

METHOD OF LINES PDE
ANALYSIS IN
BIOMEDICAL SCIENCE
AND ENGINEERING

METHOD OF LINES PDE
ANALYSIS IN
BIOMEDICAL SCIENCE
AND ENGINEERING

WILLIAM E. SCHIESSER
Department of Chemical and Biomolecular Engineering
Lehigh University
Bethlehem, PA USA

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for
a particular purpose. No warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for your situation. You should
consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of
profit or any other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: Schiesser, W. E., author.
Title: Method of lines PDE analysis in biomedical science and engineering /

William E. Schiesser.
Description: Hoboken, New Jersey : John Wiley & Sons, 2016. | Includes

bibliographical references and index.
Identifiers: LCCN 2015043460 | ISBN 9781119130482
Subjects: LCSH: Differential equations, Partial–Numerical solutions. |

Numerical analysis–Computer programs.
Classification: LCC QA377 .S35 2016 | DDC 610.1/515353–dc23 LC record available at

http://lccn.loc.gov/2015043460

Typeset in 10/12pt, Times-Roman by SPi Global, Chennai, India.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.copyright.com
http://www.wiley.com/go/permissions
www.wiley.com

To
Edward Amstutz

Glenn Christensen
Joseph Elgin

Harvey Neville

CONTENTS

Preface xi

About the Companion Website xiii

1 An Introduction to MOL Analysis of PDEs: Wave Front Resolution
in Chromatography 1

1.1 1D 2-PDE model, 2
1.2 MOL routines, 7

1.2.1 Main program, 7
1.2.2 MOL/ODE routine, 16
1.2.3 Subordinate routines, 20

1.3 Model output, single component chromatography, 21
1.3.1 FDs, step BC, 21
1.3.2 Flux limiters, step BC, 39
1.3.3 FDs, pulse BC, 48
1.3.4 Flux limiters, pulse BC, 50

1.4 Multi component model, 53
1.5 MOL routines, 54

1.5.1 Main program, 54
1.5.2 MOL/ODE routine, 62

1.6 Model output, multi component chromatography, 67
References, 68

2 Wave Front Resolution in VEGF Angiogenesis 69

2.1 1D 2-PDE model, 70
2.2 MOL routines, 72

viii CONTENTS

2.2.1 Main program, 72
2.2.2 MOL/ODE routine, 81
2.2.3 Subordinate routines, 85

2.3 Model output, 86
2.3.1 Comparison of numerical and analytical solutions, 86
2.3.2 Effect of diffusion on the traveling-wave solution, 88

2.4 Conclusions, 88
References, 89

3 Thermographic Tumor Location 91

3.1 2D, 1-PDE model, 92
3.2 MOL analysis, 94

3.2.1 ODE routine, 94
3.2.2 Main program, 100

3.3 Model output, 105
3.4 Summary and conclusions, 110

References, 111

4 Blood-Tissue Transport 113

4.1 1D 2-PDE model, 114
4.2 MOL routines, 115

4.2.1 MOL/ODE routine, 115
4.2.2 Main program, 119
4.2.3 Bessel function routine, 128

4.3 Model output, 129
4.4 Model extensions, 133
4.5 Conclusions and summary, 142

References, 143

5 Two-Fluid/Membrane Model 145

5.1 2D, 3-PDE model, 146
5.2 MOL analysis, 147

5.2.1 MOL/ODE routine, 148
5.2.2 Main program, 153

5.3 Model output, 160
5.4 Summary and conclusions, 162

6 Liver Support Systems 165

6.1 2-ODE patient model, 166
6.2 Patient ODE model routines, 167

6.2.1 Main program, 167
6.2.2 ODE routine, 172

6.3 Model output, 174
6.4 8-PDE ALSS model, 176

CONTENTS ix

6.4.1 Membrane unit MU1, 177
6.4.2 Adsorption unit AU1, 177
6.4.3 Adsorption unit AU2, 178
6.4.4 Membrane unit MU2, 179

6.5 Patient-ALSS ODE/PDE model routines, 180
6.5.1 Main program, 180
6.5.2 ODE routine, 188

6.6 Model output, 195
6.7 Summary and conclusions, 196

Appendix - Derivation of PDEs for Membrane and Adsorption
Units, 200

A.1 PDEs for Membrane Units, 200
A.2 PDEs for Adsorption Units, 202

References, 203

7 Cross Diffusion Epidemiology Model 205

7.1 2-PDE model, 205
7.2 Model routines, 207

7.2.1 Main program, 207
7.2.2 ODE routine, 215

7.3 Model output, 218
7.3.1 ncase = 1, time-invariant solution, 218
7.3.2 ncase = 2, transient solution, no cross diffusion, 220
7.3.3 ncase = 3, transient solution with cross diffusion, 222

7.4 Summary and conclusions, 224
Reference, 225

8 Oncolytic Virotherapy 227

8.1 1D 4-PDE model, 228
8.2 MOL routines, 229

8.2.1 Main program, 230
8.2.2 MOL/ODE routine, 240
8.2.3 Subordinate routine, 245

8.3 Model output, 246
8.4 Summary and conclusions, 273

Reference, 274

9 Tumor Cell Density in Glioblastomas 275

9.1 1D PDE model, 276
9.2 MOL routines, 277

9.2.1 Main program, 277
9.2.2 MOL/ODE routine, 286

9.3 Model output, 289

x CONTENTS

9.3.1 Output for ncase = 1, linear, 290
9.3.2 Output for ncase = 2, logistic, 295
9.3.3 Output for ncase = 3, Gompertz, 296

9.4 p-refinement error analysis, 299
9.5 Summary and conclusions, 301

References, 301

10 MOL Analysis with a Variable Grid: Antigen-Antibody Binding
Kinetics 303

10.1 ODE/PDE model, 303
10.2 MOL routines, 306

10.2.1 Main program, 306
10.2.2 MOL/ODE routine, 314

10.3 Model output, 318
10.3.1 Uniform grid, 318
10.3.2 Variable grid, 321

10.4 Summary and conclusions, 325
Appendix: Variable Grid Analysis, 327

A.1 Derivation of numerical differentiators, 327
A.2 Testing of numerical differentiators, 331

A.2.1 Differentiation matrix, 331
A.2.2 Test functions, 332
References, 340

Appendices

Appendix A Derivation of Convection-Diffusion-Reaction
Partial Differential Equations 341

Appendix B Functions dss012, dss004, dss020, vanl 345

Index 351

PREFACE

The reporting of differential equation models in biomedical science and engineering
(BMSE) continues at a remarkable pace. In this book, recently reported models based
on initial-boundary-value ordinary and partial differential equations (ODE/PDEs) are
described in chapters that have the following general format:

1. The model is stated as an ODE/PDE system, including the required initial con-
ditions (ICs) and boundary conditions (BCs). The origin of PDEs based on mass
conservation is discussed in Appendix A.

2. The coding (programming) of the model equations is presented as a series of rou-
tines in R, which primarily implements the method of lines (MOL) for PDEs.
Briefly, in the MOL,

• The partial derivatives in the spatial (boundary value) independent variables
are replaced by approximations such as finite differences, finite elements, finite
volumes, or spectral representations. In the present discussion, finite differences
(FDs) are used, although alternatives are easily included.1

• Derivatives with respect to an initial-value variable remain, which are expressed
through a system of ODEs. An ODE solver (integrator) is then used to compute
a numerical solution to the ODE/PDE system.2

3. The resulting numerical and graphical (plotted) solution is discussed and inter-
preted with respect to the model equations.

1Representative routines for the approximation of PDE spatial derivatives are listed in Appendix B.
2Additional ODEs, which might, for example, be BCs for PDEs, can naturally be included in the model MOL
solution. The solution of a mixed ODE/PDE system is demonstrated in some of the BMSE applications. Also,
differential algebraic equations (DAEs) can easily be included in a MOL solution through the use of a modified
ODE solver or a DAE solver.

xii PREFACE

4. The chapter concludes with a review of the numerical (MOL) algorithm perfor-
mance, general observations and results from the model, and possible extensions
of the model.

The source of each model is included as one or more references. Generally, these are
recent papers from the scientific and mathematics literature. Typically, a paper consists of
some background discussion of the model, a statement of the model ODE/PDE system,
presentation of a numerical solution of the model equations, and conclusions concerning
the model and features of the solution.

What is missing in this format are the details of the numerical algorithms used to com-
pute the reported solutions and the coding of the model equations. Also, the statement
of the model is frequently incomplete such as missing equations, parameters, ICs, and
BCs, so that reproduction of the solution with reasonable effort is virtually impossible.

We have attempted to address this situation by providing the source code of the
routines, with a detailed explanation of the code, a few lines at a time. This approach
includes a complete statement of the model (the computer will ensure this) and an expla-
nation of how the numerical solutions are computed in enough detail that the reader can
understand the numerical methods and coding and reproduce the solutions by executing
the R routines (provided in a download).

In this way, we think that the formulation and use of the ODE/PDE models will be
clear, including all of the mathematical details, so that readers can execute, then pos-
sibly experiment and extend, the models with reasonable effort. Finally, the intent of
the detailed discussion is to explain the MOL formulation and methodology so that the
reader can develop new ODE/PDE models and applications without becoming deeply
involved in mathematics and computer programming.

In summary, the presentation is not as formal mathematics, for example, theorems
and proofs. Rather, the presentation is by examples of recently reported ODE/PDE
BMSE models including the details for computing numerical solutions, particularly
documented source code. The author would welcome comments and suggestions for
improvements (wes1@lehigh.edu).

William E. Schiesser
Bethlehem, PA, USA
May 1, 2016

ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:
www.wiley.com/go/Schiesser/PDE Analysis

The website includes:

• Related R Routines

www.wiley.com/go/Schiesser/PDE_Analysis

1
AN INTRODUCTION TO MOL ANALYSIS
OF PDEs: WAVE FRONT RESOLUTION
IN CHROMATOGRAPHY

This first chapter introduces a partial differential equation (PDE) model for chro-
matography which is a basic analytical method in biomedical science and engineering
(BSME). For example, chromatography can be used to analyze a stream of various
proteins through selective adsorption. Thus, the model can also be applied to adsorption
as a basic procedure for separating biochemical species such as proteins. The computer
implementation (programming, coding) of the model is in R1.

The intent of this chapter is to

• Derive a basic chromatography PDE model, including the required initial condi-
tions (ICs) and boundary conditions (BCs).

• Illustrate the coding of the model within the method of lines (MOL) through a
series of R routines, including the use of library routines for integration of the
PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) format.

• Discuss the features of the numerical solution and the performance of the algo-
rithms used to compute the solution.

• Consider extensions of the model and the numerical algorithms.

1R is an open source scientific programming system that can be downloaded (at no cost) from the Internet.
The R routines discussed in this book are available as a download from the author and the publisher.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

2 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

(1.1) 1D 2-PDE MODEL

The configuration of a chromatography column is illustrated in Fig. 1.1.
We can note the following details about the column represented in Fig. 1.1:

• The column is one dimensional (1D) with distance along the column, z, as the spa-
tial (boundary value) independent variable. Time t is an initial value independent
variable. A solid adsorbent is represented as spherical particles that fill the col-
umn. A fluid stream flows through the column in the interstices (voids) between
the adsorbent particles. The flowing stream enters the base of the column at z = 0,
and exits the top at z = zL.

• The two PDE dependent variables are:

– u1(z, t): concentration of the adsorbate (the chemical component to be pro-
cessed) in the fluid stream.

– u2(z, t): adsorbate concentration on the adsorbent.

u1(z, t) and u2(z, t) are the PDE dependent variables. The PDEs that define these
dependent variables are derived subsequently2.

• The adsorbate enters the column at z = 0 with a prescribed (entering) concentra-
tion u1e(t) that serves as a boundary condition (BC) for the u1 PDE3. Note that the
boundary value can be a function of t.

u1(z = zL,t)

u2(z,t)

u1(z =0,t)

z

z = 0

zL

Figure 1.1 Diagram of a chromatographic column

2In accordance with the usual convention in PDE modeling, the dependent variables are designated with the
letter u and a numerical subscript for each variable, e.g., u1(z, t), u2(z, t). The solution to the models PDEs
will be the dependent variables in numerical form as a function of the independent variables, e.g., z, t.
3The term boundary condition follows from the use of a mathematical condition specified at the physical
boundary of the system, in this case the adsorbate at z = 0, u1(z = 0, t) = u1e(t).

1D 2-PDE MODEL 3

• The exiting stream at z = zL has the concentration u1(z = zL, t) which is a
function of t. The t variation of this exiting stream is of primary interest when
using the model. A plot of u1(z = zL, t) against t is termed a breakthrough curve.

• An overall objective in formulating the model and computing numerical
solutions is to determine u1(z = zL, t), and in particular, how effective the
chromatographic column is in alterting the entering stream with concentration
u1(z = 0, t) = u1e(t).

In summary, the numerical solution of the PDE model will give the dependent variables
u1(z, t) and u2(z, t) as a function of z, t. u1(z = zL, t) is a primary output from the
model, that is, the outflow adsorbate concentration as a function of time.

A mass balance on the adsorbate stream4 gives

εAΔz
∂u1

∂t
= εAvu1|z − εAvu1|z+Δz − (1− ε)AΔz(kfu1(u

e
2 − u2)− kru2) (1.1a)

where
u1 concentration of adsorbate in the flowing stream

u2 concentration of adsorbate on the adsorbent

ue
2 equilibrium (saturation) concentration of adsorbate

on the adsorbent

t time

z axial position along the column

A cross sectional area of column (transverse to z)

v superficial velocity of flow

ε void fraction of the adsorbent interstices

kf forward rate constant for the adsorbate transfer
from the fluid to the adsorbent

kr reverse rate constant for the adsorbate transfer
from the adsorbent to the flowing stream

Table 1.1: Variables and parameters of eq. (1.1a)

Eq. (1.1a) is a mass conservation balance for the flowing adsorbate with the terms
explained further in the following comments.

LHS-1: εAΔz
∂u1

∂t
- accumulation of adsorbate in the incremental volume εAΔz. The

CGS units of this term are (cm2)(cm)(gmol/cm3)(1/s) =gmol/s, that is, the accumulation

of adsorbate per second within the incremental volume εAΔz. If the derivative
∂u1

∂t

4A 3D PDE is derived in Appendix A that can be reduced to eq. (1.1a) as a special case.

4 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

is negative, the adsorbate is depleted (reduced). Also, some elaboration of the units of
length is possible.

• ε: cm3
fluid/cm3

column (so that the void fraction is not dimensionless)

• A: cm2
column

• Δz: cmcolumn

• u1: g-mol/cm3
fluid

Thus, more detailed units of the LHS t derivative of eq. (1.1a) are:

(cm3
fluid/cm3

column)(cm2
column)(cmcolumn)(g-mol/cm3

fluid)(1/s)=gmol/s

The distinction between cmfluid and cmcolumn (and later, cmadsorbent) will not gen-
erally be retained in the subsequent discussion (only cm will be used), but this distinction
should be kept in mind when analyzing units in the model.

RHS-1: εAvu1|z - flow (by convection) of absorbate into the incremental
volume at z. The units of this term are (cm2)(cm/s)(gmol/cm3) =gmol/s, that is,
the flow of adsorbate per second into the incremental volume. Note that v has
the units cmcolumn/s This is generally termed a superficial or linear velocity and
is assumed constant across the chromatographic column (any wall effects are neglected).

RHS-2: −εAvu1|z+Δz - flow (by convection) of absorbate out of the incremental
volume at z +Δz. Again, the units of this term are (cm2)(cm/s)(gmol/cm3)=gmol/s,
that is, the flow of adsorbate per second out of the incremental volume.

RHS-3: −(1− ε)AΔz(kfu1(u
e
2 − u2)− kru2) - volumetric rate of adsorption

(when this term is negative, adsorbate moves from the fluid to the adsor-
bent) or desorption (when this term is positive). The units of this term are
(cm2)(cm)(1/s)(gmol/cm3)=gmol/s, that is, the transfer of adsorbate per second within
the incremental volume.

Three additional points about this term can be observed.

• ue
2 and u2 are volumetric (not surface) adsorbent concentrations with the units

gmol/ cm3
absorbent. kf has the units cm3

fluid/gmol-s and kr has the units 1/s
(explained next).

By definition,

cm3
fluid+cm3

absorbent=cm3
column

and

(1-ε)→ (1-cm3
fluid/cm3

column) = (cm3
column-cm3

fluid)/cm3
column

= cm3
adsorbent/cm3

column

1D 2-PDE MODEL 5

Then the units of the term −(1− ε)AΔz(kfu1(u
e
2 − u2)− kru2) are:

(cm3
absorbent/cm3

column) (cm2
column)(cmcolumn)((cm3

fluid/gmol-s)

(gmol/cm3
fluid)(gmol/cm3

adsorbent)-(1/s)(gmol/cm3
adsorbent))=gmol/s

• The forward rate of adsorption, kfu1(u
e
2 − u2), is usually termed a logistic rate.

Note that it is nonlinear from the product of the two dependent variables, u1u2,
which means that an analytical solution to the PDE model is probably precluded,
but a numerical solution can be easily programmed and calculated. Also, for (ue

2 −
u2) > 0 this forward rate is positive giving adsorption from this term in eq. (1.1a),
and for (ue

2 − u2) < 0 this term reflects desorption (when the adsorbate concen-
tration u2 exceeds the equilibrium adsorbent concentration, ue

2).

• When (kfu1(u
e
2 − u2)− kru2) > 0, adsorption takes place (with a reduction in

∂u1

∂t
from eq. (1.1a) since this term is multiplied by a minus). Conversely, when

(kfu1(u
e
2 − u2)− kru2) < 0, this term reflects desorption (and an increase in

∂u1

∂t
from eq. (1.1a)).

If eq. (1.1a) is divided by εAΔz,

∂u1

∂t
= −vu1|z+Δz − vu1|z

Δz
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2)

or for Δz → 0,

∂u1

∂t
= −∂(vu1)

∂z
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2) (1.1b)

Eq. (1.1b) is the PDE for the calculation of u1(z, t). For the subsequent analysis and
programming, we will take v as independent of z so it can be taken outside the derivative
in z (even though the transfer of adsorbate could affect v, but this will not be considered).
v as a function of t is an interesting case that could be investigated through the use of
eq. (1.1b). Note also that the column cross sectional area, A, canceled in going from
eq. (1.1a) to eq. (1.1b), that is, we come to the somewhat unexpected conclusion that
A does not appear in eq. (1.1b).

Also, in eq. (1.1b),

(1− ε)

ε
→ cm3

adsorbent/cm3
column

cm3
fluid/cm3

column

=
cm3

adsorbent

cm3
fluid

as expected for consistent units in eq. (1.1b), that is, the units in the various terms in
eq. (1.1b) are gmol/cm3

fluid-s since eq. (1.1b) is a mass balance on the fluid.
A PDE for u2 follows from an analogous mass balance for the adsorbent. The starting

point is

(1− ε)AΔz
∂u2

∂t
= (1− ε)AΔz(kfu1(u

e
2 − u2)− kru2) (1.2a)

6 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

Division by (1− ε)AΔz gives

∂u2

∂t
= kfu1(u

e
2 − u2)− kru2 (1.2b)

Note that the adsorption terms in eqs. (1.1b) and (1.2b) are opposite in sign which indi-
cates that the rate absorbate leaves (or enters) the fluid stream equals the rate adsorbate
is transferred to (or leaves) the adsorbent. Also, the LHS and RHS terms in eq. (1.2b)
have the units gmol/cm3

adsorbent-s, since eq. (1.2b) is a mass balance on the adsorbent
in an incremental volume (1− ε)AΔz. Again, A cancels in going from eq. (1.2a) to
eq. (1.2b).

Eqs. (1.1b) and (1.2b) are a 2× 2 (two equations in two unknowns) for the con-
centrations u1, u2. One other variable, ue

2 , appears in the adsorption rate in these two
PDEs. This adsorbent equilibrium concentration might be assumed to be a constant, for
example, corresponding to a monolayer of the adsorbate on the adsorbent. Or ue

2 can
be considered a variable from an equilibrium relation such as, for example, a Langmuir
isotherm of the form

ue
2 =

c1u1

1 + c2u1

(1.3)

where c1, c2 are constants typically measured experimentally.
Eq. (1.1b) is first order in t and z (and is termed a first-order, hyperbolic PDE). There-

fore, it requires one initial condition (IC)5 and one boundary condition (BC).6,7

The IC is taken as
u1(z, t = 0) = f1(z) (1.4a)

The BC is taken as

u1(z = 0, t) = g1(t) (1.4b)

where f1(z) and g1(t) are prescibed functions of z and t, respectively.
Eq. (1.2b) is first order in t so it requires one IC

u2(z, t = 0) = f2(z) (1.4c)

5An initial condition defines the value of the dependent variable, u1(z, t), for a particular value of the initial
value independent variable, t, typically time in a physical application. t is defined over an open interval t0 ≤
t ≤ ∞. The initial or beginning value, t0, in the present case will be taken as t0 = 0. Note that t can continue
without limit.
6A boundary condition defines the value of the dependent variable, u1(z, t), for a particular value of the
boundary value independent variable, z, typically at a physical boundary in an application. z can be defined
over a finite interval, z0 ≤ z ≤ zL, a semi infinite interval, z0 ≤ z ≤ ∞, or a fully infinite interval, −∞ ≤
z ≤ ∞. In the present case, we will use a finite interval corresponding to the length of the chromatographic
column, 0 ≤ z ≤ zL where zL is the specified length of the column.
7In general, the number of required ICs equals the order of the highest order derivative in the initial value

variable, one IC in the case of eq. (1.1b) for the first order derivative
∂u1

∂t
. The number of required BCs equals

the order of the highest order derivative in the boundary value variable, one BC in the case of eq. (1.1b) for

the first order derivative
∂u1

∂z
.

1D 2-PDE MODEL 7

Eq. (1.4b) is a Dirichlet BC since the dependent variable u1 is specified at the boundary
z = 0. Other types of BCs are discussed in subsequent chapters.

Eqs. (1.1) to (1.4) constitute the PDE model for the chromatographic column. We
next consider the programming of these equations within the MOL framework.

(1.2) MOL routines

The discussion of the routines for eqs. (1.1) to (1.4) starts with the main program.

(1.2.1) Main program

The listing of the main program follows.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, one component, chromatography model

#

The ODE/PDE system is

#

u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#

u2_t = rate (1.2b)

#

rate = kf*u1*(u2eq - u2) - kr*u2

#

u2eq = c1*u1/(1 + c2*u1) (1.3)

#

Boundary condition

#

u1(z=0,t) = step(t) (1.4b)

#

Initial conditions

#

u1(z,t=0) = 0 (1.4a)

#

u2(z,t=0) = 0 (1.4c)

#

The method of lines (MOL) solution for eqs. (1.1) to

(1.4) is coded below. Specifically, the spatial

derivative in the fluid balance, u1_z in eq. (1.1b),

is replaced by one of four approximations as selected

by the variable ifd.

#

Access ODE integrator

8 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

library("deSolve");

#

Access files

setwd("g:/chap1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

source("max3.R") ;

#

Step through cases

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; zL=50; n=41;

if(ncase==1){ kf=0; kr=0; }

if(ncase==2){ kf=1; kr=1; }

#

Select an approximation for the convective derivative u1z

#

ifd = 1: Two point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=1;

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

#

Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

1D 2-PDE MODEL 9

ncall=0;

#

ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

#

Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

#

Store solution for plotting

u1plot=rep(0,nout);tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

tplot[it]=t[it];

}

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

Plot for u1(z=zL,t)

ncase = 1

if(ncase==1){

10 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",

xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=step(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

}

#

ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

Next case

}

Listing 1.1: Main program pde 1 main for eqs. (1.1) to (1.4)

We can note the following details about pde 1 main.

• Previous files are cleared and a series of documentation comments for the
ODE/PDE system is included that restates eqs. (1.1) to (1.4) in the text.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, one component, chromatography model

#

The ODE/PDE system is

#

u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#

1D 2-PDE MODEL 11

u2_t = rate (1.2b)

#

rate = kf*u1*(u2eq - u2) - kr*u2

#

u2eq = c1*u1/(1 + c2*u1) (1.3)

#

Boundary condition

#

u1(z=0,t) = step(t) (1.4b)

#

Initial conditions

#

u1(z,t=0) = 0 (1.4a)

#

u2(z,t=0) = 0 (1.4c)

#

The method of lines (MOL) solution for eqs. (1.1) to

(1.4) is coded below. Specifically, the spatial

derivative in the fluid balance, u1_z in eq. (1.1b),

is replaced by one of four approximations as selected

by the variable ifd.

The IC and BC functions of eqs. (1.4), f1(z) = 0, g1(t) = h(t), f2(z) = 0, are
explained subsequently (h(t) is the unit step function or Heaviside function).

• The R ODE integrator library deSolve and a series of routine discussed subse-
quently are accessed.

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

source("max3.R") ;

The set working directory, setwd, will have to be edited for the local computer.
Note the forward slash, /, rather than the usual backslash, \. The source utility is
used to select individual files that make up the complete code for the model of eqs.
(1.1) to (1.4). These files are explained subsequently.

• A for is used to step through a series of (two) cases, ncase=1,2.

#

Step through cases

12 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; zL=50; n=41;

if(ncase==1){ kf=0; kr=0; }

if(ncase==2){ kf=1; kr=1; }

The parameters in eqs. (1.1) to (1.4) for each case are defined numerically. In par-
ticular, for ncase=1, no adsorption takes place so that the fluid with adsorbate
concentration u1(z, t) merely flows through the column and there is no up take of
adsorbate with concentration u2(z, t) onto the adsorbent. This special condition is
used to check the coding of the model as discussed subsequently. For ncase=2,
the effect of adsorbate transfer to the adsorbent can be observed in the fluid outlet
with concentration u1(z = zL, t).

• An approximation for the spatial derivative
∂u1

∂z
in eq. (1.1b) (v constant and there-

fore outside of the derivative) is selected with index ifd. The performance of the
four approximations is discussed subsequently.

#

Select an approximation for the convective derivative u1z

#

ifd = 1: Two point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=1;

• A level of numerical output is selected with ip. Initially, ip=1 is used to give
detailed numerical output along with graphical (plotted) output. ip=2 can be used
to give only graphical output (when experimenting with the model).

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

1D 2-PDE MODEL 13

• ICs (1.4a) and (1.4c) are programmed as zero (homogeneous) ICs (since u10 =

u20 = 0). Note that these ICs are placed in a single vector or 1D array u0 as
required by the ODE integrator ode discussed next. This vector is first declared
(allocated, sized) with the utility rep (2*n = 2*41 = 82 zero elements).

#

Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

The time scale is defined as 0 ≤ t ≤ 150with nout=51 points in t for the numerical
solution. The utility seq is used to define the 51 values t = 0, 3, 6, ..., 150. Finally,
the counter for the calls to the ODE routine pde 1 is initialized. The use of this
counter is discussed later.

• The 2*n = 82 ODEs are integrated numerically with the library integrator ode
(part of the deSolve library specified previously).

#

ODE integration

out=ode(func=pde_1,times=tout,y=u0);

The input arguments for ode require some explanation.

– The routine for the MOL/ODEs that approximate PDEs (1.1b), (1.2b), pde 1,
is declared for the parameter func (which is a reserved argument name). func
does not have to be the first input argument, but by convention, it usually is
when calling one of the R integrators (ode in this case).

– The vector of output values of t, tout, (defined previously) is assigned to the
input argument times. Again, times is a reserved name and can be placed
anywhere in the input argument list.

– The IC vector, u0, is assigned to the parameter y. The length of this IC vector
tells ode how many ODEs are to be integrated, in this case 2*n = 82. Note that
the number of ODEs is not specified explicitly in the input argument list.

Numerical solutions to eqs. (1.1) to (1.4) are returned by ode in the 2D array out.
The content of this solution array is explained next. The various ODE integrators
in deSolve generally follow this format.

• The numerical solution is placed in matrices and a vector. These arrays are first
declared with the utilities matrix (for u1, u2 of eqs. (1.1b), (1.2b)) and rep (for t
of eqs. (1.1b) and (1.2b)).

14 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

A pair of nested fors is used to place the numerical solutions in u1,u2. The outer
for with index it steps through t for 0 ≤ t ≤ 150. The inner for with index iz

steps through z for 0 ≤ z ≤ zL with zL = 50 (defined previously) and a spatial
increment (50− 0)/(41− 1) = 1.25, that is, z = 0, 1.25, 2.50, ..., 50 (based on
n=41 points in z).

The solution array out has the dimensions out(nout,2*n+1) =

out(51,82+1), that is, 82 ODEs at nout=51 points in t (including t = 0). The
offset of 1 in iz+1,iz+1+n,2*n+1,82+1 reflects the additional space for t, so
that out[it,1] contains the 51 values of t. This ordering of the output array out

is a unique feature of the ODE integrators in deSolve, including ode.

• The index for the spatial differentiator, ifd, and the value of ncase are displayed.

#

Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

• For ip=1, the numerical solution is displayed as (1) t, (2) u1(z = zL, t), and (3)
rate(t) = kfu1(z = zL, t)(ue

2 − u2(z = zL, t))− kru2(z = zL, t) (note the use
of n for z = zL). Vectors are first defined with the utility rep.

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

ue
2 = u2eq is computed from the isotherm of eq. (1.3).

1D 2-PDE MODEL 15

• u1(z = zL, t), t are stored for subsequent plotting.

#

Store solution for plotting

u1plot=rep(0,nout);tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

tplot[it]=t[it];

}

• At the end of the solution (after the call to ode), the number of calls to the
MOL/ODE routine pde 1 is displayed (this routine is discussed next).

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

• u1(z = zL, t) is plotted against t for ncase=1 (no adsorption). For this case, an
analytical solution is available that is plotted as a solid line while the numerical
solution is plotted as points on a solid line (this is clear in Fig. 1.2).

#

Plot for u1(z=zL,t)

ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",

xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

The scaling of the y axis is deactivated as a comment, #,ylim=c(0,1)); so that
oscillations in the solution outside 0 ≤ u1(z = zL, t) ≤ 1 can be accommodated
with the default scaling for the y axis (the oscillations are a numerical artifact that
is an incorrect part of the numerical solution as discussed subsequently).

• For ncase=1 (no adsorption), the analytical solution to eq. (1.1b) is computed by
a call to step (as explained subsequently). The resulting plot of the analytical
solution is superimposed on the preceding plot of u1(z = zL, t) (see Fig. 1.2).

#

Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);

for(it in 1:nout){

16 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

u1expl[it]=step(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

}

• For ncase=2 (with adsorption), the numerical solution u1(z = zL, t) is plotted
against t as points on a solid line.

#

ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

Next case

}

The final } concludes the for in ncase.
The ODE routine pde 1 called by ode (Listing 1.1) is considered next.

(1.2.2) MOL/ODE routine

The ODE routine pde 1 called by ode (Listing 1.1) is in Listing 1.2.

pde_1=function(t,u,parms){

#

Function pde_1 computes the t derivative vector of the u vector

#

One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

#

Boundary condition

u1[1]=step(t,0,v);

#

First order spatial derivative

#

ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#

1D 2-PDE MODEL 17

ifd = 2: Three point center finite difference (3pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

#

Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u2eq=rep(0,n);rate=rep(0,n);

#

u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

#

Two PDEs to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

#

Increment calls to pde_1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 1.2: ODE routine pde 1 for eqs. (1.1) to (1.4)

We can note the following points about pde 1.

• The function is defined.

pde_1=function(t,u,parms){

#

Function pde_1 computes the t derivative vector of the u

vector

18 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

The input argument t is the current value of t along the numerical solution. u is the
current vector of (82) ODE dependent variables. parm is a set of input parameters
for the ODEs; in this case it is unused (but is required in the input arguments). Note
that the input arguments are not assigned to reserved names (as in the call to ode

in Listing 1.1), so the order that they are specified must be maintained, e.g., t first
followed by u.

• The single vector u that is the second input argument to pde 1 is placed in two
vectors, u1 for eq. (1.1b) and u2 for eq. (1.2b). This is not a required step, but
rather, is used so that the subsequent programming can be in terms of variables
closely resembling u1, u2 in eqs. (1.1b), (1.2b).

#

One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

The two vectors u1,u2 are first declared with the rep utility.

• The BC for eq. (1.1b), eq. (1.4b) with u1(z = 0, t) = h(t) = u1(1), is specified as
a unit step in function step (discussed subsequently).

#

Boundary condition

u1[1]=step(t,0,v);

The arguments of step are for the current value of t, the value z = 0, and the
velocity v in eq. (1.1b) (and numerically defined previously).

• The first derivatives in z in eq. (1.1b),
∂u1

∂z
, is computed by one of four spatial

differentiators as selected by ifd (set previously). Some of the details of these
differentiators and their performance as evaluated by comparison of the numerical
solution with the analytical solution (for ncase=1) are considered subsequently.

#

First order spatial derivative

#

ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#

ifd = 2: Three point center finite difference (3pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

1D 2-PDE MODEL 19

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

• Vectors for the LHS derivatives in t in eqs. (1.1b), (1.2b), the equilibrium concen-
tration ue

1 , and the rate of adsorption in eqs. (1.1b), (1.2b), are declared with the
rep utility over the n=41 points in z.

#

Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u2eq=rep(0,n);rate=rep(0,n);

• The LHS derivatives in t in eqs. (1.1b), (1.2b),
∂u1

∂t
,
∂u2

∂t
, are programmed in a

for over the n=41 points in z.

#

u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

We can note the following details in this programming.

– The equilibrium concentration ue
2 in eq. (1.3) is programmed first.

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

– The adsorption rate in eqs. (1.1b) and (1.2b) is then programmed.

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

– The 41 MOL/ODEs are programmed.

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

Since u1(z = 0, t) is specified through BC (1.4b), its derivative in t is set to zero
so that the ODE integrator, ode, will not move it away from its prescribed BC
value, that is, u1t[i]=0;. Otherwise, eq. (1.1b) is programmed as

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

20 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

Eq. (1.2b) is programmed as

u2t[i]=rate[i];

The close resemblance of this programming to the PDEs, eqs. (1.1b), (1.2b), is one
of the principal advantages of the MOL.

• The two derivatives vectors, u1t,u2t, are placed in a single vector ut (of length
2*n = 2*41 = 82) to be returned to the ODE integrator ode called in the main
program of Listing 1.1.

#

Two PDEs to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

The derivative vector ut is first declared with a rep.

• The counter for the calls to pde 1 is incremented and its value is returned to the
main program of Listing 1.1 with <<-.

#

Increment calls to pde_1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

The derivative vector ut is returned to ode as a list which is a requirement of ode
(and generally, the ODE integrators in deSolve). c() is the vector operator in R.

The final } concludes function pde 1.

Additional subordinate routines called in the preceding program are now considered.

(1.2.3) Subordinate routines

The unit step (Heaviside function) h(t) in BC (1.4b) with g1(t) = h(t) is programmed
in step.

step=function(t,z,v) {

#

Function step approximates a unit step function

#

tzv=t-z/v;

1D 2-PDE MODEL 21

if(tzv <0){u1s=0; }

if(tzv >0){u1s=1; }

if(tzv==0){u1s=0.5;}

#

Return step

return(c(u1s));

}

Listing 1.3: Function step for a unit step

We can note the following details about Listing 1.3.

• The unit step is a traveling wave with argument tzv=t-z/v8. The step is a finite
discontinuity that occurs at t − z/v = 0. This discontinuity, which occurs at z = 0
in BC (1.4b), is approximated by three ifs. For tzv < 0, the function is 0, for
tzv > 0, the function is 1, and for tzv = 0, the function is 0.5. This approximation
is required since the unit step at t − z/v = 0 is undefined (it is not single valued).
Analysis of the unit step and the associated solution of eqs. (1.1) to (1.4) is given
subsequently.

• The value of the function, u1s, is returned as a 1-vector (through the operator c()).

The form of the unit step from function step will be clear from the graphical output of
the numerical solutions of eqs. (1.1) to (1.4), e.g., in Fig. 1.2. In summary, step gives
an approximation to a unit step as output for a given point along the chromatographic
column z as a function of time t. This traveling unit step will be clear from the subsequent
solution of eqs. (1.1) to (1.4).

The other routines called in the preceding programming, that is, dss004 to max3 as
accessed by a source in the main program of Listing 1.1, are library routines and are
briefly discussed later when the numerical solutions to eqs. (1.1) to (1.4) are considered.
The source code for these routines is available from a download site (see the publisher’s
Web site for this book).

We next consider the output from the R routines in Listings 1.1, 1.2 and 1.3.

(1.3) Model output, single component chromatography

We first consider FDs as implemented with ifd = 1,2,3

(1.3.1) FDs, step BC

Abbreviated numerical output from the execution of the routines in Listings 1.1, 1.2 and
1.3 is given in Table 1.2.

8A detailed discussion of traveling wave solutions to PDEs is given in [?].

22 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

ifd = 1 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 21 deleted)

. .

. .

. .

24.00 0.0000 0.0000

27.00 0.0003 0.0000

30.00 0.0017 0.0000

33.00 0.0081 0.0000

36.00 0.0277 0.0000

39.00 0.0728 0.0000

42.00 0.1543 0.0000

45.00 0.2737 0.0000

48.00 0.4194 0.0000

51.00 0.5708 0.0000

54.00 0.7073 0.0000

57.00 0.8158 0.0000

60.00 0.8927 0.0000

63.00 0.9420 0.0000

66.00 0.9708 0.0000

69.00 0.9862 0.0000

72.00 0.9939 0.0000

75.00 0.9975 0.0000

78.00 0.9990 0.0000

81.00 0.9996 0.0000

84.00 0.9999 0.0000

87.00 1.0000 0.0000

90.00 1.0000 0.0000

. .

. .

. .

(output for t = 93 to

144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

1D 2-PDE MODEL 23

ncall = 609

ifd = 1 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 0.0008 0.0000

33.00 0.0031 0.0000

36.00 0.0089 0.0000

39.00 0.0196 0.0001

42.00 0.0359 0.0003

45.00 0.0577 0.0007

48.00 0.0852 0.0012

51.00 0.1185 0.0018

54.00 0.1584 0.0027

57.00 0.2057 0.0038

60.00 0.2617 0.0050

63.00 0.3269 0.0063

66.00 0.4014 0.0075

69.00 0.4839 0.0084

72.00 0.5710 0.0087

75.00 0.6580 0.0084

78.00 0.7393 0.0075

81.00 0.8101 0.0062

84.00 0.8676 0.0048

87.00 0.9114 0.0035

90.00 0.9430 0.0024

93.00 0.9646 0.0016

96.00 0.9787 0.0010

99.00 0.9875 0.0006

102.00 0.9929 0.0004

105.00 0.9961 0.0002

108.00 0.9979 0.0001

111.00 0.9989 0.0001

114.00 0.9994 0.0000

117.00 0.9997 0.0000

120.00 0.9999 0.0000

24 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

123.00 0.9999 0.0000

126.00 1.0000 0.0000

129.00 1.0000 0.0000

132.00 1.0000 0.0000

135.00 1.0000 0.0000

138.00 1.0000 0.0000

141.00 1.0000 0.0000

144.00 1.0000 0.0000

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 1143

Table 1.2: Selected numerical output for eqs. (1.1) to (1.4) from pde 1 main and
pde 1 for ncase=1,2

We can note the following details about Table 1.2.

• The output is for 0 ≤ t ≤ 150 as programmed in Listing 1.1.

• The ICs of eqs. (1.4a) and (1.4c) are confirmed (checking the ICs of a numerical
solution is always a good idea since if the ICs are incorrect, the solution will start
incorrectly and will therefore most likely be entirely incorrect).

• The rate of adsorption for ncase=1 is zero as expected since no adsorption takes
place (rate = kf = kr = 0 in eqs. (1.1b), (1.2b)).

• The rate of adsorption for ncase=2 goes through a maximum of 0.0087 at t = 72.
This maximum is expected as the adsorption on the adsorbate increases initially,
then reaches a point where desorption begins to reduce the rate. Eventually, the
rate returns to zero. Also, the maximum adsorption rate occurs at approximately
the half way point in the transient, u1(z = zL, t = 72) = 0.5710, where the rate of
change of u1 is greatest (see Fig. 1.3).

• The solution is smooth (e.g., no oscillations) and approaches the expected final
value, u1(z = zL, t) = 1. In other words, the two-point upwind finite difference
(FD) approximation in dss012 corresponding to ifd=1 appears to function quite
well. However, there is a significant error as reflected in Fig. 1.2 where the exact
and analytical solutions are compared. This error is discussed in more detail later.

• The accuracy of a numerical PDE solution generally cannot be determined directly
or explicitly (since this implies an analytical solution is available for computing the
exact error). For ncase=1, an analytical solution is available, but this is unusual.
In fact, numerical solutions are generally computed because analytical solutions
are not available.

However, each new numerical solution should be evaluated indirectly. Here are
three procedures for an approximate error analysis that do not require an analytical
solution for the full PDE problem.

– The accuracy of the integration in z could be inferred by: (1) observing the
effect of increasing the number of grid points, e.g., n=41 to n=81 (termed h

1D 2-PDE MODEL 25

refinement since the grid spacing, which is typically given the symbol h, is var-
ied when the number of grid points is changed), and (2) by changing the spatial
derivative approximation, e.g., another value of ifd (termed p refinement since
the order of the FD approximation9, which is typically given the symbol p, is
varied as the FD approximation is changed). The procedure then in (1) and (2) is
to change h and p and observe the effect on the numerical solution. For example,
if the solution does not change in the third figure, three-figure accuracy can be
inferred. However, this is not a proof of numerical accuracy. Rather, it is just an
estimate of accuracy.

– The accuracy of the integration in t could be inferred by changing the error tol-
erances specified for the ODE integrator. In the case of the R integrator ode
(called in Listing 1.1), default error tolerances of 1× 10−6 (absolute and rela-
tive) are used in ode unless the defaults are reset to other values before ode is
called. ode is a sophisticated ODE integrator that changes the integration inter-
val (h refinement) and the algorithm order (p refinement) in an attempt to meet
the default or user-specified error tolerances. If ode is unable to meet the error
tolerances, it issues a warning message to this effect10.

– Special case analytical solutions can be used to test the numerical solutions. This
is particularly useful in locating coding (programming) errors. For example, for
ncase=1, the available analytical solution can be compared with the numerical
solution as in Fig. 1.2.

• The total calls to pde 1 is ncall = 609 for ncase=1 and ncall = 1143 for
ncase=2 indicating that ode computed numerical solutions with modest compu-
tational effort. The solutions presumably have the accuracy indicated through h
and p refinement (as discussed subsequently).

Additional features of the numerical solution are evident in Figs. 1.2 and 1.3.
We can note the following details in Fig. 1.2:

• The analytical solution, plotted as a solid line, is an approximation to a unit step at
t = 50. This solution is derived in the following way.

9The order of a FD approximation refers to the power p in a formula of the form

error = c1Δzp

where error is the truncation error, c1 is a constant, Δz is the grid spacing in z and p is the order of the
FD approximation. This formula for the error suggests that the error decreases with decreasing Δz (as the
number of grid points in z is increased). For the two-point upwind FD approximations in dss012, p = 1 so
the truncation error varies linearly with Δz and they are termed first-order correct. The term truncation error
refers to the error resulting from truncating the Taylor series from which the FD is derived. For the five-point
FD approximations in dss004 (with idf=2), p = 4 and for the five-point FD approximations in dss020 (with
ifd=3), p = 4. These FD approximations of various orders are discussed subsequently.
10The adjustment of the FD integration intervals in ode is also termed r refinement where the r designates
automatic (algorithmic, adaptive) refinement of the grid. This term is generally applied to the refinement of
spatial grids. However, the spatial grids in dss004, dss012, dss020 are not refined automatically, i.e., they
are fixed or constant grids that can be h-refined by changing the number of spatial grid points.

26 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.2 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=
zL

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.3 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=1

Eq. (1.1b) for kf = kr = 0, v constant (ncase=1 in Listing 1.1) is the linear
advection equation,

∂u1

∂t
= −v

∂u1

∂z
(1.5a)

1D 2-PDE MODEL 27

with IC (1.4a) and BC (1.4b). For the present analysis, we take (in eq. (1.4a))

f1(z) = 0 (1.5b)

and (in eq. (1.4b))
g1(t) = h(t) (1.5c)

where h(t) is the unit step (Heaviside) function

h(t) =

{
0, t < 0
1, t > 0

(1.5d)

Note that h(t) is not defined at t = 0.
If we assume a solution to eq. (1.5a) of the form

u1(z, t) = g1(t − z/v) = g1(λ); λ = t − z/v (1.6a)

with g1(λ < 0) = 0 (recall g1 is the BC function of eq. (1.4b)), substitution of
eq. (1.6a) in eq. (1.5a) gives

∂u1

∂t
=

dg1
dλ

∂λ

∂t

= −v
∂u1

∂z
= −v

dg1
dλ

∂λ

∂z

Since
∂λ

∂t
= 1;

∂λ

∂z
= −1/v

substitution in the preceding equation gives

∂u1

∂t
=

dg1
dλ

(1)

= −v
∂u1

∂z
= −v

dg1
dλ

(−1/v) (QED11)

so that eq. (1.6a) is a solution to eq. (1.5a).
Also, eq. (1.6a) satisfies IC (1.4a) (with f1(z) = 0) and BC (1.4b) (with z = 0).

Therefore, eq. (1.6a) is the analytical solution to eqs. (1.5a) to (1.5c). It is termed
a traveling wave solution [?] since it depends only on the Lagrangian variable
λ = t − z/v.

For the special case of g1(t) = h(t) of eq. (1.5d), the analytical solution is

u1(z, t) = h(t − z/v) (1.6b)

11QED =“quod erat demonstrandu” (Latin) or “that which was to be demonstrated”.

28 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

Eq. (1.6b) defines a unit step12, starting at z = 0 and traveling in the direction of
increasing z (up the chromatographic column of Fig. 1.1) with velocity v. The unit
step occurs at λ = t − z/v = 0. Thus, at the exit of the column, λ = t − zL/v = 0
or at t = zL/v = 50/1 = 50). This unit step is evident in Fig. 1.2, except that the
step is actually undefined (not single valued) and is approximated over three grid
points as programmed in step of Listing 1.3.

The fact that u1(z = zL, t) is not a discontinuity at t = 50 is clear in Fig. 1.2
(the slope is finite). However, the approximation is required since a function that
is not single valued (and with an infinite slope) cannot be programmed (it can be
plotted using two points, u1(λ = 0) = 0 and u1(λ = 0) = 1 (both values used at
t = 50), but this is an artifice just to give the step the required appearance).

As another perspective, eqs. (1.5) constitute an impossible problem numerically

since the derivative (slope)
∂u1

∂z
at t − z/v = 0 is infinite. For the purpose of com-

puting a numerical solution, this discontinuity is approximated by a function with
a finite slope as in function step of Listing 1.3. In the subsequent discussion, we

will consider how closely the methods for calculating
∂u1

∂z
produce the solution of

eq. (1.6b), that is, for ifd = 1,2,3,4 in Listing 1.1.
In summary, eq. (1.5a) is an elementary hyperbolic PDE for which an analyti-

cal solution is easily derived, yet it is one of the most difficult PDEs to integrate
numerically (since it propagates steep fronts and discontinuities, a general feature
of hyperbolic PDEs).

• The numerical solution of eqs. (1.1) to (1.4) (in Fig. 1.2) plotted with o is a
smoothed (rounded) approximation of the unit step solution of eq. (1.6b). This
smoothing is generally termed numerical diffusion and is one of two distortions
(numerical artifacts) of solutions with steep moving fronts or discontinuities.
The other distortion is numerical oscillation that is described next. Numerical
diffusion may preclude the accurate calculation of moving front solutions in
applications for which this is unacceptable, e.g., chromatography, as discussed
subsequently.

• The two-point upwind FD approximations used in the numerical solution of eqs.
(1.1) to (1.4) are illustrated by the following code taken from dss012 (ifd=1)
listed in Appendix B.

for(i in 2:n){

ux[i]=(u[i]-u[i-1])/dx;

}

with n=41 in pde 1 of Listing 1.2 where dss012 is called. The derivative, ux[i], is
approximated at grid point i by a FD based on a weighted sum of u[i] and u[i-1]
with a spacing dx (for v > 0). Point i-1 is upwind (upstream) of point i. This
upwinding is essential in the case of steep moving fronts and discontinuities in the

12A PDE with a solution that depends only on an IC is generally termed a Cauchy problem, that is, an initial
value problem. If the IC is discontinuous, the PDE is termed a Riemann problem. Eqs. (1.5) are an example
of a Riemann problem since they define a PDE problem with a solution that has a discontinuity for t ≥ 0, that
is, a discontinuity at t− z/v = 0 as stated in eq. (1.6b).

1D 2-PDE MODEL 29

solution. If u[i+1] is used in place of u[i-1], the numerical solution will become
unstable. Physically, this makes sense since what happens at i is determined by
what is happening upstream at i-1 and not downstream at i+1.

• This use of upwinding requires a priori knowledge of the direction of flow, e.g., bot-
tom to top in the chromatographic column of Fig. 1.1. An incorrect direction used
in the FD approximation leads to unstable solutions. For example, if v < 0, the
preceding FD approximation will produce an unstable numerical solution. Rather,
u[i] and u[i+1] are used in the FD since i+1 is now in the upstream direction
(see the listing of dss012 in Appendix B). Approximations that are centered (rather
than upwinded), and therefore do not require knowledge of the direction of flow,
are discussed subsequently (for ifd=2).

• For i=2 (one point inside the left boundary in z), u[1] is required (in the preceding
code). u[1] is set as a BC, as illustrated in pde 1 of Listing 1.2.

In summary, two-point upwinding generally produces a stable solution with no numer-
ical oscillation, but with numerical diffusion that may be excessive, depending on the
application, such as for hyperbolic (convective) PDEs that propagate steep fronts and
discontinuities.

For ncase=2 in Listing 1.1, Fig. 1.3 results (the numerical output is in Table 1.2).
We can note the following details in Fig. 1.3.

• The step input, u1(z = 0, t) = h(t), is smoothed beyond that from the two-point
upwind approximation of Fig. 1.2 by the adsorption onto the adsorbate. Whether
this is an accurate solution is difficult to assess without some form of error analysis,
for example, h and p refinement, which are considered next. As is generally the
case, an analytical solution is not readily available that can be used to calculate an
exact error as in Fig. 1.2. A principal reason for not having an analytical solution
is the nonlinearity of the rate, that is, the term u1(u

e
1 − u2) with the u1u2 product,

and the isotherm of eq. (1.3) which is nonlinear in u2 for c2 �= 0. In other words,
an analytical solution is precluded, and we accept a numerical solution that we
expect will be of reasonable accuracy, e.g., 3-4 significant figures. However, this
expectation must be justified (as it should for all PDE numerical solutions).

• An important consideration in evaluating the numerical solution of Table 1.2 and
Fig. 1.3 is whether the numerical diffusion from the two-point upwind approxi-
mation is significant relative to the physical smoothing from the adsorption. This
point requires further investigation through h and p refinement which is facilitated
by having the choice of four approximations selected with ifd. To start, we con-
sider the numerical solution of eqs. (1.1) to (1.4) with ifd=2 in the main program
of Listing (1.1) (everything else remains the same).

idf = 2 gives a call to dss004 in pde 1. dss004 has five-point centered
(fourth-order correct) FD approximations (except near the boundaries (z = 0, zL)
where noncentered FDs are used) so we would expect improved accuracy of the
solution relative to ifd=1 (five points rather than two). However, we will observe this
is incorrect.

The numerical output for ifd=2 is given in Table 1.3

30 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

ifd = 2 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 36 deleted)

. .

. .

. .

39.00 0.0003 0.0000

42.00 -0.0019 0.0000

45.00 -0.0149 0.0000

48.00 0.0850 0.0000

51.00 0.6330 0.0000

54.00 1.1941 0.0000

57.00 0.9481 0.0000

60.00 0.9382 0.0000

63.00 1.1158 0.0000

66.00 0.8752 0.0000

69.00 1.1072 0.0000

72.00 0.9229 0.0000

75.00 1.0437 0.0000

78.00 0.9880 0.0000

81.00 0.9843 0.0000

84.00 1.0384 0.0000

87.00 0.9439 0.0000

90.00 1.0693 0.0000

93.00 0.9215 0.0000

96.00 1.0844 0.0000

99.00 0.9125 0.0000

102.00 1.0885 0.0000

105.00 0.9122 0.0000

108.00 1.0858 0.0000

111.00 0.9171 0.0000

114.00 1.0794 0.0000

117.00 0.9248 0.0000

120.00 1.0710 0.0000

123.00 0.9321 0.0000

126.00 1.0620 0.0000

129.00 0.9456 0.0000

132.00 1.0548 0.0000

135.00 0.9422 0.0000

1D 2-PDE MODEL 31

138.00 1.0490 0.0000

141.00 0.9667 0.0000

144.00 1.0267 0.0000

147.00 0.9660 0.0000

150.00 1.0459 0.0000

ncall = 1311

ifd = 2 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 36 deleted)

. .

. .

. .

39.00 0.0001 0.0000

42.00 -0.0005 0.0000

45.00 -0.0049 0.0000

48.00 0.0036 0.0000

51.00 0.0337 0.0005

54.00 0.0654 0.0010

57.00 0.1012 0.0017

60.00 0.1460 0.0029

63.00 0.2051 0.0048

66.00 0.2886 0.0081

69.00 0.4133 0.0136

72.00 0.5950 0.0200

75.00 0.8073 0.0195

78.00 0.9486 0.0089

81.00 0.9866 0.0015

84.00 0.9945 0.0007

87.00 1.0004 0.0003

90.00 0.9996 -0.0001

93.00 0.9996 0.0001

96.00 1.0004 0.0000

99.00 0.9998 -0.0000

102.00 0.9999 0.0000

105.00 1.0001 -0.0000

108.00 0.9999 -0.0000

32 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.2

0.4

0.6

0.8

1.2

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.4 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

111.00 1.0000 0.0000

. .

. .

. .

(output for t = 114 to 144 deleted)

. .

. .

. .

147.00 1.0000 -0.0000

150.00 1.0000 -0.0000

ncall = 1035

Table 1.3: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=2

Figs. 1.4, 1.5 follow.
We can note the following points from Table 1.3 and Figs. 1.4, 1.5.

• In Table 1.3, ncase=1, and in Fig. 1.4, the numerical solution is highly oscillatory
(termed numerical oscillation). This is the second form of numerical distortion
(in addition to numerical diffusion illustrated in Fig. 1.2). Clearly, by comparison
with the analytical solution, the numerical solution is unacceptable (and it is also
unrealistic physically since we would not expect the output from the adsorption
column of Fig. 1.1 to oscillate).

1D 2-PDE MODEL 33

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.5 Numerical solution of eqs. (1.1b), (1.2b) for ncase=2, ifd=2

• In Fig. 1.5, the numerical oscillation is essentially eliminated by the adsorption
(ncase=2), which demonstrates that the performance of a spatial differentiator
may be strongly dependent on the characteristics (features) of the PDE problem.
For example, with no adsorption (ncase=1) (so that the solution is the propagation
of a unit step or discontinuity), the two-point upwind (2pu) approximation gives
excessive numerical diffusion (Fig. 1.2) and the five-point centered approximation
(5pc) gives numerical oscillation (Fig. 1.4). However, for the 2pu with adsorption
(ncase=2), the diffusion still appears to be unacceptable (Fig. 1.3) while for 5pc,
the physical smoothing was sufficient to give what appears to be an accurate solu-
tion (Fig. 1.5). But this use of p refinement (2pu to 5pc) is inconclusive and further
analysis is required.

The general conclusion we reach is that centered FD approximations should not be used
for strongly hyperbolic (convective) PDEs with a solution that includes a steep mov-
ing front or discontinuity. This conclusion remains valid if the number of grid points
is increased (e.g., n=41 to 81). In fact, the oscillations usually become even more pro-
nounced13. This conclusion also remains valid if the order of the FD approximation is
increased, e.g., seven-point centered approximations oscillate as much as the five-point
FD approximations.

To complete this discussion of five-point centered approximations, a section of code
from dss004 (listed in Appendix B) is given below.

13We should not conclude that five-point centered FDs are always unsatisfactory. In fact, they generally work
very well for parabolic (diffusive) PDEs such as the heat conduction equation (Fourier’s second law) and the
diffusion equation (Fick’s second law). This point will be illustrated in later applications.

34 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

#

Interior points (x=xl+2*dx,...,x=xu-2*dx)

for(i in 3:(n-2))ux[i]=r12dx*(-u[i+2]+8*u[i+1]-8*u[i-1]+u[i-2]);

Note that the derivative ux[i] is computed as a weighted sum of five values of u with
weighting coefficients -1 8 0 -8 1 that are skew symmetric with respect to the center
point i where the coefficient is 0 (and is therefore not programmed). At the boundary
points i=1,2,n-1,n, noncentered approximations are used. Details are given in dss004
listed in Appendix B.

The question then naturally arises if there is a FD approximation with acceptable
levels of numerical diffusion and oscillation. If the two-point upwind approximations
(in dss012) do not oscillate and the five-point approximations (in dss004) have a rel-
atively low level of numerical diffusion (see Fig. 1.4 along the near vertical analytical
solution) perhaps somehow combining the approximations would be worth trying. To
this end, we consider the five-point biased upwind (5pbu) approximations in dss020

listed in Appendix B. A section of the coding from dss020 for the derivative at i is
listed below.

for(i in 4:(n-1)){

ux[i]=r12dx*(-u[i-3] +6*u[i-2]-18*u[i-1]+10*u[i]+3*u[i+1]); }

The derivative ux[i] is the weighted sum of five values of u with grid indices
i-3,i-2,i-1,i,i+1 (for v > 0). That is, three points upstream of i and one point
downstream are used. This biasing in the upstream direction, designated as 5pbu,
is intended to maintain the effect of the flow. The effectiveness of this approach is
reflected in the numerical output in Table 1.4 and Figs. 1.6 and 1.7 (produced with
ifd=3 in main program of Listing 1.1).

ifd = 3 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 -0.0005 0.0000

33.00 0.0015 0.0000

36.00 -0.0019 0.0000

39.00 -0.0074 0.0000

42.00 0.0522 0.0000

1D 2-PDE MODEL 35

45.00 -0.1178 0.0000

48.00 0.1066 0.0000

51.00 0.7831 0.0000

54.00 1.0120 0.0000

57.00 1.0039 0.0000

60.00 1.0026 0.0000

63.00 0.9980 0.0000

66.00 1.0012 0.0000

69.00 0.9994 0.0000

72.00 1.0003 0.0000

75.00 0.9999 0.0000

78.00 1.0000 0.0000

. .

. .

. .

(output for t = 81 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 914

ifd = 3 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 -0.0002 0.0000

33.00 0.0005 0.0000

36.00 -0.0005 -0.0000

39.00 -0.0020 -0.0000

42.00 0.0081 0.0000

45.00 -0.0086 0.0000

48.00 0.0012 -0.0000

51.00 0.0304 0.0004

36 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

54.00 0.0606 0.0009

57.00 0.0958 0.0016

60.00 0.1400 0.0028

63.00 0.1998 0.0048

66.00 0.2879 0.0086

69.00 0.4238 0.0149

72.00 0.6143 0.0203

75.00 0.8101 0.0171

78.00 0.9366 0.0086

81.00 0.9865 0.0027

84.00 0.9987 0.0005

87.00 1.0002 0.0000

90.00 1.0001 -0.0000

93.00 1.0000 -0.0000

. .

. .

. .

(output for t = 96 to 144 deleted)

. .

. .

. .

147.00 1.0000 -0.0000

150.00 1.0000 -0.0000

ncall = 1312

Table 1.4: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=3

Figs. 1.6, 1.7 follow.
We can note the following points from Table 1.4 and Figs. 1.6, 1.7.

• In Fig. 1.6, the 5pbu approximation has substantially reduced the numerical dif-
fusion and oscillation of Figs. 1.2 and 1.4. However, there is an oscillation at the
leading edge of the numerical solution that could still render the numerical solution
unacceptable. But we should keep in mind that the numerical solution approxi-
mates a unit step, which is essentially an impossible requirement (as discussed
previously), so that the numerical solution is a substantial improvement over the
previous 2pu (ifd=1) and 5pc (ifd=2) solutions.

• In Fig. 1.7, the oscillation of Fig. 1.6 has been essentially eliminated by the adsorp-
tion (for ncase=2) as occurred in Fig. 1.5. Also, Figs. 1.5 and 1.7 are quite similar
which suggests that they reflect an accurate solution (although this is certainly not
a proof of accuracy and some additional cases with a number of grid points other
than n=41 should be considered).

To demonstrate this point of the similarity of the solutions for ifd=2,3, from
Tables 1.3 and 1.4, we have at the portions of the solutions changing most rapidly
(see Figs. 1.5, 1.7):

1D 2-PDE MODEL 37

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.6 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.7 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=3

t = 63

5pc (ifd=2)

63.00 0.2051 0.0048

5pbu (ifd=3)

63.00 0.1998 0.0048 (n=41)

63.00 0.2026 0.0048 (n=81)

38 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

t = 69

5pc (ifd=2)

69.00 0.4133 0.0136

5pbu (ifd=3)

69.00 0.4238 0.0149 (n=41)

69.00 0.4167 0.0142 (n=81)

t = 75

5pc (ifd=2)

75.00 0.8073 0.0195

5pbu (ifd=3)

75.00 0.8101 0.0171 (n=41)

75.00 0.8157 0.0182 (n=81)

For 5pbu, solutions are summarized with n=41,81 to demonstrate the level of con-
vergence from h refinement.

Experience has indicated that the 5pbu frequently works as required to pro-
duce an accurate numerical solution if the moving front of the solution is not very
steep, which is the case in many physical applications. But the preceding results
(for ifd=1,2,3) suggest that some experimentation and careful evaluation of the
numerical solution is usually required, including the use of h refinement, that is,
changing the number of grid points and observing the effect on the numerical solu-
tion. We have not done that here because of space limitations, but rather used only
n=41 (with results for n=81 indicated in the preceding table). Changes in the num-
ber of grid points requires only changing n in the main program of Listing 1.1.

We conclude this discussion of FD approximation of hyperbolic PDEs that propa-
gate steep fronts and discontinuities with Godunov’s barrier theorem that pertains to
numerical diffusion and oscillation. This theorem states ([?], p25): There is no linear
approximation to the Riemann problem, higher than first order, that is nonoscillatory.

To explain the wording:

• ncase=1 in the previous examples corresponds to the Riemann problem (the unit
step or discontinuity BC of eqs. (1.4b) and (1.5b)).

• The FD approximations 2pu, 5pc and 5pbu are linear in the sense that u[i] in
the RHS weighted sums for the calculation of ux[i] is to the first power (see the
preceding portions of code).

• 2pu is first order and does not oscillate (Fig. 1.2).

• 5pc and 5pbu are fourth order (i.e., higher than first order) and oscillate
(Figs. 1.4, 1.6).

Thus, if we are to use a higher order method to achieve better accuracy (e.g., less dif-
fusion than 2pu), we will have to use a nonlinear approximation or algorithm to avoid
oscillation. This is the approach considered next based on flux limiters.

1D 2-PDE MODEL 39

(1.3.2) Flux limiters, step BC

Flux limiters provide a nonlinear approximation to the first-order spatial derivatives

in convective (hyperbolic) PDEs, e.g.,
∂u1

∂z
in eq. (1.1b). The nonlinear algorithm can

be used to eliminate numerical oscillations as explained by Godunov’s theorem cited
previously.

For example, we can code the van Leer flux limiter ([?], pp 37-43) in the format of
the 5pc and 5pbu FD approximations. This has been done in function vanl listed in
Appendix B. We can then call vanl by using ifd=4 in the main program of Listing 1.1.
Abbreviated numerical output is listed in Table 1.5 below, and the graphical output is in
Figs. 1.8 and 1.9.

ifd = 4 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 -0.0000 0.0000

. .

. .

. .

(output for t = 6 to 42 deleted)

. .

. .

. .

45.00 0.0022 0.0000

48.00 0.2420 0.0000

51.00 0.6735 0.0000

54.00 0.9253 0.0000

57.00 0.9899 0.0000

60.00 0.9989 0.0000

63.00 0.9999 0.0000

66.00 1.0000 0.0000

. .

. .

. .

(output for t = 69 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 2191

ifd = 4 ncase = 2

40 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 -0.0000 0.0000

. .

. .

. .

(output for t = 6 to 45 deleted)

. .

. .

. .

48.00 0.0063 0.0000

51.00 0.0334 0.0004

54.00 0.0666 0.0011

57.00 0.1055 0.0020

60.00 0.1549 0.0033

63.00 0.2223 0.0057

66.00 0.3180 0.0096

69.00 0.4511 0.0143

72.00 0.6151 0.0169

75.00 0.7770 0.0146

78.00 0.8969 0.0091

81.00 0.9621 0.0042

84.00 0.9883 0.0015

87.00 0.9968 0.0005

90.00 0.9992 0.0001

93.00 0.9998 0.0000

96.00 0.9999 0.0000

99.00 1.0000 0.0000

. .

. .

. .

(output for t = 102 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 5620

Table 1.5: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=4

Fig. 1.8 indicates that the unit step of eq. (1.5d) is closely approximated, with little
numerical diffusion and no oscillation. The latter is termed essentially non-oscillatory
or ENO.

1D 2-PDE MODEL 41

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.8 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.9 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=4

Fig. 1.9 also indicates a smooth solution (no oscillation), but this was also achieved
with 5pc and 5pbu (Figs. 1.5, 1.7) because of smoothing of the transfer to the adsorbent
for ncase=2.

The three approaches, 2pc, 5pbu and van Leer, are briefly compared in Table 1.6

42 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

t = 63

5pc (ifd=2)

63.00 0.2051 0.0048

5pbu (ifd=3)

63.00 0.1998 0.0048 (n=41)

63.00 0.2026 0.0048 (n=81)

van Leer (ifd=4)

63.00 0.2223 0.0057

t = 69

5pc (ifd=2)

69.00 0.4133 0.0136

5pbu (ifd=3)

69.00 0.4238 0.0149 (n=41)

69.00 0.4167 0.0142 (n=81)

van Leer (ifd=4)

69.00 0.4511 0.0143

t = 75

5pc (ifd=2)

75.00 0.8073 0.0195

5pbu (ifd=3)

75.00 0.8101 0.0171 (n=41)

75.00 0.8157 0.0182 (n=81)

van Leer (ifd=4)

75.00 0.7770 0.0146

Calls to pde_1, ncase=2

5pc ncall = 1035

5pbu ncall = 1312

van Leer ncall = 5620

Table 1.6: Abbreviated comparison of output for eqs. (1.1) to (1.4) for ncase=2

The differences in the numerical solutions in Table 1.6 (for ifd=2,3,4) suggest
that these differences are substantial. However, this is not necessarily the case as indi-
cated by the graphical output produced by the following variant of the main program of
Listing 1.1.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, one component, chromatography model

#

The ODE/PDE system is

#

1D 2-PDE MODEL 43

u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#

u2_t = rate (1.2b)

#

rate = kf*u1*(u2eq - u2) - kr*u2

#

u2eq = c1*u1/(1 + c2*u1) (1.3)

#

Boundary condition

#

u1(z=0,t) = step(t) (1.4b)

#

Initial conditions

#

u1(z,t=0) = 0 (1.4a)

#

u2(z,t=0) = 0 (1.4c)

#

The method of lines (MOL) solution for eqs. (1.1) to

(1.4) is coded below. Specifically, the spatial

derivative in the fluid balance, u1_z in eq. (1.1b),

is replaced by one of four approximations as selected

by the variable ifd.

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("G:/comp3/chromatography/R/ex1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

#

Declare (preallocate) array for plotted solutions

nout=51;

plot_2=matrix(0,nrow=nout,ncol=2);

#

Step through cases

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; kf=1; kr=1;

zL=50; n=41;

if(ncase==1){ ifd=3; }

if(ncase==2){ ifd=4; }

44 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=2;

#

Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

#

Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];

1D 2-PDE MODEL 45

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

#

Store solution for plotting

tplot=rep(0,nout);

for(it in 1:nout){

plot_2[it,ncase]=u1[it,n];

tplot[it]=t[it];

}

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

Next case

}

#

Plot for u1(z=zL,t)

par(mfrow=c(1,1))

plot(tplot,plot_2[,1],

xlab="t",ylab="u1(z=zL,t)",

xlim=c(0,tplot[nout]),ylim=c(0,1),

main="1 - 5pbu, 2 - van Leer",

type="l",lwd=2);

points(tplot,plot_2[,1], pch="1",lwd=2);

lines(tplot,plot_2[,2],type="l",lwd=2);

points(tplot,plot_2[,2], pch="2",lwd=2);

Listing 1.4: Main program pde 1 main for comparison of the 5pbu and van Leer
solutions for ncase=2

Listing 1.4 is similar to Listing 1.1, so we note only the differences here.

• The routine vanl for the van Leer flux limiter is included.

source("dss020.R");source("vanl.R");

• An array (matrix) is defined with the matrix utility for the two solutions ifd=3,4,
ncase=2.

#

Declare (preallocate) array for plotted solutions

nout=51;

plot_2=matrix(0,nrow=nout,ncol=2);

46 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

In this way, the two solutions can be superimposed on the same plot (Figs. 1.10,
1.11).

• Two cases are programmed corresponding to ifd=3,4 (5pbu, van Leer).

#

Step through cases

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; kf=1; kr=1;

zL=50; n=41;

if(ncase==1){ ifd=3; }

if(ncase==2){ ifd=4; }

• Brief numerical output is selected.

ip=2;

• The numerical solution for ncase=1,2 (ifd=3,4) is placed in array plot 2.

#

Store solution for plotting

tplot=rep(0,nout);

for(it in 1:nout){

plot_2[it,ncase]=u1[it,n];

tplot[it]=t[it];

}

Note that this is at i=n corresponding to z = zL.

• At the end of the second solution, both solutions (for 5pbu and van Leer) are plotted
as a composite plot identified with 1 and 2.

#

Plot for u1(z=zL,t)

par(mfrow=c(1,1))

plot(tplot,plot_2[,1],

xlab="t",ylab="u1(z=zL,t)",

xlim=c(0,tplot[nout]),ylim=c(0,1),

main="1 - 5pbu, 2 - van Leer",

type="l",lwd=2);

points(tplot,plot_2[,1], pch="1",lwd=2);

lines(tplot,plot_2[,2],type="l",lwd=2);

points(tplot,plot_2[,2], pch="2",lwd=2);

The composite plot is produced with a combination of three utilities, plot,
lines, points. The result is in Fig. 1.10, and when the two points are not
included (by making those statements comments), Fig. 1.11 results.

1D 2-PDE MODEL 47

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

1 - 5pbu, 2 - van Leer

Figure 1.10 Comparison of 5pbu (ifd=3) and van Leer (ifd=4)

The numerical output is

ifd = 3 ncase = 1

ncall = 1312

ifd = 4 ncase = 2

ncall = 5620

so that the van Leer limiter (from idf=4) requires substantially more computation than
5pbu (from ifd=3).

Fig 1.10 indicates that the two solutions agree closely. This is further confirmed in
Fig. 1.11 in which the numbered points have been surppressed.

The fact that the two solutions agree closely does not prove that they are accurate
and correct. However, this agreement resulting from two different algorithms, 5pbu and
van Leer, suggests that the two solutions are accurate. We can view this approach of
comparing solutions from two different algorithms as a generalized form of p refinement
in which not only is the order of the approximation changed (p usually denotes the order),
but the algorithm itself is changed.

To study this approach, we could consider other flux limiters. A set of limiters is
provided in [?], pp 40-43, and these can easily be used in place of the van Leer limiter
in vanl.

This completes the discussion of the model of eqs. (1.1) to (1.4). In particular, the
unit step of eq. (1.5d) provides a stringent test of the numerical algorithms (within the
MOL format). We now go through a similar analysis using a less stringent BC function,
a pulse in place of the unit step.

48 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

Comparison of 5pbu and van Leer

Figure 1.11 Comparison of 5pbu (ifd=3) and van Leer (ifd=4)

(1.3.3) FDs, pulse BC

g1(t) in BC (1.4b) is a cosine pulse, defined as a function of the Lagrangian variable
(t − z/v).

pulse(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, (t − z/v) < 0
1− cos(ω(t − z/v), 0 ≤ (t − z/v) < π/2
1 + cos(ω(t − z/v), π/2 ≤ (t − z/v) ≤ π

0, (t − z/v) > π

(1.7a)

pulse(t) is a smooth (continuous) function of t in contrast with the step of eq. (1.5d).
Therefore, we would expect that calculating solutions to eqs. (1.1) to (1.4) would be
easier than for the step function. However, it is included in this analysis since for the
multi component case considered subsequently, we can observe the separation of the
component pulses as would occur in a chromatographic column.

The pulse of eq. (1.7a) is programmed in function pulse.

pulse=function(t,z,v) {

#

Function pulse computes a pulse function

#

w=0.05;tzv=t-z/v;wtzv=w*tzv;

if((wtzv)< 0){u1p=0;}

if((wtzv>=0)&(wtzv< pi/2)) {u1p=1-cos(wtzv);}

if((wtzv>=pi/2)&(wtzv<=pi)) {u1p=1+cos(wtzv);}

if((wtzv)>pi) {u1p=0;}

#

1D 2-PDE MODEL 49

Return pulse

return(c(u1p));

}

Listing 1.5: Function pulse from eq. (1.7a)

The programming in Listing 1.5 follows directly from eq. (1.7a) and therefore does not
require elaboration. Note that ω = 0.05which was selected to give a pulse with a suitable
spread for the graphical output (plots of the following figures) for 0 ≤ t ≤ 150.

pulse of Listing 1.5 is used in Listings 1.1 to 1.3 by merely replacing the use of
step with pulse. So discussion of the programming details is not required. The exact
solution for ncase=1 is, from eq. (1.6a)

u1(z, t) = pulse(t − z/v) (1.7b)

As before, the analytical solution of eq. (1.7b) can be used to give the exact error in
the numerical solution for ncase=1 for the various spatial differentiation routines
(ifd=1,2,3,4). We would expect that the agreement between the numerical and
analytical solutions would be better than for the step since the pulse of eq. (1.7a) is
smoother than the step of eq. (1.5d).

The numerical and graphical output from Listings 1.1 to 1.3 follows.
In Fig. 1.12 (ncase=1), the numerical diffusion for 2pu (ifd=1) is substantial, par-

ticularly at the peak which is reduced from 1 to approximately 0.7. The defined vertical
scaling was used in producing this plot (ylim=c(0,1)) since the numerical solution is

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.12 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=1, pulse BC

50 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.1

0.2

0.3

0.4

0.5

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.13 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=1, pulse BC

plotted first. Automatic scaling gives a vertical axis of 0 to 0.8, and then the peak of the
exact solution plotted next is truncated (the plot cannot reach 1).

In Fig. 1.13 (ncase=2), the numerical solution appears smooth, but the accuracy of
the solution cannot be ascertained. Later we compare the ncase=2 solutions for different
spatial differentiators.

Execution of the routines for ifd=2 gives the graphical output in Fig. 1.14 (the numer-
ical output and the plotted solution for ncase=2 are not given here).

In Fig. 1.14, the numerical and analytical solutions agree closely, except for some
numerical oscillation in the downstream portion of the solution, which is not unexpected
since we found previously that the 5pc approximations (ifd=2) oscillate (for steep mov-
ing fronts such as the unit step).

Execution of the routines for ifd=3 gives the graphical output in Fig. 1.15 (the numer-
ical output and the plotted solution for ncase=2 are not given here).

In Fig. 1.15, the numerical and analytical solutions agree closely, with no apparent
numerical diffusion or oscillation.

(1.3.4) Flux limiters, pulse BC

We next consider the solutions to eqs. (1.1b) and (1.2b) with the derivative
∂u1

∂z
in eq.

(1.1b) approximated with a flux limiter. Execution of the routines for ifd=4 gives the
graphical output in Fig. 1.16 (the numerical output and the plotted solution for ncase=2
are not given here).

In Fig. 1.16, the peak of the numerical solution is not resolved as closely as we
might expect. Also, the van Leer limiter (ifd=4) required substantially more calcula-
tions (higher value of ncall) than the 5pbu FD (ifd=3).

1D 2-PDE MODEL 51

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.14 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=2, pulse BC

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.15 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=3, pulse BC

The error in the numerical solution at the peak is not unexpected when we consider
how rapidly the solution changes at the peak. In fact, the first derivative of the solution
is discontinuous at the peak. To show this, the derivative from the segment u1 = 1−
cos(ω(t − z/v)) (from eq. (1.7a)) is ω sin(ω(t − z/v)) and at the peak, ω(t − z/v) =
π/2 the derivative is ω. The derivative from the segment u1 = 1 + cos(ω(t − z/v)) is

52 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.16 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=4, pulse BC

−ω sin(ω(t − z/v)) and at the peak, ω(t − z/v) = π/2 the derivative is −ω. Therefore,
the derivative at the peak is a finite step of magnitude 2ω (as demonstrated in Fig. 1.16),

and the calculation of
∂u1

∂z
is difficult numerically.

In summary, for ncase=1 the comparison of the numerical and analytical solutions
demonstrated smaller differences than for the unit step as expected since the cosine pulse
of eq. (1.7a) is smoother than the step of eq. (1.5d). But the differences are large enough
that some experimentation for ncase=2 is suggested.

We now compare the numerical solutions for ifd=3,4 and ncase=2 as was done
previously for the unit step. Again, this is easily accomplished by replacing the step
BC with the pulse BC. The graphical output is in Fig. 1.17 (with points) and Fig. 1.18
(without points).

The differences between 5pbu and van Leer are clear. If they are considered excessive,
one possibility to improve the agreement would be to use more points in z since n = 41
is a rather coarse grid (h refinement). Another possibility would be to use another flux
limiter (e.g., from the set in [?], pp 40-42) which is a generalized form of p refinement
in which the algorithm is changed.

The preceding discussion is for a single component with concentrations u1(z, t)
(fluid) and u2(z, t) (adsorbent). The intention is to demonstrate the features and

performance of some approximations for the derivative in
∂u1

∂z
in eq. (1.1b). However,

movement of fronts through the chromatographic column (Fig. 1.1) for multi component
systems is of primary interest in the application of chromatographic separation and
analysis. We therefore next consider how the preceding routines can be extended to two
components (and thus, for any number of components).

1D 2-PDE MODEL 53

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

1 -5pbu, 2 - van Leer

Figure 1.17 Comparison of 5pbu (ifd=3) and van Leer (ifd=4), ncase=2

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

Comparison of 5pbu and van Leer

Figure 1.18 Comparison of 5pbu (ifd=3) and van Leer (ifd=4), ncase=2

(1.4) Multi component model

The interest in chromatography is primarily within the context of analysis and separation
of multi component mixtures. Here we consider how the previous single component
model can be extended to multi component applications.

54 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

Eqs. (1.1b), (1.2b) can be extended to a system of two components, with dependent
variables u1, u2, u3, u4

14

∂u1

∂t
= −∂(vu1)

∂z
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2) (1.8a)

∂u2

∂t
= kfu1(u

e
2 − u2)− kru2 (1.8b)

∂u3

∂t
= −∂(vu3)

∂z
− (1− ε)

ε
(kfu3(u

e
4 − u4)− kru4) (1.8c)

∂u4

∂t
= kfu3(u

e
4 − u4)− kru4 (1.8d)

The adsorbent equilibrium concentrations, ue
2, u

e
4 are given by the isotherms

ue
2 =

c1u1

1 + c2u1

; ue
4 =

c3u3

1 + c4u3

(1.9a,b)

These isotherms are single component, but they could easily be extended to the multi
component case, e.g., ue

2 = f2(u1, u3), u
e
4 = f4(u1, u3).

The ICs for eqs. (1.8) are

u1(z, t = 0) = f1(z), u2(z, t = 0) = f2(z), u3(z, t = 0) = f3(z),

u1(z, t = 0) = f4(z) (1.10a,b,c,d)

The BCs for eqs. (1.8) are

u1(z = 0, t) = g1(t), u3(z = 0, t) = g3(t) (1.11a,b)

We will next consider eqs. (1.8) to (1.11) for homogeneous ICs, f1(z) = f2(z) =
f3(z) = f4(z) = 0, and pulse function BCs, g1(t) = g3(t) = pulse(t).

(1.5) MOL routines

The main program and subordinate routines for the multi component model are next. A
main program for eqs. (1.8) to (1.11) is in Listing 1.6.

(1.5.1) Main program

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, two component, chromatography model

#

14We have followed the usual convention of naming PDE dependent variables with u and a number.
The alternative is to use variables names that are more closely identified with physical variables, e.g.,
cf,1, ca,1, cf,2, ca,2 where f, a denote fluid and adsorbent, respectively.

1D 2-PDE MODEL 55

The ODE/PDE system is

#

u1_t = -v*u1_z - (1 - eps)/eps*rate1

#

u2_t = rate1

#

u3_t = -v*u3_z - (1 - eps)/eps*rate3

#

u4_t = rate3

#

Boundary conditions

#

u1(z=0,t) = pulse(t)

#

u3(z=0,t) = pulse(t)

#

Initial conditions

#

u1(z,t=0) = 0

#

u2(z,t=0) = 0

#

u3(z,t=0) = 0

#

u4(z,t=0) = 0

#

The method of lines (MOL) solution is coded below.

Specifically, the spatial derivatives in the fluid

balances, u1_z, u3_z, are replaced by one of four

approximations as selected by the variable ifd.

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("G:/chap1");

source("pde_1.R") ;source("pulse.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

#

Step through cases

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4;

u10=0; u20=0; u30=0; u40=0;

56 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

c1=1; c2=1; c3=1; c4=1;

zL=50; n=41;

if(ncase==1){ kf1=0; kr2=0; kf3=0; kr4=0;}

if(ncase==2){ kf1=1; kr2=1; kf3=0; kr4=0;}

#

Select an approximation for the convective derivative u1z

#

ifd = 1: Two point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=3;

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

#

Initial condition

u0=rep(0,4*n);

for(i in 1:n){

u0[i]= u10;

u0[i+n]= u20;

u0[i+2*n]=u30;

u0[i+3*n]=u40;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

u3=matrix(0,nrow=nout,ncol=n);

u4=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

1D 2-PDE MODEL 57

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

u3[it,iz]=out[it,iz+1+2*n];

u4[it,iz]=out[it,iz+1+3*n];

}

t[it]=out[it,1];

}

#

Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate1(z=zL,t)\n"));

cat(sprintf(

"\n\n t u3(z=zL,t) rate3(z=zL,t)\n"));

u2eq=rep(0,nout); u4eq=rep(0,nout);

rate1=rep(0,nout);rate3=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

u4eq[it]=c3*u3[it,n]/(1+c4*u3[it,n]);

rate1[it]=kf1*u1[it,n]*(u2eq[it]-u2[it,n])-kr2*u2[it,n];

rate3[it]=kf3*u3[it,n]*(u4eq[it]-u4[it,n])-kr4*u4[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n" ,t[it],u1[it,n],rate1[it]));

cat(sprintf(

"%7.2f%12.4f%12.4f\n\n",t[it],u3[it,n],rate3[it]));

}

}

#

Store solution for plotting

u1plot=rep(0,nout);u3plot=rep(0,nout);

tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

u3plot[it]=u3[it,n];

tplot[it]=t[it];

}

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

Plot for u1(z=zL,t)

58 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",xlim=c(0,tplot[nout]),

ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);u3expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=pulse(tplot[it],zL,v);

u3expl[it]=pulse(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

lines(tplot,u3expl,lwd=2,type="l");

}

#

ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]),ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

Next case

}

Listing 1.6: Main program for the multi component model, eqs. (1.8) to (1.11)

Listing 1.6 is similar to Listing 1.1. Therefore, the differences will be emphasized
next.

• A block of documentation comments for the two component model, followed by
access to the library of ODE solvers deSolve and the routines specific to the coding
are at the beginning as before (e.g., in Listings 1.1 and 1.4).

• Two cases are programmed in a for

1D 2-PDE MODEL 59

#

Step through cases

for(ncase in 1:2){

#

Model parameters

v=1; eps=0.4;

u10=0; u20=0; u30=0; u40=0;

c1=1; c2=1; c3=1; c4=1;

zL=50; n=41;

if(ncase==1){ kf1=0; kr2=0; kf3=0; kr4=0;}

if(ncase==2){ kf1=1; kr2=1; kf3=0; kr4=0;}

For ncase=1, no transfer of the two components to the adsorbent occurs, so
the linear advection equation (1.5a) applies to both components. For ncase=2,
component 1 is adsorbed while component 2 is not. Thus, we would expect
some separation of the two components, that is, differences in u1(z = zL, t) and
u3(z = zL, t). This selective adsorption will be observed in the solutions reported
next.

• Four spatial differentiators are again programmed corresponding to ifd=1,2,3,4.
The 5pbu FD ifd=3 will be used primarily since it gives little numerical diffusion
and oscillation, and is computationally efficient, as observed previously for the
one component case.

• Homogeneous (zero) ICs are programmed for u1(z, t = 0), u2(z, t = 0), u3(z, t =
0), u4(z, t = 0).

#

Initial condition

u0=rep(0,4*n);

for(i in 1:n){

u0[i]= u10;

u0[i+n]= u20;

u0[i+2*n]=u30;

u0[i+3*n]=u40;

}

Again n=41 so the number of ODEs in the MOL analysis (of eqs. (1.8a), (1.8b))
is now 4(41) = 164.

• The variation in t is again 0 ≤ t ≤ 150 with 51 output points (including
t = 0).

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

60 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

• Integrator ode is used to compute the numerical solution in array out. The four
dependent variables are then placed in arrays u1,u2,u3,u4 that are 2D for the
variations in z and t.

#

ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

u3=matrix(0,nrow=nout,ncol=n);

u4=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

u3[it,iz]=out[it,iz+1+2*n];

u4[it,iz]=out[it,iz+1+3*n];

}

t[it]=out[it,1];

}

Also, t (out[it,1]) is placed in vector t as before.

• ifd and ncase are displayed at the beginning of the output. Then, for ip=1

(detailed numerical output), the equilibrium concentrations ue
2, u

e
4 are computed

from eqs. (1.9), and the adsorption rates in eqs. (1.8) are computed and placed in
vectors and displayed.

#

Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate1(z=zL,t)\n"));

cat(sprintf(

"\n\n t u3(z=zL,t) rate3(z=zL,t)\n"));

u2eq=rep(0,nout); u4eq=rep(0,nout);

rate1=rep(0,nout);rate3=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

u4eq[it]=c3*u3[it,n]/(1+c4*u3[it,n]);

rate1[it]=kf1*u1[it,n]*(u2eq[it]-u2[it,n])-kr2*u2[it,n];

1D 2-PDE MODEL 61

rate3[it]=kf3*u3[it,n]*(u4eq[it]-u4[it,n])-kr4*u4[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n" ,t[it],u1[it,n],rate1[it]));

cat(sprintf(

"%7.2f%12.4f%12.4f\n\n",t[it],u3[it,n],rate3[it]));

}

}

• The exiting concentrations u1(z = zL, t), u3(z = zL, t) are placed in
vectors for subsequent plotting (note the use of n corresponding to
z = zL).

#

Store solution for plotting

u1plot=rep(0,nout);u3plot=rep(0,nout);

tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

u3plot[it]=u3[it,n];

tplot[it]=t[it];

}

• The number of calls to the MOL/ODE routine pde 1 (discussed next) is
displayed. Then u1(z = zL, t), u3(z = zL, t) are plotted against t and iden-
tified with the characters 1,3 in the plot using the utilities plot, points,

lines.

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

Plot for u1(z=zL,t)

ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",xlim=c(0,tplot[nout]),

ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

• For ncase=1 (no adsorption), the analytical solution of eqs. (1.8) is placed in two
arrays by a call to pulse of Listing 1.5.

62 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

#

Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);u3expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=pulse(tplot[it],zL,v);

u3expl[it]=pulse(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

lines(tplot,u3expl,lwd=2,type="l");

}

The analytical solutions are then superimposed on the ncase=1 plot with the
lines utility. The superposition takes place because the par(mfrow=c(1,1)) is
not repeated (for a separate plot).

• For ncase=2 (with adsorption of component 1), the solutions u1(z =
zL, t), u3(z = zL, t) are plotted as lines with points.

#

ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]),ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

Next case

}

The final } concludes the for in ncase.

(1.5.2) MOL/ODE routine

The MOL/PDE routine pde 1 called by ode in Listing 1.7 is next.

pde_1=function(t,u,parms) {

#

Function pde_1 computes the t derivative vector of the u vector

#

One vector to four PDEs

u1=rep(0,n);u2=rep(0,n);

u3=rep(0,n);u4=rep(0,n);

1D 2-PDE MODEL 63

for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

u3[i]=u[i+2*n];

u4[i]=u[i+3*n];

}

#

Boundary condition

u1[1]=pulse(t,0,v);

u3[1]=pulse(t,0,v);

#

First order spatial derivative

#

ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

if(ifd==1){ u3z=dss012(0,zL,n,u3,v); }

#

ifd = 2: Five point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

if(ifd==2){ u3z=dss004(0,zL,n,u3); }

#

ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

if(ifd==3){ u3z=dss020(0,zL,n,u3,v); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

if(ifd==4){ u3z=vanl(0,zL,n,u3,v); }

#

Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u3t=rep(0,n); u4t=rep(0,n);

u2eq=rep(0,n);rate1=rep(0,n);

u4eq=rep(0,n);rate3=rep(0,n);

#

u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate1[i]=kf1*u1[i]*(u2eq[i]-u2[i])-kr2*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate1[i];

}

u2t[i]=rate1[i];

}

64 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

#

u3t, u4t

for(i in 1:n){

u4eq[i]=c3*u3[i]/(1+c4*u3[i]);

rate3[i]=kf3*u3[i]*(u4eq[i]-u4[i])-kr4*u4[i];

if(i==1){

u3t[i]=0;

}else{

u3t[i]=-v*u3z[i]-(1-eps)/eps*rate3[i];

}

u4t[i]=rate3[i];

}

#

Four PDEs to one vector

ut=rep(0,4*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n] =u2t[i];

ut[i+2*n]=u3t[i];

ut[i+3*n]=u4t[i];

}

#

Increment calls to pde_1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 1.7: MOL/ODE routine pde 1 for eqs. (1.8), (1.9) and (1.11)

Listing 1.7 is similar to Listing 1.2 so only the differences are emphasized next.

• The function is first defined. Then the input vector u of length 4(41) = 164 is
placed in four vectors of length 41.

pde_1=function(t,u,parms) {

#

Function pde_1 computes the t derivative vector

of the u vector

#

One vector to four PDEs

u1=rep(0,n);u2=rep(0,n);

u3=rep(0,n);u4=rep(0,n);

for (i in 1:n){

u1[i]=u[i];

1D 2-PDE MODEL 65

u2[i]=u[i+n];

u3[i]=u[i+2*n];

u4[i]=u[i+3*n];

}

This use of four arrays facilitates the programming of eqs. (1.8) (four PDEs).

• A pulse BC is used at z = 0 for both eqs. (1.8a) and (1.8c) for ncase=1,2.

#

Boundary condition

u1[1]=pulse(t,0,v);

u3[1]=pulse(t,0,v);

In other words, this programming is for BCs (1.11) with a pulse. Since the pro-
gramming is the same for eqs. (1.8a) and (1.8c), the numerical solutions should
be the same (for ncase=1), which serves as a check on the coding in pde 1 of
Listing (1.6).

• The derivatives in z in eqs. (1.8a) and (1.8c) are computed by one of the four spatial
differentiators considered previously (in Listing 1.2). For the model of eqs. (1.8),
ifd=3 is used, for which the programming is

#

ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

if(ifd==3){ u3z=dss020(0,zL,n,u3,v); }

The two derivatives
∂u1

∂z
,
∂u3

∂z
in eqs. (1.8a) and (1.8c) are calculated in this way.

• Arrays are declared for the derivatives in t in eqs. (1.8a), (1.8c), the equilibrium
concentrations of eqs. (1.9), and the adsorption rates in eqs. (1.8a) and (1.8c).

#

Temporal derivatives, equilibrium concentrations,

mass transfer rates

u1t=rep(0,n); u2t=rep(0,n);

u3t=rep(0,n); u4t=rep(0,n);

u2eq=rep(0,n);rate1=rep(0,n);

u4eq=rep(0,n);rate3=rep(0,n);

• Eq. (1.8a) is programmed as

#

u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate1[i]=kf1*u1[i]*(u2eq[i]-u2[i])-kr2*u2[i];

if(i==1){

66 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate1[i];

}

u2t[i]=rate1[i];

}

A for is used for the interval 0 ≤ z ≤ zL. The equilibrium concentration ue
2 , and

adsorption rate are calculated and placed in vectors. For z = 0, since the entering
concentration is defined by BC (1.11a), the derivative in t is set to zero to retain this
boundary value. For z > 0, eqs. (1.8a), (1.8b) are used to compute the derivatives
∂u1

∂t
,
∂u2

∂t
.

• In the same way, the derivatives
∂u3

∂t
,
∂u4

∂t
in eqs. (1.8c), (1.8d) are computed.

#

u3t, u4t

for(i in 1:n){

u4eq[i]=c3*u3[i]/(1+c4*u3[i]);

rate3[i]=kf3*u3[i]*(u4eq[i]-u4[i])-kr4*u4[i];

if(i==1){

u3t[i]=0;

}else{

u3t[i]=-v*u3z[i]-(1-eps)/eps*rate3[i];

}

u4t[i]=rate3[i];

}

• The four derivatives in t are placed in a single vector, ut, to return to the ODE
integrator, ode (called in Listing 1.6).

#

Four PDEs to one vector

ut=rep(0,4*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n] =u2t[i];

ut[i+2*n]=u3t[i];

ut[i+3*n]=u4t[i];

}

• The counter for the calls to pde 1 is incremented and returned to the main program
of Listing 1.6 with <<-.

#

Increment calls to pde_1

ncall<<-ncall+1;

1D 2-PDE MODEL 67

• The vector ut is returned to ode with a combination of c (the R vector operator),
list (required by ode), and return.

#

Return derivative vector

return(list(c(ut)));

}

The final } concludes the function pde 1.

The only other required function is for the BCs of eqs. (1.11), pulse in this case in
Listing 1.5. The output from the routines in Listings 1.6, 1.7 and 1.5 is considered next.

(1.6) Model output, multi component chromatography

The numerical output from Listing 1.6 is not reproduced here to conserve space. The
two plots produced by the main program of Listing 1.6 are in Figs. 1.19 and 1.20.

In Fig. 1.19, all four solutions are essentially identical (for 5pbu, u1(t, z = zL),
u3(t, z = zL), numerical and analytical) as expected. This is a worthwhile check on the
coding since any errors might produce different solutions.

In Fig. 1.20, the numerical solutions reflect the difference of adsorption for the two
components, i.e., component 1 is adsorbed (from the values kf1=1,kr1=1 in Listing
1.6), while component 2 is not adsorbed (from the values kf2=0,kr2=0). As expected,
component 2 leaves the column first and a partial separation is effected. While the output

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
),

u3
(z

=z
L

,t
)

u1(z=zL,t),u3(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.19 Comparison of the numerical and analytical solutions of eqs. (1.8) ncase=1,
ifd=3, pulse BC

68 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
),

u3
(z

=z
L

,t
)

u1(z=zL,t),u3(z=zL,t) vs t, ncase=2

Figure 1.20 Numerical solutions of eqs. (1.8), ncase=2, ifd=3, pulse BC

stream is not very pure in either component, the purity of the output stream could be
substantially enhanced by, for example, increasing the length of the column, changing
the velocity v, using multiple columns in sequence, using an adsorbent with different
selective properties, etc.

These various options can be studied with the model which would be time consum-
ing and expensive experimentally. Also, additional components can easily be added to
the coding in Listings 1.6 and 1.7. This type of design study and possible optimization
illustrates the inherent value of a mathematical model.

We now consider a series of PDE models for BMSE applications in subsequent
chapters. When considering the models, we will introduce diffusion modeled by
second derivatives in the spatial derivatives (parabolic PDEs), that is, the use of Fick’s
first and second laws, including nonlinear extensions. However, the intent in this
chapter is to focus on the inherent difficulties of solving PDE models numerically for
strongly convective (hyperbolic) systems. The addition of diffusion eases the numerical
requirements since steep fronts and discontinuities are smoothed by diffusion.

Reference

[1] Griffiths, G.W., and W.E. Schiesser (2012), Traveling Wave Analysis of Partial Differential
Equations, Elsevier/Academic Press, Boston, MA

2
WAVE FRONT RESOLUTION IN VEGF
ANGIOGENESIS

The central topic of this chapter is the generation of new blood vessels, generally termed
angiogenesis, in response to a growth factor, e.g., vascular endothelium growth factor or
VEGF. The dynamics of VEGF production, and its effect on endothelium cell growth,
is modeled by two simultaneous (coupled) nonlinear PDEs. Explanatory discussion of
these PDEs, followed by a MOL numerical solution and a special-case analytical solu-
tion, are presented in the format of Chapter 1.

The following excerpt from [5] provides some additional background:

Angiogenesis is a chemostatic1 process involving the generation of new blood vessels
from pre-existing vessels. It is essential for the growth and development of solid tumors as
well as cancer metastasis. Tumor angiogenesis starts with cancerous tumor cells secreting
some chemical substance (or signalling molecule), which is generally called angiogenesis
growth factor, to induce neighboring endothelial cells to migrate toward the tumor in order
to build its own capillary network to supply nutrients and oxygen for its development.

Introductory background information pertaining to VEGF angiogenesis is also available
from the National Cancer Institute, including instructive figures [3].

The intent of this chapter is to

• Discuss a 1D 2-PDE model, including the required initial conditions (ICs) and
boundary conditions (BCs). The model has some particular features that will be
emphasized.

1Chemotaxis is explained and modeled in [4], Chapter 1.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

70 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

– Second-order spatial derivatives to model diffusion. These second-order deriva-
tives are computed by successive first-order numerical differentiation.

– A traveling-wave solution altered by the diffusion.

– Nonlinear diffusion and reaction terms to model angiogenesis.

• Illustrate the coding of the model through a series of R routines, including the use
of library routines for integration of the PDE derivatives in time and space.

• Use a special case analytical solution to evaluate the numerical MOL solution.

• Present the computed model solutions in numerical and graphical (plotted) formats.

• Discuss the features of the numerical solution.

(2.1) 1D 2-PDE model

The PDE model for VEGF angiogenesis is2

u1t = εu1xx − kum1
1 um2

2 (2.1a)

u2t = d(u2x − χu−α
1 u2u1x)x (2.1b)

u1(x, t = 0) = f1(x); u2(x, t = 0) = f2(x) (2.2a,b)

u1x(x → −∞, t) = u1x(x → ∞, t) = 0 (2.3a,b)

u2x(x → −∞, t) = u2x(x → ∞, t) = 0 (2.3c,d)

where

u1(x, t) concentration of angiogenesis
growth factor (VEGF)

u2(x, t) density of endothelial cells
x distance (boundary value

independent variable)
t time (initial value

independent variable)
f1(x), f2(x) initial condition functions
d, k,m1,m2, specified constants

χ, α, ε

Eqs. (2.3) are termed Neumann BCs since they specify the first-order derivative of
the PDE dependent variables (u1, u2) with respect to the spatial independent variable x.

2Subscript notation is used for the partial derivatives. For example,

∂u1

∂t
⇒ u1t;

∂u1

∂x
⇒ u1x;

∂u2

∂t
⇒ u2t;

∂2u1

∂x2
⇒ u1xx

The subscript notation is used because of its simplicity (relative to the usual partial derivatives with ∂), and
its close resemblance to the corresponding programming, e.g., u1t, is programmed as u1t.

1D 2-PDE MODEL 71

Specific values of d, k,m1,m2, χ, α, ε are indicated in the subsequent discussion of
the R routines. For the special case, k = 1,m1 = 0,m2 = 1, χ = 2, α = 1, ε = 0, the
analytical solution to eqs. (2.1), (2.2), and (2.3) is ([2], p68)

ua
1 (z) =

[
1 + e−cz/d

]−1

(2.4a)

ua
2 (z) =

c2

kd
e−cz/d

[
1 + e−cz/d

]−2

(2.4b)

where z = x − ct and c is a constant to be specified (a velocity). Note that u1(z), u2(z)
are a function of the single Lagrangian variable z. In other words, these solutions are
invariant for a constant value of z, regardless of how x and t may vary. A solution with
this property is termed a traveling wave as discussed in Chapter 1.

Eqs. (2.4) are used subsequently to evaluate the numerical solutions of eqs. (2.1) to
(2.3) with the ICs of eqs. (2.2), that is, for t = 0 and therefore z = x − ct = x

u1(x, t = 0) = ua
1 (x); u2(x, t = 0) = ua

2 (x) (2.5a,b)

We can note the following details about eqs. (2.1) to (2.5).

• Second-order derivatives in x model diffusion3. These second-order derivatives
originate with Fick’s first and second laws.

• Since eqs. (2.1) are second order in x, they each require two BCs. Eqs. (2.3) are the
pairs of BCs for eqs. (2.1). Also, since eqs. (2.1) are first order in t, each requires
one IC, that is, eqs. (2.2).

• The BCs can be defined on an infinite interval, e.g.,−∞ ≤ x ≤ ∞ as for eqs. (2.3);
a semi-infinite interval, e.g., 0 ≤ x ≤ ∞; or a finite interval, e.g., 0 ≤ x ≤ xL (as
in Chapter 1). Since ±∞ cannot be represented on a computer (with finite arith-
metic), finite boundary values are used that are effectively infinite. This procedure
for approximating BCs (2.3) is illustrated in the computer analysis that follows.

• Eqs. (2.1) are coupled through terms that include both u1 and u2, such as
−kum1

1 um2
2 and (χu−α

1 u2u1x)x. That is, eqs. (2.1) must be solved together or
simultaneously.

• Eqs. (2.1) have several forms of nonlinearity4. The term −kum1
1 um2

2 in eq. (2.1a)
has a product of the two dependent variables u1 and u2, raised to powers m1,m2

(the term is nonlinear, even for m1 = m2 = 1). The term (χu−α
1 u2u1x)x in

3PDEs that include: (1) first-order derivatives in x for convection as in Chapter 1, (2) second-order deriva-
tives in x for diffusion as in eqs. (2.1), and (3) reaction terms as in eq. (2.1a) (−kum1

1 um2
2) are termed

convection-diffusion-reaction (CDR) PDEs. 3D CDR PDEs are derived in Appendix A.
4A PDE is linear if its dependent variable, e.g., u1 of eq. (2.1a), and all of its derivatives are to the first power
or first degree. As a word of caution, degree should not be confused with order. The order is determined by
the highest order derivative in the PDE. For example, eq. (2.1a) is first order in t, determined by the highest
order derivative, u1t, in t. It is second order in x, as determined by the highest order derivative, u1xx, in x.
It is not first degree (or linear) because of the nonlinear term (χu−α

1 u2u1x)x and, in particular, the product
u−α
1 u2u1x (which is nonlinear even for α = 0). Generally, nonlinear PDEs are more difficult to integrate

analytically than linear PDEs. The availability of the analytical solution eqs. (2.4) is unusual.

72 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

eq. (2.1b) has the product u−α
1 u2u1x that involves the dependent variables u1, u2

and a derivative u1x.

• The nonlinear term in eq. (2.1b), (χu−α
1 u2u1x)x, is second order (note the outer

differentiation of the inner first derivative) and represents a form of diffusion to
model chemotaxis [4]. The implementation of this term is illustrated in the coding
that follows.

Eqs. (2.1) to (2.5) are the complete statement of the model, including the analytical
solution of eqs. (2.4) that will be used to evaluate the numerical MOL solution. The
programming of these equations is considered next.

(2.2) MOL routines

The MOL routines follow the format of the analogous routines in Chapter 1.

(2.2.1) Main program

The main program is in Listing 2.1.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Two PDE angiogenesis model

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical, analytical solutions

setwd("g:/chap2");

source("angio 1.R");source("dss004.R");

source("u1 anal.R");source("u2 anal.R");

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u1(x,t), u2(x,t)) only

#

ip = 2 - numerical and graphical solutions

#

ip=1;

#

Step through ncase

for(ncase in 1:2){

#

MOL ROUTINES 73

Grid (in x)

n=101;xl=-10;xu=15

x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

#

Parameters

c=1;d=1;k=1;m1=0;m2=1;chi=2;alpha=1;

if(ncase==1){eps=0;}

if(ncase==2){eps=1;}

cat(sprintf("\n ncase = %5d\n",ncase));
cat(sprintf("\n c = %5.2f d = %5.2f k = %5.2f\n",

c,d,k));

cat(sprintf("\n m1 = %5.2f m2 = %5.2f chi = %5.2f\n",
m1,m2,chi));

cat(sprintf("\n alpha = %5.2f eps = %5.2f\n",alpha,eps));
#

Independent variable for ODE integration

nout=6;t0=0;tf=5;

tout=seq(from=0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (from analytical solutions,t=0)

u0=rep(0,2*n);

for(i in 1:n){

u0[i] =u1 anal(x[i],tout[1],k,d,c);

u0[i+n]=u2 anal(x[i],tout[1],k,d,c);

}

ncall=0;

#

ODE integration

out=lsodes(func=angio 1,y=u0,times=tout,parms=NULL)

nrow(out)

ncol(out)

#

Arrays for plotting numerical, analytical solutions

u1 plot=matrix(0,nrow=n,ncol=nout);

u2 plot=matrix(0,nrow=n,ncol=nout);

u1a plot=matrix(0,nrow=n,ncol=nout);

u2a plot=matrix(0,nrow=n,ncol=nout);

for(it in 1:nout){

for(ix in 1:n){

u1 plot[ix,it]=out[it,ix+1];

u2 plot[ix,it]=out[it,ix+1+n];

if(ncase==1){

u1a plot[ix,it]=u1 anal(x[ix],tout[it],k,d,c);

u2a plot[ix,it]=u2 anal(x[ix],tout[it],k,d,c);

}

}

74 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

}

#

Display numerical, analytical solutions

if((ncase==1)&(ip==2)){

for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u1 ex(x,t)

u1 err(x,t)"));

cat(sprintf("\n u2(x,t) u2 ex(x,t)

u2 err(x,t)\n"));
for(ix in 1:n){

cat(sprintf("%5.1f%8.2f%10.5f%12.5f%13.6f\n",
tout[it],x[ix],

u1 plot[ix,it],u1a plot[ix,it],

u1 plot[ix,it]-u1a plot[ix,it]));

cat(sprintf(" %10.5f%12.5f%13.6f\n",
u2 plot[ix,it],u2a plot[ix,it],

u2 plot[ix,it]-u2a plot[ix,it]));

}

}

}

if((ncase==2)&(ip==2)){

for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u2(x,t)"));

for(ix in 1:n){

cat(sprintf("%5.1f%8.2f%10.5f%10.5f\n",tout[it],x[ix],
u1 plot[ix,it],u2 plot[ix,it]));

}

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#

Plot u1 numerical, analytical solutions

if(ncase==1){

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",ylab="u1(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t);

solid - num, points - anal;t=0,1,2,3,4,5;",

col="black",lwd=2);

matpoints(x=x,y=u1a plot,xlim=c(xl,xu),col="black",lwd=2)

#

Plot u2 numerical, analytical

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",ylab="u2(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t),

MOL ROUTINES 75

solid - num, points - anal;t=0,1,2,3,4,5;",

col="black",lwd=2);

matpoints(x=x,y=u2a plot,xlim=c(xl,xu),col="black",lwd=2)

}

if(ncase==2){

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",ylab="u1(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t);

t=0,1,2,3,4,5;",col="black",lwd=2);

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",ylab="u2(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t);

t=0,1,2,3,4,5;",col="black",lwd=2);

}

#

Next case

}

Listing 2.1: Main program for Eqs. (2.1) to (2.5)

We can note the following details about Listing 2.1.

• Previous files are cleared.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The ODE integrator library deSolve and the files for the model of eqs. (2.1) to
(2.5) are accessed.

#

Access functions for numerical, analytical solutions

setwd("g:/chap2");

source("angio 1.R");source("dss004.R");

source("u1 anal.R");source("u2 anal.R");

The setwd (set working directory) requires editing for the local computer (note
the use of / rather than the usual \).

• The level of output is selected.

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u1(x,t), u2(x,t)) only

76 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

#

ip = 2 - numerical and graphical solutions

#

ip=1;

With ip=1, graphical output only is selected to conserve space. But, a comparison
of the analytical and numerical solutions with ip=2 is instructive.

• Two cases are programmed that are discussed later.

#

Step through ncase

for(ncase in 1:2){

#

• A MOL grid of 101 points in x is defined for −10 ≤ x ≤ 15. This grid, with
spacing (xu-xl)/(n-1)=(15-(-10))/(101-1)=0.25, was selected to accom-
modate BCs (2.3). That is, x = −10,−9.75,...,15 is effectively an infinite interval
−∞ ≤ x ≤ ∞ as will be observed in the computed solutions.

#

Grid (in x)

n=101;xl=-10;xu=15

x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

The seq utility produces the sequence in x.
• The parameters of eqs. (2.1) are defined numerically. For ncase=1, the diffusivity
eps in eq. (2.1a) is zero, while for ncase=2, it is one. The change in this parameter
(thereby introducing diffusion into eq. (2.1a)) completely changes the form of the
model solution as explained in the subsequent discussion.

#

Parameters

c=1;d=1;k=1;m1=0;m2=1;chi=2;alpha=1;

if(ncase==1){eps=0;}

if(ncase==2){eps=1;}

cat(sprintf("\n ncase = %5d\n",ncase));
cat(sprintf("\n c = %5.2f d = %5.2f k = %5.2f\n",

c,d,k));

cat(sprintf("\n m1 = %5.2f m2 = %5.2f chi = %5.2f\n",
m1,m2,chi));

cat(sprintf("\n alpha = %5.2f eps = %5.2f\n",alpha,eps));

• The interval in t is 0 ≤ t ≤ 5 with 6 output points (including t = 0) so that
t = 0, 1,...,5.

#

Independent variable for ODE integration

nout=6;t0=0;tf=5;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

MOL ROUTINES 77

• For ICs (2.5), functions u1 anal,u2 anal are used, which implement the analyt-
ical solutions of eqs. (2.4). tout[1] is the initial value of t, that is, t = 0. x[i]
varies x in a for according to ICs (2.5). k,d,c are parameters (constants) defined
previously.

#

Initial condition (from analytical solutions, t=0)

u0=rep(0,2*n);

for(i in 1:n){

u0[i] =u1 anal(x[i],tout[1],k,d,c);

u0[i+n]=u2 anal(x[i],tout[1],k,d,c);

}

ncall=0;

The initial condition vector u0 has 2(41) = 82 elements. Functions
u1 anal,u2 anal are discussed subsequently. The number of calls to the
MOL/ODE routine angio 1 (discussed next) is initialized.

• The ODE system is integrated with lsodes,5 one of the integrators in deSolve.
As expected, the arguments to lsodes are (1) angio 1, the MOL/ODE routine,
(2) the IC vector u0 (that informs lsodes of the number of ODEs via its length
(82)), and tout, the vector of output values of t. parms for passing parameters to
angio 1 is unused.
The solution matrix out returned by lsodes is dimensioned as out[nout,2*n+1]
=out[6,83]. The second dimension is 2*n+1 so that the output values of t are
also included (as out[nout,1], the same values of t as in tout).
The dimensions of out are displayed with the utilities nrow,ncol just to confirm
the expected values (6,83).

#

ODE integration

out=lsodes(func=angio 1,y=u0,times=tout,parms=NULL)

nrow(out)

ncol(out)

• The numerical solution in out is placed in two matrices for subsequent plotting.
Two nested for’s are used to step through t and x. For ncase=1, the analytical
solution of eqs. (2.4) is also placed in matrices for comparison with the numerical
solution and subsequent plotting.

#

Arrays for plotting numerical, analytical solutions

u1 plot=matrix(0,nrow=n,ncol=nout);

u2 plot=matrix(0,nrow=n,ncol=nout);

u1a plot=matrix(0,nrow=n,ncol=nout);

5lsodes⇒ Livermore Solver for Ordinary Differential Equations, Sparse, is a quality ODE integrator that is
based on sparse matrix methods to conserve storage. It has many options, e.g., error tolerances, minimum and
maximum integration steps, and here, only the defaults are used.

78 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

u2a plot=matrix(0,nrow=n,ncol=nout);

for(it in 1:nout){

for(ix in 1:n){

u1 plot[ix,it]=out[it,ix+1];

u2 plot[ix,it]=out[it,ix+1+n];

if(ncase==1){

u1a plot[ix,it]=u1 anal(x[ix],tout[it],k,d,c);

u2a plot[ix,it]=u2 anal(x[ix],tout[it],k,d,c);

}

}

}

Note the use of functions u1 anal,u2 anal for −10 ≤ x ≤ 15, 0 ≤ t ≤ 5.

• For ncase=1 and ip=2, the numerical solution of eqs. (2.1), u1(x, t) and u2(x, t),
and the analytical solution of eqs. (2.4), ua

1 (x, t) and ua
2 (x, t), are displayed as a

function of t and x through two nested for’s.

#

Display numerical, analytical solutions

if((ncase==1)&(ip==2)){

for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u1 ex(x,t)

u1 err(x,t)"));

cat(sprintf("\n u2(x,t) u2 ex(x,t)

u2 err(x,t)\n"));
for(ix in 1:n){

cat(sprintf("%5.1f%8.2f%10.5f%12.5f%13.6f\n",
tout[it],x[ix],

u1 plot[ix,it],u1a plot[ix,it],

u1 plot[ix,it]-u1a plot[ix,it]));

cat(sprintf(" %10.5f%12.5f%13.6f\n",
u2 plot[ix,it],u2a plot[ix,it],

u2 plot[ix,it]-u2a plot[ix,it]));

}

}

}

Note the use of the analytical solution (eqs. (2.4)) for the calculation of the error
in the numerical solution.

• For ncase=2 and ip=2, the numerical solution of eqs. (2.1), u1(x, t) and u2(x, t),
is displayed as a function of t and x through two nested for’s (an analytical solu-
tion is not available for this case).

if((ncase==2)&(ip==2)){

for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u2(x,t)"));

MOL ROUTINES 79

for(ix in 1:n){

cat(sprintf("%5.1f%8.2f%10.5f%10.5f\n",tout[it],x[ix],
u1 plot[ix,it],u2 plot[ix,it]));

}

}

}

• The number of calls to angio 1 is displayed as a measure of the computational
effort required to calculate the numerical solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• For ncase=1, the numerical solution is plotted as solid lines and the analytical solu-
tion is plotted as points (superimposed), using the utilities matplot, matpoints.
The arguments of these utilities are straightforward and do not require explanation.
They are also illustrated in Figs. 2.1 and 2.2 (discussed subsequently).

#

Plot u1 numerical, analytical solutions

if(ncase==1){

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",ylab="u1(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t);

solid - num, points - anal;t=0,1,2,3,4,5;",

col="black",lwd=2);

5

u1(x,t); solid - num, points - anal;
t = 0,1,2,3,4,5;

X

−5−10 0

u
1(

x,
t)

,t
 =

 0
,1

,2
,3

,4
,5

10 15

6
6
6
6
6
6

6
6
6

6666666666666666666666666666

6
6
66
66
66

666
66666666666655555555555555555555555555555555

5
5
5
5
5
5

5
5

5
5

5
5
5

555555555555555555555555

44
444

44

4
4

44
4
4
4

4
4
4
4
4

4
44444444444444444444444444444444

3
3
3
3
3
33
33

33333333333333333

3
3
3

3
3
3
3
3
33333333333333333333333

222222222222222222222222222
2
2
2
2

2
2
2
2
2
2

222222222

1111111111111111
1
1
1
1
1
1
1
1
1
1
1
1111111

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.1 Numerical and analytical solutions of eq. (2.1a), u1(x, t), u
a
1 (x, t), (ncase=1)

80 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

555555555

5
5
5
5

5
5

5

5

5
5

55
5
5
5

5
5

5
5
5

5
5
5

55

5

5555

55
5

555555566666666666 66666
666

66
66
66
6
6
6

6

6

6

6
6
6
6
6
6
6

6

6

6
6
6
6
6
6

50

X

u2
(x

,t
),

t
=

 0
,1

,2
,3

,4
,5

0.25

0.20

0.15

0.10

0.05

0.00

10−10 −5 15

666666666666666666

4444444444444444444444444

4
4
4
4
4

4
4

4

4
4
4
444

4
4
4

4

4

4
4
4
4
4
4
4444444444444444444

333333333333333333333333333333
3333

33
3
3
3
3
3
3

3

3
3
3
33

3
3
3
3
3
3
3
3
3
3
3
3
3
33333333333333333333333

22
2
2
2
2

2
2

2

2
2

22
2
2
2

2

2
2
2
2
2
2
2
2
2222222222222222222222221111111111111 11111

111
11
1
1
1
1
1
1
1

1

1

1
1
1
1
111

1
1
1
1
1
1
1
11
1
111
111

1

11

u2(x,t), solid - num, points - anal;
t = 0,1,2,3,4,5;

Figure 2.2 Numerical and analytical solutions of eq. (2.1a), u2(x, t), u
a
2 (x, t), (ncase=1)

matpoints(x=x,y=u1a plot,xlim=c(xl,xu),col="black",lwd=2)

#

Plot u2 numerical, analytical

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",ylab="u2(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t),

solid - num, points - anal;t=0,1,2,3,4,5;",

col="black",lwd=2);

matpoints(x=x,y=u2a plot,xlim=c(xl,xu),col="black",lwd=2)

}

• For ncase=2, only the numerical solution is plotted (to produce Figs. 2.3 and 2.4).

if(ncase==2){

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",ylab="u1(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t);

t=0,1,2,3,4,5;",col="black",lwd=2);

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",ylab="u2(x,t),

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t);

t=0,1,2,3,4,5;",col="black",lwd=2);

}

#

Next case

}

MOL ROUTINES 81

5

u1(x,t); t = 0,1,2,3,4,5;

X

−5−10 0

u1
(x

,t
),

t
=

 0
,1

,2
,3

,4
,5

10 15

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.3 Numerical solution of eq. (2.1a), ncase=2

50

X

u2
(x

,t
),

t
=

 0
,1

,2
,3

,4
,5

u2(x,t);t = 0,1,2,3,4,5;

0.25

0.20

0.15

0.10

0.05

0.00

10−10 −5 15

Figure 2.4 Numerical solution of eq. (2.1b), ncase=2

The final } concludes the for in ncase.

MOL/ODE function angio 1 called by ode, which has the MOL programming of
eqs. (2.1), is considered next.

(2.2.2) MOL/ODE routine

angio 1=function(t,u,parms){

#

82 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

Function angio 1 computes the t derivative vectors of

u1(x,t), u2(x,t)

#

One vector to two vectors

u1=rep(0,n);u2=rep(0,n);

for(i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

#

u1x, u2x

u1x=rep(0,n);u2x=rep(0,n);

u1x=dss004(xl,xu,n,u1);

u2x=dss004(xl,xu,n,u2);

#

BCs

u1x[1]=0; u1x[n]=0;

u2x[1]=0; u2x[n]=0;

#

Nonlinear term

u1u2x=rep(0,n);

for(i in 1:n){

u1u2x[i]=chi*u1[i]ˆ(-alpha)*u2[i]*u1x[i];
}

#

u1u2xx, u2xx

u1xx=rep(0,n);u2xx=rep(0,n);u1u2xx=rep(0,n);

u1xx =dss004(xl,xu,n, u1x);

u2xx =dss004(xl,xu,n, u2x);

u1u2xx=dss004(xl,xu,n,u1u2x);

#

PDEs

u1t=rep(0,n);u2t=rep(0,n);

for(i in 1:n){

u1t[i]=eps*u1xx[i]-k*u1[i]ˆm1*u2[i]̂ m2;

u2t[i]=d*(u2xx[i]-u1u2xx[i]);

}

#

Two vectors to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n]=u2t[i];

}

#

Increment calls to angio 1

MOL ROUTINES 83

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 2.2: MOL/ODE function angio 1 for Eqs. (2.1)

We can note the following details for angio 1.

• The function is defined.

angio 1=function(t,u,parms){

#

Function angio 1 computes the t derivative vectors of

u1(x,t), u2(x,t)

• The 82-vector of ODE-dependent variables, u, coming into angio 1 as the second
argument is placed in two 41-vectors, u1,u2, for the programming of eqs. (2.1).

#

One vector to two vectors

u1=rep(0,n);u2=rep(0,n);

for(i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

• The derivatives u1x(=
∂u1

∂x
) and u2x(=

∂u2

∂x
) in eqs. (2.1) are computed by func-

tion dss004.

#

u1x, u2x

u1x=rep(0,n);u2x=rep(0,n);

u1x=dss004(xl,xu,n,u1);

u2x=dss004(xl,xu,n,u2);

• BCs (2.3) are programmed. Note the use of subscripts 1,n corresponding to
x = −10, 15 which are in effect BCs at ±∞ as will be demonstrated in the output.

#

BCs

u1x[1]=0; u1x[n]=0;

u2x[1]=0; u2x[n]=0;

84 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

• The nonlinear chemotaxis diffusion term in eq. (2.1b), χu−α
1 u2u1x, is programmed

in a for.

#

Nonlinear term

u1u2x=rep(0,n);

for(i in 1:n){

u1u2x[i]=chi*u1[i]ˆ(-alpha)*u2[i]*u1x[i];
}

This coding demonstrates the ease of including nonlinearities in numerical MOL
solutions.

• The second derivatives u1xx, u2xx, (χu−α
1 u2u1x)x, are computed with second calls

to dss004. This is an example of stagewise differentiation in which a second-order
derivative is computed as the derivative of a first-order derivative.

#

u1u2xx, u2xx

u1xx=rep(0,n);u2xx=rep(0,n);u1u2xx=rep(0,n);

u1xx =dss004(xl,xu,n, u1x);

u2xx =dss004(xl,xu,n, u2x);

u1u2xx=dss004(xl,xu,n,u1u2x);

• The MOL algorithm for eqs. (2.1) is implemented in a for over the interval −10 ≤
x ≤ 15.

#

PDEs

u1t=rep(0,n);u2t=rep(0,n);

for(i in 1:n){

u1t[i]=eps*u1xx[i]-k*u1[i]ˆm1*u2[i]ˆm2;
u2t[i]=d*(u2xx[i]-u1u2xx[i]);

}

The close resemblance of this coding to eqs. (2.1) demonstrates a principal advan-
tage of the MOL.

• The two 41-vectors with the derivatives in t, u1t,u2t, are placed in a 82-vector,
u, to return to the ODE integrator lsodes called in the main program of
Listing 2.1.

#

Two vectors to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n]=u2t[i];

}

MOL ROUTINES 85

• The counter for the calls to angio 1 is incremented and the value returned to the
main program of Listing 2.1 by a <<-.

#

Increment calls to angio 1

ncall <<- ncall+1;

• The derivative vector ut is returned for the numerical integration by lsodes using
c (the R vector operator), list (lsodes requires a list), and return.

#

Return derivative vector

return(list(c(ut)));

}

The final{ concludes angio 1.

This concludes the discussion of the MOL/ODE routine angio 1. The subordinate
routines for the analytical solution are considered next.

(2.2.3) Subordinate routines

The two subordinate routines, u1 anal, u2 anal, for the analytical solutions of
eqs. (2.4) are listed and discussed next.

u1 anal=function(x,t,k,d,c){

#

Function u1 anal computes the analytical solution for u1(x,t)

#

z=x-c*t;

u1a=1/(1+exp(-c*z/d));

#

Return solution

return(c(u1a));

}

Listing 2.3a: Function u1 anal for the analytical solution of Eq. (2.4a)

u2 anal=function(x,t,k,d,c){

#

Function u2 anal computes the analytical solution for u2(x,t)

#

z=x-c*t;

u2a=(cˆ{2}/(k*d))*exp(-c*z/d)/(1+exp(-c*z/d))ˆ{2};
#

Return solution

return(c(u2a));

}

Listing 2.3b: Function u2 anal for the analytical solution of Eq. (2.4b)

86 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

Functions u1 anal, u2 anal are straightforward implementations of eqs. (2.4). Note,
in particular, the use of the Lagrangian variable z = x − ct for a traveling wave moving
at velocity c [1]. This traveling-wave property will be evident when considering the
graphical output in Figs. 2.1, 2.2.

(2.3) Model output

The numerical and graphical outputs from the main program of Listing 2.1 are consid-
ered next.

(2.3.1) Comparison of numerical and analytical solutions

For ncase=1 in Listing 2.1, the analytical solution of eq. (2.4) is computed and compared
with the numerical solution. Abbreviated numerical output is listed in Table 2.1.
We can note the following details about this output.

• The numerical value u1(x = 5, t = 5) = 0.50001 is the half-way point for the
change in u1. The analytical value ua

1 (x = 5, t = 5) = 0.50000 is the half-way
point for the change in ua

1 . The numerical and analytical solutions for u1 are in
close agreement.

5.0 5.00 0.50001 0.50000 0.000010

0.25002 0.25000 0.000018

The numerical value u2(x = 5, t = 5) = 0.25002 is the maximum value for u2.
The analytical value ua

2 (x = 5, t = 5) = 0.25000 is the maximum value for ua
2 .

The numerical and analytical solutions for u2 are in close agreement.
• The half-way value of u1, 0.5, and the maximum value of u2, 0.25, are in agreement

with z = x − vt = 5− (1)(5) = 0 for the traveling-wave solution of eqs. (2.4)
(these are the same values as for the ICs of eqs. (2.5), with z = 0 so that z =
x − ct = 0− (1)(0) = 0).

• The computational effort for the calculation of the complete solution is modest.

ncall = 295

In summary, the analytical solution of eqs. (2.4) confirms the numerical solution of eqs.
(2.1). The traveling-wave solution and the close agreement of the numerical and analyt-
ical solutions are evident in Figs. 2.1 and 2.2.

The traveling-wave characteristic6 of u1(x, t) is clear. Note also that BCs (2.3) are
well approximated since the slope of the numerical solution is close to zero at x =
−10, 15.

Again, the traveling-wave characteristic of the solution is evident.
Now that the numerical MOL has been validated by comparison with the analytical

solution of eqs. (2.4), the PDE system can be studied numerically for cases for which an
analytical solution is not available.

6The use of “characteristic” has a mathematical interpretation since z = x− ct = constant is termed the
characteristic of the PDE system. In fact, an effective method for the numerical solution of hyperbolic PDEs
is termed the method of characteristics (MOC). MOC is not used in this book since it requires a specific
development for each application that can be rather complicated.

MODEL OUTPUT 87

t x u1(x,t) u1 ex(x,t) u1 err(x,t)

u2(x,t) u2 ex(x,t) u2 err(x,t)

5.0 -10.00 0.00000 0.00000 0.000001

0.00000 0.00000 0.000003

5.0 -9.75 0.00000 0.00000 0.000001

0.00000 0.00000 0.000003

. .

. .

. .

Output for x = -9.50 to x = 3.75 removed

. .

. .

. .

5.0 4.00 0.26894 0.26894 -0.000003

0.19657 0.19661 -0.000044

5.0 4.25 0.32081 0.32082 -0.000007

0.21787 0.21789 -0.000029

5.0 4.50 0.37754 0.37754 -0.000006

0.23500 0.23500 -0.000009

5.0 4.75 0.43782 0.43782 0.000001

0.24614 0.24613 0.000009

5.0 5.00 0.50001 0.50000 0.000010

0.25002 0.25000 0.000018

5.0 5.25 0.56220 0.56218 0.000019

0.24615 0.24613 0.000013

5.0 5.50 0.62248 0.62246 0.000024

0.23500 0.23500 0.000000

5.0 5.75 0.67920 0.67918 0.000024

0.21788 0.21789 -0.000015

5.0 6.00 0.73108 0.73106 0.000019

0.19659 0.19661 -0.000025

. .

. .

. .

Output for x = 6.25 to x = 14.50 removed

. .

. .

. .

5.0 14.75 0.99991 0.99994 -0.000035

0.00009 0.00006 0.000035

5.0 15.00 0.99991 0.99995 -0.000044

0.00009 0.00005 0.000045

ncall = 295

Table 2.1: Abbreviated Numerical Output at t = 5 for ncase=1

88 WAVE FRONT RESOLUTION IN VEGF ANGIOGENESIS

(2.3.2) Effect of diffusion on the traveling-wave solution

As a parameter variation, ε in eq. (2.1a) is changed from ε = 0 for ncase=1 to ε = 1 for
ncase2 in the main program of Listing 2.1.

#

Parameters

c=1;d=1;k=1;m1=0;m2=1;chi=2;alpha=1;

if(ncase==1){eps=0;}

if(ncase==2){eps=1;}

This in effect adds diffusion to eq. (2.1a). As we can observe in Figs. 2.3 and 2.4, the
change in ε has a major effect on the solution.

We can note the following points about Figs. 2.3, 2.4.

• The solution for u1(x, t) in Fig. 2.3 is no longer a traveling wave. For example,
the individual curves are not equally spaced as they are in Fig. 2.1 (which fol-
lows for a solution that is a function of z = x − ct only, for equally spaced t
(t = 0, 1, 2, 3, 4, 5)).

• In Fig. 2.4, the solution for u2(x, t) is no longer a function of z only as in eq. (2.4b).
That is, the shape of the function changes with increasing t and the diffusion from
ε = 1 has the expected effect of smoothing the solution.

The routines in Listings 2.1, 2.2, and 2.3 can be used for a variety of numerical exper-
iments, both with regard to parameter changes and modification of the PDEs.

(2.4) Conclusions

In the preceding discussion, a physical interpretation of the RHS terms in eqs. (2.1) has
not been included to conserve space. Also, this type of interpretation is available from an
extensive literature on chemotaxis and angiogenesis. Rather, the emphasis has been on
numerical methods, and associated routines, for the solution of eqs. (2.1) that can then
be applied to other PDE systems.

Among the possibilities for further study are

• Numerical examination of the RHS terms of eqs. (2.1) and their relative contribu-
tion to the LHS derivatives in t. This is readily accomplished since u1(x, t) and
u2(x, t) are available to compute and display these terms. Examples of this type
of analysis are given in [4]. Generally, this type of examination of the PDE RHS
terms provides an explanation of the principal features of the solution as defined
by the LHS derivatives in t.This in turn facilitates experimentation with the model
such as modification of the RHS terms and addition of new RHS terms.

• Use of other coordinates, such as spherical coordinates, to match the physical
geometry of interest, e.g., a tumor. This change in coordinates would be straight-
forward if the PDEs are to remain 1D. For example, the Cartesian coordinate x in

REFERENCES 89

the Fickian diffusion term of eq. (2.1a)

u1xx =
∂2u1

∂x2

would be replaced with the spherical radial coordinate r

1

r2

∂

(
r2

∂u1
∂r

)

∂r
=

1

r2
(r2u1r)r

An aspect of this change of variables not encountered with the preceding analysis
in x is the use of the derivative in r at r = 0 (regularizing the singularity in r at
r = 0, which can usually be done with l’Hospital’s rule).

• Changing the ICs (rather than using eqs. (2.5)) to reflect the initial distributions of
endothelial cells and VEGF. This would be done for ncase ≥ 2 if the analytical
solution is to be retained for ncase = 1.

These possibilities for numerical experimentation demonstrate the utility of the
numerical approach to the PDE model since equivalent analytical experimentation
would be difficult. The library routines, e.g., ode, dss004, can be used for conve-
nience and with reliability for further development. The general framework of the
main program in Listing 2.1 and the MOL/ODE routine, angio 1, in Listing 2.2 can
be a starting point for new PDE model applications. This approach is demonstrated in
subsequent chapters.

References

[1] Griffiths, G.W. and W.E. Schiesser (2012), Traveling Wave Analysis of Partial Differential
Equations, Elsevier/Academic Press, Boston, MA.

[2] Murray, J.D. (2003), Mathematical Biology, II: Spatial Models and Biomedical Applica-
tions, 3rd edn, Springer-Verlag, New York.

[3] National Cancer Institute information about angiogenesis. http://www.cancer.gov/

cancertopics/factsheet/Therapy/angiogenesis-inhibitors;
http://oncotherapy.us/ECM/ECM Angiogenesis NCI.pdf.

[4] Schiesser, W.E. (2014), Differential Equation Analysis in Biomedical Science and Engineer-
ing: Partial Differential Equation Applications in R, John Wiley & Sons, Inc., Hoboken,
NJ.

[5] Wang, Z.-A. (2012), Wavefront of an angiogenesis model, Discrete and Continuous Dynam-
ical Systems, Series B, 17, 8, 2849–2860.

3
THERMOGRAPHIC TUMOR LOCATION

The mathematical model discussed in this chapter describes heat conduction in the tissue
resulting from heat release by a tumor. This heat release results in an elevated temper-
ature on the skin surface near the tumor. This pattern (image) can be detected by an
infrared sensor, and this procedure, termed thermography, can therefore be used to detect
the tumor. The following statements [1] give some additional background.

In non-invasive thermal diagnostics, accurate correlations between the thermal image
on skin surface and interior human physiology are often desired, which require general
solutions for the bioheat equation.

In general the body surface temperature is controlled by the blood circulation under-
neath the skin, local metabolism, and the heat exchange between the skin and its environ-
ment. Changes in any of these parameters can induce variations of temperature and heat flux
at the skin surface reflecting the physiologic state of the human body. The particular tumor
architecture and angiogenesis processes can lead to an abnormal situation. Inflammation,
metabolic rate, interstitial hypertension, abnormal vessel morphology and lack of response
to homeostatic signals are some of the particular features that make tumors behave differ-
ently than normal tissue in terms of heat production and dissipation. Temperatures at skin
above a breast tumor or a malignant melanoma, a tumor of melanocytes, which are found
predominantly in skin, have been found to be several degrees higher than that of the sur-
rounding area. So, the abnormal temperature at skin surface can be used in order to predict
the location, size and thermal properties of the tumor region as well as to study the tumor
evolution after a treatment procedure.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

92 THERMOGRAPHIC TUMOR LOCATION

As suggested in these statements, the objectives of this chapter are to

• Develop a 2D 1-PDE model based on the Pennes bioheat equation [1,2] in cylin-
drical coordinates, including the initial condition (IC) and boundary conditions
(BCs).

• Code (program) a method of lines (MOL) solution of the model to give temperature
profiles throughout the tissue that includes the tumor and the skin surface.

• Investigate details and features of the model, such as the

– Tumor volumetric heat generation rate.

– Effect on the skin surface image of the tumor depth.

– Effect on the model solution of heat transfer parameters such as the air-to-skin
heat transfer coefficient and the perfusion rate that determines the blood temper-
ature regulation of the tissue.

– Changes in the size of the tumor.

– Spatial gridding to achieve acceptable accuracy (convergence) of the numerical
solution.

The mathematical model for thermographic tumor detection is formulated next. A
detailed derivation of a 3D PDE in cylindrical coordinates is given as additional back-
ground in Appendix A.

(3.1) 2D, 1-PDE model

The PDE model is formulated in cylindrical coordinates, (r, θ, z), starting with the
heat conduction equation (Fourier’s second law), which is a special case of eq. (A.5),
Appendix A, with the dependent variable taken as T (r, z, t). 1

C
∂T

∂t
=

1

r

∂

∂r

(
kr

∂T

∂r

)
+

∂

∂z

(
kz

∂T

∂z

)
(3.1a)

where

Variable, parameter Interpretation
T tissue temperature (◦C)
t time (s)
r radial position in the thermal domain (cm)
z axial position in the thermal domain (cm)
C tissue volumetric heat capacity (J/cm3 ◦C)

kr, kz tissue thermal conductivity in r, z directions
(J cm/s cm2 ◦C)

1The dependent variable, tissue temperature, is denoted as T (r, z, t) (for heat transfer) rather than c(r, z, t)
as in Appendix A (for mass transfer). Also, this is a departure from the convention of designating the PDE
dependent variable as u1(r, z, t), primarily because of the use of T in eqs. (3.1c), (3.2), (3.3), e.g., Tb, T0, Ta.

2D, 1-PDE MODEL 93

Variation of T with θ is neglected so that eq. (3.1a) has two spatial independent vari-
ables, (r, z).

Eq. (3.1a) has a variable coefficient that forms a singularity (1/r for r = 0), and
nonlinear coefficients resulting from temperature-dependent physical properties (C(T),
kr(T), kz(T)). In the following analysis, temperature-independent (constant) properties
are assumed2 so that eq. (3.1a) becomes

C
∂T

∂t
= kr

1

r

∂

∂r

(
∂T

∂r

)
+ kz

∂

∂z

(
∂T

∂z

)

or after expanding the RHS derivative in r

C
∂T

∂t
= kr

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+ kz

(
∂2T

∂z2

)
(3.1b)

The tissue is assumed to be isotropic (the physical properties are spatially uniform or
direction independent) so that kr = kz = k.

We next include a term for heat transfer between the tissue and blood that can be at
different temperatures, T and Tb, respectively. Also, a volumetric heat source term is
added for the tumor, Qm(r, z, t).

C
∂T

∂t
= k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+ k

(
∂2T

∂z2

)
+ ke(Tb − T) + Qm (3.1c)

where

Variable, parameter Interpretation
Tb blood temperature (◦C)

ke = GbCb perfusion coefficient (J/s cm3 ◦C)
Gb blood perfusion rate (s−1)
Cb blood volumetric specific heat (J/cm3 ◦C)
Qm volumetric heat source (J/cm3 s)

Eq. (3.1c), termed the Pennes bioheat transfer equation [1], is the starting point for
the MOL analysis that follows. The numerical solution to eq. (3.1c) gives the tissue
temperature, T (r, z, t), throughout the spatial domain 0 ≤ r ≤ r0, 0 ≤ z ≤ zL, where
r0 and zL are the dimensions of the cylindrical spatial domain.

Eq. (3.1c) is first order in t and second order in r and z. It therefore requires one
initial condition (IC) in t and two boundary conditions (BCs) in r and z. We take these
auxiliary conditions as

T (r, z, t = 0) = T0 (3.2)

∂T (r = 0, z, t)

∂r
= 0;

∂T (r = r0, t)

∂r
= 0 (3.3a,b)

2Temperature-dependent tissue properties can be handled numerically as illustrated in [4], Chapter 8.

94 THERMOGRAPHIC TUMOR LOCATION

− k
∂T (r, z = 0, t)

∂z
= h(Ta − T (r, z = 0, t));

∂T (r, z = zL, t)

∂z
= 0 (3.3c,d)

where

Parameter Interpretation
T0 tissue initial (normal) temperature (◦C)
r0 radius of the thermal domain (cm)
zL length of the thermal domain (cm)
Ta ambient temperature (◦C)
h skin surface to ambient heat transfer

coefficient (J/s cm2 ◦C)

BCs (3.3a,b,d) are termed Neumann since the first derivatives of T (r, z, t) are specified.
BC (3.3c) is termed third type or Robin since it includes the dependent variable T (r, z =

0, t) and its derivative in z,
∂T (r, z = 0, t)

∂z
.

Eqs. (3.2) and (3.3) have the following interpretation.

• IC (3.2): The tissue temperature starts at the normal temperature T0.

• BC (3.3a): Symmetry condition at the centerline r = 0.

• BC (3.3b): r0 is large enough that there is no radial variation at r = r0.

• BC (3.3c): The skin-to-air heat transfer rate is proportional to the temperature dif-
ference Ta − T (r, z = 0, t).

• BC (3.3d): The axial dimension is large enough that there is no axial variation at
z = zL.

The method of lines (MOL) programming of the model consisting of eqs. (3.1c),
(3.2), (3.3), is considered next.

(3.2) MOL analysis

Eq. (3.1c) is approximated as a system of ordinary differential equations (ODEs) within
the MOL context. The programming for the numerical integration of this MOL/ODE
system is considered next.

(3.2.1) ODE routine

The programming of eqs. (3.1c) and (3.3) is in the following routine.

thermo 1=function(t,u,parms){

#

Function thermo 1 computes the t derivative vector

of T(r,z,t)

#

MOL ANALYSIS 95

1D vector to 2D matrix

T=matrix(0,nrow=nr,ncol=nz);

Tt=matrix(0,nrow=nr,ncol=nz);

for(i in 1:nr){

for(j in 1:nz){

T[i,j]=u[(i-1)*nz+j];

}

}

#

BCs

Tr=matrix(0,nrow=nr,ncol=nz);

Tz=matrix(0,nrow=nr,ncol=nz);

#

r=0

Tr[1,]=0;

#

r=r0

Tr[nr,]=0;

#

z=0

Tz[,1]=-(h/k)*(Ta-T[,1]);

#

z=zL

Tz[,nz]=0;

#

Trr

Trr=matrix(0,nrow=nr,ncol=nz);

nl=2;nu=2;

for(j in 1:nz){

Trr[,j]=dss044(0,r0,nr,T[,j],Tr[,j],nl,nu);

}

#

Tzz

Tzz=matrix(0,nrow=nr,ncol=nz);

nl=2;nu=2;

for(i in 1:nr){

Tzz[i,]=dss044(0,zL,nz,T[i,],Tz[i,],nl,nu);

}

#

MOL/ODEs at grid points in r and z

for(i in 1:nr){

for(j in 1:nz){

if(i==1){

Tt[i,j]=(1/C)*k*2*Trr[i,j]+k*Tzz[i,j]+

ke*(Tb-T[i,j])+Qm[i,j];

}else{

96 THERMOGRAPHIC TUMOR LOCATION

Tt[i,j]=(1/C)*k*(Trr[i,j]+1/r[i]*Tr[i,j])+k*Tzz[i,j]+

ke*(Tb-T[i,j])+Qm[i,j];

}

#

Next j

}

#

Next i

}

#

2D matrix to 1D vector

ut=rep(0,nr*nz);

for(i in 1:nr){

for(j in 1:nz){

ut[(i-1)*nz+j]=Tt[i,j];

}

}

#

Increment calls to thermo 1

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 3.1: MOL/ODE routine for Eqs. (3.1c) and (3.3)

We can note the following details about Listing 3.1.

• The function is defined.

thermo 1=function(t,u,parms){

#

Function thermo 1 computes the t derivative vector

of T(r,z,t)

• The input vector u is placed in a 2D matrix T to facilitate the programming of eqs.
(3.1c), (3.2), and (3.3). The first (row) and second (column) subscripts pertain to r
and z, respectively, in eq. (3.1c).

#

1D vector to 2D matrix

T=matrix(0,nrow=nr,ncol=nz);

Tt=matrix(0,nrow=nr,ncol=nz);

for(i in 1:nr){

for(j in 1:nz){

MOL ANALYSIS 97

T[i,j]=u[(i-1)*nz+j];

}

}

• BCs (3.3) are programmed. First, matrices for
∂T

∂r
and

∂T

∂z
defined at the bound-

aries are declared.

#

BCs

Tr=matrix(0,nrow=nr,ncol=nz);

Tz=matrix(0,nrow=nr,ncol=nz);

The four BCs, eqs. (3.3), are then programmed.

– BC (3.3a) with the first subscript 1 for r = 0.

#

r=0

Tr[1,]=0;

– BC (3.3b) with the first subscript nr for r = r0.

#

r=r0

Tr[nr,]=0;

– BC (3.3c) with the second subscript 1 for z = 0.

#

z=0

Tz[,1]=-(h/k)*(Ta-T[,1]);

– BC (3.3d) with the second subscript nz for z = zL.

#

z=zL

Tz[,nz]=0;

A vectorized operator is used, e.g., Tr[1,] for all values of the second subscript
corresponding to all values of z with r = 0.

• The second derivative
∂2T

∂r2
, Trr, in eq. (3.1c) is computed by dss044.

#

Trr

Trr=matrix(0,nrow=nr,ncol=nz);

nl=2;nu=2;

98 THERMOGRAPHIC TUMOR LOCATION

for(j in 1:nz){

Trr[,j]=dss044(0,r0,nr,T[,j],Tr[,j],nl,nu);

}

The for steps through the values of z, 0 ≤ z ≤ zL. The vector operator in Trr[,j]
includes all values of r for 0 ≤ r ≤ r0. Briefly, the input arguments of dss044 are

– 0,r0,nr: Boundary values of r defining the interval in r, 0 ≤ r ≤ r0, over
which the second derivative Trr is computed on a grid of nr points.

– T[,j]: Vector of T (r, z, t) values over r at a specific z (point j) for which the
second derivative Trr in computed.

– Tr[,j]: Vector of first derivatives in r, including the boundary values defined
previously.

– nl,nu: Specification of the type of BCs, in this case nl=2,nu=2, for specifi-
cation of the first derivative in r at the boundaries, that is, for Neumann BCs
(3.3a), (3.3b). nl=1,nu=1 (not used) would specify T at the boundaries, that is,
Dirichlet BCs.

The dss (Differentiation in Space Subroutines) are discussed in detail in [3].

• The second derivative
∂2T

∂z2
, Tzz, in eq. (3.1c) is computed by dss044.

#

Tzz

Tzz=matrix(0,nrow=nr,ncol=nz);

nl=2;nu=2;

for(i in 1:nr){

Tzz[i,]=dss044(0,zL,nz,T[i,],Tz[i,],nl,nu);

}

The programming is analogous to that for Trr. BC (3.3c) specifies the derivative at
the boundary z = 0 so that nl=2, and BC (3.3d) specifies the derivative at z = zL
so that nu=2.

• All of the spatial (boundary value) derivatives in eq. (3.1c) have been computed,

so
∂T

∂t
of eq. (3.1c) is programmed (within the MOL format).

#

MOL/ODEs at grid points in r and z

for(i in 1:nr){

for(j in 1:nz){

if(i==1){

Tt[i,j]=(1/C)*k*2*Trr[i,j]+k*Tzz[i,j]+

ke*(Tb-T[i,j])+Qm[i,j];

}else{

Tt[i,j]=(1/C)*k*(Trr[i,j]+1/r[i]*Tr[i,j])+k*Tzz[i,j]+

ke*(Tb-T[i,j])+Qm[i,j];

}

MOL ANALYSIS 99

#

Next j

}

#

Next i

}

Note the two nested for’s to cover the 2D domain (0 ≤ r ≤ r0)× (0 ≤ z ≤ zL).
At r = 0 (i=1), the first derivative term in r in eq. (3.1c) is indeterminate (0/0).
The singularity 1/r can be regularized using l’Hospital’s rule and BC (3.3a).

lim
r→0

1

r

∂T

∂r
=

∂2T

∂r2
(3.4)

This result is programmed for i=1, that is,

(
∂2T

∂r2
+

1

r

∂T

∂r

)
r=0

= 2
∂2T

∂r2

or 2*Trr[i,j] within the inner for.

• All of the values of
∂T

∂t
in eq. (3.1c) are now defined numerically and are then

placed in a vector ut to return to the ODE integrator called in the main program
(considered next).

#

2D matrix to 1D vector

ut=rep(0,nr*nz);

for(i in 1:nr){

for(j in 1:nz){

ut[(i-1)*nz+j]=Tt[i,j];

}

}

• The number of calls to thermo 1 is incremented and returned to the main program
with <--.

#

Increment calls to thermo 1

ncall <<- ncall+1;

• The derivative vector ut is returned to the ODE integrator with a combination of c
(the vector operator in R), list (the ODE integrator requires a list for the derivative
vector), and return.

#

Return derivative vector

100 THERMOGRAPHIC TUMOR LOCATION

return(list(c(ut)));

}

The final } concludes function thermo 1.

The main program that calls thermo 1 of Listing 3.1 is next.

(3.2.2) Main program

The main program that calls ODE integrator lsodes is in Listing 3.2.

#

Thermographic tumor detection

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solutions

setwd("g:/chap3");

source("thermo 1.R");

source("dss044.R");

#

Model parameters

C=3; k=0.002; h=0.0005; ke=0.001; r0=1; zL=2;

Ta=(70-32)/1.8;T0=(98.6-32.0)/1.8;Tb=T0;

#

Radial grid

nr=11;

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

#

Axial grid

nz=11;

z=seq(from=0,to=zL,by=(zL-0)/(nz-1));

#

Heat source

Qm=matrix(0,ncol=nr,nrow=nz);

nrs=1;nzs=4;

Qm[nrs,nzs]=1;

#

Grid in t

nout=4;tf=6*60;

tout=seq(from=0,to=tf,by=tf/(nout-1));

#

Display selected parameters

cat(sprintf(

"\n\n nr = %2d nz = %2d\n",nr,nz));

MOL ANALYSIS 101

#

Initial condition

u0=rep(0,nr*nz);

for(i in 1:nr){

for(j in 1:nz){

u0[(i-1)*nz+j]=T0;

}

}

ncall=0;

#

ODE integration

out=lsodes(func=thermo 1,y=u0,times=tout,parms=NULL);

nrow(out)

ncol(out)

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#

Vector to matrix

T =matrix(0,nrow=nr,ncol=nz);

T1=matrix(0,nrow=nr,ncol=nz);

T2=matrix(0,nrow=nr,ncol=nz);

T3=matrix(0,nrow=nr,ncol=nz);

T4=matrix(0,nrow=nr,ncol=nz);

for(it in 1:nout){

for(i in 1:nr){

for(j in 1:nz){

T[i,j]=out[it,(i-1)*nr+j+1];

cat(sprintf("\n t = %3.0f r = %4.2f z = %4.2f

T = %5.2f",tout[it],r[i],z[j],T[i,j]));

}

}

cat(sprintf("\n"));
if(it==1){T1=T;}

if(it==2){T2=T;}

if(it==3){T3=T;}

if(it==4){T4=T;}

}

#

2 x 2 array of plots

par(mfrow=c(2,2));

matplot(x=r,y=T1,type="l",xlab="r",ylab="T(r,z,t=0)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=0),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T2,type="l",xlab="r",ylab="T(r,z,t=120)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

102 THERMOGRAPHIC TUMOR LOCATION

main="T(r,z,t=120),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T3,type="l",xlab="r",ylab="T(r,z,t=240)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=240),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T4,type="l",xlab="r",ylab="T(r,z,t=360)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=360),\n z=0,0.2,...,2",lwd=2);

Listing 3.2: Main program for Eqs. (3.1c), (3.2), and (3.3)

We can note the following details about Listing 3.2.

• The ODE integrator library deSolve and the subordinate routines thermo 1,

dss044 are accessed. The setwd (set working directory) has to be edited for the
local computer (note the use of / rather than the usual \).

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solutions

setwd("c:/chap3");

source("thermo 1.R");

source("dss044.R");

• The parameters of eqs. (3.1c), (3.2), and (3.3) are defined numerically.

#

Model parameters

C=3; k=0.002; h=0.0005; ke=0.001; r0=1; zL=2;

Ta=(70-32)/1.8;T0=(98.6-32.0)/1.8;Tb=T0;

cgs units are used for these parameters, e.g.,

Parameter Name Units
C volumetric specific heat J/cm3 ◦C
k thermal conductivity J cm/s cm2 ◦C
h skin-to-air heat transfer coefficient J/s cm2 ◦C

The other parameters ke,r0,zL,Ta,T0,Tb were discussed previously as part of
the derivation of eq. (3.1c). The temperatures are converted from ◦F to ◦C.

• A radial grid of 11 points is defined for the interval 0 ≤ r ≤ r0 (in cm).

#

Radial grid

nr=11;

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

MOL ANALYSIS 103

• An axial grid of 11 points is defined for the interval 0 ≤ z ≤ zL (in cm).

#

Axial grid

nz=11;

z=seq(from=0,to=zL,by=(zL-0)/(nz-1));

• A volumetric heat source for the tumor that is in eq. (3.1c), Qm, is defined at the
point r = 0, z = (4− 1)/(11− 1)(zL − 0) = (3/10)(2) = 0.6 cm from the skin
surface (at z = 0).

#

Heat source

Qm=matrix(0,ncol=nr,nrow=nz);

nrs=1;nzs=4;

Qm[nrs,nzs]=1;

This placement of the tumor heat source can be varied both with respect to the
position, e.g., (r = 0, z = 0.6), and the size (using more than one point in r and z).
Thus, the effect of tumor position and size on the skin temperature pattern (image)
can be studied.

• A grid in t of 4 output points is defined for t = 0, 120, 240, 360 (s).

#

Grid in t

nout=4;tf=6*60;

tout=seq(from=0,to=tf,by=tf/(nout-1));

• The grid dimensions of the thermal domain are displayed.

#

Display selected parameters

cat(sprintf(

"\n\n nr = %2d nz = %2d\n",nr,nz));

• The IC of eq. (3.2) is a constant over the thermal domain, T0= 98.6 ◦F (previously
defined and converted to ◦C).

#

Initial condition

u0=rep(0,nr*nz);

for(i in 1:nr){

for(j in 1:nz){

u0[(i-1)*nz+j]=T0;

}

}

ncall=0;

104 THERMOGRAPHIC TUMOR LOCATION

This IC is placed in a vector, u0, that is, an input to the ODE integrator lsodes
(considered next). The length of u0 (= 11× 11 = 121) informs lsodes of the
number of ODEs to be integrated. Finally, the counter for the calls to thermo 1 is
initialized.

• The 121-ODE vector is integrated by lsodes.

#

ODE integration

out=lsodes(func=thermo 1,y=u0,times=tout,parms=NULL);

nrow(out)

ncol(out)

The input arguments to lsodes are: (1) the MOL/ODE function, thermo 1,
of Listing 3.1; (2) the IC vector, u0; (3) the vector of output values of t,
tout; and (4) parameters passed to thermo 1, parms, (unused in this case);
func,y,times,parms are reserved names for the input arguments of lsodes.
The numerical ODE solutions are returned in out.
Finally, the row and column dimensions of out, 4,121+1 respectively, are dis-
played by nrow,nout for confirmation. The additional 1 in the second dimension
is used for the value of t (in out(4,1) so that the ODE solutions are in out(4,2)

to out(4,122)).

• The number of calls to thermo 1 is displayed to give a measure of the computa-
tional effort required to compute the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• Arrays are declared for plotting the numerical solution at t = 0, 120, 240, 360.

#

Vector to matrix

T =matrix(0,nrow=nr,ncol=nz);

T1=matrix(0,nrow=nr,ncol=nz);

T2=matrix(0,nrow=nr,ncol=nz);

T3=matrix(0,nrow=nr,ncol=nz);

T4=matrix(0,nrow=nr,ncol=nz);

• The numerical solution of eq. (3.1c), T (r, z, t), is placed in matrix T using three
nested for’s: (1) for in it for t, (2) for in nr for r, and (3) for in nz for z. The
offset of 1 in (i-1)*nr+j+1 reflects the values of t also placed in out (so the sec-
ond dimension of out is 122 rather than (11)(11)=121 as explained previously,
and the value 1 is for t while 2-122 are for the 121 values of T (r, z, t)).

for(it in 1:nout){

for(i in 1:nr){

MODEL OUTPUT 105

for(j in 1:nz){

T[i,j]=out[it,(i-1)*nr+j+1];

cat(sprintf("\n t = %3.0f r = %4.2f z = %4.2f

T = %5.2f",tout[it],r[i],z[j],T[i,j]));

}

}

cat(sprintf("\n"));
if(it==1){T1=T;}

if(it==2){T2=T;}

if(it==3){T3=T;}

if(it==4){T4=T;}

}

After the detailed output from the sprintf, the numerical solution is placed in the
four matrices T1 to T4 for t = 0, 120, 240, 360.

• A 2× 2 array of plots is produced with the matplot utility corresponding to t =
0, 120, 240, 360. Arrays T1,T2,T3,T4 demonstrate the t evolution of the solution
to eqs. (3.1c), (3.2) and (3.3).

#

2 x 2 array of plots

par(mfrow=c(2,2));

matplot(x=r,y=T1,type="l",xlab="r",ylab="T(r,z,t=0)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=0),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T2,type="l",xlab="r",ylab="T(r,z,t=120)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=120),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T3,type="l",xlab="r",ylab="T(r,z,t=240)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=240),\n z=0,0.2,...,2",lwd=2);

matplot(x=r,y=T4,type="l",xlab="r",ylab="T(r,z,t=360)",

xlim=c(0,r[nr]),ylim=c(34,39),lty=1,

main="T(r,z,t=360),\n z=0,0.2,...,2",lwd=2);

The numerical and graphical outputs are given in Table 3.1 and Fig. 3.1.

The library differentiator, dss044 (used in thermo 1 of Listing 3.1), is discussed in
detail in [3]. This completes the programming of eqs. (3.1c), (3.2), and (3.3).

(3.3) Model output

The numerical and graphical outputs from Listings 3.1 and 3.2 in Table 3.1 and Fig. 3.1
are discussed next.

We can note the following details of the abbreviated output in Table 3.1 and the graph-
ical output in Fig. 3.1.

106 THERMOGRAPHIC TUMOR LOCATION

nr = 11 nz = 11

nrow(out)

[1] 4

ncol(out)

[1] 122

ncall = 286

t = 0 r = 0.00 z = 0.00 T = 37.00

t = 0 r = 0.00 z = 0.20 T = 37.00

t = 0 r = 0.00 z = 0.40 T = 37.00

t = 0 r = 0.00 z = 0.60 T = 37.00

t = 0 r = 0.00 z = 0.80 T = 37.00

t = 0 r = 0.00 z = 1.00 T = 37.00

. .

. .

. .

Output for t = 0, r = 0, z = 1.2

to r = 1, z = 0.8 removed

. .

. .

. .

t = 0 r = 1.00 z = 1.00 T = 37.00

t = 0 r = 1.00 z = 1.20 T = 37.00

t = 0 r = 1.00 z = 1.40 T = 37.00

t = 0 r = 1.00 z = 1.60 T = 37.00

t = 0 r = 1.00 z = 1.80 T = 37.00

t = 0 r = 1.00 z = 2.00 T = 37.00

. .

. .

. .

Output for t = 120, 240 removed

. .

. .

. .

t = 360 r = 0.00 z = 0.00 T = 37.32

t = 360 r = 0.00 z = 0.20 T = 37.70

t = 360 r = 0.00 z = 0.40 T = 37.97

t = 360 r = 0.00 z = 0.60 T = 39.37

t = 360 r = 0.00 z = 0.80 T = 37.95

t = 360 r = 0.00 z = 1.00 T = 37.54

. .

. .

. .

Table 3.1: Abbreviated Output from Listings 3.1 and 3.2

MODEL OUTPUT 107

Output for t = 360, r = 0, z = 1.2

to r = 1, z = 0.8 removed

. .

. .

. .

t = 360 r = 1.00 z = 1.00 T = 36.77

t = 360 r = 1.00 z = 1.20 T = 36.85

t = 360 r = 1.00 z = 1.40 T = 36.91

t = 360 r = 1.00 z = 1.60 T = 36.94

t = 360 r = 1.00 z = 1.80 T = 36.96

t = 360 r = 1.00 z = 2.00 T = 36.97

Table 3.1: (Continued)

• The grid dimensions of the thermal domain are confirmed.

nr = 11 nz = 11

• The dimensions of the solution matrix out are confirmed.

nrow(out)

[1] 4

ncol(out)

[1] 122

The second dimension of out is (11)(11) + 1 = 122 as discussed previously.

• IC (3.2) is confirmed (T (r, z, t = 0) = 98.6 ◦C = 37.0 ◦C) as expected. Checking
the IC is worthwhile since if it is incorrect, the remaining solution will be incorrect.

• The computational effort to compute a solution is quite modest, ncall = 286.

• At the centerline r = 0, the temperature T (r = 0, z = 0.60, t = 120) = 39.37 is
a maximum as expected since this is the point where the tumor is located. The
maximum temperature rise above the IC, 39.37− 37.00 = 2.37 ◦C, is appreciable,
but as observed in the subsequent discussion, it is not transmitted to the skin surface
where the temperature image is measured (observed).

• At t = 240, the corresponding output (not in Table 3.1) is

t = 240 r = 0.00 z = 0.60 T = 39.35

Thus, the maximum temperature is nearly the same as for t = 360 (39.37 vs
39.35) so that the thermal region appears to have reached a nearly steady state or
equilibrium condition (with no further change with respect to t). This conclusion
is confirmed by Fig. 3.1. This steady state comes about when the heat generation
from the tumor is matched by the heat loss through the skin at z = 0 (there is no
heat loss through the surfaces at r = r0 and z = zL since eqs. (3.3b) and (3.3d) are
zero heat flux or insulated BCs).

108 THERMOGRAPHIC TUMOR LOCATION

0.0 0.2 0.4 0.6 0.8 1.0

34
35

36
37

38
39

T(r,z,t = 0), z = 0,0.2,...,2

r

T
(r

,z
,t

=
0)

0.0 0.2 0.4 0.6 0.8 1.0
34

35
36

37
38

39

T(r,z,t = 120), z = 0,0.2,...,2

r

T
(r

,z
,t

=
12

0)

0.0 0.2 0.4 0.6 0.8 1.0

34
35

36
37

38
39

T(r,z,t = 240), z = 0,0.2,...,2

r

T
(r

,z
,t

=
24

0)

0.0 0.2 0.4 0.6 0.8 1.0

34
35

36
37

38
39

T(r,z,t = 360), z = 0,0.2,...,2

r

T
(r

,z
,t

=
36

0)

Figure 3.1 Solution to eqs. (3.1c), (3.2) and (3.3), t = 0, 120, 240, 360

The temperature rise at the skin surface z = 0 is of particular interest since that is
where the temperature image is observed. To investigate this region in the thermal region,
the output from the main program of Listing 3.1 is modified to

for(it in 1:nout){

for(i in 1:nr){

T[i,j]=out[it,(i-1)*nr+j+1];

cat(sprintf("\n t = %3.0f r = %4.2f z = %4.2f

MODEL OUTPUT 109

0.0

34.0

36.0

0.4 0.8

r

0.0

34.0

36.0

0.4 0.8

r

T(r,z = 0, t = 0)

T(r,z = 0, t = 240) T(r,z = 0, t = 360)

T(r,z = 0, t = 120)

T
(r

,z
 =

 0
, t

 =
 0

)

0.0

34.0

36.0

0.4 0.8

r

T
(r

,z
 =

 0
, t

 =
 2

40
)

T
(r

,z
 =

 0
, t

 =
 1

20
)

0.0

34.0

36.0

0.4 0.8

r

T
(r

,z
 =

 0
, t

 =
 3

60
)

Figure 3.2 Solution to eqs. (3.1c), (3.2) and (3.3), t = 0, 120, 240, 360, z = 0

T = %5.2f",tout[it],r[i],z[1],T[i,1]));

}

}

The skin surface temperature T (r, z = 0, t) is now placed in arrays T,T1,T2,T3,T4 for
subsequent plotting (note the subscript 1 in z[1],T[i,1] corresponding to z = 0). Only
two nested for’s are used (in t and r) since z = 0 and a for in z is not required. Also,
the vertical scaling in the plotting is changed from ylim=c(34,39) to ylim=c(35,37)
to accommodate the reduced temperature variation at z = 0.

Abbreviated numerical output is given in Table 3.2, and graphical output is given in
Fig. 3.2.

We can note the following details about the output in Table 3.2.

• At t = 360, the maximum temperature, 35.90, is at r = 0, z = 0, as expected.
This contrasts with the maximum temperature at the tumor, T (r = 0, z = 0.6, t =
360) = 39.37 (from Table 3.1).

• Temperatures fall below the IC temperature of T (r, z = 0, t = 0) = 37.00 ◦C due
to the ambient temperature Ta = 70 ◦F = 21.1 ◦C.

• T (r, z = 0, t) appears to reach a steady state in Fig. 3.2 as expected (from Fig.
3.1), but the steady-state temperatures T (r, z = 0, t → ∞) do not reach the ambi-
ent temperature, Ta = 21.1 ◦C, since a temperature drop at the skin surface is
required to produce the steady-state heat transfer rate. This temperature drop is
dependent on the heat transfer coefficient h in BC (3.3c). As the heat transfer coef-
ficient increases, the temperature drop (Ta − T (r, z = 0, t)) decreases (this can be
observed by executing the main program with an increased h).

110 THERMOGRAPHIC TUMOR LOCATION

nr = 11 nz = 11

nrow(out)

[1] 4

ncol(out)

[1] 122

ncall = 286

t = 0 r = 0.00 z = 0.00 T = 37.00

t = 0 r = 0.10 z = 0.00 T = 37.00

t = 0 r = 0.20 z = 0.00 T = 37.00

t = 0 r = 0.30 z = 0.00 T = 37.00

t = 0 r = 0.40 z = 0.00 T = 37.00

t = 0 r = 0.50 z = 0.00 T = 37.00

t = 0 r = 0.60 z = 0.00 T = 37.00

t = 0 r = 0.70 z = 0.00 T = 37.00

t = 0 r = 0.80 z = 0.00 T = 37.00

t = 0 r = 0.90 z = 0.00 T = 37.00

t = 0 r = 1.00 z = 0.00 T = 37.00

. .

. .

. .

Output for t = 120, 240 removed

. .

. .

. .

t = 360 r = 0.00 z = 0.00 T = 35.90

t = 360 r = 0.10 z = 0.00 T = 35.73

t = 360 r = 0.20 z = 0.00 T = 35.42

t = 360 r = 0.30 z = 0.00 T = 35.13

t = 360 r = 0.40 z = 0.00 T = 34.89

t = 360 r = 0.50 z = 0.00 T = 34.71

t = 360 r = 0.60 z = 0.00 T = 34.57

t = 360 r = 0.70 z = 0.00 T = 34.47

t = 360 r = 0.80 z = 0.00 T = 34.40

t = 360 r = 0.90 z = 0.00 T = 34.36

t = 360 r = 1.00 z = 0.00 T = 34.35

Table 3.2: Abbreviated Output from Listings 3.1 and 3.2 for z = 0

(3.4) Summary and conclusions

The preceding discussion of the thermographic model of eqs. (3.1c), (3.2), and (3.3)
indicates that an elevated skin surface temperature is possible due to heat release from
a tumor. This elevated temperature could be observed with an infrared sensor to locate
a tumor.

The model could be used to investigate how the skin temperature varies with the tumor
location (the preceding results are for z = 0.6 cm) and thereby predict the effectiveness
of locating a tumor at varying distances from the skin surface. The size of the tumor
could be varied by using more than one grid point to define the tumor location.

REFERENCES 111

Other interesting parameters of the model that could be investigated include: (1) Qm,
the tumor volumetric heat release rate; (2) k, the tissue heat conductivity; (3) ke, the
blood perfusion rate; and (4) h, the skin-surface-to-ambient-air heat transfer coefficient.
In this way, the design and performance of a proposed thermographic tumor location
system can be evaluated.

Finally, the accuracy of the numerical solutions is an important consideration. Since
an analytical solution to eqs. (3.1c), (3.2), and (3.3) is not readily available, the solution
accuracy can be accessed indirectly by:

• h-refinement in which the grid spacing in r and z is changed, e.g., by increasing
the number of grid points, nr,nz, and observing the effect on the numerical solu-
tion. The name for this procedure comes from the use of the symbol h for the grid
spacing in the numerical analysis literature. As a word of warning, as nr,nz are
increased, the total number of MOL/ODEs increases (rapidly) as nr*nz.

• p-refinement in which the calculation of the spatial derivatives in eq. (3.1c) is per-
formed with finite difference approximations (FDs) of varying order and the effect
on the numerical solution is observed. The name for this procedure comes from the
use of the symbol p for the order of the approximation in the numerical analysis
literature. Changing the order is easily accomplished. For example, in thermo 1,
dss044, which is based on fourth order FDs (p = 4), can be replaced with dss046,
based on sixth order FDs (p = 6). The higher order approximations might have
longer computer execution times since the number of calculations is higher, but
this is usually a small effect, and experience has indicated that the use of higher
order approximations is well worth the additional calculations.

h and p-refinement do not require an analytical solution (which is generally
unavailable). This type of error analysis should be part of any numerical study to lend
confidence to the accuracy (convergence) of the computed solutions. The preceding dis-
cussion pertains to the truncation error of the spatial approximations (the term truncation
comes from the truncated Taylor series on which the FD approximations are based).

The same considerations of accuracy pertain to the integration in t (by ode). Gener-
ally, quality library ODE integrators produce solutions that satisfy the error tolerances
(default 10−6 absolute and relative error tolerances of ode), or issue warning messages
if the error tolerances are not met. Thus, the principal source of numerical error in
MOL/PDE analysis is usually the spatial (boundary value) discretizations.

References

[1] Agnelli, J.P., A.A. Barrea, and C.V. Turner (2011), Tumor location and parameter estimation
by thermography, Mathematical and Computer Modelling, 53, 7-8, 1527–1534.

[2] Liu, E.H., G.M. Saidel, and H. Harasaki (2003), Model analysis of tissue responses to tran-
sient and chronic heating, Annals of Biomedical Engineering, 31, 1007–1014.

[3] Schiesser, W.E. and G.W. Griffiths (2009), A Compendium of Partial Differential Equation
Models, Cambridge University Press, Cambridge.

[4] Schiesser, W.E. (2014), Differential Equation Analysis in Biomedical Science and Engineer-
ing: Partial Differential Equation Applications in R, John Wiley & Sons, Inc., Hoboken, NJ.

4
BLOOD-TISSUE TRANSPORT

This chapter extends the discussion of first-order hyperbolic partial differential equations
(PDEs) in Chapter 1 by introducing a 1D, 2-PDE model for a blood-tissue interface. Two
cases of a Riemann problem1 are considered: (1) a set of PDE parameters for which the
numerical resolution of a discontinuity is easily accomplished with any of four approxi-
mations and (2) a set of PDE parameters for which the discontinuity remains pronounced
and relatively difficult to resolve, which, therefore, provides a stringent test of the four
approximations.

The intent of this chapter is to:

• Present a basic PDE model for blood-tissue transport, including the required initial
conditions (ICs) and boundary conditions (BCs).

• Illustrate the coding of the model through a series of R routines, including the use
of library routines for integration of the PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) formats.
• Compare the numerical and analytical solutions to give the exact error in the numer-

ical solution.
• Evaluate several spatial derivative approximations through examination of the

exact error in the numerical solution.
• Discuss the features of the numerical solution and the performance of the algo-

rithms used to compute the solution.
• Consider extensions of the model.

1A Riemann problem is generally defined here as a first-order hyperbolic PDE system with discontinuous
initial-boundary conditions.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

114 BLOOD-TISSUE TRANSPORT

Concentration in u1, u2 possibly pertains to oxygen, nutrients for metabolism, and
metabolites or toxins resulting from metabolism. We start with a statement of the
model.

(4.1) 1D 2-PDE model

The 1D, 2-PDE blood-interface transport model is taken from [1,6],

∂u1

∂t
=− v

∂u1

∂z
+ k1(u2 − u1) (4.1a)

∂u2

∂t
= k2(u1 − u2) (4.1b)

where

u1 blood concentration
u2 tissue concentration
z distance along the blood vessel
t time
v blood velocity

k1k2 mass transfer coefficients

Eqs. (4.1) are derived in [6], pp 195–197.
Eq. (4.1a) is first order in t and z and therefore requires one IC and one BC.

u1(z, t = 0) = f1(z); u1(z = 0, t) = g1(t) (4.2a,b)

Eq. (4.1b) is first order in t and requires one IC.

u2(z, t = 0) = f2(z) (4.2c)

Eqs. (4.1) and (4.2) are the 1D 2-PDE model to be studied by a MOL analysis. Since
these equations are linear, an analytical solution is also available to evaluate the accuracy
of the numerical solution.

The following analytical solution is derived in [6], p. 213.

u1a(z, t) = ua(z, t) +
1

k2

∂ua(z, t)

∂t
(4.3a)

where

ua(z, t) = e−(k1/v)zk2

∫ t

0

h(λ − z/v)e−k2(λ−z/v)Io

{
2

√
k1k2
v

z(λ − z/v)

}
dλ

(4.3b)
and from Leibniz’s rule for differentiating an integral (applied to eq. (4.3b))

∂ua(z, t)

∂t
= e−(k1/v)zk2h(t − z/v)e−k2(t−z/v)Io

{
2

√
k1k2
v

z(t − z/v)

}
(4.3c)

MOL ROUTINES 115

where Io is the modified Bessel function of the first kind of order zero and h(t − z/v) is
the Heaviside function or unit step

h(t − z/v) =

{
0, (t − z/v) < 0
1, (t − z/v) > 0

(4.3d)

At z = zL, eq. (4.3c) becomes an ODE in t

dua(z = zL, t)

dt
= e−(k1/v)zLk2h(t − zL/v)e−k2(t−zL/v)Io

{
2

√
k1k2
v

z(t − zL/v)

}

(4.3e)
which is integrated numerically by adding the RHS function to the ODE routine pde 1

(discussed next). Thus, the analytical solution that is used to evaluate the numerical
solution is itself partially numerical; that is, eq. (4.3e) is integrated numerically to facil-
itate the analysis. Eq. (4.3e) could also be integrated analytically, but that is relatively
complicated and the numerical integration is straightforward.

(4.2) MOL routines

The MOL/ODE routine for ODE/PDE system of eqs. (4.1), (4.2b), and (4.3e) is consid-
ered first.

(4.2.1) MOL/ODE routine

The MOL/ODE routine is in Listing 4.1.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative

vector of the u vector

#

One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for(i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

#

Boundary condition

u1[1]=1;

#

First order spatial derivative

#

ifd = 1: Two-point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#

116 BLOOD-TISSUE TRANSPORT

ifd = 2: Five-point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

ifd = 3: Five-point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

#

Temporal derivatives

u1t=rep(0,n); u2t=rep(0,n);

#

u1t, u2t, u1at

for(i in 1:n){

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]+k1*(u2[i]-u1[i]);

}

u2t[i]=k2*(u1[i]-u2[i]);

}

#

Analytical ODE

lam=t-zL/v;

if(lam<0){

uat=0;

}else{

arg=2*sqrt((k1*k2*zL/v)*lam)

uat=exp1*k2*exp(-k2*lam)*bessel Io(arg)

}

#

Two PDEs and one ODE to one derivative vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

ut[2*n+1]=uat;

#

Increment calls to pde 1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 4.1: ODE/PDE routine for eqs. (4.1), (4.2b), and (4.3e)

MOL ROUTINES 117

We can note the following details about Listing 4.1.

• The function is defined.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative

vector of the u vector

The input arguments are: (1) the current value of t, (2) a vector of dependent vari-
ables of length 2n + 1 where n = 41 grid points in z set in the main program
(discussed subsequently), and (3) a list of parameters available for use in pde 1

(unused in this case). n is available to pde 1 without any special designation, a
feature of R.

• u is placed in two vectors, u1,u2, to facilitate the programming of eqs. (4.1). These
vectors are first declared (preallocated) with the rep utility.

#

One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for(i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

• BC (4.2b) is applied as a constant g1(t) = 1.

#

Boundary condition

u1[1]=1;

Note the use of subscript 1 corresponding to z = 0. This BC is equivalent to impos-
ing the unit step of eq. (4.3d) with z = 0. In other words, the solution to be com-
puted is the response to a unit step at z = 0 since the ICs (4.2a) and (4.2c) are
homogeneous (zero) (as defined in the main program). BC (4.2b) is termed Dirich-
let since the dependent variable u1(z = 0, t) is defined.

• The derivative
∂u1

∂z
in eq. (4.1a) is computed by one of four approximations as

discussed in Chapter 1. ifd is set in the main program.

#

First order spatial derivative

#

ifd = 1: Two-point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#

118 BLOOD-TISSUE TRANSPORT

ifd = 2: Five-point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

ifd = 3: Five-point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

• The derivatives
∂u1

∂t
= u1t,

∂u2

∂t
= u2t, in eqs. (4.1) are computed over the grid

in z with a for. The programming is similar to eqs. (4.1), which is a principal
advantage of the MOL.

#

Temporal derivatives

u1t=rep(0,n); u2t=rep(0,n);

#

u1t, u2t, u1at

for(i in 1:n){

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]+k1*(u2[i]-u1[i]);

}

u2t[i]=k2*(u1[i]-u2[i]);

}

Since BC (4.2b) is a constant, its derivative in t (at z = 0) is set to zero so the ODE
integrator will not change u1(z = 0, t) = 1.

• ODE (4.3e) is programmed.

#

Analytical ODE

lam=t-zL/v;

if(lam<0){

uat=0;

}else{

arg=2*sqrt((k1*k2*zL/v)*lam)

uat=exp1*k2*exp(-k2*lam)*bessel Io(arg)

}

This programming of eq. (4.3e) gives
dua(z, t)

dt
= uat. e−(k1/v)zL = exp1 is com-

puted once in the main program since it is a constant. bessel Io(arg) is a call
to a function to compute Io discussed subsequently.

MOL ROUTINES 119

Note the use of the Lagrangian variable λ = (t − zL/v) = lam (also used in
eq. (4.3d)). The if expresses the discontinuity from h(t − zL/v) (in the RHS of
eq. (4.3e)) that will be observed in the numerical solution.

• The two derivative vectors, u1t,u2t, and the ODE derivative uat are placed in a
single derivative vector ut of length 2*n+1 = 2*41 + 1 = 83 for return to the
ODE integrator ode called in the main program.

#

Two PDEs and one ODE to one derivative vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

ut[2*n+1]=uat;

• The counter for the calls to pde 1 is incremented and returned to the main program
with <<-.

#

Increment calls to pde 1

ncall<<-ncall+1;

• The derivative vector ut is returned to the ODE integrator ode.

#

Return derivative vector

return(list(c(ut)));

}

c is the R utility for a vector. The derivative vector must be a list (required by the
R ODE integrators). The final } concludes pde 1.

The main program is considered next.

(4.2.2) Main program

The main program that calls ode to compute the MOL solution and displays the numer-
ical and analytical solutions follows.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, 2-PDE blood-tissue transport model

120 BLOOD-TISSUE TRANSPORT

#

The PDE system is

#

u1 t = -v*u1 z + k1*(u2 - u1) (4.1a)

#

u2 t = k2*(u1 - u2) (4.1b)

#

Initial conditions

#

u1(z,t=0) = f1(z) (4.2a)

#

u2(z,t=0) = f2(z) (4.2c)

#

Boundary condition

#

u1(z=0,t) = g1(t) (4.2b)

#

The method of lines (MOL) solution for eqs. (4.1),

(4.2) is coded below. Specifically, the spatial

derivative in the fluid balance, u1 z in eq. (4.1a),

is replaced by one of four approximations as selected

by the variable ifd.

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/comp3/chap4");

source("pde 1.R") ;source("bessel Io.R") ;

source("dss004.R");source("dss012.R") ;

source("dss020.R");source("vanl.R") ;

#

Step through cases

for(ncase in 1:4){

#

Model parameters

u10=0; u20=0;

k1=1; k2=1;

k1=0.1; k2=0.1;

v=1; zL=5;

n=41;

exp1=exp(-k1/v*zL);

#

Select an approximation for the convective derivative u1z

#

ifd = 1: Two-point upwind approximation

MOL ROUTINES 121

#

ifd = 2: Centered approximation

#

ifd = 3: Five-point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=ncase;

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

#

Initial condition

u0=rep(0,2*n+1);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

u0[2*n+1]=u10;

#

Grid in t

t0=0;tf=20;nout=41;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

uat=rep(0,nout);ua=rep(0,nout);

u1a=rep(0,nout);t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

ua[it]=out[it,2*n+2];

t[it]=out[it,1];

}

122 BLOOD-TISSUE TRANSPORT

cat(sprintf("\n\n ifd = %2d ncase = %2d ncall = %2d",

ifd,ncase,ncall));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) u1a(z=zL,t) diff\n"));

for(it in 1:nout){

lam=t[it]-zL/v;

if(lam<0){

uat=0;

}else{

arg=2*sqrt((k1*k2*zL/v)*lam)

uat=exp1*k2*exp(-k2*lam)*bessel Io(arg)

}

u1a[it]=ua[it]+uat/k2;

diff=u1[it,n]-u1a[it];

cat(sprintf(

"%7.2f%12.4f%12.4f%14.6f\n",

t[it],u1[it,n],u1a[it],diff));

}

}

#

Plot analytical, numerical solutions

par(mfrow=c(1,1))

plot(t,u1[,n],xlab="t",ylab="u1(z=zL,t)",

main="u1(z=zL,t), solid - anal, o - num",

col="black",lwd=2,pch="o");

lines(t,u1[,n],lty=2,lwd=2,type="l");

lines(t,u1a,lty=1,lwd=2,type="l");

#

Next case

}

Listing 4.2: Main program for eqs. (4.1) to (4.3)

We can note the following details about this main program in Listing 4.2.

• Previous workspaces are removed. The documentation comments for the problem
statement are not repeated here to conserve space.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The ODE library desolve is accessed to provide the integrator ode. The files used
in the subsequent programming are accessed with the source utility. The setwd

MOL ROUTINES 123

(set working directory) requires editing for the local computer (note the use of /
rather than the usual \).

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/comp3/chap4");

source("pde 1.R") ;source("bessel Io.R") ;

source("dss004.R");source("dss012.R") ;

source("dss020.R");source("vanl.R") ;

• Four cases are executed corresponding to four approximations of the derivative
∂u1

∂z
in eq. (4.1a).

#

Step through cases

for(ncase in 1:4){

• The model parameters are defined numerically.

#

Model parameters

u10=0; u20=0;

k1=1; k2=1;

k1=0.1; k2=0.1;

v=1; zL=5;

n=41;

exp1=exp(-k1/v*zL);

In particular,

– Two cases are programmed through changes in the mass transfer coefficients
k1, k2. For the first case, k1 = 1, k2 = 1, mass transfer from the blood to the
tissue is large enough that the moving front in u1 is smoothed so that the four

FD approximations for the derivative
∂u1

∂z
in eq. (4.1a) (programmed in Listing

4.1), all give essentially the same solution that is in agreement with the analytical
solution of eq. (4.3a).

– For the second case, k1 = 0.1, k2 = 0.1 (from removing #), the u1 moving front
is sharpened so that the four approximations give differing results, and only the
van Leer flux limiter (ifd = 4 in Listing 4.1) gives a solution with minimum
numerical diffusion and oscillation, which is in good agreement with the ana-
lytical solution of eq. (4.3a). These results are discussed subsequently.

124 BLOOD-TISSUE TRANSPORT

– The constant exp1=exp(-k1/v*zL) is computed for subsequent use, including
in pde 1 in Listing 4.1, which receives the value without any special designation
or programming (a feature of R).

– The time for the front in u1 to move from z = 0 (where the unit step is applied) to
z = zL is approximately zL/v = 5/1 = 5, which is observed in the numerical
solution, particularly for the second case.

• One of the four approximations for
∂u1

∂z
in eq. (4.1a) is selected with the index

ncase of the preceding for.

#

Select an approximation for the convective derivative u1z

#

ifd = 1: Two-point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five-point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=ncase;

• The level of output is selected. In this case, ip=1 gives the numerical output of the
solution, as well as the graphical (plotted) output (discussed subsequently).

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

• The IC vector for the 2n + 1 = 83 ODEs is defined. In this case, the ICs are homo-
geneous since u10 = u20 = 0 set previously. The ICs are for eqs. (4.2a), (4.2c),
and (4.3e).

#

Initial condition

u0=rep(0,2*n+1);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

u0[2*n+1]=u10;

MOL ROUTINES 125

• The interval in t, 0 ≤ t ≤ 20, is defined with 41 output points (including t = 0) so
the output interval is (20− 0)/(41− 1) = 0.5. The seq utility is used to define
the sequence t = 0, 0.5,...,20 in tout.

#

Grid in t

t0=0;tf=20;nout=41;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

The counter for the calls to pde 1 is also initialized.

• The 83 ODEs are integrated by ode.

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

The arguments to ode are: (1) the MOL/ODE routine pde 1 of Listing 4.1, (2) the
vector of output values of t, tout, and (3) the IC vector u0. func,times,y are
reserved names. The numerical solution is returned in matrix out. The length of
u0 (83) informs ode of the number of ODEs to be integrated.

• The numerical solution in out is placed in matrices and vectors for subsequent
display numerically and graphically.

#

Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

uat=rep(0,nout);ua=rep(0,nout);

u1a=rep(0,nout);t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

ua[it]=out[it,2*n+2];

t[it]=out[it,1];

}

In particular,

– The arrays for u1, u2 are 2D for z, t. The offset 1 in iz+1,iz+1+n is used since
the first position in out is for t, that is, t[it]=out[it,1].

– The vectors for the analytical solution of eq. (4.3a), uat,ua,u1a, are
1D for t. The solution of eq. (4.3e) is placed in the vector ua, that is,
ua[it]=out[it,2*n+2]. The use of these vectors is explained subsequently.

126 BLOOD-TISSUE TRANSPORT

– The dimensions of out are therefore out(21,84). Note in particular the second
dimension 2*n+2 = 2*41+2 = 84.

• The counter for the calls to pde 1 of Listing 4.1 is displayed as a measure of the
computational effort required to compute the numerical solution.

#

cat(sprintf("\n\n ifd = %2d ncase = %2d ncall = %2d",

ifd,ncase,ncall));

• The numerical solution is displayed for ip=1.

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) u1a(z=zL,t) diff\n"));

for(it in 1:nout){

lam=t[it]-zL/v;

if(lam<0){

uat=0;

}else{

arg=2*sqrt((k1*k2*zL/v)*lam)

uat=exp1*k2*exp(-k2*lam)*bessel Io(arg)

}

u1a[it]=ua[it]+uat/k2;

diff=u1[it,n]-u1a[it];

cat(sprintf(

"%7.2f%12.4f%12.4f%14.6f\n",

t[it],u1[it,n],u1a[it],diff));

}

}

In particular,
– A heading is displayed for the numerical solution u1 at z = zL (from eq. (4.1a)),

the analytical solution u1a from eq. (4.3a), and the difference of the two solutions
(the exact error in the numerical solution).

– dua/dt from eq. (4.3e) is computed since it is part of the analytical solution
of eq. (4.3a). This code essentially duplicates the code for dua/dt in pde 1 of
Listing 4.1. The exception is using the vector t[it] rather than the scalar t in
pde 1.

for(it in 1:nout){

lam=t[it]-zL/v;

if(lam<0){

uat=0;

}else{

arg=2*sqrt((k1*k2*zL/v)*lam)

uat=exp1*k2*exp(-k2*lam)*bessel Io(arg)

}

MOL ROUTINES 127

– The analytical solution of eq. (4.3a) is computed, then the exact error in the
numerical solution is computed as diff.

u1a[it]=ua[it]+uat/k2;

diff=u1[it,n]-u1a[it];

cat(sprintf(

"%7.2f%12.4f%12.4f%14.6f\n",

t[it],u1[it,n],u1a[it],diff));

}

}

The analytical and numerical solutions, and their difference, are displayed. The
two }’s terminate the for in it (in t) and the if for ip=1.

• The analytical and numerical solutions are plotted as a solid line and as points,
respectively, against t (see Fig. 4.1 and subsequent plots).

#

Plot analytical, numerical solutions

par(mfrow=c(1,1))

plot(t,u1[,n],xlab="t",ylab="u1(z=zL,t)",

main="u1(z=zL,t), solid - anal, o - num",

col="black",lwd=2,pch="o");

lines(t,u1[,n],lty=2,lwd=2,type="l");

lines(t,u1a,lty=1,lwd=2,type="l");

Vectorization is used as u1[,n] for all values of t at z = zL. The points for the
numerical solution are specified with pch="o". A connection of the points is

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.1 Analytical and numerical solutions of eqs. (4.1), ifd=1, k1 = k2 = 1

128 BLOOD-TISSUE TRANSPORT

specified with the first call to lines, which produced a dashed line with lty=2.
The analytical solution of eq. (4.3a) is plotted as a solid line with a second call to
lines and lty=1.

• The for in ncase, for(ncase in 1:4){, is concluded.

#

Next case

}

This concludes the discussion of the main program of Listing 4.2. The routine for the
modified Bessel function in the analytical solution of eqs. (4.3a) and (4.3e) concludes
the programming.

(4.2.3) Bessel function routine

The routine for Io is listed next.

bessel Io=function(x){

#

Function bessel Io is a translation from Fortran

into R of the original numerical recipes function

BESSIO.

#

Constants in the approximation of the Bessel

function Io

p1=1 ; p2=3.5156229 ; p3=3.0899424 ;

p4=1.2067492 ; p5=0.2659732 ; p6=0.360768e-1 ;

p7=0.45813e-2 ;

q1=0.39894228 ; q2=0.1328592e-1 ; q3=0.225319e-2 ;

q4=-0.157565e-2; q5=0.916281e-2 ; q6=-0.2057706e-1;

q7=0.2635537e-1; q8=-0.1647633e-1; q9=0.392377e-2 ;

#

Calculation of bessel Io

if(abs(x)<3.75){

y=(x/3.75) ˆ {2};
bessel Io=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))));

}else{

ax=abs(x);y=3.75/ax;

bessel Io=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+

y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));

}

return(c(bessel Io));

}

Listing 4.3: Function bessel Io for the calculation of Io

MODEL OUTPUT 129

The details of this routine will not be discussed [4]. Briefly, Io is defined by an
infinite series that is approximated by a combination of exponential and polynomial
functions. The computed Bessel function is returned as a numerical value with
return(c(bessel Io)) (a list is not required as in pde 1 of Listing 4.1).

(4.3) Model output

The output from the preceding routines is discussed next. For the first case
(k1 = k2 = 1), the numerical output is

We can note the following details of this output.

• With the exception of the case ifd = 1, the differences between the numerical and
analytical solutions are generally small. The maximum difference in this output is
for

ifd = 1 ncase = 1 ncall = 769

t u1(z=zL,t) u1a(z=zL,t) diff

6.00 0.1065 0.0656 0.040907

which reflects the numerical diffusion introduced with the 2pu approximation (as
indicated in Figs. 4.1 and 4.5).

• ifd=1 has the smallest value of ncall (= 769), (but again, the poorest accuracy)
while ifd=4 has the largest value (ncall = 13058). Since the accuracy of the van
Leer flux limiter (ifd=4) is somewhat less than for the 5pc FD ifd=2 or the 5pbu
FD ifd=3,2 which required markedly fewer calls to pde 1 (836 and 1072, respec-
tively), then the question of why the van Leer limiter would be used arises. This
question is answered next with the second case (k1 = k2 = 0.1), which demon-
strates conclusively the best performance of the van Leer limiter.

• As an incidental note, several flux limiters have been reported ([3], pp. 37–43) and
possibly some would perform better than the van Leer limiter used here. This could
be easily investigated by replacing the statements in the van Leer routine, vanl,
with corresponding statements for the other limiters.

The graphical output for k1 = k2 = 1 is given in Figs. 4.1 to 4.4.
We can observe in Figs. 4.1 to 4.4 that 2pu (ifd=1) gives the poorest numerical solu-

tion due to numerical diffusion. The solutions for 5pc, 5pbu, and van Leer are accurate
and indistinguishable.

For the second case, k1 = k2 = 0.1, the numerical solution has markedly different
characteristics. The corresponding graphical output is shown in Figs. 4.5 to 4.8.

We can note the following features of the numerical output in Table 4.2 and Figs. 4.5
to 4.8.

2This follows from visual inspection of the output in Table 4.1, particularly the values of diff.

130 BLOOD-TISSUE TRANSPORT

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.2 Analytical and numerical solutions of eqs. (4.1), ifd=2, k1 = k2 = 1

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.3 Analytical and numerical solutions of eqs. (4.1), ifd=3, k1 = k2 = 1

• The effect of the discontinuity h(t − zl/v) in eq. (4.3e) is clear. The programming
of this discontinuity in the MOL/PDE routine of Listing 4.1 and main program of
Listing 4.2 was straightforward (the switch when t − zL/v changed sign).

• For ifd=1,2,3, substantial differences between the analytical solution (eq. (4.3a))
and the numerical solution are apparent (see Figs. 4.5 to 4.7). Conversely, there is
much closer agreement between the two solutions for ifd=4 (see Fig. 4.8) indicat-
ing that the van Leer flux limiter has produced a relatively good solution.

– For ifd=1, substantial numerical diffusion is apparent.

MODEL OUTPUT 131

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.4 Analytical and numerical solutions of eqs. (4.1), ifd=4, k1 = k2 = 1

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.5 Analytical and numerical solutions of eqs. (4.1), ifd=1, k1 = k2 = 0.1

– For ifd=2, substantial numerical oscillation is apparent.

– For ifd=3, numerical oscillation still occurs at the left side of the moving front.
This smaller oscillation might still be unacceptable in modeling physical sys-
tems that cannot oscillate or for which negative values are physically impossible
such as for the concentration u1 (as in Fig. 4.7).

• The largest errors in all four cases (ifd=1,2,3,4) occur when the moving front
reaches z = zL (at t = 5) as might be expected since t − zL/v = 5− 5/1 = 0
(when the switch in the programming of the analytical solution occurs).

132 BLOOD-TISSUE TRANSPORT

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.6 Analytical and numerical solutions of eqs. (4.1), ifd=2, k1 = k2 = 0.1

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.7 Analytical and numerical solutions of eqs. (4.1), ifd=3, k1 = k2 = 0.1

• ifd=1 has the smallest value of ncall (= 700) (but again, with substantial numeri-
cal diffusion) while ifd=4 has the largest value (ncall = 2176). Also, somewhat
unexpectedly, for k1 = k2 = 0.1, the van Leer limiter required ncall = 2176

calls to pde 1, which is substantially fewer than for k1 = k2 = 1 with ncall =

13058 (from Table 4.1). This result may possibly follow from the observation that
for the first case, the solution has a significant variation throughout 0 ≤ z ≤ zL
due to smoothing (see Fig. 4.4) while for the second case, the solution has a large
variation only near the moving front, i.e., where t − zL/v = 0 (Fig. 4.8). But some

MODEL EXTENSIONS 133

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

u1
(z

=
zL

,t
)

u1(z=zL,t), solid - anal, 0 - num

Figure 4.8 Analytical and numerical solutions of eqs. (4.1), ifd=4, k1 = k2 = 0.1

further analysis of the van Leer limiter is required to explain this result, and also,
other limiters could be used for further study.

To conclude, the character of the solution to eqs. (4.1) is changed substantially just
with the parameter variation k1 = k2 = 1 to k1 = k2 = 0.1 (everything else remains

unchanged). Also, the performance of the approximations for
∂u1

∂z
in eq. (4.1a) changes

substantially with the change in k1, k2.

(4.4) Model extensions

Eqs. (4.1) and (4.2) are linear, and therefore, an analytical solution, eq. (4.3a), is available
to evaluate the error of the numerical solution. Nonlinear extensions of eqs. (4.1) have
been proposed to describe a broader class of problems in blood-tissue transport, but for
which analytical solutions are precluded (because of the nonlinearity and complexity of
the model). For example, the following 1D, 2-PDE system has been studied [7]

∂u1

∂t
=− v

∂u1

∂z
+ f1(u1, u2) (4.4a)

∂u2

∂t
=f2(u1, u2) (4.4b)

Eqs. (4.4) have generalized transport functions f1, f2 that are nonlinear and involve
additional variables.3 For example, f1 is

f1(u1, u2) = −c1p − c2u2 (4.4c)

3f2 was not specified in [7] and the computer code was not provided, so the reported numerical solution could
not be verified. Also, the reported MOL solution has excessive numerical diffusion, possibly because of the
use of 2pu FDs, but the computational details and code were not provided in [7].

134 BLOOD-TISSUE TRANSPORT

ifd = 1 ncase = 1 ncall = 769

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 0.0000 0.0000 0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 0.0000 0.0000 0.000000

2.50 0.0000 0.0000 0.000006

3.00 0.0002 0.0000 0.000153

3.50 0.0014 0.0000 0.001351

4.00 0.0061 0.0000 0.006105

4.50 0.0176 0.0000 0.017649

5.00 0.0381 0.0067 0.031342

5.50 0.0679 0.0299 0.037943

6.00 0.1065 0.0656 0.040907

6.50 0.1529 0.1125 0.040363

7.00 0.2054 0.1686 0.036866

7.50 0.2625 0.2313 0.031181

8.00 0.3223 0.2982 0.024119

8.50 0.3832 0.3668 0.016432

9.00 0.4438 0.4351 0.008758

9.50 0.5028 0.5012 0.001587

10.00 0.5592 0.5639 -0.004746

10.50 0.6122 0.6222 -0.010041

11.00 0.6613 0.6755 -0.014217

11.50 0.7063 0.7236 -0.017282

12.00 0.7470 0.7663 -0.019312

12.50 0.7834 0.8038 -0.020425

13.00 0.8157 0.8365 -0.020760

13.50 0.8440 0.8645 -0.020467

14.00 0.8687 0.8884 -0.019688

14.50 0.8901 0.9086 -0.018558

15.00 0.9084 0.9256 -0.017194

15.50 0.9240 0.9397 -0.015692

16.00 0.9373 0.9514 -0.014135

16.50 0.9484 0.9610 -0.012584

17.00 0.9578 0.9689 -0.011085

17.50 0.9656 0.9752 -0.009672

18.00 0.9720 0.9804 -0.008365

18.50 0.9773 0.9845 -0.007178

19.00 0.9817 0.9878 -0.006113

19.50 0.9853 0.9905 -0.005171

20.00 0.9882 0.9926 -0.004346

Table 4.1: Numerical Output from the Main Program of Listing 4.2, k1 = k2 = 1

MODEL EXTENSIONS 135

ifd = 2 ncase = 2 ncall = 835

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 -0.0000 0.0000 -0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 0.0000 0.0000 0.000000

2.50 -0.0000 0.0000 -0.000000

3.00 0.0000 0.0000 0.000000

3.50 -0.0000 0.0000 -0.000000

4.00 0.0000 0.0000 0.000012

4.50 -0.0004 0.0000 -0.000359

5.00 0.0047 0.0067 -0.002015

5.50 0.0306 0.0300 0.000665

6.00 0.0653 0.0656 -0.000338

6.50 0.1126 0.1125 0.000026

7.00 0.1687 0.1686 0.000102

7.50 0.2313 0.2313 -0.000033

8.00 0.2982 0.2982 -0.000041

8.50 0.3668 0.3668 0.000007

9.00 0.4351 0.4351 0.000011

9.50 0.5012 0.5012 -0.000008

10.00 0.5639 0.5639 -0.000004

10.50 0.6222 0.6222 0.000006

11.00 0.6755 0.6755 0.000005

11.50 0.7236 0.7236 0.000003

12.00 0.7663 0.7663 0.000008

12.50 0.8038 0.8038 0.000009

13.00 0.8365 0.8364 0.000007

13.50 0.8645 0.8645 0.000009

14.00 0.8884 0.8884 0.000010

14.50 0.9087 0.9086 0.000009

15.00 0.9256 0.9256 0.000009

15.50 0.9397 0.9397 0.000008

16.00 0.9514 0.9514 0.000009

16.50 0.9610 0.9610 0.000007

17.00 0.9689 0.9689 0.000006

17.50 0.9752 0.9752 0.000006

18.00 0.9804 0.9804 0.000005

18.50 0.9845 0.9845 0.000004

19.00 0.9878 0.9878 0.000003

19.50 0.9905 0.9905 0.000003

20.00 0.9926 0.9926 0.000003

Table 4.1: (Continued)

136 BLOOD-TISSUE TRANSPORT

ifd = 3 ncase = 3 ncall = 1072

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 0.0000 0.0000 0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 -0.0000 0.0000 -0.000001

2.50 -0.0000 0.0000 -0.000007

3.00 -0.0000 0.0000 -0.000011

3.50 0.0002 0.0000 0.000246

4.00 0.0001 0.0000 0.000052

4.50 -0.0010 0.0000 -0.000954

5.00 0.0055 0.0067 -0.001283

5.50 0.0299 0.0299 -0.000004

6.00 0.0656 0.0656 -0.000000

6.50 0.1125 0.1125 -0.000003

7.00 0.1686 0.1686 0.000001

7.50 0.2313 0.2313 0.000007

8.00 0.2982 0.2982 0.000009

8.50 0.3668 0.3668 0.000010

9.00 0.4351 0.4351 0.000010

9.50 0.5012 0.5012 0.000009

10.00 0.5639 0.5639 0.000007

10.50 0.6222 0.6222 0.000005

11.00 0.6756 0.6755 0.000003

11.50 0.7236 0.7236 0.000002

12.00 0.7663 0.7663 0.000001

12.50 0.8038 0.8038 0.000000

13.00 0.8364 0.8364 0.000000

13.50 0.8645 0.8645 -0.000000

14.00 0.8884 0.8884 0.000000

14.50 0.9086 0.9086 -0.000000

15.00 0.9256 0.9256 -0.000000

15.50 0.9397 0.9397 0.000000

16.00 0.9514 0.9514 -0.000000

16.50 0.9610 0.9610 -0.000000

17.00 0.9689 0.9689 -0.000000

17.50 0.9752 0.9752 -0.000000

18.00 0.9804 0.9804 -0.000001

18.50 0.9845 0.9845 0.000001

19.00 0.9878 0.9878 -0.000001

19.50 0.9905 0.9905 -0.000000

20.00 0.9926 0.9926 -0.000000

Table 4.1: (Continued)

MODEL EXTENSIONS 137

ifd = 4 ncase = 4 ncall = 13058

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 -0.0000 0.0000 -0.000000

1.00 -0.0000 0.0000 -0.000000

1.50 -0.0000 0.0000 -0.000000

2.00 -0.0000 0.0000 -0.000000

2.50 -0.0000 0.0000 -0.000000

3.00 -0.0000 0.0000 -0.000000

3.50 -0.0000 0.0000 -0.000000

4.00 -0.0000 0.0000 -0.000000

4.50 -0.0000 0.0000 -0.000000

5.00 0.0073 0.0067 0.000594

5.50 0.0324 0.0300 0.002431

6.00 0.0686 0.0656 0.003006

6.50 0.1157 0.1125 0.003221

7.00 0.1717 0.1686 0.003169

7.50 0.2342 0.2313 0.002898

8.00 0.3007 0.2982 0.002469

8.50 0.3688 0.3668 0.001944

9.00 0.4365 0.4351 0.001380

9.50 0.5020 0.5012 0.000824

10.00 0.5642 0.5639 0.000311

10.50 0.6221 0.6222 -0.000136

11.00 0.6750 0.6755 -0.000507

11.50 0.7228 0.7236 -0.000794

12.00 0.7653 0.7663 -0.001002

12.50 0.8027 0.8038 -0.001137

13.00 0.8352 0.8364 -0.001209

13.50 0.8633 0.8645 -0.001229

14.00 0.8872 0.8884 -0.001208

14.50 0.9075 0.9086 -0.001155

15.00 0.9245 0.9256 -0.001079

15.50 0.9387 0.9397 -0.000991

16.00 0.9505 0.9514 -0.000895

16.50 0.9602 0.9610 -0.000797

17.00 0.9681 0.9688 -0.000699

17.50 0.9746 0.9752 -0.000607

18.00 0.9798 0.9804 -0.000522

18.50 0.9841 0.9845 -0.000444

19.00 0.9874 0.9878 -0.000373

19.50 0.9901 0.9904 -0.000311

20.00 0.9923 0.9925 -0.000257

Table 4.1: (Continued)

138 BLOOD-TISSUE TRANSPORT

ifd = 1 ncase = 1 ncall = 700

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 0.0000 0.0000 0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 0.0000 0.0000 0.000000

2.50 0.0000 0.0000 0.000042

3.00 0.0013 0.0000 0.001311

3.50 0.0138 0.0000 0.013769

4.00 0.0668 0.0000 0.066784

4.50 0.1852 0.0000 0.185212

5.00 0.3442 0.6065 -0.262290

5.50 0.4867 0.6214 -0.134685

6.00 0.5803 0.6357 -0.055492

6.50 0.6306 0.6495 -0.018981

7.00 0.6569 0.6628 -0.005916

7.50 0.6735 0.6756 -0.002177

8.00 0.6867 0.6880 -0.001318

8.50 0.6987 0.6998 -0.001183

9.00 0.7101 0.7113 -0.001195

9.50 0.7211 0.7223 -0.001231

10.00 0.7316 0.7329 -0.001264

10.50 0.7418 0.7431 -0.001295

11.00 0.7516 0.7529 -0.001321

11.50 0.7610 0.7624 -0.001343

12.00 0.7701 0.7714 -0.001362

12.50 0.7788 0.7802 -0.001377

13.00 0.7872 0.7886 -0.001389

13.50 0.7954 0.7968 -0.001399

14.00 0.8032 0.8046 -0.001405

14.50 0.8107 0.8121 -0.001409

15.00 0.8179 0.8193 -0.001410

15.50 0.8249 0.8263 -0.001409

16.00 0.8316 0.8330 -0.001407

16.50 0.8380 0.8394 -0.001402

17.00 0.8442 0.8456 -0.001395

17.50 0.8502 0.8516 -0.001387

18.00 0.8559 0.8573 -0.001378

18.50 0.8615 0.8628 -0.001367

19.00 0.8668 0.8681 -0.001355

19.50 0.8719 0.8733 -0.001341

20.00 0.8768 0.8782 -0.001327

Table 4.2: Numerical Output from the Main Program of Listing 4.2, k1 = k2 = 0.1

MODEL EXTENSIONS 139

ifd = 2 ncase = 2 ncall = 1492

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 -0.0000 0.0000 -0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 0.0000 0.0000 0.000000

2.50 -0.0000 0.0000 -0.000000

3.00 0.0000 0.0000 0.000000

3.50 -0.0000 0.0000 -0.000003

4.00 0.0002 0.0000 0.000194

4.50 -0.0097 0.0000 -0.009708

5.00 0.2449 0.6065 -0.361651

5.50 0.7300 0.6214 0.108594

6.00 0.6005 0.6357 -0.035290

6.50 0.6071 0.6496 -0.042408

7.00 0.7141 0.6628 0.051288

7.50 0.6954 0.6756 0.019787

8.00 0.6459 0.6880 -0.042054

8.50 0.6772 0.6998 -0.022688

9.00 0.7399 0.7113 0.028631

9.50 0.7526 0.7223 0.030322

10.00 0.7232 0.7329 -0.009633

10.50 0.7124 0.7431 -0.030671

11.00 0.7426 0.7529 -0.010271

11.50 0.7812 0.7624 0.018844

12.00 0.7926 0.7715 0.021120

12.50 0.7795 0.7802 -0.000674

13.00 0.7726 0.7886 -0.016027

13.50 0.7821 0.7968 -0.014702

14.00 0.8110 0.8046 0.006468

14.50 0.8214 0.8121 0.009320

15.00 0.8294 0.8193 0.010104

15.50 0.8222 0.8263 -0.004053

16.00 0.8215 0.8330 -0.011425

16.50 0.8404 0.8394 0.001012

17.00 0.8459 0.8456 0.000310

17.50 0.8521 0.8516 0.000486

18.00 0.8653 0.8573 0.008009

18.50 0.8633 0.8628 0.000460

19.00 0.8588 0.8681 -0.009315

19.50 0.8725 0.8733 -0.000765

20.00 0.8857 0.8782 0.007528

Table 4.2: (Continued)

140 BLOOD-TISSUE TRANSPORT

ifd = 3 ncase = 3 ncall = 989

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 0.0000 0.0000 0.000000

1.00 0.0000 0.0000 0.000000

1.50 0.0000 0.0000 0.000000

2.00 -0.0000 0.0000 -0.000004

2.50 -0.0001 0.0000 -0.000071

3.00 -0.0004 0.0000 -0.000371

3.50 0.0036 0.0000 0.003644

4.00 0.0129 0.0000 0.012882

4.50 -0.0751 0.0000 -0.075105

5.00 0.3556 0.6065 -0.250942

5.50 0.6277 0.6214 0.006266

6.00 0.6372 0.6357 0.001422

6.50 0.6499 0.6495 0.000386

7.00 0.6626 0.6628 -0.000264

7.50 0.6756 0.6756 -0.000041

8.00 0.6880 0.6880 0.000055

8.50 0.6999 0.6998 0.000006

9.00 0.7113 0.7113 -0.000008

9.50 0.7223 0.7223 0.000004

10.00 0.7329 0.7329 0.000004

10.50 0.7431 0.7431 0.000002

11.00 0.7529 0.7529 0.000003

11.50 0.7624 0.7624 0.000002

12.00 0.7715 0.7715 0.000003

12.50 0.7802 0.7802 0.000002

13.00 0.7886 0.7886 0.000002

13.50 0.7968 0.7968 0.000003

14.00 0.8046 0.8046 0.000002

14.50 0.8121 0.8121 0.000002

15.00 0.8193 0.8193 0.000002

15.50 0.8263 0.8263 0.000002

16.00 0.8330 0.8330 0.000002

16.50 0.8394 0.8394 0.000002

17.00 0.8456 0.8456 0.000002

17.50 0.8516 0.8516 0.000002

18.00 0.8573 0.8573 0.000002

18.50 0.8628 0.8628 0.000002

19.00 0.8681 0.8681 0.000002

19.50 0.8733 0.8733 0.000002

20.00 0.8782 0.8782 0.000002

Table 4.2: (Continued)

MODEL EXTENSIONS 141

ifd = 4 ncase = 4 ncall = 2176

t u1(z=zL,t) ua1(z=zL,t) diff

0.00 0.0000 0.0000 0.000000

0.50 -0.0000 0.0000 -0.000000

1.00 -0.0000 0.0000 -0.000000

1.50 -0.0000 0.0000 -0.000000

2.00 -0.0000 0.0000 -0.000000

2.50 -0.0000 0.0000 -0.000000

3.00 -0.0000 0.0000 -0.000000

3.50 -0.0000 0.0000 -0.000000

4.00 -0.0000 0.0000 -0.000000

4.50 0.0011 0.0000 0.001075

5.00 0.3330 0.6065 -0.273537

5.50 0.6007 0.6214 -0.020714

6.00 0.6363 0.6357 0.000568

6.50 0.6495 0.6496 -0.000066

7.00 0.6628 0.6628 -0.000033

7.50 0.6756 0.6756 -0.000039

8.00 0.6879 0.6880 -0.000043

8.50 0.6998 0.6998 -0.000046

9.00 0.7112 0.7113 -0.000049

9.50 0.7222 0.7223 -0.000052

10.00 0.7328 0.7329 -0.000055

10.50 0.7430 0.7431 -0.000057

11.00 0.7528 0.7529 -0.000059

11.50 0.7623 0.7624 -0.000061

12.00 0.7714 0.7715 -0.000063

12.50 0.7801 0.7802 -0.000064

13.00 0.7886 0.7886 -0.000065

13.50 0.7967 0.7968 -0.000066

14.00 0.8045 0.8046 -0.000067

14.50 0.8120 0.8121 -0.000068

15.00 0.8192 0.8193 -0.000069

15.50 0.8262 0.8263 -0.000069

16.00 0.8329 0.8330 -0.000069

16.50 0.8393 0.8394 -0.000070

17.00 0.8455 0.8456 -0.000070

17.50 0.8515 0.8516 -0.000070

18.00 0.8572 0.8573 -0.000070

18.50 0.8628 0.8628 -0.000070

19.00 0.8681 0.8682 -0.000069

19.50 0.8732 0.8733 -0.000069

20.00 0.8781 0.8782 -0.000069

Table 4.2: (Continued)

142 BLOOD-TISSUE TRANSPORT

where p is the partial pressure of O2 in the blood, which is given by a fractional-order
polynomial

αpσ+1 + (β − u1)p
σ + αγσp − γσu1 = 0 (4.4d)

where σ has the fractional value 2.5.
Eqs. (4.4) can be accommodated within the MOL framework. This could be done in

two ways:

• A nonlinear solver, such as a variant of Newton’s method, could be used at the
beginning of the MOL/ODE routine pde 1 of Listing 4.1 to calculate p from eq.
(4.4d) for the input vector u1. Then, eq. (4.4c) could be used in the programming
of eq. (4.4a).

• A possible computational limitation of the preceding procedure might be the use of
the nonlinear solver for n = 21 values of u1 each time pde 1 is called. To reduce
this computational requirement, eq. (4.4d) could be solved for p for a series of val-
ues of u1 that covers the expected range in u1. A 1D table of p against u1 would then
be constructed, and interpolation within this table at the beginning of pde 1 would
be used to obtain p. This interpolation could be by any established approach, for
example, by splines, which would be faster than solving eq. (4.4d) break directly.

Eqs. (4.4) are termed a differential algebraic equation (DAE) system since they
include both differential equations (4.4a,b) and algebraic equations (4.4c,d). DAE
systems generally are not as straightforward to solve as ODE/PDEs and have been
studied extensively [2]. The proposed procedures of solving the algebraic equations at
the beginning of the MOL/ODE routine have been used effectively, but they are not
always successful, depending on the index of the DAE system.

(4.5) Conclusions and summary

A system of first-order hyperbolic PDEs, eqs. (4.1), has been solved numerically by the
MOL, and the solution has been evaluated against an analytical solution. Since hyper-
bolic PDEs can propagate steep moving fronts, special attention may have to be given
to the approximation of the spatial first-order derivatives. In the preceding discussion, a
comparison of FD and flux limiter approximations of the spatial derivatives was consid-
ered.

For the case of significant smoothing of the solution, the approximations generally
worked well, although the effect of numerical diffusion in the case of 2pu FD was
evident. For the case of limited smoothing of a steep moving front, the flux limiter
was clearly superior since it minimized numerical diffusion and eliminated numerical
oscillation, but did require substantially more computation to achieve this positive
result. Thus, with each new problem, some experimentation with the MOL numerical
approximations may be required, with careful attention to the accuracy of the numerical
solutions. This assessment of accuracy generally has to be indirect and inferred
since usually an analytical solution will not be available to validate the numerical
solution.

REFERENCES 143

References

[1] Bateman, H. (1932), Partial Differential Equations of Mathematical Physics, Cambridge
University Press, Cambridge.

[2] Brennan, K.S., S.L. Campbell, and L.R. Petzold (1989), Numerical Solution if Initial-Value
Problems in Differential-Algebraic Equations, North Holland, New York.

[3] Griffiths, G.W. and W.E. Schiesser (2012), Traveling Wave Analysis of Partial Differential
Equations, Elsevier/Academic Press, Oxford.

[4] Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (2007), Numerical Recipes:
The Art of Scientific Computing, 3rd edn, Cambridge University Press, Cambridge.

[5] Sangren, W.C. and C.W. Sheppard (1953), A mathematical derivation of the exchange of a
labelled substance between a liquid flowing in a vessel and an external compartment, Bulletin
of Mathematical Biophys., 15, 387–394.

[6] Schiesser, W.E. (1994), Computational Mathematics in Engineering and Applied Science:
ODEs, DAEs, and PDEs, CRC Press, Boca Raton, FL.

[7] Xie, D., R.K. Dash, and D.A. Beard (2009), An improved algorithm and its parallel imple-
mentation for solving a general blood-tissue transport and metabolism model, Journal of
Computational Physics, 228, 7850–7861.

5
TWO-FLUID/MEMBRANE MODEL

This chapter extends the discussion of the first-order hyperbolic partial differential
equation (PDE) model in Chapter 4 by introducing a 2D, 3-PDE model for a
two-fluid/membrane system. The system is depicted in Fig. 5.1.

The equations for the model are considered in the next section. Note, in particular,
the three dependent variables u1, u2, u3 for which the PDEs are subsequently discussed
and programmed.

The intent of this chapter is to:

• Present a PDE model for a two-fluid/membrane PDE model including the required
initial conditions (ICs) and boundary Conditions (BCs).

• Discuss the format of the model as a hyperbolic-parabolic PDE system in 2D.

• Illustrate the coding of the model through a series of R routines, including the use
of library routines for integration of the PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) formats.

• Discuss the features of the numerical solution and the performance of the algo-
rithms used to compute the solution.

• Consider extensions of the model, including nonlinear parameters and alternate
BCs.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

146 TWO-FLUID/MEMBRANE MODEL

u1(z,t)

u2(z = 0,t)

u2(z,t)

u3(x,z,t)

k1(u3 − u1)
u1(z = zL,t)

u2(z = zL,t) = u2e

k2(u3 − u2)

x = 0

z = 0

x = xL

z = zL

x

z

Fluid 1in

Fluid 2 out Fluid 2 in

Fluid 1out

u1(z = 0,t) = u1e

u1(z, t = 0) = u10 u2(z, t = 0) = u20 u3(x, z, t = 0) = u30

BC

BC

Dm

Dm

= −k1(u1(z,t) − u3(x = 0,z,t))

= k2(u2(z,t) − u3(x = xL,z,t))

:ICs

BCs:
∂u3(x = 0, z, t)

∂u3(x = xL, z, t)

Membrane

∂x

∂x

Figure 5.1 Diagram of a two-fluid/membrane system

(5.1) 2D, 3-PDE model

The model PDEs are

∂u1

∂t
= −v1

∂u1

∂z
+ k1(u3(x = 0, z, t)− u1) (5.1a)

∂u2

∂t
= −v2

∂u2

∂z
+ k2(u3(x = xL, z, t)− u2) (5.1b)

∂u3

∂t
= Dm

∂2u3

∂x2
(5.1c)

where

u1 fluid 1 concentration
u2 fluid 2 concentration
u3 membrane concentration
z distance along the fluid channels
x distance through the membrane
t time
v1 fluid 1 velocity
v2 fluid 2 velocity

Dm membrane effective diffusivity
k1 fluid 1 to membrane mass transfer coefficient
k2 fluid 2 to membrane mass transfer coefficient
xL membrane thickness
zL fluid channels effective length

MOL ANALYSIS 147

The concentrations u1, u2, u3 might represent a drug or metabolite, and the membrane
might represent a porous membrane or tissue.

u3(x = 0, z, t) and u3(x = xL, z, t) in eqs. (5.1a) and (5.1b), respectively, indicate
that u3 is a function of z as well as x. The dependency of u3 on z and x is also reflected
in the ICs and BCs and the coding that follows (even though this may not be obvious
from eq. (5.1c) alone).

The initial conditions are:

u1(z, t = 0) = f1(z); u2(z, t = 0) = f2(z); u3(x, z, t = 0) = f3(x, z)
(5.2a,b,c)

where the three functions f1, f2, f3 are typically constants.
The boundary conditions are:

u1(z = 0, t) = g1(t) (5.3a)

u2(z = zL, t) = g2(t) (5.3b)

Dm

∂u3(x = 0, z, t)

∂x
= −k1(u1(z, t)− u3(x = 0, z, t)) (5.3c)

Dm

∂u3(x = xL, z, t)

∂x
= k2(u2(z, t)− u3(x = xL, z, t)) (5.3d)

where the two functions g1, g2 are typically constants. Eqs. (5.3c,d) are termed third type
or Robin since they involve the dependent variables u3(x = 0, z, t), u3(x = xL, z, t) and

their derivatives
∂u3(x = 0, z, t)

∂x
,

∂u3(x = xL, z, t)

∂x
. Physically, eqs. (5.3c,d) equate

the diffusion flux (LHS) at x = 0, xL to the mass transfer flux (RHS).
Eqs. (5.1), (5.2), and (5.3) constitute the 2D, 3-PDE model. The output that

might be of particular interest includes the exiting fluid concentrations u1(z = zL, t),
u2(z = 0, t). The required parameters to be defined numerically are zL, xL, v1, v2,Dm,
k1, k2.

(5.2) MOL analysis

The dependent variables defined by eqs. (5.1) are u1(z, t), u2(z, t), u3(x, z, t). Thus,
the model is 1D in u1, u2 and 2D in u3. The spatial grid for the MOL analysis can be
summarized as shown in Table 5.1

u1(i*dz) i index in z
i=1,2,...,nz

u2(i*dz) i index in z
i=1,2,...,nz

u3(i*dz,j*dx) i index in z
i=1,2,...,nz

j index in x
j=1,2,...,nx

Table 5.1: Indexing for the MOL analysis of eqs. (5.1)

148 TWO-FLUID/MEMBRANE MODEL

where dx,dz are the grid spacings in x, z, that is, dz = Δz = (zL − 0)/(nz − 1), dx
= Δx = (xL − 0)/(nx − 1). This indexing is used in the R routines within fors.

In the following routines, nx=9,nz=21 so that the total number of ODEs programmed
in the MOL/ODE routine is

nx*nz + nz + nz = nz*(nx + 2) = 21*(9+2) = 231

(5.2.1) MOL/ODE routine

The MOL/ODE routine for the programming of eqs. (5.1) and (5.3) is in Listing 5.1.

pde 1=function(t,u,parms) {

#

Function pde 1 computes the t derivative vector

of the u vector

#

One vector to three PDEs

u1=rep(0,nz);u2=rep(0,nz);

u3=matrix(0,nrow=nz,ncol=nx);

for (i in 1:nz){

for (j in 1:nx){

u3[i,j]=u[(i-1)*nx+j];

}

u1[i]=u[nx*nz+i];

u2[i]=u[nx*nz+nz+i];

}

#

Boundary conditions

u1[1]=u1e;u2[nz]=u2e;

#

u1z, u2z

#

ifd = 1: Two-point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,nz,u1,v1); }

if(ifd==1){ u2z=dss012(0,zL,nz,u2,v2); }

#

ifd = 2: Five-point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,nz,u1); }

if(ifd==2){ u2z=dss004(0,zL,nz,u2); }

#

ifd = 3: Five-point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,nz,u1,v1); }

if(ifd==3){ u2z=dss020(0,zL,nz,u2,v2); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,nz,u1,v1); }

MOL ANALYSIS 149

if(ifd==4){ u2z=vanl(0,zL,nz,u2,v2); }

#

u3xx

u3x=matrix(0,nrow=nz,ncol=nx);

u3xx=matrix(0,nrow=nz,ncol=nx);

for(i in 1:nz){

u3x[i,1]=-(k1/Dm)*(u1[i]-u3[i,1]);

u3x[i,nx]=(k2/Dm)*(u2[i]-u3[i,nx]);

nl=2;nu=2;

u3xx[i,]=dss044(0,xL,nx,u3[i,],u3x[i,],nl,nu);

}

#

Temporal derivatives

u1t=rep(0,nz);u2t=rep(0,nz);

u3t=matrix(0,nrow=nz,ncol=nx);

#

u1t, u2t, u3t

for(i in 1:nz){

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v1*u1z[i]+k1*(u3[i,1]-u1[i]);

}

if(i==nz){

u2t[i]=0;

}else{

u2t[i]=-v2*u2z[i]+k2*(u3[i,nx]-u2[i]);

}

for(j in 1:nx){

u3t[i,j]=Dm*u3xx[i,j];

}

}

#

Three PDE derivatives to one vector

ut=rep(0,nx*nz+2*nz);

for (i in 1:nz){

for (j in 1:nx){

ut[(i-1)*nx+j]=u3t[i,j];

}

ut[nx*nz+i] =u1t[i];

ut[nx*nz+nz+i] =u2t[i];

}

#

Increment calls to pde 1

ncall<<-ncall+1;

#

150 TWO-FLUID/MEMBRANE MODEL

Return derivative vector

return(list(c(ut)));

}

Listing 5.1: MOL/ODE routine pde 1 for eqs. (5.1) and (5.3)

We can note the following details about Listing 5.1.

• Function pde 1 is defined. The input arguments are: (1) the current value of t;
(2) the vector of dependent variables, u, of length nx*nz + nz + nz = 9*21 +

2*21 = 231 (the number of ODEs to be integrated that approximate eqs. (5.1));
and (3) the parameters passed to pde 1, which is unused.

pde 1=function(t,u,parms) {

#

Function pde 1 computes the t derivative vector

of the u vector

• The dependent variable vector u is placed in two vectors, u1,u2, and one matrix,
u3, to facilitate the programming of eqs. (5.1).

#

One vector to three PDEs

u1=rep(0,nz);u2=rep(0,nz);

u3=matrix(0,nrow=nz,ncol=nx);

for (i in 1:nz){

for (j in 1:nx){

u3[i,j]=u[(i-1)*nx+j];

}

u1[i]=u[nx*nz+i];

u2[i]=u[nx*nz+nz+i];

}

The outer for with index i steps through z and the inner for with index j steps
through x. Note that only the outer for applies to u1, u2 since these dependent
variables depend only on z while the inner and outer fors apply to u3, which is a
function of x and z (see Fig. 5.1 and Table 5.1).

• BCs (5.3c,d) are programmed.

#

Boundary conditions

u1[1]=u1e;u2[nz]=u2e;

u1e,u2e are entering concentrations (constants) set in the main program discussed
next. Note the use of subscripts 1 and nz corresponding to z = 0 and z = zL,
respectively.

MOL ANALYSIS 151

• The derivatives
∂u1

∂z
and

∂u2

∂z
in eqs. (5.1a) and (5.1b) are computed by one of

four approximations selected by ifd (set in the main program to one of the values
ifd=1,2,3,4).

#

u1z, u2z

#

ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,nz,u1,v1); }

if(ifd==1){ u2z=dss012(0,zL,nz,u2,v2); }

#

ifd = 2: Five point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,nz,u1); }

if(ifd==2){ u2z=dss004(0,zL,nz,u2); }

#

ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,nz,u1,v1); }

if(ifd==3){ u2z=dss020(0,zL,nz,u2,v2); }

#

ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,nz,u1,v1); }

if(ifd==4){ u2z=vanl(0,zL,nz,u2,v2); }

Test runs for the four approximations indicate that the van Leer flux limiter should
be used (ifd=4) to eliminate numerical diffusion and oscillation in the numerical
solution (see also the discussion in Chapter 4).

• The derivative
∂2u3

∂x2
in eq. (5.1c) is computed by the spatial differentiator dss044.

#

u3xx

u3x=matrix(0,nrow=nz,ncol=nx);

u3xx=matrix(0,nrow=nz,ncol=nx);

for(i in 1:nz){

u3x[i,1]=-(k1/Dm)*(u1[i]-u3[i,1]);

u3x[i,nx]=(k2/Dm)*(u2[i]-u3[i,nx]);

nl=2;nu=2;

u3xx[i,]=dss044(0,xL,nx,u3[i,],u3x[i,],nl,nu);

}

The array u3x for
∂u3

∂x
is used by dss044 only at the boundaries x = 0, xL. In other

words, u3x includes BCs (5.3c,d) (for u3x[i,1],u3x[i,nx]). nl=nu=2 indicates
that the BCs are Neumann since the derivatives at the boundaries x = 0, xL are
specified.

Vectorization is used with [i,], that is, a particular value of i (z) for all values
of x (since the computed derivative is with respect to x).

152 TWO-FLUID/MEMBRANE MODEL

Thus, eq. (5.1c) is integrated nz times (i=1,2,...,nz) in each call to pde 1.
This demonstrates that the total number of ODEs, nx*nz + 2*nz, increases
rapidly with an increase in the number of grid points due to the product nx*nz,
and care must be given to selecting the values of nx and nz to ensure that the total
number of ODEs is tractable, but that convergence of the numerical solution to
reasonable accuracy is achieved.

Since eqs. (5.1a) and (5.1b) are hyperbolic in z, nz=21 was selected to give
resolution of fronts moving in z. Eq. (5.1c) is parabolic in x so that smoothing of
the solution occurs through diffusion and therefore fewer points were used (nx=9).
However, the effect of these values on the solution should be studied (h refinement)
to give some assurance of convergence of the solution to an acceptable accuracy.

• Two vectors for the derivatives in t of u1, u2, and a matrix for the derivative in t of
u3 are declared.

#

Temporal derivatives

u1t=rep(0,nz);u2t=rep(0,nz);

u3t=matrix(0,nrow=nz,ncol=nx);

• Derivatives u1t =
∂u1

∂t
, u2t =

∂u2

∂t
, and u3t =

∂u3

∂t
are computed according to

eqs. (5.1).

#

u1t, u2t, u3t

for(i in 1:nz){

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v1*u1z[i]+k1*(u3[i,1]-u1[i]);

}

if(i==nz){

u2t[i]=0;

}else{

u2t[i]=-v2*u2z[i]+k2*(u3[i,nx]-u2[i]);

}

for(j in 1:nx){

u3t[i,j]=Dm*u3xx[i,j];

}

}

Since BCs (5.3a) and (5.3b) specify constants, their derivatives are zero,
u1t[1]=0, u2t[nz]=0. The close resemblance of the coding and the PDEs (eqs.
(5.1)) is an important feature of the MOL.

• All of the derivatives in t have been computed so they are placed in a vector utwith
two nested fors for use by the ODE integrator (ode called in the main program
discussed next).

#

MOL ANALYSIS 153

Three PDE derivatives to one vector

ut=rep(0,nx*nz+2*nz);

for (i in 1:nz){

for (j in 1:nx){

ut[(i-1)*nx+j]=u3t[i,j];

}

ut[nx*nz+i] =u1t[i];

ut[nx*nz+nz+i] =u2t[i];

}

Note that the subscripting is the reverse of that used for u at the beginning of
pde 1 to ensure that each dependent variable in u has a derivative placed in the
corresponding position in ut. In other words, this positioning is required so that
each derivative, when integrated numerically, produces the corresponding depen-
dent variable.

• The number of calls to pde 1 is incremented and returned to the main program
with <<-.

#

Increment calls to pde 1

ncall<<-ncall+1;

• The derivative vector ut is returned to the ODE integrator.

#

Return derivative vector

return(list(c(ut)));

}

c is the R vector operator, and the vector is returned as a list as required by the
R ODE integrators. The final } concludes pde 1.

The main program that calls pde 1 is considered next.

(5.2.2) Main program

The main program for the model of eqs. (5.1) to (5.3) follows.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

2D, 3-PDE fluid-membrane transport model

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap5");

154 TWO-FLUID/MEMBRANE MODEL

source("pde 1.R");source("dss044.R");

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

#

Step through cases

for(ncase in 1:1){

#

Model parameters

u10=0; u20=0; u30=0;

nx=9; nz=21;

v1=1; v2=-1;

k1=1; k2=1; Dm=0.1;

zL=5; xL=1;

u1e=1; u2e=0;

#

Select an approximation for the convective derivatives

u1z, u2z

#

ifd = 1: Two-point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five-point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=4;

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

#

Initial condition

u0=rep(0,nz*(nx+2));

for(i in 1:nz){

for(j in 1:nx){

u0[(i-1)*nx+j]=u30;

cat(sprintf("\n i=%2d j=%2d (i-1)*nx+j=%3d",

i,j,(i-1)*nx+j));

}

u0[nx*nz+i] =u10;

u0[nx*nz+nz+i] =u20;

MOL ANALYSIS 155

}

nrow(u0)

ncol(u0)

#

Grid in t

t0=0;tf=25;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=nz);

u2=matrix(0,nrow=nout,ncol=nz);

t=rep(0,nout);

for(it in 1:nout){

for(i in 1:nz){

u1[it,i]=out[it,nx*nz+i+1];

u2[it,i]=out[it,nx*nz+nz+i+1];

}

t[it]=out[it,1];

}

#

Display ifd, ncase, ncall

cat(sprintf("\n\n ifd = %2d ncase = %2d ncall = %2d",

ifd,ncase,ncall));

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) u2(z=0,t)\n"));
for(it in 1:nout){

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,nz],u2[it,1]));
}

}

#

Plot u1(z=zL,t), u2(z=0,t)

#

u1(z=zL,t)

par(mfrow=c(1,1));

plot(tout,u1[,nz],type="l",xlab="t",ylab="u1(z=zL,t)",

main="u1(z=zL,t) vs t",col="black",lwd=2,lty=1);

#

u2(z=0,t)

156 TWO-FLUID/MEMBRANE MODEL

par(mfrow=c(1,1));

plot(tout,u2[,1],type="l",xlab="t",ylab="u2(z=0,t)",

main="u2(z=0,t) vs t",col="black",lwd=2,lty=1);

#

Next case

}

Listing 5.2: Main program for eqs. (5.1), (5.2), and (5.3)

We can observe the following details in Listing 5.2.

• Previous workspaces are removed.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

2D, 3-PDE fluid-membrane transport model

• The R ODE library deSolve is accessed, and the routines required for the MOL
solution of eqs. (5.1) are referenced with the source utility.

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap5");

source("pde 1.R") ;source("dss044.R");

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

The setwd (set working directory) requires editing for the local computer (note
the use of / rather than the usual \).

• One case is programmed, but the for can be used to program multiple cases, e.g.,
for parameter variation as in Chapter 4.

#

Step through cases

for(ncase in 1:1){

• The model parameters are defined numerically.

#

Model parameters

u10=0; u20=0; u30=0;

nx=9; nz=21;

MOL ANALYSIS 157

v1=1; v2=-1;

k1=1; k2=1; Dm=0.1;

zL=5 xL=1;

u1e=1; u2e=0;

Note in particular that u1(z = 0, t) = u1e=1 moves the solution away from the
homogeneous ICs of eqs. (5.2) (u10 = u20 = u30 = 0). That is, a unit step is
imposed at the left boundary z = 0.

• Four approximations for the derivatives
∂u1

∂z
,

∂u2

∂z
, in eqs. (5.1a), (5.1b) can be

selected.

#

Select an approximation for the convective derivatives

u1z, u2z

#

ifd = 1: Two point upwind approximation

#

ifd = 2: Centered approximation

#

ifd = 3: Five point, biased upwind approximation

#

ifd = 4: van Leer flux limiter

#

ifd=4;

The van Leer flux limiter is selected for resolution of moving fronts in z in accor-
dance with the second case in Chapter 4.

• Detailed numerical output is selected that will be reviewed subsequently.

#

Level of output

#

Detailed output - ip = 1

#

Brief (IC) output - ip = 2

#

ip=1;

• ICs (5.2) are defined numerically using u10 = u20 = u30 to define an IC vec-
tor u0 of length nx*nz+2*nz. First, IC (5.2c) for u3(x, z, t = 0) is used in two
nested fors to step through x and z for a total of nx*nz = 9*21 = 189 ODEs.
Then, u1(z, t = 0) and u2(z, t = 0) are defined for a total of 2*nz = 2*21 = 42

additional ODEs, for a total of 189 + 42 = 231 ODEs.

#

Initial condition

u0=rep(0,nz*(nx+2));

158 TWO-FLUID/MEMBRANE MODEL

for(i in 1:nz){

for(j in 1:nx){

u0[(i-1)*nx+j]=u30;

cat(sprintf("\n i=%2d j=%2d (i-1)*nx+j=%3d",

i,j,(i-1)*nx+j));

}

u0[nx*nz+i] =u10;

u0[nx*nz+nz+i] =u20;

}

nrow(u0)

ncol(u0)

The output statement was used to check the indexing in the two nested fors (it
can be used by deleting the #). nrow and ncol are used to confirm the expected
dimensions of u0 (a 231-vector).

• The grid in t for 0 ≤ t ≤ 25 with 51 points (including t = 0) is defined so that
tout = 0,0.5,...,25.

#

Grid in t

t0=0;tf=25;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

The counter for the number of calls to the ODE routine pde 1 (discussed next) is
also initialized.

• The 231-ODE system is integrated by ode.

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

The arguments to ode are: (1) the MOL/ODE routine pde 1 of Listing 5.1, (2) the
vector of output values of t, tout, and (3) the IC vector u0. func,times,y are
reserved names. The numerical solution is returned in matrix out. The length of
u0 (231) informs ode of the number of ODEs to be integrated.

• The numerical solution for u1(z, t) and u2(z, t) in out is placed in two matri-
ces, u1,u2, for subsequent display numerically and graphically. The offset 1 in
nx*nz+i+1,, nx*nz+nz+i+1 is used since the first position in out is for t, that is,
t[it]=out[it,1].

#

Store solution

u1=matrix(0,nrow=nout,ncol=nz);

u2=matrix(0,nrow=nout,ncol=nz);

t=rep(0,nout);

MOL ANALYSIS 159

for(it in 1:nout){

for(i in 1:nz){

u1[it,i]=out[it,nx*nz+i+1];

u2[it,i]=out[it,nx*nz+nz+i+1];

}

}

• The counter for the calls to pde 1 of Listing 5.2 is displayed as a measure of the
computational effort required to compute the numerical solution.

#

Display ifd, ncase, ncall

cat(sprintf("\n\n ifd = %2d ncase = %2d ncall = %2d",

ifd,ncase,ncall));

• The concentrations of the exit streams, u1(z = zL, t) and u2(z = 0, t), are dis-
played as a function of t.

#

Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) u2(z=0,t)\n"));
for(it in 1:nout){

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,nz],u2[it,1]));
}

}

Note the use of subscripts 1,nz corresponding to z = 0, zL.

• The concentrations of the exit streams, u1(z = zL, t) and u2(z = 0, t), are plotted.
Vectorization as u1[,nz],u2[,1] is used for all values of t at z = zL, z = 0. The
utility matplot accepts these matrices as vectors. As might be expected from the
name, it will also accept the matrices u1,u2 (without vectorization) and produce
plots of u1(z, t) and u2(z, t) against t with z as a parameter (according to the
second subscript).

#

Plot u1(z=zL,t), u2(z=0,t)

#

u1(z=zL,t)

par(mfrow=c(1,1));

matplot(tout,u1[,nz],type="l",xlab="t",ylab="u1(z=zL,t)",

main="u1(z=zL,t) vs t",col="black",lwd=2,lty=1);

#

u3(z=0,t)

160 TWO-FLUID/MEMBRANE MODEL

par(mfrow=c(1,1));

matplot(tout,u2[,1],type="l",xlab="t",ylab="u2(z=0,t)",

main="u2(z=0,t) vs t",col="black",lwd=2,lty=1);

#

Next case

}

The final } concludes the for in ncase (with just one value, ncase=1).

This completes the programming of eqs. (5.1)–(5.3). The numerical and graphical
outputs are considered next.

(5.3) Model output

The output from the main program is given in Table 5.2 and Figs. 5.2, 5.3.
We can note the following details about the output in Table 5.2 and Figs. 5.2, 5.3.

• u2(z = 0, t) responds almost immediately to u1(z = 0, t) = u1e = 1 (see BC
(5.3a) in pde 1 of Listing 5.1), while u1(z = zL, t) does not respond until
t = 4.50

t u1(z=zL,t) u2(z=0,t)

0.00 0.0000 0.0000

0.50 -0.0000 0.0001

1.00 -0.0000 0.0018

1.50 -0.0000 0.0069

2.00 -0.0000 0.0149

2.50 -0.0000 0.0248

3.00 -0.0000 0.0361

3.50 -0.0000 0.0481

4.00 -0.0000 0.0606

4.50 0.0112 0.0731

5.00 0.1092 0.0856

This is to be expected since u2(z = 0, t) immediately “sees” u1(z = 0, t) = u1e =
1 through the membrane at z = 0, while the unit step must move through the system
to z = zL before it appears in u1(z = zL, t).

• Fig. 5.2 confirms this explanation since u1(z = zL, t) takes a step at approximately
t = zL/v = 5/1 = 5.

• Fig. 5.3 also confirms this explanation since u2(z = 0, t) responds almost imme-
diately to the entering u1(z = 0, t) = u1e = 1.

• Since the van Leer flux limiter was used, the solutions in Figs. 5.2 and 5.3 do not
exhibit any numerical oscillation. Presumably, they also have small numerical dif-
fusion (and only problem diffusion from the mass transport across the membrane),
as demonstrated in Chapter 4. An analytical solution is not available to confirm
this conclusion. But runs with ifd=1 demonstrate numerical diffusion and with
ifd=2,3 numerical oscillation, as discussed in Chapter 4.

MODEL OUTPUT 161

ifd = 4 ncase = 1 ncall = 3214

t u1(z=zL,t) u2(z=0,t)

0.00 0.0000 0.0000

0.50 -0.0000 0.0001

1.00 -0.0000 0.0018

1.50 -0.0000 0.0069

2.00 -0.0000 0.0149

2.50 -0.0000 0.0248

3.00 -0.0000 0.0361

3.50 -0.0000 0.0481

4.00 -0.0000 0.0606

4.50 0.0112 0.0731

5.00 0.1092 0.0856

5.50 0.2404 0.0979

6.00 0.3481 0.1101

6.50 0.4239 0.1219

7.00 0.4776 0.1334

7.50 0.5176 0.1447

8.00 0.5487 0.1556

8.50 0.5734 0.1662

9.00 0.5932 0.1766

9.50 0.6093 0.1866

10.00 0.6224 0.1964

10.50 0.6333 0.2059

11.00 0.6424 0.2151

11.50 0.6500 0.2238

12.00 0.6565 0.2320

12.50 0.6621 0.2395

13.00 0.6669 0.2462

13.50 0.6712 0.2523

14.00 0.6749 0.2576

14.50 0.6782 0.2623

15.00 0.6811 0.2664

15.50 0.6838 0.2700

16.00 0.6862 0.2731

16.50 0.6883 0.2757

17.00 0.6902 0.2781

17.50 0.6919 0.2801

18.00 0.6935 0.2818

18.50 0.6949 0.2833

19.00 0.6961 0.2846

19.50 0.6973 0.2858

20.00 0.6983 0.2868

20.50 0.6991 0.2876

Table 5.2: Numerical solution for eqs. (5.1) to (5.3)

162 TWO-FLUID/MEMBRANE MODEL

21.00 0.6999 0.2884

21.50 0.7006 0.2891

22.00 0.7013 0.2897

22.50 0.7018 0.2902

23.00 0.7023 0.2906

23.50 0.7027 0.2910

24.00 0.7031 0.2914

24.50 0.7034 0.2917

25.00 0.7037 0.2920

Table 5.2: (Continued)

0 5 10 15 20 25

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u1
(z

=
zL

,t
)

u1(z=zL,t) vs t

Figure 5.2 Numerical solution u1(z = zL, t)

• The computational effort is modest, ncall = 3214.

(5.4) Summary and conclusions

In this chapter, a 2D 3-PDE model was considered for transport between two fluid
streams (1D 2-PDEs) and a membrane (2D 1-PDE). The coding in Listings 5.1 and
5.2 demonstrated a procedure for three interconnected domains, and in particular, the
subscripting to accommodate this arrangement within the MOL framework. Mathemat-
ically, the model can be classified as hyperbolic–parabolic. Physically, it might represent

SUMMARY AND CONCLUSIONS 163

0 5 10 15 20 25

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u2
(z

=
0,

t)

u2(z=0,t) vs t

Figure 5.3 Numerical solution u2(z = 0, t)

a hemodialyzer with detailed analysis of the membrane. Physiologically, it might repre-
sent a kidney or a liver. But the methodology is general and is applicable to multi-PDE,
multidomain systems, including the BCs that connect the domains.

The model can be extended to include additional phenomena. For example, diffu-
sion in the membrane in the z direction could be included, that is, eq. (5.1c) could be
extended to

∂u3

∂t
= Dm

∂2u3

∂x2
+ Dm

∂2u3

∂z2
(5.1d)

The second derivative in z requires two BCs such as two homogeneous Neumann BCs

∂u3(x, z = 0, t)

∂z
= 0;

∂u3(x, z = zL, t)

∂z
= 0 (5.3e,f)

Eqs. (5.3e,f) are no flux BCs indicating that no diffusion occurs through the membrane
boundaries at z = 0, zL.

This addition of diffusion in the z direction would probably have little effect on the
numerical solution since the membrane is thin (xL = 1, zL = 5), and therefore, diffusion
is primarily in the x direction. However, this conclusion could easily be checked by
comparing the solutions with and without z diffusion.

Another possibility would be to add a volumetric reaction term to eqs. (5.1) to
(5.3) to model a bioreactor. This would possibly lead to various chemical species such

164 TWO-FLUID/MEMBRANE MODEL

as reactants and products, each of which would require a set of PDEs. Thus, model
extensions can become relatively complicated (for example, nonlinear), but the use of
computer-based analysis does not, at least in principle, have inherent limitations that
would preclude the model development.

This type of analysis and reasoning illustrates how experimentation with the model
structure is possible, for example, by adding terms to the equations, or even adding
additional equations. In other words, modeling is not a unique process and evolves
to include the principal phenomena of the physical/chemical system that should be
included in the model. This process of model formulation will be directed by the
experience and insights of the analyst and as new information becomes available,
e.g., experimental data. The final result will, ideally, be a model that reflects the
important features and characteristics of the problem system in sufficient detail and
with acceptable accuracy for the intended purpose of the study.

6
LIVER SUPPORT SYSTEMS

This chapter pertains to an ordinary/partial differential equation (ODE/PDE) mathemat-
ical model for an artificial liver support system (ALSS) to remove toxins from blood as
performed naturally by the liver. The basic concepts of the ALSS flow configuration are
described in the following excerpt from Annesni et al. [1].

The liver can be considered a complex large-scale biochemical reactor, because it occupies
a central position in the metabolic processes. Although individual pathway for synthesis
and breakdown of carbohydrates, lipids, amino acids, proteins and nucleic acids can be
identified in other mammalian cells, only the liver performs all of these biochemical trans-
formations simultaneously and is able to combine them to accomplish its vital biological
task. Therefore, this organ displays a unique biological complexity; when it fails, functional
replacements represent one of the most difficult challenges in substitutive medicine.

The intent of this chapter is to:

• Present an ODE/PDE model for an ALSS, including the required initial conditions
(ICs) and boundary conditions (BCs).

• Discuss the model in two steps: (a) a 2-ODE patient model and (b) a 1D 8-PDE
model for the extracorporeal ALSS.

• Explain the simultaneous ODEs and PDEs (coupling) of (a) and (b) above to con-
struct a complete ODE/PDE model for the patient ALSS, programmed in a series
of R routines.

• Present the computed model solution in numerical and graphical (plotted) format.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

166 LIVER SUPPORT SYSTEMS

Extravascular (tissue)
compartment

Intravascular (blood)
compartment

y1(t) y2(t)

Toxin mass
transfer

)(
2

device,

Blood to extracorporeal

ty

)(
2

device,

Blood from extracorporeal

tiny

Figure 6.1 ODE patient model

• Summarize the numerical methods for the hyperbolic (convective) and
hyperbolic-parabolic (convective-diffusive) PDEs in the model.

(6.1) 2-ODE patient model

The patient ODE model is illustrated in Fig. 6.1.
The ODE model is1

VE

dy1
dt

= KPS(yu
2 − Key1) + VEQE (6.1a)

VP

dy2
dt

= QB(y
in
2 − y2)− KPS(yu

2 − Key1) (6.1b)

where

y1 extravascular unbound toxin concentration
y2 intravascular total toxin concentration
yu
2 intravascular unbound toxin concentration

t time
VE volume of extravascular compartment
VP volume of intravascular compartment
Ke equilibrium ratio of unbound toxin concentrations in two compartments
KP mass transfer coefficient for unbound toxin between two compartments
S mass transfer surface
QB blood flow rate sent to the extracorporeal ALSS device
yin
2 total toxin concentration from the ALSS device

QE volumetric generation rate of unbound toxin in the extravascular
compartment

Eq. (6.1a) is a balance for the unbound toxin in the extravascular (tissue) compart-
ment. Eq. (6.1b) is a balance for the total toxin in the intravascular (blood) compartment.
In particular, the rate of transfer of unbound toxin between the two compartments is given

1The ODE/PDE notation is y for the vector of ODE dependent variables, e.g., dyi/dt, and u for the vector of
PDE dependent variables, e.g., ∂ui/∂t, ∂ui/∂x.

PATIENT ODE MODEL ROUTINES 167

by ±KPS(yu
2 − Key1). The nonhomogeneous term QE in eq. (6.1a) drives the entire

model away from the initial conditions (ICs), as stated next in eqs. (6.3).
Minor rearrangement of eqs. (6.1) gives ([1], p 395)

dy1
dt

=
VP

VE

KPS

VP

yu
2 − KPSKe

VE

y1 + QE (6.2a)

dy2
dt

=
QB

VP

(yin
2 − y2)−

KPS

VP

yu
2 +

VE

VP

KPSKe

VE

y1 (6.2b)

In accordance with [1], p 393, we take in eqs. (6.2) VP /VE = 3/5, λ12 =
KPS

VP

,

λ21 =
KPSKe

VE

where λ12, λ21 are fractional transfer rates between the extravascular

and intravascular compartments.
Eqs. (6.2) each require an IC.

y1(t = 0) = y10; y2(t = 0) = y20 (6.3a,b)

y10, y20 are constants to be specified.
Eqs. (6.2) and (6.3), along with numerical values of the parameters, constitute the

ODE model for the patient. They are programmed in the following routines (which are
subsequently added to the PDE model for the ALSS membrane and adsorption units).

(6.2) Patient ODE model routines

The R routines for eqs. (6.2) and (6.3) are the main program in Listing 6.1 and the ODE
routine in Listing 6.2.

(6.2.1) Main program

The main program for eqs. (6.2) and (6.3) follows.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Two-ODE patient model

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("g:/chap6");

source("ode 1.R");

#

168 LIVER SUPPORT SYSTEMS

Level of output

#

ip = 1 - graphical (plotted) solutions

(y1(t), y2(t) only)

#

ip = 2 - numerical and graphical solutions

#

ip=2;

#

Parameters

VP=5000; VE=(5/3)*VP; lam12=0.0047; lam21=0.0017; QB=150;

QE=0.005; alpha=1; y2in=0.01; y10=1; y20=1;

lam21=0.017;

cat(sprintf("\n VP = %4.1f VE = %4.1f\n",VP,VE));
cat(sprintf("\n lam12 = %8.5f lam21 = %8.5f\n",lam12,lam21));
cat(sprintf("\n QB = %4.1f QE = %8.5f alpha = %5.2f\n",

QB,QE,alpha));

cat(sprintf("\n y2in = %5.3f y10 = %5.3f y20 = %5.3f\n",
y2in,y10,y20));

#

Independent variable for ODE integration

nout=37;t0=0;tf=360;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial conditions

y0=rep(0,2);

y0[1]=y10;

y0[2]=y20;

ncall=0;

#

ODE integration

out=lsodes(func=ode 1,y=y0,times=tout,parms=NULL)

#

Save and display numerical solution

y1=rep(0,nout);y2=rep(0,nout);

for(it in 1:nout){

y1[it]=out[it,2];y2[it]=out[it,3];

}

if(ip==2){

for(it in 1:nout){

if(it==1){

cat(sprintf("\n t y1(t) y2(t)\n"));
}

cat(sprintf("%7.1f%10.4f%10.4f\n",tout[it],y1[it],y2[it]));
}

}

PATIENT ODE MODEL ROUTINES 169

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %3d\n\n",ncall));
#

Plot y1, y2

par(mfrow=c(1,1))

plot(tout,y1,

xlab="t (min)",ylab="y1,y2 (micromol/ml)",

main="y1(t),y2(t)",type="l",lwd=2,

xlim=c(0,400),ylim=c(0.5,1));

points(tout,y1, pch="1",lwd=2);

lines(tout,y2,type="l",lwd=2);

points(tout,y2, pch="2",lwd=2);

Listing 6.1: Main program for eqs. (6.2) and (6.3)

We can note the following details of Listing 6.1.

• Previous workspaces are removed.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Two-ODE patient model

• The library for the ODE integrator and the file with the programming of the ODEs
is accessed. In the setwd (set working directory), / is used in place of the usual \.

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("g:/chap6");

source("ode 1.R");

• A level of output is selected. For ip=2, detailed numerical output is produced as
well as graphical (plotted) output.

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(y1(x,t), y2(x,t) only)

#

170 LIVER SUPPORT SYSTEMS

ip = 2 - numerical and graphical solutions

#

ip=2;

• The parameters in eqs. (6.2) and (6.3) are defined numerically (some values are
from [1]). The units of the ODE dependent variables, y1, y2, and parameters are
listed below.
– VP,VE: ml (milliliters)
– QB: ml/min
– QE: μmol/min-ml (toxin)
– y2in,y10,y20: μmol/ml (toxin)
– y1, y2 (solutions to eqs. (6.2)): μmol/ml (toxin)

#

Parameters

VP=5000; VE=(5/3)*VP; lam12=0.0047; lam21=0.0017; QB=150;

QE=0.005; alpha=1; y2in=0.01; y10=1; y20=1;

lam21=0.017;

cat(sprintf("\n VP = %4.1f VE = %4.1f\n",VP,VE));
cat(sprintf("\n lam12 = %8.5f lam21 = %8.5f\n",lam12,

lam21));

cat(sprintf("\n QB = %4.1f QE = %8.5f alpha = %5.2f\n",
QB,QE,alpha));

cat(sprintf("\n y2in = %5.3f y10 = %5.3f y20 = %5.3f\n",
y2in,y10,y20));

The value of lam21 is changed from 0.0017 to 0.017 to give a more pronounced
transfer of toxin between the extravascular (tissue) and intravascular (blood)
volumes.

• The solution interval in t is defined as 0 ≤ t ≤ 360 min by the seq operator with
37 output values corresponding to t = 0, 10,...,360 min.

#

Independent variable for ODE integration

nout=37;t0=0;tf=360;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• ICs (6.3) are placed in a vector y0 declared (preallocated) by the rep operator for
use by the ODE integrator.

#

Initial conditions

y0=rep(0,2);

y0[1]=y10;

y0[2]=y20;

ncall=0;

The counter for calls to the ODE routine is initialized.

PATIENT ODE MODEL ROUTINES 171

• The 2× 2 ODE system, eqs. (6.2) and (6.3), is integrated by lsodes. As expected,
the ODE routine, ode 1, the IC vector, y0, and the vector of output times, tout, are
inputs to lsodes. func,y,times are reserved names. parm for passing parame-
ters to lsodes is unused.

#

ODE integration

out=lsodes(func=ode 1,y=y0,times=tout,parms=NULL)

The length of y0 informs lsodes of the number of ODEs to be integrated (in this
case, two).

• The ODE solutions returned by lsodes in out are placed in two vectors, y1,y2,
then displayed

#

Save and display numerical solution

y1=rep(0,nout);y2=rep(0,nout);

for(it in 1:nout){

y1[it]=out[it,2];y2[it]=out[it,3];

}

if(ip==2){

for(it in 1:nout){

if(it==1){

cat(sprintf("\n t y1(t) y2(t)\n"));
}

cat(sprintf("%7.1f%10.4f%10.4f\n",tout[it],y1[it],
y2[it]));

}

}

The offset 1 in y1[it]=out[it,2], y2[it]=out[it,3] is used since the first
position in out is for t, that is, tout[it]=out[it,1].

• The number of calls to ode 1 is displayed as a measure of the computational effort
required to compute the complete solution to eqs. (6.2).

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %3d\n\n",ncall));

• y1(t), y2(t) are plotted against t with the utilities par,plot,points,lines. The
solution curves are identified with pch="1",pch="2" as demonstrated in Fig. 6.2.
Scaling of the x and y axes is defined with xlim=c(0,400), ylim=c(0.5,1) to
improve the appearance of the plot (rather than using the automatic scaling from
plot).

#

Plot y1, y2

172 LIVER SUPPORT SYSTEMS

0 100 200 300

2

2

2

2
2

2
2

2
2

2
222222222222222222222222222

1111111111111111111111111111111
1

1
1

1
1

1

400

t (min)

0.5

0.6

0.7

0.8

0.9

1.0

y1
,y

2
(m

ic
ro

m
ol

/m
l)

y1(t),y2(t)

Figure 6.2 Solution of eqs. (6.2) and (6.3)

par(mfrow=c(1,1))

plot(tout,y1,

xlab="t (min)",ylab="y1,y2 (micromol/ml)",

main="y1(t),y2(t)",type="l",lwd=2,

xlim=c(0,400),ylim=c(0.5,1));

points(tout,y1, pch="1",lwd=2);

lines(tout,y2,type="l",lwd=2);

points(tout,y2, pch="2",lwd=2);

The ODE routine, ode 1, called by lsodes is considered next.

(6.2.2) ODE routine

ode 1 for eqs. (6.2) is in Listing 6.2.

ode 1=function(t,y,parms){

#

Function ode 1 computes the t derivative vector of

y1(t), y2(t)

#

One vector to two scalars

y1=y[1];

y2=y[2];

#

ODEs

y2u=alpha*y2;

y1t=(VP/VE)*lam12*y2u-lam21*y1+QE;

PATIENT ODE MODEL ROUTINES 173

y2t=(QB/VP)*(y2in-y2)-lam12*y2u+(VE/VP)*lam21*y1;

#

Two scalars to one vector

yt=rep(0,2);

yt[1]=y1t;

yt[2]=y2t;

#

Increment calls to ode 1

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(yt)));

}

Listing 6.2: ODE routine for eqs. (6.2)

We can note the following details of Listing 6.2.

• The function is defined. The input argument t is the current value of t in eqs. (6.2).
y is a 2-vector with y1(t), y2(t). parms for passing parameters to ode 1 is unused,
but must be included in the argument list.

ode 1=function(t,y,parms){

#

Function ode 1 computes the t derivative vector of

y1(t), y2(t)

• y is placed in two scalars to facilitate programming with problem oriented
variables.

#

One vector to two scalars

y1=y[1];

y2=y[2];

• Eqs. (6.2) are programmed. The parameters alpha,VP,...,lam21 are available
to ode 1 from the main program (Listing 6.1) without any special designation (a
feature of R).

#

ODEs

y2u=alpha*y2;

y1t=(VP/VE)*lam12*y2u-lam21*y1+QE;

y2t=(QB/VP)*(y2in-y2)-lam12*y2u+(VE/VP)*lam21*y1;

• The derivatives dy1/dt, dy2/dt are placed in a 2-vector yt to return to lsodes.

174 LIVER SUPPORT SYSTEMS

#

Two scalars to one vector

yt=rep(0,2);

yt[1]=y1t;

yt[2]=y2t;

• The counter for the calls to ode 1 is incremented and returned to the main program
with <<-.

#

Increment calls to ode 1

ncall <<- ncall+1;

• The derivative vector yt is returned to lsodes with c (the vector operator), list
(lsodes requires a list), and return. The final } concludes ode 1.

#

Return derivative vector

return(list(c(yt)));

}

This completes the programming of eqs. (6.2). The numerical and graphical output is
considered next.

(6.3) Model output

The numerical output from Listings 6.1 and 6.2 is in Table 6.1.
We can note the following details for this output.

• The ICs of eqs. (6.3) are confirmed. While this check may seem obvious, it is worth
doing, since if the ICs are incorrect, the resulting solution will be incorrect.

t y1(t) y2(t)

0.0 1.0000 1.0000

• The toxin transfer from the extravascular volume (with solution y1) to the intravas-
cular volume (with solution y2) is substantial. This transfer is in part due to the use
of lam21=0.017 rather than lam21=0.0017 as originally specified in [1], p 397,
Table 2.

• The final t, 360, and the spacing in t, 10, are as expected.

350.0 0.6851 0.5696

360.0 0.6847 0.5691

• The solution is smooth, e.g., nonnegative and nonoscillatory, as we would expect
for the physical system.

MODEL OUTPUT 175

VP = 5000.0 VE = 8333.3

lam12 = 0.00470 lam21 = 0.01700

QB = 150.0 QE = 0.01000 alpha = 1.00

y2in = 0.010 y10 = 1.000 y20 = 1.000

t y1(t) y2(t)

0.0 1.0000 1.0000

10.0 0.9608 0.9437

20.0 0.9264 0.8951

30.0 0.8961 0.8531

40.0 0.8696 0.8166

50.0 0.8464 0.7849

60.0 0.8260 0.7573

70.0 0.8081 0.7332

80.0 0.7925 0.7122

90.0 0.7788 0.6939

100.0 0.7668 0.6779

110.0 0.7562 0.6639

120.0 0.7470 0.6516

130.0 0.7390 0.6409

140.0 0.7319 0.6315

150.0 0.7257 0.6233

160.0 0.7203 0.6161

170.0 0.7155 0.6098

180.0 0.7114 0.6043

190.0 0.7077 0.5995

200.0 0.7045 0.5953

210.0 0.7017 0.5916

220.0 0.6993 0.5884

230.0 0.6971 0.5855

240.0 0.6953 0.5830

250.0 0.6936 0.5809

260.0 0.6922 0.5790

270.0 0.6909 0.5773

280.0 0.6898 0.5758

290.0 0.6889 0.5746

300.0 0.6880 0.5734

310.0 0.6873 0.5725

320.0 0.6866 0.5716

330.0 0.6861 0.5708

340.0 0.6856 0.5702

350.0 0.6851 0.5696

360.0 0.6847 0.5691

ncall = 65

Table 6.1: Numerical solution for eqs. (6.2) and (6.3)

176 LIVER SUPPORT SYSTEMS

• y1 and y2 approach steady state values of approximately 0.685 and 0.569 as also
demonstrated in Fig. 6.2.

• The computational effort is quite modest as we might expect for a low-order ODE
system with a smooth solution (also, lsodes is a stiff ODE integrator, just in case
eqs. (6.2) are stiff).

ncall = 65

The plot in Fig. 6.2 confirms these conclusions.
To conclude this discussion of the ODE patient model, two terms in eqs. (6.2)

move the solution through t: (1) the inhomogeneous term in eq. (6.2a), QE , models
the ongoing production of toxin in the extravascular volume, and (2) the entering
blood flow with concentration yin

2 in eq. (6.2b) represents the overall effect of the
ALSS, that is, the reduction in the concentration y2 to yin

2 . QE and yin
2 , defined as

parameters in Listing 6.1, are therefore parameters of particular interest in studying
the ODE patient model.

We now proceed to the addition of the two membrane units, MU1,MU2, and the
two adsorption units, AU1,AU2, depicted in Fig. 6.3.

MU1

)(2 ty

AU1 MU2AU2

6.1)Fig.(see

patient

Albumin dialysate
Secondary
dialysate

Blood

),0(7 tzu =

),(122 tzzu =

),0(3 tzu =),0(5 tzu =

),0(1 tzu =

),(788 tzzu =

),0(8 tzu =

u1(z,t) u3(z,t) u5(z,t) u7(z,t)

),(2 tzu),(4 tzu),(6 tzu),(8 tzu

Figure 6.3 Artificial liver with four units

(6.4) 8-PDE ALSS model

The ALSS model is represented schematically in Fig. 6.3. The two membrane and two
adsorption units have dependent variables (toxin concentrations) u1,...,u8.

8-PDE ALSS MODEL 177

(6.4.1) Membrane unit MU1

For MU1, the PDEs are2

∂u1

∂t
= −v1

∂u1

∂z
+ R1k12(u2 − u1) (6.4a)

∂u2

∂t
= −v2

∂u2

∂z
+ R2k12(u1 − u2) (6.4b)

where (Fig. 6.3)

u1 interior membrane toxin concentration (in blood) (μmol/mlfluid)
u2 exterior membrane toxin concentration (in albumin dialysate) (μmol/mlfluid)
z axial position along MU1 (cmmembrane)
t time (min)
v1, v2 velocities for u1, u2 (cm/min)
R1 ratio of mass transfer area per unit length to flow cross sectional area for

membrane interior
R2 ratio of mass transfer area per unit length to flow cross sectional area for

membrane exterior
k12 coefficient for mass transfer across the membrane (cm/min)

Axial dispersion is considered negligible so that eqs. (6.4a,b) do not have
second-order derivatives in z.3

Eqs. (6.4a,b) are first order in z and t, and therefore require one BC and one IC.

u1(z = z12, t) = y2(t); u1(z, t = 0) = u10 (6.4c,d)

u2(z = 0, t) = u3(z = 0, t); u2(z, t = 0) = u20 (6.4e,f)

BC (6.4c) specifies that the u1 entering concentration (z12 is the axial length of MU1,
Fig. 6.3) is the exiting patient concentration. BC (6.4e) specifies that the u2 entering
concentration is the exiting concentration of AU1. u10, u20 are specified initial concen-
trations. Eqs. (6.4) are the PDE model for MU1.

(6.4.2) Adsorption unit AU1

For AU1, the PDEs are discussed as eqs. (A.6.7), (A.6.8) in the chapter appendix.

∂u3

∂t
= −v3

∂u3

∂z
+ D3

∂2u3

∂z2
− ((1− ε)/ε)k34(u

e
4 − u4) (6.5a)

2Additional explanation for eq. (6.4a) as a mass balance on an incremental length of MU1 is given in the
chapter appendix.
3Axial dispersion is discussed in the chapter appendix, and in particular, is included in eq. (A.6.5).

178 LIVER SUPPORT SYSTEMS

where

u3 toxin concentration in albumin dialysate (μmol/mlfluid)
u4 toxin concentration on adsorbent (μmol/mladsorbent)
ue
4 equilibrium absorbent concentration (μmol/mladsorbent)

z axial position along AU1 (cmadsorber)
t time (min)
v3 fluid velocity for u3 (cmadsorber/min)
D3 dispersion coefficient for u3 (cm2

adsorber/min)
ε absorbent void fraction (mlfluid/cm3

adsorber)
k34 coefficient for mass transfer between fluid and adsorbent (min−1)

Note that in Fig. 6.3, the fluid flow in AU1 is in the negative direction (top to bottom) so
that v3 < 0.

Eq. (6.5a) is second order in z and t, and therefore requires two BCs and one IC.

u3(z = z34, t) = u5(z = 0, t);
∂u3(z = 0, t)

∂t
= −v3

∂u3(z = 0, t)

∂z
(6.5b,c)

u3(z, t = 0) = u30 (6.5d)

BC (6.5b) specifies that the u3 entering concentration is the exiting concentration of AU2
(z34 is the length of AU1). Eq. (6.5c) is a dynamic exiting BC4 (dynamic in the sense
that it has a derivative in t). u30 is a specified initial concentration.

For u4, the PDE is
∂u4

∂t
= k34(u

e
4 − u4) (6.5e)

Eq. (6.5e) does not have derivatives in z (e.g., no flow or dispersion in the solid phase of
AU1), but u4 is still a function of z since it varies along the AU1 unit. Since eq. (6.5e)
is first order in t, it requires one IC.

u4(z, t = 0) = u40 (6.5f)

This completes the model for AU1.

(6.4.3) Adsorption unit AU2

For AU2, the PDEs are analogous to eqs. (6.5).

∂u5

∂t
= −v5

∂u5

∂z
+ D5

∂2u5

∂z2
− ((1− ε)/ε)k56(u

e
6 − u6) (6.6a)

4BC (6.5c) is used rather than the Danckwerts exiting BC that specifies zero slope which is physically impos-
sible to realize. The use of dynamic BCs is discussed in [2].

8-PDE ALSS MODEL 179

where

u5 toxin concentration in albumin dialysate (μmol/mlfluid)
u6 toxin concentration on adsorbent (μmol/mladsorbent)
ue
6 equilibrium absorbent concentration (μmol/mladsorbent)

z axial position along AU2 (cmadsorber)
t time (min)
v5 fluid velocity for u5 (cmadsorber/min)
D5 dispersion coefficient for u3 (cm2

adsorber/min)
ε absorbent void fraction (mlfluid/cm3

adsorber)
k56 coefficient for mass transfer between fluid and adsorbent (min−1)

Note that in Fig. 6.3, the fluid flow in AU2 is in the negative direction (top to bottom)
so that v5 < 0.

Eq. (6.6a) is second order in z and t, and therefore requires two BCs and one IC.

u5(z = z56, t) = u7(z = 0, t);
∂u5(z = 0, t)

∂t
= −v5

∂u5(z = 0, t)

∂z
(6.6b,c)

u5(z, t = 0) = u50 (6.6d)

BC (6.5b) specifies that the u5 entering concentration is the exiting concentration of
MU2 (z56 is the length of AU2). BC (6.6c) is a dynamic exiting BC [2]. u50 is a specified
initial concentration.

For u6, the PDE is
∂u6

∂t
= k34(u

e
6 − u6) (6.6e)

Eq. (6.6e) is first order in t and requires one IC.

u6(z, t = 0) = u60 (6.6f)

This completes the model for AU2.

(6.4.4) Membrane unit MU2

For MU2, the PDEs are analogous to those for MU1 (eqs. (6.4)).

∂u7

∂t
= −v7

∂u7

∂z
+ R7k78(u8 − u7) (6.7a)

∂u8

∂t
= −v8

∂u8

∂z
+ R8k78(u7 − u8) (6.7b)

where

u7 interior membrane toxin concentration (in blood) (μmol/mlfluid)
u8 exterior membrane toxin concentration (in albumin dialysate) (μmol/mlfluid)

180 LIVER SUPPORT SYSTEMS

z axial position along MU2 (cmmembrane)
t time (min)
v7, v8 velocities for u7, u8 (cm/min)
R7 ratio of mass transfer area per unit length to flow cross sectional area for

membrane interior
R8 ratio of mass transfer area per unit length to flow cross sectional area for

membrane exterior
k78 coefficient for mass transfer across the membrane (cm/min)

Axial dispersion is considered negligible so that eqs. (6.7) do not have second-order
derivatives in z

Eqs. (6.7a,b) are first order in z and t, and therefore require one BC and one IC.

u7(z = z78, t) = u2(z = z12, t); u7(z, t = 0) = u70 (6.7c,d)

u8(z = 0, t) = u8e(t); u8(z, t = 0) = u80 (6.7e,f)

BC (6.7c) specifies that the u7 entering concentration (z78 is the axial length of MU2,
Fig. 6.3) is the exiting concentration from MU1. BC (6.7e) specifies that the u8 entering
concentration is a function of t, u8e(t). u70, u80 are specified initial concentrations. Eqs.
(6.7) are the PDE model for MU2.

(6.5) Patient-ALSS ODE/PDE model routines

The addition of eqs. (6.4)-(6.7) to eqs. (6.2), (6.3) constitutes the 2-ODE 8-PDE
patient-ALSS model. The main program is in Listing 6.3.

(6.5.1) Main program

#

2-ODE patient, 8-PDE artificial liver support

system model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("g:/chap6");

source("pde 1.R");

source("dss020.R");

source("dss044.R");

#

PATIENT-ALSS ODE/PDE MODEL ROUTINES 181

Level of output

#

ip = 1 - graphical (plotted) solutions

(u1(x,t), u2(x,t)) only

#

ip = 2 - numerical and graphical solutions

#

ip=2;

#

Parameters

#

2-ode model

VP=5000; VE=(5/3)*VP; lam12=0.0047; lam21=0.0017; QB=150;

QE=0.005; alpha=1; y2in=0.01; y10=1; y20=1;

lam21=0.017;

cat(sprintf("\n VP = %4.1f VE = %4.1f\n",VP,VE));
cat(sprintf("\n lam12 = %8.5f lam21 = %8.5f\n",lam12,lam21));
cat(sprintf("\n QB = %4.1f QE = %8.5f alpha = %5.2f\n",

QB,QE,alpha));

cat(sprintf("\n y2in = %5.3f y10 = %5.3f y20 = %5.3f\n",
y2in,y10,y20));

#

8-pde model

#

Initial concentrations

u10=0;u20=0;u30=0;u40=0;

u50=0;u60=0;u70=0;u80=0;

#

u1,u2

z12=25;v1=-2.5;v2=2.5;

R1=1;R2=1;k12=0.05;

#

u3,u4

z34=25;eps=0.3;k1=1;k2=10;

v3=-2.5;D3=0.01;k34=0.05;

#

u5,u6

z56=25;

v5=-2.5;D5=0.01;k56=0.05;

#

u7,u8

z78=25;v7=-2.5;v8=2.5;u8e=0;

R7=1;R8=1;k78=0.05;

#

Independent variable for ODE integration

nout=37;t0=0;tf=360;

182 LIVER SUPPORT SYSTEMS

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial conditions

nz=21;

u0=rep(0,2+8*nz);

for(i in 1:nz){

u0[i]=u10;

u0[i+nz]=u20;

u0[i+2*nz]=u30;

u0[i+3*nz]=u40;

u0[i+4*nz]=u50;

u0[i+5*nz]=u60;

u0[i+6*nz]=u70;

u0[i+7*nz]=u80;

}

u0[1+8*nz]=y10;

u0[2+8*nz]=y20;

ncall=0;

#

ODE integration

out=lsodes(func=pde 1,y=u0,times=tout,parms=NULL)

#

Save and display numerical solution

u1=rep(0,nout);u2=rep(0,nout);u3=rep(0,nout);u4=rep(0,nout);

u5=rep(0,nout);u6=rep(0,nout);u7=rep(0,nout);u8=rep(0,nout);

y1=rep(0,nout);y2=rep(0,nout);

for(it in 1:nout){

u1[it]=out[it,2] ;u2[it]=out[it,2*nz+1];

u3[it]=out[it,2*nz+2];u5[it]=out[it,4*nz+2];

u4[it]=out[it,3*nz+2];u6[it]=out[it,5*nz+2];

u7[it]=out[it,6*nz+2];u8[it]=out[it,8*nz+1];

y1[it]=out[it,8*nz+2];y2[it]=out[it,8*nz+3];

}

if(ip==2){

for(it in 1:nout){

if(it==1){

cat(sprintf("\n t y1(t) y2(t)\n"));
}

cat(sprintf("%7.1f%10.4f%10.4f\n",tout[it],y1[it],y2[it]));
}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %3d\n\n",ncall));
#

Plot y1, y2

PATIENT-ALSS ODE/PDE MODEL ROUTINES 183

par(mfrow=c(1,1))

plot(tout,y1,

xlab="t (min)",ylab="y1,y2 (micromol/ml)",

main="y1(t),y2(t)",type="l",lwd=2,

xlim=c(0,400),ylim=c(0.4,1.3));

points(tout,y1, pch="1",lwd=2);

lines(tout,y2,type="l",lwd=2);

points(tout,y2, pch="2",lwd=2);

#

Plot u1(z=0,t), u2(z=z12,t)

par(mfrow=c(1,1))

plot(tout,u1,

xlab="t (min)",ylab="u1,u2 (micromol/ml)",

main="u1(z=0,t),u2(z=z12,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u1, pch="1",lwd=2);

lines(tout,u2,type="l",lwd=2);

points(tout,u2, pch="2",lwd=2);

#

Plot u3(z=0,t), u5(z=0,t)

par(mfrow=c(1,1))

plot(tout,u3,

xlab="t (min)",ylab="u3,u5 (micromol/ml)",

main="u3(z=0,t),u5(z=0,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u3, pch="3",lwd=2);

lines(tout,u5,type="l",lwd=2);

points(tout,u5, pch="5",lwd=2);

#

Plot u4(z=0,t), u6(z=0,t)

par(mfrow=c(1,1))

plot(tout,u4,

xlab="t (min)",ylab="u4,u6 (micromol/ml)",

main="u4(z=0,t),u6(z=0,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u4, pch="4",lwd=2);

lines(tout,u6,type="l",lwd=2);

points(tout,u6, pch="6",lwd=2);

#

Plot u7(z=0,t), u8(z=z78,t)

par(mfrow=c(1,1))

plot(tout,u7,

xlab="t (min)",ylab="u7,u8 (micromol/ml)",

main="u7(z=0,t),u8(z=z78,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u7, pch="7",lwd=2);

184 LIVER SUPPORT SYSTEMS

lines(tout,u8,type="l",lwd=2);

points(tout,u8, pch="8",lwd=2);

Listing 6.3: Main program for eqs. (6.2) and (6.3)

Listing 6.3 is similar to Listing 6.1 so only the differences will be considered. We can
note the following details.

• Previous files are removed

#

2-ODE patient, 8-PDE artificial liver support

system model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The files accessed by source include the ODE/MOL routine, pde 1, and two dif-
ferentiation in space (DSS) routines, dss020, dss044.

#

Access functions for numerical solution

setwd("g:/chap6");

source("pde 1.R");

source("dss020.R");

source("dss044.R");

• The ODE parameters are the same as in Listing 6.1. Again, the value of lam21
is changed from 0.0017 to 0.017 to give a more pronounced transfer of toxin
between the extravascular (tissue) and intravascular (blood) volumes.

#

Parameters

#

2-ode model

VP=5000; VE=(5/3)*VP; lam12=0.0047; lam21=0.0017; QB=150;

QE=0.005; alpha=1; y2in=0.01; y10=1; y20=1;

lam21=0.017;

cat(sprintf("\n VP = %4.1f VE = %4.1f\n",VP,VE));
cat(sprintf("\n lam12 = %8.5f lam21 = %8.5f\n",lam12,

lam21));

cat(sprintf("\n QB = %4.1f QE = %8.5f alpha = %5.2f\n",
QB,QE,alpha));

cat(sprintf("\n y2in = %5.3f y10 = %5.3f y20 = %5.3f\n",
y2in,y10,y20));

PATIENT-ALSS ODE/PDE MODEL ROUTINES 185

• The PDE ICs and parameters for eqs. (6.4) to (6.7) are then added.

#

8-PDE model

#

Initial concentrations

u10=0;u20=0;u30=0;u40=0;

u50=0;u60=0;u70=0;u80=0;

#

u1,u2

z12=25;v1=-2.5;v2=2.5;

R1=1;R2=1;k12=0.05;

#

u3,u4

z34=25;eps=0.3;k1=1;k2=10;

v3=-2.5;D3=0.01;k34=0.05;

#

u5,u6

z56=25;

v5=-2.5;D5=0.01;k56=0.05;

#

u7,u8

z78=25;v7=-2.5;v8=2.5;u8e=0;

R7=1;R8=1;k78=0.05;

• After definition of the t scale as in Listing 6.1 (vector tout), an IC vector, u0, of
length 2+8*nz is defined. nz=21 defines the number of grid points in z for each of
eqs. (6.4) to (6.7). The length of MU1, AU1, AU2, MU2 in Fig. 6.3 is 25 cm. The
grid in z therefore has a spacing 25/(21− 1) = 1.25 so that z = 0, 1.25,...,25 in
the MOL approximation.

The velocities v1, v3, v5, v7 are negative, and the velocities v2, v8 are positive
as indicated in Fig. 6.3. AU1, AU2 have only one flowing stream (with velocities
v3, v5) since the adsorbent phase is immobile. The mass transfer coefficients are
k12 = k34 = k56 = k78 = 0.05.

ICs (6.4d,f), (6.5d,f), (6.6d,f) and (6.7d,f) are defined through the initial values
u10,...,u80. ICs (6.3a,b) are then defined.

#

Initial conditions

nz=21;

u0=rep(0,2+8*nz);

for(i in 1:nz){

u0[i]=u10;

u0[i+nz]=u20;

u0[i+2*nz]=u30;

u0[i+3*nz]=u40;

186 LIVER SUPPORT SYSTEMS

u0[i+4*nz]=u50;

u0[i+5*nz]=u60;

u0[i+6*nz]=u70;

u0[i+7*nz]=u80;

}

u0[1+8*nz]=y10;

u0[2+8*nz]=y20;

ncall=0;

After the 8*nz PDE dependent variable values for eqs. (6.4) to (6.7), y1, y2 from
eqs. (6.2) are placed in u0 as elements 1+8*nz,2+8*nz. Thus, the total number
of ODEs is 2+8*nz = 170. This length is used to tell lsodes the total number of
ODEs to be integrated.

• lsodes integrates the 170-ODE system. The MOL/ODE routine is pde 1 that is
discussed subsequently. The input parameters are discussed for Listing 6.1.

#

ODE integration

out=lsodes(func=pde 1,y=u0,times=tout,parms=NULL)

The numerical solution of the 170-ODE system is returned in out.

• Selected PDE dependent variables of eqs. (6.4) to (6.7) are placed in arrays u1 to

u8 for plotting. Generally, these are the exiting or outflow stream concentrations in
Fig. 6.3. For example, u1(z = 0, t) = out[it,2] is from the bottom of MU1. The
offset of 1 in the second subscript such as [it,2] is required since out[it,1]

is reserved for the independent variable t. As another example, u2(z = z12, t) =
out[it,2*nz+1] is from the top of MU1. The ODE dependent variables of eqs.
(6.2) are placed in arrays y1,y2. All of these arrays are first declared with the rep
utility.

#

Save and display numerical solution

u1=rep(0,nout);u2=rep(0,nout);

u3=rep(0,nout);u4=rep(0,nout);

u5=rep(0,nout);u6=rep(0,nout);

u7=rep(0,nout);u8=rep(0,nout);

y1=rep(0,nout);y2=rep(0,nout);

for(it in 1:nout){

u1[it]=out[it,2] ;u2[it]=out[it,2*nz+1];

u3[it]=out[it,2*nz+2];u5[it]=out[it,4*nz+2];

u4[it]=out[it,3*nz+2];u6[it]=out[it,5*nz+2];

u7[it]=out[it,6*nz+2];u8[it]=out[it,8*nz+1];

y1[it]=out[it,8*nz+2];y2[it]=out[it,8*nz+3];

}

if(ip==2){

for(it in 1:nout){

if(it==1){

PATIENT-ALSS ODE/PDE MODEL ROUTINES 187

cat(sprintf("\n t y1(t) y2(t)\n"));
}

cat(sprintf("%7.1f%10.4f%10.4f\n",tout[it],y1[it],
y2[it]));

}

}

For ip=2 the solutions to eqs. (6.2) are displayed numerically as before in
Listing 6.1.

• The two ODE dependent variables in arrays y1,y2 and eight PDE variables
in u1,...,u8 are plotted against t with the plot,points,lines utilities as
explained for Listing 6.1. In each plot, two curves are plotted and identified with
pch.

#

Plot y1, y2

par(mfrow=c(1,1))

plot(tout,y1,

xlab="t (min)",ylab="y1,y2 (micromol/ml)",

main="y1(t),y2(t)",type="l",lwd=2,

xlim=c(0,400),ylim=c(0.4,1.3));

points(tout,y1, pch="1",lwd=2);

lines(tout,y2,type="l",lwd=2);

points(tout,y2, pch="2",lwd=2);

#

Plot u1(z=0,t), u2(z=z12,t)

par(mfrow=c(1,1))

plot(tout,u1,

xlab="t (min)",ylab="u1,u2 (micromol/ml)",

main="u1(z=0,t),u2(z=z12,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u1, pch="1",lwd=2);

lines(tout,u2,type="l",lwd=2);

points(tout,u2, pch="2",lwd=2);

. .

. .

. .

#

Plot u7(z=0,t), u8(z=z78,t)

par(mfrow=c(1,1))

plot(tout,u7,

xlab="t (min)",ylab="u7,u8 (micromol/ml)",

main="u7(z=0,t),u8(z=z78,t)",type="l",lwd=2,

xlim=c(0,400));

points(tout,u7, pch="7",lwd=2);

lines(tout,u8,type="l",lwd=2);

points(tout,u8, pch="8",lwd=2);

188 LIVER SUPPORT SYSTEMS

This completes the programming of the main program. The MOL/ODE routine pde 1

called by lsodes is discussed next.

(6.5.2) ODE routine

MOL/ODE routine pde 1 follows.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of

u1(t),..., u8(t), y1(t), y2(t)

#

One vector to eight vectors and two scalars

u1=rep(0,nz);u2=rep(0,nz);

u3=rep(0,nz);u4=rep(0,nz);

u5=rep(0,nz);u6=rep(0,nz);

u7=rep(0,nz);u8=rep(0,nz);

for(i in 1:nz){

u1[i]=u[i] ;u2[i]=u[i+nz] ;

u3[i]=u[i+2*nz];u4[i]=u[i+3*nz];

u5[i]=u[i+4*nz];u6[i]=u[i+5*nz];

u7[i]=u[i+6*nz];u8[i]=u[i+7*nz];

}

y1=u[1+8*nz];y2=u[2+8*nz];

#

PDEs

#

u1t, u2t

u1t=rep(0,nz);u2t=rep(0,nz);

u1[nz]=y2;u2[1]=u3[nz];

u1z=dss020(0,z12,nz,u1,v1);

u2z=dss020(0,z12,nz,u2,v2);

for(i in 1:nz){

u1t[i]=-v1*u1z[i]+R1*k12*(u2[i]-u1[i]);

u2t[i]=-v2*u2z[i]+R2*k12*(u1[i]-u2[i]);

}

u1t[nz]=0;u2t[1]=0;

#

u3t, u4t

u3t=rep(0,nz);u4t=rep(0,nz);

u3z=dss020(0,z34,nz,u3,v3);

nl=1;nu=1;

u3zz=dss044(0,z34,nz,u3,u3z,nl,nu);

epsr=(1-eps)/eps;

for(i in 2:(nz-1)){

u4e=k1*u3[i]/(1+k2*u3[i]);

PATIENT-ALSS ODE/PDE MODEL ROUTINES 189

u3t[i]=-v3*u3z[i]+D3*u3zz[i]-epsr*k34*(u4e-u4[i]);

u4t[i]=k34*(u4e-u4[i]);

}

u3[nz]=u5[1];u3t[nz]=0;

u3t[1]=-v3*u3z[1];

u4e=k1*u3[1]/(1+k2*u3[1]);

u4t[1]=k34*(u4e-u4[1]);

u4e=k1*u3[nz]/(1+k2*u3[nz]);

u4t[nz]=k34*(u4e-u4[nz]);

#

u5t, u6t

u5t=rep(0,nz);u6t=rep(0,nz);

u5z=dss020(0,z56,nz,u5,v5);

nl=1;nu=1;

u5zz=dss044(0,z56,nz,u5,u5z,nl,nu);

for(i in 2:(nz-1)){

u6e=k1*u6[i]/(1+k2*u6[i]);

u5t[i]=-v5*u5z[i]+D5*u5zz[i]-epsr*k56*(u6e-u6[i]);

u6t[i]=k56*(u6e-u6[i]);

}

u5[nz]=u7[1];u5t[nz]=0;

u5t[1]=-v5*u5z[1];

u6e=k1*u5[1]/(1+k2*u5[1]);

u6t[1]=k56*(u6e-u6[1]);

u6e=k1*u5[nz]/(1+k2*u5[nz]);

u6t[nz]=k56*(u6e-u6[nz]);

#

u7t, u8t

u7t=rep(0,nz);u8t=rep(0,nz);

u7[nz]=u2[nz];u8[1]=u8e;

u7z=dss020(0,z78,nz,u7,v7);

u8z=dss020(0,z78,nz,u8,v8);

for(i in 1:nz){

u7t[i]=-v7*u7z[i]+R7*k78*(u8[i]-u7[i]);

u8t[i]=-v8*u8z[i]+R8*k78*(u7[i]-u8[i]);

}

u7t[nz]=0;u8t[1]=0;

#

ODEs

y1, y2

y2u=alpha*y2;

y1t=(VP/VE)*lam12*y2u-lam21*y1+QE;

y2t=(QB/VP)*(u1[1]-y2)-lam12*y2u+(VE/VP)*lam21*y1;

#

Eight vectors and two scalars to one vector

ut=rep(0,2+8*nz);

190 LIVER SUPPORT SYSTEMS

for(i in 1:nz){

ut[i]=u1t[i] ;ut[i+nz]=u2t[i] ;

ut[i+2*nz]=u3t[i];ut[i+3*nz]=u4t[i];

ut[i+4*nz]=u5t[i];ut[i+5*nz]=u6t[i];

ut[i+6*nz]=u7t[i];ut[i+7*nz]=u8t[i];

}

ut[1+8*nz]=y1t;ut[2+8*nz]=y2t;

#

Increment calls to pde 1

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 6.4: MOL/ODE routine for eqs. (6.2) to (6.7)

We can note the following details about Listing 6.4.

• The function is defined.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of

u1(t),..., u8(t), y1(t), y2(t)

u is a 170-vector of ODE dependent variables. t is the current value of t in eqs.
(6.2) to (6.7). parms for passing parameters to pde 1 is unused.

• u is placed in eight vectors, u1,...,u8 of length nz, and two scalars y1,y2. The
PDE vectors are first declared (preallocated) with the rep utility.

#

One vector to eight vectors and two scalars

u1=rep(0,nz);u2=rep(0,nz);

u3=rep(0,nz);u4=rep(0,nz);

u5=rep(0,nz);u6=rep(0,nz);

u7=rep(0,nz);u8=rep(0,nz);

for(i in 1:nz){

u1[i]=u[i] ;u2[i]=u[i+nz] ;

u3[i]=u[i+2*nz];u4[i]=u[i+3*nz];

u5[i]=u[i+4*nz];u6[i]=u[i+5*nz];

u7[i]=u[i+6*nz];u8[i]=u[i+7*nz];

}

y1=u[1+8*nz];y2=u[2+8*nz];

PATIENT-ALSS ODE/PDE MODEL ROUTINES 191

• The PDEs, eqs. (6.4) to (6.7), are programmed, starting with eqs. (6.4).

#

PDEs

#

u1t, u2t

u1t=rep(0,nz);u2t=rep(0,nz);

u1[nz]=y2;u2[1]=u3[nz];

u1z=dss020(0,z12,nz,u1,v1);

u2z=dss020(0,z12,nz,u2,v2);

for(i in 1:nz){

u1t[i]=-v1*u1z[i]+R1*k12*(u2[i]-u1[i]);

u2t[i]=-v2*u2z[i]+R2*k12*(u1[i]-u2[i]);

}

u1t[nz]=0;u2t[1]=0;

We can note the following details about this programming.
– Arrays u1t,u2t are declared for the partial derivatives ∂u1/∂t, ∂u2/∂t in eqs.

(6.4a,b).

u1t=rep(0,nz);u2t=rep(0,nz);

– BCs (6.4c,e) are programmed as (refer to Fig. 6.3)

u1[nz]=y1;u2[1]=u3[nz];

– Partial derivatives ∂u1/∂z, ∂u2/∂z in eqs. (6.4a,b) are computed by dss020

(arrays u1z,u2z, which do not have to be declared since this is done in dss020).

u1z=dss020(0,z12,nz,u1,v1);

u2z=dss020(0,z12,nz,u2,v2);

The velocities v1,v2 are used by dss020 to define the direction of flow (the
direction of biasing or upwinding of the five-point finite differences in dss020).
That is, v1<0 since the flow for u1 is from z = z12 to z = 0 while v2>0 since
the flow for u2 is from z = 0 to z = z12. Incorrect specification of the direction
of flow (sign of the velocity) generally leads to an unstable numerical solution.

– Eqs. (6.4a,b) are programmed.

for(i in 1:nz){

u1t[i]=-v1*u1z[i]+R1*k12*(u2[i]-u1[i]);

u2t[i]=-v2*u2z[i]+R2*k12*(u1[i]-u2[i]);

}

u1t[nz]=0;u2t[1]=0;

Since u1(z = z12, t) = y2, u2(z = 0, t) = u3(z = 0, t), are set by BCs, the
derivatives in t are set to zero. The close correspondence of the programming
and the PDEs (eqs. (6.4a,b)) demonstrates an important advantage of the MOL.

192 LIVER SUPPORT SYSTEMS

• Eqs. (6.5) are programmed in a similar way.

#

u3t, u4t

u3t=rep(0,nz);u4t=rep(0,nz);

u3z=dss020(0,z34,nz,u3,v3);

nl=1;nu=1;

u3zz=dss044(0,z34,nz,u3,u3z,nl,nu);

epsr=(1-eps)/eps;

for(i in 2:(nz-1)){

u4e=k1*u3[i]/(1+k2*u3[i]);

u3t[i]=-v3*u3z[i]+D3*u3zz[i]-epsr*k34*(u4e-u4[i]);

u4t[i]=k34*(u4e-u4[i]);

}

u3[nz]=u5[1];u3t[nz]=0;

u3t[1]=-v3*u3z[1];

u4e=k1*u3[1]/(1+k2*u3[1]);

u4t[1]=k34*(u4e-u4[1]);

u4e=k1*u3[nz]/(1+k2*u3[nz]);

u4t[nz]=k34*(u4e-u4[nz]);

We can note the following details.

– Vectors u3t,u4t are for the derivatives ∂u3/∂t, ∂u4/∂t in eqs. (6.5a,b). ∂u3/∂z
in eq. (6.5a) is then computed by dss020 with v3<0 (for flow from z = z34 to
z = 0).

#

u3t, u4t

u3t=rep(0,nz);u4t=rep(0,nz);

u3z=dss020(0,z34,nz,u3,v3);

– ∂2u3/∂z2 in eq. (6.5a) is computed with dss044. nl=1,nu=1 specifies that the
dependent variable u3 at the boundaries z = 0, z34 is used in calculating the
second derivative (a Dirichlet BC). nl=2,nu=2 would specify Neumann BCs
that use ∂u3/∂z at the boundaries.

nl=1;nu=1;

u3zz=dss044(0,z34,nz,u3,u3z,nl,nu);

– Eqs. (6.5a,e) are programmed as u3t,u4t for ∂u3/∂t, ∂u4/∂t. First, the equi-
librium concentration ue

4 in eqs. (6.5a,e) is computed from u3 by a Langmuir
isotherm (with parameters k1, k2).

epsr=(1-eps)/eps;

for(i in 2:(nz-1)){

u4e=k1*u3[i]/(1+k2*u3[i]);

PATIENT-ALSS ODE/PDE MODEL ROUTINES 193

u3t[i]=-v3*u3z[i]+D3*u3zz[i]-epsr*k34*(u4e-u4[i]);

u4t[i]=k34*(u4e-u4[i]);

}

Note that with for(i in 2:(nz-1)){, the boundary derivatives in t are not
computed so far.

– u3(z = z34, t) is set according to BC (6.5b), and its derivative, ∂u3(z =
z34, t)/∂t, is set to zero so the ODE integrator does not move it away from the
specified value.

u3[nz]=u5[1];u3t[nz]=0;

– ∂u3(z = 0, t)/∂t is set according to BC (6.5c).

u3t[1]=-v3*u3z[1];

u3z[1] was set by the preceding call to dss020.

– ∂u4(z = 0, t)/∂t is set by eq. (6.5e), including the use of the isotherm for the
equilibrium concentration ue

4 corresponding to u3(z = 0, t).

u4e=k1*u3[1]/(1+k2*u3[1]);

u4t[1]=k34*(u4e-u4[1]);

– ∂u4(z = z34, t)/∂t is set by eq. (6.5e), including the use of the isotherm for the
equilibrium concentration ue

4 corresponding to u3(z = z34, t).

u4e=k1*u3[nz]/(1+k2*u3[nz]);

u4t[nz]=k34*(u4e-u4[nz]);

• The programming of eqs. (6.6a,e) for ∂u5/∂t, ∂u6/∂t is similar, including BCs
(6.6b,c).

#

u5t, u6t

u5t=rep(0,nz);u6t=rep(0,nz);

. .

. .

. .

u6t[nz]=k56*(u6e-u6[nz]);

• The programming of eqs. (6.7a,b) for ∂u7/∂t, ∂u8/∂t is similar to the program-
ming for ∂u1/∂t, ∂u2/∂t, including BCs (6.7c,e).

#

u7t, u8t

u7t=rep(0,nz);u8t=rep(0,nz);

194 LIVER SUPPORT SYSTEMS

u7[nz]=u2[nz];u8[1]=u8e;

u7z=dss020(0,z78,nz,u7,v7);

u8z=dss020(0,z78,nz,u8,v8);

for(i in 1:nz){

u7t[i]=-v7*u7z[i]+R7*k78*(u8[i]-u7[i]);

u8t[i]=-v8*u8z[i]+R8*k78*(u7[i]-u8[i]);

}

u7t[nz]=0;u8t[1]=0;

• Eqs. (6.2) are programmed as in Listing 6.2.

#

ODEs

y1, y2

y2u=alpha*y2;

y1t=(VP/VE)*lam12*y2u-lam21*y1+QE;

y2t=(QB/VP)*(u1[1]-y2)-lam12*y2u+(VE/VP)*lam21*y1;

This completes the programming of the set of 170 ODE derivatives in t.

• The derivatives ∂u1/∂t,..., ∂u8/∂t are placed in a derivative vector ut to be returned
to the ODE integrator (lsodes called by the main program in Listing 6.3).

#

Eight vectors and two scalars to one vector

ut=rep(0,2+8*nz);

for(i in 1:nz){

ut[i]=u1t[i] ;ut[i+nz]=u2t[i] ;

ut[i+2*nz]=u3t[i];ut[i+3*nz]=u4t[i];

ut[i+4*nz]=u5t[i];ut[i+5*nz]=u6t[i];

ut[i+6*nz]=u7t[i];ut[i+7*nz]=u8t[i];

}

• The derivatives dy1/dt, dy2/dt (from eqs. (6.2)) are placed at the end of ut.

ut[1+8*nz]=y1t;ut[2+8*nz]=y2t;

• The counter for the calls to pde 1 is returned to the main program of Listing 6.3
by a <<-.

#

Increment calls to pde 1

ncall <<- ncall+1;

• The derivative vector ut is returned to lsodes by a combination of c, the R vector
operator, list since lsodes requires a list, and return.

MODEL OUTPUT 195

#

Return derivative vector

return(list(c(ut)));

}

The final } concludes pde 1. In summary, pde 1 receives a vector of 170 ODE
dependent variables, u, and returns a vector of 170 derivatives, ut. Further, the
dependent variables and their derivatives must be placed in corresponding positions
in u and ut. That is, dependent variable u[i], with IC u0[i], has the associated
derivative ut[i], where the index i has as a value in the interval i=1 to i=170.

Intermediate variables can be computed from the incoming u (such as u4e cal-
culated from u3), then used in the calculation of ut. The intermediate variables are
generally algebraic so that in this sense we are considering a differential-algebraic
equation (DAE) system.5

This completes the programming of eqs. (6.2) to (6.7). The output from the preceding
routines in Listings 6.3 and 6.4 is considered next.

(6.6) Model output

The numerical output from the main program of Listing 6.3 follows.
We can note the following details about this output.

• The ICs for y1, y2 are confirmed (at t = 0).

• The solutions for y1, y2 differ significantly from those in Table 6.1, which is due
to the addition of MU1, AU1, AU2, MU2 to the 2-ODE patient model.

• The added units remove a significant part of the toxin in y1 (tissue). For example,
y1(t = 0) = 1.0000 while y1(t = 360) = 0.4548. y2 (blood) goes through a max-
imum, then also drops below its IC, y2(t = 0) = 1.0000, y2(t = 360) = 0.9196.

• The computational effort with ncall = 796 is modest.

In summary, the ALSS is giving the expected response, i.e., a reduction in the toxin.
This results primarily from the term in eq. (6.2b) that gives the patient-ALSS linkage.
Specifically, with just y1, y2, the model is responding in eq. (6.2b) to (yin

2 − y2) with
y2in = 0.01 in Listing 6.1. With MU1, AU1, AU2, MU2 added, the model is respond-
ing (in Listing 6.4) to (u1[1]-y2) so that the output of MU1 (u1[1]) becomes the input
to the patient model. Therefore, a plot of u1(z = 0, t) is of interest and is discussed with
the graphical output in Figs. 6.4a,b,c,d,e (refer also to Fig. 6.3).

Fig. 6.4a reflects the numerical solution of Table 6.2. In particular, the reduction in
tissue toxin, y1(t), is clear.

5An extensive literature for DAE systems is available that pertains to a generalization of this basic idea,
including many additional mathematical concepts. The discussion in this book is limited to cases in which
the intermediate algebraic variables can be calculated explicitly in the MOL/ODE routine, as in pde 1 of
Listing 6.4.

196 LIVER SUPPORT SYSTEMS

y 1
,y

2
(m

ic
ro

m
ol

/m
l)

y1(t),y2(t)

1.2

1.0

0.8

0.6

0.4

0 100 200 300 400

22222222
222222

222222
22222222222222

22

111111111111111111111111111
111

11
11

1
1

t (min)

Figure 6.4a y1(t), y2(t) from eqs. (6.2) and (6.3)

u 1
, u

2
(m

ic
ro

m
ol

/m
l)

u1(z = 0, t), u2(z = z12, t)
0.8

0.6

0.0

0.2

0.4

0 100 200 300 400

t (min)

11
11

1

1
11

11 111111 11111111111111111111

2
2 222222222222222222222222222222222

2

2

Figure 6.4b u1(z = 0, t), u2(z = z12, t) from eqs. (6.4)

Fig. 6.4b indicates the toxin concentration leaving the bottom of MU1 that becomes
the input to the patient model, u1(z = 0, t), as discussed above. u2(z = z12, t) indicates
the uptake of toxin by MU1.

Fig. 6.4c indicates that the exiting streams from AU1 and AU2 have essentially zero
toxin concentration. This is a desirable response since the adsorbent in AU1 and AU2
apparently does not have a level of toxin that would require regeneration.

Fig. 6.4d confirms the previous conclusion for Fig. 6.4c since the adsorbent at the
bottom (exit) of AU1 and AU2 has essentially no toxin.

Fig. 6.4e indicates that the exiting stream from MU2 with concentration u7(z =
0, t) goes through a maximum of about 0.33, then declines as the transient from the
IC u7(z, t = 0) progresses. Fig. 6.4c indicates that u7(z = 0, t) is essentially reduced
to zero in AU2. The exiting dialysate stream from MU2, u8(z = z78, t), approaches a
steady state concentration of approximately 0.12.

(6.7) Summary and conclusions

In summary, the interactions of the patient, MU1, AU1, AU2 and MU2 models of eqs.
(6.2) to (6.7) can be studied in detail by a MOL analysis. Once the composite model is

SUMMARY AND CONCLUSIONS 197

VP = 5000.0 VE = 8333.3

lam12 = 0.00470 lam21 = 0.01700

QB = 150.0 QE = 0.00500 alpha = 1.00

y2in = 0.010 y10 = 1.000 y20 = 1.000

t y1(t) y2(t)

0.0 1.0000 1.0000

10.0 0.9147 0.9377

20.0 0.8433 1.0264

30.0 0.7849 1.0852

40.0 0.7369 1.1269

50.0 0.6973 1.1546

60.0 0.6644 1.1715

70.0 0.6371 1.1801

80.0 0.6141 1.1823

90.0 0.5947 1.1798

100.0 0.5782 1.1738

110.0 0.5641 1.1652

120.0 0.5520 1.1547

130.0 0.5415 1.1430

140.0 0.5323 1.1306

150.0 0.5242 1.1176

160.0 0.5170 1.1045

170.0 0.5107 1.0915

180.0 0.5049 1.0786

190.0 0.4998 1.0660

200.0 0.4951 1.0537

210.0 0.4909 1.0419

220.0 0.4870 1.0306

230.0 0.4834 1.0197

240.0 0.4801 1.0093

250.0 0.4771 0.9994

260.0 0.4743 0.9900

270.0 0.4717 0.9811

280.0 0.4692 0.9726

290.0 0.4670 0.9646

300.0 0.4649 0.9570

310.0 0.4629 0.9499

320.0 0.4610 0.9431

330.0 0.4593 0.9367

340.0 0.4577 0.9307

350.0 0.4562 0.9250

360.0 0.4548 0.9196

ncall = 796

Table 6.2: Numerical solution for eqs. (6.2) and (6.3) with eqs. (6.4) to (6.7) included

198 LIVER SUPPORT SYSTEMS

−1.0

−0.5

0.0

0.5

1.0

u 3
,u

5
(m

ic
ro

m
ol

/m
l)

u3(z = 0, t),u5(z = 0, t)

0 100 200 300 400

t (min)

5555555555555555555555555555555555555

Figure 6.4c u3(z = 0, t), u5(z = 0, t) from eqs. (6.5), (6.6)

−1.0

−0.5

0.0

0.5

1.0

u 4
,u

6
(m

ic
ro

m
ol

/m
l)

u4(z = 0, t),u6(z = 0, t)

0 100 200 300 400

t (min)

46

Figure 6.4d u4(z = 0, t), u6(z = 0, t) from eqs. (6.5), (6.6)

0.25

0.20

0.15

0.10

0.05

0.00

u 7
,u

8
(m

ic
ro

m
ol

/m
l)

u7(z = 0, t),u8(z = z78, t)

0 100 200 300 400

t (min)

8
8

8
8

88
8
8888

8888888888888888888888888888

77
7

7777
77

7
7

7

7

7

7 77 77777777 77777777 77 7

Figure 6.4e u7(z = 0, t), u8(z = z78, t) from eqs. (6.7)

SUMMARY AND CONCLUSIONS 199

running, variation of the design and operating parameters can be studied to assess (a) the
ALSS performance and (b) agreement of the model output with whatever experimental
measurements are available.

The numerical methods used in ode 1 of Listing 6.2 and pde 1 of Listing 6.4 pertain
to two main classes of PDEs:

• Eqs. (6.4) and (6.7) are first-order hyperbolic (convective) PDEs. Generally, this
class of PDEs is relatively difficult to integrate numerically because they can prop-
agate sharp fronts and discontinuities. In Listings 6.2 and 6.4, the convective terms
were approximated by five-point biased upwind finite difference (FD) approxima-
tions in dss020, which generally perform quite well if the problem system has
some smoothing. In the present case, smoothing is provided by the membrane
transfer in MU1 and MU2 and by the adsorption in AU1 and AU2 so that the
numerical solutions appear to be physically realistic (no numerical oscillations
can be observed in Figs. 6.4). If unrealistic numerical artifacts are observed in
the solutions, then a flux limiter would be required as discussed in Chapter 1.

• Eqs. (6.5a) and (6.6a) are second-order hyperbolic-parabolic (convective-diffusive)
PDEs. Generally this class of PDEs has enough diffusion to smooth the solutions
and thus avoid problems with steep fronts and discontinuities. A quantitative mea-
sure of the relative magnitudes of convection and diffusion is provided by the Péclet
number, Pe = (zl)(v)/D where zl is a characteristic length in the flow direction,
v the flow velocity, and D the diffusivity in the direction of flow. For the present
case, with the parameters taken from Listing 6.3, z34 = 25, |v3| = 2.5,D3 = 0.01,
Pe = (25)(2.5)/0.01 = 6250. This is a large Pe indicating a strongly hyperbolic
(convective) system, yet the FD approximations of dss020 appear to handle the
moving fronts satisfactorily when used in combination with dss044 to include
diffusion.

• Another consideration when numerically integrating second-order hyperbolic-
parabolic PDEs is the requirement for a second exit or outflow BC (in addition
to an inflow BC). In reported studies, this requirement is frequently satisfied by
setting the slope (or first derivative in z) of the solution to zero. However, this is
not a satisfactory BC since the solution cannot necessarily have a zero slope at
the outflow point (consider a moving front solution). To circumvent this problem,
dynamic outflow BCs [2] eqs. (6.5c) and (6.6c) are used that avoid the numerical
distortions introduced by a zero-slope outflow BC. Experience with dynamic
outflow BCs has generally been good and they are easily included in a MOL
solution as demonstrated by eqs. (6.5) and (6.6).

• Since the MOL solutions provide the PDE dependent variables over a grid in z,
additional insight into the solutions can be readily gained by plotting the spatial
profiles of the solutions, e.g., u1(z, t) against z with t as a parameter. This type
of analysis can also be extended by plotting the RHS terms of the PDEs against
z with t as a parameter. In this way, the relative contributions of the RHS terms
can be observed that generally model various phenomena of the physical system.
Finally, the PDE LHS terms (derivatives in t) can be plotted against z with t as
a parameter. All of this additional plotting is readily accomplished by using the
computed numerical PDE solutions.

200 LIVER SUPPORT SYSTEMS

This discussion indicates that some experimentation with numerical methods, par-
ticularly for strongly hyperbolic (convective) PDEs, may be required. In addition to
observing if numerical distortions such as unrealistic oscillations have occurred, an error
analysis should be performed, for example, by changing the number of spatial grid points
and observing the effects on the solution. This has not been reported here to conserve
space, but a critical evaluation of the numerical solution should be part of any PDE
modeling, and should not be overlooked because of the use of an available PDE solver.

APPENDIX - DERIVATION OF PDES FOR MEMBRANE AND ADSORPTION
UNITS

The PDEs for the membrane and adsorption units in Fig. 6.3 are based on a toxin mass
balance expressed first in words as eq. (A.6.1).

rate of toxin accumulation = A.6.1a

or depletion

rate of convection into - rate of convection out A.6.1b,c

incremental volume of incremental volume

+ rate of diffusion into - rate of diffusion out A.6.1d,e

incremental volume of incremental volume

+ rate of mass transfer across A.6.1f

membrane or with adsorbent

The terms in eq. (A.6.1) are now considered for the membrane and adsorption units.

(A.6.1) PDEs FOR MEMBRANE UNITS

The PDEs are toxin balances for an incremental volume of the membrane unit of length
Δz (z is the axial distance along a membrane or adsorption units as in Fig. 6.3). The
membrane is considered as a bundle of hollow fibers or cylinders with a cross sectional
area for flow and an axial or longitudinal area for mass transfer.

The terms in eq. (A.1) for MU1 in Fig. 6.3 are expressed mathematically.

• A.6.1a: A1Δz
∂u1

∂t
; units: (cm2)(cm)(μmol/cm3)(1/min)=μmol/min

where A1 is the cross sectional area for membrane internal flow. The net units
μmol/min represent the accumulation or depletion of toxin per min within the
incremental volume A1Δz.

• A.6.1b: A1v1u1|z; units: (cm2)(cm/min)(μmol/cm3)=μmol/min
where v1 is the linear flow velocity through the interior membrane. Again, the net
units μmol/min represent the convective flow into the incremental volume A1Δz
at z.

• A.6.1c: −A1v1u1|z+Δz; units: (cm2)(cm/min)(μmol/cm3)=μmol/min
The net units μmol/min represent the convective flow out of the incremental volume
A1Δz at z +Δz.

PDES FOR MEMBRANE UNITS 201

• A.6.1d: −A1D1

∂u1

∂z
|z; units: (cm2)(cm2/min)(μmol/cm3-cm)=μmol/min

The net units μmol/min represent the diffusive flux into the incremental volume
A1Δz at z. D1 is an effective diffusivity or axial dispersion coefficient. The minus
in −A1 · · · is required by Fick’s first law to give a flux in the positive z direc-

tion when the gradient
∂u1

∂z
is negative (if this minus is overlooked, the numerical

solution will most likely be unstable).

• A.6.1e: A1D1

∂u1

∂z
|z+Δz; units: (cm2)(cm2/min)(μmol/cm3-cm)=μmol/min

The net units μmol/min represent the diffusive flux out of the incremental volume
A1Δz at z +Δz.

• A.6.1f: A1mΔzk12(u2 − u1); units: (cm2/cm)(cm)(cm/min)(μmol/cm3)=
μmol/min
The net units μmol/min represent the mass transfer rate between the internal and
exterior membrane streams for the incremental length Δz. k12 is the mass transfer
coefficient for the membrane and A1m is the interior mass transfer area per unit
length of membrane.

The consistency of units (μmol/min) in all of the terms in eq. (A.6.1) is an important
requirement in deriving each PDE. Also, the consistency of the units for the parameters
such as A1, v1,D1, A1m, k12 is essential. As a result of the choice of units discussed
above, z and t in u1(z, t) will be cm and min, respectively, and these units will be
reflected in the numerical solution for u1.

If the preceding terms are substituted in eq. (A.6.1), we obtain a mathematical form
of this equation.

A1Δz
∂u1

∂t
= A1v1u1|z − A1v1u1|z+Δz

− A1D1

∂u1

∂z
|z + A1D1

∂u1

∂z
|z+Δz

+ A1mΔzk12(u2 − u1) (A.6.2)

Division of eq. (A.6.2) by A1Δz and minor rearrangement gives

∂u1

∂t
= −v1u1|z+Δz − v1u1|z

Δz

D1

∂u1

∂z
|z+Δz − D1

∂u1

∂z
|z

Δz

+
A1m

A1

k12(u2 − u1) (A.6.3)

With Δz → 0, eq. (A.6.3) becomes

∂u1

∂t
= −∂(v1u1)

∂z
+

∂

(
D1

∂u1

∂z

)

∂z
+

A1m

A1

k12(u2 − u1) (A.6.4)

202 LIVER SUPPORT SYSTEMS

or for constant v1, D1,

∂u1

∂t
= −v1

∂u1

∂z
+ D1

∂2u1

∂z2
+

A1m

A1

k12(u2 − u1) (A.6.5)

Eq. (A.6.5) is the PDE for the blood stream toxin concentration in Fig. 6.3, u1(z, t).
Since it is second order in z and first order t, it requires two BCs and one IC. These
auxiliary conditions are discussed earlier in this chapter.

u2(z, t), the albumin dialysate concentration, also requires a PDE. This follows
directly from eq. (A.6.5).

∂u2

∂t
= −v2

∂u2

∂z
+ D2

∂2u2

∂z2
+

A2m

A2

k12(u1 − u2) (A.6.6)

Eqs. (A.6.5) and (A.6.6) are the PDE model for the first membrane unit, MU1, in Fig. 6.3.

(A.6.2) PDEs FOR ADSORPTION UNITS

AU1 and AU2 in Fig. 6.3 are modeled in a similar fashion. The basic difference is that
whereas MU1 and MU2 have two flowing streams, AU1 and AU2 have one flowing
stream and one solid adsorbent phase. For AU1, the PDE toxin mass balances are based
on the incremental volume A3Δz where A3 is the adsorber cross sectional area.

The PDE model for AU1 is

∂u3

∂t
= −v3

∂u3

∂z
+ D3

∂2u3

∂z2
− ((1− ε)/ε)k34(u

e
4 − u4) (A.6.7)

The units of the variables and parameters in eq. (A.6.7) are explained below (μmol per-
tains to the toxin, mlfluid + mladsorbent = cm3

adsorber).

u3 μmol/mlfluid
u4 μmol/mladsorbent
ue
4 μmol/mladsorbent

z cmadsorber

ε mlfluid/cm3
adsorber

1− ε mladsorbent/cm3
adsorber

v3 cmadsorber/min
D3 cm2

adsorber/min
k34 1/min

The units of the terms in eq. (A.6.7) follow.

• ∂u3

∂t
; units: (μmol/mlfluid)(1/min)

The units represent the rate of change of the toxin concentration from accumulation
or depletion of the toxin.

REFERENCES 203

• −v3
∂u3

∂z
; units: (cmadsorber/min)(μmol/mlfluid)(1/cmadsorber)=(μmol/mlfluid)

(1/min)
The net units represent the rate of change of the toxin concentration from convec-
tion of the toxin. v3 is a fluid superficial velocity since it is based on cmadsorber.

• D3

∂2u3

∂z2
; units: (cm2

adsorber/min)(μmol/mlfluid)(1/cm2
adsorber)=(μmol/mlfluid)

(1/min)
The net units represent the rate of change of the toxin concentration from axial
dispersion of the toxin.

• −((1− ε)/ε)k34(u
e
4 − u4); units: (mladsorbent/cm3

adsorber)(cm3
adsorber/mlfluid)

(1/min)(μmol/mladsorbent)=(μmol/mlfluid)(1/min)
The net units represent the rate of change of the fluid toxin concentration u3 from
mass transfer of the toxin between the fluid and adsorbent. The rate of this mass
transfer is given by k34(u

e
4 − u4). The equilibrium adsorbent concentration, ue

4 , is
a function of u3, generally in the form of an isotherm.

Eq. (A.6.7) is the PDE for the fluid stream toxin concentration in Fig. 6.3, u3(z, t).
Since it is second order in z and first order t, it requires two BCs and one IC. These
auxiliary conditions are discussed earlier in this chapter.

u4(z, t), the adsorbent concentration, also requires a PDE (to give u4(z, t) which is
used in eq. (A.6.7)).

∂u4

∂t
= k34(u

e
4 − u4) (A.6.8)

The units of the two terms in eq. (A.6.8) are (μmol/mladsorbent)(1/min). Eq. (A.6.8)
does not have derivatives in z (the absorbent is not flowing or moving, and the axial
diffusion along the adsorbent is considered negligible). Therefore, eq. (A.6.8) requires
only one IC.

Eqs. (A.6.7) and (A.6.8) are the PDE model for the first adsorption unit, AU1, in
Fig. 6.3. The PDEs for MU2 and AU2 in Fig. 6.3 follow in the same way as for MU1
and AU1.

A derivation of more general convection-diffusion-reaction PDEs in Cartesian, cylin-
drical and spherical coordinates is given in Appendix A.

References

[1] Annesni, M.C., V. Piemonte, and L. Turchetti (2014), Artificial liver support systems: a
patient-device model, Asia-Pacific J. Chem. Engr., 9, 390–400; this reference has an excellent
introduction to the function of the liver and an extensive list of references.

[2] Schiesser, W.E. (1996), PDE boundary conditions from minimum reduction of the PDE, Appl.
Numer. Math., 20, 171–179.

7
CROSS DIFFUSION EPIDEMIOLOGY
MODEL

In this chapter, an epidemiology model for the transmission of a disease is considered
with the usual designation SIR (susceptible-infected-recovered individuals). The model
has the following distinctive features [1]:

• It is a 2× 2 system of nonlinear diffusion-reaction (parabolic) PDEs.
• The recovered individuals are considered to not have developed an immunity from

the disease so that they can again become susceptible, that is, a SIS model.
• Cross diffusion in the PDEs is included to model how the infecteds can influence

the movement of the susceptibles.

We start with a statement of the model PDEs, the initial conditions (ICs) and boundary
conditions (BCs).

(7.1) 2-PDE model

The two PDEs of the model are taken from [1].

∂u1

∂t
= −βun

1 um
2 − bu1 + γu2 + a(u1 + u2) + d11

∂2u1

∂x2
+ d12

∂2u2

∂x2
(7.1a)

∂u2

∂t
= βun

1 um
2 − (α + b + γ)u2 + d22

∂2u2

∂x2
(7.1b)

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

206 CROSS DIFFUSION EPIDEMIOLOGY MODEL

Parameter Numerical value
a 0.05
b 0.006
α 0.06
β 0.0056
γ 0.04
m 2
n 1
d11 100
d12 6
d22 3
xl 20

Table 7.1: Numerical values of the parameters in eqs. (7.1)

where

u1 susceptibles concentration
u2 infecteds concentration
x spatial coordinate, 0 ≤ x ≤ xl

t time, t > 0
m,n constants for incidence

rates of the disease
a population birth rate
b population death rate
γ recovery rate
α mortality cause by disease
β disease transmission rate

d11, d12, d22 diffusivities

The significance of the terms in eqs. (7.1) is considered subsequently. These equations
are first order in t and second order in x so they each require one IC and two BCs.

u1(x, t = 0) = g1(t);
∂u1(x = 0, t)

∂x
=

∂u1(x = xl, t)

∂x
= 0 (7.2a,b,c)

u2(x, t = 0) = g2(t);
∂u2(x = 0, t)

∂x
=

∂u2(x = xl, t)

∂x
= 0 (7.2d,e,f)

The parameters in eqs. (7.1) are initially taken from [1], then subsequently redefined
numerically to produce some particular features in the computed solutions.

To conclude this section on the model equations, the following physical interpretation
of the terms in eqs. (7.1) provides some insight into the computed solutions discussed
subsequently.

MODEL ROUTINES 207

• Eq. (7.1a)
1. −βun

1 um
2 : Rate of transmission of the disease from the susceptibles to the

infecteds. This term reduces the susceptibles (β > 0). Also, both susceptibles
and infecteds must be present for a nonzero rate.

2. −bu1: Natural death rate (b > 0) that reduces the susceptibles.
3. +γu2: Recovery rate of infecteds that increases the susceptibles (γ > 0).
4. +a(u1 + u2): Rate of increase of susceptibles from susceptible and infected

birth rates (a > 0).

5. +d11
∂2u1

∂x2
: Rate of increase of susceptibles by diffusion in the direction of

decreasing susceptibles (d11 > 0) according to Fick’s first law.

6. +d12
∂2u2

∂x2
: Rate of increase of susceptibles by diffusion in the direction of

decreasing infecteds (d12 > 0). This is a cross diffusion term reflecting that
susceptibles will move in the direction of decreasing infecteds.

7.
∂u1

∂t
: Rate of change of susceptibles with t from the combined effects of the

preceding rates.
• Eq. (7.1b)

1. βun
1 um

2 : Rate of transmission of the disease from the susceptibles to the infect-
eds. This term increases the infecteds (β > 0). Also, since this is the same term
as in eq. (7.1a), but opposite in sign, the rate of increase of infecteds equals the
rate of decrease of susceptibles.

2. −(α + b + γ)u2: Rate of decrease of infecteds from the combined effects of (1)
death by the disease (α > 0), (2) natural deaths (b > 0) and (3) recovery from
disease (γ > 0).

3.
∂u2

∂t
: Rate of change of susceptibles with t from the combined effects of the

preceding rates.

(7.2) Model routines

Eqs. (7.1) and (7.2) constitute the epidemiology model that is programmed in the rou-
tines discussed next.

(7.2.1) Main program

The main program for the model is in Listing 7.1.

#

Cross diffusion epidemiology model

#

Delete previous work spaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

208 CROSS DIFFUSION EPIDEMIOLOGY MODEL

#

Access functions for numerical solutions

setwd("g:/chap7");

source("pde 1.R");

source("dss004.R");

source("dss044.R");

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u1(x,t), u2(x,t)) only

#

ip = 2 - numerical and graphical solutions

#

ip=2;

#

Parameters

a=0.05; b=0.006;

alpha=0.06; beta=0.0056; gamma=0.04;

m=2; n=1;

d11=100; d12=6; d22=3;

#

Revised values

d11=3; a=0.006; alpha=0.006; gamma=0.006;

#

Select case

ncase=1;

#

Initial conditions

nx=41;

u0=rep(0,2*nx);

#

ncase=1

(if ncase==1){

for(i in 1:nx){

u0[i]=1;

u0[i+nx]=0;

}

d12=0;

}

#

ncase=2,3

if(ncase>1){

for(i in 1:nx){

u0[i]=1;

if(i<=5){

MODEL ROUTINES 209

u0[i+nx]=1;

}else{

u0[i+nx]=0;

}

}

if(ncase==2){d12=0;}

if(ncase==3){d12=6;}

}

ncall=0;

#

Write selected parameters

cat(sprintf("\n\n ncase = %2d d11 = %4.2f d12 = %4.2f

d22 = %4.2f", ncase,d11,d12,d22));

#

Write heading

if(ip==1){

cat(sprintf("\n Graphical output only\n"));
}

#

Grid (in x)

xl=0;xu=20;

x=seq(from=xl,to=xu,by=(xu-xl)/(nx-1));

#

Independent variable for ODE integration

nout=5;t0=0;tf=20;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde 1,parms=NULL)

nrow(out)

ncol(out)

#

Arrays for plotting numerical solution

u1 plot=matrix(0,nrow=nx,ncol=nout);

u2 plot=matrix(0,nrow=nx,ncol=nout);

for(it in 1:nout){

for(ix in 1:nx){

u1 plot[ix,it]=out[it,ix+1];

u2 plot[ix,it]=out[it,ix+1+nx];

}

}

#

Display numerical solution

if(ip==2){

for(it in 1:nout){

210 CROSS DIFFUSION EPIDEMIOLOGY MODEL

cat(sprintf(

"\n t x u1(x,t) u2(x,t)\n"));
for(ix in 1:nx){

cat(sprintf("%5.1f%8.1f%12.3f%12.3f\n",
tout[it],x[ix],u1 plot[ix,it],u2 plot[ix,it]));

}

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#

Plot u1

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",

ylab="u1(x,t), t=0,5,...,20",xlim=c(xl,xu),lty=1,

main="u1(x,t); t=0,5,...,20;",lwd=2);

#

Plot u2

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",

ylab="u2(x,t), t=0,5,...,20",xlim=c(xl,xu),lty=1,

main="u2(x,t); t=0,5,...,20;",lwd=2);

Listing 7.1: Main program for eqs. (7.1) and (7.2)

We can note the following details about Listing 7.1.

• Previous work spaces are removed.

#

Cross diffusion epidemiology model

#

Delete previous work spaces

rm(list=ls(all=TRUE))

• The ODE library deSolve is included (to access lsodes). Next, the files accessed
by source include the ODE/MOL routine, pde 1, and two differentiation in space
(DSS) routines, dss004, dss044.

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solutions

setwd("g:/chap7");

MODEL ROUTINES 211

source("pde 1.R");

source("dss004.R");

source("dss044.R");

The setwd requires editing for the local computer. Note that / is used in place of
the usual \.

• The level of numerical output is selected.

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u1(x,t), u2(x,t)) only

#

ip = 2 - numerical and graphical solutions

#

ip=2;

• The parameters in eqs. (7.1) are defined numerically. These values are from [1],
then reset to reflect expected conditions, e.g., d11 = 3 in eq. (7.1a) to give a diffu-
sivity that is in line with d12 (eq. (7.1a)) and d22 (eq. (7.1b)), a = 0.006 so that this
birth rate is closer to the death rate (b = 0.006) to give a stable population.

#

Parameters

a=0.05; b=0.006;

alpha=0.06; beta=0.0056; gamma=0.04;

m=2; n=1;

d11=100; d12=6; d22=3;

#

Revised values

d11=3; a=0.006; alpha=0.006; gamma=0.006;

• Three ICs are programmed as selected by ncase.

#

Select case

ncase=1;

#

Initial conditions

nx=41;

u0=rep(0,2*nx);

#

ncase=1

(if ncase==1){

for(i in 1:nx){

u0[i]=1;

212 CROSS DIFFUSION EPIDEMIOLOGY MODEL

u0[i+nx]=0;

}

d12=0;

}

#

ncase=2,3

if(ncase>1){

for(i in 1:nx){

u0[i]=1;

if(i<=5){

u0[i+nx]=1;

}else{

u0[i+nx]=0;

}

}

if(ncase==2){d12=0;}

if(ncase==3){d12=6;}

}

ncall=0;

The ICs for ncase=1,2,3 are explained next and later in the discussion of the
numerical and graphical output.

– ncase=1: u1(x, t = 0) = 1, u2(x, t = 0) = 0. The constant values for u1, u2

produce zero RHS terms in eqs. (7.1) so that the LHS derivatives in t are also
zero and the solutions are constant at the ICs (as explained subsequently).

– ncase=2: u1(x, t = 0) = 1 and u2(x ≤ 2, t = 0) = 1, u2(x > 2, t = 0) = 0
so that u2 has a unit step change at x = 2. Cross diffusion is not included,
d12=0. The model response to the discontinuous change in u2 is discussed
subsequently.

– ncase=3: u1(x, t = 0) = 1 and u2(x ≤ 2, t = 0) = 1, u2(x > 2, t = 0) = 0
so that u2 again has a unit step change at x = 2. Cross diffusion is included,
d12=6. The model response to the discontinuous change in u2 with cross
diffusion included is discussed subsequently.

The number of MOL/ODE ICs in u0 is 2(41) = 82. The counter for the calls to
the MOL/ODE routine is initialized.

• Since the three diffusivities d11, d12, d22 define the spatial effects of the model (vari-
ations with x), they are displayed in a summary at the beginning of the solution.

#

Write selected parameters

cat(sprintf("\n\n ncase = %2d d11 = %4.2f d12 = %4.2f

d22 = %4.2f", ncase,d11,d12,d22));

#

Write heading

if(ip==1){

MODEL ROUTINES 213

cat(sprintf("\n Graphical output only\n"));
}

The level of numerical output (with ip) is also confirmed.
• A grid in x is defined with the seq utility for 0 ≤ x ≤ 20 with 41 points so x =

0, 0.5, . . . , 20.

#

Grid (in x)

nx=41;xl=0;xu=20;

x=seq(from=xl,to=xu,by=(xu-xl)/(nx-1));

• The output points in t are t = 0, 5, 10, 15, 20 (nout=5 values including t = 0).

#

Independent variable for ODE integration

nout=5;t0=0;tf=20;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• 82 ODEs are integrated by lsodes (the number of ODEs is provided to lsodes

as the length of the IC vector u0).

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde 1,parms=NULL)

nrow(out)

ncol(out)

The input arguments to lsodes are the IC vector, u0, the vector of output values of
t, tout, the name of the MOL/ODE routine, pde 1 (discussed next), and param-
eters passed to pde 1 (unused). y,times,func,parms are reserved names. The
output solution matrix is sized as out[nout,2(nz)+1]=out[5,83]which is con-
firmed by the nrow,ncol utilities (as reflected in the numerical output discussed
subsequently).

• The numerical solutions of eqs. (7.1), u1, u2, are placed in arrays for subsequent
plotting.

#

Arrays for plotting numerical solution

u1 plot=matrix(0,nrow=nx,ncol=nout);

u2 plot=matrix(0,nrow=nx,ncol=nout);

for(it in 1:nout){

for(ix in 1:nx){

u1 plot[ix,it]=out[it,ix+1];

u2 plot[ix,it]=out[it,ix+1+nx];

}

}

214 CROSS DIFFUSION EPIDEMIOLOGY MODEL

The offset of 1 in [it,ix+1],[it,ix+1+nx] is required since out[it,1] has
the output values of t.

• For ip=2, the numerical u1, u2 are displayed as a function of t (by a forwith index
it) and x (by a for with index ix).

#

Display numerical solution

if(ip==2){

for(it in 1:nout){

cat(sprintf(

"\n t x u1(x,t) u2(x,t)\n"));
for(ix in 1:nx){

cat(sprintf("%5.1f%8.1f%12.3f%12.3f\n",
tout[it],x[ix],u1 plot[ix,it],u2 plot[ix,it]));

}

}

}

• The number of calls to pde 1 is displayed at the end of the solution as an indication
of the computational effort to compute the solution (by lsodes).

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solutions, u1, u2, are plotted against x with t as a parameter by the
matplot utility. Scaling in the vertical direction is done automatically.

#

Plot u1

par(mfrow=c(1,1));

matplot(x=x,y=u1 plot,type="l",xlab="x",

ylab="u1(x,t), t=0,5,...,20",xlim=c(xl,xu),lty=1,

main="u1(x,t); t=0,5,...,20;",lwd=2);

#

Plot u2

par(mfrow=c(1,1));

matplot(x=x,y=u2 plot,type="l",xlab="x",

ylab="u2(x,t), t=0,5,...,20",xlim=c(xl,xu),lty=1,

main="u2(x,t); t=0,5,...,20;",lwd=2);

lsodes calls the MOL/ODE routine pde 1 listed next.

MODEL ROUTINES 215

(7.2.2) ODE routine

The MOL/ODE routine follows.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of the

u1, u2 vectors

#

One vector to two vectors

u1=rep(0,nx);u2=rep(0,nx);

for(i in 1:nx){

u1[i]=u[i];

u2[i]=u[i+nx];

}

#

u1x, u2x

u1x=dss004(xl,xu,nx,u1);

u2x=dss004(xl,xu,nx,u2);

#

Boundary conditions

u1x[1]=0;u1x[nx]=0;

u2x[1]=0;u2x[nx]=0;

nl=2;nu=2;

#

u1xx, u2xx

u1xx=dss044(xl,xu,nx,u1,u1x,nl,nu);

u2xx=dss044(xl,xu,nx,u2,u2x,nl,nu);

#

Nonlinear term

u1u2=rep(0,nx);

for(i in 1:nx){

u1u2[i]=u1[i]^n*u2[i]^m;

}

#

PDEs

u1t=rep(0,nx);u2t=rep(0,nx);

for(i in 1:nx){

u1t[i]=-beta*u1u2[i]-b*u1[i]+gamma*u2[i]+

a*(u1[i]+u2[i])+d11*u1xx[i]+

d12*u2xx[i];

u2t[i]= beta*u1u2[i]-(alpha+b+gamma)*u2[i]+

d22*u2xx[i];

}

#

Two vectors to one vector

216 CROSS DIFFUSION EPIDEMIOLOGY MODEL

ut=rep(0,2*nx);

for(i in 1:nx){

ut[i] =u1t[i];

ut[i+nx] =u2t[i];

}

#

Increment calls to pde 1

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 7.2: MOL/ODE routine for eqs. (7.1)

We can note the following details about Listing 7.2.

• The function is defined. u is an input 82-vector of the ODE dependent variables at
t = t. parms for passing parameters to pde 1 is unused.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of the

u1, u2 vectors

• u is placed in two vectors, u1,u2, to facilitate the programming of eqs. (7.1). These
vectors are first declared with the rep utility. nx=41 is set numerically in the main
program of Listing 7.1 and passed to pde 1 without any special designation (a
feature of R).

#

One vector to two vectors

u1=rep(0,nx);u2=rep(0,nx);

for(i in 1:nx){

u1[i]=u[i];

u2[i]=u[i+nx];

}

• The first derivatives ∂u1/∂x, ∂u2/∂x in eqs. (7.1) are computed by the library
differentiator dss004.

#

u1x, u2x

u1x=dss004(xl,xu,nx,u1);

u2x=dss004(xl,xu,nx,u2);

MODEL ROUTINES 217

• BCs (7.2b,c,e,f) are defined numerically. Note the use of subscripts 1,nx corre-
sponding to x = 0, 20.

#

Boundary conditions

u1x[1]=0;u1x[nx]=0;

u2x[1]=0;u2x[nx]=0;

nl=2;nu=2;

nl=nu=2 specifies Neumann BCs since the first derivatives are defined (rather than
the dependent variables u1, u2 at the boundaries which would be specified with
nl=nu=1).

• The second derivatives ∂2u1/∂x2, ∂2u2/∂x2 in eqs. (7.1) are computed by the
library differentiator dss044.

#

u1xx, u2xx

u1xx=dss044(xl,xu,nx,u1,u1x,nl,nu);

u2xx=dss044(xl,xu,nx,u2,u2x,nl,nu);

• The nonlinear term un
1 um

2 is computed and placed in vector u1u2.

#

Nonlinear term

u1u2=rep(0,nx);

for(i in 1:nx){

u1u2[i]=u1[i]^n*u2[i]^m;

}

This programming illustrates the ease of including nonlinearities in a numerical
solution.

• Eqs. (7.1) are programmed. The derivatives ∂u1/∂t, ∂u2/∂t are placed in vectors
u1t,u2t.

#

PDEs

u1t=rep(0,nx);u2t=rep(0,nx);

for(i in 1:nx){

u1t[i]=-beta*u1u2[i]-b*u1[i]+gamma*u2[i]+

a*(u1[i]+u2[i])+d11*u1xx[i]+

d12*u2xx[i];

u2t[i]= beta*u1u2[i]-(alpha+b+gamma)*u2[i]+

d22*u2xx[i];

}

The close correspondence of this programming with eqs. (7.1) illustrates an
important advantage of the MOL solution of PDEs.

218 CROSS DIFFUSION EPIDEMIOLOGY MODEL

• Vectors u1t,u2t are placed in a single vector ut for return to lsodes (called in
Listing 7.1).

#

Two vectors to one vector

ut=rep(0,2*nx);

for(i in 1:nx){

ut[i] =u1t[i];

ut[i+nx] =u2t[i];

}

• The number of calls to pde 1 is incremented and the value returned to the main
program of Listing 7.1 by a <<-.

#

Increment calls to pde 1

ncall <<- ncall+1;

• The derivative vector ut is returned to lsodes by a combination of c, the vector
operator, list (lsodes requires a list), and return.

#

Return derivative vector

return(list(c(ut)));

}

The final } completes pde 1.

This completes the programming of eqs. (7.1) and (7.2). The numerical and graphical
output from the main program of Listing 7.1 is considered next.

(7.3) Model output

The output for ncase=1,2,3 is considered in the following discussion.

(7.3.1) ncase = 1, time-invariant solution

We can note the following details about this output.

• The dimensions of the solution matrix out are confirmed as 5× 83 (based on the
previous discussion).

• The IC for t = 0 is confirmed (as programmed in Listing 7.1 for ncase=1).

• The solution remains at the IC. This invariance in t results from all the RHS terms
in eqs. (7.1) equal to zero, that is,

MODEL OUTPUT 219

ncase = 1 d11 = 3.00 d12 = 0.00 d22 = 3.00

[1] 5

[1] 83

t x u1(x,t) u2(x,t)

0.0 0.0 1.000 0.000

0.0 0.5 1.000 0.000

0.0 1.0 1.000 0.000

0.0 1.5 1.000 0.000

0.0 2.0 1.000 0.000

. .

. .

. .

Output from x = 2.5 to 17.5 removed

. .

. .

. .

0.0 18.0 1.000 0.000

0.0 18.5 1.000 0.000

0.0 19.0 1.000 0.000

0.0 19.5 1.000 0.000

0.0 20.0 1.000 0.000

. .

. .

. .

Output for t = 5, 10, 15 removed

. .

. .

. .

t x u1(x,t) u2(x,t)

20.0 0.0 1.000 0.000

20.0 0.5 1.000 0.000

20.0 1.0 1.000 0.000

20.0 1.5 1.000 0.000

20.0 2.0 1.000 0.000

. .

. .

. .

Output from x = 2.5 to 17.5 removed

. .

. .

. .

Table 7.2: Abbreviated output for ncase=1

220 CROSS DIFFUSION EPIDEMIOLOGY MODEL

20.0 18.0 1.000 0.000

20.0 18.5 1.000 0.000

20.0 19.0 1.000 0.000

20.0 19.5 1.000 0.000

20.0 20.0 1.000 0.000

ncall = 102

Table 7.2: (Continued)

1. −βun
1 um

2 = 0 with u2 = 0.

2. −bu1 + γu2 + a(u1 + u2) = 0 with a = b, u2 = 0.

3. d11
∂2u1

∂x2
= 0 with u1 = 1 (a constant).

4. d12
∂2u2

∂x2
= 0 with u2 = 0 (a constant).

5. βun
1 um

2 = 0 with u2 = 0.

6. −(α + b + γ)u2 = 0 with u2 = 0.

7. d22
∂2u2

∂x2
= 0 with u2 = 0 (a constant).

• The computational effort is small, ncall = 102, as expected since the solution
does not change with t (or x).

The graphical output (plotting) confirms the output in Table 7.2 and therefore is not
presented here.

This case is worth running since if the solution changed with t, this would indicate a
programming error.

(7.3.2) ncase = 2, transient solution, no cross diffusion

Abbreviated numerical output is in Table 7.3.
We can note the following details about this output.

• The dimensions of the solution matrix out are again confirmed as 5× 83 (based
on the previous discussion).

• The IC for t = 0 is confirmed (as programmed in Listing 7.1 for ncase=2). Note
the step in u2 at x = 2.

• The solution is a response to the step in u2, as displayed in Figs. 7.1a, 7.1b, with
no cross diffusion since d12=0.

• The computational effort is modest, ncall = 277, even with the discontinuous
change in u2, which is to be expected since eqs. (7.1) represent a form of diffusion
that tends to smooth the solution with increasing t, as demonstrated in Fig. 7.1b.

MODEL OUTPUT 221

ncase = 2 d11 = 3.00 d12 = 0.00 d22 = 3.00

[1] 5

[1] 83

t x u1(x,t) u2(x,t)

0.0 0.0 1.000 1.000

0.0 0.5 1.000 1.000

0.0 1.0 1.000 1.000

0.0 1.5 1.000 1.000

0.0 2.0 1.000 1.000

0.0 2.5 1.000 0.000

0.0 3.0 1.000 0.000

0.0 3.5 1.000 0.000

0.0 4.0 1.000 0.000

. .

. .

. .

Output from x = 4.5 to 17.5 removed

. .

. .

. .

0.0 18.0 1.000 0.000

0.0 18.5 1.000 0.000

0.0 19.0 1.000 0.000

0.0 19.5 1.000 0.000

0.0 20.0 1.000 0.000

. .

. .

. .

Output for t = 5, 10, 15 removed

. .

. .

. .

t x u1(x,t) u2(x,t)

20.0 0.0 1.030 0.117

20.0 0.5 1.030 0.117

20.0 1.0 1.030 0.116

20.0 1.5 1.030 0.116

20.0 2.0 1.030 0.115

. .

. .

. .

Table 7.3: Abbreviated output for ncase=2

222 CROSS DIFFUSION EPIDEMIOLOGY MODEL

Output from x = 2.5 to 17.5 removed

. .

. .

. .

20.0 18.0 1.012 0.046

20.0 18.5 1.012 0.046

20.0 19.0 1.012 0.045

20.0 19.5 1.012 0.045

20.0 20.0 1.012 0.045

ncall = 277

Table 7.3: (Continued)

0 5 10

(a) (b)

15 20

x

0 5 10 15 20
x

1.000

1.010

1.020

1.030

0.0

0.2

0.4

0.6

0.8

1.0

u1
(x

,t
),

 t
 =

 0
.5

,..
.,2

0

u1(x,t), t = 0.5,...,20; u2(x,t), t = 0.5,...,20;

u2
(x

,t
),

 t
 =

 0
.5

,..
.,2

0

Figure 7.1a (a) u1(x, t) for ncase=2, (b) u2(x, t) for ncase=2

(7.3.3) ncase = 3, transient solution with cross diffusion

Abbreviated numerical output is in Table 7.4.
We can note the following details about this output.

• The dimensions of the solution matrix out are again confirmed as 5× 83 (based
on the previous discussion).

• Cross diffusion has been added with d12=6.

• The IC for t = 0 is confirmed (as programmed in Listing 7.1 for ncase=3). Note
the step in u2 at x = 2.

• The solution is a response to the step in u2, as displayed in Figs. 7.2a, 7.2b, with
cross diffusion since d12=6.

• The computational effort is modest, ncall = 299.

MODEL OUTPUT 223

ncase = 3 d11 = 3.00 d12 = 6.00 d22 = 3.00

[1] 5

[1] 83

t x u1(x,t) u2(x,t)

0.0 0.0 1.000 1.000

0.0 0.5 1.000 1.000

0.0 1.0 1.000 1.000

0.0 1.5 1.000 1.000

0.0 2.0 1.000 1.000

0.0 2.5 1.000 0.000

0.0 3.0 1.000 0.000

0.0 3.5 1.000 0.000

0.0 4.0 1.000 0.000

. .

. .

. .

Output from x = 4.5 to 17.5 removed

. .

. .

. .

0.0 18.0 1.000 0.000

0.0 18.5 1.000 0.000

0.0 19.0 1.000 0.000

0.0 19.5 1.000 0.000

0.0 20.0 1.000 0.000

. .

. .

. .

Output for t = 5, 10, 15 removed

. .

. .

. .

t x u1(x,t) u2(x,t)

20.0 0.0 0.898 0.116

20.0 0.5 0.899 0.116

20.0 1.0 0.900 0.116

20.0 1.5 0.902 0.115

20.0 2.0 0.905 0.114

20.0 2.5 0.909 0.113

20.0 3.0 0.914 0.112

20.0 3.5 0.919 0.111

20.0 4.0 0.925 0.109

Table 7.4: Abbreviated output for ncase=3

224 CROSS DIFFUSION EPIDEMIOLOGY MODEL

. .

. .

. .

Output from x = 2.5 to 17.5 removed

. .

. .

. .

20.0 18.0 1.128 0.046

20.0 18.5 1.130 0.046

20.0 19.0 1.132 0.045

20.0 19.5 1.133 0.045

20.0 20.0 1.133 0.045

ncall = 299

Table 7.4: (Continued)

0 5 10

(a) (b)

15 20

x

0.8

0.9

1.0

1.1

u1
(x

,t
),

 t
 =

 0
.5

,..
.,2

0

u1(x,t), t = 0.5,...,20;

0 5 10 15 20
x

0.0

0.2

0.4

0.6

0.8

1.0

u2(x,t), t = 0.5,...,20;

u2
(x

,t
),

 t
 =

 0
.5

,..
.,2

0

Figure 7.2 (a) u1(x, t) for ncase=3, (b) u2(x, t) for ncase=3

Note that the solution for u1 has changed substantially (comparing Figs. 7.1a and
7.1b) as a result of adding cross diffusion (changing d12=0 for ncase=2 to d12=6 for
ncase=3).

Again, as in Fig. 7.1b, diffusion smoothes the IC unit step.

(7.4) Summary and conclusions

The preceding analysis of eqs. (7.1) and (7.2) indicates that cross diffusion is easily
accommodated numerically (e.g., in Listing 7.2), and can have a major effect on the
solution of the model PDEs.

Also, the discussion for ncase=1 illustrates how the individual terms in the PDEs can
be analyzed in detail, first the RHS terms, then the LHS terms that are the derivatives

REFERENCE 225

in t and that determine how the solution evolves in t. This procedure of analyzing and
comparing the individual terms can be generalized to any case by computing and plotting
the terms (as a function of t and x). All that is required to do this is to have the numerical
solutions (e.g., u1, u2) to compute the terms. In this way, we can obtain a detailed picture
of how the principal features of the solution are produced, and this in turn can lead to a
directed evaluation and possible revision of the model. In other words, the contribution
of the terms that model the physical and chemical phenomena of the problem system
can be evaluated and modified during the development of the model.

Reference

[1] Aly, S., H.B. Khenous, and F. Hussien (2015), Turing instability in a diffusive SIS epidemi-
ological model, Int. J. Biomath., 8, no. 1.

8
ONCOLYTIC VIROTHERAPY

This chapter pertains to a mathematical model for cancer therapy based on the use of
viruses, that is, oncolytic virotherapy (immunotherapy, immuno-oncology). The basic
concepts of the therapy are described in the following excerpt taken from Malinzi
et al, [1].

Oncolytic virotherapy uses replication-competent viruses to kill cancer cells. Specific
viruses are turned into therapeutic agents to treat cancer. The idea of using viruses as a
treatment for cancer began in the 1950s, when tissue culture and rodent cancer models
were originally developed. Today, oncolytic treatment involves the use of virus genomes
which are engineered to enhance their anti-tumor specificity. This began with a study
in which thymidine kinase-negative HSV with attenuated neurovirulence was shown to
be active in a murine glioblastoma model. Since then, the pace of clinical activities has
accelerated considerably, with several trials using oncolytic viruses belonging to different
virus families. To date, clinical trials have pointed out talimogene laherparepvec as a
possible treatment for melanoma. Clinical trials are ongoing using different viruses as
cancer therapies. There is no recorded toxicity as a result of clinical use of oncolytic
virotherapy to treat cancer (references included in 1, p 102, not included here).

In other words, the following model demonstrates immunotherapy in which the
immune system is used against cancer cells. The special case of using viruses to activate
the immune system is virotherapy.

The intent of this chapter is to:

• Present a 4-PDE model for oncolytic virotherapy including the required initial
conditions (ICs) and boundary conditions (BCs).

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

228 ONCOLYTIC VIROTHERAPY

• Discuss the format of the model as a nonlinear diffusion-reaction (or parabolic)
PDE system in 1D.

• Illustrate an incremental approach to the coding of the model in which RHS terms
are added one at a time to the PDEs, and the routines are executed to demonstrate
the effect of the added terms. The method of lines (MOL) solution includes the use
of library routines for integration of the PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) format.
• Discuss the features of the numerical solution and the performance of the algo-

rithms used to compute the solution. In particular, two sources of numerical error
are discussed.
– The effect of a spatial grid that has too few points to achieve accurate spatial

resolution of the numerical solution.
– The effect of a discontinuity in the RHS of a PDE.

The 4-PDE oncolytic virotherapy model reported in [1] is presented next, followed
by a method of lines (MOL) solution programmed in R.

(8.1) 1D 4-PDE model

The PDE model is

∂u1

∂t
= D1

(
∂2u1

∂r2
+

2

r

∂u1

∂r

)
+ λ

∂

∂r

(
u1

∂u4

∂r

)

+ σh(r)− ψu1 +
γ1u1u3

η1 + u3

− νu1u3 (8.1a)

∂u2

∂t
= D2

(
∂2u2

∂r2
+

2

r

∂u2

∂r

)
+ α1u2(1− α2u2)−

θ1u2u3

η2 + u3

(8.1b)

∂u3

∂t
= D3

(
∂2u3

∂r2
+

2

r

∂u3

∂r

)
+ β1u3(1− β2u3) +

θ2u2u3

η2 + u3

− μu1u3 (8.1c)

∂u4

∂t
= D4

(
∂2u4

∂r2
+

2

r

∂u4

∂r

)
+

γ2u1u3

η1 + u3

− δu4 (8.1d)

where

Variable Meaning
u1 cytotoxic-T-cell (CTL) density
u2 uninfected tumor cell density
u3 infected tumor cell density
u4 chemokine concentration
r spatial (boundary value) variable

(distance within the tumor)
t time (initial value) variable

h(t) unit step (Heaviside) function

MOL ROUTINES 229

Eqs. (8.1) are stated in spherical coordinates, (r, φ, θ), (note the differential group
∂2/∂r2 + (2/r)∂/∂r) with no angular variation or terms in φ, θ from symmetry.

Eqs. (8.1) are first order in t are therefore require one IC for each PDE.

u1(r, t = 0) =

{
0, 0 ≤ r < rb
u10

[
1− exp (−100(r − rb)

2)
]
, rb ≤ r ≤ 1

(8.2a)

u2(r, t = 0) =

{
u20

[
1− exp (−100(r − rb)

2)
]
, 0 ≤ r < rb

0, rb ≤ r ≤ 1
(8.2b)

u3(r, t = 0) =

{
u30

[
1− exp (−100(r − rb)

2)
]
, 0 ≤ r < rb

0, rb ≤ r ≤ 1
(8.2c)

u4(r, t = 0) =

{
0, 0 ≤ r < rb
u40

[
1− exp (−100(r − rb)

2)
]
, rb ≤ r ≤ 1

(8.2d)

ICs (8.2) are a Gaussian distribution1 (exponentials of the form e−cr2) defined over the
domain 0 ≤ r ≤ 1.

Eqs. (8.1) are second order in r and they therefore require two BCs for each PDE.

∂u1(r = 0, t)

∂r
=

∂u1(r = 1, t)

∂r
= 0 (8.3a,b)

∂u2(r = 0, t)

∂r
=

∂u2(r = 1, t)

∂r
= 0 (8.3c,d)

∂u3(r = 0, t)

∂r
=

∂u3(r = 1, t)

∂r
= 0 (8.3e,f)

∂u4(r = 0, t)

∂r
=

∂u4(r = 1, t)

∂r
= 0 (8.3g,h)

Eqs. (8.3) are homogeneous (zero) Neumann BCs since they specify the first derivatives
in r. Physically, they can be interpreted as no variation of u1, u2, u3, u4 with r because
of (a) symmetry at r = 0 and (b) no diffusion from the spherical domain 0 ≤ r ≤ 1 at
r = 1.

Numerical values are assigned to the parameters (constants) of eqs. (8.1) and (8.2) in
the R routines presented and discussed next.

(8.2) MOL routines

The following routines implement the MOL solution of eqs. (8.1), (8.2) and (8.3). The
main program is discussed first.

1An important advantage of the Gaussian function is that it is smooth, including all of its derivatives in r. This
property facilitates the numerical integration of eqs. (8.1), which is also enhanced by the parabolic form of
the PDEs (they model diffusion that smoothes the numerical solution) in contrast with the hyperbolic PDEs
discussed in Chapter 1.

230 ONCOLYTIC VIROTHERAPY

(8.2.1) Main program

The intent of this main program is to demonstrate how the PDEs are built or formulated
by adding terms for various physical/chemical/biological phenomena. As new terms are
added, their effect can be assessed by comparison of the numerical solution with the
preceding solutions (without the terms)2.

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, 4-PDE oncolytic virotherapy model

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap8");

source("pde 1.R") ;source("h.R");

source("dss004.R");

#

Select case (each case is explained below)

#

ncase=1;

#

Model parameters

nr=41; r0=1;

u10=1; u20=1; u30=1; u40=0;

D1=0; D2=0; D3=0; D4=0;

alpha1=0;alpha2=0;

beta1=0;beta2=0;

delta=0;

eta1=1;eta2=1;

gam1=0;gam2=0;

lam=0;

mu=0;

nu=0;

psi=0

sigma=0;

theta1=0;theta2=0;

#

2This incremental approach is intended to demonstrate how a mathematical model can be constructed and
tested. This step-by-step approach is recommended for relatively complex problem systems, as opposed to
including all of the contemplated or anticipated terms at the beginning of the PDE analysis to reflect the
various physical/chemical/biological phenomena that are considered important. That is, adding one term at a
time demonstrates the effect of that term, and if the model unexpectedly stops executing, the last term added
is probably the cause of this failure to produce a solution.

MOL ROUTINES 231

No change after IC

if(ncase==1){

}

#

Diffusion only

if(ncase==2){

D1=0.01;D2=0.01;

D3=0.01;D4=0.01;

}

#

Diffusion, tumor cell growth

if(ncase==3){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

}

#

Diffusion, tumor cell growth, chemotaxis

if(ncase==4){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

}

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion

if(ncase==5){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

}

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation

if(ncase==6){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

232 ONCOLYTIC VIROTHERAPY

delta=1; psi=1;

gam1=1; gam2=1;

}

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication

if(ncase==7){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

}

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication, immune cell supply

if(ncase==8){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

sigma=1;

}

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication, immune cell supply,

tumor cell death

if(ncase==9){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

MOL ROUTINES 233

sigma=1;

nu=1; mu=1;

}

#

Level of output

#

Detailed numerical and graphical output - ip = 1

#

Graphical output only - ip = 2

#

ip=1;

#

Spatial grid

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

#

Initial condition

u0=rep(0,4*nr);rb=0.5

#

u1(r,t=0)

for(i in 1:nr){

if(r[i]<rb){

u0[i]=0;

}else{

u0[i]=u10*(1-exp(-100*(r[i]-rb)^{2}));

}

}

#

u2(r,t=0)

for(i in 1:nr){

if(r[i]<rb){

u0[nr+i]=u20*(1-exp(-100*(r[i]-rb)^{2}));

}else{

u0[nr+i]=0;

}

}

#

u3(r,t=0)

for(i in 1:nr){

if(r[i]<rb){

u0[2*nr+i]=u30*(1-exp(-100*(r[i]-rb)^{2}));

}else{

u0[2*nr+i]=0;

}

}

#

u4(r,t=0)

234 ONCOLYTIC VIROTHERAPY

for(i in 1:nr){

if(r[i]<rb){

u0[3*nr+i]=0;

}else{

u0[3*nr+i]=u40*(1-exp(-100*(r[i]-rb)^{2}));

}

}

NROW(u0)

NCOL(u0)

#

Grid in t

t0=0;tf=2;nout=5;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

#

Store solution

u1=matrix(0,nrow=nout,ncol=nr);

u2=matrix(0,nrow=nout,ncol=nr);

u3=matrix(0,nrow=nout,ncol=nr);

u4=matrix(0,nrow=nout,ncol=nr);

t=rep(0,nout);

for(it in 1:nout){

for(i in 1:nr){

u1[it,i]=out[it,i+1];

u2[it,i]=out[it,nr+i+1];

u3[it,i]=out[it,2*nr+i+1];

u4[it,i]=out[it,3*nr+i+1];

}

t[it]=out[it,1];

}

#

Display ncase, ncall

cat(sprintf("\n\n ncase = %2d ncall = %2d",

ncase,ncall));

#

Display numerical solution

if(ip==1){

for(it in 1:nout){

cat(sprintf("\n\n t = %3.1f\n",t[it]));
cat(sprintf(

"\n r u1(r,t) u2(r,t) u3(r,t) u4(r,t)\n"));
for(i in 1:nr){

cat(sprintf(

MOL ROUTINES 235

"%4.3f%10.4f%10.4f%10.4f%10.4f\n",
r[i],u1[it,i],u2[it,i],u3[it,i],u4[it,i]));

}

}

}

#

Plot u1, u2, u3, u4

#

u1(r,t)

par(mfrow=c(1,1));

matplot(r,t(u1),type="l",xlab="r",ylab="u1(r,t)",

main="u1(r,t) vs r",col="black",lwd=2,lty=1);

#

u2(r,t)

par(mfrow=c(1,1));

matplot(r,t(u2),type="l",xlab="r",ylab="u2(r,t)",

main="u2(r,t) vs r",col="black",lwd=2,lty=1);

#

u3(r,t)

par(mfrow=c(1,1));

matplot(r,t(u3),type="l",xlab="r",ylab="u3(r,t)",

main="u3(r,t) vs r",col="black",lwd=2,lty=1);

#

u4(r,t)

par(mfrow=c(1,1));

matplot(r,t(u4),type="l",xlab="r",ylab="u4(r,t)",

main="u4(r,t) vs r",col="black",lwd=2,lty=1);

Listing 8.1: Main program for the solution of eqs. (8.1), (8.2) and (8.3)

We can note the following details about this main program.

• Previous workspaces are cleared.

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

1D, 4-PDE oncolytic virotherapy model

• The R library of ODE integrators, deSolve, and the routines for the MOL solution
of eqs. (8.1) to (8.3) are accessed. Note that in the setwd (set working directory),
/ is used rather than the usual \.

#

Access ODE integrator

library("deSolve");

236 ONCOLYTIC VIROTHERAPY

#

Access files

setwd("g:/chap8");

source("pde 1.R") ;source("h.R");

source("dss004.R");

• Nine cases are programmed corresponding to the incremental addition of RHS
terms to eqs. (8.1).

#

Select case (each case is explained below)

#

ncase=1;

First, a set of base case parameters is defined numerically.

#

Model parameters

nr=41; r0=1;

u10=1; u20=1; u30=1; u40=0;

D1=0; D2=0; D3=0; D4=0;

alpha1=0;alpha2=0;

beta1=0;beta2=0;

delta=0;

eta1=1;eta2=1;

gam1=0;gam2=0;

lam=0;

mu=0;

nu=0;

psi=0

sigma=0;

theta1=0;theta2=0;

Then, a particular case is selected with redefinition of the parameters for that case.

#

No change after IC

if(ncase==1){

}

#

Diffusion only

if(ncase==2){

D1=0.01;D2=0.01;

D3=0.01;D4=0.01;

}

. .

. .

. .

Here, for ncase=2, diffusion is added to the base case of ncase=1.

MOL ROUTINES 237

• A level of numerical output is selected.

#

Level of output

#

Detailed numerical and graphical output - ip = 1

#

Graphical output only - ip = 2

#

ip=1;

• A grid in r is defined for nr=41 points (nr is defined in the base case parameters)
over the interval 0 ≤ r ≤ r0 with r0 = 1 using the R utility seq.

#

Spatial grid

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

• ICs (8.2) are defined numerically.

#

Initial condition

u0=rep(0,4*nr);rb=0.5

#

u1(r,t=0)

for(i in 1:nr){

if(r[i]<rb){

u0[i]=0;

}else{

u0[i]=u10*(1-exp(-100*(r[i]-rb)^{2}));

}

}

. .

. .

. .

#

u4(r,t=0)

for(i in 1:nr){

if(r[i]<rb){

u0[3*nr+i]=0;

}else{

u0[3*nr+i]=u40*(1-exp(-100*(r[i]-rb)^{2}));

}

}

NROW(u0)

NCOL(u0)

238 ONCOLYTIC VIROTHERAPY

The IC vector u0 has 4*41 = 164 elements. rb in eqs. (8.2) is set to rb=0.5. The
four Gaussian distributions in eqs. (8.2) are defined for u1(r, t = 0), u2(r, t = 0),
u3(r, t = 0), u4(r, t = 0).

The utilities NROW,NCOL are used to confirm the dimensions of u0. Note these
names are capitalized for application to a vector (rather than a matrix) as explained
in help(NROW), help(NCOL) entered at the R prompt.

• A grid in t is defined for the interval 0 ≤ t ≤ 2 with nout=5 output points,
t = 0, 0.5, . . . , 2, using the seq utility.

#

Grid in t

t0=0;tf=2;nout=5;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

• The 164 ODEs are programmed in pde 1 (discussed next) and integrated by ode

(from deSolve). The ODE routine pde 1, the vector of output values tout and
the IC vector u0 are the input to ode as expected (to define the MOL/ODE system).
func,times,y are reserved names for ode.

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

• The numerical solution in out is placed in four arrays, u1,u2,u3,u4. The solution
values for the interval in t are included in the matrices by a for with index it, and
for the interval in r by a for with index i. The offset of 1 in the second subscript
is required since out[it,1] has the output values of t (placed in t[it]).

#

Store solution

u1=matrix(0,nrow=nout,ncol=nr);

u2=matrix(0,nrow=nout,ncol=nr);

u3=matrix(0,nrow=nout,ncol=nr);

u4=matrix(0,nrow=nout,ncol=nr);

t=rep(0,nout);

for(it in 1:nout){

for(i in 1:nr){

u1[it,i]=out[it,i+1];

u2[it,i]=out[it,nr+i+1];

u3[it,i]=out[it,2*nr+i+1];

u4[it,i]=out[it,3*nr+i+1];

}

t[it]=out[it,1];

}

MOL ROUTINES 239

• Selected parameters are displayed at the beginning of the numerical solution.

#

Display ncase, ncall

cat(sprintf("\n\n ncase = %2d ncall = %2d",

ncase,ncall));

• For ip=1 (detailed numerical output), the solutions of eqs. (8.1), u1(r, t), u2(r, t),
u3(r, t), u4(r, t), are displayed as a function of t with the outer for in it and as a
function of r with the inner for in i.

#

Display numerical solution

if(ip==1){

for(it in 1:nout){

cat(sprintf("\n\n t = %3.1f\n",t[it]));
cat(sprintf(

"\n r u1(r,t) u2(r,t) u3(r,t) u4(r,t)\n"));
for(i in 1:nr){

cat(sprintf(

"%4.3f%10.4f%10.4f%10.4f%10.4f\n",
r[i],u1[it,i],u2[it,i],u3[it,i],u4[it,i]));

}

}

}

• Four plots of u1(r, t), u2(r, t), u3(r, t), u4(r, t) against r with t = 0, 0.5, . . .2 as a
parameter are produced with the matplot utility.

#

Plot u1, u2, u3, u4

#

u1(r,t)

par(mfrow=c(1,1));

matplot(r,t(u1),type="l",xlab="r",ylab="u1(r,t)",

main="u1(r,t) vs r",col="black",lwd=2,lty=1);

#

u2(r,t)

par(mfrow=c(1,1));

matplot(r,t(u2),type="l",xlab="r",ylab="u2(r,t)",

main="u2(r,t) vs r",col="black",lwd=2,lty=1);

#

u3(r,t)

par(mfrow=c(1,1));

matplot(r,t(u3),type="l",xlab="r",ylab="u3(r,t)",

main="u3(r,t) vs r",col="black",lwd=2,lty=1);

240 ONCOLYTIC VIROTHERAPY

#

u4(r,t)

par(mfrow=c(1,1));

matplot(r,t(u4),type="l",xlab="r",ylab="u4(r,t)",

The MOL/ODE routine called by the main program of Listing 8.1 that has the pro-
gramming of eqs. (8.1) and (8.3) is considered next.

(8.2.2) MOL/ODE routine

pde 1 is in Listing 8.2.

pde 1=function(t,u,parms) {

#

Function pde 1 computes the t derivative vector

of the u vector

#

One vector to four PDE vectors

u1=rep(0,nr);u2=rep(0,nr);

u3=rep(0,nr);u4=rep(0,nr);

for (i in 1:nr){

u1[i]=u[i];

u2[i]=u[nr+i];

u3[i]=u[2*nr+i];

u4[i]=u[3*nr+i];

}

#

u1r,u2r,u3r,u4r

u1r=dss004(0,r0,nr,u1);

u2r=dss004(0,r0,nr,u2);

u3r=dss004(0,r0,nr,u3);

u4r=dss004(0,r0,nr,u4);

#

Boundary conditions

u1r[1]=0;u1r[nr]=0;

u2r[1]=0;u2r[nr]=0;

u3r[1]=0;u3r[nr]=0;

u4r[1]=0;u4r[nr]=0;

#

u1rr,u2rr,u3rr,u4rr

u1rr=dss004(0,r0,nr,u1r);

u2rr=dss004(0,r0,nr,u2r);

u3rr=dss004(0,r0,nr,u3r);

u4rr=dss004(0,r0,nr,u4r);

#

Chemotaxis (ct)

MOL ROUTINES 241

uct=rep(0,nr);

for(i in 1:nr){

uct[i]=u1[i]*u4r[i];

}

uctr=dss004(0,r0,nr,uct);

#

Temporal derivatives

u1t=rep(0,nr);u2t=rep(0,nr);

u3t=rep(0,nr);u4t=rep(0,nr);

#

u1t, u2t, u3t, u4t

for(i in 1:nr){

if(i==1){

u1t[i]=D1*3*u1rr[i]+

lam*uctr[i]+sigma*h(r[i])-psi*u1[i]+

(gam1*u1[i]*u3[i])/(eta1+u3[i])-

nu*u1[i]*u3[i];

u2t[i]=D2*3*u2rr[i]+

alpha1*u2[i]*(1-alpha2*u2[i])-

theta1*u2[i]*u3[i]/(eta2+u3[i]);

u3t[i]=D3*3*u3rr[i]+

beta1*u3[i]*(1-beta2*u3[i])+

theta2*u2[i]*u3[i]/(eta2+u3[i])-

mu*u1[i]*u3[i];

u4t[i]=D4*3*u4rr[i]+

gam2*u1[i]*u3[i]/(eta1+u3[i])-

delta*u4[i];

}else{

u1t[i]=D1*(u1rr[i]+2/r[i]*u1r[i])+

lam*uctr[i]+sigma*h(r[i])-psi*u1[i]+

(gam1*u1[i]*u3[i])/(eta1+u3[i])-

nu*u1[i]*u3[i];

u2t[i]=D2*(u2rr[i]+2/r[i]*u2r[i])+

alpha1*u2[i]*(1-alpha2*u2[i])-

theta1*u2[i]*u3[i]/(eta2+u3[i]);

u3t[i]=D3*(u3rr[i]+2/r[i]*u3r[i])+

beta1*u3[i]*(1-beta2*u3[i])+

theta2*u2[i]*u3[i]/(eta2+u3[i])-

mu*u1[i]*u3[i];

u4t[i]=D4*(u4rr[i]+2/r[i]*u4r[i])+

gam2*u1[i]*u3[i]/(eta1+u3[i])-

delta*u4[i];

}

}

#

Four PDE derivative vectors to one vector

242 ONCOLYTIC VIROTHERAPY

ut=rep(0,4*nr);

for (i in 1:nr){

ut[i] =u1t[i];

ut[nr+i] =u2t[i];

ut[2*nr+i]=u3t[i];

ut[3*nr+i]=u4t[i];

}

#

Increment calls to pde 1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 8.2: pde 1 for eqs. (8.1) and (8.3)

We can note the following details about Listing 8.2.

• The function is defined.

pde 1=function(t,u,parms) {

#

Function pde 1 computes the t derivative vector

of the u vector

u is the 164-vector of MOL/ODE dependent variables at the current value of t.
parms, for passing parameters to pde 1, is unused, but requires designation as the
third input argument.

• u is placed in four 41-vectors, u1,u2,u3,u4, to facilitate the programming of eqs.
(8.1) in terms of problem oriented variables. These four vectors are first declared
(preallocated) with the rep utility.

#

One vector to four PDE vectors

u1=rep(0,nr);u2=rep(0,nr);

u3=rep(0,nr);u4=rep(0,nr);

for (i in 1:nr){

u1[i]=u[i];

u2[i]=u[nr+i];

u3[i]=u[2*nr+i];

u4[i]=u[3*nr+i];

}

• The first derivatives in r in eqs. (8.1), ∂u1/∂r, . . . , ∂u4/∂r, are computed with the
spatial differentiation routine dss004. The arrays for these derivatives, u1r, u2r,
u3r, u4r, do not have to be declared since this is done in dss004.

MOL ROUTINES 243

#

u1r,u2r,u3r,u4r

u1r=dss004(0,r0,nr,u1);

u2r=dss004(0,r0,nr,u2);

u3r=dss004(0,r0,nr,u3);

u4r=dss004(0,r0,nr,u4);

• BCs (8.3) are implemented by redefining the r derivatives at the boundaries
r = 0, 1. Note the use of subscripts 1,nr corresponding to r = 0, 1.

#

Boundary conditions

u1r[1]=0;u1r[nr]=0;

u2r[1]=0;u2r[nr]=0;

u3r[1]=0;u3r[nr]=0;

u4r[1]=0;u4r[nr]=0;

• The second derivatives in r in eqs. (8.1), ∂2u1/∂r2, . . . , ∂2u4/∂r2, are computed
with the spatial differentiation routine dss004 by differentiating the first deriva-
tives, termed stagewise differentiation.

#

u1rr,u2rr,u3rr,u4rr

u1rr=dss004(0,r0,nr,u1r);

u2rr=dss004(0,r0,nr,u2r);

u3rr=dss004(0,r0,nr,u3r);

u4rr=dss004(0,r0,nr,u4r);

• The chemotaxis term in eq. (8.1a),
∂

∂r

(
u1

∂u4

∂r

)
, is computed in two steps: (1)

the product u1

∂u4

∂r
is formed first in a for, and (2) this product is then differenti-

ated with dss004. This procedure demonstrates how nonlinearities can be easily
accommodated numerically.

#

Chemotaxis (ct)

uct=rep(0,nr);

for(i in 1:nr){

uct[i]=u1[i]*u4r[i];

}

uctr=dss004(0,r0,nr,uct);

• All of the RHS terms of eqs. (8.1) are now available so they can be combined to
give the LHS terms (derivatives in t). These derivatives are first declared as four
41-vectors.

#

Temporal derivatives

u1t=rep(0,nr);u2t=rep(0,nr);

u3t=rep(0,nr);u4t=rep(0,nr);

244 ONCOLYTIC VIROTHERAPY

• The RHS of each PDE is then computed. For example, for eq. (8.1a), the pro-
gramming for r = 0 is (with i=1 and r[1]=0 from the definition of r in the main
program of Listing 8.1)

u1t[i]=D1*3*u1rr[i]+

lam*uctr[i]+sigma*h(r[i])-psi*u1[i]+

(gam1*u1[i]*u3[i])/(eta1+u3[i])-

nu*u1[i]*u3[i];

and for r > 0 (i=2,...,nr and r[i]�=0)

u1t[i]=D1*(u1rr[i]+2/r[i]*u1r[i])+

lam*uctr[i]+sigma*h(r[i])-psi*u1[i]+

(gam1*u1[i]*u3[i])/(eta1+u3[i])-

nu*u1[i]*u3[i];

The special case at r = 0 is required because the radial group
2

r

∂u1

∂r
in eq. (8.1a) is

indeterminate (0/0, considering BC (8.3a)). This indeterminate term is regularized
by the application of l’Hospital’s rule.

lim
r→0

2

r

∂u1

∂r
= lim

r→0
2
∂2u1

∂r2

so that

lim
r→0

∂2u1

∂r2
+

2

r

∂u1

∂r
= lim

r→0
3
∂2u1

∂r2

(the factor 3 appears in the preceding coding of eq. (8.1a) for r = 0). Also, the sim-
ilarity of the PDE (eq. (8.1a)) and the coding is clear, which is a principal advantage
of the MOL. h(r[i]) is a call to a routine for the Heaviside function (unit step)
considered subsequently. All of the parameters, such as D1,lam,sigma, etc., are
defined numerically in the main program of Listing 8.1 and passed to pde 1 of
Listing 8.2 without any special designation, which is a feature of R.

The programming of eqs. (8.1b) to (8.1d) follows in a similar way (in
Listing 8.2), including the special case for r = 0 (i=1).

• The 4× 41 = 164 derivatives in u1t,u2t,u3t,u4t are placed in a single deriva-
tive vector ut for return to the ODE integrator ode.

#

Four PDE derivative vectors to one vector

ut=rep(0,4*nr);

for (i in 1:nr){

ut[i] =u1t[i];

ut[nr+i] =u2t[i];

ut[2*nr+i]=u3t[i];

ut[3*nr+i]=u4t[i];

}

MOL ROUTINES 245

• The number of calls to pde 1 is incremented and returned to the main program of
Listing 8.1 by the operator <<-.

#

Increment calls to pde 1

ncall<<-ncall+1;

• The derivative vector ut is returned to the ODE integrator by the combination of
(1) c, the vector operator in R, (2) list (ode requires a list) and (3) return.

#

Return derivative vector

return(list(c(ut)));

}

The final } concludes pde 1.

The overall objective in executing pde 1 of Listing 8.2 is to compute the 164 ODE
derivatives in ut corresponding to the 164 dependent variables coming into pde 1 as
input argument u. The relative positions of the dependent variables and their derivatives
must be maintained, that is, the derivative ut[i] must correspond to dependent variable
u[i], i=1,2,...,164. The expectation is that odewill integrate ut forward in t to give
u at the next output value of t in tout. If this forward integration takes place through
all of the output values of t in tout, a complete solution to eqs. (8.1) to (8.3) will result
that can be observed numerically and graphically.

Before we consider a solution, the remaining function for discussion is h.

(8.2.3) Subordinate routine

h for the Heaviside (unit step) function in eq. (8.1a) is listed next.

h=function(r){

#

Function h defines the unit step (Heaviside) function

for the supply of immune cells

#

rb=0.5;

if(r<rb){

h=0;

}else{

h=1;

}

#

Return function

return(c(h));

}

Listing 8.3: h for the Heaviside function in eq. (8.1a)

246 ONCOLYTIC VIROTHERAPY

We can note the following details of Listing 8.3.

• The function is defined.

h=function(r){

#

Function h defines the unit step (Heaviside) function

for the supply of immune cells

• For r < rb (rb is used in ICs (8.2)), the function is zero.

#

rb=0.5;

if(r<rb){

h=0;

The value of rb is 0.5 rather than 0.2 in [1] to center the step change in 0 ≤ r ≤ 1,
and is also defined in the main program of Listing 8.1.

• Otherwise, for r ≥ rb, the function is one.

}else{

h=1;

}

• The value of the function is returned as a vector through a combination of c (the
vector operator applied to the scalar h), and return.

#

Return function

return(c(h));

}

The final } concludes h.

The programming of eqs. (8.1) to (8.3) is now complete and we can consider the
numerical solution.

(8.3) Model output

The main program of Listing 8.1 produces extensive numerical and graphical (plotted)
output. Here we consider only selected output to conserve space, but the reader can
easily execute the routines to generate the full output. The discussion follows through
the successive values ncase=1,2,...,9 in Listing 8.1.

• For ncase=1, the base case parameters in Listing 8.1 set all of the RHS terms in
eqs. (8.1) to zero. Thus, all of the LHS derivatives in t are also zero and therefore the
solution should not change from the ICs of eqs. (8.2). This case may seem obvious
and trivial, but it is worth executing since if the solution moves away from the
IC, there is an error in the coding (probably in pde 1 of Listing 8.2). Abbreviated
numerical output for this case is given in Table 8.1.

MODEL OUTPUT 247

[1] 164

[1] 1

ncase = 1 ncall = 8

t = 0.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.0000 1.0000 1.0000 0.0000

0.025 0.0000 1.0000 1.0000 0.0000

0.050 0.0000 1.0000 1.0000 0.0000

0.075 0.0000 1.0000 1.0000 0.0000

0.100 0.0000 1.0000 1.0000 0.0000

0.125 0.0000 1.0000 1.0000 0.0000

0.150 0.0000 1.0000 1.0000 0.0000

0.175 0.0000 1.0000 1.0000 0.0000

0.200 0.0000 0.9999 0.9999 0.0000

0.225 0.0000 0.9995 0.9995 0.0000

0.250 0.0000 0.9981 0.9981 0.0000

0.275 0.0000 0.9937 0.9937 0.0000

0.300 0.0000 0.9817 0.9817 0.0000

0.325 0.0000 0.9532 0.9532 0.0000

0.350 0.0000 0.8946 0.8946 0.0000

0.375 0.0000 0.7904 0.7904 0.0000

0.400 0.0000 0.6321 0.6321 0.0000

0.425 0.0000 0.4302 0.4302 0.0000

0.450 0.0000 0.2212 0.2212 0.0000

0.475 0.0000 0.0606 0.0606 0.0000

0.500 0.0000 0.0000 0.0000 0.0000

0.525 0.0606 0.0000 0.0000 0.0000

0.550 0.2212 0.0000 0.0000 0.0000

0.575 0.4302 0.0000 0.0000 0.0000

0.600 0.6321 0.0000 0.0000 0.0000

0.625 0.7904 0.0000 0.0000 0.0000

0.650 0.8946 0.0000 0.0000 0.0000

0.675 0.9532 0.0000 0.0000 0.0000

0.700 0.9817 0.0000 0.0000 0.0000

0.725 0.9937 0.0000 0.0000 0.0000

0.750 0.9981 0.0000 0.0000 0.0000

0.775 0.9995 0.0000 0.0000 0.0000

0.800 0.9999 0.0000 0.0000 0.0000

0.825 1.0000 0.0000 0.0000 0.0000

0.850 1.0000 0.0000 0.0000 0.0000

0.875 1.0000 0.0000 0.0000 0.0000

0.900 1.0000 0.0000 0.0000 0.0000

0.925 1.0000 0.0000 0.0000 0.0000

0.950 1.0000 0.0000 0.0000 0.0000

0.975 1.0000 0.0000 0.0000 0.0000

Table 8.1: Abbreviated numerical output, ncase=1

248 ONCOLYTIC VIROTHERAPY

1.000 1.0000 0.0000 0.0000 0.0000

. .

. .

. .

Output for t = 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.0000 1.0000 1.0000 0.0000

0.025 0.0000 1.0000 1.0000 0.0000

0.050 0.0000 1.0000 1.0000 0.0000

0.075 0.0000 1.0000 1.0000 0.0000

0.100 0.0000 1.0000 1.0000 0.0000

0.125 0.0000 1.0000 1.0000 0.0000

0.150 0.0000 1.0000 1.0000 0.0000

0.175 0.0000 1.0000 1.0000 0.0000

0.200 0.0000 0.9999 0.9999 0.0000

0.225 0.0000 0.9995 0.9995 0.0000

0.250 0.0000 0.9981 0.9981 0.0000

0.275 0.0000 0.9937 0.9937 0.0000

0.300 0.0000 0.9817 0.9817 0.0000

0.325 0.0000 0.9532 0.9532 0.0000

0.350 0.0000 0.8946 0.8946 0.0000

0.375 0.0000 0.7904 0.7904 0.0000

0.400 0.0000 0.6321 0.6321 0.0000

0.425 0.0000 0.4302 0.4302 0.0000

0.450 0.0000 0.2212 0.2212 0.0000

0.475 0.0000 0.0606 0.0606 0.0000

0.500 0.0000 0.0000 0.0000 0.0000

0.525 0.0606 0.0000 0.0000 0.0000

0.550 0.2212 0.0000 0.0000 0.0000

0.575 0.4302 0.0000 0.0000 0.0000

0.600 0.6321 0.0000 0.0000 0.0000

0.625 0.7904 0.0000 0.0000 0.0000

0.650 0.8946 0.0000 0.0000 0.0000

0.675 0.9532 0.0000 0.0000 0.0000

0.700 0.9817 0.0000 0.0000 0.0000

0.725 0.9937 0.0000 0.0000 0.0000

0.750 0.9981 0.0000 0.0000 0.0000

0.775 0.9995 0.0000 0.0000 0.0000

0.800 0.9999 0.0000 0.0000 0.0000

0.825 1.0000 0.0000 0.0000 0.0000

0.850 1.0000 0.0000 0.0000 0.0000

Table 8.1: (Continued)

MODEL OUTPUT 249

0.875 1.0000 0.0000 0.0000 0.0000

0.900 1.0000 0.0000 0.0000 0.0000

0.925 1.0000 0.0000 0.0000 0.0000

0.950 1.0000 0.0000 0.0000 0.0000

0.975 1.0000 0.0000 0.0000 0.0000

1.000 1.0000 0.0000 0.0000 0.0000

Table 8.1: (Continued)

We can note the following details of this output.

– The IC array u0 (Listing 8.1) is a 164× 1 column vector as expected. The length
of the vector informs ode of the number of ODEs to be integrated (since u0 is
an input to ode in Listing 8.1).

– ncase=1 is confirmed, and the number of calls to pde 1 (Listing 8.2) indicates
that the ODE integration in t required essentially no computations.

ncase = 1 ncall = 8

– The ICs of eqs. (8.2) (t = 0.0) are confirmed in the sense that (1) the Gaussian
distributions are identical for u1, u2, u3 with the exception of displacements in
t, and (2) the IC for u4 is zero (since u40=0). This may seem like an obvious
conclusion, but checking the ICs is always a good idea, since if they are incorrect,
the subsequent solution will also be incorrect.

– The solution remains at the IC, as expected since both sides of eqs. (8.1) are zero.
This is confirmed at t = 2 (as well as at t = 0.5, 1, 1.5 which are not included
to conserve space).

The t-invariant solution is confirmed by the graphical output (from Listing 8.1). For
each execution, four plots are produced for u1, u2, u3, u4 as a function of r with t
as a parameter. Thus, for ncase=1,2,...,9, 4× 9 = 36 plots would result, too
many for the available space. Thus, we will consider the graphical output for a
subset of plots for u1, u2, u3, u4 in each case, with the choice determined by the
change in the selected dependent variable. For ncase=1, the plot of u3 (concen-
tration of infected cells) is in Fig. 8.1, which indicates that the solution remains at
the IC (five curves are superimposed and are indistinguishable).

• For ncase=2, diffusion of the four components with concentrations
u1, u2, u3, u4 is added. This is accomplished by replacing the zero diffu-
sivities of the base case with nonzero values in eqs. (8.1), that is, in the terms

D1

(
∂2u1

∂r2
+

2

r

∂u1

∂r

)
, . . . ,D4

(
∂2u4

∂r2
+

2

r

∂u1

∂r

)
.

#

Diffusion only

if(ncase==2){

D1=0.01;D2=0.01;

D3=0.01;D4=0.01;

}

250 ONCOLYTIC VIROTHERAPY

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u3
(r

,t
)

u3(r,t) vs r

Figure 8.1 u3(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=1

We would now expect the Gaussian distributions to be smoothed in r and t. This
is confirmed in the following numerical and graphical output.

We can note the following details of this output.

– The IC array u0 (Listing 8.1) is the same as for ncase=1 in Table 8.1, as
expected.

– ncase=2 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 765 which is modest.

ncase = 2 ncall = 765

– The ICs of eqs. (8.2) are smoothed by diffusion, except for u4, which remains at
the IC of zero since the RHS diffusion term in eq. (8.1d) does not move u4 from
this zero IC.

– The solutions for u1, u2, u3, u4 at least qualitatively follow BCs (8.3) with little
change in r at the boundaries r = 0, 1. In other words, the ICs of eqs. (8.2) and
the BCs of (8.3) are consistent (or compatible).

This final point of a zero slope at the boundaries is confirmed by the graphical
output in Fig. 8.2 (again for u3(r, t)).

The solution in Fig. 8.2 demonstrates a general smoothing of the IC Gaussian
function through t = 0, 0.5, . . . , 2 and for large t (t � 2) will approach a uniform
concentration in r as expected (from diffusion).

• For ncase=3, tumor cell growth is added to diffusion. This is done by changing
the zero values of α1, α2, β1, β2 in eqs. (8.1b) and (8.1c) to nonzero values in the
terms α1u2(1− α2u2), β1u3(1− β2u3).

#

Diffusion, tumor cell growth

if(ncase==3){

MODEL OUTPUT 251

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u3
(r

,t
)

u3(r,t) vs r

Figure 8.2 u3(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=2

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

}

We can observe the effect of α1, α2, β1, β2 by comparing the solutions for ncase=2
in Table 8.2 and Fig. 8.2 with the solution in the following Table 8.3 and Fig. 8.3.
We can note the following details of this output.

– ncase=3 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 772 which is modest.

ncase = 3 ncall = 772

– The ICs of eqs. (8.2) are the same as for ncase=1,2 and therefore are not
included in Table 8.3 to conserve space (as well as the output for t = 0.5, 1, 1.5).

– The solutions for u2, u3 are greater than for ncase=2 since tumor cell growth
(uninfected, u2, and infected, u3) has been added. For example, for r = 0.5,
t = 2,

ncase = 2 (Table 8.2)

0.500 0.4752 0.1915 0.1915 0.0000

ncase = 3 (Table 8.3)

0.500 0.4752 0.4899 0.4899 0.0000

Thus, the effect of adding nonzero values of α1, α2, β1, β2 is as expected
(increased tumor cell concentrations) and is confirmed by the step-by-step
procedure in going from ncase=2 to ncase=3.

252 ONCOLYTIC VIROTHERAPY

[1] 164

[1] 1

ncase = 2 ncall = 765

t = 0.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.0000 1.0000 1.0000 0.0000

0.025 0.0000 1.0000 1.0000 0.0000

0.050 0.0000 1.0000 1.0000 0.0000

0.075 0.0000 1.0000 1.0000 0.0000

0.100 0.0000 1.0000 1.0000 0.0000

0.125 0.0000 1.0000 1.0000 0.0000

0.150 0.0000 1.0000 1.0000 0.0000

0.175 0.0000 1.0000 1.0000 0.0000

0.200 0.0000 0.9999 0.9999 0.0000

0.225 0.0000 0.9995 0.9995 0.0000

0.250 0.0000 0.9981 0.9981 0.0000

0.275 0.0000 0.9937 0.9937 0.0000

0.300 0.0000 0.9817 0.9817 0.0000

0.325 0.0000 0.9532 0.9532 0.0000

0.350 0.0000 0.8946 0.8946 0.0000

0.375 0.0000 0.7904 0.7904 0.0000

0.400 0.0000 0.6321 0.6321 0.0000

0.425 0.0000 0.4302 0.4302 0.0000

0.450 0.0000 0.2212 0.2212 0.0000

0.475 0.0000 0.0606 0.0606 0.0000

0.500 0.0000 0.0000 0.0000 0.0000

0.525 0.0606 0.0000 0.0000 0.0000

0.550 0.2212 0.0000 0.0000 0.0000

0.575 0.4302 0.0000 0.0000 0.0000

0.600 0.6321 0.0000 0.0000 0.0000

0.625 0.7904 0.0000 0.0000 0.0000

0.650 0.8946 0.0000 0.0000 0.0000

0.675 0.9532 0.0000 0.0000 0.0000

0.700 0.9817 0.0000 0.0000 0.0000

0.725 0.9937 0.0000 0.0000 0.0000

0.750 0.9981 0.0000 0.0000 0.0000

0.775 0.9995 0.0000 0.0000 0.0000

0.800 0.9999 0.0000 0.0000 0.0000

0.825 1.0000 0.0000 0.0000 0.0000

0.850 1.0000 0.0000 0.0000 0.0000

0.875 1.0000 0.0000 0.0000 0.0000

0.900 1.0000 0.0000 0.0000 0.0000

0.925 1.0000 0.0000 0.0000 0.0000

0.950 1.0000 0.0000 0.0000 0.0000

0.975 1.0000 0.0000 0.0000 0.0000

Table 8.2: Abbreviated numerical output, ncase=2

MODEL OUTPUT 253

1.000 1.0000 0.0000 0.0000 0.0000

. .

. .

. .

Output for t = 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.0392 0.7515 0.7515 0.0000

0.025 0.0401 0.7493 0.7493 0.0000

0.050 0.0423 0.7430 0.7430 0.0000

0.075 0.0461 0.7326 0.7326 0.0000

0.100 0.0516 0.7182 0.7182 0.0000

0.125 0.0589 0.6999 0.6999 0.0000

0.150 0.0682 0.6778 0.6778 0.0000

0.175 0.0797 0.6522 0.6522 0.0000

0.200 0.0935 0.6235 0.6235 0.0000

0.225 0.1099 0.5918 0.5918 0.0000

0.250 0.1291 0.5576 0.5576 0.0000

0.275 0.1512 0.5214 0.5214 0.0000

0.300 0.1763 0.4837 0.4837 0.0000

0.325 0.2045 0.4450 0.4450 0.0000

0.350 0.2357 0.4059 0.4059 0.0000

0.375 0.2699 0.3669 0.3669 0.0000

0.400 0.3068 0.3286 0.3286 0.0000

0.425 0.3463 0.2915 0.2915 0.0000

0.450 0.3877 0.2560 0.2560 0.0000

0.475 0.4309 0.2226 0.2226 0.0000

0.500 0.4752 0.1915 0.1915 0.0000

0.525 0.5200 0.1630 0.1630 0.0000

0.550 0.5648 0.1372 0.1372 0.0000

0.575 0.6089 0.1142 0.1142 0.0000

0.600 0.6519 0.0940 0.0940 0.0000

0.625 0.6931 0.0765 0.0765 0.0000

0.650 0.7321 0.0615 0.0615 0.0000

0.675 0.7685 0.0488 0.0488 0.0000

0.700 0.8020 0.0383 0.0383 0.0000

0.725 0.8324 0.0297 0.0297 0.0000

0.750 0.8596 0.0227 0.0227 0.0000

0.775 0.8835 0.0172 0.0172 0.0000

0.800 0.9043 0.0128 0.0128 0.0000

0.825 0.9219 0.0095 0.0095 0.0000

0.850 0.9366 0.0069 0.0069 0.0000

Table 8.2: (Continued)

254 ONCOLYTIC VIROTHERAPY

0.875 0.9485 0.0051 0.0051 0.0000

0.900 0.9578 0.0037 0.0037 0.0000

0.925 0.9648 0.0027 0.0027 0.0000

0.950 0.9697 0.0021 0.0021 0.0000

0.975 0.9724 0.0017 0.0017 0.0000

1.000 0.9735 0.0015 0.0015 0.0000

Table 8.2: (Continued)

[1] 164

[1] 1

ncase = 3 ncall = 772

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.0392 0.9375 0.9375 0.0000

0.025 0.0401 0.9367 0.9367 0.0000

0.050 0.0423 0.9342 0.9342 0.0000

0.075 0.0461 0.9301 0.9301 0.0000

0.100 0.0516 0.9242 0.9242 0.0000

0.125 0.0589 0.9164 0.9164 0.0000

0.150 0.0682 0.9066 0.9066 0.0000

0.175 0.0797 0.8946 0.8946 0.0000

0.200 0.0935 0.8803 0.8803 0.0000

0.225 0.1099 0.8635 0.8635 0.0000

0.250 0.1291 0.8439 0.8439 0.0000

0.275 0.1512 0.8216 0.8216 0.0000

0.300 0.1763 0.7962 0.7962 0.0000

0.325 0.2045 0.7678 0.7678 0.0000

0.350 0.2357 0.7362 0.7362 0.0000

0.375 0.2699 0.7016 0.7016 0.0000

0.400 0.3068 0.6640 0.6640 0.0000

0.425 0.3463 0.6236 0.6236 0.0000

0.450 0.3877 0.5808 0.5808 0.0000

0.475 0.4309 0.5361 0.5361 0.0000

0.500 0.4752 0.4899 0.4899 0.0000

0.525 0.5200 0.4430 0.4430 0.0000

0.550 0.5648 0.3960 0.3960 0.0000

0.575 0.6089 0.3498 0.3498 0.0000

0.600 0.6519 0.3050 0.3050 0.0000

Table 8.3: Abbreviated numerical output, ncase=3

MODEL OUTPUT 255

0.625 0.6931 0.2625 0.2625 0.0000

0.650 0.7321 0.2226 0.2226 0.0000

0.675 0.7685 0.1863 0.1863 0.0000

0.700 0.8020 0.1534 0.1534 0.0000

0.725 0.8324 0.1247 0.1247 0.0000

0.750 0.8596 0.0995 0.0995 0.0000

0.775 0.8835 0.0785 0.0785 0.0000

0.800 0.9043 0.0607 0.0607 0.0000

0.825 0.9219 0.0467 0.0467 0.0000

0.850 0.9366 0.0351 0.0351 0.0000

0.875 0.9485 0.0265 0.0265 0.0000

0.900 0.9578 0.0196 0.0196 0.0000

0.925 0.9648 0.0152 0.0152 0.0000

0.950 0.9697 0.0117 0.0117 0.0000

0.975 0.9724 0.0101 0.0101 0.0000

1.000 0.9735 0.0081 0.0081 0.0000

Table 8.3: (Continued)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u3
(r

,t
)

u3(r,t) vs r

Figure 8.3 u3(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=3

– u4 remains at the zero IC since no terms have been added to eq. (8.1d) that would
move it away from this IC.

This increase in u3 is also demonstrated in Fig. 8.3 (compared with Fig. 8.2).

• For ncase=4, chemotaxis is added to eqs. (8.1a) and (8.1d) through the terms

λ
∂

∂r

(
u1

∂u4

∂r

)
, u40[1− exp (−100(r − rb)

2)] (in eq. (8.2d)).

256 ONCOLYTIC VIROTHERAPY

#

Diffusion, tumor cell growth, chemotaxis

if(ncase==4){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

}

We can observe the effect of λ in eq. (8.1a) and u40 in eq. (8.2d) on the output by
moving these parameters away from the zero values of ncase=1,2,3. We can note
the following details of this output.

– ncase=4 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 1107 which is modest.

ncase = 4 ncall = 1107

– The IC of eqs. (8.1d), (8.2d) has been modified through the change in u40 but is
not included in Table 8.4 to conserve space. Also, the output for t = 0.5, 1, 1.5
is not included.

– The solution for u4 is nonzero as expected since the changed IC of eq. (8.1d),
that is, eq. (8.2d), affects the subsequent solution.

– u4 is used in the chemotaxis term of eq. (8.1a) (see pde 1 of Listing 8.2) to
provide an increased (more complex) variation in u1.

This change in u4 away from zero is also demonstrated in Fig. 8.4.
In summary, the effects of all four dependent variables, u1, u2, u3, u4, of eqs.

(8.1) are now included in the numerical solutions. Specifically, the contribution
of chemotaxis to u1, u4 has been demonstrated through ncase=4. These various
effects can be explored in more detailed by examining the four plots for
u1, u2, u3, u4.

• For ncase=5, CTL-chemokine depletion is added to eqs. (8.1a), (8.1d) through
nonzero values for ψ, δ in the terms −ψu1 and −δu4.

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion

if(ncase==5){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

}

MODEL OUTPUT 257

[1] 164

[1] 1

ncase = 4 ncall = 1107

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 1.6874 0.9375 0.9375 0.0392

0.025 1.6068 0.9367 0.9367 0.0401

0.050 1.3780 0.9342 0.9342 0.0423

0.075 1.0646 0.9301 0.9301 0.0461

0.100 0.7435 0.9242 0.9242 0.0516

0.125 0.4751 0.9164 0.9164 0.0589

0.150 0.2868 0.9066 0.9066 0.0682

0.175 0.1727 0.8946 0.8946 0.0797

0.200 0.1100 0.8803 0.8803 0.0935

0.225 0.0766 0.8635 0.8635 0.1099

0.250 0.0575 0.8439 0.8439 0.1291

0.275 0.0456 0.8216 0.8216 0.1512

0.300 0.0373 0.7962 0.7962 0.1763

0.325 0.0315 0.7678 0.7678 0.2045

0.350 0.0269 0.7362 0.7362 0.2357

0.375 0.0237 0.7016 0.7016 0.2699

0.400 0.0210 0.6640 0.6640 0.3068

0.425 0.0192 0.6236 0.6236 0.3463

0.450 0.0175 0.5808 0.5808 0.3877

0.475 0.0165 0.5361 0.5361 0.4309

0.500 0.0155 0.4899 0.4899 0.4752

0.525 0.0150 0.4430 0.4430 0.5200

0.550 0.0144 0.3960 0.3960 0.5648

0.575 0.0144 0.3498 0.3498 0.6089

0.600 0.0142 0.3050 0.3050 0.6519

0.625 0.0145 0.2625 0.2625 0.6931

0.650 0.0146 0.2226 0.2226 0.7321

0.675 0.0153 0.1863 0.1863 0.7685

0.700 0.0156 0.1534 0.1534 0.8020

0.725 0.0167 0.1247 0.1247 0.8324

0.750 0.0173 0.0995 0.0995 0.8596

0.775 0.0188 0.0785 0.0785 0.8835

0.800 0.0195 0.0607 0.0607 0.9043

0.825 0.0214 0.0467 0.0467 0.9219

0.850 0.0222 0.0351 0.0351 0.9366

Table 8.4: Abbreviated numerical output, ncase=4

258 ONCOLYTIC VIROTHERAPY

0.875 0.0244 0.0265 0.0265 0.9485

0.900 0.0252 0.0196 0.0196 0.9578

0.925 0.0273 0.0152 0.0152 0.9648

0.950 0.0280 0.0117 0.0117 0.9697

0.975 0.0293 0.0101 0.0101 0.9724

1.000 0.0274 0.0081 0.0081 0.9735

Table 8.4: (Continued)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u4
(r

,t
)

u4(r,t) vs r

Figure 8.4 u4(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=4

In both equations, the effect is depletion since −ψu1 and −δu4 are negative.
We can note the following details of this output.

– ncase=5 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 775 which is modest.

ncase = 5 ncall = 775

– The output for t = 0, 0.5, 1, 1.5 is not included in Table 8.5a to conserve space.

– The solution for u1 is complicated as a result of the combined effect of diffusion,
tumor cell growth, chemotaxis, and for ncase=5, CTL-chemokine depletion.

– The solutions for u2 and u3 remain the same since to this point, the parameter
values have not been selected to differentiate these solutions.

The complexity of the u1 solution is demonstrated in Fig. 8.5a. Also, the solution
curves are not as completely smooth as we might expect, suggesting a gridding
effect in r. This can be studied by repeating the solutions for a larger number
of grid points. For example, nr=81 (changed in Listing 8.1) gives the following
abbreviated output (numerical in Table 8.5b and graphical in Fig. 8.5b)

MODEL OUTPUT 259

[1] 164

[1] 1

ncase = 5 ncall = 775

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.2253 0.9375 0.9375 0.0053

0.025 0.2241 0.9367 0.9367 0.0054

0.050 0.2196 0.9342 0.9342 0.0057

0.075 0.2121 0.9301 0.9301 0.0062

0.100 0.2010 0.9242 0.9242 0.0070

0.125 0.1865 0.9164 0.9164 0.0080

0.150 0.1687 0.9066 0.9066 0.0092

0.175 0.1485 0.8946 0.8946 0.0108

0.200 0.1267 0.8803 0.8803 0.0127

0.225 0.1050 0.8635 0.8635 0.0149

0.250 0.0845 0.8439 0.8439 0.0175

0.275 0.0666 0.8216 0.8216 0.0205

0.300 0.0518 0.7962 0.7962 0.0239

0.325 0.0405 0.7678 0.7678 0.0277

0.350 0.0321 0.7362 0.7362 0.0319

0.375 0.0263 0.7016 0.7016 0.0365

0.400 0.0224 0.6640 0.6640 0.0415

0.425 0.0198 0.6236 0.6236 0.0469

0.450 0.0182 0.5808 0.5808 0.0525

0.475 0.0172 0.5361 0.5361 0.0583

0.500 0.0166 0.4899 0.4899 0.0643

0.525 0.0163 0.4430 0.4430 0.0704

0.550 0.0162 0.3960 0.3960 0.0764

0.575 0.0164 0.3498 0.3498 0.0824

0.600 0.0168 0.3050 0.3050 0.0882

0.625 0.0173 0.2625 0.2625 0.0938

0.650 0.0181 0.2226 0.2226 0.0991

0.675 0.0190 0.1863 0.1863 0.1040

0.700 0.0201 0.1534 0.1534 0.1085

0.725 0.0214 0.1247 0.1247 0.1127

0.750 0.0228 0.0995 0.0995 0.1163

0.775 0.0244 0.0785 0.0785 0.1196

0.800 0.0261 0.0607 0.0607 0.1224

0.825 0.0279 0.0467 0.0467 0.1248

0.850 0.0297 0.0351 0.0351 0.1267

Table 8.5a: Abbreviated numerical output, ncase=5

260 ONCOLYTIC VIROTHERAPY

0.875 0.0314 0.0265 0.0265 0.1284

0.900 0.0331 0.0196 0.0196 0.1296

0.925 0.0344 0.0152 0.0152 0.1306

0.950 0.0356 0.0117 0.0117 0.1312

0.975 0.0362 0.0101 0.0101 0.1316

1.000 0.0368 0.0081 0.0081 0.1317

Table 8.5a: (Continued)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8 1.0

0.8

1.0

1.2

r

u1
(r

,t
)

u1(r,t) vs r

Figure 8.5a u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=5

The numerical solution in Table 8.5b appears to be smoother than in Table 8.5a.
This is confirmed in Fig. 8.5b when compared with Fig. 8.5a. In other words, the
gridding with nr=41 is too coarse and produces numerical artifacts.The increase
in ncall from 775 to 2290 results from the increase in nr from 41 to 81.

In summary, the solutions for u1, u2, u3, u4 are becoming increasingly complex
as additional effects and nonzero terms are added to eqs. (8.1). The step-by-step
procedure (through ncase=1,2,3,4,5) identifies the contribution of each
nonzero term added to eqs. (8.1). The solution with nr=81 indicates that a larger
number of grid points should be retained for the subsequent solutions.

• For ncase=6, CTL-chemokine proliferation is added to eqs. (8.1a), (8.1d) through

nonzero values for γ1, γ2 in the terms
γ1u1u3

η1 + u3

and
γ2u1u3

η1 + u3

.

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation

if(ncase==6){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

MODEL OUTPUT 261

[1] 324

[1] 1

ncase = 5 ncall = 2290

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.2256 0.9375 0.9375 0.0053

0.012 0.2253 0.9373 0.9373 0.0053

0.025 0.2242 0.9367 0.9367 0.0054

0.038 0.2224 0.9357 0.9357 0.0055

0.050 0.2198 0.9342 0.9342 0.0057

0.062 0.2164 0.9324 0.9324 0.0060

0.075 0.2121 0.9301 0.9301 0.0062

0.088 0.2071 0.9273 0.9273 0.0066

0.100 0.2011 0.9242 0.9242 0.0070

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.0330 0.0197 0.0197 0.1296

0.913 0.0337 0.0171 0.0171 0.1301

0.925 0.0344 0.0150 0.0150 0.1306

0.938 0.0350 0.0132 0.0132 0.1309

0.950 0.0355 0.0118 0.0118 0.1312

0.963 0.0358 0.0108 0.0108 0.1315

0.975 0.0361 0.0100 0.0100 0.1316

0.988 0.0363 0.0096 0.0096 0.1317

1.000 0.0364 0.0094 0.0094 0.1317

Table 8.5b: Abbreviated numerical output, ncase=5, nr=81

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

}

Abbreviated output follows (numerical in Table 8.6 and graphical in Fig. 8.6).

262 ONCOLYTIC VIROTHERAPY

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u1
(r

,t
)

u1(r,t) vs r

Figure 8.5b u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=5, nr=81

We can note the following details of this output.

– ncase=6 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 2610.

ncase = 6 ncall = 2610

– The output for t = 0, 0.5, 1, 1.5 is not included in Table 8.6 to conserve space.

– The solution for u1 is complicated as a result of the combined effect of
diffusion, tumor cell growth, chemotaxis, CTL-chemokine depletion and for
ncase=6 CTL-chemokine proliferation.

– The solutions for u2 and u3 remain the same since to this point, the parameter
values have not been selected to differentiate these solutions.

The complexity of the u1 solution is demonstrated in Fig. 8.6. The solutions are
smooth for nr=81.

• For ncase=7, virus replication is added to eqs. (8.1b), (8.1c) through nonzero

values for θ1, θ2 in the terms − θ1u2u3

η2 + u3

and +
θ2u2u3

η2 + u3

.

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication

if(ncase==7){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

MODEL OUTPUT 263

[1] 324

[1] 1

ncase = 6 ncall = 2610

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.1815 0.9375 0.9375 0.1166

0.012 0.1815 0.9373 0.9373 0.1165

0.025 0.1814 0.9367 0.9367 0.1165

0.038 0.1814 0.9357 0.9357 0.1164

0.050 0.1813 0.9342 0.9342 0.1162

0.062 0.1812 0.9324 0.9324 0.1160

0.075 0.1810 0.9301 0.9301 0.1157

0.088 0.1808 0.9273 0.9273 0.1154

0.100 0.1806 0.9242 0.9242 0.1151

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.0346 0.0197 0.0197 0.1302

0.913 0.0353 0.0171 0.0171 0.1306

0.925 0.0359 0.0150 0.0150 0.1310

0.938 0.0364 0.0132 0.0132 0.1313

0.950 0.0369 0.0118 0.0118 0.1316

0.963 0.0372 0.0108 0.0108 0.1318

0.975 0.0375 0.0100 0.0100 0.1319

0.988 0.0377 0.0096 0.0096 0.1320

1.000 0.0377 0.0094 0.0094 0.1320

Table 8.6: Abbreviated numerical output, ncase=6

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

}

Abbreviated output follows (numerical in Table 8.7 and graphical in Figs. 8.7a,
8.7b).

264 ONCOLYTIC VIROTHERAPY

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u1
(r

,t
)

u1(r,t) vs r

Figure 8.6 u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=6, nr=81

We can note the following details of this output.

– ncase=7 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 2788.

ncase = 7 ncall = 2788

– The output for t = 0, 0.5, 1, 1.5 is not included in Table 8.7 to conserve space.

– The solutions for u2 and u3 are now substantially different, which is to be
expected since the terms in θ1, θ2 in eqs. (8.1b), (8.1c) are of opposite sign. The
differences are indicated in Figs. 8.7a and 8.7b.

• For ncase=8, immune cell supply is added to eq. (8.1a), through a nonzero value
for σ in the term σh(r).

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication, immune cell supply

if(ncase==8){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

sigma=1;

}

MODEL OUTPUT 265

[1] 324

[1] 1

ncase = 7 ncall = 2788

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.1872 0.5416 1.1956 0.1314

0.012 0.1872 0.5415 1.1954 0.1314

0.025 0.1871 0.5411 1.1947 0.1313

0.038 0.1871 0.5406 1.1935 0.1312

0.050 0.1870 0.5398 1.1918 0.1310

0.062 0.1869 0.5387 1.1897 0.1308

0.075 0.1868 0.5375 1.1870 0.1305

0.088 0.1866 0.5359 1.1838 0.1302

0.100 0.1865 0.5342 1.1801 0.1298

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.0348 0.0162 0.0230 0.1303

0.913 0.0354 0.0142 0.0199 0.1307

0.925 0.0360 0.0125 0.0173 0.1311

0.938 0.0366 0.0112 0.0152 0.1314

0.950 0.0370 0.0100 0.0135 0.1316

0.963 0.0374 0.0092 0.0123 0.1318

0.975 0.0377 0.0086 0.0114 0.1320

0.988 0.0378 0.0083 0.0109 0.1320

1.000 0.0379 0.0081 0.0106 0.1321

Table 8.7: Abbreviated numerical output, ncase=7

Abbreviated output follows (numerical in Tables 8.8a 8.8b and graphical in
Figs. 8.8a, 8.8b).

We can note the following details of this output.

– ncase=8 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 4110.

ncase = 8 ncall = 4110

– The output for t = 0, 0.5, 1, 1.5 is not included in Table 8.8a to conserve space.

266 ONCOLYTIC VIROTHERAPY

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u2
(r

,t
)

u2(r,t) vs r

Figure 8.7a u2(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
r

u3
(r

,t
)

u3(r,t) vs r

Figure 8.7b u3(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=7

– The solution for u1 has a numerical oscillation as reflected in the numerical
output for u1 in Table 8.8a and in Fig. 8.8a. The cause of this oscillation is
explained next.

The oscillation in Fig. 8.8a results from the discontinuity in the term σh(r)
in eq. (8.1a) (recall the unit step in h(r) in Listing 8.3). More generally, finite
difference (FD) approximations such as in dss004 will oscillate in response to
discontinuities. The oscillations could be more pronounced without the smoothing
effect of the diffusion expressed in terms of the diffusivity D1 in eq. (8.1a).

MODEL OUTPUT 267

[1] 324

[1] 1

ncase = 8 ncall = 4110

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.4165 0.5416 1.1956 0.2420

0.012 0.3856 0.5415 1.1954 0.2349

0.025 0.3895 0.5411 1.1947 0.2358

0.038 0.3824 0.5406 1.1935 0.2340

0.050 0.3893 0.5398 1.1918 0.2355

0.062 0.3825 0.5387 1.1897 0.2338

0.075 0.3897 0.5375 1.1870 0.2352

0.088 0.3829 0.5359 1.1838 0.2334

0.100 0.3902 0.5342 1.1801 0.2347

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.9016 0.0162 0.0230 0.1371

0.913 0.8470 0.0142 0.0199 0.1362

0.925 0.8387 0.0125 0.0173 0.1360

0.938 0.7952 0.0112 0.0152 0.1354

0.950 0.7984 0.0100 0.0135 0.1354

0.963 0.7648 0.0092 0.0123 0.1349

0.975 0.7785 0.0086 0.0114 0.1350

0.988 0.7621 0.0083 0.0109 0.1348

1.000 0.8555 0.0081 0.0106 0.1359

Table 8.8a: Abbreviated numerical output, ncase=8

To circumvent this numerical error, a smoother function than h(r), such as
a unit ramp as implemented in the function ramp in Listing 8.4, can be used (in
Listing 8.2).

ramp=function(r){

#

Function ramp defines a unit ramp function

for the supply of immune cells

268 ONCOLYTIC VIROTHERAPY

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1.2

r

u1
(r

,t
)

u1(r,t) vs r

Figure 8.8a u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=8

#

rb=0.5;

if(r<rb){

ramp=0;

}else if((r>=rb)&(r<=1.1*rb)){

ramp=(r-rb)/(0.1*rb);

}else{

ramp=1;

}

#

Return function

return(c(ramp));

}

Listing 8.4: ramp for a unit ramp

We can note the following details of Listing 8.4.

– The function is defined.

ramp=function(r){

#

Function ramp defines a unit ramp function

for the supply of immune cells

The details of the ramp follow.
� For r < rb (rb is used in ICs (8.2)), the function is zero.

#

rb=0.5;

MODEL OUTPUT 269

if(r<rb){

ramp=0;

� For rb ≤ r ≤ 1.1rb, the function is a linear increase in r, that is, a linear
function for 0.5 ≤ r ≤ 0.550 with slope 1/0.1rb.

}else if((r>=rb)&(r<=1.1*rb)){

ramp=(r-rb)/(0.1*rb);

� For r > 1.1rb, the function is one.

}else{

ramp=1;

}

ramp(r) is an approximation to the unit step h(r) in eq. (8.1a), but since it has
a finite slope, it does not produce the oscillations in the solution of eq. (8.1a) as
reflected in Fig. 8.8a. Rather, the solution of Fig. 8.8b is smooth.

Abbreviated output is given in Table 8.8b and Fig. 8.8b.
The solution for u1 in Table 8.8b is noticeably smoother than in Table 8.8a, e.g.,

near r = 1.
The solution in Fig. 8.8b is clearly smoother than in Fig. 8.8a.
To use ramp in place of h, the following changes were made.

– In Listing 8.1

source("pde 1.R") ;source("h.R");

out=ode(func=pde 1,times=tout,y=u0);

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
r

u1
(r

,t
)

u1(r,t) vs r

Figure 8.8b u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=8 and a ramp

270 ONCOLYTIC VIROTHERAPY

[1] 324

[1] 1

ncase = 8 ncall = 4200

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.3677 0.5416 1.1956 0.2245

0.012 0.3684 0.5415 1.1954 0.2248

0.025 0.3684 0.5411 1.1947 0.2247

0.038 0.3686 0.5406 1.1935 0.2247

0.050 0.3685 0.5398 1.1918 0.2245

0.062 0.3688 0.5387 1.1897 0.2244

0.075 0.3688 0.5375 1.1870 0.2242

0.088 0.3691 0.5359 1.1838 0.2240

0.100 0.3691 0.5342 1.1801 0.2237

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.8549 0.0162 0.0230 0.1367

0.913 0.8287 0.0142 0.0199 0.1361

0.925 0.8071 0.0125 0.0173 0.1357

0.938 0.7897 0.0112 0.0152 0.1354

0.950 0.7764 0.0100 0.0135 0.1352

0.963 0.7665 0.0092 0.0123 0.1350

0.975 0.7599 0.0086 0.0114 0.1349

0.988 0.7560 0.0083 0.0109 0.1349

1.000 0.7552 0.0081 0.0106 0.1348

Table 8.8b: Abbreviated numerical output, ncase=8 and a ramp

was replaced with

source("pde 1.R") ;source("ramp.R");

out=ode(func=pde 1a,times=tout,y=u0);

Note the use of pde 1a in place of pde 1.

– In pde 1, the following changes were made to Listing 8.2 to provide pde 1a.

pde 1=function(t,u,parms) {

lam*uctr[i]+sigma*h(r[i])-psi*u1[i]+

MODEL OUTPUT 271

were changed

pde 1a=function(t,u,parms) {

lam*uctr[i]+sigma*ramp(r[i])-psi*u1[i]+

(in two places)

Otherwise, the code with h(r) and ramp(r) in eq. (8.1a) is the same.
In summary, MOL solutions are sensitive to the smoothness properties of the

terms in the PDEs (and ICs, BCs). PDEs with discontinuities are generally termed
Riemann problems, and they usually require some special treatment, such as the
use of a ramp or other relatively smooth function in place of the discontinuity.

• For ncase=9, tumor cell death is added to eqs. (8.1a), (8.1c) through nonzero
values for ν, μ in the terms −νu1u3 and −μu1u3. These terms are negative and
therefore reduce u1 and most importantly, u3. Thus, in eq. (8.1c), −μu1u3 reflects
the reduction in tumor cells (u3) from the effect of CTL-chemokine (u1).

#

Diffusion, tumor cell growth, chemotaxis,

CTL-chemokine depletion, CTL proliferation,

virus replication, immune cell supply,

tumor cell death

if(ncase==9){

D1=0.01; D2=0.01;

D3=0.01; D4=0.01;

alpha1=1;alpha2=1;

beta1=1; beta2=1;

lam=1; u40=1;

delta=1; psi=1;

gam1=1; gam2=1;

theta1=1;theta2=1;

sigma=1;

nu=1; mu=1;

}

Abbreviated output follows (numerical in Table 8.9 and graphical in Figs. 8.9a,
8.9b). These numerical results were produced with the inclusion of ramp in place
of h in eq. (8.1a) as discussed for ncase = 8.

We can note the following details of this output.

– ncase=9 is confirmed, and the number of calls to pde 1 (Listing 8.2) is ncall
= 4161.

ncase = 9 ncall = 4161

– The output for t = 0, 0.5, 1, 1.5 is not included in Table 8.9 to conserve space.

– The solutions for u1 and u3 reflect the reduction in tumor cell concentration, u3

from eq. (8.1c). For example, from Tables 8.8 and 8.9,

272 ONCOLYTIC VIROTHERAPY

[1] 324

[1] 1

ncase = 9 ncall = 4161

Output for t = 0, 0.5, 1, 1.5 removed

. .

. .

. .

t = 2.0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

0.000 0.1544 0.5759 0.9674 0.1190

0.012 0.1547 0.5758 0.9669 0.1191

0.025 0.1549 0.5755 0.9659 0.1192

0.038 0.1553 0.5751 0.9641 0.1193

0.050 0.1556 0.5744 0.9617 0.1195

0.062 0.1563 0.5736 0.9585 0.1197

0.075 0.1569 0.5725 0.9547 0.1200

0.088 0.1578 0.5713 0.9501 0.1204

0.100 0.1587 0.5698 0.9447 0.1207

. .

. .

. .

Output for r = 0.112 to 0.888 removed

. .

. .

. .

0.900 0.6873 0.0169 0.0097 0.1328

0.913 0.6859 0.0147 0.0083 0.1329

0.925 0.6855 0.0129 0.0072 0.1330

0.938 0.6851 0.0115 0.0063 0.1331

0.950 0.6853 0.0103 0.0056 0.1331

0.963 0.6853 0.0095 0.0051 0.1332

0.975 0.6858 0.0088 0.0047 0.1332

0.988 0.6858 0.0085 0.0045 0.1332

1.000 0.6867 0.0083 0.0044 0.1332

Table 8.9: Abbreviated numerical output, ncase=9

r = 0

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

Table 8.8

0.000 0.3677 0.5416 1.1956 0.2245

Table 8.9

0.000 0.1544 0.5759 0.9674 0.1190

r = 1

r u1(r,t) u2(r,t) u3(r,t) u4(r,t)

Table 8.8

SUMMARY AND CONCLUSIONS 273

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

r

u1
(r

,t
)

u1(r,t) vs r

Figure 8.9a u1(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=9

1.000 0.7552 0.0081 0.0106 0.1348

Table 8.9

1.000 0.6867 0.0083 0.0044 0.1332

For r = 1, u3(r = 1, t = 2) has been reduced from 0.0106 to 0.0044

(infected cells) while u2(r = 1, t = 2) has no significant reduction, 0.0081,
0.0083 (uninfected cells). μ, ν in eqs. (8.1a), (8.1c) are clearly key parameters
in the reduction of infected cancer cells and can be studied in detail using
Listings 8.1, 8.2 and 8.4 (with ramp in place of h). For example, −νu1u3 and
−μu1u3 could be computed from the numerical solutions, u1, u3 and plotted
against r with t as a parameter.

Fig. 8.9a indicates that the complex response of u1 remains smooth (as
discussed for ncase = 8). Fig. 8.9b also indicates a complex response for u3

that could be studied in detail by varying, for example, ν, μ.

(8.4) Summary and conclusions

A methodology for the MOL implementation of the 1D 4-PDE model of eqs. (8.1), (8.2)
and (8.3) is discussed in this chapter. In particular, the step-by-step procedure of adding
terms to the RHS of the PDEs offers a method for systematically examining the contribu-
tion of the terms as they are added. This has the advantage that if during the procedure, a
failure in the model execution, or an obvious numerical distortion (e.g., oscillation from
coarse gridding or a discontinuity) is revealed, steps can be taken to correct the prob-
lem (e.g., increasing the number of grid points, replacement of the discontinuity with a
smoother function).

The preceding example also illustrates an essential evaluation of the numerical solu-
tion as an error analysis. This was demonstrated with h-refinement by increasing nr=41

274 ONCOLYTIC VIROTHERAPY

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r

0.0 0.2 0.4 0.6 0.8 1.0

u3
(r

,t
)

u3(r,t) vs r

Figure 8.9b u3(r, t) vs r with t = 0, 0.5, . . . , 2 as a parameter for ncase=9

to nr=81 (the grid spacing in a FD approximation is usually denoted with h, and there-
fore the procedure of changing the spacing is termed h-refinement).

Another possibility for an error analysis of the numerical solution is p-refinement in
which the order of the (FD) approximations is changed. For example, dss004 in Listing
8.2 based on fourth-order FDs so that p = 4 could be replaced by dss006 based on
sixth-order approximations so that p = 6. The two solutions could then be compared as
a check on the spatial convergence of the solution.

More generally, this discussion indicates that some experimentation in developing a
MOL solution to a PDE system is usually required, with attention to the details of the
solution as the analysis proceeds. In other words, MOL analysis is not a mechanical
procedure with a guaranteed final satisfactory result. Rather, each problem should be
considered as a new problem with success in achieving a solution of acceptable accuracy
dependent on careful programming and evaluation of the solution.

Reference

[1] Malinzi, J., P. Sibanda, and H. Mambili-Mamboundou (2015), Analysis of virotherapy in
solid tumor invasion, Math. Biosci., 263, 102–110; an extensive list of references is included
with this reference

9
TUMOR CELL DENSITY
IN GLIOBLASTOMAS

This chapter pertains to a mathematical model for the distribution of cancer cells in
glioblastomas, an aggressive form of cancer of the brain [1]. The 1D, 1-PDE model is
based on diffusion of the cells in white and gray tissue, and a growth law of varying
form, that is, a diffusion-reaction PDE [2,3].

The intent of this chapter is to:

• Present a 1-PDE model for cell density dynamics in glioblastomas including the
required initial conditions (ICs) and boundary conditions (BCs).

• Discuss the format of the model as a variable coefficient, diffusion-reaction (or
parabolic) PDE in 1D.

• Present a method of lines (MOL) solution, including the use of library routines for
integration of the PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) format.

• Investigate three forms of the cancer cell volumetric growth rate to determine their
specific effect on the solutions.

• Discuss the performance of the algorithms used to compute the solution. In par-
ticular, h-refinement is used to infer the accuracy of the approximation of the
spatial derivatives that model diffusion when the diffusivity changes discontinu-
ously between white and gray matter.

A modification of the 1-PDE model reported in [3] is presented next, followed by a
MOL solution programmed in R.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

276 TUMOR CELL DENSITY IN GLIOBLASTOMAS

(9.1) 1D PDE model

The PDE originally presented in 1D Cartesian coordinates is expressed in 1D spherical
coordinates to better reflect the geometry of a tumor1

∂u

∂t
=

1

r2
∂

∂r

(
r2D(r)

∂u

∂r

)
+ f(u)

or
∂u

∂t
= D(r)

∂2u

∂r2
+

dD(r)

dr

∂u

∂r
+ D(r)

2

r

∂u

∂r
+ f(u) (9.1)

where

u tumor cell density
r radial coordinate in the tumor
t time
D(r) cell diffusivity as a function of r
f(u) inhomogeneous, source term for cell volumetric growth rate

In eq. (9.1), the diffusion term
1

r2
∂

∂r

(
r2D(r)

∂u

∂r

)
is expanded to facilitate the numer-

ical solution as explained subsequently.
Eq. (9.1) is first order in t and second order in r. It therefore requires one IC and two

BCs.

u(r, t = 0) = g(r);
∂u(r = 0, t)

∂r
=

∂u(r = r0, t)

∂r
= 0 (9.2a,b,c)

where g(r) is a function to be specified. Eqs. (9.2b,c) are homogeneous (zero) Neumann
BCs for symmetry at r = 0 and no diffusion of cells across the tumor boundary r = r0,
respectively.

Three cases for f(u) in eq. (9.1) are considered.

Case f(u)

ncase = 1: ρu(r, t)

linear

ncase = 2: ρu(r, t)

(
1− u(r, t)

umax

)
(9.3)

logistic

ncase = 3: − ρu(r, t) ln

(
u(r, t)

ek/d

)

Gompertz

1In accordance with the usual notation for PDEs in the numerical analysis literature, u is used to denote the
PDE dependent variable.

MOL ROUTINES 277

where [3],

Parameter Interpretation
ρ cell proliferation rate

umax carrying capacity of tissue
k tumor growth rate
d tumor decay rate

These three cases are programmed and discussed in the routines that follow.

(9.2) MOL routines

The main program and subordinate MOL/ODE routine are discussed next.

(9.2.1) Main program

The main program for eqs. (9.1), (9.2), and (9.3) is in Listing 9.1.

#

Tumor cell density in glioblastomas

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solutions

setwd("g:/chap9");

source("pde 1.R");

source("dss004.R");

source("dss044.R");

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u(r,t)) only

#

ip = 2 - numerical and graphical output

#

ip=2;

#

Select case

ncase=1;

#

278 TUMOR CELL DENSITY IN GLIOBLASTOMAS

Parameters

rho=0.012;umax=62.5;eps=0.01;k=1;d=1;

#

Grid in r

nr=101;r0=25;

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

#

Diffusivity

D=rep(0,nr);

for(i in 1:nr){

if(i<=16){D[i]=0.13;}

if((i>16)&(i<=86)){D[i]=0.65;}

if(i> 86){D[i]=0.13;}

}

#

Display D(r)

if(ip==2){

for(i in 1:nr){

cat(sprintf("\n i = %3d r = %4.2f D(r) = %5.3f",

i,r[i],D[i]));

}

}

#

dD/dr

dDdr=rep(0,nr);

for(i in 1:nr){

if(i< 16){dDdr[i]=0;}

if(i==16){dDdr[i]=(D[i+1]-D[i-1])/0.5;}

if((i>16)&(i<86)){dDdr[i]=0;}

if(i==86){dDdr[i]=(D[i+1]-D[i-1])/0.5;}

if(i> 86){dDdr[i]=0;}

}

#

Display dD/dr

if(ip==2){

for(i in 1:nr){

cat(sprintf("\n i = %3d r = %4.2f dD/dr = %5.3f",

i,r[i],dDdr[i]));

}

}

#

Initial conditions

u0=rep(0,nr);

fact=1/((2*pi)^0.5*eps);

for(i in 1:nr){

u0[i]=exp(-0.5*(r[i]-12.5)^2/eps);

MOL ROUTINES 279

}

u0=fact*u0;

ncall=0;

#

Write selected parameters

cat(sprintf("\n\n ncase = %2d",ncase));

#

Write heading

if(ip==1){

cat(sprintf("\n Graphical output only\n"));
}

#

Independent variable for ODE integration

nout=6;t0=0;tf=15;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde 1);

nrow(out)

ncol(out)

#

Arrays for plotting numerical solution

u plot1=matrix(0,nrow=nr,ncol=nout);

u plot2=matrix(0,nrow=nr,ncol=nout-1);

for(it in 1:nout){

for(i in 1:nr){

u plot1[i,it]=out[it,i+1];

if(it>1){u plot2[i,it-1]=u plot1[i,it];}

}

}

#

Display numerical solution

if(ip==2){

for(it in 1:nout){

cat(sprintf(

"\n t r u(r,t)\n"));
for(i in 1:nr){

cat(sprintf("%5.1f%8.2f%10.3f\n",
tout[it],r[i],u plot1[i,it]));

}

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#

280 TUMOR CELL DENSITY IN GLIOBLASTOMAS

Plot u with t = 0

par(mfrow=c(1,1));

matplot(x=r,y=u plot1,type="l",xlab="r",

ylab="u(r,t), t=0,3,...,15",xlim=c(0,r0),lty=1,

main="u(r,t); t=0,3,...,15;",lwd=2,col="black");

#

Plot u without t = 0

par(mfrow=c(1,1));

matplot(x=r,y=u plot2,type="l",xlab="r",

ylab="u(r,t), t=3,...,15",xlim=c(0,r0),lty=1,

main="u(r,t); t=3,...,15;",lwd=2,col="black");

Listing 9.1: Main program for eqs. (9.1) to (9.3)

We can note the following details about Listing 9.1.

• Previous workspaces are cleared.

#

Tumor cell density in glioblastomas

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R library of ODE integrators, deSolve, and the routines for the MOL solution
of eqs. (9.1) to (9.3) are accessed. The setwd (set working directory) will be edited
for the local computer. Note also that / is used rather than the usual \.

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solutions

setwd("g:/chap9");

source("pde 1.R");

source("dss004.R");

source("dss044.R");

• A level of numerical output is selected.

#

Level of output

#

ip = 1 - graphical (plotted) solutions

(u(r,t)) only

#

MOL ROUTINES 281

ip = 2 - numerical and graphical output

#

ip=2;

• One of the cases in eqs. (9.3) is selected

#

Select case

ncase=1;

• The parameters in eq. (9.1) are defined numerically. These values are taken from
[3] (rho,umax,eps) or assigned to complete the coding (k,d).

#

Parameters

rho=0.012;umax=62.5;eps=0.01;k=1;d=1;

• A grid in r with 101 points is defined for the interval 0 ≤ r ≤ r0 with the seq

utility. The radius of the spherical tumor is r0 = 25 mm and the grid spacing is
therefore 25/(101− 1) = 0.25 mm.

#

Grid in r

nr=101;r0=25;

r=seq(from=0,to=r0,by=(r0-0)/(nr-1));

• The diffusivity D(r) in eq. (9.1) is piecewise constant, with

D(r) = 0.13 0 ≤ r ≤ (16− 1)(0.25) gray tissue
0 ≤ r ≤ 3.75

D(r) = 0.65 (17− 1)(0.25) ≤ r ≤ (86− 1)(0.25) white tissue
4 ≤ r ≤ 21.25

D(r) = 0.13 (87− 1)(0.25) ≤ r ≤ 25 gray tissue
21.50 ≤ r ≤ 25

The boundary distances are half those used in [3] to reflect the use of spherical
rather than Cartesian coordinates.

#

Diffusivity

D=rep(0,nr);

for(i in 1:nr){

if(i<=16){D[i]=0.13;}

if((i>16)&(i<=86)){D[i]=0.65;}

if(i> 86){D[i]=0.13;}

}

282 TUMOR CELL DENSITY IN GLIOBLASTOMAS

The subscripts for D are hardcoded to provide a clear indication of the values of r at
which D(r) changes values. If the total number of grid points, nr=101, is changed,
these coded values will also have to be changed accordingly.

• The numerical details of D(r) are displayed if requested (ip = 2).

#

Display D(r)

if(ip==2){

for(i in 1:nr){

cat(sprintf("\n i = %3d r = %4.2f D(r) = %5.3f",

i,r[i],D[i]));

}

}

• The derivative dD(r)/dr in eq. (9.1) is computed and placed in the vector dDdr. At
the points of discontinuous change, i=16,86 (r = 3.75, 21.25), a two-point central
finite difference (FD) approximation is used in place of the derivative (which is
undefined at these two points)

∂D

∂r i
≈ Di+1 − Di−1

2Δr

#

dD/dr

dDdr=rep(0,nr);

for(i in 1:nr){

if(i< 16){dDdr[i]=0;}

if(i==16){dDdr[i]=(D[i+1]-D[i-1])/0.5;}

if((i>16)&(i<86)){dDdr[i]=0;}

if(i==86){dDdr[i]=(D[i+1]-D[i-1])/0.5;}

if(i> 86){dDdr[i]=0;}

}

The denominator of the FD approximation is 0.5 = (2)(0.25), that is, twice the
spacing of the grid in r (Δr = 0.25).

• The numerical details of dD/dr are displayed if requested (ip = 2).

#

Display dD/dr

if(ip==2){

for(i in 1:nr){

cat(sprintf("\n i = %3d r = %4.2f dD/dr = %5.3f",

i,r[i],dDdr[i]));

}

}

MOL ROUTINES 283

The vectors D,dDdr are now available for use in the MOL/ODE routine discussed
next. They do not require any special designation to be shared with the routine (a
feature of R).

• IC (9.2a) is defined numerically, with g(r) =
1√
2πε

e−0.5(r−12.5)2/ε [3]. g(r) is a

Gaussian distribution centered at r = 12.5, the midpoint of the interval in r, 0 ≤
r ≤ 25.

#

Initial conditions

u0=rep(0,nr);

fact=1/((2*pi)^0.5*eps);

for(i in 1:nr){

u0[i]=exp(-0.5*(r[i]-12.5)^2/eps);

}

u0=fact*u0;

ncall=0;

The statement u0=fact*u0 demonstrates the vector facility of R. In this case, u0
is a vector multiplied by a scalar, fact. Finally, the counter for the calls to the
MOL/ODE routines is initialized.

• Selected output is displayed at the beginning of the numerical solution.

#

Write selected parameters

cat(sprintf("\n\n ncase = %2d",ncase));

#

Write heading

if(ip==1){

cat(sprintf("\n Graphical output only\n"));
}

• A vector of nout=6 output values of t is defined for 0 ≤ t ≤ 15 so that tout has
the values t = 0, 3,...,15 days.

#

Independent variable for ODE integration

nout=6;t0=0;tf=15;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• The nr=101 ODEs are programmed in pde 1 (discussed next) and integrated by
lsodes (from deSolve). The ODE routine pde 1, the vector of output values tout
and the IC vector u0 are the input to lsodes as expected (to define the MOL/ODE
system). func,times,y are reserved names for lsodes.

#

284 TUMOR CELL DENSITY IN GLIOBLASTOMAS

ODE integration

out=lsodes(y=u0,times=tout,func=pde 1)

nrow(out)

ncol(out)

The dimensions of the solution matrix out, out[6,101+1], are checked with the
utilities nrow,ncol. The second dimension 102 includes a place for the ODE inde-
pendent variable t as well as the 101 ODE dependent variables. The length of the
IC vector u0 informs lsodes of the number of ODEs to be integrated (101).

• The numerical solution u(r, t) of eq. (9.1) is placed in two arrays, u plot1,
u plot2 for subsequent plotting. u plot1 includes the solution for t = 0 while
u plot2 does not (the reason for this is explained subsequently).

#

Arrays for plotting numerical solution

u plot1=matrix(0,nrow=nr,ncol=nout);

u plot2=matrix(0,nrow=nr,ncol=nout-1);

for(it in 1:nout){

for(i in 1:nr){

u plot1[i,it]=out[it,i+1];

if(it>1){u plot2[i,it-1]=u plot1[i,it];}

}

}

The solution values for the interval in t are included in the matrices by a for

with index it, and for the interval in r by a for with index i. The offset of 1
in out[it,i+1] is required since out[it,1] has the output values of t.

• The numerical solution in u plot1 is displayed as a function of r and t for
ip = 2.

#

Display numerical solution

if(ip==2){

for(it in 1:nout){

cat(sprintf(

"\n t r u(r,t)\n"));
for(i in 1:nr){

cat(sprintf("%5.1f%8.2f%10.3f\n",
tout[it],r[i],u plot1[i,it]));

}

}

}

• The number of calls to the MOL/ODE routine pde 1 is displayed as a measure of
the computational effort required to compute the numerical solution.

MOL ROUTINES 285

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solution of eq. (9.1) is plotted with t = 0 included so that t =
0, 3, 6,...,15 and t = 0 (u plot1) and not included so that t = 3, 6,...,15 (u plot2).
The resulting plots in Figs. 9.1a, 9.1b indicate that the Gaussian IC is a sharp pulse
that quickly diffuses to much smaller values as emphasized in Fig. 9.1b by not
including the IC. In other words, the Gaussian pulse simulates a point input (at
r = 12.5 mm) of cancer cells that then disperse by diffusion and increase by the
linear growth law of eqs. (9.3) (with ncase=1 set in the main program of Listing
9.1).

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#

Plot u with t = 0

par(mfrow=c(1,1));

matplot(x=r,y=u plot1,type="l",xlab="r",

ylab="u(r,t), t=0,3,...,15",xlim=c(0,r0),lty=1,

main="u(r,t); t=0,3,...,15;",lwd=2,col="black");

#

Plot u without t = 0

par(mfrow=c(1,1));

matplot(x=r,y=u plot2,type="l",xlab="r",

ylab="u(r,t), t=3,...,15",xlim=c(0,r0),lty=1,

main="u(r,t); t=3,...,15;",lwd=2,col="black");

Fig. 9.1a indicates the sharp Gaussian pulse at t = 0.
Fig. 9.1b indicates the dispersion of cells for t > 0, including the effect of the

discontinuous change in D(r), particularly near r = 3.75 as discussed previously.
Specifically, the solution u(r, t) has a larger (steeper) slope for 0 ≤ r ≤ 3.75where
the diffusivity D(r) is lower (D(r) = 0.13) in order to main continuity of the flux
of cells. For 3.75 < r ≤ 21.25, the diffusivity is larger (D(r) = 0.65) so that the
slope of u(r, t) is lower. The numerical output from the main program of Listing
9.1 is discussed subsequently.

The units for the axes of Figs. 9.1a, 9.1b are determined by the units of D(r) and ρ
in eq. (9.1).

• D(r): mm2/day

• ρ: 1/day

286 TUMOR CELL DENSITY IN GLIOBLASTOMAS

0

0

5 10

10

15 20

20

25

r(a) (b)

30

40

u(r,t); t = 0,3,...,15;

u(
r,

t)
, t

 =
 0

,3
,..

.,1
5

0 5 10 15 20 25

r

u(r,t); t = 3,...,15;

u(
r,

t)
, t

 =
 3

,..
.,1

5

0.5

0.0

1.0

1.5

2.0

Figure 9.1 (a) u(r, t) vs r with t = 0, 3,...,15, ncase=1, linear, (b) u(r, t) vs r with t = 3,...,15,
ncase=1, linear

In other words, r and t in the numerical solution of eq. (9.1), and in Figs. 9.1a, 9.1b,
have the units mm and days, respectively.

This concludes the discussion of the main program. The MOL/ODE routine pde 1

called by lsodes is considered next.

(9.2.2) MOL/ODE routine

The programming of eqs. (9.1) to (9.3) is in Listing 9.2.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of the

u vector

#

ur

ur=dss004(0,r0,nr,u);

#

Boundary conditions

ur[1]=0;ur[nr]=0;

#

#

nl=2;nu=2;

urr=dss044(0,r0,nr,u,ur,nl,nu);

#

PDE terms

term1=rep(0,nr);term2=rep(0,nr);

for(i in 1:nr){

if(i==1){term1[i]=3*D[i]*urr[i]+(dDdr[i]*ur[i]);}

if(i>1){term1[i]=D[i]*urr[i]+(dDdr[i]*ur[i])+

D[i]*(2/r[i])*ur[i];}

if(ncase==1){term2[i]= rho*u[i];}

MOL ROUTINES 287

if(ncase==2){term2[i]= rho*u[i]*(1-u[i]/umax);}

if(ncase==3){term2[i]=-rho*u[i]*log2(exp(u[i]/exp(k/d)));}

}

#

PDE

ut=rep(0,nr);

for(i in 1:nr){

ut[i]=term1[i]+term2[i];

}

#

Increment calls to pde 1

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 9.2: MOL/ODE routine pde 1 for eqs. (9.1) to (9.3)

We can note the following details about Listing 9.2.

• The function is defined. The input arguments are: (1) the current value of t, (2) the
vector of 101 ODE dependent variables, and (3) any parameters to be passed to
pde 1 (unused).

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector of the

u vector

• The derivative ∂u/∂r in eq. (9.1), ur, is computed by the library routine dss004
(accessed by a source in the main program in Listing 9.1). The output, ur, does
not have to be declared (dimensioned) since this is done in dss004.

#

ur

ur=dss004(0,r0,nr,u);

• Eqs. (9.2b,c) are programmed as homogeneous Neumann BCs. Note the subscripts
1,nr corresponding to r = 0, r0.

#

Boundary conditions

ur[1]=0;ur[nr]=0;

• The second derivative ∂2u/∂r2 in eq. (9.1), urr, is computed by dss044 (accessed
by a source in the main program in Listing 9.1). nl=2,nu=2 specify Neumann
BCs (nl=1,nu=1 would specify Dirichlet BCs for which the dependent variable
u(r, t) at the boundaries r = 0, r0 is defined).

288 TUMOR CELL DENSITY IN GLIOBLASTOMAS

#

#

nl=2;nu=2;

urr=dss044(0,r0,nr,u,ur,nl,nu);

• The RHS terms of eq. (9.1) are computed.

#

PDE terms

term1=rep(0,nr);term2=rep(0,nr);

for(i in 1:nr){

if(i==1){term1[i]=3*D[i]*urr[i]+(dDdr[i]*ur[i]);}

if(i>1){term1[i]=D[i]*urr[i]+(dDdr[i]*ur[i])+

D[i]*(2/r[i])*ur[i];}

if(ncase==1){term2[i]= rho*u[i];}

if(ncase==2){term2[i]= rho*u[i]*(1-u[i]/umax);}

if(ncase==3){term2[i]=-rho*u[i]*log2(exp(u[i]/exp(k/d)));}

}

The equivalence of the mathematical terms and the programming is explained next.

Terms in eq. (9.1) Programming in pde 1

D(r)
∂2u

∂r2
+

dD(r)

dr

∂u

∂r
term1[i]=D[i]*urr[i]+(dDdr[i]*ur[i])

+D(r)
2

r

∂u

∂r
, r �= 0 +D[i]*(2/r[i])*ur[i];

3D(r)
∂2u

∂r2
+

dD(r)

dr

∂u

∂r
, r = 0 term1[i]=3D[i]*urr[i]+(dDdr[i]*ur[i])

f(u) = ρu (ncase=1) term2[i]= rho*u[i];

ρu(r, t)

(
1− u(r, t)

umax

)
(ncase=2) term2[i]= rho*u[i]*(1-u[i]/umax);

f(u) = −ρu(r, t) ln

(
u(r, t)

ek/d

)

(ncase=3) term2[i]= -rho*u[i]

*log2(exp(u[i]/exp(k/d)));

We can note the following details about this comparison of the mathematics and
coding for the RHS of eq. (9.1).

– The radial group
2

r

∂u

∂r
in eq. (9.1) is indeterminate at r = 0 with the form 0/0

(the zero in the numerator follows from BC (9.1b)). This indeterminate form can
be regularized with a straightforward application of l’Hospital’s rule ([4], p359).
The final result is

MODEL OUTPUT 289

lim
r→0

2

r

∂u

∂r
= 2

∂2u

∂r2

Thus, for r = 0 (i=1), the indeterminate form combines with the usual second

derivative to give 3
∂2u

∂r2
. Otherwise, for r �= 0 (i>1), the radial group in eq. (9.1)

is programmed directly (by using the vector r[i]).

– f(u) in eq. (9.1) is programmed for the three cases ncase=1,2,3 according to
eqs. (9.3).

– These two groups of terms are programmed as term1[i], term2[i], respec-
tively, then added according to the RHS of eq. (9.1) to give the LHS derivative
∂u

∂t
(= ut).

This programming demonstrates the straightforward application of the MOL to
PDEs with varying coefficients (D(r)) and changing source terms (f(u)). D(r)
can also be a function of u and t, and f(u) can also be a function of r and t.

• Eq. (9.1) is programmed as discussed above to give the derivative vector ut.

#

PDE

ut=rep(0,nr);

for(i in 1:nr){

ut[i]=term1[i]+term2[i];

}

• The number of calls to pde 1 is incremented, and the value is returned to the main
program of Listing 9.1 by the <<- operator.

#

Increment calls to pde 1

ncall <<- ncall+1;

• The derivative vector ut is returned to lsodes by the combination of (1) c, the
vector operator in R, (2) list (ode requires a list) and (3) return.

#

Return derivative vector

return(list(c(ut)));

}

The final } concludes pde 1.

The output from the routines of Listings 9.1, 9.2 follows.

(9.3) Model output

The numerical and graphical output for ncase=1,2,3 is reviewed next.

290 TUMOR CELL DENSITY IN GLIOBLASTOMAS

(9.3.1) Output for ncase=1, linear

The graphical output for ncase=1 in the main program is in Figs. 9.1, b discussed pre-
viously. We consider here the numerical output (Table 9.1).

i = 1 r = 0.00 D(r) = 0.130

i = 2 r = 0.25 D(r) = 0.130

i = 3 r = 0.50 D(r) = 0.130

. .

. .

. .

Output for r = 0.75 to 3.25

removed

. .

. .

. .

i = 15 r = 3.50 D(r) = 0.130

i = 16 r = 3.75 D(r) = 0.130

i = 17 r = 4.00 D(r) = 0.650

i = 18 r = 4.25 D(r) = 0.650

. .

. .

. .

Output for r = 4.50 to 20.75

removed

. .

. .

. .

i = 85 r = 21.00 D(r) = 0.650

i = 86 r = 21.25 D(r) = 0.650

i = 87 r = 21.50 D(r) = 0.130

i = 88 r = 21.75 D(r) = 0.130

. .

. .

. .

Output for r = 22.00 to 24.25

removed

. .

. .

. .

Table 9.1: Abbreviated numerical output for ncase=1, linear

MODEL OUTPUT 291

i = 99 r = 24.50 D(r) = 0.130

i = 100 r = 24.75 D(r) = 0.130

i = 101 r = 25.00 D(r) = 0.130

i = 1 r = 0.00 dD/dr = 0.000

i = 2 r = 0.25 dD/dr = 0.000

i = 3 r = 0.50 dD/dr = 0.000

. .

. .

. .

Output for r = 0.75 to 3.00

removed

. .

. .

. .

i = 14 r = 3.25 dD/dr = 0.000

i = 15 r = 3.50 dD/dr = 0.000

i = 16 r = 3.75 dD/dr = 1.040

i = 17 r = 4.00 dD/dr = 0.000

i = 18 r = 4.25 dD/dr = 0.000

. .

. .

. .

Output for r = 4.50 to 20.50

removed

. .

. .

. .

i = 84 r = 20.75 dD/dr = 0.000

i = 85 r = 21.00 dD/dr = 0.000

i = 86 r = 21.25 dD/dr = -1.040

i = 87 r = 21.50 dD/dr = 0.000

i = 88 r = 21.75 dD/dr = 0.000

. .

. .

. .

Output for r = 22.00 to 24.25

removed

. .

. .

. .

Table 9.1: (Continued)

292 TUMOR CELL DENSITY IN GLIOBLASTOMAS

i = 99 r = 24.50 dD/dr = 0.000

i = 100 r = 24.75 dD/dr = 0.000

i = 101 r = 25.00 dD/dr = 0.000

ncase = 1

[1] 6

[1] 102

t r u(r,t)

0.0 0.00 0.000

0.0 0.25 0.000

0.0 0.50 0.000

. .

. .

. .

Output for r = 0.75 to

11.50 removed

. .

. .

. .

0.0 11.75 0.000

0.0 12.00 0.000

0.0 12.25 1.753

0.0 12.50 39.894

0.0 12.75 1.753

0.0 13.00 0.000

0.0 13.25 0.000

. .

. .

. .

Output for r = 13.50 to

24.25 removed

. .

. .

. .

0.0 24.50 0.000

0.0 24.75 0.000

0.0 25.00 0.000

. .

. .

. .

Table 9.1: (Continued)

MODEL OUTPUT 293

Output for t = 3 to 12

removed

. .

. .

. .

t r u(r,t)

15.0 0.00 0.038

15.0 0.25 0.039

15.0 0.50 0.043

. .

. .

. .

Output for r = 0.75 to

10.75 removed

. .

. .

. .

15.0 11.00 1.259

15.0 11.25 1.253

15.0 11.50 1.243

15.0 11.75 1.231

15.0 12.00 1.215

15.0 12.25 1.195

15.0 12.50 1.173

15.0 12.75 1.149

15.0 13.00 1.121

. .

. .

. .

Output for r = 13.25 to

23.75 removed

. .

. .

. .

15.0 24.00 0.002

15.0 24.25 0.001

15.0 24.50 0.001

15.0 24.75 0.001

15.0 25.00 0.001

ncall = 302

Table 9.1: (Continued)

294 TUMOR CELL DENSITY IN GLIOBLASTOMAS

We can note the following details about this output.

• D(r) has discontinuous changes at r = 3.75, 21.25 (i=16,86) as programmed in
the main program of Listing 9.1.

i = 16 r = 3.75 D(r) = 0.130

i = 17 r = 4.00 D(r) = 0.650

i = 86 r = 21.25 D(r) = 0.650

i = 87 r = 21.50 D(r) = 0.130

• dD/dr has nonzero values at r = 3.75, 21.25 (i=16,86) as programmed in the
main program of Listing 9.1.

i = 15 r = 3.50 dD/dr = 0.000

i = 16 r = 3.75 dD/dr = 1.040

i = 17 r = 4.00 dD/dr = 0.000

i = 85 r = 21.00 dD/dr = 0.000

i = 86 r = 21.25 dD/dr = -1.040

i = 87 r = 21.50 dD/dr = 0.000

These nonzero values of dD/dr result from the second-order, centered FD approx-
imations programmed in Listing 9.1.

• The ODE solution matrix out has the dimensions out[6,102] as expected. Again,
the second dimension is 101 + 1 = 102 to include the current value of t as well
as the 101 ODE dependent variables.
ncase = 1
[1] 6
[1] 102

• The Gaussian IC g(r) =
1√
2πε

e−0.5(r−12.5)2/ε centered at r = 12.50 has the

numerical values

0.0 12.00 0.000

0.0 12.25 1.753

0.0 12.50 39.894

0.0 12.75 1.753

0.0 13.00 0.000

This sharp pulse is displayed in Fig. 9.1a, and can be interpreted as an initial source
or concentration of cancer cells at r = 12.5.

• The initial source is then dispersed by a combination of the RHS diffusion and
linear growth terms (for ncase=1) in eq. (9.1). For example, at t = 15 days, the
distribution near r = 12.50 is

15.0 11.00 1.259

15.0 11.25 1.253

MODEL OUTPUT 295

15.0 11.50 1.243

15.0 11.75 1.231

15.0 12.00 1.215

15.0 12.25 1.195

15.0 12.50 1.173

15.0 12.75 1.149

15.0 13.00 1.121

Note the shift in the peak cell density toward lower values of r as reflected in
Fig. 9.1b.

• The computational effort was modest with ncall = 302.

In general, the numerical output reflects the programming in Listings 9.1 and 9.2 for
ncase=1, and the graphical output in Figs. 9.1a,b.

(9.3.2) Output for ncase=2, logistic

Abbreviated numerical output for ncase = 2 is given in Table 9.2.
For t = 0, the IC is again the Gaussian distribution. The solution for t = 15 is sim-

ilar to the solution for ncase=1. This close agreement is explained by considering the
logistic function (from eqs. (9.3) for ncase=2).

f(u) = ρu(r, t)

(
1− u(r, t)

umax

)

t r u(r,t)

0.0 11.75 0.000

0.0 12.00 0.000

0.0 12.25 1.753

0.0 12.50 39.894

0.0 12.75 1.753

0.0 13.00 0.000

0.0 13.25 0.000

t r u(r,t)

15.0 11.00 1.253

15.0 11.25 1.247

15.0 11.50 1.237

15.0 11.75 1.225

15.0 12.00 1.209

15.0 12.25 1.190

15.0 12.50 1.168

15.0 12.75 1.143

15.0 13.00 1.116

Table 9.2: Abbreviated numerical output for ncase=2, logistic

296 TUMOR CELL DENSITY IN GLIOBLASTOMAS

This function has two important limiting cases.

• u(r, t) << umax so that f(u) ≈ ρu(r, t), that is, approximately the linear function
of ncase=1.

• u(r, t) ≈ umax so that f(u) ≈ 0, and the logistic growth function is close to zero. In
other words, umax is a limiting value for u(r, t) (although u(r, t) > umax is possible
so that f(u) < 0 in which case logistic growth becomes logistic depletion).

In the present case, umax = 62.5 from [3], so the first condition applies (u(r, t =
15) < 2 from Table 9.2) and the logistic function for ncase=2 is close to the linear
function for ncase=1, and therefore the two solutions are also close. For this reason, the
graphical output is similar to Figs. 9.1a,b and is not included here to conserve space. To
test this analysis of the logistic function, the reader can execute the routines in Listings
9.1, 9.2 with a smaller value of umax.

(9.3.3) Output for ncase=3, Gompertz

Abbreviated numerical output for ncase = 3 is given in Table 9.3.
For t = 0, the IC is again the Gaussian distribution. The solution at t = 15 is

substantially different than for ncase=2 (compare Tables 9.2 and 9.3). This is

ncase = 3

[1] 6

[1] 102

t r u(r,t)

0.0 0.00 0.000

0.0 0.25 0.000

0.0 0.50 0.000

. .

. .

. .

Output for r = 0.75 to

11.50 removed

. .

. .

. .

0.0 11.75 0.000

0.0 12.00 0.000

0.0 12.25 1.753

0.0 12.50 39.894

0.0 12.75 1.753

0.0 13.00 0.000

0.0 13.25 0.000

Table 9.3: Abbreviated numerical output for ncase=3, Gompertz

MODEL OUTPUT 297

. .

. .

. .

Output for r = 13.50 to

24.25 removed

. .

. .

. .

0.0 24.50 0.000

0.0 24.75 0.000

0.0 25.00 0.000

. .

. .

. .

Output for t = 3 to 12

removed

. .

. .

. .

t r u(r,t)

15.0 0.00 0.030

15.0 0.25 0.031

15.0 0.50 0.034

. .

. .

. .

Output for r = 0.75 to

10.75 removed

. .

. .

. .

15.0 11.00 0.915

15.0 11.25 0.910

15.0 11.50 0.904

15.0 11.75 0.895

15.0 12.00 0.884

15.0 12.25 0.870

15.0 12.50 0.855

15.0 12.75 0.837

15.0 13.00 0.818

. .

. .

. .

Table 9.3: (Continued)

298 TUMOR CELL DENSITY IN GLIOBLASTOMAS

Output for r = 13.25 to

23.75 removed

. .

. .

. .

15.0 24.00 0.002

15.0 24.25 0.001

15.0 24.50 0.001

15.0 24.75 0.001

15.0 25.00 0.000

ncall = 302

Table 9.3: (Continued)

0

(a) (b)

0

5 10

10

15 20

20

25

r

30

40

u(
r,

t)
, t

 =
 0

,3
,..

.,1
5

u(r,t), t = 0,3,...,15

0 5 10 15 20 25

r

u(
r,

t)
, t

 =
 3

,..
.,1

5

u(r,t), t = 3,...,15

0.5

0.0

1.0

1.5

2.0

Figure 9.2 (a) u(r, t) vs r with t = 0, 3,...,15, ncase=3, Gompertz, (b) u(r, t) vs r with t =
3,...,15, ncase=3, Gompertz

confirmed by comparing Figs. 9.1b and 9.2b (note the difference in the ordinate
(vertical) scales). Thus, with the particular sets of parameters used in Listing 9.1,
the Gompertz function offers an alternative to the logistic function (eqs. (9.3)) for
comparison with observed growth rates and cell densities. Again, the computational
effort for ncase=3 is modest with ncall = 302.

As a final case, we can consider changing the statement for D(r) in Listing 9.1 from

if((i>16)&(i<=86)){D[i]=0.65;}

to

if((i>16)&(i<=86)){D[i]=0.13;}

p-REFINEMENT ERROR ANALYSIS 299

0

0

5 10

10

15 20

20

25

r

30

40
u(r,t); t = 0,3,...,15;

u(
r,

t)
, t

 =
 0

,3
,..

.,1
5

0 5 10 15 20 25

r

u(r,t); t = 3,...,15;

u(
r,

t)
, t

 =
 3

,..
.,1

5

5

4

3

2

1

0

(a) (b)

Figure 9.3 (a) u(r, t) vs r with t = 0, 3,...,15, ncase=1, D(r) = 0.13, (b) u(r, t) vs r with
t = 3,...,15, ncase=1, D(r) = 0.13

so that D(r) is constant in r at 0.13. This should be reflected in a symmetric response
to the Gaussian IC, and this conclusion is confirmed in Figs. 9.3a,b.

(9.4) p-Refinement error analysis

The numerical solutions discussed previously cannot be evaluated for accuracy with
an analytical solution, except possibly for the linear case ncase=1, D(r) = 0.13, for
which an analytical solution would be available, but it would be complicated. Thus an
evaluation is required that does not include the use of an analytical solution. This can be
done in two ways:

1. The number of grid points in r could be changed (from nr=101) and the effect on
the numerical solution observed, which is usually termed h-refinement since the
grid interval in the numerical analysis literature is often denoted with h. Changing
the number of grid points would require reprogramming for the arrays D,dDdr in
the main program of Listing 9.1 to retain the change in D(r) at r = 3.75, 21.25.

2. The order of the FD approximations of the derivatives in r in eq. (9.1) can be
changed, which is usually termed p-refinement since the order of the approxima-
tions of derivatives in the numerical analysis literature is often denoted with p.

Here we briefly consider p-refinement, by using dss006, dss046 (with p = 6) in
pde 1 of Listing 9.2 in place of dss004, dss044 (with p = 4), that is,

ur=dss004(0,r0,nr,u);

changed to

ur=dss006(0,r0,nr,u);

300 TUMOR CELL DENSITY IN GLIOBLASTOMAS

and

urr=dss044(0,r0,nr,u,ur,nl,nu);

changed to

urr=dss046(0,r0,nr,u,ur,nl,nu);

The numerical output for the fourth and sixth order differentiators is compared next.

dss004,dss044

15.0 11.00 1.259

15.0 11.25 1.253

15.0 11.50 1.243

15.0 11.75 1.231

15.0 12.00 1.215

15.0 12.25 1.195

15.0 12.50 1.173

15.0 12.75 1.149

15.0 13.00 1.121

dss006,dss046

15.0 11.00 1.259

15.0 11.25 1.253

15.0 11.50 1.243

15.0 11.75 1.231

15.0 12.00 1.215

15.0 12.25 1.195

15.0 12.50 1.173

15.0 12.75 1.149

15.0 13.00 1.121

The numerical output is the same, implying that the truncation error2 for the two orders,
c4(Δr)4 and c6(Δr)6, is negligibly small. This also implies Δr is small enough that
the truncation errors are negligible so increasing the number of grid points in r, that is,
reducing Δr (h-refinement), will not improve the accuracy of the solutions.

With this brief error analysis, we can conclude that the accuracy of the numerical
solutions is apparently better than four significant figures. However, this is not a proof
of this accuracy, but only that there appears to be spatial convergence (with respect to r)
of the solutions to four figures (the solutions could still have large errors, for example,
from a programming error in pde 1).

2FD approximations are based on a truncated Taylor series. The resulting truncation error of the approxima-
tions is of the form c(Δr)p where c is a constant, Δr is the grid spacing in r (Δr = 0.25 in the preceding
discussion) and p is the order of the approximation.

REFERENCES 301

(9.5) Summary and conclusions

The model of eqs. (9.1) to (9.3) for cell density dynamics of glioblastomas demonstrates:
(1) the numerical solution of PDEs with variable coefficients (D(r) as a function of r to
quantify different diffusion rates in gray and white tissue), (2) three established growth
rates: linear, logistic and Gompertz and (3) the use of spherical coordinates, including the
regularization of a singularity (1/r for r → 0). The spatial convergence of the solution
was also considered through p-refinement of the FD approximations of the derivatives
in r. The MOL implementation of the model is straightforward and computationally
efficient.

References

[1] American Brain Tumor Association. http://www.abta.org/brain-tumor-infor-

mation/types-of-tumors/glioblastoma.html.

[2] Jackson, P.R., et al. (2015), Patient-specific mathematical neuro-oncology: using a simple
proliferation and invasion tumor model to inform clinical practice, Bull. Math. Biol., 77, 5,
846–856.

[3] Ozugurlu, E. (2015), A note on the numerical approach for the reaction-diffusion problem to
model the density of the tumor growth dynamics, Comput. Math. Appl., 69, 1504–1517

[4] Schiesser, W.E., and G.W. Griffiths (2009), A Compendium of Partial Differential Equation
Models, Cambridge University Press, Cambridge, UK

http://www.abta.org/brain-tumor-information/types-of-tumors/glioblastoma.html

10
MOL ANALYSIS WITH A VARIABLE
GRID: ANTIGEN-ANTIBODY BINDING
KINETICS

This chapter pertains to the method of lines (MOL) solution of an ODE/PDE model on
a variable grid. The ODE/PDE application is used to illustrate the possible advantage
of a variable grid, that is, the concentration of spatial grid points in regions where the
solution varies rapidly to improve the spatial resolution of the solution.

Specifically, the intent of the chapter is to:

• Present an ODE/PDE model for antigen-antibody binding kinetics including the
required initial conditions (ICs) and boundary conditions (BCs).

• Present the algorithms and associated routines for a variable spatial grid MOL solu-
tion of the ODE/PDE model.

• Compare the numerical solutions computed with uniform and variable spatial
grids.

• Discuss the possible advantage of a variable spatial grid, and the increased
complexity of a variable grid implementation.

The ODE/PDE model is presented next, followed by a MOL solution programmed
in R.

(10.1) ODE/PDE model

We now consider the ODE/PDE model, taken originally from [5], pertaining to the trans-
port and binding kinetics of an analyte, e.g., an antigen, on an antibody surface of a
fiber-optic biosensor.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

304 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

The PDE defining the antigen concentration c(z, t)1 is the classical 1D diffusion
equation (Fick’s second law for mass diffusion) in Cartesian coordinates.

∂c

∂t
= D

∂2c

∂z2
(10.1)

Eq. (10.1) is second order in z and therefore requires two boundary conditions (BCs),
which are taken as

D
∂c(z = 0, t)

∂z
= kfc(z = 0, t)(cb,sat − cb)− krcb (10.2a)

c(z = h, t) = cbulk (10.2b)

Eq. (10.2a) describes the binding of an antigen at the antibody surface corresponding to

z = 0, as depicted in Figure 10.1. The LHS of eq. (10.2a), D
∂c(z = 0, t)

∂z
, is the rate

of diffusion of the antigen to the antibody surface at z = 0 according to Fick’s first law
for mass diffusion. The RHS of eq. (10.2a), kfc(z = 0, t)(cb,sat − cb)− krcb, is the
difference between the forward rate of adsorption (or binding) of the antigen, kfc(z =
0, t)(cb,sat − cb), and the rate of desorption (or unbinding), krcb. cb is the concentration
of the antigen bound to the antibody and is defined by an ODE (considered next); kf and
kr are mass transfer constants (or rate constants) for the forward and reverse binding,
respectively. Note that the forward rate goes to zero as the bound concentration, cb,
reaches a saturation value, cb,sat; the rate of reverse binding is proportional to the bound
concentration, cb.

cb(t)

h

c(z = h,t)
= cbulk

antibody binding sites

z = 0

z

antibody interface

c(z = 0,t)

antigen
diffusion phase

c(z,t)

Figure 10.1 Schematic of diffusion-binding system

1In the numerical analysis literature, an ODE dependent variable is frequently denoted with y and a PDE
dependent variable is denoted with u. Rather than attempt to use this different terminology for the ODE/PDE
model, we use c for both the ODE and PDE.

ODE/PDE MODEL 305

Eq. (10.1) is first order in t and therefore requires one IC.

c(z, t = 0) = 0 (10.3)

Eq. (10.2b) indicates that at a sufficiently large distance from the antibody interface,
z = h, the antigen concentration has the constant value cbulk. In fact, this value of cbulk
drives the model away from the homogeneous (zero) IC of eq. (10.3).

cb(t), the concentration of the antigen bound on the antibody, is given by the ODE

dcb
dt

= kfc(z = 0, t)(cb,sat − cb)− krcb (10.4)

A homogeneous IC is also specified for eq. (10.4).

cb(t = 0) = 0 (10.5)

Eqs. (10.1) to (10.5) constitute the complete ODE/PDE model. The model variables
and parameters are summarized in Table 10.1. These variables have SI (MKS) units.
Also, the concentration of the bound component at the antibody interface is expressed
through an area concentration (e.g., cb is in mols/m2) while the diffusing antigen is
expressed through a volume (or bulk) concentration (e.g., c is in mols/m3). The parameter
numerical values and units are listed in Table 10.2 [5,3].

We now consider the coding of eqs. (10.1) to (10.5) with emphasis on the use of a
nonuniform grid in z.

Variable Description
c antigen fluid concentration, mols/m3

z distance from antibody interface, m
t time, s
cb concentration of the bound antigen, mols/m2

Table 10.1: Dependent and independent variables of eqs. (10.1) and (10.4).

Parameter Units, numerical value
D 1× 10−10m2/s
kf 1× 105M−1s−1(M = molarity = mols/m3)

kr 1× 10−21/s
cb,sat 2.66× 10−8mols/m2

cbulk 4.48× 10−5mols/m3

h 5.0× 10−5m
c0 0 mols/m3

cb0 0 mols/m2

Table 10.2: Parameters and numerical values for eqs. (10.1) to (10.5)

306 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

(10.2) MOL routines

The main program for eqs. (10.1) to (10.5) follows.

(10.2.1) Main program

#

Variable grid MOL

#

Antigen-antibody binding

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap10");

source("pde 1.R") ;

source("dss032.R");source("dss32a.R");

#

Level of output

#

Detailed output - ip = 1

#

Graphical output only - ip = 2

#

ip=1;

#

Type of grid in z

#

Uniform - iuv = 1

#

Variable - iuv = 2

#

iuv=1;

#

Parameter numerical values

D=1.0e-10; kf=1.0e+05; kr=1.0e+01;

cbulk=4.48e-05; cbsat=1.66e-09;

h=5.0e-05; c0=0; cb0=0;

#

Spatial grid

zl=0; zu=5.0e-05; nz=21; dz=(zu-zl)/(nz-1);

#

MOL ROUTINES 307

z grid

z=rep(0,nz);

#

Uniform grid

if(iuv==1){

z=seq(from=zl,to=zu,by=(zu-zl)/(nz-1));

}

#

Variable grid

if(iuv==2){

for(i in 1:nz){

cat(sprintf("\n i = %2d z[i] = %10.5e",

i,z[i]));

if(i<21){z[i+1]=z[i]+0.0047619*i*zu};

}

}

#

Initial conditions

u0=rep(0,nz+1);

for(i in 1:nz){

u0[i]=c0;

}

u0[nz+1]=cb0;

#

Independent variable for ODE integration

t0=0;tf=100;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=1;

#

uz, uzz approximations

igrid=rep(0,nz);

igrid[1]=1; igrid[2]=2;

igrid[nz-1]=4;igrid[nz]=5;

for(i in 3:(nz-2)){

igrid[i]=3;

}

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

#

Store numerical solution

c=matrix(0,nrow=nout,ncol=nz);

cb=rep(0,nout);

for(it in 1:nout){

for(i in 1:nz){

c[it,i]=out[it,i+1];

308 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

}

cb[it]=out[it,nz+2];

}

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));
#

Display grid

if(ip==1){

cat(sprintf("\n i z"));

for(i in 1:nz){

cat(sprintf("\n %5.0d %12.3e",i,z[i]));

}

}

#

Display numerical solution at z = 0

if(ip==1){

cat(sprintf(

"\n t c(z=0,t) cb(t)"));

for(it in 1:nout){

cat(sprintf("\n %6.0f %12.4e %12.4e",

tout[it],c[it,1],cb[it]));

}

}

#

Plot z grid

par(mfrow=c(1,1))

iplot=rep(0,nz);

iplot=seq(from=1,to=nz,by=1);

plot(iplot,z,xlab="i",ylab="z",

main="z vs i",pch="o",lwd=2);

lines(iplot,z,type="l",lwd=2);

#

Plot z grid spacing

par(mfrow=c(1,1))

zs=rep(0,(nz-1));

for(i in 1:(nz-1)){

zs[i]=z[i+1]-z[i];

}

plot(iplot[1:(nz-1)],zs,xlab="i",ylab="zs",

main="z spacing vs i",pch="o",lwd=2);

lines(iplot[1:(nz-1)],zs,type="l",lwd=2);

#

Plot c(z=0,t)

par(mfrow=c(1,1))

plot(tout,c[,1],xlab="t",ylab="c(z=0,t)",

MOL ROUTINES 309

main="c(z=0,t)",type="l",lwd=2);

points(tout,c[,1],pch="o",lwd=2);

#

Plot cb(t)

par(mfrow=c(1,1))

plot(tout,cb,xlab="t",ylab="cb(t)",

main="cb(t)",type="l",lwd=2);

points(tout,cb,pch="o",lwd=2);

Listing 10.1: Main program for eqs. (10.1) to (10.5)

We can note the following details about Listing 10.1.

• Previous workspaces are removed

#

Variable grid MOL

#

Antigen-antibody binding

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The ODE library, with ode used later, is accessed

#

Access ODE integrator

library("deSolve");

#

Access files

setwd("g:/chap10");

source("pde 1.R") ;

source("dss032.R");source("dss32a.R");

The setwd (set working directory) requires editing for the local computer. Note
that / is used in place of the usual \. In addition to the MOL/ODE routine, pde 1

(discussed subsequently), the differentiation routines dss032, dss32a for a vari-
able spatial grid are accessed.

• The level of output is selected. For ip=1 the solution is displayed numerically and
graphically.

#

Level of output

#

Detailed output - ip = 1

#

310 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

Graphical output only - ip = 2

#

ip=1;

• The type of spatial grid is selected. We start with a uniform grid (iuv=1), then
subsequently proceed to a variable grid.

#

Type of grid in z

#

Uniform - iuv = 1

#

Variable - iuv = 2

#

iuv=1;

• The model parameters are defined numerically.

#

Parameter numerical values

D=1.0e-10; kf=1.0e+05; kr=1.0e+01;

cbulk=4.48e-05; cbsat=1.66e-09;

h=5.0e-05; c0=0; cb0=0;

• The grid in z is defined on 21 points for the interval zl ≤ z ≤ zu with spacing dz.

#

Spatial grid

zl=0; zu=5.0e-05; nz=21; dz=(zu-zl)/(nz-1);

• The grid in z is defined numerically for the uniform case, iuv=1, and the variable
case, uuv=2. For iuv=1, the utility seq defines a sequence of z values with spacing
(h − 0)/(nz − 1)= (5.0× 10−5 − 0)/(21− 1) = 0.25× 10−5.

#

z grid

z=rep(0,nz);

#

Uniform grid

if(iuv==1){

z=seq(from=zl,to=zu,by=(zu-zl)/(nz-1));

}

#

Variable grid

if(iuv==2){

for(i in 1:nz){

MOL ROUTINES 311

cat(sprintf("\n i = %2d z[i] = %10.5e",

i,z[i]));

if(i<21){z[i+1]=z[i]+0.0047619*i*zu{;

}

}

For the variable case, iuv=2, the grid points are spaced as a linear function of the
index i. The constant 0.0047619 was determined by trial-and-error so that z[nz]
= z[21] = zu = 5.0e-052.

• The ICs for the PDE (eqs. (10.1) and (10.3)) and the ODE (eqs. (10.4) and (10.5))
are placed in the vector u0 (of length nz+1 = 22).

#

Initial conditions

u0=rep(0,nz+1);

for(i in 1:nz){

u0[i]=c0;

}

u0[nz+1]=cb0;

• The grid of output values of t is defined for the interval 0 ≤ t ≤ 100 with 51 points
(including t = 0), so the output values are t = 0, 2, . . . , 100.

#

Independent variable for ODE integration

t0=0;tf=100;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=1;

ncall=1 is used for the initial calculation of the weighting coefficients of the spa-
tial derivative approximations3.

• The type of approximation of the spatial derivatives at each grid point in z is
defined.

#

uz, uzz approximations

igrid=rep(0,nz);

igrid[1]=1; igrid[2]=2;

igrid[nz-1]=4;igrid[nz]=5;

for(i in 3:(nz-2)){

igrid[i]=3;

}

2The trial-and-error converged rapidly to a five-figure value. Other algorithms for definition of the variable
grid could be used at this point.
3The spatial derivative approximations for the variable grid are discussed in the chapter appendix.

312 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

Briefly,
– igrid[1]=1: At i=1, point i=1 and four points to the right, i=2,3,4,5, are

used in the derivative approximations.

– igrid[2]=2: At i=2, one point to the left, i=1, and three points to the right,
i=3,4,5, are used in the derivative approximations.

– igrid[nz-1]=4: At i=nz-1, one point to the right, i=nz, and three points to
left, i=nz-2,nz-3,nz-4, are used in the derivative approximations.

– igrid[nz]=5: At i=nz, point i=nz and four points to the left,
i=nz-1,nz-2,nz-3,nz-4, are used in the derivative approximations.

– igrid[i]=3: At the intermediate points i=3,4,...,nz-2, two points to the
left, i-1,i-2, and two points to the right, i+1,i+2, are used in the derivative
approximations.4

• The nz + 1 = 21 + 1 = 22 ODEs are integrated by ode. As expected, the RHS
inputs are (1) the MOL/ODE routine pde 1 (discussed next), (2) the IC vector u0,
and (3) the vector of output values of t, tout. func,times,y are reserved names.
The number of ODEs to be integrated is defined by the length of the vector u0.

#

ODE integration

out=ode(func=pde 1,times=tout,y=u0);

• The solution matrix out from ode is placed in a matrix, c, and a vector,
cb with a for in t (index it) and a for in z (index i). The offset of 1 in
out[it,i+1],out[it,nz+2] is required since out[it,1] is reserved for the
values of t (in tout).

#

Store numerical solution

c=matrix(0,nrow=nout,ncol=nz);

cb=rep(0,nout);

for(it in 1:nout){

for(i in 1:nz){

c[it,i]=out[it,i+1];

}

cb[it]=out[it,nz+2];

}

• The total number of calls to pde 1 is displayed at the end of the solution as a
measure of the computational effort required to compute the solution.

#

Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

4The spatial derivative approximations for igrid=1,2,3,4,5 are derived and discussed in the chapter
appendix.

MOL ROUTINES 313

• For ip=1, the points in the spatial grid z are displayed.

#

Display grid

if(ip==1){

cat(sprintf("\n i z"));

for(i in 1:nz){

cat(sprintf("\n %5.0d %12.3e",i,z[i]));

}

}

The uniform and variable grids (iuv=1,2) are discussed subsequently.

• The interface concentrations c(z = 0, t), cb(t) are displayed as a function of t (with
the for in it). These concentrations are of particular interest in elucidating the
transfer of the antigen at the interface z = 0, which is the reason for concentrating
the grid points near z = 0 for the variable grid case.

#

Display numerical solution at z = 0

if(ip==1){

cat(sprintf(

"\n t c(z=0,t) cb(t)"));

for(it in 1:nout){

cat(sprintf("\n %6.0f %12.4e %12.4e",

tout[it],c[it,1],cb[it]));

}

• The grid in z is displayed graphically. The index i, 1 ≤ i ≤ 21, in vector iplot
is defined by a seq.

#

Plot z grid

par(mfrow=c(1,1))

iplot=rep(0,nz);

iplot=seq(from=1,to=nz,by=1);

plot(iplot,z,xlab="i",ylab="z",

main="z vs i",pch="o",lwd=2);

lines(iplot,z,type="l",lwd=2);

• The spacing in the z grid, vector zs, is displayed graphically to demonstrate the
difference between the uniform and variable grids.

#

Plot z grid spacing

par(mfrow=c(1,1))

zs=rep(0,(nz-1));

314 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

for(i in 1:(nz-1)){

zs[i]=z[i+1]-z[i];

}

plot(iplot[1:(nz-1)],zs,xlab="i",ylab="zs",

main="z spacing vs i",pch="o",lwd=2);

lines(iplot[1:(nz-1)],zs,type="l",lwd=2);

zs has the difference between successive grid points, zs[i]=z[i+1]-z[i].

• The solution of eq. (10.1), c(z = 0, t), is plotted against t. This concentration is
in c[,1] where the values for t = 0, 2, . . . , 100 have been included with the (,)
subscript.

#

Plot c(z=0,t)

par(mfrow=c(1,1))

plot(tout,c[,1],xlab="t",ylab="c(z=0,t)",

main="c(z=0,t)",type="l",lwd=2);

points(tout,c[,1],pch="o",lwd=2);

• The solution of eq. (10.4), cb(t), is plotted against t.

#

Plot cb(t)

par(mfrow=c(1,1))

plot(tout,cb,xlab="t",ylab="cb(t)",

main="cb(t)",type="l",lwd=2);

points(tout,cb,pch="o",lwd=2);

This completes the discussion of the main program in Listing 10.1. The numerical and
graphical output for the uniform and variable grids is discussed later. The MOL/ODE
routine pde 1 called by ode is considered next.

(10.2.2) MOL/ODE routine

The MOL routine for eqs. (10.1), (10.2), (10.4) follows.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector

of the u vector

#

ODE and PDE

c=rep(0,nz);

for(i in 1:nz){

c[i]=u[i];

}

MOL ROUTINES 315

cb=u[nz+1];

#

BC

c[nz]=cbulk;

#

cz

cz=dss032(ncall,npts,igrid,nz,z,c);

#

BC

cz[1]=(1/D)*(kf*c[1]*(cbsat-cb)-kr*cb);

#

czz

czz=dss032(ncall,npts,igrid,nz,z,cz);

#

PDE

ct=D*czz;

ct[nz]=0;

#

ODE

cbt=kf*c[1]*(cbsat-cb)-kr*cb;

#

Derivative vector

ut=rep(0,nz+1);

for(i in 1:nz){

ut[i]=ct[i];

}

ut[nz+1]=cbt;

#

Increment calls to pde 1

ncall<<-ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 10.2: MOL/ODE routine for eqs. (10.1), (10.2), (10.4)

We can note the following details about Listing 10.2.

• The function is defined. u is the vector of 22 ODE dependent variables at a partic-
ular time t. parms for passing parameters to pde 1 is unused.

pde 1=function(t,u,parms){

#

Function pde 1 computes the t derivative vector

of the u vector

316 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

• u is placed in c,cb to facilitate the programming of eqs. (10.1) and (10.4).

#

ODE and PDE

c=rep(0,nz);

for(i in 1:nz){

c[i]=u[i];

}

cb=u[nz+1];

• Dirichlet BC (10.2b) is programmed (for point i=nz).

#

BC

c[nz]=cbulk;

• The derivative ∂c(z, t)/∂z in eq. (10.1) is computed by a call to dss032.

#

cz

cz=dss032(ncall,npts,igrid,nz,z,c);

The input and output arguments of dss032 are:
– ncall: For ncall=1, the weighting coefficients in the spatial derivative approx-

imations in dss032 are computed. For ncall>1 (from the statement at the end
of dss032 that increments ncall), the weighting coefficients for ncall=1 are
used repeatedly (these details are discussed in the chapter appendix).

– npts: The number of points used in the derivative spatial approximations
(npts=5).

– igrid: Definition of the type of spatial derivative approximations (as explained
previously after Listing 10.1).

– nz: Total number of grid points in z, e.g., nz=21.
– z: Vector of grid points defined in the main program of Listing 10.1 (for a uni-

form or variable grid, iuv=1,2).
– c: The vector to be differentiated numerically.
– cz: The derivative of c with respect to z. cz does not have to be dimensioned

since this is done in dss032.
• BC (10.2a) is programmed for i=1 to define the derivative ∂c(z = 0, t)/∂z.

#

BC

cz[1]=(1/D)*(kf*c[1]*(cbsat-cb)-kr*cb);

BC (10.2a) is of the third type (or a Robin BC) since ∂c(z = 0, t)/∂z is a function
of c(z = 0, t) (c[1]). Since cb(t) is used in eq. (10.2a), the link between eqs. (10.1)
and (10.4) is established (the product c[1]*cb also demonstrates a nonlinear BC).

MOL ROUTINES 317

• The second derivative in eq. (10.1), ∂2c(z, t)/∂z2, is computed by differentiating
the first derivative, ∂c(z, t)/∂z.

#

czz

czz=dss032(ncall,npts,igrid,nz,z,cz);

• Eq. (10.1) is programmed using the vector utility of R (czz and ct are 21-vectors,
but subscripting is not required). In particular, D*czz is a scalar-vector product
(each element of czz is multiplied by D).

#

PDE

ct=D*czz;

ct[nz]=0;

BC (10.2b) defines c(z = h, t), so the derivative in t is set to zero (to prevent the
ODE integrator ode from moving c(z = h, t) away from its prescribed value in
BC (10.2b)).

• Eq. (10.4) is programmed.

#

ODE

cbt=kf*c[1]*(cbsat-cb)-kr*cb;

• ∂c/∂t and dcb/dt are placed in a single vector ut for return to ODE integrator ode.

#

Derivative vector

ut=rep(0,nz+1);

for(i in 1:nz){

ut[i]=ct[i];

}

ut[nz+1]=cbt;

• The number of calls to pde 1 is incremented and returned to the main program of
Listing 10.1 via the <<- operator.

#

Increment calls to pde 1

ncall<<-ncall+1;

This change in ncall instructs dss032 to calculate the weighting coefficients in
the spatial derivative approximations only one time (as explained in the chapter
appendix).

318 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

• The derivative vector ut is returned to ode through a combination of c, the R vector
operator, list to return a list as required by ode, and return.

#

Return derivative vector

return(list(c(ut)));

}

The final } concludes ode 1.

This completes the programming of eqs. (10.1) to (10.5). Numerical and graphical
(plotted) output is considered next.

(10.3) Model output

Abbreviated numerical output (from ip=1 in Listing 10.1), and graphical output for the
uniform grid iuv=1 are considered first.

(10.3.1) Uniform grid

The numerical output includes the grid z and the solutions to eqs. (10.1) and (10.4),
c(z = 0, t), cb(t).

We can note the following details about this output.

• The interval in z is zl(= 0) ≤ z ≤ zu(= 5.0× 10−5) with a spacing of 0.25×
10−5.

• The ICs of eqs. (10.3) and (10.5) are confirmed.

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

This check is worthwhile since if the ICs are incorrect, the numerical solution will
be incorrect.

• The interval in t is 0 ≤ t ≤ 100 with an output increment of 2 for 51 output points
(including t = 0).

• The solution is in five-figure agreement with a previously reported solution, [3],
Chapter 2.

• The computational effort is modest with ncall = 310.

The graphical output is in Figs. 10.2a to 10.2d.
Fig. 10.2a confirms the linear increase in the grid z,
Fig. 10.2b confirms the uniform spacing 0.25× 10−5 in the grid z.
Fig. 10.2c,d indicate that c(z = 0, t), cb(t) start off at homogeneous (zero) ICs and

approach a steady state (equilibrium) as reflected in Table 10.3. Also, the solutions are
positive and monotonic (free of oscillation) as expected for the physical problem.

The output for the case of a uniform grid provides a basis for a comparative analysis
of the output for the case of a variable grid, as explained next.

MODEL OUTPUT 319

z vs i

4e
-0

5
2e

-0
5

0e
+

00

z

i

2015105

Figure 10.2a Uniform spatial grid

zs

z spacing vs i

2.
52

e-
06

2.
50

e-
06

2.
48

e-
06

i

2015105

Figure 10.2b Increment of uniform spatial grid

c(
z

=
 0

,t
)

t

100806040200

c(z = 0,t)

4e
-0

5
3e

-0
5

2e
-0

5
0e

+
00

Figure 10.2c c(z = 0, t) vs t, uniform grid

320 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

ncall = 310

i z

1 0.000e+00

2 2.500e-06

3 5.000e-06

4 7.500e-06

5 1.000e-05

6 1.250e-05

7 1.500e-05

8 1.750e-05

9 2.000e-05

10 2.250e-05

11 2.500e-05

12 2.750e-05

13 3.000e-05

14 3.250e-05

15 3.500e-05

16 3.750e-05

17 4.000e-05

18 4.250e-05

19 4.500e-05

20 4.750e-05

21 5.000e-05

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

2 3.5319e-07 4.8262e-12

4 3.0023e-06 4.5580e-11

6 6.9498e-06 1.0483e-10

8 1.1089e-05 1.6306e-10

10 1.5090e-05 2.1540e-10

. .

. .

. .

Output for t =12 to 88 removed

. .

. .

. .

90 4.4692e-05 5.1273e-10

92 4.4706e-05 5.1284e-10

94 4.4718e-05 5.1294e-10

96 4.4729e-05 5.1302e-10

98 4.4738e-05 5.1310e-10

100 4.4746e-05 5.1316e-10

Table 10.3: Abbreviated numerical output for the uniform grid

MODEL OUTPUT 321

cb
(t

)

4e
-1

0
2e

-1
0

t

100806040200

cb(t)

0e
+

00

Figure 10.2d cb(t) vs t, uniform grid

(10.3.2) Variable grid

The variable grid, which concentrates the grid points in the neighborhood of the inter-
face at z = 0, is implemented by changing iuv=1 to iuv=2 in the main program of
Listing 10.1. The resulting output is summarized next.

We can note the following details about this output.

ncall = 343

i z

1 0.000e+00

2 2.381e-07

3 7.143e-07

4 1.429e-06

5 2.381e-06

6 3.571e-06

7 5.000e-06

8 6.667e-06

9 8.571e-06

10 1.071e-05

11 1.310e-05

12 1.571e-05

13 1.857e-05

14 2.167e-05

15 2.500e-05

16 2.857e-05

17 3.238e-05

18 3.643e-05

19 4.071e-05

Table 10.4: Abbreviated numerical output for the variable grid

322 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

20 4.524e-05

21 5.000e-05

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

2 3.6104e-07 4.9911e-12

4 2.9423e-06 4.4670e-11

6 6.9045e-06 1.0412e-10

8 1.1084e-05 1.6302e-10

10 1.5107e-05 2.1554e-10

. .

. .

. .

Output for t =12 to 88 removed

. .

. .

. .

90 4.4702e-05 5.1281e-10

92 4.4714e-05 5.1291e-10

94 4.4725e-05 5.1300e-10

96 4.4735e-05 5.1307e-10

98 4.4743e-05 5.1314e-10

100 4.4751e-05 5.1320e-10

Table 10.4: (Continued)

• The interval in z is zl(= 0) ≤ z ≤ zu(= 5.0× 10−5) with a variable spacing
ranging from 2.381e-07 - 0.000e+00= 2.381× 10−7 at z = 0 to 5.000e-05

- 4.524e-05 = 4.76× 10−6 at z = 5.0× 10−5, a variation in the spacing by
more than a factor of 10. Also, the point 21 5.000e-05 confirms the use of the
scaling factor 0.0047619 in if(i<21)z[i+1]=z[i]+0.0047619*i*zu (from
Listing 10.1).

• The ICs of eqs. (10.3) and (10.5) are confirmed.

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

• The solution is in at least three-figure agreement with the previous solution (for
iuv=1) for 96 ≤ t ≤ 100. This is also true for 0 ≤ t ≤ 4 if the small values of
c(z = 0, t), cb(t) are considered.

Uniform grid

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

2 3.5319e-07 4.8262e-12

4 3.0023e-06 4.5580e-11

MODEL OUTPUT 323

. .

. .

. .

96 4.4729e-05 5.1302e-10

98 4.4738e-05 5.1310e-10

100 4.4746e-05 5.1316e-10

Variable grid

t c(z=0,t) cb(t)

0 0.0000e+00 0.0000e+00

2 3.6104e-07 4.9911e-12

4 2.9423e-06 4.4670e-11

. .

. .

. .

96 4.4735e-05 5.1307e-10

98 4.4743e-05 5.1314e-10

100 4.4751e-05 5.1320e-10

• The computational effort is modest with ncall = 343, so the variable grid does
not require a substantial increase in the calls to pde 1. Also, within pde 1, the
required calculations are approximately the same since the weighting coefficients
for the approximate spatial derivatives are calculated only once (for ncall=1),
then used repeatedly in subsequent calls to pde 1.

In summary, the variable grid for the particular application to eqs. (10.1) to (10.5)
gives comparable results to the uniform grid with a finer spatial resolution near z = 0.

The graphical output is in Figs. 10.3a to 10.3d.
Fig. 10.3a confirms the nonlinear increase in z, with small changes in z concentrated

near z = 0.
Fig. 10.3b confirms the variable spacing in z, which in this case is linear in i due to

the function 0.0047619*i*zu (from Listing 10.1)).

z vs i

4e
-0

5
2e

-0
5

0e
+

00

z

i

2015105

Figure 10.3a Variable spatial grid

324 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

zs

z spacing vs i

1e
-0

6
3e

-0
6

i

2015105

Figure 10.3b Incremental spacing of variable spatial grid

c(
z

=
 0

,t
)

t

100806040200

c(z = 0,t)

4e
-0

5
3e

-0
5

2e
-0

5
0e

+
00

Figure 10.3c c(z = 0, t) vs t, variable grid

cb
(t

)

4e
-1

0
2e

-1
0

t

100806040200

cb(t)

0e
+

00

Figure 10.3d cb(t) vs t, variable grid

SUMMARY AND CONCLUSIONS 325

Fig. 10.3c is indistinguishable from Fig. 10.2c since c(z = 0, t) for the uniform and
variable grids is essentially the same.

Fig. 10.3d is indistinguishable from Fig. 10.2d since cb(t) for the uniform and variable
grids is essentially the same.

(10.4) Summary and conclusions

The variable grid implemented in dss032/dss32a is general purpose in the sense
that the analyst can locate the grid points to concentrate them where they are required
(to enhance spatial resolution). However, this use of the variable grid requires some
attention.

• The grid points can be located by inspection, but they must be single-valued with
continuously increasing or decreasing values. A function to meet these require-
ments (e.g., if(i<21)z[i+1]=z[i]+0.0047619*i*zu) generally facilitates the
placement of the points.

• The variation of the grid spacing should be smooth. That is, large, discontinuous
changes in the spacing, or a zero spacing (interval), should be avoided. Again, a
smooth function can be used to ensure this condition.

• The total interval in z should be confirmed (as was done with the factor
0.0047619).

• The total number of grid points (e.g., nz=21) is not restricted, but the total compu-
tational effort to produce a MOL solution will increase with the number of points,
so this value should be selected judiciously. Also, comparative execution of the
routines for different numbers of grid points is advised to ensure the number is
adequate (for a spatially converged solution of acceptable accuracy) without an
excessively large value for the total grid points.

• Extension of the use of dss032/dss32a to 2D and 3D applications with multiple
PDEs is straightforward, as illustrated for uniform grids [4].

Variations on the use of dss032/dss32a are possible. For example,

• If the specification of the approximations is changed to (from Listing 10.1)
#

uz approximations

igrid=rep(0,nz);

igrid[1]=1; igrid[2]=2;

igrid[3]=3; igrid[nz]=5;

for(i in 4:(nz-1)){

igrid[i]=4;

}

then at the interior points i=4,5,...i,...,nz-1, the approximation is based on
three points to the left of i and one point to the right. This approximation is termed
a five-point biased upwind (5pbu) finite difference (FD) and is generally useful for

RHS convective PDE terms of the form −v
∂u

∂z
for v > 0 (flow left to right in z).

326 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

• If the specification of the approximations is changed to (from Listing 10.1)

#

uz approximations

igrid=rep(0,nz);

igrid[1]=1; igrid[nz-2]=3;

igrid[nz-1]=4; igrid[nz]=5;

for(i in 2:(nz-3)){

igrid[i]=2;

}

then at the interior points i=2,5,...i,...,nz-3, the approximation is based
on one point to the left of i and three points to the right. This approximation is
also termed a 5pbu FD approximation and is generally useful for RHS convective

PDE terms of the form −v
∂u

∂z
for v < 0 (flow right to left in z). The 5pbu FD on a

uniform grid is implemented in function dss020 for v > 0 and v < 0, as discussed
in Chapter 1.

• If a 5pbu approximation is used, it requires prior knowledge of the sign of the
velocity (the direction of flow). Also, although this approximation is generally
effective for strongly convective (hyperbolic) PDEs, it will not accommodate dis-
continuities and sharp spatial changes in the PDE solution (in this case, a special
nonlinear approximation is required such as a flux limiter). This point of selecting
an approximation for first-order convective derivatives is discussed in Chapter 1.

• For second-order RHS parabolic (diffusion) PDE terms of the form D
∂2u

∂z2
the

centered approximation corresponding igrid[i]=3 should be used at the inte-
rior points (as illustrated in pde 1 of Listing 10.2). In other words, some form
of upwinding is generally required for the approximation of first-order hyperbolic
(convective) derivatives while centered approximations are used for second-order
parabolic (diffusive) derivatives.

• With the solutions to the model PDEs available, additional functions can be com-
puted and displayed that provide insight into the features of the numerical solution.
For example, a key variable of the model is the antigen transfer rate at z = 0, which
can be computed (from eq. (10.2a)) as kfc(z = 0, t)(cb,sat − cb)− krcb from the
available solutions c(z = 0, t), cb. Additionally, the individual terms in this rate can
be calculated and displayed, e.g., kfc(z = 0, t)(cb,sat − cb) for the forward (fluid
to antibody) binding rate, as depicted in Fig. 10.1, to demonstrate the nonlinear
logistic rate, and −krcb for the reverse unbinding rate. Since these terms involve a
subset of parameters for the full model, this analysis can identify the contributions
of individual parameters that can then be judged quantitatively.

• A variable grid is not limited to the Lagrange interpolation polynomial as discussed
in the chapter appendix. For example, splines can be used, which have important
continuity properties at the grid points, and routines are available in R for splines,
but this approach will not be discussed here because of limited space.

DERIVATION OF NUMERICAL DIFFERENTIATORS 327

Generally the use of a variable grid can be developed using the concepts and examples
discussed in the chapter appendix. The approximations for spatial derivatives (1) of any
order, (2) with any number of grid points (3), defined on uniform or variable grids, (4)
based on Lagrange interpolation polynomials, can be defined numerically (i.e., by the
computed weighting coefficients) with readily available routines [2]. These approxima-
tions can be applied to systems of linear and nonlinear PDEs, in 1D, 2D and 3D, with a
variety of BC types. Thus, MOL analysis on variable grids to achieve improved spatial
resolution is an open-ended procedure applicable to a broad spectrum of PDE models
and applications.

APPENDIX: VARIABLE GRID ANALYSIS

The numerical differentiators in dss032 used in the ODE/PDE routine of Listing 10.2
are derived and tested in this appendix.

(A.10.1) Derivation of numerical differentiators

The starting point for the derivation of the numerical differentiators is a set of indepen-
dent/dependent variable pairs, (z, f(z)). z represents the spatial variable z in eq. (10.1),
and f(z) represents the dependent variable u(z, t) of eq. (10.1) (for a particular value
of t). n pairs are represented in a table.
The first requirement is to develop a function approximating f(z) by using the (z, f(z))
pairs in Table A.10.1. The approximating function can then be differentiated to give the
numerical differentiator.

The approximating function for n = 5 is taken as a fourth-order Lagrange interpola-
tion polynomial based on the points z1, z2, z3, z4, z5.

f(z) ≈ (z − z2)(z − z3)(z − z4)(z − z5)

(z1 − z2)(z1 − z3)(z1 − z4)(z1 − z5)
f(z1)

+
(z − z1)(z − z3)(z − z4)(z − z5)

(z2 − z1)(z2 − z3)(z2 − z4)(z2 − z5)
f(z2)

+
(z − z1)(z − z2)(z − z4)(z − z5)

(z3 − z1)(z3 − z2)(z3 − z4)(z3 − z5)
f(z3) (A.10.1)

+
(z − z1)(z − z2)(z − z3)(z − z5)

(z4 − z1)(z4 − z2)(z4 − z3)(z4 − z5)
f(z4)

+
(z − z1)(z − z2)(z − z3)(z − z4)

(z5 − z1)(z5 − z2)(z5 − z3)(z5 − z4)
f(z5)

Note that the numerator of each term in eq. (A.10.1) is a fourth-order polynomial in z,
e.g., in the first (f(z1)) term, (z − z2)(z − z3)(z − z4)(z − z5). f(z) of eq. (A.10.1) is

328 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

z1 f(z1)

z2 f(z2)
. .
. .
. .
zn f(zn)

Table A.10.1: Prescribed (z, f(z)) pairs

then approximated at any particular value of z by using the entries from Table A.10.1
(for n = 5).

f(z) of eq. (A.10.1) can then be differentiated with respect to z to give the first deriva-
tive df(z)/dz

df(z)

dz
=

(z − z2)(z − z3)(z − z4) + (z − z2)(z − z3)(z − z5)+

(z − z2)(z − z4)(z − z5) + (z − z3)(z − z4)(z − z5)

(z1 − z2)(z1 − z3)(z1 − z4)(z1 − z5)
f(z1)

+

(z − z1)(z − z3)(z − z4) + (z − z1)(z − z3)(z − z5)+

(z − z1)(z − z4)(z − z5) + (z − z3)(z − z4)(z − z5)

(z2 − z1)(z2 − z3)(z2 − z4)(z2 − z5)
f(z2)

+

(z − z1)(z − z2)(z − z4) + (z − z1)(z − z2)(z − z5)+

(z − z1)(z − z4)(z − z5) + (z − z2)(z − z4)(z − z5)

(z3 − z1)(z3 − z2)(z3 − z4)(z3 − z5)
f(z3) (A.10.2)

+

(z − z1)(z − z2)(z − z3) + (z − z1)(z − z2)(z − z5)+

(z − z1)(z − z3)(z − z5) + (z − z2)(z − z3)(z − z5)

(z4 − z1)(z4 − z2)(z4 − z3)(z4 − z5)
f(z4)

+

(z − z1)(z − z2)(z − z3) + (z − z1)(z − z2)(z − z4)+

(z − z1)(z − z3)(z − z4) + (z − z2)(z − z3)(z − z4)

(z5 − z1)(z5 − z2)(z5 − z3)(z5 − z4)
f(z5)

Note that the numerator of each term of eq. (A.10.2) is a third-order polynomial in z,
e.g., for the f(z1) term, (z − z2)(z − z3)(z − z4) + (z − z2)(z − z3)(z − z5) + (z −
z2)(z − z4)(z − z5) + (z − z3)(z − z4)(z − z5). Eq. (A.10.2) can be used to calculate
df(z)/dz for a particular value of z. The only requirement to compute the derivative is
the use of the entries in Table A.10.1 for n = 5.

If z = z1 in eq. (A.10.2), the formula for the first derivative at z = z1, df(z1)/dz,
results.

df(z1)

dz
=

(z1 − z2)(z1 − z3)(z1 − z4) + (z1 − z2)(z1 − z3)(z1 − z5)+

(z1 − z2)(z1 − z4)(z1 − z5) + (z1 − z3)(z1 − z4)(z1 − z5)

(z1 − z2)(z1 − z3)(z1 − z4)(z1 − z5)
f(z1)

DERIVATION OF NUMERICAL DIFFERENTIATORS 329

+
(z1 − z3)(z1 − z4)(z1 − z5)

(z2 − z1)(z2 − z3)(z2 − z4)(z2 − z5)
f(z2)

+
(z1 − z2)(z1 − z4)(z1 − z5)

(z3 − z1)(z3 − z2)(z3 − z4)(z3 − z5)
f(z3) (A.10.3)

+
(z1 − z2)(z1 − z3)(z1 − z5)

(z4 − z1)(z4 − z2)(z4 − z3)(z4 − z5)
f(z4)

+
(z1 − z2)(z1 − z3)(z1 − z4)

(z5 − z1)(z5 − z2)(z5 − z3)(z5 − z4)
f(z5)

Similarly, the substitutions z = z2, z = z3, z = z4, and z = z5 in eq. (A.10.2) gives
respectively the differentiation formulas for df(z2)/dz, df(z3)/dz, df(z4)/dz, and
df(z5)/dz.

Note that the factors which multiply f(z1), f(z2), f(z3), f(z4) and f(z5) in
eq. (A.10.3) are just constants once the values of z1, z2, z3, z4 and z5 are defined. Thus,
eq. (A.10.3) can be written in the general form

df(z1))/dz = c1f(z1) + c2f(z2) + c3f(z3) + c4f(z4) + c5f(z5) (A.10.4)

where c1, c2, c3, c4 and c5 are weighting coefficients (calculated in dss32a and passed
to dss032 as the third argument, vector c).

If the following substitutions for a uniform grid with spacing dz are made in
eq. (A.10.3)

dz = (z2 − z1) = (z3 − z2) = (z4 − z3) = (z5 − z4)

2dz = (z3 − z1) = (z4 − z2) = (z5 − z3)

3dz = (z4 − z1) = (z5 − z2)

4dz = (z5 − z1) (A.10.5)

−dz = (z1 − z2) = (z2 − z3) = (z3 − z4) = (z4 − z5)

−2dz = (z1 − z3) = (z2 − z4) = (z3 − z5)

−3dz = (z1 − z4) = (z2 − z5)

−4dz = (z1 − z5)

Eq. (A.10.3) reduces to the following five-point differentiation formula for df(z1)/dz
for a uniform grid.

df(z1)/dz =

((−1)(−2)(−3) + (−1)(−2)(−4)+

(−1)(−3)(−4) + (−2)(−3)(−4))

(−1)(−2)(−3)(−4)
f(z1)/dz

+
(−2)(−3)(−4)

(1)(−1)(−2)(−3)
f(z2)/dz

330 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

+
(−1)(−3)(−4)

(2)(1)(−1)(−2)
f(z3)/dz

+
(−1)(−2)(−4)

(3)(2)(1)(−1)
f(z4)/dz

+
(−1)(−2)(−3)

(4)(3)(2)(1)
f(z5)/dz

or after numerically evaluating the coefficients of the f(z1) to f(z5) terms (with
(1)(2)(3)(4) = 4!)

df(z1)/dz = (1/4!dz)(−50f(z1) + 96f(z2)− 72f(z3) + 32f(z4)− 6f(z5))

(A.10.6)

Equations for df(z2)/dz, df(z3)/dz, df(z4)/dz, df(z5)/dz analogous to eq. (A.10.6)
follow from substituting successively z = z2, z3, z4, z5 in eq. (A.10.2). The resulting
system of five equations can be summarized as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

df(z1)/dz

df(z2)dz

df(z3)/dz

df(z4)/dz

df(z5)/dz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

4!dz

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−50 96 −72 32 −6

−6 −20 36 −12 2

2 −16 0 16 −2

−2 12 −36 20 6

6 −32 72 −96 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(z1)

f(z2)

f(z3)

f(z4)

f(z5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.10.7)

The 5× 5 coefficient matrix is a Bickley differentiation matrix for n = 4,m = 1, p =
0, 1, 2, 3, 4 [1]. The RHS is a matrix-vector multiplication with dimensions (5× 5)(5×
1) = (5× 1). The final result is the vector [df(z1)/dz, . . . , df(z5)/dz]T , that is,

df(z1)/dz =
1

4!dz
(−50f(z1) + 96f(z2)− 72f(z3) + 32f(z4)− 6f(z5))

df(z2)/dz =
1

4!dz
(−6f(z1)− 20f(z2) + 36f(z3)− 12f(z4) + 2f(z5))

df(z3)/dz =
1

4!dz
(2f(z1)− 16f(z2) + 0f(z3) + 16f(z4)− 2f(z5))

df(z4)/dz =
1

4!dz
(−2f(z1) + 12f(z2)− 36f(z3) + 20f(z4) + 6f(z5))

df(z5)/dz =
1

4!dz
(6f(z1)− 32f(z2) + 72f(z3)− 96f(z4) + 50f(z5))

TESTING OF NUMERICAL DIFFERENTIATORS 331

so that each derivative df(zi)/dz, i = 1, . . . , 5 is approximated as a weighted sum (lin-
ear combination) of the functional values [f(z1), . . . , f(z5)]

T . The same is true for the
variable grid case (iuv=2 in Listing 10.1). In both cases (uniform and variable), the
weighting coefficients are calculated in dss32a only once with ncall=1.

In summary, the numerical derivatives for a grid of five points in z can be calcu-
lated from eq. (A.10.2) for a variable grid (the values of z are not necessarily uniformly
spaced as in Figs. 10.3a,b), and from eq. (A.10.7) for a uniform grid (the values of z are
uniformly spaced as in Figs. 10.2a,b).

(A.10.2) Testing of numerical differentiators

Two tests of eqs. (A.10.2) and (A.10.7) are now considered.

(A.10.2.1) Differentiation matrix

The 5× 5 numerical differentiation matrix of eq. (A.10.7) can be confirmed by the fol-
lowing test program.

rm(list=ls(all=TRUE))

setwd("g:/chap10")

source("dss32a.R");

fact=1*2*3*4;

z=seq(from=1,to=5,by=1);

for(itype in 1:5){

cat(sprintf("\n\n itype = %2d",itype));

coeff=dss32a(itype,z);

coeff=fact*coeff;

cat(sprintf("\n%6.1f %6.1f %6.1f %6.1f %6.1f",

coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]));

}

Listing A.10.1: Test program for dss32a

We can note the following details about Listing A.10.1.

• Previous workspaces are cleared.

rm(list=ls(all=TRUE))

• dss32a is accessed with the source utility. The setwd (set working directory)
requires editing for the local computer. Note the use of / rather than the usual \.

setwd("g:/chap10")

source("dss32a.R");

• 4! is required subsequently.

fact=1*2*3*4;

332 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

• A 5-vector is defined with the values z = 1, 2, 3, 4, 5 (so that the grid in z has a
uniform spacing of 1.

z=seq(from=1,to=5,by=1);

• For each of five approximations from eq. (A.10.2) (for(itype in 1:5)),
dss32a is called to implement eq. (A.10.2).

for(itype in 1:5){

cat(sprintf("\n\n itype = %2d",itype));

coeff=dss32a(itype,z);

coeff=fact*coeff;

cat(sprintf("\n%6.1f %6.1f %6.1f %6.1f %6.1f",

coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]));

}

The resulting 5-vector of weighting coefficients, coeff, (as illustrated in eq.
(A.10.3) for itype=1) is displayed. Note the multiplication by fact so that the
output can be compared with the 5× 5 differentiation matrix of eq. (A.10.7). This
multiplication demonstrates the R vector facility, that is, multiplication of a vector
by a scalar (with no subscripting).

The output from the test program of Listing A.10.1 follows.
The differentiation matrix of eq. (A.10.7) is confirmed.

itype = 1

-50.0 96.0 -72.0 32.0 -6.0

itype = 2

-6.0 -20.0 36.0 -12.0 2.0

itype = 3

2.0 -16.0 0.0 16.0 -2.0

itype = 4

-2.0 12.0 -36.0 20.0 6.0

itype = 5

6.0 -32.0 72.0 -96.0 50.0

Table A.10.2: Numerical output from the test program of Listing A.10.1

(A.10.2.2) Test functions

With the preceding confirmation of dss32a, dss032 can now be tested. Specifically, the
numerical derivatives from eqs. (A.10.2) and (A.10.7) can be tested using functions with
known analytical derivatives. This is done with the following program.

TESTING OF NUMERICAL DIFFERENTIATORS 333

#

Test problems for variable grid

#

nfcn=1: Polynomial of varying order

#

nfcn=2: Sine function

#

Remove previous work spaces

rm(list=ls(all=TRUE))

#

Access dss032, dss32a

setwd("g:/chap10");

source("dss032.R");

source("dss32a.R");

#

Problem, grid parameters

npts=5;n=21;nfcn=1;ncall=1;

#

Arrays for test problem

z=rep(0,n);igrid=rep(0,n);

u=rep(0,n);uzze=rep(0,n);diff=rep(0,n);

#

Display selected parameters

cat(sprintf("\n nfcn = %2d n = %3d\n\n",nfcn,n));
#

Polynomial of varying order (selected with #)

if(nfcn==1){

p=1.5;

for(i in 1:n){

z[i]=(0.05*(i-1))^p;

u[i]=1;

u[i]=z[i];

u[i]=z[i]^2;

u[i]=z[i]^3;

u[i]=z[i]^4;

u[i]=z[i]^5;

u[i]=z[i]^6;

}

#

Definition of approximations

igrid[1]=1; igrid[2]=2;

igrid[n-1]=4;igrid[n]=5;

for(i in 3:(n-2)){

igrid[i]=3;

}

#

334 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

Numerical uz, uzz

uz=dss032(ncall,npts,igrid,n,z,u);

uzz=dss032(ncall,npts,igrid,n,z,uz);

#

Exact uzz (selected with #)

cat(sprintf("\n i igrid z u

uzz uzze diff"));

for(i in 1:n){

uzze[i]=0;

uzze[i]=2;

uzze[i]=6*z[i];

uzze[i]=12*z[i]^2;

uzze[i]=20*z[i]^3;

uzze[i]=30*z[i]^4;

diff[i]=uzz[i]-uzze[i];

#

Display numerical and exact derivatives, difference

cat(sprintf("\n %5d %5d %8.3f %8.3f %8.3f %8.3f %10.5f",

i,igrid[i],z[i],u[i],uzz[i],uzze[i],diff[i]));

}

#

nfcn=1 complete

}

#

Sine function

if(nfcn==2){

p=1.5

for(i in 1:n){

z[i]=(0.05*(i-1))^p;

u[i]=sin(pi*z[i]);

}

#

Definition of approximations

igrid[1]=1; igrid[2]=2;

igrid[n-1]=4;igrid[n]=5;

for(i in 3:(n-2)){

igrid[i]=3;

}

#

Numerical uz, uzz

uz=dss032(ncall,npts,igrid,n,z,u);

uzz=dss032(ncall,npts,igrid,n,z,uz);

#

Exact uzz

cat(sprintf("\n i igrid z u

uzz uzze diff"));

TESTING OF NUMERICAL DIFFERENTIATORS 335

for(i in 1:n){

uzze[i]=-pi^2*sin(pi*z[i]);

diff[i]=uzz[i]-uzze[i];

#

Display numerical and exact derivatives, difference

cat(sprintf("\n %5d %5d %8.3f %8.3f %8.3f %8.3f %10.5f",

i,igrid[i],z[i],u[i],uzz[i],uzze[i],diff[i]));

}

#

nfcn=2 complete

}

Listing A.10.2: Test program for dss032

We can note the following details about Listing A.10.2.

• After previous workspaces are cleared, and dss032, dss32a are accessed (as
discussed for Listing A.10.1), the problem and grid parameters are defined numer-
ically.

#

Problem, grid parameters

npts=5;n=21;nfcn=1;ncall=1;

Specifically,

– npts=5: Number of points in the differentiation formula of eq. (A.10.2).

– n=21: Total number of points in the spatial grid.

– nfcn=1: Function to be differentiated.

– ncall=1: First call to dss032 so that the weighting coefficients (e.g., in eq.
(A.10.3)) are calculated for subsequent use with dss032.

• Arrays for the numerical testing are declared (preallocated).

#

Arrays for test problem

z=rep(0,n);igrid=rep(0,n);

u=rep(0,n);uzze=rep(0,n);diff=rep(0,n);

• Selected parameters are displayed at the beginning of the output.

#

Display selected parameters

cat(sprintf("\n nfcn = %2d n = %3d\n\n",nfcn,n));

336 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

• A uniform grid (p = 1) or nonuniform grid (p �= 1) is specified. Then the grid is
defined (z) and a polynomial is selected (u[i]) by deactivating a comment. In this
case, a fourth-order polynomial is selected.

#

Polynomial for varying order (selected with #)

if(nfcn==1){

p=1.5;

for(i in 1:n){

z[i]=(0.05*(i-1))^p;

u[i]=1;

u[i]=z[i];

u[i]=z[i]^2;

u[i]=z[i]^3;

u[i]=z[i]^4;

u[i]=z[i]^5;

u[i]=z[i]^6;

}

The polynomials are of order 0 (a constant) to 6.
• The approximation at each of the n grid points is defined.

#

Definition of approximations

igrid[1]=1; igrid[2]=2;

igrid[n-1]=4;igrid[n]=5;

for(i in 3:(n-2)){

igrid[i]=3;

}

Eq. (A.10.2) is used at
– igrid[1]=1: The left end of the grid with z = z[1].
– igrid[2]=2: One point from the left end of the grid with z = z[2].
– igrid[n-1]=4: One point from the right end of the grid with z = z[n-1].
– igrid[n]=5: The right end of the grid with z = z[n].
– igrid[i]=3: The intermediate points with z = z[3],z[4],...,z[n-2].
For the uniform grid case of eqs. (A.10.5) (p=1 in Listing A.10.2), igrid corre-
sponds to the rows of the differentiation matrix of eq. (A.10.7).

igrid[1] -50 96 -72 32 -6
igrid[2] -6 -20 36 -12 2
igrid[3] to
igrid[n-2] 2 -16 0 16 -2
igrid[n-1] -2 12 -36 20 6
igrid[n] 6 -32 72 -96 50

TESTING OF NUMERICAL DIFFERENTIATORS 337

• uz is computed by dss032, and uzz by dss032 called a second time.

#

Numerical uz, uzz

uz=dss032(ncall,npts,igrid,n,x,u);

uzz=dss032(ncall,npts,igrid,n,z,uz);

• The exact value of uzz is computed by analytically differentiating the selected
polynomial. For the fourth-order polynomial u4(z) = u4, d2u4(z)/dz2 = 12u2.

#

Exact uzz (selected with #)

cat(sprintf("\n i igrid z u

uzz uzze diff"));

for(i in 1:n){

uzze[i]=0;

uzze[i]=2;

uzze[i]=6*z[i];

uzze[i]=12*z[i]^2;

uzze[i]=20*z[i]^3;

uzze[i]=30*z[i]^4;

diff[i]=uzz[i]-uzze[i];

• The numerical uzz, exact uzz, and the difference are displayed as a function of z.

#

Display numerical and exact derivatives, difference

cat(sprintf("\n %5d %5d %8.3f %8.3f %8.3f %8.3f %10.5f",

i,igrid[i],z[i],u[i],uzz[i],uzze[i],diff[i]));

}

#

nfcn=1 complete

}

nfcn=1 for the polynomial test functions is then concluded.

• A similar set of statements follows for nfcn=2 (sin(z)).

#

Sine function

if(nfcn==2){

p=1.5

for(i in 1:n){

z[i]=(0.05*(i-1))^p;

u[i]=sin(pi*z[i]);

}

338 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

#

Exact uzz

cat(sprintf("\n i igrid z u

uzz uzze diff"));

for(i in 1:n){

uzze[i]=-pi^2*sin(pi*z[i]);

diff[i]=uzz[i]-uzze[i];

This concludes the discussion of the programming for the test functions. Representative
output follows.

Abbreviated output for ifcn=1, p=1.5 (polynomial test functions, variable grid)
and a zeroth-order polynomial (a constant) follows. The grid spacing at z = 0 is 0.011−
0.000 = 0.011 and at z = 1, 1.000− 0.926 = 0.074, reflecting the variable grid. As
expected, the approximation of eq. (A.10.2) is exact. However, this test is worthwhile
since it might reveal a programming error.

Abbreviated output for ifcn=1, p=1.5 (polynomial test functions, variable grid)
and a fourth-order polynomial follows. The complete output indicates that diff=0 so
that eqs. (A.10.1) and (A.10.2) are exact. This is expected since f(z) in eq. (A.10.1) is a
fourth-order polynomial and generally a nth-order polynomial based on n + 1 distinct
points is unique.

Abbreviated output for ifcn=1, p=1.5 (polynomial test functions, variable grid)
and a fifth-order polynomial follows. Eqs. (A.10.1) and (A.10.2) are not exact (diff is
nonzero) as expected since f(z) in eq. (A.10.1) is a fourth-order polynomial while the
test function is a fifth-order polynomial. The same conclusion follows for polynomials of
order greater than five (this can be tested by using the sixth-order polynomial in Listing
A.10.2).

i igrid z u uzz uzze diff

1 1 0.000 1.000 0.000 0.000 0.00000

2 2 0.011 1.000 0.000 0.000 0.00000

3 3 0.032 1.000 -0.000 0.000 -0.00000

. .

. .

. .

Output for i = 4,...,18 removed

. .

. .

. .

19 3 0.854 1.000 0.000 0.000 0.00000

20 4 0.926 1.000 -0.000 0.000 -0.00000

21 5 1.000 1.000 -0.000 0.000 -0.00000

Table A.10.3: Abbreviated numerical output for ifcn=1, p=1.5, zeroth-order polynomial

TESTING OF NUMERICAL DIFFERENTIATORS 339

i igrid z u uzz uzze diff

1 1 0.000 0.000 0.000 0.000 0.00000

2 2 0.011 0.000 0.002 0.002 0.00000

3 3 0.032 0.000 0.012 0.012 -0.00000

. .

. .

. .

Output for i = 4,...,18 removed

. .

. .

. .

19 3 0.854 0.531 8.748 8.748 0.00000

20 4 0.926 0.735 10.288 10.289 -0.00000

21 5 1.000 1.000 12.000 12.000 -0.00000

Table A.10.4: Abbreviated numerical output for ifcn=1, p=1.5, fourth-order polynomial

i igrid z u uzz uzze diff

1 1 0.000 0.000 0.000 0.000 0.00047

2 2 0.011 0.000 0.000 0.000 0.00006

3 3 0.032 0.000 0.000 0.001 -0.00014

. .

. .

. .

Output for i = 4,...,18 removed

. .

. .

19 3 0.854 0.454 12.451 12.449 0.00284

20 4 0.926 0.681 15.879 15.878 0.00141

21 5 1.000 1.000 19.969 20.000 -0.03095

Table A.10.5: Abbreviated numerical output for ifcn=1, p=1.5, fifth-order polynomial

Also, the largest value of diff is at the boundary z = 1. This is generally to
be expected, that is, the noncentered approximations5 at or near the boundaries

5df(z1)/dz of eq. (A.10.3) is a function of f(z1), f(z2), f(z3), f(z4), f(z5) (the values of f(z) at z1 and to
the right of z1), so the approximation is not centered on z1 (is noncentered). Similarly, df(z2)/dz from eq.
(A.10.2) with z = z2 is a function of f(z1), f(z2), f(z3), f(z4), f(z5) (one value to the left of z2 and three
values to the right of z2), so it is not centered on z2. The same conclusions apply when z = z4, z5 are used in eq.
(A.10.2) (noncentered approximations of df(z)/dz result). For the interior point z = z3, the approximation
of df(z3)/dz from eq. (A.10.2) is a function of f(z1), f(z2), f(z3), f(z4), f(z5) (values of f(z) centered
around z = z3). For a grid of n > 5 points, the approximation of df(z)/dz from eq. (A.10.2) for the interior
points z3, ·, zi, ·, zn−2 is centered on zi (it is based on f(zi−2), f(zi−1), f(zi), f(zi+1), f(zi+2)).

340 MOL ANALYSIS WITH A VARIABLE GRID: ANTIGEN-ANTIBODY BINDING KINETICS

i igrid z u uzz uzze diff

1 1 0.000 0.000 0.001 -0.000 0.00119

2 2 0.011 0.035 -0.346 -0.347 0.00014

3 3 0.032 0.099 -0.979 -0.979 -0.00036

. .

. .

. .

Output for i = 4,...,18 removed

. .

. .

19 3 0.854 0.443 -4.381 -4.375 -0.00601

20 4 0.926 0.231 -2.279 -2.275 -0.00378

21 5 1.000 0.000 0.075 -0.000 0.07456

Table A.10.6: Abbreviated numerical output for ifcn=2, p=1.5

(igrid[1]=1, igrid[2]=2, igrid[n-1]=4, igrid[n]=5) will have a larger error
than the centered approximations at the interior points (igrid[i]=3,i=3,...,n-2).
The relatively small error at z = 0 results from the smaller grid spacing at this
boundary (and also, the fifth-order polynomial test function varies more rapidly at z=1
than at z=0).

Finally, abbreviated output for ifcn=2, p=1.5 (sine test function, variable grid) is
in Table A.10.6. Eqs. (A.10.1) and (A.10.2) are not exact (diff is nonzero) as expected
since the sine function can be considered as a polynomial of infinite order (consider
its Taylor series expansion). The largest value of diff is at the boundary z = 1. The
relatively small error at z = 0 results from the smaller grid spacing at this boundary.

In conclusion, approximations such as eqs. (A.10.1) and (A.10.2) based on the
Lagrange interpolation polynomial are available for derivatives of any order, and any
number of grid points, with uniform or variable spacing [2]. Thus, approximations of
spatial derivatives in PDEs can be constructed under very general conditions to meet
the requirements of a particular PDE application.

References

[1] Bickley, W.G. (1941), Formulae for numerical differentiation, Math. Gaz., 25, 263, p 22

[2] Fornberg, B. (1991), Recent Developments in Numerical Methods and Software for
ODEs/DAEs/PDEs, Byrne, G.D. and W.E. Schiesser, eds., World Scientific, Singapore, pp
97–123

[3] Schiesser, W.E. (2012), Partial Differential Analysis in Biomedical Engineering, Chapter 2,
Cambridge University Press, Cambridge, UK

[4] Schiesser, W.E. (2014), Differential Equation Analysis in Biomedical Science and Engineer-
ing; Partial Differential Equation Analysis in R, John Wiley, Hoboken, NJ

[5] Vijayendran, R.A., F.S. Ligler, and D.E. Leckband (1999), A computational
reaction-diffusion model for the analysis of transport-limited kinetics, Anal. Chem.,
71, 5405–5412

APPENDIX A

DERIVATION OF
CONVECTION-DIFFUSION-REACTION
PARTIAL DIFFERENTIAL EQUATIONS

A mass balance in cylindrical coordinates (r, θ, z) on an incremental volume
(rΔθ)(Δr)(Δz)1 ([1], p 840) gives

(rΔθ)(Δr)(Δz)
∂c

∂t
= (A.1.1)

(rΔθ)(Δz)vrc|r − (rΔθ)(Δz)vrc|r+Δr (A.1.2)

+(Δr)(Δz)vθc|θ − (Δr)(Δz)vθc|θ+Δθ (A.1.3)

+(rΔθ)(Δr)vzc|z − (rΔθ)(Δr)vzc|z+Δz (A.1.4)

−(rΔθ)(Δz)Drr

∂c

∂r
|r −

(
−(rΔθ)(Δz)Drr

∂c

∂r
|r+Δr

)
(A.1.5)

−(rΔθ)(Δz)Drθ

∂c

r∂θ
|r −

(
−(rΔθ)(Δz)Drθ

∂c

r∂θ
|r+Δr

)
(A.1.6)

−(rΔθ)(Δz)Drz

∂c

∂z
|r −

(
−(rΔθ)(Δz)Drz

∂c

∂z
|r+Δr

)
(A.1.7)

−(Δr)(Δz)Dθr

∂c

∂r
|θ −

(
−(Δr)(Δz)Dθr

∂c

∂r
|θ+Δθ

)
(A.1.8)

1c is used for the dependent variable since the mass balance is typically for the concentration of a chemical
component. Individual terms in the balance are numbered to facilitate referring to the terms.

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

342 CONVECTION-DIFFUSION-REACTION PDES

−(Δr)(Δz)Dθθ

∂c

r∂θ
|θ −

(
−(Δr)(Δz)Dθθ

∂c

r∂θ
|θ+Δθ

)
(A.1.9)

−(Δr)(Δz)Dθz

∂c

∂z
|θ −

(
−(Δr)(Δz)Dθz

∂c

∂z
|θ+Δθ

)
(A.1.10)

−(rΔθ)(Δr)Dzr

∂c

∂r
|z −

(
−(rΔθ)(Δr)Dzr

∂c

∂r
|z+Δz

)
(A.1.11)

−(rΔθ)(Δr)Dzθ

∂c

r∂θ
|z −

(
−(rΔθ)(Δr)Dzθ

∂c

r∂θ
|z+Δz

)
(A.1.12)

−(rΔθ)(Δr)Dzz

∂c

∂z
|z −

(
−(rΔθ)(Δr)Dzz

∂c

∂z
|z+Δz

)
(A.1.13)

+(rΔθ)(Δr)(Δz)Qr(c) (A.1.14)

where

• c: PDE-dependent variable, i.e., c(r, θ, z, t).

• r, θ, z: cylindrical spatial coordinates.

• t: time.

• vr, vθ, vz: components of the velocity vector v = irvr + jθvθ + kzvz . ir, jθ,kz

are the components of the orthonormal (unit) vector in cylindrical coordinates.

• Drr, . . . ,Dzz: components of the diffusivity tensor

D =

⎡
⎢⎢⎢⎢⎣

Drr Drθ Drz

Dθr Dθθ Dθz

Dzr Dzθ Dzz

⎤
⎥⎥⎥⎥⎦

• Qr(c): volumetric rate of reaction. Qr(c) < 0 corresponds to consumption of
chemical reactant; Qr(c) > 0 corresponds to production of chemical product.

Rearrangement (division by (rΔθ)(Δr)(Δz)) of eq. (A.1) gives

∂c

∂t
= (A.2.1)

−rΔθΔzvrc|r+Δr − rΔθΔzvrc|r
rΔθΔrΔz

(A.2.2)

−ΔrΔzvθc|θ+Δθ −ΔrΔzvθc|θ
rΔθΔrΔz

(A.2.3)

−rΔθΔrvzc|z+Δz − (rΔθ)(Δr)vzc|z
rΔθΔrΔz

(A.2.4)

rΔθΔzDrr

∂c

∂r
|r+Δr − rΔθΔzDrr

∂c

∂r
|r

rΔθΔrΔz
(A.2.5)

CONVECTION-DIFFUSION-REACTION PDES 343

+
rΔθΔzDrθ

∂c

r∂θ
|r+Δr − rΔθΔzDrθ

∂c

r∂θ
|r

rΔθΔrΔz
(A.2.6)

+
rΔθΔzDrz

∂c

∂z
|r+Δr − rΔθΔzDrz

∂c

∂z
|r

rΔθΔrΔz
(A.2.7)

+
ΔrΔzDθr

∂c

∂r
|θ+Δθ −ΔrΔzDθr

∂c

∂r
|θ

rΔθΔrΔz
(A.2.8)

+
ΔrΔzDθθ

∂c

r∂θ
|θ+Δθ −ΔrΔzDθθ

∂c

r∂θ
|θ

rΔθΔrΔz
(A.2.9)

+
ΔrΔzDθz

∂c

∂z
|θ+Δθ −ΔrΔzDθz

∂c

∂z
|θ

rΔθΔrΔz
(A.2.10)

+
rΔθΔrDzr

∂c

∂r
|z+Δz − rΔθΔrDzr

∂c

∂r
|z

rΔθΔrΔz
(A.2.11)

+
rΔθΔrDzθ

∂c

r∂θ
|z+Δz − rΔθΔrDzθ

∂c

r∂θ
|z

rΔθΔrΔz
(A.2.12)

+
rΔθΔrDzz

∂c

∂z
|z+Δz − rΔθΔrDzz

∂c

∂z
|z

rΔθΔrΔz
(A.2.13)

+Qr(c) (A.2.14)

In the limit Δr,Δθ,Δz → 0, eq. (A.2) becomes

∂c

∂t
= (A.3.1)

−1

r

∂(rvrc)

∂r
− 1

r

∂(vθc)

∂θ
− ∂(vzc)

∂z
(A.3.2,3,4)

+

∂

(
rDrr

∂c

∂r

)

r∂r
+

∂

(
rDrθ

∂c

r∂θ

)

r∂r
+

∂

(
rDrz

∂c

∂z

)

r∂r
(A.3.5,6,7)

+

∂

(
Dθr

∂c

∂r

)

r∂θ
+

∂

(
Dθθ

∂c

r∂θ

)

r∂θ
+

∂

(
Dθz

∂c

∂z

)

r∂θ
(A.3.8,9,10)

+

∂

(
Dzr

∂c

∂r

)

∂z
+

∂

(
Dzθ

∂c

r∂θ

)

∂z
+

∂

(
Dzz

∂c

∂z

)

∂z
(A.3.11,12,13)

+QR(c) (A.3.14)

344 CONVECTION-DIFFUSION-REACTION PDES

For constant velocity and diffusivity, eq. (A.3) becomes

∂c

∂t
= (A.4.1)

−vr
r

∂(rc)

∂r
− vθ

r

∂c

∂θ
− vz

∂c

∂z
(A.4.2,3,4)

+Drr

(
∂2c

∂r2
+

1

r

∂c

∂r

)
+

Drθ

r

∂2c

∂r∂θ
+ Drz

(
∂2c

∂r∂z
+

1

r

∂c

∂z

)
(A.4.5,6,7)

+
Dθr

r

∂2c

∂θ∂r
+

Dθθ

r2
∂2c

∂θ2
+

Dθz

r

∂2c

∂θ∂z
(A.4.8,9,10)

+Dzr

∂2c

∂z∂r
+

Dzθ

r

∂2c

∂z∂θ
+ Dzz

∂2c

∂z2
(A.4.11,12,13)

+Qr(c) (A.4.14)

With zero off-diagonal elements of the diffusivity tensor, eq. (A.4) becomes

∂c

∂t
= −vr

r

∂(rc)

∂r
− vθ

r

∂c

∂θ
− vz

∂c

∂z

+ Drr

(
∂2c

∂r2
+

1

r

∂c

∂r

)
+

Dθθ

r2
∂2c

∂θ2
+ Dzz

∂2c

∂z2
+ Qr(c) (A.5)

Eq. (A.5) is the starting point for the discussion of first order hyperbolic (convection)
PDEs in Chapter 1, for the special case of the linear advection equation (vr = vθ =
Drr = Dθθ = Dzz = Qr(c) = 0)

∂c

∂t
= −vz

∂c

∂z
(A.6)

Reference

[1] Bird, R.B., W.E. Stewart, and E.N. Lightfoot (2002), Transport Phenomena, 2nd edn, John
Wiley & Sons, Inc., New York.

APPENDIX B

FUNCTIONS DSS012, DSS004, DSS020,
VANL

Listings of functions dss012, dss004, dss020, vanl follow.

(B1) Function dss012

dss012=function(xl,xu,n,u,v) {

#

Function dss012 computes the first order finite difference

approximation of a first derivative

#

Declare arrays

ux=rep(0,n);

#

Grid spacing

dx=(xu-xl)/(n-1);

#

Finite difference approximation for positive v

if(v > 0){

ux[1]=(u[2]-u[1])/dx;

for(i in 2:n){

ux[i]=(u[i]-u[i-1])/dx;}

}

#

Finite difference approximation for negative v

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

346 FUNCTIONS DSS012, DSS004, DSS020, VANL

if(v < 0){

for(i in 1:(n-1)){

ux[i]=(u[i+1]-u[i])/dx;}

ux[n]=(u[n]-u[n-1])/dx;

}

#

All points concluded (x=xl,...,x=xu)

return(c(ux));

}

(B2) Function dss004

dss004=function(xl,xu,n,u) {

#

An extensive set of documentation comments detailing the

derivation of the following fourth order finite differences

(FDs) is not given here to conserve space. The derivation is

detailed in Schiesser, W. E., The Numerical Method of Lines

Integration of Partial Differential Equations, Academic Press,

San Diego, 1991.

#

Preallocate arrays

ux=rep(0,n);

#

Grid spacing

dx=(xu-xl)/(n-1);

#

1/(12*dx) for subsequent use

r12dx=1/(12*dx);

#

ux vector

#

Boundaries (x=xl,x=xu)

ux[1]=r12dx*(-25*u[1]+48*u[2]-36*u[3]+16*u[4]-3*u[5]);

ux[n]=r12dx*(25*u[n]-48*u[n-1]+36*u[n-2]-16*u[n-3]+3*u[n-4]);

#

dx in from boundaries (x=xl+dx,x=xu-dx)

ux[2]=r12dx*(-3*u[1]-10*u[2]+18*u[3]-6*u[4]+u[5]);

ux[n-1]=r12dx*(3*u[n]+10*u[n-1]-18*u[n-2]+6*u[n-3]-u[n-4]);

#

Interior points (x=xl+2*dx,...,x=xu-2*dx)

for(i in 3:(n-2))ux[i]=r12dx*(-u[i+2]+8*u[i+1]-8*u[i-1]+u[i-2]);

#

All points concluded (x=xl,...,x=xu)

return(c(ux));

}

FUNCTIONS DSS012, DSS004, DSS020, VANL 347

(B3) Function dss020

dss020=function(xl,xu,n,u,v) {

#

An extensive set of documentation comments detailing the

derivation of the following five-point upwind finite differences

(FDs) is not given here to conserve space. The derivation is

detailed in Schiesser, W. E., The Numerical Method of Lines

Integration of Partial Differential Equations, Academic Press,

San Diego, 1991.

#

Declare arrays

ux=rep(0,n);

#

Grid spacing

#

1/(12*dx) for subsequent use

dx=(xu-xl)/(n-1);

r12dx=1/(12*dx);

#

(1) Finite difference approximation for positive v

#

if(v>0){

ux[1]=r12dx*(-25*u[1]+48*u[2]-36*u[3]+16*u[4] -3*u[5]);

ux[2]=r12dx*(-3*u[1]-10*u[2]+18*u[3] -6*u[4] +u[5]);

ux[3]=r12dx*(u[1] -8*u[2]+ +8*u[4] -u[5]);

for(i in 4:(n-1)){

ux[i]=r12dx*(-u[i-3] +6*u[i-2]-18*u[i-1]+10*u[i] +3*u[i+1]);}

ux[n]=r12dx*(3*u[n-4]-16*u[n-3]+36*u[n-2]-48*u[n-1]+25*u[n]);

}

#

(2) Finite difference approximation for negative v

#

if(v<0){

ux[1]=r12dx*(-25*u[1]+48*u[2]-36*u[3]+16*u[4] -3*u[5]);

for(i in 2:(n-3)){

ux[i]=r12dx*(-3*u[i-1]-10*u[i]+18*u[i+1] -6*u[i+2] +u[i+3]);}

ux[n-2]=r12dx*(u[n-4] -8*u[n-3] +8*u[n-1] -u[n]);

ux[n-1]=r12dx*(-u[n-4] +6*u[n-3]-18*u[n-2]+10*u[n-1] +3*u[n]);

ux[n]=r12dx*(3*u[n-4]-16*u[n-3]+36*u[n-2]-48*u[n-1]+25*u[n]);

}

#

All points concluded (x=xl,...,x=xu)

return(c(ux));

}

348 FUNCTIONS DSS012, DSS004, DSS020, VANL

(B4) Function vanl

The van Leer flux limiter programmed in the following routine is one of a series of lim-
iters discussed in [1], pp. 37–43. These limiters have a common form, so they can be
programmed by a straightforward modification of phi in the following code. Examples
include the Superbee and Smart limiters in routines super and smart discussed in
Chapter 1.

vanl=function(xl,xu,n,u,v) {

#

Function vanl computes the first order finite difference

(flux limiter) approximation of a first derivative

#

Declare arrays

ux=rep(0,n)

phi=rep(0,n)

r=rep(0,n)

#

Grid spacing

dx=(xu-xl)/(n-1)

#

Tolerance for limiter switching

delta=1.0e-05

#

Positive v

if(v >= 0){

for(i in 3:(n-1)){

if(abs(u[i]-u[i-1])<delta)

phi[i]=0

else{

r[i]=(u[i+1]-u[i])/(u[i]-u[i-1])

if(r[i]<0)

phi[i]=0

else

phi[i]=max(0,min(2*r[i],min(0.5*(1.0+r[i]),2)))}

if(abs(u[i-1]-u[i-2])<delta)

phi[i-1]=0

else{

r[i-1]=(u[i]-u[i-1])/(u[i-1]-u[i-2])

if(r[i-1]<0)

phi[i-1]=0

else

phi[i-1]=max(0,min(2*r[i-1],min(0.5*(1.0+r[i-1]),2)))}

flux2=u[i]+(u[i]-u[i-1])*phi[i]/2

flux1=u[i-1]+(u[i-1]-u[i-2])*phi[i-1]/2

ux[i]=(flux2-flux1)/dx

REFERENCE 349

}

ux[1]=(-u[1]+u[2])/dx

ux[2]=(-u[1]+u[2])/dx

ux[n]=(u[n]-u[n-1])/dx

}

#

Negative v

if(v < 0){

for(i in 2:(n-2)){

if(abs(u[i]-u[i+1])<delta)

phi[i]=0

else{

r[i]=(u[i-1]-u[i])/(u[i]-u[i+1])

if(r[i]<0)

phi[i]=0

else

phi[i]=max(0,min(2*r[i],min(0.5*(1.0+r[i]),2)))}

if(abs(u[i+1]-u[i+2])<delta)

phi[i+1]=0

else{

r[i+1]=(u[i]-u[i+1])/(u[i+1]-u[i+2])

if(r[i+1]<0)

phi[i+1]=0

else

phi[i+1]=max(0,min(2*r[i+1],min(0.5*(1.0+r[i+1]),2)))}

flux2=u[i]+(u[i]-u[i+1])*phi[i]/2

flux1=u[i+1]+(u[i+1]-u[i+2])*phi[i+1]/2

ux[i]=-(flux2-flux1)/dx

}

ux[1]=(-u[1]+u[2])/dx

ux[n-1]=(-u[n-1]+u[n])/dx

ux[n] =(-u[n-1]+u[n])/dx

}

#

All points concluded (x=xl,...,x=xu)

return(c(ux))

}

Reference

[1] Griffiths, G.W., and W.E. Schiesser (2012), Traveling Wave Analysis of Partial Differential
Equations, Elsevier/Academic Press, Boston, MA.

INDEX

adsorption, 1, 12
breakthrough curve, 3, 67–68
separation, 202–203

advection equation, 26, 344
analytical solution, 27

angiogenesis see VEGF angiogenesis
antigen-antibody kinetics, 303

see also MOL analysis with a variable grid
mass transfer rates, 304

axial dispersion, 177

BC see boundary condition
Bessel function, 114–116, 126, 129

routine, 129
biased upwind approximation see R, dss020
bioheat (Pennes) equation, 91–93
biomedical science and engineering (BMSE),

xi–xii
blood-tissue transport, 113

analytical solution, 114, 118, 126–127, 130–131
Bessel function, 114–116, 118, 126, 129

routine, 129
graphical output, 122, 127, 129–130
Lagrangian variable, 116, 118–119, 126,

131–132
MOL routines

main program, 119–122
ODE routine, 115–116

Method of Lines PDE Analysis in Biomedical Science and Engineering, First Edition. William E. Schiesser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Schiesser/PDE Analysis

numerical output, 122, 126, 129, 134–141
parameters, 120, 123
PDE model, 113–114, 118

BC, 114, 117
discontinuity, 113
Heaviside function, 115, 130–131
hyperbolic, 113
IC, 114, 121, 124
nonlinear extension, 133, 142

spatial approximations, 124
time scale, 121, 125

boundary condition (BC) xi,, 1–2
Dirichlet, 7
outflow, 199
required number, 6

boundary value variable, xi
domain, 6

BMSE see biomedical science and engineering
breakthrough curve see adsorption

cancer cells, 69, 91
cancer tumors, 69, 91, 227
capillary network, 69
Cauchy problem, 28
centered approximation see R, dss004
chemotaxis, 69, 255–256
chromatography, 1

adsorption, 1, 5

352 INDEX

chromatography (Continued)
adsorption-desorption rate, 5, 9, 12, 17, 19–20,

24, 57, 60–61, 63–64
analytical solution, 10, 15, 25, 27, 32
breakthrough curve, 3
graphical output, 26, 32, 37, 41, 49–52, 67–68
mass balance, 3–6, 54
MOL routines

main program, 7, 42–45
ODE routine, 16

multi component model, 53–54
main program, 54–58
ODE routine, 62–64
separation breakthrough, 67–68
separation parameters, 56, 59, 67

nonlinearity, 29
numerical solution, 22–24, 30–32, 34–36,

39–40, 47–48
parameters, 8, 12
PDE model, 1, 3–6

BCs, 1, 6, 16, 18, 54
ICs, 1, 6, 8, 13, 54, 59

spatial scale, 14
time scale, 13
wave front resolution, 1

convection-reaction-difffusion PDE, 71
cylindrical coordinates, 341
derivation, 341
diffusivity tensor, 342
mass balance, 341

cross diffusion epidemiology, 205
graphical output, 210, 214, 222, 224
MOL routines

main program, 207–210
ODE routine, 215–216

numerical output, 209–210, 214
time invariant solution, 218–220
transient solution, no cross diffusion, 220–222
transient solution with cross diffusion,

222–224
parameters, 206, 208, 211–212
PDE model, 205, 216–217

BCs, 206, 216–217
ICs, 206, 208–209, 211–212
nonlinearity, 216–217

reaction-diffusion, 205, 228
SIR,SIS epidemiology models, 205, 207
spatial scale, 209, 213
time interval, 209, 213

cylindrical coordinates, 92, 341

DAE see differential-algebraic-equation
Danckwerts BC, 178
differential-algebraic equation, xi, 142, 195

index, 142

differentiation matrix, 331–332
diffusivity tensor, 342
Dirichlet boundary condition, 7, 117
discontinuity, 21, 28, 32, 51–52, 68, 113, 142, 271

see also Heaviside function, cosine function
download, 1
dynamic BC, 178, 199

endothelium see VEGF angiogenesis
ENO see essentially nonoscillatory
epidemiology model, 205, 207
equilibrium solution, 108
error analysis see h, p refinement
error tolerance, 25
essentially nonoscillatory, 39

FD see finite difference
FE see finite element
Fick’s first law, 71
Fick’s second law, 33, 68, 71

spherical coordinates, 89
finite difference (FD), xi

Godunov’s barrier theorem, 38
weighting coefficients, 34

finite element (FE), xi
finite volume (FV), xi
flux limiter see R, vanl
Fourier’s second law, 33, 68, 71

spherical coordinates, 89
FV see finite volume

Gaussian function, 229, 283
glioblastoma, 227

see also tumor cell density in glioblastoma
Godunov’s barrier theorem, 38
Gompertz rate, 276, 287–288
grid refinement see r refinement
growth factor see VEGF angiogenesis

h refinement, 24–25, 29, 38, 42, 110, 274
Heaviside function, 11, 15, 18, 20–21, 26, 115,

130–131, 228, 244–246, 270
hyperbolic PDE see partial differential

equation

IC see initial condition
immuno-oncology see oncolytic virotherapy
immunotherapy see oncolytic virotherapy
inflammation, 91
initial condition (IC) xi,1

required number, 6
discontinuous, 113

initial value variable, xi

INDEX 353

insulated boundary condition, 108
isotropic condition, 93

Lagrange polynomial, 326
Lagrangian variable, 27, 49, 86, 116, 118–119, 126,

131–132
Langmuir isotherm, 6, 9, 17, 19, 54, 57, 60, 63–64
Leibniz’s rule, 114
l’Hospital’s rule, 89, 99, 244, 289
linear advection equation see advection

equation
Livermore Solver Ordinary Differential

Equations Sparse see R lsodes
liver support systems (ALSS), 165

MOL routines, ALSS
main program, 180–184
ODE routine, 188–190

MOL routines, patient
main program, 167–169
ODE routine, 172–173

mixed ODE/PDE model, 165
patient model (ODE), 166–167, 173

diagram, 166
extravascular (tissue) compartment, 166
graphical output, 169, 172
ICs, 168, 170
intravascular (blood) comparment, 166
numerical output, 168–169, 171, 174–175
parameters, 168, 170
time interval, 168

ALSS model (ODE/PDE), 177
adsorption unit mass balance, 202–203
adsorption unit 1 (AU1), 177, 188, 192
adsorption unit 2 (AU2), 178, 189, 193
algebraic/DAE equations, 195
axial dispersion, 177
BCs, 177–180
diagram, 176
dynamic BC, 178, 199
graphical output, 183–184, 187, 196, 198
ICs, 177–181, 185–186
membrance mass balance, 200–202
membrane unit 1 (MU1), 177, 188, 191
membrane unit 2 (MU2), 179, 189, 193
numerical oscillation, 199
numerical output, 182, 187, 197
parameters, 181, 185, 197
Peclet number, 199
time interval, 182

logistic rate, 5, 276, 288

malignant melanoma, 91
mass conservation, xi, 3–4, 200–203, 341
mass transfer rate, 304, 326

membrane separation, 200–202
method of characteristics, 86
method of lines (MOL), xi–xii

differentiation matrix, 331–332
principal elements, xi–xii

mixed ODE/PDE system, xi–xii, 165, 304
see also ordinary differential equations
see also partial differential equations

MOL analysis with a variable grid, 303
see also method of lines
antigen-antibody kinetics, 303
convection, 325–326
diagram, 304
differentiation matrix, 331–332
diffusion, 329
graphical output, 308–309, 319, 321, 323–324
Lagrange polynomial, 326
mass transfer rate, 304, 326
MOL routines

main program, 306–309
ODE routine, 314–315

numerical output, 308, 312–314, 318, 320–325
parameters, 305–306, 310
ODE/PDE model, 304, 316–317

BCs, 304, 316
ICs, 307, 311

spatial scale, 306–307, 310–311
test functions, 332–340
time interval, 307, 311
variable grid, 303, 307, 311–312, 327–331

dss032,dss032a, 309, 316–317, 325
advantages, 303, 327

Neumann boundary condition, 70, 94–95, 97, 151,
163, 229, 276, 287

Newton’s method, 142
no flux boundary condition, 108, 163
nonlinearity, 29, 71
numerical diffusion, 28, 123, 142, 151
numerical oscillation, 28, 32, 123, 131–132, 142,

151
physical smoothing, 32

ODE see ordinary differential equation
ODE/PDE see mixed ODE/PDE system
oncolytic virotherapy, 227

chemotaxis, 240–241, 244, 255–256
diffusion, 249–250
Gaussian function, 229, 250
graphical output, 235, 239–240, 250–251, 255,

258, 260–264, 266, 268–269, 273–274
Heaviside function, 228, 244–246, 270
h refinement, 274

354 INDEX

oncolytic virotherapy (Continued)
immuno-oncology, 227
immunotherapy, 227
l’Hospital’s rule, 244
MOL routines

main program, 230–235
ODE routine, 240–242

numerical output, 234–235, 239, 247–249,
252–255, 257–261, 265, 267, 270, 272–273

parameters, 230–233, 236, 249–251, 256,
261–264, 271

PDE model, 228, 241, 244
BCs, 229, 240, 243
ICs, 229, 233–234, 237, 249
nonlinearity, 228, 241, 244

p refinement, 274
ramp function, 267–269, 271
reaction-diffusion, 228, 241
spatial scale, 229, 233, 237
spherical coordinates, 229
time interval, 234, 238

ordinary differential equation, xi
integrator, xi
solver, xi
see also error tolerance

order of approximation, 25

p refinement, 25, 29, 47, 110, 274, 299–300
parabolic PDE see partial differential

equation
partial differential equation, xi

convection-reaction-difffusion, 71, 341
derivation, 341

equilibrium solution, 108
hyperbolic, 6, 28, 113, 142

characteristic, 86
hyperbolic-parabolic, 145, 344
parabolic, 68

cylindrical coordinates, 92
diffusion, 87
epidemiology model, 206
isotropic condition, 93
source term, 93
spherical coordinates, 89

steady state solution, 108
subscript notation, 70
see also Dirichlet boundary condition

Neumann boundary condition
variable coefficient, 278, 281

FD approximation, 282
variable grid, 303, 307, 311–312, 327–331

see also R dss032
test functions, 332–340

PDE see partial differential equation

Peclet number, 199
Pennes bioheat equation, 91–93

perfusion coefficient, 93
source term, 93, 103

pulse function, 48–50, 65

R (programming system), xi, 1
download, xii, 1
{} (braces), 8
[] (brackets), 8
(comment), 7
c (vector operator), 17, 20, 64
cat, 9, 14
deSolve, 8, 11, 13
dss004, 8, 11, 17–18, 25, 29, 33–34, 346
dss012, 8, 11, 16, 18, 24, 25, 28–29, 345
dss020, 8, 11, 17–19, 25, 34, 37–38, 46, 59, 65,

347
dss032,dss032a, 309, 316–317
for, 8, 12
function, 16–17
if, 8, 12
library, 8, 11
lines, 10, 16, 62
list, 7, 10, 17, 20, 64
ls, 7, 10
matrix, 9, 14
mrow, 10
ode, 9, 13
func, 9, 13
times, 9, 13
y, 9, 13

par, 10
parm, 16, 18
plot, 10, 15, 58, 62
lwd, 10, 15, 58, 62
main, 10, 15, 58, 62
pch, 10, 15, 58, 62
type, 10, 15, 58, 62
xlab,ylab, 10, 15, 58, 62
xlim,ylim, 10, 15, 58, 62

points, 10, 16, 62
rep, 8, 13
return, 17, 20, 64
rm, 7, 10
seq, 8, 13
setwd, 8, 11
sprintf, 9, 14
source, 8, 11
lsodes, 73, 77, 101
func, 73, 77
parms, 77
times, 73, 77
y, 73, 77

INDEX 355

vanl, 8, 11, 17, 19, 38–39, 46, 118, 348
vectorization, 317

ramp function, 267–269, 271
r refinement, 25
reaction-diffusion, 205, 275
Riemann problem, 28, 113, 271
Robin boundary condition, 94–95, 97, 147

signalling molecule see VEGF angiogenesis
SIR, SIS epidemiology models, 205, 207

see also cross diffusion epidemiology model
spatial variable see boundary value variable
spectral method, xi
spherical coordinates, 89, 229, 276
stagewise differentiation, 84
steady state solution, 108
subscript notation, 70

Taylor series, 300
tensor, 342
thermographic tumor location, 91

equilibrium solution, 108
graphical output, 101–102, 105, 107, 110
h refinement, 110
inflammation, 91
isotropic condition, 93
l’Hospital’s rule, 99
lsodes integration, 101, 104
MOL routines

main program, 100–102
ODE routine, 94–96

numerical output, 106–107, 109
parameters, 100, 102
PDE model, 92

BCs, 92–95, 97
IC, 92, 94, 101, 103

Pennes bioheat equation, 91–93
perfusion coefficient, 93
source term, 93, 100, 103

p refinement, 110
singularity (r=0), 95, 98–99
skin surface heat transfer, 92, 94, 110
spatial domain, 93–94, 98, 100, 102–103
steady state solution, 108
temperature rise, 91, 108
time interval, 100, 103
truncation error, 110
tumor heat release, 91–92
tumor size effect, 92, 110

thermography, 91
traveling wave, 21, 27, 69, 86

characteristic, 86
truncation error, 25, 110, 300
tumors, 69

see also thermographic tumor location
heat release, 91–92
thermal properties, 91

tumor cell density in glioblastoma, 275
carrying capacity, 277
Gaussian IC, 283
Gompertz rate, 276, 287–288
graphical output, 280, 285–286, 298–299
growth laws, 275–276
l’Hospital’s rule, 289
logistic rate, 276, 288
MOL routines

main program, 277–280
ODE routine, 286–287

numerical putput, 279, 282, 290–298
parameters, 278, 281
PDE model, 276, 286–287

BCs, 276, 287
IC, 276, 278–279, 283

p refinement, 299–399
reaction-diffusion, 275
singularity (r=0), 289
spherical coordinates, 276, 289
time scale, 279
truncation error, 300
variable coefficient, 278, 281, 288

FD approximation, 282
white and gray tissue, 275

two-fluid/membrane model, 145
graphical output, 155–156, 159–160, 162–163
grid indexing, 147–150, 153, 157
MOL routines

main program, 153–156
ODE routine, 148–150

numerical diffusion, 151
numerical oscillation, 151
numerical output, 155, 159–162
parameters, 147, 154, 156–157
PDE model, 145–146

BCs, 147, 150, 152
diagram, 145
extensions, 163
hyperbolic-parabolic, 145, 152
ICs, 147, 154
Robin BC, 147

time interval, 155, 158

unit vectors, 342
cylindrical coordinates, 342

upwind approximation see R, dss012

van Leer limiter see R vanl
variable coefficient, 278, 281–282, 288

FD approximation, 282

356 INDEX

variable grid, 303, 307, 311–312, 327–331
see also R dss032
advantages, 303, 327
test functions, 332–340

vascular endothelium growth factor see
VEGF angiogenesis

vectorization, 317
VEGF angiogenesis, 69

analytical solution, 71, 73, 77–78, 85
diffusion, 88
endothelial cells, 70
graphical output, 75, 79–81
growth factor, 70
Lagrangian variable, 86
MOL routines

main program, 72–75

ODE routine, 81–83
nonlinearity, 71–72, 82, 84
numerical output, 74, 87
parameters, 73, 76
PDE model, 70

BCs, 70
ICs, 70
spatial domain, 71, 73, 76, 83
time interval, 73, 76

stagewise differentiation, 84
traveling wave, 69, 86

characteristic, 86

wave front resolution, 1, 69
white and gray tissue, 275, 301

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	About the Companion Website
	Chapter 1 An Introduction to MOL Analysis of PDEs: Wave Front Resolution in Chromatography
	1.1 1D 2-PDE model
	1.2 MOL routines
	1.2.1 Main program
	1.2.2 MOL/ODE routine
	1.2.3 Subordinate routines

	1.3 Model output, single component chromatography
	1.3.1 FDs, step BC
	1.3.2 Flux limiters, step BC
	1.3.3 FDs, pulse BC
	1.3.4 Flux limiters, pulse BC50

	1.4 Multi component model
	1.5 MOL routines
	1.5.1 Main program
	1.5.2 MOL/ODE routine

	1.6 Model output, multi component chromatography
	References

	Chapter 2 Wave Front Resolution in VEGF Angiogenesis
	2.1 1D 2-PDE model
	2.2 MOL routines
	2.2.1 Main program
	2.2.2 MOL/ODE routine
	2.2.3 Subordinate routines

	2.3 Model output
	2.3.1 Comparison of numerical and analytical solutions
	2.3.2 Effect of diffusion on the traveling-wave solution

	2.4 Conclusions
	References

	Chapter 3 Thermographic Tumor Location
	3.1 2D, 1-PDE model
	3.2 MOL analysis
	3.2.1 ODE routine
	3.2.2 Main program

	3.3 Model output
	3.4 Summary and conclusions
	References

	Chapter 4 Blood-Tissue Transport
	4.1 1D 2-PDE model
	4.2 MOL routines
	4.2.1 MOL/ODE routine
	4.2.2 Main program
	4.2.3 Bessel function routine

	4.3 Model output
	4.4 Model extensions
	4.5 Conclusions and summary
	References

	Chapter 5 Two-Fluid/Membrane Model
	5.1 2D, 3-PDE model
	5.2 MOL analysis
	5.2.1 MOL/ODE routine
	5.2.2 Main program

	5.3 Model output
	5.4 Summary and conclusions

	Chapter 6 Liver Support Systems
	6.1 2-ODE patient model
	6.2 Patient ODE model routines
	6.2.1 Main program
	6.2.2 ODE routine

	6.3 Model output
	6.4 8-PDE ALSS model
	6.4.1 Membrane unit MU1
	6.4.2 Adsorption unit AU1
	6.4.3 Adsorption unit AU2
	6.4.4 Membrane unit MU2

	6.5 Patient-ALSS ODE/PDE model routines
	6.5.1 Main program
	6.5.2 ODE routine

	6.6 Model output
	6.7 Summary and conclusions
	Appendix - Derivation of PDEs for Membrane and Adsorption Units
	A.1 PDEs for Membrane Units
	A.2 PDEs for Adsorption Units
	References203

	Chapter 7 Cross Diffusion Epidemiology Model
	7.1 2-PDE model
	7.2 Model routines
	7.2.1 Main program
	7.2.2 ODE routine

	7.3 Model output
	7.3.1 ncase = 1, time-invariant solution
	7.3.2 ncase = 2, transient solution, no cross diffusion
	7.3.3 ncase = 3, transient solution with cross diffusion

	7.4 Summary and conclusions
	Reference

	Chapter 8 Oncolytic Virotherapy
	8.1 1D 4-PDE model
	8.2 MOL routines
	8.2.1 Main program
	8.2.2 MOL/ODE routine
	8.2.3 Subordinate routine

	8.3 Model output
	8.4 Summary and conclusions
	Reference

	Chapter 9 Tumor Cell Density in Glioblastomas
	9.1 1D PDE model
	9.2 MOL routines
	9.2.1 Main program
	9.2.2 MOL/ODE routine

	9.3 Model output
	9.3.1 Output for ncase=1, linear
	9.3.2 Output for ncase=2, logistic
	9.3.3 Output for ncase=3, Gompertz

	9.4 p-refinement error analysis
	9.5 Summary and conclusions
	References

	Chapter 10 MOL Analysis with a Variable Grid: Antigen-Antibody Binding Kinetics
	10.1 ODE/PDE model
	10.2 MOL routines
	10.2.1 Main program
	10.2.2 MOL/ODE routine

	10.3 Model output
	10.3.1 Uniform grid
	10.3.2 Variable grid

	10.4 Summary and conclusions
	Appendix: Variable Grid Analysis
	A.1 Derivation of numerical differentiators
	A.2 Testing of numerical differentiators
	A.2.1 Differentiation matrix
	A.2.2 Test functions

	References

	Appendix A Derivation of Convection-Diffusion-Reaction Partial Differential Equations
	Appendix B Functions dss012, dss004, dss020, vanl
	Index
	EULA

