack is a single-step gradient update. This is extremely efficient, but also
limits the power of the attacker. A significantly more powerful idea is to perform what is ef-
fectively iterative trust region optimization [Conn et al., 1987], where we iteratively linearize the
objective, optimize the resulting objective within a small #7ust region around the current estimate,
and then update both the estimate and the trust region and repeat.

Formally, let B; be an update parameter (or the trust region around a current estimate
with respect to an /o, norm). Let x; be the modified adversarial image in iteration 7 (starting
with xg in iteration 0). Then for a reliability attack

Xt+1 = Proje[x; + Br sgn(VxI(F(x¢), y))], (8.21)

be done simply by clipping off any single-dimension modifications which exceed €. The corre-
sponding variation for targeted attacks is immediate, with the “+” sign replaced by a “—” sign.
A visual illustration of this attack, which has come to be known as the projected gradient descent

(PGD) attack [Madry et al., 2018, Raghunathan et al., 2018, Wong and Kolter, 2018], is shown
in Figure 8.4.

where Proj, projects its argument into the feasible space where [|xo — x;41 oo < €, which can

Figure 8.4: Illustration of the iterative GSM attack, which uses eight gradient steps. Left: origi-
nal image (classified correctly as a jeep). Middle: (magnified) adversarial noise. Right: perturbed

image (misclassified as a minivan).

8.2. ATTACKS ON DEEP NEURAL NETWORKS: ADVERSARIAL EXAMPLES 121

Another variant of a l attack was proposed by Carlini and Wagner [2017]. Carlini and
Wagner first replace the [|7]|oo term with a proxy

> max{0,n; — 7}, (8.22)

where 7 is an exogenously specified constant, which starts at 1 and is decreased in each iteration.
'Then, the problem is iteratively solved, where if 7; < 7 in a given iteration for every i (i.e., the
cost term of the optimization problem is 0), 7 is decreased by a factor of 0.9, and the process
repeats.

8.2.3 [o,-NORM ATTACKS

'The final set of attack approaches we discuss limit the number of pixels an attacker modifies.
'The first, Jacobian-based Saliency Map Attack (JSMA) attack (a variation of the attack introduced
by Papernot et al. [2016b]) aims to minimize the number of modified pixels in an image to cause
misclassification as a particular target class yr—that is, it is a targeted /o norm attack. The attack
starts with the original image xo, and then greedily modifies pairs of pixels at a time. The choice
of the pair i, j to change is guided by a heuristic based on two quantities:

_ 0Z, (x0) 4 0Zy, (x0)

i , 8.23
*ij Bxi Bx,- ()
and
o 0Zk(x0) 0Zk(xo) -
B —ij()) (824

where yr is the target class for the attack, as above. Thus, «;; indicates the impact of changing
pixels i and j on the target class y7, while f;; is the indicator of the impact of changing these
pixels on other classes. Since y7 is our target, we wish to make «;; as large as possible, while
making B;; small. Each pair (7, j) is then assigned a saliency score

sif = { 0 o < 0 or ;Bi]' >0 (825)

—Qjj ﬂij O.W.
The attack chooses a pair of pixels (i, j) to modify that maximize the saliency s;;. The corre-
sponding pair can be modified in a variety of ways, such as exhaustive search in the discrete space
of pixel values, or gradient-based optimization restricted to that pair of pixels.

Carlini and Wagner [2017] propose a different method for implementing an /o attack
which makes use of their carefully engineering /, attack as a subroutine. In their /g attack, Carlini
and Wagner iteratively apply [, attacks to successively shrinking parts of the image. The general
idea is to eliminate the pixels which appear to be least critical to attack success in each iteration.
In particular, each iteration excludes a pixel i with the smallest value of VA(xo + 1);n;, where
h(-) is the proxy objective function CW also use in their /, attack, discussed in Section 8.2.1.

122 8. ATTACKING AND DEFENDING DEEP LEARNING
8.2.4 ATTACKS IN THE PHYSICAL WORLD

The attacks described thus far, as most other attacks in the literature on adversarial deep learning,
assume that the attacker has direct access to the underlying digital image, which they can modify
in arbitrary ways. Realizing such attacks in practice, however, would often involve a modification
to the actual physical objects being photographed.

Several efforts have been made both in devising compelling threat models for physical
attacks on vision systems, as well as implementing such attacks. We briefly discuss two of these.
The first, due to Sharif et al. [2016], developed attacks on face recognition systems (for example,
for biometric authentication) which use deep neural networks. In their attack, the attacker wears
a printed pair of eyeglass frames which embed the adversarial noise. The second is due to Evtimov
et al. [2018], who describe two attacks, one which prints a custom stop sign poster that can be
overlaid on the actual stop sign, and another which prints stickers that look like conventional
vandalism.

Physical attacks face three additional common challenges to be successfully realizable.
First, they must be unobtrusive, a relatively ill-defined concept that aims to capture the likelihood
that the attack is discovered before it succeeds. In common adversarial example attacks on deep
learning, this is captured by minimizing or limiting the magnitude of the perturbation so that
the new image is visually indistinguishable from the original. The two physical attacks above, on
the other hand, leverage a more subtle form of psychological hacking, where the attack is hidden
in plain sight by virtue of its similarity to common non-adversarial behavior, such as vandalism
or wearing glasses. Second, they must account for the ability to physically produce an attack
which is optimized in the digital realm. This is captured by having an explicit printability term
in the objective. Specifically, both of the attacks above include a non-printability-score term

(NPS), defined for a given image x as
NPS(x) =[] Ix —bl. (8.26)

i beB

where i ranges over the pixels in the image and B is a set of printable color configurations in the
RGB domain. To further improve the likelihood of success, Sharif et al. suggest constructing a
color map which corrects for any discrepancy between digital and printed colors. Third, physical
instances, as they present themselves in vision applications in practice, admit a variation of actual
object positions in the image, such as slight rotation. A successful attack must be robust to such
variations. Both approaches discussed above tackle this problem by using a collection of images
X for the same target object, such that a single perturbation 7 is effective on all, or most of them.
For example, the variant of the targeted attack discussed by Sharif et al. modifies Eq. (8.7) into

min > I(F(xo +). y7). (8.27)

xo€X

8.3. MAKING DEEP LEARNING ROBUST TO ADVERSARIAL EXAMPLES 123
8.2.5 BLACK-BOXATTACKS

In Chapter 4 we discussed black-box decision-time attacks both in theoretical terms, and in
practical implications. Similar ideas largely apply in the context of attacks on deep neural net-
works. For example, query-based attacks have been explored and found effective by a number of
efforts [Bhagoji et al., 2017, Papernot et al., 2016¢, 2017]. Papernot et al. [2016¢] and Szegedy
et al. [2013] also observed a phenomenon that has come to be called transferability: adversar-
ial examples designed against one learned model often work against another model that was
learned for the same problem (this was observed in the context of deep learning, as well as for
other learning paradigms [Papernot et al., 2016¢]). The specific illustrations of such transferabil-
ity are: (a) when models have been trained on different, but related datasets (what we have called
proxy data in Chapter 4); (b) when a proxy model has been learned based on data collected from
queries to the target model (the problem addressed conceptually in Theorem 4.4); and (c) when
a different algorithm (proxy algorithm) is used than the one that produces the target model (for
example, training and attacking a deep neural network to generate adversarial examples against
a logistic regression model).

8.3 MAKING DEEP LEARNING ROBUST TO
ADVERSARIAL EXAMPLES

Observations of vulnerabilities in deep neural networks naturally spawned a literature attempting
to defend deep learning against attacks. We now describe some of the prominent proposals
for robust deep learning in adversarial settings. Throughout this section, we will now explicitly
represent the dependence of the deep learning model on its parameters 6, using notation F(x, 0),
to capture the fact that we are at this point attempting to /earn the parameters 6 which lead to
adversarially robust predictions.

8.3.1 ROBUST OPTIMIZATION

Recall from Chapter 5 that the problem of robust learning amounts to the problem of adversarial
risk minimization, where the objective function captures modifications to feature vectors made
by an adversary. Let A(x,) be the adversarial model which returns a feature vector x’—an ad-
versarial example—given an input x and a collection of (deep neural network) model parameters
6. If we assume that every possible instance in our training data D may give rise to adversarial
behavior, the adversarial empirical risk minimization problem becomes

> U(F(A(xi:60).0). yi). (8.28)

i€D

124 8. ATTACKING AND DEFENDING DEEP LEARNING

Applying a zero-sum game relaxation (upper bound) of Equation (8.28), we obtain a robust
optimization formulation of the problem of learning an adversarially robust deep neural network:

meinz max [(F(x; +1.6),y:) (8.29)

: <€
iep Inll<

if we constrain attacks to modify an original image at most € is some target norm. This robust
optimization framework for reasoning about adversarially robust deep learning proved extremely
fruitful. In particular, it has given rise to three general ideas for robust deep learning.

1. Adversarial Regularization: (also known as adversarial training) uses an approximation
of the worst-case loss function with respect to small changes in the image as a regularizer.

2. Robust Gradient Descent: uses the gradient of the worst-case loss function in learning a
robust deep neural network.

3. Certified Robustness: uses the gradient of a convex upper bound on the worst-case loss
function to learn a robust deep network.

Next, we briefly describe these three ideas. For convenience, we define the worst-case loss
as

lue(F(x,0),y) = max [(F(x + 1,0),y). (8.30)

n:lnll<e

Adversarial Regularization

The issue with the robust optimization approach above is that it may be too conservative, since
in most settings adversaries are not actively manipulating images. A common generalization
is to explicitly trade off between accuracy on original non-adversarial data, and robustness to
adversarial examples:

i Y [l (F 550030 + (1 = e (P, 0,300 | (831)
ieD

where « is the exogenous parameter trading off these two considerations. We can then think of

the term [y, (F (x, 0), y) as adversarial regularization.

Typically, adversarial regularization (training) is only practical with a simplified attack
model, such as the gradient-sign attacks. In particular, consider the generalization of FGSM
in Section 8.2.2 where the attacker faces the constraint |||, < € for a general [, norm. In this
case, by applying Taylor approximation as in the associated attacks, the adversarial regularization
problem can be transformed into

min > [al(F(xi;), yi) + (1 =)|Vl (F(x;: 6),)’i)”q]’ (8.32)
ieD

8.3. MAKING DEEP LEARNING ROBUST TO ADVERSARIAL EXAMPLES 125

where [, is the dual norm of 1, and we simply plug in the optimal attack * from Equation (8.20).

Equation (8.32) shows that regularization based on robust optimization ideas has an in-
teresting structure: it amounts to regularizing based on the magnitude of the gradient of the loss
function. This has a certain intuitive appeal: very large gradients imply a more unstable model
under small perturbations (since small changes in x can lead to large changes in the output), and
regularizing these should improve robustness to adversarial examples. On the other hand, this
regularization is somewhat unusual, as it depends on the specific instances x, whereas regular-
ization terms typically only depend on the model parameters 6.

Robust Gradient Descent

Adversarial regularization ultimately involves a heuristic way to approximate the robust opti-
mization problem faced by the learner. Stepping back, we may note that in principle it would
suffice to have a way to calculate gradients of the worst-case loss function, /. (F(x, 6),), to en-
able training a robust deep neural network using standard stochastic gradient descent methods.
However, this loss function is not everywhere differentiable. Moreover, the optimization prob-
lem involved in computing the worst-case loss itself is intractable, suggesting that computing
its gradient may also be computationally challenging.

Madry et al. [2018] observe, however, that an application of an important result from
robust optimization allows us to compute gradients approximately, and use these in a gradient
descent training procedure in practice. In particular, Madry et al. [2018] derive the following as
a corollary of Danskin’s classic result in robust optimization [Danskin, 1967].

Proposition 8.1 Madry etal. Lez (x,y) be arbitrary feature vector and label pair, and suppose
that ™ is a maximizer of maxy| ||, <e [(F(x + 1, 0),). Then, as long as it’s non-zero, —Vol (F (x +
n*,0),y) is a descent direction for Ly (F(x,0), y).

'The upshot of Proposition 8.1 is that during stochastic gradient descent, when we are
considering a datapoint (x, y) and have a current parameter estimate 6, we can use the gradient
of the loss function at any optimal solution for worst-case loss n* to take the next gradient
descent step. Significantly, Madry et al. observe that in practice even good quality approximate
optimizers of worst-case loss, such as PGD in Section 8.2.2, appear to suffice for training a
robust neural network using this approach.?

Certified Robustness

Robust gradient descent is a principled advance over the more simplistic adversarial regulariza-
tion approach, but it is still heuristic, albeit with strong empirical support, and cannot guarantee
robustness. Several approaches recently emerged for both deriving certificates, or guarantees, of
robustness to adversarial perturbations in a particular class, and training neural networks which

21t is worth noting that the application of this approach in stochastic gradient descent is essentially a special case of the
stochastic gradient descent variant of retraining; see Li and Vorobeychik [2018] for a brief discussion of the latter.

126 8. ATTACKING AND DEFENDING DEEP LEARNING

minimize a provable upper bound on adversarial risk [Raghunathan et al., 2018, Wong and
Kolter, 2018].

'The key idea behind certified robustness is to obtain a tractable upper bound J(x, y,) on
the worst-case loss:

le(F(xve)vy) S J(X,y,@).

Both Raghunathan et al. [2018] and Wong and Kolter [2018] do this in two steps: (1) they
obtain a convex relaxation of the optimization problem for computing /,,¢ (F (x,), y); and then
(2) use a dual of this convex optimization problem. They key insight in both approaches is that
any feasible solution of the dual yields an upper bound on the primal, which in turn is an upper
bound on worst-case loss, and both choose a particular feasible solution.

We illustrate some aspects of this general approach based on Wong and Kolter [2018],
who assume that the neural networks use ReLU activation functions. Their first step is to relax
ReLLU activations b = max{0, a} using a collection of linear inequalities:

b>0,b>a,—ua+ (u—10)>b>—ul,

where u and [are upper and lower bounds on the activation values, respectively. With this
relaxation, computation of the upper bound on worst-case loss can be represented as a linear
program, albeit with many variables. By strong duality of linear programming, the dual solution
of this linear program is also an upper bound on the worst-case loss. Moreover, any feasible
solution still produces an upper bound. Thus, by fixing the values of a subset of dual variables,
Wong and Kolter [2018] devised a linear algorithm to compute an upper bound J(x, y, 0) on
the worst-case loss. Significantly, this upper bound is differentiable with respect to 6, and can be
used as a part of the stochastic gradient descent approach for training a robust neural network.
The full algorithm developed by Wong and Kolter [2018] (including the derivation of upper and
lower bounds for ReLU activation units) is quite involved; we defer the readers to the original
paper for technical details.

8.3.2 RETRAINING

As we already mentioned, attacks on deep learning described in this chapter are special cases
of what we have called decision-time attacks. As such, the general-purpose defense by iterative
retraining described in Section 5.3.2 applies directly. In particular, we can iteratively train the
neural network, attack it by generating adversarial examples according to any of the attack mod-
els described, adding these to training data, and repeating the process. An important advantage
of this iterative retraining approach is that it is agnostic as to which algorithm is used to construct
adversarial examples. In contrast, the approaches based on robust optimization all effectively as-
sume reliability attacks, which may result in solutions (or certificates of robustness) that are too
conservative in practice.

8.4. BIBLIOGRAPHICNOTES 127
8.3.3 DISTILLATION

Distillation is a heuristic technique for training deep neural networks initially proposed for trans-
ferring knowledge from a more to a less complex model (essentially, for compression). Papernot
et al. [2016a] proposed using distillation to make deep neural networks more robust to adver-
sarial noise.

The distillation approach works as follows.

1. Start with the original training dataset D = {x;, y; }, where labels y; are encoded as one-
hot vectors (i.e., all zeros, except for a 1 in the position corresponding to the true class of

Xi)
2. Train a deep neural network after replacing the softmax function in the softmax layer with
oZi @)/ T

Fi(x) = —Zj oZ; (/T

for an exogenously chosen shared zemperature parameter T .

3. Create a new training dataset D" = {x;, y/}, where y = F(x;) with F() the soft (proba-
bilistic) class labels returned by the previously trained neural network.

4. Train a new deep neural network with the same temperature parameter 7 as the first one,
but on the new dataset D’.

5. Use the retrained neural network after eliminating the temperature T’ from the final (soft-
max) layer (i.e., setting 7 = 1 at test time, scaling the softmax terms down by a factor of
T, and thereby increasing the sharpness of predicted class probabilities).

While defensive distillation was shown to be quite effective against several classes of at-
tacks, such as FGSM and JSMA (however, replacing Z; (x) with Fj(x) for JSMA in the exper-
iments; see Carlini and Wagner [2017]), the CW attack was later demonstrated to effectively
defeat it. The crucial insight offered by Carlini and Wagner is that distillation appears to be
effective against originally crafted attacks because the temperature parameter forces the values
Z;(x) to be amplified, and once T is set to 1, this in turn results in extremely sharp class pre-
dictions, so much so that gradients become numerically unstable. However, if the attacker uses
the last hidden layer values Z(x), gradients again become well-behaved.

8.4 BIBLIOGRAPHICNOTES

The literature on adversarial examples in deep learning was spawned with the publication of
Szegedy et al. [2013]. Their goal was largely to show that despite state-of-the-art performance
on benchmark image datasets, deep learning models appear to be very fragile to several forms

of “gamesmanship” with the images. For example, they showed that they can design images

128 8. ATTACKING AND DEFENDING DEEP LEARNING

which are unrecognizable to a human, but are reliably classified as a target class. In addition,
they showed the impact of introducing a small amount adversarial noise. A long series of papers
followed this initial demonstration, considering many variations of attacks.

As mentioned above, attack approaches fall into three rough categories based on the norm
they use to measure the amount of noise introduced into an image. Szegedy et al. [2013] were
the first to propose I, norm attacks, which were improved successively by Moosavi-Dezfooli
et al. [2016b], and then by Carlini and Wagner [2017] (who also developed /y and /o norm
attacks). Soon after the first work on /, norm attacks was published, a simple FGSM method
for [attacks was developed by several of the same authors [Goodfellow et al., 2015]. The idea
of FGSM was to use a first-order Taylor expansion to approximate the loss function that the
attacker aims to optimize. Subsequently, this idea was extended to other /,-norm attacks by Lyu
et al. [2015].

While most approaches for attacking deep neural networks in the literature are white-
box attacks, which assume that the deep learning model is known to the attacker, several ef-
forts demonstrated the phenomenon of transferability of adversarial examples, enabling effective
black-box attacks [Papernot et al., 2016¢, 2017, Szegedy et al., 2013]. The high-level observa-
tion is that frequently attacks on one deep neural network can be effective against others trained
to address the same prediction problem.

Two other major issues in the literature on attacking deep neural networks are worth not-
ing: (1) designing adversarial noise which is effective when added to multiple images simultane-
ously, and (2) attacks in the physical world which cause erroneous predictions after their digital
representation is fed into a deep neural network. The first of these was addressed by Moosavi-
Dezfooli et al. [2017], who describe an attack in which a single adversarial noise is generated
which can be added to all images, and successfully cause misclassification by a state-of-the-art
deep neural network. The success of this attack is quite surprising, as one would have previously
been skeptical that such universal adversarial perturbations are possible. The second issue has
been addressed by several efforts. In one of these that we described above, Sharif et al. [2016]
demonstrate that specially designed glass frames can be printed which would defeat authentica-
tion approaches based on face recognition, as well as video surveillance techniques. In another,
also discussed in this chapter, Evtimov et al. [2018] demonstrate that adversarial pertubations
can be robustly implemented in the physical domain in order to fool deep learning classifiers of
traffic signs. In another related effort, Kurakin et al. [2016] demonstrate that they can introduce
adversarial perturbations even after images are printed and subsequently again digitized.

Defending deep learning against adversarial perturbation attacks amounts to developing
techniques for learning more robust deep neural network models. A natural framework within
which to consider robust learning is robust optimization, where the learner aims to minimize
worst-case loss with respect to arbitrary perturbations within an € ball (measured according to
some [, norm; commonly, this is the /o norm).

8.4. BIBLIOGRAPHICNOTES 129

The very first paper that discussed an /, attack on deep learning, Szegedy et al. [2013], also
proposed a simple defensive approach through iterative retraining. The paper which followed
and introduced the FGSM attack [Goodfellow et al., 2015] suggested adversarial regularization
(they called it adversarial training) as a solution, an idea which was significantly generalized by
Lyu et al. [2015]. Soon after, the cybersecurity community picked up the thread, and distilla-
tion was suggested as a defense [Papernot et al., 2016a], an idea which was promptly broken by
Carlini and Wagner [2017] and is now generally viewed as ineffective. However, this flurry of
ideas led to a formalization of robust deep learning as robust optimization by Madry et al. [2018],
Raghunathan et al. [2018], and Wong and Kolter [2018]. Interestingly, the connection between
adversarially robust learning in the context of decision-time attacks and robust optimization ac-
tually predates these efforts by at least a decade. For example, Teo et al. [2007] already considered
learning with invariances using precisely the same robust optimization approach, as did Xu et al.
[2009b], who showed equivalence between robust learning and regularization in linear support
vector machines. In any event, robust optimization turned out to be a very fruitful connection,
as it led to two major advances: first, by Madry et al. [2018], who used Danskin’s theory to
directly apply stochastic gradient descent to the robust learning formulation (using worst-case
loss), and then independently by Raghunathan et al. [2018] and Wong and Kolter [2018] who
developed distinct relaxation and duality methods for certifying robustness and gradient-based
learning of robust models. In particular, Raghunathan et al. [2018] used semi-definite program-
ming as the core tool, albeit restricted for the moment to two-layer neural networks, whereas
Wong and Kolter [2018] relied on a convex polyhedral relaxation of the ReLU activation units,
allowing them to upper bound the optimal worst-case loss by a solution to a linear program, for
arbitrary ReLU-based deep networks. Neither of these two methods are sufficiently scalable at
the moment to tackle realistic image datasets, but both approaches significantly advanced the
thinking about robust deep learning.

Several recent heuristic methods for defending deep learning against adversarial examples
that we did not discuss at length in this chapter involve a form of anomaly detection [Rouhani
et al., 2017], and using layer-level nearest neighbor sets to devise a confidence measure for pre-
dictions [Papernot and McDaniel, 2018]. Both of these are ultimately taking steps to address an
important issue which has not received much attention: determining confidence in predictions
based on similarity of new instances to the distribution of training data.

131

CHAPTER 9

The Road Ahead

'This book provided an overview of the field of adversarial machine learning. Important issues
were clearly left out, some deliberately to simplify exposition, others perhaps unintentionally.
'The field has become quite active in recent years in no small measure due to the attention that
attacks on deep learning methods have received. While we devote an entire chapter solely to ad-
versarial deep learning, we emphasize that proper understanding of these necessitates a broader
look at adversarial learning that the rest of the book provides.

In this last chapter, we briefly consider the road ahead in adversarial machine learning.
We'll start with the active research question of robust optimization as a means for robust learning
in the context of decision-time attacks (such as adversarial examples).

9.1 BEYOND ROBUST OPTIMIZATION

Robust optimization has become a major principled means for formalizing the problem of robust
learning in the presence of decision-time attacks. Without a doubt, this approach has compelling
strengths. Perhaps the most significant of these is a guarantee, or certification, of robustness: if
we obtain an expected robust error of e, we can guarantee that 7o adversarial manipulation within
the considered class will cause our model to err more than e, on average. While solving such
robust learning problems at scale is a drawback, one can envision technical advances that would
make it practical in at least some realistic domains. Here, we discuss conceptual limitations of
the robust optimization approach to the problem.

'The main limitation of robust optimization is that it yields very conservative solutions.
'There are several reasons for this. First, robust learning formulations maximize the learner’s loss.
However, loss is typically an upper bound on the true learning objective. For example, in binary
classification, arguably the ideal loss function is the 0/1 loss, which returns 0 if the predicted
class is correct, and 1 otherwise. In practice, however, convex relaxations of the 0/1 loss are
used, such as hinge loss. Additionally, tractability often warrants additional upper bounds on
the worst-case loss beyond this, so that the final bound is unlikely to tightly capture the true
optimization problem the learner is trying to solve. The advantage of the upper bounding idea is
that its guarantees are conservative: robustness guarantees for an upper bound directly transfer
to robustness guarantees for the original problem. There are two concerns, however: (1) this
may cause an unnecessary sacrifice in performance, both on non-adversarial data, and even on
adversarial data; and (2) whatever bounds on adversarial risk one thereby obtains may not be

especially meaningful in practice if they are not very tight.

132 9. THE ROAD AHEAD

In addition to the issues highlighted above, another way in which robust learning is con-
servative is that the attacker’s objective may not be an arbitrary misclassification. Take a stop
sign as an example: it is likely far more concerning (and, presumably, adversarially significant)
if it were misclassified as a speed limit sign than if it were misclassified as a yield or a “do not
enter” sign.

These concerns should not be used to dismiss robust optimization approaches for robust
learning. Rather, our goal is to suggest that research needs also to consider alternative principled
approaches to the adversarial learning problem. One such approach is to view it as a Stackelberg
game, as we discussed in Chapter 5. In this way, we can consider alternative adversarial models,
and still aim to produce the best learning approach, albeit perhaps somewhat more tailored to a
specific threat model of interest. Robust optimization is a special case, in which this game model
is zero-sum (that is, min-max), but it shouldn’t be the on/y approach to consider.

'The discussion thus far pertained solely to the issue of decision-time attacks, but some of
the same considerations are relevant in the context of poisoning attacks as well. Most approaches
to date aim to be robust to arbitrary modifications of training data (within some budget con-
straint, of course, such as a bound on the fraction of data that can be poisoned). In practice, this
seems overly conservative: if the attacker deliberately poisoned data, they are unlikely to poison
an arbitrary subset of data (if they have that kind of access, they may as well poison all data),
and if data is collected from multiple untrusted sources, the attacker is unlikely to compromise
all of them. Consequently, an important research direction is how to capture structure imposed
on how data may be poisoned. An illustration of such structure is when the training data is
a combination of multiple data sources, a subset of which may be attacked, recently modeled
by Hajaj and Vorobeychik [2018] as an adversarial task assignment problem (and not specific
to machine learning). Similarly, data may be obtained from multiple sensors, and a subset of
these may be compromised, with data collected from compromised sensors arbitrarily poisoned.
In either case, such structure may allow for better algorithmic techniques for practical robust

learning, for example, leveraging approaches for detecting malicious data sources [Wang et al.,
2014].

9.2 INCOMPLETE INFORMATION

Framing the problem of defending learning against attacks as a game between the learner and the
attacker suggests another research direction: modeling incomplete information players may have
about one another. There are two natural classes of incomplete information: information that the
attacker has about the learning system (which is fully known to the learner), and information the
learner has about the attacker, such as the attacker’s objective, and what information the attacker
actually has (for example, about proxy data available to the attacker). There have been scarcely any
attempts to model incomplete information in developing robust learning approaches; essentially
the sole example is by Grosshans et al. [2013], who consider uncertainty about the attacker’s
relative value of difterent datapoints, but not any of the other aspects. As an illustration of the

9.3. CONFIDENCE IN PREDICTIONS 133

challenge faced in modeling robust learning as a game of incomplete information (or Bayesian
game), consider the issue of information available to the attacker in a black-box attack. Suppose
that the attacker is uncertain about what data is used by the learner, and the learner uses the
data to decide which features to use. If the attacker then learns something about which features
the learner uses, they can in principle use this information to infer something about the training
data as well. However, it is not trivial to construct a compelling model of this encounter, let
alone solve the resulting game.

9.3 CONFIDENCE IN PREDICTIONS

'The issue of deriving confidence in estimates is fundamental in statistics. However, it is some-
what under-explored in machine learning, where predictions tend to be point predictions, with-
out associated confidence. To be sure, even common probabilistic predictions, such as those
produced by typical deep neural networks, are in essence point predictions, as they do not nec-
essarily reflect the empirical support a particular prediction has. Indeed, Papernot and McDaniel
[2018] essentially argue that this is a major reason for the success of adversarial examples, which
by their nature take a learned model out of its “comfort zone,” so to speak. The approach Pa-
pernot and McDaniel propose can be viewed as an example of transductive conformal prediction
(TCP), a general approach for deriving confidence in specific predictions, as well as distributions
over predictions, based on empirical support [Vovk et al., 2005]. An alternative way to look at
confidence is to consider how unusual, or anomalous, a particular input is, given the training
data that was used to derive a model.

Of course, assigning confidence to predictions isn’t sufficient: one must still assess what the
most reasonable prediction should be, or perhaps selectively refuse to make any prediction when
a model is sufficiently uncertain about which label should be assigned. These issues are clearly
more general than adversarial learning, but are surely an important aspect of the problem, as
low-confidence regions of the sample space often present many of the vulnerabilities exhibited
in learning.

9.4 RANDOMIZATION

Randomization is an important tool in security settings, and has been a fundamental part of
game theoretic modeling of such problems [Tambe, 2011]. Interestingly, there have been rel-
atively few attempts to introduce randomization into adversarial learning paradigms. One of
these we discussed at length in Chapter 5, but it is restricted to binary classification over binary
teature spaces. The general challenge in introducing randomization into predictions is that, on
the one hand, it may degrade performance on non-adversarial data, and on the other hand, one
may be able to design robust attacks that defeat all possible realizations of a randomized model.

134 9. THE ROAD AHEAD
9.5 MULTIPLE LEARNERS

Both decision-time attacks and poisoning attacks have almost universally assumed that there is
a single target learning system. In practice, there are often many target organizations that com-
bine to form an ecology of learners, and it is this ecology that is often attacked. For example,
spammers typically target the universe of spam filters, and public malware datasets are used by
many organizations to develop machine learning approaches for malware detection. Interest-
ingly, surprisingly little research has studied the problem of attacking multiple learners, or how
learning agents would jointly choose to learn in the presence of adversarial threat. We mention
two exceptions. The first is the work by Stevens and Lowd [2013] who ask the computational
complexity question about evading a collection of binary linear classifiers. The second is a recent
effort by Tong et al. [2018b], who study the game induced by a collection of learning models
and an attacker who deploys a decision-time attack. In the latter work, which can be seen as an
example of multi-defender security games [Smith et al., 2017], the game is in terms of parame-
ters w for a linear regression model, and the choice of transformation of the regression input for
the attacker aimed at attacking the combination of all models. In formal terms, it is a two-stage
multi-leader Stackelberg game, with learners jointly deciding on their model parameters w;, and
the attacker subsequently choosing the best attack. These two efforts are first steps, but many
research opportunities remain, perhaps the most significant of which is generalization of these
approaches to non-linear models.

9.6 MODELSAND VALIDATION

Our final remarks concern the very general issue of modeling and validation. In adversarial
machine learning, as in security more broadly, a central issue is adversarial modeling. Take
decision-time attacks as an illustration. Commonly, an adversary is modeled as modifying a
collection of features (such as pixels in an image), with either a constraint on the extent to which
such modifications are allowed (typically, measured by the /, distance), or incorporting a mod-
ification cost into an attacker’s objective. This is clearly very stylized. For example, adversaries
would not typically modify images at the level of pixels, but, perhaps, physical objects that would
be subsequently captured into images. Moreover, modifications may include slight spatial trans-
formations, which would appear to be large in standard /, norm measures, but would remain
undetectable to a human [Xiao et al., 2018]. As another example, malware writers attempting to
evade detection do not directly manipulate features extracted from malware, but malware code.
The question of scietific validity of standard stylized models of attacks on machine learning is
therefore quite natural. To date, the sole attempt to rigorously study this issue was by Tong et al.
[2018a], who investigate validity of conventional feature space models of adversarial evasion—
that is, models in which the adversary is assumed to directly modify malware features. While
this work sheds some light on this issue, for example, both by demonstrating that feature space

9.6. MODELS AND VALIDATION 135

models can poorly capture adversarial behavior, and by extending such models to improve their
validity, the problem of validation remains a major research challenge facing adversarial machine
learning.

Bibliography

Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autoregressive
models. In AAAI Conference on Artificial Intelligence, 2016. 42, 43, 51

Scott Alfeld, Xiaojin Zhu, and Paul Barford. Explicit defense actions against test-set attacks.
In AAAI Conference on Artificial Intelligence, 2017. 75

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999. DOI: 10.1017/cbo9780511624216. 9

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 2009. DOI: 10.1017/cbo9780511624216. 16, 51

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. Can ma-
chine learning be secure? In ACM Asia Conference on Computer and Communications Security,

pages 16-25, 2006. DOI: 10.1145/1128817.1128824. 24, 50

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security of machine
learning. Machine Learning, 81:121-148, 2010. DOI: 10.1007/s10994-010-5188-5. 24, 25,
102, 103, 111

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Optimization and
Neural Computation, Athena Scientific, 1996. DOI: 10.1007/0-306-48332-7_333. 17

Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Exploring the space of black-box
attacks on deep neural networks. Arxiv Preprint, ArXiv:1712.09491, 2017. 123

Alexy Bhowmick and Shyamanta M. Hazarika. E-mail spam filtering: A review of techniques
and trends. Advances in Electronics, Communication and Computing, 2018. DOI: 10.1007/978-
981-10-4765-7_61. 10

B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In
Proc. of the Asian Conference on Machine Learning, pages 97-112, 2011. 96

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. ArXiv:1712.03141, 2018. 23, 25

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In International Conference on Machine Learning, 2012. 82, 96

http://dx.doi.org/10.1017/cbo9780511624216
http://dx.doi.org/10.1017/cbo9780511624216
http://dx.doi.org/10.1145/1128817.1128824
http://dx.doi.org/10.1007/s10994-010-5188-5
http://dx.doi.org/10.1007/0-306-48332-7_333
http://dx.doi.org/10.1007/978-981-10-4765-7_61
http://dx.doi.org/10.1007/978-981-10-4765-7_61

138 BIBLIOGRAPHY

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
European Conference on Machine Learning and Knowledge Discovery in Databases, pages 387—
402, 2013. DOI: 10.1007/978-3-642-40994-3_25. 25, 50

Battista Biggio, Samuel Rota Bulo, Ignazio Pillai, Michele Mura, Eyasu Zemene Mequanint,
Marcello Pelillo, and Fabio Roli. Poisoning complete-linkage hierarchical clustering. In
Structural, Syntactic, and Statistical Pattern Recognition, 2014a. DOI: 10.1007/978-3-662-
44415-3 5. 85,97

Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern classifiers under
attack. IEEE Transactions on Knowledge and Data Engineering, 26(4):984-996, 2014b. DOI:
10.1109/tkde.2013.57. 50, 85, 97

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics, Springer, 2011. 8, 16, 55

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. ArXiv:1604.07316,
2016. 9

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research, 11(1):94,
1999. 17

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic program-
ming with factored representations. Artificial Intelligence, 121(1):49-107, 2000. DOI:
10.1016/50004-3702(00)00033-3. 17

Michael Briickner and Tobias Scheffer. Stackelberg games for adversarial prediction prob-
lems. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 547-555, 2011. DOI: 10.1145/2020408.2020495. 63, 74

Michael Briickner and Tobias Scheffer. Static prediction games for adversarial learning prob-
lems. Journal of Machine Learning Research, (13):2617-2654, 2012. 74

Nader H. Bshoutya, Nadav Eironb, and Eyal Kushilevitz. PAC learning with nasty noise. Zhe-
oretical Computer Science, 288:255-275, 2002. DOI: 10.1016/50304-3975(01)00403-0. 96,
110

Jian-Feng Cai, Emmanuel Candeés, and Zuowei Shen. A singular value thresholding algo-
rithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010. DOI:
10.1137/080738970. 12, 91

http://dx.doi.org/10.1007/978-3-642-40994-3_25
http://dx.doi.org/10.1007/978-3-662-44415-3_5
http://dx.doi.org/10.1007/978-3-662-44415-3_5
http://dx.doi.org/10.1109/tkde.2013.57
http://dx.doi.org/10.1109/tkde.2013.57
http://dx.doi.org/10.1016/s0004-3702(00)00033-3
http://dx.doi.org/10.1016/s0004-3702(00)00033-3
http://dx.doi.org/10.1145/2020408.2020495
http://dx.doi.org/10.1016/s0304-3975(01)00403-0
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1137/080738970

BIBLIOGRAPHY 139

Emmanuel Candés and Ben Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational Mathematics, 9(6):717-772,2007. DOI: 10.1007/s10208-009-9045-5.
12,17, 91

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy, pages 39-57, 2017. DOI: 10.1109/sp.2017.49. 39, 51,
117,121, 127,128, 129

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. In Neural Information Processing Systems, pages 409—415, 2001. 82

D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos. Polonium: Tera-scale
graph mining and inference for malware detection. In SIAM International Conference on Data

Mining, 2011. DOI: 10.1137/1.9781611972818.12. 10

Zhilu Chen and Xinming Huang. End-to-end learning for lane keeping of self-driving cars. In
IEEE Intelligent Vehicles Symposium, 2017. DOI: 10.1109/ivs.2017.7995975. 9

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Society
tor Industrial and Applied Mathematics, 1987. DOI: 10.1137/1.9780898719857. 120

Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo, and Angelos D.

Keromytis. Casting out demons: Sanitizing training data for anomaly sensors. In IEEE

Symposium on Security and Privacy, pages 81-95, 2008. DOI: 10.1109/sp.2008.11. 102, 111

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial
classification. In SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 99-108, 2004. DOI: 10.1145/1014052.1014066. 34, 36, 50, 74

J. M. Danskin. The Theory of Max-Min and its Application to Weapons Allocation Problems.
Springer, 1967. DOI: 10.1007/978-3-642-46092-0. 125

Ronald De Wolf. A brief introduction to Fourier analysis on the Boolean cube. 7heory of
Computing, Graduate Surveys, 1:1-20, 2008. DOI: 10.4086/toc.gs.2008.001. 72

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto,
and F. Roli. Yes, machine learning can be more secure! A case study on android mal-
ware detection. In IEEE Transactions on Dependable and Secure Computing, 2017a. DOI:
10.1109/tdsc.2017.2700270. 75

Ambra Demontis, Battista Biggio, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. Infinity-
norm support vector machines against adversarial label contamination. In Italian Conference

on Cybersecurity, pages 106-115, 2017b. 111

http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1137/1.9781611972818.12
http://dx.doi.org/10.1109/ivs.2017.7995975
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1109/sp.2008.11
http://dx.doi.org/10.1145/1014052.1014066
http://dx.doi.org/10.1007/978-3-642-46092-0
http://dx.doi.org/10.4086/toc.gs.2008.001
http://dx.doi.org/10.1109/tdsc.2017.2700270
http://dx.doi.org/10.1109/tdsc.2017.2700270

140 BIBLIOGRAPHY

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1(3):211-218, 1936. DOI: 10.1007/bf02288367. 107

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on deep learning visual clas-
sification. Conference on Computer Vision and Pattern Recognition, 2018. 21,122,128

Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. Robust logistic regression and clas-
sification. In Neural Information Processing Systems, vol. 1, pages 253-261, 2014. 111

Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: Formal reason-
ing and practical techniques. In ACM Conference on Computer and Communications Security,
pages 59-68, 2006. DOI: 10.1145/1180405.1180414. 50

Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee. Polymor-
phic blending attacks. In USENILX Security Symposium, 2006. 28, 50

Drew Fudenberg and David K. Levine. 7he Theory of Learning in Games. Economic Learning
and Social Evolution, MIT Press, 1998. 74

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 69-77,2011. DOI: 10.1145/2020408.2020426.
17

James E. Gentle. Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer
Texts in Statistics, Springer, 2007. DOI: 10.1007/978-0-387-70873-7. 17

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 14. MIT Press,
2016. http://www.deeplearningbook.org/contents/autoencoders.html 113

Ian] Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In International Conference on Learning Representations, 2015. 68, 116, 119,
128,129

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick Mc-
Daniel. Adversarial perturbations against deep neural networks for malware classification.
In European Symposium on Research in Computer Security, 2017. 74

Michael Grosshans, Christoph Sawade, Michael Briickner, and Tobias Scheffer. Bayesian games
for adversarial regression problems. In International Conference on International Conference on

Machine Learning, pages 55-63, 2013. 42, 51, 73,75, 132

Claudio Guarnieri, Alessandro Tanasi, Jurriaan Bremer, and Mark Schloesser. Cuckoo sandbox:
A malware analysis system, 2012. http://www.cuckoosandbox.org/ 30

http://dx.doi.org/10.1007/bf02288367
http://dx.doi.org/10.1145/1180405.1180414
http://dx.doi.org/10.1145/2020408.2020426
http://dx.doi.org/10.1007/978-0-387-70873-7
http://www.deeplearningbook.org/contents/autoencoders.html
http://www.cuckoosandbox.org/

BIBLIOGRAPHY 141

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution
algorithms for factored MDPS. Journal of Artificial Intelligence Research, 19:399-468, 2003.
17

Chen Hajaj and Yevgeniy Vorobeychik. Adversarial task assignment. In International Joint
Conference on Artificial Intelligence, to appear, 2018. 132

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp: A scalable system for
detecting code reuse among android applications. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 62-81, 2013. DOI: 10.1007/978-
3-642-37300-8_4. 13

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic clas-
sification. In Proc. of the ACM Conference on Innovations in Theoretical Computer Science,
pages 111-122, 2016. DOI: 10.1145/2840728.2840730. 50

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 7he Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics, Springer, 2016.
DOI: 10.1007/978-0-387-84858-7. 16

Klaus-U. Hoffgen, Hans-U. Simon, and Kevin S. Van Horn. Robust trainability of
single neurons. Journal of Computer and System Sciences, 50(1):114-125, 1995. DOI:
10.1006/jcss.1995.1011. 48

Holger H. Hoos and Thomas Stutzle. Stochastic Local Search: Foundations and Applications.
'The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, 2004. DOI:
10.1016/B978-1-55860-872-6.X5016-1. 40

Harold Hotelling. Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology, 24(6):417, 1933. DOI: 10.1037/h0070888. 107

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learn-
ing. In IEEE Symposium on Security and Privacy, 2018. 98

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In §70C, 2013. DOI: 10.1145/2488608.2488693. 12

Tan Jolliffe. Principal Component Analysis. Wiley Online Library, 2002. DOI:
10.1002/9781118445112.stat06472. 107

Ian T. Jolliffe. A note on the use of principal components in regression. Applied Statistics,
pages 300303, 1982. DOI: 10.2307/2348005. 105

http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1145/2840728.2840730
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1006/jcss.1995.1011
http://dx.doi.org/10.1006/jcss.1995.1011
http://dx.doi.org/10.1016/B978-1-55860-872-6.X5016-1
http://dx.doi.org/10.1016/B978-1-55860-872-6.X5016-1
http://dx.doi.org/10.1037/h0070888
http://dx.doi.org/10.1145/2488608.2488693
http://dx.doi.org/10.1002/9781118445112.stat06472
http://dx.doi.org/10.1002/9781118445112.stat06472
http://dx.doi.org/10.2307/2348005

142 BIBLIOGRAPHY

Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean functions. In
Foundations of Computer Science, 29th Annual Symposium on, pages 68-80, IEEE, 1988. DOI:
10.1109/sfcs.1988.21923. 72

Adam Kalai, Adam R. Klivans, Yishai Mansour, and Rocco A. Servedio. Agnostically learning
halfspaces. SIAM Journal on Computing, 37(6):1777-1805, 2008. DOI: 10.1137/060649057.
110

Murat Kantarcioglu, Bowei Xi, and Chris Clifton. Classifier evaluation and attribute selection
against active adversaries. Data Mining and Knowledge Discovery, 22(1-2):291-335, 2011. ht
tps://doi.org/10.1007/510618--010-0197-3 DOI: 10.1007/s10618-010-0197-3. 74

Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensemble
classifiers. In International Conference on Machine Learning, 2016. 74

Michael Kearns and Ming Li. Learning in the presence of malicious errors. SLAM Journal on
Computing, 22(4):807-837, 1993. DOI: 10.1137/0222052. 96, 99, 110

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer, 2004. DOI:
10.1007/978-3-540-24777-7. 37

Adam R. Klivans, Philip M. Long, and Rocco A. Servedio. Learning halfspaces with malicious
noise. Journal of Machine Learning Research, 10:2715-2740, 2009. DOI: 10.1007/978-3-642-
02927-1_51. 99, 100, 101, 110

Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly detection. Journal

of Machine Learning Research, 13:3681-3724, 2012. 13, 16, 86, 97

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning, 2017. 97

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. CoRR, abs/1607.02533, 2016. http://arxiv.org/abs/1607.02533 128

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In SIG-
COMM Conference, 2004. DOI: 10.1145/1030194.1015492. 14, 16

Bertrand Lebichot, Fabian Braun, Olivier Caelen, and Marco Saerens. A graph-based, semi-
supervised, credit card fraud detection system. In International Workshop on Complex Networks

and their Applications, 2016. DOI: 10.1007/978-3-319-50901-3_57. 10

Bo Li and Yevgeniy Vorobeychik. Feature cross-substitution in adversarial classification. In

Neural Information Processing Systems, pages 2087-2095, 2014. 50, 74

http://dx.doi.org/10.1109/sfcs.1988.21923
http://dx.doi.org/10.1109/sfcs.1988.21923
http://dx.doi.org/10.1137/060649057
https://doi.org/10.1007/s10618--010-0197-3
https://doi.org/10.1007/s10618--010-0197-3
http://dx.doi.org/10.1007/s10618-010-0197-3
http://dx.doi.org/10.1137/0222052
http://dx.doi.org/10.1007/978-3-540-24777-7
http://dx.doi.org/10.1007/978-3-540-24777-7
http://dx.doi.org/10.1007/978-3-642-02927-1_51
http://dx.doi.org/10.1007/978-3-642-02927-1_51
http://arxiv.org/abs/1607.02533
http://dx.doi.org/10.1145/1030194.1015492
http://dx.doi.org/10.1007/978-3-319-50901-3_57

BIBLIOGRAPHY 143

Bo Li and Yevgeniy Vorobeychik. Scalable optimization of randomized operational decisions
in adversarial classification settings. In Conference on Artificial Intelligence and Statistics, 2015.
69,72,73,75

Bo Li and Yevgeniy Vorobeychik. Evasion-robust classification on binary domains. ACM Trans-
actions on Knowledge Discovery from Data, 12(4):Article 50, 2018. DOI: 10.1145/3186282. 56,
59, 68, 74, 125

Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks
on factorization-based collaborative filtering. In Newral Information Processing Systems,

pages 1885-1893, 2016. 17, 87, 89, 91, 97

Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear regression against
training data poisoning. In Workshop on Artificial Intelligence and Security, 2017. DOI:
10.1145/3128572.3140447. 99, 105, 106, 110, 111

Daniel Lowd and Christopher Meek. Adversarial learning. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery in Data Mining, pages 641-647, 2005a. DOI:
10.1145/1081870.1081950. 25, 37, 48, 50, 51

Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In Conference
on Email and Anti-Spam, 2005b. 3

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family
for adversarial examples. In IEEE International Conference on Data Mining, pages 301-309,
2015. DOI: 10.1109/icdm.2015.84. 119, 128, 129

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. 120, 125,129

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John
Wiley & Sons, 1990. 37

Garth P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part i—convex underestimating problems. Mathematical Programming, 10(1):147-175, 1976.
DOI: 10.1007/bf01580665. 58

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In AA4AI Conference on Artificial Intelligence, pages 2871-2877, 2015a.
93, 94, 97

Shike Mei and Xiaojin Zhu. The security of latent Dirichlet allocation. In International Con-
ference on Artificial Intelligence and Statistics, pages 681-689, 2015b. 97

http://dx.doi.org/10.1145/3186282
http://dx.doi.org/10.1145/3128572.3140447
http://dx.doi.org/10.1145/3128572.3140447
http://dx.doi.org/10.1145/1081870.1081950
http://dx.doi.org/10.1145/1081870.1081950
http://dx.doi.org/10.1109/icdm.2015.84
http://dx.doi.org/10.1007/bf01580665

144 BIBLIOGRAPHY
German E. Melo-Acosta, Freddy Duitama-Munoz, and Julian D. Arias-Londono. Fraud

detection in big data using supervised and semi-supervised learning techniques. In IEEE
Colombian Conference on Communications and Computing, 2017. DOI: 10.1109/colcom-
con.2017.8088206. 10

John D. Montgomery. Spoofing, market manipulation, and the limit-order book. 7ech-
nical Report, Navigant Economics, 2016. http://ssrn.com/abstract=2780579 DOI:
10.2139/ssrn.2780579. 3

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A simple
and accurate method to fool deep neural networks. In Conference on Computer Vision and

Pattern Recognition, pages 2574-2582, 2016a. DOI: 10.1109/cvpr.2016.282. 117

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple
and accurate method to fool deep neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 25742582, 2016b. DOI: 10.1109/cvpr.2016.282. 128

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1765-1773, 2017. DOI: 10.1109/cvpr.2017.17. 128

Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Learning
with noisy labels. In Proc. of the 26th International Conference on Neural Information Processing
Systems, vol. 1, pages 1196-1204, 2013. 96

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, and]. D. Tygar.
Classifier evasion: Models and open problems. In Privacy and Security Issues in Data Min-
ing and Machine Learning—International ECML/PKDD Workshop, pages 92-98, 2010. DOI:
10.1007/978-3-642-19896-0_8. 50

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Steven J. Lee,
Satish Rao, and J. D. Tygar. Query strategies for evading convex-inducing classifiers. Journal
of Machine Learning Research, pages 1293-1332, 2012. 25, 48, 50

Jorge Nocedal and Stephen Wright. Numerical Optimization, 2nd ed. Springer Series in Op-
erations Research and Financial Engineering, Springer, 2006. DOI: 10.1007/b98874. 36,
40

Ryan O’Donnell. Some topics in analysis of Boolean functions. In ACM Symposium on Theory
of Computing, pages 569-578, 2008. DOI: 10.1145/1374376.1374458. 72

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to adversarial

perturbations against deep neural networks. In IEEE Symposium on Security and Privacy,
pages 582-597, 2016a. DOI: 10.1109/sp.2016.41. 127, 129

http://dx.doi.org/10.1109/colcomcon.2017.8088206
http://dx.doi.org/10.1109/colcomcon.2017.8088206
http://ssrn.com/abstract=2780579
http://dx.doi.org/10.2139/ssrn.2780579
http://dx.doi.org/10.2139/ssrn.2780579
http://dx.doi.org/10.1109/cvpr.2016.282
http://dx.doi.org/10.1109/cvpr.2016.282
http://dx.doi.org/10.1109/cvpr.2017.17
http://dx.doi.org/10.1007/978-3-642-19896-0_8
http://dx.doi.org/10.1007/978-3-642-19896-0_8
http://dx.doi.org/10.1007/b98874
http://dx.doi.org/10.1145/1374376.1374458
http://dx.doi.org/10.1109/sp.2016.41

BIBLIOGRAPHY 145

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. Arxiv Preprint, ArXiv:1803.04765,2018. 129, 133

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In IEEE European
Symposium on Security and Privacy, 2016b. DOI: 10.1109/eurosp.2016.36. 121

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine

learning: From phenomena to black-box attacks using adversarial samples. Arxiv, preprint,

2016¢. 50,123,128
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and

Ananthram Swami. Practical black-box attacks against machine learning. In ACM
Asia Conference on Computer and Communications Security, pages 506-519, 2017. DOI:
10.1145/3052973.3053009. 123, 128

R. Perdisci, D. Ariu, and G. Giacinto. Scalable fine-grained behavioral clustering of http-based
malware. Computer Networks, 57(2):487-500, 2013. DOI: 10.1016/j.comnet.2012.06.022.
13

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018. 120, 126, 129

Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge University
Press, 2012. DOI: 10.1017/cb09781139058452. 1

Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar. Curtail:
Characterizing and thwarting adversarial deep learning. Arxiv Preprint, ArXiv:1709.02538,
2017. 129

Benjamin I. P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing hon Lau,
Satish Rao, Nina Taft, and J. D. Tygar. ANTIDOTE: Understanding and defending
against poisoning of anomaly detectors. In Internet Measurement Conference, 2009. DOI:
10.1145/1644893.1644895. 86, 97

Paolo Russu, Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli. Secure kernel
machines against evasion attacks. In Proc. of the ACM Workshop on Artificial Intelligence and
Security, pages 59-69, 2016. DOI: 10.1145/2996758.2996771. 67, 75

Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine

Learning Research, 4:633—-648, 2003. DOI: 10.1007/3-540-44581-1_31. 110

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. = Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition. In ACM

http://dx.doi.org/10.1109/eurosp.2016.36
http://dx.doi.org/10.1145/3052973.3053009
http://dx.doi.org/10.1145/3052973.3053009
http://dx.doi.org/10.1016/j.comnet.2012.06.022
http://dx.doi.org/10.1017/cbo9781139058452
http://dx.doi.org/10.1145/1644893.1644895
http://dx.doi.org/10.1145/1644893.1644895
http://dx.doi.org/10.1145/2996758.2996771
http://dx.doi.org/10.1007/3-540-44581-1_31

146 BIBLIOGRAPHY

SIGSAC Conference on Computer and Communications Security, pages 1528-1540, 2016. DOI:
10.1145/2976749.2978392. 122, 128

Andrew Smith, Jian Lou, and Yevgeniy Vorobeychik. Multidefender security games. IEEE
Intelligent Systems, 32(1):50-60, 2017. 134

C. Smutz and A. Stavrou. Malicious PDF detection using metadata and structural fea-
tures. In Annual Computer Security Applications Conference, pages 239-248, 2012. DOI:
10.1145/2420950.2420987. 10, 29

Suvrit Sra and Inderjit S. Dhillon. Generalized nonnegative matrix approximations with Breg-
man divergences. In Neural Information Processing Systems, pages 283-290, 2006. 17

N. Srndic and P. Laskov. Practical evasion of a learning-based classifier: A case study. In IEEE
Symposium on Security and Privacy, pages 197-211, 2014. DOI: 10.1109/sp.2014.20. 25, 29

Nedim Srndi¢ and Pavel Laskov. Hidost: A static machine-learning-based detector of malicious
files. EURASIP Journal on Information Security, (1):22, 2016. DOI: 10.1186/513635-016-
0045-0. 10

Robert St. Aubin, Jesse Hoey, and Craig Boutilier. Apricodd: Approximate policy construction
using decision diagrams. In NIPS, pages 1089-1095, 2000. 17

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks.
In Neural Information Processing Systems, 2017. 111

David Stevens and Daniel Lowd. On the hardness of evading combinations of lin-
ear classifiers. In ACM Workshop on Artificial Intelligence and Security, 2013. DOI:
10.1145/2517312.2517318. 134

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. When
does machine learning FAIL? Generalized transferability for evasion and poisoning attacks.

In USENIX Security Symposium, 2018. 25, 98

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning, A Bradford Book, 1998. 14, 16

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations, 2013. 116,117, 123,127,128, 129

Milind Tambe, Ed. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, 2011. DOI: 10.1017/cb0o9780511973031. 56, 69, 75, 133

http://dx.doi.org/10.1145/2976749.2978392
http://dx.doi.org/10.1145/2976749.2978392
http://dx.doi.org/10.1145/2420950.2420987
http://dx.doi.org/10.1145/2420950.2420987
http://dx.doi.org/10.1109/sp.2014.20
http://dx.doi.org/10.1186/s13635-016-0045-0
http://dx.doi.org/10.1186/s13635-016-0045-0
http://dx.doi.org/10.1145/2517312.2517318
http://dx.doi.org/10.1145/2517312.2517318
http://dx.doi.org/10.1017/cbo9780511973031

BIBLIOGRAPHY 147

Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. Guilt by association: Large scale mal-
ware detection by mining file-relation graphs. In SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2014. DOI: 10.1145/2623330.2623342. 10

Choon Hai Teo, Amir Globerson, Sam Roweis, and Alexander J. Smola. Convex learning with
invariances. In Neural Information Processing Systems, 2007. 66, 74,129

Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, and Yevgeniy Vorobeychik. A framework for
validating models of evasion a acks on machine learning, with application to PDF malware
detection. Arxiv Preprint, ArXiv:1708.08327v3, 2018a. 134

Liang Tong, Sixie Yu, Scott Alfeld, and Yevgeniy Vorobeychik. Adversarial regression with
multiple learners. In International Conference on Machine Learning, to appear, 2018b. 134

Leslie Valiant. Learning disjunctions of conjunctions. In International Joint Conference on Arti-

fcial Intelligence, pages 560-566, 1985. 110

Vladimir Vapnik. 7he Nature of Statistical Learning Theory, 2nd ed. Information Science and
Statistics, Springer, 1999. DOI: 10.1007/978-1-4757-3264-1. 16

Yevgeniy Vorobeychik and Bo Li. Optimal randomized classification in adversarial settings. In
International Conference on Autonomous Agents and Multiagent Systems, pages 485-492, 2014.
51

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world.

Springer Verlag, 2005. 133
Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y. Zhao. Man vs. machine: Practical

adversarial detection of malicious crowdsourcing workers. In USENIX Security Symposium,

pages 239-254, 2014. 132

Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A content anomaly detector

resistant to mimicry attack. In Recent Advances in Intrusion Detection, pages 226—248, 2006.
DOI: 10.1007/11856214_12. 14

Max Welling and Yee W. Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proc. of the 28th International Conference on Machine Learning (ICML-11), pages 681-688,
2011. 93

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, 2018. 120, 126,
129

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples. In International Conference on Learning Representations,

2018. 134

http://dx.doi.org/10.1145/2623330.2623342
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://dx.doi.org/10.1007/11856214_12

148 BIBLIOGRAPHY

Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack on support vector
machines. In European Conference on Artificial Intelligence, 2012. DOI:10.3233/978-1-61499-
098-7-870. 80, 96

Huang Xiao, Battista Biggio, Blaine Nelson, HanXiao, Claudia Eckert, and Fabio Roli. Support
vector machines under adversarial label contamination. Newrocomputing, 160:53-62, 2015.

DOI: 10.1016/j.neucom.2014.08.081. 96

Huan Xu, Constantine Caramanis, and Shie Mannor. Robust regression and lasso. In Neural
Information Processing Systems 21, pages 1801-1808, 2009a. DOI: 10.1109/tit.2010.2048503.
111

Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization of support

vector machines. Journal of Machine Learning Research, 10:1485-1510, 2009b. 67, 75, 129

Huan Xu, Constantin Caramanis, and Sujay Sanghavi. Robust PCA via outlier pursuit. IEEE
Transactions on Information Theory, 58(5):3047-3064,2012. DOI: 10.1109/tit.2011.2173156.
111

Huan Xu, Constantin Caramanis, and Shie Mannor. Outlier-robust PCA: The high-
dimensional case. IEEE Transactions on Information Theory, 59(1):546-572, 2013. DOI:
10.1109/1it.2012.2212415. 111

Weilin Xu, Yanjun Qj, and David Evans. Automatically evading classifiers: A case study on
PDF malware classifiers. In Network and Distributed System Security Symposium, 2016. DOI:
10.14722/ndss.2016.23115. 30, 47, 50

Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. A survey on malware
detection using data mining techniques. ACM Computing Surveys, 50(3), 2017. DOI:
10.1145/3073559. 10

F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli. Adversarial feature selection against
evasion attacks. IEEE Transactions on Cybernetics, 2015. DOI: 10.1109/tcyb.2015.2415032.
50

Yan Zhou and Murat Kantarcioglu. Modeling adversarial learning as nested stackelberg games.
In Advances in Knowledge Discovery and Data Mining—20th Pacific-Asia Conference, PAKDD,
Proceedings, Part II, pages 350-362, Auckland, New Zealand, April 19-22, 2016. https://
doi.org/10.1007/978--3-319-31750-2_28 DOI: 10.1007/978-3-319-31750-2_28. 75

Yan Zhou, Murat Kantarcioglu, Bhavani M. Thuraisingham, and Bowei Xi. Adversarial support
vector machine learning. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1059-1067, 2012. DOI: 10.1145/2339530.2339697. 51, 74

http://dx.doi.org/10.3233/978-1-61499-098-7-870
http://dx.doi.org/10.3233/978-1-61499-098-7-870
http://dx.doi.org/10.1016/j.neucom.2014.08.081
http://dx.doi.org/10.1109/tit.2010.2048503
http://dx.doi.org/10.1109/tit.2011.2173156
http://dx.doi.org/10.1109/tit.2012.2212415
http://dx.doi.org/10.1109/tit.2012.2212415
http://dx.doi.org/10.14722/ndss.2016.23115
http://dx.doi.org/10.14722/ndss.2016.23115
http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1109/tcyb.2015.2415032
https://doi.org/10.1007/978--3-319-31750-2_28
https://doi.org/10.1007/978--3-319-31750-2_28
http://dx.doi.org/10.1007/978-3-319-31750-2_28
http://dx.doi.org/10.1145/2339530.2339697

149

Authors’ Biographies

YEVGENIY VOROBEYCHIK

Yevgeniy Vorobeychik is an Assistant Professor of Computer Science, Computer Engineering,
and Biomedical Informatics at Vanderbilt University. Previously, he was a Principal Research
Scientist at Sandia National Laboratories. Between 2008 and 2010, he was a post-doctoral re-
search associate at the University of Pennsylvania Computer and Information Science depart-
ment. He received Ph.D. (2008) and M.S.E. (2004) degrees in Computer Science and Engi-
neering from the University of Michigan, and a B.S. degree in Computer Engineering from
Northwestern University. His work focuses on game theoretic modeling of security and privacy,
adversarial machine learning, algorithmic and behavioral game theory and incentive design, op-
timization, agent-based modeling, complex systems, network science, and epidemic control. Dr.
Vorobeychik received an NSF CAREER award in 2017, and was invited to give an IJCAI-16
early career spotlight talk. He was nominated for the 2008 ACM Doctoral Dissertation Award
and received honorable mention for the 2008 IFAAMAS Distinguished Dissertation Award.

MURAT KANTARCIOGLU

Murat Kantarcioglu is a Professor of Computer Science and Director of the UTD Data Secu-
rity and Privacy Lab at The University of Texas at Dallas. Currently, he is also a visiting scholar
at Harvard’s Data Privacy Lab. He holds a B.S. in Computer Engineering from Middle East
Technical University, and M.S. and Ph.D. degrees in Computer Science from Purdue Univer-
sity.

Dr. Kantarcioglu’s research focuses on creating technologies that can efficiently extract
useful information from any data without sacrificing privacy or security. His research has been
supported by awards from NSF, AFOSR, ONR, NSA, and NIH. He has published over 175
peer-reviewed papers. His work has been covered by media outlets such as The Boston Globe
and ABC News, among others, and has received three best paper awards. He is also the recip-
ient of various awards including NSF CAREER award, a Purdue CERIAS Diamond Award
for academic excellence, the AMIA (American Medical Informatics Association) 2014 Homer
R. Warner Award, and the IEEE ISI (Intelligence and Security Informatics) 2017 Technical
Achievement Award presented jointly by IEEE SMC and IEEE ITS societies for his research
in data security and privacy. He is also a Distinguished Scientist of ACM.

Index

ACRE learnability, 48 evasion attack, 20-21, 27-40, 45-50
adversarial empirical risk, 54 evasion attacks

adversarial empirical risk minimization, 54 on anomaly detectors, 40
alternating minimization, 12 on binary classifiers, 32-38
anomaly detection, 1314 on multiclass classifiers, 38—40

evasion defense, 53-74

bag-of-words representation, 1, 33 approximate, 65

black-box attack, 22-23 classification, 56—67, 69

black-box decision-time attacks, 45—50 free-range attacks, 60-61

centroid anomaly detection, 13 randorr.lization, 69-73
regression, 73—74
restrained attacks, 62—63

sparse SVM, 56—60

poisoning attack, 86
CG, see coordinate greedy
classification, 7-8

classifier reverse engineering, 4849 factored representation, 16
)

clustering, 10-11 feature cross-substitution, 33

coordinate greedy, 36 free-range attack, 35

cost function, 32

Gaussian Mixture Model, 11
decision-time attack, 27-50

decision-time attacks hinge loss, 8

on autoregressive models, 42—44

on clustering, 40-41 ideal instance, 32

on regression, 41-44 iterative retraining, see retraining
on reinforcement learning, 44-45 k-means clustering, 10
.)
deep learning

attack on deep learning, 113-123 linear classification, 8
defense, 123-127 linear regression, 6
logistic loss, 8
empirical risk, 6 loss function, 6
empirical risk minimization, 6
ERM, see empirical risk minimization Markov decision process, 14

151

152 INDEX

matrix completion, 11-12
poisoning attack, 87-93
mimicry, 92-93
MDP, see Markov decision process
minimum cost camouflage, 34, 36-37
multi-class classification, 8

nuclear-norm minimization, 12

PAC learning, 8-9
PCA, see principal component analysis
poisoning attack, 86—87
PCA-based anomaly detectors, 14
poisoning attack, 21-22, 77-96
alternating minimization, 89-90
black-box attack, 95-96
general framework, 93-95
label-flipping attack, 79-81
malicious data insertion, 81-83
matrix completion, 87-93
mimicry, 92-93
nuclear norm minimization, 91
supervised learning, 78-83
unsupervised learning, 84-87
poisoning defense, 99-110
polymorphic blending attack, 28

principal component analysis, 11

Q-function, 15

regression, 6—7
regularization, 6, 7
restrained attack, 35
retraining, 67-68
robust classification, 99-101, 105-106
robust learning, 99-110
best of many samples, 99
outlier removal, 100-104
robust matrix factorization, 106—109

robust PCA, 106—109

separable cost function, 33
Stackelberg equilibrium, 55
Stackelberg game, 54

Strong Stackelberg equilibrium, 56

supervised learning, 5

transferability, 123
trimmed optimization, 109-110
trimmed regression, 104-105

unsupervised learning, 10-12
value function, 15

white-box attack, 22
white-box evasion attacks, 32—45

	List of Figures
	Preface
	Acknowledgments
	Introduction
	Machine Learning Preliminaries
	Supervised Learning
	Regression Learning
	Classification Learning
	PAC Learnability
	Supervised Learning in Adversarial Settings

	Unsupervised Learning
	Clustering
	Principal Component Analysis
	Matrix Completion
	Unsupervised Learning in Adversarial Settings

	Reinforcement Learning
	Reinforcement Learning in Adversarial Settings

	Bibliographic Notes

	Categories of Attacks on Machine Learning
	Attack Timing
	Information Available to the Attacker
	Attacker Goals
	Bibliographic Notes

	Attacks at Decision Time
	Examples of Evasion Attacks on Machine Learning Models
	Attacks on Anomaly Detection: Polymorphic Blending
	Attacks on PDF Malware Classifiers

	Modeling Decision-Time Attacks
	White-Box Decision-Time Attacks
	Attacks on Binary Classifiers: Adversarial Classifier Evasion
	Decision-Time Attacks on Multiclass Classifiers
	Decision-Time Attacks on Anomaly Detectors
	Decision-Time Attacks on Clustering Models
	Decision-Time Attacks on Regression Models
	Decision-Time Attacks on Reinforcement Learning

	Black-Box Decision-Time Attacks
	A Taxonomy of Black-Box Attacks
	Modeling Attacker Information Acquisition
	Attacking Using an Approximate Model

	Bibliographical Notes

	Defending Against Decision-Time Attacks
	Hardening Supervised Learning against Decision-Time Attacks
	Optimal Evasion-Robust Classification
	Optimal Evasion-Robust Sparse SVM
	Evasion-Robust SVM against Free-Range Attacks
	Evasion-Robust SVM against Restrained Attacks
	Evasion-Robust Classification on Unrestricted Feature Spaces
	Robustness to Adversarially Missing Features

	Approximately Hardening Classifiers against Decision-Time Attacks
	Relaxation Approaches
	General-Purpose Defense: Iterative Retraining

	Evasion-Robustness through Feature-Level Protection
	Decision Randomization
	Model
	Optimal Randomized Operational Use of Classification

	Evasion-Robust Regression
	Bibliographic Notes

	Data Poisoning Attacks
	Modeling Poisoning Attacks
	Poisoning Attacks on Binary Classification
	Label-Flipping Attacks
	Poison Insertion Attack on Kernel SVM

	Poisoning Attacks for Unsupervised Learning
	Poisoning Attacks on Clustering
	Poisoning Attacks on Anomaly Detection

	Poisoning Attack on Matrix Completion
	Attack Model
	Attacking Alternating Minimization
	Attacking Nuclear Norm Minimization
	Mimicking Normal User Behaviors

	A General Framework for Poisoning Attacks
	Black-Box Poisoning Attacks
	Bibliographic Notes

	Defending Against Data Poisoning
	Robust Learning through Data Sub-Sampling
	Robust Learning through Outlier Removal
	Robust Learning through Trimmed Optimization
	Robust Matrix Factorization
	Noise-Free Subspace Recovery
	Dealing with Noise
	Efficient Robust Subspace Recovery

	An Efficient Algorithm for Trimmed Optimization Problems
	Bibliographic Notes

	Attacking and Defending Deep Learning
	 Attacking and Defending Deep Learning
	Neural Network Models
	Attacks on Deep Neural Networks: Adversarial Examples
	l_2-Norm Attacks
	l_-Norm Attacks
	l_0-Norm Attacks
	Attacks in the Physical World
	Black-Box Attacks

	Making Deep Learning Robust to Adversarial Examples
	Robust Optimization
	Retraining
	Distillation

	Bibliographic Notes

	The Road Ahead
	Beyond Robust Optimization
	Incomplete Information
	Confidence in Predictions
	Randomization
	Multiple Learners
	Models and Validation

	Bibliography
	Authors' Biographies
	Index

