


This page intentionally left blank



Essential Epidemiology
An Introduction for Students and Health Professionals

Second Edition

Penny Webb, MA (Cambridge), DPhil (Oxford), is a Senior Research Fellow at the

Queensland Institute of Medical Research and Associate Professor in the School

of Population Health, University of Queensland. She has worked as a visiting sci-

entist at the International Agency for Research on Cancer, France, and Harvard

University, USA and has published more than 120 original research papers in the

field of cancer epidemiology.

Chris Bain, MB BS (UQ), MPH, MSc (Harvard) is Reader in Epidemiology in the

School of Population Health, University of Queensland. He has been teaching

epidemiology to public health and medical students for over 3 decades and has

co-authored a book on how to conduct a systematic review as well as more than

100 original epidemiology research papers. He has worked at Harvard in the

USA and as a visiting researcher at the London School of Hygiene and Tropical

Medicine and at the Universities of Cambridge, Oxford and Bristol in the UK.





Essential
Epidemiology

An Introduction for Students
and Health Professionals

Second Edition

Penny Webb
Senior Research Fellow and Head,

Gynaecological Cancers Group,

Queensland Institute of Medical Research,

Brisbane, Australia

and

Chris Bain
Reader in Epidemiology,

School of Population Health,

University of Queensland,

Brisbane, Australia



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521177313

C© P. Webb and C. Bain 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Webb, Penny, 1963–
Essential epidemiology : an introduction for students and health professionals /
Penny Webb and Chris Bain. – 2nd ed.

p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-521-17731-3 (pbk.)
1. Epidemiology. I. Bain, Chris, 1947– II. Title.
[DNLM: 1. Epidemiologic Methods. 2. Epidemiology. WA 105]
RA651.W385 2011
614.4 – dc22 2010040293

ISBN 978-0-521-17731-3 Paperback

Additional resources for this publication at www.cambridge.org/webb

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date
information which is in accord with accepted standards and practice at the time of
publication. Although case histories are drawn from actual cases, every effort has been
made to disguise the identities of the individuals involved. Nevertheless, the authors,
editors and publishers can make no warranties that the information contained herein is
totally free from error, not least because clinical standards are constantly changing
through research and regulation. The authors, editors and publishers therefore disclaim
all liability for direct or consequential damages resulting from the use of material
contained in this book. Readers are strongly advised to pay careful attention to
information provided by the manufacturer of any drugs or equipment that they
plan to use.



Contents

Foreword x

Preface xi

11 Epidemiology is . . .

3A case of food poisoning

4Subdisciplines of epidemiology

6On epidemics

8An historical epidemic

9The beginnings

17What does epidemiology offer?

18What do epidemiologists do?

24A natural experiment

24Conclusions

27References

292 How long is a piece of string? Measuring disease frequency

30What are we measuring?

32The concepts: prevalence and incidence

38Measuring disease occurrence in practice: epidemiological studies

45Measuring disease occurrence in practice: using routine data

52Other measures commonly used in public health

59Measuring the ‘burden of disease’

68Summary

68Questions

69References

713 Who, what, where and when? Descriptive epidemiology

72Case reports and case series

74Prevalence surveys

76Routine data collections

83Sources of summary data

87Creative use of existing data

v



vi Contents

92Confidentiality

92Summary

92References

944 Healthy research: study designs for public health

96Observational studies

112Intervention studies

117A word about ethics

121Summary

121Questions

122References

1255 Why? Linking exposure and disease

126Looking for associations

128Ratio measures (relative risk)

133Difference measures (attributable risk)

141Relative risk versus attributable risk: an example

143Case–control studies

149Summary

149Questions

153References

1546 Heads or tails: the role of chance

154Random sampling error

156Confidence intervals (CI)

158Statistics in epidemiology

163Statistical versus clinical significance

165A final word about confidence intervals and p-values

165Summary

165Questions

166References

1677 All that glitters is not gold: the problem of error

169Sources of error in epidemiological studies

169Selection bias

181Measurement or information error

194Summary

194Questions

196References

1978 Muddied waters: the challenge of confounding

198An example of confounding: is alcohol a risk factor for lung cancer?

201Criteria for a confounder

202The effects of confounding

208Control of confounding



Contents vii

218Confounding: the bottom line

219Questions

220References

2219 Reading between the lines: reading and writing

epidemiological papers

222The research question and study design

223The study sample: selection bias

226Measuring disease and exposure: measurement bias

228Confounding

230Chance

230Study validity

232Descriptive studies

233Writing papers

234Summary: one swallow doesn’t make a summer

235Questions

235References

23710 Who sank the boat? Association and causation

238What do we mean by a cause?

242Association versus causation

243Evaluating causation

250Evaluating causality in practice: does H. pylori

cause stomach cancer?

250And then what?

251References

25211 Assembling the building blocks: reviews and their uses

253What is a systematic review?

253Identifying the literature

256Different types of study

259Summarising the data

265Assessment of causality

267Assessing the quality of a systematic review

267Making judgements in practice

272The end result

273Summary

273References

27612 Outbreaks, epidemics and clusters

Professor Adrian Sleigh
National Centre for Epidemiology and Population Health,

Australian National University

278Outbreaks, epidemics, endemics and clusters

279Rare disease clusters



viii Contents

282Epidemiology of infectious diseases

285A causal model

286What influences the spread of infectious diseases?

293Epidemics or outbreaks

295Investigating outbreaks

299Epidemic prevention

300Tuberculosis: a case study

304Conclusion

304Questions

305References

30713 Watching not waiting: surveillance and

epidemiological intelligence

309The scope of surveillance

312Types of surveillance

315Surveillance in practice

321Evaluation of surveillance

321Summary

322References

32314 Prevention: better than cure?

323Disease prevention in public health

328The scope for preventive medicine

331Strategies for prevention

336The population attributable fraction as a guide to prevention

339Prevention in practice

341Evaluation of preventive interventions in practice

342A final (cautionary) word

343Question

343References

34515 Early detection: what benefits at what cost?

346Why screen?

349The requirements of a screening programme

361Evaluation of a screening programme

370The negative consequences of a screening programme

371Summary

372Questions

373References

37516 A final word . . .

377What does the future hold for epidemiology?

382Where to now?

385A final word

386References



Contents ix

388Answers to questions

404Appendix 1: Direct standardisation

406Appendix 2: Standard populations

407Appendix 3: Calculating cumulative incidence and lifetime risk from

routine data

409Appendix 4: Indirect standardisation

411Appendix 5: Calculating life expectancy from a life table

413Appendix 6: The Mantel–Haenszel method for calculating pooled

odds ratios

416Appendix 7: Formulae for calculating confidence intervals for common

epidemiological measures

419Glossary

435Index



Foreword

As a core discipline of public health, epidemiology provides a perspective and

methodological approach relevant to all settings requiring rigorous evidence

for health and wellbeing. Excellent introductory texts such as this are therefore

invaluable to a range of audiences, including students and teachers, practition-

ers and researchers. The text leads the reader through the history, perspective,

concepts and methods of epidemiology and some key public health applications,

in a steady, clear fashion. It is nicely paced with worked examples, illustrative

questions and tables and frequent practical asides. The style is easy, accessi-

ble and not at all dry, which will be particularly valuable for those whose first

language is not English. Underlying this approachability, however, is a strong

methodological rigour, reflecting the wide international research experience of

the authors that informs their writing and teaching.

The second edition of this highly successful book is fully updated and includes

expanded sections dealing with new terminology, current themes such as genetic

epidemiology, life expectancy and global burden, and the importance of system-

atic reviews as a key public health tool for assessing causality and setting policy.

It will be an excellent reader or background text for undergraduate and graduate

students in epidemiology and public health.

Carol Brayne

Professor of Public Health Medicine

University of Cambridge

x



Preface

Preface to the first edition

This book has grown out of our collective experience of teaching introductory

epidemiology both in the classroom and to distance students enrolled in public

health and health studies programmes in the School of Population Health (for-

merly the Department of Social and Preventive Medicine), University of Queens-

land. It began life as a detailed set of course notes that we wrote because we

could not find a single epidemiology text that covered all of the areas we felt were

important in sufficient detail. As the notes were to be used primarily by distance

students, we tried hard to make them accessible with lots of examples, minimal

jargon and equations, and by engaging readers in ‘doing’ epidemiology along the

way. Feedback from students and colleagues convinced us that the notes were

both approachable and practical. We have built on this, and offer this text as a

practical introduction to epidemiology for those who need an understanding of

health data they meet in their everyday working lives, as well as for those who

wish to pursue a career in epidemiology.
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Research who willingly read drafts of the text and whose constructive feedback

helped shape the final version. Particular thanks go to Adrian Sleigh (Australian

National University) who authored Chapters 4 [Chapter 13 in the second edition]

and 12 and also contributed to Chapter 15 [Chapter 16 in the second edition],

Susan Jordan (QIMR) who helped with pulling everything together and Christine

Howes (Bristol, UK) who drew all otherwise non-attributed illustrations. Finally,

we would like to acknowledge the School of Population Health, University of

Queensland, which provided the intellectual environment that led to this book

as well as financial support to cover the costs of preparing the final draft.

Preface to the second edition

This first revision of our text reflects evolution, not revolution. We have listened

to the feedback we have received from instructors and students and have tried

to simplify and clarify some of the trickier bits of the original text while main-

taining a very ‘hands-on’ approach. We have added new material to reflect con-

temporary epidemiological practice in public health and have re-ordered some

of the existing elements to improve the flow and enhance the continuity between

chapters. New and expanded topics include a look at how we measure the bur-

den of disease, greater discussion of issues relevant to ethics and privacy, and

appendices covering life tables and calculation of confidence intervals for com-

mon epidemiological measures. We have also added a glossary and developed

an accompanying website with useful materials including additional test ques-

tions and answers, resources for teachers and useful links to a variety of web-

based data sources and other epidemiological sites. The website can be accessed

at www.cambridge.org/webb.

Our overall aims are, however, unchanged – to show the role of epidemiology

across a broad range of health monitoring and research activities and to give stu-

dents a good understanding of the fundamental principles common to all areas

of epidemiology including the study of both infectious and chronic diseases as

well as public health and clinical epidemiology. To this end, we have maintained

the general structure of the original text. As previously, Chapter 1 is a general

introduction that both answers the question ‘what is epidemiology and what can

it do?’ and presents the main concepts that are the focus of the rest of the book.

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapters 6–8

Integration &
interpretation

Chapters 9–11

Practical
applications

Chapters 12–15
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The first sections cover the basic principles and underlying theory of epidemiol-

ogy in a very ‘hands-on’ way.

We start by looking at how we can measure disease and, new to this edi-

tion, the overall burden of disease in a population (Chapter 2), followed by

a look at the role of descriptive epidemiology in describing health patterns

(Chapter 3). We move on to look at the types of study that we use to identify

potential causes of disease including an expanded discussion of the potential

of record linkage (Chapter 4) and how we quantify the associations between

cause and outcome (Chapter 5). In response to feedback from the first edi-

tion, we then present a separate look at the role of chance in epidemiology

(Chapter 6), a simplified discussion of the thorny issue of error and bias (Chapter

7) and a practical overview of the problem of confounding (Chapter 8). This leads

to the next section where we integrate this information in a practical look at how

we read and interpret epidemiological reports (Chapter 9), think about assessing

causality (Chapter 10) and finally synthesise a mass of information in a single

review (Chapter 11). In the final section we look at some specific applications of

epidemiology including the study of outbreaks (Chapter 12), surveillance (Chap-

ter 13), prevention – including an expanded discussion of how we can assess

the impact of different preventive interventions on the health of a population

(Chapter 14), and screening (Chapter 15), while Chapter 16 concludes with a

fresh look at what epidemiology is and what it can do to help address the health

concerns facing the world today.

Symbols

Throughout the book we have used bold typeface to indicate terms included in

the glossary and the following symbols are used to define key elements within

the text.

We strongly believe that the best way to learn anything is by actually doing it

and so have included questions within the text for those who like to test their

understanding as they go. Because we also know how frustrating it is to have to

search for answers, we have provided these immediately following the questions

for those in a hurry to proceed.

We have used numerous real-life examples from all around the world to illustrate

the key points and to provide additional insights in some areas. Extra examples

that provide added interest and complement the main message in the text are

given in boxes featuring this symbol.

Many books present clinical epidemiology as a separate discipline from pub-

lic health epidemiology – a distinction that is strengthened by the fact that

clinical epidemiologists have developed their own names for many standard
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epidemiological terms. In practice all epidemiology is based on the same under-

lying principles, so we have integrated the two approaches throughout the book

but have also highlighted specific examples more relevant to the clinical situa-

tion. (Please note that this book does not offer a comprehensive coverage of clin-

ical epidemiology; rather we aim to show the similarity of the two areas where

they overlap.)

We have deliberately tried to keep the main text free of unnecessary detail and

equations but have included some epidemiological ‘extras’. This material is not

essential to the continuity of the core text but provides some additional infor-

mation for those who like to see where things have come from or want a more

detailed perspective.

Acknowledgements for the second edition

We are again indebted to the many people who have provided input at all stages

of the development of this book. In addition to those named previously, a few

deserve a special mention. Our former colleague and co-author of the first edi-

tion, Sandi Pirozzo, has moved on to a rewarding new career post-epidemiology;

we remain grateful for her prior contributions and for her continuing friendship

and interest. Adrian Sleigh has kindly updated the chapter on Outbreaks that

he wrote for the first edition and has also contributed valuable insights to the

chapter on Surveillance and the final chapter. Discernible improvements in the

cohesion and internal ‘sign-posting’ of the book reflect excellent critiques and

suggestions we received from Michael O’Brien and Kate Van Dooren, the for-

mer an educator and the latter a doctoral student within the School of Popula-

tion Health. Kate also provided much practical support which enabled this revi-

sion. Finally, our expanded consideration of the ‘Burden of Disease’ approach

has benefited from interactions with, and teaching materials developed by mem-

bers of the Burden of Disease group at the School of Population Health, espe-

cially Theo Voss, Steven Begg and Alan Lopez. Finally we thank the many users

of the first edition, particularly the team from Otago University in New Zealand,

who provided the critical feedback that has directly led to this new and hopefully

improved edition.
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Box 1.1 Epidemiology is . . .

‘The science of epidemics’ (Concise Oxford Dictionary, 1964)

‘The science of the occurrence of illness’ (Miettinen, 1978)

‘The study of the distribution and determinants of disease in humans’

(MacMahon and Pugh, 1970)

‘The study of the distribution and determinants of health-related states or

events in specified populations, and the application of this study to

control of health problems’ (Porta, 2008)

1



2 Epidemiology is . . .

So what is epidemiology anyway? As shown in Box 1.1, the Concise Oxford

Dictionary (1964) defined it accurately, but not very helpfully, as ‘the science of

epidemics’. In 1970, MacMahon and Pugh came up with something a bit more

concrete: ‘the study of the distribution and determinants of disease’. Their def-

inition succinctly identifies the two core strands of traditional epidemiology:

who is developing disease (and where and when), and why are they developing

it? The final definition, from the Dictionary of Epidemiology (Porta, 2008) takes

it two steps further by broadening the scope to include health in general, not

just disease, as well as highlighting the direct role of epidemiology in disease

control.

Epidemiology, therefore, is about measuring health, identifying the causes of

ill-health and intervening to improve health; but what do we mean by ‘health’?

Back in 1948, the World Health Organization (WHO, 1948) defined it as ‘ . . . a state

of physical, mental and social well-being’. Now, while this view is clearly what we

hope for as individuals, the inclusion of ‘mental and social well-being’ would

until recently have induced despair in epidemiologists. In practice what we usu-

ally measure is ill-health or disease: more disease equals poorer physical health,

and this focus is reflected in the content of most routine reports of health data

and in many of the health measures that we will consider here. However, meth-

ods that do attempt to capture the more elusive components of mental and social

wellbeing are now emerging. Instead of simply measuring ‘life expectancy’, the

WHO introduced the concepts of ‘health-adjusted life expectancy’ (HALE) and

subsequently ‘disability-adjusted life years’ (DALYs) to allow better international

comparisons of the effectiveness of health systems. In doing so they recognised

that it is not longevity per se that we seek, but a long and healthy life. We will

discuss these and other measures in more detail in Chapter 2.

Perhaps epidemiology’s most fundamental role is to provide a logic and struc-

ture for the analysis of health problems both great and small. It also emphasises

the sound use of numbers – we have to count and we have to think. We have

to think about what is worth counting and how best to count it, about what is

practical and, importantly, about how well we (or others) finally measured what-

ever it was we set out to measure, and what it all means. Accurate measurement

of health is clearly the cornerstone of the discipline, but we believe the special

value of epidemiology flows from a way of thought that is open, alert to the

potential for error, willing to consider alternative explanations and, finally, con-

structively critical and pragmatic.

We offer this book as an aid to such thought. It does not aim to turn you

into a practising epidemiologist overnight but will give clear directions if that is

where you decide to go. Its primary goal is to help you interpret the mass of epi-

demiological literature and the various types of health data that you may come

across. We hope that you will see, by reading and by doing, that the fundamental



A case of food poisoning 3

Table 1.1 Numbers of people who became ill after eating various foods at a
youth camp.

People who ate the food People who didn’t eat the food

Food Total Number ill Total Number ill

Friday dinner:

Hot chicken 343 156 231 74

Peas 390 175 184 55

Potato fries 422 184 152 46

Saturday lunch:

Cold chicken 202 155 372 75

Salad 385 171 189 59

Saturday dinner:

Fruit salad 324 146 250 84

(Adapted from Hook et al., 1996, with permission from John Wiley and Sons.)

concepts and tools of epidemiology are relatively simple, although the tasks

of integrating, synthesising and interpreting health information are more

challenging. But before we go any further, let us do some public health

epidemiology.

A case of food poisoning

Epidemiology is a bit like detective work in that we try to find out why and how

disease occurs. Our first example illustrates this. After an outbreak of food poi-

soning at a youth camp, the local public health unit was called in to identify the

cause (Hook et al., 1996). They first asked everyone at the camp what they had

eaten prior to the outbreak and some results of this investigation are shown in

Table 1.1.

Looking at the numbers in Table 1.1, it is difficult to see which of the foods

might have been responsible for the outbreak. (Note that everyone is recorded as

either having eaten or not eaten each food; and that most people will have eaten

more than one of the foods.) More people became ill after eating potato fries than

after eating cold chicken (184 versus 155) – but then more people ate the fries

(422 versus 202). How then can we best compare the two foods? One simple way

to do this is to calculate the percentage of people who became ill among those

who ate (or did not eat) each type of food. For example, 156 out of 343 people

who ate hot chicken became ill and

156 ÷ 343 = 0.45 = 45%
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So 45% of people who ate hot chicken became sick. This is known as the

attack rate for hot chicken, i.e. 45% of hot-chicken eaters were ‘attacked’ by food

poisoning.

Calculate the attack rates for the other foods. Which food has the highest attack

rate?

Although cold chicken has the highest attack rate (77%), not everyone who ate

it (or, more precisely, who reported eating it) became ill and 20% or one in five

people who did not eat cold chicken still became ill. This is to be expected; no

matter what the cause of concern, it is rare that everyone who is exposed to it

will show the effects (in this case, become ill). What can help here is to work out

how much more likely people who ate a particular food were to become ill than

those who did not eat it. For example, 45% of people who ate hot chicken became

ill, compared with 32% of people who did not eat hot chicken. Hot-chicken eaters

were therefore 1.4 times (45% ÷ 32% = 1.4) more likely to become ill than people

who did not eat hot chicken. This measure gives us the risk of sickness in hot-

chicken eaters relative to non-eaters, hence its name – relative risk.

Calculate the relative risk of developing food poisoning associated with each of

the other food items. Which food is associated with the highest relative risk of

sickness?

We can now conclude that the food item most likely to have been responsible

for the outbreak was the cold chicken – people who ate this were almost four

times more likely to become ill than those who did not. This is quite a strong

relative risk; in comparison, eating any of the other foods was associated with no

more than one and a half times the risk of disease. The relevant data, including

the attack rates and relative risks, are summarised in Table 1.2, which is much

more informative than the raw numbers of Table 1.1.

In identifying the cause of the outbreak you have just solved an epidemiologi-

cal problem. The ‘attack rates’ and ‘relative risks’ that you used are fairly simple

to calculate and are two very useful epidemiological measures. We will discuss

them further in Chapters 2 and 5 and they will appear throughout the book.

Subdisciplines of epidemiology

The outbreak investigation above is an example of what might be called pub-

lic health epidemiology, or infectious disease epidemiology, with the first name

reflecting the broad field of application and the second the nature of both the

aetiological (causal) agent and the disease. It is quite common now to specify

such sub-fields of epidemiology, which range on the one hand from nutritional

through social to environmental epidemiology, and on the other from cancer to
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Table 1.2 Numbers of people who became ill after eating various foods at a youth camp and attack rates and
relative risks for each food.

People who ate the food People who didn’t eat the food

Food Total Number ill Attack rate Total Number ill Attack rate Relative riska

Friday dinner:

Hot chicken 343 156 45% 231 74 32% 1.4

Peas 390 175 45% 184 55 30% 1.5

Potato fries 422 184 44% 152 46 30% 1.4

Saturday lunch:

Cold chicken 202 155 77% 372 75 20% 3.8

Salad 385 171 44% 189 59 31% 1.4

Saturday dinner:

Fruit salad 324 146 45% 250 84 34% 1.3

a Note, RR are calculated using the exact percentages and not the rounded values shown.

(Adapted from Hook et al., 1996, with permission from John Wiley and Sons.)

injury or perinatal epidemiology: the former grouping being exposure-oriented

and the latter focused on the particular disease or outcome. Nonetheless, the

core methods and techniques of epidemiology remain common to all subdis-

ciplines, so the contents of this book are relevant to all. Setting sub-speciality

boundaries largely reflects the explosion of knowledge in these areas, although

some areas do present special challenges. For example, capturing a person’s

usual diet is remarkably challenging and the subsequent data analysis equally so;

epidemiologists coming fresh to the field of nutritional epidemiology will need

to develop experience and expertise in that specific area. As you read on you will

meet examples from a wide cross-section of health research and the common

threads of logic, study design and interpretation will, we trust, become apparent.

It is of some interest to know a bit more about a few of the special epidemi-

ologies. Occupational epidemiology has the longest history of all, with influen-

tial early observations of diseases linked to occupations such as mining appear-

ing in the sixteenth century, and a systematic treatise on occupational diseases

was published by Ramazzini back in 1700 (Rosen, 1958). Occupational health

research in general, and epidemiology in particular, continue to contribute to

enhancing workplace health today. Seminal contributions in the field include

identification of the pulmonary (lung) hazards of asbestos for miners and con-

struction workers (Selikoff et al., 1965) and the work practices that led to an epi-

demic of a rare fatal cancer in workers in the polyvinyl chloride industry (Makk

et al., 1974). Company records of job tasks can provide measures of past expo-

sure among employees, allowing researchers to look back in time and link, for
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example, past asbestos exposure to subsequent deaths in the workforce. (This

type of study is a historical cohort design – see Chapter 4. It is only possible when

there are good records of both exposure and outcome, usually death, and for this

reason has proved particularly useful in occupational studies where such records

often do exist.)

Far more modern are the subdisciplines of molecular epidemiology and

clinical epidemiology. The former aims to weld the population perspective of epi-

demiology with our rapidly increasing understanding of how variations in genes

and their products affect the growth, form and function of cells and tissues. It

thus has the potential for defining genetic contributions to disease risk and can

also provide biological markers of some exposures (e.g. changes to DNA follow-

ing exposure to tobacco smoke). In contrast, clinical epidemiology does not rely

on advanced technology but differs from other branches of epidemiology in its

focus on enhancing clinical decisions to benefit individual patients, rather than

improving the health of populations. For this reason, clinical epidemiology is

sometimes regarded as a completely separate discipline, a view which is encour-

aged by the fact that it has developed its own names for many standard epidemi-

ological measures. The foundations are, however, identical to those of public

health epidemiology and when appropriate we will discuss the two in parallel,

highlighting any differences in language or approach along the way.

On epidemics

If we take the word ‘epidemiology’ itself, its origins from ‘epidemic’ are clear. If

we talk about an epidemic we immediately conjure up pictures of an acute out-

break of infectious disease but, both for practical and for etymological reasons,

it seems reasonable to use the term to describe a notable excess of any disease

over time. Many developed countries could, for example, be described as under-

going an epidemic of lung cancer over the last few decades (Figure 1.1). Notably

the pattern of lung cancer over time differs for men and women; rates in men

rose sharply between 1950 and 1980 but have been falling for some years now,

while those in women rose later and are only just starting to fall – a consequence

of the fact, that as a group, women took up smoking more recently than men. To

describe this excessive occurrence of disease (or death) as an ‘epidemic’ captures

some of the urgency the numbers demand.

The derivation of the word ‘epidemiology’ itself is from the Greek epi, upon,

demos, the people, and logia, study. Literally, therefore, it means the ‘study (of

what is) upon the people’. Such study suggests a simple set of questions that have

long lain at the heart of epidemiology.
� What disease/condition is present in excess?
� Who is ill?
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� Where do they live?
� When did they become ill?
� Why did they become ill?

The first question reflects the need for a sound, common definition of a dis-

ease so that like is compared with like. Epidemiology is all about comparison –

without some reference to what is usual, how can we identify excess? The next

three questions form the mantra of descriptive epidemiology: ‘person, place

and time’. As Figure 1.2 shows, an ‘epidemic of premature mortality’ occurred

in the mid-1990s among young and middle-aged men in Russia and again in the

early 2000s. This description captures the essence of the problem and prompts

the next question: what caused these epidemics? What changed in the circum-

stances of younger Russian men to reverse the pattern of falling mortality in the
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Table 1.3 An historical event.

Adult males Adult females Children (both sexes) Total population

SESa Total % Dead Total % Dead Total % Dead Total % Dead

High 175 67.4 144 2.8 6 – 325 37.5

Medium 168 91.7 93 14.0 24 – 285 58.6

Low 462 83.8 165 53.9 79 65.8 706 74.8

Other 885 78.3 23 13.0 0 – 908 76.7

Total 1690 80.0 425 25.6 109 47.7 2224 68.0

a SES, socioeconomic status.

(Source: http://www.anesi.com; for full details see reference list.)

early 1980s and then cause it to almost double in less than 10 years? And why

did this happen again in the late 1990s? Other data show that there were no such

mortality changes in Western Europe, nor among older Russian men or infants,

nor (to the same extent) in Russian women. This simple graph captures a pub-

lic health disaster for Russia and prompts urgent causal speculation: why did

this happen? Solving and responding to this final question is critical for public

health progress, but there is clearly no simple solution. In this case, a high pro-

portion of the deaths were linked to excess consumption of alcohol: increases

in mortality coincided with periods of economic and societal crisis, and rates

fell when the economic situation improved (Zaridze et al., 2009). This exam-

ple highlights the central importance of paying close attention to descriptive

data that provide a ‘community diagnosis’ or take the public health ‘pulse’ of

a nation. Much can be gleaned from apparently simple data to give a quite pre-

cise description of the health event or state of interest, as the following exercise

shows.

An historical epidemic

Table 1.3 shows some data that relate to an actual human experience. It tells you

how many people there were in various age, sex and socioeconomic groups and

what percentage of these people died during the ‘epidemic’. The challenge is to

use these data to describe the event systematically in terms of whom this hap-

pened to (we have no data on place or time) and then to think about the sort of

event that might have induced such a pattern.

The following questions are designed to help you identify key features of the

data.
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1. What is distinctive about this isolated population with regard to
� the numbers of men and women (sex distribution),
� the numbers of adults and children (age distribution) and
� the numbers in each socioeconomic group (socioeconomic distribution)?

2. What strikes you about the percentage of people who died (the ‘death rate’)? Is

this different for (a) adults and children, (b) men and women, (c) high and low

socioeconomic status (SES) and (d) any particular combinations of the above?

3. How many times more likely were
� men to die than women and
� those of low SES to die than those of high SES?

4. To what historical event might these data refer?

Table 1.3 displays more complicated data than Table 1.2, since you had to con-

sider the joint effects of three factors (sex, socioeconomic status and age) on

mortality. The sequence of questions aims to underline a general principle in

describing such tables, i.e. to look at overall patterns first, then move on to more

detail (see Box 1.2 on the next page). We all see things in different ways, but until

you develop your own style this approach is one that can help you avoid becom-

ing lost in the array of possible relationships. You need first to grasp the size of

the whole group under study and how many died; then check the overall pat-

terns (numbers and mortality rates) across each ‘exposure’ separately (sex, SES,

age). These are sometimes called the ‘marginal’ rates based on row and column

totals; e.g. first look at the rates for all adult males, ignoring their SES, or for all

people of high SES, ignoring their age and sex. Only then consider the more com-

plex ‘inner’ set of joint effects such as the influence of SES on mortality among

women.

In tackling this and the previous problem you have already done some serious

epidemiology: you have described data, interpreted the patterns you observed

and used epidemiological measures to help do this. We will build on this through-

out the book, but first let’s step back a little and see what other lessons we can

learn from the past.

The beginnings
1

The ‘great man’ approach has fallen out of favour in modern historical practice;

however, linking historical events to people adds character so we will focus on

some of the main players in this brief overview of the development of population

health and epidemiology.

1 The material in this section is drawn from a mix of primary and secondary sources, with the latter

including a number of texts, most helpful being those of Stolley and Lasky (1995) and Lilienfeld and

Lilienfeld (1980).
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Box 1.2 An historical event

Things to note about the population include
� the predominance of adult males (1,690 ÷ 2,224 = 76%), the much smaller

proportion of adult females (19%) and the very few children;
� the substantial excess of persons of low SES (men and children in

particular); and
� the total population (2,224) is quite large – a village, small town, an army

barracks . . . ?

Things to note about the ‘death rates’ include the following.
� The overall death rate is very high – more than two-thirds died. (Note:

these death rates are essentially identical in form to the attack rates in

Table 1.2.)
� Overall, death rates increased with decreasing SES.
� The death rate in men (80.0%) was much higher than that in women

(25.6%); the death rate in children was between these two.
� In men, the death rate was high in all socioeconomic classes, although

those of high SES fared better than the rest; in women, the death rate was

always less than that for males of equivalent SES, but it increased strikingly

from high to medium to low SES.
� The only children to die were of low SES.

Overall, the relative risk (RR) for men versus women is 80.0 ÷ 25.6 = 3.1

The RR for low versus high SES is 74.8 ÷ 37.5 = 2.0

The RR for women of low SES versus women of high SES is 53.9 ÷ 2.8 = 19.3

The RR for men of low SES versus women of high SES is 83.8 ÷ 2.8 = 29.9

A disaster has occurred, causing a high death rate that predominantly

affected men (of all social classes) and, to a lesser extent, women and

children of low social class. Overall there is a modest benefit of belonging to a

higher social stratum, and among women this protection was exceptionally

strong (a 19-fold higher risk of dying for low versus high SES).

Such substantial differences in risk reflect powerful preventive effects and

in this instance it was a mix of social custom and the physical consequences

of social stratification. The event was the sinking of the Titanic, where those

of higher SES (the first class passengers) were situated on the upper decks

and were therefore closer to the lifeboats than those of medium and low SES

(those travelling second and third class, respectively). The males gallantly

helped the females and children into the lifeboats first. Those of ‘other’ SES

were the crew.
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Box 1.3 On airs, waters and places

Whoever wishes to investigate medicine properly, should proceed thus: in

the first place to consider the seasons of the year, and what effects each of

them produces . . . Then the winds, the hot and the cold, especially such as

are common to all countries, and then such as are peculiar to each locality.

We must also consider the qualities of the waters . . . In the same manner,

when one comes into a city to which he is a stranger, he ought to consider its

situation, how it lies as to the winds and the rising of the sun; for its influence

is not the same whether it lies to the north or the south, to the rising or to the

setting sun. These things one ought to consider most attentively, and

concerning the waters which the inhabitants use, whether they be marshy

and soft, or hard, and running from elevated and rocky situations, and then if

saltish and unfit for cooking; and the ground, whether it be naked and

deficient in water, or wooded and well watered, and whether it lies in a

hollow, confined situation, or is elevated and cold; and the mode in which

the inhabitants live, and what are their pursuits, whether they are fond of

drinking and eating to excess, and given to indolence, or are fond of exercise

and labour . . .
(Extracted from Hippocrates of Cos, 400 BC.)

Good epidemiological practice and reasoning started long ago. Perhaps the

first proto-epidemiologist (proto because he did not actually count anything)

was Hippocrates of Cos (460–375 BC), who recognised that both environmental

and behavioural factors could affect health (see Box 1.3).

The Dark Ages and Middle Ages (AD 500–1500) have little to say to us, other

than in the development of causal reasoning, which we will set aside until later in

the book (Chapter 10). The introduction of more quantitative methods into epi-

demiology, and, in fact, into biology and medicine in general, has been attributed

to John Graunt (1620–1674), a haberdasher and early Fellow of the Royal Soci-

ety in London, although his friend William Petty may well have been a seminal

influence too. In 1662 Graunt published his Natural and Political Observations

Mentioned in a Following Index and Made Upon the Bills of Mortality. He studied

parish christening registers and the ‘Bills of Mortality’, and noted many features

of birth and death data, including the higher numbers of both male births and

deaths in comparison with females, the high rates of infant mortality and sea-

sonal variations in mortality. He also provided a numerical account of the impact

of the plague in London and made the first attempts to estimate the size of the

population. In an attempt to define a ‘law of mortality’ he constructed the first

life-table (Table 1.4). This summarised the health of a population in terms of the

chance of an individual surviving to a particular age. Notice that at this time only
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Table 1.4 An historical example of a life-table.

Exact age Chance of living

(years) Deaths Survivors to that age (%)

0 – 100

6 36 64 64

16 24 40 40

26 15 25 25

36 9 16 16

46 6 10 10

56 4 6 6

66 3 3 3

76 2 1 1

86 1 0

(Adapted from Graunt, 1662.)

three out of every hundred people reached the age of 66, and the majority of

deaths occurred in early life. This technique was a forerunner of that used by life

insurance companies for calculating insurance premiums today, as well as a fun-

damental approach to measuring a population’s health. As you will see when we

come back to consider life-tables in more detail in Chapter 2 (see also Appendix 5

for details of how to construct a life-table), things have improved considerably

since Graunt’s time, with about 85 of every 100 men and 90 of every 100 women

now making it to the age of 66 in developed countries such as Australia.

During the nineteenth century, the collection and use of health statis-

tics for what we now call ‘descriptive epidemiology’ continued to develop in

England and also, briefly, in France. Of particular influence as a teacher was

Pierre Charles-Alexandre Louis (1787–1872), who conducted some of the earliest

epidemiological studies of treatment effectiveness when he demonstrated that

bloodletting did not aid recovery from disease. Among his students was William

Farr (1807–1883), physician, statistician and director of the Office of the Reg-

istrar General for England and Wales from 1837, its second year of operation.

Farr studied levels of mortality in different occupations and institutions and in

married and single persons, as well as other facets of the distribution of dis-

ease. He published these and other findings in the Annual Reports of the Regis-

trar General, and the present UK system of vital statistics stems directly from his

work.

John Snow (1813–1858), a physician and contemporary of Farr, was better

known at the time for giving chloroform to Queen Victoria during childbirth, but

is now remembered for his pioneering work in elucidating the mode of trans-

mission of cholera (Snow, 1855). This remains a classic and exciting example of
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epidemiological detection and some of Snow’s personal account of it is given

below and again later in the chapter. His initial observations were based on a

series of reports of individual cases of cholera and, in every instance, he was able

to link the case to contact with another infected person (or their goods), thereby

demonstrating that the disease could spread from person to person. He then sur-

mised, contrary to popular belief at the time, that cholera could be transmitted

through polluted water, a view that was strengthened by his observations linking

a terrible outbreak of cholera around Broad Street, London, in 1854, to the local

water pump (Box 1.4).

Box 1.4 John Snow and the Broad Street Pump (1854)

Within two hundred and fifty yards of the spot where Cambridge Street joins

Broad Street, there were upwards of five hundred fatal attacks of cholera in

ten days . . . The mortality would undoubtedly have been much greater had it

not been for the flight of the population . . . so that in less than six days from

the commencement of the outbreak, the most afflicted streets were deserted

by more than three-quarters of their inhabitants.

There were a few cases of cholera in the neighbourhood of Broad Street,

Golden Square, in the latter part of August; and the so-called outbreak, which

commenced in the night between the 31st of August and the 1st of

September, was, as in all similar instances, only a violent increase of the

malady. As soon as I became acquainted with the situation and extent of this

eruption of cholera, I suspected some contamination of the water of the

much-frequented street-pump in Broad Street . . . but on examining the

water . . . I found so little impurity in it of an organic nature, that I hesitated to

come to a conclusion. Further inquiry, however, showed me that there was

no other circumstance or agent common to the circumscribed locality in

which this sudden increase of cholera occurred, and not extending beyond it,

except the water of the above mentioned pump.

On proceeding to the spot, I found that nearly all the deaths had taken

place within a short distance of the pump. There were only ten deaths in

houses situated decidedly nearer to another street pump. In five of these

cases the families of the deceased persons informed me that they always sent

to the pump in Broad Street, as they preferred the water to that of the pump

which was nearer. In three other cases, the deceased were children who went

to school near the pump in Broad Street. Two of them were known to drink

the water; and the parents of third think it probable that it did so. The other

two deaths, beyond the district which this pump supplies, represent only the

amount of mortality from cholera that was occurring before the irruption

(continued)
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Box 1.4 (continued)

took place . . . (Snow used a spot map to show the spread of cases in relation to

this and other pumps.) I had an interview with the Board of Guardians of St

James’s parish, on the evening of Thursday, 7th September, and represented

the above circumstances to them. In consequence of what I said, the handle

of the pump was removed on the following day.

Snow was also able to explain why some groups of people within the area did

not develop cholera:

The Workhouse in Poland Street is more than three-fourths surrounded by

houses in which deaths from cholera occurred, yet out of five hundred and

thirty-five inmates, only five died of cholera, . . . The workhouse has a pump

well on the premises, . . . and the inmates never sent to Broad Street for water.

If the mortality in the workhouse had been equal to that in the streets

immediately surrounding it on three sides, upwards of one hundred persons

would have died. (Note Snow’s comparison of the ‘observed’ number of cases

with the number ‘expected’.)

There is a Brewery in Broad Street, near to the pump, and on perceiving

that no brewery men were registered as having died of cholera, I called on

Mr Huggins, the proprietor. He informed me that there were above seventy

workmen employed in the brewery, and that none of them had suffered from

cholera . . . The men are allowed a certain quantity of malt liquor, and Mr

Huggins believes they do not drink water at all . . .

The limited district in which this outbreak of cholera occurred, contains a

great variety in the quality of the streets and houses; Poland Street and Great

Pulteney Street consisting in a great measure of private houses occupied by

one family, whilst Husband Street and Peter Street are occupied by the poor

Irish. The remaining streets are intermediate in point of respectability. The

mortality appears to have fallen pretty equally amongst all classes, in

proportion to their number.
(Extracted from Snow, 1855.)

Snow went to a lot of trouble to explain why some people developed cholera

when they were believed not to have drunk the water from the Broad Street

pump. He attributed these cases to the use of water from the pump in the local

public houses, dining rooms and coffee shops. He was also able to explain why

some groups of people within the area did not develop cholera when they lived in

the affected area. If these low-risk groups (brewery workers, workhouse dwellers)

had been users of the nearby Broad Street pump, Snow’s hypothesis would have

been in tatters. His findings among the ‘exceptions’ of both sorts thus bolster

his arguments considerably: for the most part he found convincing explanations
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for why some people apparently at risk did not fall ill, and so too for the small

group not living near the pump who did contract cholera. His openness to col-

lecting all the facts, not just those that obviously supported his contention, is a

salutary reminder of what constitutes good science – and that effective public

health action requires realistic information about the problem at hand.

In addition to mapping the distribution of cases by place, Snow tabulated the

numbers of cases and deaths over time. His time data are displayed graphically,

showing what is called an ‘epidemic curve’, in Figure 1.3.

When did the epidemic start? When did it end? What role did Snow’s dra-

matic removal of the pump handle on 8 September play in interrupting its

course?

The epidemic curve shows that the rise above the preceding baseline began

on 30 August, with a dramatic increase over the next two days. And although the

fall from the peak starts shortly thereafter, case numbers are high for quite some

days later, not getting close to the preceding baseline until two weeks from the

commencement. The epidemic had waned substantially before Snow’s interven-

tion on 8 September, probably largely due to the flight of much of the populace.

However, since the graph shows the total number of cases occurring and does

not take into account the size of the population, the rate of disease (the num-

ber of new cases occurring among the smaller number of people remaining in

the area) could still have been fairly high. Snow’s action may therefore truly have

contributed to containment of the outbreak.

The second half of the nineteenth century saw the expansion of epidemi-

ology in the direct service of public health in the UK, with a similar trend in

the USA starting early the next century. Infectious diseases remained the core
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interest until the early 1900s when Joseph Goldberger, a Hungarian physician

working in the US Public Health Service, showed that pellagra2 was not infec-

tious but of dietary origin and Wade Hampton Frost, another pioneer in the field,

articulated the value of non-experimental epidemiology in discovering disease

origins. Then in 1950, the publication of two case–control studies of lung cancer,

by Richard Doll (epidemiologist) and Austin Bradford Hill (statistician) in the UK

and Ernest Wynder (medical student) and Evart Graham (surgeon) in the USA,

publicly marked the start of modern epidemiology.

Both papers (Doll and Hill, 1950; Wynder and Graham, 1950) showed that

patients with lung cancer (cases) tended to smoke much more than people with-

out lung cancer (controls). Doll and Hill then set out to confirm their findings

using a different, prospective design (a cohort study). They wrote to a large num-

ber of British doctors to find out how much they smoked and then ‘followed’

them (by mail and death records) over subsequent years to see what they died

from. They again showed quite clearly that those who smoked cigarettes were

much more likely to die of lung cancer than those who did not smoke, and the

more they smoked the higher their risk (Figure 1.4). What is now known as the

‘British Doctors Study’ ran for more than 50 years (Doll et al., 2004). Unfortu-

nately, in spite of this and other clear evidence of the harmful effects of smok-

ing, it was many years before attempts to discourage people from smoking were

made, and it is only recently that tobacco companies have begun to admit that

their products cause disease.

Twenty years after those key case–control studies came the publication of the

first comprehensive and widely influential disciplinary text: Epidemiology: Prin-

ciples and Methods by Brian MacMahon and Thomas Pugh (1970). Highly read-

able and erudite, it remains a benchmark for successors.

2 A disease common in poorer areas, characterised by diarrhoea, dermatitis, dementia and ultimately

death.
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What does epidemiology offer?

You will have discerned parts of the answer to this question from what you have

already read and done in reaching this point. Here we recap and expand to

bring the elements together more directly and fully, and thereby effectively map

the content of the rest of the book. This section sketches the broad purposes

of epidemiology and the next aims to illuminate these through some concrete

examples.

A large part of public health is about identifying health problems within a

community (who is becoming ill, where and when?), identifying what is caus-

ing the problems and then testing possible solutions to try to resolve or reduce

the problem. Epidemiology is fundamental in providing the data needed to make

public health judgements in each of these areas and the data come from studies

of ‘populations’ (groups of people) of all sorts and sizes. Epidemiology largely

deals with descriptions and comparisons of groups of people who vary widely

in their genetic make-up, behaviour and environments. The great challenge

for epidemiologists is to deal with such multiple influential health-modifiers

in a systematic and logical way that produces information of practical value

(to improving a community’s health). How this challenge is met is what this

book is all about.

Description of health status of populations

The observation and recording of health status makes it possible to identify

sudden (and not-so-sudden) changes in the level of disease over time that

might point to a need for action or further investigation. Similarly, differences

between groups of people in one area, or between different geographical areas,

can also give clues regarding the causes of disease (or health) in those groups.

Such descriptive statistics are also important for health authorities and planners

who need to know the nature and size of the health challenges faced by their

communities.

Causation

Once a problem has been identified, we need to know what causes it, and prob-

ably the best-recognised use of epidemiology is in the search for the causes of

disease. In some cases strong genetic factors have been identified, as for example

with cystic fibrosis, a lung disease that occurs because of specific genetic defects.

In other instances major environmental factors are crucial, such as asbestos in

the development of lung mesothelioma (a rare form of lung cancer). In general,

though, there is almost always some interaction between genetic and environ-

mental factors in the causation of disease. Epidemiological tools are central to
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the identification of modifiable factors that will allow preventive interventions.

(Note that in epidemiology and public health there remains some confusion over

what is meant by environmental factors. We, and most others, take this to mean

the sum of all non-genetic factors, including psychological, behavioural, social

and cultural traits.)

Evaluation of interventions

Once we have identified a factor that causes disease, we then want to know

whether we can reduce a population’s exposure to this factor and so prevent the

occurrence of disease – a ‘primary’ prevention programme (we will discuss pre-

vention further in Chapter 14). Epidemiology has a core role to play in this pro-

cess and is also key to the evaluation of different treatments for a particular dis-

ease (an aspect of both mainstream and clinical epidemiology) and assessments

of the effectiveness of health services.

Natural history and prognosis

Epidemiologists are also concerned with the natural history, or the course and

outcome, of disease, both in individuals and in groups. Prognosis often implies

the course of disease after treatment, but the terms tend to be used rather inter-

changeably. Such knowledge has obvious value for discussing treatment options

with individual patients, as well as for planning and evaluating interventions.

Of particular interest is whether early disease is present for long before symp-

toms drive someone to seek medical attention. If this ‘sub-clinical’ disease can

be detected and if, as a result, treatment is more effective, this opens the way for

screening programmes that aim to improve treatment outcomes. (We will dis-

cuss screening further in Chapter 15.)

What do epidemiologists do?

How then are these objectives of epidemiological research attained? Let us look

briefly at some more examples of what the practice of epidemiology can yield

across some of its main dimensions.

Descriptive studies: person, place and time

By ‘person’

In some countries there is concern over health differences between indige-

nous people and the rest of the population. Figure 1.5 shows Australian mor-

tality data comparing Indigenous with non-Indigenous people. The bars show

how many times higher mortality from circulatory, respiratory and infectious
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Figure 1.5 Age-standardised
mortality ratios for selected
diseases in the Indigenous
compared to the non-Indigenous
population in Australia, 2001 to
2005. (Drawn from: Pink and
Allbon, 2008.) The bars indicate
how much higher mortality was
among Indigenous men (open
bars) and women (solid bars)
compared to non-Indigenous
people. The vertical lines
indicate 95% confidence
intervals for these estimates
(a measure of how certain the
figures are).

diseases and cancer is in Indigenous men and women in Australia compared

to non-Indigenous Australians (the horizontal line at the level ‘1’ indicates the

point where mortality rates in Indigenous and non-Indigenous people would be

equal).

How many times higher is mortality from circulatory diseases in Indigenous

males than in non-Indigenous males?

What is the obvious striking fact about relative mortality in Indigenous people in

general?

Mortality for circulatory diseases in Indigenous men is just over three times

that in non-Indigenous men and the difference for women is almost as great.

The data presented indicate a much worse health situation for Indigenous

Australians than for the non-Indigenous population. (Note: these standardised

mortality ratios are similar to the relative risk in the food poisoning example ear-

lier. They show how many times more likely it was for an Indigenous Australian

to die compared with a non-Indigenous Australian in 2001–2005. The process of

standardisation also takes account of the fact that Indigenous Australians are, on

average, younger than non-Indigenous people. We will discuss these measures

further in Chapter 2.)

By ‘place’

How ‘healthy’ is any given country in relation to the rest of the world – are things

better or worse there compared with other countries? Figure 1.6 shows cardio-

vascular disease mortality rates in males in different countries. You can see that

men in the Netherlands, for example, are considerably better off than those in

the UK, New Zealand and particularly Poland and Hungary; but things could be
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better – as shown by the lower rates in Spain, France, Australia and Japan. What is

it about Japanese men that makes them less likely to die of cardiovascular disease

than Dutch men? If we can work this out then perhaps we could reduce cardio-

vascular mortality in the Netherlands to the level seen in Japan (provided that the

differences are not purely genetic). By studying patterns of disease and relating

them to variations in risk factors for the disease we can come up with possible

reasons why some people or places have higher rates of disease than others or

why disease rates have changed over time.

By ‘time’

What emerges if we look at the changing patterns of mortality in a country over

time? The graph in Figure 1.7 shows mortality trends for selected conditions and

groups over almost three decades (1979–2006) in the USA.

What are the most notable features of Figure 1.7?

The picture we see is mixed, some good news, some concerning. The most

obvious health success story is the consistent downward trend in deaths from

heart attacks, with more than 100 fewer people in every 100,000 (half as many)

dying from them at the end of the period. A less dramatic decline is seen for

motor vehicle accidents. Deaths from AIDS rose until 1995 and have fallen since
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(an epidemic where perhaps the worst is past, at least for the USA). The same is

true for lung cancer in men, although on this scale it is not striking. Most worry-

ing is the steady rise in lung cancer deaths among women.

However, these details don’t give us the big picture. Some up, some down,

some changing direction: what was happening to overall mortality in the USA

during the period? Total mortality rates fell from about 1,000 to 810 per 100,000

per year, but we would not be able to fit this information onto the same graph

without losing almost all the details we noted above. We could, of course, draw a

separate graph showing the total death rate, but we can do both by changing the

scale of the vertical axis, as in Figure 1.8.

Instead of a linear scale (1, 2, 3, 4, . . . ), we have now used a ‘log’ (logarithmic)

scale (1, 10, 100, 1,000, . . . ) where the distance between 1 and 10 (a 10-fold dif-

ference) is the same as the distance between 10 and 100 (also a 10-fold differ-

ence) and so on. Now we can fit mortality rates as different as 4.0/100,000 (AIDS

mortality in 2006) and 1,000/100,000 (all-cause mortality in 1979) on the same

page. It also allows us to compare relative changes in mortality rates directly,

with parallel slopes reflecting equal rates of change. The fall in heart attacks looks

much less dramatic now: the drop is only about 2%–3% per year but, as Figure 1.7

showed, this led to a large absolute benefit, because the death rate was so high to

start with. The rate of change for AIDS looks much steeper on a log scale because

the percentage change is greater, but the absolute benefits are clearly much less.

In public health we need to think on both relative and absolute scales: they tell

us different things that are useful for different purposes. We will take this further

later in the book.
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Box 1.5 Smallpox

The elimination of smallpox had a major impact on the health of millions

of people, especially in many of the poorest countries. Descriptive

epidemiology played a major role by providing information about the

distribution of cases (jointly by person, place and time) and levels of

transmission, by mapping outbreaks and by evaluating control measures. In

1967, there were 10–15 million new cases and 2 million deaths from smallpox

in 31 countries. By 1976, smallpox was being reported in only two countries

and the last naturally occurring case was recorded in 1977. Elimination of

this scourge was helped by simple but painstaking case-finding and

counting.

See Box 1.5 for a practical example of how simple descriptive epidemiology

can help to solve a major global health problem.

Analytic studies

Ideas generated by such descriptive work can then be tested further in analytic

studies, looking for associations between potential causal agents and diseases.

This research is based on facts collected from groups of individuals, not large-

scale population statistics. Are people with higher blood pressure more likely to

develop coronary heart disease than those with normal blood pressure? Are peo-

ple who smoke more likely to develop lung cancer than those who do not? Even
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Box 1.6 The Nurses’ Health Study

This cohort study of 120,000 US nurses was started in 1976 by Frank Speizer

of the Channing Laboratory, Harvard Medical School. The study was initially

funded for five years to study whether the oral contraceptive pill caused

breast cancer, but the nurses are still being followed over 30 years later.

Hundreds of scientific papers have been published, covering scores of

diseases and exposures and investigating their inter-relationships. The study

has been particularly influential in the field of diet and disease (nutritional

epidemiology), owing to diet questionnaires that the nurses have been

completing since 1980. As with other long-term follow-ups of cohorts, such

as the British Doctors Study of Doll and Hill, its success is jointly dependent

on the enthusiasm and commitment of researchers and participants. For

the latter this has extended to providing blood, toenail clippings (for

measurement of trace metals) and samples of tapwater over the years! This

human side to epidemiology does not feature much in textbooks but is

fundamental to successful fieldwork.

more usefully, how much more likely is a smoker to develop lung cancer than a

non-smoker? Does risk depend on the number of cigarettes smoked? That is, how

strong is the effect of the exposure; and does it increase with higher levels of expo-

sure? In the British Doctors Study mentioned earlier, Doll and Hill found that

the risk of lung cancer increased steadily as people smoked more cigarettes (Fig-

ure 1.4). This adds weight to the idea that smoking cigarettes really does affect

the chance that an individual will develop lung cancer. In Box 1.6 you will find

a brief account of another cohort study which has studied many exposures and

diseases over the past three decades.

Once we have found an association, the challenge is then to evaluate this in

order to determine whether something really causes disease or is linked to it only

secondarily. If we find that people with a peptic ulcer drink a lot of milk, does this

mean that drinking milk causes ulcers or simply that people with an ulcer drink

milk to ease their pain? In Chapter 10 we will look more deeply at this challenge.

Intervention studies

Finally, epidemiologists evaluate new preventive measures, programmes or

treatments that are designed to reduce ill health or promote good health. They

also monitor the effectiveness of these ‘intervention’ programmes after they have

been implemented: do they actually achieve the good they set out to do? These

programmes can include evaluations of different health promotion strategies

targeted at individuals or whole communities, or clinical trials of new drugs

designed to cure disease. Does taking aspirin reduce your chance of having a
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heart attack? Which of several strategies is better at helping people give up smok-

ing? Is one drug better than another for treating a heart attack?

A natural experiment

We will end this chapter with another example from John Snow’s On the Mode

of Communication of Cholera (1855) because, although this text is more than

150 years old, the methods he used and his combination of flair, skill, logic and

dogged persistence remain the cornerstones of modern epidemiology. His work

also exemplifies, in more detail than modern papers, the logical dissection of evi-

dence about disease patterns to identify practical preventive strategies – which

is still the key function of epidemiology – and it gives an excellent sense of the

role and utility of epidemiology in practical public health.

In the early 1850s, London was cholera-free for a number of years and dur-

ing that period one of the major water supply companies (the Lambeth Com-

pany) moved their waterworks out of London, thereby obtaining water free of the

sewage of the city. During the next major cholera outbreak in 1853–1854 Snow

was able to obtain information about the number of deaths occurring in the dif-

ferent sub-districts of London and he found that cholera mortality was lower in

areas supplied by water from the Lambeth Company than in those supplied by

the Southwark and Vauxhall water company which continued to take water from

Battersea in the city. He did not stop there, but went on to conduct his ‘Grand

Experiment’ (see Box 1.7).

Conclusions

Again we have a vivid picture of a master epidemiologist at work. Not satisfied

that his hypothesis had been adequately tested, Snow identified the opportunity

to conduct an even more rigorous test – his ‘Grand Experiment’ – and in doing so

he addressed the major epidemiological issues that still concern us today.
� He identified a situation in which people were unknowingly divided into two

groups differing only in the source of their water, thereby creating what was

effectively a randomised trial (we will look at the different types of epidemio-

logical study in Chapter 4).
� In doing so, he realised the importance of ruling out other differences between

the groups (e.g. sex, age, occupation, socioeconomic status) that could explain

any mortality differences (a problem known as confounding that we will come

back to in Chapter 8).
� He worked long and hard to acquire accurate information about both the

water supply and the number of cholera deaths in each house – we will
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Box 1.7 A grand experiment

Although the facts . . . afford very strong evidence of the powerful influence

which the drinking water containing the sewage of a town exerts over the

spread of cholera, when that disease is present, yet the question does not end

here; for the intermixing of the water supply of the Southwark and Vauxhall

Company with that of the Lambeth Company, over an extensive part of

London, admitted of the subject being sifted in such a way as to yield the

most incontrovertible proof on one side or the other . . . A few houses are

supplied by one Company and a few by the other, according to the decision

of the owner or occupier at that time when the Water Companies were in

active competition . . . Each Company supplies both rich and poor, both large

houses and small; there is no difference either in the condition or occupation

of the persons receiving the water of the different Companies. Now it must be

evident that, if the diminution of cholera, in the districts partly supplied with

the improved water, depended on this supply, the houses receiving it would

be the houses enjoying the whole benefit of the diminution of the malady,

whilst the houses supplied with the water from Battersea Fields would suffer

the same mortality as they would if the improved supply did not exist at all.

As there is no difference whatever, either in the houses or the people

receiving the supply of the two water Companies, or in any of the physical

conditions with which they are surrounded, it is obvious that no experiment

could have been devised which would more thoroughly test the effect of

water supply on the progress of cholera than this which circumstances

placed ready made before the observer.

The experiment, too, was on the grandest scale. No fewer than three

hundred thousand people of both sexes, of every age and occupation, and of

every rank and station, from gentlefolk down to the very poor, were divided

into two groups without their choice, and, in most cases, without their

knowledge; one group being supplied with water containing the sewage of

London, and amongst it, whatever might have come from the cholera

patients, the other group having water quite free from such impurity.

To turn this grand experiment to account, all that was required was to

learn the supply of water to each individual house where a fatal attack of

cholera might occur . . .

The epidemic of 1854

When the cholera returned to London in July of the present year . . . I resolved

to spare no exertion . . . to ascertain the exact effect of the water supply on the

progress of the epidemic, in the places where all the circumstances were so

happily adapted for the inquiry . . . I accordingly asked permission at the

(continued)
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Box 1.7 (continued)

General Register Office to be supplied with the addresses of persons dying of

cholera, in those districts where the supply of the two Companies is

intermingled in the manner I have stated above . . . I commenced my inquiry

about the middle of August with two sub-districts of Lambeth . . . There were

forty-four deaths in these sub-districts down to 12th August, and I found that

thirty-eight of the houses in which these deaths occurred were supplied with

water by the Southwark and Vauxhall Company, four houses were supplied

by the Lambeth Company, and two had pump-wells on the premises and no

supply from either of the Companies.

As soon as I had ascertained these particulars, I communicated them to

Dr Farr, who was much struck with the result, and at his suggestion the

Registrars of all the south districts of London were requested to make a

return of the water supply of the house in which the attack took place, in all

cases of death from cholera. This order was to take place after the 26th of

August, and I resolved to carry my inquiry down to that date, so that the facts

might be ascertained for the whole course of the epidemic.

The inquiry was necessarily attended with a good deal of trouble. There

were very few instances in which I could at once get the information I

required. Even when the water rates were paid by the residents, they can

seldom remember the name of the Water Company till they have looked for

the receipt. In the case of working people who pay weekly rents, the rates are

invariably paid by the landlord or his agent, who often lives at a distance, and

the residents know nothing about the matter. It would, indeed, have been

almost impossible for me to complete the inquiry, if I had not found that I

could distinguish the water of the two companies with perfect certainty by a

chemical test. The test I employed was founded on the great difference in the

quantity of chloride sodium [salt] contained in the two kinds of water, at the

time I made the inquiry . . .

According to a return which was made to Parliament, the Southwark and

Vauxhall Company supplied 40,046 houses from January 1st to December

31st, 1853, and the Lambeth Company supplied 26,107 houses during the

same period; consequently, as 286 fatal attacks of cholera took place, in the

first four weeks of the epidemic, in houses supplied by the former Company,

and only 14 in houses supplied by the latter, the proportion of fatal attacks to

each 10,000 houses was as follows. Southwark and Vauxhall 71, Lambeth 5.

The cholera was therefore fourteen times as fatal at this period amongst

persons having the impure water of the Southwark and Vauxhall Company

as amongst those having the purer water from Thames Ditton.
(Excerpted from Snow, 1855.)
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consider sources of data in Chapter 3 and will discuss the problem of error in

Chapter 7.
� He measured the occurrence of cholera in the two groups of houses served by

the different water companies – we will look further at measures such as these

in Chapter 2.
� He calculated how many times more common cholera deaths were in those

houses receiving the contaminated water – we will come back to this measure

(again a relative risk) in Chapter 5.
� He then integrated all of his information to reach the conclusion that cholera

was indeed caused by contaminated water – Chapter 10.

He did not stop there, but went on to make a series of clear practical recommen-

dations to prevent transmission of cholera in future – sensible measures includ-

ing the need for cleanliness and sterilisation that are still practised today.

Snow’s work therefore sets the scene for the chapters to come. Chapters 2–

8 cover the basic principles and underlying theory of epidemiology in a very

‘hands-on’ way, leading to Chapters 9–11, which integrate this information in a

practical look at how we read and interpret epidemiological reports, think about

assessing causality and finally synthesise a mass of information in a single review.

Chapters 12–15 then look at some specific applications of epidemiology and

Chapter 16 concludes with a fresh look at what epidemiology is and what it can

do to help address the health concerns facing the world today.

But, before you move on, take a minute to stop and think. Imagine that some-

one asked you what epidemiology was and why it was useful. Could you now give

them a satisfactory explanation in a few sentences?
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Box 2.1 Who drinks the most beer?

According to the Brewers Association of Japan, the Chinese now drink the

most beer in the world (28,640 million litres in 2004) followed by the

Americans (23,974 million litres). In contrast the Czech Republic ranked a

lowly 15th in terms of total consumption (1,878 million litres) and Ireland

didn’t even make the top 25. This information may be useful for planning

production, but do the Chinese and Americans really drink more beer than

the rest of us? An alternative and possibly more informative way to look at

these data is in terms of consumption per capita. When we do this, the USA

falls to 13th position in the ‘beer drinking league table’ (82 litres per capita

in 2004) and China falls way off the screen (a mere 22 litres per capita). The

Czechs are now the champions (157 litres per capita), followed by the Irish

(131 litres per capita) with Germany and Australia, two nations who tend to

pride themselves on their beer drinking, ranked in 3rd (116 litres) and 4th

(110 litres) place, respectively.
(Source: www.brewers.or.jp, accessed 10 October 2009.)

Many different measures are used by researchers and policy makers to describe

the health of populations. You have already met some of these, for example the

attack rate which was used to investigate the source of the outbreak investigation

in the previous chapter. In this chapter we will introduce you to some more of

the most commonly used measures so that you can use and interpret them cor-

rectly. We will first discuss the three fundamental measures that underlie both

the attack rate and most of the other health statistics that you will come across in

health-related reports and will then look at how they are calculated and used in

practice. We will finish by considering some other more elaborate measures that

attempt to get closer to describing the overall health of a population. As you will

see, all of this is not always as straightforward as it might seem.

What are we measuring?

Although, as discussed in the previous chapter, we are primarily interested in

‘health’, this is a somewhat abstract concept. In practice, it is much easier to

define ill-health or disease and this is what we usually measure. Lack of a partic-

ular disease does not necessarily imply ‘health’ but simply a lack of the disease

of interest.

Before we can start to measure disease, we have to have a very clear idea of

what it is that we are trying to determine. In general, the diagnosis of disease is

based on a combination of symptoms, subjective indications of disease reported

by the person themselves; signs, objective indications of disease apparent to
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the physician; and additional tests. Criteria for making a diagnosis can be very

simple: the presence of antibodies against an infectious agent can indicate infec-

tion, and diagnosis of most cancers is fairly straightforward on the basis of tis-

sue histology (examination with a light microscope); but for some diseases the

diagnostic criteria are much more complex, involving combinations of signs and

symptoms.

For health data to be meaningful, diagnostic criteria leading to a case defini-

tion have to be clear, unambiguous and easy to use under a wide range of cir-

cumstances. It is important to remember that different case definitions can lead

to very different pictures. As shown in Figure 2.1, a study in the United Arab Emi-

rates showed that the prevalence of gestational diabetes (diabetes during preg-

nancy) in a group of 3,500 women was much higher using one set of criteria to
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Table 2.1 Estimates of the number of people living with HIV/AIDS and the
number of new HIV infections around the world in 2007.

People living New HIV

Population with HIV/AIDS infections

Region (×1000) (end of 2007) (2007)

Sub-Saharan Africa 788,000 22,500,000 1,700,000

East Asia 1,550,000 800,000 92,000

Oceania 35,000 75,000 14,000

South and Southeast Asia 2,176,000 4,000,000 340,000

Eastern Europe & Central Asia 322,000 1,600,000 150,000

Western and Central Europe 486,000 760,000 31,000

North Africa & Middle East 395,000 380,000 35,000

North America 335,000 1,300,000 46,000

Caribbean 40,000 230,000 17,000

Latin America 529,000 1,600,000 100,000

Total 6,656,000 33,245,000 2,525,000

(Data source: UNAIDS, 2007 and Population Reference Bureau, 2007.)

diagnose diabetes (Carpenter’s criteria, 30.4%) than another (O’Sullivan’s crite-

ria, 20.2%) (Agarwal and Punnose, 2002). If you want to compare information

from different reports the first thing to check is that you are comparing apples

with apples – have they all measured the same thing using the same criteria? This

can be a particular problem when trying to compare patterns of disease over time

because changes in diagnostic criteria can lead to sudden increases or decreases

in the number of cases recorded.

The concepts: prevalence and incidence

Once we have defined what we mean by disease, we can then go on to measure

how often it occurs.

In Table 2.1 we see the estimated number of people living with HIV/AIDS in

the various regions of the world at the end of 2007, and the number of new cases

of HIV infection that occurred during 2007. These data clearly show the huge

burden borne by sub-Saharan Africa, which has five times more cases than any

other region, but what can they tell us about the relative importance of HIV/AIDS

in other regions? The East Asia and Western/Central Europe regions both had

approximately 800,000 people living with HIV/AIDS at the end of 2007. How can

we describe and compare the burden of HIV/AIDS in these populations more

fully?
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Table 2.2 The prevalence of HIV/AIDS and incidence of HIV infection around the world in 2007.

People living

Population with HIV/AIDS New HIV Incidence (per

Region (×1000) (end of 2007) Prevalence (%) infections (2007) 100,000/yr)

Sub-Saharan Africa 788,000 22,500,000 2.86% 1,700,000 215.7

East Asia 1,550,000 800,000 0.05% 92,000 5.9

Oceania 35,000 75,000 0.21% 14,000 40.0

South and Southeast Asia 2,176,000 4,000,000 0.18% 340,000 15.6

Eastern Europe & Central Asia 322,000 1,600,000 0.50% 150,000 46.6

Western and Central Europe 486,000 760,000 0.16% 31,000 6.4

North Africa & Middle East 395,000 380,000 0.10% 35,000 8.9

North America 335,000 1,300,000 0.39% 46,000 13.7

Caribbean 40,000 230,000 0.58% 17,000 42.5

Latin America 529,000 1,600,000 0.30% 100,000 18.9

Total 6,656,000 33,245,000 0.50% 2,525,000 37.9

(Data source: UNAIDS, 2007 and Population Reference Bureau, 2007.)

What percentage of people in Western and Central Europe had HIV/AIDS at the

end of 2007?

What percentage of people in Western and Central Europe became HIV-positive

during 2007?

At the end of 2007, 760,000 of the 486,000,000 people in Western and Central

Europe or 0.16% of the population were living with HIV/AIDS. During 2007,

another 31,000 people or 0.0064% of the population became infected with HIV.

Now 0.0064% is a very small number. It simply tells us that there were 0.0064 new

HIV infections for every 100 people during 2007, so an alternative way to present

the same information would be to multiply the numbers by 1,000 and say that

there were 6.4 new infections in every 100,000 people (6.4/100,000 or 6.4/105).1

What you calculated above were, first, the prevalence of existing HIV/AIDS in

Western and Central Europe at the end of 2007 and, secondly, the incidence of

new HIV infections in the same region during 2007. These measures give us two

different ways of quantifying the amount of disease in a population. Table 2.2

shows the same information for each of the regions. These data confirm the high

levels of HIV/AIDS in sub-Saharan Africa and show us that, despite the relatively

low numbers of new cases in Oceania and the Caribbean, the small size of these

populations means that the incidence there is also high (note that 70% of cases

1 If you are not familiar with this nomenclature, the superscript number is simply a shorthand way

to say how many zeros the number has. So, 102 would be 100, 105 is 100,000 and 106 is one million

(1,000,000).
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in Oceania occur in Papua New Guinea, which, with a population of only about

6.4 million, has an incidence of about 153 per 100,000/year). The data also show

us that, although the actual numbers of cases in East Asia and Western/Central

Europe are similar, the prevalence per 100 people (%) is much lower in East Asia

(0.05%) than in Western and Central Europe. Like the example in Box 2.1, these

data emphasise the need to take the size of a population into account when

making comparisons between populations.

Prevalence

The prevalence of a disease tells us what proportion of a population actually

has the disease at a specific point in time: an estimated 0.16% or 160 of every

100,000 people in Western and Central Europe had HIV/AIDS at the end of 2007.

This is a snapshot of the situation at a single point in time and, for this rea-

son, it is sometimes called the ‘point’ prevalence. Note that you may also see

references to ‘period prevalence’, which measures the proportion of the popu-

lation that had the disease at any time during a specified period. This is a com-

plex measure that combines the prevalence (everybody who had the disease at

the start of the period) and incidence (all of the new cases of disease during the

period).

Prevalence measures the amount of a disease in a population at a given point

in time:

Prevalence = Number of people with disease at a given point in time
Total number of people in the population

(2.1)

Prevalence measures are just one number (the number of people with disease)

divided by another number (the total number of people in the population). They

have no units, and are mostly reported simply as a proportion or a percentage

(2.9% of Sub-Saharan Africans had HIV/AIDS at the end of 2007), but may also

be shown as cases/population (390/100,000 North Americans had HIV/AIDS at

the end of 2007). Note that the precise answer for the proportion of Sub-Saharan

Africans with HIV/AIDS is 0.028553299 . . . or 2.853299% but, for simplicity, we

have rounded this to one decimal place, giving 2.9%.2 (In our experience, people

are sometimes confused by percentages because there is often more than one

way in which they can be calculated and this can lead to problems with interpre-

tation – see Box 2.2 for some additional guidance.) Although you will often see the

2 If the first number that is cut off is between 0 and 4 you round down and if it is between 5 and 9 you

round up. In this case the first number to go was a 5 so we rounded 2.8553299 up to 2.9. If, however,

it had been 2.8453299 then we would have rounded down to 2.8. In practice it is rarely necessary to

show results to more than two or three significant figures, i.e. numbers other than zero.
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Box 2.2 A note about percentages

Imagine a study that gave the following results:

Asthma No asthma Total

Non-smokers 40 360 400

Smokers 30 170 200

Total 70 530 600

There are two ways that we can look at these data. One way would be to

calculate the percentages of (a) non-smokers and (b) smokers who have

asthma – these are row percentages because we use the total of each row, the

number of non-smokers or smokers, as the denominator (note: the

denominator is the bottom half of a fraction and the numerator the top half):

Asthma No asthma Total

Non-smokers 40 ÷ 400 = 10% 360 ÷ 400 = 90% 400 = 100%

Smokers 30 ÷ 200 = 15% 170 ÷ 200 = 85% 200 = 100%

This tells us that 10% of non-smokers and 15% of smokers have asthma.

Alternatively, we could use the same data to calculate the percentage of

people with and without asthma who smoke – these are column percentages

because now we use the total of each column, the number of people with or

without asthma, as the denominator:

Asthma No asthma

Non-smokers 40÷70 = 57% 360 ÷ 530 = 68%

Smokers 30÷70 = 43% 170 ÷ 530 = 32%

Total 70 = 100% 530 = 100%

This tells us that 43% of people with asthma and only 32% of people without

asthma are smokers.

It is very important to decide first which percentages are most relevant for

a particular situation and then to calculate and interpret the percentages

correctly. Saying that 43% of people with asthma are smokers (correct) is not

the same as saying that 43% of smokers have asthma (incorrect; 15% of

smokers have asthma).
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term ‘prevalence rate’, this is not a true rate because a rate should include units of

time. An example of a true rate is the use of distance travelled per hour, i.e. kph or

mph, to measure the speed of a car. The time point at which people are counted

should, however, always be reported when giving an estimate of prevalence. This

is often a fixed point in calendar time, such as 31 December 2007, but it can also

be a fixed point in life, for instance, birth or retirement. For example, if 1,000

babies were born alive in one hospital in a given year and, of these, five babies

were born with congenital abnormalities, we would say that the prevalence of

congenital abnormality at birth was 5/1,000 live births in that year. Prevalence

can be expressed per 100 people (per cent, %) or per 1,000 (103), 10,000 (104) or

100,000 (105). It doesn’t matter as long as it is clear which is being used.

In practice, it would be rare to identify all prevalent cases of disease at one

precise point in time; e.g. a blood pressure survey may take weeks or months

to conduct, given limited numbers of researchers, amounts of equipment and

availability of those being measured. The exact size of the population may also

not be known on a given day and this might well be based on an estimate or

projection from census data.

Incidence

The incidence of disease measures how quickly people are catching the disease

and it differs from prevalence because it considers only new infections, some-

times called incident cases, that occurred in a specific time period. During 2007,

1.7 million people in Sub-Saharan Africa or 0.22% of the population were newly

diagnosed as HIV-positive. Another way of saying this is that the incidence of HIV

infection was 216/100,000 per year (Table 2.2). You will find that people use the

term ‘incidence’ on its own to mean slightly different things – some use it for the

number of new cases (i.e. 1.7 million), some for the proportion of people who are

newly infected (i.e. 0.0022 or 0.22%) and some for the rate at which new infection

has occurred (i.e. 216 new cases per 100,000 people per year). To avoid confusion

we will describe the latter measure as the incidence rate, which, unlike measures

of prevalence, is a true rate because it includes a measure of time.

Incidence rate = Number of people who develop disease in one year
Average number of people in the population

(2.2)

We will look further at how to calculate these measures later, but first let us

consider the concept of the ‘population at risk’ and the relationship between

prevalence and the incidence rate.

Population at risk

In the example above it is probably not unreasonable to assume that everyone

might be at risk of contracting HIV, although, obviously, some groups will be

more ‘at risk’ than others; but what if the disease of interest were something



The concepts: prevalence and incidence 37

like cervical cancer? To use the whole population to calculate rates of cancer of

the cervix (the neck of the uterus) would be inappropriate, because a man could

never develop the disease. We would calculate a sex-specific rate by dividing the

number of cases by the number of females in the population. However, many

women will have had a hysterectomy and their uterus will have been removed.

They are then no longer at risk of developing cervical cancer and so, strictly

speaking, should not be included in counts of the population at risk. In practice,

published rates of both cervical and endometrial (uterine) cancer rarely allow for

this so it is difficult to compare the rates of these cancers between countries that

have very different hysterectomy rates. We discussed above the importance of

making sure that different reports used the same definition of disease (i.e. they

counted the same thing in the numerator); it is also crucial to ensure that the

denominators represent equivalent populations (e.g. they are similar in age, sex

distribution, etc.).

The relationship between incidence and prevalence

If two diseases have the same incidence, but one lasts three times longer than

the other, then, at any point in time, you are much more likely to find people

suffering from the more long-lasting disease. Very crudely (and assuming that

people do not move into or out of the area), the relationship between prevalence

(P) and the incidence rate (IR) depends on how long the disease persists before

cure or death (average duration of disease, D):

P ≈ IR × D (2.3)

where ≈ means approximately equal to. (Box 2.3 shows a more complex version

of this formula.)

Box 2.3 More about the relationship among prevalence,
incidence and duration

The relationship P ≈ IR × D is approximately true in what is called a

stationary population where the number of people entering the population

(immigration and birth) balances the number of people leaving (emigration

and death). A second requirement is that the prevalence of disease must be

low (less than about 10%). This is the case for many diseases, but a more

general formula that does not require the disease to be rare is

P
1 − P

≈ IR × D (2.4)

where P is the prevalence of disease expressed as a proportion and 1 – P is

the proportion of non-diseased people; e.g. if the prevalence (P) is 2% or 0.02

then 1 – P is 0.98.
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For example, hepatitis A has a relatively high incidence: according to the US

Centers for Disease Control and Prevention (CDC), in 2006 there were approxi-

mately 32,000 new infections in the USA and approximately one-third of the pop-

ulation had been infected at some time (CDC Division of Viral Hepatitis, 2009).

However, because it is an acute infection and people recover fairly quickly, the

prevalence of hepatitis A infection at any one point in time would be quite low. In

contrast, hepatitis C infection is less common (approximately 19,000 new infec-

tions in 2006) but most of those infected develop a chronic infection and so are

infected for life. This means that the prevalence of hepatitis C infection is much

higher, with between 2.7 and 3.9 million Americans estimated to be infected in

2006.

If a new treatment were developed for a disease, what effect would this have on

the prevalence and incidence of the disease?

If the new treatment meant that people were cured more quickly and so were ill

for less time then the prevalence would fall. However, if the disease had previ-

ously been fatal and the new treatment meant that people lived longer with the

disease then the prevalence would increase. In general, a new treatment will not

affect the incidence of a disease. The only exception to this rule might be for an

infectious disease: if people were ill and thus infectious for less time, they might

pass the infection to fewer people and so the incidence would fall.

As you can see, the prevalence of a disease reflects a balance of several factors.

If the incidence of a disease increases then the prevalence will also increase; if the

duration of sickness changes then the prevalence will change. This means that

the prevalence of a disease is generally not the best way to measure the under-

lying forces driving the occurrence of the disease – we must use the incidence

rate for this. Nonetheless, prevalence is useful for measuring diseases that have a

gradual onset and long duration such as type-2 diabetes and osteoarthritis, and

also for capturing the frequency of congenital malformations at birth. It is also of

direct value for describing the overall disease burden of a population and, conse-

quently, is fundamentally important for assessing healthcare needs and planning

health services.

Measuring disease occurrence in practice: epidemiological studies

As we discussed above, the occurrence of disease can be quantified by look-

ing at the prevalence or the incidence rate. We will now consider these

further, together with an alternative way of measuring incidence known as

cumulative incidence. These three fundamental measures form the basis of

descriptive epidemiology, which seeks to answer the first four of the five core

questions that you met in Chapter 1: What (diseases are occurring)? Who (is

getting them)? Where? and When? The measures can all be calculated from
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routinely collected data (as in the HIV example above) or from results of stud-

ies conducted specifically to measure the incidence or prevalence of disease, and

they are widely used in health reports around the world. We will come back to the

use of routine data and for now will concentrate on how we measure the occur-

rence of disease in an epidemiological study.

To measure the prevalence of disease we need to conduct a survey, or what is

often called a cross-sectional study, in which a random sample (or cross-section)

of the population is questioned or assessed to ascertain whether they have a par-

ticular condition at a given point in time. To measure the incidence of disease we

need to start with a group (or cohort) of people who are currently free of the dis-

ease of interest but who are ‘at risk’ of developing it. We then follow them over

time to see who actually develops the disease (a cohort study; e.g. the British

Doctors Study mentioned in Chapter 1).

When we conduct a research study we can specify exactly who is in the study

and can usually collect individual data for all (or most) of those people. We

can identify who is ‘at risk’, calculate quite accurate measures of disease inci-

dence (or prevalence) and also relate the occurrence of disease to its potential

causes.

Consider, for example, a study conducted in a hypothetical primary school

with 100 pupils. Imagine that, on the first day of the new term, nine children

had a cold. Over the next week another seven children developed a cold.

What percentage of children had a cold on the first day of term?

What percentage of the children who didn’t have a cold on the first day of term

developed one during the next week?

The first measure that you calculated is the prevalence of the common cold in

this group of children: 9 out of 100 children or 9% had a cold on the first day of

term. The second measure is known as the cumulative incidence of colds: out of

91 children ‘at risk’ of developing a cold (i.e. they did not have one already), 7 or

7.7% developed one during the first week of term. The denominator (population

at risk) is 91 in this case because 9 of the 100 children already had a cold and were

not therefore ‘at risk’ of catching another at the same time. The cumulative inci-

dence thus measures the proportion, or percentage, of people (children in this

case) who were at risk of developing a cold and who did so during the period of

the study (one week). Note that it is always important to specify the time period –

a cumulative incidence of 5% in 1 year would be very different from a cumula-

tive incidence of 5% in 20 years. The cumulative incidence is sometimes known

as the attack rate, especially when it refers to a short time period, usually with

respect to an outbreak of infectious diseases as in the food poisoning example in

Chapter 1.

The above example was simple because the common cold is just that, very

common, and we were only interested in the children for one week. Imagine that
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we were trying to measure the incidence of a much rarer disease such as cancer.

We would obviously need a much larger group of people and we would need to

follow them for much longer to see who developed the cancer. In this situation it

is very difficult to keep track of people and we would inevitably lose some from

the study group and not know what happened to them. Another problem is that

people will die from other ‘competing’ causes and so they will no longer be at

risk of developing the cancer. In this situation, calculations of the cumulative

incidence may be inaccurate (or will become so over time) because we will not

know exactly who has developed the disease. In practice, we can calculate cumu-

lative incidence only when we have a clearly defined group of people who are all

(or almost all) followed for the whole follow-up period.

When this is not the situation we use a different method to calculate an inci-

dence rate. Instead of simply counting the actual number of people at risk of

disease, we count up the length of time they were at risk of disease. Imagine that

we followed a group of 1,000 men for 5 years and that during this time 15 of them

had a non-fatal heart attack. This gives us a cumulative incidence of 1.5% for

the 5-year period. During this period the men have lived a total of 1,000 × 5 =
5,000 years of life or person-years. We could have obtained the same number of

person-years by following a group of 5,000 men for 1 year each, or a group of 500

men for 10 years each. Alternatively, we could have followed some men for one

year, some for two years, some for three years, etc., to arrive at the same total

of 5,000. We are no longer so focused on the actual number of people who were

at risk of the disease, but rather on the total person-time (number of person-

years) they were at risk. This not only gives us a much more accurate measure of

how quickly disease is occurring among those at risk, but it also gives us much

greater flexibility. Assuming that we still saw 15 heart attacks during our 5,000

person-years (py), we could calculate the incidence rate (sometimes called the

incidence density) as 15 per 5,000 person-years or, more usually, 3 per 1,000 or

300/100,000 person-years.

Cumulative incidence (CI) measures the proportion of people who develop

disease during a specified period:

CI = Number of people who develop disease in a specified period

Number of people at risk of getting the disease

at the start of the period

(2.5)

The incidence rate (IR) measures how quickly people are developing a

disease:

IR = Number of people who develop disease

Number of person-years when people were at risk

of getting the disease

(2.6)
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Note that, although Equation (2.6) looks slightly different from Equation (2.2),

they are measuring the same thing – if you are unsure about this see Box 2.4 for

an explanation of why this is true. We will also come back to this under ‘Crude

incidence and mortality rates’ on page 46.

Incidence rates versus cumulative incidence

The distinction between a measure of cumulative incidence and an incidence rate

can be confusing. An analogy that we have found helpful is to think of these mea-

sures in terms of driving a car.
� The incidence rate is equivalent to the average speed of a car at a particular

point in time, e.g. 60 km/hour.

Box 2.4 Calculating incidence rates

As you saw above, the ‘person-time’ method for calculating an incidence rate

(Equation (2.6)) is particularly useful in research studies when different

people have been followed for different lengths of time. However, at the

population level we may be dealing with millions of people and it is clearly

not feasible to calculate the person-time that each is at risk. Instead we

usually calculate the incidence rate for a single year and work on the

assumption that everyone in the population is at risk for the whole of that

year (Equation (2.2)). The fundamental concept is, however, the same – if

there are 500,000 people in the population and we assume they are all at risk

for one year that is the same as 500,000 person-years. The only distinction is

that the ‘routine rates’ calculated using Equation (2.2) are based on

population averages, whereas the ‘epidemiological rates’ calculated using

Equation (2.6) are based on adding together carefully measured units of

individual person-time to give a precise denominator. The resulting

incidence rates are also presented slightly differently: routine incidence rates

are usually described per 100,000 people per year, whereas in epidemiological

studies using individual data they are usually shown per 100,000

person-years. You will find that some people differentiate the rates calculated

based on person-time by describing them as incidence density; however, we,

as most others, will refer to both as incidence rates because they are

effectively measuring the same thing.

In practice, it will usually only be possible to calculate the incidence rate

one way. If data are available for individual people who have been followed

for different lengths of time then we have to use Equation (2.6). If we only

have summary data for a population then we use Equation (2.2).
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� The cumulative incidence is analogous to the distance travelled by a car during

a specified interval of time, e.g. 60 km in one hour.

The distance a car travels depends both on its average speed and on the length of

time it travels for. If a car travels at an average speed of 60 km/hour then it will

cover 30 km in 30 minutes, 60 km in one hour and so on. When we consider a

time interval of one hour, the total distance travelled (60 km in one hour) looks

very similar to the average speed because this is expressed per hour (60 km/hr).

Distance and speed are, however, fundamentally different.

In the same way, the incidence rate describes the ‘speed’ at which new cases of

disease are occurring, and therefore reflects what is sometimes called the under-

lying force of morbidity. Cumulative incidence is a measure of the proportion of

a group who develop the disease over a particular time and is thus a function

both of the underlying incidence rate and of the length of follow-up. If the inci-

dence rate is 10 per 100,000/year then the cumulative incidence will be 10 cases

in 100,000 (=0.0001 or 0.01%) in one year, 20 cases in 100,000 (=0.0002 or 0.02%)

in two years and so on. As with the car example, when we consider a time inter-

val of one year, a cumulative incidence expressed as 10 per 100,000 people in one

year looks much like an incidence rate (10 per 100,000 per year or person-years)

because we usually show incidence rates per year. It is important to recognise

that, as with distance and speed, the measures are different. A good way to help

avoid confusion is to ensure that the cumulative incidence is expressed as a pro-

portion (e.g. 0.0001) or percentage rather than ‘per 100,000’.

Example

Imagine that we identified a group of 10 healthy people on 1 January 2000 and

that we decided to follow these people for seven years to see who developed a

particular disease. Figure 2.2 shows the hypothetical experience of these people:

four developed the disease of interest and three of them died, and another three

were ‘lost to follow-up’ (e.g. they moved away or died of some other disease). Let

us now look at how we would calculate the different measures of disease occur-

rence in this group.

Prevalence

Remember that prevalence tells us the proportion of the population who were

sick at a particular point in time (Equation (2.1)). For example, on 1 January 2003,

two people were sick out of the nine people left in our group on that date (one

was lost to follow-up), so

Prevalence = 2 ÷ 9 = 22%

What was the prevalence of the disease on 30 June 2004?
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Figure 2.2 A hypothetical
follow-up study.

On 30 June 2004 two people were sick but there were only seven people left in the

group on that date (one had died and two had been lost to follow-up), so

Prevalence = 2 ÷ 7 = 29%

Cumulative incidence

This tells us the proportion of a population ‘at risk’ of developing a disease who

actually became ill during a specified time interval (Equation (2.5)). It is also the

probability or average risk that an individual will develop the disease during the

period: if 30% of people in a population develop a disease then each individ-

ual has a 30% chance of developing it themselves. It is important to note that

this is the average risk for the population; the risk for any individual is either

zero (they won’t develop the disease) or one3 (they will). With the exception of

some rare genetic diseases such as Huntington’s disease where all those who

carry the aberrant gene will eventually develop the disease, this individual risk

is usually unknown or unknowable, making accurate predictions for individuals

in the clinical setting almost impossible.

In the example, four of the 10 people who were at risk at the start of the study

developed the disease, but three were lost to follow-up and we do not know

whether they developed the disease. This means that we cannot accurately cal-

culate the cumulative incidence at seven years, but a minimum estimate would

be

CI = 4 ÷ 10 = 40% in seven years

This is assuming that none of those lost to follow-up developed the disease. If

any of them had developed the disease then the true cumulative incidence would

3 Note that risk can be measured on a scale from 0 to 1, or from 0 to 100%; a risk of 30% is therefore

equal to a risk of 0.3.
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Box 2.5 Cumulative incidence in clinical trials

You will find that in clinical trials what we have called the cumulative

incidence is often called the experimental event rate (EER) when it describes

the cumulative incidence in the intervention or treatment group, and the

control event rate (CER) in the control or placebo group.

For example, a group in the USA investigated whether four weeks of aspirin

treatment would reduce the risk of blood clots in patients being treated with

antibiotics for infective endocarditis (an infection of the lining of the heart

that usually affects the heart valves). In total 115 patients were enrolled in the

study and assigned at random to receive aspirin (n = 60) or placebo (n = 55).

During the study, 17 patients in the aspirin group (EER or CIIntervention = 17 ÷
60 = 28.3%) and 11 in the placebo group (CER or CIControl = 11 ÷ 55 = 20.0%)

experienced blood clots (Table 2.3). The authors concluded that aspirin

treatment did not reduce the risk of clots (Chan et al., 2003).

Table 2.3 Results of an RCT evaluating aspirin use for infective endocarditis.

Number with Event rate (cumulative

Total patients blood clots incidence of blood clots)

Aspirin 60 17 28.3%

Placebo 55 11 20.0%

(From Chan et al., 2003.)

have been higher than 40%. The maximum estimate of the cumulative incidence

would assume that all three of the missing people developed the disease:

CI = 7 ÷ 10 = 70% in seven years

Note that we could calculate an accurate cumulative incidence at two years –

since we do have complete follow-up to that point:

CI = 1 ÷ 10 = 10% in two years

One type of study in which the study group is clearly defined and loss to follow-

up is usually minimal is a clinical trial (see Chapter 4) and this means that the

cumulative incidence is an appropriate and common measure of outcome in this

type of study. However, the field of clinical epidemiology has developed its own

terminology for what we call cumulative incidence (see Box 2.5).

Incidence rate

Although we do not know what happened to three people in the group, we do

know that they had not developed the disease before they were lost to follow-up.
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We can use this information to help us calculate the incidence rate or what is

sometimes called the incidence density (Equation (2.6)). This is the number of

new cases of disease (four) divided by the total amount of person-time at risk of

developing the disease. An individual is at risk of developing the disease until the

actual moment when they do develop it (in practice, when they are diagnosed)

or until they are lost to follow-up. In this example, individual number one would

contribute seven years of person-time; individual number two would contribute

five and a half years; individual number three would contribute two years, and

so on.

What is the total amount of person-time at risk?

What is the incidence rate for this disease per 100 person-years?

The total amount of person time is

7 + 5.5 + 2 + 3.5 + 4 + 2 + 7 + 1.5 + 5 + 7 = 44.5 person-years

So the incidence rate is

4 cases ÷ 44.5 person-years = 0.09 cases/person-year or 9 cases/100 person-years

Measuring disease occurrence in practice: using routine data

In practice most of our information about the occurrence of disease comes

from routine statistics, collected at a regional, national or international level (we

will discuss some of the sources of these data in Chapter 3), and in this for-

mat they comprise the core of many published reports. The data are not based

on specific information about individuals but relate the number of cases of

disease (or deaths) in a population to the size of that population (often an esti-

mate from a census). This can lead to problems when we try to relate the occur-

rence of disease to potential causes. For example, if a region has a very high level

of unemployment and also has a high incidence of suicide it might be tempting

to jump to the conclusion that being unemployed drives people to commit sui-

cide. However, we have no way of knowing from routine statistics whether it is

the same people who are unemployed who are also those committing suicide.

(This dilemma where we try to extrapolate from an association seen at the pop-

ulation level to draw conclusions about the relation in individuals is often called

the ecological fallacy and we will discuss it again in Chapter 3.)

A second drawback of routine data relates to the fact that in public health we

often want to measure the incidence of disease – how quickly are people becom-

ing ill? Unfortunately, it is often difficult to obtain reliable information about

incidence because few illnesses are captured reliably in routine statistics. Some

diseases, such as HIV infection and cancer, are ‘notifiable’ in many countries and,
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therefore, all cases should be reported to a central body; however, these exam-

ples are the exceptions rather than the rule and such data are not routinely avail-

able for most diseases. Furthermore, even where reporting is mandated it does

not always occur in practice. When HIV/AIDS first came to world attention and

again during the 2003 SARS (severe acute respiratory syndrome) outbreak, some

countries suppressed the real numbers of cases for both political and economic

reasons.

As a result, many common measures that you will come across will be mea-

sures of mortality because death and cause of death are regularly and reliably

recorded in many, but certainly not all, countries. Incidence and mortality rates

have exactly the same form, but for incidence we count new cases of a disease

whereas for mortality we count deaths. Mortality data are obviously uninforma-

tive for many diseases that are not usually fatal – things like osteoarthritis, non-

melanoma skin cancers, psoriasis and rubella (German measles) to name but a

few. But even for those diseases from which a high proportion of cases die, mor-

tality figures might not mirror the underlying incidence of disease, for example if

a more effective treatment is introduced. Mortality data can also lag well behind

changes in incidence, delaying identification of changes over time that may be

important for planning or for providing clues as to the causes of the disease. We

will take up these issues in more detail when we discuss the role and uses of

surveillance in health planning and evaluation (see Chapter 13).

Crude incidence and mortality rates

As you saw above, when we conduct an epidemiological study we calculate the

incidence rate as the number of cases of disease divided by the total person-time

at risk of disease (where this is summed over all of the individuals in the study).

This method is particularly useful when different people have been followed for

different lengths of time but at the population level we may be dealing with mil-

lions of people and it is clearly not feasible to calculate the person-time that each

is at risk. Instead we usually work on the assumption that everyone is at risk for

the whole of the year that we are interested in.

When we are working with routine data, therefore, an incidence rate is cal-

culated by dividing the total number of new cases of a specific disease (or the

number of deaths) in a specified period, usually one year, by the average number

of people in the population during the same period (Equation (2.2)). This is then

usually multiplied by 100,000 (105) and presented as a rate per 105 people per

year. The size of the population will, inevitably, change over a period of a year, so

ideally we would use the number of people in the population in the middle of the

year, the ‘mid-interval’ population, for our calculations. Depending on the data

available, this may be calculated as the average of the size of the population at

the start and at the end of the period of interest, or estimated from census data.

Incidence rates may be calculated for a broad disease group (e.g. cancer) or a



Measuring disease occurrence in practice: using routine data 47

Table 2.4 Crude mortality rates (per 100,000 per year) for ischaemic
heart disease (IHD) in males from selected countries, 1995–1998.

Crude IHD mortality rate

Country (per 105/year)

Germany 211

Australia 168

Canada 160

Singapore 118

Spain 116

Japan 50

Brazil 47

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca,

accessed on 23 September 2003.)

more specific disease (e.g. breast cancer). Similarly, mortality rates may include

deaths from all causes (sometimes called all-cause mortality) or only those from

a specific cause. These basic rates are called crude rates because they describe

the overall incidence or death rate in a population without taking any other fea-

tures of the population into account (in contrast to standardised rates – see

below).

Table 2.4 shows crude mortality rates for ischaemic heart disease (IHD) in men

in seven countries. We see that Germany, Australia and Canada have high mortal-

ity rates, with intermediate rates in Singapore and Spain and low rates in Japan

and Brazil. This correctly describes the total burdens that the different health

systems have to cope with, but does it give an accurate picture of the level of

mortality from IHD in each country? If we were to take this information at face

value we would conclude that the death rate for IHD is three to four times higher

in Western countries such as Germany, Australia and Canada than in countries

like Japan and Brazil. Is that reasonable?

Age-specific incidence and mortality rates

A major disadvantage of crude rates is that they are just that – crude. They do

not take into account the fact that different populations have different age struc-

tures and that the risk of becoming ill or dying varies with age. Many diseases

are more common among older people and the older a person is, the greater

their risk of dying. Developed countries like Germany have a high proportion of

older people whereas less developed countries like Brazil have a much greater

proportion of young people, at a relatively lower risk of dying. Their contrasting

population structures are shown in Figure 2.3. In the example above it turns out

that we are trying to compare countries with very different age structures, so a
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Figure 2.3 Age distribution of
the population in Brazil (1995,
solid bars) and Germany (1998,
hatched bars). (Drawn from:
Global Cardiovascular Infobase,
www.cvdinfobase.ca, accessed
23 September 2003.)

Box 2.6 Cardiovascular diseases simplified

You will find that, when we use examples relating to cardiovascular diseases,

the conditions often have different names and abbreviations. Cardiovascular

diseases are grouped and described in many different ways, emphasising the

need to be sure that you know what the numbers you are looking at

represent. The following is a simplified summary of some commonly used

terms:

MI: myocardial infarction: heart attack

IHD: ischaemic heart disease: heart attack (MI) or angina

CHD: coronary heart disease: essentially identical to IHD

CVD: cardiovascular disease: includes CHD, stroke and other cardiac and

vascular diseases (note that CVD can also be used as an abbreviation for

cerebrovascular disease, i.e. stroke and transient ischaemic attack, but we

will not use it in this way)

crude comparison of IHD mortality has little meaning if we are trying to assess

the comparative ‘cardiovascular health’ of these countries (see also Box 2.6).

One obvious way to avoid this problem is to calculate separate rates for differ-

ent age groups (age-specific rates). The rate in a particular age group can then be
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Table 2.5 Crude and age-specific mortality rates (per 100,000 per year) for
ischaemic heart disease in males from selected countries, 1995–1998.

Age-specific rates (per 105/year)
Crude rate

Country (per 105/year) 45–54 years 55–64 years

Germany 211 76 245

Australia 168 68 222

Canada 160 73 239

Singapore 118 100 346

Spain 116 59 156

Japan 50 20 60

Brazil 47 64 183

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed on

23 September 2003.)

compared between countries. This process can be extended to calculate sepa-

rate rates for other groups, for instance men and women (sex-specific rates), and

for different racial or socioeconomic groups. Table 2.5 extends Table 2.4 to show

selected age-specific mortality rates for the seven countries.

If we compare the age-specific rates we can see that in each country the rate is

much higher in the older age group. We can also see that, while the crude rates

for Singapore and Spain are similar, the age-specific rates are about twice as high

in Singapore, which actually has the highest rates of all the countries in both age

groups. Brazil has also moved up in the IHD rankings, although it still is doing

better than Germany and Australia.

Standardised incidence and mortality rates

If age-specific rates are presented for a large number of different age groups, as

well as for both sexes, we end up with a lot of numbers to compare and interpret

(we only showed two age groups in Table 2.5 for simplicity). An alternative is to

summarise or combine these age-specific rates using a process called standardi-

sation. Direct standardisation involves calculating the overall incidence or mor-

tality rate that you would have expected to find in a ‘standard’ population if it had

the same age-specific rates as your study population. (The details of how to do

this are shown in Appendix 1.) The same methods can also be used to standardise

for other factors that differ between populations that you want to compare, for

example sex or race, because disease rates often differ markedly between men

and women and those from different ethnic backgrounds.

The age-standardised rates can then be compared across the populations

(assuming that the disease is defined in the same way in each) because the
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Table 2.6 Crude and age-standardised mortality rates (per 100,000 per year)
for ischaemic heart disease in males from selected countries, 1995–1998.

Crude IHD mortality rate Age-standardised rate

Country (per 105/year) (per 105/year)

Germany 211 121

Australia 168 111

Canada 160 108

Singapore 118 121

Spain 116 65

Japan 50 29

Brazil 47 60

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed on

23 September 2003.)

problem of different age patterns has been removed (Table 2.6). You will notice

that, in countries with an older population, the standardised rate is much lower

than the crude rate, but in Brazil this pattern is reversed, and the standardised

rate is higher than the crude rate because Brazil has a much younger population

than the standard population used for this comparison. The age-standardised

rates give a more accurate picture of the relative levels of IHD mortality in the

seven countries than the crude rates did because they take into account the

larger numbers of older people in the more developed countries. It is important

to stress, however, that for any individual population the actual rates (crude or

age-specific) are of much greater utility for health planning.

A note about standard populations

It is important to add a word of caution at this stage. There are many different

‘standard populations’ and, in practice, you can age-standardise to any popula-

tion. You will often come across rates that have been standardised to the ‘world’

population, which reflects the average age structure of the whole world. Other

common standard populations reflect the typical age structure of either ‘devel-

oped’ or ‘developing’ countries. If the aim is to compare rates in different groups

within the same country then it is common practice to use the overall age struc-

ture of that country as the standard population. To some extent the choice is

arbitrary, but it is important to note that if you standardise to two very different

populations you will get very different standardised rates, and the relationships

between different populations may change. For this reason, it is always impor-

tant to note what standard population has been used.

For example, when we standardised IHD mortality in Germany to the world

standard population we found an age-standardised rate of 121/105 per year. If we



Measuring disease occurrence in practice: using routine data 51

Box 2.7 An over-night doubling of all-cause mortality rates
in the USA

Prior to 1999, various American health agencies had used different standard

populations, including the 1940 population and the 1970 population, to

report vital statistics. This made comparisons between data from different

agencies problematic. In 1999 many of these agencies changed their

standard population to the projected population in the year 2000 (the Year

2000 Population Standard). In comparison with the earlier populations, the

Year 2000 population has fewer people under the age of 35 and more people

in the middle and older age groups. Because the Year 2000 population is

older and incidence and mortality rates of most diseases increase with age,

rates standardised to this population tend to be much higher than those

standardised to the 1940 and 1970 standards.

The change dramatically increased age-standardised rates in the USA.

The all-cause mortality rate in 1979 was 577/100,000 per year (standardised

to the 1940 population) and 1,011/100,000 per year (standardised to the Year

2000 standard population). The comparable difference for the all-cause

mortality rate in 1995 was between 504/100,000 per year (1940 standard)

and 919/100,000 per year (2000 standard). More reassuringly, in this example

at least, the relative reduction in mortality between 1979 and 1995 was

similar regardless of which standard population was used. Using the 1940

standard, the mortality rate appeared to fall from 577 to 504/100,000 per

year, a drop of 13% over the period; using the Year 2000 standard, the rate fell

from 1,011 to 919/100,000 per year, a drop of 9% (Anderson and Rosenberg,

1998).

had standardised to the younger ‘African’ standard population, we would have

found an age-standardised rate of only 60/105 per year, whereas if we had stan-

dardised to the older ‘European’ standard population we would have found an

age-standardised rate of 198/105 per year. In this example we were comparing

populations around the world, so it was appropriate to use the world standard

population. If all the countries had been in Europe or Africa then the European

or African standard populations might have been more appropriate.

In 2002, the World Health Organization (WHO) proposed a new world stan-

dard population to reflect the general ageing of populations around the world.

(This and examples of other common standard populations are provided in

Appendix 2.) However, what seems like a logical updating of information has

major ramifications for anyone looking at time trends in the occurrence of dis-

ease because rates cannot usefully be compared if they have been standardised

to different populations (see Box 2.7).
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Measuring cumulative incidence using routine statistics

Routine statistics may also be used to estimate cumulative incidence. This gives

the probability or risk that someone will develop disease (or die) within a given

time period, and this time period can be anything from a few days to a lifetime

(a lifetime is commonly taken as ages 0 to 74 years). For example, men in Aus-

tralia have a lifetime cumulative incidence of lung cancer of 4.2% or, in other

words, 4.2% of Australian men will develop lung cancer before their 75th birth-

day (AIHW and AICR 2008). An alternative way to look at the same information is

to say that the average lifetime risk of lung cancer in Australian men is ‘1 in 24’ or,

in other words, 1 in every 24 Australian men will develop lung cancer before their

75th birthday. Note that these measures assume that someone remains ‘at risk’

of lung cancer until their 75th birthday and they also do not take into account

any other factors, such as smoking. Clearly the lifetime risk will be much higher

for a smoker than for a non-smoker and for personalising risk, for example in the

doctor’s surgery, smoking-specific cumulative incidence would be much more

informative, but special research studies with individual exposures are needed

to provide such data. (The methods for calculating cumulative incidence and

lifetime risk for routine data are shown in Appendix 3.)

Other measures commonly used in public health

We will now consider some other measures that are used commonly in public

health to assess different aspects of disease burden. Many of these descriptive

measures are fundamental to health planning and service provision. They are

expressed in a variety of ways – some are ratios, some percentages, i.e. per 100

population, while others are shown per 1,000, 10,000 or 100,000 population. In

some cases different people will use the same term to describe a slightly differ-

ent measure. The definitions that we give are as in A Dictionary of Epidemiology

(Porta, 2008) and are probably those most commonly used. Whenever you come

across these rates it is advisable to check exactly what the numbers being com-

pared are, and what the size of the reference population is – whether the rate

refers to 100, 1,000 or 100,000 events or people.

Standardised incidence and mortality ratios

Figure 1.5 in Chapter 1 showed standardised mortality ratios (SMRs) for Indige-

nous compared to non-Indigenous Australians. These come from an alternative

way of standardising rates called indirect standardisation (see Appendix 4). In

this example the standardisation is for age but the same process is commonly

used to adjust for sex and/or to compare data from different time periods. The

actual number of deaths ‘observed’ in a population (e.g. deaths from cancer
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in Indigenous men) is compared with the number of deaths that would have

been ‘expected’ if the death rates in the Indigenous population had been the

same as those for the non-Indigenous population. The standardised mortality

ratio (SMR) is calculated by dividing the observed number of deaths (O) by the

expected number (E). This measure tells us how much more common death from

cancer is in Indigenous people than in the non-Indigenous population (about

1.6 times in this case). We can do exactly the same thing with disease incidence

to calculate a standardised incidence ratio (SIR; note that some people call this

a standardised morbidity ratio and thus use SMR to describe both standardised

mortality and morbidity ratios; we and others use SMR and SIR to distinguish

between mortality and incidence.) Standardised incidence ratios are also com-

monly reported by cancer registries, which are among the few sources of reliable

incidence data at the population level.

The SMR and SIR are similar to the relative risk that you met in Chapter 1.

Remember also that Snow used observed and expected numbers of deaths to

show that cholera mortality in the workhouse near the Broad Street pump was

unexpectedly low (Box 1.4). Strictly speaking, they are measures of association

because they compare disease incidence or mortality in one population with that

in a reference population and, as such, would fit more logically into Chapter 5.

We have included them here because of the parallels between the processes of

direct and indirect standardisation (See Box 2.8 and Table 2.7).

Box 2.8 Direct vs indirect standardisation

It can be hard to get your head around the difference between direct and

indirect standardisation. When we standardise for age using direct

standardisation we calculate the overall rate that we would see in a

‘standard’ population if it had the same age-specific rates of disease as our

study population. We can then compare rates that have been directly

age-standardised to the same standard population because any

age-differences between the original populations have been removed.

In contrast, when we use indirect standardisation we calculate the

number of cases we would have expected to see in our study population if it

had the same age-specific rates of disease as a standard population (often

the general population). We then compare this expected number of cases to

the number of cases that actually occurred in the study population (the

‘observed’ number) and calculate a standardised incidence (or mortality)

ratio by dividing the observed number of cases by the expected number.

Table 2.7 summarises the differences between the two methods; although

these are presented in terms of age-standardisation the same issues apply if

we are standardising for sex, race or any other factors.
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Table 2.7 Direct versus indirect standardisation for age.

Direct standardisation Indirect standardisation

Information required Age-specific rates in study population Age-specific rates in standard population

Age distribution of standard population Age distribution of study population

Total number of cases (deaths) in study

population

Measure calculated Age-standardised incidence (mortality) rate Standard incidence (mortality) ratio

(SIR/SMR)

Advantages and

disadvantages

Good for comparing large populations

where the age-specific rates are reliable;

less good for small populations because the

age-specific rates may be unstable

Can be used when the age-specific rates in

the study population are unknown or

unreliable, for example when the

population is small.

Allows comparisons between the

standardised rates for different

populations

Two SIRs and SMRs cannot be directly

compared because they are both calculated

relative to a separate third population

Uses Commonly used to compare rates across

different countries or between large

sub-groups within a country, for example

men versus women

Often used to compare incidence or

mortality in smaller subgroups of a

population, for example veterans from a

particular armed conflict, to the general

population

Although direct standardisation could be

used in this situation, if the subgroup is

relatively small the age-specific rates may

not be very reliable and indirect

standardisation is preferred

The proportional (or proportionate) mortality ratio (PMR)

This is a measure of the relative importance of a particular cause of death in a

given population. A PMR looks like an SMR but it is used when there is insuffi-

cient information to calculate an SMR (usually because information is available

only about those who have died, so it is not possible to calculate mortality rates).

It is calculated by dividing the proportion of deaths due to a specific cause in a

group of interest by the proportion of deaths due to the same cause in a compar-

ison group. A PMR is commonly multiplied by 100, so a PMR of 100 means that

the proportions of deaths due to a specific cause are the same in the study and

comparison groups, and a PMR of 200 indicates that twice as many of the deaths

in the study group are due to the specific cause. Proportional mortality ratios are

most commonly used in occupational studies. For example, a study of deaths

among electrical workers on construction sites in the USA found that 127 of the
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Box 2.9 Rates, ratios and proportions

A ratio is simply one number divided by another number; for example, the

number of beers drunk in one year divided by the number of people in the

population (beers per capita) or the number of cases observed divided by the

number of cases expected.

A proportion is a special type of ratio in which everything or everyone in

the numerator is also counted in the denominator; for example, the number

of people who develop disease divided by the total number of people in the

population (those with and without disease). A proportion can be expressed

as a number between 0 and 1 or as a percentage between 0 and 100%. All

proportions are ratios – not all ratios are proportions.

A rate should contain some measure of time, for example 60 km per hour,

17/100,000 per year.

As an example, the case–fatality ratio is a proportion and therefore also a

ratio, but is not a rate (although it is often described as such) because it does

not contain units of time.

total of 31,068 deaths (0.4%) were due to electrocution. This value was almost 12

times higher (PMR = 1,180) than the proportion of such deaths that would be

expected in the general US population (Robinson et al., 1999). Proportional mor-

tality ratios have fairly limited utility because they cannot easily be compared

across different populations. They are usually calculated only when no popula-

tion data are readily available and precise mortality rates cannot be calculated.

The case–fatality ratio (CFR)

The CFR (often called the case–fatality rate, although, strictly speaking, it is not a

rate; see Box 2.9 above) is the proportion of people with a given disease or condi-

tion who die from it in a given period. It is a common measure of the short-term

severity of an acute disease and allows a direct assessment of the effectiveness of

an intervention. For example, the CFR for myocardial infarction (heart attack) is

usually measured over a period of 28 days. When deaths occur over a longer time

period then it is more appropriate to consider the survival rate (see below). The

CFR is usually expressed per 100 cases, i.e. as a percentage. As an example, the

overall CFR in the 2003 SARS epidemic was estimated to be 14%–15%, i.e. approx-

imately one in every seven people who contracted SARS died. However, this aver-

age ratio hides the fact that, while patients under the age of 25 were unlikely to

die (CFR = 1%), approximately half of patients over the age of 65 died (CFR =
50%). (Note that the mortality from SARS occurred so quickly that the particular

time period the CFR refers to is generally not specified.)
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Survival rate and relative survival rate

As we discussed above, the CFR is an appropriate measure for short-term mortal-

ity (a month or so) but is less useful for conditions in which death may occur fur-

ther down the track. For conditions such as cancer, mortality is often expressed in

terms of the proportion of patients who are still alive a specified number of years

after diagnosis – the survival rate. This proportion is often adjusted to allow for

the fact that, depending on the age group being considered, some people would

have been expected to die anyway from causes other than their cancer and this

is known as the relative survival rate. A relative survival rate of 100% thus indi-

cates that mortality does not differ from that experienced by the general pop-

ulation. For example, in developed countries five-year relative survival rates for

breast cancer are approximately 75%–80%, compared with only about 15% for

lung cancer.

Measures of mortality related to childbirth and early life

In the second half of the twentieth century, organisations such as the World

Health Organization started using a number of measures relating to maternal

and, in particular, infant mortality as critical indicators of the general health of

a community. This allowed comparison between regions and also tracking of

improvements in health over time. Table 2.8 shows a number of these measures.

(Note that, technically, they are proportions rather than true rates because they

do not have units of time – see Box 2.8; they are, however, commonly described

as rates and we will also use this terminology.)

The underlying concept of each rate is the same – it is the ratio of the actual

number of deaths that occur in one year to the total population ‘at risk of death’

in the same year. Because it is not always possible to obtain an accurate figure

for the number of people at risk, an approximation is sometimes used. For exam-

ple, any woman who is pregnant is at risk of maternal death but the number of

women who are pregnant in a given year is not routinely recorded, so in practice

this is estimated by taking the number of live births in one year. It is also worth

noting that the infant mortality rate is the number of infant deaths (age 0–1 year)

relative to the number of live births in the same year. This means that the chil-

dren in the numerator (deaths) are not the same as those in the denominator

(births) because many of those who die will have been born in the previous year.

This is not a problem if the birth rate is fairly stable.

For each rate we have given the most standard definition but, as you will see,

there are some variations. For example, the stillbirth (or fetal death) rate should

be calculated as the ratio of stillbirths to the number of live births plus the num-

ber of stillbirths. This is because all of these children (live plus stillbirths) were

at risk of being stillborn although not all of them were. This measure is, however,
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Table 2.8 Measures of mortality related to childbirth and early life.

Deaths Population at risk

Measure (numerator) (denominator) Notes

Maternal mortality

rate

Deaths among women

from causes related to

childbirth in 1 year (the

WHO defines this as deaths

up to 42 days after birth,

but sometimes deaths up

to 1 year are included)

Number of live births in

the same year

Strictly speaking the denominator

should be all pregnant women but

this information is not recorded

directly

Stillbirth or fetal

death rate

Number of stillbirths in

1 year where a stillbirth is

usually a fetal death after

28 weeks gestation

although other time points

may also be used (e.g.

20 weeks)

Live births + fetal deaths

in the same year

Sometimes calculated as the ratio of

the number of fetal deaths to the

number of live births (excluding

fetal deaths). This is often called the

fetal death ratio

Perinatal mortality

rate

Fetal deaths (>28 weeks)

and deaths up to 7 days of

life

Live births + fetal deaths

in the same year

May be calculated as the ratio of the

number of deaths to the number of

live births (excluding fetal deaths)

and called the perinatal death ratio

May also include deaths up to

28 days of life

Neonatal mortality

rate

Deaths in children aged

less than 28 days

Number of live births in

the same year

Only live births are included in the

denominator because only babies

born alive are at risk of dying before

the age of 28 days

Post-neonatal

mortality rate

Deaths in children from

28 days to 1 year

Number of live births in

the same year

Strictly speaking the denominator

should exclude children who die

before age 28 days because they are

no longer at risk.

Infant mortality rate Deaths in children up to

1 year of age

Number of live births in

the same year

Probably the most widely used

single indicator of the overall health

of a community

Child death rate Deaths in children aged

1 to 4 years

Number of children

aged 1–4 years in the

population

An example of an age-specific

mortality rate.

Child mortality rate Deaths in children up to

5 years of age

Number of live births in

the same year

An alternative to the child death

rate, preferable in countries where

it is hard to enumerate the

population of young children
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Figure 2.4 Infant mortality rates
in relation to GDP in 20 countries
around the world. (Drawn from:
The World Factbook 2009.
Washington DC. Central
Intelligence Agency, 2009.
https://www.cia.gov/library/
publications/the-world-
factbook/index.html, accessed
16 January 2010.)

sometimes presented as a stillbirth or fetal death ratio where only live births are

counted in the denominator. The WHO in particular tends to use this variant.

Because the number of live births will be less than the number of live births plus

stillbirths, the fetal death or stillbirth ratio will always be slightly larger than the

stillbirth rate. You will also notice that there is not always a standard definition of

what constitutes a case (in this case a death). It just goes to reinforce how impor-

tant it is to check exactly what the numbers refer to in order to make sure that

you are always comparing like with like.

Figure 2.4 shows the enormous variation in infant mortality rates around

the world, reflecting the great disadvantages under which many countries still

labour. It also shows the very strong inverse correlation between GDP (gross

domestic product) and infant mortality – the more wealthy a country the lower

the infant mortality rate. In a poor country like Sierra Leone the rate is as high

as 154 per 1,000 live births. In other words, more than one in 10 babies die

before their first birthday, compared with less than 3 per 1,000 in Japan and

Singapore.

It is important to remember that all of these measures just give an average pic-

ture for the whole population. Low average rates can often hide much higher

rates in some subgroups of the population. This is particularly true in coun-

tries that include more than one ethnic group. For example, as you saw in Chap-

ter 1, in Australia the Indigenous population has mortality rates that are several

times higher than those of Australians as a whole, and in the USA in 2004 infant

mortality was considerably higher among births to non-Hispanic black women
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(13.6 per 1,000 live births) than for White or Asian and Pacific Islander mothers

(5.7 and 4.7 per 1,000, respectively) (Mathews et al., 2007).

Measuring the ‘burden of disease’

In Table 2.6 we saw that age-standardised rates of heart disease were higher in

Germany and Singapore than in Spain and Brazil, which, in turn, had higher

rates than Japan, but this is only one disease; how does the overall health of these

populations compare? The measures that we have looked at so far have focused

on either morbidity (incidence) or mortality and many are only really useful for

describing a single disease or group of diseases at a time. They can tell us how

rates of cancer or mortality from heart disease vary between countries or over

time but they are less useful if we want to look at the overall health of a popula-

tion at a particular point in time and see how it compares with other time peri-

ods and/or populations. Although global mortality measures such as the total

mortality rate and the infant mortality rate give a broad view of this aspect of the

health of a nation or group, they quite obviously tell us nothing about the many

states of ill-health short of death. To make comparisons that are more inclusive

of other aspects of health we need to use measures that allow us to combine the

effects of multiple diseases as well as accounting for their severity and when they

occur in life.

To solve this problem several different mortality- and morbidity-related mea-

sures have been developed to describe the health of populations. New and more

sophisticated variations are continually being introduced as organisations such

as the WHO attempt not only to measure disease, but also to take into account

related conditions such as pain, disability and loss of income that are associ-

ated with ill-health. These measures bring us closer to measuring the overall

‘health’ of a population according to the WHO definition of health, and are being

used increasingly by national and regional health departments for planning and

resource allocation.

Life expectancy

A traditional mortality-based measure that accounts for the timing of death is

life expectancy, the average number of years that an individual of a given age

is expected to live if current mortality rates continue. For example, a boy born in

the Russian Federation in 2002 has a life expectancy of 58.4 years, compared with

78.4 years for a boy born in Japan (WHO, 2003). Because it cannot take account

of future changes in incidence and/or treatment of diseases, estimates of life

expectancy are largely hypothetical. Mortality rates have been falling over time

and, until recently, the expectation has been that this trend would continue into
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the future. Life expectancy figures therefore almost certainly underestimate the

actual number of years someone could expect to live. However, the HIV/AIDS

epidemic and other national phenomena, such as that seen for Russian men in

Figure 1.2, have already reversed this situation in some countries; and this could

become more generally true with the increasing ‘obesity epidemic’ in many

Westernised countries predicted to lead to higher mortality rates and thus lower

life expectancy in future (Olshansky et al., 2005).

Life expectancy can be presented for any age, but is used most commonly to

describe life expectancy at birth. It is calculated using a ‘life-table’ similar in prin-

ciple to that shown in Table 1.4. The starting point is a hypothetical group of new-

borns (usually 100,000) and age-specific mortality rates are then used to estimate

the number that would be expected to die at each year of life. The total number

of years of life expected for the entire cohort can then be added up and the life

expectancy at birth is this total divided by 100,000. Life expectancy at other ages

is estimated by adding up the number of years of life after the age of interest and

dividing by the number of people in the cohort who had reached that age (see

Appendix 5 for the detailed calculations). If we draw a graph of the number or

proportion of people expected to survive to each age we get what is called a sur-

vival curve. Figure 2.5 shows the survival curves for Australian men and women

in 2005–2007, illustrating the survival advantage that women still have over

men.

Potential and expected years of life lost (PYLL and EYLL)

Life expectancy measures what is being achieved and is sometimes described

as a measure of health expectancy. An alternative approach is to measure what
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is being lost and this type of indicator is sometimes described as a health gap

(Lopez et al., 2006 p. 47). One such measure looks not at the number of years

someone can expect to live, but instead at the numbers of years of potential life

they have lost if they die before a certain age. This age is frequently taken to be 65

although, with increasing numbers of people now living active lives well beyond

this age, some reports now consider deaths before 70 to be ‘premature’ deaths.

The number of potential years of life lost (PYLL) in a population is calculated

by counting the total number of deaths from a specific cause in each age group

and then multiplying this by the average number of years of life lost as a result

of each of these deaths. For example, taking 65 as the cut-off age, a death from

coronary heart disease at age 60 would contribute only 5 potential years of life

lost compared with 15 years for a death at age 50. Thus, although there are fewer

deaths among younger people, each contributes a greater number of PYLL than

the deaths in the elderly.

One advantage this measure has over life expectancy is that it is possible to

count the PYLL due to specific causes of death such as cancer or heart disease

and thus to target those conditions with the highest PYLL. The years of life lost

due to each cause of death can also be summed to give the total years of life lost.

The same is not true for health expectancy measures because it is not possible to

attribute years of life expectancy to the absence of a specific cause of death. The

downside of calculating PYLL is that the choice of the age below which deaths

are considered premature is arbitrary and deaths that occur above the speci-

fied cut-off age are not counted at all. One way of getting around this is to cal-

culate expected years of life lost (EYLL) where the number of years of life lost

due to a death at any age is equal to the life expectancy at that age. It is also

important to be aware that, unlike life expectancy measures, both PYLL and EYLL

depend on the size of the population. Assuming two populations have similar

life expectancy and mortality rates, the PYLL lost for the larger population will

always be greater than that for the smaller population. It is, however, possible to

get around this by calculating average PYLL to facilitate comparisons between

populations.

Disability-free life expectancy

As we said at the beginning of this section, it is also important to consider mor-

bidity to create a fuller picture of a population’s health. There is little point in

working to extend life expectancy if the additional years of life are lived in very

poor health. This concept is illustrated by the survival curves shown in Figure 2.6.

As in Figure 2.5, the top line shows the proportion of people surviving at each age,

but now the lower line shows the smaller proportion of people who are still in full

health at each age. The combined areas A and B represent total life expectancy,

but only a proportion of that life, the area A, is lived in full health, while area B
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indicates life lived with some degree of disability. Area C represents the potential

years of life lost and the combined areas C and B represent the total health gap –

the loss both of years of life and years of health. So how can we measure this?

One solution is to refine the calculations of total life expectancy to calculate

disability-free life expectancy, which takes into account not only age-specific

mortality rates but also the prevalence of disability at that age. This measure

effectively adjusts the number of years of life expected for an individual at a given

age by the probability that those years will be lived with some degree of disabil-

ity. One advantage of this measure is that it is relatively simple to calculate, and

as a result it is quite widely used. However, it also has some major disadvantages

in that, first, an arbitrary decision has to be made as to what level of disability

will lead to someone being classified as disabled and, secondly, years of life lived

with disability are not counted at all and thus are effectively considered as bad as

being dead – a clearly unreasonable situation.

Quality-adjusted life years (QALYs)

The problem of how best to integrate measures of morbidity and mortality also

arises in clinical trials. Before introducing a new treatment it is important to

know that it will either increase life expectancy, improve quality of life, or both. A

treatment that improves both survival and quality of life is clearly worth having

but how can we compare two drugs if one increases survival but at the expense

of worse quality of life? This challenge led to the development of the concept

of a quality-adjusted life year (QALY). Quality-adjusted life years weight each
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Table 2.9 Life expectancy and health-adjusted life expectancy at birth and age 60 (years).

Males Females

Health-adjusted life

expectancy

Health-adjusted life

expectancy
Life expectancy Life expectancy

at birtha At birtha At age 60b at birtha At birtha At age 60b

Australia 79 72 16.9 84 75 19.5

India 63 56 10.8 65 57 11.4

Japan 79 73 17.5 86 78 21.7

Malawi 49 43 9.7 51 44 10.4

Russian Federation 60 55 10.1 73 65 14.2

Switzerland 79 73 17.1 84 76 20.4

United Kingdom 77 71 15.7 82 73 18.1

Unites States of America 76 68 15.3 81 72 17.9

(Data sources: a Data for 2007 from World Health Organization, 2009; b Data for 2002 from World Health Organization,

2003.)

year of life by the perceived quality of that life from a value of one for perfect

health down to zero for death. One QALY would thus represent a year of life in

perfect health while 0.5 QALY could represent 6 months lived in perfect health or

12 months with 50% disability (or ill-health). The QALYs gained from a new rad-

ical treatment that increases life expectancy by 10 years but is associated with

major side-effects might thus be lower than those from a less effective drug that

increases life expectancy by only 8 years but does not have any major side-effects.

It is, however, important to note that these measures are entirely dependent on

the magnitude of the weights assigned to different health conditions and this

process is necessarily highly subjective.

Health-adjusted life expectancy (HALE)

By combining QALYs with measures of life expectancy we can calculate health-

adjusted life expectancy (HALE), which is based on life expectancy at birth but

includes an adjustment for time spent in poor health. It represents the equivalent

number of years an individual can expect to live in full health. A health-adjusted

life expectancy of 60 years might therefore represent an expectation of 50 years

life in full health plus an additional 20 years at 50% or 30 years at 33% of full

health.

Table 2.9 shows data on life expectancy and health-adjusted life expectancy

for a number of different countries. Notice that healthy life expectancy is consis-

tently 6–8 years less than life expectancy for men and 7–9 years less for women.
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This difference is a function both of the expected number of years of life at less

than full health and of the extent of disability. Because life expectancy at birth is

partly dependent on mortality in the first year of life, it is inevitably much lower

in developing countries, which tend to have much higher neonatal and infant

mortality rates than developed countries. Once an individual has survived the

first few years of life in a developing country, however, their chances of living to

old age are then much greater and the difference between developed and devel-

oping countries becomes less marked. As an example, see the apparent paradox

in Malawi. Healthy life expectancy at birth for a man in 2007 was only 43 years,

due largely to the enormous toll that HIV/AIDS has taken on the countries in sub-

Saharan Africa; but, if a man makes it to 60, he can then expect about another

10 years of healthy life. Notice also that, while in most countries women can

expect to live about 2–5 years longer than men, the high mortality rates among

young Russian men (Figure 1.2) mean that the difference in the Russian Federa-

tion is 13 years.

Disability-adjusted life years (DALYs)

The concept of a disability-adjusted life year or DALY was developed to facili-

tate attempts to quantify the global burden of disease (World Bank, 1993). Like

the expected years of life lost you met earlier, disability-adjusted life years esti-

mate loss of life but they have a major advantage in that they count not only

years of life lost completely due to premature death but also years of health

lost through disability. As for QALYs, the extent of disability is weighted from

zero to one, although the weights go in the opposite direction – from zero for a

year spent in perfect health to one for a year lost to death (Lopez et al., 2006,

pp. 119–125). These weights were defined by an international panel of health

experts. (Note that the actual calculations are somewhat more complicated than

this because they also take age into account and consider that productive years

lost in mid-life are more important than years lost at very young or old ages.)

One DALY can be thought of as one lost year of healthy life. Thus, if a person

lives with a moderate disability for 10 years, this might equate to the loss of 5

years of healthy life or five DALYs. Like the measures of potential years of life

lost, DALYs are a health gap indicator and have the useful property that they

can be calculated separately for different diseases (see Table 2.10) or for differ-

ent causes of disease such as smoking or unsafe drinking water (Table 2.11).

Measurements of DALYs are increasingly used to estimate the burden of various

diseases or exposures in different countries, as for example in the World Health

Reports produced by the WHO (WHO, 2008), and to identify priorities for health

intervention.

The use of measures like DALYs highlights the enormous burden of ill-health

due to some common but non-fatal conditions such as unipolar depressive
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Table 2.10 The 10 leading causes of mortality and disability-adjusted life-years in the world, 2004
(from WHO, 2008).

Deaths % of total DALYs % of total

Mortality (millions) deaths Burden of disease (millions) DALYs

Ischaemic heart disease 7.2 12.2 Lower respiratory infections 94.5 6.2

Cerebrovascular disease 5.7 9.7 Diarrhoeal diseases 72.8 4.8

Lower respiratory infections 4.2 7.1 Unipolar depressive disorders 65.5 4.3

Chronic obstructive

pulmonary disease

3.0 5.1 Ischaemic heart disease 62.6 4.1

Diarrhoeal diseases 2.2 3.7 HIV/AIDS 58.5 3.8

HIV/AIDS 2.0 3.5 Cerebrovascular disease 46.6 3.1

Tuberculosis 1.5 2.5 Prematurity/low birth weight 44.3 2.9

Trachea, bronchus and lung

cancers

1.3 2.3 Birth asphyxia/trauma 41.7 2.7

Road traffic accidents 1.3 2.2 Road traffic accidents 41.2 2.7

Prematurity/low birth weight 1.2 2.0 Neonatal infections and other

conditions

40.4 2.7

Table 2.11 The top 10 causes of DALYs in the world, by income level, 2001 (from Lopez et al., 2006).

Low- and middle-income

countries High-income countries

DALYs % of all DALYs % of all

Risk factor (millions) DALYs (millions) DALYs

Childhood underweight 121 8.7 <0.1 <0.1

High blood pressure 78 5.6 14.0 9.3

Unsafe sex 80 5.8 0.9 0.6

Smoking 54 3.9 19.0 12.7

Alcohol use 49 3.6 7.0 4.4

High cholesterol 43 3.1 9.4 6.3

Unsafe water, sanitation and hygiene 52 3.7 1.8 0.2

Overweight and obesity 32 2.3 11.0 7.2

Indoor smoke from household use of solid fuels 42 3.0 <0.1 <0.1

Low fruit and vegetable intake 33 2.4 4.0 2.7

disorders that do not feature at all on lists derived from mortality-based

indicators. It also highlights the enormous burden of ill-health attributable to

some entirely preventable risk factors such as smoking and unsafe sex. They

can also give a very different sense of priorities for disease control from con-

ventional rates (Figure 2.7 and Box 2.10). Injury, for example, kills proportionally
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Box 2.10 Suicide rates: are we winning or losing?

Suicide is a major cause of premature mortality in many countries, but is the

situation becoming better or worse? Data from the UK show that
� between 1981 and 1998, suicide rates in men and women aged 15 and over

fell by 18%;
� between 1981 and 1998, the years of potential life lost due to suicide

increased by 5%.

How do we interpret these apparently conflicting data? The answer is that the

major drop in suicide rates has occurred among the older age groups

(45 years and over) and suicide rates in younger men have actually increased

over the same time period. Suicide in a younger person leads to greater loss

of potential life, so although the overall suicide rates are falling, this average

effect hides an increasing loss of life among young men.

These data underline how different measures of health capture different

things and can give very different pictures of the health of a population. A

politician hoping to demonstrate improvements in mental health could

legitimately claim that suicide rates were falling, while an advocate for more

funding for mental health could equally legitimately cite the increase in years

of life lost.
(Gunnell and Middleton, 2003.)

more young people than other conditions and so makes a major contribution to

years of life lost due to premature death and to disability, yet far greater financial

resources tend to be given to research into high-profile conditions such as breast

cancer and AIDS.
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Summary

As you have seen, a plethora of measures are used to try to quantify the health of

a population and all of these have their advantages and limitations. Some mea-

sure only limited aspects of health but are commonly used because they are easy

to calculate, whereas other more complex measures come closer to capturing

our ideal notion of ‘health’ but are much harder to calculate and thus not so eas-

ily applied in practice. All measures have their uses and selection of the most

appropriate measure for any given situation will depend almost entirely on the

question being asked. You should now be able to interpret most measures of dis-

ease and health that you come across (the key features of the main incidence

and mortality measures are summarised in Table 2.12). It is still important to be

very careful when comparing measures of disease across different groups of peo-

ple because many other factors can complicate the comparisons. We will discuss

some of these issues in the following chapters.

Questions

1. For each of the following scenarios, calculate a measure of the incidence of

disease and identify what type of measure it is:

(a) A thousand healthy women were followed for 8 years and 15 developed

high blood pressure.

(b) A large group of elderly men was followed for a total of 5,000 person-years

and 75 of the men had a stroke during the duration of the study.

(c) In a community with a population of 50,000 people, 27 developed dia-

betes during a 1-year period.

2. Two thousand women aged 55 years were given a health check and 100

were found to have high blood pressure. Ten years later all 2,000 women

attended a second check and another 300 women had developed high blood

pressure.

(a) What was the prevalence of high blood pressure in the women (i) at age

55 and (ii) at age 65?

(b) How many women were ‘at risk’ of developing high blood pressure at the

start of the 10-year period?

(c) What was the incidence of high blood pressure in these women? Is this a

measure of cumulative incidence or an incidence rate?

Assume that, on average, each of the 300 women who developed high blood

pressure did so half-way through the 10 year follow-up period.

(d) Calculate the total number of person-years at risk (of developing high

blood pressure) during the 10 years.

(e) What was the incidence rate of high blood pressure in these women?



References 69

3. Community A and community B both have crude mortality rates for

ischaemic heart disease of 4 per 1000 population per year. The age-adjusted

mortality rate for ischaemic heart disease in community A is 5 per 1000 popu-

lation and the age-adjusted rate for ischaemic heart disease in community B

is 3 per 1000 population. Which of the following is correct?

(a) community A has a younger population than community B

(b) community A has an older population than community B

(c) diagnosis is more accurate in community A

(d) diagnosis is more accurate in community B.

4. Look back to Table 2.10. What does this tell us about the relative importance

of ischaemic heart disease and diarrhoeal diseases as causes of mortality and

ill health and explain the patterns you see.
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The rates and measures you have been exploring in Chapter 2 provide a variety of

ways of describing the health of populations and thus also enable us to compare

patterns of health and disease between populations and over time. This allows

us to answer the core questions relating to disease burden that are the essen-

tial first step in setting health planning and service priorities. As we discussed in

Chapter 1, this descriptive epidemiology, concerned as it is with ‘person,

place and time’, attempts to answer the questions ‘Who?’, ‘What?’, ‘Where?’

and ‘When?’. This can include anything from a description of disease in a sin-

gle person (a case report) to the national health surveys conducted in many

71
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countries. Most reports of routine population data, including variations in rates

of disease in different geographical areas and changing rates of disease over time

(time trends), also come under the heading of descriptive epidemiology. But

while descriptive studies or reports are essential to identify health problems and

may lead to suggestions as to why something has occurred, they cannot usu-

ally answer the question ‘why?’. Descriptive epidemiology may, however, pro-

vide the first ideas about causality and thus generate hypotheses that can then

be tested in more formal ‘analytic’ studies that we will discuss in Chapter 4. As

you will come to see, descriptive studies can also play a critical and often under-

appreciated role in monitoring the effects of large-scale interventions.

In this chapter we will look in more detail at the most common types of

descriptive data and where they come from, and will consider some examples of

the uses to which they are put. However, before embarking on a data hunt we first

need to decide exactly what it is we want to know and this can pose a challenge;

to make good use of the most relevant descriptive data it is critical to formulate

our question as precisely as possible. If, say, we wanted to know about youth sui-

cide, are we interested in the suicide mortality rate, the number of hospitalisa-

tions for attempted suicide, or the proportion of teenagers who have considered

killing themselves? Mortality data are probably readily available from a number

of sources, but the accuracy of the underlying certification of this cause of death

is known to be problematic. Hospital admission data are also often quite acces-

sible, but might not capture suicide attempts that are dealt with in the emer-

gency room and not admitted. Furthermore, separating individuals from events

can be tricky – are a lot of youths making a single suicide attempt each or are

there a smaller number who have made multiple attempts? The resulting pol-

icy implications are quite different. In contrast, finding out about the prevalence

(or cumulative incidence) of having suicidal thoughts will most probably need

a special survey – it is important but you cannot easily ‘look it up’ in a standard

data source.

Case reports and case series

The identification of a new or recurring health problem often begins with a case

report or case series. These are detailed descriptions, usually by a doctor or

group of doctors, of one or more cases of a disease that are unusual for some rea-

son. This might be because the disease has not been seen before or the cases may

have occurred in individuals who would not normally be expected to develop

that disease, or in an area where the disease had not previously been reported or

was thought to have been controlled. The cases might also be reported in con-

junction with a previous exposure to something that, it is speculated, may have

caused the disease.
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Box 3.1 Case reports and case series that were instrumental
in the early identification of health problems

� The classic description of a series of infants born with congenital cataracts,

some with additional cardiac abnormalities, in Australia in 1941. This led

Dr N. M. Gregg in Sydney to postulate a causal link between a severe

epidemic of rubella (German measles) that had occurred six to nine

months before the children were born and the subsequent abnormalities

(Gregg, 1941). It is now well known that if a woman develops rubella

during pregnancy it may affect her unborn baby.
� A case report published in the UK in 1961 described the development of

a pulmonary embolism in a 40-year-old pre-menopausal woman, five

weeks after she had started using an oral contraceptive (OC) to treat

endometriosis (Jordan, 1961). Because pulmonary embolism is rare in

women of that age, the author suggested that it might have been caused by

the OC, particularly since it was a novel exposure at that time. A report of

one case could not provide conclusive evidence that it was the OC rather

than some other characteristic of the patient that led to the embolism –

but it did pave the way for more detailed studies. These have consistently

shown that there is an association between the use of OCs and the risk of

this condition.
� A report of a series of five cases of Pneumocystis carinii pneumonia that

occurred in young, previously healthy, homosexual men in three Los

Angeles hospitals in a six-month period during 1980–81 (CDC, 1981). Until

then, this disease had been seen almost exclusively in the elderly, the

severely malnourished and those on anti-cancer chemotherapy whose

immune systems were suppressed. This cluster of cases in young men

suggested that the men were suffering from a previously unknown

disease, possibly related to sexual behaviour. We now know this as

HIV/AIDS.

The selective nature of these reports and the limited amount of informa-

tion they contain mean that they provide little evidence of causality and can-

not say much about patterns of disease occurrence. However, they can help

identify potential health problems such as the acute outbreaks of severe acute

respiratory syndrome (SARS), bird flu and swine flu that the world has experi-

enced over the previous decade (we will discuss these further in Chapter 12).

They may also stimulate interest in an area, leading on to more detailed

studies, and in this regard some have been seminal in advancing knowledge

(Box 3.1).
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Figure 3.1 Prevalence of
diagnosed diabetes
(self-reported) in the United
States, 2006, by age group and
sex (dark bars, males; light bars,
females). (Source: Centers for
Disease Control http://www.
cdc.gov/diabetes/statistics/
prev/national/fig2004.htm,
accessed on 16 January 2010.)

Prevalence surveys

Surveys are conducted to measure the prevalence of a wide variety of aspects of

health, including diseases that are not captured by other routine statistics; condi-

tions such as obesity; health-related behaviours such as smoking, sun-exposure

and diet; and use of health services. These spot checks on the health of a nation

or region are crucial to expanding our understanding of health burdens, needs

and services beyond the hospital sector. In recent decades they have become

a feature of broad-based community diagnosis and health planning, using a

wide range of sampling and data-capture designs. These include telephone and

face-to-face interviews, and sometimes very detailed physical examinations, as

in the US National Health and Nutrition Examination Surveys (NHANES) (see

Box 3.2). However, such undertakings are very expensive so the investigators

have increased the value of NHANES by using the data as baseline information

for follow-up studies to identify risk factors for subsequent morbidity (requir-

ing further personal contact) and mortality (by linking to centrally held death

records in the US National Death Index). Figure 3.1 shows some contemporary

data, which will be important for future healthcare planning, drawn from a par-

allel series of US Health Interview Surveys.

How is the prevalence of diabetes related to age and sex?

What additional data are needed for a comprehensive planning response?

We see that, in 2006, the proportion of diabetics in US men and women rose

markedly with age, affecting almost 18% of men and about 15% of women over

the age of 64 years. This is a very heavy case load to manage: diabetes is a

metabolic disease with many consequences, including heart and kidney damage,
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Box 3.2 The US National Health and Nutrition Examination
Surveys (NHANES)

NHANES is probably the largest and longest-running national source of

objectively measured health and nutrition data. It was born out of the

National Health Survey Act of 1956, which provided for the establishment of

a continuing National Health Survey to obtain information about the health

status of individuals residing in the USA and responsibility for this was given

to the National Center for Health Statistics (NCHS). It was originally known

as the National Health Examination Survey (NHES) and the first wave was

conducted in 1959–62 (see Table 3.1). Subsequent waves focused on children

and then adolescents before the NHES was combined with the National

Nutrition Surveillance System, which had been established in 1969, to create

the current series of NHANES in 1971 and this is still running in 2010. The

NHANES populations are carefully selected to reflect the multi-faceted US

population, and they have given rich descriptions of many prevalent

conditions.

Table 3.1 The US National Health and Examination Surveys.

Survey Years Population

Size

(approximate)

NHES I 1959–1962 Age 18–79 7,800

NHES II 1963–1965 Age 6–11 7,400

NHES III 1966–1970 Age 12–17 7,500

NHANES I 1971–1975 Age 1–74 32,000

NHANES II 1976–1980 Age <1–74 28,000

Hispanic (H)

HANES

1982–1984 Age <1–74 16,000

NHANES III 1988–1994 Age > 2 months 34,000

NHANES

Continuous

Every 2 years from 1999–2000

onwards, most recent

2009–2010

Age <1–74 5,000

(Data source: http://www.cdc.gov/nchs/nhanes.htm, accessed 24 January

2010.)

and adequate numbers of doctors, nutritionists and podiatrists must be provided

and their care integrated. For a better view of the future healthcare burden we

need to know time trends both in diabetes and for its risk factors. This informa-

tion indicates that a major challenge is coming: the US population is ageing and
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also becoming more obese (a major risk factor for diabetes), so on both counts

the number of cases will continue to rise.

The legend of Figure 3.1 indicates a central quality issue for many preva-

lence surveys like this: their common reliance on self-reporting. Where reason-

ably accurate knowledge of disease prevalence is sought a variety of strategies

can be employed to improve accuracy. In the above example respondents were

asked to report only doctor-diagnosed diabetes. For conditions such as cancer

or stroke, they may be asked whether they went to hospital or a subset, as in

NHANES, may be examined to validate self-reporting for an array of conditions.

For some factors, such as medication use, frequency of troublesome symptoms

and visits to the doctor, choice of the time span for recall can be critical: use of

shorter periods (e.g. 2–4 weeks) increases reliability but will miss less frequent

events.

To a large extent, studies such as these are purely descriptive and their aim is

primarily to survey a sample of the population in order to determine the preva-

lence of the factors of interest in the community, often to aid health planning.

Sometimes, however, the breadth of information collected allows much more in-

depth analysis of the relationships between health behaviours and conditions.

For example, the Australian National Health Survey is conducted every 3 years

and it collects a vast array of information from participants about their health

behaviours such as alcohol consumption, smoking and physical activity and

about health conditions including diabetes, injury and mental health problems.

This allows us to look at the relation between behaviour and health. For example

in 2004–5, people who reported high levels of psychological distress were more

likely to be physically inactive than those with low levels of distress or, in other

words, the prevalence of inactivity was much higher in those with distress (48%)

than those without distress (31%) (ABS, 2006). A study like this that looks at the

relation between two aspects of health in a ‘cross-section’ of the population is

often described as a cross-sectional study and we will discuss these further in

Chapter 4.

Routine data collections

Governments, healthcare providers and statistical agencies routinely collect vast

amounts of information that we will collectively describe as ‘routine’ data. These

data can often be accessed at two levels: the summary data – often rates in their

various forms which you met in Chapter 2 – and the raw counts of individual

health events from which the rates are calculated. Since it is the latter that deter-

mine the quality and usefulness of the former, we will deal with them first, noting

some of their advantages and disadvantages as we go. We will then look at some

of the many sources of summary data.
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Table 3.2 Some common health data collections and reporting systems.

Data collection or reporting

system

Summary data often

published

Individual level data

available Source of raw data

Vital statistics Mortality rates Date and cause of death,

demographicsa

Death certificates

Disease registries (e.g.

cancer registries, injury

registers)

Incidence, mortality and

survival rates, prevalence

Diagnosis, date and

demographics

Pathology reports, testing

laboratories, hospital

and medical records

Notifiable diseases (e.g.

AIDS, SARS, TB, other

infectious diseases)

Numbers of cases,

incidence

Diagnosis, date and

demographics

Laboratories, medical

practitioners and

hospitals

Hospital administrative

systems

None Diagnosis, date and

demographics

Hospital discharge sheets,

medical records

Health surveys (morbidity,

risk factors, needs,

service use etc.)

Special reports Self-reported health states Special surveys (often

whole population)

Special surveillance

systems

Varied Varied e.g. ‘sentinel’ primary care

practices or disease

registers (UK GP data

base), MONICA

(international CHD)

Rapid community

assessments (health,

nutrition)

Varied Varied Special surveys (sometimes

of targeted groups)

a Basic demographic information such as age, sex and last known address.

Table 3.2 summarises some of the most common collection and reporting sys-

tems and the sources from which they take their information.

Mortality data

As we noted in Chapter 2, many routine statistics are based on mortality data

because they are generally easier to obtain and more reliable than morbidity

data – but that does not mean that they are perfect . . .

Death certificates

Death certificates are a widely used primary source of information, and the basis

for most reported mortality rates. They often contain additional basic demo-

graphic information about an individual, including name, date of birth, ethnicity

and gender, as well as the date and cause(s) of death. Figure 3.2 shows an exam-

ple of a typical form.
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Medical Certificate of the Cause of Death

To the Registrar-General

I hereby certify that

(name in full)

aged                         years, date of birth         __/ __/ __         who usually resided at

Postcode was attended and last

__/__/__no.rD*ybro(__/__/__noemybnees
*if not attended by certifying medical practitioner within 3 months prior to death, insert
name of medical practitioner who last attended deceased and date)

and I am informed that he/she died on       __/ __/ __          at

(town, place etc of death)

Cause of Death (print clearly and do not abbreviate) Duration of
last illness

1a

due to, or as a consequence of
1b

Disease or condition directly leading to death
(This means the disease, injury or complication which
caused death – NOT ONLY, for example, the mode of
dying such as ‘heart failure’, ‘asphyxia’, etc)

due to, or as a consequence of

1c

due to, or as a consequence of

Antecedent causes - morbid conditions, if any
giving rise to the above cause, stating the
underlying condition last

1d

Other significant conditions
Contributing to the death, but not related to the
diseases or condition causing it

2

Date and type of operation in the last 4 weeks      __/ __/ __

Was a Coroner consulted before issuing this certificate?

No, death not subject to the provisions of the Coroners Act

renoroC,ybotdeergaetacifitrecsihtfoeussi,seY

__/__/__etaDrenoititcarPlacideMfoerutangiS

Initials and Surname (BLOCK Letters)

Professional Qualifications

Figure 3.2 A typical death certificate.
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It is a common legal requirement that a medical practitioner must complete

a death certificate for someone who dies. The completion of a death certificate

therefore establishes the fact that someone has died with virtual certainty. Unfor-

tunately, death certificates are less accurate when the cause of death is of interest,

rather than the simple fact that death has occurred. This can be a consequence

either of misdiagnosis (e.g. if a doctor does not know a person’s full medical his-

tory) or of mis-specification on the form. The sample certificate shows the chal-

lenge of getting the sequence and content right. Look at the instructions on com-

pleting the ‘cause of death’ section: it will often not be easy, and those dying at

older ages tend to have a number of coexisting diseases. How should the prac-

titioner sequence the diagnoses of an overweight woman who has had diabetes

for 20 years and high blood pressure for 10 years and who dies of pneumonia 1

year after suffering a stroke? Such a scenario is not uncommon, so we can be left

with considerable uncertainty about the actual cause of death even on inspec-

tion of the original form. Indeed, in research studies where people are followed

up for mortality, considerable extra effort often needs to be made in collecting

clinical and pathology records in order to ensure accuracy in assigning cause of

death. This can never be the case for routine vital statistics collections (it is far

too expensive), so reports of mortality rates based on death certificates need to

be used circumspectly. Generally only a single cause is extracted from the death

certificate for each person who has died, that which is thought to be underlying

any subsequent conditions. Multiple cause of death coding has recently been

introduced in some countries but, while this may alleviate the problem of cod-

ing multiple conditions, it introduces another – the question of how to report

and use this extra information.

What explanations can you think of for the sudden change in diabetes mortality

in the USA over time shown in Figure 3.3 on the next page? Which do you think

is most likely?

We saw in Chapter 1 (Figures 1.7 and 1.8) that US death rates for a number of

causes have been declining over time, but none as dramatically as seen here in

Figure 3.3, where the mortality rate for diabetes appeared to halve between 1948

and 1949 before plateauing at the new level. This could be due to a spectacu-

lar new treatment (but insulin is still the mainstay, as it was in the 1940s), or to

fewer cases of diabetes occurring (but no effective means of preventing diabetes

has been identified). So we are forced to consider artefacts in the data as a possi-

ble explanation. Here the dramatic shift in diabetes mortality was due to a cod-

ing change in the International Classification of Diseases (ICD), such that, when

diabetes and coronary heart disease occurred together, diabetes was no longer

listed as the underlying cause.

Not surprisingly, some diseases are recorded more accurately on death cer-

tificates than others. One that is rapidly fatal is likely to be clear cut, whereas
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with a long-term disease there is more chance of another illness occurring and

being recorded on the death certificate instead. For example, many people like

the woman above would not have diabetes recorded anywhere on their death

certificates. Similarly, diseases that are easily diagnosed tend to be more accu-

rately recorded than those that require more complex diagnostic procedures: in

the absence of an autopsy (and they are now uncommon), death from a motor

vehicle accident would clearly be easier to recognise than one from pancreatic

cancer. In an Australian study it was found that the overall accuracy of death cer-

tificates was only 77% compared with autopsy records, although cancers were

accurately reported in 90% of cases (Maclaine et al., 1992). A similarly high con-

cordance for cancers was found in a UK study linking death certificates and

hospital records, but chronic diseases such as diabetes and hypertension were

correctly listed as an underlying cause only about half of the time (Goldacre,

1993).

Certain diseases may also be under-reported because of a reluctance to record

the information. This might be either because of the potential stigma attached to

the patient, as in the case of a death from suicide or HIV/AIDS, or because of the

possibility that blame might be attached to the physician. The UK research found

that conditions generally regarded as ‘avoidable’ causes of death were frequently
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omitted from the death certificate; for, example fractured neck of femur (broken

hip) in the elderly was recorded in only one-quarter of cases.

Developed countries are now increasingly establishing national registers of

deaths, recording both the date and the cause of death as well as key sociode-

mographic descriptors such as age, sex and last known address. Some of the

earliest national death registries were in Scandinavia; for example, Statistics

Sweden (www.scb.se) provides life expectancy data back to 1750! The UK

National Health Service Central Register was started in 1939 to facilitate the

issue of ration books during World War II (www.gro-scotland.gov.uk), while the

National Death Index in the USA (www.cdc.gov/nchs) contains information on

deaths from 1979 and its Australian counterpart (www.aihw.gov.au/cancer/ndi)

has information from 1980. These registries can provide information about num-

bers of deaths by cause, age, sex, etc., and some also have facilities to allow

researchers to obtain death information for specific individuals in their studies.

Verbal autopsy

In many low-income countries mortality rates are high but the vital registration

systems are often much less well developed than in high-income countries. In

these areas an alternative method used to capture information about causes

of death, particularly among children, is the verbal autopsy. These ‘autopsies’

are conducted by a structured interview with the family members about the cir-

cumstances of their relative’s death. This information is then used to classify the

cause of death according to defined rules and criteria.

Morbidity data

Morbidity data provide a much greater challenge than mortality data. The scope

of information is enormous and little is captured in a systematic way. As a

result it is rarely simple to obtain complete information at a local level, and

the problems escalate dramatically when trying to make comparisons between

regions or countries. Having said that, attempts are made to record some

aspects of morbidity in a routine way and these sources can provide valuable

information.

Disease registries

Various disease registries exist (or have existed) to meet local health or research

needs, but they cover only a small minority of conditions. For example, when it

was noted that mortality from coronary heart disease (CHD) had started to fall

in some countries in the late 1960s, it was not obvious what was driving this.

Cardiologists of course claimed that better treatment in the newly introduced

coronary care units meant that fewer patients were dying (lower case fatality).
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It was also possible that the number of new cases (incidence) was falling due

to recent changes in smoking and dietary patterns, but no directly relevant data

were available to clarify the public health debate. The WHO responded in the

early 1980s by encouraging the establishment of a series of registers around

the world to capture international trends in CHD incidence (the MONICA pro-

gramme). These provided a wealth of data on CHD incidence, risk factors and

mortality (Tunstall-Pedoe et al., 1999), leading to the conclusion that both falling

incidence and better clinical outcomes had contributed to the drop in death

rates. However, now that their job is finished, most of the MONICA sites have

stopped active monitoring.

Cancer is the only disease group for which good morbidity data are widely

and routinely available. Some countries, most notably in Scandinavia, have can-

cer registries that cover the whole country and have been operating for many

decades. In others, such ‘population-based’ registries are newer and less well-

established or, as in the USA, cover only part of the population. However, cov-

erage is generally increasing, and a wealth of data on incidence, mortality and

survival is available at regional, national and international levels. In some juris-

dictions cancer is a legally notifiable disease, whereas in others (e.g. the UK)

comprehensive identification of cases has come about gradually due to a com-

bination of enthusiastic local registries and increasing awareness of the value

of good morbidity data for planning and evaluating services. Cancer is an ideal

candidate for such monitoring due to its relatively clear-cut diagnosis, which is

usually based on a single simple record (a pathology report of histology). Rapid

advances in technology now allow much of this information to be transferred

electronically from the pathologist to the registry.

Many health authorities also keep registers of notifiable infectious diseases,

although their prime purpose is for real-time surveillance to allow rapid response

to emerging epidemics. Data for these registers usually come from medical prac-

titioners and pathology laboratories, often under legal compunction. Despite

this, and in contrast to cancers, most such diseases are poorly reported. Excep-

tions are those conditions which are perceived to be more severe, presenting

either an acute challenge to a health system (SARS, AIDS) or a long-standing

threat, such as tuberculosis. We will come back to discuss surveillance in more

detail in Chapter 13.

Hospital records

Hospital records can provide useful information on conditions that require hos-

pitalisation, although many hospitals have only recently started to computerise

their records and it may be necessary to go through individual files by hand to

collect the required information. The available data are usually based on dis-

charge diagnoses as recorded and coded on the patient’s record, and should
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be fairly reliable, although varying degrees of misdiagnosis, mis-recording and

mis-coding are inevitable. It is also important to consider whether data obtained

from a hospital will be representative of the general population or whether any

conclusions will be restricted to the specific individuals from whom the data

were obtained. This depends to a large extent both on the disease of interest

and on the hospital. For diseases such as heart attacks and many cancers that

almost always require hospitalisation, hospital records may provide good infor-

mation on the levels of disease in the community. For conditions commonly

treated outside hospital, however, the hospital-based population will not be typ-

ical: rather, it will be biased towards those with more severe disease, or towards

those groups of society more likely to be hospitalised. A further limitation occurs

where there is no unique patient identifier because aggregate admissions will be

greater than the number of people admitted to hospital (because some will go

to hospital more than once). Choosing the right numerator for a morbidity rate

then becomes a challenge. Finally, most hospital data systems have no informa-

tion at all regarding the vast majority of community morbidity which is treated

by family practitioners or in the home.

Sources of summary data

Although it is sometimes possible to gain access to the individual-level data from

the sources described above, for example through record linkage (see Chapter 4)

or with informed consent from the individuals concerned, there is a wealth of

summary data that is freely available. Also, as you saw in Chapter 2, the raw

health data are not particularly informative on their own. Their value comes

when they are combined with population data to calculate measures of inci-

dence and prevalence that can then be compared with pre-defined standards or

rates in populations in other countries, for different time periods, etc. Tradition-

ally, and this is still the norm, the most used (and useful) measures of health (or,

more usually, ill-health) are those collected and reported at national and regional

levels for internal planning and evaluation.

The process of tracking down this information has changed dramatically.

The World Wide Web now allows instant access to mountains of data that pre-

viously mouldered in dusty reports of limited circulation. While there remains

a vast array of paper-based resources, many are now mirrored by web-based

electronic information. For example, a wide range of information is avail-

able through the World Health Organization (WHO) Statistical Information

System (WHOSIS, http://www.who.int/whosis/en/index.html). (Note: the web

addresses given throughout this chapter and elsewhere in the book are current as

of early 2010 and, although most have been stable for some time, web addresses

do change.)
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No Data <10% <10%–14% 15%–19% 20%–24% 25%–29% >30%

Figure 3.4 The prevalence of obesity (body-mass index ≥ 30 kg/m2) by state in the USA in
1988 and 2008. (Data from the CDC Behavioral Risk Factor Surveillance System, BRFSS,
accessed via http://www.cdc.gov/obesity/data/trends.html on 16 January 2010.)

A second change is the advance in computing technology which allows dra-

matic and informative visualisation of health data. For example, Figure 3.4,

taken from the website of the US Centers for Disease Control Behavioral Risk

Factors Surveillance System (http://www.cdc.gov/bfrss), shows the enormous

increase in the prevalence of obesity across the USA between 1988 and 2008.

The new computing flexibility and lesser reliance on hard-copy publications also

make it easier to obtain customised data sets from health authorities, although

there will often be a price attached. As an example of what is possible, CDC

Wonder from the US Centers for Disease Control and Prevention (http://wonder.

cdc.gov/) allows access to many data portals and was the source of the data on

US mortality trends shown in Figures 1.7 and 1.8. Don’t get carried away by the

technology just yet, though – if you don’t know what you are looking at you can

misinterpret the results wildly.

As you will see below, there are many sources of data on mortality, morbid-

ity and other factors relevant to health and, inevitably, these are of varying reli-

ability, quality and completeness. This is true not only across different coun-

tries (note that our emphasis here is on the better-developed data systems), but

also within any country, since all public data sets will have some problems, and

some of them will have many. Any comparisons should be made only with a

good understanding of the accuracy and completeness of the raw data under-

lying the summary rates. This section cannot be comprehensive but it should

give you a sense of the sorts of material that are available. We have given spe-

cific directions to some of the major electronic sources of data from Australia,

Canada, New Zealand, the UK and the USA, but most other countries provide

similar information and an internet search would lead to them. One thing to
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remember, however, is that the data will almost certainly have been collected for

a reason other than your question of interest and therefore might not be in the

ideal form for your purpose. For example, the definition of who is a ‘case’ might

not fit your criteria exactly; the data could have been collected for age groups

that do not correspond to those you want to know about, and so on. It is always

important to balance these disadvantages against the major advantage of using

existing data – someone else has already done the hard work to collect it.

International sources

At an international level, two incredibly rich sources of information are the WHO

and the World Bank.
� The WHO publishes the Weekly Epidemiological Record and the annual World

Health Report (amongst other things) and electronic copies of both are avail-

able free of charge through the WHO website (http://www.who.int). The WHO

Regional Offices (Europe, Africa, etc.) also have their own sites, which are

accessible through the main WHO site. They provide access to local data and

an array of regional statistics, health reports and information, for example the

European ‘Health for All’ Database which provided the data on mortality in

Russia for Figure 1.2 (www.euro.who.int/HFADB).
� The World Bank site (http://www.worldbank.org) provides access to a wide

range of health and economic indicators for countries and regions around the

world. It includes summary health data along with social, development and

environmental statistics.

National data sources

Of particular value for the generalist can be publications that aim to capture

the ‘healthiness’ of a nation or region. These often address contemporary issues

via a combination of helpful and readily interpretable data, provide informed

comment on implications for disease control, and may include evaluations of

the positive and negative features of the health system which contribute to the

nation’s current ‘diagnosis’. Some excellent examples that are accessible on-line

(see Box 3.3 for web addresses) include
� Australia’s Health; a biennial publication from the Australian Institute of

Health and Welfare (AIHW);
� Health, United States; from the US National Center for Health Statistics

(NCHS); and
� UK Health Statistics Quarterly; from the Office for National Statistics (ONS) and

available through their ‘virtual bookshelf’.

Other good sources of national data are the agencies in many countries that pub-

lish core health statistics, as well as demographic and other population data.
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Box 3.3 E-data – selected health departments and national
statistics agencies

Australian Bureau of Statistics (http://www.abs.gov.au)

Australian Institute of Health & Welfare (AIHW) (http://www.aihw.gov.au)

New Zealand Ministry of Health, Health Information Service

(http://www. nzhis.govt.nz)

Statistics Canada (http://www.statcan.ca)

UK Office of National Statistics (ONS) (http://www.statistics.gov.uk)

US Centers for Disease Control and Prevention (CDC) (http://www.cdc.gov)

US National Center for Health Statistics (NCHS) (http://www.cdc.gov/nchs)

US National Institutes of Health (NIH) (http://www.nih.gov)

Contains links to the 28 separate institutes, centres and offices that make

up the NIH, covering areas from child health to ageing; alcoholism to drug

abuse; and allergy through deafness and eye diseases to cancer, diabetes

and circulatory diseases.

US Census Bureau (http://www.census.gov)

Includes a comprehensive listing of other statistical agencies around the

world.

Box 3.4 E-data – disease-specific sites

Cancer

CANCERMondial at the International Agency for Research on Cancer (IARC)

(http://www-dep.iarc.fr/)

European Network of Cancer Registries (http://www.encr.com.fr/)

US National Cancer Institute (NCI) (http://www.nci.nih.gov/)

US Surveillance, Epidemiology and End Results (SEER) Program of the NCI

(http://seer.cancer.gov/)

Infectious diseases

Weekly Epidemiological Record (WER) from the WHO

(http://www.who.int/wer/en/)

Morbidity and Mortality Weekly Reports (MMWR) from the US CDC

(http://www.cdc.gov/mmwr/)

Disease-based resources

In addition to the sources listed above and in Box 3.3 there are many sites, both

national and international, dedicated to specific diseases or conditions. Some of

the best-known are listed in Box 3.4.
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Some academic and other idiosyncratic sites

Other sites that can provide a helpful starting point for a search include the

following:
� The University of California (San Francisco) maintains a site that provides

access to a wide range of epidemiology and public health-related sites

(http://www.epibiostat.ucsf.edu/epidem/epidem.html).
� Martindale’s Public Health Center has a wide-ranging and eclectic site with

many data links (http://www.martindalecenter.com/PHealth.html). (Unfortu-

nately this site no longer includes surf and snow reports!).
� The American Public Health Association also has a site with multiple data and

other ‘public health links’ (http://www.apha.org/).
� SUMSearch is an internet search tool designed to automate searching for med-

ical evidence (http://sumsearch.uthscsa.edu/).

As the above references imply, today the starting point for a search for health

information is the World Wide Web. An incredible array of data is directly acces-

sible through sites such as the WHO website. Additionally many of the sites

listed here provide links to a broader set of data-providers worldwide, some

of whom will offer a similar set of cross-links, and so on. Many of the figures

in this book come directly from readily available electronic sources such as

these.

Creative use of existing data

Although, as we said at the start of the chapter, descriptive epidemiology is

mainly concerned with ‘who, what, where and when’, we can also use simple

descriptive information to start to link exposures and health outcomes to try to

determine ‘why’ disease occurs. For example, Figure 3.5 on the next page shows

trends in lung cancer mortality over time in Hungary, the UK and the USA.

What does this graph tell us about lung cancer? Why might rates have risen in

Hungary between 1980 and 1995 but fallen in the UK and USA? Do we need any

other information before we can draw any conclusions from this figure?

Figure 3.5 suggests that lung cancer mortality rates in the UK have fallen dra-

matically since the early 1970s, whereas in the USA they are gradually falling after

having peaked in the 1980s. In contrast, the rates in Hungary rose markedly in

the 1980s and only started to fall in the late 1990s. However, before we accept that

these are real differences we must consider whether there might be an alternative

explanation for the observed patterns. Is lung cancer diagnosed in the same way

in each country? Have either the method of diagnosis or the criteria for diagnosis

changed over time and have they changed differently in the three countries?
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Figure 3.5 Age-standardised
annual death rates from lung
cancer among men aged 40–69
years in Hungary (�), the USA
(◦) and the UK (•). (Data source:
WHO Mortality Database,
accessed via
http://www-depdb.iarc.fr/ on
16 January 2010.)

Does lung cancer mortality mirror the incidence of lung cancer (i.e. is lung

cancer really more common in Hungary?), or are the mortality rates higher in

Hungary simply because treatment is less effective and the case–fatality ratio

higher? Are lung cancer mortality rates in the UK and USA falling because the

incidence is falling or because treatment has improved? If this is a real effect,

does the fall in rates in the Western countries reflect the reduction in cigarette

smoking?

Data of this type leave us with many questions but few definitive answers.

However, if we can relate them to changes in other factors that might influ-

ence mortality they can add support to a hypothesis. For example, by plotting

a graph of per-capita cigarette consumption over time and comparing this with

lung cancer mortality rates (Figure 3.6), we find that the rise in lung cancer

mortality in the USA parallels increasing cigarette sales, but it occurred 20–30

years later. This represents the two to three decades that it takes smoking to

cause lung cancer and kill someone. The fact that lung cancer rates started to

fall again 20–30 years after the decline in smoking adds further weight to the

hypothesis that smoking causes lung cancer: if this fall had not occurred then

the hypothesis would have failed a critical test – removal of the cause should

reduce the incidence of disease. So, although these data do not prove that smok-

ing causes lung cancer, they add weight to the belief that it could. If we found

that an increase in cigarette consumption in Hungary occurred much later than

the increases seen in the UK and USA this would strengthen the belief even

further.
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Figure 3.6 Cigarette sales and
lung cancer mortality rates in
males, age-standardised to the
world population. (Cigarette
consumption data from
www.infoplease.com, lung
cancer mortality rates from WHO
Mortality Database, accessed via
http://www-depdb.iarc.fr/ on
16 January 2010.)

Migrant studies

Another creative use of descriptive data comes from what are often called

migrant studies. One of the challenges we face when we try to interpret differ-

ences in disease rates between countries is separating the effects of nature and

nurture. Do Japanese women have very low rates of breast cancer compared with

White American women because they are Japanese (i.e. because of a different

genetic predisposition) or because they live differently (i.e. have different envi-

ronmental exposures, such as diet)? For some populations we are fortunate to

have what could be called ‘natural experiments’ when large numbers of people

have migrated from a country with a low risk of a particular disease to a high-risk

country, or vice versa, which can help to answer these questions. For example,

large numbers of Japanese have migrated to Hawaii and California, and their

overall rates of some diseases (e.g. breast cancer and coronary heart disease)

have changed dramatically within one or two generations, moving away from the

low rates in Japan towards the higher rates of the USA. The converse is true for

rates of stroke and stomach cancer, which are lower in Japanese people residing

in the USA than in those who live in Japan. If these diseases were largely genetic

in origin then the rates could not have changed so quickly when the migrants

moved to the USA. This strongly implicates the importance of the environment



90 Who, what, where and when?

G
as

tr
ic

 c
an

ce
r 

m
o

rt
al

it
y

(c
u

m
u

la
ti

ve
 r

at
e,

 0
–6

4 
ye

ar
s)

/1
,0

00

70

60

50

40

30

20

10

0
0 20 40

Helicobacter pylori IgG antibody
(% of individual samples that were positive)

60 80 100

Figure 3.7 An ecological study
comparing the prevalence of
serum antibodies to H. pylori
(a gastric infection) and gastric
cancer mortality rates in 46 rural
Chinese counties. (From Forman
et al., Geographic association of
Helicobacter pylori antibody
prevalence and gastric cancer
mortality in rural China. Int. J.
Cancer, 1990; 46: 608–611,
reprinted by permission of John
Wiley & Sons.)

in increasing or decreasing the migrants’ risk of disease and has led to enthusi-

asm for the idea that diet plays an important causal role in these diseases. How-

ever, the only specific causal hypothesis that is directly tested by such data is

that large-scale international variation in these diseases is not primarily genetic

in origin.

Ecological or correlation studies

Figure 3.7 shows the relation or correlation between the prevalence of infection

with Helicobacter pylori (a bacterium that infects the stomach) and stomach can-

cer mortality rates in 46 Chinese counties (Forman et al., 1990). In this study, the

prevalence of infection was measured as the percentage of the population in the

county with antibodies to the bacterium (an indication that they were or had

been infected) and the cumulative gastric cancer mortality rate is the rate per

1,000 men and women (summed from birth to age 64). (Note that cumulative

mortality is comparable to the cumulative incidence that you met in Chapter 2.)

Each spot on the graph represents one of the 46 counties. There is not a perfect

association, but the graph indicates that counties with a higher prevalence of H.

pylori infection also tend to have higher stomach cancer rates and, perhaps more

importantly, counties with a low prevalence of H. pylori have low stomach cancer

rates. This hints that H. pylori might play a role in the development of stomach

cancer; however, the fact that some counties have a high H. pylori prevalence but

a low stomach cancer rate suggests that infection alone is not enough to cause

cancer. Other factors must also play a role.
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Box 3.5 Ecological studies

� In a classic study, Armstrong and Doll (1975) reported the correlation

between 27 cancers and a wide range of dietary and other variables in

23 countries. Diet was strongly correlated with several types of cancer,

particularly consumption of meat with cancer of the colon. Countries with

low per-capita daily consumption of meat had the lowest rates of colon

cancer. The findings from this study suggested that dietary factors play a

role in the development of cancer and led to a burgeoning of research in

this area.
� In 1979, the authors of another study reported a strong inverse association

between average per-capita consumption of wine and mortality from

ischaemic heart disease (high wine consumption was associated with low

IHD mortality) (St Leger et al., 1979). Since then more than 60 ecological,

case–control and cohort studies have been conducted and most have

shown that moderate consumption of wine and other alcohol has a

protective effect against heart disease.

This example illustrates the key characteristic of ecological studies – they com-

pare the prevalence of exposure and occurrence of disease in populations or

groups of people, not individuals. The points on the graph represent the pop-

ulation prevalence of infection (in this case, taken from special surveys of indi-

viduals in each county) and the rate of disease in the population. The focus is

on whether counties or populations with a high prevalence of infection also had

a high cancer rate. In general, ecological studies are attractive because they are

easy to do, especially if the routine data are readily available, but they can be

difficult to interpret. The populations being compared may well differ in ways

other than their exposure to the factor of interest and it is possible that some-

thing else that is related to the exposure is actually responsible for the observed

differences in morbidity or mortality (i.e. an apparent relation could be due to

confounding – see Chapter 8). Another problem with this type of study is that an

observed association between variables at the group level might not represent

the association at the individual level. In the example above, we have no way of

knowing whether the people who developed cancer were actually infected with

H. pylori. Ascribing characteristics to members of a group that they might not

possess as individuals is called an ecological fallacy. For these reasons, ecological

studies rarely give a strong test of a causal hypothesis but, more often, they help

to generate or develop hypotheses. Box 3.5 shows some other ecological studies

that have been instrumental in suggesting associations between exposures and

disease.
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Confidentiality

We cannot end any section on health data without touching on the issue of confi-

dentiality. Clearly, information about an individual’s health is private and should

not be accessible to anyone else other than their healthcare providers. Much

of the available health data is in the form of summary statistics such as rates

so that it is impossible to identify specific individuals, and these data can be

made freely (or at least readily) available. To gain access to data on individuals

it will almost certainly be necessary to sign a confidentiality agreement, have

permission from a Human Research Ethics Committee or Institutional Review

Board and/or obtain consent from the individual patients and sometimes their

physicians as well. Rapidly changing and expanding privacy legislation in many

countries is adding to the challenges. While properly highlighting ethical use of

data, the increasing emphasis on the principle of autonomy has created ten-

sions between the need to protect personal information on the one hand and

the desire for public good, which may require some access to individual data, on

the other.

Summary

You have now seen the most common types of descriptive data and where they

come from and also some examples of the many ways in which they can be used.

These data are core to health planning and, as you will see in later chapters, are

also essential for identifying new health problems and monitoring the effects of

health interventions. You have also seen that although it cannot provide strong

evidence about the causes of disease, creative use of descriptive epidemiology

can generate new ideas about causality. These hypotheses then need to be tested

in more formal ‘analytic’ studies and we will move on to discuss these in the next

chapter.
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Box 4.1 Oranges and lemons

In 1747, James Lind conducted an experiment to test six different cures for

scurvy. While at sea, he identified 12 patients with scurvy whose ‘cases were

as similar as I could find them’ and prescribed a different treatment to each

pair of patients. After a few days he found that the two patients fortunate

enough to have been prescribed oranges and lemons were almost fully

recovered whilst no improvement was seen in the other ten, who had been

subjected to various regimens including sea-water, gruel, cider and various

elixirs. From this, Lind inferred that inclusion of citrus fruit in the diet of

(continued)
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Box 4.1 (continued)

sailors would not only cure, but also prevent scurvy. Limes or lime juice thus

became a part of the diet on ships, earning British sailors their nickname of

‘limeys’ (Lind, 1753).

When we discussed what epidemiologists do in Chapter 1, we touched on some

of the different types of study that we use to collect the information we need to

answer questions about health. In Chapter 3 we looked at the descriptive studies

that provide the ‘bread-and-butter’ information of public health; in this chap-

ter we will look at the analytic studies that are our main tools for identifying

the causes of disease and evaluating health interventions. Unlike descriptive epi-

demiology, analytic studies involve planned comparisons between people with

and without disease, or between people with and without exposures thought to

cause disease. They try to answer the questions ‘Why do some people develop

disease?’ and ‘How strong is the association between exposure and outcome?’.

This group of studies includes the cohort, case–control and intervention studies

that you met briefly in Chapter 1. Together, descriptive and analytic epidemiol-

ogy provide information for all stages of health planning, from the identification

of problems to the funding of public health solutions and evaluation of whether

they really work in practice.

As we discussed in Chapter 1, people talk about many different types of

epidemiology but ultimately almost all epidemiology comes back to the same

fundamental principles; the only things that differ are the health condition of

interest and the factors that might influence that condition. So it is worth bearing

in mind that the approaches that we will discuss in this chapter are generic and

can be applied across all areas of health. They are equally applicable to studies:
� of treatment, prognosis and patient outcomes (e.g. survival, improved physical

function or quality of life) in clinical medicine, dentistry, nursing or any of the

allied health professions;
� looking for the genetic and/or non-genetic causes of infectious and chronic

diseases;
� of the effects of our occupation or our socioeconomic and physical environ-

ment on health;
� aiming to identify factors that influence health behaviours such as smok-

ing, alcohol consumption or whether parents choose to have their children

vaccinated; and
� attempting to change these behaviours in order to improve health out-

comes . . .

And the list could go on. Likewise, the range of exposures or study factors that

might influence health – for good or bad – is incredibly broad. The ‘exposure’ we
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are interested in could be an environmental factor such as an infectious agent,

radiation or some chemical, it could be a behavioural factor like smoking or

drinking habits, an intrinsic characteristic of the individual such as sex, age, skin

colour or an underlying genetic factor (after all, we are all ‘exposed’ to our own

genes). Furthermore, while most of these are personal exposures that affect us at

the individual level, epidemiology is expanding and social epidemiology encom-

passes the additional influences of the broader social environment. At another

level, lifecourse epidemiology attempts to integrate exposures over an individ-

ual’s lifetime. While different questions place different demands on the specifics

of data collection, all can be addressed via the same suite of research designs,

although different designs will be more or less appropriate in different situations.

When we discuss the various study designs in this chapter we will do so mainly

in the context of ‘exposure’ and ‘disease’, but you should be aware of the broader

application of the ideas.

It is also important to bear in mind that all of the various study designs that

we will discuss have their strengths, but they also have limitations and we will

touch briefly on these as we go. We will come back to pick up on some of these

limitations when we talk about bias in Chapter 7 and look at how to report, read

and interpret the results of epidemiological studies in Chapter 9.

Observational studies

If a laboratory scientist wanted to see whether something caused a particular

effect they would set up an experiment. This would involve creating two identical

test systems under identical conditions, adding the particular factor of interest

to one of them and then waiting to see what happened. Any differences between

the outcomes in the two systems could then be fairly conclusively attributed to

the presence of that factor. The same principles apply in epidemiology – if there

is good reason to believe that something might improve health then it is possi-

ble to conduct an intervention study where the investigator actively intervenes

to change something to see what effect this has on disease occurrence. This is

what James Lind did in his small, but classic study on scurvy in 1747 (Box 4.1).

Such studies include clinical trials comparing two (or more) forms of treatment

for patients with a disease, as well as preventive trials, in which the aim is to

intervene to reduce individuals’ risk of developing disease in the first place. As

with experiments in other sciences, the investigator controls who is exposed and

who is not, for example, who is allocated to a new treatment regimen and who

receives the old treatment, or who is enrolled in a ‘stop smoking’ campaign and

who is not.

However, when we are dealing with people, things usually are a lot more

complicated than this and, as a result, epidemiology is rarely an experimental
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science. Most of the time an epidemiologist will just go out (after a lot of thought-

ful planning) and measure the rate of occurrence of a disease or other health

outcome, or will compare patterns of exposure and disease to identify particular

exposures or risk factors associated with that disease. This is purely an observa-

tional role: the researcher does not intervene in any way. They leave nature to

take its course, and record what happens, or what happened in the past. These

are commonly described as observational studies. We will discuss these first and

will then come back to consider intervention studies later.

Ecological studies

We mentioned these in Chapter 3 because they compare exposure and disease

in populations rather than individuals, but they do attempt to link exposures

and outcomes and so could equally well be considered analytic studies. After

observing a correlation between rates of infection with the gastric bacterium H.

pylori and gastric cancer mortality in China as shown in Figure 3.7, the inves-

tigators conducted a similar study comparing infection rates and gastric cancer

incidence in 17 centres from the USA, Japan and 11 different countries in Europe.

From this they were able to estimate that mortality from gastric cancer would be

about six times higher in a population where everyone was infected with H. pylori

than in a population with no infection, i.e. the relative risk of dying from gastric

cancer was about six times higher for someone infected with H. pylori than for

someone who was not infected (The Eurogast Study Group, 1993).

It is, however, always important to remember that communities that differ in

one way – for example the prevalence of H. pylori infection – probably differ in

other ways too. It is therefore impossible to be sure that the factor of interest

is what is actually driving their different health outcomes, in this case mortality

from gastric cancer.

Cross-sectional studies

In Chapter 3 we discussed the surveys that many countries conduct on a fairly

regular basis to measure the prevalence of different health behaviours and health

conditions in their population and we showed how these can be used to look at

the relationships between behaviour and health. The key factor of these surveys

is that they aim to select people in such a way that they are representative of

the whole population so that information collected from the study sample can

be generalised directly to that population. Studies like this, that set out to look

at the relation between an exposure and a health outcome in a ‘cross-section’

of the population, are called cross-sectional studies. As you will see, they have

a number of drawbacks compared to other study designs but, because of their
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Defined
population

Gather data on
exposure and

disease
(simultaneously)

 Exposure  Disease

 Exposure  Disease

 Exposure  Disease

 Exposure  Disease

Figure 4.1 The design of a
cross-sectional study.

relatively simple design (summarised in Figure 4.1), they are often conducted as

an early investigation into the possible causes of ill-health.

For example, a group of researchers in India wanted to estimate the prevalence

of and risk factors for suicidal behaviour in young people in Goa. They invited all

16–24-year-olds from two rural and two urban communities to be interviewed

for the study and achieved a participation rate of almost 95%. Overall, 3.9% of

the 3,662 participants reported some form of suicidal behaviour in the previous

three months. Multiple factors were associated with suicidal behaviours, includ-

ing female gender, not attending school and experience of sexual and recent

physical abuse (Pillai et al., 2009).

This cross-sectional study was both descriptive in that it defined the scope of

the problem (how common is suicidal behaviour), and analytic in that it also

identified (and measured the prevalence of) a number of possible causal factors.

All these data, descriptive and analytic, can be valuable for planning health and

social system responses. The key feature of the study is that the young people

were not recruited because they had (or had not) exhibited suicidal behaviour or

because of their particular histories, but because they were assumed to be typical

of young people in Goa.

Cross-sectional studies such as this may be conducted to gather information

about many aspects of health and lifestyle and, as in the example above, par-

ticipants should be recruited without knowledge of either their exposure status

(presence or absence of the exposures of interest) or their disease status (pres-

ence or absence of the diseases of interest). This is essential to avoid selection

bias – something that we will come back to discuss in Chapter 7. Information on

the outcome (suicidal behaviour in the example above) and the exposures (gen-

der, education, previous abuse, etc.) is usually obtained at the same time. For

this reason, it can be difficult to identify which came first – the exposure or the

outcome (disease). For example, what would we conclude if we found that peo-

ple who did not exercise were more likely to have depression than those who

exercised regularly? This might suggest that regular exercise prevents depres-

sion, but equally it could reflect the fact that people with depression may be less

likely to exercise regularly. This problem is a major issue in cross-sectional stud-

ies and is sometimes described as ‘reverse causality’ – does A really cause B or
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might the reverse be true such that B causes A? Cross-sectional studies can, how-

ever, be particularly useful for examining exposures that do not change over time

(for example, personal characteristics like sex and blood group) or that occurred

many years previously.

Another important thing to note about cross-sectional studies is that they eval-

uate prevalent cases of disease – those that are already present in the population

at the time of the survey. As we discussed in Chapter 2, prevalence is a function

both of the incidence and of the duration of a disease. People who have a dis-

ease for longer are more likely to be ill at the time of a cross-sectional study than

those who are sick for a shorter time. An association between exposure and

prevalence of disease can thus reflect not only a link between exposure and the

occurrence of new disease, but also a link between exposure and factors that

affect survival or persistence of a diseased state.

Thinking back to the study of suicidal behaviour described above:

Is there any problem with the time-directionality of the link between (i) gender,

(ii) lifetime sexual abuse and (iii) not attending school and suicidal behaviour?

Are the young adults studied likely to be typical of all young adults in Goa? India?

In this study it is unlikely that there is a problem with the time-directionality

of the relationships with gender (as this does not change over time) or sexual

abuse as this was recorded over the lifetime and thus is very likely to have pre-

ceded the suicidal behaviour which was recorded for the last 3 months only.

The relation with not attending school is, however, more problematic as it is

possible that young adults with suicidal tendencies may be more likely to miss

school than the other way around. In relation to the generalisability of the find-

ings, the results from the study were based on young people from two rural

and two urban communities. The participation rates were very high (much

higher than would be achieved in most studies in developed countries now), but

before generalising the results beyond the study areas we would need to know

that the selected communities were representative of all communities in Goa

(or India).

Cross-sectional surveys such as the national health surveys conducted in

many countries are often carried out at regular intervals – for example the

NHANES studies in the USA that we discussed in Chapter 3 (see Box 3.2). They

recruit a different sample of people for each survey and then study changes in

the population prevalence of disease, disability or potential risk factors for dis-

ease over time. In this regard they differ from cohort studies, which, as you will

see below, follow the same group of people over a period of time.

Another type of cross-sectional study that you may come across in the clinical

setting is one conducted to evaluate the performance of a diagnostic test – see

Box 4.2.
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Box 4.2 Diagnostic studies

A study to evaluate the accuracy of a diagnostic test can be thought of as a

special type of cross-sectional study in which the data are collected from

diagnostic test results or physical examination rather than from interviews or

questionnaires. Typically, individuals with symptoms of disease are selected

randomly or consecutively from a clinic or hospital to undergo the test of

interest (the index test). Then independently (and blinded to the results of

the index test) the same individuals undergo the best test available to

diagnose the disease (the reference test or ‘gold standard’). The results of the

two tests are then compared and the accuracy of the index test (its sensitivity

and specificity) can be determined (we will discuss the mechanisms of this

in Chapter 15). As in all cross-sectional studies, it is important that the

people selected are representative of the target population – in this case the

patients in a particular setting – in whom the test would be used in real life.

Cohort studies

As we discussed at the start of this section, the best way to test whether some-

thing is causally related to health is to see whether people exposed to the fac-

tor of interest have different health outcomes from those who are not exposed.

Ideally we would conduct an experiment or trial where we could control who

was exposed and unexposed but in many cases this would be either unethical

(you cannot deliberately expose someone to something thought to be harm-

ful) or impractical. The next best thing is therefore a cohort study (sometimes

described as a prospective or longitudinal study) where we follow people for-

wards (prospectively) over time to see what happens to them. The cohort1 might

be a group of initially healthy people whom we follow to observe the occurrence

of disease or a group of patients whom we follow to study their disease outcomes,

i.e. their prognosis.

A classic example of a cohort study is the Framingham Heart Study (Dawber,

1980). It was started in 1948 at a time when heart disease had become the USA’s

number one killer, and the principal aim was to identify biological and envi-

ronmental factors that might be contributing to the rapid rise in cardiovascular

death and disability. The epidemiological approach was quite novel at the time

and it was designed to discover how and why those who developed heart disease

differed from those who escaped it. The town of Framingham, Massachusetts,

was selected by the US Public Health Service as the study site, and 5,209 healthy

1 In Ancient Rome, a cohort was one of ten divisions of a Roman military legion. It comprised young

men of similar age from one region. In service its members were often injured or killed and they were

not replaced. The cohort was then disbanded when the term of enlistment was over.
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men and women between 30 and 60 years of age were enrolled. Framingham was

appealing because it had a stable population and a single medical facility, sug-

gesting that it would be relatively easy to carry out the follow-up. The study was

expanded in 1971 when 5,124 children of the original cohort (and their spouses)

were recruited for a second study, the Offspring Study.

Before Framingham, the notion that scientists could identify, and individuals

could modify, ‘risk factors’ (a term coined by the authors of the study) tied to

heart disease, stroke and other diseases was not part of standard medical prac-

tice. With over 50 years of data collected from residents of Framingham (and the

publication of more than 1,000 scientific papers), the Framingham researchers

have identified major risk factors associated with heart disease, stroke and other

diseases and created a revolution in preventive medicine. The study identified

several risk factors associated with increased risks of heart disease including

cigarette smoking (1960), high cholesterol levels and high blood pressure (1967),

and obesity and low levels of physical activity (1967). These are so commonly

accepted today, both by health professionals and by the public, that it is difficult

to imagine a time when we did not know about them.

The Framingham Study is quite small by modern standards: the European

Investigation into Cancer (EPIC) established in 1995 includes more than half a

million individuals from 10 European countries (http://epic.iarc.fr) and the Mil-

lion Women Study was initiated in the UK in 1996 (The Million Women Study

Collaborative Group, 1999). The Framingham study therefore needed particu-

larly long follow-up to accumulate enough endpoints (diagnoses of new disease)

to give robust results. A crucial trade-off is that the smaller size and the setting

permitted regular detailed physical examination and other ‘hands-on’ investi-

gations such as the recording of electrocardiograms, giving a rich array of high-

quality exposure data that cannot be gathered on a very large scale.

In a cohort study we compare the occurrence of disease in groups of people

with and without a particular exposure (Figure 4.2). The participants must be

free of the outcome of interest at the start of the follow-up, which makes it easier

to be sure that the exposure preceded the outcome. Although if there is a long

pre-clinical phase before a disease is diagnosed, as is probably the case for many

types of cancer, the apparent exposure–disease sequence can still be wrong and

for this reason many cohort studies do not count cases of disease that occur in

the first few years of follow-up.

Of all the observational designs, cohort studies generally provide the best

information concerning the causes of disease and the most direct and intuitive

natural measurements of the risk of developing disease. The other advantage of

collecting exposure information before people develop disease is that measure-

ment of exposure is not biased by knowledge of outcome status. It is important

to note, however, that if a cohort study has a very long follow-up period and

exposure data were only collected at baseline then people may have changed
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Time
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Figure 4.2 The design of a
cohort study (adapted from
Beaglehole et al. (1993), with
permission).

their behaviours over the intervening years. For example, smokers may quit

smoking or meat eaters may become vegetarian and it is also an unfortunate fact

that many of us will gain weight as we get older. Depending on when the critical

period of exposure occurs, this may mean that people are wrongly classified

with regard to their exposure (e.g. past smokers as current smokers). This is a

problem of misclassification and we will discuss it further in Chapter 7. Many

cohort studies, for example the US Nurses Health Studies (see Box 4.3), avoid this

problem by re-contacting study participants every few years to collect updated

exposure information.

Selection of participants is an issue at two points of a cohort study: who is

selected into the cohort at the start of the study and who is lost from the cohort

during follow-up. Who is selected into a cohort can influence the generalisability

of its findings since they may apply only to the sorts of people who agreed to take

part. However, if many people are ‘lost to follow-up’ such that we don’t know if

they experienced the health outcome of interest, then the results of the study

may be biased. (We will discuss selection bias further in Chapter 7.)

Cohort studies are by nature very time-consuming and expensive. However,

the benefit:cost ratio of a well-run cohort study is high, given the enhanced

validity over case–control studies and the multitude of associations that can be

assessed. For example, over the last decade the Nurses’ Health Study has been the

basis for between 30 and 50 publications every year (see http://www.channing.

harvard.edu/nhs). In principle, a long-term cohort study also has the potential

to deliver the public health knowledge of most value, by showing the full array of

harms and benefits associated with a given exposure. The British Doctors Study

is an outstanding example of this with regard to cigarette smoking because while

it, like other studies, shows that there is a potential benefit of cigarette smok-

ing with regard to Parkinson’s disease, it also clearly shows the overwhelming
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Box 4.3 Some other notable cohort studies

� The British Doctors Study cohort was established in 1951 and followed for

more than 50 years, although many of the original 40,701 participants are

now dead. It has been of enormous value, particularly in relation to

identifying the manifold health consequences of smoking. This is despite

the fact that, compared with studies today, only limited exposure data

were collected on a very short postal questionnaire mailed to the doctors

at 10-year intervals since 1951 (Doll and Hill, 1964).
� The US Nurses’ Health Study started in 1976 with 121,964 female nurses

aged 30–55, and 5 years of funding. Since then its focus has widened

enormously from the oral contraceptive–breast cancer links for which it

was first funded (Stampfer et al., 1988) to cover many exposures (including

diet) and a multitude of outcomes. It has now accumulated more than

30 years of follow-up and is still going strong. It is very expensive to run,

but the scientific and public health yield has been exceptional. The Nurses’

Health Study II began in 1989 with 117,000 nurses aged 25–42 (Rockhill

et al., 1998) and recruitment has recently started for a Nurses’ Health

Study III!
� ALSPAC (The Avon Longitudinal Study of Parents and Children) was

started in 1990 to determine ways in which an individual’s genes combine

with environmental pressures to influence health and development over

the lifecourse. Comprehensive data have been collected on over 10,000

children and their parents, from early pregnancy until the present. Since

the study is based in one geographical area of the UK, linkage to medical

and educational records is relatively simple, and hands-on assessments of

children and parents using local facilities allows good quality control

(Golding et al., 2001).

negative effects of smoking which put control of smoking at the top of the public

health agenda.

Historical cohort studies

It is sometimes possible to avoid the long follow-up period common to many

cohort studies by establishing a retrospective or historical cohort. This requires

good records of past exposure for a group of people who can then be traced

to determine their current health. Until fairly recently, such studies have been

most common in industry or the military where good personnel records exist

but they have also been used to study the development of disease in relation to

characteristics at birth (e.g. weight and length at birth) because this information

can often be obtained retrospectively from birth records. In the absence of close
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follow-up – the usual situation – they are generally limited to studying mortality

or cancer outcomes, given the lack of universal records for other non-fatal end-

points. Some interesting and useful variations include the use of college alumni

records in the USA to study benefits of physical activity as a young adult (Paf-

fenbarger et al., 1986) and the Boyd Orr Study based on detailed dietary records

collected from over 4,000 British children in the 1930s (Frankel et al., 1998).

Now with the increasing opportunities for linking other health records (see

Record linkage below), studies of this type are becoming more common and

increasingly sophisticated.

Record linkage

Many investigators performing cohort studies enhance their follow-up by using

external sources of health data to which they ‘link’ the identities of their indi-

vidual cohort members in order to find out about new outcomes, commonly

the occurrence of cancer or death as this information is often routinely avail-

able from central registries. The matches are made in a variety of ways, including

using a common personal identification number as in many Scandinavian coun-

tries and the USA (social security number), or through probabilistic approaches

based on a variety of personal identifiers (e.g. name, date of birth and address).

As health data are increasingly stored in electronic formats, the scope for what is

often described as record linkage is increasing exponentially and some health

jurisdictions are now establishing procedures to link different health-related

databases (Kelman et al., 2002). In the Australian states of Western Australia and

New South Wales, for example, it is now possible to link information from a wide

range of sources including the electoral roll, birth and death records, hospital

admissions, emergency presentations, midwives’ notifications, cancer registra-

tions and mental health records as well as the national Pharmaceutical (drug

prescriptions) and Medicare (tests and procedures) Benefits Schedules. Access

to these linked data is, of course, highly controlled to preserve the confidentiality

of individual Australians living in these states. However, with appropriate con-

sent from the persons concerned, or a protocol that does not require any per-

sonal identifying information (such as names, addresses or dates of birth) to be

released, these data can now be accessed and linked to provide valuable infor-

mation for health researchers and managers alike. For example, by linking data

from hospital morbidity and death records, Western Australian researchers were

able to show that the presence of other medical conditions (comorbidity), but

not advancing age, predicted repeat admission to hospital for adverse drug reac-

tions (Zhang et al., 2009). This information will allow better identification and

monitoring of those most at risk of an adverse reaction.

Some studies now rely heavily on record linkage to provide reliable informa-

tion about an enormous range of potential exposures and health outcomes with-

out having to rely on people’s memories for accurate information. For example,
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‘45 and Up’ is a cohort study that is following more than 250,000 men and women

aged 45 and older in New South Wales to look at a wide range of health out-

comes associated with aging. These range from health conditions to use of health

services and quality of life (http://www.45andup.org.au). Although the investiga-

tors asked participants to complete a standard health questionnaire when they

joined the study, they also asked them to consent to allow the investigators access

to their health records to allow linkage to the many health databases listed above

(45 and Up Study Collaborators, 2008). This greatly broadens the scope of ques-

tions that the study will be able to answer and also has the benefit that there is

less reliance on individual memory.

There is also an interesting sub-set of studies that are based entirely on record

linkage. They are effectively cohort studies in which both exposure and outcome

information comes from electronic records. While they have been used mostly to

link health services and outcomes, increasing computerisation of medical infor-

mation makes more conventional aetiological research possible by this means.

As an example, Swedish investigators were able to use the Swedish Inpatient

Register to identify a cohort of 29,187 patients hospitalised for type-1 diabetes

between 1965 and 1999. They then ‘linked’ these names to the Swedish Cancer,

Total Population, Migration and Death Registers. This told them who had been

diagnosed with cancer, the type of cancer and date of diagnosis, and also who

had migrated or died from some other cause and so was no longer at risk of being

diagnosed with cancer in Sweden. They calculated standardised incidence ratios

(SIR) for the cohort compared with the general population and found that dia-

betes was associated with significantly increased risks of cancer of the stomach

(SIR = 2.3), cervix (SIR = 1.6) and uterus (SIR = 2.7) (Zendehdel et al., 2003).

Studies like this are essentially the modern version of the historical cohort study

we discussed above.

Studies based on linking health (and other) records from a variety of sources

do, however, raise a number of issues regarding confidentiality, and current pri-

vacy concerns and legislation in some countries have the potential to limit this

avenue of research. The 45 and Up Study asks all participants to provide con-

sent for the investigators to collect information from health records, but it is

often not possible or practical for researchers to contact all of the individu-

als concerned to get their permission to access their data. To solve this prob-

lem, pure record-linkage studies are conducted without the researchers being

given any personal information about the individuals in order to preserve their

anonymity. So, for example, the custodians of the relevant databases perform

the linkage and remove all identifying information such as names, addresses

and dates of birth before giving the linked data to the investigators for analysis.

Despite these precautions, however, many health data custodians are still pre-

vented by law from releasing even de-identified information without individual

consent. Much effort is being expended to enable a constructive resolution of
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the tensions between maximising individual autonomy (by protecting against

inappropriate access to personal health data) and ensuring that the public good

delivered by health research is not compromised (Lawlor and Stone, 2001).

Prognostic or survival studies

As we mentioned above, cohort studies can also be used to see what happens

to patients after they are diagnosed with a condition. In this case the cohort

would comprise patients with the condition of interest who were at the same

point in the course of their illness, e.g. at diagnosis (often called an inception

cohort) or after completion of their primary treatment. They would then be fol-

lowed for a fixed period or until they experience the outcome of interest, which

might be death, recurrence of the disease or quality of life at a given time point.

Studies of this type can identify patient characteristics that predict their out-

come, for example demographic factors such as age, gender or socioeconomic

status; disease-specific factors such as the severity or stage of disease at diag-

nosis; genetic factors and the presence of other health conditions (known as

co-morbidities). Such characteristics are called prognostic factors; they may not

actually cause the outcome, but must be associated with it strongly enough to

predict it. Event rates tend to be high, so prognostic studies are usually much

smaller than cohort studies of risk factors.

These studies are also increasingly being used to investigate potentially mod-

ifiable factors such as diet and lifestyle that might affect patient outcomes. For

example, an Australian study found that among a group of 609 women diag-

nosed with ovarian cancer, a cancer that typically has a high mortality rate, those

who ate more vegetables survived for longer than those who ate fewer vegetables

(Nagle et al., 2003).

Case–cohort studies

In many cohort studies, all participants provide a wide range of information at

the time of recruitment, including answers to detailed dietary questionnaires

and blood and urine samples. Because of the large numbers and cost, these

resources – especially the biological samples – are often not analysed in detail

at the time but are stored for future use. It is then possible to use this informa-

tion more efficiently by conducting either a nested case–control study (see below

under case–control studies) or case–cohort study. In the case–cohort design a

sub-set of participants is selected from the full cohort at baseline. Detailed expo-

sure information can then be retrieved for this subcohort and all of the people

in the full cohort who develop the disease of interest. This maintains the major

advantage of a cohort study in that the exposure data were originally collected

before the development of disease, while the much smaller scale reduces effort

and cost. It also has the advantage that the subcohort can be used for compari-

son with multiple different case groups. However, the case–cohort study requires
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Figure 4.3 The design of a
case–control study (adapted
from Beaglehole et al. (1993)
with permission).

a somewhat more sophisticated data analysis than the traditional cohort and

nested case–control analyses.

Case–control studies

One drawback of cohort studies is that they can really only be used to study con-

ditions that are relatively common. If we were interested in a very rare disease

we would need to follow a large number of people for a very long time to iden-

tify many people with the disease. In this situation an alternative study design

called a case–control study is often used. Instead of identifying people on the

basis of their exposure status and waiting to see who develops disease, we effec-

tively start from the end and work backwards (see Figure 4.3). We select people

who have developed the disease we are interested in (cases) and a representative

sample of people from the same population who do not have that disease (con-

trols) and then ask them about their previous exposures. (Some authors prefer to

call the comparison group the ‘reference’ group and will describe the study as a

case–reference or case–referent study.) For instance, if we wanted to know whether

smoking was associated with lung cancer we could compare people with lung

cancer and controls without lung cancer to see if they differed in their smoking

habits, exactly as Doll and Hill did back in 1950 (see Chapter 1).

A classic case–control study was conducted in Germany in 1961 (Mellin and

Katzenstein, 1962). The mothers of children born with unusual limb malforma-

tions (cases) were compared with mothers of normal children (controls) with

respect to their exposures in pregnancy. Forty-one of the 46 case mothers (89%),

but none of 300 control mothers, had taken thalidomide early in their preg-

nancy. This strongly suggested that thalidomide use early in pregnancy could be
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Box 4.4 Case–control studies

� Phenacetin was introduced as an analgesic in 1887 and used extensively

until it was suggested that it might be associated with kidney disease. A

case–control study involving 554 adults with newly diagnosed kidney

disease and 516 matched control subjects selected randomly from the

same geographical area was conducted in the USA to investigate this

(Sandler et al., 1989). After allowing for the effects of other types of

analgesic, the risk of kidney disease was five times higher among daily

users of phenacetin and three times higher among daily users of

paracetamol (acetaminophen, a metabolite of phenacetin) than it was

among infrequent users of these drugs. There was little association

between aspirin use and renal disease. Results from this study and others

confirmed the risks of phenacetin, which was withdrawn from the market.
� In a case–control study conducted in Tasmania, Australia, the parents of 58

children who had died from SIDS (sudden infant death syndrome) and of

120 control children were interviewed about the sleeping practices of their

children. Children who were placed face-down had a four-fold higher risk

of SIDS than children placed in other positions. This risk was increased

even further if the child slept in a heated room, was tightly wrapped or had

recently been ill (Ponsonby et al., 1993). The results of this study and

others have led to campaigns aimed at persuading parents to place babies

on their backs to sleep in order to reduce rates of SIDS.

responsible for the birth defects. (It should be noted that this study was stimu-

lated by data from an earlier case series.)

Modern case–control studies tend to be much larger, for example the Aus-

tralian Ovarian Cancer Study included more than 1500 women with ovarian can-

cer and a similar number of control women. It has confirmed strong inverse asso-

ciations with pregnancy, breast-feeding and oral contraceptive pill use and risk

of ovarian cancer such that women who have several children and/or who use

the ‘pill’ for several years are about half as likely to develop ovarian cancer as

nulliparous women or non-pill users (Jordan et al., 2008). A wide range of other

possible causes have also been examined within this one study and this is one of

the major appeals of the case–control design. Because the focus is usually on a

single health outcome, participants can be asked very detailed questions about

relevant exposures; this is often not possible in a cohort study, which will usually

collect less detailed information on a much wider range of exposures in order to

study multiple different outcomes. Box 4.4 gives examples of some other case–

control studies which have led to direct health benefits.
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Ideally case–control studies include only incident (new) cases of disease as

they arise. However, some studies, especially those of very rare diseases, will also

include prevalent cases. This makes them rather like cross-sectional studies, with

the possible problem of determining a clear time sequence for the exposure–

disease relation. (That is, a factor may appear to be related to disease risk simply

because it enhances the duration of disease.)

Case–control studies offer a number of advantages over follow-up studies.

They are generally quicker and more economical to perform (but are still not

a trivial undertaking) and, as we noted above, are good for evaluating rare out-

comes. Case–control studies are also good for evaluating many different expo-

sures, all of which can be asked about at the one interview.

The central problem in the design of a case–control study is selection of the

control group. Controls should represent the population from which the cases

have come such that their exposure prevalence is very similar to that of the

whole population. In practice this means that appropriately selected controls

should have been identified as cases if they had developed the condition of inter-

est. If the cases form a population-based series (e.g. if all cases from a defined

geographical region are included), then the appropriate control group should

be representative of that population. Population controls can be selected in a

number of ways, including from population registers or comprehensive electoral

rolls and, in recent times, by sampling residential telephone numbers at random

(random-digit dialling). In the ovarian cancer study described above, the con-

trols were selected from the national electoral roll because enrolment to vote is

compulsory in Australia; this strategy would not work in countries where voting

is not mandatory because electoral rolls would be much less complete. In the UK,

selection of controls from the patient lists of the general practitioners (GPs) who

referred the cases is often a viable alternative because most of the population is

registered with a GP.

Where the case group does not originate from a clearly defined geographi-

cal population, a traditional approach to identify controls from the likely source

population was to recruit a control from the local neighbourhood of the case, for

example someone living in a nearby street. This is time-consuming and expen-

sive, but effective; a modern variant that can be used where telephone numbers

are assigned by residential area involves matching telephone numbers with ran-

dom selection of the last few digits. (The increase in mobile phones may change

this.)

Whilst population or neighbourhood controls are ideal, practical reasons

mean that hospital controls are still used, although not as frequently as in the

past. This is usually accomplished by selecting controls from patients admitted

to the same hospitals as the cases for conditions other than the one being stud-

ied (see e.g. Box 4.5). Although this is a much more efficient and economical pro-

cess than selecting population controls, it is associated with an obvious major
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Box 4.5 Hospital controls: the pros and cons

Tertiary referral clinics may attract patients from an unpredictably wide

variety of geographical and social origins. If cases are identified through

these clinics it can then be a major challenge to find a group of disease-free

controls that represent the same geographical and social backgrounds as the

cases. For example, a colonoscopy is needed to diagnose adenoma (polyps)

of the large bowel so a colonoscopy clinic is an ideal place to identify cases

for a study. If controls are selected at random from the local population there

is no guarantee that they would have been picked up as cases if they had

adenoma – they might have gone to a different facility. Similarly, we would

miss all of those people from outside the local population who would,

nonetheless, have travelled to that clinic for treatment. An alternative then is

to select controls from among other patients attending the clinic who have a

colonoscopy but do not have bowel polyps. This solution ensures that the

controls will represent the geographical and social distribution of the cases,

but it is important to be aware that it might also introduce other biases. For

example, if there are characteristics, such as a family history of bowel cancer,

that make someone more likely to be referred for colonoscopy then these

characteristics will be over-represented in the control group. This example

serves to emphasise that epidemiological studies will rarely be perfect – the

important thing is to do the best that is possible in a given situation and then

to consider the likely effects of any bias (see Chapter 7).

drawback. The controls are themselves ill and thus different from most healthy

people in the source population from which the cases come. Indeed, their

distribution of risk factors (especially personal habits such as smoking, exces-

sive alcohol consumption, etc.) may well resemble that of the cases rather more

than that of the source population, leading to biased results. However, thought-

ful use of such designs can still provide good public health information and

Box 4.6 shows an example of such a study that has been used for post-marketing

drug surveillance (sometimes called pharmacoepidemiology).

An important issue related to the selection of both cases and controls is that

they must be chosen independently of their exposure status. In a case–control

study of oral contraceptive pill use and deep vein thrombosis, for example,

whether or not a woman is using the pill should not affect her chances of being

recruited as either a case or control. Knowledge of the exposure status of individ-

uals could lead to bias in participant recruitment called selection bias. Another

type of bias that can occur within case–control studies arises when the infor-

mation collected from the cases and controls is not comparable. This can occur

if an interviewer elicits or interprets exposure information differently when the
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Box 4.6 Using hospital controls for pharmacoepidemiology

Hospital controls have been used very successfully to identify harmful side

effects of prescription medications in a number of settings. One of the

earliest and longest-running pharmacoepidemiology research projects using

this design is the Case–Control Surveillance Study run by the Slone

Epidemiology Center at Boston University (http://www.bu.edu/slone/

Research/Studies/CCS/CCS.htm), which has been going for over 30 years. Its

purpose is to systematically evaluate the relationship of medications to the

incidence of certain illnesses and to screen for unsuspected drug–disease

associations. Since 1983, the main focus of the study has been on various

cancers. Patients newly diagnosed with a cancer of interest and who reside in

the study area (cases) are recruited from a network of hospitals. Patients from

the same area with acute conditions such as appendicitis or chronic

conditions such as kidney stones or gallstones diagnosed within the past

year are recruited as controls. All patients are interviewed to collect a wide

range of information about lifestyle and a medical and lifetime medication

history. To date, over 80,000 patients have been interviewed, including over

25,000 with cancer, leading to multiple publications such as a recent report

providing reassurance that use of statins to lower cholesterol levels does not

increase an individual’s risk of cancer (Coogan et al., 2007).

disease status of the individual is known (interviewer bias) or because peo-

ple with disease recall their exposures or experiences more precisely than or

otherwise differently from those without disease (recall bias). We will revisit bias

and other forms of inaccuracy in data collection and discuss the potential impact

of these types of error on the results of a study in Chapter 7.

There are several modern variants of the case–control study design, the most

common being nested case–control and case-crossover designs. A third related

design is the case–cohort study which we discussed under cohort studies above,

as it is essentially a different way of analysing cohort data.

Nested case–control studies

The nested case–control study is similar in principle to the case-cohort study

in that it seeks to combine the cost benefits of a case–control study with the

advantages of prospective data collection in a cohort study. It is fundamentally

a case–control study that is ‘nested’ within an existing cohort study. As in the

case–cohort study, cases are cohort members who developed the disease of inter-

est, but this time controls are selected from cohort members who were disease-

free at the time the cases were diagnosed (i.e. the controls are ‘matched’ to the

cases for follow-up). Nested case–control studies are simpler to analyse than
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case–cohort studies but require a separate control group to be selected for each

case group.

Case–crossover studies

The case–crossover design is especially suited to identifying the effects of tran-

sient exposures on the risk of an acute-onset disease. Instead of recruiting a sep-

arate group of controls, each case is also their own control and their exposure in a

defined period prior to the onset of disease is compared with their normal expo-

sure frequency. This innovative design eliminates many of the problems inherent

in studies that compare different groups of people and comes closest to the the-

oretical (but unattainable) ideal, which would be to study an exposed population

and then wind back the clock and study exactly the same population again when

they had not been exposed.

In the seminal case–crossover study, Maclure (1991) examined the influence

of a variety of possible precipitating factors, including sexual activity, on the

occurrence of myocardial infarction (MI, or heart attack). He classified cases as

exposed if they had been sexually active in the two hours before their MI and

then compared this with their usual frequency of sexual activity over a one-year

period. He hypothesised that if sexual activity were a risk factor for MI, then more

cases would have been sexually active shortly before their MI than would be

expected from their usual frequency. After interviewing 300 cases he estimated

that sexual activity increased an individual’s risk of MI more than two-fold.

Intervention studies

As we discussed above, the ideal way to study whether something is causally

related to the occurrence of disease is through an experiment or intervention

study although, for practical reasons, this study design is often not a viable

option. Box 4.1 gives an example of an early intervention study and the exam-

ples in Box 4.7 give a hint of the range of interventions that can be studied

experimentally. In each study the investigators ‘intervened’ to change some-

thing in the hope that this would improve the future health of the partici-

pants. The participants in the ISIS trials were already sick (patients who had

had an MI), and the intervention was intended to improve their duration of

survival – aspirin and streptokinase were shown to be very effective. In con-

trast, the children in the polio vaccine trial were healthy and it was hoped

that the vaccine would prevent them from becoming ill. Similarly, it was hoped

that vitamin A supplementation would reduce childhood mortality but, in this

example, the intervention was given to whole villages rather than individual

children.
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Box 4.7 Some large-scale intervention studies

� The ISIS (International Studies of Infarct Survival) investigators compared

various treatments for myocardial infarction (heart attack), including the

use of aspirin and streptokinase in ISIS-2 (ISIS-2 Collaborative Group,

1988). More than 100,000 patients throughout the world were recruited

into these studies.
� In the early 1950s, one of the largest epidemiological studies, and almost

certainly the largest formal human ‘experiment’, was conducted in the

USA. This was a field trial of polio vaccine in which over 400,000 school

children were assigned to receive either the vaccine or a placebo

(inactive) injection. The trial clearly demonstrated both the efficacy and

the safety of the vaccine, which was then given to millions of children

throughout the world (Francis et al., 1955). This has led to a major drop in

the incidence of polio not only in industrialised countries but also in many

developing countries, which have recently been declared polio-free by the

WHO.
� In the US Physicians’ Health Study (we have already met the British

Doctors and the US Nurses’ Health studies!), 22,000 physicians were

randomly allocated to take aspirin, in an attempt to reduce cardiovascular

morbidity and mortality, and/or capsules of β-carotene, in an attempt to

reduce rates of cancer (Hennekens and Eberlein, 1985). After 12 years of

follow-up, rates of cancer were very similar in the β-carotene and placebo

groups, and, while aspirin was shown to lower the rates of heart attack, so

few of these very healthy doctors died that the trial could not determine

whether aspirin saved lives from cardiovascular disease.
� A randomised, controlled community trial was conducted to evaluate the

effectiveness of vitamin A supplementation to prevent childhood mortality

in Indonesia (Sommer et al., 1986). In 229 villages, children aged 1–5 years

were given two doses of vitamin A while children in the 221 control villages

were not given vitamin A until after the study. Mortality among children in

the control villages was 50% higher than that in the villages given

vitamin A.

Randomised controlled trials (RCTs)

The best way to evaluate a new treatment is to identify a group of patients with

the same condition and then allocate them to receive the various treatments at

random. A preventive trial differs only in that it involves people who are disease-

free but thought to be at risk of developing disease. Random allocation (also
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called randomisation2) ensures that all of the groups are as similar as possi-

ble at the start of the study. (Note that equality of the groups at baseline is

highly dependent on group size – with very small groups it is unlikely that the

groups will be similar in terms of all important variables that could affect the out-

come.) Random allocation is important because if one group were in some way

more ill (or less healthy) than the other at the start, this might make this group

look worse, even if the intervention really had no effect. (This problem is called

confounding and we will discuss it in more detail in Chapter 8.) It is because

of this aspect of RCTs – the close similarity of the groups in all respects other

than the intervention – that they are generally considered to give the best evi-

dence of all epidemiological studies. In a cohort study investigating potentially

harmful risk factors, people cannot be randomly allocated to the various study

groups and, for example, a group of alcohol drinkers will certainly differ from a

group of non-drinkers in more ways than just their alcohol consumption. While

we can deal with some of these factors in our analysis, there may also be other

important factors that we either do not know about or cannot measure well. The

real strength of randomisation is that, on average, it will also balance these other

unknown or unmeasured factors across the groups.

From www.CartoonStock.com

Randomised controlled trials also include a control or comparison group so

that outcomes in the treated group can be compared with those in a group that

is not treated. Generally, the patients in the control group either receive no treat-

ment or, preferably, they are given a placebo (something that resembles the real

treatment but is not active). If an acceptable standard treatment is available the

2 Note the important distinction between ‘random selection’, where we select people at random to be

in our study but we do not control whether or not they are exposed (unless it is also a RCT), and

‘randomisation’, where we do control exposure by randomly allocating people to the exposed and

non-exposed groups in an intervention study.
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Figure 4.4 The design of a
randomised controlled trial.

control group must be given this – it would be unethical to withhold it – and this

is compared with the new experimental treatment. Figure 4.4 shows the design

features of a simple randomised controlled trial. In practice it is just a special

form of the standard prospective cohort study – the only difference being that

participants are allocated to the exposed and unexposed groups at random.

Ideally, both the trial investigators and the participants should be unaware of

whether the participant is in the active intervention or placebo group, creating a

‘double-blind’ or ‘masked’ study. If only the patient is unaware of their allocation,

it is a single-blind study. Blinding is important because knowledge of the treat-

ment might affect both the participant’s response – quite a few people feel better

after taking a placebo simply because they believe it will do them good – and an

observer’s measurement of outcome. In some situations (e.g. comparing med-

ical treatment with surgery) there may be no feasible way of blinding patients

and study personnel to the differences in treatments. Minimising measurement

bias in this situation may be best accomplished by bringing in an independent

‘blinded’ observer whose only involvement is to assess the outcome measure.

Blinding of outcome measurements obviously becomes more crucial as the mea-

surement becomes more subjective. When the outcome measure is objective and

less dependent on interpretation, as in a biochemical parameter or death, blind-

ing is less important.

Apart from participants and trial investigators, there are many others (e.g.

healthcare providers, data collectors, outcome assessors, data analysts) involved

in the conduct of a trial who can introduce bias through their knowledge of treat-

ment allocation. For this reason there is a growing tendency to abandon the

terms single- and double-blind in favour of a transparent reporting of the blind-

ing status of each group involved in the trial.

As for a cohort study, the other crucial feature of an RCT is good follow-up. It

is important to know what has happened to all of the participants in the study.



116 Healthy research

Community trials are preventive trials in which the intervention is imple-

mented at the community level and are generally conducted when it would

be impossible to offer (or evaluate) the intervention at the individual level. An

example is the studies of water fluoridation and dental health conducted in

various countries. When investigators wanted to study the effects of adding flu-

oride to the water supply on dental health it was clearly impossible to add flu-

oride to some people’s water and not to others’, so whole towns were allocated

to receive fluoride in their water or not. The controlled trial of water fluorida-

tion which gave the most striking results was carried out in the towns of New-

burgh and Kingston in New York State, USA. After 10 years of fluoridation, the

DMF (decayed, missing or filled teeth) score for Newburgh children aged 6–16

was 50% lower than that for children in the unfluoridated town of Kingston (Ast

and Schlesinger, 1956). The assumption underlying this result was that, apart

from the water, there was no other major difference between the towns that

could explain the effect (i.e. there was no confounding). (Note that, although this

and other studies clearly showed the benefits of low levels of fluoride on den-

tal health, continuing controversy about the possible adverse effects of fluoride

on other organs in the body, particularly the bones, has meant that universal

fluoridation of water supplies has not occurred.) Because only two towns were

included in this study, in practice it is little different from a non-randomised

comparison. Other cluster designs involve larger numbers of groups, so that the

random allocation of multiple groups to intervention or no intervention gives

more of the benefits of randomisation in terms of balancing out other factors

across the groups (e.g. the vitamin A study, Box 4.7).

Crossover trials

Randomised trials can be categorised as either parallel group or crossover trials.

Figure 4.4 shows the design of a parallel group RCT, in which patients are ran-

domly allocated to one of the two groups, which are then followed in parallel. In

a crossover design, the participants serve as their own controls (this is analogous

to the case–crossover study we described earlier). For example, in a simple two-

period crossover study to assess the efficacy of an intervention we would assign

each participant to either the intervention or the control (I or C) for a specified

period of time and then the alternative for a similar period of time. The order

in which each participant receives I and C is randomly assigned. Thus, approxi-

mately half of the participants receive the intervention in the sequence I–C and

the other half in the sequence C–I. This eliminates any trend from the first period

to the second period from the estimate of group differences in response. One

of the biggest advantages of this design is that it can produce statistically and

clinically valid results with fewer participants than would be required with a par-

allel design. However, not all interventions are suitable for assessment in this

way. If the effects of the intervention during the first period are likely to carry
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over into the second period then this design is clearly inappropriate, as it is for

assessing long-term benefits and harms.

n-of-1 trials

A variant of the crossover trial is the single patient trial, often called an n-of-1

trial.3 An individual patient receives the experimental and control treatments

in random order on multiple occasions, with specific outcomes being moni-

tored throughout the trial period. Ideally both the patient and the treating doc-

tor are blinded to the treatment being received and the trial usually ends when

it becomes clear that there are (or are not) important differences between the

treatments. Although the results of n-of-1 trials are not generalisable to the same

extent as those of typical RCTs, they do provide a good guide to individual clinical

decisions.

Other intervention designs

The fact that a study is described as a trial or clinical trial does not necessarily

mean that it is a randomised trial. Probably the most common non-randomised

design in the health setting is one that uses ‘historical controls’, where health

outcomes following the introduction of a new treatment or preventive measure

are compared to the outcomes experienced by the same population before the

change in practice. For example, in many countries mortality rates from road

traffic accidents fell dramatically after the introduction of legislation requiring

drivers to wear seat belts. Similarly, patient survival rates might be compared

before and after the introduction of a new surgical technique. The main problem

with this design is that it does of course assume that the only (or most impor-

tant) thing that has changed is the new legislation or the type of surgery and that

may not be the case. While RCTs remain the gold standard for initial evaluation

of new clinical and public health interventions, the effectiveness of these inter-

ventions in practice can often only be determined from these very simple ‘before

and after’ comparisons in whole communities or populations. You will see many

examples of this throughout the book, and particularly when we discuss preven-

tion in Chapter 14 and screening in Chapter 15.

A word about ethics

We touched on this under Record linkage above but it would be remiss of

us to end this discussion of study design without some consideration of the

subject of research ethics. Before conducting any research on humans

3 Note ‘n’ is often used to denote the sample size in a study; an n-of-1 study is thus a study where n = 1

person.
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Box 4.8 Notable events and documents in the development
of modern ethical guidelines

< 1945 German scientists accused of experimenting on human subjects in

Nazi concentration camps during World War II; also the beginnings of

large-scale research in the USA using groups such as orphans, the mentally

handicapped and prisoners

1947 The Nuremberg Code

A list of 10 principles of medical and research ethics developed from the

Nuremberg trials in Germany at the end of World War II (see Box 4.9), but

largely ignored at the time

1964 The Declaration of Helsinki

Developed at a meeting of the World Medical Association in Helsinki as a

statement of ethical principles to provide guidance to physicians and other

participants in medical research

(http://ohsr.od.nih.gov/guidelines/helsinki.html)

1966 Beecher’s Report

Publication of a report citing 22 post-war studies that were ethically flawed

despite being conducted at prestigious institutions and published in the top

journals (Beecher, 1966)

1972 Publication of a report from the Tuskegee syphilis study in the USA

(1932–1972)

This caused outrage when it became clear that study participants had been

misled and deprived of treatment

(http://www.cdc.gov/tuskegee/timeline.htm)

1979 The Belmont Report

A document developed by what was then the United States Department of

Health, Education, and Welfare entitled ‘Ethical Principles and Guidelines for

the Protection of Human Subjects of Research’

(http://ohsr.od.nih.gov/guidelines/belmont.html)

(or animals), most developed countries require the study protocol to be

approved by a Human Research Ethics Committee (or Institutional Review

Board, IRB, in the USA). This is to ensure that the rights of participants are fully

protected in any research study – that they are fully informed of any risks and

benefits associated with participation and that the benefits of the research (to

the individual or, more often, to society) sufficiently outweigh the potential risks.

Current guidelines for medical research ethics can be traced back more than 50

years to the end of World War II (see Box 4.8) although some of the core concepts

go back as far as Hippocrates. They are based on four moral principles:
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Box 4.9 The Nuremberg Code, 1947

1. The voluntary consent of the human subject is absolutely essential. This

means that the person involved should have legal capacity to give

consent; should be so situated as to be able to exercise free power of

choice, without the intervention of any element of force, fraud, deceit,

duress, over-reaching, or other ulterior form of constraint or coercion;

and should have sufficient knowledge and comprehension of the

elements of the subject matter involved as to enable him to make an

understanding and enlightened decision. This latter element requires

that before the acceptance of an affirmative decision by the experimental

subject there should be made known to him the nature, duration, and

purpose of the experiment; the method and means by which it is to be

conducted; all inconveniences and hazards reasonable to be expected;

and the effects upon his health or person which may possibly come from

his participation in the experiment.

The duty and responsibility for ascertaining the quality of the consent

rests upon each individual who initiates, directs or engages in the

experiment. It is a personal duty and responsibility which may not be

delegated to another with impunity.

2. The experiment should be such as to yield fruitful results for the good of

society, unprocurable by other methods or means of study, and not

random and unnecessary in nature.

3. The experiment should be so designed and based on the results of animal

experimentation and a knowledge of the natural history of the disease or

other problem under study that the anticipated results will justify the

performance of the experiment.

4. The experiment should be so conducted as to avoid all unnecessary

physical and mental suffering and injury.

5. No experiment should be conducted where there is an a priori reason to

believe that death or disabling injury will occur; except, perhaps, in those

experiments where the experimental physicians also serve as subjects.

6. The degree of risk to be taken should never exceed that determined by the

humanitarian importance of the problem to be solved by the experiment.

7. Proper preparations should be made and adequate facilities provided to

protect the experimental subject against even remote possibilities of

injury, disability, or death.

8. The experiment should be conducted only by scientifically qualified

persons. The highest degree of skill and care should be required through

all stages of the experiment of those who conduct or engage in the

experiment.

(continued)
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Box 4.9 (continued)

9. During the course of the experiment the human subject should be at

liberty to bring the experiment to an end if he has reached the physical or

mental state where continuation of the experiment seems to him to be

impossible.

10. During the course of the experiment the scientist in charge must be

prepared to terminate the experiment at any stage, if he has probable

cause to believe, in the exercise of the good faith, superior skill and

careful judgment required of him that a continuation of the experiment is

likely to result in injury, disability, or death to the experimental subject.

From Trials of War Criminals before the Nuremberg Military Tribunals

under Control Council Law No. 10, Vol. 2, pp. 181–182. Washington DC:

U.S. Government Printing Office, 1949.

Beneficience – do good;

Non-maleficence – do no harm; in practice this has to be balanced against the

principle of beneficience – the potential benefits should outweigh the possible

risks;

Respect for autonomy – respect the rights of the individual; this includes the

right to privacy and the right to make informed decisions and thus the need for

study participants to give their ‘informed consent’ before enrolling in a study;

Justice – equity, impartiality and fairness.

These principles were first codified in a practical form after the Nuremburg

trials of German medical researchers at the end of World War II. The result-

ing ‘Nuremburg Code’, which underpins all subsequent codes of health research

ethics, is shown in Box 4.9. However, this Code was largely ignored at the time

and formal statements outlining requirements for the ethical conduct of research

did not start to appear until the late 1970s after continuing reports of disquieting

ethical practices such as the Tuskagee Study (see Box 4.8) and the Willowbrook

Study (1963–1966) where children in an institution for the mentally handicapped

were deliberately infected with hepatitis virus to study the course of the infection

(http://iris.uwaterloo.ca/ethics/human/resources/index.htm).

Tensions continue today between the need to protect the rights of individu-

als (often via strict privacy laws) and the public need for good quality informa-

tion to improve health. Rigid application of privacy laws can make some forms

of epidemiological research almost impossible. As discussed above, this is espe-

cially true for record linkage studies where it may be impractical or even impos-

sible to obtain consent from individuals to access their information. The costs

of complying with human research guidelines can also drive up the costs of

research, with studies often needing to obtain approval from, and report back to,
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multiple different ethics committees. However, as the historical examples cited

above emphasise, we cannot ignore the need for real autonomy in relation to

participation in research.

If you are interested in learning more about research ethics the US National

Institute of Health (NIH) Office of Extramural Research has developed a free

on-line tutorial (http://phrp.nihtraining.com/users/login.php). Although it is

designed primarily for NIH grant holders who are subject to US Department of

Health and Human Services regulations, the majority of the content is generic

and applicable to all.

Summary

Experimental studies like those described above are theoretically the ideal way to

look for associations between exposure and disease or health outcome. They do,

however, have to be designed, run and reported rigorously to realise this poten-

tial in terms of providing convincing evidence concerning causality. Unfortu-

nately, they are often inappropriate (for ethical reasons), not feasible or unaf-

fordable. Furthermore, since they are often conducted in highly selected groups

of volunteers, it can be challenging to generalise their findings and we will come

back to this problem in Chapter 11. The non-experimental study designs, par-

ticularly cohort and case–control studies, are therefore of central importance

in public health and, as you will see when we discuss causality in Chapter 10,

other designs such as ecological studies can also provide valuable information.

The fundamental importance of descriptive studies in monitoring the health of

a population and for identifying emerging health problems should already be

apparent, and you will see further examples of their essential role in evaluating

the effects of population interventions when we discuss prevention in Chapter

14 and screening in Chapter 15. Each design thus has an important role to play

and, as you have seen, different designs will be more or less appropriate in dif-

ferent situations. It is also essential to recognise the strengths and limitations of

each; we will consider these further in Chapter 7 when we look at some of the

sources of bias in epidemiological studies.

Questions

1. Complete Table 4.1 to show the relative strengths and limitations of the main

study designs, scoring each one on a scale from 1 = poor (e.g. not good to

investigate a rare disease or very expensive) to 5 = excellent (e.g. very good to

investigate rare exposure or very quick to do).

2. Look back to Box 4.9 and identify which of the four fundamental moral prin-

ciples apply to each of the 10 statements in the Nuremburg Code.
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Table 4.1 Comparing the strengths and weaknesses of different study designs.

Ecological Cross-sectional Case–control Cohort

Randomised

controlled trial

Nested

case–control

Investigation of rare disease or

outcome

Investigation of a rare exposure

Testing multiple effects of an

exposure

Study of multiple exposures

Establishing temporalitya

Give a direct measure of

incidence

Explore exposures which change

over time

Time required

Costs

Ethical problems

a i.e. that the exposure came before the outcome.
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Box 5.1 Who does all the housework?

His view: Australian men do three times more housework today than they

did 40 years ago . . .

Her view: Australian men spend 5 minutes a day on laundry now compared

to 1.6 minutes 40 years ago – an extra 31/2 minutes a day . . .
(Maushart, 2003.)
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As you learned in Chapter 1, one of the main uses of epidemiology is to identify

the causes of disease and this is of fundamental importance in all areas of public

health – if we can work out what is causing ill-health then we can work to prevent

it. In Chapter 2 we looked at the ways in which we can measure the occurrence

of disease and touched on some ways in which we can compare different pop-

ulations. But while measuring the occurrence of a disease in a population can

tell us about the health of that population, it does not directly shed much light

on the underlying causes of the disease. To identify the aspects of people or their

environment (exposures) that might lead to the onset of disease, we need to com-

pare disease occurrence in groups with and without the exposures of interest. In

Chapter 4 we looked at some of the study designs that we can use to do this;

now we will look more closely at the measures we use to quantify the associa-

tions between ‘exposures’, or potential causes of disease, and the disease itself.

By quantifying the association between an exposure and disease we can start to

make judgements as to whether the exposure might actually cause the disease

(we will discuss causality in more detail in Chapter 10). If we believe that it is

causing disease, we can then identify the importance of that exposure in terms

of its overall effect on the health of a community.

In this chapter we will look at the ways in which we calculate, use and interpret

these ‘measures of association’, so-called because they describe the association

between an exposure and a health outcome. An understanding of these measures

will help you to interpret reports regarding the causes of ill-health and the effects

of particular exposures or interventions on the burden of illness in a commu-

nity. Note that, while we will discuss the measures in the context of an ‘exposure’

and ‘disease’, they can be used to assess the association between any measure of

health status and any potential ‘cause’.

Looking for associations

We all know that smoking is a cause of lung cancer but might it also increase the

risk of stroke? To answer this question we could compare the incidence of stroke

in a group of women who smoke with that in a group of non-smokers.

Table 5.1 displays data from a cohort study in which the investigators fol-

lowed a large group of women for several years (person-years of observation).

They classified the women as never smokers, ex-smokers and current smokers,

recorded how many women had a stroke during the follow-up period and calcu-

lated the incidence rate of stroke in each group.

How many times more likely was

(i) a current smoker to have a stroke than a never smoker and

(ii) an ex-smoker to have a stroke than a never smoker?
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Table 5.1 Stroke incidence rates by smoking category in female nurses.

Smoking

category

No. of cases

of stroke

Person-years

of observation

Incidence rate per

100,000 person-years

Never smoked 70 395,594 17.7

Ex-smoker 65 232,712 27.9

Current smoker 139 280,141 49.6

Total 274 908,447 30.2

(Colditz et al., 1988.)

Compared with non-smokers, how many extra strokes were there per 100,000

person-years in

(i) ex-smokers and

(ii) current smokers?

There are two main ways in which we can compare smokers and non-smokers.

First, ex-smokers were 1.6 times (27.9 ÷ 17.7) and current smokers were 2.8 times

(49.6 ÷ 17.7) as likely to have a stroke as never smokers during the follow-up

period. An alternative way to look at the data would be to say that, all other things

being equal, if the smokers had never smoked we would have expected them to

have the same rate of stroke as the never smokers, i.e. 17.7/100,000 person-years.

This means that, compared with never smokers, there were an extra 10.2 strokes

per 100,000 person-years (27.9 – 17.7) in ex-smokers and an extra 31.9 strokes per

100,000 person-years (49.6 – 17.7) in current smokers.

What we calculated above were, first, the rate ratio and, second, the rate dif-

ference for the association between smoking and stroke. These measures give

us two different ways of quantifying the relation between an exposure and a

disease. The rate ratio tells us how many times higher the rate of disease is in

one group than in another group (e.g. current smokers are almost three times

as likely to have a stroke as never smokers). This gives an indication of the

strength of the association and can help us to decide whether smoking could be

a cause of stroke. The rate difference tells us how much extra disease occurred

in one group compared with another group (e.g. there were an extra 32 strokes

per 100,000 person-years among current smokers compared with non-smokers).

If we believe that smoking is a cause of stroke then this extra disease can be

attributed to the fact that the women had smoked in the past and, theoretically,

it would not have occurred if they had never smoked. This information gives

some sense of the potential value of a preventive intervention, in this case a pro-

gramme aimed at stopping women from taking up smoking. (Of course, if such

an intervention were successful it would reduce the incidence of many diseases,

not just stroke.)
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From www.CartoonStock.com

It is important to remember that ratio and difference measures give us very

different perspectives on a given situation. Look back to Box 5.1 at the start of

the chapter. Men would probably prefer to look at the ratio or relative measure:

they do three times more housework now than 40 years ago. In contrast, women

would focus on the difference or absolute measure: men may do three times

more laundry now than 40 years ago but they still do an average of only 5 minutes

(3.5 minutes extra) per day.

Ratio measures (relative risk)

The cholera was therefore 14 times as fatal at this period amongst persons having the

impure water of the Southwark and Vauxhall Company, as amongst those having the purer

water from Thames Ditton (Snow, 1855).

People who ate cold chicken at the youth camp were almost four times more likely to

become ill than people who did not eat cold chicken (from Table 1.2).

Ratio or relative measures tell us how many times more likely it is that some-

one who is exposed to something will develop a certain disease or experience
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a particular health outcome than (or relative to) someone who is not exposed.

They do not tell us anything about the actual amount of disease occurring in either

group. They provide information about the strength of the association between

the exposure and the outcome and, as you will see in Chapter 10, a strong asso-

ciation is more suggestive that the exposure is actually causing the outcome. In

the example above, the rate ratio for stroke and current smoking was 2.8. This is a

fairly strong association and would add weight to an argument that smoking was

actually causing strokes, although it is not as compelling as the much stronger

relation between smoking and lung cancer, for which the rate ratio for current

smoking is somewhere between 10 and 15.

As the example shows, ratio measures are very easy to calculate – you simply

divide the frequency of disease (or of any health outcome) in the group that is

exposed to the factor of interest by the frequency in the group that is not exposed

to it. This can be done using either of the measures of disease incidence that

you met in Chapter 2. If you divide two incidence rates you end up with a rate

ratio (as for the stroke example above); if you divide two measures of cumulative

incidence or risk then it is a risk ratio. It is also possible to divide two measures

of prevalence to calculate a prevalence ratio. Note that you must always divide

two measures of the same type – you cannot usefully divide an incidence rate by

a measure of cumulative incidence.

Rate ratios

As you saw above, a rate ratio is calculated by simply dividing the incidence rate

of disease in a group of people exposed to the factor of interest (often denoted by

a subscript ‘e’) by the incidence rate in a group of people who are not exposed to

the same factor (denoted by a subscript ‘o’):

Rate Ratio = Incidence Rate in exposed
Incidence Rate in unexposed

= IRe

IRo
(5.1)

This factor could be a potential cause of disease, it could be a characteristic of a

person, such as their age or where they live, or it could be something that influ-

ences behaviour. Equally, it could be a preventive measure or, in the clinical con-

text, a drug or other treatment that we hope will reduce the incidence of disease.

Risk ratios

Similarly, the risk ratio (also called the relative risk) is calculated by dividing the

cumulative incidence or risk of disease in an exposed group by the cumulative

incidence in an unexposed group:

Risk Ratio = Cumulative Incidence in exposed
Cumulative Incidence in unexposed

= CIe

CIo
(5.2)
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Table 5.2 The results of a study evaluating the effects of calling patients on
influenza immunisation rates.

Outcome

Exposure Immunised Not immunised % immunised

Received a call 328 332 50%

No call 288 370 44%

Total 616 702 47%

(Hull et al., 2002.)

In Chapter 2 we considered a randomised trial to evaluate whether taking aspirin

would reduce the risk of blood clots in people with infective endocarditis. Look

back at Table 2.3 on page 44 and calculate the risk ratio for the association

between aspirin and blood clots.

In this trial, the risk ratio was 28.3% ÷ 20.0% = 1.4; those who took aspirin were

1.4 times as likely to develop blood clots as those who did not take aspirin. A risk

ratio of 1.0 would mean that there was no difference between the groups, so those

taking aspirin were 40% more likely to develop blood clots than those not taking

aspirin (in the context of clinical epidemiology this may be described as the rel-

ative risk increase or RRI). If aspirin had reduced the risk of blood clots then we

would have expected to see a risk ratio of less than 1.0. Clearly this intervention

did not work the way the investigators had hoped it would.

This approach can be used much more widely than in the search for the causes

of disease. As an example, a trial carried out in three general practices in the UK

set out to find out whether telephoning patients to offer them an appointment

for immunisation against influenza would increase immunisation uptake rates

(Hull et al., 2002). In this study, attending for immunisation was the outcome of

interest and receiving a telephone call was the exposure. A total of 1,318 patients

aged 65 to 74 years were randomly assigned to two groups. Patients in one group

(n = 660) received a telephone call from the receptionist at their general practice

inviting them to make an appointment for immunisation (the intervention or

exposed group). Patients in the other group (n = 658) were not called (the control

or unexposed group). The investigators then waited to see who turned up for

immunisation. They found that 328 of the patients who received a phone call

attended, as did 288 of those who did not receive a call.

The easiest way to look at these data is in the form of a ‘2 × 2 table’. These

tables are usually set out so that the two columns show the numbers of people

with and without the outcome of interest while the rows show the numbers in

the exposed and unexposed groups (Table 5.2).
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What was the cumulative incidence of immunisation or, in other words, what

percentage of patients attended for immunisation in each of the two groups?

How many times more likely were patients to attend if they had received a per-

sonal call to make an appointment than if they had not been telephoned?

In the intervention group 50% of patients were immunised, compared with 44%

of those in the control group (despite the intervention the immunisation rates

were still below the government target of 60%). This means that patients who

received an invitation were 1.14 times (50% ÷ 44%) more likely to attend for

immunisation. This measure is still a relative risk because it has the same struc-

ture – the cumulative incidence (or risk) of a particular health outcome in one

group is divided by the cumulative incidence in a second group. In this case the

word ‘risk’ seems less appropriate but the term relative risk is still regularly used.

Prevalence ratios

As you saw when we discussed prevalence surveys in Chapter 3 and cross-

sectional studies in the previous chapter, it is also possible to use measures of

prevalence instead of incidence to compare the burden of disease in two groups

and in this situation you end up with a prevalence ratio:

Prevalence Ratio = Prevalence in exposed
Prevalence in unexposed

= Pe

Po
(5.3)

As we discussed in Chapter 2, measures of prevalence are harder to interpret than

measures of incidence and for this reason prevalence ratios are used much less

frequently than rate and risk ratios.

A note about relative risks

We noted above that the term relative risk is synonymous with risk ratio. In prac-

tice, it is also commonly used to describe a rate ratio, since both the rate ratio

and the risk ratio compare the amount of disease in one group relative to that in

another. If a disease is rare (cumulative incidence or risk less than 1%), then the

rate ratio and risk ratio will be almost identical; if it is not so rare then the risk

ratio will be closer to 1.0 than the rate ratio although, in practice, there is little

difference as long as the cumulative incidence is less than about 10%. The three

terms rate ratio, risk ratio and relative risk are also commonly and conveniently

abbreviated as RR. When we use the term relative risk it will refer to both the rate

ratio and the risk ratio.

It is also worth noting that, although relative risks are also used in the con-

text of clinical trials, several other related measures are also used in the field of

clinical epidemiology (Box 5.2).
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Box 5.2 Relative risks in clinical epidemiology

In 1998, Botti et al. reported a trial of the use of pressure bandages for

patients undergoing coronary angiography. Some of their results are shown

in Table 5.3.

Table 5.3 Use of pressure bandages in patients undergoing coronary
angiography.

Pressure

bandages Total

Number with

bleeding

Cumulative incidence

or event rate

Yes 519 18 EERa = 3.5%

No 556 37 CERb = 6.7%

Total 1075 55 5.0%

a EER = experimental event rate or cumulative incidence in the treatment group.
b CER = control event rate or cumulative incidence in the comparison group.

(Botti et al., 1998.)

The relative risk of bleeding among those given pressure bandages

compared with those without is 3.5 ÷ 6.7 = 0.52. This tells us that those given

pressure bandages were about half as likely to develop bleeding as those who

were not given bandages. The results of treatment trials are sometimes also

reported as a relative risk reduction (RRR). This is the amount by which the

treatment has reduced the relative risk and it is calculated by subtracting the

relative risk from 1.0. It may then be expressed as a percentage by

multiplying by 100:

Relative risk reduction (RRR) = 1.0 − RR (5.4)

So the RRR = 1.0 – 0.52 = 0.48 or 48%.

Alternatively, it can be calculated directly from the cumulative incidence

or event rates among the experimental (EER) and control (CER) groups:

Relative risk reduction (RRR) = (CER − EER) ÷ CER (5.5)

In this case the RRR = (6.7 – 3.5) ÷ 6.7 = 0.48.

In other words, use of the pressure bandages has reduced the risk of

bleeding among patients undergoing coronary angiography by 48%.

Obviously, the greater the RRR the better the intervention.

For studies with a positive association (RR > 1.0) the results are turned

around to give what is logically called the relative risk increase (RRI). In the

aspirin study discussed previously, aspirin increased the risk of bleeding by

40% (RR = 1.4).

(continued )
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Box 5.2 (continued)

Note that you will see associations described in this way in all fields of

epidemiology, e.g. ‘The risk of disease was 20% lower among those who

exercised more’. It is a simple, informative mode of description that just

happens to have been given a separate name in the area of clinical

epidemiology.

Standardised incidence and mortality ratios

We discussed these measures in Chapter 2 (pages 52–54) because of the links

between direct and indirect standardisation, but they also deserve a mention

here since they compare the rate of disease (or death) in two populations and

so, in effect, are also measures of relative risk.

Difference measures (attributable risk)

As we noted above, the relative risk tells us nothing about the actual amount

of disease that is occurring. If the cumulative incidences or risks of disease in

exposed and unexposed groups were 0.5% and 0.1%, respectively, the relative

risk would be 5.0. Similarly, if the risks were 50% and 10% the relative risk would

also be 5.0. The major difference between these two situations is obvious: the

actual amount of disease that is occurring is vastly different – in fact in the second

example it is 100 times greater. This vital public health information cannot be

obtained from the relative risk.

The approach to measuring the excess amount of disease occurring among

those exposed to a potential risk factor is just as intuitive and as simple to cal-

culate as the relative risk. As you saw in the smoking and stroke example at the

start of the chapter, we can calculate the extra amount of disease that is occur-

ring in the exposed group by simply subtracting the incidence in the unexposed

group (IRo, CIo or background risk) from the incidence in the exposed group

(IRe, CIe). This can again be done using either of the measures of disease inci-

dence (incidence rate or cumulative incidence) that you met in Chapter 2. If you

are subtracting two incidence rates (as in the stroke example) you end up with a

rate difference, whereas if you are subtracting two measures of cumulative inci-

dence or risk (as in the immunisation example) you have a risk difference. These

measures are also sometimes described as the excess rate and excess risk as they

measure the extra disease that only occurs in the presence of the exposure. If we

think that it is reasonable to assume that the excess disease can be attributed

to the exposure, i.e. the exposure is causing the disease, then both of these
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Figure 5.1 Attributable risks:
the results of a study of smoking
and stroke (drawn from: Colditz
et al., 1988).

measures can also be described as the attributable risk (in the same way that

relative risk is used to describe both rate ratios and risk ratios).

Rate differences

Consider the smoking and stroke example again (Table 5.1). Compared with

never smokers, there were an extra 10.2 strokes (27.9 – 17.7) per 100,000 person-

years in ex-smokers and an extra 31.9 strokes (49.6 – 17.7) per 100,000 person-

years in current smokers. These effects are illustrated in Figure 5.1. The left-hand

bar (a) shows the incidence rate of stroke in non-smokers. This is often called

the background or reference rate because it reflects the natural occurrence of the

disease in an unexposed population. We expect this to operate on all members

of the population regardless of their smoking status, and this is shown for the

ex- and current smokers. This lets us visualise directly the extra burden of stroke

added by past and present smoking habits. Thus the second bar shows the extra

incidence of stroke in ex-smokers (b) that is presumably due to the fact that the

women had smoked in the past. Similarly, the third bar shows the far greater

added rate of stroke in current smokers (c) that is attributable to their smoking.

This extra disease is simply the difference between the rate in the exposed group

(smokers) and the rate in the unexposed group (non-smokers). The total rate of

disease in exposed individuals is therefore the sum of the background rate (due

to other causes) and the additional rate due to the exposure in question.

If the groups differ only in their smoking habit and if we believe that smok-

ing is actually causing strokes to occur then we can say that the extra disease

in the smokers is attributable to their smoking – if they had not smoked then it
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would not have occurred.1 This rate difference is also called the attributable risk

(AR) because it measures the actual amount of disease that can be attributed to a

particular exposure:

Rate difference or attributable risk

= IRe − IR

= Incidence rate in exposed − Incidence rate in unexposed (5.6)

Risk differences

Look back to the example of immunisation against influenza in Table 5.2.

What percentage of patients in the intervention group would have been expected

to attend for immunisation even if they hadn’t received a phone call (background

‘risk’)?

What extra percentage of patients presumably attended only because they had

received a call (i.e. how many attendances could be attributed to the phone call)?

We would have expected 44% of patients in the intervention group to go for

immunisation even if the practice receptionists had not called to offer them an

appointment. We can therefore say that an extra 6% of patients (50% – 44%) in

the intervention group presumably went for immunisation only because they

had received a call, i.e. their immunisation can be attributed to this. Here we

have calculated a risk difference (as opposed to a rate difference) since we are

subtracting cumulative incidences (or risks):

Risk difference or attributable risk

= Cumulative incidence in exposed − Cumulative incidence in unexposed

= CIe − CIo (5.7)

Attributable fractions (AFs)

A further way to consider attributable risk that can also be informative is as

the proportion or percentage of disease in the exposed group that would not

have occurred in the absence of the exposure. This measure is often called the

attributable fraction or attributable proportion, although you will also come

across it described as the attributable risk per cent. To calculate the attributable

fraction you simply divide the attributable risk by the incidence in the exposed

1 Note that although you will see the attributable risk described as the amount of disease caused by

the exposure, this is not technically correct because we can never know exactly how many cases are

caused by a particular exposure. However, we can usefully use the attributable risk to estimate how

much extra disease occurred in the presence of the exposure and thus presumably would not occur in

the absence of that exposure.
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group:

Attributable Fraction (AF) = Attributable Risk
Incidence in exposed

or = Incidence in exposed − Incidence in unexposed
Incidence in exposed

Again this can be done using either the incidence rate or the cumulative

incidence:

Attributable Fraction (AF) = AR
IRe

or
AR
CIe

(5.8)

= IRe − IRo

IRe
or

CIe − CIo

CIe
(5.9)

Consider the smoking and stroke example again. The rate of stroke among cur-

rent smokers was 49.6/105 person-years and the rate difference or attributable

risk was 31.9/105 person-years. The attributable fraction is therefore 0.64 or 64%,

i.e. of all the strokes occurring among current smokers, about two thirds could be

attributed to the fact that the women smoked:

Attributable Fraction (AF) = 49.6 − 17.7
49.6

= 0.64 = 64%

Interpretation of the attributable risk

The attributable risk tells us how much extra disease actually occurred in the

exposed group as a result of the exposure. By implication, we can then say that,

if the association is causal, this is the amount of disease that we could prevent

in a comparable group of people in the future if we could prevent them from

being exposed. This measure is, therefore, of direct use to health planning and

policy setting. Note that in the field of clinical epidemiology, what we have called

the attributable risk is often called the absolute risk reduction (ARR) or abso-

lute risk increase (ARI) depending on whether the event rate is reduced or

increased in the treatment group (See Box 5.3). The ARR and ARI are identical

to the attributable risks used elsewhere in epidemiology and are calculated in

exactly the same way – the only difference is in the names.

In practice, of course, it is often impossible to remove or prevent an expo-

sure altogether. Someone who smokes cannot go back to being a never-smoker

but they can become an ex-smoker. This means that current smokers who stop

smoking will not realise the full benefit predicted by the standard attributable

risk (which would compare smokers with the unexposed group, in this case never

smokers). Rather, the best we could achieve with a 100% effective ‘stop smoking’
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Box 5.3 Attributable risks in clinical epidemiology

In the trial of the use of pressure bandages for patients undergoing coronary

angiography (Table 5.3) and using the terminology of clinical epidemiology

(look back to Box 2.5 on page 44 if you are unsure about this) the attributable

risk or absolute risk reduction (ARR) of bleeding would be

ARR = CER − EER = 6.7 − 3.5 = 3.2% (5.10)

In other words, the use of pressure bandages has prevented bleeding in 3.2%

of patients.

Another quite useful way of looking at these data is in terms of the number

needed to treat (NNT). The NNT is the number of patients who would have

to be given the experimental therapy in order to prevent one adverse event

(death, complication) from occurring. It is calculated by simply dividing

1.0 by the ARR:

NNT = 1 ÷ ARR (5.11)

In the study of pressure bandages the ARR was 3.2% or 0.032, so

NNT = 1 ÷ 0.032 = 31.3

This means that about 32 patients undergoing coronary angiography would

need to be given pressure bandages in order to prevent one case of bleeding.

(Note that, unlike in most other situations, the NNT should be rounded up to

the nearest whole number because you cannot treat part of a person.) This

gives a good intuitive feel for the treatment benefit, and can aid

communication with patients.

campaign would be to reduce the rate of stroke among smokers to the level seen

among ex-smokers, a rate difference given by:

IRcurrent − IRex = 49.6 − 27.9 = 21.7 strokes/100,000 person-years

Population attributable risks (PARs)

The attributable risk tells us about the amount of extra disease occurring in the

exposed group because of the exposure. An alternative way to look at the burden

due to an exposure is to consider how much disease in the whole community can

be attributed to the exposure. To do this we need to compare the incidence of

disease in the whole population or community (some of whom will be exposed

and some unexposed) with the amount of disease in an unexposed group (the

amount that we would expect if no one had been exposed). In the smoking and
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Figure 5.2 Attributable and
population attributable risks: the
results of a study of smoking
and stroke (drawn from: Colditz
et al., 1988).

stroke example in Table 5.1 we know that the overall incidence rate of stroke

among the women was 30.2/105 person-years.

What would this rate have been if no one had smoked?

How much of the incidence of stroke in the total population is due to the fact that

some women smoke or are ex-smokers?

What fraction of the overall rate of stroke in the total population is due to

smoking?

If none of the women had smoked the overall rate of stroke in the population

would be the same as the rate in never smokers (17.7/105 person-years). This

means that, in the whole population, there are an extra 12.5 cases (30.2 – 17.7) per

100,000 person-years that can be attributed to the fact that some of the women

in the population smoke or are ex-smokers. This is the population attributable
risk (PAR) and is depicted (d) in the fourth bar in Figure 5.2.

There are two ways to calculate the PAR. One way, analogous to the calcula-

tion of attributable risk (Equations (5.6) and (5.7)), is to subtract the incidence in

the unexposed group (IRo, CIo) from the incidence in the whole population (IRT,

CIT). As for the attributable risk, this can be done using either incidence rates or

cumulative incidence:

PAR = Incidence rate in population − Incidence rate in unexposed

= IRT − IRo or CIT − CIo (5.12)

Clearly the population attributable risk will depend not only on the attributable

risk among the exposed, but also on the prevalence of the exposure in the
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population. An alternative way to calculate the PAR is therefore to multiply the

attributable risk by the prevalence of exposure in the population (Pe):

PAR = AR × Pe (5.13)

Note that, while this is straightforward when there are only two levels of

exposure, it is trickier when there are more than two levels, as in the stroke and

smoking example. In this situation it is much easier to use Equation (5.12).

Population attributable fractions (PAFs)

As with the attributable risk and attributable fraction, we can also calculate

the population attributable fraction (or population attributable risk per cent)

which indicates the proportion of all the strokes that occurred in the population

that could potentially have been avoided if no-one had smoked. The formula to

calculate the population attributable fraction is analogous to that used for the

attributable fraction but with the incidence in the total population used instead

of the incidence in the exposed group:

Population Attributable Fraction = Population Attributable Risk
Incidence in total population

× 100

Population Attributable Fraction

= Incidence in total population − Incidence in unexposed
Incidence in total population

× 100

Again this can be done using either incidence rates or cumulative incidence:

Population Attributable Fraction = PAR
IRT

or
PAR
CIT

(5.14)

Population Attributable Fraction = IRT − IRo

IRT
or

CIT − CIo

CIT
(5.15)

So, in the stroke example, approximately 41% (12.5 ÷ 30.2 = 0.41) of strokes in

the whole population could be attributed to smoking and, in theory, would not

have occurred if no-one had ever smoked.

Interpretation of the population attributable risk

The PAR is exactly analogous to the attributable risk (AR) but, while the

attributable risk tells us how much disease in the exposed group can be attributed

to the exposure, the population attributable risk tells us how much disease in the

whole population can be attributed to the exposure. The population attributable

risk and population attributable fraction are functions both of the incidence of

disease due to an exposure and of the prevalence of the exposure. An exposure

may be associated with a very high attributable risk of a disease such that those
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exposed have a very high chance of developing it, but if the exposure is rare then

this high risk will only affect a small proportion of the population. It will there-

fore have little impact in a whole community (a low population attributable risk).

The population attributable risk is the best way to measure the burden of disease

in a whole community that can be attributed to a particular exposure.

As we have noted above for the AR, there is no intervention that we could

implement to change a woman who is a current smoker into a never smoker;

the most we could do would be to persuade her to stop smoking. If we could

do this we could estimate the incidence rate of strokes in the whole group as

23.4 per 100,000 person-years (based on the new mix of never smokers and ex-

smokers).2 This means that, if we could have persuaded all current smokers to

give up smoking, we could potentially have prevented 6.8 strokes per 100,000

person-years (PAR = 30.2 – 23.4) or 22.5% of all strokes in the population (PAF =
6.8 ÷ 30.2).

In practice, however, even this is an overly simplistic view. It is very hard to

persuade people to stop smoking (or to give up most unhealthy behaviours for

that matter) and a more realistic goal might be to look at the health benefits that

would follow if we could halve smoking rates. We will come back to this issue

and will meet the population attributable risk again when we consider disease

prevention in Chapter 14. When thinking about the possibilities for intervention

and prevention of disease we should also bear in mind that changing someone’s

smoking habit will reduce not just their risk of stroke but also their risk of many

other diseases, so the public health benefits of a ‘stop smoking’ campaign are

not limited to stroke reduction. While the overall benefits of stopping smoking

are clear cut, it is less obvious where an intervention reduces risk of one disease

but increases that of another. For example, moderate alcohol consumption can

reduce the risk of heart disease but it can also increase the risk of breast cancer.

These benefits and risks have to be weighed up and no one would recommend

that women should drink more alcohol to prevent heart disease.

At the global level, population attributable risks and population attributable

fractions are used to calculate the impacts of various exposures on world health.

For example, it has been estimated that in the year 2000 almost five million pre-

mature deaths around the world were attributable to smoking (Ezzati and Lopez,

2003). Similarly, organisations like the WHO and World Bank produce regular

estimates of the amount of ill-health that can be attributed to various risk fac-

tors, for example the World Bank report on the Global Burden of Disease and

2 If all the current smokers became ex-smokers at the start of the study their rate of stroke would have

been 27.9/105 person-years and about 78 strokes would have occurred in the 280,141 person-years of

follow-up. This gives a total of 213 strokes (70 + 65 + 78) in 908,447 person years or a rate of 23.4/105

person-years in the whole population. Note that this assumes that the full benefit is seen immediately

after stopping.
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Risk Factors (Lopez et al., 2006). You saw an example of this in Table 2.11 on

page 65 although it looked somewhat different because, instead of looking at

the incidence of disease attributable to an exposure, the burden of disease was

measured in the disability adjusted life-years or DALYs that you met in Chapter

2. The concept is the same though. Note the variation in the relative importance

of some causes depending on the affluence of the population.

A word of caution regarding attributable risks

There are possibly more terms used to describe attributable risks than any other

measure in epidemiology. People use different names for the same thing and,

what is even more confusing, the same name for different things. This empha-

sises the importance of never taking things at face value – always take time

to check what are being presented. Here the key distinction is whether people

are talking about only the exposed group (what we call the attributable risk or,

in clinical epidemiology, the absolute risk reduction) or the whole population

(what we call the population attributable risk). It is also important to distinguish

between absolute differences (what we have called attributable risks) and per-

centage differences (attributable fractions).3

Relative risk versus attributable risk: an example

In the British Doctors Study (discussed in Chapter 1) mortality rates were calcu-

lated for deaths both from lung cancer and from coronary heart disease (CHD).

These rates, together with the relative risks, attributable risks and attributable

fractions, are shown in Table 5.4 on the next page.

Is the association with smoking stronger for lung cancer or CHD?

If everyone stopped smoking, would we prevent more cases of lung cancer or

CHD?

In these data there is a very strong relative association between smoking and lung

cancer (RR = 14), but only a modest link between cigarettes and CHD (RR = 1.6).

On its own, this offers powerful support to a belief in smoking as a cause of lung

cancer, but leaves quite a few doubts as to whether it has a causal role in the

development of CHD (see also Chapter 10). Given that smoking does cause CHD

as well as lung cancer (and there is plenty of other evidence to support this), the

3 Strictly speaking, the formulae for the PAF that we have described are only valid when there is no

‘confounding’ of the exposure of interest (Rockhill et al., 1998) but we show them here to illustrate the

underlying concepts. Equation 5.19 on page 147 shows an alternative formula for the PAF that can be

used in the presence of confounding. We will discuss confounding in Chapter 8.
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Table 5.4 Lung cancer and CHD mortality rates in the British Doctors Study.

Disease

Smoking

status

Mortality rate

per 105

person-years

Relative

risk

Attributable

risk per 105

person-years

Attributable

fraction (%)

Lung cancer Yes 140 14.0 130 93

No 10

Coronary Yes 669 1.6 256 38

heart disease No 413

(Doll and Peto, 1976.)

Table 5.5 A comparison of relative and attributable risks.

Measure Strengths Uses

Relative risk (RR) Evaluates the strength of an association

between exposure and disease

To help identify causes of disease

Attributable risk (AR) Measures the burden of disease attributable

to exposure in the exposed group

To assess the magnitude of a public health

problem associated with an exposure

among those exposed

Population attributable

risk (PAR)

Measures the burden of disease attributable

to exposure in the population

To assess the magnitude of a public health

problem associated with an exposure in

the whole population

Attributable fraction (AF) Identifies the specific exposures that cause

most disease in those who are exposed

To identify potential targets for prevention

Population attributable

fraction (PAF)

Identifies the specific exposures that cause

most disease in a population

To identify potential targets for prevention

attributable fraction supports the view that smoking is a more important cause

of lung cancer than it is of CHD: among smokers 93% of lung cancers but only

38% of CHD can be attributed to smoking. In contrast, the attributable risks show

that the public health impact of smoking is twice as great for CHD mortality as for

lung cancer deaths: there are almost 260 additional deaths from CHD in smokers

for every 100,000 person-years compared with only 130 from lung cancer. If we

look more closely at the actual rates of disease, we see that the background rate

of CHD (the rate in non-smokers) is very high, so a large rate difference does not

look so impressive when we calculate the RR. In contrast, the background rate of

lung cancer is very low, so a much smaller rate difference leads to a very high RR.

This example shows very clearly the striking difference in what these measures

describe and the different implications of a large relative risk (or attributable

fraction) versus a large attributable risk. Table 5.5 summarises some of these

differences and the uses of the different measures.
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Table 5.6 A case–control study of oral contraceptive (OC) use and ovarian
cancer.

Cases Controls Total

Used OC pill 413 1160 1573

Did not use OC pill 206 322 528

Total 619 1482 2101

(Jordan et al., 2008.)

Case–control studies

All of the above measures relate to situations in which we can measure the inci-

dence of disease. This information usually comes from a cohort study in which

we identify groups of exposed and unexposed individuals who do not have the

disease of interest and then follow them over time to see how many develop the

disease. As you saw in the previous chapter, in a case–control study we usually

select only a sample of all possible people without disease as controls. This often

means that we can no longer calculate disease incidence, so we need different

methods to calculate measures of association in a case–control study.

In the early 2000s a case–control study of ovarian cancer was conducted in

Australia. It included the majority of women newly diagnosed with ovarian can-

cer across the whole of Australia between 2003 and 2005. The controls were a

sample of women who did not have ovarian cancer and who were chosen at ran-

dom from the national electoral roll to give a similar age and state distribution

as the cases (we will discuss this process where we ‘match’ cases and controls

further in Chapter 8). The investigators found that 413 of the 619 women with

ovarian cancer and 1160 of the 1482 controls had previously used the oral con-

traceptive (OC) pill (Jordan et al., 2008), as shown in Table 5.5.

What percentage of the OC users have ovarian cancer? Does this reflect the likely

incidence of ovarian cancer in OC users?

In this case–control study 26% (413 ÷ 1573) of the OC users have ovarian cancer.

It is tempting to interpret this as meaning that the incidence of ovarian cancer

among oral contraceptive users was 26% but, even if you don’t know anything

about ovarian cancer, this should ring some warning bells! The OC pill would

never be prescribed if one quarter of the women who used it developed cancer.

The numerator (the number of women with cancer) is fine because most of the

women with cancer were included, but the denominator (the total population)

is wrong because only a tiny proportion of all the women without ovarian cancer
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Table 5.7 Calculation of the odds ratio in a case–control study.

Cases Controls Total

Exposed a b a + b

Unexposed c d c + d

Total a + c b + d a + b + c + d

have been included. This means that, in a case–control study, we cannot calcu-

late the usual measures of disease incidence directly, and so cannot calculate

relative risks in the same way.

Relative risk in case–control studies

In a case–control study we calculate another measure of association known as

the odds ratio (OR). This involves calculating the ‘odds’ that a case had used OCs

in exactly the same way as odds are calculated in horse racing. Among the cases,

413 women had used the OC pill and 206 had not, so the ‘odds’ of a case having

used the pill are ‘413 to 206’ or 413 ÷ 206 = 2.00.

What are the odds that a control had used the OC pill?

Among the controls, 1160 women had used the pill and 322 had not. The odds

that a control had used the pill are therefore 1160 ÷ 322 = 3.60. We can then

calculate the odds ratio by dividing the odds that a case had used the pill (i.e.

was exposed) by the odds that a control had used the pill. In this example:

Odds ratio (OR) = 2.00 ÷ 3.60 = 0.56

An alternative and simple way to calculate the odds ratio that is often used in

practice is as follows. Your data must be arranged in a standard way as shown

in Table 5.7 (note that this is the same as the way in which the data are shown

in Table 5.6).

The odds that a case used the OC pill = a ÷ c

The odds that a control used the OC pill = b ÷ d

Therefore the ratio of these odds = (a ÷ c) ÷ (b ÷ d)

or

Odds Ratio = a × d
b × c

(5.16)

So, for the ovarian cancer data, the OR associated with OC use is

Odds Ratio = 413 × 322
1160 × 206

= 0.56
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Box 5.4 Rate ratios, risk ratios and odds ratios

Each of the three measures of association is a valid measure in its own right

but the relationship among them varies in different situations and depends

on how the controls were selected for the study (see Rodrigues and

Kirkwood, 1990).
� If they were selected at the start of the case-recruitment period and so

included anyone who was disease-free at that point in time (regardless of

whether they went on to develop disease) then

Odds ratio ≈ Risk ratio

so an OR of 3.0 can be interpreted as meaning that the risk of disease in

those who were exposed was three times greater than that among those

who were not exposed.
� If they were selected at the same time as cases were being recruited (i.e.

density sampling), as is usually the case in practice, then

Odds ratio ≈ Rate ratio

so an OR of 3.0 can be interpreted as meaning that the rate of disease in

those who were exposed was three times greater than that among those

who were not exposed.
� If they were selected to include only people who were still disease-free at

the end of the study then the odds ratio will still provide information about

the strength of the association but, if the disease is not rare, it might not be

a good estimate of the relative risk. That is, if an OR = 3.0 it tells us that the

association is strong but it does not necessarily mean that those who were

exposed were precisely three times more likely to develop disease than

those who were not exposed.

In other words, the odds of a case having used the OC pill is almost half the

odds that a control had used the pill. As you will see below, we can interpret this

as meaning that a woman who uses the OC pill is almost half as likely to get ovar-

ian cancer as a woman who has not used the pill. But be warned, it is not always

possible to interpret an odds ratio in this way – especially if the disease of interest

is quite common.

Interpreting odds ratios

How we interpret an odds ratio depends to a large extent on how the control

group was recruited for that particular study as in different situations the odds

ratio can be a good estimate of either the risk (cumulative incidence) ratio or the

incidence rate ratio (see Box 5.4). In many studies the controls are recruited using
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what is called density sampling and in this situation the odds ratio is a good esti-

mate of the rate ratio. For density sampling, the controls for the study must be

identified during the period when the cases were occurring, not at the beginning

or end of the study. In practice this does not make a lot of difference if the dis-

ease is rare, but if the disease is common it means that it is possible for someone

to be recruited as a control early in a study and then to be recruited again as a

case if they later develop the disease of interest. Although ovarian cancer is a rare

disease, one woman participated as a control in a case–control study similar to

the one described above but was diagnosed with ovarian cancer a year later. She

then participated in the study a second time as a case. This is not only valid but

essential for true density sampling.

In practice, however, if a disease is rare – and for the purposes of epidemiology

most diseases are rare – then all three measures, the rate ratio, risk ratio and odds

ratio, will be approximately equal and all can be interpreted as a relative risk:

Rate Ratio ≈ Risk Ratio ≈ Odds Ratio

This is often described as the ‘rare disease assumption’ and Box 5.5 gives the

mathematical derivation of why this is true for the risk ratio and odds ratio.

Odds ratios in cross-sectional studies

In a cross-sectional study we compare the prevalence of disease in different expo-

sure groups and the logical measure to use to do this is the prevalence ratio (PR).

However, prevalence ratios are not as easy to work with as odds ratios and, as a

result, you will find that the results of cross-sectional studies are often presented

as odds ratios, sometimes called prevalence odds ratios (POR). As for the cumu-

lative incidence or risk ratio (see Boxes 5.4 and 5.5), the POR will also be a good

estimate of the prevalence ratio in a cross-sectional study if the outcome is rare.

However, in many cross-sectional studies the outcome is not rare and in this sit-

uation the POR will be more extreme (further from the null value of 1.0) than the

prevalence ratio. In other words, if the PR is 2.0 the POR will be > 2.0, likewise if

the PR is 0.8 the POR will be < 0.8. This means that when the outcome is not rare,

a POR of 2.0 suggests there is an association between the exposure and outcome,

but it cannot be interpreted as meaning the outcome was twice as common in

the exposed group compared to the unexposed group.

Attributable risk in case–control studies

Because we cannot usually calculate the actual incidence of disease in exposed

and unexposed subjects in a case–control study, we cannot calculate the

attributable risk of disease associated with the exposure. We can, however, esti-

mate the attributable fraction using the following formula:

Attributable Fraction (AF) = (OR − 1)
OR

× 100 (5.17)
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Box 5.5 Why the odds ratio approximates the relative risk
for a rare disease

Table 5.8 shows the results of a hypothetical cohort study.

Table 5.8 Results of a hypothetical cohort study.

Cases Non-cases Total CI (%)

Exposed 75 (a) 9,925 (b) 10,000 (a + b) 0.75

Unexposed 25 (c) 9,975 (d ) 10,000 (c + d) 0.25

Total 100 19,900 20,000

Relative risk =
CIe

CIo
= a

(a + b)
÷ c

(c + d)
= 0.75% ÷ 0.25% = 3.0

However, if the disease is rare then

a (=75) is very small in comparison to b (= 9,925), so a + b ≈ b

and

c (=25) is very small in comparison to d (= 9,975) so c + d ≈ d

This means that the

Relative risk = a
(a + b)

÷ c
(c + d)

≈ a
b

÷ c
d

= a × d
b × c

= Odds Ratio

To show that this is true, imagine we conducted a case–control study in this

population with all 100 cases and the same number of controls. Half of the

population is exposed and half is unexposed, so we would expect about 50

controls to be exposed and 50 to be unexposed and the

Odds ratio = 75 × 50
25 × 50

= 3.0

We can also estimate the population attributable fraction, as follows:

Population Attributable Fraction (PAF) = Pe

(
OR − 1

)
Pe

(
OR − 1

) + 1
× 100 (5.18)

where Pe is the prevalence of exposure in the population, estimated by measur-

ing the prevalence in the control group.

Or, alternatively,

Population attributable fraction = Pe(cases) × AF

= Pe(cases)
(OR − 1)

OR
× 100 (5.19)

where Pe(cases) is the prevalence of exposure among the cases. This version of the

equation is perhaps more intuitive than Equation (5.18) because while the AF
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Table 5.9 A case–control study of bicycle helmets and head injury.

Cases Controls Total

No helmet (exposed) 67 140 207

Wearing a helmet (unexposed) 31 126 157

Total 98 266 364

(Thomas et al., 1994.)

tells us the proportion of cases in the exposed group that can be attributed to the

exposure, when we calculate the PAF we also have to allow for the cases that were

not exposed. For example, if 80% of exposed cases were attributable to an expo-

sure but only half of the cases were exposed (Pe(cases) = 0.5) then in the whole

population only 40% of cases (80% × 0.5) would have been attributable to the

exposure. Another advantage of Equation (5.19) is that it can also be used in the

presence of confounding by using the OR that has been ‘adjusted’ for the con-

founders (see Chapter 8).

These measures are the only way of assessing the potential public health

importance of an exposure from a case–control study. (Note that these formu-

lae can also be used for follow-up studies by substituting the RR for the OR.)

Another example comes from a study of the effectiveness of bicycle helmets

for preventing head injury in children (Thomas et al., 1994). The cases were

98 children who presented to the local children’s hospital with bicycle-related

head injuries and the controls were 266 children treated for other bicycle-related

injuries. In total 207 children, 67 of the cases and 140 controls, were not wearing

a helmet at the time of the accident. (Note that we will consider ‘not wearing a

helmet’ as the exposure in this example.)

What is the OR for the association between not wearing a helmet and head

injury?

What percentage of head injuries occurring among the children not wearing a

helmet could be attributed to the fact that they were not wearing a helmet (AF)?

What proportion of the control children were not wearing a helmet (Pe)?

What percentage of all bicycle-related head injuries in children could be

attributed to not wearing a helmet (PAF)?

Table 5.9 shows the results of the study laid out in a standard 2 × 2 table. The

odds ratio for the association between not wearing a bicycle helmet and head

injury is

OR = a × d
b × c

= 67 × 126
140 × 31

= 1.95
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This indicates that children who do not wear helmets are almost twice as likely

to sustain a head injury in a bicycle accident as children who do wear helmets.

The attributable fraction tells us the proportion of head injuries among those

not wearing a helmet that could be attributed to the fact that they were not wear-

ing a helmet:

AF = (OR − 1)
OR

× 100 = 1.95 − 1
1.95

× 100 = 49%

This tells us that 49% of head injuries among children not wearing helmets could

be attributed to the fact they were not helmeted and were therefore potentially

preventable if they had been wearing a helmet.

Out of the 266 controls, 140 or 53% were not wearing a helmet. We can use this

information to calculate the population attributable fraction to estimate the pro-

portion of all head injuries that could be attributed to the fact that some children

were not wearing a helmet:

PAF = Pe

(
OR − 1

)
Pe

(
OR − 1

) + 1
× 100 = 0.53 × 0.95

(0.53 × 0.95) + 1
× 100 = 0.5035

1.5035
× 100 = 33%

The results suggest that, in the study population, almost one-third of all child

head injuries incurred while cycling could be prevented if all children wore bicy-

cle helmets. (Note that it is important not to round off the numbers during calcu-

lations like this because this may make the answer inaccurate. Rounding should

be used only for communication of the final answer.)

Summary

Box 5.6 gives an example that summarises the calculation and interpretation of

the various measures of association that you have just met. It is based on inci-

dence rates of type-2 diabetes but the formulae also apply to cumulative inci-

dence or risk data – simply substitute CI for IR. In a case–control study it is not

usually possible to calculate the AR or PAR but we can use the odds ratio (Equa-

tion (5.16)) in place of the RR to calculate the AF and PAF. After working through

this example and the questions at the end of the chapter you should feel com-

fortable calculating and interpreting any of the common measures of association

that you come across in the health literature.

Questions

1. In an industry employing 10,000 people, 2,500 were employed in areas where

they were exposed to pesticides, while the remaining 7,500 were not exposed.

At the beginning of the study, all employees were free of disease. The entire
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Box 5.6 An example – obesity and type-2 diabetes

Imagine that 30% of the population in a particular community is overweight,

82.5% of diabetics are overweight and the rate of type-2 diabetes is
� 330/105 person-years in the obese (IRe)
� 30/105 person-years in the non-obese (IRo) and
� 120/105 person-years in the whole population (IRT).

Then we can calculate the following.

(1) The rate ratio or relative risk (RR) using Equation (5.1):

RR = IRe

IRo
= 330

30
= 11.0

The relative risk tells us that the rate of type-2 diabetes is 11 times higher

among people who are obese than among non-obese people.

(2) The rate difference or attributable risk (AR) using Equation (5.6):

AR = IRe – IRo = 330 – 30 = 300 per 105 person-years

The attributable risk tells us that, if obesity is a cause of type-2 diabetes,

then, among obese people, 300 cases per 105 person-years can be

attributed to their obesity.

(3) The attributable fraction (AF) using Equation (5.9):

AF = (IRe − IRo)
IRe

× 100 = (330 − 30)
330

× 100 = 91%

or Equation (5.17) (using the RR instead of the OR):

AF = (RR − 1)
RR

× 100 = (11 − 1)
11

× 100 = 91%

The attributable fraction tells us that more than 90% of type-2 diabetes in

obese people would not occur if they were not overweight.

(4) The population attributable risk (PAR) using Equation (5.12):

PAR = IRT – IRo = 120 – 30 = 90/105 person-years

or using Equation (5.13):

PAR = AR × Pe = 300 × 0.3 = 90/105 person-years

where Pe = prevalence of exposure in the population = 30% or 0.3.

The population attributable risk tells us that, in the whole population, 90

cases of type-2 diabetes per 105 person-years can be attributed to obesity

(5) The population attributable fraction (PAF) using Equation (5.14):

PAF = PAR
IRT

× 100 = (90 ÷ 120) × 100 = 75%

(continued)
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Box 5.6 (continued)

or Equation (5.18) (using the RR instead of OR):

PAF = Pe (RR − 1)
Pe (RR − 1) + 1

× 100 = 0.3 × (11 − 1)
(0.3 × (11 − 1)) + 1

× 100 = 3
4

× 100 = 75%

or Equation (5.19):

PAF = Pe(cases)
(RR − 1)

RR
× 100 = 0.825 × (11 − 1)

11
= 0.825 × 0.91 × 100 = 75%

The population attributable fraction tells us that 75% of all cases of type-2

diabetes would not occur if no one was grossly overweight.

Note that the estimates of PAF are all identical because we have assumed

that there is no confounding (see Chapter 8). In the presence of confounding,

Equation (5.19) should be used with the adjusted estimate of the relative risk.

Table 5.10 The results of a hypothetical study of the effects of pesticide
exposure.

Developed disease Did not develop disease Total

Exposed to pesticides 40 2,460 2,500

Not exposed 60 7,440 7,500

Total 100 9,900 10,000

population of 10,000 was followed for 10 years to determine whether expo-

sure to pesticides increased the risk of developing a particular disease. For

this disease, the findings were as given in Table 5.10.

(a) Calculate the cumulative incidence of the disease in

(i) the exposed workers,

(ii) the unexposed workers and

(iii) all workers combined.

(b) Calculate the relative risk of this disease in those exposed to pesticides.

What does this tell us?

(c) How much disease in the exposed workers could be due to their pesticide

exposure (attributable risk)?

(d) Calculate the population attributable fraction. What does this tell us?

2. The Family Planning Association in Oxford, England, studied 17,000 women

who had been enrolled in a cohort study between 1968 and 1974 to look
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at the association between oral contraceptive (OC) use and venous throm-

boembolism (Vessey et al., 1989). For current users of OCs, person-time was

counted from the time a woman began using OCs. For never or past users,

it was counted from the time a woman enrolled in the study. Woman-years

were counted until venous thromboembolism occurred, the woman was lost-

to-follow-up, or the end of the study.

(a) The incidence rate of venous thromboembolism was 53 per 100,000

woman-years among current OC users and 6 per 100,000 woman-years

among never or past users. Calculate the relative risk of venous throm-

boembolism for current users compared with never or past users.

(b) The incidence rate of thromboembolism was 62 per 100,000 among users

of OCs containing higher dosages of oestrogen and 39 per 100,000 among

users of lower-dose OCs. Calculate the relative risk of venous thromboem-

bolism for

(i) low-dose users compared with never or past users and

(ii) high-dose users compared with never or past users.

(c) What can you conclude about the risk of thromboembolism for users of

OCs containing different doses of oestrogen?

3. Doll and Hill first evaluated the proposition that smoking was a risk factor for

lung cancer in a case–control study (Doll and Hill, 1950). They found that, of

649 men with lung cancer (cases), 647 had smoked at some time, compared

with 622 of the 649 men without lung cancer (controls).

(a) Draw up a clearly labelled and appropriate 2 × 2 table to show these data.

(b) How many times more likely was a smoker to develop lung cancer than a

non-smoker?

(c) Calculate the proportion of lung cancers attributable to smoking among

(i) smokers and (ii) the whole population.

(d) What are these measures called and how does their interpretation

differ?

4. The association between decreased duration of sleep and incidence of coro-

nary heart disease (CHD) was studied among women enrolled in the Nurses’

Health Study (Ayas et al., 2003). Among women who reported sleeping 7

or 8 hours per night there were 541 incident cases of CHD during 451,393

person-years of follow-up. Among those who slept for 6 hours per night

there were 267 cases in 175,629 person-years, and among those sleeping 5

or fewer hours per night there were 67 cases during 30,115 person-years of

follow-up.

(a) Calculate the incidence rate of CHD among

(i) women who reported sleeping 7–8 hours per night,

(ii) women who reported sleeping for 6 hours per night,

(iii) women who slept 5 or less hours per night and

(iv) all women.
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(b) How strong is the association between sleep duration and the incidence

of CHD?

(c) What percentage of CHD cases could theoretically be prevented if all

women slept for 7–8 hours per night?
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If the results of a study reveal an interesting association between some expo-

sure and a health outcome, there is a natural tendency to assume that it is real.

(Note that we are considering whether two things are associated. This does not

necessarily imply a causal association. We will discuss approaches to determin-

ing causality further in Chapter 10.) However, before we can even contemplate

this possibility we have to attempt to rule out other possible explanations for the

results. There are three main ‘alternative explanations’ that we have to consider

whenever we analyse epidemiological data or read the reports of others: namely,

could the results be due to
� chance
� bias or error or
� confounding?

We will discuss the first of these, chance, in this chapter and will cover bias and

confounding in Chapters 7 and 8.

Random sampling error

When we conduct a study or survey it is rarely possible to include the whole of

a population so we usually have to rely on a sample of that population and trust

that this sample will give us an answer that holds true for the general population.

154
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If we select the sample of people wisely and they are truly representative of the

target population (the population that we want to study) then we will not intro-

duce any selection bias into the study (see Chapter 7). However, if we were to

study several different samples of people from the same population it is unlikely

that we would find exactly the same answer each time, and unlikely that any

of the answers would be exactly the same as the true population value. This is

because each sample we take will include slightly different people and their char-

acteristics will tend to vary from those in other samples – just by chance. This is

known as random sampling error.

Imagine that you were interested in the health effects of obesity and wanted to

know the average body-mass index (BMI) of 10-year-old children in your com-

munity. If you weighed and measured just one or two children you would not

obtain a very good estimate of the average BMI of all children – but the more

children you studied, the better your estimate would be. The same is true if we

are looking for the association between an ‘exposure’ and ‘outcome’, for example

the relation between BMI and age. If we only survey a small group of 10-year olds

and another small group of 12-year olds we might find that, just by chance, the

10-year olds are bigger than the 12-year olds, but the larger our study, the better

or more precise our estimate of the true association between age and body-size

will be. (We will discuss precision further in Chapter 7.) In general, if we select a

small sample of a population then our results are more likely to differ from the

true population values than if we had selected a larger sample. The best way to

reduce sampling error is thus to increase the size of the study sample as far as is

practical. (Of course, there is always a trade-off between study size and cost.)

There are ways in which we can calculate how many people we should include

in a study to reduce sampling error to an acceptable level. In an analytic study

these calculations involve some knowledge, first, of the likely size of the effect we

expect to see and, secondly, of the prevalence of the factor of interest in the pop-

ulation. They also require a decision as to how precisely we wish to measure the

effect, i.e. how much sampling error we are prepared to accept in our result. If

we are looking for a large effect and the exposure and/or disease are quite com-

mon then we do not need a large study to show this. For example, in 1971 a tiny

case–control study (n = 40) showed that young women who had been exposed

in utero to diethylstilboestrol (DES) had an increased risk of developing a rare

type of vaginal cancer (clear cell adenocarcinoma) (Herbst et al., 1971). (DES is

a synthetic oestrogen that was used between 1940 and 1970 to prevent sponta-

neous abortion and premature delivery.) In this situation, the frequency of DES

use among the mothers of the cases was so high (seven out of eight) and the dif-

ference was so large (none of 32 control mothers had used DES) that the investi-

gators needed to study only those 40 women to show that there was a clear asso-

ciation. Unfortunately, in modern epidemiology we are often looking for much

smaller effects and our studies have to be much larger than this to detect them
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with certainty. We will not discuss the statistical methods for performing what are

called ‘sample size’ or ‘power’ calculations further here; the formulae for these

can be found in many standard textbooks on medical statistics. We will, however,

come back to consider the concept of power later in this chapter.

Confidence intervals (CI)

There are two related aspects to consider when looking for associations between

exposure and outcome: does an association exist and how strong is the associa-

tion. As epidemiology is fundamentally about measuring effects we will discuss

the second issue first and then come back to the question of whether an associ-

ation exists.

As you saw above, there will always be some degree of random sampling error

in a study and the results we obtain may vary from the truth simply because, by

chance, the people who ended up in the study differed in some way from the

population norm. To assess the likely effects of this random error we can calcu-

late what is a called a confidence interval around our result. This is in effect an

explicit admission that the result of a study (typically an OR or RR, also known

as the ‘point’ or ‘effect’ estimate) is probably not exactly right, but that the real

answer is likely to lie somewhere within a given range – the confidence inter-

val. A narrow confidence interval therefore indicates good precision or little ran-

dom sampling error and, conversely, a wide confidence interval indicates poor

precision.

The most commonly used confidence intervals are 95% intervals (95% CI) and

they are often described slightly inaccurately as meaning that we can be ‘95%

confident’ that the real value is within the range covered by the confidence inter-

val. What the confidence interval really means is that if we were to repeat the

study many times with different samples of people, then 95% of the 95% con-

fidence intervals we calculated would include the true value. Note that this also

means that 5% of the time (or 1 in 20 times) the 95% CI would not include the true

value and we will never know which times these are. Other percentages can be

used, such as 90%, which gives a narrower confidence interval but less certainty

that it will contain the true value (we will be wrong about 1 time in 10); and 99%,

which will be more likely to contain the true value (we will only be wrong about

1 time in 100) but will give a wider interval.

If we are considering a measure of relative risk, the ‘no-effect’ or null value is

1.0 – a relative risk of 1.0 indicates that there is no difference between the two

groups being compared. If both ends of a CI are greater than 1.0 this suggests

that there is a positive association between the exposure and outcome; similarly

if both ends of the CI are less than 1.0 then it suggests an inverse association.

However, if the CI includes the null value, i.e. the lower bound is less than 1.0
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and the upper bound is greater than 1.0, then we cannot rule out the possibil-

ity that the true relative risk is really 1.0 and thus there is really no association

between the exposure and outcome.

To consider a practical example, imagine two studies that have evaluated the

association between exposure to air pollution and asthma.

Study 1 finds a relative risk of 1.5 with a 95% confidence interval (CI) of 1.2–1.9.

What does this tell us about the association between air pollution and asthma?

This is a fairly precise estimate. It tells us that people who are exposed to air

pollution are about one and a half times as likely (or 50% more likely) to develop

asthma than those who are not exposed. It tells us that the risk might be as high

as 1.9 times, but that it might be as low as 1.2 times (i.e. a 20% increase) higher in

those who are exposed. It also tells us that the relative risk is unlikely to be more

than 1.9 or less than 1.2 (but it still could be outside these values).

Study 2 finds a relative risk of 2.5 (95% CI 0.9–6.9).

What is the most likely value for the relative risk of asthma in people exposed to

air pollution in the second study?

Is it possible that the result could have arisen by chance and there is really no

association (i.e. the ‘true’ population relative risk is 1.0)?

Which of the two studies would give you most concern that air pollution was

associated with asthma?

In the second study, the most likely value for the relative risk is 2.5 and the true

relative risk could be as high as 6.9. However, the confidence interval is very wide,

indicating poor precision, and it also includes the value 1.0 (remembering that

an RR of 1.0 suggests no effect), so it is possible that there is really no association

and the result of 2.5 arose by chance. Both studies suggest a possible effect of air

pollution in inducing asthma. Assuming there is no bias in the results, the first

study suggests that there is a real association between air pollution and asthma

but the effect is not very great. The second study suggests the relative effect might

be larger and thus more important clinically, but because of the wide CI we are

left with some uncertainty as to how ‘true’ that value really is. We should certainly

not ignore the results of the second study just because chance is one possible

explanation for our findings; after all the real value is just as likely to be close to

6.0 (a very strong association), as it is to be close to 1.0 (no effect). However, we

should be cautious, and acknowledge the possibility that it could merely reflect

the play of chance. In practice, if we had to make a judgement about the public

health effects of air pollution we would want to consider the results of both stud-

ies together to increase the precision of our estimate and we will look at ways to

do this in more detail in Chapter 11. For now, it is important to remember that
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TRUTH (Unknown) 

STUDY RESULTS
(Known) No association Association

No association Correct Type-II error
(probability β)

Association Type-I error
(probability α)

Correct
(probability  1 β)

 Power

Figure 6.1 Possible outcomes of
an epidemiological study.

narrow confidence intervals (indicating good precision) are always more infor-

mative than wide confidence intervals (indicating poor precision). We will not

discuss the methods for calculating confidence intervals here but have included

some of the most useful formulae for this in Appendix 7.

Statistics in epidemiology

When we conduct a study to evaluate the relationship between an exposure and

disease we may find an association or we may not. We then have to use the infor-

mation from the sample of people in the study to infer whether the exposure and

outcome are truly related in the wider population. There are thus four possible

outcomes for any study, as shown in Figure 6.1.

If there is really no association between the outcome and exposure then we

hope that our study will find just that. Conversely, if the exposure and outcome

are truly associated in the population then we want our study to show this asso-

ciation. What we want to minimise are the situations where our study shows

an apparent relationship between exposure and outcome when the truth is that

there is none (often called a ‘type I’ or alpha error), or our study says there is no

association when, in truth, there is (a ‘type II’ or beta error). Unfortunately, in

practice we can never know for sure whether we are right or wrong.

Statistical significance: could an association have arisen by chance?

A confidence interval provides valuable information about the likely size of an

effect and, as you saw above, it can also give you some idea about whether a

result might have arisen just by chance – if the confidence interval includes the

null or no-effect value (e.g. 1.0 for a relative risk) then we cannot rule out chance

as a possible explanation. We can also carry out what is known as a hypothesis

test to assess this. When we do this we calculate the probability that we would

have seen an effect as strong as (or stronger than) the observed effect if there
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were really no difference between the groups (the ‘null’ hypothesis). The results of

these statistical tests take the form of a p-value (or probability value) and they

give us some idea of how likely it is that the groups are truly different and the

association is real, or whether the results might just be due to random sampling

error or chance (in other words, a type I error, α). For example, if a survey of

children shows that girls have a higher average BMI than boys, is this likely to

be a true difference or could it just be chance that the girls in the study sample

happened to have a higher BMI than the boys?

Imagine that the average BMI of the girls in a survey was 2 units higher than

the average BMI of the boys and that statistical testing gave a p-value of 0.01

associated with this difference. We can say from this that, if the average BMIs

of boys and girls were in fact the same (i.e. the null hypothesis is true), then we

would have only a 0.01 or 1% probability of seeing an apparent difference of 2

units (or more) purely by chance. This is a very low probability, it would occur

only 1 in 100 times, thus it seems unlikely to be a chance finding, although it still

could be. Conventionally, results are considered to be statistically significant, i.e.

unlikely to have arisen by chance, if the p-value is less than 0.05 (p < 0.05); in

other words, if the probability that the result would have arisen by chance is less

than 5% (i.e. the probability that we are making a type I error, α, is less than 0.05).

Using this criterion, we would, therefore, conclude that the 2 unit difference in

BMI between boys and girls was unlikely to have arisen by chance and that, all

else being equal, girls probably do have a higher BMI than boys.

From www.CartoonStock.com

Imagine a study which found that, compared with people who exercised reg-

ularly, those who did not exercise had a three-fold higher risk of having a heart

attack (RR = 3.0) and that the p-value for this association was 0.005.

What would the relative risk be if the risk of having a heart attack were the same

for people who exercised and those who did not?

Is it likely that a study would give a relative risk of 3.0 (p = 0.005) if there were

really no association between exercise and heart attack?
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If the risk of having a heart attack were the same regardless of how much a

person exercised, i.e. there was no association between exercising and having a

heart attack, then the relative risk would be 1.0. In the example above the study

found a relative risk of 3.0, p = 0.005. The small p-value suggests that it is very

unlikely that the study would have given a relative risk as big as 3.0 if the true

relative risk were 1.0. (With a p-value of 0.005, we would expect this to happen

only about 5 in 1,000 times.) The observed association between heart attack and

exercise is therefore unlikely to have arisen by chance.

Note also the relationship between confidence intervals and p-values. If a 95%

CI does not contain the ‘no-effect’ or ‘null’ value (1.0 for an RR, OR, etc.) then the

p-value from a statistical test would be < 0.05. Conversely, if the 95% CI does

include the no-effect value then p ≥ 0.05. In the hypothetical asthma studies

above, the 95% CI for study 1 does not include the null value. In this situation the

corresponding p-value would be less than 0.05 and the result would be termed

‘statistically significant’. The result of study 2, on the other hand, would not be

statistically significant because the 95% CI includes the value 1.0 so the p-value

would be ≥ 0.05.

This form of statistical testing is very common, but it is important to note

that the conventional distinction between p < 0.05 (statistically significant) and

p ≥ 0.05 (not statistically significant) is purely arbitrary. Hypothesis tests and p-

values are tools that can be used to help assess the results of a study, but they

should not be used blindly to decide whether or not an association exists (see

Box 6.1). They are aids to judgement, not absolute arbiters.

Power: could we have missed a true association?

In addition to considering whether an association might have arisen by chance,

we should also consider whether we could have missed a true relation by chance.

Is it possible that an exposure is linked to an outcome but the study was just

too small to detect this reliably (a type II error, β)? Consider again the hypothet-

ical study above that reported a relative risk of 3.0 (p = 0.005) for the association

between a lack of regular exercise and heart attack. What if the study had been

smaller and the p-value was only 0.1? In this situation p ≥ 0.05 so it is possible

that the observed RR of 3.0 has arisen by chance and there is truly no association

between lack of exercise and risk of heart attack; but it is also possible that there

is really quite a strong association but the study was just too small to detect this

with any certainty.

To avoid such a situation it is important to ensure that a study is big enough

or, in other words, that it has enough power to detect a true association with suf-

ficient precision. The power of a study is the probability that the study will detect

an association of a particular size if it truly exists in the general population. (Note:

as shown in Figure 6.1, the probability of making a type II error, i.e. saying there
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Box 6.1 Why you should not rely only on p-values

The convention of describing a result as ‘statistically significant’ if p < 0.05

is now so strongly ingrained that some people tend to believe a result if

p < 0.05 but not if p > 0.05. For example, a relative risk of 2.5 (p = 0.049)

would, by convention, be called ‘statistically significant’ because 0.049 is less

than 0.05. In contrast, a relative risk of 2.5 (p = 0.051) would not be classed as

statistically significant because 0.051 is greater than 0.05. However, the

relative risk is the same in both cases and p = 0.049 is so similar to p = 0.051

that it is illogical to believe the first result but not the second. P-values are

also highly dependent on the size of the study – the bigger the study the

smaller the p-value (for the same effect size). Imagine a study with 80 cases

and 80 controls that found an odds ratio of 1.7 with a p-value of 0.11. By

convention this result would not be statistically significant and we would say

that the association could have arisen by chance. If the same study had been

twice as big (160 cases and 160 controls) we would have found the same odds

ratio (1.7) but now the p-value would have been 0.02, so we would have

concluded that the association was statistically significant. These problems

associated with the blind dependence on p-values have led to suggestions

from some epidemiologists that p-values should not be used at all.

is no association when one truly exists, is often denoted β. The power of a study,

i.e. the probability that it will show an association if it exists, is therefore 1 – β.)

Imagine that an exposure truly causes a two-fold increase in the risk of disease

(of course, we can never know this in practice). If a study has 80% power to detect

a relative risk of 2.0 between the exposure and outcome then we can say that 80%

of the time, or four times out of five, that study would determine that the expo-

sure and outcome were related. It also means that there is a 20% or one in five

chance that we would miss the association. There is no hard and fast rule as to

how much power a study should have but, in general, most people would prob-

ably want a minimum of 80% power and many would aim for 90%. As discussed

above, there are statistical methods to calculate the number of people needed for

a study to give a certain level of power.

A major problem in epidemiology is that, for financial or other practical rea-

sons, researchers often cannot conduct as large a study as they would like. How-

ever, if they compromise and conduct a small study that shows an association

between the exposure and outcome but this is not statistically significant (i.e.

poor precision) it is difficult to interpret the results. Is there really an associ-

ation, i.e. the estimated effect is close to the truth, but the study was just too

small to detect this with any certainty? Or was the observed association just due

to chance and the truth is that there is no association? The smaller the effect,
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Box 6.2 RCTs failed to show a benefit of streptokinase

Between 1959 and 1988, 33 randomised clinical trials were conducted to test

whether intravenous streptokinase reduced the risk of death after heart

attack. Most of the studies (n = 25) found that mortality was lower among the

groups given streptokinase but many were small and so their results were not

‘statistically significant’ (i.e. p ≥ 0.05). As a result the benefits of streptokinase

were not fully appreciated. In 1992, however, a group combined the

results of all the individual streptokinase studies using a technique called

meta-analysis (we will discuss this further in Chapter 11). This showed that

streptokinase was associated with more than a 20% reduction in mortality

after heart attack and, because of the large sample size, a total of 36,974

patients when all the studies were combined, this effect was now highly

statistically significant (p < 0.001) (Lau et al., 1992). Importantly, they also

found that if the results of just the first eight studies, involving a total of only

2,432 patients, had been combined, the 20% reduction in mortality among

those given streptokinase would have been apparent back in 1973. The

problem was that individually most of the early studies were simply not big

enough to detect this effect with sufficient certainty. As a consequence, their

results were rarely statistically significant and so were dismissed. If some of

these studies had been bigger (or if more emphasis had been placed on the

size of the reduction in mortality and less on statistical significance) the

beneficial effects of streptokinase would have been discovered much sooner

and thousands of lives could probably have been saved.

the more important it is that we can estimate it precisely in order to distinguish

between a real association and chance. This is a major problem in the context

of genetic studies when investigators often test many genes and the associations

with disease are likely to be weak (RR < 1.5). This makes it very hard to iden-

tify which, if any, observed associations are real and, as a result, genetic associ-

ation studies have to be very large (10s of 1,000s of cases) in order to give suf-

ficient precision. This question is also particularly important in the context of

clinical trials when we need to know whether small improvements seen for a

new treatment really do represent a benefit that should be passed on to patients

(see Box 6.2).

This raises an important ethical issue that most human research and ethics

committees would now consider before giving a study approval to proceed. Is

the study big enough to detect the effects the investigators are looking for? If the

answer is no then it has to be questioned whether the study should be allowed to

go ahead.
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Figure 6.2 Statistical and
biological significance: point
estimates and confidence
intervals from four hypothetical
studies.

Statistical versus clinical significance

Randomised controlled trials evaluating the drug finasteride for treatment of

lower urinary tract symptoms in men have shown that there is a statistically

significant improvement in symptom score (a measure of the symptoms expe-

rienced) from 2.5 to 2.8 in men treated with finasteride (Hirst and Ward, 2000).

However, for men to experience a subjective change in quality of life, their symp-

tom score has to change by at least three points. An increase of 0.3 points,

although a 12% improvement, is therefore not clinically significant. It is there-

fore crucial that we also consider how meaningful the result of a study is in prac-

tical terms; that is, we should assess the result in terms of its social, preventive,

biological or clinical significance.

This is illustrated in Figure 6.2, which shows the results of four hypothetical

intervention studies. In study (a) the result is both practically important and sta-

tistically significant because the point estimate falls beyond the ‘minimum prac-

tically important difference’ line and the confidence interval does not include

the value 1.0 (in fact, even the lower bound is above the minimum important dif-

ference line). The tightness of the confidence interval around the RR also gives

reassurance of its precision. In study (b) the result is again practically impor-

tant but not statistically significant, since the confidence interval is wide and

does include 1.0. The width of the confidence interval suggests that the study
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Box 6.3 How much is life worth?

The question of clinical significance has come to the fore recently as

governments grapple with decisions whether to subsidise expensive new

drugs. More than 90% of new anti-cancer agents approved by the US Food

and Drug Administration between 2005 and 2009 cost more than US$20,000

for a 12-week course of treatment. However, many show only marginal gains

in survival: new therapies approved for non-small-cell lung cancer, for

example, cost an average of US$91,000 per patient and increase median

survival by only 1.2 months; others for pancreatic cancer cost $16,000 and

increase median survival by only 10 days. This equates to costs of up to

US$800,000 per year of life gained compared to $129,090 for something like

renal dialysis and raises the question of what represents a clinically

significant improvement and how much should we pay for this (Fojo and

Grady, 2009).

was small, leaving imprecision and therefore some uncertainty about the role

of chance. The finding could be important but we really need more data for

a confident judgement. In contrast, the results shown for (c) are statistically

significant but not important, as in the finasteride example above. The narrow

confidence interval tells us that our estimate is fairly precise (i.e. there are plenty

of data). Finally, the results of study (d) are neither statistically significant nor

practically important. This study provides little useful evidence about the bene-

fit of the intervention – the very wide confidence interval that spans well across

the null shows that this is a very poor test of the original hypothesis.

In summary, statistical significance is evident on looking at the p-values from

appropriate statistical tests and from the confidence intervals around the point

estimates; and the extra information the latter give as to the precision of an effect

estimate is valuable. In health research where we are looking to improve out-

comes through preventive, clinical or other interventions, we may have a fair

idea of how big an effect needs to be for it to be clinically or practically signif-

icant. This might be a certain percentage improvement (i.e. a relative effect) or

an absolute increase (as in the finasteride example above) and this might also

have to be weighed against any adverse effects of the therapy (see also Box 6.3).

In observational (aetiological) epidemiology, however, there is no clear rule as to

how big an effect should be for it to be meaningful. A relative risk greater than 2.0

would probably be considered fairly strong and thus, by implication, practically

significant. An RR less than this would not, however, immediately be dismissed

because, as you saw in the example of smoking and coronary heart disease in

Table 5.4, a modest relative risk may still lead to a high absolute or attributable

risk.
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A final word about confidence intervals and p-values

It is easy to get fixated on p-values and to implicitly believe an association is real

if p < 0.05 and to assume it is not real (i.e. it is due to chance) if p ≥ 0.05. But it

is important to remember that confidence intervals are much more informative

than p-values. The width of a confidence interval gives an indication of the pre-

cision of the estimate and the two bounds tell you both how weak the association

might be and also how strong it might be. It is also important to understand that

the true value of an association is most likely to be somewhere near the point

estimate in the middle of a confidence interval; it is much less likely to be near

the ends of the interval and even less likely to be outside it completely. Thus if an

OR = 2.5 with a 95% CI from 0.9 to 7.3, then the real effect is much more likely

to be close to 2.5 than it is to be close to 1.0; furthermore it is just as likely to be

close to 6.0 or 7.0 as it is to be as low as 1.0.

In contrast, a p-value simply gives an indication of whether an observed asso-

ciation could be ‘due to chance’ and there might really be no effect (i.e. the

true RR or OR is 1.0). It effectively focuses on the end of the confidence inter-

val that is closest to the null (does this or does it not include the null value?)

and ignores the other end completely. For these reasons, the epidemiologi-

cal and wider health literature has seen a shift away from using p-values in

recent years towards reporting confidence intervals because of the additional

information they provide and to reduce the dependence on ‘p < 0.05’ which, as

you have seen, can be misleading or mean that important results are missed.

Summary

In any study there will always be an element of chance as to who is studied and

who is not – this type of random error is called sampling error. As you have seen,

statistical methods have been developed to assess the amount of sampling error

that is likely to be present in any particular study but it is easy to be seduced by

statistics and important to be able to interpret the results of a study practically,

regardless of what the investigator might claim. It is, however, important to reit-

erate that if we do not select the study participants carefully and they are not

representative of the wider population (i.e. they differ from the target population

in a systematic way) then we will introduce selection bias into the study. This is

a completely separate issue from the problem of random sampling error that we

considered above and we will discuss it in more detail in the next chapter.

Questions

1. The authors of a study report a RR of 1.8 (95% CI 1.6–2.0) for the association

between alcohol intake and cancer. The authors of a second study report an
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OR of 1.8 (95% CI 0.7–3.5) for the association between caffeine intake and the

same cancer. What do the results of these studies tell us (i) about the studies

and (ii) about risk factors for the cancer?

2. What is the best way to reduce sampling error in a study?

(a) Select people from the population at random.

(b) Increase the size of the study.

(c) Calculate a 95% confidence interval for the results.

(d) Use a more reliable instrument to measure exposure.

3. A randomised, placebo-controlled trial was conducted in Indonesia to study

the effects of vitamin A for treating children with measles. The investigators

reported a confidence interval for the relative risk of 0.26 to 0.94. Which of the

following statements are true?

(a) Because the confidence interval does not include the value ‘zero’ we can

say the result is statistically significant.

(b) Because the confidence interval does not include the value ‘zero’ we can

say the result is not statistically significant.

(c) Because the confidence interval does not include the value ‘one’ we can

say the result is statistically significant.

(d) Because the confidence interval does not include the value ‘one’ we can

say the result is clinically significant.

4. What is the difference between statistical significance and clinical signifi-

cance?
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Box 7.1 Bigger isn’t always better!

In the run-up to the 1936 presidential election in America, the Literary Digest

conducted a poll of more than two million voters and confidently predicted

that the Republican candidate, Alf Landon, would win. On the day it was the

Democrat candidate, Franklin D. Roosevelt, who won a landslide victory. The

Digest had correctly predicted the winner of the previous five elections, so

what went wrong in 1936?

The Digest sent polling papers to households listed in telephone

directories and car registration records. In 1936, however, telephone and car

ownership was more common among more affluent households and these

were the people who were also more likely to vote Republican. The generally

less affluent Democrat voters were thus under-represented in the sample of

voters polled. In contrast, a young George Gallup conducted a much smaller

poll of a few thousand representative voters and correctly predicted the

Roosevelt win. As a result of this fiasco the Digest folded but Gallup polls are

still conducted today.

We saw in Chapter 6 that larger studies are less likely to get the wrong results

due to chance (or random sampling error) than smaller studies; however, the

example in Box 7.1 shows that a large sample size is not sufficient to ensure we

get the right results. The enormous presidential poll conducted by the Literary

Digest didn’t get the right answer because it included the ‘wrong’ people, i.e. they

were not representative of everybody in the voting population. Furthermore, in

epidemiology we frequently rely on records that have been collected for some

other purpose, and we have already discussed some of the problems inherent in

this in Chapter 3. Even when the data we use have been collected specifically for

our research they are unlikely to be completely free of error. We often have to rely

on people’s memories, but how accurate are they? And biological measurements

such as blood pressure and weight are often subject to natural variation as well

as being affected by the performance of the measurement system that we use.

People live complicated lives and, unlike laboratory scientists who can control

all aspects of their experiments, epidemiologists have to work with that com-

plexity. As a result, no epidemiological study will ever be perfect. Even an appar-

ently straightforward survey of, say, alcohol consumption in a community can

be fraught with problems. Who should be included in the survey? How do you

measure alcohol consumption reliably? All we can do when we conduct a study

is aim to minimise error as far as possible, and then assess the practical effects

of any unavoidable error. An important aspect of epidemiology is, therefore, the

ability to recognise potential sources of error and, more importantly, to assess

the likely effects of any error, both in your own work and in the work of others.
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In this chapter we will point out some of the most common sources of such error

in epidemiological studies and how these can best be avoided. We also want to

emphasise from the outset that some degree of error is inevitable and that this

need not invalidate the results of a study.

Sources of error in epidemiological studies

In an epidemiological study we usually want to measure the proportion of people

with a particular characteristic or identify the association between an exposure

and an outcome. To do this we have to recruit individuals into the study, mea-

sure their exposure and/or outcome status and then, if appropriate, calculate a

measure of association between the exposure and outcome. We also want the

results we obtain to be as close to the truth as possible. (Note that, although we

will discuss error in the context of exposure and disease, when we talk about an

exposure we mean anything from a gene to a particular behaviour, and the out-

come need not be a disease but could be any health-related state.)

As you will discover, there are dozens of different names that have been given

to the kinds of error that can occur in epidemiological studies. Fortunately, in

practice, all types of error can be classified into one of two main areas: they relate

either to the selection of participants for study or comparison, or to the measure-

ment of exposure and/or outcome. These errors can in turn be either random or

systematic. Random error or poor precision is the divergence, by chance alone,

of a measurement from the true value. Systematic error occurs when measure-

ments differ from the truth in a systematic way.

We will now discuss the main types of both selection and measurement error

in more detail and will also consider the effects that they may have on the results

of a study. Remember that in practice it is impossible to eliminate all error and

the most important thing is therefore to consider the likely practical effects of

any remaining error.

Selection bias

Depending on how we select subjects for our study, and how many we select,

we can introduce both random and systematic sampling errors into our study.

As you saw in the previous chapter, even if the people selected for a study are

generally representative of the population that we wish to learn about (the target

population), we may still get the wrong result just because of random sampling

error, i.e. by chance, and this is especially likely when we take only a small sam-

ple. In contrast, the example in Box 7.1 shows how the results of even a large

study can be biased if the sample of people selected for the study systematically

differ from the population that we wish to learn about in some way.
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Selection bias occurs when there is a systematic difference between the people

who are included in a study and those who are not, or when study and compar-

ison groups are selected inappropriately or using different criteria. Unlike ran-

dom sampling error, we cannot reduce selection bias by simply increasing the

size of the study sample – the problem persists no matter how large the sample.

Nor are there simple statistical techniques to assess the amount or direction of

systematic error in a study, so it is not always easy to know what effect it might

have on the results.

The issue of selection bias is a major problem in simple descriptive studies

such as prevalence surveys. If the sample of people included in the survey is

not representative of the wider population the results of the survey can be very

wrong, as the Literary Digest found in their biased opinion poll which under-

represented the views of poorer Americans. It is also a problem in analytic studies

because it can lead to inappropriate comparisons and hence biased measures of

association (OR, RR, AR or PAR). It is a particular concern in case–control stud-

ies because the participants are recruited as two separate groups and it can be

difficult to ensure that the final control group makes an appropriate compari-

son group for the cases. A similar problem can arise in cohort studies when the

exposed and unexposed groups are recruited separately, for example when the

exposed group comprises workers in a particular occupation or military group

and a separate unexposed group has to be identified for comparison.

In a case–control study, it is important to have a clear definition of the popula-

tion group that you want to study (the target population). This need not be every-

body, but could be a specific subgroup of the whole population. Cases and con-

trols should then be selected from the same identifiable group. Ideally all cases in

a defined population would be included, but if only a sample is used they should

be truly representative of all cases arising in the population. The controls too

should then be selected to be representative of this population. (We discussed

options for control selection in Chapter 4.)

In cohort studies such as the Framingham and Nurses’ Health studies that we

discussed in Chapter 4 we usually recruit a single group of participants and then

classify them according to their exposure. In this situation, the question of how

individuals were recruited is usually less important in terms of the validity of the

study results (what is often called internal validity). However, it can influence the

generalisability or external validity of the findings since they may apply only to

the sorts of people who took part. In some situations, however, selection bias (at

the point of recruitment) can also influence the effect estimates. As an example,

consider a cohort study examining the effect of children’s socioeconomic status

(SES) on their risk of injury. If the families of lowest SES are more likely to refuse

to participate, then this group may be under-represented in the total cohort. In

this situation, measurement of the risk of injury within the low SES group and

comparisons with those of higher socioeconomic status should still be accurate;
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the low SES group will just be smaller than it might have been had more low SES

families participated. If, however, those families of lower SES who refuse to take

part are also those whose children are at highest risk of injury, then the study will

underestimate the true amount of injury in this group. It will then also underes-

timate the effect of low SES on injury risk because the really high-risk children in

that group were not included.

As for cohort studies, selection bias at recruitment and exposure assignment

is not usually a major issue for internal validity in clinical trials, although it can

occur if the allocation process is predictable and the decision whether or not

to enter a person into the trial is influenced by the expected treatment assign-

ment. For example, if alternate patients are assigned to receive active drug or

placebo, a physician may decide not to enter sicker patients into the trial if he or

she thought they were not going to be given the active drug. This selection bias

will affect the internal validity of the study and is another reason why the alloca-

tion process should be truly random and ideally neither the investigators nor the

participant should know what group the participant is in (see Chapter 4).

For both cohort and intervention studies the more important issue is to avoid

or minimise selective losses from the cohort or study group. Regardless of the

length of the follow-up period, one of the most important criteria for a high-

quality study is to ensure complete follow-up of all participants. The more people

who are ‘lost to follow-up’ with unknown health status, the more likely it is that

the results will be biased.

Sources of selection bias

Some common ways in which selection bias can arise include the following.

Volunteers

It is well known that people who volunteer to participate in surveys and studies

(i.e. they spontaneously offer their involvement rather than being selected in a

formal sampling scheme) are different from those who do not volunteer. In par-

ticular, volunteers are often more health-conscious and, as a result, volunteer

groups will often contain a lower proportion of, say, smokers than the general

population. Advertisements calling for volunteers for a survey or study may also

attract people who have a personal interest in the area of the study. The preva-

lence of various diseases or behaviours in a volunteer group may thus be very

different from that in the underlying population because of this self-selection

into the study. This means that volunteer groups are completely unsuitable for

surveys conducted to measure the prevalence of either health behaviours or dis-

eases in the population and they are also likely to introduce bias into studies

looking for associations between exposures and health outcomes. For this rea-

son, epidemiological research rarely uses groups of volunteers and, if it does, it
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is advisable to pay close attention to whether the use of volunteers may have

biased the results in some way.

Imagine a survey about a sensitive area such as sexual behaviour where partic-

ipants were recruited via advertisements in women’s magazines. How represen-

tative do you think the results would be of all women?

There are two potential problems with this type of recruitment. First, different

magazines target different types of women so it is likely that the readers of one

particular magazine will not be representative of all women. It is also likely that

the women who choose to respond to a survey of this type will differ markedly

from those who do not respond, for example they may well be more confi-

dent and out-going and thus more likely to engage in less conventional sexual

behaviours. This exact issue plagued Kinsey, who conducted some of the earliest

work on sexual behaviour in the mid 1900s (Kinsey, 1948). He reported high levels

of unconventional sexual behaviours in his study groups but was roundly criti-

cised for using samples of volunteers, prisoners and male prostitutes, thus rais-

ing concerns about the reliability of his results. At the time, others demonstrated

that women who agreed to take part in a survey of sexual habits were much more

likely to have high levels of self-esteem than non-participants, and that women

with a high self-esteem score reported very different sexual behaviours from

those with low self-esteem scores (Maslow and Sakoda, 1952). Although Kinsey

attempted to address the criticisms of his studies, the concerns remained and his

results still cause controversy today. (Kinsey’s life and work were dramatised in

the 2005 Hollywood movie ‘Kinsey: let’s talk about sex’.)

Low response rates

What might be thought of as a type of volunteer bias, and one that again is a

particular problem in surveys and case–control studies, is the problem of low

response rates. People who have a particular disease are often highly motivated

to take part in research into that disease. Controls, however, have no such moti-

vation to participate and investigators are finding it increasingly hard to per-

suade healthy people to take part in research. Even if potential controls for a

study are selected at random, if some do not agree to take part then the remain-

ing group may no longer be a true random sample of the population and the

results may be biased. Box 7.2 shows an example from a study looking at pas-

sive smoking and heart attack where the authors assessed and reported the

likely existence and extent of error in their estimates of smoking rates in the

control group. This degree of thoroughness is commendable but, unfortunately,

rarely seen due to logistical constraints. Note also how this information can be

used to make a tentative practical assessment of the likely bias this error may

have introduced into the estimate of the effect of passive smoking on heart

disease.
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Box 7.2 Differences between responders and non-responders

In a case–control study of the effects of passive smoking on the risk of heart

attack or coronary death, the investigators put a lot of effort into trying to

achieve a high response rate from controls. Potential controls were initially

invited to attend a study centre where they would have blood collected

and physical measurements taken as well as completing a risk factor

questionnaire. Participants who did not respond to this invitation were sent a

shorter questionnaire to complete at home and some people who still did

not respond were then visited and interviewed at their homes. There were

thus three types of people among the control group: the willing volunteers

who replied to the initial invitation, the slightly less willing who replied to the

shorter home questionnaire and the even more reluctant who agreed to take

part only when visited by an interviewer. The investigators then compared

the prevalence of smoking in these three groups (Table 7.1).

Table 7.1 Prevalence of smoking increases with increasing reluctance to take
part in a study.

Ease of recruitment

Never smoker

(%)

Ex-smokers

(%)

Current smokers

(%)

Men (age 35–69 years)

Full participation (willing) 35 40 24

Short questionnaire (less willing) 30 42 28

Home interview (reluctant) 29 42 29

Women (age 35–69 years)

Full participation (willing) 67 19 14

Short questionnaire (less willing) 66 13 21

Home interview (reluctant) 53 16 31

(Dobson et al., 1991.)

The harder it was to persuade someone to take part in the study, the more

likely they were to be a current smoker, especially for women. This suggests

that those who refused completely probably had even higher smoking rates.

The measured prevalence of smoking in the control group is therefore likely

to be an underestimate of the true level of smoking in the whole population.

Using the study data, the calculated odds ratio for the association between

smoking and heart disease in men was 2.3. However, if the true proportion

of current smokers in the population was actually 3% higher and the

proportion of non-smokers 3% lower than in the study controls, then the true

odds ratio would have been lower, about 1.8. The study would thus have

overestimated the strength of the association.
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Ascertainment or detection bias

This can occur if an individual’s chance of being diagnosed as having a particu-

lar disease is related to whether they have been ‘exposed’ to the factor of interest.

An example of this type of bias was seen in early studies of the risk of oral contra-

ceptive (OC) use causing thromboembolism (a condition in which a blood clot

develops in the legs and subsequently breaks off and moves to another part of the

body, often the lungs). Doctors who were aware of the potential for this risk were

more likely to hospitalise women with symptoms suspicious of thromboem-

bolism if they were taking OCs. Early case–control studies, which were hospital-

based, then overestimated the risk of thromboembolism associated with OC use.

This was because the cases were more likely to be on OCs simply because of the

way in which they were selected to be sent to hospital, since in the minds of their

doctors this partly determined their diagnosis.

The healthy-worker effect

This is a well-documented type of selection bias that can occur in occupational

studies. People who are working have to be healthy enough to do their job, so

they tend to be more robust than the general population, which necessarily

includes those who are disabled or seriously ill and hence unable to work. As a

result, if occupational groups are compared with the general population – which

is not uncommon in cohort studies of occupational hazards – they will almost

always appear to be healthier overall. Comparisons within a workplace can also

be flawed because different types of job often attract different types of people

as well as requiring different levels of fitness. Imagine a study of the effects of

heavy physical work on the occurrence of heart disease in which the investiga-

tors compared a group of manual labourers with a group of people of similar

socioeconomic status who had desk jobs. In this situation, people who had heart

disease might be incapable of doing a manual job and therefore more likely to

hold a desk job. The frequency of heart disease would thus appear to be higher

in those with desk jobs, falsely suggesting that heavy work was protective against

heart disease. Similar problems can arise in other groups where members are

selected on the basis of physical capability, e.g. the armed forces (see Box 7.3).

Loss to follow-up

In a case–control study the main concern with subject selection is with regard to

who is included in the study. In a cohort study or a clinical trial, selection bias

can arise if those who remain in a study are different from those who do not, i.e.

the issue is selection out of the study population rather than selection in. This

can be a particular problem if more people are ‘lost to follow-up’ in one expo-

sure group than another and if loss is also related to the outcome of interest. For

example, imagine a randomised clinical trial comparing a new drug with the cur-

rent standard treatment. If the sickest people in the intervention group withdrew
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Box 7.3 Veterans’ health

There is concern that men and women who saw active service in conflicts

such as the Vietnam War have worse health than those who did not. Studies

that have compared mortality rates among Vietnam veterans with those in

the general population are hampered by the fact that the veterans had to

pass a stringent medical examination at the time of their enlistment and so,

at that time, were much more healthy than the average person. An analysis of

mortality rates among male Australian Vietnam veterans found that, up until

1979, mortality among the veterans was actually 18% lower than in the

general population (Table 7.2). It is highly unlikely that service in Vietnam

would reduce a man’s subsequent risk of death, so this inverse association is

likely to be due entirely to the healthy-worker effect. It is impossible to say

how large this effect might be and to assess whether it could actually be

masking an underlying increase in mortality in the veterans.

Table 7.2 Standardised mortality ratios (SMRs) and 95% confidence intervals
(CIs) for selected causes of death among male Australian Vietnam Veterans.

Cause of death and time period SMR (95% CI)

All causes: 1963–1979 0.82 (0.77–0.87)

1980–1990 0.95 (0.90–0.99)

1991–2001 0.99 (0.96–1.02)

Lung cancer: 1963–1979 0.59 (0.32–0.90)

1980–1990 1.25 (1.05–1.45)

1991–2001 1.21 (1.08–1.33)

(Wilson et al., 2005.)

In the years from 1980 to 2001, overall mortality among the veterans was

similar to that in the general population; however, cancer mortality was more

than 20% higher among the veterans. With the increasing time interval since

enlistment, the healthy-worker effect will have been wearing off for most

causes and it now appears that the veterans do have higher rates of cancer

death compared with the general population. The question of veterans’

health is now a major issue in many countries.

from the trial, the people remaining in the intervention group would be healthier

than those in the standard treatment group and the new drug would appear to

be more beneficial than it really was. The opposite situation would occur if peo-

ple who were doing well were less likely to return for assessments and thus were

more likely to be lost to follow-up. In a cohort study, participants with socially

stigmatised behaviours (which these days can include smoking cigarettes) may
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be less easy to follow up and more likely to develop the health conditions being

studied.

Control of selection bias

The question of selection bias has to be considered and then eliminated or min-

imised in the design and conduct of a study. Any error introduced here that leads

to inappropriate comparisons is intractable and cannot be removed in the data

analysis although, as shown in the example in Box 7.2, it is sometimes possible

to estimate the effects of any such bias. As we have seen, in a case–control study

the critical issues are defining the case group clearly, selecting an appropriate

control group and then ensuring high participation rates among both cases and

controls. In a cohort study or trial it is important to have measures to maximise

retention of people within the study and, if possible, to follow up those who drop

out of the study. For example, studies with cancer incidence or mortality as an

outcome can often use population-based cancer or death registers to obtain this

information even for people who have dropped out of the study or been lost to

active follow-up.

A good study will have clearly defined eligibility criteria that can be used

to determine whether specific cases are included. For example, in a study of

myocardial infarction, specific criteria developed by the World Health Organi-

zation might be used to define a case or, in a study of cancer, only those patients

with histologically confirmed cancer might be eligible. Additional eligibility cri-

teria might require people to fall within a certain age range (e.g. children are usu-

ally excluded from studies of adult diseases), reside in a defined area or be admit-

ted to specific hospitals. Box 7.4 gives typical eligibility and exclusion criteria for

a study of ovarian cancer.

Note that the eligibility criteria describe the target population, i.e. all women

who are eligible to take part in the study. For practical reasons some eligible

women might later be excluded from the study. It is important to note that if large

numbers of women are excluded, regardless of how good the reasons for this,

then the resulting study sample might no longer be representative of the whole

population. For example, the exclusion of very sick women might mean that

cases of advanced cancer are under-represented in the study group. If advanced

cancers differ somehow from early cancers in terms of their aetiology then this

might affect the overall results.

Once a study has been conducted, all we can do is consider whether any possi-

ble selection bias is likely to have made the association appear stronger (further

from the null or ‘no effect’ value) or weaker (closer to the null) than it really is

(see below). Any such consideration can, however, only be based on informed

guesswork, and the results of any case–control study with low participation rates

(particularly among controls) or of a cohort study or trial with high loss to
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Box 7.4 Eligibility and exclusion criteria

Eligibility criteria for cases for a study of ovarian cancer could be as follows:
� A histologically confirmed diagnosis: the cancer must be confirmed by a

pathologist.
� Incident: the woman must have no previous history of ovarian cancer.
� Primary ovarian cancer: the cancer must originate in the ovary; metastases

(cancers that have spread from another anatomical site) would thus be

excluded.
� Age 18–79: studies often exclude children for practical reasons and in

this case ovarian cancer is very rare in children. Older adults are also

commonly excluded, particularly if exposure information is to be collected

by questionnaire or interview because the problems of recall increase with

age.
� Resident in a specific geographical area: women who just happen to be

diagnosed with ovarian cancer while visiting that region will be excluded.

Comparable eligibility criteria for the controls might then be the following:
� Women aged 18–79
� Resident in the same specific geographical area
� No previous history of ovarian cancer; and
� No history of bilateral oophorectomy (i.e. they must have at least one ovary

and so be at risk of developing ovarian cancer).

Exclusion criteria might include the following:
� Women who are unable to give informed consent (for example they have

dementia)
� Women who are too sick to participate (this decision might be made by the

treating doctor); and
� Women who do not speak English (if the main study documents are all in

English it might not be financially viable to translate them into other

languages).

follow-up are likely to be viewed with suspicion because of the possibility that

some unaccounted-for bias could explain the results.

Assessment of the likely effects of selection bias on the results of a study

In practice, participation rates in studies are rarely 100% and the important thing

is to assess the likely extent of any bias and the potential impact, if any, of this

on the results of the study. Figure 7.1 summarises the issues regarding selection

bias that we have covered above and also the effects of random sampling error or
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chance that we discussed in the previous chapter. The most important consider-

ation is whether it is possible that an observed association is entirely due to error,

or would it still exist (and perhaps be even stronger) if the error could be elimi-

nated? Conversely, if a study shows no association, could this be because a real

effect has been masked because of the way the subjects were selected (bias) or

because the study was just not big enough to show a clear association (chance)?

Unfortunately, while we can quantify the effects of random sampling error or

chance, questions as to the possible presence and effects of any bias are often

difficult to answer – if people did not agree to take part in a study then there is

usually no information about them.

External comparisons

Although it might not be possible to obtain information about the non-

responders in a study, we may have some knowledge of the wider target

population, allowing us to check for differences between it and the actual study

population. For example, many countries have cancer registries, so in a case–

control study of cancer we might be able to find some basic information such as

the age and stage (extent of disease) distribution of all cancer patients diagnosed

in a particular region at the time of the study. By comparing the cases who took

part in the study with these routine statistics we can see whether the people who

did not take part differ in some way from those who did, e.g. they might tend to be

older and sicker. Similarly, it may be possible to extract information about possi-

ble risk factors such as smoking and alcohol consumption from a national health

survey. If so, we can then compare, say, the smoking habits of the study popula-

tion with those of the general population. If there are fewer smokers among the

controls in a case–control study than in the general population, then the study

may have overestimated the strength of the association between smoking and

disease. For example, a recent study observed an odds ratio of 1.6 (95% CI 1.2–

2.2) for the association between current smoking and risk of ovarian cancer, but

it was found that the proportion of current smokers in the control group was

lower than would be expected from national statistics (13% vs 19%) (Pandeya,

2009). By imputing (estimating) smoking status for the non-participating con-

trols based on the assumption that the total control group should have had a

similar prevalence of smoking to the general population, it was estimated that

the true odds ratio would have been approximately 1.1 (95% CI 0.8–1.4). Thus

non-participation had biased the odds ratio upwards, making it seem as if smok-

ing was associated with ovarian cancer when, in all probability, there is really no

association.

Sensitivity analysis

Even without such external data it is still possible to estimate the influence of bias

on the results of a study by conducting what is known as a ‘sensitivity analysis’
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Box 7.5 The worst-case scenario

Imagine a study that compared a new anti-arrhythmic drug (drug A) with an

older drug (drug B) for the prevention of sudden death. The results of this

hypothetical study are given in Table 7.3.

Table 7.3 Results of hypothetical study comparing two anti-arrhythmic drugs.

Drugs

Number of patients

randomised

Number of sudden

deaths

Mortality per

100 people

Drug A 860 36 4.2

Drug B 842 72 8.6

From these results, drug A appears to reduce the risk of sudden death by

about half (RR = 4.2 ÷ 8.6 = 0.49) compared with drug B. However, what if we

find that some patients were lost to follow-up: 32 from group A and 16 from

group B? The worst-case scenario (if we are hoping to find evidence in favour

of drug A) would be if all the patients lost from group A had actually died

from an arrhythmia while all those lost from group B were alive and feeling

so well that they had decided not to return for follow-up. We can then

recalculate the mortality for drug A on the basis of this scenario (the

mortality for drug B will not change):

Mortality in group A if the 32 patients lost to follow-up died due to an

arrhythmia = (36 + 32) ÷ 860 = 7.9 per 100 people

Drug A is still found to give a benefit compared with drug B, although the

reduction in risk of mortality is now less than 10%. In practice it is highly

unlikely that all participants lost to follow-up from group A had met an

untimely arrhythmia-related death whereas none of those taking drug B had.

The true reduction in risk for drug A is therefore likely to be greater than 10%

and in this situation we might be happy to conclude that, even in the

presence of the loss to follow-up, drug A was more useful than drug B.

(see Box 7.5). If there is loss to follow-up in a cohort study or clinical trial, then

imagine the worst-case scenario i.e. that everyone lost from one group developed

the outcome of interest and nobody lost from the other group did. How would

that have affected the results of the study? What if the loss had been the other

way around or if only half of the people lost had developed disease? How bad

would the loss have to have been to explain the whole association? If there is

still an association after such worst-case assumptions then the observed result

cannot be an artefact due entirely to bias. (Note that this does not imply that the

association is real; it could also be due to measurement error, which we discuss

below, or confounding (see Chapter 8).)
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Measurement or information error

We will now turn our attention to possible sources and effects of error in the

information we collect from or about people. Few measures of exposure will be

perfect and there may also be errors in the measurement of outcome, leading

to misclassification of participants with respect to their exposure status and/or

outcome (disease); i.e. someone may be labelled as ‘exposed’ (or as a ‘case’) when

they were actually ‘unexposed’ (or a ‘non-case’). This can then lead to bias in the

results of the study. Some error can and will creep in whenever we measure or

collect information from or about study participants and, as in the process of

subject selection, this error (and any resulting misclassification) can be either

random or systematic.

From www.CartoonStock.com

Random error

If you were to weigh yourself several times on the same set of scales, how similar

would the results be? If there is little variation between the results we say that the

measuring device is precise. If there is a lot of variation between the results then

the precision is poor or, conversely, we have a lot of random error. Some mea-

suring instruments will be better than others and although we would not expect

to obtain exactly the same result every time, we would hope that if were measur-

ing the same thing the results would all be close. If, for example, we measured

someone’s systolic blood pressure and the reading was 140 millimetres of mer-

cury (mmHg), then, ideally, if we measured it again and again the results would

all be close to this value – perhaps ranging from 137 to 143 mmHg. This would
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indicate that the measuring device was quite precise, i.e. it always gives approxi-

mately the same answer when measuring the same thing. But note that it tells us

nothing about the accuracy of the measurement, i.e. whether the person’s sys-

tolic blood pressure really is 140 mmHg.

Many biological parameters, including blood pressure, vary on a day-to-day,

hour-to-hour and even minute-to-minute basis. Assuming that we always mea-

sure blood pressure under standard conditions and our participant has not, for

example, just run up a flight of stairs, then any variation should again be largely

random. Depending on when we take our measurements, we will obtain different

readings that will vary around the patient’s usual blood pressure. We will overes-

timate some people’s blood pressure and we will underestimate it for others.

We can reduce random error and thus increase the precision of our measure-

ments by taking repeated measurements on one subject, preferably on different

occasions, and using the average value in the study. The more measurements we

take, the more precise our answer will be. Note that this is analogous to our dis-

cussion of precision in the context of random sampling error or chance in the

previous chapter. As you saw there, we can calculate a confidence interval to

quantify random sampling error: a bigger study has less error and gives a nar-

rower confidence interval and thus a more precise estimate.

Systematic error

Given a measuring instrument was not 100% precise, we would expect some

results to be a bit too high and some a bit too low, but we would still hope

that the average results would be close to the true value. In other words,

we want the device to be accurate. Consider the measurement of blood pres-

sure again. If we use a sphygmomanometer that has not been calibrated for a

year it might consistently read 10 mmHg too high. The person with a blood pres-

sure of 140 mmHg would now appear to have a blood pressure of 150 mmHg.

The precision of the measurements may be unchanged but, if we were to make

several measurements on each person and average them, we would find that

the average value was always 10 mmHg too high. In this situation our measure-

ments might be precise but they are not accurate because we are systematically

recording everybody’s blood pressure as 10 mmHg greater than it should be. We

have, therefore, introduced systematic error or bias into our measurements.

Unlike random error, systematic error cannot be reduced by taking repeated

measurements.

We can summarise the effects of systematic and random error, or their inverse

accuracy and precision, by analogy with target shooting (Figure 7.2). If some-

one is a good shot and they are using a gun with the sights properly aligned,

their shots will tend to cluster closely around the bull’s-eye in the centre (situa-

tion (a)). The shots are therefore both accurate (close to the centre) and precise

(close to each other). But if the sights on the gun are not aligned correctly, it will
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Accurate and precise
Little systematic or

random error

Precise, not accurate
Systematic error but

little random error

(a) (b)

Accurate, not precise
Random error but

little systematic error

Neither accurate, nor precise
Random and

systematic error

)d()c( Figure 7.2 Accuracy and
precision (systematic and
random error).

not be so accurate and the shooter might always hit a spot to the right of the

centre (situation (b)). The results are still precise because they are tightly clus-

tered around this point, but they are no longer accurate because they are con-

sistently falling too far to the right. We have introduced a systematic error. If

a less experienced shooter were to use the first gun then their shots would be

more spread out, but they should still land around the bull’s-eye (situation (c)).

In this situation we have good accuracy because, on average, the shots are cen-

tred around the bull’s-eye, but the shots are very spread out so we have more ran-

dom error and thus less precision. Finally, an inexperienced shooter with a faulty

gun would both miss the centre of the target and cover a wide area (situation

(d)). In this situation we have neither accuracy nor precision. This visualisation

shows how we can conceptualise the separate effects of accuracy and precision,

i.e. systematic and random error.

The effects of measurement error

The effects of both biological variation and measurement error mean that mea-

surements will never be perfect – even if there is no systematic error there will

always be some degree of random error. If something is measured on a con-

tinuous scale (for example weight in kilograms or height in centimetres) then

random error alone will not lead to any bias in estimates of the average weight

or height of the study population. This is because, although the weight of some

people will be overestimated and the weight of others underestimated, if these

errors are truly random, the overestimates and underestimates should cancel

each other out when we calculate the average weight. However, problems arise

in the presence of systematic error. If people systematically underestimate their

weight then their average weight will be an underestimate of the true average for

the population.

If instead of measuring something on a continuous scale we want to classify

people into groups, for example normal and overweight, then both random and

systematic errors will lead to misclassification of people into the wrong groups.

Some normal-weight people will be wrongly labelled as overweight and vice

versa. As you will see below, this misclassification will introduce bias into mea-

sures such as odds ratios and relative risks.
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Table 7.4 The ‘true’ results of a

OR = 300 × 150
100 × 250

= 1.80

hypothetical case–control study with
no measurement error.

Cases Controls Total

Exposed 300 250 550

Unexposed 100 150 250

Total 400 400 800

When assessing the likely effects of measurement error, the most important

consideration is whether the errors and any subsequent misclassification are

likely to be the same or different in the various study groups. In a case–control

study we are usually concerned about whether errors in exposure measurement

are the same for cases and controls. In a cohort study or a clinical trial we are

often more concerned about whether the outcome measurement may have dif-

fered between the exposed and unexposed groups, although exposure measure-

ment can also be an issue.

Non-differential misclassification

When measurement error and any resulting misclassification occur equally in all

groups being compared, they are described as being non-differential (because

they are the same or ‘not different’ in the various groups). For example, non-

differential error occurs when the amount and type of error in exposure mea-

surement is the same for cases and controls in a case–control study; or error in

measurement of outcome is the same for the exposed and unexposed groups in

a cohort study.

Imagine a case–control study in which everything is measured perfectly, with

no error. The results of this hypothetical study are shown in Table 7.4 and the

true odds ratio for the association between exposure and outcome is 1.80.

Now in practice the instrument used to measure exposure (this could be a bio-

logical test of some sort, a measuring device or a questionnaire) will rarely be

perfect and, as a result, there will almost always be some degree of random error

that results in non-differential misclassification. Imagine that 10% of all people

who are exposed are misclassified as unexposed and 10% of all unexposed peo-

ple are misclassified as exposed. (Note that this is the same as saying that the

instrument has 90% sensitivity and specificity; it correctly identifies 90% of those

who are exposed (sensitivity) and 90% of those who are unexposed (specificity).

We will discuss sensitivity and specificity in more detail in Chapter 15.) The key

point here is that the misclassification is non-differential, namely it affects every-

one in the study. In this situation 10% or 30 of the 300 exposed cases and 25 of the

250 exposed controls will be misclassified as unexposed. In addition, 10% or 10
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Table 7.5 The effect of non-differential random measurement error: 10% of all

OR = 280 × 160
120 × 240

= 1.56

cases and controls are misclassified with regard to their exposure status.

Cases Controls Total

Exposed 300 – 30 + 10 = 280 250 – 25 + 15 = 240 520

Unexposed 100 – 10 + 30 = 120 150 – 15 + 25 = 160 280

Total 400 400 800

of the 100 unexposed cases and 15 of the 150 unexposed controls will be misclas-

sified as exposed. This means that, instead of obtaining the true picture shown in

Table 7.4, we would find results that looked like Table 7.5.

Because we have randomly misclassified some of the cases and controls, we

have obtained an odds ratio of only 1.56 instead of the true odds ratio of 1.80.

This makes the association seem weaker than it really is; i.e. the effect estimate,

in this case an odds ratio, is biased towards the null. Note that some complex

exposures, particularly things like diet, are particularly hard to measure and lev-

els of misclassification are likely to be much greater than 10%. In this situation

any measures of relative risk would be biased even closer towards 1.0 and real

effects can disappear completely. For example, if the level of misclassification in

the above example had been 20% instead of 10%, the odds ratio would have been

1.37 ((260 × 170) ÷ (140 × 230)); with 30% misclassification it would have been

only 1.23 ((240 × 180) ÷ (160 × 220)).

As we discussed above, non-differential misclassification due to random mea-

surement error is a fact of life but it is also possible to have non-differential mis-

classification due to systematic measurement error if the systematic error occurs

equally in all study groups. For example, ‘food frequency questionnaires’ ask

people to report how often, on average, they eat each of a list of individual food

items. When confronted with a list of ten or twenty different vegetables people

will often overestimate the total number of servings of vegetables they eat each

day. If we then classify them according to whether or not they ate the recom-

mended number of servings of vegetables per day, we would systematically mis-

classify some people with low vegetable intake into the high-intake group and

this might happen equally for cases and controls. If, for example, in the study

shown in Table 7.4, 20% of all unexposed people, both cases and controls, were

systematically misclassified as exposed then we would obtain an odds ratio of

1.71, which would again underestimate the true value of 1.80. Note that while

these examples have all considered the effects of non-differential misclassifica-

tion on a case–control study, exactly the same effects occur in a cohort study (see

question 5 at the end of the chapter for an example of this).

In the presence of non-differential misclassification, either random or system-

atic, estimates of the association between exposure and outcome will usually be

underestimates of the true effect. In other words, the odds ratio or relative risk
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Box 7.6 When non-differential misclassification does not
bias towards the null

If an exposure has more than one level then misclassification between two of

the groups will make those two groups look more similar than they really are.

In a case–control study of smoking and respiratory disease, for example,

participants might be classified as non-smokers, light smokers and heavy

smokers. The distinction between smoker and non-smoker is likely to be

fairly clear (and for simplicity we will assume that it is perfect), but there will

inevitably be some misclassification between the light and heavy smoking

groups. If the non-smokers form the reference group, the misclassification

will make the odds ratios for light and heavy smokers more similar than they

should be. The effect of this will be to bias the odds ratios for the highest

group (heavy smokers) towards the null again but the odds ratio for the

middle group (light smokers) will now be biased away from the null

(Table 7.6). Overall, however, the net result is that the association is

weakened.

Table 7.6 Non-differential misclassification can bias away from the null
when there are more than two exposure groups.

Cases Controls Odds ratio

Truth

Non-smokers 150 200 1.0

Light smokers 120 125 1.3

Heavy smokers 130 75 2.3

20% of light smokers misclassified as heavy smokers and vice versa

Non-smokers 150 200 1.0

Light smokers 122 115 1.4

Heavy smokers 128 85 2.0

will almost always be biased towards the null and the true effect will therefore be

further from the null than the observed effect. This means that if a study gives a

relative risk of 2.0 but there is likely to be non-differential misclassification, then

the true association is likely to be even stronger than that observed (i.e. >2.0).

Similarly, if a study gives a relative risk of 0.8 in the presence of non-differential

misclassification, then the true relative risk is likely to be lower than this (i.e

<0.8), again making the real association stronger than that observed. Although

this is the norm, it is important to note that in some situations non-differential

misclassification can bias estimates away from the null. This can happen simply

by chance but is more common when we classify exposure into more than two

groups (see Box 7.6 for an example).
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Differential misclassification

When the measurement error and resulting misclassification occur to a greater

extent in one group than another they are described as being differential. The

effects of differential misclassification are generally harder to predict than those

of non-differential misclassification.

In contrast to random error, which, as discussed above, is commonly non-

differential because it is usually an inherent property of the exposure being mea-

sured or the measuring device and thus affects everyone in the study, system-

atic error is often differential. It is a particular problem in standard case–control

studies in which cases already have the disease of interest when the exposure

information is collected or measured and so might recall their exposure differ-

ently from controls; this type of error is known as recall bias. For example, the

cases in a case–control study of respiratory disease might systematically overes-

timate the amount of passive smoking they had been exposed to because they

thought that this might have caused their disease. The controls, however, would

have no such reason to overestimate their exposure. This might make it look as if

passive smoking was associated with respiratory disease even if there was really

no difference between the cases and controls.

Imagine that, in the hypothetical study shown in Table 7.4, cases overesti-

mated their exposure and, as a result, 20% of unexposed cases were systemati-

cally misclassified as exposed, but controls were not affected.

How many of (a) the 100 unexposed cases and (b) the 150 unexposed controls

would have been misclassified as exposed?

So, in total, how many (a) cases and (b) controls would have been classified as

exposed and how many as unexposed?

What would the odds ratio have been?

Would it have been an underestimate or an overestimate of the true odds ratio?

In this situation, 20% or 20 of the 100 unexposed cases but none of the unex-

posed controls would be misclassified as exposed and, instead of the true picture

shown in Table 7.4, we would obtain results that looked like Table 7.7, giving an

odds ratio of 2.4.

We have now overestimated the true odds ratio of 1.80, making the associa-

tion seem much stronger than it really is. If the systematic misclassification had

gone the other way and exposed cases had been misclassified as unexposed, or

unexposed controls had been misclassified as exposed, then the bias would have

gone in the opposite direction and we would have underestimated the effect.

Random error is less likely to be differential unless, for example, we use dif-

ferent measuring devices with differing levels of precision in the different study

groups; however, if present, it too can make an association look either weaker or
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Table 7.7 The effects of differential systematic

OR = 320 × 150
80 × 250

= 2.40

misclassification: 20% of unexposed cases, but
not controls, are misclassified as exposed.

Cases Controls Total

Exposed 300 + 20 = 320 250 570

Unexposed 100 – 20 = 80 150 230

Total 400 400 800

stronger than it really is (see question 6 at the end of the chapter for an example).

The best way to avoid differential random error and any consequential misclassi-

fication is thus to ensure that exactly the same instruments and methods are used

in all of the different study groups.

To summarise, if there is misclassification, either systematic or random, in a

study and this occurs to a different extent in the two study groups (cases and con-

trols or exposed and unexposed) then the study results can be biased either up or

down, i.e. towards or away from the null value, and it is often impossible to know

which way the bias would have gone or how large the effect might be. This type

of misclassification can be very difficult to deal with because, unless you have

some idea of how much misclassification is occurring and where it is occurring,

you cannot work out what the true results should have been.

Sources of measurement error

As you will have gathered, almost every study will be subject to some degree

of measurement error. One common but easily avoidable source of bias is the

use of different instruments or measuring systems for different study groups or

parts of groups. Examples of this include the use of different laboratories to anal-

yse biological specimens, different locations for interviews of cases and controls

(e.g. hospital versus home) and different interview methods (face-to-face ver-

sus telephone interview or postal questionnaire). Other particularly troublesome

sources of error are the possibilities of recall bias and interviewer or observer

bias.

Recall bias

Some degree of recall error is inevitable in any epidemiological study that

requires participants to remember their past exposures. If this error is random

and if, in a case–control study, it occurs in both cases and controls (i.e. it is non-

differential) then the effects will usually be to bias the effect estimates towards

the null. What can be more problematic is recall bias, which, as we noted above,
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can occur in case–control studies and cross-sectional studies if cases (or those

with disease in a cross-sectional study) are systematically more likely to over-

or underestimate their exposure than controls. For example, if an exposure is

thought to cause disease, then cases might be more likely to recall or to exagger-

ate their past exposure than controls, leading to overestimation of the effect of

that exposure on disease (as in the passive smoking example above). The oppo-

site effect would occur if cases tended to underestimate their exposure because

they feel guilty about it. This could occur, for example, in a study of the effects

of sunburn in childhood on the occurrence of childhood skin cancer. If moth-

ers are asked whether their children have ever been sunburnt, the mothers of

children with cancer might tend to underestimate (or under-report) the occur-

rence of sunburn in their children because they feel guilty about admitting they

allowed their children to become burned when they were young. This could lead

to falsely low estimates of the frequency of sunburn in cases and consequently a

weakened association between sunburn and skin cancer.

It is obviously difficult to know, even qualitatively, the extent to which such

bias may operate in any given study, so a great deal of effort is put into designing

information collection systems to limit the likelihood of it occurring; for exam-

ple, through the use of highly structured questionnaires, standard prompts and

so forth. One situation where it is sometimes possible to assess the extent of

recall bias is in a nested case–control study when information collected from

cases and controls after diagnosis of disease in the cases could be compared

to information collected earlier in the follow-up period before the cases were

diagnosed. Few such empirical studies have actually been done, but the lim-

ited evidence is somewhat reassuring. For example, recall bias has been a major

concern in the field of melanoma epidemiology because of the growing public

awareness of the risks of sun exposure and use of sunbeds. However, analysis

of data from nested case–control studies does not give any consistent evidence

of substantive recall bias being present for these exposures (Gefeller, 2009).

Nonetheless this does not mean that we can ignore the need to capture data

as objectively as possible to minimise this potentially important measurement

flaw.

An equivalent bias has occasionally been seen in cohort studies when infor-

mation about outcomes has been obtained from the participants themselves. In

this situation the problem arises when members of the exposed group are more

(or less) likely to recall having had the outcome of interest than are those in the

unexposed group. For example, in a telephone follow-up ascertaining self-

reported medical conditions in American veterans, those who had served in

Vietnam (the exposure of interest) reported higher rates of a variety of conditions

than did non-Vietnam veterans; but when a sub-set of the veterans was exam-

ined more thoroughly, there was little real difference between those who had
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and had not served in Vietnam (CDC, 1988). Note that the analysis presented in

Box 7.3 above was based on routine statistics and not on self-report by the veter-

ans themselves so it is not subject to the same types of error.

Interviewer or observer bias

Differential error may also occur if data collectors ask questions or record infor-

mation in a different way for cases and controls (or for exposed and unex-

posed groups in a cohort study). For instance, an interviewer who knows the

case/control status of a subject may probe more deeply with the cases than with

the controls, resulting in differences in the quality of exposure data obtained for

the two groups. Similarly, if in a cohort study or trial the observers know whether

or not a person is exposed or unexposed (or treated/untreated), they may be

more or less likely to diagnose the outcome of interest. A logical way to avoid

these possibilities is to blind the interviewers/observers to the subject’s status,

although this is often not possible. Again, the use of objective criteria for out-

come assessment, structured questionnaires and interview schedules, training

and tape-recording interviews for quality control all help minimise interviewer

bias.

Control of measurement error

It is difficult to get rid of measurement error once it has occurred and so it is

important to minimise the potential for error at the design stage of the study.

Whether you are conducting your own research or reading the reports of others,

some important things to consider include the following.

Definitions

Everything that is measured in a study needs to be carefully defined. If the expo-

sure is smoking, what makes someone a smoker? Anyone who has ever smoked a

cigarette? 10 cigarettes? 100 cigarettes? A cigarette a day for six months? In prac-

tice most people probably try a cigarette at one time or another, so to classify

them all as smokers would not be sensible. Common definitions that have been

used are that someone should have smoked at least 100 cigarettes in their life-

time or that they should have smoked at least one cigarette a day for a defined

period, usually a few months.

In addition to the important distinctions of exposed/unexposed (and of

case/non-case in a cohort study or trial), it is also essential to have clear defini-

tions and good measurements of the co-factors being measured. These are other

factors that may influence (or ‘confound’ – see Chapter 8) the results of a study,

e.g. age, socioeconomic status and smoking.
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Choice of instrument

Instruments in epidemiological studies can include sophisticated laboratory

tests, detailed questionnaires, or even simple observations. Inevitably the

method of measurement used will influence the degree of error in the data. A

set of scales that weigh to the nearest 100 g would be more accurate than scales

that weigh to the nearest kilogram. Ideally the instrument used should be that

which minimises both random and systematic error. Consideration should also

be given to the circumstances of time and place of use of the instrument, since

these may also affect the results obtained. For example, a face-to-face interview

with a trained interviewer might elicit more reliable information than a question-

naire completed by the study participants themselves, but it would also be more

expensive. And there are always exceptions – use of self-completed computer-

based questionnaires may well capture more reliable data on use of illicit or

socially stigmatised behaviours than in-person interviews.

Quality control

Whatever measuring devices are used, they need to be standardised. Instruments

need regular calibration against a standard value and interviewers need training

in a standard approach to obtaining data. Structured questionnaires help here,

too. If the study continues for some time, consistency should also be monitored

and maintained.

Assessment of measurement error

The two main issues in measurement are (i) is the instrument accurate (i.e. no

systematic error)?, and (ii) is it precise (minimal random error)? The accuracy

and precision of an instrument can be assessed by conducting validation and

repeatability studies.

Assessing accuracy

In some situations accurate measuring devices or tests are available but too com-

plex or costly to use on everyone in the study, so the investigators have to use a

simpler or cheaper and less accurate tool. In this situation it is good practice to

conduct a validation study in which both the accurate expensive (‘gold standard’)

test and the simpler, potentially less accurate test are used on a sub-set of people

in the study and the results are compared. In this situation it may then be pos-

sible to ‘correct’ the results of the study for any inaccuracies in the cheaper test

(we will not consider the mechanics of this here).

Assessing precision

Another desirable way to test how well a measuring device performs is to mea-

sure its ‘repeatability’ or precision. If the same thing is measured on two different
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Survey Analytic Study

Random Systematic Non-differential
(same in all groups)

BIASED results Random or Systematic Random or Systematic

BIAS to Null

MEASUREMENT
ERROR

No BIAS in mean but lack of
PRECISION

Differential
(different in different groups)

BIAS towards or
away from null

Figure 7.3 Overview of the types and consequences of measurement error.

occasions or by two different people, how well do the two measurements com-

pare? This might simply be a case of repeating laboratory tests on some samples

or it might involve asking some study participants to complete a study question-

naire twice on two different occasions to see how well their answers agree. In a

cohort study that has repeated measures over time (such as the Nurses’ Health

Study) it is sometimes appropriate to average the values to give better precision.

Assessment of the likely effects of measurement error on the

results of a study

By now it will be clear that there will always be some random measurement

error in any data and thus if subjects have been classified into different expo-

sure groups, there will always be some misclassification, the extent of which will

depend on the variable being studied and the tool used to measure it. Things

like age and height do not change (or change predictably) and can be measured

fairly easily. In contrast we have alluded to the fact that complex factors like diet

and physical activity are very hard to measure and so will be associated with a lot

more misclassification. On top of this there may also be systematic error such as

recall bias, particularly when we use case–control and cross-sectional designs.

The important thing is to assess the likely impact of any such error on the

results of the study. Is it possible that an observed association is entirely due to

error, or would the association still exist (and perhaps be even stronger) if the

error could be eliminated? As shown in Figure 7.3, the key question in a survey

is whether the error is random or systematic. Random errors should not lead

to biased estimates of descriptive statistics such as means but systematic errors

will. In contrast, when looking for associations between exposure and outcome

in analytic studies, the central issue is whether any error and resulting misclas-

sification is likely to be differential or non-differential; i.e. is it likely to have
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Table 7.8 The likely effects of misclassification on the results of a case–control study.

Type of error / misclassification

True odds

ratio (OR) Study results Type of bias

Non-differential 2.0 ≥1.0 but <2.0 Result biased towards null but not below

1.0 1.0 No effect if there is no association

0.5 0.5 but ≤1.0 Result biased towards null but not above

Differential – cases

overestimate (or controls

underestimate) exposure

2.0

1.0

0.5

>2.0

>1.0

>0.5

Result biased upwards with no upper limit. An

inverse association (OR < 1.0) could appear to

be a positive association (OR > 1.0)

Differential – cases

underestimate (or controls

overestimate) exposure

2.0

1.0

0.5

<2.0

<1.0

<0.5

Result biased downwards with no lower limit. A

positive association (OR > 1.0) could appear to

be an inverse association (OR < 1.0)

occurred to the same extent in all study groups or to a differing extent in dif-

ferent groups? As you have seen, the likely effects of non-differential misclassi-

fication (either random or systematic) are to bias the estimates of effect (RR or

OR) towards the null, making associations look weaker than they really are or, in

some situations, masking them altogether. However, differential misclassifica-

tion can bias estimates upwards or downwards, towards or away from the null.

If information from a validation study is available, it may be possible to ‘correct’

the results of a study to allow for the fact that the measurements were not perfect,

although any such correction will also be imperfect. Sensitivity analysis involves

repeating the data analysis using different assumptions in the same way as we

did to assess the effects of loss to follow-up above (look back to Box 7.5): if a pro-

portion of subjects were misclassified, what effect would this have had on the

results?

At the very least, it is essential to assess the likely degree of measurement error

and/or misclassification and then make some judgements as to how this might

have affected the results. Table 7.8 summarises the likely effects of misclassifica-

tion on the estimates of an odds ratio under different scenarios.
� If the error or misclassification is non-differential, how bad is it likely to be? If

the study found an association, e.g. an odds ratio of 1.8, then, in all probabil-

ity, the real association is even stronger, i.e. >1.8. If the study did not find an

association, is it possible that there was so much error that a real association

could have been missed? (Note that non-differential misclassification is very

unlikely to make it appear that an association exists when in reality there is

none, although this can happen.)
� If the error or misclassification is likely to be differential, is it possible to pre-

dict what the differences might have been? For example, are cases more or
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less likely to have over-reported exposure? If cases overestimate their expo-

sure then the OR is likely to be biased upwards, conversely if they underesti-

mate their exposure (or controls overestimate theirs) then the bias is likely to

be downwards. Could the observed association be due to misclassification? Or

might the real association be stronger than that observed? (Note that, as well

as making associations look weaker or stronger than they really are, differen-

tial misclassification can make an association appear where there is none, it

can make it seem that there is no association when in reality there is one and it

can even make a positive association look like an inverse association and vice

versa.)

Summary

No epidemiological study will be perfect. The important thing, therefore, is to

minimise errors and then evaluate the likely effect of any remaining error and we

will come back to this again when we look at how to read (or write) and interpret

epidemiological papers in Chapter 9. For now we can summarise the problem

of error as follows: errors can be random or systematic and can relate to sub-

ject selection or to measurement of exposure and/or outcome. Random sampling

error can be assessed from a confidence interval, but systematic selection bias is

not so easily assessed, and is therefore a major problem in surveys. It can also

be a problem in case–control studies, particularly with regard to selection of the

control group. In cohort studies or clinical trials, selection bias is more likely to

occur if people are lost to follow-up. In a survey, systematic measurement error

is a bigger problem than random error. In analytic studies, the important dis-

tinction is between non-differential error (it occurs equally in all study groups),

which will usually bias the study results towards the null, and differential error

(it occurs to a different extent in the different study groups), which can bias the

study results either towards or away from the null.

We have now considered two of the three possible ‘alternative explanations’ for

an observed association, namely chance and bias. In the next chapter we will dis-

cuss the third major threat to the internal validity of epidemiological and other

health research: confounding.

Questions

1. Imagine that a research team wanted to estimate the prevalence of vegetari-

anism in the community by means of a short questionnaire distributed with a

women’s health magazine. Would this give an accurate picture of the percent-

age of people who were vegetarians?
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2. In a case–control study of liver disease and alcohol consumption, all patients

in a community who had newly been diagnosed with liver disease were

recruited as cases and people without liver disease were selected at random

from the community to act as controls. All of the cases and controls were then

asked about their alcohol intake. Only 25% of the controls selected from the

community agreed to take part in the study.

(a) Do you think that people with a high alcohol intake would be more or less

likely to agree to take part in the study than average?

(b) Is alcohol consumption in the controls likely to be higher, the same as or

lower than in the whole community?

(c) What effect would this have on the estimate of the association between

alcohol and liver disease?

3. Look back at the hypothetical study shown in Table 7.4 and imagine that

the measurement instrument systematically overestimated people’s exposure

and, as a result, 15% of all unexposed people, both cases and controls, were

misclassified as exposed.

(a) Is this misclassification differential or non-differential? Why?

(b) In the presence of this misclassification is the observed odds ratio likely

to be an overestimate or an underestimate of the true odds ratio?

(c) How many of (i) the 100 unexposed cases and (ii) the 150 unexposed con-

trols would have been wrongly misclassified as exposed?

(d) So, in total, how many (i) cases and (ii) controls would have been classified

as exposed and how many as unexposed using the flawed measuring tool?

(e) What would the odds ratio have been?

4. Now imagine that cases underestimated their exposure and, as a result, 20% of

exposed cases were falsely classified as unexposed, but that the classification

of controls was not affected.

(a) Is this type of misclassification random or systematic? Is it differential or

non-differential? Why?

(b) What effect would it have had on the results of the study?

(c) Compare your answer to (b) with that in Table 7.7, where cases systemat-

ically overestimated their exposure.

5. The hypothetical results of a cohort study in which everything is measured

correctly are shown in Table 7.9. Imagine that at the start of the study 30% of

all exposed people were misclassified as unexposed.

(a) Is this misclassification random or systematic? Non-differential or differ-

ential? And why?

(b) What effect would the misclassification have on the incidence of disease

in (i) the unexposed cohort and (ii) the exposed cohort?

(c) What effect would this have on the observed relative risk?

6. Imagine that all of the cases in a case–control study had their blood pressure

measured by a single doctor at the local hospital but, for practical reasons,
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Table 7.9 The ‘true’ results of a hypothetical cohort

RR = 2.0 ÷ 1.0

= 2.00

study with no measurement error.

Total Cases Cumulative incidence (%)

Exposed 10,000 200 2.0

Unexposed 10,000 100 1.0

Total 20,000 300 1.5

the controls had their blood pressure measured by their local doctor. In this

situation it is likely that there would be less random error in the blood pressure

readings for cases that came from a single doctor than in those for controls

that came from a number of different doctors.

(a) Re-calculate the results of the hypothetical case–control study shown in

Table 7.4 assuming that the measurement of exposure among cases was

perfect but 20% of exposed controls were randomly misclassified as unex-

posed and vice versa.

(b) Is this misclassification differential or non-differential and why?

(c) What effect has it had on the odds ratio and why?

(d) What would the effect have been if we had misclassified cases instead of

controls?
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Muddied waters: the challenge of confounding
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An example of confounding: is alcohol a risk factor for lung cancer? 198

Criteria for a confounder 201

The effects of confounding 202

Confounding in a case–control study 202

Confounding in a cohort study 203

So how can we tell if an association is confounded? 204

When will a possible confounder actually be a confounder in practice? 205

Control of confounding 208

Control of confounding through study design 208

Randomisation 208

Restriction 209

Matching 210

Does increasing the size of a study help? 212

Control of confounding in data analysis 213

Stratification 213

Multivariable modelling 215

Residual confounding 217

Confounding: the bottom line 218

Box 8.1 Are university admissions biased towards men?

Table 8.1 shows that in one year a prestigious university admitted 52% of

male applicants compared with only 45% of female applicants, suggesting

that there was a bias in favour of men. When quizzed about this, the two

main faculty heads said that it couldn’t be true, they had both admitted a

higher proportion of women than men: the success rate in arts was 38% for

women and only 32% for men and that in science was 66% for women

compared with only 62% for men. How can this be?

(continued )

197
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Box 8.1 (continued)

Table 8.1 University admissions.

Men Women

Faculty Applicants Admitted Percentage Applicants Admitted Percentage

Arts 4,100 1,300 32 8,250 3,150 38

Science 8,200 5,100 62 2,900 1,900 66

Total 12,300 6,400 52 11,150 5,050 45

This is an example of Simpson’s paradox, an extreme form of confounding

where an apparent association observed in a study is in the opposite

direction to the true association. In this example it arose because women

were much more likely to apply to arts courses, for which applicants had a

lower overall success rate.
(Based on an analysis of graduate admissions data conducted

at the University of California, Berkeley (Bickel et al., 1975).)

In Chapters 6 and 7 we considered two reasons why the results of a study might

not be the truth, namely chance and error or bias. In this chapter we will consider

a third possible ‘alternative explanation’ – confounding.

Confounding refers to a mixing or muddling of effects that can occur when

the relationship we are interested in is confused by the effect of something else,

just as we see in the striking example in Box 8.1. Here the true relation between

sex and university admission – admission rates were higher for women – was

‘confounded by faculty’, such that a crude comparison actually suggested that

admission rates were lower for women. Confounding is a major problem that

has to be addressed in all non-randomised research and in some randomised

trials as well, especially if they are small. As in previous chapters, we will mainly

discuss confounding in the context of studies of the causes of a disease but, as

with all epidemiological methods, everything that we say will apply equally to

any study looking at associations in human (or animal) populations.

The following hypothetical case–control study of alcohol and lung cancer illus-

trates how easily confounding can arise and how it can be diagnosed. It also sug-

gests how confounding can be dealt with and we will discuss this in more detail

later in the chapter.

An example of confounding: is alcohol a risk factor for lung cancer?

Imagine a (very small) case–control study with 20 cases (people with lung can-

cer �) and 20 controls who do not have lung cancer (☺). Is drinking alcohol
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Figure 8.1 A hypothetical
case–control study of alcohol and
lung cancer (blue = drinkers,
black = non-drinkers).

Table 8.2 Calculation of the odds ratio for the

Odds Ratio = a × d
b × c

= 10 × 15
5 × 10

= 30

association between alcohol and lung cancer.

Cases Controls

Alcohol drinkers 10 5

Non-drinkers 10 15

associated with the risk of lung cancer? If all the cases and controls were asked

about their alcohol consumption we could classify people as ‘drinkers’ (�,☺)

or ‘non-drinkers’ (�,☺) (Figure 8.1) and calculate an odds ratio to estimate the

strength of the association between alcohol and lung cancer.

What is the odds ratio for the association between alcohol and lung cancer?

Can we conclude that alcohol consumption is associated with lung cancer?

As Table 8.2 shows, the odds ratio for the association between alcohol and lung

cancer is 3.0, suggesting that the risk of developing lung cancer is three times

higher in people who drink alcohol compared to non-drinkers.

However, we know that smokers are much more likely to develop lung can-

cer than non-smokers, and it is possible that they are also more likely to drink

alcohol than non-smokers. Could smoking have affected the association we saw

between alcohol and lung cancer? To investigate this we need to separate the

smokers from the non-smokers and look at the association between alcohol and

lung cancer – the ‘alcohol effect’ – in each group. Figure 8.2 shows that 12 of

the 16 smokers were also alcohol drinkers compared with only three of the 24

non-smokers.

Calculate the odds ratio for alcohol and lung cancer separately for (i) smokers

and (ii) non-smokers. (Hint: first draw up the appropriate 2 × 2 tables.)

Is alcohol associated with lung cancer among smokers? Among non-smokers?

How do you explain the change in the pattern of the alcohol–lung cancer

relationship?
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Smokers Non-smokers
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Figure 8.2 Separating smokers and non-smokers (blue = drinkers, black = non-drinkers).

Table 8.3 Calculation of the odds ratio for the

Odds Ratio = 9 × 1
3 × 3

= 1.0

Odds Ratio = 1 × 14
2 × 7

= 1.0

association between alcohol and lung cancer,
stratified by smoking status.

Cases Controls

Smokers Alcohol drinkers 9 3

Non-drinkers 3 1

Non-smokers Alcohol drinkers 1 2

Non-drinkers 7 14

The odds ratio for the association between alcohol and lung cancer among smok-

ers is 1.0. Fewer of the non-smokers drink alcohol but again the odds ratio is 1.0

(see Table 8.3). This process in which we divide or stratify the study participants

into two or more separate groups (strata) is known as stratification.

So, although there appears to be an association between alcohol and lung

cancer in the whole study population, it disappears when we consider smokers

and non-smokers separately. We could then go on to combine the odds ratios in

smokers and non-smokers to calculate a pooled odds ratio that is adjusted for the

effects of smoking. In this example the adjusted odds ratio is also 1.0. (We will not

discuss the methods for calculating an adjusted odds ratio here, but a common

method, developed by Mantel and Haenszel (1959), is shown in Appendix 6.)

The apparent (crude) overall relationship we saw between alcohol and lung

cancer arose because while those with lung cancer were indeed more likely to

drink alcohol than those without lung cancer, alcohol and smoking go together

so they were also more likely to be smokers than those without lung cancer. The

increased risk of lung cancer among alcohol drinkers was in fact due entirely to

their smoking.

This situation, in which an apparent relationship between an exposure and an

outcome is really due, in whole or in part, to a third factor that is associated both
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with the exposure and with the outcome of interest, is known as confounding.

In the example, smoking is said to be a confounder of the alcohol–lung cancer

link. Confounding is a mixing of effects because the effect of the exposure we are

interested in (e.g. alcohol) is mixed up with the effect of some other factor (e.g.

smoking). To look at the real effect of the exposure we have to first deal with the

effect of the confounder.

Criteria for a confounder

For something to be a confounder it must
� be a risk factor for disease among those who are not exposed to the factor of

interest
� be associated with the exposure of interest (in the source population or among

the controls in a case–control study) and
� not be an intermediate between exposure and the outcome (i.e. it must not lie

on the causal pathway).

Look back to Figure 8.2 and check that smoking fulfils the criteria for a con-

founder in the alcohol and lung cancer example.
� Among non-drinkers what proportion of (i) cases and (ii) controls smoked?
� Among the controls what proportion of (i) smokers and (ii) non-smokers drank

alcohol?
� Is alcohol likely to cause smoking? (That is, could smoking lie on a causal path-

way between alcohol and lung cancer?)

In the alcohol example, smoking was a confounder for the following reasons.

(1) It was associated with lung cancer: among people who did not drink alcohol,

3 out of 10 cases were smokers (30%) compared with only 1 of 15 controls

(7%). That is, among non-drinkers, the cases were more likely to smoke than

were the controls.

(2) It was associated with alcohol among the controls: 3 out of 4 controls who

smoked also drank alcohol (75%), compared with only 2 out of 16 controls

who did not smoke (12.5%). That is, among the controls, smokers were more

likely to drink alcohol than were non-smokers.

(3) It is not on a causal pathway between alcohol and lung cancer: although alco-

hol and smoking often go together, drinking alcohol does not ‘cause’ some-

one to be a smoker.

An example of the third criterion is seen in the association between obesity

and heart disease. High blood pressure is related both to obesity (the exposure)

and to heart disease (outcome) and could, therefore, be a potential confounder

of this association. However, since raising blood pressure is part of the causal
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EXPOSURE
(alcohol drinking)

DISEASE
(lung cancer)

CONFOUNDING VARIABLE
(smoking)

Figure 8.3 Confounding (e.g.
alcohol, smoking and lung
cancer).

path through which obesity acts to increase the risk of heart disease (obesity →
increased blood pressure → heart disease), it would be misleading to adjust for

this, since it would remove part of a real causal effect of being heavy.

Figure 8.3 illustrates these criteria, showing how a confounder is related both

to the exposure and to the outcome of interest. If an exposure is related to a con-

founding variable and this is, in turn, related to disease, the exposure itself may

appear to be related to the disease even when it is not.

The effects of confounding

In the example above, the apparent effect of alcohol on lung cancer was entirely

due to the effect of smoking, but confounding does not necessarily create an

apparent effect where really there is none. Confounding can lead to either over-

estimation or underestimation of the size of a real effect, it can completely hide a

real association that exists and in very extreme situations it can even reverse the

direction of an effect, making it appear that a cause of a disease actually protects

against it. (This is known as Simpson’s paradox and it explains the apparent con-

tradiction in the university admissions data in Box 8.1 at the start of the chapter.)

Age, sex and socioeconomic status (SES) are common confounders. As an

example, many diseases occur more frequently in older people. If the exposure

of interest also occurs more commonly in the elderly, e.g. a poor diet, then the

confounding effects of age would have to be considered.

Confounding in a case–control study

Authors of early studies that looked at the relation between diet and heart dis-

ease found that the more a person ate the lower their risk of heart disease. This

apparent association was all the more surprising because we know that obesity

is a risk factor for heart disease. However, one factor that the studies did not take

into account was physical activity and, on average, people who are physically

active eat more than those who are inactive. Could this have affected the results
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Table 8.4 Results of a hypothetical case–control study of high energy intake
and heart disease, stratified by level of physical activity.

Total High physical activity Low physical activity

Energy Heart Heart Heart

intake disease Controls disease Controls disease Controls

High 730 600 520 510 210 90

Low 700 540 100 150 600 390

of the studies? The results of a hypothetical case–control study evaluating the

association between energy intake and heart disease are shown in Table 8.4.

What is the odds ratio for the crude association between high energy intake and

heart disease?

What is the odds ratio for the association between high energy intake and heart

disease in people with (i) high and (ii) low levels of physical activity?

Is the association between high energy intake and heart disease confounded by

the level of physical activity?

The crude odds ratio for the association between high energy intake and heart

disease in this study is (730 × 540) ÷ (700 × 600) = 0.9, i.e. those with high

energy intake appear to have a 10% lower risk of coronary heart disease (CHD).

When we stratify by physical activity the odds ratio is (520 × 150) ÷ (100 × 510)

= 1.5 among the physically active and (210 × 390) ÷ (600 × 90) = 1.5 among

the inactive. Thus, when we remove the confounding effects of physical activity

by stratification, high energy intake is associated with a 50% higher risk of CHD

(OR = 1.5).1 In this example the confounding meant that the observed odds ratio

(OR = 0.9) was an underestimate of the true association between obesity and

CHD (OR = 1.5).

Confounding in a cohort study

Now imagine that, instead of a case–control study, we had conducted a cohort

study to look at the effects of high energy intake on heart disease. The results of

this study are shown in Table 8.5.

1 In this example, the effect was exactly the same (OR = 1.5) among both the inactive and the active

groups. In practice the stratum-specific estimates are unlikely to be identical and we will discuss this

further under Stratification on page 213.
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Table 8.5 Results of a hypothetical cohort study of high energy intake and
heart disease, stratified by level of physical activity.

Total High physical activity Low physical activity

Energy Person- Developed Person- Developed Person- Developed

intake years heart disease years heart disease years heart disease

High 60,000 720 50,000 500 10,000 220

Low 55,000 700 15,000 100 40,000 600

What is the crude rate ratio for the association between high energy intake and

heart disease?

What is the rate ratio for the association between high energy intake and heart

disease in people with (i) high and (ii) low levels of physical activity?

Is the association between high energy intake and heart disease confounded by

the level of physical activity?

The overall incidence rate of heart disease among those with a high energy intake

is 720 ÷ 60,000 = 12.0/1,000 person-years (py) and the incidence rate among

those with a low energy intake is 700 ÷ 55,000 = 12.7/1,000 py, giving a crude rate

ratio of 0.9 (12.0 ÷ 12.7). However, when we stratify by level of physical activity

we see a different picture:
� in the active group, the incidence rate of heart disease among those with a

high energy intake is 500 ÷ 50,000 = 10.0/1,000 py, whereas that among those

with a low energy intake is 100 ÷ 15,000 = 6.7/1,000 py, giving a rate ratio

of 1.5;
� in the inactive group, the incidence rate of heart disease among those with a

high energy intake is 220 ÷ 10,000 = 22.0/1,000 py, whereas that among those

with a low energy intake is 600 ÷ 40,000 = 15.0/1,000 py, again giving a rate

ratio of 1.5.

As in the case–control example above, when we remove the effects of phys-

ical activity the true association between a high energy intake and heart dis-

ease is stronger (RR = 1.5) than when we did not allow for the effects of physical

activity. Confounding is just as much a problem in cohort studies (or any other

non-randomised follow-up studies, including non-randomised trials) as it is in

case–control studies.

So how can we tell if an association is confounded?

If when you stratify or adjust for a potential confounder the effect estimate

changes then confounding is present. In the lung cancer example at the start of
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Table 8.6 Characteristics of women at time of recruitment into a study of oral
contraceptive use and coronary heart disease.

Oral contraceptive use

Yes No

Percentage aged less than 30 years 60% 30%

Percentage of low SES 50% 40%

Percentage smoking >15 cig/day 17% 12%

Mean body mass index (weight (kg) / height (m)2) 26.5 27.0

Percentage with a history of:

Hypertension 1% 1%

Stroke 0.03% 0.3%

Venous thromboembolism 1% 8%

(Figures adapted from Vessey and Lawless, 1984.)

the chapter the odds ratio dropped from 3.0 to 1.0 when we adjusted for smoking,

indicating that smoking was a strong confounder. In the heart disease example

the estimate increased from 0.9 to 1.5 when we adjusted for physical activity, so

again this was confounding the association. A general rule of thumb is that, if

when you adjust for a potential confounder the crude and adjusted effect esti-

mates differ by 10% or more, then the crude estimate is confounded to some

degree and it is more appropriate to present the adjusted value.

When will a possible confounder actually be a confounder in practice?

There are many things that could confound an association between exposure

and outcome but in practice they might not actually do so.

Table 8.6 shows the characteristics of a group of women at the time of recruit-

ment into a cohort study of oral contraceptives (OCs) and coronary heart disease

(CHD).

Assume that all the factors are known risk factors for CHD. Which of them might

be confounders of the OC–CHD relationship? Why?

For something to be a confounder it has to be associated both with the exposure

of interest (OC use) and with the outcome of interest (CHD). All of the factors

listed are known risk factors for CHD, so they are all associated with CHD. Some

are also associated with OC use – we can see from Table 8.6 that, compared with

non-users, OC users are
� twice as likely to be under the age of 30 as non-users (60% versus 30%)
� slightly more likely to be of low SES (50% versus 40%)
� slightly more likely to be current smokers (17% versus 12%)
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Table 8.7 Likely effects of potential confounders in a study of oral contraceptive
use and coronary heart disease when the true RR = 3.0.

Oral contraceptive use

Yes No

Likely

observed RRa

Percentage aged less than 30 years 60% 30% 2.5

Percentage of low SES 50% 40% 3.2

Percentage smoking >15 cig/day 17% 12% 3.3

Mean body mass index

(weight (kg) / height (m)2)

26.5 27.0 2.9

Percentage with a history of:

Hypertension 1% 1% 3.0

Stroke 0.03% 0.3% 2.9

Venous thromboembolism 1% 8% 2.4

a Estimated RR for OC use and CHD, assuming that the RRs for the associations

between the potential confounders and CHD are: 2.0 for age, 2.0 for SES, 4.0 for

smoking, 4.0 for BMI, 10.0 for stroke and 5.0 for venous thromboembolism.

� 10 times less likely to have had a stroke (0.03% versus 0.3%) and
� 8 times less likely to have had a venous thromboembolism (1% versus 8%).

So will these factors confound the association between OC use and CHD?

In practice, it turns out that only age, history of thromboembolism and, to

a lesser extent, smoking are likely to affect the results appreciably. Since CHD

rates increase with age, the rate in the OC users will be lower than in the non-

users simply because they are younger. If OC use truly increased the risk of

CHD, say the true RR = 3.0, then the effect of confounding by age might reduce

the observed RR (unadjusted for age) to about 2.5 (Table 8.7) thus reducing the

(real) difference between the groups. Similarly, the eight-fold difference between

the OC users and non-users in terms of their history of thromboembolism, a

strong risk factor for CHD, will also bias the observed RR downwards to about

2.4. Conversely, CHD rates are higher in smokers and OC users are slightly more

likely to be smokers than non-users, thus the effect of confounding by smoking

would be to increase the apparent RR, making the effect look stronger than it

really is.

This contrasts strikingly with the confounding influence of a history of stroke.

Theoretically this looks sure to be an important confounder, given the 10-fold

difference between OC users and non-users in terms of their past stroke expe-

rience, i.e. a very strong association between OC use and stroke (note that this

occurs because women who have had a stroke would not normally be prescribed

the OC pill), and the very strong known link between stroke and heart disease
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Table 8.8 Results of a hypothetical case–control study of high energy intake
and heart disease, stratified by level of physical activity (present in only 6% of
the population).

Total High physical activity Low physical activity

Energy Heart Heart Heart

intake disease Controls disease Controls disease Controls

High 472 231 52 51 420 180

Low 1210 795 10 15 1200 780

OR 1.3 1.5 1.5

(due to their common set of risk factors). However, because stroke is so rare in

young women this imbalance affects only a tiny proportion of the total study

group, and so has a trivial effect on the crude RR, biasing it downwards by <5%,

from 3.0 to 2.9. Even if a history of stroke had been five times more common in

the study groups (0.015% and 1.5%), the RR would have been biased downwards

by only about 10%, from 3.0 to 2.7.

More predictably, strong independent risk factors for CHD such as low SES

and body-mass index also fail to confound when their distributions in the groups

being compared are reasonably similar. So for something to be a confounder in

practice it must not only be associated quite strongly with the exposure and the

outcome, it must also be quite prevalent in the population.

As another example, consider the case–control study of energy intake and

heart disease shown in Table 8.4. In this study the prevalence of the confounder

(physical activity) in the population was very high – 660 of the 1,140 controls

or 58% were physically active. What would have happened to our analysis if the

population had been much less active? Table 8.8 shows results from a similar

study for a population in which only 6% of controls were physically active. (To

obtain these numbers we have just divided the numbers in the physically active

group by 10 and multiplied the numbers in the inactive group by 2.) The stratum-

specific odds ratios, and thus the adjusted odds ratio, are unaffected but the

crude odds ratio is now 1.3 instead of 0.9; i.e. it is much closer to the uncon-

founded value of 1.5 and there is much less confounding by physical activity

because this is now much less common.

We can summarise this by saying the following.
� If the association between a potential confounder and either the exposure or

the outcome is weak then the confounder is unlikely to have much effect on

the results of a study.
� If a potential confounder is either rare or almost ubiquitous then it is unlikely

to have much effect on the results of a study because these will be driven by
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the large number of people who are not exposed to the rare confounder or by

the many who are exposed to the very common confounder.

The most important confounders are therefore those that are both relatively

common and strongly related to the exposures and health outcomes of interest.

The typical confounders that we mentioned above – sex, age and SES – fulfil all of

these criteria. Another common confounder is smoking as this is strongly associ-

ated with many lifestyle factors, including high alcohol and coffee consumption,

a less healthy diet (less fresh fruit and vegetables) and low levels of physical activ-

ity, and is also a major risk factor for many diseases. There are also many other

disease-specific confounders: sun-exposure is a major confounder in studies of

other risk factors for skin cancer, obesity may be a confounder in studies looking

for causes of type-2 diabetes and so on. Although note that, in this latter exam-

ple, it is also possible that obesity may lie on the casual pathway for diabetes,

for example in studies of physical activity where it is likely that lower physical

activity → obesity → heart disease. In this situation we have to think carefully

about whether obesity is simply a confounder or whether it might explain some

of the effects of physical activity on diabetes risk.

Control of confounding

There are two strategies for dealing with confounding. The first is to try to pre-

vent it from occurring in the first place and this can be done at the study design

stage by randomisation, restriction or matching. The alternative is to deal with

it when it occurs by using analytic techniques such as stratification and statisti-

cal modelling. The effectiveness of all of these strategies except randomisation

depends on the ability to identify and measure any confounders accurately.

Control of confounding through study design

Confounding occurs when a confounding variable is distributed unevenly across

our study groups (e.g. in the lung cancer example at the start of the chapter, cases

were more likely to be smokers than controls). One way to avoid confounding

is therefore to design a study so that all groups are similar with respect to any

potential confounders.

Randomisation

The most effective way to prevent confounding is to allocate people to the dif-

ferent study groups at random. Clearly, this is possible only in an intervention

study and it is for this reason that randomised trials are usually considered to

provide the strongest evidence of any of the epidemiological study designs (note

that non-randomised trials are particularly prone to a type of confounding called
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Box 8.2 Confounding by indication

If in a trial the participants are not randomly allocated to the various

treatment groups then confounding is still a major problem, particularly

what is often called confounding by indication (Miettinen, 1983). This arises

because, even among a group of people who all have the same medical

condition, those who choose to take or who are prescribed a particular

medication may well differ from those who do not take it or who are not

prescribed it. Those who take the drug might tend to have more (or less)

severe disease than those who do not take it and, conversely, anyone who has

a medical condition or exposure that is contra-indicated for the drug should

certainly not be taking it. As a result, the outcomes of those who take the

drug may well differ from the outcomes of those who do not in a way that has

nothing to do with the treatment itself, i.e. they might differ simply because

those taking the group are less sick or do not have other major health

conditions (co-morbidities). The obvious solution to this problem is a

randomised trial in which people are allocated to the various treatment

groups at random.

confounding by indication – see Box 8.2). When a trial is large enough, ran-

dom allocation will generally ensure a balanced distribution of all charac-

teristics between the intervention (exposed) and control (unexposed) groups.

However, even randomisation cannot guarantee the absence of confounding, espe-

cially in smaller studies, so it must always be looked for. The analysis of a ran-

domised study must then include all participants in the groups to which they

were originally randomised (regardless of whether they actually received the

intervention). This is known as ‘intention to treat’ analysis and we will discuss

the importance of this further in Chapter 15 when we consider randomised eval-

uations of screening programmes.

A major advantage of randomisation over other forms of control of confound-

ing is that it deals not only with confounders that we know and can measure, but

also with other unrecognised and unmeasured (or unmeasurable) confounders.

These too will, on balance, be evenly distributed by the randomisation pro-

cess. Such unknown confounders (e.g. aspects of personality that affect complex

lifestyle patterns) cannot be dealt with by any other method.

Restriction

Since randomisation is not possible in the majority of epidemiological stud-

ies, are there any alternatives? One option is to restrict the study sample to

people with or without the confounding characteristic. This can be done by

restricting a study to a particular age or socioeconomic group, thereby removing
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confounding by age or SES, or by restricting a study to non-smokers if smok-

ing is a potential confounder. For example, we know that infection with human

papillomavirus (HPV) is a major factor (potentially a necessary cause, see

Chapter 10) in the development of cervical cancer and we also know that HPV

infection is strongly associated with a number of other lifestyle factors such as

smoking and use of oral contraceptives. This makes it very difficult to evalu-

ate the association between smoking and cervical cancer because it is hard to

be sure that any association observed is not simply due to confounding by HPV

infection. (Smokers are more likely to be HPV-positive than non-smokers, so this

could explain why they are more likely to develop cervical cancer.) By restricting

a study to include only HPV-positive women, any confounding by HPV status

would be removed, making it possible to evaluate the effects of other co-factors,

such as smoking. Restriction is, however, of limited practical value when it is nec-

essary to control for more than one or two likely confounders.

Matching

The third possibility is to select study subjects so that major known confounders

are evenly distributed across the study groups. This is achieved by matching sub-

jects on the presence or absence of the confounding variable(s). This is most

often done in case–control studies in which controls are selected to match the

cases in some predetermined way, e.g. by age and sex. Matching can be done

on an individual basis, with one or more controls matched to each case so that,

for instance, each control is matched by sex and year of birth to a specific case.

Alternatively, frequency matching aims to select controls to match the general

distribution of the confounding variable in cases. For example, adenocarcinoma

of the oesophagus is about seven times more common in men than women so in

a study of this cancer, controls might be selected to give a similar ratio of males to

females (i.e. 7:1). If, in this situation, controls were simply selected as a random

sample of the population, it is likely that about half would be female and half

male. There would therefore be many more female controls than female cases

but many fewer male controls than male cases. Sex would be a potential con-

founder in the analysis (because it is associated with the disease and many of

the potential risk factors), but any adjustment for sex would be statistically inef-

ficient because of the large sex imbalance between cases and controls.

Matching can also be used in the same way in cohort studies. This has his-

torically been much less common but, with the increasing use of record linkage

to conduct historical cohort studies, it is likely to become more common in the

future. For example a group used records from blood donation centres in the USA

to identify a cohort of 10,259 adults whose blood samples tested positive for hep-

atitis C virus (HCV) antibodies between 1991 and 2002 and another 10,259 blood

donors who tested negative. The HCV-negative group were frequency-matched

to the HCV-positive group by age, sex, year of blood donation and post code (as a



Control of confounding 211

surrogate marker for ethnicity and socioeconomic status). They then used record

linkage to the National Death Index to identify the dates and causes of death of

people in the two groups. They found that after an average of 7.7 years follow-

up, the risk of dying was three times higher in the HCV-positive group than in

the HCV-negative group (hazard ratio2 = 3.1, 95% CI 2.6–3.8) (Guiltinan et al.,

2008).

While it may seem tempting to match cases and controls (or the exposed

and unexposed groups in a cohort study) on as many factors as possible in the

hope of removing all possible confounders, this can lead to over-matching, which

greatly decreases the efficiency and increases the cost of a study. It is much

harder to find a suitable control who matches a long list of criteria than it is to

find someone who is only the same age and sex as the case (and even that is not

always as easy as it sounds).

Finally, it is essential that any matching factors are accounted for in the analy-

sis. The process of matching does not itself remove confounding – it can actually

introduce different confounding, which must then be allowed for. If the match-

ing factor is associated with the exposure of interest then, even if it is not associ-

ated with disease and so is not a true confounder (see criteria for a confounder

above), the fact that cases and controls have been matched for that factor will

make it a confounder in the study. In general, if a matching factor is positively

associated with the exposure, the matching process will make cases and con-

trols look more similar than they should. This means that, if the matching is not

taken into account in the analysis, the calculated odds ratios will underestimate

the true association between exposure and disease (they will be closer to 1.0)

as shown in the example in Box 8.3. If frequency matching has been used it is

sufficient to treat the matching factors as normal confounders (see ‘Control of

confounding’ below), but there are special techniques for analysing individually

matched data (see Box 8.3). The only exception to this rule is if, in practice, it

turns out that a matching factor is not associated with exposure in a case–control

study. In this situation matching cases to controls on that factor will not have

introduced any additional confounding and the factor need not be allowed for in

the analysis.

Matching was a primary technique for control of confounding in the early

decades of the modern case–control study (from the mid twentieth century until

the 1980s). The ready availability now of flexible and reasonably straightforward

computing packages that allow effective control for confounding at the stage of

data analysis (either by stratified or multivariable analysis) has somewhat less-

ened its importance, although it continues to be used to increase efficiency in a

variety of situations.

2 The hazard ratio is a measure of relative risk. It is essentially the same as an incidence rate ratio and is

often calculated in cohort studies.
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Box 8.3 Analysis of individually matched data

To analyse the data from a simple matched case–control study you have to

compare each case with their matched control (or controls if more than one

control is selected for each case). In Table 8.9 the numbers no longer

represent individual people but 155 matched pairs of cases and controls

so there are 40 pairs for which both the case and the control are exposed,

25 pairs for which only the case was exposed and so on.

Table 8.9 Analysing data from an indi-

Matched odds ratio = 25 ÷ 10 = 2.5

vidually matched case–control study.

Controls

Cases Exposed Unexposed

Exposed 40 25

Unexposed 10 80

If a case and their matched control are both exposed (or both unexposed)

that pair (or set) cannot tell us anything about the association between

exposure and disease. The interesting case–control pairs are those for which

one member is exposed and the other is unexposed. The matched odds ratio

is calculated by simply dividing the number of pairs for which the case was

exposed and the control unexposed by the number of pairs for which the

control was exposed and the case unexposed:

Matched OR =

# of pairs where the case was exposed

and the control unexposed

# of pairs where the control was exposed

and the case unexposed

(8.1)

Note that, if we had not taken the matching into account in the analysis,

we would have said that 65 (40 + 25) out of the 155 cases were exposed and

90 (10 + 80) were unexposed compared with 50 (40 + 10) exposed and 105

(25 + 80) unexposed controls, giving an unmatched odds ratio of (65 × 105) ÷
(90 × 50) = 1.5, which is considerably less than the matched value of 2.5.

Does increasing the size of a study help?

In any observational epidemiological study increasing the size of the study will

not make any difference to the amount of confounding. (To convince yourself

of this, go back to one of the earlier examples and try doubling the numbers

of people in each group. This will not alter the odds ratios or rate ratios and

will not get rid of the confounding.) The only time study size does matter is in
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the context of a randomised controlled trial. The bigger a randomised trial is,

the more likely it is that any confounders (known and unknown) will be bal-

anced across the study groups and the less likely it is that there will be any

confounding.

Control of confounding in data analysis

If you have designed a study using restriction or matching to reduce the effects

of confounding, it is no longer possible to study the effects of the confounding

variables. For example, if you have restricted your study to people aged between

60 and 70 years, or have matched cases and controls for age, it would no longer

be possible to look at the direct effects of age on disease. This means that it is

often preferable to collect information on potential confounders and then to

control for these in the analysis. The aim of the analysis is exactly the same as

the design options mentioned above, namely to ensure that the confounders

are balanced across the groups, and in practice this is achieved by comparing

exposure–disease patterns within narrow ranges of one or more confounders.

These approaches apply equally to case–control and cohort studies and also to

intervention studies if they are not randomised or if, in a randomised study, the

randomisation did not lead to an equal balance of important confounders across

the study groups.

Stratification

This is the method that we used in the alcohol and lung cancer example where

we stratified by smoking status, and the steps are shown in Figure 8.4 (where

RR stands for relative risk and may be a rate, risk or odds ratio). Study subjects

are split into groups, or strata, based on levels of the confounding variable. The

association between the exposure and outcome of interest is then measured sep-

arately in each stratum because if the people in each stratum are homogeneous

(the same or similar) with respect to the confounding variable, there can no

longer be any confounding by that factor. An analysis could be done separately

for men and women to remove confounding by sex, for different age groups, for

smokers and non-smokers (as in the example of alcohol and lung cancer) and so

on.

In the examples we have looked at so far, the stratum-specific odds ratios were

exactly or almost exactly the same, but this is rarely the case in practice. If the

stratum-specific estimates are similar then it is reasonable to assume that the

small differences between them are simply due to chance. In this situation it is

possible to combine the estimates from each separate stratum to summarise the

overall effect in the whole group. There are several ways to do this and the effect

is then said to be ‘adjusted’ for the confounder (see Appendix 6). This process is
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Calculate crude RR

Stratify and calculate
Stratum-specific RR

Stratum-specific RR
are different

Stratum-specific RR
are similar

No effect modification
Calculate pooled RR Effect modification

Crude RR  Adjusted RR
No major confounding

Crude RR  Adjusted RR
Confounding present

Use crude RR Use adjusted RR 

Use stratum-specific RR

Figure 8.4 A scheme for identifying and dealing with confounding and effect modification.

analogous to the standardisation that you met in Chapter 2. If the adjusted mea-

sure of association is different from the original crude measure, then we know

that the crude association was confounded. In the alcohol and lung cancer exam-

ple the crude OR was 3.0 and the adjusted OR was 1.0, showing that the crude OR

was heavily confounded by smoking.

If, however, the stratum-specific estimates are quite different then there may

be effect modification or in other words the ‘effect’ (the association between

exposure and outcome) may be truly different in the different strata. For exam-

ple, regular physical activity might reduce the risk of a particular disease among

people who are overweight but it might confer no benefit for those of normal

weight. In this situation obesity modifies the effect of physical activity on disease

and it would be inappropriate to treat obesity as a confounder (see Figure 8.4).

In practice, however, there is always some variation in the odds ratios across

the different strata and it can be very difficult to know whether this indicates

a meaningful difference or just random variation. There are statistical tests (tests

for heterogeneity) that can be used to help decide whether the variation could

just be due to chance. However, these are not very powerful and are unlikely to

detect variation unless the difference is very great (in which case it would be
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apparent without a statistical test) or the study is very large. In this situation it

is still possible to use statistical packages to ‘adjust’ for the effect modifier but

it is important to consider whether this is appropriate. If the effects in different

groups really are different then combining them will just average out the differ-

ences and give a measure that may not reflect the true association in any of the

groups.

Finally, it is important to note that although stratification can also be used for

studies in which cases and controls have been frequency matched, it is gener-

ally not appropriate for individually matched studies. These should be analysed

using a special ‘matched’ analysis (See Box 8.3) or modelling techniques (see

below).

Multivariable modelling

Stratification may be impractical when a study is small or you need to control

for several confounders simultaneously, because you are likely to end up with

small numbers in any one stratum. If, for example, you wanted to control for

sex, age with five 10-year age groups (20–29, 30–39, 40–49, 50–59 and 60–69)

and smoking (non-smoker versus smoker), you would end up with 20 different

strata (five age groups for smokers and five for non-smokers for each sex). On

average, each stratum will contain only 5% of your study population and, with

small numbers, it can be difficult to obtain precise estimates of the stratum-

specific associations. An alternative is to use statistical modelling techniques

to estimate the strength of the relationship of interest while controlling for all

of the potential confounders. The most commonly used multivariable approach

for unmatched (or frequency-matched) case–control studies is multiple logistic

regression. Individually matched case–control data can be analysed by a variation

of this called conditional logistic regression, which takes the individual matching

between cases and controls into account. A common technique used to anal-

yse person-time data from a cohort study is Cox proportional hazards regression.

(Note that this generates hazard ratios which, as you saw on page 211, are essen-

tially the same as incidence rate ratios.) We will not discuss the details of these

procedures here – they can be found in any standard medical statistics text. See

also Box 8.4 for examples of some other newer and more complex approaches to

controlling for confounding.

A word of caution, however: multivariable modelling can be performed very

easily with modern statistics software but it is important to know what you are

doing. The models can be complex and they are based on a number of under-

lying assumptions. If you are not familiar with the techniques it is wise to seek

advice from a statistician before diving in. Furthermore, it is important to be

familiar with your data before starting any modelling and nothing can replace

simple stratified analyses, as outlined above, for this.
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Box 8.4 More advanced ways to identify and control for
confounding

Directed acyclic graphs (DAGs) or causal diagrams are gaining popularity

as a graphical way to aid causal analysis (Greenland et al., 1999). Explicitly

considering the relation between different components of a potential causal

pathway can help to identify possible confounding (and/or selection bias)

that might otherwise go unmissed. For example, Figure 8.5 shows the

relation between neighbourhood violence and cardiovascular disease (CVD).

The arrows show that even if there is no direct relation between violence and

CVD, these variables are linked via ethnicity/race and income so these will be

potential confounders of the violence–CVD association.

Race/ethnicity

Income Physical activity

Neighbourhood Violence
(Exposure)

Cardiovascular Disease
(Outcome)

Figure 8.5 A directed acyclic graph showing that race/ethnicity and income will confound
the association between neighbourhood violence and cardiovascular disease. (Drawn
from: Fleischer and Diez Roux, Journal of Epidemiology and Community Health, 2008; 62:
842–846, with permission from BMJ Publishing Group Ltd.)

Propensity scores are mainly used in non-randomised trials when the

probability that an individual receives a particular treatment may depend on

multiple characteristics of the individual, such as other co-morbidities, that

might themselves affect the outcome. The first step is to calculate how

individual characteristics (potential confounders of the relation between

treatment and outcome) affect the probability that someone receives the

treatment of interest. It is then possible to calculate, for each individual, their

probability of receiving treatment based on their particular characteristics. If

we then match or stratify study participants on the basis of this ‘propensity

score’, the net effect is to balance the measured confounders between the

study groups and thus reduce the effects of confounding (Joffe and

Rosenbaum, 1999).

(continued )
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Box 8.4 (continued)

Instrumental variables are also used for non-randomised treatment studies

and for other observational studies. In this case the aim is to find a variable

that is associated with treatment selection but not with outcome. This

instrumental variable must be associated with the exposure (treatment) and

must affect the outcome only via this exposure, i.e. it must not have any

independent effect on outcome. It must also not share any common cause

with the outcome. This variable can then be used in the analysis instead of

the treatment variable. The strength of this approach over propensity scores

is that it controls for both measured and unmeasured confounders; the major

challenge is to find an appropriate variable that meets all of the criteria for an

instrumental variable. For example, observational treatment data from the

US Surveillance Epidemiology and End Results (SEER) program were used to

assess whether chemotherapy improved survival from advanced lung cancer

in the elderly. The authors did not look at whether the individual themselves

received chemotherapy or not but instead used the probability that the

healthcare centre the patient attended would offer chemotherapy. This fitted

the criteria of an instrumental variable because, by definition, it would affect

whether someone received chemotherapy but should not otherwise be

related to outcome. The results suggested that chemotherapy did increase

one-year survival by approximately 9% (Earle et al., 2001).

In some situations a genetic marker is used as an instrumental variable

and this is known as Mendelian randomisation. For example, studies looking

at the relation between serum cholesterol levels and cancer could be

confounded by a multitude of lifestyle factors such as diet that could affect

both cholesterol levels and cancer risk. However, there are genetic variants

that affect cholesterol levels but are unlikely to be related to diet or lifestyle

(nobody would know which variant of the gene they carried). These provide

an instrumental variable that can be used to estimate the unconfounded

relation between low serum cholesterol and cancer (Davey Smith and

Ebrahim, 2004).

Residual confounding

In practice it is rarely possible to remove all confounding so we will be left

with some residual confounding. For example, in a study of US health pro-

fessionals the crude RR (0.56; 95% CI 0.38–0.84) suggested that men who con-

sumed high levels of fruit and vegetables had almost half the risk of lung can-

cer of those who ate little fruit and vegetables (Feskanich et al., 2000). When the

authors adjusted their analysis for a simple measure of smoking status (never,

past, current smoker) the RR increased to 0.86 (95% CI 0.58–1.29), suggesting
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that the crude RR was confounded by smoking. When they also adjusted for

more detailed measures of smoking, including time since stopping and cur-

rent amount smoked, the RR increased still further to 1.07 (95% CI 0.71–1.61).

This shows convincingly that the simple adjustment for smoking status was not

sufficient to remove all of the confounding by smoking and there was consider-

able residual confounding. If they had not adjusted for the additional smoking

variables the results would have left some room for optimism that improving

diet might confer some benefit, whereas the fully adjusted result suggests that

unfortunately this is not the case. In general, if adjustment changes an observed

odds ratio quite markedly, e.g. it reduces it from 5.4 to 2.6, then it is likely that,

if we could have controlled for the confounding perfectly, the true odds ratio

would have been even less than 2.6. We then have to decide whether we think

that there is a true association between the exposure and disease or whether all

the observed association could be due to confounding. However, if the control

for confounding only changed the odds ratio from 5.4 to 5.1 then it is likely that,

even if we could have controlled completely for confounding, the true odds ratio

would still have been close to 5.0, suggesting that this is more likely to be a real

association.

Confounding: the bottom line

Confounding is almost ubiquitous in practice and almost any paper that reports

associations between two factors will say that the authors have ‘adjusted’ for

this, that and the other to control for confounding. If a paper does not mention

adjustment for confounding then it is important to consider whether this is a

possibility; we will discuss this further in the next chapter.

As we discussed in the previous chapter, it can be hard to know what effects

bias might have on the results of a study; in contrast, known confounders

can be identified and addressed if information about the confounders has been

collected.

Even if an analysis has ‘adjusted for confounders’ there is likely to be residual

confounding either by measured confounders or by unmeasured/unknown con-

founders. For known confounders, a big difference between the unadjusted and

adjusted measures suggests that there may be considerable residual confound-

ing; a small difference implies that residual confounding is not a big problem.

Unless we are talking about a randomised trial we will not know anything about

the likely effects of any unknown or unmeasured confounders, but if we see a

strong association between exposure and outcome then the confounding would

have to be enormous (very strong associations between the confounder and both

the exposure and the outcome) to explain the whole association. In practice we

might hope that we would know about such strong confounders!
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Table 8.10 Results of a study of head injury and helmet use.

Driver Passenger Total

Head Other Head Other Head Other

injury injury injury injury injury injury

No helmet 17,869 51,900 3,052 12,522 20,921 64,422

Helmet 7,342 86,212 485 7,971 7,827 94,183

Total 25,211 138,112 3,537 20,493 28,748 158,605

(Lardelli-Claret et al., 2003.)

We have now covered the three main issues that we have to consider before

we conclude that the results of a study are real: namely chance, bias and

confounding. In the next chapter we will bring these all together to look at how

we can make sense of the epidemiological literature.

Questions

Table 8.10 shows some data from a study of injuries involving moped riders

in Spain. The authors obtained information from the Spanish Registry of Traf-

fic Crashes regarding 187,353 moped riders injured in traffic accidents between

1990 and 1999. They then compared the group with head injuries (cases) with

those with other types of injury (controls).

1. What is the crude odds ratio for the association between not wearing a helmet

(exposed) and head injury?

2. What is the odds ratio for the association between not wearing a helmet and

head injury among (i) moped drivers and (ii) moped passengers?

3. Was the crude association between not wearing a helmet and head injury

confounded by position on the moped?

4. Does the position of the rider (driver or passenger) on the moped affect their

chances of sustaining a head injury? (Hint – first calculate the crude odds ratio

for the association between moped position and head injury and then con-

sider whether this could be confounded by helmet use.)

5. If we are interested in the association between drinking coffee and incidence

of heart disease, which of the following factors are likely to be confounders

and why:

a. age and sex

b. smoking

c. physical activity

d. fruit and vegetable intake.
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6. Go back to Table 8.8 and re-calculate the crude (overall) and stratum-specific

odds ratios assuming that the study had (i) half as many people (i.e. divide

all the numbers of cases and controls by 2) and (ii) twice as many people.

What effect does changing the size of a study have on the confounding effect

of physical activity?

REFERENCES

Bickel, P. J., Hammel, E. A. and O’Connell, J. W. (1975). Sex bias in graduate admissions:

data from Berkeley. Science, 187: 398–404.

Davey, Smith G. and Ebrahim, S. (2004). Mendelian randomization: prospects, potentials,

and limitations. International Journal of Epidemiology, 33: 30–42.

Earle, C.C., Tsai, J. S., Gelber, R. D. et al. (2001). Effectiveness of chemotherapy for advanced

lung cancer in the elderly: instrumental variable and propensity analysis. Journal of

Clinical Oncology, 19: 1064–1070.

Feskanich, D., Ziegler, R. G., Michaud, D. S. et al. (2000). Prospective study of fruit and veg-

etable consumption and risk of lung cancer among men and women. Journal of the

National Cancer Institute, 92: 1812–1823.

Fleischer, N. L. and Diez Roux, A. V. (2008). Using directed accylic graphs to guide analyses

of neighbourhood health effects: an introduction. Journal of Epidemiology and Com-

munity Health, 62: 842–846.

Greenland, S., Pearl, J. and Robins, J. M. (1999). Causal diagrams for epidemiologic

research. Epidemiology, 10: 37–48.

Guiltinan, A. M., Kaidarova, Z., Custer, B. et al. (2008). Increased all-cause, liver, and car-

diac mortality among hepatitis C virus-seropositive blood donors. American Journal

of Epidemiology, 167: 743–750.

Joffe, M. M. and Rosenbaum, P. R. (1999). Invited commentary: propensity scores. American

Journal of Epidemiology, 150: 327–333.

Lardelli-Claret, P., Luna-del-Castillo, J. D. D. and Jimenez-Moleon, J. J. (2003). Position on

the moped, risk of head injury and helmet use: an example of confounding effect.

International Journal of Epidemiology, 32: 162–164.

Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis of data from retro-

spective studies of disease. Journal of the National Cancer Institute, 22: 719–748.

Miettinen, O. S. (1983). The need for randomization in the study of intended effects. Statis-

tics in Medicine, 2: 267–271.

Vessey, M. P. and Lawless, M. (1984). The Oxford Family Planning Association contraceptive

study. Clinical Obstetrics and Gynaecology, 11: 743–757.



9

Reading between the lines: reading and
writing epidemiological papers

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapters 6–8

Integration &
interpretation

Chapter 9:
Reading papers

Practical
applications

Chapters 12–15

The research question and study design 222

The study sample: selection bias 223

Example 1: case–control studies of blood transfusion and

Creutzfeldt–Jakob disease 224

Example 2: a case–control study of oesophageal cancer and

smoking in Australia 225

Measuring disease and exposure: measurement bias 226

Example 3: a case–control study of body-mass index (BMI) and

asthma in Mexico 227

Confounding 228

Example 4: a cross-sectional study of risk factors for depression

in the UK 229

Example 5: a cohort study of statin use and atrial fibrillation

in the USA 229

Chance 230

Study validity 230

Internal validity 230

External validity 232

Descriptive studies 232

Writing papers 233

Summary: one swallow doesn’t make a summer 234

In Chapters 4, 6, 7 and 8 we looked at the different epidemiological study designs

and examined the various misfortunes that can befall them. Good studies are

difficult to design and implement, and interpretation of their results and conclu-

sions is not always as straightforward as we might hope. How, then, can we make

the best use of this information? The central question we have to answer when

we read a study report is ‘Are the results of the study valid? ’ If the authors report

an association between exposure and outcome, is it real? If they find nothing,

221
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do we accept this? Or could there be an alternative explanation for the results,

namely chance, bias and/or confounding?

Much of the following discussion will pick up and integrate the core epidemi-

ological issues covered in the previous chapters. We will concentrate mainly on

analytic studies looking for associations between ‘cause’ and ‘effect’, the study

designs that you met in Chapter 4, but the same general principles apply equally

to descriptive epidemiology. To extract the maximum information from a paper

we need a systematic approach to identifying its strengths and weaknesses. Some

quite detailed sets of guidelines for ‘critical appraisal’ of the health literature exist

already and we do not intend to add to this list (although we do offer a flowchart

for more general guidance). Instead we will focus on the essence of the chal-

lenge: what are the practical effects of the ways in which subjects were selected

and information collected, and the likely influence of confounding and chance

on the results we see? While the elements of the general strategy we propose are

universal, the approach can (and should) be tailored to suit your own personal

style. In practice you will almost certainly have to read individual papers and

reports and, if you are involved in research, you may write some of your own.

Both activities demand a very practical approach and this is what we will focus

on here. We will emphasise the perspective of the reader, but the writer should

be thinking about exactly the same things, since good writing demands that the

readers’ needs and perspectives are kept firmly in mind.

The research question and study design

When reading a paper, the first step is to identify the research question that the

authors set out to answer and then the strategy they used to attempt to answer

that question. Was the study design appropriate to answer the question posed?

This involves consideration of what the ideal type of study would be and also

what would be practical in that particular situation.

As you have seen, the ideal study to answer a question of cause and effect

would often be some sort of randomised trial, but in many situations this will

be impossible for numerous ethical and/or practical reasons. Next best would



The study sample: selection bias 223

generally be a cohort study in which exposure is measured prior to the develop-

ment of disease, but again the resources, time and money required to conduct a

large enough study often make it unfeasible. So, from a practical viewpoint the

key question should be ‘Was the research design the best that could have been

done in the circumstances to answer that particular question?’ If it was not the

best, can it still provide useful information? Are there existing studies address-

ing the same issue that were of better design against which the findings of the

current study can be compared?

Many studies are conducted not because they will provide the strongest pos-

sible evidence for a causal association between exposure and outcome, but

because they can answer a range of other more indirect questions of interest.

For example, the results from the ecological study of Helicobacter pylori infec-

tion and stomach cancer rates in China shown in Figure 3.7 cannot directly

answer the question ‘Does H. pylori infection cause stomach cancer?’ We can,

however, answer the question ‘Are stomach cancer rates higher in areas where

H. pylori infection is more common?’ Trials, and to a lesser extent cohort studies

and case–control studies, can address issues of causality more directly, whereas

other types of study provide more circumstantial evidence, but if the results are

valid each can increase our understanding of the relation between an exposure

and outcome. As an example, ecological and migrant studies conducted across

countries with widely differing levels of solar ultraviolet (UV) radiation have

consistently revealed an association between sun exposure in childhood and

melanoma rates. In contrast, case–control studies, which have generally been

conducted within a single country or region with a narrow range of UV expo-

sures, have not given consistent results (Whiteman et al., 2001). In this particular

situation ecological studies with their wide variety of exposure levels provide a

valuable additional perspective to the case–control studies.

So how do we decide whether the results of a study are valid? We have to con-

sider the three main alternative explanations that we discussed in the preced-

ing chapters: bias (both the selection of participants for the study and the infor-

mation that was measured or collected from or about them), confounding and

chance.

The study sample: selection bias

Who was included in the study, how were they selected and are there possible

sources of selection bias? Specific questions to ask when reading a paper include

those below.
� Is the comparison group appropriate?

In a case–control study are the controls really representative of the population

from which the cases arose? In a cohort study where the comparison cohort
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was recruited separately from the exposed cohort, are the two groups really

comparable?
� What proportion of eligible participants actually took part in the study and, if

appropriate, what proportion was lost to follow-up?

Participation or follow-up rates less than 90% (some would say 80%) may be

cause for some concern. If the rates are lower than this, could participation (or

loss to follow-up) be related to either the exposure or the outcome of interest?

That is, could those who refused to take part (or who were lost to follow-up)

have differed in some way from those who did take part? If so, might this have

led to an overestimation or underestimation of the level of exposure and/or

outcome? Most importantly, could this have differed between study groups?
� Finally, what is the likely effect of any selection bias on the results of the study?

Ideally the authors of the paper will have considered all of these issues in their

discussion, but if they have not then it is up to the reader to decide whether

bias might be present and, if so, what effect it may have had on the results. In

practice there will almost certainly be some potential for selection bias. Partic-

ipation rates are never 100% and in many developed countries it is becoming

increasingly hard to persuade people to take part in research, especially when

they see no benefit to themselves. This is a major issue in case–control studies

when the motivation for a ‘case’ to take part may be much greater than that

of an unaffected ‘control’. Also, people are becoming increasingly mobile, so

follow-up in a cohort study that runs for more than a few years is never likely

to be 100%.

If we were to reject all studies with less than 100% participation or follow-

up rates, we would be left with nothing to review. In practice, participation or

follow-up rates greater than 80% or 90% are generally considered to be good, but

rates lower than this do not necessarily invalidate the findings (see Example 2

below). The challenge for both investigator and reader is to think practically and

to decide whether any potential biases related to selection might have compro-

mised the study results (the internal validity) and, if so, how and to what degree

the results might be biased. It is often impossible to quantify this, but sensitivity

analyses making various assumptions about the size and direction of possible

bias can be informative (see Chapter 7).

Example 1: case–control studies of blood transfusion and

Creutzfeldt–Jakob disease

In five case–control studies of Creutzfeldt–Jakob disease (CJD) the controls were

more likely to report having had a blood transfusion than cases (Riggs et al.,

2001). Does this tell us that blood transfusions might protect against CJD (a find-

ing contrary to the causal hypothesis)? If we consider the control groups, we

find that in three of the five studies they were selected from among hospitalised
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patients and in another study more than 12,000 telephone calls were made in

order to recruit just 784 controls.

The use of hospital controls and the very low participation rate among controls

should ring alarm bells. Why?

People who are in hospital are more likely to have had a blood transfusion than

those who are not; and in addition, given the publicity surrounding ‘mad cow

disease’, people who have had a blood transfusion may well be more likely to

agree to take part in a study of CJD. Indeed, in these four studies approximately

20% of controls reported having had a blood transfusion – an improbably high

proportion, probably due at least in part to these selection pressures. So what

can we conclude about the association between transfusion and CJD from these

studies? Not much. The high transfusion rate in controls almost certainly overes-

timates the base rate in the population from which the cases came. We have no

idea whether the true background rate is similar to that in cases (i.e. there is no

association) or lower than in cases (i.e. there is a positive association). Our next

example shows how external information can help resolve such dilemmas.

Example 2: a case–control study of oesophageal cancer and

smoking in Australia

In an Australian case–control study of oesophageal cancer, the authors con-

sidered the relation with smoking. In this study approximately 70% of eligible

cases but only 49% of the controls who were contacted agreed to participate –

this is a fairly typical response rate in many countries these days, but is far

from ideal. The authors found that current smoking rates were higher among

cases with oesophageal adenocarcinoma than controls (OR compared to never

smokers = 2.7; 95% CI 1.9–3.9), but could this be due to selection bias?

In general, smokers are less likely to agree to take part in a study than non-

smokers. What effect might this have had on the odds ratio?

If smokers were less likely to take part the prevalence of smoking in the control

group would be lower than that in the general population. This would exaggerate

the difference between cases and controls and so increase the odds ratio, mak-

ing it look as if smoking is associated with oesophageal adenocarcinoma when in

reality it might not be. To address this issue the authors used data from a National

Health Survey conducted at about the same time to estimate the likely preva-

lence of smoking in the controls who did not agree to take part in the study. If

they assumed that the whole control population had a smoking rate equal to

that seen in the national survey, they found that the odds ratio for the associ-

ation between smoking and oesophageal adenocarcinoma was slightly weaker

but still significantly greater than 1.0 (imputed OR = 2.4; 95% CI 1.7–3.4). This

suggested that even though only about half of the controls invited to take part
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in the study actually agreed to participate, the overall results for the association

with smoking were not seriously biased (Pandeya et al., 2009).

Measuring disease and exposure: measurement bias

We also have to consider the information collected from or about the people in

the study – particularly the measurement of ‘outcome’ and ‘exposure’ but also

measurement of other factors that might be important confounders. Attention

to unbiased measurement of outcome is crucial for cross-sectional, cohort and

intervention studies. It is of relatively less importance in a case–control study,

in which cases are selected because they have already experienced the out-

come of interest (although a clear definition of what constitutes a case is still

essential). Accurate measurement of exposure is important in every study, and

in a case–control study it is critical to ensure that there are no systematic dif-

ferences in measurement between cases and controls. Good measurement of

confounders is often overlooked, but this is also essential to enable optimal con-

trol of confounding in the analysis (see comments on residual confounding in

Chapter 8).

Some questions to ask when reading a paper are the following.
� Were the outcome/exposures/confounders clearly defined, and how were they

measured?
� Have all relevant outcomes and/or exposures and/or confounders been

included and, if not, how important are those omitted?
� Were the same definitions and methods of measurement used in all of the

study groups?
� Is measurement error likely to be a problem and, if so, could there be non-

differential misclassification (look back to Chapter 7 if you are unsure about

this)?

No measurement is perfect and some measurements are very poor. The effect

of the ubiquitous random error and consequent non-differential misclassifica-

tion must always be considered. The practical implication of this is that effects

(OR, RR) estimated in the face of equal measurement error in the compared

groups will usually appear weaker than they truly are. Thus a finding of a pos-

itive association, despite poor measurement, should not be dismissed because

of this – the true association is likely to be more impressive. On the other hand, a

null finding or a very weak effect in the presence of non-differential misclassifi-

cation is uninformative since it may reflect the imprecise measurement (thereby

masking a true association) or there may truly be no effect.
� Is the extent of any measurement error likely to differ between groups (e.g.

could there be recall or interviewer bias in exposure measurement in a case–

control study) and so could there be differential misclassification?
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Differential misclassification can bias results in either direction. It is particu-

larly important to consider this possibility in cross-sectional and case–control

studies when exposure is measured after the outcome has occurred. In analytic

research it is generally easier to distinguish clearly between outcome states (dis-

eased versus non-diseased) than it is to measure exposures precisely, but the

avoidance of differential outcome assessment is central to the integrity of cohort

studies and trials, and again for cross-sectional studies.
� Finally, what practical effects might any measurement bias (outcome or expo-

sure) have had on the results of the study?

Example 3: a case–control study of body-mass index (BMI) and

asthma in Mexico

A significant association between asthma and obesity (defined as BMI > 30 kg/

m2 based on self-reported weight and height) was observed among women

(adjusted OR = 1.7; 95% CI 1.1–2.7), with a weaker non-significant association

(adjusted OR = 1.3; 95% CI 0.6–2.9) seen among men (Santillan and Camargo,

2003); but how reliable are self-reported data on body size and could measure-

ment error have affected the results? The authors specifically addressed this

question by weighing and measuring all of the participants. They found that, on

average, people tended to report that they were taller and lighter than they really

were, particularly the men. As a result, the true prevalence of obesity based on

measured BMI was higher than that based on self-reported BMI and the differ-

ence was somewhat greater for cases (40% versus 24% for men and 44% versus

38% for women) than for controls (28% versus 22% for men; 24% versus 23% for

women).

Is the error in the self-reported information on body-size differential or non-

differential?

Assuming that the measured BMI values are correct, is the true association

between obesity and asthma likely to be stronger or weaker than that seen for

self-reported obesity?

In this example there is differential error since cases, particularly men, were more

likely to underestimate their weight and overestimate their height than controls.

The effect of these errors would be to reduce the association seen and this is

what happened. When the authors calculated the association between asthma

and measured obesity, the OR was 2.3 (95% CI 1.5–3.8) for women and 2.5 (95%

CI 1.1–5.9) for men, i.e. the associations were much stronger than those based

on self-reported BMI above. (Note that although the OR based on measured BMI

is likely to give a more accurate estimate than that based on self-reporting, even

this may be an underestimate of the ‘true’ effect since there is still likely to be

some non-differential random misclassification.) Validation studies such as this
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Box 9.1 Sensitivity analysis: kangaroos and Ross River virus
(RRV) infection

Authors of a case–control study found an odds ratio of 4.3 (95% CI 0.9–21) for

the association between seeing kangaroos in the backyard and risk of RRV

infection, possibly because kangaroos provide a host for the mosquitoes that

spread RRV. However, information was missing for a number of cases and

controls, so the authors performed a sensitivity analysis.

If they assumed that all cases and controls for whom exposure data were

missing had seen kangaroos, the OR was 1.9 (95% CI 0.7–5.1); if they assumed

that none had seen kangaroos the OR was 3.5 (0.9–14.1). If they assumed that

cases were more likely to remember exposure than controls (i.e. there is

recall bias) and, therefore, that cases with data missing had not seen

kangaroos whereas controls had seen them, then the association

disappeared completely (OR = 1.0, 95% CI 0.4–2.8). This analysis raised

questions about the validity of the observed association between sighting of

kangaroos and RRV infection.
(Harley et al., 2005)

can provide valuable insights into the accuracy of study results, as can sensitivity

analyses such as that described in Box 9.1.

Confounding

The next major issue to consider is that of confounding.
� Have the authors considered all important confounders and controlled for

them in their analysis?
� Could there be residual confounding by variables that have not been consid-

ered or because of incomplete adjustment for factors that have?
� If so, what effect might this have had on the study results?

Again, the important thing is to think practically: in which direction is any resid-

ual confounding likely to operate? If when the authors adjusted for confounding

the association became stronger (i.e. the confounding had originally biased the

effect towards the null) then, if there is residual confounding, the real effect is

likely to be even more extreme than that observed. Conversely, if the adjustment

brought the estimate closer to 1.0 (i.e. the confounding had biased the estimate

away from the null) then the true result may be even closer to the null than that

reported. In the latter situation our confidence in the value of a positive effect

estimate would decrease, unless it was very large. A large effect is less likely to

be wholly due to confounding because, to explain away a very strong RR (e.g.

10.0), the confounder itself would have to be an even stronger risk factor for the
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disease. If this is the case then it is likely to be known already, and hence should

have been measured and controlled for.

Example 4: a cross-sectional study of risk factors for depression in the UK

Among 14,217 adults aged over 75 years, the risk of depression appeared to be

somewhat higher among women than among men (crude OR = 1.3, 95% CI 1.1–

1.5) (Osborn et al., 2003). After adjustment for potential confounding factors

including age, marital status, living alone, smoking and alcohol consumption,

the adjusted OR was 1.1 (95% CI 1.0–1.3).

What do these results suggest about the association between sex and risk of

depression?

The adjustment has reduced the OR, bringing it closer to 1.0. It is also likely that

there is further residual confounding, which might bring the true OR even closer

to 1.0, suggesting that sex is not associated with depression (at least in this study).

This example also highlights the need to consider the clinical or practical signif-

icance of the results of a study. A very large study can show what appears to be a

very small effect with great precision (a narrow confidence interval); even though

the result might be statistically significant (p < 0.05) the key question is whether

such a small difference is meaningful.

Example 5: a cohort study of statin use and atrial fibrillation in the USA

A cohort of patients with coronary artery disease was followed for a minimum of

12 months to document the incidence of atrial fibrillation (AF, an abnormal heart

rhythm); 263 of the patients were using statins (cholesterol-lowering drugs) and

186 had never used them (Young-Xu et al., 2003). (Note that this was an observa-

tional study, not a randomised trial.) Overall, the rate of AF was lower among the

group taking statins, giving a crude relative risk of 0.5 (95% CI 0.3–0.8). When the

authors adjusted for potential confounding factors including age, systolic blood

pressure, alcohol consumption, history of heart failure and total serum choles-

terol level, the RR was 0.4 (95% CI 0.2–0.8).

Assuming that there are no important selection or measurement errors, what

conclusions can we draw about the association between statin use and AF?

It appears that there was some confounding by the other factors such as age since

the RR dropped from 0.5 to 0.4 after adjustment, indicating that the real effect of

statin use was even stronger than the crude RR suggested. However, doctors pre-

scribe treatment partly on the basis of prognostic judgements, which are difficult

to measure. There may thus be other unknown and unmeasured confounders

that have not been controlled for, so we would still need to be cautious about

this particular result which, as you saw in Chapter 8, could be due to confound-

ing by indication. Large, well-conducted RCTs remove this potential problem.
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Chance

Finally, it is important to consider the role of chance. Have the authors included

confidence intervals for their estimates? How narrow (good precision) or wide

(poor precision) are they? If an association is seen, how likely is it that there is

really no effect (i.e. the association arose by chance)? If there is no clear associ-

ation (e.g. if the confidence limits are very wide and include 1.0), is it possible

that there is a real effect but the study was simply too small to detect it? Is the

study useful or are the results inconclusive? As well as statistical significance it is

also important to consider whether the results are socially or clinically significant

(see Statistical versus clinical significance in Chapter 6). A large study may give an

association that is statistically significant, for example the odds ratio of 1.1 (95%

CI 1.0–1.3) seen for the association between sex and depression in Example 4

above, but we would then have to ask whether a 10% higher risk of depression in

women than men was a meaningful difference.

Study validity

Once we have considered all of these aspects (summarised in Figure 9.1) we can

make an overall judgement of the validity of the study results. There are two sep-

arate issues here. The first and most important, often called internal validity,

is the extent to which the results of a study reflect the true situation in the study

sample in the absence of any alternative explanations. These alternative explana-

tions, namely chance, bias and confounding, have been the focus of this and the

previous chapters. The prime objective of study design, implementation, analysis

and interpretation is to maximise the internal validity of a study. The second issue

is one of generalisability or external validity. Are the results of a study applicable

to populations other than the study population?

Internal validity

Have the authors discussed the limitations of their study? What conclusions do

they draw with respect to the research question? Are these conclusions justi-

fied? Does the study appear to be internally valid or could the results be due to

chance, bias or confounding? It is important to remember that in public health

we are dealing with real people and complex exposures that are often difficult

to measure and/or impossible to control adequately and we are, quite rightly,

constrained as to what we can do by codes of ethics. Any study is thus likely

to fall short of perfection and it is important to realise this. Research should

be appraised in the light of what it has been able to achieve – there will be
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Was the study design appropriate to answer this
question?

In a case–control study were the controls
representative of  the population the cases came
from?
In a cohort study was the comparison population
appropriate for the exposed population?

What proportion of eligible people actually took
part in the study (or were lost during follow-up)?
Was participation (or loss to follow-up) related to
either the exposure or the outcome of interest?
Did participation (or follow-up rates) differ among
the different study groups?

Were the outcomes and exposures clearly
defined?
Were outcome assessors blinded to participants’
exposure status?

Were interviewers blinded to participants’ disease
status?
Is there likely to have been much non-differential
measurement error?
Is any measurement error likely to have differed
among the study groups? (differential)

Did the authors consider all important
confounders in the design and/or adjust for them?
Is residual confounding likely to be a problem?

If there was an association could this be due
to chance?
If there was no statistically significant association
was the study big enough to detect an effect if it
had existed?

Do the results of the study
appear to be valid?

If they are not fully valid (or
nearly so), what quantitative
or qualitative caveats should
apply?

What effects might this
have had on the study
results?

Are measures likely to
have been biased upwards
or downwards?

What was the research
question?

How were people
selected for the study?

Measurement of
outcome & exposure

Confounding

Chance

Figure 9.1 Issues to consider when reading epidemiological papers.

deficiencies but, given the particular circumstances, could things realistically

have been improved? The evidence reported in a research paper might not

always be strong but, if it is the best that is likely to be available, we should not

discount it because of the flaws. Rather we should draw from it what information

we can that bears on the question in hand.
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External validity

It is important to remember that the aim of the ‘causal arm’ of epidemiology is

to discover general scientific truths about cause and effect. Can the results of

a study of, for example, American men aged 50–65 be generalised to older or

younger men? Women? Non-Americans? (Note that such a question presumes

the internal validity of a study: if a study is not internally valid, then the results

should not be applied to anyone.)

There are no firm rules to help with generalising from a study to the wider pop-

ulation. In case–control comparisons, population-based studies are the ideal in

order to reduce the possibilities of selection bias and, as a result, it might not

require such a leap of faith to extrapolate the results from one population to

another. However, the process is not simply a matter of statistical representa-

tiveness, but is more fundamentally one of biological insight. The question then

is ‘How relevant (biologically) is a result for a given population?’ Can a study in a

very select population (e.g. urban-living Japanese, Czech women, Brazilian men)

inform us about disease causation more generally? Well, we certainly hope so.

As an example, careful follow-up of the survivors of the atomic bomb blasts in

Hiroshima and Nagasaki, Japan, has yielded volumes of information regarding

the relation between exposure to ionising radiation and subsequent risks of mor-

tality, cancers and other rare diseases. While this information comes only from

the Japanese, no one would argue that radiation would not have similar effects

in other nationalities, and we certainly do not want to see this ‘unnatural exper-

iment’ repeated. While this generalisation is perhaps easier than many because

of the magnitude and timing of the effects and the well-understood physical

and biological properties of ionising radiation, the principle is identical for other

abstract causal speculation.

Generalising from clinical and other trials raises additional issues. For prac-

tical reasons, many clinical trials are conducted on highly selected groups of

people who are almost certainly not representative of the general population.

This can make the results of the specific trials easier to interpret (internal valid-

ity), but means that they can be harder to generalise to other groups (see

Chapter 11).

Descriptive studies

The discussion above has focused on papers evaluating associations between

exposure and outcome and that, therefore, address the ‘Why?’ of epidemiology.

It is equally important to evaluate the results of descriptive studies that provide

the ‘Who?’, ‘Where?’ and ‘When?’ information that is essential to make a com-

munity diagnosis and, as you will see in Chapter 14, also play an important role
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in evaluating the effects of public health interventions. In practice this requires

us to consider exactly the same issues: selection and measurement error, con-

founding and chance.
� How was the survey sample selected? Is it representative of the wider popula-

tion?
� How was the factor of interest measured? Is it likely to be over- or under-

reported?
� If we are making comparisons, are we comparing like with like or is there a

need for standardisation (to remove confounding by, e.g., differences in the

age structure of populations)?
� Could any observed excesses (or deficits) of disease in different populations,

in different places or at different times be due to chance? For example, it is

unlikely that several cases of a rare disease would occur in the same small com-

munity (what is known as a ‘cluster’ – see Chapter 12), but it is not impossible

for this to occur by chance. Similarly, rates of disease (particularly rare dis-

eases) will naturally vary from year to year, so could an apparent increase or

decline just be due to chance?

It is also important to note that, although representativeness is not the primary

issue in studies of aetiology, it is crucial for applying the results of a descrip-

tive study to a wider population. If a sample of people is surveyed to identify

the health needs of an area then, if those participating do not represent the

whole population, the results could be very misleading. If, for example, they were

unusually healthy then the needs of the population might be greatly underesti-

mated, and vice versa.

Writing papers

We have focused on the information that you need to look for when reading

a paper and, as we suggested at the start of this chapter, it goes without say-

ing that this is also the information that you need to provide when writing a

paper. To improve the reporting of experimental research, some journals now

require that authors follow the checklist of points contained in the Consolidated

Standards of Reporting Trials or CONSORT statement (Moher et al., 2001). This

document has since been modified to give the TREND (Transparent Report-

ing of Non-randomised Designs) checklist for reporting results of studies of

behavioural and public health interventions with non-randomised designs (Des

Jarlais et al., 2004). Similar guidelines have been developed for observational

studies including the STROBE (STrengthening the Reporting of OBservational

studies in Epidemiology) statement (von Elm et al., 2007), and the STREGA

(STrengthening the REporting of Genetic Association Studies) statement, a

modification of STROBE for genetic studies (Little et al., 2009), as well as a guide

specific to longitudinal studies (Tooth et al., 2005).
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Box 9.2 The problem of multiple testing

The more hypotheses that we test, the more likely it is that some apparently

statistically significant results will arise by chance. For this reason

statisticians often recommend ‘correcting’ for this problem of multiple

testing. A simple form of this is to reduce the α-level at which a result is

considered to be statistically significant based on the number of tests

performed. For example, if 20 separate tests are conducted within a single

study then the p-value at which a result is considered statistically significant

would be reduced from 0.05 to 0.05 ÷ 20 = 0.0025. The net result is that fewer

results, those with the strongest associations, will be deemed statistically

significant and, hopefully, these are also the results that are less likely to be

due to chance. However many epidemiologists have pointed out the

illogicality of such an arbitrary rule (for example, should an epidemiologist

adjust their results based on the number of statistical tests performed that

day or for the number of tests they have ever done? (Rothman, 1990)) and

prefer to take a more common-sense approach. One notable exception is in

the context of modern genetic studies which may evaluate tens or hundreds

of thousands of genetic markers at the same time. In this situation, increased

stringency is essential to minimise the thousands of spurious results that will

arise simply by chance if we accept a significance level of 5% (5% of 100,000

genes is ∼5000 significant results by chance!). Results from the new

‘genome-wide association studies’ (GWAS) which may look at 1 million or

more genetic variants in relation to disease are usually not considered

statistically significant unless p is less than about 0.0000001.

Summary: one swallow doesn’t make a summer

We will end with a note of caution. The ultimate aim of much public health

research is to change practice or policy to improve health outcomes, but even

if a well-written paper that is (largely) free from major sources of bias and con-

founding finds what appears to be a statistically and practically significant asso-

ciation between an exposure and health outcome, we cannot rush out to act on

this. Despite our best efforts and those of the investigators it is still possible that

statistically significant results can arise by chance. As you saw in Chapter 6 the

probability of this happening is usually defined as <5%; however, in many mod-

ern studies the investigators study multiple associations so the probability that

one will arise by chance is greatly increased. Some authors recommend correct-

ing results for this problem which is known as ‘multiple testing’ (see Box 9.2);

however, we and many others prefer to rely more on a common-sense approach

that places less emphasis on the question of statistical significance and more on
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the overall strength, coherence and plausibility of an observed association. We

will discuss some of these issues further in Chapter 10. With the possible excep-

tion of a large randomised trial, no practical or policy decision should be made

on the basis of the results of a single study, however good. As you have seen,

individual studies can never be perfect so it is important to consider all of the

evidence on a given subject before attempting to make policy or practical deci-

sions. We will come back to the ways in which you can do this in Chapter 11.

Questions

We have not included any questions for this chapter, but the Epidemic Intel-

ligence Service of the US Centers for Disease Control and Prevention has

developed an excellent exercise, ‘Cigarette smoking and lung cancer’, that

draws on many of the issues covered in this and the previous chapters. This

and other similar exercises are freely available from http://www.cdc.gov/eis/

casestudies/casestudies.htm.

REFERENCES

Des Jarlais, D. C., Lyles, C., Crepaz, N. and the TREND Group. (2004). Improving the

reporting quality of non-randomized evaluations of behavioral and public health

interventions: the TREND statement. American Journal of Public Health, 94: 361–

366.

Harley, D., Ritchie, S., Bain, C. and Sleigh, A. C. (2005). Risks for Ross River virus disease in

tropical Australia. International Journal of Epidemiology, 34: 548–555.

Little, J., Higgins, J. P. Y., Ioannidis, J. P. A. et al. (2009). Strengthening the Reporting of

Genetic Association Studies (STREGA) – an extension of the STROBE statement. PLoS

Medicine, 6(2): e1000022.

Moher, D., Schultz, K. F. and Altman, D. G. for the CONSORT Group. (2001). The CONSORT

statement: revised recommendations for improving the quality of reports of parallel-

group randomised trials. Lancet, 357: 1191–1194.

Osborn, D. P. J., Fletcher, A. E., Smeeth, L. et al. (2003). Factors associated with depression

in a representative sample of 14,217 people aged 75 and over in the United Kingdom:

results from the MRC trial of assessment and management of older people in the com-

munity. International Journal of Geriatric Psychiatry, 18: 623–630.

Pandeya, N., Williams, G. M., Green, A. C. et al. (2009). Do low control response rates always

affect the findings? Assessments of smoking and obesity in two Australian case-control

studies of cancer. Australian and New Zealand Journal of Public Health, 33: 312–

319.

Riggs, J. E., Moudgil, S. S. and Hobbs, G. R. (2001). Creutzfeld–Jakob disease and blood

transfusions: a meta-analysis of case–control studies. Military Medicine, 166: 1057–

1058.



236 Reading between the lines

Rothman, K. J. (1990). No adjustments are needed for multiple testing. Epidemiology, 1:

43–46.

Santillan, A. A. and Camargo Jr, C. A. (2003). Body mass index and asthma among Mexican

adults: the effect of using self-reported versus measured weight and height. Interna-

tional Journal of Obesity, 27: 1430–1433.

Tooth, L., Ware, R., Dobson, A., Purdie, D. and Bain, C. (2005). Quality of reporting of obser-

vational longitudinal research. American Journal of Epidemiology, 161: 280–288.

von Elm, E., Altman, D. G., Egger, M. et al. (2007). The Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting

observational studies. PLoS Medicine, 4(10): e296.

Whiteman, D. C., Whiteman, C. A. and Green, A. C. (2001). Childhood sun exposure as a

risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes

and Control, 12: 69–82.

Young-Xu, Y., Jabbour, S., Goldberg, R. et al. (2003). Usefulness of statin drugs in protecting

against atrial fibrillation in patients with coronary artery disease. American Journal of

Cardiology, 92: 1379–1383.



10

Who sank the boat? Association and causation

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapters 6–8

Integration &
interpretation

Chapter 10:
Causality

Practical
applications

Chapters 12–15

What do we mean by a cause? 238

Some definitions 239

Association versus causation 242

Evaluating causation 243

Temporality 245

Strength of association 246

Consistency 246

Dose–response relationships 247

Biological plausibility 248

Specificity 248

Pulling it all together 249

Evaluating causality in practice: does H. pylori cause stomach cancer? 250

And then what? 250

Box 10.1 Who sank the boat?

As the story goes, there were five animals living by the sea, a cow, a donkey, a

sheep, a pig and a mouse. One fine day they decided to go rowing on the bay.

(continued)

237
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Box 10.1 (continued)

First the cow got into the boat, it rocked a bit but she settled herself down

comfortably at the back. Then the donkey got in carefully and sat down at the

front to balance the boat. Next the pig climbed in, clutching her umbrella –

the boat is low in the water by now. Then the sheep climbed in carrying her

knitting and she sat down opposite the pig.

The boat is still afloat, but only just. Finally the little mouse jumped aboard

and – disaster! The boat capsized and the animals had to swim to the shore.

So who sank the boat?
(Storyline (adapted) and pictures from ‘Who Sank the Boat?’ (Allen, 1983),

reproduced with permission from Penguin Books Australia Ltd.)

The search for the causes of disease is an obvious central step in the pursuit of

better health through disease prevention and Box 10.1, abstracted from a won-

derful children’s picture book, illustrates perfectly the complexity of assigning

causality. In the previous chapters we have looked at how we measure health (or

disease) and how we look for associations between exposure and disease. Being

able to identify a relation between a potential cause of disease and the disease

itself is not enough, though. We need to go one step further and decide whether

this relation is causal.

What do we mean by a cause?

It is tempting to think that a cause is a single condition or event that inevitably

leads to a particular effect or outcome; i.e. that there is a one-to-one relation-

ship such that wherever or whenever the cause occurs the effect will follow. If
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we consider this more closely, it quickly becomes apparent that things are not so

simple and that everyday causal phenomena are rather more complicated than

they might seem at first. For example, while it might appear that all we need to do

to turn on a computer is press the ‘on’ button, we know better: what if the wiring

is faulty, there is no power supply or the hard drive has died an untimely death?

To ‘cause’ the computer to come on we need power, good wiring, a functioning

hard drive and relevant software in addition to the pressure of our finger on the

button. We could describe each of these separate requirements as component

causes, since they are all part of the one sufficient cause that will inevitably lead

to the effect – in this case the computer turning on. In this situation they are also

necessary causes because in the absence of just one of these things the computer

will not work.

In the same way, disease rarely occurs as the result of a single event or expo-

sure. Even though it might seem that an infectious agent would be a sufficient

cause in its own right, not everyone develops disease following exposure to a par-

ticular bug. The real-life food-poisoning example in Chapter 1 made this clear –

although people who ate the cold chicken were 3.8 times more likely to suf-

fer from food poisoning than those who did not, almost one-quarter (23%) of

those who ate the cold chicken suffered no ill effects. Whether someone does

become ill depends both on their susceptibility to the agent and on the dose

they receive. For tuberculosis (TB), for example, a person’s susceptibility is deter-

mined by whether they have been infected before and are now immune, and

also their overall level of health at the time. The infectious agent, the tuber-

cle bacillus, is only a component of the total or sufficient cause that will lead

to TB. It is, however, a necessary cause in that, by definition, TB cannot occur

without it. We will look at causation and infectious diseases in more detail in

Chapter 12.

Some definitions

There are many definitions of a cause but the following, from Rothman (1986;

p. 11), is appealing because of the brevity with which it captures the concept:

a cause is ‘an event, condition or characteristic [or a combination of these factors] that plays

an essential role in producing an occurrence of the disease’.

There are also many ways in which such entities (causes) can be classified, but

the following subdivision serves well.
� A sufficient cause is a factor (or more usually a combination of several factors)

that will inevitably produce disease.
� A component cause is a factor that contributes towards disease causation but

is not sufficient to cause disease on its own.
� A necessary cause is any agent (or component cause) that is required for the

development of a given disease (for example the specific infectious agent).
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Figure 10.1 A conceptual
scheme for the causes of a
hypothetical disease. (From:
Rothman, Causes. Am. J.
Epidemiol., 1976; 104: 589, by
permission of the Society for
Epidemiological Research.)

In terms of working out ‘who sank the boat’ we can say that each one of the

animals was a component cause and that together they created the sufficient

cause that caused the disaster. Probably none was actually necessary to sink the

boat – any group of similarly sized animals would have had a similar effect. The

ordering of the events, i.e. whether the mouse got in first or last, also did not mat-

ter; it was the sum of the weights that caused the boat to sink. This may also be

true in much disease causation, but sometimes the component causes will have

to occur in a specific order or they will have to be present at the same time. For

example, TB infection will occur only if the individual is susceptible at the time

they are exposed to the infection; and thrombosis (blood clotting) in an artery

leading to a heart attack or stroke rarely occurs unless the blood vessel is already

damaged or partly blocked.

A useful model for considering causal mechanisms is the ‘pie’ diagrams used

by Rothman (1976) and shown in Figure 10.1. In this scheme
� I, II and III are three different sufficient causes for a disease;
� A is a necessary cause for the disease because it is present in all three sufficient

causes; and
� A, B, C, D, E, F, G, H, I and J are component causes.

So, for example, if ‘A’ were the cow, ‘B’ the donkey, ‘C’ the pig, ‘D’ the sheep and

‘E’ the mouse, we would have sufficient cause I, while the other ‘pies’ show that

different combinations of animals or other objects would also have led to the

boat overturning.

In practice, when considering causes of disease we mostly find ourselves deal-

ing with component causes. Aside from something like a major disaster such

as an earthquake or nuclear explosion, it is hard to imagine identifying a sin-

gle factor that is truly necessary and sufficient to cause disease. We also have

to accept that, other than for something like an injury, we are unlikely to know

either the precise nature of any sufficient cause or many of the possible compo-

nent causes of disease. This need not matter – we do not have to eliminate all

components of a particular cause in order to prevent disease due to that cause.

If any one of them is identified and removed (e.g. B in the example above), then

we will prevent cases of disease due to sufficient causes that contain component
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Table 10.1 The percentage of DALYs due to ischaemic heart disease which can
be attributed to various risk factors, shown separately for low- and
middle-income and high-income countries.

Percentage of DALYs attributable to various risk factors

Low- and middle-

income countries

High-income

countries World

High blood pressure 44% 48% 45%

High cholesterol 46% 57% 48%

Low fruit and vegetable

intake

30% 19% 28%

Physical inactivity 21% 21% 21%

Overweight and obesity 16% 27% 18%

Smoking 15% 23% 17%

(Lopez et al., 2006.)

B (i.e. I and II). Some disease will still occur, however, as a result of sufficient

cause III.

The causes of many diseases, and especially those like cancer that develop over

many years, are going to be complex and we may never identify all their compo-

nents. It is thus encouraging to know that by just identifying one or two we may

still prevent a large proportion of the disease. If we could have stopped any one

of the animals, even the mouse, from getting into the boat then it would not have

turned over at that point in time. However, if the wind blew up or a wave came

along once they had pushed off then they may have sunk later: a different suf-

ficient cause leading to a similar outcome. Searching for modifiable causes that

are associated with a large population attributable risk, i.e. ones which cause a

large number of cases of disease, will give the greatest benefit in terms of public

health. (We will take this up again in Chapter 14.)

Look at Table 10.1. The population attributable risks for ischaemic heart disease

sum to more than 100%. Why is this so? Is it a problem?

If we assume that each of the causes of ischaemic heart disease shown can be

represented by one of the letters in Figure 10.1 (for example, if low fruit and veg-

etable intake were cause ‘A’, overweight and obesity were cause ‘B’ and smok-

ing were cause ‘C’), we can immediately see that the total amount of disease

attributable to each component cause will be much greater than 100%. Ensur-

ing that everyone had adequate fruit and vegetable intake (i.e. removing cause

‘A’) would prevent all disease due to sufficient causes I, II and III. However, if

we have already removed the problem of obesity and overweight (cause ‘B’) and
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so prevented disease due to sufficient causes I and II, then the extra benefit of

improving fruit and vegetable intake could only prevent the extra disease due to

sufficient cause III. Similarly, although stopping everyone smoking would pre-

vent some disease on its own, once we have removed the problems of diet and

obesity it would have little extra benefit.

In thinking about how component causes might act together, we need to keep

in mind that in no sense need they be similar: one component might be the

absence of a protective factor and another the presence of a quite different harm-

ful factor. For instance, if we consider the underlying causes of lung cancer we

would probably find that cigarette smoke is a component in most sufficient

causes. However, since not all smokers develop lung cancer we can surmise that

smoking is not a sufficient cause on its own but also requires other factors (for

example weakened DNA-repair capacity) to complete a sufficient cause. Simi-

larly, since lung cancer can develop in the absence of smoking, we can presume

that there is at least one sufficient cause that does not have personal smoking as

a component cause.

Association versus causation

In preceding chapters we have considered how we can determine whether a par-

ticular exposure is associated with the outcome of interest. The next stage is to

determine whether such an association may be causal. Just because a particular

exposure is associated with the development of a disease does not automatically

imply cause and effect. We must attempt to draw appropriate causal inferences

explicitly from our data, in the light of other evidence.

In London during the cholera epidemics of the nineteenth century one com-

mon belief, the ‘miasma’ theory, was that cholera was caused by noxious vapours

in the air. While John Snow was conducting his pioneering work implicating con-

taminated water, William Farr, director of the Office of the Registrar General, was

also interested in the transmission of cholera. He had noticed that cholera mor-

tality seemed to be higher in lower-lying areas and so collected mortality data for

a number of districts in London at different elevations. This revealed a dramatic

inverse relation between elevation and mortality and Farr was able to calculate a

formula that could accurately predict the mortality rate for any given elevation.

Figure 10.2 shows a graph of actual cholera death rates for various levels of eleva-

tion above the River Thames as well as the death rates predicted by Farr’s theory.

These data were taken as strong evidence in favour of the miasma theory, under

which it was felt that the vapours would be most concentrated and, therefore,

most dangerous at lower elevations.

However, as you saw in Chapter 3, like most ecological research (the graph

compares rates of cholera in areas at various elevations, not individual data),

these observations provide weak evidence for a true causal association, and we
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predicted (- - - -) cholera death
rates at various levels of
elevation above the River
Thames in London, England,
1849. (Data source: Farr, 1852.)

must consider whether other differences between people living at different ele-

vations could explain them. As it happened, people living closest to the river were

also more likely to be exposed to contaminated water than their neighbours in

the higher areas. This confounding factor could explain the apparent association

between elevation and cholera mortality entirely, and today it is John Snow, not

William Farr, whom we recognise as having solved the mystery of cholera. Ironi-

cally, in trying to prove his own ‘airborne’ theory, Farr also provided much of the

crucial evidence that ultimately supported Snow’s theory of contaminated water.

This example highlights the necessity of not accepting the results of any study,

however exciting, at face value. There are two substantial steps to be taken before

we can reasonably promote an exposure–disease relation as warranting serious

attention with respect to disease control. We must first thoroughly consider alter-

native non-causal explanations for an association: could it be an artefact due to

chance, bias or confounding? We need to apply the approach outlined in Chap-

ter 9 to decide whether the results we are looking at (our own or those reported

by someone else) are believable. In the cholera example we have postulated that

confounding by water supply is the most likely explanation for the close associ-

ation seen in Figure 10.2, and that the relation with elevation is an artefact. If,

however, the answer to the question ‘Is it real?’ is at least a qualified ‘yes’ then

we can move on to the next step – a formal evaluation of whether the observed

relation could be causal.

Evaluating causation

How should we do this? The nature of causation has been a central theme of

philosophy for centuries (see Box 10.2) and in recent times has been given a fair
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Box 10.2 Some potted philosophy

Do we learn about the world from observation and experience or by reason?

This was the major tension in Western causal thinking for many centuries.

Broadly speaking, observation or learning from our own experience

(induction) gradually replaced more abstract reasoning about how the world

worked (deduction). The practical inductive approach fits pretty well with

public health and epidemiology – we collect facts, decide what they mean

and then act accordingly – but, of course, it is not perfect. Starting with David

Hume in eighteenth-century Scotland, many philosophers have

demonstrated that induction can never prove a cause-and-effect relationship

(this became known as Hume’s problem). Just because we observe that the

computer turns on the first 99 times we press the button does not mean that

it will turn on again the 100th time (we are all familiar with this

phenomenon). Final proof is thus unobtainable by this process. In Europe in

the middle decades of the twentieth century, Karl Popper in a sense turned

Hume’s problem around and said that, although induction based on

supportive observations could never finally confirm a hypothesis, contrary

data could be used to refute one. Consider the statement ‘all swans are white’.

We may see only white swans but can never prove that this statement is true –

it just takes one black swan to disprove it. The hypothesis can stand only

until we see that one black swan.

We will never know anything with absolute certainty and this is something

we must learn to live with comfortably. You will note that the subsequent

guidelines to causal reasoning incorporate both judgement and probabilistic

elements – implying that we do not demand certainty. If we did we would

Consider
new

knowledge
(deduction)

Test
hypothesis

Develop
hypothesis

Evaluate
results

(induction)

Figure 10.3 An integrated cycle of causal reasoning.

(continued)
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Box 10.2 (continued)

never act, the antithesis of the remit of public health. In pursuit of making

good judgements on how and when to act, epidemiologists have long sought

to bring good evidence to bear on a question. In the past decade or so this

has come into sharper focus with research increasingly aiming to test critical

elements of causal belief or hypothesis along the lines proposed by Popper

and his followers last century. This has led to an integrated cycle of causal rea-

soning that essentially combines both induction and deduction (Figure 10.3).

bit of attention by epidemiologists. This has given a useful perspective on think-

ing about how we operate, but epidemiologists are fundamentally pragmatic and

seek practical tools. Unfortunately, in the causal realm our tools are not as pre-

cise as we might like and views on how to apply them differ somewhat.

Various sets of guidelines have been proposed to assist our causal evalua-

tions. There are many similarities among them, and arguably the best known –

certainly the best written – were set forth by a British statistician, Sir Austin

Bradford Hill, in an after-dinner speech. He put forward a list of nine aspects

of an association to be considered when assessing whether it was likely to be

causal (Hill, 1965). He was adamant that these should serve only as ‘aids to

thought’ and were not absolute requirements to be met before an exposure

could be considered to cause a disease. Various modifications of this list have

been suggested, and many of the elements remain cornerstones of judgement

on whether an exposure really does cause a disease, or whether an interven-

tion is effective in preventing or treating disease. These elements are discussed

below.

Temporality

For an exposure to cause a disease it must precede the development of the dis-

ease. This might seem obvious, but in some instances, say for a condition like

cancer that is often present for many years before diagnosis, it can be difficult to

decide whether an exposure really did occur before the true origin of disease. If

we find that people with stomach cancer have lower levels of vitamin C in their

blood than those without stomach cancer, can we be sure that the low levels of

vitamin C really preceded the growth of the cancer? Or might the lower vitamin

C levels be a result of the disease process? As you will recall from Chapter 4,

these questions can frequently be answered only by performing cohort studies

and, even then, it may be difficult to establish the order of exposure and effect

with certainty. Of all Bradford Hill’s factors this is the only one that is an absolute

requirement.
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Figure 10.4 The relation
between higher egg
consumption and ovarian cancer
risk in five population-based
studies. The squares represent
the relative risk, with the size
of the square being proportional
to the size of the study, and the
horizontal lines represent the
95% confidence intervals. The
open diamond represents the
relative risk and 95% confidence
interval from all five studies
combined.

Strength of association

The stronger an association is (usually as described by the relative effect, OR

or RR), the less likely it is to be due solely to either bias or confounding. A

strong association is thus more suggestive that the effect is real. However, just

because a relation is weak does not mean that it cannot be causal: only that

it is harder to eliminate study error as a possible explanation for the apparent

effect.

What constitutes a ‘weak’ or a ‘strong’ effect? There is no universal agreement

on this but we would generally consider an effect (OR, RR) greater than 2.0 to

be moderately strong and an effect greater than 5.0 to be strong. Note, however,

that a small effect observed consistently in many studies, especially if these are of

different designs and performed in different settings, may well give stronger evi-

dence of causality than an effect that is strong in one or two studies but not found

in others (see ‘Consistency’ below, and Chapter 11). It is important not to be too

dismissive of ‘weak’ effects, since these can be of great public health importance

when the exposure is common and the consequences severe.

Consistency

An effect found consistently across a range of studies of different types and/or in

different populations gives some reassurance that it is not an artefact. An Aus-

tralian ovarian cancer case–control study found an association between higher

egg consumption and ovarian cancer (Pirozzo et al., 2002). This seemed unlikely

to be a real effect, but a literature search showed that all four population-based

studies that had previously looked at this had also reported an increase in risk of

ovarian cancer among women who ate more eggs (Figure 10.4).
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Figure 10.4 summarises the data neatly and accurately. If we look first at the

square boxes that represent the relative risks, we see that, while there is some

variability, all are greater than 1.0 and in four the association is statistically sig-

nificant (i.e. their 95% confidence intervals do not cross 1.0). When the data from

all five studies were combined the overall ‘pooled’ RR was 1.9 (95% confidence

interval 1.5–2.3), suggesting that there was an almost two-fold increase in risk

among women who ate the most eggs. The results are, therefore, quite consistent

and so increase belief that the association between eggs (or some component of,

or contaminant in, eggs) and ovarian cancer might be causal. (Note: more recent

studies have not seen an association between egg consumption and ovarian can-

cer, suggesting that these earlier results could have been due to chance, despite

the consistency across several studies. It is also possible that eggs nowadays are

less likely to be contaminated by, for example, pesticide residues than they were

in the past and this could potentially explain the different results.)

However, lack of consistency need not in itself rule out causality. Differing

results could reflect variation in study design or quality, or an exposure could

have a different effect in people with a different genetic make-up or with dif-

ferent exposures to other factors that might modify (interact with) the possible

cause of interest. In any review of a topic it is important to give thoughtful consid-

eration to why studies might give different results (heterogeneity); we will discuss

reviews further in Chapter 11.

Dose–response relationships

If a factor does cause a disease, then the risk of developing the disease is likely

to be related to the amount or ‘dose’ of exposure. This is often a function of

both level and duration of exposure. Figure 10.5 shows some data from the first

eight years of follow-up of the US Nurses’ Health Study. The investigators calcu-

lated the age-adjusted relative risk that a woman would develop type-2 diabetes

on the basis of her body-mass index (BMI; weight/height2) and found that the

risk of diabetes increased dramatically with increasing body size, particularly for

women with a BMI greater than 25 kg/m2 (the upper limit of what is usually con-

sidered to be ‘normal’). Among the heaviest women, those with BMI of 35 kg/m2

or greater, the risk of diabetes was almost 60 times that of women with BMI less

than 22 kg/m2. Similarly, we saw that the risk of lung cancer increases sharply

with increasing numbers of cigarettes smoked (Figure 1.1). Patterns of relative

risk like these add credence to the idea that an association is causal. Note, how-

ever, that measurement of dose is not always straightforward. In the British Doc-

tors Study discussed in previous chapters, Doll and Hill used a simple measure

of dose of smoking, namely ‘average number of cigarettes smoked per day’. This

clearly worked very well, but does not capture other important information such

as the number of years that someone has smoked. These days this additional

information would almost always be included in any assessment of effects of
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smoking, often in a combined variable called ‘pack-years’, where one pack-year

is equivalent to smoking 20 cigarettes a day for 1 year (or 10 cigarettes a day for

2 years, etc.).

Of course, some genuine cause-and-effect relationships will not give such a

regular pattern. For instance, there may be a ‘threshold’ effect, whereby any

exposure above a certain level will lead to disease. A dose–response relationship

can therefore add weight to an evaluation of causality but its absence need not

count against making a causal link.

Biological plausibility

A causal hypothesis should obviously be viewed in the light of its plausibility. If

there is a likely biological mechanism through which an exposure might cause

the disease, this can add substantial weight to a causal argument. Lack of plau-

sibility does not necessarily rule out causality, because increasing knowledge of

disease mechanisms may make an association appear more credible in time. The

characteristic of plausibility is also tempered by the realisation that scientists

are ingenious by nature and can probably come up with a plausible-sounding

hypothesis in most situations if they believe an association to be causal!

Specificity

Bradford Hill presented this concept somewhat less clearly than the others on his

list – he suggested that, if an association were limited to a specific outcome, then

this would argue in favour of causation. He went on to say that this characteristic

should not be over-emphasised because factors could cause more than one dis-

ease and diseases might have more than one cause. This concept was crudely

interpreted as ‘one cause – one disease’ in attempts to argue that cigarette

smoking did not cause lung cancer: cigarettes were linked to many different
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diseases, therefore their effects were not specific, therefore they caused none of

them.

When we recall that many diseases are based on similar underlying patholo-

gies (e.g. vascular diseases of the brain, heart and other organs frequently stem

from atherosclerosis) it is hardly surprising that a single exposure (e.g. a high-

fat diet) can be linked to a variety of different conditions. Nonetheless, we would

still not expect an exposure to be linked to all outcomes; thus there must be some

degree of specificity that we can use to inform an evaluation of causality (Weiss,

2002). For example, bicycle helmets would be expected to reduce the risk of head

injury but not of other types of injury (specificity of outcome). If results of stud-

ies suggested that helmet use did indeed reduce the risk of injuries to the head

only, then this would strengthen belief that it was a causal (or in this case pro-

tective) association. An association seen only for one particular type of analgesic

(as in the Phenacetin study described in Box 4.4) could again strengthen belief in

causality (specificity of exposure). Similarly, individuals might be susceptible to

an exposure only if they have a particular genetic make-up, so, if the relation is

seen only for those with the specific genotype (specificity of susceptibility), then

belief in causality is again strengthened.

Pulling it all together

Bradford Hill also suggested that consideration should be given to any exper-

imental data – these could come from studies in animals or other organisms

or from intervention studies in humans. Such evidence in humans is crucial to

assessing the benefits of interventions. The final two characteristics that he put

forward are sensible but of less direct help than the others: coherence – a cause-

and-effect interpretation should not conflict with the known facts; and analogy

to existing known causal associations. An additional aspect to consider is that,

if a relation is causal, then removal of the exposure should lead to a reduction

in the effect – as was seen in the time trends of cigarette sales and lung cancer

mortality in Figure 3.6.

Consideration of these issues can help us decide whether an association is

likely to be causal. Sometimes the decision may be clear cut, but it is equally

likely to be controversial, and in this situation there can be no ‘right’ answer. It is

important to remember that these elements do not provide an infallible check-

list that will lead to the correct decision. Rather, they provide a framework for an

evaluation of causality.

Bradford Hill (Hill, 1965) summarised the questions that should guide a con-

sideration of causality as follows:

Is there any other way of explaining the set of facts before us, is there any other answer

equally, or more likely than cause and effect?
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Evaluating causality in practice: does H. pylori cause stomach cancer?

You have seen in earlier chapters that there appears to be a link between infection

with H. pylori (a bacterium that infects the stomach) and stomach cancer rates.

Now let us consider whether this relation might be causal. Many case–control

studies have been conducted to evaluate this, but these are fraught with prob-

lems, in particular because people with stomach cancer may test negative for H.

pylori even if they have been infected in the past. As a result there is the potential

for differential misclassification of cases as H. pylori-negative, thereby biasing

the odds ratio towards the null. Cohort studies are impractical because of the

logistics of testing thousands of cohort members for H. pylori. The best evidence

therefore comes from well-designed nested case–control studies (see Chapter 4)

in which blood samples were collected prior to the diagnosis of cancer. In 2001, a

group pooled the data from all 12 such studies to evaluate this association (Heli-

cobacter and Cancer Collaborative Group, 2001). (We will discuss pooled studies

further in Chapter 11.) In all of the studies the cases and controls were matched

for age and sex and there were no other major confounders; there were also

no obvious sources of selection or measurement bias. Authors of all 12 studies

reported an increased risk of stomach cancer associated with infection, which

was statistically significant (i.e. unlikely to be due to chance) in nine. The odds

ratio from all 12 studies combined was 2.4 (95% CI 2.0–2.8).

So could the relation be causal? The association is quite strong and also con-

sistent across these better studies. In all of them the blood samples used for test-

ing for H. pylori were collected before diagnosis of cancer, suggesting that infec-

tion does indeed precede cancer. Since, by and large, someone is either infected

or not infected, it is not possible to look for a dose–response relationship, but

the association appears to be fairly specific for stomach cancer and laboratory

studies have shown that some types of H. pylori may be more carcinogenic than

others. Further experimental evidence comes from studies that have shown that

H. pylori infection induces cancer in some animal models. A relation is also bio-

logically plausible because the bacterial infection directly affects the stomach,

which is where the cancer occurs. Taken together, there is thus good evidence for

the conclusion, now widely accepted, that H. pylori infection is indeed a cause of

stomach cancer.

And then what?

Once a cause-and-effect association has been established beyond any reason-

able doubt, action can be taken to change public policy, legislation, health

education, clinical practice or the direction of research. Thalidomide is no

longer given to women during pregnancy because it causes birth defects;
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diethylstilboestrol is no longer prescribed to prevent miscarriage because it can

cause vaginal cancer in the women’s daughters; dietary advice and drugs are

used to lower cholesterol levels to prevent heart disease; the hazards of smoking

are publicised, and legislation restricting smoking in public has been enacted in

many countries; seat-belt wearing is becoming ubiquitous internationally – the

list goes on.

It is worth noting that it has taken a long time, decades even, to establish

causality for some of these associations. Although wholly reliable criteria for truly

establishing causality do not exist, modern society often demands rapid ‘proof’,

increasingly for legal rather than social or health reasons. This tension between

the desire for full knowledge and the social need for action is a given in public

health. The clearer our insight into the evidence the better our judgements will

be. Remember, however, that we are all fallible and absolute proof is impossible.

So, to conclude, if we had stopped the mouse from jumping into the boat (i.e.

removed one component cause) it would not have overturned at that precise

point in time (we would have prevented that particular outcome). But who is

to say what would have happened if the other animals had ventured out into the

rougher water in the middle of the lake . . .
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While it is important to be able to read and interpret individual papers, the results

of a single study are never going to provide the complete answer to a question. To

move towards this we need to review the literature more widely. There can be a

number of reasons for doing this, some of which require a more comprehensive

approach than others. If the aim is simply to increase our personal understand-

ing of a new area then a few papers might provide adequate background mate-

rial. Traditional narrative reviews, which give less emphasis to complete coverage

252
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of the literature and tend to be more qualitative, have value for exploring areas

of uncertainty or novelty, but it is harder to scrutinise them for flaws. In contrast,

a major policy decision might require a systematic review of all the relevant liter-

ature. We will focus on the systematic approach here, but this can of course be

tailored according to need.

What is a systematic review?

Like a primary research paper, an epidemiological review should aim to produce

a helpful synthesis of primary data – looking for patterns but not hiding differ-

ences – and it should normally offer a formal causal interpretation. Although

its primary data units are whole studies rather than individuals, the review pro-

cess should have the same rigour as its component studies. A systematic review

should be a response to a clearly formulated question and involve the identifi-

cation of all relevant primary research studies that address that question. Each

study found should be included or excluded according to predetermined selec-

tion criteria, and critically appraised. The findings should then be summarised

and appropriate conclusions drawn. In some situations this process can be taken

one step further by combining the results of the component studies in a meta-

analysis. An even more rigorous approach, known as a pooled analysis or re-

analysis, is to obtain the original data from all relevant studies and re-analyse

them as a single large study.

It follows from this that such a review should be structured in the same way as

a primary paper: an introduction to show why the research question is of inter-

est; a methods section to explain how studies were identified, included/excluded

and appraised, and how the data were abstracted; the results, where patterns are

highlighted and differences assessed; and, finally, a discussion, where the results

are interpreted, threats to validity considered and conclusions drawn.

So how should we go about conducting a systematic review? Box 11.1 shows

a condensed excerpt from the methods section of a review of the benefits of a

low-fat diet for weight loss (Pirozzo et al., 2003), and gives a sense of the detailed

approach required. The following summary focuses on the various stages of the

review process as a guide to both reading and writing a systematic review, but we

stress that this is an overview of the main principles and methods; more detailed

‘how to’ manuals are fairly widely available (e.g. Glasziou et al., 2001).

Identifying the literature

The first challenge when conducting a systematic review is to identify all of

the relevant literature. The potential sources of data are numerous. MEDLINE
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Box 11.1 Should we recommend low-fat diets for obesity?

Research question

To determine the effectiveness of low-fat diets in achieving sustained weight

loss in obese or overweight people.

Search strategy

The following sources were included in the literature-searching process: The

Cochrane Library (Issue 2, 2001), MEDLINE, EMBASE, the Science Citation

Index, bibliographies and handsearching. The original searches of MEDLINE

and EMBASE were conducted from the beginning of each database until

January 2001. The search was updated in February 2002. The references of all

relevant studies were searched in the Science Citation Index to identify any

additional trials.

Trial selection

The titles and abstracts of the records identified were independently screened

by two investigators. Articles were rejected if the reviewers determined

from the title and abstract that the study (a) was not a report of a randomised

controlled trial, (b) did not address a low-fat diet, (c) did not have a follow-up

period that was at least 6 months in duration, or (d) concerned persons less

than 18 years old. When a title/abstract could not be rejected with certainty,

the full text of the article was obtained for further evaluation. The full text

of all selected articles was examined independently by two investigators to

identify all relevant trials. Differences in opinion were resolved by consensus.

Quality assessment of trials

The trials were assessed independently by two investigators using specific

quality criteria related to the following aspects of study methodology:

(1) randomisation and concealment of allocation;

(2) blinding of caregivers, participants and, in particular, outcome assessors;

and

(3) follow-up and intention-to-treat analysis.

Trials were categorised according to the extent to which they met the quality

criteria:

A = all criteria met,

B = one or more criteria only partially met and

C = one or more criteria not met.

Data extraction

Three reviewers independently extracted data from the studies, with any

differences resolved by the fourth reviewer. A specially developed data-

extraction form was used. This form incorporated general trial information,

trial characteristics, details of the intervention, patient-selection procedures

and characteristics of sample, study outcomes and results.
(Excerpted from Pirozzo et al., 2003.)
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is probably the most commonly used source for epidemiological papers, but

only about one-third of the approximately 10 million medical articles on library

shelves are indexed in the MEDLINE database (which is freely accessible through

the US National Library of Medicine search engine PubMed at www.ncbi.nlm.

nih.gov/pubmed/). EMBASE
R©

is not so widely available but has some advan-

tages over MEDLINE in that it includes many additional journals as well as con-

ference abstracts. Another valuable database, particularly for systematic reviews

of trials of the effects of healthcare interventions, is that of the Cochrane Col-

laboration (www.cochrane.org). There are also many other electronic databases

that may be valuable sources of literature depending on the question you are

researching (e.g. CANCERLIT
R©

and PSYCHLIT each have an obvious specialised

focus).

No electronic literature search is ever likely to be complete, so it is important

to use multiple strategies. Once several relevant articles have been identified, it

can help to check the papers that they cite, and also to look in the other direction,

i.e. for papers that have cited them (e.g. using the Science Citation Index). Other

sources include personal communication with experts in the field who may know

of additional published articles (and unpublished material); theses, seminars,

internal reports and non-peer-reviewed journals (sometimes described as the

‘grey literature’); and other electronic information including topic-specific inter-

net databases.

Publication and related biases

When searching the literature it is important to bear in mind that studies with

positive and/or statistically significant findings may be more likely to be pub-

lished than those without significant results. This publication bias is related not

only to selective acceptance by journals but also to selective submission to jour-

nals by researchers who may decide not to submit reports from research that

either finds no association at all (i.e. a null finding) or in which the results are not

statistically significant.

Copyright 2010 Charles Schulz
distributed by Auspac Media.

Closely related to publication bias are the problems of preferential detection of

articles in English and studies with overlapping publications on the same topic.

For an English speaker there are several barriers to the inclusion of non-English

studies in a review, including the difficulties associated with translation and the
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Table 11.1 System commonly used to classify levels of evidence.

Level Evidence

I Evidence from at least one properly randomised controlled trial

II-1 Evidence from well-designed controlled trials without randomisation

II-2 Evidence from well-designed cohort or case–control studies, preferably

from more than one centre or research group

II-3 Evidence from comparisons over time or between places with or without

the intervention; dramatic results in uncontrolled experiments could

also be regarded as this level of evidence

III Opinions of respected authorities, based on clinical experience, descriptive

studies and case reports, or reports of expert committees

(Harris et al., 2001.)

fact that non-English articles may be published in local journals that are not

indexed by major bibliographic databases. This is also more likely to be the case

for less exciting findings. A less-recognised problem is that of multiple but appar-

ently unrelated publications from one study with (usually) positive results. Such

a study is more likely to be identified than those published only once (or with

all papers clearly from the one source) and, if included as separate studies in the

review, could lead to overestimation of an association.

Different types of study

The amount and types of literature generated by a search will vary enormously

depending on the subject area. For a review of a specific treatment the studies

may all be clinical trials, whereas an aetiological review is likely to include obser-

vational studies of all types from case reports to cohort studies, with few or no

trials. As you have seen, different types of study answer different types of ques-

tions, or may be subject to different biases when answering the same question,

so it is sensible to group them separately, at least to start with. This grouping may

then provide a logical framework to help organise the data within the review.

A common approach to grading the quality of individual studies has been to

classify study designs according to a hierarchy such that those at the top are

considered to provide stronger evidence of an effect than those further down

the scale (Table 11.1). You will notice that this ranking puts randomised trials

at the top of the pile. (Variations of this scheme include yet another layer at the

top for systematic reviews of randomised controlled trials as the ‘ultimate’ evi-

dence.) While a classification of this type may be appropriate in the clinical con-

text where RCTs are the norm, a ranking based largely on evidence from trials

is often not much help for an aetiological review. In 2003, the British Medical
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Journal published an entertaining systematic review of randomised controlled

trials of ‘parachute use to prevent death and major trauma related to gravita-

tional challenge’ (Smith and Pell, 2003). Not surprisingly, the authors failed to

find any randomised trials for this particular preventive intervention. The BMJ

is well known for publishing more light-hearted articles in its Christmas issue

but, despite the tongue-in-cheek nature of the report, the fact remains that not

all interventions can be evaluated in RCTs and a lack of RCT evidence does not

mean a lack of evidence. Even more important is the disregard for the quality of

individual studies inherent in this approach. A well-designed and properly con-

ducted cohort or case–control study could provide better evidence than a small

or poorly conducted trial, but this rigid hierarchy would rate the evidence from

the trial more highly. The need to move away from such a rigid approach has

been well documented both for clinical research (Glasziou et al., 2004) and for

health services research in general (Black, 1996).

A preferable approach, adopted by decision-making bodies around the world

such as the US Preventive Services Task Force (USPSTF) and the Canadian Task

Force on Preventive Health Care (CTFPHC), is not to classify studies purely on the

basis of their design but also according to the quality of the evidence they provide.

As its name suggests, the USPSTF regularly reviews the evidence for and against

a wide range of preventive interventions. They rate studies according to specific

criteria for that design (based on the key questions of subject selection and mea-

surement that we discussed earlier). A ‘good’ study would generally meet all of

the specified criteria, a ‘fair’ study does not meet them all but is judged not to

have a fatal flaw that would invalidate the results, and a fatally flawed study is

classified as ‘poor’ (Harris et al., 2001). We have examined specific quality issues

for the various designs in earlier chapters (Chapters 4 and 7), and Box 11.2 con-

siders the value of randomised and non-randomised designs in healthcare eval-

uation in more detail. (An additional marker of better study quality that appealed

to us was the inclusion of an epidemiologist or statistician among the authors of

a research paper (Delgado-Rodriguez et al., 2001)!)

Study inclusion, appraisal and data abstraction

Studies should be selected for inclusion in the review on the basis of pre-defined

criteria. Depending on the research question, it might be appropriate to restrict

the review to specific research designs, for example only randomised trials, or to

those with specific methodological features. Such features might include
� the study size (e.g. only those studies with more than a certain number of

cases)
� the participants (e.g. a specific age range or sex)
� a specific outcome or the way in which outcome was measured (e.g. histologi-

cal or serological confirmation)
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Box 11.2 Randomisation versus observation

Most generic lists rank RCTs first in terms of study quality. For appropriate

questions, i.e. about the effects of various interventions, this is reasonable, as

you have seen. However, even for such questions caveats need to be applied.

If a randomised trial is not competently conducted, or is too small, then its

theoretical advantages disappear, and it can give misleading results (Schultz

et al., 1995). There are also many situations in which a trial would be

unfeasible, unethical, undesirable or unnecessary (Black, 1996), and trials are

generally irrelevant for questions related to frequency or measurement

validation (e.g. of the performance of a screening or diagnostic test).

Estimates of the effects of treatment may differ between randomised

and non-randomised studies, but when direct comparisons have been made

neither method has consistently given a greater effect than the other (McKee

et al., 1999). Overall, it seems that dissimilarities between the participants

in RCTs and non-randomised studies explain many of the differences; the

two methods should therefore be compared only after patients not meeting

the RCT eligibility criteria have also been excluded from the non-randomised

study. Not surprisingly then, treatment effects measured in randomised

and non-randomised studies are most similar when the exclusion criteria

are the same and where potential prognostic factors are well understood

and controlled for in the non-randomised setting. Taking this approach

has helped reconcile some of the apparently major differences between the

effects of hormone replacement therapy (HRT) as found in RCTs (evidence of

harm) and cohort studies (evidence of health benefits). Closer consideration

of the details of the different studies suggests that differences in the ages at

which women started taking HRT – around menopause (average age 51 years

in the USA) in the cohort studies but at a mean age of more than 60 years in the

trials – could explain many of the differences (Manson and Bassuk, 2007). It

is also important to consider the precision of the RCT effect estimates – some

are based on so few events (especially when death is the outcome of interest)

that chance differences from the true underlying effect are quite likely.

(For an example of these issues from studies comparing the effectiveness of

various interventions to unblock coronary arteries see Britton et al. (1998).)

The generalisability (see Chapter 7) of the results of RCTs can also be

questionable, given the highly selected nature of the participants: patients

excluded from randomised controlled trials tend to have a worse prognosis

than those included (McKee et al., 1999). When both randomised and

non-randomised studies have been conducted and estimates of treatment

effect are reasonably consistent for patients at similar risk, it allows

more certain generalisation to the broader target populations of the non-

randomised studies.
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� the way in which exposure was measured or classified (e.g. a specific blood test

to measure an infection, more than two levels of alcohol intake) and
� the duration of follow-up (e.g. more than 12 months).

The validity of studies that meet the criteria should then be evaluated as outlined

in Chapter 9, and key information on design, conduct, potential for error and

results abstracted onto purpose-designed forms. In an ideal world the apprais-

ers should be blinded to the authors and the study results since this knowledge

has been shown to influence judgements about validity. In practice this is not

always possible, since the reviewers may already be too familiar with the liter-

ature. Rigorous systematic reviews of clinical interventions, such as those con-

ducted through the Cochrane Collaboration, will often specify the need for mul-

tiple assessors to reduce the potential for bias, but this level of rigour is less com-

mon (and perhaps of limited added value) for aetiological reviews.

Summarising the data

The next step in any review is to draw the data together to simplify their interpre-

tation and to assist in drawing valid conclusions. It is important to look both for

consistency of effects across studies (homogeneity) and for differences between

studies (heterogeneity). Could differences be due to chance variation or can they

be explained by features of the studies or the populations they were conducted

in? Graphs can be used to summarise the results of many studies in a simple

format and in some situations the technique of meta-analysis can be used to

combine the results from a number of different studies.

Graphical display of results

One way to display the results of a number of different studies is in a figure

called a forest plot. Figure 11.1 shows a forest plot from a systematic review of

the relation between weight/BMI and ovarian cancer risk (Purdie et al., 2001).

It shows the results of all 23 case–control studies whose authors had reported

data on this association, ordered with the most recent study at the top and the

oldest at the bottom. The odds ratio for each individual study is represented by

the black square, with the size of the square indicating the size (or ‘weight’ – see

Meta-analysis below) of that particular study. The horizontal bar through each

box shows the 95% confidence interval for the odds ratio and the vertical line

indicates the point where there is ‘no effect’, i.e. an odds ratio of 1.0. When the

confidence interval crosses this line (i.e. it includes the null value) it indicates

that the result is not statistically significant (i.e. p ≥ 0.05). (Note the use of the

logarithmic scale, which balances positive and inverse relative effects visually
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Odds ratio and 95% confidence interval 

0.1 1 10

Figure 11.1 Diagrammatic
representation of the results of
23 case–control studies
evaluating the relation between
extremes of weight/BMI and
ovarian cancer risk (Purdie et al.,
2001).

around the null; i.e. an OR of 2.0 would be the same distance from 1.0 as an OR

of 0.5 in the opposite direction.)

Assessing heterogeneity

In this example the results of the 23 studies are scattered both sides of the line

that marks an odds ratio of 1.0 (i.e. no effect), and they show no obvious pattern.

The next step should be to evaluate this heterogeneity in more detail. Are there

any differences between the studies that could explain some of the variation in

their results?

One major methodological difference between the studies in this example is

subject selection: some were population-based and others were hospital-based.

We touched on some of the problems inherent in hospital-based studies in ear-

lier chapters – could this difference explain any of the variation in the study

results? Other possibilities to consider might include the geographical areas

where the research was done – for example, separating high- and low-risk coun-

tries, and the ages of the participants. In this case, if we separate the hospital-

and population-based studies (Figure 11.2) we start to see some regularity. In

each of the 11 population-based studies at the bottom of Figure 11.2, the OR is
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Odds ratio and 95% confidence interval 

0.1 011

Population studies combined

Population-based studies

Hospital-based studies

Hospital studies combined

Figure 11.2 Diagrammatic
representation of the results of
12 hospital-based and 11
population-based case–control
studies evaluating the relation
between extremes of
weight/BMI and ovarian cancer
risk (Purdie et al., 2001).

greater than 1.0 (although many of the individual results are not statistically sig-

nificant), suggesting that obesity/higher weight is associated with an increased

risk of ovarian cancer. In contrast, the results of the hospital studies still vary

widely. In this situation it was felt that using hospital-based controls might not

be appropriate, since their use might well lead to overestimation of the preva-

lence of obesity in the population and thereby lead to underestimation of the

obesity–cancer association.

Meta-analysis

Meta-analysis is a powerful technique that allows the results of a number of dif-

ferent studies to be combined. Each study is assigned a weight based on the

amount of information it provides (e.g. the inverse of the standard error of the

OR) and in general larger studies have greater weight. A weighted average of

the individual study results can then be calculated. The assumption underlying

this analysis is that all of the studies are estimating the same underlying effect
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and any variation between their results is due to chance. If their results are very

different (i.e. they are heterogeneous), as in the hospital-based studies of BMI

above, then this assumption may not be true and it might not be appropriate to

combine the results.

The diamond at the bottom of Figure 11.2 represents the combined odds ratio

for the 11 population-based studies; the centre indicates the point estimate and

the ends show the 95% confidence interval. In this case, it indicates that being

overweight increases the risk of ovarian cancer by 40% (pooled OR = 1.4; 95%

CI 1.2–1.6). Notice that the diamond does not overlap the ‘no-effect’ line (i.e. the

confidence interval does not include 1.0), so the pooled OR is statistically sig-

nificant. If we draw a dotted line vertically through the combined odds ratio, it

passes through the 95% confidence interval of each of the individual studies. This

is an indication that the results of the studies are fairly homogeneous, but it is cer-

tainly not definitive. In this case a formal statistical test for heterogeneity gives a

p-value of 0.63. If p were < 0.05, this would suggest that differences between the

results of the individual studies were unlikely to be due to chance; however, the

observed p-value is well away from this, suggesting there is no significant het-

erogeneity and thus supporting the ‘eyeball’ finding that the results are all fairly

similar.

In contrast, if we combine the results of the 12 hospital-based studies, we find a

combined OR of 0.9 (95% CI 0.9–1.2), but a line through this point would not pass

through the confidence intervals of the individual studies. This suggests that the

results of the hospital-based studies are heterogeneous, and this is confirmed by

a statistical test for heterogeneity, which gives p < 0.001, which is highly statisti-

cally significant. In this situation it is inappropriate to combine the results into a

single estimate of effect.

As we discussed in Chapter 5, absolute measures of effect such as the

attributable risk, absolute risk reduction and number needed to treat can pro-

vide a better sense of the practical impact or clinical importance of an exposure–

outcome relation than a relative measure. Combining these absolute measures

from studies conducted in very different populations can, however, be problem-

atic, since they will usually depend on the baseline risk in a population, and this

may vary widely. For this reason, relative effect measures (OR or RR) are usually

used to summarise the evidence, and then applied to the relevant baseline rate

to show the predicted absolute difference.

Pooled analysis

A pooled analysis goes one step further than a meta-analysis. Instead of com-

bining the summary results (OR or RR) from a number of different studies, the

investigator obtains copies of the raw data from the original studies and re-

analyses them. An excellent example is the Oxford-based Collaborative Group

on Hormonal Factors in Breast Cancer which, since the mid 1990s, has been
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producing reports based on analyses of over 50,000 women with breast can-

cer and 100,000 without, from data provided by more than 50 separate studies.

The collaboration’s first paper showed with great precision the very low absolute

risk of breast cancer conferred by the majority of patterns of oral contraceptive

pill use (Collaborative Group on Hormonal Factors in Breast Cancer, 1996). This

report removed a great deal of the uncertainty that remained about this relation,

despite many prior publications from individual studies.

Until recently, such pooled analyses were relatively uncommon: the effort

required to obtain the original data, clean, recode and re-shape each dataset

to a common standard, conduct a new analysis and write the paper, all the

while maintaining full approval of all contributing investigators, is monumen-

tal. However, the last few years have seen an explosion in the number of interna-

tional consortia (and acronyms!) established specifically to bring together inves-

tigators from around the world to pool genetic and/or epidemiological data

from different studies. This has been particularly true in the field of molecu-

lar cancer epidemiology where it seems likely that aside from a small num-

ber of ‘high risk’ genes, such as the BRCA1 and BRCA2 genes identified for

breast and ovarian cancer, the effects of any individual genetic variant on can-

cer risk are likely to be small and, as a result, very large numbers of individuals

are needed to show an association with any certainty. Examples of these con-

sortia include BCAC (Breast Cancer Association Consortium), OCAC (Ovarian

Cancer Association Consortium), PANC4 (Pancreatic Cancer Case Control Con-

sortium), E2C2 (Epidemiology of Endometrial Cancer Consortium), BEACON

(Barrett’s and Esophageal Adenocarcinoma Consortium), ILCCO (International

Lung Cancer Consortium) . . . the list is ever growing.

A word of caution

Finally, a few words of caution: the ability of meta-analysis to provide unbi-

ased summary estimates has been seriously debated. Combining the results

of a number of studies usually generates an estimate with narrow confidence

limits, thereby giving a sense of precision and accuracy that may be illusory.

The combined results of a meta-analysis will depend entirely on the studies

selected for inclusion (or exclusion) and Box 11.3 gives an example of where two

systematic reviews reached almost diametrically opposing conclusions due, at

least in part, to the different sets of studies considered appropriate for inclu-

sion. (Note, this is also another example of when simple descriptive data can be

informative.)

Furthermore, as you saw in Chapters 7 and 8, there are numerous ways in

which bias can occur and the old adage still holds true: ‘rubbish in = rubbish

out’. Combining results cannot get rid of bias or undetected confounding and,

although a combined odds ratio from several poor studies may look good, it

will not compensate for problems in the individual studies. Figure 11.3 shows
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Box 11.3 Do mobile telephones cause brain cancer?

Given the unprecedented growth in the use of mobile telephones over the

last 25 years such that usage is now almost ubiquitous in many countries, a

major question is whether exposure to the radiofrequency fields they

generate causes brain cancer. This is both a highly controversial and highly

emotive area as brain cancers often occur at younger ages than many other

cancers and, because of their location, are often fatal. In mid-2009, two

meta-analyses attempted to address this question.

The first study focused on the long-term effects of mobile phone use and

thus only included published studies where participants had used mobile

phones for at least 10 years. Because the radiofrequency waves generated by

mobile phones do not penetrate very far into the brain, they also restricted

their review to studies with a ‘laterality’ analysis, i.e. that considered whether

the cancer arose on the same side of the head preferred for phone use. A total

of 11 studies met these criteria. They found that use of a mobile phone for 10

or more years approximately doubled the risk of being diagnosed with a

brain tumour on the side of the head preferred for phone use, and that the

association was statistically significant for two types of brain cancer: gliomas

and acoustic neuromas. They therefore concluded that there was adequate

epidemiological evidence to suggest a link (Khurana et al., 2009).

The second group took a broader approach and included all published

studies that had evaluated this association (>20 individual reports). They

found that the current data did not show any increase in risk of brain cancer

with up to 10 years of mobile phone use and concluded that the data do not

suggest a causal association between mobile phone use and fast-growing brain

tumours such as gliomas (Ahlbom et al., 2009). The authors did, however,

acknowledge that longer follow-up was needed before any conclusions could

be drawn regarding longer-term use and the effects on slow-growing

tumours.

So why did these two meta-analyses come to such different conclusions?

The individual studies included in the meta-analyses have given quite

different results; some show a strong association and others see no effect. No

one has, as yet, been able to adequately explain the reasons for this but it is

likely that the different criteria used to determine which studies would be

included/excluded from each of the reviews led to their differing

conclusions. As to which is correct? It may be that only time and a longer

follow-up period will tell although it is worth noting that, as yet, there have

been no increases in reported incidence rates of brain cancer (Deltour et al.,

2009; Horner et al., 2009).
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Source of birth size data (nos. cases/non-cases)

Birth weight category (kg)

Birth records (4,135/426,289)

Parental recall in women’s childhood (2,887/107,003)

<2.5
2.5 -
3.0 - (baseline)
3.5 -
≥ 4.0

0.96 (0.80, 1.16)
0.90 (0.81, 1.01)
1
1.05 (0.97, 1.14)
1.12 (1.00, 1.25)

0.001 16 0.80
0.83
-
0.61
0.78

Relative risk
(95% CI)

P for
trend

No. of
studies

P for heterogeneity
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Figure 11.3 Relative risk of
breast cancer (and 95%
confidence intervals) associated
with increasing birth weight,
stratified by source of birth
weight data (From: dos Santos
Silva et al., 2008.)

the results of a pooled analysis of data from 32 studies looking at the relation

between birth weight and subsequent risk of breast cancer (dos Santos Silva

et al., 2008). When the authors separated the studies according to the source of

the birth weight information, they saw a clear trend towards increasing risk of

breast cancer with increasing birth weight among the 16 studies where the infor-

mation on birth weight came directly from birth records and was thus, presum-

ably, most accurate. The association was much weaker in the one study where the

information was provided by the women’s mothers when the women themselves

were children, and there was no association at all among the 11 studies that

relied on the women reporting their own birth weight – almost certainly the least

reliable source of information. (Note also that the results of the statistical tests

for heterogeneity are all non-significant (p > 0.05, suggesting that the results of

the various studies within each group are all quite consistent.) This is a strik-

ing example where error and subsequent non-differential misclassification (see

Chapter 7) in the self-reported data have completely masked what appears to be

quite a strong association based on the more accurate birth record information.

If all of these studies had been pooled together, it is likely that this association

would have been missed.

Assessment of causality

Systematic reviews, and particularly meta-analyses and pooled analyses, can

contribute directly to an assessment of causality. Reviews that generate
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combined effect estimates across studies provide more precise summary mea-

sures of the strength of an association and sometimes of the dose–response rela-

tionship. Our discussion above of the homogeneity (or otherwise) of study results

addresses the concept of consistency in practice. We do not require that effect

estimates be near-identical across studies to meet this criterion: simply show-

ing that most are positive (or negative) and reasonably similar with respect to

their confidence intervals (i.e. the 95% CIs are overlapping) may suffice. Also, if

more extreme heterogeneity can be shown to be due to differing methodology or

degrees of study error, and results among the better studies are reasonably con-

sistent, then the review has again provided helpful causal information (Weed,

2000). The causal argument of the review should then be fully developed along

the lines presented in Chapter 10.

Assessing the quality of a systematic review

A principal feature of a modern systematic review is that it must have a com-

prehensive methods section. As you saw in Box 11.1, the authors should have

detailed their literature-searching strategy and the processes of study selection

and appraisal and data extraction. Table 11.2 outlines a fairly comprehensive

set of the key criteria for appraising the validity of a systematic review which

summarises and extends the major points made above. Complementary sets of

guidelines have been promoted to improve the reporting of meta-analyses. The

‘Quality of Reporting of Meta-analyses’ or QUOROM statement (Moher et al.,

1999) was developed specifically for reporting meta-analyses of randomised con-

trolled trials and has recently been updated as the PRISMA statement (Preferred

Reporting Items for Systematic reviews and Meta-Analyses; Liberati et al., 2009).

A parallel guide developed for reporting meta-analyses of observational studies

is the ‘Meta-analysis Of Observational Studies in Epidemiology’ or MOOSE state-

ment (Stroup et al., 2000). Omitted from some such lists, however, but always

central to making a comprehensive judgement, is a consideration of the logic

and insight of the review, especially its treatment of error, heterogeneity, causal-

ity and practical importance.

Making judgements in practice

Primary epidemiological data (from individual studies) and secondary data

(from reviews) are not ends in themselves. They aim to tell us about the health-

iness of populations, what we might need to change to improve their condi-

tion, and how we might go about this. Judgements about need are primarily the
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remit of health departments and organisations (local, regional and global), using

appropriate descriptive data. In contrast, identification of causes and preventive

factors comes largely from academic research, and in addition a wide variety of

professional, community and government groups have interests in specific top-

ics. The aim of the whole enterprise is to take action to improve health. This is not

a modern phenomenon and, as you have seen, many advances in public health

pre-date epidemiology. The strong call to base all such actions on good evidence

is, however, quite recent, and has spread rapidly from clinical medicine to public

health. Much effort is spent these days on collating knowledge to answer practi-

cal questions as to what interventions might work, and a common starting point

is a review. An existing review can be useful, but often one will need to be com-

missioned to address the precise question being asked. Newly emerging issues

will sometimes not have been studied adequately, which leaves reviewers, plan-

ners and decision-makers in something of a quandary. This book is not primarily

about how to make decisions under conditions of uncertainty, but the logic of

epidemiology can certainly help. As one of the seminal figures in health services

research said;

The absence of excellent evidence does not make evidence-based decision making impos-

sible; what is required is the best evidence available not the best evidence possible. (Muir

Gray, 1997)

A systematic epidemiological review, then, is often an early response to a ques-

tion about the effects of an intervention, but it may also be used practically

(as opposed to academically) to support broad overviews of causation aimed

at informing and influencing health policy. Approaches vary depending on the

specific purpose of the review, and we conclude this chapter with descriptions of

how some influential national and international bodies engaged in disseminat-

ing helpful judgements and interpretations operate.

The US Preventive Services Task Force (USPSTF)

The USPSTF was convened by the US Public Health Service in the 1980s to assess

the merits of preventive activities in clinical practice. It aims to provide sim-

ple practical guidelines for clinicians regarding the utility of preventive inter-

ventions that they might use in their practice (over 200 to date). Many of the

interventions assessed relate to early detection of a wide range of conditions,

counselling to change behaviour and primary chemoprevention (e.g. aspirin to

prevent cardiovascular disease). Topic teams assigned by the task force prepare

systematic reviews of the evidence according to a standard protocol. The evi-

dence for a particular preventive service is classified as good, fair or poor and

then combined with a judgement of the net benefit of the service (substantial,

moderate, small or zero/negative). The USPSTF assesses the reviews centrally
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and then makes formal recommendations with specific ratings (AHRQ, 2004;

Harris et al., 2001), examples of which are given below. These recommendations

translate into practice guidance for clinicians who are advised to offer or provide

services with ‘A’ and ‘B’ recommendations to eligible patients; discourage the use

of services with ‘D’ recommendations; offer or provide services with ‘C’ recom-

mendations only if other considerations support this for an individual patient;

and, for services with ‘I’ statements, carefully read the Clinical Considerations

section for guidance, and help patients understand the uncertainty surrounding

these services.

A The USPSTF strongly recommends screening for cervical cancer in women who

have been sexually active and have a cervix. The USPSTF found good evi-

dence . . . that screening with cervical cytology reduces incidence of and mor-

tality from cervical cancer . . . The USPSTF concludes that the benefits of screen-

ing substantially outweigh potential harms (January 2003).

B The USPSTF recommends structured breastfeeding education and

behavioural counselling programmes to promote breastfeeding. The

USPSTF found fair evidence that programmes combining breastfeeding

education with counselling are associated with increased rates of initiation of

breastfeeding . . . (2003).

C The USPSTF makes no recommendation for or against routine osteoporosis

screening in post-menopausal women younger than 60. The USPSTF found

fair evidence that screening women at lower risk can identify women who may

be eligible for treatment but it would prevent a small number of fractures. The

USPSTF concludes that the balance of benefits and harms of screening and

treatment is too close to make a general recommendation for this age group

(September 2002).

D The USPSTF recommends against the use of beta-carotene supplements for

the prevention of cancer or cardiovascular disease. The USPSTF found good

evidence that beta-carotene supplementation provides no benefit in the

prevention of cancer or cardiovascular disease in middle-aged and older

adults . . . The USPSTF concludes that beta-carotene supplements are unlikely

to provide important benefits and might cause harm in some groups (June

2003).

I The USPSTF concludes that the evidence is insufficient to recommend for or

against behavioural counselling in primary care settings to promote phys-

ical activity. The USPSTF could not determine the balance of benefits and

harms . . . (August 2002).

A parallel activity for community prevention, the Community Guide, was

established by the US Department of Health and Human Services in 1996 and

is conducted by the Task Force on Community Preventive Services (http://www.

thecommunityguide.org/index.html). Some typical findings are summarised in

Table 11.3.
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Table 11.3 Some findings from the US Community Guide regarding community interventions.

Finding Intervention Date

Recommended (strong

evidence)

Increasing alcohol taxes June 2007
Community water fluoridation October 2000

Worksite programs to control overweight and obesity February 2007

Recommended

(sufficient evidence)

Enhanced enforcement of laws prohibiting alcohol sales to minors February 2006
Vaccination programs in schools June 2001

Diabetes self-management education in the home – children and

adolescents with Type 1 diabetes

March 2001

Insufficient evidence Vaccination programs in childcare settings June 1998

Diabetes self-management education in school settings or the worksite September 2000

School-based programs to control overweight and obesity October 2003

The International Agency for Research on Cancer (IARC):

monographs programme

Three times a year the IARC convenes a working party of experts to review all

of the literature relating a specific exposure or exposures to cancer. This pro-

cess is one of the most comprehensive conducted anywhere; in addition to stud-

ies in humans, the working parties also include experts on the exposure itself

(chemists, toxicologists, physicists, etc.), on animal studies and on molecular

biology. The IARC secretariat performs comprehensive literature searches and

sends the material to the individual scientists who are asked to summarise the lit-

erature in a particular area. During a week-long face-to-face meeting, subgroups

of the working party (exposure data, human studies, animal studies and labo-

ratory data) discuss and finalise the draft sections of the report and prepare a

summary for their section. The full group then comes together to reach a final

consensus. The human and animal data are first classified separately as provid-

ing sufficient, limited or inadequate evidence of carcinogenicity or, occasionally,

evidence suggesting a lack of carcinogenicity. These data are then combined with

the exposure data and molecular information to make a more formal assessment

of causality, classifying agents as:
� carcinogenic to humans
� probably carcinogenic to humans
� possibly carcinogenic to humans
� not classifiable regarding carcinogenicity to humans or
� probably not carcinogenic to humans (http://monographs.iarc.fr).

As of December 2009 they had classified 108 agents or mixtures as clear car-

cinogens with another 63 classified as probable and 248 as possible carcinogens,
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reflecting the general lack of certainty when dealing with evidence of this type.

(Only one compound has been classified as probably not carcinogenic!) A fur-

ther 515 agents were found to be not classifiable because there was insufficient

evidence to make any judgement.

The World Cancer Research Fund and American Institute of Cancer Research

The aim of the World Cancer Research Fund (WCRF) International is to ‘lead

and unify a global network of cancer charities dedicated to the prevention and

control of cancer by means of healthy food and nutrition, physical activity

and weight management’. (http://www.wcrf.org/index.php). In 1997, the WCRF

joined forces with the American Institute for Cancer Research (AICR) to jointly

publish a comprehensive review of the current state of knowledge regarding

the relation between nutrition and cancer (WCRF and AICR, 1997). In 2007 the

second edition of this report was published to incorporate new evidence that

had accumulated since 1997 (WCRF and AICR, 2007). The reviews were con-

tracted out to international teams of experts and their detailed methodologi-

cal plans for the review were critiqued by others and refined before the reviews

were conducted. These reviews (including a biological perspective) were them-

selves further evaluated and combined into a single report by a central sci-

entific committee. While these reviews are not directly linked to policy, the

aim is to provide good scientific evidence that can be used by policy mak-

ers, research scientists, health professionals and community groups around the

world. To this end the final chapter of the review assesses policy implications

directly.

Consensus conferences and working groups

Consensus conferences on many topics, often similar in format to the IARC

working parties, are convened on an ad-hoc basis to evaluate the evidence in

a specific area. Independent experts are usually invited to submit papers in

advance and these are then discussed at a face-to-face meeting. These confer-

ences may be conducted at an international level or on a smaller scale to provide

specific information to inform local planning and practice. The outcomes are,

however, necessarily dependent on the individual members and how strongly

they advocate their own personal opinions. An alternative method that has been

proposed to overcome this is the ‘Cooke method’, which weights the opinions of

individual experts according to their individual proficiency, assessed perhaps by

their responses to a set of relevant professional questions with widely accepted

answers (Aspinall, 2010). It remains to be seen whether this approach will catch

on.
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Box 11.4 Should women under the age of 50 be offered
routine mammographic screening?

The debate surrounding this question highlights the difficulties of

interpreting evidence. In 1993, an expert panel at the US National Cancer

Institute (NCI) concluded that there was no evidence for a benefit of

mammographic screening for women aged 40–49 years and the NCI

withdrew their recommendation for screening in this age group. In response,

the American Cancer Society reaffirmed their recommendation for

screening, which was based on the view of a separate expert panel. The

publication of additional data in 1996 opened up the question again and

the NCI responded by convening a consensus conference in 1997. The

independent experts at the conference again concluded that there was

insufficient evidence to recommend routine mammography for women

under the age of 50 years. This conclusion led to such a public outcry that the

NCI was forced to reconsider their position. The question went back to the

National Cancer Advisory Board, a presidentially appointed committee, who

voted 17 to 1 in favour of recommending mammographic screening for

younger women. Since then the controversy has continued, with groups

reaching opposing conclusions based on the same evidence.

As you will see in Chapter 15, the evaluation of screening programmes is

not simple, and in this particular instance it appears that there is still no clear

consensus. At the end of 2009, the USPSTF recommendation was against

routine screening mammography in women aged 40 to 49 years (a Grade C

recommendation), noting that ‘The decision to start regular, biennial screen-

ing mammography before the age of 50 years should be an individual one and

take into account patient context, including the patient’s values regarding

specific benefits and harms’ (US Preventive Services Task Force, 2009). Or, as

summarised by D. Petitti, Vice Chair of the US Preventive Services Task Force:

‘So, what does this mean if you are a woman in your 40s? You should talk to

your doctor and make an informed decision about whether mammography

is right for you based on your family history, general health, and personal

values’ (19 November 2009; from http://www.ahrq.gov/clinic/uspstf/

uspsbrca.htm, accessed 31 January 2010).

The end result

Policy makers invariably want a black-and-white answer to any question –

does this cause/prevent/improve treatment of the condition in question?

Unfortunately, as you will have gathered, this yearning for certainty can rarely

be fulfilled. Nothing is absolute and, as we discussed in Chapter 10, it is
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impossible to prove something definitively. As a result you will find that the con-

clusions of many systematic reviews are couched in fairly cautious terms, but

policy makers and planners have to act despite this and make the best of what is

available. We will end with a question that still causes controversy: should we

recommend widespread mammographic screening for women under the age

of 50 years (Box 11.4)? (Or, some would argue, should we recommend it at all?

(Various, 2004).)

Summary

In the previous chapters we have discussed the practical ‘nuts and bolts’ of

epidemiology. In Chapters 2–4 we considered the ways in which we can mea-

sure health and quantify associations between ‘exposures’ and health ‘outcomes’.

We then looked critically at how we interpret the results of such studies in

Chapters 5–9 so that we can start to make informed decisions as to whether

reported associations might be real. In Chapter 10 we took this one step fur-

ther to see how we can start to assess whether an association might be causal.

In this chapter we have considered how we can bring together all of the informa-

tion related to a particular association with a view to informing decision-making

– whether this is to establish policy or to identify avenues for further research.

However, as you have seen, this is not always as straightforward as we might wish.

One of the big challenges in epidemiology, and indeed all health research, is to

recognise when we have enough data to act or to plan with sufficient confidence

that we are doing the right thing. We will return to this conundrum in the final

chapter.

We will now move on to look at some practical applications of epidemiology

that all aim to reduce the burden of disease in a community at some level: out-

break management, surveillance, prevention and screening. These will draw on

the core concepts that you have learned so far and reinforce the epidemiological

perspective – a mix of science and art that requires an open mind, attention to

detail and the potential for error, a willingness to consider alternative explana-

tions and, finally, the ability to be both constructively critical and pragmatic.
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Box 12.1 An unusual epidemic of pneumonia

On the 21st of February 2003, a doctor from southern China visited Hong

Kong and stayed one night in a local hotel. Unwell for several days before the

trip, he became seriously ill and the next day was admitted to a hospital with

severe pneumonia; he died 10 days later. Before admission he had infected

numerous people who came into contact with him, including his own family

(wife, daughter, sister and brother-in-law) and 16 guests or visitors to the

hotel. Some of the hotel guests left Hong Kong for Singapore, Hanoi and

Toronto and outbreaks in those areas rapidly followed. Within a month large

outbreaks arose in several Hong Kong hospitals, affecting staff, students,

patients and visitors. As family members became infected they infected

others and the disease began to spread in the community. On the 12th of

March 2003, the World Health Organization issued a global alert on atypical

pneumonia, called severe acute respiratory syndrome (SARS). By late March

a huge outbreak in a Hong Kong housing estate was traced back to a patient

discharged from one of the affected hospitals. In Hong Kong there were 1,755

cases and 300 deaths (case fatality rate, CFR = 17%), including 8 fatalities

among the 386 health workers affected. The high-rise housing estate had

329 cases and 42 deaths. Hong Kong health authorities quarantined 493

households with 1,262 people, traced 26,520 contacts, and screened 36.3

million travellers. Globally, public health organisations collaborated to

identify the organism, devise diagnostic tests, introduce control measures

and stop the epidemic by August 2003 after 8,422 cases and 916 deaths

worldwide (Chan-Yeung and Yu, 2003).

Investigation of disease outbreaks or epidemics such as that described above

is part of the core business of epidemiology. An internet search yields more

than a million scholarly references for ‘outbreak’ and, as you will see, the util-

ity of epidemic investigations is obvious from the wide variety of applications.

Many examples earlier in this book focused on ‘chronic’ disease. Now we will

spotlight infectious diseases (although not exclusively) and use epidemiologi-

cal principles to explain the occurrence of endemic, epidemic and pandemic

infections. Historically, the study of epidemic infections helped develop meth-

ods for epidemiology, especially retrospective cohort analysis and case–control

studies, and epidemic investigations still have a high profile in public health

practice today. Emerging and re-emerging infections have become prominent

over the last two to three decades and the threat of global epidemics (pandemics)

mobilised resources to plan for, detect and combat such catastrophes. Over the

same period, growing awareness of environmental pollution and community
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detection of clusters of rare diseases, especially cancer, increased demand for

epidemiological investigation of ‘outbreaks’ of non-communicable disease. In

response, statisticians are developing new methods for spatial analyses and epi-

demiologists are studying community risk perception and public communica-

tion of risk appraisals.

Infectious disease epidemiology is often presented as a different discipline

from the epidemiology we have been describing, but in fact the fundamental

principles are identical, as are the study designs used: cohort and case–control

studies to investigate causality and experiments to evaluate preventive and ther-

apeutic interventions. Causal reasoning is conceptually simpler but still has its

own complexities, as we show below. The comparability of the two approaches

has become more obvious as knowledge has expanded to include infectious

agents as prime causes of a number of conditions generally considered to be

‘chronic’, a term often used as a synonym for non-infectious. For example, after

decades of study, cervical cancer can now be characterised as a sexually trans-

mitted infectious disease caused by strains of the human papillomavirus. The

major difference for most infectious conditions, and other outbreaks we discuss

here, is the urgency with which investigations take place. This is often extreme

(as with SARS), and demands robust, practical methods for subject identification

and selection, as well as for data collection.

Outbreaks, epidemics, endemics and clusters

What do we mean by an epidemic or outbreak? The two terms are often used

interchangeably and generally they involve unexpected increases in incidence of

a disease. Benenson (1990, p. 499) defines both as ‘the occurrence in a commu-

nity or region of cases of an illness clearly in excess of that expected’. Others have

defined them slightly differently; for example the ‘Dictionary of Epidemiology’

(Porta, 2008, p. 176) describes an outbreak as ‘an epidemic limited to localised

increase in the incidence of a disease. e.g., in a village, town or closed institution’.

Outbreak may also be used to refer to a small epidemic arising in an area that

has had no cases for a long time – an epidemic with excess frequency compared

with an expected frequency of zero. In such a setting a single case would not be

considered an outbreak, but two or more cases could be.

You should also be clear on the distinction between epidemic and endemic

disease. Endemic disease can be defined as ‘the constant presence of a disease

or infectious agent within a given geographic area or population group’ (Porta,

2008, p. 78). For example, malaria is endemic in much of Africa. Thus ‘endemic’

describes attributes of a disease, not an area; ‘endemic area’ is a frequent misuse

of the term endemic. For some diseases, notably malaria, the word endemic has

been further defined in reference to the degree of endemicity – with holoendemic
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the most extreme (children intensely infected, most adults immune), followed

by hyperendemic (a disease constantly affecting a large proportion of all age

groups in the population). Epidemics thus represent an unexpected increase in

incidence of disease whereas endemic describes a constant presence of disease.

Parallel terms referring to infections within animal populations are epizootic

(an unexpected increase in incidence in an animal population) and enzootic

(constant presence in an animal population). Sometimes an enzootic infection

crosses to humans and causes an epidemic (the most likely explanation for

SARS, hantavirus and many other infections). Other times an epizootic infection

reaches humans and causes an epidemic (as periodically occurs with plague), or

fizzles out after causing great alarm but without any epidemic human-to-human

transmission (as has happened so far with H5N1 avian influenza).

When a disease affects a large number of people and crosses many interna-

tional boundaries it is called a pandemic. Examples of pandemics last century

include plague (around 1900), influenza (1918, 1957 and 1968) and cholera (since

1961). Certain pandemics in history caused great loss of human populations,

notably plague in the late middle ages and ‘Spanish’ influenza at the end of

World War I. The modern pandemics of HIV and multi-drug-resistant tuberculo-

sis are of great concern. The organism causing the most recent pandemic – H1N1

influenza virus (often inappropriately described as ‘swine flu’) – first appeared

in Mexico in 2009. It quickly spread and reached over 200 countries by the end

of the year. So far the disease has been far less severe than anticipated for pan-

demic influenza. But it has tended to affect young adults and pregnant women

more than the seasonal influenza it has replaced, and is likely to recur in several

waves as did previous variants that caused pandemics.

One more term must be dealt with here – cluster. This can be defined as an

‘aggregation of relatively uncommon events or diseases in space and/or time in

amounts that are believed or perceived to be greater than could be expected by

chance’ (Porta, 2008, p. 42). The word is usually used to describe a cluster of

cases of a rare (usually non-infectious) disease, and putative clusters of disease

are often suspected to have an environmental cause on the basis of anecdotal

evidence. As a result, much effort is often expended in response to public outcry

in attempts to determine whether a true cluster exists. Box 12.2 gives some idea

of the range of outbreaks and clusters that can occur in practice.

Rare disease clusters

Clusters of rare diseases, especially cancer, are increasingly being reported by

members of the community in many countries and public awareness of environ-

mental hazards has increased demand for public health authorities to investigate

them. Any apparently unusual frequency of any disease will now attract attention
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Box 12.2 Some outbreak and cluster investigations

Re-emergence of fatal avian influenza in humans (China)

The first documented instance of avian influenza subtype H5N1 causing

severe respiratory illness in humans was in Hong Kong in 1997 when it

affected 18 patients, 6 of whom died. In January–February 2003 it re-emerged

when a family from Hong Kong visited China. The seven-year-old daughter

developed fever and respiratory symptoms two days after arriving and died

of a pneumonia-like illness seven days later; her cause of death was not

ascertained. The family returned to Hong Kong and the father was admitted

on 11 February after four days of fever, sore throat and coughing. He died six

days later and H5N1 was detected. On 12 February the eight-year-old son,

who reported having close contact with live chickens in China, was also

admitted with a flu-like illness. H5N1 was isolated and he recovered (Peiris

et al., 2004).

An outbreak of chromium ulcer in a manufacturing plant (Taiwan)

On 23 May 1989, managers of a manufacturing plant in Taiwan requested

investigation of an outbreak of hand ulcers among workers. Ten enamel

department workers (13.5%) who developed such ‘chromium ulcers’ were

identified between 1 January and 30 June 1988. Workers who handled

conveyer hooks were at greatest risk (RR = 12.4; 95% CI 2.90–53.4). Workers

with gloves were protected from developing ulcers (RR = 0.08; 95% CI

0.01–0.60). Analysis of hooks that had passed through the oven revealed

chromium VI on their surface (Deng et al., 1990).

An epidemic of paediatric traffic injuries (USA)

This study identified specific regional risk factors for the high rate of

paediatric pedestrian trauma in Florida. Of the 29 cases studied, 3 (10%)

occurred near ice-cream trucks and 13 (45%) involved ‘dart-outs’.

Recommendations included an engineering change for a dangerous

intersection, and a recommendation to equip ice-cream trucks with

extending stop signs (Hameed et al., 2004).

An outbreak of piranha attacks on humans (Brazil)

There are many tales describing ferocious schools of piranha attacking

humans, but few scientific data supporting such behaviour. These

predacious fish do occasionally injure bathers and swimmers in lakes and

rivers and an outbreak of piranha bites was reported in a dammed river in

southeast Brazil. The report focused on epidemiological and clinical aspects

as well as piranha biology to gain a better understanding of the natural

history of such outbreaks (Haddad and Sazima, 2003).

(continued )
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Box 12.2 (continued)

An outbreak of influenza aboard a commercial airliner

A jet liner with 54 persons aboard was delayed on the ground in Anchorage,

Alaska, for three hours because of engine failure during a takeoff attempt.

Most passengers stayed on the aeroplane during the delay. Within 72 hours,

almost three quarters of the passengers became ill with symptoms of cough,

fever, fatigue, headache, sore throat and myalgia. One passenger, the

apparent index case, was ill on the aeroplane, and the clinical attack rate

among the others varied with the amount of time spent aboard. Virus

antigenically similar to A/Texas/1/77 (H3N2) was isolated from 8 of 31

passengers cultured and 20 of 22 ill persons tested had serologic evidence of

infection with this virus. The aeroplane ventilation system was inoperative

during the delay and this may account for the high attack rate (Moser et al.,

1979).

A cluster of Creutzfeldt–Jakob disease (CJD) (Australia)

Six confirmed sporadic cases of CJD were recognized in 13 years in persons

who had been long-term residents of a moderate-sized rural city; the

expected number was less than one. An extensive investigation could not

find any point-source or case-to-case transmission links. This occurrence

was highly statistically significant (p = 0.003) and remained significant

(p < 0.02) when only the cases that arose after the cluster had been

recognized were taken into account. However, a more conservative analysis

suggested that, when the whole country is taken into consideration, such a

grouping could have arisen by chance (Collins et al., 2002).

and this causes great difficulty for health officials who are asked to respond to

the problem. Interpreting the data is not straightforward and pitfalls include the

fact that cluster analyses are usually done post hoc, without prior hypotheses.

Rare diseases will inevitably be distributed in small numbers, thus in small areas

their frequency will fluctuate widely due to chance. In a country like the USA

with a large population and a large area it is inevitable that numerous small-

area clusters will arise for rare diseases and it is difficult to determine whether

this is due to chance. This is particularly true for investigations prompted by

reported clusters of disease because the cases may represent a much larger pop-

ulation than that in the immediate vicinity of the cluster. For example, several

of the cases that occur in a large state may just happen to occur in one corner

of that state by chance. Community members are likely first to note the cluster,

then to look for possible causes, including any nearby environmental contami-

nation, and then they may well attribute the cluster to the potential source. They
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will draw boundaries around the cluster after noting it, not before, and there is

a danger of overestimating the disease rate through ‘boundary shrinkage’ of the

population from which the cases are assumed to have arisen (Olsen et al., 1996).

Investigating such clusters has rarely led to conclusive evidence as to the cause

and usually reveals that the cluster is most probably a chance effect due to vari-

ation of small expected numbers. This might not be considered a satisfactory

answer, especially if people have formed their own hypotheses as to the cause.

Some public health authorities have developed education tools to help them

address the problem of rare disease clusters. For example the US Centers for

Disease Control (CDC) have issued their own guidelines for investigating clus-

ters (http://www.cdc.gov/nceh/clusters). They note that, in many cases, what

appears to be a cluster of cancer cases does not represent any more disease than

might be expected by chance, but that it is more likely to indicate a genuine local

risk if the cancers are of a single rare type or have occurred in an unusual age

group. In 1990 a conference on the topic noted the large volume of work these

clusters impose on regional health departments (AJE, 1990). More recently the

Royal Statistical Society in the UK revisited the topic (Editorial, 2001). Statisti-

cians are developing new methods for analysing space–time clusters and the

field continues to evolve. In 2006 the journal Statistics in Medicine devoted a spe-

cial issue to disease cluster investigation (Volume 25, Issue 5), with emphasis on

statistical modelling and the detection of clusters within surveillance systems.

However, many epidemiologists remain concerned that the resources consumed

by investigation of rare disease clusters, especially if political pressure is applied,

may far exceed the benefits gained. Such expenditure may deprive the commu-

nity of public funds needed for other activities, including environmental clean-

ups that should be done anyway. Ultimately, the final public health decisions are

often based on expert opinion and prudent judgements and do not depend on

p-values and associated mathematical models (Coory, 2008).

Epidemiology of infectious diseases

When would we describe a disease as infectious or communicable? In the

Dictionary of Epidemiology, it is defined as follows:

Communicable disease (synonym: infectious disease) An illness due to a specific infec-

tious agent or its toxic products that arises through transmission of that agent or its prod-

ucts from an infected person, animal or reservoir to a susceptible host, either directly or

indirectly through an intermediate plant or animal host, vector, or the inanimate environ-

ment. (Porta, 2008, p. 46)

During the last four to five decades, infectious diseases have not gener-

ally been considered a major cause of mortality in developed countries. The
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production of powerful antibiotics (1950s), polio vaccine (1950s) and measles

vaccine (late 1960s) were major milestones along the road to this stage of

human history. However, it is worth noting that, in the West, most of the

fall in death rates from infections such as TB, pneumonia and diphtheria

occurred long before specific clinical treatments or vaccinations were avail-

able. Nonetheless, there is no doubt these medical interventions helped speed

a further decline in mortality, lowered morbidity, and have since helped main-

tain this situation (see also Figures 14.1, 14.2). In some countries, notably

in South East Asia and South America, a fall in infection mortality (which is

still under way) came later and was greatly accelerated by medical and pub-

lic health interventions. The development and deployment of good vaccines

or other effective interventions for diseases that still account for much of the

infectious disease burden in the poorer parts of the world would make a huge

difference to both morbidity and mortality rates – especially for pneumonia,

diarrhoea, HIV infection, dengue, malaria and TB.

In developed countries, mortality due to acute infection is largely restricted

to the very young, the elderly and the infirm, but infections remain an impor-

tant cause of expensive morbidity in these richer nations. Their populations

continue to experience considerable sickness and loss of productivity from

common infections, notably of the respiratory tract, including influenza, and

the gastro-intestinal tract, especially food poisoning. Periodically, epidemics of

some vaccine-preventable diseases also recur; for example, pertussis (whooping

cough), rubella and measles. In addition, there are many infections that have

recently emerged or re-emerged and for some we have made little headway with

prevention, or treatment, for example Hendra virus (from horses and bats) in

Australia, Lyme disease in the USA (tick-borne) and varicella-zoster infection

which causes shingles and is common among the elderly.

There are also new (or unsolved) problems with the old infections. Worldwide,

frequent use and misuse of antibiotics produced resistant bacteria, some now

unresponsive to all available drugs. Furthermore, anti-viral drugs remain very

expensive, are often toxic, and are of limited utility. They are not yet helpful for

transmission control or for treating many viral infections.

Infections still constitute the most important disease group in low- and

middle-income countries, where they are responsible for almost one-third of

the disease burden (Figure 12.1). In particular, the high incidence of pneumo-

nia, diarrhoeal diseases (including cholera), malaria, tuberculosis and dengue

in many poor countries causes much premature mortality and disability. Some

populous regions in the tropics have additional problems with environments

that are receptive for parasitic infections, notably schistosomiasis, trypanoso-

miasis, filariasis, onchocerciasis and leishmaniasis. These neglected diseases

collectively cause substantial morbidity and premature mortality for a large

proportion of the world population.



284 Outbreaks, epidemics and clusters

Infectious & Parasitic

Maternal & Childhood

Cancer

Cardiovascular

Neuropsychiatric

Other chronic diseases

Injuries

Low and Middle Income Countries High Income Countries

Figure 12.1 The contribution of
infectious and chronic conditions
to total DALYs in low- and
middle-income versus high-
income countries. (Data source:
WHO, 2008.)

Infections everywhere may become more important in the future as old,

changed or newly encountered microbes pose threats of local or regional epi-

demics, or even large pandemics. Emerging and re-emerging infections have

steadily become more common over the last 30 years. Many are vector-borne

(usually transmitted by blood-feeding arthropods, especially mosquitoes and

ticks), most are zoonotic (initially transmitted from non-human vertebrates,

usually mammals or birds) and a disproportionate number are viral (espe-

cially rapidly evolving RNA viruses such as those causing HIV/AIDS, SARS and

influenza). We expect this trend to continue, since it is based on many factors

that are sure to persist or increase in the future including population growth,

expanding trade and travel, mass-produced food, intensive livestock production,

environmental change, resistance to antimicrobial drugs, human encroachment

on wilderness and forest, and global warming (Sleigh et al., 2006).

The SARS multi-country epidemic of 2003 was a chilling example of a

global threat due to emergence of a new infectious disease. Box 12.1 at the

start of this chapter describes its introduction and spread in Hong Kong

and beyond. This reveals the problem posed by such lethal fast-moving epi-

demics of an unknown disease and in this case it involved an infection that

attacked the health system itself by infecting and disabling or killing many

health workers treating those who were infected. These important events, and

the extraordinary global response, are described more fully in the February

2004 issue of Emerging Infectious Diseases (vol. 10, No. 2), which is freely

available through the US CDC (www.cdc.gov/ncidod/EID/). The worldwide

threat posed by new infections has continued unabated since SARS. We have

confronted ongoing multi-regional (‘panzootic’) outbreaks of virulent avian

influenza caused by a new H5N1 strain (see Box 12.2 above) and the possi-

bility that a pandemic human variant will develop remains of great concern.

And since 2009, as mentioned above, the whole world has been reached by

the first wave of a new pandemic variant of human H1N1 influenza which

could become more virulent in the future if it follows the pattern of previous

pandemics.
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Effective identification and control of outbreaks of infectious disease remains

an important and complex component of public health. Epidemics are bad news

and bad news is always a valuable commodity for the media, so their investi-

gation and control is often conducted as a health emergency under the public

eye. Sometimes epidemic alerts trigger worldwide alarm and politically complex

national and international responses, as has been noted over the last decade for

cholera in South America, plague in India, avian influenza in Asia, SARS in Asia

and Canada and pandemic H1N1 influenza worldwide. Increasingly, small or

large outbreaks threaten economically important industries, as seen with Hen-

dra virus in Australia (1994, horse racing), Nipah virus in Malaysia (1998–9, pig

farming), SARS in Hong Kong (2003, services and tourism) and avian influenza in

Asia (1997 and 2003–4, poultry). All of the diseases on this short list of economi-

cally devastating epidemics involve zoonotic infections from livestock or wildlife

and it is increasingly recognised that human and animal health epidemiolo-

gists need to work together. Each new event moves this integration further along

under the banner of ‘One Health’ (http://www.onehealthinitiative.com/) and the

responsible national agencies are already sharing expertise and approaches. This

integration is also occurring at the international level involving WHO, the OIE

(Organization for Animal Health) and FAO (Food and Agriculture Organization).

Infection eradication (removal from all human populations), elimination

(removal from defined areas) and control (reduction below the threshold of pub-

lic health significance) have made substantial progress over the last 50 years but

there is a long way to go. The declaration of smallpox eradication by the WHO in

1980 was probably the most important achievement in terms of global health last

century. Ongoing programmes to eradicate polio and leprosy and, in some West

African countries, to eliminate onchocerciasis are now being attempted. The

global Guinea worm eradication programme is close to final success in East and

West Africa but is being impeded by civil wars. There has been moderate success

in controlling HIV/AIDS among special risk groups in Australia, New Zealand,

North America and Europe over the last decade, and more recently in some

other countries (notably Thailand), but elsewhere the global AIDS pandemic, the

most lethal in human history, continues to spread at an alarming rate, especially

among the general populations of many parts of Asia and sub-Saharan Africa.

A causal model

Simple ecological models of the ‘agent–host–environment’ interplay have served

infectious disease epidemiology well, providing a neat structure for linking

the variety of factors that determine whether disease occurs. Figure 12.2 is a

straightforward version that shows the interaction between an infectious agent

and its potential host, the transmission process (how the disease is spread) and
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Figure 12.2 The relationships
among agent, host, transmission
and environment.

how all of these may be influenced by the environment. We will use its axes to

organise our more detailed examination of the links between exposures to infec-

tious agents and disease occurrence.

Although we did not invoke such a model when dealing with causality in Chap-

ter 10, its relevance to most causal circumstances is readily apparent. The host

mobilises a variety of genetically directed and other adaptive responses against

a particular agent; the agent can be any infectious or non-infectious risk fac-

tor, some of which have a variety of modes of transmission; and the environ-

ment includes the background social, economic and ecological circumstances

that surround the host and determine the community risk level.

What influences the spread of infectious diseases?

Before moving to deal with epidemics and their management, it is helpful to con-

sider briefly the biology of infectious agents. Infectious diseases have one distin-

guishing attribute. They involve one living organism preying on another. Some

parasite life cycles even involve two or more hosts and such intersection of bio-

logical lifelines is intrinsically complex. Furthermore, within environmental con-

straints, interacting organisms must evolve elaborate defence or attack mecha-

nisms to maintain their life cycles. Consequently, although infectious diseases

may be relatively easy to define (on the basis of presence of the organism and

the typical host response), infections are often difficult to understand biologi-

cally or epidemiologically. Like many harmful exposures, they have a wide range

of host effects, varying from inapparent infection (acute or chronic) to severe

disease and death. Also, as environments change, both agents and hosts may be

affected, impeding or promoting transmission.

The aims of infectious disease epidemiology reflect those of epidemiology

in general: to describe and explain the occurrence and distribution of infec-

tions and the relationship of infection to disease. To do this it is necessary to

understand the properties of the agent, to know (or discover) the sources of

infection and the existence of any biological reservoirs of infection, to clarify the
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pathway or process whereby the agent is transmitted, via the environment, and

to know how the host reacts to an infectious challenge. Our knowledge of infec-

tions has become far more detailed since the development of bacteriology and

the germ theory of disease at the end of the nineteenth century, but the agent–

host–environment circumstances frequently change and new organisms contin-

ually emerge. The relationships are always dynamic and usually extremely com-

plex; it is rarely possible to understand every step of the process, often difficult to

assess the probability that infection will occur, and always a battle to keep pace

with changes and stay half a step ahead, or even just one step behind.

Exposure variation will often influence the risk of infection. For example,

tuberculosis (TB) infection is usually contracted by breathing air contaminated

with the organism Mycobacterium tuberculosis, but crowded, poorly ventilated

environments are not always risky for TB. While there would be a high risk

of exposure in a crowded, poorly ventilated area such as a prison in a highly

endemic country, the risk in comparable circumstances in a developed country

would be much lower. This is one aspect of the crucial role played by the back-

ground environment, the population-level influences on individual risk.

Environments also change and this in turn alters infection risks in numer-

ous ways: directly, via effects on humans or agents, or indirectly, via effects on

intermediate hosts or infection vectors. This is the basis for recent interest in

the effects of global warming on the distribution and incidence of infections.

The most obvious effect of warming is the potential increase in the geographical

range of vectors or intermediate hosts associated with transmission and a possi-

ble shortening of the phase of the life cycle associated with the invertebrate host.

Dengue fever is one example of an infection that could be greatly influenced

by climate change if the range of the mosquito vector increases (Hales et al.,

2002). Another example is schistosomiasis in China and Figure 12.3 shows how

its potential range could increase if intermediate host snails could thrive in areas

that are currently unaffected (Zhou et al., 2008). However, it should be noted

that environmental effects are exerted through multiple drivers and a focus on

temperature will show changes in the potential range but cannot predict actual

outcomes. For example, the distribution of the snail hosts in China depends on

many factors besides temperature including suitable soil chemistry, the presence

of other vegetation and appropriate moisture, with needs varying across the life

cycle (Seto et al., 2002).

Host factors also come into play. If a person is infected with TB, various

personal attributes (such as malnutrition, HIV infection and diabetes) then

modulate their risk of developing subsequent disease. Such agent–host inter-

actions vary enormously, altering risks of many infectious diseases. In an area

highly endemic for malaria, partially immune adults often have detectable blood

parasites without becoming ill; but in a less endemic area, or in young children

with little or no immunity, detectable parasites in the blood stream would almost
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Figure 12.3 The influence of global warming on the predicted distribution of schistosomiasis
risk in China in 2050 (mid-blue denotes the risk area in 2000, dark blue denotes predicted
additional risk areas in 2050). (Source: Figure 3B from Zhou et al., 2008, reproduced with
permission.)

always cause symptoms, including fever. This shows how acquired host defences

can alter clinical manifestations of infection, often affecting the ability of

epidemiologists to detect cases accurately.

Finally, the agent also varies frequently. As they evolve, microbial agents that

appear to be similar may vary considerably over time or place, with powerful

or subtle effects on transmission, host responses, treatment and control. Some,

such as influenza virus, are constantly changing their structure as part of the

quest for survival; TB, and many other bacteria, have evolved to resist antibi-

otics. Sometimes agent effects and disease manifestations are simply a reflection

of the intensity of the infection, particularly with multicellular parasites such as

hookworms, schistosomes and filaria. Morbidity due to these parasites relates

directly to the worm burden – more worms for more time produces more disease.
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Overall, whether infection occurs depends on factors influencing the proba-

bility and result of contact between an infectious agent and a susceptible host.

Some of these factors are described below.

The infectious agent

There are many different types of infectious agent: bacteria, viruses, fungi, pro-

tozoa, helminths (parasitic worms), etc. In almost every natural habitat there

will be agents potentially infectious to humans. Animal contact is particularly

important in the genesis of human infections and many (perhaps most) infec-

tions afflicting us have been traced back to the beginnings of agriculture and

animal farming.

What then is infection? It is the entry of a microbial agent into a higher-order

host and its multiplication within the host. When a lower organism lives on an

external surface of another (usually higher) organism it is called an infestation

rather than an infection; examples of infestations include lice and scabies. Infec-

tions do not necessarily lead to overt disease and the principal characteristics of

microbial agents that influence their ability to cause disease are defined below.

Infectivity is the ability of an organism to invade and multiply in a host. It is

the proportion of exposures that result in infection. One measure of infectivity

is the secondary attack rate, which measures the number of cases of infection

that develop among the susceptible contacts of an infected case. Pathogenicity

is the power of an organism to produce overt illness among those infected. It is

measured as the proportion of those exposed to infection who develop clinical

or overt illness. Virulence is the ability of an organism to produce serious dis-

ease and is measured by the proportion of those who are infected (determined

by immunoassay) who develop severe disease. If death is a criterion of severity,

this can be measured by the case–fatality ratio (CFR, see Chapter 2).

One highly infectious agent is the polio virus. If a source of polio infection

enters a community of susceptible people, it is likely that the majority will even-

tually become infected. However, only a small proportion will develop even

mild disease; i.e. the polio virus has low pathogenicity. An even smaller propor-

tion will develop symptoms of paralysis and only a small percentage of these

will have permanent sequelae; i.e. the virus is of relatively low virulence. Like

polio, measles also has a very high infectivity; secondary attack rates for measles

approach 100%, but, unlike polio, the measles virus demonstrates a high degree

of pathogenicity because most of those infected will develop symptoms. In the

very young, or in malnourished children, measles causes serious disease and is

thus also highly virulent. Typhoid is a disease with variable virulence. Under the

best circumstances of early diagnosis and rapid treatment the CFR may be less

than 1%, but late presentation, in the absence of high-quality treatment, often

results in CFRs of 10%–15%.
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Intensity of infection is especially important for helminth infections. Gener-

ally a few parasitic worms (such as hookworms or schistosomes) will not cause

detectable disease, but when individual worm burdens reach the hundreds (or

thousands), the outcome is often serious debility and premature death.

The natural habitat of the agent is known as its reservoir and this may be

human, animal or environmental. Agents with human reservoirs include the per-

tussis bacterium, the malarial parasite and the roundworm. With some agents it

is not clear where their reservoir is. There is still debate, for instance, about the

environmental reservoir of the cholera bacterium – where does it hide between

annual epidemics in the Indo-Gangetic delta? We have also searched for the

reservoir of the SARS virus, since we did not know whether certain animals

found to be infected (such as civet cats) actually acquired it from another source;

it now appears they may have acquired the infection from bats (Lau et al.,

2005).

The source of an infectious agent is the person, animal or object from which

the host acquires the infection. The source may be another human who is sick

or convalescent. Infected persons may become long-term carriers of infection

without being clinically sick themselves, as with hepatitis B, typhoid and HIV.

One of the best-known examples of a long-term carrier is ‘Typhoid Mary’, who

worked as a cook in New York, USA. She is thought to have caused 10 outbreaks

of typhoid fever with a total of 51 cases and 3 deaths before her own death in

1938. She was a poor woman and moved from household to household aware

that the infection seemed to follow her around but unaware, at least initially, of

her own role, and also unaware of the preventive measures needed (scrupulous

hygiene).

The host

The host is the human or animal to which an agent acquires entry and in which

it multiplies. A host’s reaction to infection can be extremely variable, depend-

ing on the interplay between the characteristics of the agent, including the dose

received, and the specific and non-specific immune status of the host.

The immune response of the very young (especially pre-vaccination) and the

old is not as protective as that of a young healthy adult. Most influenza mortality,

for example, occurs in the elderly; but this is not always the case and the lethal

pandemic of influenza in 1918–19 killed millions of young adults. If the host has

been exposed to the agent before, there may be residual natural immunity, or

immunity may be induced artificially by vaccination. A person who is susceptible

to a particular agent is often referred to simply as a ‘susceptible’.

These factors, and others to do with the biology, maturation and replication of

the agent, influence the incubation period. This is the time between initial infec-

tion (entry into host) and the onset of clinical disease (symptoms). For control of
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infectious diseases it is also important to know the latent period; this is defined

as the time from entry into the host until the onset of infectiousness and it may

be longer or shorter than the incubation period. If it is shorter then infected per-

sons may pass on the infection before they become ill (as with influenza) and

if it is longer they will be ill before they are very infectious (as with SARS). This

timing is an important determinant of infection dynamics. Infections transmit-

ted before becoming ill (or without becoming ill) are the most difficult to con-

trol and the most likely to cause explosive epidemics in susceptible populations.

These features are known for the majority of infectious diseases. They are useful

tools in the investigation and control of epidemics and are always the focus of

attention for new infections such as SARS.

Transmission

Transmission of an agent is its spread from a reservoir or source to a new host by

one or more of three possible routes – direct, indirect or airborne.

Direct transmission

This arises from ‘close personal contact’ by touching infectious secretions or exc-

reta. This includes touching or inhaling the large (10–100 micrometres) respira-

tory droplets produced by sneezing, coughing or talking by a person suffering

from a patent respiratory infection. These heavy droplets contain mostly water

and pass through the air to fall on surrounding objects within 1–2 metres of the

source. Examples of direct transmission include sexual, skin, eye, congenital and

most respiratory infections, including measles and influenza. Sometimes vertical

transmission (direct from mother to unborn child) is distinguished from horizon-

tal transmission (direct or indirect) among persons already born.

Indirect transmission

This always involves a vehicle. It may be inanimate, such as bedding, clothes or

utensils (collectively called ‘fomites’), food or water (many intestinal infections),

or the soil (a reservoir for many infectious fungi, Legionella and diphtheria bac-

teria, and required to complete the life cycle of protozoan Toxoplasma parasites

shed by cats and for common human helminths such as ascaris and hookworm).

Or the vehicle may be alive and considered a vector (e.g. mosquitoes that trans-

mit malaria and dengue, ticks that transmit Lyme disease and lice that transmit

typhus) or an obligatory intermediate host (such as snails for schistosomiasis).

Most faecal–oral infections, such as polio, typhoid, cholera and many forms of

gastroenteritis, are transmitted indirectly (via food or water), but some, such as

bacillary dysentery, can also be transmitted via direct contamination of hands

and mouth.
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Airborne transmission

This became an outmoded concept in the nineteenth century after Snow had

shown that London cholera was water-borne, disproving the prevailing the-

ory of an infectious airborne ‘miasma’ rising from the river. Later, Pasteur and

others demonstrated the existence of germs and showed that they could be

transmitted directly. The laboratory production in the 1930s of ‘bioaerosols’ of

tiny infectious droplet nuclei that could be inhaled as well as careful epidemio-

logical studies on TB and Q fever in the 1940s and 1950s eventually resurrected

the concept of airborne infection as an important mode of transmission (Lang-

muir, 1961). Bioaerosols may also be produced in abattoirs when cutting open

body cavities of infected animals, in air-conditioning cooling towers, or by germ

warfare. Droplet nuclei are particles less than 5 micrometers in diameter that are

dried-out residuals of large droplets and which remain infectious in air over a

long distance and time. The WHO now classifies airborne transmission as obli-

gate (pathogens only transmitted by droplet nuclei under normal circumstances,

for example TB) and preferential (pathogens that can infect by multiple routes

but are mostly transmitted by droplet nuclei, for example measles and chicken-

pox) (Atkinson et al., 2009).

It is important to remember that the type and mode of transmission of an

agent are key factors for designing control strategies and that some agents may

have several modes of transmission. For example, SARS is usually transmitted by

(large) respiratory droplets reaching close contacts, but a few cases spread infec-

tion to scores of persons, some of whom had only fleeting contact with cases

or no direct contact at all (Li et al., 2004); this raised questions about airborne

infection in certain circumstances, such as after intubation and in very confined

spaces. The presumed mode of transmission profoundly affects the management

of infections, since in hospitals precautions against (heavy) respiratory droplets

(ordinary masks and gloves, clean nearby surfaces) are much less exacting than

precautions against airborne infection (special masks or respirators, eye shields,

negative-pressure ventilation).

The environment

The environment has a strong influence on the transmission of infectious dis-

eases. The physical environment or climate has obvious influences, sometimes

for reasons we do not understand well. In temperate zones, influenza and

rotavirus appear in the colder winter months, times of close human contact. On

the other hand, Ross River fever usually occurs in hot humid months, reflect-

ing the importance of an abundance of mosquitoes for transmission of that dis-

ease. Other environmental influences include levels of sanitation, air pollution,

water quality, population density, overcrowding, poverty, housing conditions and

food availability, to name but a few. The environment affects survival both of
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arthropod vectors (such as mosquitoes) and of the vertebrate hosts of disease.

The environment is, in turn, affected by the agents and, of course, the host.

Human behaviour often creates environments suitable for infections. Frequently

this is due to imposed ecological circumstances, such as unsanitary households

due to lack of clean water and poverty; sometimes it is due to human folly or

ignorance, such as creation of mosquito breeding sites in domestic environ-

ments in tropical areas and lack of preventive measures to defend against infec-

tions such as Q fever in abattoirs. It can also be due to necessity, such as wet-rice

farming to produce a crucial food staple that also creates breeding sites for the

intermediate host snails of schistosome infections.

Epidemics or outbreaks

There are two principal types of epidemic. Distinguishing between these can

help to narrow an epidemic investigation, leading quickly to the cause of the out-

break and to its control.

Point-source epidemics

This type is sometimes called a common-source (or common-vehicle) or

extended-source epidemic, the latter implying that the exposure may be spread

over a period. This type of epidemic occurs when many people are suddenly

exposed to the same source of infection, leading to a clear increase in inci-

dence of disease. We can study the progress of an epidemic by plotting the dis-

tribution of cases in relation to the date of onset, producing what is known as

an epidemic curve. Figure 12.4 shows the typical shape of the epidemic curve

for a point-source outbreak. The number of cases of disease (defined by the

onset of symptoms) is plotted against the time since exposure. In this way we
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Figure 12.4 The epidemic curve
for a point-source epidemic.
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can assess the average incubation period, which in this case will be between

12 and 13 hours. This is the typical pattern of an outbreak of food poison-

ing and shows the distribution of incubation periods in differently suscepti-

ble people. Figure 1.3 showed an actual point-source epidemic that you met in

Chapter 1.

In practice, the epidemic curve for a common-source outbreak might not be

as clear as these examples. A common source like the polluted River Thames in

nineteenth-century London could lead to an outbreak of cholera that started at

different times in different places, giving a much more complex and drawn-out

curve.

Propagative (contagious) epidemics

This type arises from the introduction of an infection into a susceptible popu-

lation with subsequent transmission from person to person and a progressive

increase in incidence. The pattern in Figure 12.5 is typical of a propagative epi-

demic. On 12 May there was a single case, referred to as the index or primary

case (there may be more than one). Eight to eleven days later we see another

cluster of cases, sometimes referred to as secondary cases, which have arisen

from the index case by person-to-person transmission. A further eight to thirteen

days later there is a third generation of cases, serially infected by the secondary

cases. If the spread of incubation periods is wide, the gaps between the peaks

progressively close as long-incubation cases for one generation merge with

short-incubation cases for the next generation, producing a fluctuating pattern

of continuous cases.
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Common conditions for the occurrence (and cessation) of an outbreak

There are numerous agent–host–environment states that might change and

precipitate an outbreak. Some of the more common circumstances are
� the new appearance or sudden increase of an infectious agent, which may arrive

in a human or animal host, a plant, or in an inanimate environment such as

soil, and can come from any part of the world by trade, travel or natural spread;
� an increase in susceptibles in an environment that has an endemic pathogen;

this could be by immigration or birth, or by a drop in immunisation rates in a

community; and
� the introduction of an effective route of transmission from source to suscepti-

ble, e.g. climatic change bringing a new species of mosquito, or a new process

of food preparation or storage.

An epidemic will end or diminish when contrary conditions hold, i.e. anything

that leads to a large drop in the number of susceptibles and when each case

reproduces on average less than once. This may occur through immunisation

(including ‘natural’ immunisation whereby people actually catch the disease and

then become immune) or prophylaxis, by removing the source of infection, or

by breaking the transmission cycle (e.g. by spraying mosquito breeding sites to

lower vector density, by isolating people while they are infectious, by adopt-

ing personal protection measures such as gloves and masks in hospitals, or by

treating infectious persons early). We see here another complex causal web with

the same demands as for any other disease: the need to identify the most cost-

efficient response to the short-term threat together with longer-term planning to

lower risk overall.

Investigating outbreaks

As with any epidemiological study, the investigation of an outbreak must be sys-

tematic. Going back to first principles, we need to look at the distribution of dis-

ease by person, place and time in the early stages of the outbreak, and use those

observations together with knowledge of relevant preliminary disease character-

istics to formulate rapidly initial hypotheses on which early action can be based.

The 2003 SARS epidemic was a perfect example of the urgent interplay of

investigations across many disciplines. The studies were conducted success-

fully during an epidemic that was killing frontline health-system staff and

spreading rapidly in many countries. Laboratory scientists quickly defined the

organism, its survival in the environment and its susceptibility to antiseptics.

Hospital doctors and nurses tested various treatments and instituted exceptional

measures to protect hospital staff. Epidemiologists determined the incubation

period, the usual mode of transmission, the variable (and usual) infectiousness
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and the effective control achieved by personal protective measures in hospitals,

early isolation of cases and quarantine of contacts. Information managers, com-

puter experts and statistical modellers helped to track the epidemic and analyse

control effects. In Hong Kong even the police service played a vital role, collab-

orating with the Department of Health for contact tracing and identification of

high-rise buildings with multiple cases for disinfection teams. This first ‘Internet-

assisted’ global effort for epidemic control led to rapid and complete control of

the disease. The overall SARS experience suggests that tools available to combat

epidemics are, at least so far, evolving just fast enough to match the increasing

demands. Many of those tools have been deployed again, along with consider-

able input from the Organization for Animal Health and the Food and Agriculture

Organization, in the response to H5N1 influenza (2003–). The response to H1N1

pandemic influenza began in 2009 and continues, with emphasis on world-

wide monitoring of human susceptibility, disease virulence, drug sensitivity and

molecular evolution as well as rapid development of a safe and effective vaccine.

The following series of steps is essential in any outbreak investigation but, with

the possible exception of the first three, it is rare to follow them in a neat order as

listed below; usually several steps proceed at once.

Provisional case definition. A clear ‘working’ or ‘provisional’ case definition is

an essential first step. This may be changed or refined – ideally to an aeti-

ological diagnosis – at a later stage in the investigation. For a new or as yet

undiagnosed infection a syndromic definition based on some combination

of epidemiology (potential exposure), symptoms and signs, and key labora-

tory information (e.g. elevated white-cell count or radiological evidence of

pneumonia) must be developed.

Confirm that the epidemic exists. This will be obvious if there is an abnormally

high number of cases of a particular disease, concentrated in time or space

or with unique clinical features. With common diseases like influenza or

measles you would compare current incidence with background rates in the

time before the outbreak, or during the same period or season in previous

years. Remember the definition: ‘ . . . clearly in excess of that expected’.

Assess the extent of the outbreak and its essential epidemiological features.

Serious cases might not be a problem to identify since they are likely to

present to hospital, but the mildly or moderately ill may be hard to find.

Inapparent infections can be discovered only afterwards, usually by serol-

ogy. A rapid initial survey (by phone and/or record searching) of local hos-

pitals, clinics and doctors will give a preliminary estimate of the size. If

the outbreak seems to be widespread, a random household telephone sur-

vey might be considered. In addition to clinical and sociodemographic

data, the person–place–time approach must be tailored to the situation at

hand. Depending on the working hypotheses, it may be necessary to col-

lect details from the patients’ workplaces or to obtain evidence of current
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Table 12.1 An example of a line list used for recording data in an epidemic following a lunch on
December 21 2003.

Onset of

Time of symptoms Sea-food Cured Pizza Coffee

ID Age Sex lunch (date – time) salad Oysters ham bread Pavlova with milk

01 34 M 1.15 21/12 – 20.30 Y N Y N Y Y

02 23 F 1.10 21/12 – 21.15 Y N Y Y Y N

03 65 M 1.20 21/12 – 19.30 Y Y Y N N Y

04 47 M 1.40 21/12 – 22.00 N N Y N Y N

05 61 F 2.10 None Y Y Y Y N Y

06 58 M 1.15 21/12 – 20.10 Y N Y Y Y Y

07 39 F 1.00 21/12 – 19.00 Y N Y Y Y N

08 43 F 1.30 21/12 – 21.40 Y Y Y Y Y Y

09 47 M 1.25 21/12 – 21.15 Y N Y Y Y N

10 51 F 2.15 None Y Y Y Y N Y

etc.

immunisation status, for example, as well as gathering appropriate biologi-

cal samples for laboratory testing.

Define the population ‘at risk’ (the denominator). One task is to define those

who have been, may have been and have not been exposed to the agent of

the particular outbreak. It is sometimes an impossible task, but for other sit-

uations it is more straightforward. These data provide us with denominators

for calculating attack rates.

Formulate working hypotheses. A number of tools can help with the formula-

tion of some initial hypotheses.
� Draw up a list of all potential cases early on, and for each list crucial data,

along the lines of Table 12.1. Refine this to include only definite cases as

the investigation proceeds.
� Does the case definition need modification? Is there a definitive diagnosis?
� Draw a spot map, looking for clustering of cases or a link to some point

source. Maps by site of residence, occupation or education may be infor-

mative.
� Draw the epidemic curve, because its shape will reflect both the time dis-

tribution of exposure and the distribution of incubation periods and this

can lead to hypotheses on the aetiology.
� Note any interesting anomalies. They sometimes hold the key and are

worth investigating in detail. (Remember Snow (1855) at the Broad Street

pump.)
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Test hypotheses. Additional data may be required to test the hypotheses as out-

lined below. For example, if a meal is suspected to be a common source, it is

essential to try to identify which foods are implicated, as in the example in

Chapter 1. If one or two specific foods are linked to high attack rates then it

is important to attempt to obtain samples of them in order to try to isolate

the agent.

Study design and analysis

Most outbreak investigations are carried out retrospectively, although some may

be partly prospective. If the source is known or strongly suspected, a retrospec-

tive cohort of all people thought to have been exposed, and at least a sample of

those not exposed, can be assembled. From the data we can calculate the attack

rate in those exposed to the source and compare it with the attack rate in those

not exposed. Recall that the attack rate is a specific measure of cumulative inci-

dence that is often used for particular groups being observed for a limited period

of time and under special circumstances (such as an epidemic). In propagative

epidemics it may also be of interest to calculate the secondary attack rate. This is

the number of cases among the contacts of a primary case that occurred within

the likely incubation period following exposure, as a proportion of the total num-

ber of exposed contacts. The attack rates in the exposed and the unexposed can

then be compared to give the relative risk (risk ratio) of catching the disease if

exposed.

If the source of infection is not known, a case–control study can be used to

investigate exposure to a variety of possible events and sources of infection.

This allows calculation of an odds ratio to estimate the association between the

source and disease in the usual way (see Chapter 5).

Epidemic management

Dealing sensibly with the media is always an important element in controlling

the wider social effects of a real or perceived outbreak. For alarming and lethal

outbreaks, such as SARS in Hong Kong in 2003, the skills required in dealing with

the media are very particular: panic can be induced, or prevented; scapegoating

is easily aroused and tensions can rise rapidly. In such situations media briefings

are best left to senior staff, or those specially trained in media skills. The contrast

between media management for SARS in China (initial denial) and Hong Kong

(candid accounts) was striking; management within China itself changed enor-

mously towards the end of the emergency when all officials were instructed to

disclose the situation. Media problems also arose in other affected areas, not just

Asia. Large, lethal and mysterious epidemics are always going to make dealing

with the media an unavoidable and vital management issue.
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There are several other managerial tasks for public health workers respond-

ing to an epidemic. Treatment of cases may need to be organised. This will

depend on the type of illness, its severity and the number of cases involved. Can

local health facilities cope with additional patient loads or will outside help be

required? Are there severe cases who may need to be transferred to a tertiary

referral centre? Will cases need to be isolated or staff (including any investigat-

ing epidemiologists) protected? It may also be necessary to organise collection,

transport and reception of specimens for laboratory investigation. These must

be handled carefully and others must not be exposed to any risks. For example,

collection of throat specimens from potential SARS cases is a risky procedure

unless a protective mask, gown, goggles and gloves are used.

In parallel, control measures, both short- and long-term, need to be initiated,

particularly if there are signs of a continuing epidemic. These can be aimed at

eliminating or controlling the source of the agent, such as contaminated foods.

Alternatively, it may be more efficient to reduce transmission of infection, espe-

cially if there is a known vector. It may also be necessary to set up a local surveil-

lance system to monitor further cases of the disease, which may facilitate early

prevention measures and avoid a further outbreak. The full investigation of an

epidemic may be a protracted affair. Confirmation of diagnoses often depends

on serology; vectors may need to be collected and identified and there may be

need for further, more formal epidemiological studies.

Finally, it is important to ensure that all aspects of an outbreak are reported

accurately. The primary reporting responsibility of an epidemiologist investigat-

ing an outbreak is to the health authorities but, as the examples above show, the

media and public are also vitally interested in such occurrences and need to be

kept informed of the situation as clearly and simply as possible.

Epidemic prevention

In an ideal world we could both anticipate and prevent epidemics and that

remains the public health goal for all serious infection threats. Even novel infec-

tions can be partly anticipated and we can be ready to rapidly detect and investi-

gate them when they appear. To be ‘ready’ we need to develop and maintain sub-

stantial human and laboratory resources, have a suitable system of surveillance,

be able to manage the media effectively, and have a clear institutional framework

within which surveillance, interdiction and response can operate. (We will dis-

cuss surveillance in more detail in the next chapter.) The increasing frequency

of emerging and re-emerging infections is ensuring that in many countries the

systems are developing to respond more effectively, with less emphasis on polit-

ically attractive ‘border control’ and more emphasis on ‘early detection’ and

‘rapid response’. Improved building, water, food and hygiene standards, and the
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production and use of vaccines, along with health education, have already low-

ered the risks for many of the old infections like pertussis, diphtheria, typhoid

and plague. But we cannot escape the need to invest in preparation so we can

be ready for the new challenges that will certainly emerge. The signs over the

last 30 years have been very clear. We must expect the unexpected and be ready

for it.

Tuberculosis: a case study

The following case study was adapted and condensed with permission from a

teaching exercise devised by Dr Donald Hopkins (The Carter Center, USA). It

is based on a pioneering report on the transmission and natural history of an

outbreak of tuberculosis (TB) at a Danish school in 1942–3. The approach to

the study and the information that emerged remain valid today. The investiga-

tion was completed before the availability of anti-TB drugs such as streptomycin

(1949) and isoniazid (1952) that would have altered the natural history observed.

Few epidemiological studies have had a greater influence on concepts and action

for an important infection. The natural histories of primary and post-primary TB

were documented, the risks were quantified, and the mode of transmission clar-

ified – all essential information for improving control of the infection.

Background

In the 1940s, the pathogenesis and epidemiology of pulmonary TB was contro-

versial. The mode of spreading was assumed to be prolonged intimate contact

but it was not known whether this involved contamination of the environment

(e.g. cups or surfaces), direct contact with infectious secretions, or contact via

air. Emphasis for control was on contact examination and follow-up, isolation of

those with active pulmonary TB and improving home and public hygiene, espe-

cially the control of spitting. Use of BCG vaccination was (and remains) of uncer-

tain utility.

The epidemic of tuberculosis in a Danish girls’ school, 1942–3

Between December 1942 and March 1943 an epidemic of an acute febrile disease,

first thought to be influenza, occurred in a community public school for girls in

Denmark. Over a period of 11 weeks 53 cases occurred among the 368 pupils

(Figure 12.6).

During the middle of the epidemic, eight cases of erythema nodosum (small,

painful skin nodules) were noted and this suggested a diagnosis of primary

pulmonary TB. Investigations included tuberculin skin testing of all apparent
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Figure 12.6 The epidemic curve
for the Danish tuberculosis
outbreak 1942–1944. (Data
source: Hyge, 1947.)

non-cases, gastric lavage and culturing of skin-test converters, and the taking

of chest X-rays of all the students.

The school was already under observation because one year earlier (Octo-

ber 1941) there had been three cases of pulmonary TB with no further spread.

Vaccination (BCG) was offered at the time to those who were skin-test negative.

On 7 December 1942 a regular follow-up had revealed that 130 pupils were natu-

rally tuberculin positive, 133 had converted after the BCG and 105 were negative

(i.e. overall 71.5% were positive). The negatives included those who had refused

BCG and new girls who had entered the school in autumn 1942. Thus, coinci-

dentally, the tuberculin status of the school was surveyed just before the 1942–3

outbreak.

The source of infection and mode of transmission

Tuberculin tests performed again in March 1943 revealed that 70 (66.7%) of the

105 previously tuberculin-negative pupils had converted to positive. Of these 53

had suffered from a flu-like illness (with or without erythema nodosum) and 17

were apparently asymptomatic.

School classes moved from room to room on a regular schedule throughout

the day. The school building was at ground level except for several rooms ‘in

the basement which were small and dark . . . in particular the physics room of the

middle school which also served as the air-raid shelter. This was a permanently

blacked out cellar . . . Any ventilation was practically out of the question because

of sand bags piled up in front of windows . . . ’ (Hyge, 1947).

A search for the source of infection begun in March 1943 included X-ray exam-

ination of all teachers and employees. Only one teacher showed distinct changes,

but the findings were the same as on preceding examinations. She nevertheless

became a suspect source of infection.

This female teacher taught a total of nine separate classes in the physics

room spending ‘all of her hours at the school in these basement rooms’. Four

other classes with different teachers were also held in the basement early in the
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Table 12.2 Tuberculin conversion rates between December 1942 and March
1943 among known tuberculin-negative pupils by degree of exposure to
suspect teacher.

Tuberculin status

Negative Positive %

Group Degree of exposure Dec 1942 Mar 1943 Converted

A Taught by suspect teacher 53 46 86.6

B In basement classrooms with

other teacher

41 24 58.5

C In basement classroom prior

to arrival of suspect teacher

6 0 0

D Not in basement 5 0 0

Total 105 70 66.7

(Data source: Hyge, 1947.)

morning before the suspect teacher arrived at the school. Three classes did not

normally enter the basement rooms.

The tuberculin conversion rates among the pupils who were negative in

December 1942 are shown in Table 12.2, according to their exposure to the sus-

pect teacher.

The suspect teacher was placed on leave on 5 March and ‘after some objection

she was persuaded to submit to gastric lavage on April 6’. (Persons with post-

primary infectious pulmonary TB often swallow their sputum and TB organisms

may be found in the stomach contents.) The culture revealed four colonies of

tubercle bacillus, human type. On careful inquiry ‘this teacher stated, as was also

confirmed by others, that she had a cold from about the middle of December

1942, when the infection became more aggressive’.

‘Very frequent tuberculin tests on the remaining 35 tuberculin-negative pupils

who kept attending school’ were performed. No new infections appeared after

the tuberculin survey in March.

Short-term infection outcomes

All of the 70 converters were repeatedly examined by X-ray and by culturing of

gastric lavage specimens. More than half (41) were shown to have a positive cul-

ture (5), a positive X-ray (4), or both (32), as evidence of primary pulmonary

tuberculosis. The 263 pupils who were found to be tuberculin positive in Decem-

ber 1942 (130 naturally positive and 133 BCG-induced) were also given X-ray

examinations in March 1943. ‘None was found to show any evidence of active

pulmonary tuberculosis.’
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Table 12.3 The occurrence of progressive pulmonary tuberculosis in a Danish school for girls, 1943–55.

Total cases of progressive tuberculosis

Tuberculin status Number of pupils 3-year follow-up 12-year follow-up

Naturally positive in December 1942 130 4 9

BCG-induced positive in February 1942 133 3a 3a

Converters between December 1942 – March 1943 70 6 14

Negativeb 35 0 0

Total 368 13a 26a

(Data source: Hyge, 1957.)
a One mild case of tuberculosis developed in a BCG vaccinee whose tuberculin test had reverted to negative in December

1942
b Those who escaped infection during the epidemic.

Follow-up studies and natural history of TB infection

All 368 pupils in the school were followed at regular intervals over the course of

the next 12 years for the development of progressive pulmonary TB. The findings

are summarized in Table 12.3. Among the 130 pupils who were naturally positive

before the outbreak a total of 9 cases of progressive TB developed. Among the

133 who received BCG, 3 cases developed within the first year and none subse-

quently. Among the 70 who became infected during the epidemic, 6 cases devel-

oped within 1 year with a total of 14 cases over the 12-year period (20%).

Implications of the study

Because this study had a defined population and a clear exposure event, we can

infer the mode of transmission. In addition, the long follow-up before the advent

of specific therapy reveals the natural history of the infection, which is an always

important but often elusive component of infectious disease epidemiology. We

also note the effectiveness of BCG in that setting, and the 12-year cumulative

incidence of progressive (post-primary) TB among four important host cate-

gories: recent tuberculin converters, persons naturally infected at an earlier date,

BCG vaccinees and tuberculin negatives. The information has implications for

post-exposure surveillance of TB and for its prevention and control.

The incubation period for primary pulmonary TB had not been defined accu-

rately because point-source outbreaks with single exposures were rare and the

dates of onset of first symptoms were often vague because the symptoms are

relatively mild (flu-like). This epidemic is one of the few with onsets specified

to weeks. Experimental animals take 1–3 months for tuberculin conversion after

inoculation. These girls developed acute primary TB after inhaling TB organisms

that lodged in their lungs. Primary TB is usually self-healing and the organisms

become dormant in the lungs. The usual situation is that, months to years later,
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post-primary pulmonary TB may develop with chronic coughing and, in some

cases, production of infectious aerosols, usually related to the development of

lung cavities connecting to the airway. This is the debilitating and frequently fatal

condition generally called ‘tuberculosis’.

Conclusion

To conclude this chapter we reiterate that while we have focused on infectious

diseases to introduce their special features which had not been covered by the

predominantly chronic disease examples used in other sections of this book, the

principles used apply to all disease outbreaks, communicable or otherwise. In

the next chapter, we will go on to consider another practical public health appli-

cation of epidemiology that has largely developed from systems originally estab-

lished to monitor endemic and epidemic infectious diseases, namely the process

of surveillance. This process provides us with much of our information regard-

ing changes in morbidity and mortality that might signify the emergence of a

new health problem (or the resolution of an old one).

Questions

The Public Health Training Network of the US Centers for Disease Con-

trol and Prevention has developed some excellent computer-based exercises

in outbreak investigation. These are freely available from http://www.cdc.

gov/eis/casestudies/casestudy-list.htm.

The following questions relate to the TB case study described at the end of the

chapter.

1. Use the epidemic curve in Figure 12.6 to help estimate the probable time of

exposure and the incubation period.

2. Were the initial investigations in March 1943 (Table 12.2) based on a case–

control or cohort approach to investigating an epidemic? What sort of study

was the subsequent 12-year follow-up (Table 12.3)? What biases or con-

founders could have arisen?

3. What types of measure (cumulative incidence, prevalence, attack rates or

other estimates) are shown in the last column of Table 12.2?

4. Comment on the absence of tuberculin in groups C and D of Table 12.2. Do

you think these groups are really different from groups A and B (i.e. is the dif-

ference likely to be statistically significant), or are the numbers of students in

these two groups too small to warrant confident conclusions?

5. From the information yielded by this outbreak, would you prefer your tuber-

culin status to be:
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� naturally positive, i.e. infected at some unidentified time in the past;
� BCG-induced, i.e. converted by receiving BCG after a negative test result;
� recently converted; or
� tuberculin negative?

6. What has this report shown about the mode of transmission of TB?
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Box 13.1 A timeline of events during the identification of
the 2002–3 SARS epidemic

November 2002: two GOARN (Global Alert and Response Network) partners,

the WHO Global Influenza Surveillance Network and the US Global

Emerging Infections Surveillance and Response System, noted media

reports of influenza in China.

December 2002: an influenza B epidemic was virologically confirmed by

Chinese authorities. In retrospect those early media reports were probably

also the first indication of SARS, which also erupted at that time as

seemingly unrelated clusters of atypical pneumonia in the south of China

(atypical pneumonia is common in that region each winter).

20 February, 2003: Hong Kong confirmed two human cases of much-feared

avian influenza (H5N1). This was soon after the Chinese government had

(continued )
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Box 13.1 (continued)

reported that the atypical pneumonia had been unusually lethal in many

cases.

21 February, 2003: just as the WHO prepared for an influenza pandemic, a

Chinese doctor was admitted to a local Hong Kong hospital; staff adopted

strict precautions against bird influenza but he had already infected

several people at the hotel he occupied the night before. They spread the

virus to other hospitals, the Hong Kong community, Canada, Vietnam and

Singapore.

12 March, 2003: GOARN had gathered enough data from those countries and

Hong Kong for the WHO to issue its first global alert.

15 March, 2003: the disease was given the name severe acute respiratory

syndrome (SARS). GOARN then linked laboratory scientists, clinicians and

epidemiologists all over the world.

July 2003: the causative agent, incubation period, infectious period and usual

modes of transmission had been determined, good diagnostic tests and

surveillance and control programmes had been devised and implemented,

and human transmission ceased.
(From Heyman and Rodier, 2003.)

Box 13.1 summarises the timeline of a critical global health incident – the SARS

(sudden acute respiratory syndrome) epidemic – which prompted an unprece-

dented rapid and collective global response, leading to early effective surveil-

lance and control. Without the ability to gather timely information on such

emerging and changing health problems, public health can be paralysed or at

best inefficient. In this chapter we will discuss the design and use of the special

information systems that allow health officials to detect new risks and diseases

such as SARS promptly, track known problems, and generate data needed for

effective health planning and resource allocation. This is the population health

surveillance system. It is complex in practice but simple in its aims – to generate

timely and useful information on the occurrence of health events. It covers infec-

tions, chronic diseases and injuries, as well as many of the exposures known to

cause ill-health. It is inter-connected within and among regions and has grown

much more accessible since the advent of the Internet. Surveillance is the eyes

(and ears) of public health.

The word surveillance, meaning ‘the constant watching of subversives’, came

into use during the time of the Napoleonic wars. The modern epidemiological

meaning is consistent with the idea of constant watching, but usually of diseases

rather than suspects:
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Public health surveillance is the ongoing, systematic collection, analysis, interpretation,

and dissemination of data regarding a health-related event for use in public health action

to reduce morbidity and mortality and to improve health. (CDC, 2001)

However, surveillance of people does still occur for public health purposes; for

example, close contacts of infectious persons who have been isolated (or quar-

antined) to interrupt community transmission are observed until the end of the

incubation period for that infection. Similarly, those emerging from a zone with

an ongoing epidemic may be monitored; for example, the temperature (thermal

screening) and respiratory symptom checks (by questionnaire) of travellers arriv-

ing at airports during the 2003 SARS and 2009 H1N1 influenza (often inappropri-

ately described as ‘swine flu’) epidemics. During the SARS epidemic even high-

rise apartment buildings were placed under watch in Hong Kong if two or more

cases of SARS occurred there.

Dynamic surveillance data on population risks, morbidity and mortality are

the key indicators for epidemiological intelligence on community health. When

surveillance data vary from the expected they may provide a justification for

investing in basic or strategic research to respond to the anomalies. Surveil-

lance is used to detect outbreaks of new or old diseases and, over recent years,

has increasingly been recognised as a crucial component of national and global

defences against catastrophic epidemics. Globally, regionally and locally, it also

provides evidence and data for health planning and evaluation. Surveillance

detects and quantifies the occurrence of important or potentially important

health risks or outcomes, revealing their distribution, incidence and prevalence.

For many infections (such as HIV/AIDS, TB, malaria, meningitis and dengue)

local and regional transmission rates are of central interest in deciding whether

to activate and justify control programmes or to monitor their effects. For other

infections (such as new strains of influenza) the surveillance data lead to rapid

global responses.

The essential features of a surveillance system are:
� practical, clear case definitions for each disease;
� workable, uniform and continuous data collection methods; and
� rapidity of collection, analysis, interpretation and dissemination of data.

Ultimately, the purpose of surveillance is disease control and prevention. Prac-

tical intermediate goals include identifying and monitoring outbreaks, limiting

transmission of infectious agents, prompt treatment of illness, evaluation of dis-

ease control programmes and planning health services.

The scope of surveillance

Traditionally the term surveillance has been applied to monitoring acute infec-

tious diseases and although this remains a major focus, its scope has widened
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substantially. Today, surveillance also covers morbidity and mortality for many

non-infectious diseases (e.g. congenital malformations, injuries and cancer);

hospital discharges; use of vaccines and prescription drugs and their adverse

reactions; and even environmental hazards in the workplace and the gen-

eral environment (air, water, soil). Although not demanding such an imme-

diate response, the principles underlying these newer extensions of the con-

cept to chronic disease are the same: unless we monitor trends we cannot

identify emerging problems. In addition, health information systems are begin-

ning to extend surveillance to risk factors themselves, an interest reinforced

by The World Health Report in 2002 which highlighted the need to reduce

risks in order to lower the avoidable burden of disease. The WHO identified

the ten leading risk factors accounting for over one-third of all deaths world-

wide: being underweight; unsafe sex; high blood pressure; tobacco consump-

tion; alcohol consumption; unsafe water, sanitation and hygiene; iron defi-

ciency; indoor smoke from solid fuels; high cholesterol level and obesity (WHO,

2002). It is not possible to tackle these risks without good surveillance to

monitor their trends and distributions. Some of these are monitored by spe-

cialised units while others are rolled into general health service information

collections.

At the same time as a risk-oriented re-focusing has occurred in public health,

there has been growing awareness (or rediscovery) of the role of poverty and

other fundamental social determinants of health. The last decades of increas-

ingly active research on social epidemiology have brought the concern with

health inequities into the consideration of many health ministries. Surveillance

and geo-social mapping of these socioeconomic trends is in its infancy but is

growing quickly. This development involves partnerships between the health

and social service sectors, as well as with national statistics offices and treasuries,

information technologists and statisticians.

Finally, useful contributions to health surveillance activities can also come

from many other types of information. This could include, for example, reports

on climatic conditions, which could be of interest with respect to patterns of res-

piratory disease, mosquito-borne infections or even heat- or cold-induced ther-

mal stress. Information on animal health is also an important component of pub-

lic health surveillance. Contemporary examples include avian influenza, Q fever

and leptospirosis – all subject to surveillance in animal populations. Historical

examples in developed countries since World War II include surveillance for bru-

cellosis, tuberculosis in dairy herds (to control human TB in the 1950s) and then

tuberculosis in beef cattle (to protect abattoir workers). Today, meat inspection

remains a very important component of all infectious-disease surveillance sys-

tems intended to protect human populations from zoonoses – infections that

cross from animals to humans.
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Notifiable diseases

What issues do you think should be considered before a disease is included on a

notifiable list as a disease to be watched?

In the first instance, this is a matter of assigning a level of public health impor-

tance to a disease. When doing this, the first issue to be considered is the

incidence of the disease (if it is of long duration, its prevalence might be more

appropriate). How many people are affected and how many more are likely to

be? How severe is the illness? What is its expected mortality? Infectivity? Other

pertinent factors include the degree of preventability of the disease, the poten-

tial effects on productivity and medical costs, media exposure and political and

economic costs. The recent global focus on the explosive SARS epidemic of 2003

was driven by a powerful combination of its high case–fatality ratio (10% over-

all), mysterious origins and cause, apparent rapidity of long-distance spread and

the severe consequences for the travel industry. Furthermore, although there

were eventually only 8,422 cases worldwide, 1,706 (21%) of those affected were

healthcare workers and in some areas (such as Hong Kong and Canada) the

case–fatality ratio was as high as 17%. Once the outbreak was recognised, global

surveillance was adopted and SARS was made a notifiable disease. The experi-

ence with SARS helped improve the global surveillance and notification system

and in 2007 WHO member states adopted new International Health Regulations

(WHO, 2008). These include an expanded list of diseases that must be notified

to WHO and the requirement to report any event that could become a public

health emergency of international concern, including events that do not involve

infections. The appearance of a new low-virulence variant of pandemic influenza

(H1N1) in 2009 tested the new regulations in ways that had not been anticipated,

as WHO had to balance well-prepared responses against a public heath impact

that was less severe than expected.

Clearly, any schedule of notifiable diseases should be reviewed regularly. Are

there new problems we need a handle on? Have laboratory advances meant that

we need to review the case definitions? Also, in a system that relies heavily on

the co-operation of busy clinicians, is everything being done to maximise co-

operation? This includes keeping the list of notifiable diseases as short as possi-

ble (in practice it seems to be a lot harder for a disease to ‘leave’ a list than to join

it!); using simple reporting forms or procedures (electronic forms are increas-

ingly common); and giving timely feedback to show how the data collected are

used to enhance healthcare.

Sometimes surveillance information is available within the health system but

there is a slow response (or no response) or further dissemination is actually sup-

pressed; combinations of system failures and/or misguided political judgement
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can compromise the utility of the best data collection protocols. Response fail-

ures have been shown to lead to much avoidable national morbidity and mor-

tality for infections such as plague, cholera, Ebola haemorrhagic fever, West Nile

virus and SARS. It is even worse when the infection spreads to multiple coun-

tries, or around the world. Early responses to outbreaks of lethal transmissible

infections, or to diseases caused by new exposures to environmental toxins, may

save many lives. However, over-response is also an issue and public health offi-

cials need good judgement to balance the response against the risk. Once an

emergency is declared trade, travel, schools and many facets of normal life and

the economy are quickly disrupted. The situation that unfolded with pandemic

H1N1 influenza in 2009–10 has tested the ability of public health leaders to get

it right and it will take several years before judgements can be made about the

appropriateness of the global response.

Types of surveillance

Surveillance systems fall into three broad types, all of which may co-exist in a

single geographical area or health system: passive, active and sentinel systems.

Passive surveillance

As the name implies, a passive surveillance system depends on the discretion

or whim of the healthcare provider, even where notification is required by law.

Although a passive system is likely to be inexpensive, it may not be complete

because not all events will be reported. An exception to this might be the report-

ing of a condition with a high level of media coverage at a particular time (e.g.

SARS, dengue haemorrhagic fever, Ebola, haemolytic–uraemic syndrome and

anthrax).

Media-driven alerts can also assist passive surveillance of non-infectious dis-

eases. An example is the spectacular epidemic of eosinophilia–myalgia syn-

drome (a rare autoimmune disease) in the USA. Over 1,500 cases and more than

25 deaths were detected in 1989 and 1990. This painful and mysterious non-

infectious condition was investigated epidemiologically by contacting many

cases detected by the passive surveillance system. The cause was found to be

the chemical composition of a single source of l-tryptophan, a common over-

the-counter dietary supplement for which the method of manufacture had been

altered just before the epidemic began (Jimenez and Varga, 1991).

Surveillance of the majority of notifiable diseases in many countries relies

heavily on a passive system, whereby the diagnosing doctor initiates a report

to the monitoring authority (although often only a minority of cases is actually

reported). In addition, laboratories notify the authority when they come across
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an individual with any one of a specific set of diseases for which notification is

required by law (including cancer as well as infectious diseases). These labora-

tory reports are likely to be much more complete than the primary care-initiated

reports.

Absolute figures from passive surveillance frequently underestimate the true

illness burden. It is likely, however, that patterns and changes over time, across

regions and among differing groups of people (age, sex, ethnicity) will still be

informative. It is also possible to perform ‘active’ surveillance (see below) in

representative sub-sets of a passive-surveillance population and thus derive

multipliers to convert the passive rates into more accurate estimates. Of course

this is cheaper than a population-wide active surveillance system but it will miss

small outbreaks and other sub-regional variation if those areas were not included

in the active-surveillance samples.

Active surveillance

Active surveillance is based on specific collection of data from healthcare

providers or institutions, both as a need arises and in the longer term. Unlike

passive surveillance which relies on healthcare providers remembering to report

events, in active surveillance the organisation conducting the surveillance

actively seeks the relevant information. It is used, for example, during outbreaks

of food-borne pathogens or measles when healthcare providers are contacted

and asked to provide details of any cases they have seen. Laboratory data defin-

ing strains of prevalent organisms are used for forward planning (e.g. choos-

ing the right influenza vaccine for the next winter epidemic); and knowledge

of patterns of resistance to antibiotics can influence local choices of treatment

for bacterial diseases. A further example is the requirement that hospitals pro-

vide data on all discharges. Expansion to non-infectious diseases has come with

legal requirements to report incidence of cancers in many countries, establishing

high-quality networks that permit research as well as monitoring (see Chapter 3).

Active surveillance may also include household surveys to detect ongoing

transmission of infections. For example, this can be done serologically for

malaria in at-risk areas if incidence rates are low and reports by health work-

ers are unreliable. It may also be done for TB or schistosomiasis, by using skin

tests to detect past infection, or for polio, by searching for floppy paralysis. Active

surveillance may extend to environmental assessment for ongoing, reappearing

or even new disease risks, including the presence or abundance of relevant vec-

tors of infection such as specific species of mosquitoes or snails.

Active surveillance can produce more complete data of better quality than that

provided by other systems. However, it is resource-intensive to maintain, espe-

cially to produce timely output of information. In those jurisdictions that permit

it, and when the technology makes it feasible, active surveillance can be done
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Box 13.2 Post-marketing surveillance of the safety of the
drug cimetidine

Almost 10,000 patients who took cimetidine (mostly for peptic ulcer)

between 1977 and 1980 were followed for 15 years to observe their long-term

health outcomes. The findings were reassuring, providing no evidence of any

long-term adverse effects of cimetidine (at least not ones that could be

detected by monitoring mortality rates). The data arising from this

surveillance have also been used to examine the possible positive

relationships between ingestion of aluminium and Alzheimer’s disease, and

H. pylori infection and ischaemic heart disease, but no significant

relationships were found (Beresford et al., 1998).

using record linkage to link records from different sources to extract informa-

tion that would otherwise be sought by passive surveillance systems. Examples

include the use of clinical and treatment records to detect iatrogenesis (illness

as a result of treatment by a physician), especially adverse reactions to drugs as

shown in Box 13.2. This can be taken further by establishing systems to anticipate

such events even before they occur (e.g. when potentially adversely interacting

drugs are prescribed but before they are dispensed), so linking surveillance with

prevention in a most direct manner.

Sentinel surveillance

Sentinel surveillance relies on the reporting of cases of specific diseases or risk

factors that may indicate that a particular preventive or therapeutic activity is

not working as planned. Examples of sentinel health events would include a case

of poliomyelitis, which might indicate that there has been a breakdown in the

vaccine cold chain (such that a batch of vaccine has not been stored correctly)

or that vaccination coverage has fallen to a low level (see Box 13.3); or a case of

mesothelioma linked to a past history of exposure to asbestos. In some countries

(Australia and the UK to name two), there is also a network of sentinel primary

care practices that report a number of diseases on a regular basis. Their list of

diseases reported varies from year to year but typically includes things such as

influenza-like illnesses, culture-confirmed influenza, chickenpox and shingles.

Sentinel surveillance of the staff in large hospitals that treat cases arising from

an epidemic in the community can also be useful. For example, annual influenza

trends among staff in large Hong Kong hospitals amplify early trends in the com-

munity and could be used as an early warning system, provided that staff mem-

bers are not vaccinated against influenza (and many are not). Similarly, presenta-

tions of community-acquired pneumonia to such hospitals can be monitored to

discern trends of respiratory illness in the community, detect unusual pathogens



Surveillance in practice 315

Box 13.3 Polio eradication – surveillance and progress
in India

By 2001, polio had largely been limited to two states in India, with only 268

new cases that year, but in 2002 there was a major resurgence with 1,600 new

cases. In 2003, a network of 248 medical officers trained in surveillance

assisted Indian health authorities with surveillance for acute flaccid paralysis

(AFP), the critical clinical marker of polio. The WHO criteria for assessing the

quality of polio surveillance require that
� non-polio AFP should be detected at a rate of ≥1 per 100,000 in the

population aged <15 years (to ensure that ‘background’ AFP cases are

being detected at a level showing good coverage) and
� adequate stool specimens should be collected from ≥80% of people with

AFP for polio diagnosis.

India had been meeting these criteria since 2000, but in 2003 the non-polio

AFP rate was <1/100,000 in seven small states and stool specimens were

inadequate in 11 states (covering 35% of India’s population). During 2002,

the proportion of infants aged less than 1 year who received three or more

routine doses of oral poliovirus vaccine was only 21% in some states.

Following this effort, vaccination increased again in 2003 and only 225 wild

poliovirus cases were reported that year, the lowest level yet (Anonymous,

2004).

and track incidence rates for year-to-year comparisons and early detection of

epidemics. At the most active end of the scale internationally, the CDC Divi-

sion of Emerging Infections and Surveillance Services website reports a complex

array of current US sentinel and active surveillance programmes (http://www.

cdc.gov/ncpdcid/deiss/index.html).

Surveillance in practice

The most developed surveillance systems can be found in the USA. There the

Centers for Disease Control and Prevention (CDC) provide an excellent exam-

ple of integrated disease surveillance and Table 13.1 gives a brief history of

the development of the current system. The CDC website (http://www.cdc.

gov/DataStatistics/) also lists many surveillance activities, related scientific data

(e.g. injury maps and information on hazardous materials), health statistics

(including the National Center for Health Statistics database) and up-to-date

laboratory information on disease organisms. Sixteen surveillance programme

categories were listed in March 2004; this list has expanded to over 50 in 2010,

with just over 20 specifically for infectious diseases, and new elements includ-

ing an Enhanced Terrorism Surveillance Network – the ‘8 Cities Project’. Box 13.4
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Table 13.1 A brief history of the US National Notifiable Diseases Surveillance System.

Year Events

1878 Congress authorised the US Marine Hospital Service, the forerunner of the Public Health Service (PHS), to

collect morbidity reports regarding cholera, smallpox, plague and yellow fever from US consuls overseas.

This information was to be used for instituting quarantine measures to prevent the introduction and spread

of these diseases into the USA.

1879 A specific Congressional appropriation was made for the collection and publication of reports of these

‘notifiable’ diseases.

1893 The authority for weekly reporting and publication of these reports was expanded by Congress to include data

from states and municipal authorities.

1902 To increase the uniformity of the data, Congress enacted a law directing the Surgeon General to provide forms

for the collection and compilation of data and for the publication of reports at the national level.

1912 State and territorial health authorities – in conjunction with PHS – recommended immediate telegraphic

reporting of five infectious diseases and the monthly reporting, by letter, of 10 additional diseases. The first

annual summary of ‘The Notifiable Diseases’ included reports of 10 diseases from 19 states, the District of

Columbia, and Hawaii.

1928 All states, the District of Columbia, Hawaii, and Puerto Rico were now participating in national reporting of 29

specified diseases.

1950 State and Territorial Health Officers authorised a conference of state and territorial epidemiologists whose

purpose was to determine which diseases should be reported to PHS.

1961 The Centers for Disease Control (CDC) assumed responsibility for the collection and publication of data

concerning nationally notifiable diseases.

2010 More than 50 infectious diseases are listed as notifiable.

(From http://www.cdc.gov/ncphi/disss/nndss/nndsshis.htm, accessed 23 January 2010.)

gives some examples of the many programmes running as at January 2010 – you

have already met one of these, the Behavioral Risk Factor Surveillance System

(BRFSS), as this was the source of the obesity data shown in Figure 3.4.

The CDC integrates surveillance with its Public Health Information Network

(PHIN) and uses on-line and other methods to enhance the system. A cur-

rent initiative is the National Electronic Telephonic Surveillance System (NETSS)

(http://www.cdc.gov/ncphi/disss/nndss/netss.htm) which promotes integrated

systems of reporting at federal, state and local levels.

The WHO is the leading international agency for disease surveillance. It com-

piles global data and is the central resource for monitoring infectious dis-

eases and detecting and reporting outbreaks. The WHO is especially important

for helping resource-poor areas respond to epidemics. Since 1997 it has oper-

ated the Global Alert and Response Network (GOARN). This network includes

120 partners throughout the world and identifies and responds to over 50

national outbreaks per year in developing countries. It includes tracking of media

reports in its surveillance strategies and has found that it is helpful to moni-

tor and plot rumours of outbreaks as well as respond to reports from member
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Box 13.4 Examples of surveillance programmes in the
USA (2010)

8 City Enhanced Terrorism Surveillance Project

Assisted Reproductive Technology (ART) Success Rates

Behavioral Risk Factor Surveillance System (BRFSS)

Birth Defects Surveillance

Early Warning Infectious Disease Surveillance (EWIDS)

HIV/AIDS Statistics and Surveillance

National Diabetes Surveillance System

National Notifiable Diseases Surveillance System (NNDSS)

National Oral Health Surveillance System (NOHSS)

Pediatric Nutrition Surveillance System (PedNSS)

Pregnancy Nutrition Surveillance System (PNSS)

Pregnancy Risk Assessment Monitoring System (PRAMS)

Registry of Toxic Effects of Chemical Substances (RTECS
R©

)

Sexually Transmitted Diseases

Traumatic Injury Surveillance

Tuberculosis Surveillance Reports

United States Cancer Statistics

Vaccine Adverse Event Reporting System (VAERS)

Workplace Safety and Health Surveillance
(From http://www.cdc.gov/DataStatistics, accessed 17 January 2010.)

countries or its network. The utility of GOARN for multi-country epidemics was

revealed by the SARS emergency in 2003 (see Box 13.1 at the start of the chapter).

Like the CDC, the WHO also conducts surveillance for risk factors. In

2003 the Non-Communicable Diseases and Mental Health team at the WHO

launched the first ‘SuRF’ report on Surveillance of Risk Factors related to

non-communicable disease, with a second more comprehensive report in

2005 (https://apps.who.int/infobase/surf2/start.html). These reports assem-

bled existing data on the prevalence of major risk factors related to non-

communicable diseases for WHO member states for the first time, using infor-

mation from the WHO Global NCD (non-communicable disease) Infobase.

The WHO has since introduced a stepwise system for surveillance (STEPS) to

help member countries collect comparable information using the same stan-

dardised questions and protocols (http://www.who.int/chp/steps/en/). The risk

factors reported are tobacco and alcohol use, patterns of physical inactivity, low

fruit/vegetable intake, obesity, raised blood pressure, and raised blood choles-

terol levels, as these make the major contribution to mortality and morbidity

from chronic diseases, can be changed by primary interventions, and can be eas-

ily measured in populations.
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Figure 13.1 Evolution of
surveillance for measles, mumps
and rubella in England and
Wales: providing the platform
for evidence-based vaccination
policy. (From Vyse et al.,
Evolution of surveillance of
measles, mumps and rubella in
England and Wales,
Epidemiologic Reviews, 2002;
24: 125–136, by permission of
Oxford University Press.)

A national example – surveillance for MMR (measles–mumps–rubella) in

England and Wales

Box 13.5 shows the historical development of measles, mumps and rubella

(MMR) surveillance in the UK. It is a good example of the extension of a basic

passive surveillance system with sophisticated use of several complementary

data sources in order to plan, evaluate and update the evolving vaccination

strategy. The original article (Vyse et al., 2002) shows elegantly how each ele-

ment contributed to the increasingly subtle analyses required as vaccine cov-

erage has improved, local disease rates have declined (causing more misdiag-

nosis), imported disease has increased and vaccine resistance has emerged in

some population subgroups. Figure 13.1 shows the very positive overall disease

trends, but the continuing challenge is to maintain and extend control of these

diseases. The WHO is committed to eliminating measles as a global problem,

but, as demonstrated by this example, this will not be easy.

Describe the overall pattern of measles occurrence. Comment on the likely role

played by vaccination in its control.

The graph shows a regular see-saw of epidemic peaks (with hundreds of

thousands of extra cases) and troughs from 1950 through to the commence-

ment of measles vaccination in 1968, although their amplitude was already

lessening somewhat. Thereafter there is an initial sharp drop in the number

of notified cases (even though vaccine coverage expanded slowly at first), fol-

lowed by a general pattern of steady decline interrupted by occasional peaks.

The switch to MMR vaccination and extra coverage pushed notifications down
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Box 13.5 Surveillance of MMR (measles–mumps–rubella) in
England and Wales

Methods of monitoring vaccine coverage

(i) Estimate vaccine coverage in 2- and 5-year olds (since 1960s for 2-year

olds); done quarterly, using sentinel antigens with rapid feedback to

immunisation services.

(ii) Introduce statutory notification of clinical measles (1940), mumps (1988)

and rubella (1988).

(iii) Widespread laboratory confirmation of clinical reports (since 1994) – a

critical addition because with the falling prevalence, only 20% of clinical

diagnoses were actually confirmed as cases (also genotyping for

diagnosis and outbreak tracing).

(iv) Antibody prevalence monitoring of MMR (1986) in residues of general

specimens submitted to public health laboratories; plus sentinel

laboratory monitoring of rubella susceptibility in antenatal women

(1984).

(v) Supplementation by other data sources: death certificates, hospital

admissions, primary care surveillance of mumps (sentinel practices), and

congenital abnormality surveillance for rubella.

Vaccine policy

Guided by modelling based on the above data and vaccine availability,

delivery strategies moved through a number of stages:

1968: measles vaccine introduced (80% coverage by 1988);

1970: rubella vaccine introduced for schoolgirls and susceptible women

(>95% protection of young adult women by 1988);

1988: combined MMR vaccination of infants commenced (plus initial

catch-up for 2–4-year-olds and selective vaccination of older

females susceptible to rubella);

1994: one-off measles–rubella campaign in 5–16-year-olds to head off

possible measles epidemic and ‘top up’ rubella coverage;

1996: two-dose MMR strategy implemented (second dose before school

entry).
(Vyse et al., 2002.)

sharply again towards zero (this would show better on a logarithmic scale);

and the 1994 campaign does look as if it might have killed off a possible small

epidemic. This is a very successful public health intervention that has required a

lot of thought and hard work, in particular very active surveillance via a variety

of data sources as outlined in Box 13.5, to implement.
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A regional example – disease surveillance in Queensland, Australia

As a fairly standard example of a practical overall surveillance scheme at a

regional level, we describe below the Queensland (Australia) notifiable-diseases

system. Queensland is a geographically large state (seven times the area of the

UK) but has a population of only about 4.5 million. Queensland Health conducts

surveillance for approximately 80 conditions, primarily using passive surveil-

lance based on combinations of clinical and laboratory notifications. Data are

collated centrally and then disseminated to the local Public Health Units for

action. Regular improvements to the underlying information technology aim to

enhance the system’s sensitivity, timeliness, uniformity and acceptability. Giving

good feedback to clinicians and increasing their involvement in the process are

also expected to add substantially to the system’s quality. Some case studies give

examples of the varied ways in which surveillance data are used, which are often

a function of the nature, severity and frequency of the disease concerned.

Hepatitis C. Most notifications are of chronic (i.e. prevalent) infections (acute

clinical presentations are rare), so reported numbers give no idea of inci-

dence. There is no active public health response to a notification, and the

data are used for health planning only.

Poliomyelitis. This is now a very rare disease (as in most developed countries).

Apart from local needs, this viral illness is monitored as an element of the

WHO programme to eradicate polio. There is enhanced surveillance seek-

ing all cases of acute flaccid paralysis (clinical diagnosis) with very strict

guidelines on laboratory samples and testing. There is a direct public health

response to every case notified.

Ross River virus. Queensland has large annual outbreaks of this often debil-

itating mosquito-spread viral illness. Actual notifications received are only

a small proportion of cases, and there is a lag time in notification reflecting

both the long incubation period of the disease and the time needed for con-

firmatory laboratory testing. The data are used for health planning, includ-

ing responses at the local government level (mosquito control), and in public

awareness campaigns.

Rumour surveillance

An important practical aspect of surveillance is the surveillance of rumours.

In 2004, news of a possible outbreak of avian influenza or ‘bird flu’ (H5N1) in

Vietnam led to an ‘epidemic’ of reports of avian influenza from around the world.

Rumours of outbreaks of disease cause anxiety, especially when the disease is

poorly understood, and can lead countries to impose travel and trade restrictions

with inevitable social and economic consequences. An important component

of the H5N1 surveillance program was thus the identification and investigation
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of such rumours so that false rumours could be countered as quickly as possi-

ble. Media reports and web/email-based public health discussion groups were

accessed on a regular basis to identify rumours of cases and these rumours were

then followed up by the local WHO country office. Of a total of 40 rumours iden-

tified from 12 different countries only nine were found to be correct (Samaan

et al., 2005). The importance of this aspect of disease surveillance – the verifica-

tion of reports of disease from unofficial sources – is now recognised in the latest

edition of the International Health Regulations (WHO, 2008) which states:

Article 10 Verification

WHO shall request, in accordance with Article 9, verification from a State Party of reports

from sources other than notifications or consultations of events which may constitute a

public health emergency of international concern allegedly occurring in the State’s terri-

tory. In such cases, WHO shall inform the State Party concerned regarding the reports it is

seeking to verify.

Evaluation of surveillance

Surveillance systems have (or should have) stated goals and objectives. These are

the logical starting points for evaluations and the following attributes should be

the focus.

1. Is the system detecting what it is supposed to detect?

The surveillance system data need to be compared with data produced by

another detection mechanism set up especially for evaluation.

2. Is the system producing data in time for appropriate responses?

3. Can the system cope with anomalies and changes?

The disease, or our knowledge of it (or both), may be changing quickly. A

surveillance system should be able to adapt to such changes and should not

rigidly adhere to outdated definitions or criteria. A good system needs to have

a mechanism to enable such flexibility.

4. Is the system as simple and cheap as possible?

5. Are the public health responses timely and appropriate?

Any system that does not lead to appropriate responses is flawed. Evidence

that the responses are appropriate should be sought.

Summary

Surveillance is an important tool for public health, and routine surveillance

data are available in regular reports produced by national and international

sources all over the world (we discussed some of these in Chapter 3). Any
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system that provides for the rapid collection, analysis and interpretation of data

in order to prevent disease is highly valuable, but here is a word of caution from

one of the world’s pre-eminent epidemiologists, the late Sir Richard Doll. In an

article on ‘Surveillance and monitoring’ (1974), he warned that ‘It is almost as

easy to be drowned in useless information as it is to be starved of essential ele-

ments’. The growing lists of surveillance targets noted above show that this cau-

tion is more relevant today than ever.

This and the previous chapter have largely focused on the control of infectious

diseases, through prevention and other strategies, and the monitoring and eval-

uation thereof. In the next chapter we will move on to a broader consideration of

disease prevention in general.

REFERENCES

Anonymous. (2004). Progress toward poliomyelitis eradication – India, 2003. Morbidity

Mortality Weekly Report, 53: 238–241.

Beresford, J., Colin-Jones, D. G., Flind, A. C. et al. (1998). Postmarketing surveillance of the

safety of cimetidine: 15-year mortality report. Pharmacoepidemiology and Drug Safety,

7: 319–322.

CDC (Centers for Disease Control and Prevention). (2001). Updated guidelines for evaluat-

ing public health surveillance systems: recommendations from the guidelines working

group. Morbidity and Mortality Weekly Report; 50 (No. RR-13): page 2.

Doll, R. (1974). Surveillance and monitoring. International Journal of Epidemiology, 3: 305–

313.

Heyman, D. L. and Rodier, G. (2003). Global surveillance, national surveillance, and SARS.

Emerging Infectious Diseases, 10: 173–175. Available from www.cdc.gov/ncidod/EID/

vol10no2/03–1038.htm.

Jimenez, S. A. and Varga, J. (1991). The eosinophilia–myalgia syndrome and eosinophilic

fasciitis. Current Opinion in Rheumatology, 3: 986–994.

Samaan, G., Patel, M., Lolwokure, B., Roces, M. C., Oshitani, H. and the World Health Orga-

nization Outbreak Response Team. (2005). Rumor surveillance and avian influenza

H5N1. Emerging Infectious Diseases, 11: 463–466.

Vyse, A. J., Gay, N. J., White, M. E. et al. (2002). Evolution of surveillance of measles, mumps

and rubella in England and Wales: providing the platform for evidence-based vaccina-

tion policy. Epidemiologic Reviews, 24: 125–136.

WHO (World Health Organization). (2002). The World Health Report 2002. Reducing Risks,

Promoting Healthy Life. Geneva: World Health Organization.

WHO (World Health Organization). (2008). International Health Regulations (2005). Second

Edition. Geneva: World Health Organization.



14

Prevention: better than cure?

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapters 6–8

Integration &
interpretation

Chapters 9–11

Practical
applications

Chapter 14:
Prevention

Disease prevention in public health 323

The scope for preventive medicine 328

Population versus individual risk 329

Strategies for prevention 331

The high-risk strategy 332

The mass strategy 334

The population attributable fraction as a guide to prevention 336

Attributable and avoidable disease 337

Prevention in practice 339

Evaluation of preventive interventions in practice 341

A final (cautionary) word 342

‘Prevention is so much better than healing, because it saves the labour of being sick.’

(Adams 1618)

While in population health we would prefer that people did not become ill in

the first place, this largely remains a remote goal, so achieving disease control

through more effective treatments remains a core public health strategy. But

prevention is still our ideal, and epidemiology underpins much of our work in

this area. In particular, it is central to identifying causes of disease that we can

change; it provides quantitative measures of relative and absolute risk that help

direct preventive action; and it plays a major role in evaluating whether preven-

tive programmes might actually work in practice. Additionally, what we might

term the ‘epidemiological perspective’ is helpful in conceptualising both the

practical and the ethical elements of prevention.

Disease prevention in public health

When we speak of prevention, we usually mean primary prevention, which aims

to prevent disease from occurring in the first place, i.e. to reduce the incidence

of disease. Vaccination against childhood infectious diseases is a good example

323
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of primary prevention, as is the use of sunscreen to prevent the development of

skin cancer.

Figure 14.1 shows tuberculosis (TB) mortality over time in England and Wales.

This is a disease that had all but disappeared from developed countries but is

now re-emerging elsewhere as a worldwide scourge.

Considering the figure, how important do you think the BCG vaccine and new

therapy were in promoting the decline in TB mortality?

Figure 14.1 and other historical trends make it clear that major health gains

were made before the advent of any sophisticated medical therapies and pre-

ventive measures. Social and cultural changes such as improved housing, san-

itation, general hygiene and nutrition have had a major influence on TB mor-

tality, presumably both by reducing incidence and by increasing survival. The

effects of such ‘upstream’ effects on disease incidence are sometimes termed

primordial prevention, because they are remote from the more proximal causes

that medicine and (conventionally) public health usually deal with. Our view is

that the upstream and proximal causes are inter-related and in practice it can

be difficult to distinguish the two; any intervention that lowers incidence is thus

sensibly termed primary prevention.

So, should we dismiss the value of the proximal strategies for TB control? (Note

that BCG vaccination was introduced later in the UK than in Denmark, as shown

in the example at the end of Chapter 12.) On the absolute scale of Figure 14.1

their contribution does seem marginal. But would mortality have declined less

quickly if there had been no BCG vaccine and no chemotherapy? Consider Fig-

ure 14.2, which shows the same information plotted on a log scale so that a 50%

reduction in mortality looks the same regardless of whether the drop is from a

death rate of 4,000 to 2,000 per million or from 40 to 20 per million, i.e. Figure 14.2

depicts the rate of change. We now see a slow and steady fall in mortality across
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the first 80 years that quickens slightly around 1920. The slope steepens just after

the introduction of chemotherapy and continues to fall following the introduc-

tion of BCG vaccination. These are hardly definitive evaluations of the benefits

of these advances, but the acceleration of the fall in mortality around 1950

implies that something has changed, and the introductions of vaccination and

treatment are the best candidates. And here, as elsewhere, when evaluating the

‘big-picture’ population effects of interventions we have to realise that such

apparently simple descriptive data are often going to be the main basis on which

our judgements rest.

While the principal goal of public health should first and foremost be primary

prevention, as suggested above, for many diseases we do not have enough infor-

mation (biological and/or epidemiological) to mount such a programme effec-

tively (or cost-effectively). Even when we do have the knowledge, the barriers

to implementation may be substantial (e.g. financial, cultural, social, ethical).

For example, we know already that ensuring everyone has access to clean water

would prevent a large proportion of infectious disease, but for many countries

the practical and financial implications are enormous. Similarly, by persuading

more people to stop smoking, stay out of the sun, lose weight, exercise more and

eat better we could prevent much of our present burden of chronic disease, but

changing behaviour remains a major challenge.

Additional strategies are therefore required in order to enhance disease control

and, rather confusingly, some of these have also been labelled as prevention. So-

called secondary prevention is directed towards reducing morbidity and mortality

by improving the outcomes of disease that has already developed. Generally this

means early diagnosis by screening, allowing earlier (and hopefully more effec-

tive) intervention; we will take this up in more detail in the next chapter. What

is sometimes called tertiary prevention is even more remote from the everyday

concept of disease avoidance, usually implying limiting disease progression or

providing better rehabilitation to enhance quality of life in the longer term.
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Table 14.1 The role of epidemiological knowledge in disease control: a case of two cancers.

Accepted utility for widescale use

Intervention Lung cancer Breast cancer

Prevention YES. Smoking cigarettes is the strong risk

factor; and exposure is modifiable by

actions at personal and community

levels.

NO. Many weak risk factors, most not readily

modifiable (although limiting alcohol intake and,

post-menopause, weight control and limiting use

of hormone therapy are possibilities).

Screening NO. Even the newest tests

(computed-tomography lung scans)

yield very limited survival benefits.

YES. Substantial good evidence (from RCTs) of lower

mortality due to population screening

programmes for over 50s.

Improved treatment NO. Minor survival improvements only

with newer treatments.

YES. Results from RCTs show that a survival

advantage can be achieved with appropriate

chemotherapy/radiotherapy.

In terms of disease control then it seems more useful to emphasise the funda-

mental distinction between preventive interventions (primary prevention) and

all other actions that lead to improved clinical outcomes once disease occurs.

The former lower disease incidence and hence limit the clinical burden from a

disease, while the latter (e.g. screening) can actually lead to large increases in

clinical activity to bring about additional reductions in morbidity and mortality.

Decisions as to the most appropriate approach for disease control need to

be disease-specific: less disease is most desirable, but might not be attainable

if causal knowledge is limited. Screening may be a good second choice in some

circumstances if advancing diagnosis really does produce better outcomes (not

as straightforward as it might seem, as you will see in the next chapter). Finally,

improvements in treatment remain an important avenue for enhancing survival

and quality of life for affected individuals. Table 14.1 contrasts two cancers with

markedly different control profiles, showing epidemiological and other research

findings.

The solution to the lung cancer epidemic is obvious, and concerted multi-level

efforts to reduce smoking rates (ranging from targeting individual behaviours

to banning advertising and legislating for smoke-free public space) have made

big inroads on lung cancer rates in many countries (see Figures 3.5 and

3.6). Nonetheless, it remains a common disease, so efforts to improve clini-

cal outcomes through early detection and better treatments are also important,

although their yield to date has been slight. Valuable extra benefits have come

from smoking control programmes as noted in Box 14.1, but the other examples

point to the need to consider the balance of all effects – positive and negative –

of any intervention before deciding if it should be introduced widely.
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Box 14.1 Choosing a preventive strategy: the whole story

An important aside to the lung cancer story is that anti-smoking campaigns

have also greatly reduced the incidence of other respiratory disease and

heart disease. While causal research is primarily disease-specific, preventive

interventions manipulate exposures that may have many consequences.

Thus we need good information on the full array of effects of any exposure

we plan on modifying: a strong association with one disease is generally

insufficient in itself. Immunisation campaigns against infectious diseases

would seem an obvious exception to this, but they have lowered incidence so

dramatically that fewer lives are now saved and the occasional severe

side-effects of immunisation start to take a more prominent place on the

balance sheet. Although virtually every consequence of decreased exposure

to cigarettes is positive and thus the total benefit-to-cost ratio is huge,

counter-examples abound where complexity is the rule. For example,

moderate alcohol consumption is linked to lower heart disease but higher

breast cancer rates and, at high intakes, it is associated with an array of other

health and social problems.

How do we combine the different effects on morbidity and mortality for

various diseases? Does the benefit of avoiding one non-fatal stroke obtained

by long-term aspirin use outweigh the risk of three new life-threatening

gastric bleeds? Measures such as DALYs and QALYs provide a more

quantitative method of doing this and, although they are still rarely used in

primary research publications, they are increasingly reported by health

agencies as you saw in Chapter 2. (Note: there are many guides available to

aid decision-making in the clinical setting; see, e.g., Steyerberg, 2009.)

With breast cancer we see the reverse situation. Quite a lot is known about

its aetiology, but there is no strong established causal factor, as we have with

cigarettes and lung cancer, that offers a basis for widespread intervention. How-

ever, recent sharp drops in use of postmenopausal hormones have probably low-

ered incidence in a number of countries (Parkin, 2009), and reducing alcohol

intake and, in postmenopausal women, weight could also yield some preven-

tive benefits. Fortunately, dual approaches to decreasing morbidity and mor-

tality, namely population screening by mammography to detect early lesions

and more effective non-surgical treatments, have paid off. Despite incidence

rates that have, until recently, been constant or even increasing, there have been

downturns in mortality from breast cancer in a number of countries from the

early 1990s, with an example from the USA shown in Figure 14.3. This suggests

that the improved outcomes predicted by tightly controlled clinical trials have

transferred reasonably effectively to the community setting. Note again the use
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of routine descriptive data to evaluate the effects of interventions in the com-

munity; but also that this alone cannot separate out the relative contributions

of early diagnosis and improved treatment. However, as this is important knowl-

edge for setting the cancer control agenda, there have been a number of attempts

to address the question by comparing disease characteristics and survival in eras

with different screening and treatment interventions (Webb et al., 2004) and by

statistical modelling (Berry et al., 2005).

We will not consider clinical contributions to disease control any further here –

instead our discussion will focus largely on the applications of both epidemio-

logical data and epidemiological thinking to disease prevention and screening.

In relation to disease prevention, we will concentrate on the conceptual under-

pinnings of the preventive approach and some current practical concerns and

challenges, as well as looking at the utility of using population attributable frac-

tions (PAFs) to target potential ‘high-yield’ interventions. In Chapter 15 we will

go on to consider screening in terms of its underlying logic, and the major chal-

lenges to evaluating its contributions to the control of any given disease.

The scope for preventive medicine

Our earlier examples of disease variation by person, place and time have shown

that there are large differences between groups, suggesting that much disease

should be preventable if only we could lower everyone’s risk to that of the lower-

risk populations. Another striking example comes from an investigation seek-

ing an explanation for the three-fold excess of cardiovascular disease (CVD)
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Table 14.2 A comparison of prevalence of CVD risk factors between Finnish and
Chinese village populations aged 20–64 years.a

Men Women

Risk factor Finns (%) Chinese (%) Finns (%) Chinese (%)

Being overweight 63 21 61 24

Obesity 19 2 24 5

Hypercholesterolaemia 34 3 28 6

Hypertension 49 32 35 28

Smoking 26 73 7 37

a All differences were statistically significant (p < 0.001, except p < 0.05 for

hypertension among women) (Hu et al., 2001).

mortality in Finland compared with China. Surveys carried out in rural villages

in the two countries over the same time period revealed quite different profiles

of CVD risk factors (Table 14.2). The first three factors, all more prevalent in

Finland, could be taken as related to over-nutrition, and possibly to the fat con-

tent of the diet. Given China’s history of major famines in the mid twentieth cen-

tury it is not surprising that differences remain so profound, at least in rural pop-

ulations. Countries undergoing the health transition away from a predominance

of infectious diseases and problems of marginal nutrition are, in principle, well

placed for intervention to prevent the emergence of Western lifestyle diseases,

many of which are related to over-consumption and inactivity. However, social

engineering is challenging, and the pace of development and industrialisation

in Chinese cities suggests that the risk-factor profiles of the urban populations

there are already less favourable than those in rural China. This is also true for

other countries in transition, as can be seen in Thailand, where obesity was 50%

more common among younger Thai adults who were life-long urban dwellers

compared to those who maintained rural residence (Banwell et al., 2009).

Table 14.2 also reflects the different attitudes to control of smoking, with pre-

dictable negative consequences for China that are already emerging in the rising

lung cancer and CVD rates there.

Population versus individual risk

There is a tendency in medicine and epidemiology to try to divide people into

two groups – those who have a high risk of developing a particular disease and

those at low risk. For instance, a woman of child-bearing age with high blood

pressure, who smokes and has a family history of blood clotting would be con-

sidered at high risk of complications if she took the oral contraceptive pill and
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this would not be prescribed. In population terms, however, the benefits of the

pill are well recognised to outweigh harms, and it is widely prescribed – although

not primarily for the prevention of disease (it does, however, prevent ovarian and

endometrial cancers).

So, how should we think about our approaches to preventing ill-health? Should

we devote most of our attention to the high-risk groups? This has been the basis

of the vast improvements in occupational health and safety since the industrial

revolution, and remains an appropriate approach for other specifically disad-

vantaged or exposed groups, including many indigenous peoples. However, risk

of disease is not a simple high–low phenomenon and there are few well-defined

natural borders between clearly different levels of risk. As an example, consider

the relationship between blood pressure and risk of fatal cardiovascular disease

(CVD). Figure 14.4 shows the wide range of ‘usual’ blood pressure levels in a pop-

ulation. Individuals do not fall sharply into two separate groups with low and

high blood pressure and do not, therefore, have a clear-cut ‘low’ or ‘high’ risk of

heart disease.

As discussed by Rose (1992), the Whitehall cohort study of British public ser-

vants showed that the age-adjusted risk of dying from CVD over the 18-year

follow-up period increased with increasing blood pressure. The results are shown

in Figure 14.5.

In Figure 14.5, is there any level of systolic blood pressure that is not ‘riskier’ than

the one below it?

Looking at Figure 14.4 and 14.5, how many men in a population of 10,000 would

have a systolic blood pressure of 150 mmHg? What is the risk (cumulative inci-

dence) of dying from CVD in this group?

So how many men with a blood pressure of 150 mmHg will die from CVD? What

about those with a blood pressure of 170 mmHg?



Strategies for prevention 331

0

5

10

15

20

100 110 120 130 140 150 160 170 180 190 200
Systolic blood pressure (mmHg)

%
 d

yi
n

g
 o

f 
C

V
D

Figure 14.5 The relationship
between systolic blood pressure
and risk of fatal coronary heart
disease or stroke over 18 years
of follow-up. (From Figure 2.2,
The Strategy of Preventive
Medicine, G. Rose (1992), by
permission of Oxford University
Press.)

From Figure 14.5 we can infer that the risk of dying from CVD at any level of

blood pressure is greater than that at the level below. The risk increases slowly up

to 130 mmHg and then increases more sharply and linearly from there. From

Figure 14.4 we can estimate that 15% or 1,500 of a population of 10,000 men

would have a blood pressure around 150 mmHg, and from Figure 14.5 the risk

of dying of CVD in this group is 12% over the 18 years of follow-up. We would,

therefore, expect about 12% × 1,500 = 180 CVD deaths in this group. Similarly,

4% or 400 of the population would have a blood pressure of 170 mmHg and they

have a 17% risk of dying of CVD. We would therefore expect about 17% × 400 =
68 CVD deaths in this group. Thus, although the risk of dying of CVD is greater

for those with higher blood pressure, over twice as many actual CVD deaths will

occur among the much larger number of people with intermediate blood pres-

sure. Targeting prevention at only those with very high blood pressure will not,

therefore, address the majority of deaths (but see Box 14.2 on the next page for a

clinical perspective).

Figure 14.6 shows a concrete example of the close overlap in risk-factor dis-

tributions (in this case serum cholesterol level) between those who did and did

not subsequently die from ischaemic heart disease (IHD; if the disease termi-

nology here is becoming confusing, check back to Box 2.6). The whole curve for

those who died from IHD is clearly shifted to the right compared with those who

did not die, but the two overlap considerably and the cut-off point identifying

the extreme upper 5% of the ‘healthy’ cohort identifies only 15% of those who

will develop IHD. So again, screening for high-risk individuals according to their

cholesterol level is not a good preventive strategy for the whole population.

Strategies for prevention

Choosing the best way to intervene in order to lower disease risk in a specific

population will often be a challenge. We present below some brief comments
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Box 14.2 A clinical perspective

The example in the text shows the population perspective on prevention: at

the community level more CVD deaths would be prevented by focusing

on the larger numbers of people at intermediate risk than on the few at

high risk. But let us focus on the individual for a moment. Lowering an

individual’s blood pressure from 150 to 120 mmHg would reduce their risk

of CVD from 12% to about 7%, an absolute risk reduction of 5%. This then

translates to a ‘number needed to treat’ (NNT) of 20 (1 ÷ 0.05) in order to

prevent one CVD death. Similarly, lowering an individual’s blood pressure

from 170 to 120 mmHg would reduce their risk of CVD from 17% to about

7%, an absolute risk reduction of 10%, which gives an NNT of 10. At the

individual level, therefore, the benefits are greatest for those at highest risk.

This highlights that what is best for the individual is not necessarily best for

the population and vice versa.

2 3 4 5 6 7 8 9 10 11
Serum cholesterol (mmol/l)

Did not die of IHD Died of IHD

Figure 14.6 Relative
distributions of serum
cholesterol levels in men who
subsequently died of ischaemic
heart disease and men who did
not. The shaded areas indicate
the proportions of the
population above a cut-point
that identifies the top 5% of the
healthy cohort. (Reproduced
from Wald and Law, BMJ, 2003;
326: 1419–1425, with
permission from BMJ Publishing
Group Ltd.)

on the theoretical extremes of practice, the high-risk and the mass or popula-

tion strategies. Although we have seen why the mass strategy is widely consid-

ered to be preferable, it might not always be practical. To borrow from an old

definition of politics, skill in the art of identifying the possible is needed. To rein-

force this point, we also show a ‘middle path’ showing the value of considering

detailed patterns of risk factor–disease associations to guide intervention targets

and strategies.

The high-risk strategy

Classically, preventive medicine takes a high-risk approach; that is, a targeted

rescue operation for vulnerable individuals. First, those individuals in special

need are identified (e.g. intravenous drug users). The preventive process then
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takes the form of controlling the level of exposure to a cause (e.g. introduction

of a needle-exchange programme) or providing protection against the conse-

quences of the exposure (e.g. vaccination against hepatitis B) in this high-risk

group.

Another example can be found in the blood pressure problem we discussed

earlier. We might decide that the high-risk patients are those with a systolic blood

pressure over 160 mmHg. The high-risk strategy would then involve screen-

ing out those individuals with high blood pressure, followed by intervention to

ensure that their blood pressure is brought below this level. This remains a com-

mon approach in clinical practice and, if fully applied, might lead to a population

blood pressure distribution like that in Figure 14.7. If we compare this graph with

Figure 14.4, we can see that those who were in the upper tail have lowered their

blood pressure, and thus presumably their CVD risk, but the main group (among

whom most cases will occur) is unaffected.

High-risk strategies appeal for a number of reasons. The intervention is well

matched to individuals and their concerns (e.g. a needle-exchange programme is

a specific and tailored response to a tightly defined group), and thus should also

improve the benefit-to-risk and benefit-to-cost ratios. Furthermore, avoiding

interference with the non-needy group and adopting a ‘magic bullet’ approach

to the target group are readily accommodated within the ethos of the medical

care system.

So, can the high-risk strategy play a useful preventive role? Of course it

remains highly appropriate and desirable in clinical practice. If, at the com-

munity level, a problem is confined to an identifiable minority and can be

successfully controlled in isolation, then the high-risk approach can also be

appropriate. Apart from the well-documented benefits that can come from tar-

geting various occupational groups, for example hepatitis vaccination for those

who work with blood products, others where this approach has current relevance

include refugees, other migrants and many indigenous peoples. However, on its
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own it is an inadequate response to a common disease or a widespread cause

and we need to be very cautious in claiming that a risk really is sufficiently lim-

ited to the so-called high-risk group. For example, screening only older pregnant

women, who are known to be at highest risk of conceiving a child with Down’s

syndrome, will miss the majority of afflicted fetuses, which are conceived by

younger women in whom most pregnancies occur.

The mass strategy

In the case of a common disease or widespread cause, the extreme alternative

approach is the mass or population strategy advocated by Geoffrey Rose (1992).

This starts with the recognition that the occurrence of common diseases and

exposures reflects the behaviour and circumstances of society as a whole. The

mass strategy thus aims to reduce the health risks of the entire population.

Using the blood pressure data again we can illustrate a mass-strategy approach

to this problem. Instead of targeting only those people with the highest blood

pressure, we would aim to reduce everybody’s blood pressure by a smaller

amount. This would shift both the blood pressure and the CVD risk of the pop-

ulation to a lower level (Figure 14.8). This is a much healthier situation for the

whole group (although perhaps not for some highest-risk individuals) than the

truncated distribution we saw in Figure 14.7.

Other examples of the mass strategy are immunisation programmes, water

fluoridation and the legislated use of seat belts (together with effective enforce-

ment, as without this a number of countries have failed to realise the true ben-

efits from introducing seat belt laws). Imagine the problems of implementing a

‘high-risk’ approach to seat-belt use by targeting only male drivers under the age

of 25 years who are at the greatest risk of dying in a motor-vehicle accident . . . In

many countries, other background and personal aspects of the ‘causal web’ for

motor-vehicle-related deaths and injuries have also been effectively targeted at
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the population level with, for example, better road and barrier engineering, car

structural safety and legislation backed by enforcement to curb speeding and

drink-driving.

In Box 14.3 we show an example of a ‘middle-road’ approach that sits some-

where between the mass and high-risk approaches, reminding us of the need to

Box 14.3 Weight and diabetes: a ‘middle-road’ strategy

Brown and colleagues (2007) used data from the Australian Longitudinal

Study on Women’s Health to model the effects of different patterns of weight

reduction on risk of hypertension and diabetes. As predicted, for

hypertension they found a larger benefit for a mass approach than for a

targeted high-risk approach (Table 14.3). However, the pattern was

somewhat different for diabetes, where the high-risk approach was more

effective, largely because unlike risks of hypertension, which increase

linearly with increasing BMI, the risks of diabetes are more concentrated at

the higher end of the distribution. But for both outcomes, a ‘middle-road’

approach aiming for a moderate reduction in weight in the top half of the

population gave the greatest reductions in risk. Ultimately though, the

predicted benefits have to be balanced against the costs and acceptability of

each approach. For example, while targeting only a fifth of the population via

a high-risk strategy may save money initially, achieving and maintaining the

greater weight loss required to deliver the full benefit may prove impractical

in the longer term and aiming for a more modest weight loss in a greater

proportion of the population may be more cost-effective.

Table 14.3 Effects of different intervention approaches on risk of
hypertension and diabetes in an Australian population.

Risk reduction

Approach Intervention Hypertension Diabetes

Mass Modest reduction in weight (1 BMI unit)

across whole population

10% 13%

High-risk Larger reduction in weight (3 BMI units)

in heaviest 20% of the population

7% 17%

Middle-road Moderate reduction in weight (2 BMI

units) in heaviest 50% of the

population

12% 23%

(Data source: Brown et al., 2007.)
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test our presumptions and prejudices against the known data before proceeding

with a particular approach to implementing a prevention programme. Indeed

Rose made it clear that careful attention must be paid to the patterns of associa-

tion between risk factor and disease (e.g. a linear increase in risk versus an expo-

nential one – see Box 14.3 for example). The prevalence of the high-risk expo-

sures is also important, as seen for blood pressure and CVD above, and it is for

this reason that the population attributable fraction (PAF) that you met in Chap-

ter 5 can be useful in identifying optimal preventive interventions. We will look

at this further in the next section.

The population attributable fraction as a guide to prevention

As you saw in Chapter 5, one useful way to estimate the burden of disease in a

population that can be attributed to a particular risk factor is to calculate the

population attributable fraction (PAF):1

PAF = Pe(cases)
(RR − 1)

RR

where Pe is the prevalence of exposure to the risk factor of interest in those

with disease and RR is the relative risk of disease for the exposure of inter-

est. The PAF also represents the maximum percentage reduction in the burden

of disease (or death) that might be expected if we could remove the exposure

completely.

However, this formula assumes that exposure is dichotomous: people are

either exposed to a risk factor or they are not. For instance, if we are interested in

the PAF of CHD or stroke due to high blood pressure we could set a cut-off point

at 140 mmHg to define ‘high blood pressure’. But we know that while the high-

est risks of CHD and stroke are seen at blood pressures above 140 mmHg, there

is also some increase in risk between 110 and 140 mmHg (Figure 14.5). We also

know that most of the population have values below 140 mmHg (Figure 14.4), so

using that simple cutpoint would underestimate the total amount of disease due

to elevated blood pressure. Moreover, if we uniformly apply one average value

of RR for the effects of having any systolic blood pressure over 140 mmHg, we

ignore the dramatic increases in risk above that level. This is a major issue if we

want to make comparisons between populations because their prevalences of

high and very high blood pressures are likely to differ.

This was a particular problem for the World Health Organization when it set

out to estimate cross-national burdens of disease due to a range of risk factors

1 Note: as you saw in Chapter 5, there are several different formulae for calculating the PAF. This

version is the most flexible as it is still valid when we need to use adjusted relative risks to allow for

confounding.
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as a basis for identifying preventive strategies (the Comparative Risk Assess-

ment study; Murray et al., 2003). Their practical solution was to develop an

approach which could account for several different levels of a risk factor by

summing the effects across these levels to produce an overall PAF for the risk

factor.

A second challenge for the WHO was to determine what the unexposed or

reference level should be for a particular risk factor to allow sensible comparisons

to be made between risk factors and preventive strategies to be chosen accord-

ingly. For risk factors with an obvious zero exposure level (e.g. smoking, air pol-

lution) it makes intuitive sense to use that level as the reference. However for

risk factors such as blood pressure, body mass and serum cholesterol there is no

zero exposure so, for these factors, the reference value was taken to be that level

of exposure which would give the minimum disease/injury burden (Murray and

Lopez 1999). The attributable burden of disease due to a risk factor is thus the

amount of disease due to levels of exposure above the defined reference level and

the attributable fraction is the proportion of that disease which can be attributed

to the risk factor.

To gain the maximum future benefit from a preventive intervention we would

have to reduce exposures to their reference level, e.g. by eliminating smoking

or air pollution completely. This of course is infeasible, particularly for an expo-

sure like smoking because once someone has smoked they can never return to

being a never smoker, so more realistic estimates are needed. A plausible min-

imum for tobacco exposure might be the low smoking prevalence in Sweden

(16%); however, even this might not be realistic for the near future and a more

feasible target might be to reduce smoking prevalence by 5%, say from 25% to

20%.

Figure 14.9 on the next page shows the hypothetical effects of reducing lev-

els of current exposure (time T0) on the future burden of disease (time Tx). The

dark blue area represents the burden of disease attributable to prior exposure;

at time T0 this is equal to ‘a’ and the attributable fraction is therefore a ÷ (a +
b). The dashed arrows represent the effects on the burden of disease of different

reductions in exposure at T0: 0% (no change), 25%, 50%, 75% or 100% (complete

elimination). Thus if we were to reduce the prevalence of exposure by 50% at time

T0 the amount of disease avoided at time Tx would be that indicated ‘c’ and the

avoidable fraction is c ÷ (c + d). Note that the burden of disease not attributable

to the risk factor of interest (the spotted area) may be decreasing, constant or

increasing over time (as shown in the figure).

Attributable and avoidable disease

Figure 14.9 also shows the difference between the current burden of premature

death and disability due to past or current exposure (dark blue) and the future
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burden due to current and future exposure (light blue). The attributable bur-

den is the amount of the current burden that can be attributed to past exposure,

and thus would not have been observed if past levels of exposure had been zero

(the amount of disease a in Figure 14.9 at time T0). The avoidable burden is the

amount of future disease that could be avoided if current and/or future levels of

exposure are reduced to a specified level. The figure shows the predicted effects

of reducing exposure by 25, 50, 75 and 100%.

For a real-life example see Figure 14.10. This shows standardised lung can-

cer mortality rates in Australia from 1979 to 2001, with projections to 2021. The

dark blue area shows the unavoidable burden of lung cancer attributable to past

smoking, the light blue area predicts the amount of future disease that would

potentially be prevented if smoking levels had dropped to zero in 2001, and the

dashed line shows the effects of a 50% reduction in smoking in 2001. Of course

we must always keep in mind the uncertainty of all such forward projections

as they are highly dependent on all of the other factors that affect population

behaviours.
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(Source: Stephen Begg,
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Prevention in practice

Box 14.4 on the next page describes an innovative population-wide suicide-

prevention programme that was developed explicitly from Rose’s ideal model of

population change.

How highly would you rate this study design for evaluating such a programme?

How easily can we generalise from these findings to, say, the US population as a

whole?

The actual study design used is a simple pre–post-intervention comparison of

suicide rates (i.e. very straightforward descriptive data). It would be nice to

have RCT data on this issue but, for pretty obvious reasons, it is very difficult

to conduct such a trial on this scale. Furthermore, since the interventions have

to be applied to an entire community, not just to individuals, it would have to

be a cluster randomised trial with only a few large groups and so would miss out

on the core benefits of individual randomisation. A trial would, however, avoid

the possible confounding of pre–post studies when there are underlying time

trends in suicide rates that are independent of any intervention. (In this partic-

ular situation the unexposed and exposed cohorts, pre- and post-intervention,

are likely to have been quite similar with regard to potential confounders.) While

the summary figures indicate the programme’s likely benefit, we can see from
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Box 14.4 Flying higher: the US Air Force suicide prevention
programme

Suicide rates in the US Air Force increased notably in the early 1990s, leading

to a concerted effort by senior staff to halt and reverse this trend. A

multilayered population-based prevention programme was introduced in

1996 to reduce risk factors and enhance protective factors among the more

than 5 million personnel. The intervention focused on removing the stigma

from mental health problems, enhancing understanding of mental health,

and changing policies and social norms. Strong and continuing endorsement

of the initiative by senior leaders was a critical element. The approach

adopted was explicitly a population-oriented risk-reduction approach. Its

effectiveness was measured by comparison of suicide rates among US Air

Force personnel before and after the intervention: overall suicide was

reduced by 33% (Figure 14.11) (Knox et al., 2003).
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Figure 14.11 Suicide rates in the US Air Force before and after the population-based
intervention in 1996–1997. (Data source: Knox et al., 2003.)

Figure 14.11 that the pattern of change for suicide is not simple to interpret. It

would be helpful to see the longer-term pattern before 1990, and future rates will

also be telling.

Generalising the specific findings to the whole population is more problem-

atic, not the least because air force personnel and the air force environment are

likely to be very different from the general US population; however, the underly-

ing theories may well be quite generally applicable. Taken at face value, these

results suggest that the mass strategy is capable of addressing the underlying

social, economic and political determinants of ill-health in a population, and

need not be restricted to immediate causes. It is also a desirable approach to

intervention because it aims to change not only the risk factors, but also the
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Reprinted with permission.

context in which they are embedded: it is easier to seek help for a problem, or

give up smoking, for example, if the rest of the population is supportive.

Naturally, simpler solutions to preventive interventions are appealing – immu-

nisations for infectious diseases and some cancers (cervix, liver) are notable and

valuable examples. But the search for other ‘magic bullets’ continues; the editor

of the British Medical Journal speculated that the 28 June 2003 edition might be

‘The most important BMJ for 50 years’ (Smith, 2003). He referred to an article

by Wald and Law (2003) proposing the ‘Polypill’, a six-drugs-in-one cardiovas-

cular panacea that might prevent 80% of all vascular morbidity and mortality

beyond the age of 55 by reducing blood pressure (a three-drug cocktail), serum

levels of LDL cholesterol (a statin) and homocysteine (folate), and clotting ten-

dency (aspirin). Their quantification of the benefits and risks of such a pill is

based on combining relevant evidence from RCTs and long-term cohort stud-

ies drawn from a series of systematic reviews and meta-analyses. They recom-

mend implementing a population strategy aimed to shift the whole cardiovascu-

lar ‘risk curve’ well to the left, exactly the sort of outcome of which Rose would

have approved. This achieves the same preventive end as the Air Force suicide

intervention programme by moderating whole-of-population risk, but the onus

on achieving the goal is shifted from society to the individual, from primary

structural and behavioural change to life-long pill taking (and if compliance is

not high the benefits shrink rapidly). Whether this ‘medicalisation’ of a society

is desirable or acceptable is contentious, and the paper has engendered debate

although, as of 2008, little action in the sense of formal testing of the intervention

(Rogers and Patel, 2008).

Evaluation of preventive interventions in practice

The first reasonably strong evidence that intervention (adding or removing an

exposure) might decrease disease incidence often comes from observational epi-

demiology, i.e. case–control or cohort studies. If, as this evidence accumulates, a
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causal relationship between exposure and disease seems likely, and if the poten-

tial for practical change exists, then this preventive potential can be tested in ran-

domised controlled trials. You have already seen some of these, for example the

trial of polio vaccine and the Physicians’ Health Study which tested aspirin for

preventing coronary heart disease and beta-carotene to prevent cancer (Box 4.7

on page 113). The utility (polio immunisation) or otherwise (beta-carotene) of

these interventions as demonstrated by the trials will then inform the decisions

regarding the implementation of a preventive programme.

However, once the programme has been shown to be feasible in a trial, and

is rolled out to the wider population, it is no longer operating with the close

overview that characterises most experimental research, and so it cannot auto-

matically be assumed that it will be as effective as in the RCT setting. It now needs

‘real-world’ monitoring and evaluation and in the first instance this information

usually comes from the ‘routine’ data sources that we discussed in Chapter 3,

especially trends in disease-specific mortality. You have met a number of exam-

ples of this already, including figures showing mortality declines from lung can-

cer (Figure 1.1), heart attacks (Figure 1.7), tuberculosis (Figure 14.1) and breast

cancer (Figure 14.3). Interpretation of the falling lung cancer mortality among

men in the USA is fairly straightforward from consideration of Table 14.1 and

Figure 3.6, and the additional knowledge that the incidence of this cancer is

also falling. The multiple strategies applied to induce falling smoking rates have

produced effective primary prevention of this fatal cancer, although it is hard

to know exactly which elements of the anti-smoking campaigns have had most

effect. We have discussed factors behind the mortality changes for TB and breast

cancer above, and in the next chapter will consider the contributions of screen-

ing to controlling breast cancer in more detail.

These examples underline the critical importance of having good mortality

data to monitor the effectiveness of disease control programmes whether they

are attempting primary prevention or to improve treatment outcomes.

A final (cautionary) word

There are inevitably limitations to the mass strategy, especially the difficulties of

effective implementation. It is quite hard to persuade the public that a health

problem is a matter for concerted public action rather than simply the responsi-

bility of the few affected individuals. If everyone wants to smoke or drive cars fast

then it is not easy to stop them (the enforced changes in views on drink-driving in

many societies are, however, encouraging). Population-level interventions such

as water fluoridation or fortification of flour products with folate are also highly

controversial as they effectively remove an individual’s choice as to whether they

want to receive the intervention or not. Even if we know what is desirable and the
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public is on side, it can still be difficult to effect a change (e.g. to reduce poverty).

All change involves costs, and change on a large scale involves large-scale costs.

Finally, population change is made more difficult because of what Rose dubbed

the prevention paradox: ‘a preventive measure which brings much benefit to the

community offers little to each participating individual’ (Rose, 1981). We all have

to change our risk profile (by wearing seat belts, changing our behaviour, etc.),

but the only people who really benefit are the unidentifiable minority among us

whose seat belt will save them in an accident or who would have died from CVD

if they had not reduced their blood pressure. In practice we often fall short of

fully informing the public of the very limited individual benefits that result from

mass prevention programmes (and screening programmes; see Chapter 15).

In the next chapter we will move from primary prevention to secondary pre-

vention or screening, and will apply an epidemiological perspective to the use

of population screening as a public health intervention. It often seems to be a

given that early detection of disease must be a good thing but, as you will see,

this is not always the case thus this assumption should never be allowed to go

untested!

Question

1. Comment on the utility of relative and absolute measures of effect in assessing

the benefits a community will get from a prevention program.
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Box 15.1 Just because screening should work doesn’t mean
it will!

In the 1960s, public health practitioners were seduced by the concept of early

diagnosis – give people regular health checks to identify and treat disease

early. It seemed so obvious it would work that initiatives of this type started

springing up in the USA and UK. The UK Ministry of Health realised that the

implications were enormous, so between 1967 and 1976 a trial was conducted

in London to evaluate the benefits of multiphasic screening of middle-aged

adults in general practice. Approximately 7,000 participants were randomly

allocated to receive two screening checks two years apart or no screening

and all participants then underwent a health survey. The investigators did

not find any significant differences between the two groups in terms of their

morbidity, hospital admissions, absence from work for sickness or mortality.

The only outcome appeared to be the increased costs of health-care –

approximately £142 million to screen the entire middle-aged UK population

(and that was at 1976 prices). (The South-East London Screening Study

Group, 1977; reprinted in 2001 with a series of commentaries, Various, 2001.)

Up to this point we have mainly focused on the issues of how we can quantify

health (or ill-health) and how to identify the factors that might be causing ill-

health, with a view to preventing it in the future. In the previous chapter we

alluded to what is sometimes called ‘secondary prevention’, where instead of

trying to prevent disease from occurring, we try to detect it earlier in the hope

that this will allow more effective treatment and thus improved health outcomes.

This is an aspect of public health that has great intuitive appeal, especially for

serious conditions such as cancer where the options for prevention are often

very limited. However, as you will discover, screening programmes are usually

very costly exercises and they do not always deliver the expected benefits in

terms of improved health outcomes (see Box 15.1 above). In this chapter we will

introduce you to the requirements for implementing a successful screening pro-

gramme, and to some of the problems that we encounter when trying to deter-

mine whether such a programme is actually beneficial in practice.

Why screen?

It has been known for some time that infection with human papillomavirus

(HPV) is a major, and perhaps a necessary cause of cervical cancer (see Chap-

ter 10) but, until the development of HPV vaccines in recent years, we could not

prevent people from becoming infected. As uptake of these vaccines becomes
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widespread, they may replace the current screening programmes as the pre-

ferred method for control of this disease. However, the screening programmes

have shown that in the absence of primary preventives like vaccines, detecting

disease before the usual time of diagnosis can provide an effective ‘second level’

of public health intervention.

When used as a public health measure for disease control, screening implies

the widespread use of a simple test for disease in an apparently healthy (asymp-

tomatic) population. A screening test will often not diagnose the presence of dis-

ease directly but will instead separate people who are more likely to have the

disease from those who are less likely to have it. Those who may have the disease

(i.e. those who screen positive) can then undergo further diagnostic tests and

treatment if necessary. The improved public health outcomes we seek through

screening are reduced morbidity, mortality and/or disability. The benefits of

public health screening are primarily for those people who are actually screened,

and generally even among this group only very few will benefit directly, but there

may also be wider social benefits if overall health costs are reduced.

Screening is also used, in a slightly different fashion, to protect the general

population from exposure to disease. As an example, immigrants to a number

of countries are screened for HIV and hepatitis B infection; and travellers from

regions with epidemic acute infectious diseases, such as SARS (severe acute res-

piratory syndrome) or H1N1 influenza, have been subjected to screening using

health declaration cards to identify symptoms and sometimes thermal scanning

to detect signs of infection at airports. The primary aim of this type of screening

is not to benefit the individual who is screened, but to protect the local popula-

tion from these viruses. Similarly, some occupations require regular screening;

for example, airline pilots have regular medical checks in an attempt to ensure

that they will not have a heart attack while flying. Insurance companies often

require people to undergo health checks and screening before they offer them

a life insurance policy. Here the ‘screening’ is done for purely financial reasons,

because insurance companies charge higher premiums for people at higher risk.

The disease process

The first we know of the existence of a disease in a person is when it is diagnosed.

This is usually some time after it first produces the symptoms which cause the

person to seek medical care. The actual onset of disease will of course be ear-

lier than this – how much earlier depends on the disease concerned. Figure 15.1

illustrates this point.

At some stage between the biological onset of disease and the time of usual

clinical diagnosis there may come a time when early signs of disease are there, if

only we could detect them. The position of this point will vary depending on the

disease, perhaps occurring many years before the appearance of clinical disease
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(e.g. high blood pressure, some cancers), or only shortly before symptoms appear

(e.g. acute infectious diseases).

At some stage during the disease process there is also likely to be a critical

point, after which the disease process is irreversible and treatment will confer

little or no benefit. An example is the point at which a cancer starts spreading to

other tissues (known as metastasis). If this ‘point of no return’ occurs before it

is possible to detect the disease (CP1 in Figure 15.1), then advancing the time of

detection will simply mean that the person knows about their disease for longer

but their outcome will not be improved. Similarly, if this point occurs after the

time of usual clinical diagnosis (CP3) there is no need to detect the disease any

earlier, given that treatment following usual diagnosis will be effective.

Screening, then, is of greatest potential benefit when the critical point occurs

at CP2 – between the time of first possible detection and the usual time of diag-

nosis. In this situation it may be that picking up the disease early would improve

outcomes, and this is the aim of a screening programme. Unfortunately, we cur-

rently have too little knowledge of the progress of most diseases for this to have

much practical value in planning screening programmes.

Screening versus case-finding

There is considerable debate about the best way to implement early detection of

disease. Should the focus be on large-scale mass population screening, or are we

better off pursuing opportunistic early detection or ‘case-finding’ when some-

one comes into contact with the health system for another reason? There are

some parallels here with the mass versus high-risk approach to primary pre-

vention that we discussed in the previous chapter, but they are not exact. The

terms ‘screening’ and ‘case-finding’ can also have quite different meanings to
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different practitioners. We think it is most useful, and best accepted, to use the

term ‘screening’ for organised population-wide approaches and ‘case-finding’

for more opportunistic attempts at early detection. If systematically applied,

case-finding can nonetheless form the basis for quite good population coverage.

If a large proportion of the people visit a primary care physician every year or

two, this contact could permit early detection of risks (e.g. from cigarette smok-

ing, high blood pressure) in a setting that allows good follow-up.

The requirements of a screening programme

Screening differs from diagnostic testing in that it is performed before the devel-

opment of clinical disease. Thus, those who undergo screening are free, or

appear to be free, of the disease of interest. They are not seeking care because

they are sick, but are instead persuaded to be screened by the health service.

The requirements of a screening test are, therefore, quite distinct from those of

a diagnostic test, which is performed only when someone is suspected to have a

disease. The suitability of a disease for screening has to be considered explicitly;

the quality and acceptability of the screening test must be demonstrated; and the

whole programme must be shown to confer a net benefit to the community. We

will explore these issues further below.

The disease

We need to consider the following characteristics of a disease before deciding

whether screening for it is desirable.
� The disease should be severe, relatively common and perceived as a public

health problem by the community.
� We must understand the natural history of the disease sufficiently well that we

can be reasonably sure that earlier detection will give a better outcome.

Prostate cancer shows us the importance of this. It appears to occur in a num-

ber of biological forms that we cannot tell apart, and it is probable that many

men in whom a cancer could be detected by screening (e.g. with a prostate spe-

cific antigen (PSA) test) would never develop symptoms or suffer from the dis-

ease (and therefore would not otherwise be diagnosed). To detect and treat these

men would be wholly harmful and, largely for this reason, screening for prostate

cancer is generally not recommended, even though there are tests that could be

used (and which are used quite widely in some countries, e.g. the USA, on an ad

hoc case-finding basis). Research is under way in a number of countries in an

attempt to shed light on this dilemma to allow a more informed judgement to be

made.
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� In general, there should be a high prevalence of pre-clinical (early-stage) dis-

ease.

This criterion becomes less important as the severity of the disease increases.

For example, it may be of benefit to screen for a fairly uncommon disease if

not treating it has severe consequences – an example is the use of screening

for phenylketonuria (PKU) in newborns. Babies born with this condition lack an

enzyme that metabolises the amino acid phenylalanine. When they eat proteins

containing this amino acid, the end-products accumulate in the brain, leading to

severe mental retardation. By simply restricting the phenylalanine in their diet

this can be prevented. Although only about one in 15,000 babies is born with

this condition, the availability of a simple, accurate and inexpensive test makes

it worthwhile to screen all newborn babies (Wilcken et al., 2003).
� Screening is likely to be more effective if there is a long period between the

first detectable signs of disease and the overt symptoms that normally lead to

diagnosis (the lead time).

If a disease progresses rapidly from the pre-clinical to clinical stages then it is

much harder to detect the disease while it is still at an early stage and, conse-

quently, early intervention is less likely to be of benefit. (Clearly, metabolic con-

ditions of early life, such as PKU, are exceptions to this).

The screening test

The next requirement for a worthwhile screening programme is that we have a

test that will enable us to detect the disease before the usual time of diagnosis.

Any such test must meet the following criteria.
� Firstly it should be accurate.

As discussed in Chapter 7, accuracy reflects the degree to which the results

of the test correspond to the true state of the phenomenon being measured. In

practice, accuracy can be influenced by the standardisation or calibration of the

testing apparatus and by the skill of the persons conducting or interpreting the

test. Maintaining high standards of testing in a service setting is thus crucial for

a screening programme to reach its full potential.

So what should we expect of a screening test in relation to its accuracy? We

would expect it to be:

sensitive – ideally it would identify all people with the disease; in practice, it

should identify most of these people.

specific – ideally it would identify only those with that particular disease and

those without the disease should test negative; in practice, most of those with-

out the disease should test negative.

� It must be safe and acceptable to the population being screened.
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Since we are advising apparently well people to undergo screening, we should

not offer them a test that might adversely affect their health. The only excep-

tion might be for those at very high risk of developing a serious disease, when a

slight risk from screening might be outweighed by a large benefit of early diagno-

sis (e.g. regular colonoscopy for people with ulcerative colitis, who develop large

bowel cancer at a high rate). Social and cultural acceptability are separate issues

and are seldom related to the safety of the screening test. For example, persuad-

ing people to take a sample of their faeces to test for blood as an early indicator

of colon cancer is unpalatable to many. Likewise, cervical cancer screening is

not immediately appealing in many societies and in some it may be prohibited,

particularly if the health professional is male.
� It should be simple and cheap.

If we wish to screen a large proportion of the population any test used should

be relatively cheap to administer and simple to perform or it would be too costly

to perform large-scale screening.

Mammography is neither simple nor cheap. Why then do you think that mam-

mographic screening to detect early breast cancer is recommended?

Although mammography is neither simple nor cheap, breast cancer is a severe

disease of substantial concern to many communities. It occurs relatively com-

monly and, if detected early, is usually highly treatable.

Test quality: sensitivity and specificity

We can evaluate the performance of a test by comparing the results with a

‘gold standard’ method that ideally would give 100% correct results (but more

commonly is just the best test available). This standard might be a more

costly or time-consuming test, or perhaps a combination of investigations per-

formed in hospital that is reliable for diagnosis but unsuitable for routine use in

screening.

For example, children in many countries undergo a simple hearing test in

their first year at school. Any who fail this screening test are retested at a later

date and/or referred to a hearing clinic for further, more extensive tests to iden-

tify whether they have a real hearing problem. Imagine that in a group of 500

children, 50 have a genuine hearing problem. Of these, 45 fail the school hear-

ing test, as do 30 of the children with normal hearing (perhaps they had a

cold on the day of the test). We could summarise the results of the test as in

Table 15.1.

There are four possible outcomes for a child, as shown in Figure 15.2. A child

with a real hearing problem may either fail the screening test (true positive;

group ‘a’ in Figure 15.2) or pass the test, suggesting falsely that they do not have

a problem (false negative; group ‘c’). Similarly, a child without a problem may
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Table 15.1 Hypothetical results from a school hearing test programme.

True hearing status

School hearing test Hearing problem Normal Total

Fail (positive test result) 45 30 75

Pass (negative test result) 5 420 425

Total 50 450 500

Disease status

Positive Negative

Positive

True

Positives

a

False

Positives

b

Te
st

 r
es

u
lt

Negative

False

Negatives

c

True

Negatives

d

Figure 15.2 Possible outcomes
from a screening test.

pass the test (true negative; group ‘d’) or fail, falsely implying that they do have a

problem (false positive; group ‘b’).

For a test to be accurate it should produce few false-positive and false-negative

results. So how good is the school hearing test? There are two issues to consider:

how well has the test identified the children who do have a problem; and how

well has it classified the normal children as normal?

What percentage of children with a real hearing problem failed the school test?

What percentage of children with normal hearing passed the school test?

Looking at Table 15.1, we see that 90% (45 ÷ 50) of children with a hearing prob-

lem failed the school test and 93% (420 ÷ 450) of children with normal hearing

passed the test. These measures of a test are known respectively as its sensitivity

and specificity.

The sensitivity of a test measures how well it classifies people with the disease

as sick. It is the percentage of people with the disease who test positive (90% in the

example above). It is calculated by dividing the number of true-positive results
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(a) by the total number of people with disease (a + c) from Figure 15.2:

Sensitivity (%) = True positives
All with disease

× 100

= a
a + c

× 100 (15.1)

The specificity of a test measures how well it classifies people without the disease

as healthy. It is the percentage of people without disease who test negative (93% in

the above example). To calculate it, we divide the number of true negative results

(d) by the total number of people without disease (b + d):

Specificity (%) = True negatives
All without disease

× 100

= d
b + d

× 100 (15.2)

A combination of high sensitivity and high specificity is essential for a good

screening test – in this regard the school hearing test works quite well.

Note that it is necessary to do a special study, as discussed in ‘Diagnostic stud-

ies’ in Chapter 4 (Box 4.2), to assess the sensitivity and specificity of a test. In

the usual service setting only those who test positive (groups ‘a’ and ‘b’ from

Figure 15.2) will be followed up with formal diagnostic testing to determine the

true positives. Unless there is a specific plan to do so (which usually is possible

only in a research setting), those who test negative are commonly not followed

up, so the proportion of false negatives is not known and we cannot measure

either the sensitivity or the specificity of the test.

Test performance in practice: positive and negative predictive values

Two other measures, the positive and negative predictive values, are sometimes

given as test criteria, but they really measure how well a test performs in a given

population. In practice we would not know whether a child did have a real hear-

ing problem – we have to predict this from the screening test result. We need,

therefore, to know how well a positive test result (i.e. failing the hearing test)

predicts that a child does have a hearing problem and, conversely, how well a

negative test result (i.e. passing the hearing test) predicts that their hearing is

normal.

What percentage of children who failed the school hearing test had a real hearing

problem?

What percentage of children who passed the school hearing test really did have

normal hearing?
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Out of 75 children who failed the school hearing test, 45 (60%) had a real hearing

problem. Out of 425 children who passed the school test, 420 (99%) really did

have normal hearing.

These measures are known respectively as the positive and negative predic-

tive values (PPV and NPV) of the test in that situation. Unlike the sensitivity and

specificity, they are not fixed properties of the test because, as you will see below,

they also depend on the prevalence of disease in the population being tested.

However, the PPV and NPV give us crucial information as to how well the test is

performing in that population.

The positive predictive value (PPV) tells us how likely it is that a positive test

result indicates the presence of disease. It is the percentage of all people who test

positive who really have the disease (60% in the example). It is calculated by divid-

ing the number of true-positive results (a) by the total number of positive results

(a + b):

Positive Predictive Value (%) = True positives
All positives

× 100

= a
a + b

× 100 (15.3)

The negative predictive value (NPV) is the percentage of all people who test

negative who really do not have the disease (99% in the example). To calculate

it, simply divide the number of true-negative results (d) by the total number of

negative results (c + d):

Negative Predictive Value (%) = True negatives
All negatives

× 100

= d
c + d

× 100 (15.4)

These measures of test performance are best thought of as operational measures

of the overall programme. They reflect both the accuracy of the test (sensitiv-

ity and specificity) and the disease prevalence in the population tested. Even a

superb test (very high sensitivity and specificity) will yield a low positive predic-

tive value if the disease is rare.

An example – testing blood donors for HIV infection

It is routine practice in most countries to screen all blood donors for HIV,

but what is the probability that someone who tests positive really does have

HIV?

To answer this we must calculate the positive predictive value of the test.

Assume that we are using the test to screen a high-risk population of intravenous

drug users in New York City who have an HIV prevalence of 5,500 per 10,000.
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How many in a group of 10,000 intravenous drug users would you expect to have

HIV infection?

Of these, how many would test positive if the test had a sensitivity of 99.5%, and

how many would falsely test negative?

How many of the drug users will not be HIV-positive and, of them, how many

would test negative if the test had a specificity of 99.5%? How many would falsely

test positive?

What proportion of the people who test HIV-positive would truly have HIV

infection?

Given the known prevalence of HIV infection in this group, we would expect

5,500 of the 10,000 intravenous drug users to be HIV-positive and the remaining

4,500 would be HIV-negative. Of the HIV-positive group, 99.5% or 5,473 would

correctly test positive and the remaining 27 would falsely test negative. Among

the HIV-negative group 99.5% or 4,478 would correctly test negative and the

remaining 22 would falsely test positive. From Table 15.2, we can see that this

means that we would expect a total of 5,495 positive test results and that, of these,

5,473 or 99.6% would be true positives. Similarly, of the 4,505 negative test results,

4,478 or 99.4% would be true negatives. The test therefore performs very well in

this high-risk population.

Now repeat the calculations for a low-risk population of new blood donors where

the prevalence of HIV is only 4 per 10,000.

Table 15.2 Positive and negative predictive

PPV = 5,473 ÷ 5,495 = 99.6%

NPV = 4,478 ÷ 4,505 = 99.4%

PPV = 4 ÷ 54 = 7.4%

NPV = 9,946 ÷ 9,946 = 100%

values of an HIV test in high- and low-risk
populations.

True HIV status

Test Positive Negative Total

Intravenous drug users

Positive 5,473 22 5,495

Negative 27 4,478 4,505

Total 5,500 4,500 10,000

New blood donors

Positive 4 50 54

Negative 0 9,946 9,946

Total 4 9,996 10,000
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Table 15.3 Variation in the positive predictive value of a test with prevalence
of disease and accuracy of test.

Sensitivity and specificitya

Prevalence (%) 99% 95% 90% 80%

20 96.1% 82.1% 69.2% 50.0%

10 91.7% 67.9% 50.0% 30.8%

5 83.9% 50.0% 32.1% 17.4%

1 50.0% 16.1% 8.3% 3.9%

0.1 9.0% 1.9% 0.9% 0.4%

a Assuming that sensitivity and specificity have the same value.

Among the blood donors we would expect only about 4 out of 10,000 people to be

truly HIV-positive and the remaining 9,996 would be HIV-negative. All four of the

HIV-positive people should correctly test positive (Table 15.2). Among the HIV-

negative group 99.5% or 9,946 would correctly test negative and the remaining

50 would falsely test positive. This means that we now have a total of 54 positive

test results but, of these, only 4 or 7.4% are true positives. This means that 93% or

more than 9 of every 10 positive test results would be false positives! Thus, even

with a very high sensitivity and specificity, the same test performs badly in this

low-risk population. The profound influence of changes in disease prevalence

and test accuracy on the positive predictive value of a test is shown in Table 15.3.

In practice, the lower values for sensitivity and specificity included in the table

are often encountered, and for most diseases of consequence the prevalence

in the general population is also quite low; for example, recent Australian data

suggest the prevalence of breast cancer among women aged 50–69 who attend

for mammographic screening (the target age group) is around 0.3% (AIHW and

NBOCC, 2009).

The prevalence of prostate cancer in 60-year-old men is approximately 1%. Using

Table 15.3, how accurate would you want a screening test to be before you would

consider starting a screening programme to detect early prostate cancer?

With such a low prevalence, even a test with 99% sensitivity and specificity

would give a positive predictive value of only 50%; i.e. half of all positive test

results would be false positives. While this is less than ideal, in practice this is

not necessarily the sole consideration in initiating a screening programme. For

example, most studies of screening mammography have demonstrated that it

achieves a positive predictive value in the range of only 10%–20% for women

aged between 50 and 69 years. However, the reduction in breast cancer mortality
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Box 15.2 Accuracy and predictive values of diagnostic tests

A red tympanic membrane is generally considered a good predictor of acute

otitis media (AOM) or middle-ear infection in children. However, in a study

conducted to determine the accuracy of this sign compared with the results

of the ‘gold standard’ test, myringotomy (incising the tympanic membrane),

the sensitivity and specificity were found to be only 18% and 84%,

respectively (Karma et al., 1989). If we assume a pre-test probability∗ or

prevalence of AOM of 50%, this means that only 53% of children with a red

tympanic membrane will actually have AOM (the PPV or post-test

probability); the other positive test results will be false positives. Similarly,

49% of those who do not have a red tympanic membrane will have AOM

(false negatives). On its own, then, this is not a very accurate marker of AOM,

but if seen together with other signs such as bulging and reduced mobility of

the tympanic membrane the accuracy of diagnosis improves. Clinical

decision rules based on the presence or absence of several known clinical

features of a condition are useful tools to enhance diagnostic accuracy.

∗ Note that this is another situation in which clinical epidemiologists tend to use differ-

ent terms to describe the same things. In clinical epidemiology the term ‘pre-test prob-

ability’ is often used synonymously with prevalence. It represents the probability that

the patient had the condition on the basis of information available before the test was

undertaken, i.e. the prevalence of the condition and the patient’s clinical picture. Simi-

larly, the predictive values, which represent the probability that the patient has (or does

not have) disease on the basis of test results, are often called ‘post-test probabilities’.

associated with screening women over the age of 50 is deemed to outweigh the

consequences of the large number of false positives that inevitably result.

Before we move on, it is also important to note that the aspects of accuracy and

predictive values that we have just discussed in relation to screening also apply

to all diagnostic tests as shown in Box 15.2.

The trade-off between sensitivity and specificity

Let us assume that we have developed a new blood test that will screen people for

a debilitating but treatable disease. The test involves measuring blood levels of a

marker M and is far less invasive than the ‘gold standard’ test. To evaluate the new

test, levels of M were measured in 225 people believed to be at moderately high

risk for the disease and the results were compared with the ‘gold standard’ test,

which each person underwent independently of the blood test. For the blood

test, the ‘criterion of positivity’ was set at an M level of 20 mg/l or more; i.e. those

with M levels at or above this were said to have the disease. Figure 15.3 shows

the distribution of M levels in people with and without the disease as diagnosed
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by the ‘gold standard’ test. The light bars on the left represent the 99 people who

truly do not have the disease and the dark bars on the right represent the 126

people who truly do. When compared with the ‘gold standard’ results, 115 of 126

with disease tested positive (M levels ≥20 mg/l) as did 10 of 99 without disease;

the remaining 11 with disease and 89 without had negative test results. We can

summarise the data as shown in Table 15.4.

How accurate is the M test? (i.e. what are the sensitivity and specificity?)

How well has the test performed in this population? (Here we can extract some

useful information from the predictive values of the test.)

Using a cut-off of ≥20 mg/l to classify people as positive or negative we can cal-

culate the following:

Sensitivity = 115
126

× 100 = 91.3%

Specificity = 89
99

× 100 = 89.9%

Table 15.4 A summary 2 × 2 table for M test with a cut-off
point of 20 mg/l.

True disease status

M test Positive Negative Total

≥20 mg/l (positive) 115 10 125

<20 mg/l (negative) 11 89 100

Total 126 99 225
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PPV = 115
125

× 100 = 92.0%

NPV = 89
100

× 100 = 89.0%

These look pretty good, but ideally we would like to have all of these values as

close to 100% as possible. The M test has, for instance, incorrectly diagnosed

11 people who truly had the disease as not having it because their M values were

less than 20 mg/l. So what if we were to lower the cut-off point to 10 mg/l? Look-

ing again at Figure 15.3, this would mean that 9 of the 11 false-negative people

would now be correctly diagnosed as having the disease, but it would also mean

that an extra 31 people without the disease would be included in the diseased

group.

Calculate the sensitivity, specificity and PPV for this new cut-off point. (Hint: first

use Table 15.4 as a guide to how to lay out a 2 × 2 table for the new cut-off point)

How do the values compare with those obtained using the higher cut-off point

(20 mg/l)?

If we change the cut-off point to 10 mg/l the results are now as shown in

Table 15.5. We can calculate the new sensitivity, specificity and PPV as we did

above:

Sensitivity = 124
126

× 100 = 99.4%

Specificity = 58
99

× 100 = 58.6%

PPV = 124
165

× 100 = 75.2%

NPV = 58
60

× 100 = 96.7%

Table 15.5 Results of the M test using a cut-off point of 10 mg/l.

True disease status

M test + – Total

≥10 mg/l (positive) 124 41 165

<10 mg/l (negative) 2 58 60

Total 126 99 225
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By changing the criterion for positivity to ≥10 mg/l the sensitivity is now excel-

lent and there are very few false negatives, but the specificity has markedly

decreased. With the drop in specificity, the PPV of the test has fallen from 92%

to 75% because there are now far more false positives (41 instead of 10).

Looking at the distribution of M levels in the two groups of people (Figure

15.3), we find that, although they are clearly different, there is some overlap

between the two. Where we decide to make the cut-off to try to differentiate

between ‘disease’ and ‘no disease’ determines how many false-positive and false-

negative test results we find. There is, therefore, a trade-off to be made between

sensitivity and specificity. For any disease, the optimum point has to be selected

depending on the consequences of missing a few positives if the cut-off point is

set higher, or falsely classifying more negatives as positive if the cut-off point is

set lower. If early detection greatly reduced mortality from the disease and if false

positives could be identified fairly quickly and cheaply, then clearly we would set

the criterion for positivity lower than if the reverse were the case.

The screening programme

Although a disease appears suitable for screening and there is a valid and

acceptable test, there is still no guarantee that the public will benefit from a

screening programme. Some major concerns beyond predictive values should be

that
� the programme is demonstrably effective in practice, i.e. all its elements work

near enough to plan that lives are saved and/or morbidity is reduced, and the

cost is acceptable;
� the healthcare system can cope with the flood of extra diagnostic testing and

treatment due to finding prevalent disease as well as false positives.

We thus have to measure the outcomes of a screening programme in practice,

and also consider some of the logistics of maintaining quality as outlined below.

Facilities required

Before embarking on a screening programme it is important to assess the infras-

tructure that will be required to support it. Facilities are obviously required for

the screening process but, equally importantly, they are also needed for the sub-

sequent confirmatory testing and diagnosis, treatment and follow-up of those

who test positive. Estimates are needed as to the likely uptake of screening, the

total number of positive test results (including false positives) expected (on the

basis of the prevalence of the disease and the sensitivity and specificity of the

test) and the likely effect that this will have on the demand for medical services.

It is of no use, and is indeed unethical, to initiate a screening programme if the

resources required in order to act upon the results are not available.
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Treatment

The proposed treatment must be effective and early initiation of treatment must

improve the disease outcome. If it does not, then by diagnosing the disease

earlier we will simply lengthen the time a person is aware of, and worrying about,

the disease.

Cost

When a screening programme is introduced we must consider not only the finan-

cial cost, but also the emotional cost of both the screening and subsequent treat-

ment for those who test positive and then weigh this against the costs of treating

those who develop disease later. A positive balance is required between the costs

of screening and the consequences of not screening.

Evaluation of a screening programme

The fact that a screening programme ought to work does not mean that it will

in practice (see Box 15.1 at the start of the chapter). No mass screening should

be introduced without convincing evidence of its likely effectiveness, and it is

imperative that the programme be evaluated as a whole. We will now look at the

initial research that should precede the introduction of any full-scale population

screening, and provide some subsequent comment on the necessary practical

in-service monitoring that should follow its introduction.

It can be difficult to assess whether a programme will work. There are some

relatively simple early process measures that can give an idea of how things

are going, but ultimately we also have to show that the programme delivers

improved outcomes.

To see whether we have succeeded in detecting disease earlier than usual,

we can compare the stage of disease in patients whose disease was detected

at screening with the stage of disease in those in whom it was detected in the

normal way. If cases identified at screening are less advanced, then at least the

potential for benefit has been demonstrated. If this is not so, then the programme

can be abandoned without any need for outcome evaluation.

Another simple check on the process is the positive predictive value of the

screening test being used. A high PPV reflects a good combination of an accu-

rate test and an appropriate population (reasonably high prevalence); a low PPV

implies that the programme may be in trouble. Why is this so? As you saw above,

a low PPV indicates that, of all the positive test results, only a few reflect true

instances of disease, and the large number of false positives will lead to unneces-

sary concern and expense for those individuals. Since virtually all diseases con-

sidered serious enough for screening in the general population will have a fairly

low prevalence, the PPV of any test will be less than optimal however high its
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sensitivity and specificity (refer back to Table 15.3). Health authorities and the

general public need to agree explicitly on what level of false positives is accept-

able, in the light of what these people will suffer. The community should also

be given the chance to declare that they believe that a large benefit for a minority

(some of the ‘true positives’) outweighs the smaller losses (and the costs) suffered

by a much larger group (the ‘false positives’).

Turning to outcome evaluation, the ultimate judge of the potential value of a

screening programme, there are four areas we need to address:
� the target outcomes to be considered
� potential sources of bias in the evaluation of a screening programme
� the design of an evaluation study, and
� the negative consequences of screening.

Target outcomes to be considered

For fatal conditions such as cancer, a reduction in mortality is the most impor-

tant outcome to be gained from a screening programme. However, mere pro-

longation of life might not adequately justify screening if the quality of the

additional life is poor. Thus we should also consider absence or reduction of seri-

ous morbidity and improvement in quality of life as essential target outcomes

for a screening programme. The quality-adjusted life years or QALYs that you

met in Chapter 2 can help with this. Other sensible endpoints need to be set for

other non-fatal conditions: for example, we would want to know that detecting

impaired hearing in school children led to some measurable benefits of conse-

quence – perhaps improved performance at school. Attention also needs to be

given to assessing the harms that inevitably ensue from a screening intervention

and we will consider this aspect in some detail below.

Potential sources of bias in the evaluation of a screening programme

At first glance, it would seem that all we need to do is follow up people who have

and have not been screened to see what effects the screening has on their mor-

bidity and mortality. However, such simple cohort comparisons are unreliable as

bias is a major problem and, as you will see, what we really need is evidence from

randomised trials. There are three major sources of bias to be dealt with in any

evaluation of the effects of screening: volunteer bias, lead-time bias and length

bias.

Volunteer bias

People who attend for screening are likely to be different from those who do not.

They tend to be of higher socioeconomic status, to be more health-conscious

and more likely to comply with prescribed advice. Thus better results for a
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Table 15.6 Volunteerism among women randomly allocated to the mammo-
graphy group in the HIP study, showing that mortality was lower among women
who took up the offer of mammography than among those who did not.

Deaths per 10,000 women per year
Women randomly allocated to

mammography All causes Cardiovascular

Women who underwent mammography 42 17

Women who refused the offer of 77 38

mammography

Total 54 24

(Shapiro et al., 1985.)

screening programme of volunteers compared with disease outcomes in non-

volunteers may relate to factors associated with the ‘volunteerism’, rather than

benefits of treatment following earlier diagnosis. (This is the same volunteer bias

that you saw when we discussed selection bias in Chapter 7.)

In the HIP trial of mammographic screening (described in Box 15.3 on the

next page), only about two-thirds of the 31,000 women randomly allocated to

the mammography group actually took up the initial offer to be screened and

less than half attended all four annual examinations. After 5 years of follow-up

of all women in the intervention arm, i.e. all those who were offered screening,

those women who had refused breast screening had much higher mortality from

all causes and from cardiovascular disease than those who were screened (Table

15.6).

Since the screening was directed only at breast cancer, why might women who

came for screening have lower mortality rates for causes other than breast

cancer?

The most likely reason is ‘volunteer bias’ – the women who took up the offer of

screening were different in important ways from those who did not. (And note

that Table 15.7 shows that the overall rates of total and cardiovascular mortality

were essentially the same in both arms of the trial, reinforcing the fact that the

mammographic screening itself did not affect these outcomes.)

The only way to avoid this type of bias is to recruit a pool of volunteers and then

assign them randomly to receive screening or no screening, just as they did in the

HIP trial (Box 15.3). It is also important to ensure that as many as possible of

those assigned to screening are actually screened. The correct analysis is then by

intention to treat, i.e. comparing the groups as they were originally randomised,

regardless of whether women were actually screened. If only those who actually

received the screening are compared with the rest, we lose all the benefits of the
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Box 15.3 Mammographic screening for breast cancer – still
generating controversy

Mammographic (X-ray) screening for breast cancer has been evaluated in a

number of different countries. One of the first randomised trials conducted

to determine its efficacy was the Health Insurance Plan (HIP) study in New

York – an inspired initiative that linked the introduction of breast screening

to a health insurance scheme. In this large-scale trial, 62,000 women aged

50–64 years who were members of this insurance plan were invited to

participate in the early 1960s. About 31,000 women were randomly allocated

to the intervention group and offered an initial mammographic (and

physical) screening examination followed by three additional screening

examinations at yearly intervals. Another 31,000 women were randomly

allocated to the control group and were not offered the screening

programme. After 18 years of follow-up, breast cancer mortality was 23%

lower in the group offered screening (Shapiro et al., 1985). These promising

first results were the basis for many countries to consider mammography as

a valuable public health tool, particularly in 50–64-year-old women.

However, there are still controversial issues to be resolved.
� Results of most studies have not shown a marked benefit of screening

women aged under 50 years.
� There have been criticisms of this and other core mammographic

screening trials and, although these have generally been rebutted, they

indicate that there are complex issues involved, both in conducting the

studies and in interpreting the results.
� The ability to implement programmes in routine public health practice

which operate with the same high standards of those in the well-funded

research projects is still a matter of concern for many countries. If

programme standards are lowered (e.g. due to inadequate training of

radiologists to read mammograms or longer screening intervals) then the

balance of benefits and harms will shift unfavourably.

Recent descriptive evidence shows that there has been a persistent downturn

in deaths from breast cancer in a number of countries (Figure 14.3). Although

the reasons for this downturn have been a subject of heated debate, as

discussed in the previous chapter, it appears that both better treatment

(particularly chemotherapy) and screening have played their part.

randomisation in terms of controlling for confounding and avoidance of selec-

tion bias. (As you saw in Table 15.6, those who do take up screening are likely

to have inherently better health outcomes than those who do not, regardless of

the screening.) This analysis is not only theoretically correct, but also reflects the
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Diagnosis

Onset
age 45 

‘Early’
age 48 

‘Usual’
age 50

Death
age 54

Unscreened woman O---------------------------------------Dx ----------------

Screened woman O------------------Dx -------------------------------------

Lead-time

Figure 15.4 The lead-time
associated with screening in two
individuals. The shaded area
represents the lead-time.

reality of public health practice, because not all of us will eagerly take up each

preventive opportunity. Details of this analysis are described below, and shown

in Table 15.7.

Lead-time bias

Lead-time is the period between when disease is detected by screening and when

it would have become symptomatic and been diagnosed in the usual way. Con-

sider a situation in which breast cancer starts to develop (disease onset) in two

women at age 45. One attends for mammography and the tumour is detected at

age 48, while the other is diagnosed at the age of 50 when she notices a lump

in her breast. Both women die of their cancer at age 54 (Figure 15.4). The first

woman has survived for 6 years following the discovery of the tumour while the

second has lived for only 4 years following diagnosis.

Without knowledge of the time of onset of disease, the screening process

appears to have increased the survival time by 2 years for the woman who was

screened when in fact their disease courses were identical. Both women have

lived for 9 years following the initial development of the tumour. The first woman

has just known and worried about her disease, and perhaps been without one

breast, for 2 years longer than the second woman. This is known as ‘lead-time

bias’ and, if ignored, it would distort a direct comparison of survival rates in

screened and unscreened groups. Conventionally, survival is calculated for a 5-

year period after diagnosis of cancer: in this example the woman diagnosed clin-

ically (unscreened) who died 4 years after diagnosis would not be in the numera-

tor of the survival rate, i.e. she would be defined as a ‘non-survivor’. However,

her exact counterpart in the screened group who died 6 years after diagnosis

would be included as a survivor, incorrectly suggesting a benefit from screen-

ing. If lead-time bias is ignored, the survival among women who were screened

would appear to be higher than that among women diagnosed clinically, even if

their disease courses were identical. A related phenomenon is the apparent tran-

sient increase in incidence seen when a screening programme is first introduced

as the screening detects prevalent cases in the population earlier than they would

normally have been detected.
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Table 15.7 Detection of new breast cancers and mortality from breast cancer, all causes other than breast
cancer and cardiovascular disease in the HIP study.

Deaths (per 10,000 women per yeara)Breast cancer

cases in the

first 10 years

(per 1000

person-yearsa)

Breast cancer

Age Age Age All other Cardiovascular

Study group 40–49 50–59 60–69 causes disease

Control 2.1 2.4 5.0 5.0 54 25

Mammography 2.1 2.5 2.3 3.4 54 24

Change – +4% −54% −32% – −4%

a Units as reported.

(Shapiro, 1989, Sackett et al., 1991.)

So unless we have some idea of the actual lead-time, perhaps from previous

studies, we should not use survival time after diagnosis to evaluate a screen-

ing programme. Instead, we should consider the effects on longer-term age-

specific morbidity or mortality rates of the disease. These rates are less likely

to be affected by early diagnosis than time-limited survival rates, and should

therefore better reflect the true benefits of early treatment. Table 15.7 shows such

results from the HIP study evaluating the effectiveness of mammography, based

on a 10-year follow-up.

Would you implement a breast-screening programme on the basis of the data

shown in Table 15.7?

Table 15.7 compares breast cancer detection rates and breast cancer mortality

rates (separately for three age groups) among the group randomly allocated to

mammography (regardless of whether they actually underwent the procedure)

and the control group. It also shows the mortality rates for cardiovascular dis-

ease and for all causes other than breast cancer. Cardiovascular and ‘all-other-

cause’ mortality rates were similar for the two groups (suggesting that the ran-

domisation process had created two equivalent groups of women), but breast

cancer mortality rates in women aged 50–59 and 60–69 years were lower in the

group randomly allocated to screening. (Note that, over the 10 years of follow-

up, the breast cancer detection rates in the two groups were identical – screening

does not alter the underlying incidence of disease but simply improves the out-

come after diagnosis.) On the basis of these data alone it would appear that a

breast cancer screening programme for women between the ages of 50 and 64

(the maximum age of women when they entered the study) should certainly be

considered. In practice, it would also be important to consider other aspects of

this study, to ensure that the results were valid; and given that we are making our
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judgement many years after these data were published, we must also examine

the results of other studies in this area, ideally through a formal meta-analysis

(see Chapter 11).

Length-time bias

When we screen for disease we are also more likely to detect cases where the dis-

ease is progressing slowly. This is because rapidly developing disease will come to

clinical attention sooner and so be more likely to be diagnosed outside a screen-

ing programme. These cases that are diagnosed between regular screening vis-

its are sometimes called ‘interval’ cases. The ‘slower’ cases that are more likely

to be detected by screening (remember, prevalence is a function of incidence

and duration) are likely to have an inherently more favourable outcome, and the

effect of this will again tend to make screening appear more favourable than it

really is. Length-time bias refers to this over-representation of slowly progressing

disease among cases detected by screening. Randomisation should give an even

balance of each type of case in screened and unscreened groups, again eliminat-

ing this as a problem for comparisons of age-specific mortality.

Design of a study to evaluate a screening programme

The preceding discussion should make it clear that the initial evaluation of a

novel screening programme requires a randomised trial to allay concerns about

these varied threats to validity; no other design can be wholly convincing in this

regard. However, it is important to note that there are situations where this is not

possible, for example for ethical reasons as in the case of cervical cancer screen-

ing (see below), and in this case we will need to rely on less convincing levels of

evidence. Moreover, once a screening programme has been rolled out as part of

a health service’s disease control activities it needs further monitoring and eval-

uation in that setting. As randomisation to the intervention will no longer be an

option this will generally include careful assessment of the process measures we

discussed above and monitoring of population-wide descriptive data including

trends in incidence and mortality rates. Making sound judgements from such

data is challenging, but the example of cervical cancer below gives a sense of

what is achievable. However, before we look at these non-randomised designs,

let us return to consider some examples of randomised studies.

Randomised studies

Secure long-term benefits of a screening programme must be documented

before it can be adopted for widescale use. Ideally, this demands a number of

randomised trials with persons assigned to be offered screening or not, and then

followed for some time (usually many years) to assess their health. Inevitably, in

the short term more disease will be found among those screened, so the real issue
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is whether their survival or quality of life is enhanced in the long term. The HIP

study mentioned above was a landmark in this respect, with the investigators

showing great foresight in realising the need for very large-scale and long-term

trials to answer these questions. It included over 60,000 women and the length of

follow-up was 18 years, but even so, from the point of view of obtaining reliable

results, the numbers of deaths from breast cancer were not very great in the ear-

lier years of the study. A smaller study, or one that was conducted for only a short

period of time, would not have been sufficient to show with any certainty (i.e.

precision) whether breast cancer screening was of benefit. Additional data from

subsequent RCTs, combined in the form of a meta-analysis, have allowed even

more reliable assessment of the value of mammographic screening (National

Cancer Institute, 2009).

Large bowel cancer is the only other cancer for which strong evidence from

randomised studies shows a consistent mortality benefit from screening using

a simple test for blood in a person’s stools (Ee and Olynyk, 2009). The widely

accepted benefits of screening for cervical cancer by a smear test to detect

abnormal cells are based on much weaker evidence (see non-randomised stud-

ies below), as it had become an accepted part of medical practice before the

benefits of RCTs for assessing screening programmes were realised. And while

prostate cancer screening by testing PSA (prostate specific antigen) levels in

blood is widely practised in the USA, and to a lesser degree in some other coun-

tries (essentially large-scale case-finding, as there are no organised public pro-

grammes), supportive trial data are lacking – although four large RCTs are cur-

rently under way. As of 2009, two of these trials had reported interim results

although these have not resolved the questions of the magnitude (if any) of any

absolute benefit from screening, nor the tradeoffs (expected to be substantial,

see below) in terms of extra morbidity and costs of screening (Barry, 2009).

Non-randomised studies

As you discovered in Chapter 8, non-randomised studies are much more prone

to confounding than randomised trials. However, they are sometimes the only

source of evidence available. Ecological studies have been used as the primary

evidence to evaluate the impact of cervical screening on rates of cervix cancer

and, as an example, Figure 15.5 shows changes in cervical cancer mortality rates

over time in Scandinavia. Perhaps the most conspicuous feature of the graph is

the fact that, until about 1975, cervical cancer mortality rates in Denmark were

double those elsewhere in Scandinavia. Leaving Denmark aside for the moment,

we can see that between 1965 and 1980, mortality fell more rapidly in Finland and

Sweden, where nationwide screening programmes had been introduced in the

early 1960s, than it did in Norway, where, at that time, only 5% of the population

was covered by screening (nationwide screening was not introduced until 1995).

This visual impression is reinforced by a more formal analysis that suggested
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Figure 15.5 Cervical cancer
mortality rates (5-year averages,
standardised to the world
population) from 1960–2006 in
the Nordic countries. (Data
source: NORDCAN, accessed via
http://www-dep.iarc.fr/
NORDCAN/english/frame.asp,
3 January 2010.)

that, between 1965 and 1982, cumulative cervical cancer mortality rates fell by

50% in Finland and 34% in Sweden compared with a drop of only 10% in Nor-

way (Laara et al., 1987). Since 1980 the rates have continued to fall in all three

countries.

So what about Denmark? Mortality has also fallen there, but, although the

absolute drop is quite dramatic, the relative fall between 1965 and 1982 was only

25%, i.e. somewhere between that in Sweden and that in Norway, and this fits

with the intermediate level of screening in Denmark – about 40% coverage of the

population by 1980. Thus the data appear to support the hypothesis that screen-

ing does reduce mortality from cervical cancer, but, as you saw in Chapter 3,

the results of an ecological study can be hard to interpret. For example, it has

been pointed out that the fall in cervical cancer rates in some of these countries

actually began before the introduction of screening, emphasising the problems

of separating out other temporal effects, such as social change. It is difficult from

these data to say how much of an impact the screening really had, although other

evidence now supports the claim that cervical cancer screening confers a real

benefit in terms of saving life.

Case–control studies have also been used to compare those with and without

disease with respect to their history of screening. For example, case–control stud-

ies of bowel cancer have shown that screening sigmoidoscopy is associated with

50%–70% lower mortality from cancers in the parts of the bowel that are within

reach of the sigmoidoscope, but with no difference in mortality from tumours in

parts of the bowel that cannot be reached (Selby et al., 1992). This design has a

number of practical advantages over prospective studies, including the fact that

case–control studies can often be conducted more quickly and at relatively low



370 Early detection

cost; however, considerable care must go into the design stage and interpreting

the data can pose a number of additional challenges (Walter, 2003).

Non-randomised studies are also important once a screening programme has

been established as a standard public health intervention, as ongoing monitor-

ing and evaluation are required to check that the benefits shown in the research

trials are actually achieved in practice. In the early stages, process measures of

the sort noted above (e.g. a shift towards diagnosis of cancer at an earlier stage,

high predictive values), will be prominent. In the longer term the focus needs to

change to disease-specific outcomes, for example ecological-type assessments

of the contributions of a screening programme to any changes in disease pat-

terns seen, as for the cervical cancer example you saw above (see National

Cancer Institute, 2009 for more examples). This need for ongoing monitoring

using routine data holds for all large-scale population interventions, not just for

screening programmes, and emphasises the importance of high-quality admin-

istrative data for in-service programme evaluation.

The negative consequences of a screening programme

Our prime focus in the previous discussion was how to validly assess whether

screening provides a health benefit. But this is only part of the story; the potential

harms that may follow screening also have to be considered and must be found

to be substantially less than the benefits before screening can proceed. We there-

fore summarise below the sorts of problems that can follow from offering screen-

ing to healthy individuals as a counterbalance to any unbridled enthusiasm you

may have developed for screening as a strategy for disease control.

The negative effects or harm that can result from screening are different for

those people with positive test results and those with negative test results. Poten-

tial harm for those with a positive test result includes the possibilities of
� complications arising from investigation
� adverse effects of treatment
� unnecessary treatment of persons with true-positive test results who have

inconsequential disease (this is central to doubts over prostate cancer screen-

ing, and almost certainly important for breast cancer as well (National Cancer

Institute, 2009))
� adverse effects of labelling someone as having disease or early diagnosis
� anxiety generated by the investigations and treatment, and
� costs and inconvenience incurred during investigations and treatment.

For example, it has been estimated that, of 1,000 women aged less than 50

years screened by mammography, 53 women will have an abnormal mammo-

gram (Kerlikowske et al., 1993). This group will then undergo a total of 102 addi-

tional procedures, including 13 excisional biopsies, but only 2 women will finally
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be diagnosed as having cancer and 1 of these cancers will be ductal carcinoma in

situ, a pre-cancerous lesion for which the benefit of surgical and medical inter-

vention remains uncertain. This represents a positive predictive value for mam-

mography of about 4% for all cancers and 2% for invasive cancer among women

aged under 50 years. The other 51 women whose mammograms were abnormal

will have undergone the stress of follow-up testing for no clear benefit. The corre-

sponding PPVs for women over the age of 50 are 11% and 7%, i.e. approximately

three times higher, thus the benefits of screening will also be higher. (Improve-

ments in technology may improve the situation somewhat, but the fundamental

problem of very low prevalence remains.) We also noted above the uncertainties

that still surround screening for prostate cancer; as at 2009, the trial data show

an approximate doubling of major interventions (surgery, radiotherapy, both of

which have serious side effects) in the men offered screening, for at best a modest

lowering of mortality (Barry, 2009).

Potential harm for those with a negative test result includes the possibilities of
� anxiety generated by the screening test and waiting for the result
� false reassurance if the result turns out to be a false negative and there is

delayed presentation of symptomatic disease later, and
� costs and inconvenience incurred during the screening test.

Harm from screening programmes can therefore include the following:

(1) Physical harm from complications, invasive tests and/or treatments espe-

cially if falsely positive or from delayed presentation if falsely negative.

(2) Psychological harm from anxiety, anger or depression from waiting, distress

from invasive tests or procedures, knowing a serious diagnosis earlier with-

out improved prognosis, and from falsely negative or positive test results.

(3) Financial harm from the costs of tests, medical appointments, possible hos-

pitalisation and treatments.

We detail these negatives to emphasise the need to take a balanced view

of what we are really offering the public when we introduce a screening pro-

gramme. If we over-emphasise the potential benefits, and neglect serious con-

sideration of how a community might view and be impacted by the harms, we

do everyone a disservice.

Summary

Screening is an inherently attractive public health strategy for controlling some

diseases, particularly when no or few feasible avenues for primary prevention

exist. Nonetheless, its present popularity among some segments of the public

and the health professions may over-represent its capabilities. A cool-headed

approach is required, and some simple questions make a good starting point

when considering screening:
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� Is this disease appropriate for screening?
� Do we have a truly valid test?
� How well could a screening programme work in our community?

Points to look for when evaluating the potential benefits of screening include

the stage of disease in cases detected by screening, a high positive predictive

value for the screening test and, most importantly, demonstrated and worth-

while improvement in outcomes in randomised trials.

These are the scientific aims. We then have to think practically and ethically.

Other questions we should ask include:
� Do we have the resources to implement the programme, and to deal with the

extra clinical and psychological load that will ensue?
� If we are taking resources from other public health programmes, are we sure

that we are improving the overall cost–benefit ratio for the community?
� Does our community truly understand and accept the inherent trade-off –

namely that there will be a large benefit for only a few and some costs (mostly

smaller) for many others, and that some disease will be missed?

These are not light challenges to be faced.

Questions

1. Papanicolau (Pap) smear screening is currently the accepted method for early

detection of cervical cancer and women with an abnormal Pap smear result

are referred to a gynaecologist for colposcopy for definitive diagnosis. To see

whether repeat Pap screening would reduce the number of unnecessary refer-

rals, 110 women with an abnormal Pap smear were given both a second Pap

smear and colposcopy. The colposcopy showed that 13 women had high-

grade lesions and 97 did not. The result of the repeat Pap test was abnormal

for 12 of the women with and 72 without high-grade lesions.

(a) Construct a 2 × 2 table comparing repeat Pap test with colposcopy.

(b) Calculate the sensitivity and specificity of the repeat Pap test.

(c) What is the positive predictive value of the repeat Pap test?

(d) What is the probability that a woman whose repeat Pap test gives a nega-

tive result actually has a high-grade lesion?

(e) Could a second Pap smear be used to identify women who should be

referred for colposcopy?

2. An experimental screening test for hepatitis B has a sensitivity of 82% and

a specificity of 93%. The prevalence of hepatitis B in the population to be

screened is estimated to be 3%.

(a) What is the probability that an individual with a positive test result does

not have hepatitis B?
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(b) Using this test, what proportion of a population free of hepatitis B would

falsely test positive?

3. You are considering introducing prostate cancer screening programme using

the PSA (prostate specific antigen) test. You know that the test has a sensitiv-

ity of 85% and a specificity of 80% for detecting prostate cancer and that the

prevalence of prostate cancer in men over 60 years of age is 4%.

(a) Among a group of 10,000 men aged over 60, how many would be expected

to have prostate cancer and how many of these would be expected to have

a positive PSA test?

(b) How many men would not have prostate cancer and, of these, how many

would have a positive PSA test?

(c) Summarise these data in a table and calculate the positive predictive value

of a positive PSA test.

(d) How useful is the PSA test in this population? Consider both the negative

and positive outcomes for men who are screened.

(e) If the prevalence of prostate cancer among men older than 70 years is 15%

would it be better to restrict screening to this age group?

(f) What characteristics of a disease make it one for which we would consider

introducing a screening programme?

For further questions relating to screening, see an excellent case study, ‘Screen-

ing for antibody to the human immunodeficiency virus’ from the Epidemic Intel-

ligence Service of the US Centers for Disease Control and Prevention (CDC-

EIS, 2003, Student Guide #871–703), which is freely available from their website:

http://www.cdc.gov/eis/casestudies/casestudies.htm.
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In the preceding chapters we have covered the core principles and methods of

epidemiology and have shown you some of the main areas where epidemiologi-

cal evidence is crucial for policy and planning. You will also have gained a sense

of the breadth and depth of the subject from the examples throughout the book.

To finish off we will take a step back and take a broader look at the roles epidemi-

ological practice and logic play in improving health.

We might start by exploring the boundaries of epidemiology. The definitions

given in Chapter 1 are not limiting and imply wide engagement with all influ-

ences on health – epidemiology is a ‘big-picture’ discipline. The proximal causes

of disease (e.g. infectious agents, industrial toxins, smoking, diet) are inextricably

intertwined with the social, economic and physical environments, so epidemiol-

ogy must give due attention to these upstream (distal) drivers of a population’s

health; you have already seen examples of this in Chapter 1 and in the discussion

of infectious diseases in Chapter 12 and prevention in Chapter 14.

In 1848, a year of political revolution in Germany and elsewhere in Europe,

the great German medical scientist Rudolph Virchow was sent by the Prus-

sian government to investigate an epidemic fever raging among the destitute

Polish weavers of Silesia. He diagnosed it as typhus or relapsing fever, not-

ing that such mass phenomena have mass causes (Virchow, 1985, cited by

Drotman, 1998; Azar, 1997). He stunned the establishment by recommending

political freedom and sweeping educational and economic reforms as the only

solutions to the health problem. Although he could not then know the undis-

covered proximal bacterial cause, he correctly perceived the upstream social and

environmental causes: poor hygiene, malnutrition, poverty, lack of opportunity

375
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and oppression. However, without methods to establish such links, his opin-

ion was easily dismissed as political activism rather than science, an accusation

still sometimes levelled at epidemiologists who focus on sociopolitical causes of

disease.

Virchow’s epidemiological insight was ignored, but a few years later John

Snow’s epidemiological studies on water pollution and cholera (see Chapter 1)

led to sanitary reforms that swept across northern Europe to combat environ-

mental causes of infectious disease. Social causes of disease came back on to the

agenda with the pioneering field studies of Goldberger and others in the first two

decades of twentieth-century America (Buck et al., 1988). Their work shone the

epidemiological torch on pellagra, once thought to be an infectious disease but

now known to be a consequence of dietary niacin (vitamin B3) deficiency. They

gathered meticulous data on numerous social factors, including family income,

diet, food supply and food habits, and showed that there was a strong relation-

ship between pellagra and poverty with its consequent lack of fresh meat and

milk (the major dietary contributors of niacin).

The nineteenth- and early-twentieth-century health activists, like Virchow,

Snow and Louis Pasteur, to name but a few, were not ‘epidemiologists’ but they

were giants of medical science and most played a prominent role in health policy

later in their lives. Much of their logic and the other tools they used are clearly

recognisable as epidemiological and they broke the ground that now connects

epidemiology to the allied fields of biology, natural and environmental science,

economics and social and political science. Today, many of those confronting the

excess burdens of disease in the developing world and Eastern Europe are epi-

demiologists, but to be effective all must operate in the wider spheres of public

health and public policy. Within this partnership epidemiology provides some

of the keys to causation, prevention and, particularly, health services evalua-

tion. Specifically it emphasises measurement – of the size and scope of a health

problem, and of the likely benefits of planned preventive or other interventions

to control disease – thereby providing the quantitative basis for setting health

policy.

At the other end of the causal scale, the expanding potential for genetic map-

ping and our growing understanding of the functional variations of particular

alleles of the genes which control metabolism have opened a new avenue of

‘micro-epidemiology’ for studying interactions between risk factors and genes.

Smoking is strongly associated with lung cancer, but nevertheless many heavy

smokers do not develop lung cancer – perhaps because of a beneficial combi-

nation of genetically controlled metabolic and/or immunological responses to

tobacco carcinogens. Understanding these interactions could help in predicting

and modifying future disease burdens with changing patterns of smoking. It may

also provide an additional tool to help current smokers to quit – the hope being

that if smokers are told their genes mean that they are more likely to get lung
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cancer than the average smoker then this will be an added incentive to help them

abandon the habit.

What does the future hold for epidemiology?

In more privileged settings such as Western Europe and North America, the

explosive growth of epidemiology in recent decades has spawned negative per-

ceptions of a developing industry in ‘risk-factor epidemiology’, sometimes being

done more for its own sake rather than with clear and useful public health

goals in mind. So is this true? Certainly the multivariable and often hard-to-

measure causes of many chronic diseases, for which relevant exposures may

have occurred in the distant past, do not readily yield their secrets. It may also

be that the ‘easier’ work on chronic disease epidemiology has been done and

we now confront diminishing returns – a problem that some think affects many

From www.Cartoonstock.com



378 A final word . . .

areas of science (Horgan, 1996). As a result, studies are finding weak effects

and different studies claim to find different effects. The end result is a flow

of often contradictory newspaper headlines and journal articles depicting new

panaceas or ‘lifestyle’ risks (although some of this information overload stems

more from the economic imperatives of publicity and circulation than from

flawed research). No wonder members of the public (and some epidemiologists)

are becoming disillusioned. This highlights the importance of a good review to

provide a balanced explanation and presentation of all relevant data as we dis-

cussed in Chapter 11. But achieving the necessary levels of restraint among edi-

tors and medical journalists so that they do not trumpet ‘interesting’ findings

from reports of a single study, and a parallel humility among researchers who

need recognition for their work to obtain ongoing funding, looks likely to be

elusive in the short term.

There is also the challenge of deciding when we have enough data that we

can be confident in the answer to a question or make good planning or pol-

icy decisions. There are no easy answers to this one, influenced as it must be

by multiple factors, including the urgency of the issue and the quality of the

data to hand – for example look back to the question of whether mobile ‘phones

cause brain cancer (Box 11.3). Throughout this book we have focused heavily

on data quality and interpretation and we will return to these issues below. But

we should also note the potential for what has been termed ‘circular epidemi-

ology’ (Kuller, 1999) – excessive repetition of research into a particular question

using study designs that are unlikely to truly advance knowledge. This situation

can be exacerbated by policy makers who are often reluctant to act based on

data from other countries, preferring to have local information despite the likely

cross-border generalisability of most findings. To avoid this problem we need

to ensure that new work is directed to as yet unanswered questions – ideally of

practical public health relevance – as revealed by a thorough systematic review

of prior work.

Thinking smarter

So what is the answer? Think smarter wherever possible. Before embarking on

something new, do your homework. What has been done and where are the gaps

in knowledge? Clearly a systematic review along the lines that we discussed in

Chapter 11 can help here. What question are you trying to answer, how can you

best answer it and, if you do answer it, what are the likely health benefits that will

follow? Most of us will not be John Snows and our work will not have a dramatic

effect on human health into the future, but we can and should all aim to generate

new knowledge that adds to what is currently known and has the potential to

move us closer to our ideal of health for all.
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We have discussed the main hurdles to be overcome when conducting epi-

demiological research and interpreting its results – our old friends chance, bias

and confounding (Chapters 6–8). We have also discussed the ways in which we

can minimise these. We can never eliminate the play of chance from research

but can ensure that studies are big enough to reduce it to acceptable levels, and

should also view the results of any individual study in the context of what others

have found. One result might be due to chance but similar results from differ-

ent studies are unlikely to be. We also know about confounding, how to look for

it and how to control it, always assuming that we can measure the confounders

with sufficient accuracy.

Which brings us to measurement error – in exposure and outcome but also for

confounders (we cannot control for them if they are not measured well). As you

saw in Chapter 7, even a moderate amount of non-differential random misclas-

sification can completely mask an association, so if the associations we are look-

ing for today are better hidden than those discovered previously then we need

to sharpen our tools to find them (Michels, 2001). New technologies now allow

more sophisticated measurement both of exposure (e.g. serum biomarkers, DNA

damage in cells) and of outcome (e.g. early cellular changes, molecular subtypes

of disease based on genetic profiles). Increasing the precision and accuracy of

our measurement is paramount but we also need to be more specific about what

we mean by exposure and outcome. A single infectious agent may have a num-

ber of different strains, cigarettes have different levels of tar, hormone replace-

ment therapy comes in a number of different formulations and doses and so

on. Duration, intensity, pattern and timing of exposure (for example childhood

versus adult) may also be important. Is someone who drinks a glass or two of

wine each night getting the same ‘causal dose’ of alcohol as their neighbour who

drinks only on Friday nights but then drinks a bottle or two? For liver cirrhosis the

answer might be ‘yes’, but for risk of injury it would clearly be ‘no’, emphasising

the need to be precise about the question being asked. Might diet in childhood

be more important in determining risk of adult-onset disease than recent diet?

This we don’t know yet; but see below for attempts to address this.

Similarly, we need to be more precise about our definition of ‘outcome’. Pathol-

ogists have known for years that cancers at one site can take many different

forms, yet until recently epidemiologists would often treat them as a single

disease. Different subtypes of cancer may have different aetiologies and, if we

lump them all together in a single analysis, it is no wonder that clear patterns

of risk don’t fall out at our feet. This was certainly the case for uterine can-

cer until the mid twentieth century when cancers of the body of the uterus (or

endometrium) were separated from those of the cervix (or neck of the uterus)

and found to have completely different risk factors: obesity and oestrogen expo-

sure for endometrial cancer and human papillomavirus (HPV) infection for cer-

vical cancer. More recently, studies that have separated the different histological
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Figure 16.1 Odds ratios and
95% confidence intervals (CI) for
the association between human
papillomavirus (HPV) infection
(via HPV DNA detection) and
invasive cervical cancer risk in
successive molecular
epidemiological studies (mostly
case–control) from 1987 (top) to
2003 (bottom). Adapted from
Franco and Tota, Invited
commentary: Human
papillomavirus infection and risk
of cervical precancer – using the
right methods to answer the
right questions. Am J Epidemiol.,
2010; 171: 166, by permission of
the Society for Epidemiological
Research.

subtypes of ovarian cancer have shown that although there is little overall asso-

ciation with cigarette smoking, this may well be a strong risk factor for the rare

subtype of mucinous ovarian cancers (Jordan et al., 2006). There are almost cer-

tainly still strong associations between exposure and disease waiting to be found,

but we need to be more precise about our definitions of both exposure and out-

come in order to find them.

A dramatic example of the effects of clearly defining both exposure and out-

come comes from studies of the relation between human papillomavirus (HPV)

infection and cervical cancer. In early studies HPV was detected in 30%–60% of

cases and the observed associations suggested a two- to five-fold increase in risk.

Improved detection methods mean that HPV is now identified in 99% of cases

and, as a result, we now see odds ratios of 100–900 for the association between

the presence of specific types of HPV DNA and risk of invasive cervical cancer

(Franco and Tota, 2010). The dramatic effects of this improvement in measure-

ment on the magnitude of the observed association are shown in Figure 16.1.

This precision has in turn helped identify the best targets for the recently intro-

duced vaccines against HPV intended to prevent cancer of the cervix.

Integration

The debate over the perils of pure risk-factor epidemiology has also been valu-

able in forcing a re-evaluation of perspectives (Kuller, 1999; McMichael, 1999;
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Rothman et al., 1998; Susser, 1998). In addition to improving measurement, we

believe that the key to maximising our future contributions to understanding

and enhancing health lies with integration – from macro to micro, across lives

(from birth to death) and over time. The tools and related issues that we have

covered in this book are central to some of these dimensions and relevant to all

of them, although other perspectives from sociology, social history, anthropology

and economics may dominate on some of the larger scales.

Both macro-level ecoepidemiology (ranging from studying the health effects

of climate change to the toxic sequelae of a local chemical hazard) and micro-

level molecular epidemiology (perhaps to inform development of a vaccine

against a parasite predicted to spread with global warming) can be relevant to

the same specific goal of disease control. Whereas epidemiological analyses in

the past have largely focused on a single level, individual or community, macro

or micro, there is now an increasing move towards linking multiple levels of data

in the one analysis. For example, one study might bring together:
� information provided by an individual that characterises their personal char-

acteristics and exposures (e.g. smoking, diet), their social position (e.g. level

of education, income) and their local environment (e.g. distance from health

services);
� genetic and/or other molecular-level information from, for example, a cheek

swab or blood sample provided by the individual; and
� macro-level descriptors that capture attributes of the wider community in

which the individual dwells, such as indicators of disadvantage (e.g. average

income, crime rate, education, accessibility of health services) and environ-

mental challenges (e.g. air or noise pollution).

This would allow the molecular (micro) and community (macro) contexts to

become part of the explanation of individual health states. Inclusion in a sin-

gle analytic model allows some quantification of interactions over levels, in con-

trast to the more qualitative assessments that will otherwise prevail. For exam-

ple a Canadian group linked individual data on socioeconomic status (SES)

and obesity in high school children to area-level measures of SES including the

local unemployment rate and average income derived from census data (Janssen

et al., 2006). They showed that childhood obesity was independently associated

with both the affluence of the child’s family and the unemployment rate in the

local area, such that children from less affluent families who also lived in an area

with high unemployment were most likely to be obese.

Another emerging and attractive, albeit challenging, approach to temporal

integration is found in lifecourse epidemiology (Kuh and Ben-Shlomo, 2004).

The aim here is explicit in the name; that is, to identify and integrate expo-

sures and other influences across a person’s life (as far back as conception) and

relate them to the person’s state of health. Finding out details of habits, diets

and other influences in early life is mostly too much to expect from retrospective
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questioning in adulthood, but historical record-based data from early surveys,

schools, hospitals and other institutions are opening some windows. For exam-

ple, a group of Bristol epidemiologists has scoured the UK for records of past

surveys that might yield early-life exposure information for people who are now

adults. They identified high-quality dietary records from the 1930s for over 4,000

children, more than 85% of whom have been followed for mortality, and a pro-

portion resurveyed six decades later (the Boyd Orr study; Frankel et al. (1998)).

A number of pregnancy and birth cohorts have been established with collection

of detailed early-life data, with the intention of life-long follow-up of the study

participants (for example the ALSPAC Study; see Box 4.3). As is true for any long-

term cohort study, deciding the optimal methods for analysing the mass of data

generated remains daunting.

Where to now?

Which brings us back to our ultimate goal of disease control. There is no doubt

that Rose’s view of prevention (Chapter 14) is right, and that societies should

where possible aim for changes that promote community-wide shifts in distri-

butions of risk factors (as with the US Air Force suicide-prevention programme).

However, that approach is never easy and is necessarily slow, so the potential for

a ‘quick fix’ as an alternative or an interim measure remains appealing. We need

to remove just one weak link in a causal chain for effective prevention, so seeking

this at any point, proximal or upstream, makes sense. Of course trade-offs may

need to be made in relation to the net balance of benefits and harms from remov-

ing a particular component cause when this affects multiple different health out-

comes. As we discussed in Chapters 2 and 14, the use of PAFs and DALYs, along

the lines advocated by WHO, should be increasingly helpful in this regard.

The public health argument for using vaccines against common, important

infections is strongly supported by the very high population attributable fraction

of these causal agents – by definition this must be 100%. However, vaccines might

not be affordable for most of those who need them and many diseases that afflict

the poor are neglected by research funding and still have no modern vaccine, or

no effective vaccine at all – think of malaria and HIV (although both of these are

actually well-funded research areas). Furthermore, when large numbers are vac-

cinated, the very small risks of adverse effects feature more strongly in the equa-

tion. The well-child schedule is already full of injected vaccines, to the alarm of

many parents, most children and some epidemiologists concerned about risks

of unsafe injections, hepatitis and HIV. Thus the ‘magic-bullet’ approach to pre-

vention of infectious disease is still far away and there is much to be done now

without vaccines – e.g. lessons from the West show the strong influence of an

improved social environment (Figure 14.1).
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For the majority of non-infectious diseases, however, we have no safe and

simple solution for prevention. Here population-level change must be the key,

linked to removal of harmful habits such as smoking cigarettes and inactivity via

changes to the social environments that promote these habits. Such interplay

between the proximal (individual) and upstream (societal) levels is well exem-

plified by the recent epidemic of obesity in most nations where food supply is

ample. Greater relative body weight is in turn closely linked to an elevated risk of

type-2 diabetes, hypertension and other conditions. While some of the causal

metabolic consequences of obesity are understood, the key intervention is to

reverse the pendulum swing towards increasing weight and declining physical

activity – population-level phenomena. Causes operating upstream have created

a so-called ‘obesogenic’ environment and this is where we must seek solutions –

no easy task, but one being tackled by epidemiologists, nutritionists, psycholo-

gists and sociologists. We all know what a challenge this is – the parallel shifts to

readily available, energy-rich refined foods and the decreased need and oppor-

tunity for physical effort both in the workplace and at home hinder attempts

to redress the imbalance. Epidemiology has given us insight into the nature of

the problem, but the solutions are not simple. Having said that, as a society we

remain seduced by the potential of one-shot interventions such as the Polypill

that you met in Chapter 14, which might allow us to improve our health fore-

cast with minimal personal pain (although three decades of pill taking is no light

task!). Other single preventive agents have been sought but, to date, most have

been found wanting (see Box 16.1 on the next page).

Although we have implied that it is still uncommon to capture all desirable

dimensions of health in one study, we will end with an example in which inves-

tigators are attempting to do exactly this. Many middle-income nations are cur-

rently undergoing a health transition with a shift away from a predominance of

infectious diseases, high infant mortality rates and large family-size, towards the

patterns of low mortality, low fertility and chronic disease seen in high-income

countries. These mass population changes are driven at multiple levels by rapid

political, economic, environmental and social changes. Thailand is one such

country, with its own unique sociohistorical context. To capture and understand

the drivers of this ‘health-risk transition’, a team of Thai and Australian inves-

tigators has embedded a conventional-looking cohort study of nearly 90,000

young to middle-aged Thai adults within a larger study of the social and eco-

nomic history (Sleigh et al., 2008). Information comes both from the participants’

own experiences and perceptions across their lives (spanning two generations)

and from a contemporary analysis of a number of major Thai social structures

and determinants, based on documents, key informants and surveys. A further

dimension is added by a historical ‘look-back’ survey that is charting changes

in the domains of health, work, environment, diet and social structures in

Thailand over the last half-century or longer. Describing and interpreting the
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Box 16.1 Beta-carotene: an epidemiological tale

The history of nutritional epidemiology is based on the identification and

correction of specific deficits in what came to be called vitamins, as well as

the need to provide adequate energy for growth. In the second half of the

twentieth century, observations from descriptive studies comparing

populations with adequate energy intake led to hypotheses that much

of the uneven distribution of non-infectious diseases, especially cancers

and heart diseases, could be due to dietary differences between populations.

This led to a flood of analytic epidemiology and parallel laboratory work as

scientists tried to identify specific disease-causing agents and possible

preventives.

Dietary epidemiology suggested that a number of cancers occurred less

commonly among individuals and groups who ate more fruit and vegetables,

and laboratory workers found (amongst many other factors) that vitamin A

and related compounds (retinoids) were promising anti-carcinogens. The

strands were woven together and beta-carotene, the principal dietary

precursor of vitamin A, was identified as a substance that might underlie the

beneficial effects of fruits and vegetables. Beta-carotene’s appeal as a

preventive agent was substantial: it combined a number of theoretical

anti-cancer properties and appeared to be entirely safe (vitamin A itself

being far more toxic at effective anti-cancer doses).

This message was captured most cogently in a paper published in Nature

(Peto et al., 1981), and several research groups were stimulated to conduct

randomised trials using beta-carotene. These experiments were required to

quantify precisely the ‘beta-carotene effect’ separately from effects of other

inter-related dietary elements. But, when put to the test in this way, the

hypothesis failed to stand up; and in fact beta-carotene may actually have

been harmful to some smokers (ATBC, 1994).

So what has this taught us? In retrospect we know now that beta-carotene

is a good marker of a beneficial diet, but insufficient on its own to provide

any protection. Thus knowledge advances. We have learned that dietary

epidemiology is more challenging than was initially appreciated; that we

have not yet found our ‘magic bullet’ for cancer prevention; and that for now

our public health message has to be directed towards encouraging a hearty

intake of fruit and vegetables rather than supplementing our diets with

specific nutrients.

interplay among these manifold influences is challenging but helped by the

broad range of interdisciplinary skills contributed by the team of investigators –

epidemiology, community nutrition, ecology, environmental health, anthropol-

ogy, economics, demography, occupational health, psychology, sociology and
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Box 16.2 The Thai Health-Risk Transition Study

In the background of this multi-level study, the researchers have noted

profound social changes under way since about 1850 as peaceful,

non-colonised Siam gradually abolished indentured labour, adopted wet rice

agriculture, settled its frontier lands and increased its trade by steamship

connection to the rest of the world (Carmichael, 2008). Since World War II the

country has begun to industrialise and both rural and informal work are now

rapidly decreasing, changing occupational health risks (Kelly et al., 2010).

Health services have expanded, birth rates fallen, and since 2001 the whole

population has been insured, finally gaining universal access to modern

healthcare (Yiengprugsawan et al., 2009). Over the last 20–30 years, food

supplies have changed and supermarkets have begun to compete with

traditional fresh markets, impacting on food quality and diversity. Over the

same period the attained height of young adult males has increased rapidly,

biological evidence of sustained healthier childhoods (Seubsman and Sleigh,

2009).

In the foreground is the large national cohort, under observation since

2005 and with its first follow-up completed in 2009. This is revealing the

major positive and negative lifestyle changes that are occurring, including

increased urbanisation (Lim et al., 2009), lower physical activity and an

increasingly ‘Western’ diet (Banwell et al., 2009), but also lower smoking

rates as a result of improving education (Pachanee et al., 2010). Early data are

starting to suggest an impact of these changes on health, with increasing

breast cancer rates potentially a consequence of the changes in body-size

(Jordan et al., 2009), and longer follow-up will show the full effects of this

Thai health transition on the health of the Thai people.

statistics (See Box 16.2). This exemplifies the partnerships that epidemiology

needs if it is to make a difference to understanding and influencing mass-scale

health phenomena, such as the transitions currently under way in Thailand and

many other countries.

A final word

We hope that by now you have a good sense of what epidemiology has offered

and continues to offer the study of public health and indeed health in general.

As we alluded to right at the start, perhaps epidemiology’s most important role

is the rigour it brings to collection, analysis and interpretation of all aspects of

health data because without reliable data we cannot move forward. As you have

seen, this is often not straightforward – the study of free-living people, their
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environment and society is necessarily highly complex. However, by applying

sound epidemiological principles with a pragmatic approach that is alert to the

pitfalls but also practical about assessing the likely effects of any error on the data

we see, there is much we can learn and contribute to improving health.
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Answers to questions

Chapter 2

1. (a) Cumulative incidence = 15 cases ÷ 1,000 women = 1.5% in 8 years.

(b) Incidence rate = 75 strokes ÷ 5,000 person-years

= 1.5/100 person-years or

15/1,000 person-years or

1,500/105 person-years

(c) Incidence rate = 27 cases ÷ 50,000 = 54 per 100,000 per year

2. (a) Prevalence at age 55 = 100 ÷ 2,000 = 0.05 or 5%

Prevalence at age 65 = 400 ÷ 2,000 = 0.20 or 20%

(b) Number of women ‘at risk’ = 2,000 – 100 (who already had high blood

pressure)

= 1,900

(c) Cumulative incidence = 300 ÷ 1,900 = 0.16 or 16% in 10 years

It is a measure of cumulative incidence because the same women have

been followed for the 10-year period.

(d) We could estimate the total number of person-years at risk by assum-

ing that all 1,900 initially healthy women were followed for the whole

10 years, giving

1,900 × 10 = 19,000 py

but 300 of the women developed high blood pressure and so were not at

risk for the whole period. If we assume that, on average, they developed

it half way through the follow-up period, we can improve our estimate of

the number of person-years to

300 women who developed high blood pressure × 5 years = 1,500

+ 1,600 women with no high blood pressure × 10 years = 16,000

giving a total of 17,500 py.

(e) Incidence rate = 300 ÷ 17,500 = 17.1/1,000 person-years or 1,710/105

person-years (actually 1,714 but we have rounded this off to 1,710).

388



Answers to questions 389

3. Answer = (a) community A has a younger population than community B.

If a disease is more common in older people (true for most diseases,

including IHD), then if the age-standardised rate is higher than the crude

rate this tells us that the average age in the standard population is higher

than that in the community. Conversely, if the age-standardised rate is lower

than the crude rate, then the average age in the standard population is lower

than in the community. The age-standardised rate was higher in commu-

nity A but lower in community B so community A must have a younger

population.

4. Table 2.10 shows that IHD is the most common cause of mortality causing

7.2 million deaths worldwide each year while diarrhoeal diseases are respon-

sible for about 2.2 million deaths. But, if we consider the burden of each

disease measured in DALYs, diarrhoeal diseases account for greater loss of

healthy life (72.8 million DALYs) than IHD (62.6 million DALYs). This is

because IHD is primarily a disease of older age while deaths from diarrhoeal

disease are more common in children; as a result, more years of life are lost fol-

lowing the death of a child from diarrhoeal disease than following the death

of an adult from IHD.

Chapter 4

1. This is not a straightforward task and there are no absolute right or wrong

answers – it will always be partly a matter of judgement depending on the spe-

cific circumstances. A completed version of Table 4.1 on the next page shows

the main issues and some specific exceptions are noted below.

Comments and exceptions

Ecological study: it may be possible to study rare diseases and exposures if

the populations are large enough. If it uses routinely available data it may

also be quick and cheap to run; however, if new data collection is required

the converse may be true. The major drawbacks are that populations often

differ in many ways other than the characteristic of interest and the results

seen at the population level may not apply to the individual.

Cross-sectional study: relatively simple, cheap and quick to conduct. Not good

for studying rare conditions and hard to establish temporality. The ethical

issues are likely to be minor although for any study, collection of blood sam-

ples for genetic testing adds ethical complexity.

Case–control study: good for studying multiple causes of rare diseases. Ensur-

ing that exposure occurred before the disease can be a challenge but is less
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Table 4.1 Comparing the strengths and weaknesses of different study designs.

Randomised Nested

Cross Case– controlled case–

Ecological sectional control Cohort trial control

Investigation of rare disease or outcome 4 2 5 2 1 2

Investigation of a rare exposure 1 1 1 2–5 5 2

Testing multiple effects of an exposure 2–4 3 1 5 3 1

Study of multiple exposures 2–4 5 5 3 1 3

Establishing temporalitya N/A 1 1–3a 4 5 4

Give a direct measure of incidence N/A 1 1 5 5 3

Explore exposures which change over time 1 1 2 5 1 5

Time requiredb 4 4 3 1 1 4

Costsb 1–3 4 3 1 1 4

Ethical problemsb N/A 4 4 4 1 4

a i.e. that the exposure came before the outcome. N.B., even in a case–control study, some exposures will clearly pre-date

the development of disease; for example, gender, genetic characteristics, blood group.
b For these attributes, a score of 1 = poor indicates a lot of time required, high costs or major ethical problems; a score

of 5 = excellent indicates least time required, lowest costs or no ethical problems.

of an issue for things that do not change over time (e.g. blood type, genetic

markers, early life exposures). Not good for studying rare exposures. In a true

population-based study it is possible to estimate disease incidence.

Cohort study: population-based cohort studies are not very good for studying

rare exposures, but rare exposures can be studied if participants are selected

to over-represent those who are ‘exposed’ to the factor of interest, for exam-

ple an occupational cohort exposed to a specific chemical. Very large cohort

studies (such as EPIC and the Million Women Study), with sufficient follow-

up, can investigate rare outcomes. If information is collected at regular inter-

vals it is possible to study effects of exposures that change over time. Estab-

lishing temporality can still be a problem for cases diagnosed very early in

the follow-up period.

Randomised controlled trial: this shares many of the attributes of a cohort

study except it is an excellent design to study rare exposures (because a large

proportion of the population can be intentionally exposed) but is usually

less good for studying multiple outcomes of one exposure as an RCT will

usually be designed to focus on a small number of ‘end-points’. However, the

ethical implications and, because of the increased regulatory issues, some-

times the cost are much greater.

Nested case–control study: this combines many of the benefits of the cohort

and case–control designs but can only be conducted in the context of an

existing cohort study. The incremental costs are likely to be low.
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2.

Nuremberg Code statement Relevant moral principle

1. Requirement for voluntary consent Respect for autonomy

2. The experiment should yield fruitful results Beneficence

3. The experiment should be designed based on prior

knowledge so the results justify performing the

experiment

Beneficence and

non-maleficence

4. Avoid unnecessary suffering Non-maleficence

5. Experiments should not be conducted if death or

disabling injury is a possibility

Non-maleficence

6. The degree of risk should not exceed the importance Beneficence and

non-maleficence

7. Proper precautions should be taken to avoid adverse

events

Non-maleficence

8. Scientists should be properly qualified Beneficence and

non-maleficence

9. The subject should be able to withdraw at any time Respect for autonomy

10. The scientist should discontinue the study if

continuation is likely to risk in injury/death

Non-maleficence

Note that the principle of Justice is not explicitly covered by any of the statements,

although it could be seen as implicit in some. This is because the primary focus is on

protecting the individual, reflecting the circumstances from which the Nuremberg

Code arose.

Chapter 5

1. (a) Cumulative
incidence

= Number of people who get disease
Number of people at risk at the start of the period

So the cumulative incidence in

(i) exposed workers = 40 ÷ 2,500 = 1.6% in 10 years

(ii) unexposed workers = 60 ÷ 7,500 = 0.8% in 10 years

(iii) all workers = 100 ÷ 10,000 = 1.0% in 10 years

(b) The relative risk = Incidence in exposed group
Incidence in unexposed group

= CIe ÷ CIo

= 1.6 ÷ 0.8 = 2.0

Workers exposed to pesticides were twice as likely to develop the disease

as those not exposed.
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(c) The attributable risk

Incidence in exposed group – Incidence in unexposed group

CIe – CIo

1.6 – 0.8 = 0.8% in 10 years

An additional 0.8 cases of disease will occur in every 100 men (or 8 in 1,000

men) exposed to pesticides for 10 years (over and above the background

rate of disease in the unexposed group). This is the amount of disease that

can be said to be attributable to the pesticides assuming that we believe

that pesticide exposure is actually causing the disease.

Note: the attributable fraction would be 0.8 ÷ 1.6 = 50%

(d) The population attributable fraction = (CIT − CIo) ÷ CIT

= (1.0 − 0.8) ÷ 1.0

= 0.2 or 20%

This tells us that if pesticide exposure is a cause of the disease then 20% of

all cases occurring among the workers (regardless of whether they were

exposed to pesticides) could be attributed to pesticide exposure.

Note: the population attributable risk would be 1.0 – 0.8 = 0.2% in 10

years.

The difference between the population attributable fraction (PAF) and

the attributable fraction (AF) depends on the prevalence of the exposure.

An exposure with a high AF may have a low PAF if the exposure is very rare

(very few of the cases in the whole population could be attributed to the

exposure). Conversely, an exposure with a lower AF may have almost as

high a PAF if the exposure is very common.

2. (a) Relative risk = IRe ÷ IRo = 53 ÷ 6 = 8.8

(b) (i) RR for low-dose versus never used = 39 ÷ 6 = 6.5

(ii) RR for high-dose versus never used = 62 ÷ 6 = 10.3

Results such as these are often presented as follows:

Incidence Relative risk

OC use rate (versus never/past user)

Never/past user 6 1.0

Low-dose user 39 6.5

High-dose user 62 10.3

(Note: the relative risk in never/past users is set as 1.0 because this is the

reference to which we are comparing the other groups; IRo ÷ IRo = 1.0.)

(c) The results suggest that, compared with women who have never used

OCs, users of low-dose oestrogen OCs have a 6.5 times higher risk of

thromboembolism and users of high-dose oestrogen OCs have a 10.3
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times higher risk of thromboembolism. The risk of thromboembolism

therefore increases with increasing level of oestrogen. This pattern is

called a ‘dose–response’ relationship.

3. (a) A case–control study of smoking and lung cancer

Cases Controls Total

Ever smokers 647 622 1269

Never smokers 2 27 29

Total 649 649 1298

(b) To answer this question you need to calculate the odds ratio:

Odds ratio = a × d
b × c

= 647 × 27
622 × 2

= 14.0

(c) and (d) You need to calculate first the attributable fraction and then the

population attributable fraction:

Attributable Fraction = (OR − 1)
OR

= (14 − 1)
14

× 100 = 92.9%

If smoking is a cause of lung cancer then 93% of lung cancers among

smokers can be attributed to their smoking and, theoretically, would not

have occurred if the men had never smoked.

Population Attributable Fraction = Pe(OR − 1)
Pe(OR − 1) + 1

= (0.958 × 13)
(0.958 × 13) + 1

× 100 = 92.6%

where Pe = prevalence of exposure among controls = 622 ÷ 649 = 0.958.

While the AF told us the proportion of lung cancers among smokers that

could be attributed to smoking, the PAF tells us the proportion of all lung

cancers attributable to smoking. In this particular example the prevalence

of exposure is so high that the AF and PAF are almost identical.

4. (a) The incidence rates can be calculated as follows:

Person-years Incidence rate

Cases (py) (per 100,000 py) Rate ratio

7–8 hours sleep 541 451,393 120 1.0

6 hours sleep 267 175,629 152 1.27

≤ 5 hours sleep 67 30,115 222 1.85

All women 875 657,137 133
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(b) The rate of CHD increases as the length of time a woman sleeps decreases.

A woman who sleeps for 6 hours is 27% more likely, and a woman who

sleeps for 5 hours or less is 85% more likely, to develop CHD than a woman

who sleeps for 7–8 hours.

(c) To answer this you need to calculate the population attributable fraction:

PAF = (CIT – CIo) ÷ CIT

= (133 – 120) ÷ 133

= 0.098 or 9.8%

The PAF is quite low because most women, or at least most of the person-

time is for women who sleep for 7–8 hours.

Chapter 6

1. The results from the first study suggest that alcohol is associated with an 80%

increase in risk of the cancer. The confidence interval is quite narrow, sug-

gesting that the study was fairly large and the estimate of the RR is quite pre-

cise. The results of the second study suggest that caffeine may also be associ-

ated with an 80% increase in risk of the cancer, but in this case the confidence

interval is very wide, implying that it was a small study and hence that the esti-

mate of the OR is very imprecise. It is possible that the association seen in the

second study could simply represent the play of chance since the confidence

interval includes the no-effect value of 1. Overall, the data suggest that there

is a moderately strong association between alcohol and the cancer (although

we would still like to see additional data to support this), but they tell us little

about the risks of caffeine other than to flag a possible association that needs

evaluating in a larger study.

2. The answer is (b). There will always be some random sampling error in

a study even when study participants are selected at random and a 95%

confidence interval will just give an indication of how much random sam-

pling error is present. Exposure measurement is a completely different

issue.

3. The answer is (c). The ‘no-effect’ value for a relative risk is 1.0 – this means

that the risk is the same in the two groups being compared. Because the con-

fidence interval does not include the value 1.0 (both the lower and upper

bounds are below 1.0), this means that the result is statistically significant.

Without having more information about the size of the relative risk we cannot

say whether this is clinically significant.

4. If a result is statistically significant it means that it is unlikely to have arisen by

chance while clinical significance describes whether or not a result is clinically

or practically meaningful. In a large study even quite small differences can be
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statistically significant, but if the difference is so small that it has no practical

effect, e.g. a drug that reduces the duration of flu symptoms by only a couple

of hours, then it may not be clinically significant. Conversely, a study may see

a large difference that would be clinically meaningful but, if the study was

quite small, this may not be statistically significant and it would be hard to be

sure the difference had not arisen just by chance.

Chapter 7

1. Women who read health magazines obviously have an interest in health and

so are probably more likely to be vegetarian than women who do not read

such magazines. On top of this, the vegetarian readers may also be more likely

to respond to the questionnaire. Both of these biases would mean that the

percentage of vegetarians in the community would be overestimated. Note

also that the study would provide information just about women and men

might be very different.

2. (a) People with high alcohol intake are probably less likely to agree to take

part.

(b) Alcohol consumption in the control group is, therefore, likely to be lower

than in the whole community.

(c) Assuming that patients with liver disease tend to have a higher than aver-

age alcohol consumption, the difference between the cases and controls

would be exaggerated because of the falsely low level of consumption

among the controls. This would make the association between alcohol

consumption and liver disease look stronger than it really was.

3. (a) The misclassification is systematic (because the measurement instrument

systematically overestimated people’s exposure) and non-differential

(because it has occurred among both cases and controls).

(b) In the presence of non-differential misclassification, the observed odds

ratio is likely to underestimate the true odds ratio.

(c) In this situation, (i) 15% or 15 of the 100 unexposed cases and (ii) 15% or 23

of the 150 unexposed controls would have been misclassified as exposed.

(d) The best way to answer this is to draw up a 2 × 2 table showing the results

that would have been obtained:

Cases Controls Total

Exposed 300 + 15 = 315 250 + 23 = 273 588

Unexposed 100 – 15 = 85 150 – 23 = 127 212

Total 400 400 800
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Therefore, in this situation, (i) 315 of the cases would be classified as

exposed and 85 as unexposed, and (ii) 273 of the controls were exposed

and 127 were unexposed.

(e) OR = 315 × 127
85 × 273

= 1.7

This compares to the ‘true’ value of 1.8. Non-differential misclassification

will usually bias the results towards the null value regardless of whether it

is random (as you saw in Table 7.5) or systematic, as in this example.

4. (a) The misclassification is systematic, because cases systematically under-

estimated their exposure, and is differential, because it occurred only

among cases, and not controls.

(b) There are 300 exposed cases so if misclassification affects 20% this means

that 60 cases will be misclassified as unexposed. We can draw up a 2 × 2

table to show the results that would be obtained:

OR = 240 × 150
160 × 250

= 0.89

Cases Controls Total

Exposed 300 – 60 = 240 250 490

Unexposed 100 + 60 = 160 150 310

Total 400 400 800

The observed OR is therefore much lower than the true OR of 1.8 (in fact

the bias is so great that the observed OR is less than 1.0 when the true OR

is greater than 1.0).

(c) This contrasts with the situation in Table 7.7, where cases systematically

overestimated their exposure to the same extent and the OR was biased

upwards to 2.40.

5. (a) The misclassification is systematic because non-exposed people are mis-

classified as exposed but the reverse is not occurring. It is non-differential,

as would be expected in a cohort study, because it affects all exposed peo-

ple regardless of whether or not they go on to develop disease.

(b) If exposed people, who have a higher incidence of disease, are misclassi-

fied as unexposed then the incidence of disease in the unexposed group

will increase, i.e. it will be greater than 1.0%. The incidence in the exposed

group should not be affected.

(c) The effect of the misclassification will therefore be to make the two groups

look more similar than they really are and the observed RR will be lower

than the true RR. In this situation it is likely that it would be about 1.8

instead of 2.0.

Misclassification is just as much a problem in cohort studies as it is in

case–control studies.



Answers to questions 397

6. (a) In the situation where 20% of the controls are misclassified with regard

to their exposure status, 50 of 250 exposed controls will be misclassified

as unexposed and 30 of 150 unexposed controls will be misclassified as

exposed:

OR = 300 × 170
100 × 230

= 2.22

Cases Controls Total

Exposed 300 250 – 50 + 30 = 230 530

Unexposed 100 150 – 30 + 50 = 170 270

Total 400 400 800

(b) This misclassification is differential; exposure measurement among

the cases was perfect, and the misclassification only occurred among

controls.

(c) Differential random misclassification can make an association look

stronger or weaker than it really is. In this situation, we would observe

a higher odds ratio (2.2 compared to the ‘true’ odds ratio of 2.0), making

the association seem stronger than it really is.

(d) If we had misclassified cases instead of controls the bias would have gone

the other way and we would have underestimated the ‘true’ odds ratio

(an observed OR of 1.11), making the association seem weaker than it

really is.

Chapter 8

1. Odds ratio = a × d
b × c

= 20921 × 94183
64422 × 7827

= 3.9

2. (i) Moped drivers:

Odds ratio = 17869 × 86212
51900 × 7342

= 4.0

(ii) Moped passengers:

Odds ratio = 3052 × 7971
12522 × 485

= 4.0

3. The crude and stratum-specific odds ratios are almost identical, suggesting

that position on the moped does not confound the association between not

wearing a helmet and head injury.

4. The crude association between rider position (drivers versus passengers) and

head injury:

Crude odds ratio = 25211 × 20493
138112 × 3537

= 1.1
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(i) No helmet:

Odds Ratio = 17869 × 12522
51900 × 3052

= 1.4

(ii) Helmet:

Odds Ratio = 7342 × 7971
86212 × 485

= 1.4

The crude odds ratio suggests that rider position does not affect their risk of

head injury (OR = 1.1) but when we stratify by helmet use we see that moped

drivers have a 40% higher risk of head injury (OR = 1.4) than moped passen-

gers regardless of whether or not they wear a helmet. The crude association

was therefore confounded by helmet wearing.

5. For something to be a confounder it must be (i) a risk factor for disease among

those who are not exposed to the factor of interest; (ii) be associated with the

exposure of interest; and (iii) not lie on the causal pathway between expo-

sure and outcome. Therefore, in the situation of drinking coffee and heart

disease:

(a) Heart disease occurs more frequently in older people, and among males.

It is possible that older people might drink less coffee than younger peo-

ple, or that men might drink more (or less) coffee than women. If either

of these conditions is true then the potential confounding effects of age

and/or sex should be considered (certainly age and sex do not lie on the

causal pathway between coffee drinking and heart disease).

(b) The confounding effects of smoking should definitely be considered. As

you have seen in previous chapters, heart disease occurs more frequently

in smokers, and those who drink coffee may be more likely to smoke. Also,

while coffee drinking and smoking often go together, coffee drinking does

not ‘cause’ someone to smoke.

(c) Heart disease occurs more frequently among those who do not exercise,

and people who drink coffee may exercise less (for example, people who

work in an office may drink more coffee and have less opportunity to exer-

cise). Therefore the confounding effects of physical activity should also be

considered.

(d) While consumption of fruit and vegetables may be protective against

heart disease, it is also possible that people who drink a lot of coffee eat

less of these foods so fruit and vegetable intake might confound the effects

of coffee drinking on heart disease.

6. If either (i) half as many people participated in the study, or (ii) twice as many

people participated in the study, the odds ratios will not change. Increasing or

decreasing the size of a study will not make any difference to the amount of

confounding (except in the context of a randomised controlled trial, when the

bigger the study is, the less likely it is that there will be any confounding).
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Results of the study shown in Table 8.8 assuming that the study had half as

many people.

Total High physical activity Low physical activity

Energy Heart Heart Heart

intake disease Controls disease Controls disease Controls

High 236 116 26 26 210 90

Low 605 398 5 8 600 390

OR 1.3 1.6 1.5

Results of the study shown in Table 8.8 assuming that the study had twice as

many people.

Total High physical activity Low physical activity

Energy Heart Heart Heart

intake disease Controls disease Controls disease Controls

High 944 462 104 102 840 360

Low 2,420 1,590 20 30 2,400 1,560

OR 1.3 1.5 1.5

Chapter 12

1. There are two clear clusters of cases, one starting in late December and the

other about a month later. The girls in the first cluster must have been infected

before the holiday and those in the second peak must have been infected

when they returned to school. The occurrence of the second peak 4–8 weeks

after the girls had returned to school on 7 January 1943 gives the clearest indi-

cation of the incubation period. Some girls infected early in the first cluster

must have been exposed in November; i.e. the teacher must have been infec-

tious then but became much more so when she developed the cold in mid

December.

2. Overall this was an informative ‘natural experiment’, comparing children with

different exposure categories for the agent (produced by the teacher), environ-

ment (the basement classroom) and host (different immune states, including

that conferred by BCG vaccine). The March 1943 analysis was a retrospective

cohort study of the 105 girls who were skin-test negative in December 1942.

This enabled calculation of the cumulative incidence of infection (skin-test

conversion) according to the four exposure categories (Table 12.2).
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The 12-year follow-up was a prospective cohort study of the incidence of

progressive post-primary pulmonary tuberculosis among 368 girls attending

the school in March 1943. The exposures measured at the start were the ini-

tial immunological states (skin test, BCG) and evidence of recent infection

(Table 12.3).

The incidence of infection (skin-test conversion) among those taught by

the positive teacher was very high (86.6%). Environmental conditions in the

basement were suitable for transmission (no ultraviolet light, probably high

humidity and no ventilation) and the high infection rate among those enter-

ing the basement after the teacher was there (58.5%) supports this.

This study revealed the natural history of primary TB. A high proportion

(20%) of the epidemic-infected girls developed post-primary TB over 12 years,

nearly half within the first three years. The risk attenuated over time, but con-

tinued. Several features should be noted. The study involved adolescent girls;

after infection, they are known to have higher rates of post-primary TB than

boys. Also, the girls may have been malnourished due to wartime food short-

ages. This would boost post-infection disease rates even higher than usual.

The classification of skin-test positives is likely to have some inaccuracy; it

is a difficult test to standardise and the old tuberculin test used then was more

heterogeneous than the equivalent used today. Those negative in December

1942 included children whose parents had refused to have them vaccinated

with BCG. These girls may have been socioeconomically distinct (poorer or

richer) and this (via nutrition) could influence the course of events after infec-

tion – confounding the comparison of disease rates among skin-test positives

in Table 12.3.

3. They are attack rates or measures of cumulative incidence (the proportion of

girls who converted from negative to positive between December and March).

4. The numbers in groups C and D are small, but the percentage conversion rates

in the other groups were very high (60%–85%), so we would have expected to

see some converters if they really did have the same rates as groups A and B.

(Note: formal statistical tests give the following results: C versus A, p = 0.03; D

versus A, p = 0.06; and C + D versus A, p = 0.002, suggesting that the results

are not likely to be due to chance.)

5. Preferences: (1) tuberculin negative (0% risk); (2) BCG-induced positive (2.2%

risk); (3) ‘naturally’ positive (6.9% risk); (4) recent converters (20% risk).

6. Tuberculosis (TB) was transmitted in the basement classroom with highest

risk to those actually taught by the infected teacher, next highest to those

who occupied the room after she had used it that day (the air took time to

clear after she had left the room), but not affecting those taught in the morn-

ing before she arrived (infected air settled overnight). This defines airborne

transmission due to infectious droplet nuclei, respiratory droplets (10–100

micrometres in diameter) containing viable TB organisms from which water
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molecules evaporated until they reach a size of 1–5 micrometres. Droplet

nuclei are small enough to stay suspended in the air for many hours and are

easily inhaled to reach the lung alveoli and cause TB infection. The fluctuating

infectiousness of the teacher is not unusual with pulmonary tuberculosis.

Chapter 14

1. Relative measures (e.g. relative risk, RR; odds ratio, OR) evaluate the relative

strength of an association between exposure and disease, and they are most

useful for identifying the causes of a disease. Absolute or difference mea-

sures (e.g. attributable risk, AR; population attributable risk, PAR) are a better

measure of the burden of disease attributable to an exposure and, therefore,

potentially preventable by removal of that exposure. The attributable risk or

attributable fraction tell us how much disease in an exposed group can be

attributed to the exposure and the population attributable risk or population

attributable fraction tell us how much disease in the whole population can

be attributed to the exposure. Of all these measures, the PAR is most directly

useful to assess the likely benefits of a prevention programme for the whole

community.

Chapter 15

1. (a) The 2 × 2 table for repeat Pap smear:

Colposcopy

Pap smear Positive Negative Total

Positive 12 72 84

Negative 1 25 26

Total 13 97 110

(b) Sensitivity and specificity for Pap smear:

Sensitivity = 12 ÷ 13 = 0.923 or 92%

Specificity = 25 ÷ 97 = 0.258 or 26%

(c) Positive predictive value = 12 ÷ 84 = 14%

(d) Probability of high-grade disease in women testing negative by Pap

smear = 1 ÷ 26 = 0.038 or 4%

(e) The repeat Pap smear had low specificity. In this population with a preva-

lence of 11.8% (pre-test probability), the positive predictive value is low,

and all women testing positive would still have to go on to colposcopy. So,
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although only 8% of higher-grade lesions would have been missed, this is

not a very helpful extra step to add to the diagnostic process.

2. The first thing to do is complete a 2 × 2 table based on an artificial population

of, say, 1,000 people. We know that 3% or 30 will be hepatitis B-positive and

that the test will detect 82% or about 25 of them, leaving 5 false negatives.

With a specificity of 93%, 902 of the 970 who are truly hepatitis B negative will

correctly test negative, leaving 68 false positives:

True status

Hepatitis B test Positive Negative Total

Positive 25 68 93

Negative 5 902 907

Total 30 970 1,000

(a) The probability that an individual with a positive test result does not have

hepatitis B is thus 68 ÷ 93 = 73%.

(b) In a population free of hepatitis B, 7% (68 ÷ 970) of people would falsely

test positive.

3. (a) The prevalence of prostate cancer in men over 60 years is 4% so 400 of

a group of 10,000 men would be expected to have prostate cancer (4% ×
10,000). The test has a sensitivity of 85% so 340 of the men with prostate

cancer (85% × 400) would be expected to have a positive PSA test.

(b) The remaining 9,600 men would not have prostate cancer and, as the test

has a specificity of 80%, 7,680 of them (80% × 9,600) would be expected

to have a negative PSA test and the remaining 1,920 would test positive.

(c) The table below summarises the results.

Properties of the PSA screening test

Prostate cancer

PSA test Yes No Total

+ 340 1,920 2,260

− 60 7,680 7,740

Total 400 9,600 10,000

The PPV is the proportion of all positive test results that are true positives

= 340 ÷ 2,260 = 15.0%.

(d) The positive predictive value of 15% tells us that for every prostate cancer

the PSA test identifies in this population (‘true positives’), another 6 or 7
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more men without cancer will also test positive and thus have to be inves-

tigated (‘false positives’). The PPV is low because of the combination of

relatively poor specificity and quite a low prevalence of disease (although

4% is higher than for many other cancers). Whether this means the pro-

gramme should be abandoned depends on the amount of harm suffered

by the false positives and the benefits of detecting the disease earlier in

the minority who do have cancer. Widespread screening for e.g. breast

and large bowel cancer is conducted with PPVs of this order; however,

the public should be made more aware of the likelihood of false positive

results when involving them in a decision of whether to screen or not.

On a more positive note, someone who has a negative test result is not

too badly off. The negative predictive value of the test is very high (7,680 ÷
7,740 = 99%), although you can see that the test would will still miss 60

cancers in every 10,000 men screened.

(e) If the prevalence of disease is higher, then the positive predictive value

will also increase – in this case to 43% (1,275 ÷ 2,975). Now only about one

in two PSA-positive men will be incorrectly labelled as having prostate

cancer, a far more acceptable situation. However, as can be seen from

the table below, we now miss more cases (225 instead of 60), and have a

slightly reduced NPV of 97% (6,800 ÷ 7,025). And of course we have missed

the opportunity for any early detection of prostate cancers in men in their

60s. Neither choice will please everyone!

Properties of the PSA screening test among men
aged over 70 years

Prostate cancer

PSA test Yes No Total

+ 1,275 1,700 2,975

− 225 6,800 7,025

Total 1,500 8,500 10,000

(f) For a disease to be considered for a screening programme it should be

a serious threat to health (and be perceived as such by the population);

be reasonably common (but this can still mean very low prevalence in

practical terms) and have a fairly well-understood natural history/clinical

course. There must also be a good screening test for it and it should

have been demonstrated, ideally in randomised trials, that outcomes are

improved if treatment is initiated sooner.



Appendix 1: Direct standardisation

To use direct standardisation you need to know:

(1) the age-specific disease rates in your study population and

(2) the age distribution of the standard population

An example: standardising the IHD mortality rate for males in
Germany to the world standard population

See Table 1. You first multiply each age-specific rate (Column D) by the number

of people in that age group in the standard population (Column E) to calculate

the number of events that you would expect to see in the standard population if

it had the same rates as your study population (Column F).

You then divide the total number of events expected (the total of column F) by

the total number of people in the standard population (the total of Column E) to

calculate the standardised rate.

Crude mortality rate = Total deaths ÷ total population

= 211 per 100,000 per year

Standardised mortality rate = Expected deaths ÷ standard population

= 121 per 100,000 per year
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Table 1 Standardising the IHD mortality rate for males in Germany to the world standard population.

B D F

Number of C Mortality rate E Cases expected

A IHD deaths Number of in Germany World in standard

Age group (males) in males in (per 100,000) standard population

(years) Germany Germany (B ÷ C) population (D × E)

0–4 0 2,032,000 0.00 12,000 0.00

5–9 0 2,296,000 0.00 10,000 0.00

10–14 0 2,362,000 0.00 9,000 0.00

15–19 11 2,353,000 0.47 9,000 0.04

20–24 15 2,283,000 0.66 8,000 0.05

25–29 42 2,990,000 1.40 8,000 0.11

30–34 142 3,722,000 3.82 6,000 0.23

35–39 407 3,548,000 11.47 6,000 0.69

40–44 839 3,061,000 27.41 6,000 1.64

45–49 1,484 2,801,000 52.98 6,000 3.18

50–54 2,396 2,295,000 104.40 5,000 5.22

55–59 5,352 2,903,000 184.36 4,000 7.37

60–64 8,080 2,505,000 322.55 4,000 12.90

65–69 11,562 1,844,000 627.01 3,000 18.81

70–74 12,605 1,350,000 933.70 2,000 18.67

75–79 12,700 869,000 1461.45 1,000 14.61

80–84 12,727 403,000 3158.06 500 15.79

85+ 16,213 376,000 4311.97 500 21.56

Total 84,575 39,993,000 211.47 100,000 120.89

(Source for raw data: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed 23 September 2003.)
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Table 2 Examples of some commonly used standard populations.

Age (years) World standarda African standarda European standarda New WHO world standardb

0–4 12,000 10,000 8,000 8,860

5–9 10,000 10,000 7,000 8,690

10–14 9,000 10,000 7,000 8,600

15–19 9,000 10,000 7,000 8,470

20–24 8,000 10,000 7,000 8,220

25–29 8,000 10,000 7,000 7,930

30–34 6,000 10,000 7,000 7,610

35–39 6,000 10,000 7,000 7,150

40–44 6,000 5,000 7,000 6,590

45–49 6,000 5,000 7,000 6,040

50–54 5,000 3,000 7,000 5,370

55–59 4,000 2,000 6,000 4,550

60–64 4,000 2,000 5,000 3,720

65–69 3,000 1,000 4,000 2,960

70–74 2,000 1,000 3,000 2,210

75–79 1,000 500 2,000 1,520

80–84 500 300 1,000 910

85+ 500 200 1,000 635

Total 100,000 100,000 100,000 100,000c

a From Waterhouse et al. (1976); b From Ahmad et al. (2002); c The numbers do not sum to exactly 100,000 because of

rounding.
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Appendix 3: Calculating cumulative incidence
and lifetime risk from routine data

The ‘quick and dirty’ method

If a disease is rare, it is possible to make a rough estimate of the cumulative inci-

dence by adding up the incidence rates for each year of life from 0 to 74. Since

incidence rates are usually presented for 5-year age groups, e.g. 0–4 years, 5–9

years, etc., the rate at age 0 is the same as that at ages 1, 2, 3 and 4 years; sim-

ilarly the rate at age 5 is the same as that at ages 6, 7, 8 and 9 years; and so on

for each 5-year age-group. This means that, if the incidence in a 5-year band

is 3/100,000, the chance a person develops disease during one of the 5 years is

3/100,000 and it is 15/100,000 for the whole 5-year period. One way to add up all

the incidence rates to age 74 is therefore to multiply each of the age-specific rates

by 5 (assuming that they are for 5-year age groups) and then to add them up. Or,

to save time, you can do it the other way around and add up the 5-year rates and

then multiply by 5 to obtain the same answer. This is then usually presented as a

percentage:

Cumulative incidence (CI) ≈ 5 × (sum of rates from 0 to 74) × 100 (A3.1)

As an example, consider the age-specific IHD mortality rates in Germany shown

in Appendix 1. If we add up the rates from ages 0–4 up to 70–74, we find a total of

2,270/100,000 = 0.0227, so

Cumulative incidence (CI) ≈ 5 × 0.0227 × 100 = 11.4%

The proper method

Technically, the measure above is called the ‘cumulative rate’ because it is just

the incidence rates summed or ‘accumulated’ for all ages from 0 to 74 years. To

calculate a more accurate estimate of the cumulative incidence you have to use

a slightly more complicated formula:

Cumulative incidence (CI) = 1 − exp(−cumulative rate) (A3.2)
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Where exp(x) means ex, where e = 2.7183, the base for natural logarithms (as

opposed to 10, which is the base for standard logarithms).

So, if the cumulative rate of IHD mortality is 11.4% (=0.114) then the cumula-

tive incidence is

Cumulative incidence (CI) = 1 − e(−0.114) = 1 − 0.892 = 0.108 or 10.8%

Note that this figure of 10.8% is slightly lower than the ‘quick and dirty’ value

of 11.4% we calculated above. This difference arises because IHD is quite com-

mon. The rarer the disease and, therefore, the lower the cumulative incidence,

the closer the answers from the two methods will be.

Lifetime risk

Lifetime risk can then be calculated by dividing 1 (or 100% if the cumulative inci-

dence is expressed as a percentage) by the cumulative incidence:

Lifetime risk = 1 in (1 ÷ cumulative incidence) (A3.3)

So the lifetime risk of IHD mortality in Germany is:

1 in (1 ÷ 0.108) = 1 in 9

It is important to note that, in this context, the cumulative incidence and life-

time risk are artificial measures. They assume that people do not die of any other

causes along the way and they are also based on the current rates of disease

without taking into account the fact that these may change over time. However,

despite these limitations they can be a useful measure for comparing the bur-

dens of various diseases within a population or for comparing the same disease

across different populations.



Appendix 4: Indirect standardisation

To use indirect standardisation you need to know

(1) the age distribution of your study population and

(2) the age-specific disease rates in the standard population.

An example: calculating the SMR for IHD in males in Brazil
compared with Germany

See Table 3. You first multiply each age-specific rate in the standard population

(Column C) by the number of people in that age group in the study population

(Column B) to calculate the number of events you would expect to see in the

study population if it had the same rates as the standard population (Column

D). You then divide the total number of events actually observed in the study

population by the number of events expected (the total of column D) if the study

population had had the same rates as the standard population. This gives you the

standardised mortality ratio (SMR) or standardised incidence ratio (SIR) if you are

using incidence rates.

Observed number of deaths in Brazil = 39,437

Expected number if Brazil had same mortality rates as Germany = 70,978

∴ Standardised mortality ratio (SMR) = O ÷ E = 39,437 ÷ 70,978 = 0.56

The crude mortality rate from IHD in Brazilian men was less than one-quarter

of that in Germany (47 versus 211/100,000 per year) but the average age of the

population is much lower in Brazil than in Germany. When we standardise for

age, the SMR = 0.56 suggests that IHD mortality in Brazil is about half that in

Germany.

409



410 Appendix 4

Table 3 Calculating the SMR for IHD in males in Brazil compared with Germany.

A B C D

Age group Male population Mortality rate (males) Expected deaths

(years) in Brazil (×1000) in Germany (per 100,000) in Brazil (C × B)

0–4 9,025 0.00 0.00

5–9 8,703 0.00 0.00

10–14 8,604 0.00 0.00

15–19 8,109 0.47 37.91

20–24 7,360 0.66 48.36

25–29 6,841 1.40 96.09

30–34 6,642 3.82 253.40

35–39 5,622 11.47 644.91

40–44 4,707 27.41 1290.16

45–49 3,745 52.98 1984.14

50–54 2,912 104.40 3040.15

55–59 2,454 184.36 4524.22

60–64 1,957 322.55 6312.40

65–69 1,583 627.01 9925.51

70–74 1,138 933.70 10625.55

75–79 721 1461.45 10537.05

80+ 583 3715.02 21658.57

Total 80,706 211.47 70978.43

(Source for raw data: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed

23 September 2003.)



Appendix 5: Calculating life expectancy
from a life table

Life expectancy is calculated based on what we expect to happen to a hypotheti-

cal cohort of 100,000 newborn infants if they experience the same mortality rates

that currently operate within the population. (The cohort size is often denoted

Ix where x is the age of interest, thus at the start age = 0 and I0 = 100,000.) The

table shows the first and last few rows of a standard life table for Australian males

based on mortality rates from 2005–7.

If the probability of a male dying before his first birthday (qo) is 0.00527 then

we would expect 527 deaths in our cohort in the first year of life (d0 = Io × q0)

leaving 99,473 survivors at age = 1 (i.e. I1 = 99,473). We can also estimate the

numbers of years of life lived between the ages of 0 and 1. Because most infant

deaths occur shortly after birth this is estimated as 99,535 years, but for older

ages we assume that those who died did so, on average, halfway through the year

and thus contribute 0.5 years of life. Thus, for example, at age = 3 the total years

of life L3 = 99,409 – (19 ÷ 2) = 99,399. If we repeat these calculations for each year

of age up to 100 we end up with 1,412 men from our original cohort of 100,000

who survive to age 100, 445 of whom will die before their 101st birthday.

We then go on to calculate the total number of years lived by our cohort. Most

life tables do not go beyond 100 years although there are still some survivors at

this point. We therefore have to estimate the total amount of life they have left;

in this case 3,429 years. We can then add on the total years of life lived at every

other year of life, giving a total of 7,902,203 years for the entire cohort. By dividing

the years of life remaining at any given age by the number of survivors at that

age (Tx ÷ Ix), we can then calculate life expectancy at that age. For example, at

age 3 the 99,409 survivors have a total of 7,603,796 years life remaining, giving a

life expectancy at age 3 of 76.5 years.
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Table 4 Life table for Australian males, 2005–7.

Number Years of Cumulative Life

Life table Probability of of deaths live lived years of life expectancy

Age cohort Ix dying qx dx = Ix× qx Lx = Ix – (dx ÷ 2) Tx = Tx+1 + Lx ex = Tx ÷ Ix

0 100,000 0.00527 527 99,535 7,902,203 79.0

1 99,473 0.00040 40 99,452 7,802,668 78.4

2 99,434 0.00025 25 99,420 7,703,216 77.5

3 99,409 0.00019 19 99,399 7,603,796 76.5

. . . . . . . . . . . . . . . . . . . . .

97 3,879 0.27159 1,054 3,330 10,862 2.8

98 2,825 0.28593 808 2,403 7,532 2.7

99 2,018 0.30026 606 1,700 5,129 2.5

100 1,412 0.31460 445 3,429 3,429 2.4

Where: Ix = the proportion of persons surviving to that age

qx = the proportion of persons dying between exact age x (Ix) and exact age x + 1 (Ix+1)

dx = the number of deaths occurring between exact age x and exact age x + 1

Lx = the years of life lived by the cohort between exact age x and exact age x + 1

(Source for raw data: Australian Bureau of Statistics. (2007). Life Tables Australia: 2005–2007. ABS Publication

3302.0.55.001. Accessed from http://www.abs.gov.au on 12 September 2009.)



Appendix 6: The Mantel-Haenszel method for
calculating pooled odds ratios

When you do a stratified analysis to control for confounding you end up with

a number of different odds ratios – one for each stratum. If these are all fairly

similar, the next stage is to combine them into a single adjusted odds ratio that

summarises the effect of the exposure adjusted for the confounder. Note that it is

practical to do this only when you have a fairly small number of strata; once you

need to adjust for more than one or two confounders it is better to use multivari-

able modelling techniques.

An adjusted odds ratio is essentially a weighted average of the stratum spe-

cific odds ratios. We calculate a weighted average rather than a straight average

so that strata with more people (and therefore greater precision) have a bigger

influence on the final result than small strata. To calculate a weighted average,

each individual value is multiplied by its weight and these new values are then

added up and divided by the sum of the weights. Various sets of weights can be

used for pooling odds ratios, but those proposed by Mantel and Haenszel (1959)

are commonly used.

Imagine a case–control study with a total of T people in each stratum (T may

be different for each stratum) as follows:

T = a + b + c + d

Cases Controls

Exposed a b

Unexposed c d

The odds ratio in each stratum is

OR = a × d
b × c

The weight for each stratum is

w = b × c
T

(A5.1)
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So for each stratum we calculate:

OR × w = a × d
b × c

× b × c
T

= a × d
T

(A5.2)

We then add these values up for each stratum (= �[(a × d) ÷ T], where �

(sigma) means summed over all strata, and divide by the sum of the weights =
�[(b × c) ÷ T], so:

Mantel–Haenszel pooled OR = �[(a × d) ÷ T ]
�[(b × c) ÷ T ]

As an example, imagine a case–control study in which we are concerned about

possible confounding by socioeconomic status (SES) because high SES is associ-

ated with a lower risk of disease but an increased risk of exposure:

Table 5 A hypothetical case–control study, stratified by SES.

High SES Low SES Total

Cases Controls Cases Controls Cases Controls

Exposed 460 490 90 45 550 535

Unexposed 60 150 70 95 130 245

Total 520 640 160 140 680 245

Odds ratio 2.35 2.71 1.94

To calculate the Mantel-Haenszel adjusted odds ratio:

1. first calculate for each stratum separately: (a × d) ÷ T and add these up for all

of the strata,

2. then calculate for each stratum separately: (b × c) ÷ T and add these up for all

of the strata, and

3. then divide (1) by the result from (2).

Table 6 Calculation of the Mantel-Haenszel adjusted odds ratio.

High SES Low SES Total

(1) (a × d) ÷ T (460 × 150) ÷ 1,160 = 59.48 (90 × 95) ÷ 300 = 28.50 59.48 + 28.50 = 87.98

(2) (b × c) ÷ T (60 × 490) ÷ 1,160 = 25.34 (70 × 45) ÷ 300 = 10.50 25.34 + 10.50 = 35.84

(3)
�[(a × d) ÷ T ]
�[(b × c) ÷ T ]

87.98 ÷ 35.84 = 2.45
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In this example the pooled or adjusted OR of 2.45 is higher than the crude OR

of 1.94, confirming that there was some confounding by SES. The adjusted OR is

much closer to the OR in the low SES group (2.35) than it is to the OR in the high

SES group (2.71) because the low SES group is much larger.

Meta-analysis

Exactly the same method can also be used to pool odds ratios from different

studies in a meta-analysis.
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Appendix 7: Formulae for calculating
confidence intervals for common
epidemiological measures

Although statistical packages routinely calculate confidence intervals for you, it

is helpful to understand where they come from and sometimes useful to be able

to calculate them by hand. We show below the formulae for estimating confi-

dence intervals for some of the most common measures. The general rule for a

95% confidence interval is that the lower bound is equal to the point estimate

minus 1.96 × the standard error and the upper bound is equal to the estimate

plus 1.96 × the standard error. For 90% intervals you simply substitute 1.645

for 1.96 (giving a narrower interval but less certainty that it contains the correct

value) and for 99% intervals you use 2.575 (giving a wider interval and more cer-

tainty that it contains the correct value).1

i.e. 95% confidence limits = estimate ± 1.96 × standard error

It is important to remember though that some intervals have to be calculated on

a log scale and then back-transformed to the original scale (see, for example, the

formula for the odds ratio below).

So, assuming that your data are set out in a standard way as follows:

Cases/ Controls/ Total Total

affected unaffected people person-years

Exposed a b N1 PY1

Unexposed c d N0 PY0

Then Table 7 below shows you how to calculate the standard error for some com-

mon epidemiological measures:

1 These intervals are calculated on the assumption that the estimate comes from a ‘normal’ distribution

or bell-shaped curve and this distribution can therefore be used to identify the multiplier for any

width of CI although 90%, 95% and 99% are those most commonly used.
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Table 7 Formulae for calculating the standard error for some common
epidemiological measures.

Measure Estimate Standard error

Risk (in exposed)a a
N1

√
a(N1 − a)

N1

Incidence rate (in exposed)
a

PY1

√ a

PY 2
1

Log odds ratio ln
(

a × d
b × c

) √
1
a

+ 1
b

+ 1
c

+ 1
d

Log risk ratio ln
(

a
N1

÷ c
N0

) √
1
a

− 1
N1

+ 1
c

− 1
N0

Log rate ratio ln
(

a
PY1

÷ c
PY0

) √
1
a

+ 1
c

a Can be used for any proportion, e.g. cumulative incidence or prevalence.

So if a case–control study gives the following results:

Table 8 Hypothetical results from a case–control
study.

Cases Controls Total

Exposed 130 45 175

Unexposed 87 198 285

Odds ratio = 130 × 198
87 × 45

= 6.57

Log odds ratio = ln(6.57) = 1.883

Standard error of log odds ratio =
√

1
130

+ 1
45

+ 1
87

+ 1
198

= 0.216

So to calculate the 95% confidence interval for the log odds ratio:

Lower bound = 1.883 − (1.96 × 0.216) = 1.460

Upper bound = 1.883 + (1.96 × 0.216) = 2.306
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And the 95% confidence interval for the odds ratio itself is then obtained by

exponentiating to move back from the (natural) log scale to the more familiar

arithmetic scale:

Lower bound = exp1.460 = 4.3

Upper bound = exp2.306 = 10.0

The final result might thus be presented as OR = 6.6 (95% CI 4.3–10.0).



Glossary

Note: We have used italics to indicate other terms that are defined in this glossary.

Absolute risk reduction (ARR), Absolute risk increase (ARI) – clinical epidemiol-

ogy terms for the attributable risk, used when then the risk in the exposed

group is lower (ARR = Io − Ie) or higher (ARI = Ie − Io) than the risk in the

control group.

Accuracy – this is achieved when the observed result is close to the true value. See

also precision.

Adjustment – the process of correcting an estimate (e.g. odds ratio or relative

risk) to reduce the confounding effects of some other factor; analogous to

the process of standardisation.

Age-specific rate – incidence or mortality rate calculated for a specific age-group

(usually a one, five or 10 year age band) to remove the confounding effects of

age. See also crude rate, age-standardised rate.

Age-standardised rate – incidence or mortality rate that has been standard-

ised for age by the process of direct standardisation. In practice an age-

standardised rate is a weighted average of the age-specific rates where the

weights are obtained from the age-distribution of a pre-defined standard

population. See also crude rate, standardised incidence (mortality) rate.

Airborne transmission – transmission of an infectious agent via infectious droplet

nuclei that can be inhaled. See also direct transmission and indirect trans-

mission.

Ascertainment bias – see selection bias.

Attack rate – a measure of cumulative incidence often used for an outbreak that

occurs over a relatively short time period. See also secondary attack rate.

Attributable fraction – the proportion of all disease occurring in an exposed

group that can be attributed to their exposure; equal to the attributable risk

(Ie – Io) divided by the incidence of disease in the exposed group (Ie).

Attributable risk – a measure of the excess amount of disease occurring in one

group over and above that in a comparison or reference group (Ie – Io).
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It can be calculated using incidence rates in which case it is also known

as a rate difference or cumulative incidence in which case it is a risk

difference.

Background rate or risk – the rate or risk of disease in an unexposed population;

i.e. the amount of disease that will occur in the absence of the exposure or

risk factor of interest.

Case-cohort study – a study conducted within the context of a cohort study, where

cases are all those diagnosed with a particular disease and the comparison

group is a random sample (sub-cohort) of the whole cohort population. The

main difference from a nested case-control study is that the sub-cohort may

include some people with the disease of interest; also, because it is selected

to represent the whole cohort, the same sub-cohort can be used for studies

of different outcomes.

Case-control study – a study where a group of people with disease (cases) are

compared to a group without the disease (controls), selected to represent

the population from which the cases came.

Case-crossover study – a study where each case acts as their own control thereby

controlling for many known and unknown confounders. Exposure in a

defined period prior to disease onset is compared with exposure in a defined

‘control’ period. Only suitable for studying transient exposures – for example

studies of sexual activity and myocardial infarction.

Case-fatality ratio (CFR) – the proportion of people with a given disease or con-

dition who die from it in a given period. It is a common measure of the

short-term severity of an acute disease and allows a direct assessment of the

effectiveness of an intervention.

Case-finding – opportunistic attempts at early detection of disease when some-

one comes into contact with the health system for another reason.

Cause – something (an event, condition, characteristic or combination of these)

that plays an essential role in producing an effect (e.g. the occurrence of

disease). See also component cause, necessary cause, sufficient cause.

Cluster – a group of cases of a rare (usually non-infectious) disease that occur in

the same area or time period at a level greater than would be expected by

chance.

Cohort study – a study where a sample of people (the cohort) are followed up over

time to see who develops the disease of interest. The cohort may be a single

population group who are then stratified on the basis of their exposure level,

or it may be a group who have experienced a specific exposure (for exam-

ple an occupational or military group) who are then compared with e.g. the

general population.

Common-source epidemic – see point-source epidemic.

Community trial – a trial in which the intervention is implemented at the com-

munity level, usually because it would be impossible to offer (or evaluate)
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the intervention at the individual level; for example studies of water fluori-

dation and dental health.

Competing cause – a cause of death other than the disease of interest. For exam-

ple, in a long-term cohort study some people will die from other causes

before they develop the condition of interest and in this case the investi-

gator will never know if they might have developed the condition if they had

lived longer.

Component cause – something (an event, condition, characteristic or combi-

nation of these) that, in conjunction with other factors, plays a role in

producing an effect (e.g. the occurrence of disease). However it is neither

necessary to cause disease, nor sufficient to cause disease on its own. See

also necessary cause, sufficient cause.

Confidence interval (CI) – the range placed around a point estimate in which the

true result is likely to lie and a way of quantifying the amount of random

sampling error in a study or, conversely, the precision of an estimate. Most

common are 95% confidence intervals and these are often interpreted as the

range that will include the true value 95% of the time. However what they

really mean is that if we were to repeat a study many times with different

samples of people, then 95% of the 95% confidence intervals we calculated

would include the true value. Other percentages can also be used for exam-

ple 99% intervals are wider but more likely to include the true value whereas

90% intervals are narrower but less likely to include the true value.

Confounding – a mixing or muddling of effects that can occur when the relation-

ship we are interested in is confused by the effect of something else – the

‘confounder’.

Confounding by indication – a type of confounding common in non-randomised

studies looking at the effects of treatment. It occurs because, even among a

group of people who all have the same medical condition, those who choose

to take or who are prescribed a particular medication may well differ from

those who do not take it or who are not prescribed it. For example, most

drugs have one or more contra-indications and people with these conditions

would not be prescribed that drug and so would all be in the non-exposed

group.

Contagious epidemic – see propagative epidemic.

Control event rate (CER) – a term sometimes used in clinical trials to describe the

cumulative incidence of the outcome of interest in the control or placebo

group. See also experimental event rate.

Correlation study – see ecological study.

Critical point – the theoretical (and usually unknown) point during the develop-

ment of disease after which the disease process is irreversible and treatment

will confer little or no benefit. Depending on the disease, this may occur very

early in the disease process or may not occur at all.
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Crossover trial – a clinical trial where the same group of participants forms both

the experimental and the control group. Participants are randomised such

that they either receive the active treatment for the first time period and

placebo for the second, or to receive placebo for the first study period and

the active treatment for the second. This design can only be used for expo-

sures that have a fairly transient effect such that the effect of treatment does

not carryover from one time period to the next.

Cross-sectional study – a survey of a random sample or cross-section of the pop-

ulation where information about potential exposures and outcomes is col-

lected at the same time. Distinct from cohort studies and most case-control

studies because it does not just consider incident (new) cases but all those in

the population at the time of the survey (prevalent cases).

Crude estimate – an unadjusted measure of disease occurrence or association

that has been calculated without consideration of the potential confound-

ing effects of other variables.

Crude rate – overall incidence or mortality rate calculated for a whole popula-

tion (IR = number of events in one year ÷ total population or IR = number

of events ÷ person-time at risk) with no adjustment for the potential con-

founding effects of other variables e.g. age. See also age-specific rate, age-

standardised rate, standardised incidence (mortality) rate.

Cumulative incidence – the proportion of a defined population that develops the

outcome of interest in a specified time period (CI = number of cases in a

given time period ÷ number of people at risk during the same period).

Diagnostic test – a definitive test used to diagnose disease in those suspected of

being affected. See also screening test.

Differential error or misclassification – measurement error or misclassification

that occurs to a greater extent in one study group than another, for example

it is more likely to occur in cases than controls (or vice versa) in a case-control

study.

Direct standardisation – the process where the rate of disease (or mortality) in a

population is calculated on the assumption that the population had a stan-

dard age-sex distribution. If this is done for several different study popu-

lations then the resulting standardised incidence (mortality) rates can be

directly compared because any differences in age/sex between the popu-

lations have been removed. Direct standardisation is most commonly per-

formed for age and sex but can be performed for other characteristics such

as race, socioeconomic status. See also indirect standardisation.

Direct transmission – transmission of an infectious agent through close per-

sonal contact with an infected individual, for example by touching infec-

tious secretions or excreta. See also indirect transmission and airborne

transmission.



Glossary 423

Disability-adjusted life year (DALY) – a measure of the burden of a disease or risk

factor on a population that counts not only years of life lost completely due

to premature death, but also years of health lost through disability where the

extent of disability is weighted from zero (perfect health) to one (death). See

also quality-adjusted life year.

Disability-free life expectancy – the number of years of life an individual of a

given age is expected to live free of disability, based on current morbid-

ity and mortality rates. See also life expectancy and health adjusted life

expectancy.

Ecological fallacy – an error made when information about groups of people is

used to make inferences about individuals. For example, if suicide rates are

lower in areas with high unemployment it would be tempting to assume

this means that the unemployed are less likely to commit suicide than the

employed. However, we do not know who is actually committing suicide. It

is possible that it is unemployed people committing suicide, but that they

are more likely to do so if they live in an area where the overall unemploy-

ment rate is low.

Ecological study – a study comparing the levels of exposure and or disease across

populations rather than individuals. For example a study relating average

income to child mortality rates in different countries. Susceptible to ecolog-

ical fallacy.

Effect modification – when the association between an exposure and outcome

(the ‘effect’) differs across levels of a third variable – the ‘effect modifier’.

Eligibility criteria – criteria used to define the target population and establish

whether an individual is eligible to participate in a study. See also exclusion

criteria.

Endemic disease – a disease that is constantly present in a given population.

Epidemic – the occurrence of disease at a level greater than would normally be

expected.

Excess rate – see rate difference.

Excess risk – see risk difference.

Exclusion criteria – criteria on which potential participants who are eligible for a

study are excluded, usually for practical reasons such as their level of health,

ability to give informed consent, ability to complete the study requirements.

See also eligibility criteria.

Expected years of life lost (EYLL) – the number of years of expected life lost due

to a death at a given age; equal to the life expectancy at that age. See also

potential years of life lost.

Experimental event rate (EER) – a term sometimes used in clinical trials to

describe the cumulative incidence of the outcome of interest in the treat-

ment or intervention group.
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Exposure – a generic term used to describe the genetic, phenotypic, behavioural,

lifestyle, environmental factors (or potential causes) being studied in rela-

tion to an outcome of interest.

Extended-source epidemic – see point-source epidemic.

External validity – the degree to which the results of a study can be reliably

applied to a broader population than that included in the study. This

depends on how representative the study population is of the target popu-

lation (i.e. the response rate) and also how representative the target popula-

tion is of other populations of interest. When applied to a causal association

it is usually a decision based on judgement – for example can the results of

a study of American men be applied to men (or women) in Russia?

False negative – a negative test result in a person who actually has the condition

being tested for and thus should have tested positive.

False positive – a positive test result in a person who does not actually have the

condition being tested for and thus should have tested negative.

Force of morbidity – a synonym for the incidence rate.

Generalisability – see external validity.

Health-adjusted life expectancy (HALE) – the equivalent number of years an indi-

vidual can expect to live in full health based on current morbidity and mor-

tality rates. Unlike disability-free life expectancy where years of life lived

with disability are ignored, HALE includes this extra time but includes a

weighting to allow for the fact that it is not lived in full health. See also life

expectancy.

Health expectancy measures – measures that focus on what is being achieved

such as life-expectancy. See also health gap measures.

Health gap measures – measures that focus on what is not being achieved such

as years of potential life lost. They have the useful property that they can be

calculated separately for different diseases or for different causes of disease.

See also health expectancy measures.

Healthy worker effect – a problem that arises in occupational studies because

workers are inherently healthier than the general population which includes

all those too sick to work. As a result, employed groups will naturally tend

to have lower morbidity/mortality rates than the overall population and

it can be difficult to know whether this might mask an increase in risk

due to a specific occupational exposure. Similar issues arise in compar-

isons of other healthy groups, such as the armed forces, to the general

population.

Heterogeneity – when something varies across different groups it is heteroge-

neous.

Historical (or retrospective) cohort study – a cohort study where participants are

identified in the present and historical records are used to measure their

exposure in the past. This past measure of exposure can then be linked to
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the incidence of disease over the intervening years. This preserves the major

benefit of a cohort study in that exposure is documented prior to the out-

comes occurring, but avoids the lengthy time delay in that the outcomes

have already occurred.

Homogeneity – when something is constant across different groups it is homo-

geneous.

Host – the human or animal to which an infectious agent acquires entry and in

which it multiplies.

Hypothesis test – a statistical test to assess the probability that the observed

result would have arisen if the true result was something different. Usually

calculated to assess the probability that a result as great as or greater than

that observed would have arisen if there is really no association (the null

hypothesis).

Incidence – new cases of disease; somewhat confusingly the term is commonly

used to describe the actual number of new cases and also as a synonym for

both the incidence rate and cumulative incidence.

Incidence density – see incidence rate.

Incidence density sampling – a scheme for selecting controls for a case-control

study (or nested case-control study) where controls are selected from all those

in the population who are disease-free but at risk of developing the disease

at the time when a case is diagnosed. In practice this means that someone

can be recruited as a control for a study and then recruited again as a case if

they go on to develop the disease of interest.

Incidence rate – the rate at which new cases of disease occur in a population.

Can be calculated from population data as IR = number of new cases in a

one-year period ÷ the number of people at risk during the same period. If

it is not reasonable to assume that everyone has been at risk for the whole

period, for example in a cohort study where people have been recruited to

the study over a period of time, then it can be calculated as IR = number of

new cases in a one-year period ÷ total person time at risk.

Incident case – a new case of disease that is diagnosed during a specified time

period.

Incubation period – the time between initial infection (entry of an infec-

tious agent into a susceptible host) and the onset of clinical disease

(symptoms).

Indirect standardisation – the process where the observed number of events in a

study population is compared to the number of events that would have been

expected to occur if the study population had the same incidence/mortality

rates as a reference population. Indirect standardisation is most commonly

performed for age and sex but can be performed for other characteristics

such as race, socioeconomic status. The results are usually presented as a

standardised incidence (mortality) ratio. See also direct standardisation.
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Indirect transmission – transmission of an infectious agent that involves a vehicle

which may be inanimate, such as bedding, clothes or utensils (collectively

called ‘fomites’), food or water, or the soil; or alive in which case it is called a

vector. See also direct transmission and airborne transmission.

Infection – the entry of a microbial agent into a higher-order host and its multi-

plication within the host.

Infectivity – the ability of an organism to invade and multiply in a host. It is the

proportion of exposures that result in infection.

Infestation – when a lower organism lives on an external surface of another

(usually higher) organism, for example, lice and scabies.

Intensity (of infection) – a measure of the number of organisms infecting an

individual.

Intention to treat analysis – analysis of data from a randomised trial that com-

pares the groups as they were originally randomised, regardless of whether

people actually received the intervention or not. Usually the most appropri-

ate way to analyse data from a randomised study because if only those who

actually received the intervention are compared with the rest, the benefits of

the randomisation in terms of controlling for confounding and avoidance of

selection bias are lost.

Internal validity – the degree to which the results of a particular study are free

from bias and confounding.

Interval case – a case of disease that is diagnosed clinically between routine visits

for screening.

Interviewer (observer) bias – a bias that can arise in exposure (disease) mea-

surement when an interviewer (or observer) is aware of the disease (expo-

sure) status of an individual. For example: an interviewer may ask questions

somewhat differently, and thus potentially get different answers, when they

are talking to someone they know has disease; a clinician may be more likely

to diagnose disease in someone they know has been exposed to a particular

factor.

Latent period (of an infectious agent) – the time from entry of an infectious

agent into a host until the onset of infectiousness; may be longer or shorter

than the incubation period. If it is shorter then infected persons may pass

on the infection before they become ill (as with influenza) and if it is longer

they will be ill before they are very infectious (as with SARS).

Lead time – the period between the first detectable signs of disease (i.e. detec-

tion by screening is possible) and the overt symptoms that normally lead to

diagnosis.

Lead time bias – bias introduced into screening studies when groups of screened

and unscreened individuals are compared without consideration of lead

time such that screened individuals appear to do better simply because their

disease was detected earlier than among those who are not screened.
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Length bias – the over-representation of slowly progressing disease, which is

more likely to have a favourable outcome, among cases detected by

screening.

Life expectancy – the average number of years that an individual of a given age is

expected to live if current mortality rates continue; see also health adjusted

life expectancy.

Life table – a table that shows, amongst other things, the probability that an indi-

vidual of any given age will die before reaching their next birthday (or the

next age-group if the table is not calculated for individual years of age),

and their future life-expectancy. Also known as a mortality table or actuarial

table.

Measurement error – any error in the measurement of either exposure or disease.

Can lead to misclassification of exposure or disease status.

Meta-analysis – a technique for combining the results of multiple different stud-

ies into a single estimate, essentially a weighted average of the study-specific

results where more reliance is placed on bigger studies with more precise

estimates.

Migrant study – a comparison of disease incidence/mortality between groups

who have migrated to a new country and those who stayed in their home

country, for example Japanese people in Hawaii and Japanese in Japan.

As both groups are likely to be genetically similar, differences between the

groups suggest the condition under study is at least partly determined by

environmental causes.

Misclassification – occurs when errors in measurement of exposure or outcome

mean that people are classified into the wrong groups. For example some-

one with disease is wrongly classified as disease-free or vice versa, or some-

one who has been exposed to the factor of interest is wrongly classified as

unexposed, or exposed at a lower level. See also non-differential misclassifi-

cation, differential misclassification.

N-of-1 trial – a crossover trial involving a single patient who serves as their own

control such that they are randomised to periods of active treatment and

placebo and their outcomes during the different time periods are compared.

This design can only be used for exposures that have a fairly transient effect

such that the effect of treatment does not carryover from one time period to

the next.

Necessary cause – a component cause that is necessary for an outcome to

occur; for example infection with influenza virus is a necessary cause of

influenza.

Negative predictive value (NPV) – a measure of the performance of a screening

programme; the NPV of the test is the probability that someone who tests

negative truly does not have the condition of interest. See also: sensitivity,

specificity, positive predictive value.
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Nested case-control study – a study conducted within the context of a cohort

study, where cases are all those diagnosed with a particular disease and the

comparison group is selected from those without disease at the time the

cases were diagnosed. For this reason, the comparison group is specific to

the particular case-group and cannot be used to study other outcomes as is

possible in a case-cohort study.

Non-differential error or misclassification – measurement error or misclassifica-

tion that occurs to the same extent in all study groups, for example in both

cases and controls in a case-control study.

Null hypothesis – the hypothesis that there is no difference between the groups

being studied or no association between an exposure and outcome.

Null value – the value that indicates no effect or association between two factors;

equal to 0 for a difference measure (absolute risk) and 1.0 for a relative mea-

sure (relative risk).

Number needed to treat – the estimated number of people who would have to be

given a new treatment in order to save one life (or prevent one adverse event

if death is not the relevant outcome) in a specified time period, often one

year. Calculated as 1 ÷ absolute risk reduction.

Odds – the ratio of the number of people within a particular group who meet a

specified condition divided by the number of people in the group who do

not meet that condition. Identical to the odds commonly used in betting.

Odds ratio – the odds of disease in a group of people exposed to a potential risk

factor divided by the odds of the same disease in a second or reference group

who are unexposed. In practice this is equal to the odds that someone with

disease (case) is exposed to a potential risk factor divided by the odds that

someone without the disease is exposed to the same factor. In some circum-

stances (the outcome is rare or controls in a case-control study are selected

via incidence density sampling) the odds ratio is equal to the relative risk.

Outbreak – the occurrence of cases of disease in a community or region where it

would not normally be expected, or at a much greater level than expected.

See also epidemic.

Pathogenicity – the power of an organism to produce overt illness among those

infected. It is measured as the proportion of those exposed to infection that

goes on to develop clinical or overt illness.

Period prevalence – the proportion of a population affected by the condition of

interest at any point during a specified time interval; period prevalence =
the prevalence at the start of the time interval + the incidence of new cases

during the time interval. See also point prevalence.

Person-time or person-years – the total amount of time lived by a defined group

of people. For example, if 100 people are followed for an average of 5.7 years

this is a total 570 person-years (100 × 5.7) of follow-up.
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Point estimate or effect estimate – the main measure of association calculated

in a study, for example an odds ratio or relative risk.

Point prevalence – the proportion of a population affected by the condition of

interest at a specific point in time.

Point-source epidemic – an epidemic that occurs when many people are sud-

denly exposed to the same source of infection, leading to a clear increase

in incidence of disease. May also be called a common-source or extended-

source epidemic, the latter implying that the exposure may be spread over a

period.

Population attributable fraction – the proportion of disease occurring in a popu-

lation that can be attributed to the exposure of interest. Equal to the popula-

tion attributable risk (IT – Io) divided by the incidence of disease in the whole

population (IT). See also population attributable risk, attributable fraction.

Population attributable risk – the amount of disease (usually measured as inci-

dence rate or cumulative incidence) occurring in a population that can

be attributed to the exposure of interest (IT – Io). See also population

attributable fraction, attributable risk.

Positive predictive value (PPV) – a measure of the performance of a screening

programme; the PPV of the test is the probability that someone who tests

positive actually has the condition of interest. See also: sensitivity, specificity,

negative predictive value.

Post-test probability – a clinical epidemiology term for the probability that some-

one has disease based on the results of a specific test; a synonym for the

positive predictive value.

Potential years of life lost (PYLL) – also known as years of potential life lost; the

number of years of life lost because of deaths that occur prior to some

pre-defined age.

Power – probability that the study will detect an association of a particular size if

it truly exists in the general population.

Precision – little variation between the results; the converse of random error. A

precise estimate will have a narrow confidence interval, conversely a wide

confidence interval indicates a lack of precision.

Pre-test probability – a clinical epidemiology term for the probability that some-

one has disease based on the evidence available before a test is performed;

often used synonymously with prevalence.

Prevalence – the proportion of a population affected by the condition of interest.

See also point prevalence, period prevalence.

Prevalence ratio – the prevalence of disease in one group divided by the preva-

lence in a second or reference group.

Prevalent case – a case of disease that is already present in the population at a

given point in time.
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Primary prevention – all interventions that attempt to prevent disease from

occurring, i.e., to reduce the incidence of disease.

Propagative epidemic – an epidemic that arises from the introduction of an

infection into a susceptible population with subsequent transmission from

person to person and a progressive increase in incidence. Also known as a

contagious epidemic.

Proportional mortality ratio (PMR) – the proportion of deaths due to a specific

cause in a group of interest divided by the proportion of deaths due to the

same cause in a comparison group.

p-value (probability value) – the probability that we would have seen a differ-

ence as big as (or bigger than) we did if there were really no difference

between the groups.

Quality-adjusted life year (QALY) – a measure of life expectancy that weights each

year of life based on the quality of that life from one (perfect health) to zero

(death). See also disability-adjusted life year.

Random error – or poor precision is the divergence, by chance alone, of a mea-

surement from the true value.

Randomisation – the process of allocating study participants to different expo-

sure groups (e.g. intervention and control) at random such that each person

has an equal chance of being allocated to the intervention group. Not to be

confused with random selection.

Randomised controlled trial – a study where people are allocated to the exposure

and control groups at random; the best design to avoid confounding.

Random sampling error – the introduction of error into the results of a study

because only a sample of the population was studied instead of the whole

population, for example in a population-based case-control study where a

sample of people without disease are recruited to represent the broader pop-

ulation. Random sampling error is unavoidable in most situations but can

be minimised by taking as large a sample as possible. It can also be quanti-

fied by the use of confidence intervals.

Random selection – the selection of participants for a study on the basis of

chance such that each person in the source population has the same chance

of being included in the study. Note, this does not mean that exposure is

assigned at random, see randomisation.

Rare disease assumption – when a disease (or any health condition) is relatively

rare (e.g. <10%) then the odds ratio, risk ratio and incidence rate ratio will all

be approximately equal and the odds ratio can be used as an estimate of the

relative risk (the risk of disease in one group relative to a reference group).

Rate difference – the incidence rate of disease in one group minus the incidence

rate in a second or reference group (IRe – IRo); also described as attributable

risk.
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Rate ratio – the incidence rate of disease in one group divided by the incidence

rate in a second or reference group (IRe ÷ IRo); also described as relative risk.

Recall bias – a type of bias that occurs when one group in a study tends to recall

or report information differently from the comparison group. Most likely

in a case-control study (or cross-sectional study) when cases, who may have

thought extensively about what caused their disease, may recall their past

exposures differently from controls who do not have disease.

Relative risk – the term relative risk is synonymous with risk ratio but in practice

it is also commonly used to describe a rate ratio and, in some circumstances,

an odds ratio since all three measures compare the amount of disease in one

group relative to that in another.

Relative risk reduction (RRR), Relative risk increase (RRI) – clinical epidemiol-

ogy terms used to describe the reduction (or increase) in relative risk in a

study group compared to the reference level of 1.0. For example, a RRI of 0.3

would mean that the relative risk in the study group was 1.3; a RRR of 0.3

would mean that the relative risk was 0.7.

Relative survival rate – the survival rate adjusted to allow for the fact that some

people would have died anyway from other causes. A relative survival rate of

100% thus does not indicate that no-one has died, but that mortality did not

differ from that experienced by the general population.

Reservoir – the natural habitat of an infectious agent; may be human, animal or

environmental.

Residual confounding – in practice adjusting for a confounding variable is

unlikely to remove its confounding effect completely. Any remaining con-

founding is known as residual confounding. The more a variable confounds

an association (i.e., the bigger the change in an effect estimate when you

adjust for the confounder), the more likely there is to be some remaining

uncontrolled confounding.

Retrospective cohort study – see historical cohort study.

Risk difference – the cumulative incidence or risk of disease in one group minus

the cumulative incidence or risk in a second or reference group (CIe – CIo);

also described as attributable risk.

Risk factor – a factor (genetic, behavioural, environmental, societal) that is

thought to increase risk of developing a particular health state. For exam-

ple, smoking is a strong risk factor for lung cancer. The term was coined by

investigators on the Framingham Heart Study.

Risk ratio – the cumulative incidence or risk of disease in one group divided by

the cumulative incidence or risk in a second or reference group (CIe ÷ CIo);

also described as relative risk.

Screening – the widespread use of a simple test for disease in an apparently

healthy (asymptomatic) population.
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Screening programme – an organised system using a screening test among

asymptomatic people in the population to identify early cases of disease in

order to improve outcomes.

Screening test – a test, usually relatively cheap and simple, used to test large

numbers of apparently healthy people to identify individuals suspected of

having early disease who will then go on to have further diagnostic tests to

confirm the diagnosis. A screening test differs from a diagnostic test in that

there is greater emphasis on cost and safety (as large numbers may be tested

and most will not have disease) and less on definitive diagnosis.

Secondary attack rate – the number of cases of infection that develop among the

susceptible contacts of an infected case as a proportion of the total number

of exposed contacts; a measure of infectivity.

Secondary prevention – efforts to reduce the burden of disease by detecting it

sooner (e.g., by screening) and thereby making treatment more effective and

improving outcomes. Secondary prevention does not affect the incidence of

disease, in fact it may actually lead to a transient increase in incidence as

more cases are detected quickly. See also primary prevention.

Selection bias – the introduction of bias into the results of a study because those

selected to be in the study differ from those not selected in some systematic

way. For example, those who agree to participate in a study may be more

health conscious (e.g. less overweight, lower levels of smoking and alco-

hol consumption, higher levels of physical activity) than those who refuse

to participate. If this affects recruitment of controls (but not cases) for a

case-control study then comparisons between cases and controls will be

biased.

Sensitivity – usually a measure of the performance of a screening test; the sensi-

tivity of the test is the probability that someone with the condition of interest

will return a positive test result. See also: specificity, positive predictive value,

negative predictive value.

Sensitivity analysis – the process of repeating the analysis of a study to see how

the results are affected if different assumptions are made. If the results are

similar regardless of the assumptions then we can be more confident in

them; if they differ greatly then we would be less confident that we were

seeing a real effect.

Simpson’s paradox – where the crude association observed in a study is in the

opposite direction to the true association due to confounding.

Source (of infectious agent) – the person, animal or object from which the host

acquires the infection.

Specificity – usually a measure of the performance of a screening test; the sen-

sitivity of the test is the probability that someone without the condition of

interest will return a negative test result. See also sensitivity, positive predic-

tive value, negative predictive value.
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Standardisation – see direct standardisation, indirect standardisation.

Standardised incidence (morbidity) ratio (SIR, SMR) – the number of new cases of

disease observed in a study population over a specified period of time com-

pared with the number that would have been expected if the study popula-

tion had had the same incidence rates as a standard or comparison popu-

lation (often the general population). Calculated by the process of indirect

standardisation. Note: confusingly, both standardised morbidity ratios and

the standardised mortality ratio (see below) are sometimes abbreviated as

SMR.

Standardised incidence (mortality) rate – an incidence or mortality rate that has

been adjusted by the process of direct standardisation to remove the poten-

tial confounding effects of another variable, usually age. In practice, the stan-

dardised rate is the rate that would have been seen in a population with

a pre-defined distribution of the factor of concern (e.g. age). See also age-

standardised rate.

Standardised mortality ratio (SMR) – the number of deaths observed in a study

population over a specified period of time compared with the number

that would have been expected if the study population had had the same

mortality rates as a standard or comparison population (often the general

population).

Stationary population – a population that does not change in size over time i.e.

the number of people entering the population (e.g. by birth or immigration)

approximately equals the number of people leaving the population (death

or emigration).

Stratification – a process in which we divide or stratify the study participants into

two or more separate groups or strata and calculate measures of associa-

tion separately in each group. Used to assess whether an association (or

effect) varies among different subgroups of the population, i.e. there is effect

modification. For example, if an association differs between smokers and

non-smokers (stratification by smoking status).

Sufficient cause – a component cause or group of causes that will inevitably lead

an outcome to occur.

Survival rate – proportion of patients in a group who are still alive a specified

period after diagnosis.

Systematic error – occurs when observations in a study differ from the truth in a

non-random way. For example, if those who agree to take part in a study are

less likely to be smokers than those who do not agree to take part; or if cases

are more likely to over-estimate their past exposure to second-hand smoke

than non-cases.

Target population – the population that we want to study.

True negative – a negative test result in a person who is truly free of the condition

being tested for.
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True positive – a positive test result in a person who truly has the condition being

tested for

Type I error – the error that occurs when the results of a study suggest there is

a relationship between exposure and outcome but the truth is that there is

none (also called alpha error).

Type II error – the error that occurs when the results of a study suggest there is

no association between exposure and outcome when, in truth, there is an

association (also known as beta error).

Validity – see external validity, internal validity.

Vector – a living organism that transmits an infectious agent, for example

mosquitoes that transmit malaria and dengue, ticks.

Vehicle – something that transmits an infectious agent from one host to another.

It may be inanimate (e.g. food, water, the soil) or it may be alive in which

case it is called a vector.

Virulence – the ability of an organism to produce serious disease; measured by

the proportion of those who are infected (determined by immunoassay) who

develop severe overt disease.

Volunteer bias or volunteerism – bias introduced because people who volunteer

for a study or attend for screening are likely to be different from those who

do not volunteer.

Years of potential life lost (YPLL) – see potential years of life lost.
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absolute risk 128

absolute risk increase (ARI) 136

absolute risk reduction (ARR) 136

accuracy 182–3, 191 see also error, systematic

active surveillance 313–14

aetiologic fraction see attributable fraction;

population attributable fraction

age-specific rates 47–9

AIDS see HIV/AIDS

American Institute of Cancer Research

271

analytic studies 22–3, 95

ascertainment bias 174

association

versus causation 242–3

measures of 125–52

asthma and BMI (body-mass index) 227

attack rate 4, 30, 281 see also cumulative

incidence

secondary 289, 298

attributable burden 337–8

attributable fraction (AF)

calculation of 135–6

in case–control studies 146

in disease prevention 337

interpretation of 136–7

in population see population attributable

fraction (PAF)

worked example 150

attributable proportion see attributable fraction

attributable risk (AR) 133–7 see also rate

difference; risk difference

calculation of 133–7

in case–control studies 146–8

in clinical epidemiology 137

in population see population attributable risk

(PAR)

interpretation of 136

versus relative risk 141–2

worked example 150

attributable risk per cent see attributable fraction

avoidable burden 338

Avon Longitudinal Study of Parents and Children

(ALSPAC) (UK) 103

background risk or rate 133

BCG vaccination see tuberculosis

beta-carotene, trials for anti-cancer effects 384

bias

ascertainment or detection 174

healthy worker effect 174, 175

interviewer or observer 111, 190

lead-time 365–7

length-time 367

loss to follow-up 174–5

measurement see measurement error,

misclassification

publication 255–6

recall 111, 188–90

selection see selection bias

volunteer 171–2

bicycle helmets and head injury 148–9

biological plausibility, as factor in evaluating

causality 248

birth defects and thalidomide 107–8

‘blinding’ in clinical trials 115

BMI (body-mass index) and asthma 227

brain cancer and mobile phones 264, 377

breast cancer

control of 326–8

screening for 272, 363–5, 370–1

British Doctors’ Study 16, 23, 39, 102–3, 141

burden of disease 59

cancer see also specific types of cancer

and diet 91

beta-carotene trials 384

dedicated websites 86
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cancer (cont.)

epidemiology 4

registries 81–2

cardiovascular disease (CVD)

and high blood pressure 330–1

definitions 48

mortality rates 19–20

proposed ‘Polypill’ prevention strategy 341

risk factor profiles in Finland and China 329

case fatality ratio (CFR) 55–6, 67, 289

case reports 72–3

case series 73

case–cohort studies 106–7

case–control studies 16, 107–11

advantages and disadvantages of 109

attributable risk in 146–8

confounding in 202–3

control selection for 109

design of 107

hospital controls 109–10

matching in 210–12

measuring relative risk in 144–5

misclassification in 184–5, 187–9

nested case–control study 111–12

odds ratios for 144–6

population attributable fraction in 147–8

recall bias in 111, 187–9

selection bias in 110, 176–7

case–crossover study 112

case-finding, versus screening 348–9

case-reference (or case-referent) studies see

case–control studies

causation 17–18, 238–51

causal reasoning 244–5

component cause 239–42

definitions of causes 239

evaluation of 243–50

models of 285–6

necessary cause 239–40

sufficient cause 239–40

versus association 242–3

Centers for Disease Control and Prevention

(CDC) (USA) 86

CER see control event rate

cervical cancer

and human papillomavirus (HPV) infection

210, 379–80

screening programmes for 368–9

CFR see case-fatality ratio

chance (random sampling error) 154–65

assessment of effects of 230

confidence intervals 156–8

hypothesis testing 158–60, 161

multiple testing 234

power 160–3

p-values 159–60, 161, 165

type I error 158–9

type II error 158, 160

CHD see coronary heart disease

child death rate 57

childhood mortality and vitamin A 113

cholera epidemic, John Snow investigation of

12–15, 24–7

cholesterol and ischaemic heart disease 331–2

CI see confidence intervals; cumulative incidence

cigarette smoking see smoking

climate change, and infection risks 8, 287

clinical epidemiology 6

attributable risk in 137

cumulative incidence in 44

diagnostic studies 100

number needed to treat (NNT) 137

predictive values in 357

prognostic studies 106

relative risk in 132–3

clinical significance 163–4, 230

clinical trials see randomised controlled trials

clusters 278–82

definitions of 279

examples of 280–1

investigation of 279, 281–2

Cochrane Collaboration database 255

cohort studies 16, 39, 100–7

45 and Up Study 105

advantages and disadvantages of 102–3

Avon Longitudinal Study if Parents and

Children (ALSPAC) (UK) 103

British Doctors Study 16, 23, 39, 102–3, 141

case–cohort studies 106–7

confounding in 203–4

design of 102

European Prospective Investigation into

Cancer (EPIC) 101

Framingham Heart Study 100–1

generalisability 170

internal validity 170

loss to follow-up 102, 174–6, 180

Million Women Study 101

misclassification in 102

nested case–control studies 111–12

Nurses’ Health Study 23, 102

prognostic studies 106

record linkage 104–6

retrospective or historical 6, 103–4

selection bias in 170–1

communicable diseases see infectious diseases

community trials 116 see also intervention

studies
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component cause 239–42

conditional logistic regression 215

confidence intervals (CI) 156–8

and p-values 165

evaluating role of chance 230

confidentiality 92

confounding 198–218

and study size 212–13

assessment of effects of 228–9

by indication 209, 229

common confounders 208

conditions for confounding to occur

205–8

control through data analysis 213–15

control through study design 208–12

criteria for a confounder 201–2

versus effect modification 214–15

effects of 202

example of 198–201

in a case–control study 202–3

in a cohort study 203–4

in an ecological study 90–1

matching, to control 210–12

modelling, to control 215

randomisation, to control 113–14, 208–9

residual 217–18

restriction, to control 209–10

Simpson’s paradox 198, 202

stratification, to control 213–15

congenital abnormalities and rubella 73

consistency, as factor in evaluating causality

246–7

control event rate (CER) 44, 132 see also

cumulative incidence

control group see also case-control studies

hospital controls 109–11

population controls 109

coronary heart disease (CHD) see also

cardiovascular disease, ischaemic heart

disease

and smoking 141–2

terminology 48

registries (MONICA Programme) 82

correlation studies see ecological studies

Cox proportional hazards regression 215

Creutzfeldt–Jacob disease (CJD)

and blood transfusions 224–5

cluster investigation 281

critical point, in the disease process 348

cross-sectional studies 97–100

avoiding selection bias 98

design of 98

recall bias 189

crossover trial 116–17

crude rates 46–7

cumulative incidence (CI) see also attack rate

calculation of 40

control event rate (CER) 44, 132

definition 39, 40, 67

experimental event rate (EER) 44, 132

from routine data 52

measurement in epidemiological studies 39,

40

versus incidence rate 41–2

CVD see cardiovascular disease

DALY see disability-adjusted life year

data analysis

conditional logistic regression 215

Cox proportional hazards modelling 215

matched data 212

multiple logistic regression 215

multivariable modelling 215

death

certificates 77–81

establishing cause of 79–80

national registers 81

rates see mortality rates

Declaration of Helsinki 118

density sampling 146

depression, risk factors for 229

descriptive epidemiology 7–8, 18–22, 71–92

descriptive studies 72–6

assessing results of 232–3

by person, place and time 18–22

selection bias in 170

detection bias 174

diabetes (mellitus)

and BMI (body mass index) 247–8

gestational 31–2

mortality and ICD changes (USA) 79, 80

prevalence (USA) 74

diagnostic criteria 31–2

diagnostic studies 100

diagnostic tests

accuracy and predictive values 357

diet and cancer 91

diethylstilboestrol (DES) exposure and vaginal

cancer risk 155

difference measures see attributable risk; rate

difference; risk difference

differential error/misclassification

estimation of effects of 187, 192–4, 227

sources of 187–8

directed acyclic graphs 216

direct standardisation 49–51, 53–4

disability-free life expectancy 61–2

disability-adjusted life years (DALY) 64–6
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disease

diagnostic criteria 31–2

endemic and epidemic 278–9

natural history of 18

prognosis 18

transmission of 291–2

Doll, Sir Richard 16, 23, 91

dose–response relationships, in evaluating

causality 247–8

ecological studies 90–1, 97

ecological fallacy 45, 91

EER see experimental event rate

effect modification 214–15

eligibility and exclusion criteria 176–7

endemic disease 278–9

enzootic infection, from animals to humans 279

eosinophilia–myalgia syndrome epidemic (USA)

312

epidemic (outbreak)

common conditions for occurrence /cessation

295

curve 13, 293–4

definition of 278–9

examples of 280–1

index case 294

investigation of 295–8

management of 298–9

point-source 293–4

prevention 299–300

propagative (contagious) 294

tuberculosis, a case study 300–4

epidemiology

analytic 22–3, 95–6

boundaries of 375

cancer 4

circular 377

clinical 6, 44, 132–3, 137

definitions of 1

descriptive 18–22, 71–92

environmental 4

future in 377–82

historical beginnings 9–16

infectious diseases 4, 277–9, 282–5

injury 5

lifecourse 96, 381

molecular 6

nutritional 4, 23, 384

occupational 5

perinatal 5

pharmacoepidemiology 110–11

public health 4

scope of 17–18

social 4, 96, 310

epizootic infection, from animals to humans 279

error, sources of see also selection bias,

measurement error, misclassification

in subject selection see selection bias

in measurement see measurement error

random 154, 181–2, 183

systematic 182–3

ethics 117–21

Declaration of Helsinki 118

Nuremberg Code 118–19

European Prospective Investigation into Cancer

(EPIC) 101

excess rate/risk see rate/risk difference

exclusion criteria 177

expected years of life lost (EYLL) 60–1

experimental event rate (EER) 44, 132 see also

cumulative incidence

experimental studies see intervention studies

external validity of results 170, 232

Farr, William (1807–1883) 12, 242–3

follow-up studies see cohort studies

force of morbidity 42

forest plots 259

Framingham Heart Study 100–1

gastric cancer see stomach cancer

generalisability (external validity) 99, 102, 170,

230

genetic versus environmental effects 89–90

gestational diabetes 31–2

Global Alert and Response Network (GOARN)

307–8, 316–17

global warming, and infection risks 287–8

Goldberger, Joseph (1620–1674) and pellagra

15–16, 376

Graunt, John (1620–1674) 11–12

HALE see health-adjusted life expectancy

hazard ratio 211, 215

head injury and bicycle helmets 148–9

health, definition of 2

health data

ethical use of 92

morbidity data 81–3

mortality data 77–81

privacy concerns 92, 105, 120

sources of summary 83–7

Health Insurance Plan (HIP), study of breast

cancer screening 364, 365–6

health-adjusted life expectancy (HALE) 2, 63–4

health-adjusted life years 62–6

disability-adjusted life years (DALY) 64–6

quality-adjusted life years (QALY) 62–3
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health expectancy, measures of 60–1

health gaps, measures of 61–2

healthy-worker effect 174–5, 178

heart attack see myocardial infarction

heart disease see coronary heart disease;

ischaemic heart disease; cardiovascular

disease

Helicobacter pylori infection and stomach cancer

90, 97, 223, 250

hepatitis

A and C 38

surveillance for hepatitis C 320

heterogeneity, of study results 260

high blood pressure, and CVD 330–1

high-risk strategy for disease prevention

332–4

Hill, Sir Austin Bradford 16, 23, 245, 247–51

Hippocrates of Cos 11

historical cohort study 103–4

HIV/AIDS

identification of 73

prevalence and incidence rates 32–4

screening of blood donors, example

354–6

holoendemic disease 278–9

hospital records, for morbidity data 82–3

host see infectious diseases, host factors

human papillomavirus (HPV) infection, and

cervical cancer 210, 379–80

Human Research Ethics Committee (HREC) 92,

118

Hume, David (Hume’s problem) 244

hyperendemic disease 279

hypothesis testing

and p-values 158–9

type-I error 159

confirmation and refutation 244–5

power and type-II error 158, 160

IHD see ischaemic heart disease

incidence 36 see also cumulative incidence;

incidence rate

relationship with prevalence and duration

37–8

standardised incidence ratio (SIR) 52–3, 105

incidence density see incidence rate

incidence rate (IR) 36–7

age-specific 47–9

calculation of 36, 40–1

definition of 40–1

crude 46–7

from routine data 45–6

measurement in epidemiological studies 40,

41, 44–5

incidence rate difference 126–8, 133–5, 150

incidence rate ratio 128–9, 150

standardised 49–51

stroke and smoking 126–7

versus cumulative incidence 41–2

incubation period for disease 290–1, 294

Indigenous Australians, mortality ratios

19

indirect standardisation 52–4

infant mortality rate 56–8

infection see also infectious agents; infectious

diseases

control of

crossing from animals to humans 279

definition of 289

elimination of 285

enzootic, epizootic 279

eradication of 285

intensity of 290

infectious agents 289–90

case–fatality ratio (CFR) 55, 67, 289

incubation period 290–1

infectivity 289

infestation 289

intensity of infection 290

latent period 291

pathogenicity 289

reservoirs 290

secondary attack rate 289

sources 290

transmission of 291–2

virulence 289

infectious diseases

and environmental change 287–8

causal models 285–6

definition 282

endemic, epidemic, holoendemic,

hyperendemic, pandemic 278–9

epidemiology of 277–8, 282–5

factors affecting spread 286–91

host factors 287–9

infectivity 289

infestation 289

influenza

H1N1 (‘swine flu’) outbreaks 279, 311–12

H5N1 (avian influenza) outbreaks 280

information error see measurement error

injury epidemiology 5

Institutional Review Board see Human Research

Ethics Committee

intention to treat analysis 209, 363

internal validity of results 170, 224, 230–1

International Agency for Research on Cancer

(IARC) 270–1
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interval cases 367

intervention studies 23–4, 112–17 see also

randomised controlled trials

community trials 116

field trial of polio vaccine 112–13

International Studies of Infarct Survival (ISIS)

113

vitamin A and childhood mortality

112–13

water fluoridation and dental health 116

interviewer bias 111, 190

ischaemic heart disease see also cardiovascular

disease; coronary heart disease

DALYs due to 241

terminology 48

inverse association with wine consumption

91

mortality rates 47–51

serum cholesterol level and 331–2

instrumental variables 217

International Studies of Infarct Survival (ISIS)

113

kidney disease, and phenacetin 108

Kinsey, studies of sexual behaviour 172

latent period of infection 291

lead-time 350

lead-time bias, in screening programmes

365–7

length-time bias, in screening programmes

367

life expectancy 59–60

disability-free life expectancy 61–2

health-adjusted life expectancy (HALE) 2,

63–4

lifecourse epidemiology 96, 381

life-table 11–12

lifetime risk, from routine data 52

Lind, James and scurvy 94–5

logistic regression 215

loss to follow-up 174–6

sensitivity analysis for 179–80

lung cancer

and smoking 6–7, 16, 23, 87–9, 107, 141–2,

247–8

British Doctors Study 16, 23, 102–3,

141–2

control of 326

mortality rates 7, 87–8

malaria

degrees of endemicity 278–9

host factors and disease risk 287–8

mammography

debate concerning 272, 364

screening for breast cancer 351, 363–6, 368

Mantel–Haenszel odds ratio 200

mass strategy for disease prevention 334–5

matching, to control confounding

210–12

analysis of matched data 212

frequency matching 210

individual 210

maternal mortality rate 57

measles

infectivity and pathogenicity 289

vaccination strategy 318–19

measurement error 168–9, 181–94 see also

misclassification

assessing effects of 192–4, 379

control of 190–1

effects 183–4

overview of 192

random error 181–2

sources of 188–90

systematic error 182–3

measures of association 126–49

attributable risk 133–42

relative risk 4, 5, 128–9

worked example 150–1

measures of disease

incidence rate 33–4, 40–1, 67

incidence rate versus cumulative incidence

41–2

prevalence 33–4, 37–9, 67

summary of 67

use of percentages 35

using routine data 45–52

MEDLINE database 253–5

Mendelian randomisation 217

meta-analysis 162, 259, 261–2

MI see myocardial infarction

migrant studies 89–90

Million Women Study (UK) 101

misclassification 181, 183–8 see also

measurement error

differential 187–8, 193

assessment of effect of 192–4

non-differential 184–6, 192–4

MMR (measles, mumps, rubella) vaccination

strategy 318–19

molecular epidemiology 6

morbidity, force of 42

morbidity data 81–3

mortality data 77–81

death certificates 77–81

establishing cause of death 79–81
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mortality rates 46–52

age-specific 47–8

all-cause 47

cardiovascular disease (CVD) 19–20

child death rate 57

childbirth and early life 56–9

crude mortality rates 46–7

Indigenous Australians 19

infant mortality rate 56–8

lung cancer 7, 87–8

maternal mortality rate 57

neonatal mortality rate 57

perinatal mortality rate 57

post-neonatal mortality rate 57

proportional mortality ratio (PMR) 54–5,

67

Russian men 7–8

standardised 49–50

stillbirth or fetal death rate 56–8

stillbirth or fetal death ratio 56–8

trends in USA 20–2

multiple logistic regression see logistic regression

multivariable modelling 215

myocardial infarction (MI), heart attack

and sexual activity 112

International Studies of Infarct Survival (ISIS)

113

mortality and streptokinase 162

terminology 48

n-of-1 randomised trials 117

National Health and Nutrition Examination

Surveys (NHANES) 75

narrative reviews 252–3

natural history of disease 18

necessary cause 239–40

negative predictive value (NPV) 354–5, 359

neonatal mortality rate 57

nested case–control studies 111–12

NNT see number needed to treat

non-differential error / misclassification

184–6

estimation of effects of 192–4

notifiable diseases 311–12 see also surveillance

number needed to treat (NNT) 137

Nuremberg Code 118–20

Nurses’ Health Study (USA) 23, 102, 247–8

nutritional epidemiology 4, 23, 384

obesity

epidemic 84, 383

socioeconomic status and 381

observation versus randomisation 258

observational studies 96–112

observer bias 190

occupational epidemiology 5

use of proportional mortality ratio (PMR)

54–5

odds ratio 144–9

adjusted 200, 205

and relative risk 144–7

in a cross-sectional study 146

interpretation of 145–6

Mantel–Haenszel 200

matched 212

pooled 200

oesophageal cancer and smoking 225–6

oral contraceptive use

and CHD 205–7

and ovarian cancer risk 108, 143

and pulmonary embolism 73

outbreak see epidemic

ovarian cancer

and egg consumption 246–7

and oral contraceptive use 108, 143

and smoking 380

pandemic 279

PAF see population attributable fraction

PAR see population attributable risk

passive health surveillance 312–13

Pasteur, Louis 292, 376

pathogenicity 289

pellagra 16, 376

perinatal mortality rate 57

person–years 40–2

pharmacoepidemiology 110–11

phenacetin and kidney disease 108

phenylketonuria (PKU), screening of new-borns

350

Physicians’ Health Study 113, 342

PMR see proportional (or proportionate)

mortality ratio

Pneumocystis carinii pneumonia cluster and

discovery of HIV/AIDS 73

point-source epidemic 293–4

polio (poliomyelitis)

surveillance for 315

eradication and surveillance programmes 315,

320

field trial of polio vaccine 113

infectivity, pathogenicity and virulence of virus

289

‘Polypill’ for CVD prevention 341, 383

pooled analysis (re-analysis) 253, 262–3

pooled odds ratios 200

Popper, Karl and causal hypotheses 244–5

population at risk 36–7
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population attributable fraction (PAF) see also

attributable fraction

and world health 140–1

as a guide to prevention 335–7

calculation of 139, 147, 150–1

in case–control studies 147–8, 150–1

interpretation of 139–40

worked example 150–1

population attributable risk 8 see also

attributable risk

calculation of 137–9

interpretation of 139–40

worked example 150–1

population attributable risk per cent see

population attributable fraction

population strategy for disease prevention

334–5

positive predictive value (PPV) 354–60

post-neonatal mortality rate 57

post-test probability 357 see also predictive values

potential years of life lost (PYLL) 60–1

power of a study 160–1

precision see random error

predictive values (PPV and NPV) 354–61

pre-test probability 357 see also prevalence

prevalence (P) 33–4, 36, 67

calculation of 34, 67

definition 34

measurement in epidemiological studies 38–9,

43

period prevalence 34

point prevalence 34

pre-test probability 357

relationship with incidence and duration

37–8

ratios 31

in cross-sectional studies 97–8

prevalence surveys 74–6

selection bias in 169–70

prevention paradox 343

prevention

evaluation of prevention programmes 341–2

high-risk strategy 332–3

mass or population strategy 334–5

‘middle-road’ strategy 336

paradox 343

population attributable fraction (PAF) as a

guide 335–7

primary 323–5

primordial 324

secondary 325

suicide prevention programme (US Air Force)

340

tertiary 325

prognosis of disease 18

prognostic studies 106

propagative epidemics 294

propensity scores 216

proportional (or proportionate) mortality ratio

54–5, 67

proportions, ratios and rates 55

prospective studies see cohort studies

prostate cancer

screening for 349, 370, 368

publication bias 255–6

pulmonary embolism and oral contraceptive use

73

p-values and statistical significance 158–60, 161,

164

and confidence intervals 165

PYLL see potential years of life lost

quality-adjusted life years (QALY) 62–3

random error 181–2, 194

assessing effects on reported results 230

in measurement 181–2

in subject selection (sampling) 154–6 see also

chance

randomisation

to control confounding 208–9

versus observation 258

randomised controlled trials 44, 113–16, 258

blinding in 115

confounding in 114

crossover 116

design of 115

estimation of bias from loss to follow-up

179–80

generalisability of 258

loss to follow-up 174

n-of-1 trials 117

parallel group 116

selection bias in 171

rare disease assumption 146

rate difference 127, 133–5 see also attributable

risk

rate ratio (RR) 127, 129, 131, 145–6 see also

relative risk

rates, ratios and proportions 55

RCTs see randomised controlled trials

reading reports 221–33

assessing results of descriptive studies 232–3

assessing effects of chance 230

assessing the study design 222–3

checking for confounding 228–9, 231

checking for measurement bias 226–8

checking for selection bias 223–6
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external validity (generalisability) of results

230–2

identifying the research question 222–3

internal validity of results 230–1

writing reports 233

recall bias 188–9

record linkage 104–6

for surveillance 314

relative risk (RR) 4, 10, 128–9, 131, 298 see also

odds ratio; rate ratio; risk ratio

in case-control studies 144–5

in clinical epidemiology 132–3

relative risk increase (RRI) 130, 132

relative risk reduction (RRR) 132

worked example 150

versus attributable risk 141–2

relative survival rate 56

research designs see study designs

reservoirs of infection 286, 290

response rates, and selection bias 172–3

restriction, to control confounding 209–10

retrospective cohort study see cohort study

reverse causality 98

reviews of literature

narrative 252

systematic 253–67 see also systematic reviews

risk difference 135 see also attributable risk

risk ratio (RR) 129–31 see also relative risk

Ross River virus (RRV) 228, 292, 320

routine data

finding 83–7

use in descriptive studies 87–91

use to measure disease occurrence 45–6

RR, RRI, RRR see relative risk

rubella and congenital abnormalities 73

sampling error (random) 154–5 see also chance

and sample size (power) 160–1

screening 346–72 see also screening programme,

screening test

aims of 346–7

critical point 348

definition of 348

for bowel cancer 369

for breast cancer 272, 351, 356, 363–5, 370–1

for cervical cancer 368–9

for phenylketonuria 350

for prostate cancer 349, 368, 370

relationship to the disease process 347–8

versus case-finding 348–9

screening programme

evaluation of 361–70

lead-time bias 365–7

length-time bias 367

negative consequences of 370–1

requirements of the programme 349–61

requirements of the test 350–1

sources of bias in evaluation of 362–7

study designs to evaluate 367–70

suitability of the disease 349–50

volunteer bias 362–3

screening test 350–60

false positive and negative result 352

negative predictive value (NPV) 353–7

positive predictive value (PPV) 353–7

requirements of 350–1

sensitivity of 350–3

specificity of 350–3

trade off between sensitivity and specificity

357–60

true positive and negative result 352

secondary attack rate 289, 298

secondary prevention 325

selection bias (systematic sampling error) 98,

110, 169–74

assessing effects of 177–80, 223–6

control of 176–7

effects of low response rates 172–3

healthy worker effect 174

in case–control studies 170

in cohort studies 170–1

in clinical trials 171

in descriptive studies 170

in evaluation of screening programmes

362–4

loss to follow-up 174–5

overview 178

sources of 171–6

sensitivity analysis for 179–80

sensitivity of screening tests 350–3

sensitivity analysis to estimate effects of bias

179–80

sentinel surveillance 314–15

severe acute respiratory syndrome (SARS)

epidemic (2003)

case-fatality rate 55

global response to 277, 285, 307–8,

identification of 277, 307–8

management of media 298–9

sexual activity and myocardial infarction

(MI, heart attack) 112

significance 158–60

statistical 161, 164

statistical versus clinical (or practical) 163–4

Simpson’s paradox 198, 202

SIR see standardised incidence ratio

smallpox 22

eradication (1980) 285



444 Index

smoking

and CHD 141–2

and lung cancer 6–7, 16, 22–3, 87–9, 141–2, 152,

247–8

and oesophageal cancer 225–6

and ovarian cancer 380

and Parkinson’s disease 102

and response rates 172–3

and stroke 126–7, 129, 134, 136

British Doctors’ Study 16, 23, 102–3, 141–2

SMR see standardised mortality ratio

Snow, John (1813–1858) and cholera 12–15, 24–7

social epidemiology 4, 310

specificity

as factor in evaluating causality 248–9

of screening tests 184, 350–3
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