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Step into the mystery of the mind.
There are billions of minds, there are billions of
selves. There are billions of worlds and
dimensions.

—Frederick Lenz



To Tristan and Fiona as they start their new
journey in Life together.



Preface

About 6 years ago, my wife developed an illness that resulted in a loss of short-term mem-
ory. This left her unable to hold a conversation longer than about 10 s. After numerous
medications, cognitive tests, and related therapies, her progress was excruciatingly slow. I
wondered if my career as an engineering researcher could enable me to find a technology-
based solution. After an extensive search, I came upon a small company that made a brain
wave sensor and software module “games” that exercised the different cognitive centers
of the brain, including memory. In fact, the company’s tagline was “We can read your
mind”. Fascinated by this, I contacted the President and founder of the company and
convinced him to join my wife and me over dinner so that he could assess her situation
himself. After that, we went to my lab where he introduced both my wife and me to the
company’s product and learned how to use it in her recovery. For the next 8 months, we
diligently trained on the software with the brain wave sensor. At the end of that period,
my wife had remarkably regained 95% of her short-term memory. This made me wonder
if other more sophisticated engineering tools and techniques could be brought to bare
to improve our current understanding of human cognition. My career as an Aeronautics
Professor at the University of Maryland had allowed me to use “Black Box” system Iden-
tification methods to model and analyse several exotic aerodynamics systems. My later
arrival at the Texas A&M University gave me the freedom and resources to apply these
techniques in an effort to identify a State Space cognitive model using bio-markers such
as those garnered from Electroencephalograms (EEG) which measure the electrical activ-
ity of the brain. During the course of the research, I and my co-authors augmented the
resulting model to handle weak nonlinearities and uncertainty using adaptive observers.
Our models have informed us of Brain Wave Modes and given us a window into what we
call “The Music of the Mind”.

The science of musical sound has long been a human endeavor. The ancient Greeks
have since the sixth century viewed mathematics and music as expressions of the harmony
of nature. A string plucked generates a pitch. If a guitarist now only allows half the length
of the same string to vibrate, the sound is a perfect octave higher. If two-thirds of the string
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may vibrate, the sound is a fifth higher. This remarkable phenomenon of whole number
relationships between length and pitch is concretely harmonic and forms the basis of all
music.

While instruments and the human voice can generate an infinite number of musical
tones, each one can be described mathematically in terms of intensity, frequency, and
waveform. The waveform, also called timbre, is especially important as it quantifies what
makes a C note on a guitar different from the C on a violin. This effect is particularly
influenced by the top plate of a stringed instrument. As a violin string is excited, it trans-
mits vibrations to the top plate of the violin, which has natural resonant modes of vibration
based on the shape and material of the top plate. Different strings excite many different
resonant mode shapes in the top plate simultaneously. The same excitation results in dif-
ferent vibration mode shapes depending on the instrument. The sound of an instrument
we hear is the sum total of all the modes excited by a string carried through the air.
Understanding how the wood, fasteners, and shape of the instrument influence the timbre
is a critical application of acoustic engineering. Master craftsmen create instruments that
resonate at well separated frequencies, spanning the playing range of the instrument.

This book develops an analytical modeling technique to understand the “timbre” of
brain waves. Brain waves are known to have harmonic vibratory patterns, but they are
more complicated than the standing transverse waves of sound. This complicates the
analysis and understanding of brain waves. While sound waves are measured with a
microphone, brain waves are measured with electrodes. These electrodes capture the mass
ensemble activity of neurons, because it is difficult to measure the oscillation of individ-
ual neurons in the same way as to measure the vibration of individual air molecules. Yet,
the ensemble behavior of brain waves remains organized and vibratory.

The modeling technique herein was originally developed for the dynamic analysis of
civil structures, especially as they were excited by earthquakes. Instruments are excited
by precise excitations from musicians, but the excitation to the brain at a given moment
is unclear, so the model must account for an unknown input. At its core, the method
decomposes brain wave recordings into distinct vibratory modes, each with a given
frequency.

This work develops the natural analogy between the modal view of instrument timbre
and the modal view of brain wave “timbre”. Each of the brain wave modes describes the
spatial behavior of the brain wave at a specific frequency. Extending the musical analogy,
each of the modes contributes individually to the music of the brain. Unlike stringed
instruments, these waves are traveling in three dimensions across the brain and do not
always move in phase with one another. Added together through a weighted superposition,
the modes recreated the measured brain wave.

College Station, USA James Hubbard Jr.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cognition as a Dynamic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation: A Holistic View of Brain Waves . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 What is a “model” of Brain Waves? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Important Modeling Considerations for Brain Wave

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Brain Wave Dynamics are Relevant to Many Modeling

Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Literature Review on Dynamic Models of Brain Waves . . . . . . . . . . . . . . . 11

1.3.1 Historical Developments and Early Approaches . . . . . . . . . . . . . . . . 11
1.3.2 Limitations of Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 A Dynamic Systems View of Brain Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Electroencephalography as a Cognitive Biomarker . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Relevant Characteristics of EEG for Dynamic Brain Wave
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Statistical Properties of EEG Measures . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Biological Sources of Corrupting Noise . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.4 Inorganic Sources of Corrupting Noise . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 A Canonical Approach to the Analysis of Brain Wave Dynamics . . . . . . . 35
2.2.1 Treating the Nonlinear Effects of Brain Waves . . . . . . . . . . . . . . . . . 37

2.3 Modal Analysis of State Space Brain Wave Models . . . . . . . . . . . . . . . . . . 38
2.3.1 Modes Jointly Capture Space Time Dynamics . . . . . . . . . . . . . . . . . 38
2.3.2 Analytical Relevance of Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 System Identification Tools for Brain Wave Analysis . . . . . . . . . . . . . . . . . 41
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



xii Contents

3 System Identification of Brain Wave Modes Using EEG . . . . . . . . . . . . . . . . . . 45
3.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Motivation: Dynamical Models of Biomarkers . . . . . . . . . . . . . . . . . 45
3.1.2 Linearization of Neural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Evaluation of System Identification Techniques for Brain

Wave Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 Overview of Considered Output-Only Algorithms . . . . . . . . . . . . . . 48

3.2 Evaluation of Output-Only System Identification Techniques . . . . . . . . . . . 52
3.2.1 Model Variance Among Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Databases for Initial Brain Wave Modeling . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Joint Distributions of Modal Parameters . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Assumptions and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Reducing the Number of EEG Channels . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Modal Analysis of Brain Wave Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Research and Modeling Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Technical Approach to Cognitive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Adaptation of System Identification Algorithms for EEG Data . . . 66
4.2.2 Analysis of EEG Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 The Existence of Stimuli Independent Common Modes . . . . . . . . . 71

4.3 Results of a Subject Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Experimental Validation and Verification Using a Neural

Network Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 An Extension to the EEG Motor Movement/Imagery Dataset . . . . 73
4.3.3 Comparing OMA and DMD for Subject Identification . . . . . . . . . . 74
4.3.4 Optimal System Representations and Neural Network

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Adaptive Unknown Input Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Unknown Input Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Input Generators as a Model of the Unknown Input . . . . . . . . . . . . . . . . . . 85
5.4 Main Result: Adaptive Control Architecture for Unknown Input

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.1 Composite Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Proof of Composite Error Convergence . . . . . . . . . . . . . . . . . . . . . . . 88



Contents xiii

5.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Reconstructing the Brain Wave Unknown Input . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Treating the Nonlinear Effects of Brain Waves . . . . . . . . . . . . . . . . . 99
6.2.2 Treating the Unknown Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Estimator Architecture and Proof of Convergence . . . . . . . . . . . . . . 101
6.2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Performance Benefits of UIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 Analytical Benefits of UIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 The Predictive Capability of the UIO . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.4 Limitations of the Input Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Key Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Modal Identification of Linear Brain Wave Dynamics . . . . . . . . . . 128
7.2.2 Analysis of Spatio-Temporal Brain Wave Modes . . . . . . . . . . . . . . . 129
7.2.3 Theoretical Considerations for the Estimation of Unknown

Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.4 Online Estimation of Nonlinear Brain Wave Dynamics . . . . . . . . . 129

7.3 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.1 Considering Multiple Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.2 Improved Diagnostics and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.3 Spatial Filtering of Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.4 Probabilistic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



1Introduction

1.1 Cognition as a Dynamic Process

This chapter motivates the topic of this work. Human consciousness, especially in the form
of cognition and decision-making, is the single greatest input to the global economy and
remains mostly unquantified. While we have used our brains to name, quantify, and manip-
ulate the world around us, we have relatively little quantification of the brain itself [1]. Brain
physiology, especially in the form of electrical and chemical processes, gives rise to observ-
able, dynamic signals which may be correlated with human cognition and decision-making.
In particular, synchronized electrical pulses of the brain’s neurons yield a set of wave-like
patterns known as brain waves. Brain waves are evidence of ensemble communication from
one mass of neurons to another and exhibit spatio-temporal dynamics.

Correlations between brain waves and human behavior exist, including emotion [2],
decision-making [3], and situational awareness [4]. However, nonlinear effects and inter-
individual differences make deterministic modeling and analysis of these non-stationary
brain waves difficult [5]. As a result, few existing techniques have translated into practical
clinical and human performance applications. This uncertain dynamic process, which is the
relationship between brain wave activity and human behavior, is defined for the purposes
of this work as cognition. Accordingly, we refer to the human behavior outcomes of this
process as cognitive outcomes throughout this work.

Coarsely, cognition, as defined here, can be viewed as a system that gives rise to mass
neuronal activity in the brain as a result of conscious thought (Fig. 1.1). From this figure, one
can imagine a very complicated “transfer function” describing the dynamics of brain waves
and how they affect human behavior. Of course, it would be difficult to derive dynamical
descriptions of brain wave activity from the first principles. However, there are a variety
of engineering analysis tools for the identification and analysis of complicated, uncertain
dynamical systems. There is an opportunity, explored in thiswork, to developmodern system
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2 1 Introduction

Fig. 1.1 Brain wave dynamics as a black box

identification techniques for brain waves. The primary objective of this work is to develop
spatio-temporal dynamical mappings of brain waves as an indicator of cognitive dynamics.
Such mappings are called models, especially when they contain spatio-temporal dynamical
relationships.

Improvedmodels of brainwave dynamics offer an increased understanding of howhuman
physiology influences cognition and decision-making with an eye toward safer human-
robotic teams, sharper clinical diagnostics, and richer brain-computer interfaces. Here, a
survey of existing work relating to modeling brain waves is taken. Following the survey, a
research hypothesis is proposed for this work. The chapter closes with a discussion of the
novel contributions in this work along with a summary of the complete document.

1.2 Motivation: A Holistic View of BrainWaves

In the past 50 years, new imaging and sensing technologies have generated a vibrant multi-
disciplinary research community dedicated to imaging brain waves at both the micro and
macroscopic levels. Yet, rigorous explanations for many ubiquitous cognitive outcomes
remain elusive. For example, operator workload is a topic of significant research across
safety-critical industries, but subjective surveys repeatedly outperform objective measures
from physiological data streams [6–8]. Inter-individual differences, nonlinear effects, and
data quality issues can easily spurn ad-hoc or piece-wise approaches [9]. Successful holistic
modeling of brain wave dynamics may offer new insights into cognition and decision-
making.

1.2.1 What is a “model”of BrainWaves?

Because of the difficulties associated with modeling the dynamics of cognition thus far, it
is important to be specific about the potential of brain wave models. Recreating one-to-one
models of the brain digitally remains difficult [10], and is not the goal of this work. It is,
however, computationally feasible to identify models which match a given physiological
data stream from brain waves. The ultimate goal of this process is to perform predictions on
an individual basis of cognitive outcomes for clinical and human performance applications
[11]. Recreating measured brain waves within established mathematical frameworks offers
insight into the dynamics of brain wave activity, without the need for identical simulation
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[12]. Modeling, as considered for the purposes of this work, consists of the synthesiza-
tion of descriptions for dynamic physiological signals, within an established mathematical
framework, for diagnosis, visualization, and analysis of brain waves.

1.2.1.1 Biomarkers are Indirect Measures of BrainWave Dynamics
Brain waves can be measured indirectly with a variety of physiological data streams. Phys-
iological data streams are often called biological markers (biomarkers). Biomarkers are “a
characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”
[13]. Biomarkers, as considered in this work, consist of a subset of these objective mea-
surements that have spatio-temporal dynamics and may, therefore, be relevant to the spatio-
temporal dynamics of brain waves. That is, this effort is focused on cognitive biomarkers
[14] whose behavior can be considered an observable system output of brain waves.

The vast majority of brain wave models in the existing literature make use of noninvasive
cognitive biomarkers for their studies [11]. Invasive measures, such as electrocorticography,
have excellent signal to noise ratio and are a promising therapeutic for various cognitive
ailments (e.g. epilepsy, paralysis), but can be difficult to implement in a study since they
involve surgical implantation [15]. Accordingly, while there are studies analyzing brain
waves with invasive cognitive biomarkers [16], they often have relatively few subjects in the
study. There is a tradeoff between data quality and data quantity, which can make drawing
group level conclusions difficult when using invasive cognitive biomarkers [17]. As a result,
most researchers study many subjects with noninvasive cognitive biomarkers, rather than a
few subjects with invasive biomarkers.

Noninvasive biomarkers include structural magnetic resonance imaging (sMRI), func-
tional magnetic resonance imaging (fMRI), electroencephalography (EEG), magnetoen-
cephalography (MEG), and diffusion tensor imaging (DTI). The majority of existing studies
consider fMRI imaging as the primary cognitive biomarker [18]. fMRI is typically used over
sMRI because fMRI detects hemodynamic responses through changes in blood oxygenation
level-dependent (BOLD) signals and is, therefore, better suited to the correlation between
tasks and regional changes in brainwaves as seen in Fig. 1.2.MRImeasures have greater spa-
tial resolution than other noninvasive methods, so it is natural to study cognitive biomarkers,
whose spatial dependence is well established [19], with MRI measures. However, fMRI has
a limited temporal frequency, often <1Hz, because it is reliant on a hemodynamic response
[21]. While hemodynamics respond to neuronal activity, they are not a direct measure of
neural oscillations [22]. Further, current MRI machines are difficult to integrate with many
experiments because of their size and cost [23]. As a result, scalp EEG measures, which
have millisecond temporal resolution and may be readily implemented in experiments, are
a popular alternative to fMRI measures [24]. However, the increased temporal resolution
comes at the expense of significantly decreased spatial resolution. State-of-the-art “high”
density EEG devices have fewer than 400 spatial channels, which pales in comparison to the
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Fig. 1.2 Comparison between sMRI and fMRI. fMRI is well suited to measuring dynamic spatial
responses from brain wave activity

≈ 5-micron spatial resolution of fMRI measures. Within the last decade, electromagnetic
shielding and sensing technologies of both fMRI and EEG devices have improved enough
for both measures to be collected simultaneously without interference [25]. Much effort has
been dedicated to jointly analyzing the spatial information in BOLD fMRI measures and
the temporal information in EEG measures [26, 27]. There remains an unsolved problem to
develop approaches that not only treat the cognitive outcome of interest, but also provide
information on the dynamic relationship between the two measures since brain waves influ-
ence blood flow in the brain greatly. Multiple biomarker approaches are increasingly seen
as important in the analysis of brain wave dynamics [28].

While fMRI and EEGmeasures are partially dependent sources of information [29], they
do originate from different physiological changes in the brain. Conversely, MEG responses
come from the same physiological activity as EEG responses. Even thoughMEG is theoreti-
cally not sensitive to radial components of dipolar sourceswhile EEG is [30], the localization
accuracy of the MEG and EEG has been directly compared and found to be of the same
magnitude [31]. As a result, there is less motivation to jointly consider these two measures.
EEG devices were invented and popularized beforeMEG devices, therefore EEG brain wave
analysis tends to be more ubiquitous.

Finally, while DTI measures are seen as increasingly novel, the exact experimental pro-
tocols to generate valid data are evolving [32]. DTI is anMRI-derived measure that relies on
changes in water diffusion to analyze the spatio-temporal dynamics of brain waves. While
DTI measures are independent of fMRI, MEG, and EEG measures, the measure is still
gaining popularity and there are fewer studies considering DTI [33].
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The joint consideration of multiple data streams at different temporal and spatial scales
is of great interest to many engineering applications, including brain-computer interfaces
(BCIs) [34], autonomous robots [35], and structural health monitors [36]. Since cogni-
tive biomarkers are not wholly independent sources of information, there is an opportunity
for joint analysis of multiple biomarkers. Much progress has been made in identifying and
eliminating contaminating sources of noise during simultaneous data acquisition (e.g. simul-
taneous fMRI-EEG). This opens opportunities for direct comparison and synthesization of
simultaneous cognitive biomarker data streams.

In contrast to traditional engineering dynamics, the nature of the observable outputs of
the cognitive system and their underlying source is unclear. At present, robust connections
between the underlying cellular processes and common noninvasive biomarkers are unclear,
including EEG [37], fMRI [38], and MEG [39]. However, these biomarkers are correlated
with the underlying biology and their modeling and interpretation are useful in both clinical
[40] and human performance applications [41]. This introduces significant complexity to the
problem of dynamical modeling. Dynamics engineers are typically able to choose or modify
the sensing suite for a given system to preserve desirable properties, such as observability.
In studying brain waves, the biomarker selection is limited and they are not direct measures
of brain waves. Curiously, [42] has postulated that the biomarkers may be encrypted, which
suggests a proper transformation of physiological data may reveal much about the inner
workings of the brain.

1.2.2 Important Modeling Considerations for BrainWave Dynamics

The complexity of brain waves in time and space yields many modeling opportunities. It
is important now to understand some of the high-level modeling considerations that are
particularly relevant to brain wave dynamics, such as:

1. Local versus Whole-Brain Dynamics: It iswell established that different spatial regions
of the brain contribute to different biological tasks. Electrical signals fromphotoreceptors
primarily feed the occipital lobe in the rear of the skull, while the olfactory epithelium
sends scent signals to the olfactory bulb at the base of the forebrain. If the purpose of a
givenmodel is to describe the flowof information fromphotoreceptors to the brain, a local
“searchlight” model of the occipital lobe may be sufficient. Alternatively, understanding
how visual stimuli influence emotions is likely to require a model that incorporates
spatial dynamics from the different regions of the brain, as one region may process the
visual stimuli while another is responsible for generating an emotional response. While
much of the original literature modeling biomarkers are concerned with predicting the
local behavior of brain waves [43–45], it is increasingly clear that a whole-brain view,
which accounts for the spatial dynamics as brain waves flow from one part of the brain
to another, is needed to move from analysis to diagnosis [46, 47].
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Fig. 1.3 A nonlinear function y = f (x) characterized by four linear models. The number of linear
models needed depends on how strong the nonlinearity is and how accurate the models must be

2. Linear versus Nonlinear Models:Almost all systems exhibit nonlinear behavior. Much
of modern estimation theory is dedicated to analyzing and stabilizing nonlinear systems.
Brain waves exhibit nonlinear effects, and these effects are important to modeling out-
comes [48, 49]. Accordingly, much existing work has treated these nonlinear effects
explicitly through parametrization [50–52]. Rather than considering the nonlinearity
explicitly, it is also valid to linearize the observed dynamics for different operating neigh-
borhoods. There are many examples of the use of multiple linearized models at different
neighborhoods to describe nonlinear plant dynamics [53–55]. Consider the nonlinear
function f (x) in Fig. 1.3, which may represent the observed output y of a single channel
of EEG data. The nonlinear function can be linearized using a Taylor series expansion
around an operating point xi as f (x) = f (xi ) + d f

dx |x=xi (x − xi ) + H .O.T . Each of the
four linearizations has a different parametrization and is only valid over a certain range
of x values. The linearization is as important as the model. The operating point xi , yi
informs the state of the dynamical system in addition to the extracted dynamics. Each
linearization could be a different transfer function or state space model for an observed
cognitive biomarker. Whether the nonlinearities are explicitly treated or are treated with
a collection of linear models, this behavior must be accounted for.

3. Individual versus Population Models: In order to draw scientific conclusions on brain
wave activity, researchers often look at trends over numerous individuals [56]. Many
studies apply their analysis over multiple subjects, resulting in a population view of
brain waves [57, 58]. These averaged dynamics have revealed functional and structural
insight, but exact relationships to cognition remain obscure [59]. Further, [60] reports
that models are often more closely correlated with individuals than with the task the
individuals perform,which supports the fact that even brain anatomy, and therefore, brain
waves, varies from person to person [61]. Although the need for individualized models
is well established [62, 63], translation to clinical application has been challenging as
discussed in Sect. 1.2.3. There is an opportunity for individualized models to confirm
group level conclusions.
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4. Static versus Dynamic Models: Treating the process by which physiological signals
give rise to observable biomarkers as dynamic is a somewhat new idea [64] and was con-
sidered static historically [65]. There is especially little knowledge of dynamic large-scale
interactions between the spatial dynamics of brain waves and their cognitive outcomes
[66]. In the same way that population level modeling reveals some insight into the popu-
lation level activity of brain waves, static models provide a rigorousmodeling framework
and have yielded a wealth of baseline brain wave knowledge [67], primarily considering
the identification and analysis of resting state networks (RSN) [57, 68]. Increasingly, the
need to account for brain wave dynamics, in both space and time, is becoming clear [69]
and accessible [70]. Of course, the consideration of dynamics introduces complexity to
the modeling procedure as one must distinguish between temporal variability from noise
sources and that which is relevant to cognitive outcomes. However, dynamic brain wave
models have already demonstrated increased efficacy in the modeling of PTSD [71],
schizophrenia [72], and vigilance [73].

5. Offline versus Online Models: The use of real-time brain wave modeling is typically
driven by the mathematical framework of the selected model and the model’s desired
application. Offline models are those which cannot execute their modeling procedure
simultaneously with the collection of the data stream. In modeling brain waves, offline
models are particularly oriented for scientific outcomes, where the complexity of the
hypothesis considered may require more intensive modeling and statistical considera-
tions. For example, an offline approach is appropriate for modeling the effects of LSD
on the brain [74], understanding how genomics influence cognitive disorders [75], and
exploring the ability to identify distinct brain wave “states” [76]. In each of these cases,
the need for computational complexity outweighs any need for online modeling. Con-
versely, models oriented toward individualized cognitive models are most useful in the
context of Brain- Computer Interfaces (BCI), where online processing is needed for suc-
cessful application [77]. One can imagine that a model tracking a pilot’s engagement
from physiological data streams is only useful if it runs in real time and can provide feed-
back to the crew. While it is non-trivial to simply collect physiological data in real time
[78], improvements in sensing and computing show promise for truly real-time BCIs that
support useful modeling outcomes such as instant imaging [79] and robot manipulation
[80].

6. Task Dependent versus Task Independent Models: It has been established that
biomarkers are more correlated with individuals than with tasks [60]. For example, it is
much easier to distinguish the EEG signals of two different people at rest than it is to
distinguish the EEG signal of a person at rest from the EEG signal of the same person
performing a difficult mental task. As a result, task-dependent measures introduce signif-
icant complexity to themodeling process, since the response to the taskmust be separated
from the inherent inter-individual difference. However, task-dependent measures may
be tailored for a specific clinical or human performance outcome, often through the use
of individualized modeling procedures. This tradeoff between biomarkers that are task
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dependent (fMRI, EEG, and MEG) and those that are task independent (sMRI, DTI, and
rest state EEG) must be considered early in the development of a given dynamical brain
wave model. Task independent models in general tend to have simpler outcomes, but are
accordingly more robust [81, 82].

7. Parametric versus Nonparametric Models: The parametrization of a model is less
binary than the other properties in the discussion above. When describing the dynamics
of a given system, some assumptions about the system are necessary to synthesize a
rigorous model from the observed outputs. In many mechanical systems, it is possible
to derive a general form of the dynamics from first principles, and then identify the
specific parameters for the general form. In the simplest case, if a system is observed
to have quadratic behavior, one would attempt to identify the parameters (a, b, c) in the
general expression ax2 + bx + c = 0. The model is parametrized as a quadratic. Alter-
natively, there may be no easily identified general form of the dynamics, in which case
the modeling procedure is nonparametric. It would be difficult to derive the governing
equations of brain waves from first principles, so some structure is generally imposed on
the system. Since it is challenging to derive any type of equation for brain waves [83],
the cognitive process is a black box. Knowledge of the system ends at the outputs. The
box is completely opaque, and measurements of the outputs (which are only correlated
to the underlying dynamics) are the only information about the system available. There
are examples of completely nonparametric modeling [84], but even the use of a state
space [85] or stochastic [86] framework offers some structure to the form of the brain
wave dynamics.

Of these properties, there is a particular need for models to be dynamic, incorporating
spatio-temporal variability at multiple scales [87]. While the uncertainty and nonlinearity
associated with brain waves encourage static analysis, this can lead to problematic statistical
analysis [88]. New models should above all else leverage rigorous analytical techniques to
jointly capture the spatio-temporal behavior of brain waves as they traverse across the entire
brain.

1.2.3 BrainWave Dynamics are Relevant to ManyModeling Outcomes

Predicting the internal dynamics of brain waves is a novel engineering task. The field of
dynamics has historically been oriented toward an application. Turbine dynamics inform
design constraints, structural dynamics inform failure modes, and fluid dynamics inform
rocket performance characteristics. The power of dynamics and estimation is the ability to
predict the future, if only within a set of established assumptions. Similarly, the modeling of
brain waves is most useful when developed with some modeling outcome in mind. Because
human cognition is an input to so many systems, the set of possible modeling outcomes
for dynamical brain wave models is particularly diverse. There is a distinction between two
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major types of dynamic brain wave models, those for clinical applications and those for
human performance applications. In order to understand the field of brain wave modeling,
a review of these applications is taken.

1.2.3.1 Models for Clinical Application
The most evident application for dynamic models of brain wave activity is in clinical appli-
cations. Successful modeling of a system’s dynamics typically enables engineers to predict
the system’s behavior by revealing the internal structure of the system.While much progress
has been made in basic neuroscience to understand and image the functional and structural
details of the brain [89], translational neuroscientists have struggled to convert this knowl-
edge into tools for basic clinical applications [90]. Historically, these tools are difficult to
deploy and scale due to the inter individualization of each person’s brain waves and the
homogeneity of many research datasets [18, 91].

Driven by a recent wealth of predictive algorithms and computational capability, much
promising work has been published on the modeling and imaging of brain wave data to
predict numerous clinical outcomes. The vast majority of publications apply dynamic brain
wave models for diagnosis and prognosis of clinically relevant outcomes. These include
predictivemodels for Alzheimer’s [92], psychosis [93], depression [94], autism [95], ADHD
[96], Parkinson’s [97], and PTSD [98].

Increasingly, models rely on machine learning or general pattern recognition algorithms
to achieve an acceptable classification accuracy. This introduces a number of issues that
hamper the widespread application of these models. First, while accuracy is the standard
metric to evaluate the performance of a predictive machine learning model, it encourages
group level modeling. This is naturally detrimental to the application of the model; whose
performance is only valuable to the extent that it can predict outcomes for individuals. More
importantly, [18] points out that many of the reported diagnostic accuracies exceed the
reliability of the existing diagnoses from physician to physician. That is, the algorithm is
more accurate than the humans who generated the labels initially. This conflict results from
optimistic classification bias as a result of machine learning models which are overfitting.
Dynamic brainwavemodels need to be robust and individualized for successful deployment.

The impact of successful diagnostics on these outcomes is difficult to overstate. Many
cognitive dysfunctions are currently diagnosed by physicians on the basis of patient inter-
views. A physician would never perform an artery bypass based on how a patient felt about
their heart plaque. The physician would get an echocardiogram and make decisions based
on the resulting diagnostic test. Yet, many cognitive issues are diagnosed based on how
patients “feel” (i.e. self report). Accordingly, models should have physical significance for
interpretability. It is insufficient for a physician to record brain wave data, send it to an
algorithm, and have the algorithm return only a categorical classification. In the same way,
the echocardiogram reports the necessary parameters to diagnose artery blockages, so too
should dynamic brainwavemodels aid the diagnosis of cognitive outcomes. Therefore,mod-
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els should be tied to measures correlated with physiology (e.g. EEG, fMRI), be informed by
neuroscientific principles, and be human interpretable.

1.2.3.2 Models for Human Performance
As the computing outcomes becomemore advanced, the computer becomes more entangled
with its human operator [99]. This is a significant paradigm shift from the computer as a
tool for a given task (Fig. 1.4a) to the computer as a collaborator which aids the completion
of a task (Fig. 1.4b). Anecdotally, a calculator and a surgical robot both involve computers,
but only the latter has agency in the physical world. Often, the role of the human operator
in a collaborative teaming task becomes oriented toward supervision and decision-making.

Simply by including these digital agents, in a task alongside a human, a bi-directional
flow of information and shared decision-making process exists [100]. There is necessarily
a translation from physiological signals in the nervous system to interpretation by a digital
agent. Because digital agents have been introduced specifically to aid the human decision-
making process in uncertain, dynamic environments, the human operator must know that
the digital agent is reliable and benevolent for the partnership to work as intended. Toward
this end, significant progress has been made on an agent’s ability to sense and understand its
environment [101–103]. This includes advances in both agent decision-making [104] and
the transparency of the agent’s decision-making process [105]. Conversely, less progress
has been made toward encoding the human decision-making process for shared decision-
making [106]. Improvements on the human decision-making side of the team are just as
important as those on the digital side, but extracting models of human decision-making is
more difficult than extracting models of agent decision-making. Human decision-making
is often non-deterministic and seemingly irrational [107]. Despite the increased difficulty,
a translation of physiological brain wave signals to a digitally interpretable representation

Fig. 1.4 Two paradigms of digital electronics
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of human cognition and decision-making remains necessary for effective teaming in the
same way a translation of digital signals from an agent’s sensors is necessary. A digital
representation of cognition and decision-making gives the digital agent some representation
of the human operator and enables shared understanding of the state of the team as feedback
[108]. Therefore, rigorous models of human cognition and decision-making are needed for
effective human-agent teaming.

1.3 Literature Review on Dynamic Models of BrainWaves

Having established the notion of brain wave dynamics and why they are important, this
chapter turns to a reviewof state-of-the-artmodels of brainwaves.As discussed inSect. 1.2.3,
there are a great many outcomes and so there are a great many models. Critically, while the
promise of these models is encouraging, they have yet to make any meaningful impact
on the public health sector. Therefore, the field is evolving, which makes it difficult to
identify a “state-of-the-art” approach while the art itself remains largely unsolved. A quick
search will reveal a multitude of modeling approaches making use of stochastics, nonlinear
dynamics, artificial intelligence, and more. However, it is worthwhile to understand the
historical developments of dynamical brainwavemodels, andwhere a newwealth of sensing
and data sharing technologies are leading the field of translational neuroscience.

1.3.1 Historical Developments and Early Approaches

Today, it iswell accepted that the brain is an electrochemical organ, but thiswasnot always the
case. Hans Berger, a German psychiatrist, was the first to record and publish results relating
to the mass neuronal activity of brain waves in 1925. Berger left the work unpublished for
five years for fear of controversy and skepticism [109], and it would be another four years
before Berger’s results were independently evaluated and then accepted: brains somehow
generated wave-like electrical patterns that could be measured at the scalp [110]. Despite
the slow initial reception, brain waves were quickly adopted for practical diagnostics of
epilepsy once accepted [111]. These early results generated great enthusiasm for the study
of brain waves.

Yet, it quickly became apparent that the temporal dynamics of brain waves were com-
plicated because their statistical properties were non-stationary. While this made a time
series view of brain waves undesirable, researchers soon realized that a spectral view of
brain waves through the Fourier transform, made analysis and diagnosis significantly eas-
ier [112]. Even today, spectral decomposition and the Fourier transformation of cognitive
biomarkers remains the most ubiquitous feature extraction technique for brain waves. From
this earlywork, neuroscientists identified distinct brainwave frequency bands that correlated
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with different cognitive activities, ranging from the low frequency Delta waves (0.5–3Hz)
to the high frequency Gamma waves (32–100Hz) [113].

By the 1960s, it became clear that neurons, specifically rhythmic, synchronized neuronal
firings, were the source of brain waves [114]. Much work was done to evaluate the rela-
tionship between neuronal activity and brain wave recordings. Most crucially, [115], among
others, realized that scalp brain wave recordings only capture electrical activity from neu-
rons near the skull itself, which are now termed cortical neurons. Since this time, a great
deal of effort has been dedicated to recording, decoding, and interpreting brain wave activ-
ity. Further, this era of brain wave study made clear that there is some voluntary control of
brain wave activity [116]. That is, if one has a representation of their own brain waves, they
exhibit some rudimentary control of the waves. This is a particularly encouraging fact for
the application of engineering dynamics, where input-output relationships are critical. For
a field that is less than one hundred years old, significant progress has been made.

Overall, the landscape of brain wave modeling, analysis, and diagnostics is evolving.
Improvements in data sharing efforts have yielded a flood of high-quality biomarker data.
This, in turn, is moving the community from single biomarker, task-independent group
models of brain wave activity toward many biomarkers, individualized predictive models
[14]. However, the list of brain wave models which are used in real clinical and human
performance applications remains sparse. Predicting and monitoring Alzheimer’s has been
the most successful application of cognitive biomarker modeling so far [18]. Alzheimer’s is
the most common form of dementia, which is increasingly prevalent since many countries
have aging populations. Historically, Alzheimer’s is difficult to distinguish from natural
cognitive decline without an autopsy [117], but recent advances in biomarker modeling
suggest early diagnosis is possible. In turn, this should lead to early treatment and better
clinical outcomes for affected patients.

The Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s Disease
(SPARE-AD) is the state-of-the-art cognitive biomarker model at present [118]. SPARE-AD
makes use of longitudinal sMRI scans to identify early indicators of brain atrophy, which
indicates the onset of Alzheimer’s. The modeling primarily consists of statistical analysis
of anatomical maps in a stereotaxic space [119], which is shown to extract image features
that are relevant to brain atrophy over a population. In some cases, these indicators may be
determined before symptoms set in. The sMRI scans are evaluated by a machine learning
model to predict cognitive decline. Overall, the process is a population-based, offline, task
independent, statistical model, which is applying machine learning techniques to bridge
the extracted features and the modeling outcomes. The dynamics here are primarily in the
spatial domain, as subsequent scans occur on the order of months apart. This work is a
hopeful example of how models of brain wave activity analysis may improve public health.
Similar success has not been achieved with EEG-derived brain wave models, though they
have received research attention [120].
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Fig. 1.5 A general architecture for dynamic brain wave modeling

1.3.1.1 Overview of Previous Approaches
The modeling specifics of each of the studies mentioned thus far are rather disparate. This
reflects the often ad-hoc nature of cognitive modeling. In response, others have attempted
to develop standard processing pipelines for EEG, fMRI, MEG, and other biomarkers [133,
134]. While any one of these has struggled to achieve widespread adoption, the research
community agrees that more rigorous collection, processing, and analysis protocols are
needed to improve the clinical and human performance applications of cognitive models
[18].

Despite this, a general framework around most existing and developing dynamic brain
wavemodels today is possible. Figure1.5 identifies fivemajor components of themost recent
publications in brain wave modeling, with some of the most common methods under each
heading. For example, increased accessibility and availability have made deep learning an
increasingly popularmethod to extract useful information fromextracted biomarker features.
[129], accordingly, reviews the most up-to-date methods of deep learning classification for
brain wave models.

As mentioned in Sect. 1.2.1.1, all dynamic brain wave models begin with the selection
of a biomarker or set of biomarkers. More and more research points toward multi-marker
approaches as a means of improving model performance [14]. Biomarker data streams,
especially noninvasive imaging methods, have well established high signal to noise ratios.
Therefore, most require some form of preprocessing before a useful set of features can be
extracted from the raw data. In measures with high spatial density, for example, images need
to be normalized to account for variations in skull and brain sizes. EEGsignals are sensitive to
electrical outlets, and so typically require filtering at the specific frequency of that country’s
power grid (e.g. 60Hz in the United States). Note that these preprocessing steps can heavily
influence or skew the resultant models [127]. With a cleaner representation of the data,
any variety of transformations can be used to extract features, which are low dimensional
representations of the data. EEG data is historically viewed with spectral features, while
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fMRI measures are often separated in terms of sparsity or independence. Extracted features
are classically targeted at an application with some classification method.

1.3.2 Limitations of Previous Approaches

This review of the field has revealed the five key components of modern biomarker model-
ing. Advancements have been achieved in each of these, including biomarker data quality,
preprocessing, feature extraction, classification, and targeted applications. As in any devel-
oping field, there are opportunities to extend the existing work, such as increased treatment
of the following topics:

1. Lack of generalizability across subjects, devices, and contexts has limited the diag-
nostic usefulness of dynamic brain wave models. Historically, brain wave models have
informed hypotheses on the functional behavior of brain waves. As these models have
increasingly targeted clinical and human performance applications, the modeling proto-
cols have maintained previous standards that were ideal for population level statistics.
There is a need for models to work across populations on an individual level, especially
for individuals not included in the initial development of the model. Just as important is
the need for models to generalize across devices and laboratories. Biomarkers are mea-
sured with a wide variety of devices. EEG signals for example have multiple standards
for sensor placement and channel count. New EEG models, therefore, should generalize
across devices and be developed with robustness in mind. This includes the need for
an increased model sharing effort among the research community. Increased efforts in
sharing data, models, and analysis are already underway in the fields of deep learning,
computer vision, and autonomy.Biologicalmodelers have an opportunity to renewefforts
in model availability and generalizability. For models to have a useful impact in their
application, the research community as a whole must be able to survey and select the best
approaches from a field of disparate methods. This demands access and repeatability.

2. The joint spatio-temporal dynamics are often disregarded. Recall that even temporal
dynamics were only recently considered in models of brain wave dynamics. Further,
many existing approaches are instantaneous measures that do not account for spatio-
temporal dynamics jointly, even though these effects are well established in brain waves.
New modeling approaches must be informed by theories of brain function for improved
efficacy and insight. The brain has dynamic information flow through different regions at
different times because of an anatomy that divides labor among different brain regions.
Therefore, advanced models that treat this foundational property of the brain afford
new opportunities to improve modeling outcomes for clinical applications and human
performance.

3. Approaches that seek to replace the human, rather than augment their decision-
making are difficult to interpret and translate. Whenmodels use human-generated labels
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for classification (e.g. epilepsy diagnosis from EEG), it is important to remember the
uncertainty associated with the human labels themselves. A model which reports≥ 99%
accuracy on labeled data has learned the biases and inaccuracies of those who labeled
the data. This is a reason why many models have struggled to translate into clinical and
human performance applications. There is no incentive to introduce a machine into the
decision-making process if it makes the same mistakes as a human. Therefore, an argu-
ment is made supporting modeling approaches that select for low dimensional, human
interpretable representations of brain wave dynamics, leaving flexibility for the human
decision maker. For example, a model optimized for diagnosing epilepsy should reduce
the EEG recordings to a limited set of interpretable features a doctor can use for diagno-
sis, rather than directly predicting the diagnosis with the model itself. Such an approach
will generate models that describe the brain wave function, rather than simply fitting the
desired outcome. Models of this form allow the computational part of the process to do
what it does best (search and process through lots and lots of data), while simultaneously
considering the strengths of the human decision maker (using past experience to make
decisions in a new space).

1.4 Proposed Approach

The limitations in the previous section motivated the technical approach in this work. In
particular, there is a demonstrated need for analytically rigorous, spatio-temporal dynamic
models of the human brain waves which generalize across devices and populations oriented
toward clinical and human performance applications. First, there is a need for rigor in
the modeling approach. Engineering dynamics have treated a wide variety of systems with
a rigorous, canonical approach termed system identification. Rather than try to build a
dynamic model of brain wave activity from nothing, this approach leverages the existing
body of knowledge which has successfully synthesized models for some very complicated
systems. Most modern system identification approaches make use of gray or black box
modeling approaches. A white box model can be derived entirely from the first principles.
This is challenging in dynamic models of brain waves since governing equations for the
physiological activity of the brain remain elusive and boundary conditions are unclear. Gray
box approaches, whichmake use of some limited physical insight in combinationwith input-
output matching, cover the vast majority of physical dynamical systems in use today. Again,
there are no widely accepted parametric descriptions for brain wave dynamics. Therefore,
for the purposes of this work, the cognitive process which generates brain waves must be
treated as a black box. Black box modeling makes use of measurable system data streams
in order to formulate some limited description of the system dynamics. Such approaches
typically limit interpretability and physical significance. A significant portion of this work
will explore the application and interpretation of black box models as they relate to brain
waves.
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The black box approach to brain wave dynamics is limited by a significant constraint: the
input to the brain is unobservable. Consider, for instance, a subject viewing an image of a
rose. While the image is well defined in source space (i.e. each pixel is encoded in binary), it
is less clear how the image is defined in “brain wave space”. Generally, the system input can
be carefully controlled to excite important systemdynamics for identification.A gust ofwind
generates strain on an airfoil which changes the resistance of a Wheatstone bridge which
emits a digital signal representing the force of the gust. This relationship does not currently
exist for brainwaves.Accordingly, the approach heremustmake use of black box output-only
system identification techniques. As mentioned in Sect. 1.2.1.1, even the available methods
for measuring brain waves remain only somewhat coupled to the underlying brain wave. In
this work, we propose an approach that makes use of generic time series biomarker data
and is, therefore, largely agnostic to the source of the data. In turn, this allows the approach
presented here to support single or multi-marker recordings.

Special attention is needed to capture the joint spatio-temporal dynamics of brain waves.
Brain waves may be considered a distributed parameter system of the form

dx

dt
= f (x, t; μ), (1.1)

where x ∈ X is the brainwave system state at time t given parametersμwhichmay represent
control or disturbance inputs. f (·), which describes the brain wave dynamics, is typically
coupled and nonlinear. Formulating a nonlinear f (·) from a set of measurements y = g(x)
remains an open problem in system identification. Here, neither the form of f (·), nor the
boundary conditions of brain wave dynamics are known. In order to make the problem
solvable, f (·) is approximated with a discretized system of coupled ordinary differential
equations (ODEs), which represent the brain wave plant at a local linearity as

ẋ(t) = Ax(t). (1.2)

Theglobal behavior of brainwavesmaybe describedwith a discrete set ofODEs at each local
linearity. While this may seem dubious, EEG signals are known to be highly non-stationary
and nonlinear. To account for this while maintaining model performance and computational
tractability, multiple linear points are a robust approach. Crucially to the analysis of brain
wave dynamics, the matrix A inherently admits modes. Each eigenvector v of A has an
associated eigenvalue λ. Any x(t), which is the state of the brain waves at a given time t ,
can be rewritten as

x(t) =
n∑

i=1

λtiviw
T
i x̂(0) (1.3)

which is a linear combination of modes. Brain waves may be described as a weighted
linear combination of modes around a given operating point. wi are the left eigenvectors
corresponding to λi . Equation (1.3) is referred to as the modal decomposition of the system.
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At every time step, the total brain wave dynamics may be represented as a sum of modes.
Each eigenvector vi has a corresponding modal frequency λi . vi is a vector describing the
mode shape. Relative to the brain wave activity, vi elegantly reveals how the brain waves
flow from different spatial regions of the brain to another at different temporal frequencies.
Together, vi and λi form an eigenmode. The eigenvectors vi describe the spatial relationship
at each temporal frequency λi . It is the objective of this work to identify high-fidelity modes
which capture the spatio-temporal activity of brain waves. The modes act as a basis for the
observed dynamics, but they need not be orthogonal.

The resultant modal decomposition of brain wave activity yields a rigorous, canoni-
cal description of the observed measurements that elegantly captures the spatio-temporal
dynamics in state space terms. The mode shapes represent the regional connectivity of the
brain waves and are relevant to modeling outcomes. These decompositions reduce the com-
plexity of brain wave recordings significantly and are viewed as a tool for the imaging and
analysis of cognitive biomarkers.

Further, by leveraging the canonical state space form of Eq. (1.2), a wealth of optimal
estimation theory is available to us. This includes unknown input estimation, which is used
to quantify a “brain wave space” view of the system input. In combination, this modeling
approachmakes use ofwell accepted tools in system identification and engineering dynamics
to formulate locally linear modal decompositions of biomarker data which naturally and
elegantly show the spatio-temporal behavior of brain waves in a human interpretable way,
along with an estimate of the input. This process works in near real time, and is applicable
to the clinical and human performance applications discussed in Sect. 1.2.1.

1.5 Research Hypothesis

There is a need for canonical modeling approaches to the dynamics of cognitive biomarkers
for feature extraction and classification. Brain waves are of particular importance to clinical
and human performance applications. Many biomarker data streams are generally seen as
having a low spatial resolution, but are themost prevalent measurements for brain waves that
may be used online in an application. Although output-only system identification techniques
are generally restricted to large engineering structures under unknown loads, they may be
extended for the modeling of brain waves. This work addresses the following research
hypothesis:

Brain waves are correlated with cognitive processes and admit modal decomposition.
Modal decomposition, through modern output-only system identification techniques,
is appropriate for the extraction of high-fidelity spatio-temporal dynamical descrip-
tions of brain wave states when the known nonlinear effects are treated. These human
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interpretable, high-fidelity modes are a rigorous tool for the analysis of cognitive
processes oriented toward clinical and human performance applications.

Here, the focus primarily remains on the modeling of brain waves, especially their spatial
dynamics. Since the approach is oriented toward modeling cognitive biomarkers, only EEG
data is treated, but the synthesization of Eq. (1.2) is agnostic to data modality and may be
extended to a multi-marker approach. Applications are used to demonstrate the efficacy and
potential of the modeling approach as illustrative examples.

1.6 Contributions of ThisWork

In this chapter, we have motivated the need for a rigorous, spatio-temporal view of brain
wave dynamics to improve clinical and human performance cognitive outcomes. This work
proposes the development of improved brainwavemodels, through the use ofmodern system
identification techniques. Because the spatio-temporal dynamics are especially important
here, the modeling process employs a modal view. Brain wave eigenmodes leverage the
inherent structure of state space dynamical modeling for the diagnosis and analysis of brain
waves. From these models, adaptive optimal estimation techniques estimate the unknown
input to the brain waves, also in the modal view. The main contributions of the present work
can be summarized as:

• Development of a novel approach for the modeling of cognitive processes using modern
system identification techniques that accommodates multi-marker data;

• Modal identification of brain waves, which canonically and elegantly capture the joint
spatio-temporal dynamics of mass neuronal activity;

• Development of a novel adaptive unknown input observer, which uses optimal state
estimation to synthesize the brain wave input in real time; and

• Application and analysis of the adaptive unknown input observer to brainwave dynamics,
which estimates the exogenous information to the brain wave plant while updating the
linear eigenmodes in real time when nonlinear effects are present.

While the demonstrations presented in this work primarily focus on the analysis of EEG
data streams, the modeling process generalizes to other biomarkers that may be represented
with a state space formulation, such as magnetoencephalography, electrocorticography, and
electrocardiography. More broadly, while the identification of systems with output-only
modal analysis has generally been reserved for use in large engineering structures such
as bridges or boat hulls, this work demonstrates the broad applicability of modern system
identification techniques and optimal estimation in the analysis of complicated input-output
processes.



References 19

1.7 Document Outline

The body of this document progresses with a detailed look at EEG measures and their
implications for brain wave dynamical models in Chap. 2. This is followed by a discussion
and evaluation of modal identification techniques for EEG brain wave dynamics in Chap.3.
Chapter4 details a systematizedmodeling practice for the identification and analysis of brain
wave dynamical models. Then, this work turns to treat the nonlinear effects and general
uncertainty of brain waves by introducing a generic estimator architecture for the online
estimation of nonlinear brain wave dynamics in Chap.5. This estimator is then applied and
its performance is discussed in the context of brain waves in Chap.6, which demonstrates
in its entirety the highly efficacious modeling approach developed here. Conclusions and
recommendations follow in the closing chapter, Chap.7.
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2.1 Electroencephalography as a Cognitive Biomarker

EEG is the most common high temporal resolution cognitive biomarker [1]. Current EEG
electrodes can detect frequency content between 0.01 to around 100 Hz, with microvolt
resolution. Because this work is especially focused on the dynamics of brain waves through
biomarkers, the selected measure must have an appropriately high sampling rate for dynam-
ics. Generally, sampling rapidly enough to distort the information in the output is uncommon,
but sampling too slowly can easily impact the statistical variation in the output, which may
hamper rigorous modeling approaches [2]. As a result, a preference is developed here for
electrophysiological biomarkers, such as EEG or MEG, rather than metabolic biomarkers,
such as fMRI. In the sections that follow, some of the important characteristics of EEG as
they relate to dynamics are explored.

2.1.1 Relevant Characteristics of EEG for Dynamic BrainWaveModeling

In Sect. 1.2.1.1, it was established that the link between electrical activity at the cellular
level (i.e. brain waves) and EEG recordings is unclear at best. The first and most important
difference between brain waves and EEG signals is that EEG signals are referential. Because
EEG sensors are fundamentally electrodes, they rely on voltage differences between points.
In the same way, a voltmeter depends on the placement of two leads, an EEG signal is the
dynamic voltage difference between two electrodes. Unlike a voltmeter, however, there is
no clear ground for brain wave activity. Note that this means a single channel EEG device
requires two electrodes. The need for a relative reference has resulted in a great variety
of methodological choices for researchers. Some EEG recordings are chained so that each
electrode is relative to its neighboring electrode laterally or longitudinally. Figure2.1 shows
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Fig. 2.1 An example of
longitudinal referencing with
electrode locations and names
according to the International
10–20 system standard

a simple example of longitudinal bipolar referencing. In this example, each arrow represents
a dynamic EEG signal, which is the voltage difference between two given electrodes. Still,
other recordings are referenced to an electrode at the top center of the skull, while others
are referenced to the mathematical average or to an electrode on the ear. An overview of
the different referencing methods and a discussion of how the referencing method impacts
modeling outcomes can be found in [3]. Here again, a fundamental issue with the study of
brain waves is revealed. Because of the uncertainty associated with brain waves, it is not
clear that one reference frame is better than another, which can lead to confusing and often
conflicting results [4]. From an information theoretic standpoint, the entropy of an EEG
recording should not change based on the referencing system, however [5].

Further,while brainwaves flow in a deterministic fashion along electrochemical pathways
in the brain, the mass neuronal activity passes through several biological filters before it is
detected by EEG sensors. Electrical activity in the cortex must pass through the pia mater,
dura mater, spinal fluid, skull, and skin before it can be detected by EEG electrodes. Each
of these filters introduces a smearing effect on the electrical information emitting from
the cortex [6]. This, in turn, may induce constructive and destructive interference in the
brain wave information. As a result, each electrode detects the joint activity of about a
billion cortical neurons, and EEG measures are said to have poor spatial resolution [6].
Subcortical structures have no influence on EEG measures of brain waves, even though
those structures also generate and transmit brain waves [7]. Crucially, this smearing, which
is often termed volume conduction, distorts the temporal information in the EEG signal
relative to the underlying source brain wave [8]. This decrease in temporal EEG resolution
as a result of volume conduction is well studied, but often ignored in the analysis of EEG
brainwaves. Overall, in the study of brainwave dynamicswith EEGmeasures, it is important
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to remember that the channels are relative to some reference and that the resultant signal has
passed through several biological filters by volume conduction. EEG signals do not measure
brain waves directly.

2.1.2 Statistical Properties of EEGMeasures

Naturally, these characteristics influence the statistical properties of EEG measures. The
most obvious of these is the increased covariance between neighboring EEG electrodes as
a result of volume conduction. Figure2.2 shows a comparison of four channels of EEG in a

Fig. 2.2 Pair plot of four detrended EEG channels (FP1, F3, C3, P3) in the 10–20 standard. The
univariate distribution of each channel is shown on the diagonal, while the off-diagonal plots show
the correlation of two different channels in a bivariate distribution. Channels with the exact same
information would fall on a straight line with a slope of one
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pair plot. Notice that the channels which are spatially close to one another tend to fall more
neatly along a line. For example, C3 and F3 are spatially close, so the bivariate distribution
falls more neatly along the diagonal, while F3 and P3 are spatially distant, so their bivariate
distribution is less correlated. That is because volumeconduction “smears” themass neuronal
activity of the brain, EEG sensors near one another spatially will share much of the same
information. While this “smearing” is not particularly surprising, it demonstrates the need
for brain wave models of EEG activity to incorporate spatial dynamics. EEG channels are
not wholly independent sources of information.

Second, EEG recordings of brain waves have nonstationary statistics. That is, the sta-
tistical moments, such as the mean, variance, and skew are functions of time and space.
Because stationary statistics ground so many of our analytical methods, researchers histor-
ically treated the “non-stationarity” of EEG signals as a source of noise, discarding it in
favor of just the stationary part of the signal with some success [9, 10]. Recognize, how-
ever, that by discarding a significant portion of the information in the measure, there may
be difficulties interpreting modeling outcomes [11, 12]. Compounding the difficulty of this
problem, it is increasingly clear that the nonstationary portion of an EEG signal and the
stationary portion are both fundamental to the dynamic activity of brain waves [13]. Large-
scale neuronal activity arises from the synchronized sudden firings of billions of cells, so
it is not surprising that the macro behavior is nonstationary. This effect has been especially
demonstrated when brain wave patterns are transitioning between metastable patterns [14].
Here, this work seeks to embrace the complexity of this problem, treating the nonlinear,
nonstationary behavior of EEG signals. To add to the complexity of brain wave dynamics,
EEG recordings are subject to a variety of corrupting noise sources.

2.1.3 Biological Sources of Corrupting Noise

Brain waves are a result of electrochemical processes in the human body. Broadly, many
anatomical structures,most notablymuscles, are also regulated through electrochemical pro-
cesses. These biological artifacts from other anatomical structures also present as electrical
waves, which are observed by EEG electrodes because the scalp is highly conductive and
EEG electrodes do not discriminate between electrical fields on the basis of their source. If
these biological artifacts are not treated, they can obscure the modeling process. For exam-
ple, the electrical activity of the heart is highly periodic and detectable with EEG. However,
this periodic electrical signal is not a brain wave, and it should not be modeled as such. This
is especially important when the artifacts have frequency content that may overlap with the
frequency content of brain waves. This example leads us into a discussion of themost critical
biological artifacts for EEG observations: muscular, cardiac, and ocular.
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2.1.3.1 Muscular Artifacts
A discerning reader might note that each of these biological sources of noise is the result
of muscular activity. The heart is a muscle, and muscles are responsible for both eye blinks
and eye movement. The distinction, in this case, is in how the specific anatomical structure
gives rise to a specific artifact. Muscular artifacts include myogenic activity from a variety
of muscle groups which are characterized by wide spectrum disturbances, perturbing all the
standard EEG bands [15]. Jaw, neck, and limb movement are especially influential on EEG
observations, and are especially corrupting of 15–30Hz brain waves and 0.1–2Hz brain
waves [16, 17]. As a result, many EEG studies historically limit subjects to a stationary
position, but more recent results suggest that independent component analysis through blind
source separation is well suited to removing broad-spectrum muscular artifacts from EEG
recordings [18]. In a real-time application, it is often necessary and effective to simply
suppress the EEG recording in the presence of muscular artifacts [19]. Muscular artifacts
from myogenic activity corrupt EEG recordings through volume conduction across a wide
spectral range.

It is worth recognizing that muscular activity is a valid biomarker in its own right. Elec-
tromyography (EMG) seeks to observe myogenic activity and is widely used to diagnose
nerve or muscle disorders [20]. While EMG recordings are not brain waves, they may be
related to brain waves; a secondary observable of the system as a whole [21]. A modeling
method consideringmultiple data streamsmay reveal new insights into the influence of brain
waves on motor control.

2.1.3.2 Cardiac Artifacts
Cardiac artifacts are present in EEG recordings as a result of the electrical activity in the
heart. Fortunately, the artifact generated by a beating heart tends to be low amplitude and
very repetitive [16]. Because of its periodicity, it may be easily confused for a brain wave.
However, a reference waveform for this repetitive artifact is usually available, and robust
processing algorithms are well established for the removal of cardiac artifacts [22].

Practically, if an EEG electrode is placed too near a blood vessel, the pumping action
of the blood generates local periodic waves that again may easily be confused with brain
waves [23]. Fortunately, a direct link between the cardiacwaveformdiscussed in the previous
paragraph and these pulse artifacts has been established [24]. Accordingly, these signals too
may be easily treated, but it is generally recommended to place electrodes away fromobvious
vessels when possible [25].

2.1.3.3 Ocular Artifacts
Ocular artifacts arise from both eye movement and eye blinks. Eye movement involves
muscular activity that is spatially local at the frontal electrodes and is of moderate amplitude.
Eye blinking, on the other hand, tends to be abrupt and of greater amplitude. From an
energy perspective, the electrical power needed to move an eyelid is much greater than
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that required for the steady oscillation of brain waves, so eye blinks tend to overwhelm
and wash out EEG signals. As a result, having reference waveforms for eye movement for
cancelation is advisable [26], but there is bi-directional contamination between brain waves
and ocular artifacts [27]. This bi-directional contamination necessitates careful filtering of
eye movement artifacts, which is well studied [28, 29].

2.1.4 Inorganic Sources of Corrupting Noise

Finally, EEG electrodes are sensitive enough to detect environmental sources of corrupting
noise, which are inorganic. One can argue that the biological artifacts are part of the whole
brain system, but these inorganic sources of noise must absolutely be canceled. Fortunately,
inorganic artifacts are the easiest sources of EEG noise to correct. The primary source
of inorganic noise in EEG observations is the background hum of power leads and wall
outlets, which oscillate at either 50Hz or 60Hz, depending on a given country’s power
grid. EEG recordings in the United States, for example, show a clear spectral artifact at
60Hz. This noise can be easily dealt with by implementing a simple filter at the appropriate
frequency. Additionally, as with all electromagnetic measuring devices, EEG observations
can be corrupted by magnetic interference, so electrode leads should be well shielded and
as short as possible. A detailed review of these inorganic sources of noise is presented in
[30], where they are shown to be manageable.

Overall,while thesesourcesofcorruptingnoisearenotoverwhelming, theymustbetreated.
A comprehensive review of artifacts and their treatments is presented in [15]. With regard to
biologicalartifacts, thisworkstronglyarguesforminimalmanipulationoftherawdata.Ideally,
one may perfectly insulate EEG recordings from any outside influence, but at present, this
is not possible [25]. Retaining as much data as possible ensures the least amount of relevant
information in the signal is destroyed [16]. Ultimately, EEGdata is known to contain periodic
trends and noise. Models should be rooted in the original analysis of brain waves; connected
to the analysis of periodic brain wave patterns. Highly derived preprocessing methods too
easily become uninterpretable and untestable, not to mention empirically meaningless [31].
The temptation of fitting data to a hypothesis must be avoided.

Section2.1 has outlined a variety of technical considerations for the modeling of brain
wave dynamics via EEG recordings. Throughout it has been established that:

• EEG signals are relative to a reference, which may take many different forms;
• EEG signals have nonstationary statistics;
• EEG signal covariance is inversely proportional to the spatial distance between two

sensors;
• EEG electrodes detect activity from the eyes, heart, and muscles that may look like brain

waves; and
• EEG electrodes detect activity from inorganic sources, such as electrical outlets.
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As a result of all these factors, much debate has been generated analyzing whether EEG
signals are highly nonlinear and deterministic, or completely stochastic. Regardless of the
underlying dynamics, EEG signals are “noisy”. While long time series recordings of EEG
data are clearly nonstationary, it has been shown that they are time-invariant over shorter
periods of time on the order of minutes [15]. Some local linearity may be determined for
many nonlinear dynamical systems in engineering, but it is encouraging to see this result
reproduced for a biological system (i.e. brain wave dynamics). Accordingly, the tools of
dynamics for such engineering systems become relevant to brain wave dynamics, as was
introduced briefly in Sect. 1.4. With the requisite background knowledge in hand, this use of
engineering dynamics principles for brain wave analysis is further expanded and motivated.

2.2 A Canonical Approach to the Analysis of BrainWave Dynamics

Analysis of joint spatio-temporal systems has beenwidely considered in engineering dynam-
ics [32]. Spatio-temporal brainwave dynamics contain structured linear and nonlinear behav-
ior, as well as unstructured random noise. The approach in this work is especially focused on
elegantly treating each of these dynamic effects. As we will show in Sect. 6.3, the proposed
approach operates exactly in this way, filtering the random noise, while estimating the linear
and nonlinear dynamics. First, we treat linear dynamics. Ordinary differential equations
(ODEs) can canonically represent a given linear system’s dynamics in state space as{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).
(2.1)

Internal plant states evolve in the n-dimensional vector space X ≡ C
n . The input is in

the m-dimensional space U ≡ C
m . The output is in the p-dimensional space Y ≡ C

p. y
contains the measurements of a prescribed set of sensors as a time-variant vector. In this
work, y is a vector with each channel of EEG data in a different row. The number of rows
is equal to the number of recorded channels. y is the most accessible representation of the
information in a dynamical system. However, we must acknowledge that our sensors may
not capture all the dynamics in the system. This is especially true of EEG measures which
have limited spatial resolution and are smeared by cerebrospinal fluid (CSF) [33]. Wemodel
these internal dynamics with the state vector x ∈ X . x is frequently inaccessible directly
and its dimension can be difficult to determine, so we often extract x with some optimal
estimation technique [34]. In the context of brain waves, we call x a cognitive state, since it
is the internal state of the system which gives rise to the observable brain waves y. u ∈ U is
the input to the system. In a mechanical system, the inputs can often be precisely controlled
for improved analysis. Here we must accept that a mathematical representation of the inputs
to the brain wave system remains elusive and unknown. The unknown inputs act through
the matrix B, which distributes each unknown input across the appropriate internal states.



36 2 A Dynamic Systems View of BrainWaves

A is a matrix describing the coupled ordinary differential equation for the internal system
dynamics x . It models the time change behavior of x , and frequently contains the relevant
constitutive properties of the system. Finally, C represents the linear transformation from
internal states x to the measurable output space y. It encodes information related to a given
sensor setup for a system. Note crucially, that if the pair (A,C) is not observable, we will
not be able to reconstruct x entirely from y alone.

Others have used ODEs to model the dynamics of biomarkers. In [35], a semiparametric
model was applied to patients affected by alcohol dependence. [36] used first order ODEs to
estimate the emergence of cognitive decline from biomarkers. Finally, a one-compartment
model was used in [37] for the detection of tumors. In the case of EEG dynamics, A, B,C, x
and u are all unknown.Here, we are interested in recovering the physical structure of the state
spacemodel without restricting ourselves to a specific parametric ODE.We hypothesize that
appropriate estimates of A, B,C, x , and u are relevant to cognitive modeling outcomes.

Our modeling approach is segmented into two parts. Formulating the triple (A, B,C)

from output measurements y alone remains an unsolved problem in system identification,
especially for nonlinear systems, sowemust reduce the complexity of the problem. Consider
the true state spacemodel that describes the linear dynamics of an observed set of brain wave
measurements

True Brain Wave Plant:

{
ẋ = Ax + Bu + vx

y = Cx .
(2.2)

vx is a bounded but unknown disturbance in the plant state. Additionally, the input also has
a bounded but unknown disturbance vu , which enters the system through the plant’s input.
Here the signals (vx , vu) represent uncertainties in our knowledge of the system model
and of the input model we are using to approximate the unknown inputs. Whatever these
uncertain signals represent: parametric knowledge, nonlinearities, or noise corruptions, we
want to be able to assess their influence and build into our adaptive state estimation some
ability to reduce their cumulative effect. It is reasonable to expect some finite bound on these
uncertainties. We express this bound as

v =
[
vx

vu

]
(2.3)

||v|| ≤ Mv < ∞. (2.4)

There are a variety of system identification techniques, explored further in Sect. 3.1.3, to
estimate the matrix pair (A,C) in the presence of an unknown input. These techniques
mitigate the effect of the unknown input and synthesize a description of the system dynamics
at regular operating conditions.We introduce the distinction between A and Am , because the
model of the internal dynamics Am will be especially susceptible to parametric uncertainty
and some of the information in the unknown input could perturb Am . We set aside the exact
methods for synthesizing this matrix pair until Sect. 3.1.3 and continue assuming we have
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a reasonable approximation of (A,C) which we denote (Am,C). We assume the estimate
of C is reasonably good, since (A,C) cannot be uniquely determined with the output alone
as the two are coupled [38]. Compensating for parametric uncertainty in either matrix treats
the performance of the whole model, and it is standard practice to consider perturbation of
A [39]. Our model of the brain wave system at this stage takes the form

Uncertain Linear Model:

{
ẋm = Amx

ym = Cxm .
(2.5)

In the context of this work, (Am,C) yields a valid description of the linear brain wave
dynamics in an observed EEG recording y, uncoupled from the effects of external inputs
and ignoring nonlinear effects. While the effect of the input is important, the constitutive
properties of the linear system are completely contained in (A,C). Brainwaves are known to
contain linear behavior, nonlinear behavior, and random noise, so getting an initial estimate
of the linear behavior is computationally feasible and important. The effective synthesization
of (A,C) from y is the first step in our canonical modeling approach.We recognize that there
are other significant dynamics at play, and at this stage, we should not expect particularly
high-fidelity models. However, simplified models of this form still have useful diagnostic
information, as we will show in Sect. 4.1. In the second step of our approach, we treat the
nonlinear plant effects and unknown input with an adaptive estimator.

2.2.1 Treating the Nonlinear Effects of BrainWaves

As introduced in Sect. 1.4, because brain waves exhibit nonlinear, nonstationary dynamics,
a single model of the form Eq. (2.1) is unlikely to describe the global brain wave dynamics.
Much of modern control theory is dedicated to analyzing and stabilizing nonlinear systems.
Often, engineers linearize the plant dynamics around a discrete set of known operating
conditions. Each linearization takes the form of Eq. (2.1), and then a variety of algorithms
may switch between linearizations as needed to improve the model accuracy or performance
outcomes [40–42]. Of course, it is difficult to assess which operating points are important
to brain waves. Therefore, we introduce a novel adaptive estimation scheme in Chap.5 to
simultaneously treat nonlinear plant dynamics and estimate the unknown system input. This
adaptive estimator updates the physical structure of (A,C) to better match the observed
plant dynamics. The adaptive estimator is highly nonlinear and modifies (A,C) to account
for parametric uncertainty and nonlinear effects. Simultaneously, the estimator forms a
representation of the system input u which we call û. We will hypothesize and then validate
that the unknown system input acts evenly on the spatial brainwave dynamics, which implies
that B is a matrix of ones. Here, we present this adaptive approach to real time brain wave
estimation as
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Adaptive Brain Wave Estimator:

{ ˙̂x = (
Am + BL(t)C

)
x̂ + Bû + Kxey;

ŷ = Cx̂ .
(2.6)

Again, and crucially A �= Am . A, B,C, and Kx are all static matrices of appropriate size.
We may only use the observable information in the system (the output y) to correct Am .
Through adaptive output feedback, Am + BL(t)C approximates A, even when faced with
nonlinear dynamics. In this view, the term BL(t)C updates Am to track the nonlinear brain
wave dynamics. Each L(t) yields a different linear model of the form Eq. (2.1). We will
demonstrate that Eq. (2.6) generates estimates ŷ of the measured brain wave signal y that
are useful to cognitive modeling outcomes.

2.3 Modal Analysis of State Space BrainWaveModels

The methods for developing high-fidelity models of processes described by Eq. (2.1) are
well developedwhich encourages us to apply them to brainwave data. Unmodified, however,
it may be difficult to extract useful modeling features from Eq. (2.6) even if the dynamic
brain wave model is high fidelity. The dimension of Am can be quite large and does not
yield a physically interpretable tool for the analysis of brain wave dynamics. Certainly,
models of this form readily supply information related to standard dynamic system theory,
such as stability, observability, and controllability, but this information may not be easily
converted to cognitive modeling outcomes. Therefore, as an additional step in our modeling
procedure, we perform a modal transformation of these state-space models which yields a
discrete set of spatial brain wave patterns. Each of these spatial patterns has an associated
oscillating frequency, which aligns with the known behavior of brain waves. These patterns
are especially useful for cognitive modeling and developing physical insight into brain
waves from our modeling approach. That is, while models of the form Eq. (2.1) describe the
measured brain wave well, a modal view of the dynamics better accounts for the body of
existing knowledge on brain waves even though the systems are mathematically equivalent.

2.3.1 Modes Jointly Capture Space Time Dynamics

Recall from Sect. 1.3 that brain waves are known to have spatio-temporal patterns. Systems
that can be described by Eq. (2.1) admit eigenmodes. Even though our estimator takes the
formEq. (2.6), it is estimating the true brain wave plant represented by Eq. (2.1) Eigenmodes
represent the data in an analytical basis set that organizes the observed behavior of the
system into distinct oscillating frequencies and their associated mode shapes, which we
have hypothesized are relevant to the dynamics of brain waves. A modal decomposition is
necessarily a linear transform, which models the time behavior of modal amplitudes η(t)
instead of the internal states x(t)
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x = Vη. (2.7)

Each column of V is an eigenvector of A

V = [
v1 v2 . . . vn

]
. (2.8)

If the n eigenvectors are linearly independent, the modal transformation matrix V has an
inverse. Then, V diagonalizes A into a matrix of system eigenvalues λi

V AV−1 = � =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎥⎦ . (2.9)

Accordingly, any system state can be written as a weighted linear combination of modes
weighted by αi

x(t) =
n∑

i=1

αivi e
λi t (2.10)

y(t) =
n∑

i=1

αiCvi e
λi t . (2.11)

The dynamics of the system have now been sorted into a set of spatio-temporal eigenmodes.
Each vi is a mode shape, with an associated eigenvalue λi . When considered together, vi and
λi form an eigenmode. The modal decomposition results in a modified state-space model of
the form {

η̇(t) = �η(t) + V−1Bu(t)

y(t) = CVη(t).
(2.12)

η is simply the modal amplitude of each eigenmode at a given time. In this form, the states
η are uncoupled in � but are coupled through the input and the output. The observed EEG
measure is aweighted linear combinationofmodes.Notice thatwhilewemake the distinction
between LTI models of the form (A, B,C) and (�, V−1B,CV ), they are mathematically
equivalent.

2.3.2 Analytical Relevance of Eigenmodes

With an overview of the mathematics for modal analysis of neural activity complete, we turn
to some properties ofmodes that are relevant to cognitivemodeling outcomes.We discuss the
mechanical viewof eachproperty because it informs the reason for including the property and
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aids the interpretation of EEG modes. Specifically, modes are characterized by frequency,
damping, mode shape, and complexity. Here, these properties are mathematical constructs
that aid the description of the observed EEG dynamics. Frequency is a relatively simple
property. EEG data has rich spectral content, and research has linked frequency specific
features with cognitive outcomes [43, 44] Each mode has a distinct oscillating frequency,
which directly corresponds to the spectral content in the EEG data since a weighted sum of
modes recreates the original data.

The damping coefficient of a mode is a convenient measure of how much energy is dis-
sipated from a system. The damping coefficient is frequently expressed as a percentage. A
mode with a damping coefficient of 100% is critically damped. A mode with 0% damping
oscillates indefinitely. In the view of EEGmodes, modes with higher damping are transient,
and their effects are limited in the temporal domain. This suggests a physiological change in
the brain’s spectral content, which is often attributed to brain network evolution [45]. Curi-
ously, our models allow for the identification of modes with negative damping coefficients.
Negative damping is an undesirable property in mechanical structures or circuits because
the mode amplitude becomes unbounded over time. However, we accept negatively damped
modes in EEG dynamics, which should be interpreted as the brain adding energy in that
frequency band, because EEG measures are not known to diverge.

Themode shape has the richest modal information. For each measurement channel, there
is an associated scalar that indicates the maximum amplitude of that channel for each mode.
We may choose to think of the mode shape as a vector describing the relative contribution
of each channel to the overall observed dynamics y for a given frequency.

2.3.2.1 Complexity as a Measure of Spatial Dependence
While the mode shape indicates the relative contribution of each spatial channel to the
overall dynamics, it does not give an indication of whether the relative contributions are
oscillating together. That is, while they may have the same temporal frequency, two spatial
elements may not reach their maxima and minima together. This behavior, which gives rise
to traveling waves, indicates that the spatial locations are out of the temporal phase. Again,
in the view of mechanical structures, a beammay have a non-proportional damping element.
This results in some elements of the beam lagging the rest of the beam.Complexitymeasures
how much of the beam is lagging the initial excitation. Mathematically, modal complexity
is defined as

Cr = 1 − (Sxx − Syy)2 + 4S2xy
(Sxx + Syy)2

, (2.13)
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where

Sxx = Re(vTi )Re(vi ), (2.14)

Syy = Im(vTi ) Im(vi ), (2.15)

Sxy = Re(vTi ) Im(vi ). (2.16)

A mode that is completely in phase, reaching its maximum and minimum amplitude at
every spatial location together, has a complexity value of 0%. Modes for physical systems
tend to be low complexity because they are constrained mechanically and remain in phase.
In the view of EEG modes, we allow for significant complexity, because the oscillatory
behavior in the electrical activity of one part of the brain does not necessarily correspond
to subsequent activity in another. For example, a sudden burst of activity in the frontal
lobe is unlikely to be matched by activity in the cerebellum. The subsequent mode would
necessarily be complex. Complexity in the brain’s modes should be interpreted as a measure
of the correlation between different sections of the cerebrum.

Accordingly, the whole literature on optimal state estimation becomes available to us,
and we can track the brain wave dynamics in real time, while keeping the error between the
estimated output limited to some radius centered at zero. The “features” vi are generated
in a canonical fashion and are directly tied to the measured data y through least squares
projections and linear transformations only. Any result from the state-space model can be
directly tied back to the data.

2.4 System Identification Tools for BrainWave Analysis

This chapter has established an overview of the modeling considerations for brain wave
dynamics and how each of these considerations forms ourmodeling approach. Overall, brain
wave recordings, which are represented here in the vector y, have structured information
and random noise. The data is relative to a reference which may vary from laboratory to
laboratory and is sensitive to a variety of biological and artificial noise sources. As a result,
our modeling approach is to individually model each of these relevant effects. We filter the
noise,model the linear behavior, and compensate for the nonlinear behaviorwith a nonlinear
estimator. In order to gain physical insight into brain waves for cognitive modeling, these
models are transformed from the standard state-space formulation to modal canonical form,
which represents the system as a weighted linear combination of spatial patterns which form
a basis for the observed dynamics.We have thus far obscured the theoretical considerations
to generate both Eq. (2.5) and Eq. (2.6). With this overview complete, we wish to focus on
the synthesization and analysis of models in the form of Eq. (2.5) in Chap.3.
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3System Identification of BrainWaveModes
Using EEG

3.1 Introduction andMotivation

Rigorous descriptions for both the macro and microscopic intricacies of the brain are a
cross-disciplinary scientific challenge. There is potential in this challenge for an improved
understanding of the interaction between our physiology and the stimuli in our environment.
This is especially important when considering that our environments increasingly contain
both physical and digital objects in coexistence. Consider that the internet of things (IoT),
brain-computer interfaces (BCI), and collaborative robots (co-robots) are just some of the
developing technologies connecting our carbon-based brain to silicon-based processors. In
each of these cases, there is necessarily a transfer of information beginning at the cellular
level of the brain and ending with some digital interpretation of the information. Encoding
this physiological information toward digital interpretability is a key component of the search
for greater performance and safety [1]. Therefore, there is a need for rigorous, transparent
descriptions of the dynamics of human physiology as it is relevant to our increasingly digital
environments. Here, we present such a description for the macroscopic dynamics of neural
activity in the form of brain wave modal analysis.

3.1.1 Motivation:Dynamical Models of Biomarkers

The description of human cognitive function as a dynamic process with static architecture is
well established [2]. In mechanical systems, which are often also dynamic with static archi-
tecture, it is common practice to use the observable outputs of a system to form descriptions
of the system’s dynamics [3]. There is a great deal of existing work on the identification and
analysis of complex system dynamics including flapping wing robots [4, 5], insect flight
control [6], and human electrodermal activity [7].
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We focus on considering the spatial and temporal dynamics of brain waves jointly. While
EEG measures have millisecond temporal resolution, a limited number of electrodes can
be placed on the head. For this reason, blood-oxygen-level-dependent (BOLD) functional
magnetic resonance imaging (fMRI) is often employed instead of EEG when analyzing
specific anatomical regions of the brain. fMRI measures have higher spatial resolution than
EEG measures but rarely collect scans faster than 1 Hz [8], which can lead to problematic
statistical analysis [9]. As a result, much effort has been dedicated to jointly analyzing the
spatial information in BOLD fMRImeasures and the temporal information in EEGmeasures
[10–12]. Further, current MRI machines are difficult to integrate with many experiments
because of their size and cost [13]. If improved spatial information can be extracted from
EEG measures and integrated with the inherent temporal dynamics, it may be possible to
correlate EEG with the subsequent physiological BOLD changes.

Spatio-temporal brain wave dynamics contain structured linear and nonlinear behavior,
as well as unstructured random noise. While EEGmeasures can be nonstationary, the use of
highly derived nonlinear indices has repeatedly been shown to be less effective than robust
linear methods [14]. Such highly derived models of EEG dynamics are often difficult to
interpret and analyze [15]. It is for this reason that the vast majority of scientific and clinical
conclusions about EEG recordings come from relatively simple, robust measures, such as
analysis of the raw time series [16], the power spectrum [17], and the independent [18]
or principle [19] components of EEG data. At their core, even most analyses from fMRI
recordings are also linear [20].

This well-known phenomenon, where the system dynamics are nonlinear but the most
effective analytic tools are linear, is common in other engineering systems. Dynamic systems
on earth and in space are frequently subject to nonlinear effects,whichmaybevery strong, but
it again has repeatedly been shown that linear formulations are sufficient to steer autonomous
ground robots [21], guide commercial aircraft [22], and even land on the moon [23]. Now,
we do not mean to imply that the brain is exactly like these other systems, but rather that
linear dynamical systems are appropriate to the study of EEG measures [3]. In this work,
we seek to describe a rigorous, canonical engineering approach to the modeling of EEG
dynamics through the lens of linear state-space modeling. This approach is comprised of
four parts:

1. identification of an LTI model with modern system identification tools;
2. validation of the identified model;
3. coordinate transformation of the identified model to generate highly interpretable spatio-

temporal modes; and
4. analysis of the extracted modes.

In the following section, we will describe in detail each of these steps. While we have
targeted this application toward EEG recordings, the analysis is agnostic to the data in the
output measure and may be readily applied to other time series biomarker data.
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3.1.2 Linearization of Neural Dynamics

Almost all systems exhibit nonlinear behavior. Much of modern control theory is dedicated
to analyzing and stabilizing nonlinear systems. Instead of viewing (2.2) as a global model
for the brain at all times, we recognize there are nonlinearities in the dynamics and treat
the modes as a model of the locally linear dynamics around a stable operating point. There
are many examples of successful nonlinear plant control using linearized models about an
operating point [24–26]. The linearization is as important as the model. The operating point
xi , yi informs the state of the dynamical system in addition to the extracted modes. By
tracking the model error ey = ŷ − y, we can move the linearization point as needed by
recalculating the modal decomposition.

We note that one of the benefits of linearization is the ability to run estimators and
evaluate modal results in near real time. We make the distinction near real time because the
determination of modes around an operating point can be computationally intensive when
long time series are considered. Once this initial linearization and subsequent decomposition
is completed, a state-spacemodel in (2.5) is identifiedwhere ŷ(k) is our best recreation of the
measured EEG signal. Accordingly, the whole literature of optimal state estimation becomes
available to us, and we can track the modal dynamics in real time while keeping the error
between the estimated output limited to some radius centered at zero. The “features” vi are
generated in a canonical fashion and are directly tied to the measured data y through least
squares projections and linear transformations only. Any result from the state-space model
can be directly tied back to the data.

3.1.3 Evaluation of System Identification Techniques for BrainWave
Modeling

In this work, the focus is on the formulation and analysis of the linear modal patterns in
EEG brain wave recordings. Asmentioned in Sect. 2.2, while these linear state-spacemodels
represent a very simplified view of brain wave dynamics, they contain useful diagnostic
information. The synthesization of state-space models from a given plant’s data falls under
the broad engineering topic of system identification.

In the study of brain wave dynamics, we may only measure the output of the EEG device,
which is denoted here as y(t). In many other applications, knowledge of the system input
u(t) is also available. The vast majority of system identification techniques rely on anal-
ysis of the relationship between input and output measurements, typically through linear
systems analysis and least squares regression [27]. These include transfer function estima-
tion [28], Autoregressive-moving-average estimation (ARMAX) [29], and unstructured or
parameterized state-space estimation [30], among others. Here, we are restricted to the use
of output-only system identification techniques, such as numerical algorithms for subspace
state-space system identification (N4SID) [31], frequency domain decomposition (FDD)
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[32], dynamic mode decomposition (DMD) [33], and output-only modal analysis (OMA)
[34]. As wewill see, these algorithms generally leverage observability concepts to formulate
minimum variance estimates of the matrix pair (A,C). While the outcome is common, the
variety of algorithmic approaches here means it is not immediately obvious which method
will yield better results than another. As a result, the discussion that follows covers our
approach to evaluating a number of output-only system identification techniques against
one another, in order to develop a systematized modeling procedure for the analysis of brain
wave dynamics. First, we take a brief survey of the considered algorithms.

3.1.4 Overview of Considered Output-Only Algorithms

The following output-only system identification algorithms were considered in this work.
The methods listed here were selected for their robustness to process noise, computational
tractability, and widespread use among engineering practitioners.

1. N4SID: The N4SID algorithm is ubiquitous for its inception as one of the earlier suc-
cessful methods for synthesizing non-polynomial models. It is particularly well suited
for multi-input multi-output (MIMO) systems, and has formulations as both an input-
output and output-only approach. Since it is an explicit calculation, requiring no opti-
mization algorithm, the common issues of convergence and initial condition sensitivity
are avoided. The N4SID approach assumes the system dynamics follow the following
discrete-time model analogous to our continuous formulation in (2.2)

xk+1 = Axk + Buk + vx (3.1)

yk = Cxk + Duk + vy, (3.2)

or when the input is unknown

xk+1 = Axk + vx (3.3)

yk = Cxk + vy . (3.4)

Leaving the proof and other technical details aside (and referring the reader to [31]), we
state for the time being that the deterministic portion of the dynamics may be identified
as long as the dynamics are stabilized and all states are observable. The formulation of
the plant (A, B,C) with input-output data, or (A,C) with the output data only, follows
readily from a least squares projection of theKalman states, which is aminimumvariance
estimate. This is a promising approach for brain wave modeling since it has a little
restriction on plant parametrization, is well suited for multiple output dynamics, and can
be used with output data alone. Of course, in the output-only case, the effect of the input
is ignored and may leak into the formulation of the system dynamics if the input is not
stochastic in nature.
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2. NExT ERA: The natural excitation eigensystem realization algorithm (NExT ERA)
[35] is a popular output-only system identification approach in the analysis of civil and
aerospace structures because it operates in modal space, which is well studied and phys-
ically significant for most structures. Unlike the N4SID approach, NExT ERA assumes
a completely deterministic plant of the form

ẋ = Ax + Bu (3.5)

y = Cx (3.6)

is to be identified. As in N4SID, if there is no input data, the formulation is simplified to

ẋ = Ax (3.7)

y = Cx . (3.8)

As with many system identification methods, NeXT ERA makes use of the generalized
Hankel matrix. If we had N discrete recordings of a system output vector y, the data
may be represented in the block matrix

Y =
⎡
⎣

| | | |
y1 y2 . . . yN
| | | |

⎤
⎦ . (3.9)

When formulating state-space models from output data, it is often useful to cycle the
recorded data and perform individual calculations on the sequential blocks of data. The
generalized Hankel matrix H is a collection of all the shifted block matrices of data

H =

⎡
⎢⎢⎢⎣

Y(1:N−2s)

Y(2:N−2s+1)
...

Y(2s:N )

⎤
⎥⎥⎥⎦ =

[
Hp

H f

]
. (3.10)

The number of block rows in the Hankel matrix is 2s, which is often termed the total data
shift. Many system identification algorithms treat the top half of the Hankel matrix rows
as “past” data Hp, and the bottom half of the rows as “future” data H f . The identification
task is then to determine a minimum variance system that advances the “past” data into
the “future” data through various projections. In the case of NeXT ERA, a singular value
decomposition (SVD) of the Hankel matrix is performed on the past data

Hp = USV ∗, (3.11)

and the system realization of order n immediately follows from the SVD and the future
data
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A = S1/2n U∗
n H f VnS

−1/2
n (3.12)

B = S1/2n V T
n (:, p) (3.13)

C = Un(q, :)S1/2n (3.14)

where q and p represent the necessary row or column truncation for the operation. These
matrices may then be modally decomposed as introduced in Sect. 2.3.1 for a modal view
of the measured dynamics. While this is a promising algorithm because it is focused on
a spatio-temporal view of the system dynamics and leverages the eigenvalue problem,
NeXT ERA does not account for stochastic effects or modeling uncertainties directly.

3. OMA Output-only modal analysis (OMA) is included as the stochastic subspace identi-
fication method of interest to this work [36]. Conceptually, it is similar to the operating
principle of NeXT ERA, where an oblique projection from past to future data leads to
a formulation of the system matrices. Crucially, OMA takes a stochastic view of the
dynamics in discrete time

xk+1 = Axk + vx (3.15)

yk = Cxk + vy, (3.16)

where vx and vy are zero mean, white vector sequences. This is a slightly more restrictive
condition that we posed in (2.4). It’s also worth noting that by stochastics here, we
simply mean the dynamics have some randomness associated with their evolution, not
that they are necessarily completely random. Clearly, by the form of (3.15), there is still
analytically valuable content in the pair (A,C). In particular, we should view vx here
as a random, unknown input to the otherwise deterministic formulation of the system
matrices. That in mind, the oblique projection from past states to future states in OMA
takes the form

O = E(H f |Hp) = [
o1 o2 . . . os

]
, (3.17)

where E is the expectation. Van Overschee and De Moor [36] demonstrated that O can
be directly calculated from the generalized Hankel matrix with

O = H f H
∗
p(HpH

∗
p)

−1Hp. (3.18)

Conceptually, this matrix consists of the system free decays at the different “initial”
conditions as seen in Hp. Using the matrix exponential, the columns of O may be
expressed through the observability matrix
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O = �s X0 (3.19)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎦
X0. (3.20)

If all the initial (Kalman) states were immediately available, we could simply invert X0

and solve for the system matrices (A,C). Instead, we estimate � and X0 with the SVD

�̂ = US1/2 (3.21)

X̂0 = S1/2V ∗. (3.22)

Obviously, this formulation, and output-only system identification result generally, will
not be unique. However, it gives us a method to readily obtain an estimate of (A,C). C
is simply the first block of �̂

C = �̂1:1, (3.23)

while A can be derived from the second block and C−1 or the top and bottom blocks

�̂2:s A = �̂1:s−1. (3.24)

From here, the modal parameters of the system may be readily calculated through the
appropriate transformation matrix [37].
One of the particular advantages of OMA, in this case, is the assumption of zero mean
white noise in the driving states. While EEG recordings are known to be nonstationary,
they are generally processed in a way that makes them zero mean. That is, E(y) = 0.
This is often not the case for traditional dynamical systems, where non-zero mean speed,
acceleration, and force must be considered.

4. DMD Finally, dynamicmode decomposition (DMD)was evaluated [33]. DMD is a fairly
modern data driven state-space identification algorithm first developed for fluid dynamic
applications. Accordingly, it is especially oriented for the generation of physically sig-
nificant spatial parametrizations, which is why it was selected for use in the analysis of
brain waves. Unlike the other methods presented thus far, it assumes complete access to
the locally linear dynamics of the plant

ẋ = Ax . (3.25)

The identification scheme is to determine the matrix A which advances x(t) to x(t + 1)
as in
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min ||x(t + 1) − Ax(t)||2. (3.26)

There are theoretical and algorithmic extensions to this approach which allow for the
consideration ofmultiple recordings {x(t + 2), x(t + 3, . . . , x(n)), multiple time scales,
and reduced system orders, but we leave those to [33]. While its computational complex-
ity is very low, it is sensitive to transient time phenomena and is generally more suited to
deterministic systems of high cardinality, rather than moderate dimension deterministic-
stochastic systems like brain wave dynamics.

Overall, we must remember that models generated through system identification algorithms
such as those discussed here are only as good as their validation. In particular, all of these
methods rely on the SVD, which is known to struggle with data invariances (e.g. low rank
rotation). Additionally, none of these algorithms generate unique solutions except DMD.
This is the result of considering the output matrixC . Conceptually, A andC are tied together
through the dynamic process, so any change in A could potentially be canceled out by the
requisite change in C . In the case of DMD, by assuming the entire plant state is available,
we lose the ability to identify potentially important internal dynamics, especially when
dim(y) << dim(x). Much of the existing literature involves the comparison of at least two
system identification approaches for a given problem [38–40]. In many cases, mathematical
equivalence is even possible with the right assumptions or initial conditions [36]. Models
formulated this way can only model the dynamics in a given set of measurements. For
example, if a system has a destabilizing natural frequency, and that frequency is not captured
in the Hankel matrix, themodel (and therefore any controller) will be blind to that instability.
That is, you cannotmodelwhat youdonot excite.While this is important for physical systems,
it is not a concern for EEGmeasures, which do not diverge. In fact, it may even be a benefit,
because we can compare the range of different models from one set of stimuli to another
checking for differences in the extracted modes.

3.2 Evaluation of Output-Only System Identification Techniques

The techniques discussed above in Sect. 3.1.4 above were selected on their structure as
output-only system identification techniques with a specific focus on modal analysis. As
mentioned, many of these algorithms can be shown as identical under the right constraints,
but this does not mean that the resultant models will be equivalent [30]. In this section, we
will discuss the analysis we performed to compare the algorithms for the initial modeling
of EEG brain waves.
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3.2.1 Model Variance Among Subjects

Model validation is a critical step in system identification. An improperly validated model
may obscure potential destructive failure modes, especially if these modes were not excited
in the data used to create the model. No system identification technique is omniscient;
they cannot model what they do not have information to model. Therefore, it is crucial to
validate models against an outcome of interest. Frequently, model validation occurs through
a comparison of model parameters with expected results from first principles, CFD, or
experimental data.

Here, we are in a unique situation with EEG data for two reasons. First, we are not
attempting to do any kind of feedback control. When closing a control loop around a system
identification model, there is a risk of exciting unstable eigenvalues in the true system plant.
Since we are not interested in any form of control feedback for brain waves, this is not
an issue. Second, and more importantly, EEG brain waves do not diverge, so we need not
worry about collecting sufficient data to model instabilities. This is all to reinforce a key
argument in our approach. The use of output-only system identification serves as a tool for
the analysis of brain waves. We do not seek to identify a global model for brain waves,
but rather to identify the dynamics which are actively present in a given EEG brain wave
recording.

Of course, this makes our evaluation of individual models more challenging. There is not
a clear control outcome that we can evaluate the performance of to say one model is better
than another. Further, there are no first principles or “wind tunnel” data against which we
can compare the synthesized dynamics. Therefore, our initial approach was to select system
identification techniques that consistently identified similar models for the same person.
We hypothesize, and will show in [41], that data from the same person should have shared
modes, because brain waves are known to be interpersonally dependent. So too should
our modeling approach identify these common modes. Much of the analysis in this work,
including this initial evaluation of system identification techniques, relies on the Dataset for
Emotion Analysis using EEG, Physiological, and Video Signals.

3.2.2 Databases for Initial BrainWaveModeling

Dataset forEmotionAnalysis usingEEG,Physiological, andVideoSignal:TheDatabase
for EmotionAnalysis using Physiological Signals [42]was selected for demonstration due to
the high number of subjects in the dataset and the nature of the elicitation in the experimental
methods. The database contains 40 distinct minute long trial videos for each of 32 different
participants who watched a variety of music videos. It employs 32 EEG channels, placed
according to the 10–20 system, and is available in a preprocessed format at 128Hz. Also
included are self-reported ratings of experienced emotions according to theValence-Arousal-
Dominance model.
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In this work, we make no additional preprocessing modifications to the data. Our goal
is to model the measured output y, so we wish not to modify the original data too much.
In particular, we believe many of the common EEG artifacts are endemic to the brain wave
system. Heart, eye, and muscle activity stem first from brain activity, so our focus is on
modeling the EEG measurement.

3.2.3 Joint Distributions of Modal Parameters

In order to determinewhich system identification technique yields consistent eigenmodes for
a given single subject, we analyzed the distribution of the real and imaginary parts of all the
eigenmodes for all subjects in the DEAP database across system identification algorithms.
We set aside the exact modeling details for the individual algorithms, as for this comparative
evaluation the results should be valid as long as the parameters (system order, number of
Hankel rows, etc) are the same for each method. Further, a great number of references cover
the considerations and application of these methods [30, 33, 41, 43]. Moreover, the specific
initialization and synthesization of models from each of these algorithms greatly depend on
the number of recording channels, length of the recording, sampling frequency, and other
modeling considerations. What is important is that each of the algorithms generates the
matrix pair (A,C)which has associated with it eigenvectors and eigenvalues. The eigenvec-
tors v ∈ C

n , which is to say they are complex and so have real and imaginary components.
Figure3.1 shows the distribution of the real and imaginary parts of each eigenvector iden-
tified by each system identification technique for the subjects in the DEAP database. Note,
that the distributions of both the OMA and DMD algorithms are most closely grouped. For
example, the OMA eigenvectors have a minimum value of negative three and a maximum of
four, while the NeXT eigenvectors range from−100 to 80. Therefore, we selected the OMA
andDMD algorithms for further analysis. This wasmerely an initial attempt to provide some
form of rigorous comparison between the algorithms. Again, because wewish to analyze the
eigenvectors for spatio-temporal patterns, it is important to have consistent results from one
subject to the next. If one set of eigenvectors is an order of magnitude greater than another
set from the same system identification routine, it will be difficult to compare them. Rather,
we should select the algorithms which more closely group their models.

3.2.4 Assumptions and Constraints

Before proceeding to the technical details of OMA and DMD and their application to the
DEAP database, it is worth a brief discussion of the assumptions and constraints of each.
Understanding how the strengths and weaknesses of each method fit into the analysis of
EEG brain waves is important contextually.
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Fig. 3.1 Distributions of identified eigenvectors for all subjects in the DEAP database. Notice, by
their axes, the OMA and DMD algorithms have the most consistent model synthesis (e.g. NeXT
modes have real components ranging from −100 to 75, while OMA modes have real components
ranging from −3 to 4)

• OMA: It is not surprising thatOMAis particularlywell suited to this problem. First,OMA
has rigorous theoretical roots in the analysis of noisy systems under uncertain loading
conditions (e.g. earthquakes [44]). While NeXT and N4SID can accommodate a known
input in their analysis, OMA is strictly targeted at systems where the input is unknown.
OMA uniquely makes no restrictions on the nature of the true input and does not require
knowledge of the system boundary conditions. While some references treat the white
noise term vx as an input, we prefer to conceptualize it as process noise in alignment
with our formulation in Sect. 2.2. Two significant assumptions accompany the use of this
algorithm. First, the models OMA identifies are LTI. If the linear dynamics change as
a function of time, or there are significant nonlinear effects, the modal decomposition
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will likely be invalid. We treat this issue by recalculating the modes about a linearized
cognitive state, but it would be equally valid to select a linear parameter varying (LPV)
or nonlinear system identification method instead. Second, the system is assumed to
be observable. This is a nontrivial assumption for EEG brain waves. Because of the
interference introduced by the skull and the CSF, there is no obvious reason to expect
that all the relevant dynamics will be available in any output measure y.

• DMD: The strength of DMD lies in the simplicity of its formulation. Because of this, it
is computationally very tractable, which makes testing new modeling hypotheses quick.
Further, it is closely related to Koopman analysis and may be extended to treat nonlinear
parameters. However, it does not leverage any form of stochastic analysis like the other
three algorithms here. The dynamics are assumed to be completely observable, and there
is no robustness to general process disturbances. As a result, DMD is a measure that
performs best in systems with high-density spatio-temporal measurements which is not
necessarily the case with EEG data.

While DMD shows a consistent decomposition of the data for a given subject, we are
especially interested inmethods that allow for the reconstruction of internal dynamics. Since
DMD assumes the entire state is measurable, it will likely perform poorly with a reduced
sensing suite (e.g. fewer EEG electrodes). Accordingly, we especially recommend the OMA
algorithm for system identification of biomarkers. We now turn to a brief demonstration of
the modeling output from OMA on EEG data.

3.3 Results

In this section, we will discuss the resultant output of our proposed modeling approach. As
a reminder, each of the discussed system identification routines synthesizes a model in the
form of (2.5) which may be represented in a modal form through a coordinate transform.
The resultant modes describe the measured dynamics with a spatial pattern at an oscillating
frequency, together forming an eigenmode. Figure3.2 shows a collection of some of the
eigenmodes obtained from a representative subject in the DEAP database. The displayed
modes were selected as those with the most dynamic mode shape. Again, a superposition of
all themodes precisely recreates the observed EEGmeasure, and the state-space formulation
of the model is amenable to a wide variety of state estimators, such as the Kalman filter.
Figure3.3 shows the true EEG data against the superposition of the eigenmodes for the first
ten EEG channels. Notice that the modes reconstruct the original signal well.
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Fig. 3.2 A selection of demonstrative eigenmodes from a single subject in the DEAP database
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Fig. 3.3 A superposition of identified modes recreates the EEG signal with moderate fidelity. The
mean absolute percentage error (MAPE) is 5.5% for this trial
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While these shapes were derived from a surface measure on the scalp, they yield a very
natural 3D representation of the measured EEG wave. Since the spatial dependence of
brain waves is well studied, we believe this approach is well suited to real time analysis
of the spatio-temporal dynamics observed in EEG waves. Once the pair (Am,C) has been
extracted, the tracking in Fig. 3.3 is immediately available in real time. The authors strongly
encourage readers to view the animated modes at https://tdgriffith.github.io/EEG-imaging/
as they especially demonstrate the physical significance of the modes. Again we wish to
draw attention to the symmetry and significance of Figs. 3.2 and 3.3 together. The original
brain wave measurement occurred in “EEG space”, and through this elegant approach, we
extracted precise spatio-temporal dynamics in state-space that superpose to recreate the
original measure. Much has been made of the high temporal frequency of EEG data, with
the accepted drawback of limited spatial density. In the same way that there is a real need for
faster fMRI measures [45], there is a need for EEG measures with better spatial resolution.
This approach offers a solution that balances the need for biomarkers that are feasible in
driving simulators, marketing studies, and clinical trials with the need for the recovery of
spatial dynamics.

3.3.1 Reducing the Number of EEG Channels

A particularly elegant application of this approach is the consideration of observability as a
metric for reducing the number of EEG channels. The DEAP database was recorded using a
60 channel EEG device, which is a relatively high spatial resolution for EEGmeasures. Any
model in the form of (2.5) will employ a C matrix with 60 rows. If we wish to validate our
models in a separate experiment, it may be cumbersome to use the same 60 channel EEG
device. As long as the observability of the pair (Am,C) is preserved, any outcome based
on the eigenmodes of Am can be reconstructed. That is, observability provides an analytical
tool to verify that a reduced number of sensors can still measure a given set of eigenmodes in
real time. Figure3.4 shows the minimum number of rows in C that preserve observability as
a function of how many eigenmodes are modeled for all subjects in the DEAP database. As
the number of modes increases, the number of sensors needed also increases, but at a much
slower rate. Note that no more than four sensors are required to observe as many as 120
modes in real time. Observability provides both the number of channels needed to measure
the eigenmodes and the spatial location of the channels. If a metric is developed using the
eigenmodes from Am , we can quickly determine the appropriate and minimal number of
sensors needed to recreate that metric through observability.

https://tdgriffith.github.io/EEG-imaging/
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Fig.3.4 Number of sensors (rows in C) needed to preserve observability as the number of extracted
modes is increased. Note that no more than 4 sensors are needed to observe as many as 120 modes

3.4 Conclusions

In this work, we demonstrated that modern system identification routines are appropriate
for the modeling of biomarkers, especially EEG measures. By leveraging the large body
of knowledge associated with modern dynamical systems, we elegantly treat the need for
spatio-temporal EEG dynamics while handling the noisy nature of EEG data. The modal
decomposition of state-space models is particularly important since it casts a nondescript
coupledODE into a form thatmay easily be understood as a discrete collection of eigenmodes
at different frequencies. The eigenmodes offer a robust feature extraction technique for the
analysis of EEG waves, which we will explore in future work.
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3.4.1 Recommendations

The modal view offers improved insight into the brain’s function connectivity. Crucially, the
imaging method presented in this work decomposes EEG data in near real time and has both
spatial and temporal dynamics jointly. We hypothesize that individual modes are connected
to human cognition. More work is needed to make this claim rigorously, but successful
identification of the connection between modes and cognition would suggest new clinical
applications for mode targeting [46]. Crucially, others have achieved experimental success
with modes. In [47], authors achieved a substantial reduction of beta amyloid plaques, a fre-
quent indicator of Alzheimer’s disease, in the visual cortex of mice by flickering LED lights
at 40 Hz. This approach was extended recently to demonstrate measurable improvements to
memory and cognition [48].

In our view of EEGdynamics, it is not surprising thatmode targeting resulted in improved
cognitive performance since the modes have physical significance in the brain. By applying
specific stimuli, individual modes can be exited. More work is needed to connect specific
external stimuli (light, sound, and vibration) to EEGmodes, but these existing results suggest
that other neurological diseases may be diagnosed and even treated with the modal view.

With an overview of the system identification techniques for linear models of brain wave
dynamics complete, we turn to a more detailed analysis of the OMA and DMD algorithms
in Chap.4. This includes technical modeling considerations and some analysis of the brain
wave modes.
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4Modal Analysis of BrainWave Dynamics

4.1 Research andModeling Goals

The primary goal of this section is to develop a systematized modeling practice generating
dynamic models using canonical state- space equations to describe the electrical activity in
the brain from EEG data. We hypothesize that these models contain information that may
be related to higher order cognitive states. The approach is especially focused on a modal
decomposition of the state-space models, as modes effectively represent both the spatial and
temporal information contained in EEG data. These generated eigenmodes may be related
to human emotions that can be expressed in the existence of a finite number of discrete basis
functions [1].We hypothesize that an eigen-emotional state can be represented as an element
of a Hilbert space, and these can be defined as a basis suitable for rigorous analysis. To
prove the efficacy of our approach, we used EEG data frommultiple publicly available EEG
datasets in a cyber security application whose goal was to identify specific subjects based
on their individual brain wave patterns. This classification model was developed from the
output data using Output-only Modal Analysis (OMA) and Dynamic Mode Decomposition
(DMD) in combination with a Neural Network. Further, our modeling practice is seen to
confirm the existing knowledge regarding the existence of default mode networks [2].

This chapter follows with a detailed description of the proposed method in Sect. 4.2.1.
Analysis of themodeling practice follows in Sect. 4.2.2. Then, the results of the classification
problem are presented in Sect. 4.3, followed by a discussion of the overall outcomes in
Sect. 4.4.We close with an overview of the remaining problems and future recommendations
in Sect. 4.4.1.

Reprinted with permission from “System identification methods for dynamic models of brain
activity”, by T. Griffith, J. Hubbard, 2021. Biomedical Signal Processing and Control Vol. 68,
pp. 102765, Copyright 2021 by Elsevier.
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4.2 Technical Approach to Cognitive Modeling

The following is a detailed description of the modeling procedure used herein for the extrac-
tion of dynamic modes as applied to EEG data. Two datasets were considered for analysis:
the DEAP database and the EEGMMI database as described above in Section 3.2.2.

4.2.1 Adaptation of System Identification Algorithms for EEG Data

System identification algorithms have been used to generate dynamic models of complex
systems across industries. Experimental modal analysis (EMA), in which the system of
interest is artificially and precisely excited, can be used to determine the modal properties of
the system [3]. EMA methods are not available for the study of EEG data, since the notion
of a forced excitation to the brain is elusive at present. Many mechanical structures, such
as large bridges, are also too complex to accept forced excitations [4]. Output-only modal
analysis (OMA), was developed in the 1990s as a modal parameter estimation technique for
structures under imprecise operational excitations. As OMA does not require any informa-
tion regarding the input to the system of interest, wemodifiedOMA for system identification
of human EEG data. It is worth noting that OMAmakes extensive use of an assumed broad-
band white noise input. Whether or not this is appropriate for EEG dynamics is a topic of
some discussion but given the overall lack of distinct spikes in the power spectrum of any
EEG signal, we feel it is appropriate. Further, the OMA modes generated perform well in
the biosecurity classification task as seen in Sect. 4.3, which gives further credence to the
approach. One of the main limitations of OMA is the inability to detect modes which are
not naturally excited by the operating conditions of the unknown system. While this is an
issue for mechanical structures, which may have unstable undetected modes, this is not an
issue for EEG dynamics, which are not observed to diverge.

To contrast the OMA decomposition technique, a data-driven method is also considered.
Since Dynamic Mode Decomposition (DMD) also directly yields an estimation of state-
space dynamics and has been shown to perform well on ECoG data [5], it is selected for
further analysis. The technical formulation and details of both OMA and DMD are well
understood and can be found in [6, 7]. However, it is worth mentioning that both techniques
yield models of the observed dynamics in state-space terms as{

x̂(k + 1) = Ax̂(k)

ŷ(k) = Cx̂(k)
, (4.1)

where x ∈ X and y ∈ Y. The matrix A estimates the internal dynamics, which we cannot
measure, of the system based on the observations y. Note that, in this instance, the obser-
vations y are the measurable EEG data once it has been averaged to the common reference
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and bandpass. ŷ is our best recreation of the true observable y. Due to uncertainty in the
modeling procedure, and noise in the observations, we can define the error of our model as

ey = ŷ − y. (4.2)

A value of ey in a neighborhood of zero indicates the matrix pair (A,C) is capturing the
dynamics of the systemwell. ThematrixC describes how the internal states combine to form
the output. Crucially to the analysis of EEG dynamics, the matrix A may be decomposed as
a series of modes, built around the eigenvectors of A. Each eigenvector v has an associated
eigenvalue λ. We can rewrite any x(k) as

x(k) =
n∑

i=1

λki viw
T
i x̂(0), (4.3)

which is a linear combination of modes. wi are the left eigenvectors corresponding to λi .
Equation (4.3) is referred to as the modal decomposition of the system. At every time step,
the total dynamics may be represented as a weighted sum of modes. Each eigenvector vi has
a corresponding modal frequency λi . vi is a vector describing the mode shape. Relative to
the electrical activity in the brain, vi elegantly illustrates how the different spatial regions of
the brain impact one another at different temporal frequencies. Together, vi and λi form an
eigenmode. The eigenvectors vi describe the spatial relationship at each frequency λi . It is
our objective to identify high-fidelity modes which capture the spatial activity in the brain.
Note that both the identification of A and the modal decomposition may be performed in
near real time.

To adapt OMA for use on EEG data, spatial relationships must be defined for each of
the sensors in the experimental setup. Koessler et al. have previously studied the statistical
features of EEG electrode placement in Talairach space [8]. The average sensor locations
were used here to define a three-dimensional model of the brain in space for each of the
studied datasets. Themodel for the sensor locations in the DEAP dataset is shown in Fig. 4.1.
Recorded EEG data is treated as an acceleration in the +z direction.

4.2.2 Analysis of EEG Eigenmodes

Having defined the spatial relationships of the sensors, OMA may be used on the datasets
of interest. DMD does not require this explicit spatial representation. OMA and DMD
decompose the raw EEG data into a series of modes, which we have defined as eigen-
emotions in Eq. (4.3). Mode shapes may be visualized on the 3Dmodel as shown in Fig. 4.2.
Bruel&Kjaer’s PULSEOMAProType 8762was used to develop the 3Dmodel and compute
the corresponding OMA modal decomposition.

It is often more convenient, however, to represent all the mode shapes at once on a com-
plexity plot, as seen in Fig. 4.3. This figure shows the results of both modal decomposition
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Fig. 4.1 Spatial representation of EEG sensor locations for DEAP dataset (Reproduced from [9])

Fig.4.2 A single in-phase eigen-emotion at peak amplitude from subject 17 (Reproduced from [9])

algorithms on a single trial in the DEAP database as an example. The high-fidelity modes
are a linear decomposition of the observed measurement and form a basis for the emergent
electrical activity. These complexity plots highlight the space-time nature of EEG dynamics.

The complexity plot assigns amagnitude, the length, and a phase, the angle, to each spatial
location in the structure of interest. In Fig. 4.3, the 10 selectedmodeswith the highest singular
values of the Amatrix are shown for simplicity, each in a different color. A mode associated
with a high singular value is capturing more of the statistical variance in the data than the
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Fig.4.3 Complexity plot example demonstrating both standing and travelingwaves in EEGdynamics
(Reproduced from [9])

modes with lower singular values. Arrows of common color share a temporal frequency
but differ by spatial location. Notice that some modes, such as the blue mode in the OMA
Eigenvector complexity plot, have zero phases. This corresponds to a standing wave in the
oscillation of the mode. Each of the spatial locations reaches the maxima with total phase or
antiphase at every point in time. Many mechanical structures, such as the Euler-Bernoulli
beam, only show standing waves for example [10]. However, many of the modes generated
from EEG data in the complexity plot here have a non-zero phase component. These modes
display traveling waves and have complex valued eigenvectors. Although the eigenvectors
in the system may be complex, they always come in conjugate pairs. This results in a real-
valued state matrix which naturally generates real-valued data.While a given complexmode
shares a temporal frequency, the spatial locations do not reach their peaks at the same time.
The mode is out of phase, indicating a net energy flux from one location to another (i.e. a
traveling wave across the EEG measurement aperture).

Notice further that the OMA algorithm extracts a few highly significant components,
while DMD generates many components that have similar magnitude, but differ by phase.
The modeling consequences of this difference in decomposition are seen in Sect. 4.3.1. One
of the immediate consequences of this difference in systemorder involves the order reduction
of the modal decomposition. Selecting the proper system is particularly important for OMA,
which has known sensitivities to spurious noise modes [11]. Because the OMA algorithm
involves a singular value decomposition, it is tempting to truncate the modal decomposition
based on the singular values, as is common in DMD. However, because the OMA algorithm
involves Hankel matrices, the number of singular values depends on the number of block
rows included in the Hankel matrix. To determine the appropriate maximum system order,
the singular values can be compared with the number of block rows as in Fig. 4.4.

Using the information in Fig. 4.4, themaximum systemorder can be selected. The singular
values are either converging to zero or to a non-zero value as a function of the number of block
rows. The maximum system order can be selected by choosing all non-zero singular values.
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Fig. 4.4 Maximum order
determination as a function of
the number of block columns
for DEAP data. Each line in a
different color represents a
singular value for a given row
in the Hankel matrix as the
number of block rows is
increased (Reproduced from
[9])

For the EEG data presented here, approximately 45 singular values are retained because they
do not converge to zero. Unlike DMD, the number of singular values in the decomposition
is not necessarily equal to the number of modes generated according to the standard OMA
algorithm in [6]. Having selected a maximum system order, modes are generated. Then, we
may choose to truncate the maximum order modal decomposition to an optimal number of
modes. The r order state matrix may be truncated to nth order

A = n
r − n

[
A11 A12

A21 A22

]
. (4.4)

The reduced order model is described by the smaller state matrix A11.When truncating these
OMA modes, the norm of the difference between the maximum order system, H(z), and
the reduced order model, Ĥ(z), is upper bounded by the neglected Hankel singular values
through Enns’s Conjecture [12]

||H(z) − Ĥ(z)||∞ ≤ 2
r∑

n+1

σk . (4.5)

While the model could have been truncated at the singular value decomposition before
modes had been computed for the maximum order system, the assurance of boundedness on
the reconstruction error is mathematically lost. For the EEG data decomposed here, a 1%
reconstruction error ey was applied for system order truncation. On average, this results in
approximately 25 distinct modes for the 63s trials in the DEAP database.

Comparatively, model reduction for DMD algorithms is simpler. DMD also involves the
use of singular value decomposition, but the matrix being decomposed is directly tied to
the cardinality of the measured data. As a result, it is common practice to truncate modes
which after 99% or 99.9% of the variance in the data has been captured, as in [7]. For the
EEG data here, modes were truncated at the 99% threshold, generating just over 230 total
modes on the 63s trials as seen in Fig. 4.5. Note that because DMD involves a least squares
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Fig. 4.5 Singular value vs. system order for subject 17 (Reproduced from [9])

regression for modal decomposition, complex modes come in pairs. As a result, only 115
distinct mode shapes are generated and used for modeling and analysis.

There is a non-trivial difference in the overall system order resulting from these decom-
position techniques. DMD generates significantly more modes than OMA does. However,
both methods are seen to effectively capture the information in the EEGwaves in Sect. 4.3.1.
From the described modeling procedure, we note the following observations.

4.2.3 The Existence of Stimuli Independent CommonModes

Across all subjects in the DEAP database, four common OMA modes were observed to be
present. Regardless of the stimulus, we report the four modes in Table4.1.

For the final column of the table, the Pearson correlation coefficient was calculated
between the commonmodes for each of the 32 subjects individually and then averaged. This
indicates that while the commonmodes have a near identical shape with a single subject, the
mode shapes are not shared by all subjects. However, the modes share the similar temporal
frequencies. All subjects have four common modes, near these frequencies, for all stimuli,
but the emergent mode shape differs from subject to subject. We believe these common

Table 4.1 Common OMA brain modes of subjects in the DEAP database (Reproduced from [9])

Frequency Damping (%) Complexity (%) Shape correl.

Alpha mode 1 4.34±0.03 8.20±1.20 11.47±17.59 0.97±0.016

Beta mode 2 21.83±0.22 1.98±2.63 32.29±35.67 0.96±0.018

Gamma mode 3 40.39±0.26 11.87±7.49 12.42±16.88 0.99±0.010

Gamma mode 4 44.19±0.24 2.52±1.39 2.93±5.69 0.99±0.012
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modes are connected to existing knowledge surrounding Default Mode Networks, which
are active in specific frequency bands and vary among individuals [13, 14].

The remaining distinct modes do not correlate from stimuli to stimuli, even for the same
subject. This further confirms existing knowledge that EEG signals vary over time scale and
subject [15, 16]. It is natural to expect that these distinct modes are connected to emergent
cognitive properties.We demonstrate the effectiveness of these distinct modes with a subject
classification task.

4.3 Results of a Subject Classification Task

4.3.1 Experimental Validation andVerification Using a Neural Network
Classifier

The generated modal decomposition was used to discriminate one subject from another
using multiple datasets. In all demonstrations that follow, the only features provided for
classification are the n eigenmodes (vi , λi ) which capture the emergent EEG dynamics in
space and time. The eigenmodes determined from EEG data may be used to discriminate
one subject from another using a neural network to achieve 100% accuracy with the OMA
eigenmodes on a 5-fold cross validation. All multiclass classification accuracies reported
here are on the cross validation sets are the total accuracy:

Accuracy = T P + T N

T P + T N + FN + FP
(4.6)

where T P is the number of true positives, T N is the number of true negatives, FN is the
number of false negatives, and FP is the number of false positives for a given validation set.
Here, we are demonstrating that the eigenmodes act as a brain wave subject identifier. Some
regression technique is required to extract useful information for modeling from the modes.
Machine learning techniques have recently shown good results on other highly variant data
with spatial and temporal information encoded as an image [17–19]. This suggests that the
same techniques may be applied to the extracted EEG eigenmodes. Note that the use of
a neural network here serves only as a regression technique, where the data has first been
transformed into a meaningful, canonical, mathematical model. The neural network does
not discover the model but only analyzes it for trends that are difficult for a human to identify
visually from the previously discussed complexity plots.

The relevant feature extraction and neural network algorithm are available in the
form of MATLAB and Jupyter notebooks on Github (https://github.com/tdgriffith/SysID_
EEGdynamics). The generated eigenmodes can be transformed into an appropriate image.
The important features in the eigenmodes can be organized into modal frequencies, spatial
locations, and modal amplitudes as discussed earlier. These three degrees of freedom can
then be converted into an image called here a heatmap. Figure4.6 shows a reduced order

https://github.com/tdgriffith/SysID_EEGdynamics
https://github.com/tdgriffith/SysID_EEGdynamics
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Fig. 4.6 Example heatmaps for subject classification (Reproduced from [9])

version of the eigenmode heatmaps as provided to the neural network for brain wave subject
identification.

Having generated 1,280 heatmaps from the DEAP database (32 subjects, 40 trials), our
modal decompositions were then encoded as images. The images may be input to a neural
network for efficient classification. Since its inception in 2016, the ResNet architecture has
served as a default method for computer vision machine learning [20, 21]. It is desirable to
limit the complexity of the network to ensure that the system identification portion of the
proposed method is doing most of the feature extraction [22]. For this reason, an 18-layer
ResNet architecture was selected for the subject classification model. That is, the network
includes 18 linear transforms with a nonlinearity in between each. 1024 heatmaps are in
the training set, and the remaining 256 are reserved for validation. The learning rate was
1e−3, with a dropout rate of 10%. No data augmentation was performed, and the network
was observed to train in fewer than 10min total using the fastai library [23]. The last layer
of the network was trained for 8 epochs, followed by the entire network for 5 epochs. The
last layer was then trained for a final 5 epochs. The 5-fold cross validation accuracy on the
unseen data was 100% for the OMA modes and 98% for the DMD modes. The relevant
confusion matrices are included in Fig. 4.7.

4.3.2 An Extension to the EEGMotor Movement/Imagery Dataset

For each of the 109 subjects in the EEG Motor Movement/Imagery Dataset [24], 14 trials
of various lengths were segmented into 20s segments, to validate the approach on shorter
time scales than the DEAP database. Since the segments are only 20s long, some of the
slow temporal dynamics in the EEG data may not be detectable by the OMA or DMD
algorithms. The 83 modal heatmaps used were generated for each of the subjects, for a total
of 9047 samples to train the subject identification network with. As in Sect. 4.3.1, a ResNet
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Fig. 4.7 Confusion matrices for subject identification on DEAP (Reproduced from [9])

architecture was used, but the number of layers was increased to 34 for better performance
given the high number of subjects in the database. The learning rate was 1e−4, with a
dropout rate of 10%. The last layer of the network was trained for 5 epochs, followed by the
entire network for 10 epochs. Finally, the last layer was trained for 15 epochs. The 5-fold
cross validation accuracy was 96% for the DMD method, and 98% for the OMA method.

4.3.3 Comparing OMA and DMD for Subject Identification

These classification results are promising. On the statistical nature of neural networks alone,
validation results approaching 100% are very encouraging. On both databases, the OMA
modes slightly outperformed the DMD modes. This is notable, especially when OMA gen-
erates approximately a third of the modes that DMD does. The mathematical structure and
initial constraints of OMA appear to favor the information contained in EEG data. Further-
more, while the average mode shape, or average pixel value in the heatmaps, is similar for
both algorithms, the OMA mode shapes are less variant than the DMD mode shapes. This
suggests that while the data-driven DMD algorithm does a good job at capturing the high
variance in the EEG data, the OMA algorithm captures fewer, highly descriptive modes.
The OMA algorithm shows significantly longer wall times but offers a more efficient rep-
resentation of the system for the classification task, eliminating some of the spurious noise
modes. This may have implications for more advanced cognitive modeling outcomes, such
as engagement or fatigue.
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Fig. 4.8 SHAP values for DEAP subject identification (Reproduced from [9])

4.3.4 Optimal System Representations and Neural Network
Interpretation

It is often valuable for applications to seek reductions in the system representation. For the
purposes of our subject identification task, we are interested in performing the classification
with the fewest number of physical sensors. ShapleyAdditive exPLanations use game theory
to quantify how a single feature changes the output of a model through SHAP values [25,
26]. The SHAP value importance plot for the DEAP subject identification network is shown
in Fig. 4.8.

With this notion of importance, we can select the most important channels for subject
identification. As seen in Fig. 4.9, the minimum number of channels for ≥96% accurate
subject identification using the DEAP dataset is eight.

Fig. 4.9 Classification
accuracy as a function of the
number of spatial EEG
channels (Reproduced from
[9])
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Fig. 4.10 Focus maps for OMA and DMD classification task (Reproduced from [9])

Since neural networks are a gradient method, they assign a weight to each pixel in the
image.We can track theseweights and overlay them on the original image. Hot spots indicate
special attention was paid by the network to make a classification, while cold spots indicate
the opposite. Interestingly, the OMA and DMD representations drive the networks to select
similar spatial features for classification. As seen in Fig. 4.10, the subject identification
network for the OMA modes observes a few specific columns in the heatmap. A single
column corresponds to a spatial EEG channel location. At the same time, the DMD neural
network takes a complete look at the edges of the image, which corresponds to the lowest
and highest frequency modes. In both cases, the upper portion of the heatmap is critical,
which corresponds to sensor locations toward the front of the skull. These results could be
expected, given the modal decomposition as seen in Fig. 4.3, where the OMA algorithm was
selecting a few very important mode shapes, while the DMD algorithm had many low norm
modes to describe the overall dynamics.

Broadly, this gives initial credence to our system identification and modal approach to
cognition and indicates that there is statistically significant information contained in these
EEG eigenmodes.

4.3.4.1 Comparison to ExistingMethods
It is worth comparing the performance of our eigenmode subject classification algorithm to
existing results in the literature. Table2 extends the analysis of [27] and compares subject
identification accuracies on the DEAP database with our approach. We are encouraged by
the success of [27], which achieved similar results using a more advanced deep learning
architecture. That is, while our approach is to do more front-end modeling and train the
network in relatively few (18) epochs, it is equally valid to employ a deeper network and
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Table 4.2 Comparison of other subject identification results on the DEAP database (Reproduced
from [9])

Reference No. of electrodes Accuracy (%)

Ours 32 100.00 ± 0.00

Ours 8 96.45 ± 0.14

[27] 32 99.90 ± 0.11

[27] 5 99.1 ± 0.34

[28] 32 97.97 ± 0.06

[29] 8 88 ± 4.0
a Table footnote (with superscript)

train for longer (185 epochs). This convergence of results suggests that both our eigenmodes
and the network in [27] are uncovering an underlying structure in the EEG data which is
relevant to subject identification.

4.4 Conclusions

Astructured, ubiquitous approach for the identification of spatio-temporal dynamicmodes of
EEGbrain activitywas presented. Two system identification algorithmswere adapted for use
on EEG data, resulting in a modal representation of brain activity. The modal representation
was shown to have complex eigenmodes representing traveling waves and net energy flow
across the brain over time. Further, it was determined that all subjects have four unique
brain modes that are present regardless of stimuli. We believe these common modes are
connected to previously analyzedDefaultModeNetworks. Generatedmodal representations
were converted to an image, from which a neural network could identify which subject the
modes came from with nearly 100% accuracy. The OMA system identification technique
was seen to slightly outperform DMD on the subject identification task. Further work to
connect these eigen-emotions to emergent cognitive behaviors is required.

4.4.1 Recommendations

Future work extending this modal decomposition approach to the dynamics of human cog-
nition, such as the estimation of fatigue or engagement, is expected. Special attention should
be paid to the notion of first identifying a given subject, and then selecting an appropriate
personalized model of that subject’s cognition. Current markers of human outcomes heavily
rely on self-reported data related to mood, affect, sleep patterns, and depressive symptoms,
accumulated in an overall risk or performance score or rating.More recent approaches lever-
age signal-based indices of actigraphy, physiology, speech, and optical image recognition
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to provide more objective biomarkers of human outcomes. Despite the promising results,
current literature depicts the following limitations: (1) self-reported and signal-based scores
have been mostly examined in isolation, with few studies attempting to provide a holis-
tic data driven approach to integrate them all [30]; (2) while the inherent inter-individual
variability across people poses a significant challenge toward modeling human behavioral
outcomes, previousmodels assume homogeneous patterns across individuals [31]. This tech-
nique offers a method of extracting relevant information from a variety of biomarkers that is
mathematically rigorous. Since system identification techniques generally accept all forms
of time series data, there is a further opportunity to extend this approach to multi-modal
techniques using feature level collaborative filtering.

4.4.1.1 Estimating theValence Arousal Scale from Eigenmodes
While we demonstrated in Sect. 4.3 that this linear, modal decomposition contains sufficient
information to identify one subject from another, wewere unable to successfully estimate the
self-reported valence arousal rating provided byDEAP.Sincewehave rigorousmathematical
justification for themodal decomposition here, it is natural to conclude that the nonlinear and
time dependent effects of EEG brain waves need to be considered for emotional analysis.

More importantly, while the identification of linear modes has useful diagnostic infor-
mation, as shown above, they do not describe unseen data well. That is, the modes extracted
from a given time series do not generalize to other data from the same individual because
of the nonstationary and nonlinear effects of EEG data.

In the following chapter, we will introduce the theoretical considerations for a robust
adaptive state estimator which accounts for parametric uncertainty in the modes and esti-
mates the unknown input to the brain wave plant. Crucially, this estimator updates the spatial
pattern of the identified modes in real time to match the nonlinearities in the data.
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5Adaptive Unknown Input Estimators

In Chap.4, we demonstrated a technical approach to modeling the linear behavior of EEG
brain waves with a modal decomposition generated by system identification techniques.
Analysis of these modes was presented, but we were unable to estimate the self-report
valence arousal ratings in the DEAP database successfully. In order to improve the fidelity
of these models to achieve better accuracy on the DEAP database, we developed an adaptive
unknown input observer to treat parametric uncertainty in the modes, deal with nonlinear
effects in the data, and simultaneously form a real-time estimate of the EEG brain wave
system input subject to a series of constraints. This estimate of the input grasps the exogenous
information to the system which may not be generated by the modes and improves our
estimator performance. This chapter presents the theoretical details of our adaptive unknown
input estimator. Since it is heavily focused on the stability and performance analysis of the
estimator architecture, it is somewhat removed from the analysis of spatio-temporal brain
wave dynamics until Chap.6. This estimator is highly nonlinear, so ensuring its stability is
crucial. We will begin with the most basic form of the adaptive unknown input observer,
before proceeding to introduce subsequent developments which improved the fidelity of the
estimation process.

5.1 Introduction

Estimating the internal state of a linear time-invariant dynamical system has generated a
tremendous amount of knowledge in linear systems and control [1, 2]. Conventional state
estimators assume access to all system inputs for all time. In some dynamical processes,

∗Reprinted with permission from “An Adaptive Control Framework for Unknown Input Estima-
tion,” by T. Griffith, M. Balas, 2021. Proceedings of the ASME 2021 International Mechanical
Engineering Congress and Exposition Copyright 2021 by ASME.
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however, the system inputs may not be known because it may be difficult to place sensors
[3] or recreate the operating conditions which provoke a given input [4, 5]. As a result, much
research effort has considered the estimation of an unknown input simultaneously with the
estimation of the system state [6–9].

Approaches to this problem have typically involved using some information already
available in the estimator to determine the unknown input [10] or including an internalmodel
of the unknown input waveform [11]. By including an internal model of the waveform,
the estimator gives reliable online estimates of the internal dynamics and the individual
waveforms of the unknown input, which can improve controller performance as discussed in
our previous work [12]. Others have used waveform generators extensively for disturbance
accommodation and control [13–15]. The approach may be extended to unknown input
estimation.

More generally, these unknown input estimators are often developed for systems with
significant uncertainty or expected faults, requiring robust estimation schemes. In [16], a
nonlinear unknown input observer is used to decouple the input from the estimated state in a
robust manner. Several extensions to this idea have generalized it and achieved performance
improvements [17, 18]. These robust approaches generally focus on fault detection and
isolation, rather than explicit state estimation for control [19].

Adaptive control laws can also account for some uncertainty in the dynamical model,
expanding the operating neighborhood of the linear time-invariant system. A robust and
adaptive sliding mode controller is implemented in [20] to handle nonlinearity and uncer-
tainty. Further, it was shown in [21] that a bank of linear time-invariant systems could be
used for the detection of a variety of faults. In [3], an adaptive estimator is used to capture the
time-varying dynamics of an internal combustion engine. More recently, in [10], a general
adaptive control architecture was presented for the estimation of an unknown input with
convergence guarantees for a wide class of systems. In each of these cases, the estimator
must treat the inherent uncertainty of the model. This uncertainty in the dynamics is espe-
cially prevalent in models generated with system identification techniques and parameter
estimation, where unique representations of the dynamics may be inaccessible [22].

In such cases, a control architecture that not only converges the state and input errors, but
also recovers the physical structure of the plant dynamics is desirable. This chapter presents
a novel architecture for the adaptive estimation of unknown inputs. An input generator,
in the form of an ordinary differential equation (ODE), is implemented which models the
unknown input as a linear combination of basis functions. As introduced in [12], this model
estimates the coefficients of each basis function which may contain important diagnostic
information. A time-varying control law is implemented to recover the physical structure of
the model. The main contribution of the chapter is the control architecture shown in Fig. 5.1
along with a proof of error convergence under assumptions that are applicable to a wide
class of dynamical systems.

We begin with a description of the class of systems considered by our adaptive unknown
input estimator. We assume the system is almost strictly dissipative (ASD) or strictly dissi-
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Fig. 5.1 The adaptive unknown input estimator. (Reproduced from [23])

pative (SD), and has a bounded output. For the modeling of brain wave dynamics, this is not
a particularly restrictive condition since the brain wave dynamics are stable without external
control input. The ASD property is crucial to use Lyapunov stability analysis on adaptive
nonlinear estimators. The estimator uses the output relative error to recover the physical
structure of the internal dynamics and unknown input. We claim that the architecture in
Fig. 5.1 reliably estimates both the internal plant states and unknown input states in real
time. Later, we will present the proof that substantiates this claim.

This overview of the system dynamics is followed by a discussion of the input genera-
tor approach to input estimation. While the input generator offers advantages for estimator
synthesis and convergence results, the performance of the estimator is sensitive to the for-
mulation of the input generator. Waveforms not considered are simply unaccounted for,
which creates an opportunity for undetectable inputs. Then, the main result of the chapter
is presented, which includes the formulation of our adaptive unknown input estimator and
convergence proofs.
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5.2 Unknown Input Dynamics

The proposed architecture seeks to build on the existing body of knowledge surrounding
unknown input estimation by using adaptive estimators to account for uncertain internal
dynamics, especially uncertain dynamics arising from the use of system identification tech-
niques. Consider the class of linear dynamical plants{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(5.1)

where x(t) ∈ X is the state vector, u ∈ U is an unknown input, and the output is y(t) ∈ Y.
The unknown inputs enter the system through the matrix B which defines the channels the
unknown inputs act on. The proofs which follow rely heavily on the notion of almost strict
dissipativity. The system in Eq. (5.1) is ASD if it meets the Kalman-Yakubovich conditions

A∗
c P + PAc = −Q

PB = C∗ (5.2)

for some positive definite matrices P and Q. The matrix Ac = A + BGC may stabilize A
with a stable gain matrix G and is equivalent to the closed loop matrix for the system in
Eq. (5.1) under the feedback law u = Gy. The ASD property is equivalent to the open loop
system having a positive definite high-frequency gain and stable minimum phase transmis-
sion zeros [24]. This property is crucial in adaptive systems when using Lyapunov-based
analysis. It is reasonable to expect that the ASD property will hold for the systems of interest.
If a system has an unknown input, and we are still able to collect output measurements y, we
might expect the system to be ASD since it does not diverge in the presence of a potentially
stochastic unknown input. This would occur if the plant itself was strictly dissipative, or if
a known input was employed alongside the unknown input to stabilize the system.

The true input, about which we have only limited knowledge, is given by the vector
function u(t). Our modeling approach for u(t) is to approximate its space U with an nth
order linear combination as

û(t) =
N∑
i=1

ci fi (t). (5.3)

Equation (5.3) should only be considered a function space approximation of the unknown
input. The individual functions fi , which we will refer to as basis functions, are determined
beforehand based on some knowledge of the system and unknown input. The weighting
coefficients ci are completely unknown and may be discontinuous at different times while
the estimator is active. By including some knowledge about the unknown input, we gain the
required structure to develop convergence proofs as in [4].

We further consider the model presented in Eq. (5.3), where { f1, f2, . . . , fN } are linearly
independent known functions in U and the coefficients ci are scalars. The coefficients ci are
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chosen to minimize the input error E ≡ ||u − û||2 in the Hilbert space U of inputs to the
dynamic system in Eq. (5.1). These dynamics can be rewritten in this view as{

ẋ = Ax + Bû + εu

y = Cx
(5.4)

with the input estimation error εu ≡ u − û. If we had complete knowledge of u(t), we
could use well studied methods of approximation theory to obtain the best approximation of
the N -dimensional subspace SN ≡ span{ f1, f2, . . . , fN } to minimize E [25–27]. The most
widely known solutions to this classic problem involve least squares approaches primarily.
Of course, we do not know u(t), so we are forced to initially make a general approximation
of the waveform or signal shape as in Eq. (5.3). It is our objective to reliably estimate ci
online with our input state estimator.

5.3 Input Generators as a Model of the Unknown Input

To estimate an unknown input using the known waveform approach, an internal model of
the waveform must be included in the estimator. Therefore, Eq. (5.3) must be converted
into a set of first-order differential equations which may be cast in state space [11]. For
performance and stability reasons, it is desirable for the state-space input generator to be a
linear time-invariant system. These input generators take the form{

żu(t) = Fuzu(t)

û(t) = �uzu(t).
(5.5)

Both Fu and �u are completely known matrices. We will refer to zu as the state of û(t),
which are the individual components of the estimated unknown input.

Note that not all bases { f1, f2, . . . , fN } ∈ U can be generated by the input generator as
formed in Eq. (5.5). For example, wavelets are not causal and may not be generated with
a linear time-invariant model. Therefore, it is worth discussing our process for generating
bases for unknown input estimations. The set of bases available to us consists of those that
may be generated by an N -order differential equation

Lû = a0û + a1û
(1) + · · · + aN−1û

(N−1) + û(N ) = 0, (5.6)

where ak may be real or complex scalars and û(k) = dk û
dtk

. It is well known from [28] that if
{ f1, f2, . . . , fN } are chosen so they belong to the null space of L , N (L) = {x ∈ U|Lx = 0},
and satisfy the Wronskian
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W (t) =

⎡
⎢⎢⎢⎣

f1 f2 . . . fN
f N1 f N2 . . . f NN
...

...
. . .

...

f N−1
1 f N−1

2 . . . f N−1
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
c1
c2
...

cN

⎤
⎥⎥⎥⎦ (5.7)

as being nonsingular at t = 0, then they form a basis for N (L) and all input approximations
can be uniquely represented in Sn ≡ N (L) with Eq. (5.3) by Abel’s Theorem [29]. As an
example, consider ⎧⎪⎪⎨

⎪⎪⎩
żu(t) =

[
0 1

−ω2 0

]
zu(t)

û(t) =
[
1 1

]
zu(t)

(5.8)

which will generate an input of the form u(t) = sin(ωt) + cos(ωt). Input generators of this
form are well studied, and details can be found in [11, 30, 31]. This implies that our adaptive
state estimator and unknown input estimator can recover the approximate input online in
real time along with the dynamic system model states, provided the input can be written
as a linear time-invariant state-space system. Therefore, the chosen basis { f1, f2, . . . , fN }
from Eq. (5.6) is a critical element for obtaining a high-fidelity approximation û(t) of the
true unknown input u(t). The choice of the basis to do this is governed by how much of the
information in the true input can be captured by the N terms of the estimated approximate
input. The Shannon Entropy for continuous channels from Information Theory can aid in
the choice of the input generator basis set { fi }Ni=1 that maximizes the information content
captured by û(t) when N is small [32, 33].

Practically, fi should be chosen to match observations of u(t). Some information about
the expected behavior of u(t) may be available in offline observations of the system’s envi-
ronment. For example, as we have alluded to in Eq. (5.8), an unknown input with observed
periodic tendencies should be modeled with a set of Fourier components. Crucially, fi
should always include a step function generator to model the mean of the unknown input.
In cases where knowledge of u(t) is completely unknown, we recommend the heuristic in
[34], which is a polynomial spline model of the form

u(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1. (5.9)

A polynomial order of n = 4 has historically been sufficient for estimation and controller
design. Further, fi is not restricted to only elements of a single basis. For example, a fourth
order polynomial spline and Fourier components could be simultaneously generated by Fu .
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5.4 Main Result: Adaptive Control Architecture for Unknown Input
Estimation

We begin by considering the same plant in Eq. (5.1) and input generator in Eq. (5.5). New
to the formulation we introduce a distinction between the state matrix for the plant, which
represents the true dynamics of the system as A, and the state matrix for the model, which
represents our best recreation of A from system identification or parameter estimation as
Am .

True Plant:

{
ẋ = Ax + Bu

y = Cx
(5.10)

Uncertain Model:

{
ẋm = Amx + Bu

ym = Cxm .
(5.11)

Again, and crucially A �= Am . We may only use the observable information in the system
to correct Am . It is common practice in adaptive control to include an additional feedback
term Ly to the state estimator, where the feedback gain matrix L is time varying.

State Est.:

{ ˙̂x = Am x̂ + B
(
�u ẑu + Ly

) + Kxey

ŷ = Cx̂
(5.12)

Input Est.:

{ ˙̂zu = Fẑu + Kuey

ûD = �u ẑu .
(5.13)

This feedback term can be thought of in twoways. First, wemay consider the entire feedback
term as the unknown input û = �uzu + Ly. In this view, the uncertainty in the model is
compensated for by simply adjusting the unknown input so that the model output is the
same as the output of the plant. Alternatively, we may return to the formulation of the
unknown input as simply û = �uzu . Then, we rewrite the adaptive feedback as Ly = LCx ,
which corrects Am if we assume there is some optimal feedback matrix L∗ that results in
A ≡ Am + BL∗C . When L converges to L∗, the physical structure of the plant is recovered.
While these views are mathematically equivalent, we prefer to conceptualize this scheme
as converging L → L∗ to correct the uncertainty in Am and so consider the estimated input
û = �uzu .

Since it is time variant, and there is a target value, the feedback gain matrix L has its own
error matrix �L

�L = L − L∗, (5.14)

where the gain L is adaptive

�L̇ = L̇ = −ey y
∗γe; γe > 0. (5.15)
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In addition to correcting the uncertainty in the model, the adaptive gain introduces a non-
linearity to the control scheme. Almost all systems exhibit some nonlinear effects. The
adaptive feedback here serves to expand the neighborhood for which Am is valid. γe is a
tunable parameter that scales the change in L . A greater value of γe expands the operating
neighborhood of the model but may cause the system to diverge if it is too responsive to
estimator error.

5.4.1 Composite Error Dynamics

Given this estimator scheme, the error dynamics for the composite system x̄ =
[
x
zu

]
are

ė = ( Ā + K̄ C̄)e + B̄�Ly (5.16)

ė = ( Ā + K̄ C̄)e + B̄w (5.17)[
ėx
ėz

]
=

( [
Am B�u

0 F

]
+

[
Kx

Ku

] [
C 0

] ) [
ex
ez

]
+

[
B
0

]
w (5.18)

=
[
Am + KxC B�u

KuC F

]
︸ ︷︷ ︸

Āc

[
ex
ez

]
+

[
B
0

]
w (5.19)

with, ey = [
C 0

] [
ex
ez

]
. (5.20)

Here w ≡ �Ly. Notice that the gain matrix K̄ is not adaptive and must be placed with
standard methods such as linear quadratic regulators to stabilize the eigenvalues of Āc. With
successful convergence results, the scheme in Eqs. (5.12) and (5.13) will provide reliable
real-time estimates of x , zu , and u, all while correcting the uncertainty in Am . This novel
scheme haswide application to systemswith uncertainty in themodeling process and control
synthesization.

5.4.2 Proof of Composite Error Convergence

It is desirable for L to converge to L∗ while also estimating the unknown input, so the pair
( Ā, C̄) must be observable. Even though the input estimator alone is often unobservable,
the matrix pair ( Ā, C̄) can be completely observable, which implies that estimates of both
the state and input can be implemented in real time. Consider V (e, �L), the composite
Lyapunov function for the state error e and the gain error �L
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V (e, �L) = 1

2
e∗ P̄e + 1

2
tr(�Lγ −1

e �L∗), (5.21)

where P̄ and γe are symmetric positive definite matrices, and tr(•) is the matrix trace
operator. The time derivative of V (e, �L) is

V̇ (e, �L) = e∗ P̄ ė + tr(�L̇γ −1
e �L∗) (5.22)

= e∗ P̄( Āce + B�Ly) + tr((−ey y
∗γe)γ −1

e �L∗) (5.23)

= e∗ P̄ Āce + e∗ P̄ B̄�Ly + tr(−ey y
∗�L∗) (5.24)

= 1

2
e∗(P̄ Āc + Ā∗

c P̄)e + e∗ P̄ B̄w − (ey, w). (5.25)

Using the assumed ASD property of the plant, we know that

P̄ Āc + Āc P̄ = −Q̄ (5.26)

P̄ B̄ = C̄∗ (5.27)

and Eq. (5.25) can be reduced to

V̇ (e, �L) = −1

2
e∗Qe + e∗C̄∗w︸ ︷︷ ︸

(

ey, w) − (ey, w) (5.28)

= −1

2
e∗Qe (5.29)

≤ −1

2
λmin(Q)||e||2. (5.30)

Equation (5.30) bounds the trajectory e(t) and �L . Now consider the function

W (e) ≡ 1

2
λmin(Q)||e||2 (5.31)

and take the time derivative yielding

|Ẇ (e)| = λmin(Q)|e∗ė|. (5.32)

Substitute ė from Eq. (5.16) to see that

|Ẇ (e)| = λmin(Q)
∣∣e∗[( Ā + K̄ C̄)e + B̄�Ly

]∣∣. (5.33)

While Eq. (5.30) bounds e and �L , it does not bound y. We employ the assumption that as
a property of the plant, the output state y is bounded. Given this, the derivative of Eq. (5.31)
is also bounded, and W (e) is uniformly continuous by the mean value theorem. Finally, by
Barbalat’s lemma, e(t) → 0 as t → ∞.
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This result guarantees the convergence of the entire vector e = [
ex ez

]T
. The error in

both the state and the unknown input state converges to zeros as t → ∞. Notice that while
the proof guarantees convergence in ez , not just eu , it does not guarantee a convergence rate
for e. Further, although L is bounded, there is no guarantee of convergence to L∗.

5.5 Illustrative Examples

A simple example is included for numerical demonstration of the outlined architecture.
Simulation files and results are available at the URL address https://github.com/tdgriffith/
IMECE_UIO. We treat a system as in Eq. (5.11), with

Am =
⎡
⎣−7 2 4

−2 −1 2
−2 2 1

⎤
⎦ , B =

⎡
⎣ 0
0.7
2

⎤
⎦ , C = [

0.5 0 1
]
. (5.34)

Recall that this matrix triple (Am, B,C) has some uncertainty associated with it. For the
purposes of demonstration, we assign

L∗ = [−5
]
. (5.35)

so that the plant has the dynamics

A =
⎡
⎣ −7 2 4

−3.75 −1 −1.5
−7 2 −11

⎤
⎦ , B =

⎡
⎣ 0
0.7
2

⎤
⎦ , C = [

0.5 0 1
]
. (5.36)

The dynamics in Eq. (5.34) have different eigenvalues and eigenvectors from the true dynam-
ics in Eq. (5.36) as evidenced by Fig. 5.2.

Fig. 5.2 Impulse response of
identified system compared to
the true plant. (Reproduced
from [23])

https://github.com/tdgriffith/IMECE_UIO
https://github.com/tdgriffith/IMECE_UIO
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Both systems have two stable transmission zeros. Then, by [24], both systems meet the
Kalman-Yakubovich conditions and are ASD. Given a bounded output y, our scheme in Eqs.
(5.12) and (5.13) is guaranteed to converge with an appropriate input generator. Suppose
the unknown input takes the following waveform:

u1(t) = c1 + c2 sin(2t) + c3 cos(4t), (5.37)

where the constants c1, c2, and c3 are unknown to the input estimator. For the purposes of
demonstration, we set them to 3, 2, and 4, respectively. An input generator for the entire
unknown input takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂zu = Fuzu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 1 0 0

0 −(22) 0 0 0

0 0 0 0 1

0 0 0 −(42) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
ẑu(t)

û(t) = �u ẑu =
[
1 1 1 1 1

]
ẑu

(5.38)

which corresponds to a step function and two sine-cosine pairs at the appropriate waveforms
of 2 and 4 rad/s. The form of Eq. (5.38) suggests that the explicit frequency content in u(t)
must be known. However, Fu could generate additional waveforms and the estimator will
still converge the error in both the internal state and unknown input. Equation (5.38) is a
minimal representation of the input generator for the unknown input in Eq. (5.37) but is not
the only valid internal model of the unknown input.

γe, which is a tunable parameter, is set to 1. Empirically, we have found the estimator
performswell withmoderate values of γe ≈ 1. Note that increased values of γe will make the
estimator increasingly nonlinear and more likely to diverge in the presence of discontinuous
disturbances. On the other hand, lower values of γe make the estimator behave more like
a non-adaptive estimator, and the correct form of A may not be recovered from Am . The
static gains Kx and Ku are simultaneously set by solving the Linear Quadratic Regulator
problem for the composite system using a cheap control strategy. Figure 5.3 shows that the
internal state error ex converges to zero as expected. More importantly, Fig. 5.4 shows that
the input estimator does converge onto the unknown input as expected. Finally, although the
proof above does not provide it, L does converge to L∗ in this specific case. When L does
converge to L∗, the physical structure of the plant is recovered.

Of course, in this simple example, our input generator contained the exact basis func-
tions present in the unknown input. In true application, it may be difficult to determine
the waveform of the unknown input so precisely. This is especially true for processes that
are not ergodic, as a spanning set of basis functions for a high dimensional space may be
intractable. It is, therefore, worth considering the case where the input generator does not
span the function space covered by the actual unknown input. We consider the exact same
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Fig. 5.3 Internal state error for
adaptive unknown input
observer. (Reproduced from
[23])

Fig. 5.4 Unknown input error
for adaptive unknown input
observer. (Reproduced from
[23])
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problem as above in Eqs. (5.34) and (5.36), but the unknown input Eq. (5.37) is modified as

u2(t) = u1(t) + c4 cos(8t). (5.39)

Although the unknown input now contains a fourth waveform at a new frequency, the input
generator Eq. (5.38) is not augmented with the waveform.

Figure 5.5 shows that without the inclusion of the fourth waveform, the estimator is no
longer able to converge the internal error to zero. Rather, it reaches a neighborhood around
zero. We note that the oscillation in the internal error has the same frequency as the fourth
waveform. Further, when the unaccounted waveform is included, L does not converge to L∗.
Because L does not converge, the correct physical structure of the plant is not recovered.
Intuitively, the architecture is estimating the best fit unknown input given the available
waveforms but is unable to represent the fourth waveform since it is linearly independent.
Because the internal error does not converge to zero, but contains information related to the
missing waveform, there is a future opportunity to augment the input generator online as
a function of the estimator error. Further, since the estimator converges to a neighborhood
around zero, there is an obvious extension to robust analysis.

Fig. 5.5 Unknown input error
for adaptive unknown input
observer with excluded
waveform. (Reproduced from
[23])
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5.6 Conclusions

We have provided a novel architecture for the simultaneous estimation of the internal state
of a plant, and the system input in real time for models with uncertain dynamics. The
architecture is crucially tied to an internal model of the unknown input, which must span the
function space of the unknown input for reliable results. If the system of interest is ASD and
has a bounded output, convergence of the state error and unknown input error is guaranteed,
and the physical structure of the dynamics may be recovered.

While the architecture presented here does not treat general process disturbances or
sensor noise, that extension was considered and the proof of convergence is presented in
[35]. Further, known nonlinear plant dynamics were also treated in an additional proof in
[36].

With this estimator architecture developed, we turn to its application on EEG brain wave
modes in Chap.6. We will show that the specific formulation of this novel estimator is well
suited to use on EEG data, because it treats the linear, nonlinear, and stochastic effects of
the brain wave plant.
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6Reconstructing the BrainWave Unknown Input

6.1 Introduction andMotivation

The UIO architecture introduced in Chap.5 is guaranteed to converge its error to zero when
there is no process disturbance in the output or plant dynamics. While this is a good starting
point, we know from the discussion in Chap.2 that EEGmeasures are very noisy. Therefore,
additional complexity is needed to treat an unknown input estimator in the presence of noisy
measurements. Here we introduce the necessary theoretical considerations for such a robust
unknown input estimator, before proceeding to the analysis of the results on brain wave
recordings.

State-space estimation of EEG data is appealing because of the wealth of existing knowl-
edge associated with optimal state-space estimation. However, EEG signals are known to
exhibit nonstationary effects whichmakemodeling considerations difficult, especially when
linear relationships form the basic structure of the model. As a result, many analytical tools
which rely on stationary signals, such as the Fourier transform, require sliding windows or
other compensations for the nonstationary dynamics. EEG signals have structured linear and
nonlinear behavior, as well as general process noise arising from biological and artificial
sources [1].

Here, we will demonstrate a novel state-space estimator, which addresses many of the
modeling concernswhen dealingwith EEGdata. This approach, which leverages an adaptive
gain law, is highly nonlinear. The architecture presented performs three key functions. First,
the adaptive law updates the model as the EEG data exhibits nonstationary effects. Second,
this estimator estimates the exogenous input to the system, which improves the estimate by

* Reprinted with permission from “An adaptive unknown input approach to brain wave EEG
estimation,” by T. Griffith, V. Gehlot, M. Balas, J. Hubbard, 2021. Biomedical Signal Processing
and Control Vol. 79, pp. 104083, Copyright 2022 by Elsevier.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. D. Griffith et al., A Modal Approach to the Space-Time Dynamics
of Cognitive Biomarkers, Synthesis Lectures on Biomedical Engineering,
https://doi.org/10.1007/978-3-031-23529-0_6

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23529-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-23529-0_6


98 6 Reconstructing the BrainWave Unknown Input

accounting for dynamics that the model may not generate internally. Finally, it is robust to
general modeling error and process uncertainty.

The estimation of the exogenous input is particularly unique here and offers additional
analytical insight into brain wave EEG recordings. Others have leveraged state-space esti-
mation techniques for the analysis of brain waves. Wong et al. [2] demonstrated an effective
modeling procedure, accounting for the nonstationary dynamics by varying the driving noise
to the model. Cheung et al. [3] leveraged a more general framework to model cortical con-
nectivity fromEEGdata. This workwas also confrontedwith the uncertainty associatedwith
spatial dynamics, which we will attempt to further address here. More recently, [4] com-
bined multiple state-space models with a variety of classification algorithms for successful
sleep stage classification. Finally, [5] demonstrated a Bayesian state-space approach for the
tracking of attentional states. In each of these cases, the appeal of state-space estimation is
clear: real-time predictions backed by rigorous mathematical structure. Here, our approach
is focused on maintaining a flexible state-space framework, with an eye toward interpretable
modeling outcomes. This work is focused on the modeling of the EEG recording, and less
so on a specific analytical outcome. We seek a widely applicable, real-time estimator which
yields interpretable outcomes for future analysis.

6.2 Technical Approach

Spatio-temporal brain wave dynamics contain structured linear and nonlinear behavior, as
well as unstructured random noise. The approach in this work is especially focused on
elegantly treating each of these dynamic effects. As we will show in Sect. 6.3, the proposed
approach operates exactly in this way, filtering the random noise, while estimating the linear
and nonlinear dynamics. We treated the linear dynamics in Chap.4. Ordinary differential
equations (ODEs) can canonically represent a given linear system’s dynamics in state space
as

ẋ(t) = Ax(t) + Bu(t) + vx (6.1)

y(t) = Cx(t). (6.2)

Internal plant states evolve in the n-dimensional vector space X ≡ C
n . The input is in the

m-dimensional space U ≡ C
m . The output is in the p-dimensional space Y ≡ C

p. vx is
a signal that represents general uncertainty or noise in the system model. We include this
term here so that it carries through our theoretical analysis, offering some insight into the
effects of uncertainty on the estimation of EEG brain waves generally. We will show in
Sect. 6.2.3 that the accuracy of our real-time estimate is greatly influenced by the bounded
uncertainty vx . y contains the measurements of a prescribed set of sensors as a time-variant
vector. u ∈ U is the input to the system. In a mechanical system, the inputs can often be
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precisely controlled for improved analysis. The unknown inputs act through the matrix B,
which distributes each unknown input across the appropriate internal states.

6.2.1 Treating the Nonlinear Effects of BrainWaves

As introduced in Sect. 6.1, because brain waves exhibit nonlinear, nonstationary dynamics,
a single model of the form Eq. (6.2) is unlikely to describe the global brain wave dynamics.
Much of modern control theory is dedicated to analyzing and stabilizing nonlinear systems.
Often, engineers linearize the plant dynamics around a discrete set of known operating con-
ditions. Each linearization takes the form of Eq. (6.2), and then a variety of algorithms may
switch between linearizations as needed to improve the model accuracy or performance
outcomes [6–8]. Of course, it is difficult to assess which operating points are important to
brain waves. Therefore, we introduce a novel adaptive estimation scheme to simultaneously
treat nonlinear plant dynamics and estimate the unknown system input. This adaptive esti-
mator updates the physical structure of (A,C) to better match the observed plant dynamics.
The adaptive estimator is highly nonlinear and modifies (A,C) to account for parametric
uncertainty and nonlinear effects. Simultaneously, the estimator forms a representation of
the system input u which we call û. We will hypothesize and then validate that the unknown
system input acts evenly on the spatial brain wave dynamics, which implies that B is a matrix
of ones. Here, we present this adaptive approach to real-time brain wave estimation as

˙̂x = (
Am + BL(t)C

)
x̂ + Bû + Kxey; (6.3)

ŷ = Cx̂ (6.4)

L̇ = −ey y
∗γe − αL; γe > 0, α > 0. (6.5)

Again, and crucially A �= Am . A, B,C, and Kx are all static matrices of appropriate size.
Notice, in Chap.5, the adaptive gain law was L̇ = −ey y∗γe. Here, we have added an addi-
tional term −αL . This term acts precisely as a first order filter on the adaptive gain, which
prevents it from responding too suddenly to a perturbation which is noise. We may only use
the observable information in the system (the output y) to correct Am . Through adaptive
output feedback, Am + BL(t)C approximates A, even when faced with nonlinear dynam-
ics. In this view, the term BL(t)C updates Am to track the nonlinear brain wave dynamics.
Each L(t) yields a different linear model of the form Eq. (6.2). We will demonstrate that Eq.
(6.3) generates estimates ŷ of the measured brain wave signal y that are useful to cognitive
modeling outcomes.
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6.2.2 Treating the Unknown Input

In order to estimate an unknown input, we modify the approach in [9]. Identifying u directly
from output data alone is an unsolved problem in state estimation and system identification.
Here, we solve this issue bymodeling the unknown input as aweighted linear combination of
basiswaveforms.Weapproximate the true input spaceU with annth order linear combination

û =
N∑

i=1

ci fi (t).

Now, rather than identifying u, we change the problem into identifying the ci ’s which give
the best prediction of the EEG data given the linear dynamics (Am,C). The weighting
coefficients ci may be discontinuous and change with time. Accordingly, our estimation
procedure should allow for this effect. To use this approach alongside the linear dynamic
model in Eq. (6.3), we must formulate Eq. (6.6) in state-space terms

żu = Fuzu(t) (6.6)

û(t) = �uzu(t). (6.7)

This set of coupled ordinary differential equations serves a very direct purpose. The matrix
Fu generates the desiredwaveformswhichwe suspect the unknown input contains. For brain
wave dynamics, it may be desirable to consider some oscillatory trigonometric functions,
such as sines or cosines, since brain waves are known to have physically significant spectral
behavior. We may also choose a polynomial basis or a set of natural logarithms. As long as
the waveforms are causal and linearly independent from one another, they can be generated
by Eq. (6.7). The matrix�u simply serves to superpose the waveforms into a single estimate
of û. This approach is amenable to multiple unknown inputs as we demonstrated in [10].
Notice that while this approach makes the problem solvable, we have to be able to say
something about the waveformswhichmakes up the unknown input; some additional insight
is necessary to solve this problem.

As in our formulation of the plant dynamics in Eq. (6.2), we suppose there is also some
bounded, unknown uncertainty associated with the unknown input. That is, we likely do not
have a perfect formulation of Eq. (6.7), so the true unknown input takes the following form

żu = Fzu(t) + vu (6.8)

u(t) = �uzu(t). (6.9)

Because brain wave measures are not known to diverge, it is reasonable to bind these uncer-
tainties for further analysis as
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v =
[
vx

vu

]
(6.10)

||v|| ≤ Mv ≤ ∞. (6.11)

Notice, this formulation treats many different uncertainties that are known to influence brain
wave EEGmodels. First, the formulation of the state matrix Am may not be especially accu-
rate. We treat this effect with the adaptive parameter L(t). Second, the input u is unknown.
This effect is treated with the persistent input approach, imposing known waveforms on the
unknown input. Further, there is a general perturbation from unknown sources v that we also
analyze. Rather than simply lumping all the uncertainties into a single term, we structure
each using information about the system to inform our modeling approach. Notice, this esti-
mator is highly nonlinear. Here, we are leveraging the nonlinearity of the estimator to treat
the nonstationarity of the EEG signals. The matrix Am is accommodated in real time for the
statistical shifts and is still amenable to modal decomposition as described in Sect. 2.3.1.

6.2.3 Estimator Architecture and Proof of Convergence

In combination, this adaptive unknown input estimator (UIO), takes the form in Fig. 6.1. We
now proceed to the guarantee of convergence and stability for this approach. Because EEG
waves are not known to diverge, it is especially important that our estimator also does not
diverge. We begin with a statement of the final result in Theorem 1.

Theorem 1 (Robust Output Feedback Model Direct Reference Brain Wave Estimation)
Consider the nonlinear, coupled error system differential equations,

ė = Āce + B̄(L(t) − L∗)y + v (6.12)

ey = C̄e (6.13)

L̇(t) = −ey y
∗γe − αL(t) (6.14)

We make use of the following assumptions:

(i) the matrix triple (Āc, B̄, C̄) is ASD,
(ii) ∃Mk > 0 �

√
tr(L∗L∗∗) ≤ Mk,

(iii) ∃Mv > 0 � sup
t≥0

||v(t)|| ≤ Mv ,

(iv) ∃α > 0 � α ≤ λmin(Q̄)

λmax(P̄)
, and

(v) γe satisfies tr(γ −1
e ) ≤ ( Mv

αMk

)2
, where λmax(P̄), λmin(P̄) are the maximum and mini-

mum eigenvalues of P̄ and λmin(Q̄) is the minimum eigenvalue of Q̄ with respect to
Definition 1. Then, the matrix L(t) is bounded and the error state e(t) exponentially
approaches the n-ball of radius
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Fig.6.1 Robust adaptive unknown input estimator for EEG brain wave dynamics. (Reproduced from
[11])

(
1 +

√
λmax(P̄)

)

α
√

λmin(P̄)
Mv.

Note that although the result above guarantees the convergence of the error e(t), it does
not guarantee the convergence of �L = L(t) − L∗. The adaptive gain L(t) evolves freely
and may reduce the performance of the estimator due to excessive gains. One possible
solution is the inclusion of a projection operator to bound the maximum possible gain L(t)
as in [12].

Definition 1 Almost Strict Dissipativity

The following convergence results rely greatly on assumption (i), the notion of almost strict
dissipativity (ASD). The system in Eq. (6.2) is ASD if it meets the Kalman-Yakubovich
conditions:
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A∗
c P + PAc = −Q (6.15)

PB = C∗ (6.16)

for some positive definite matrices P and Q. This matrix Ac = A + BG∗C may stabilize
A with a stable gain matrix G and is equivalent to the closed loop matrix for the system in
Eq. (6.2) under the feedback law u = Gy.

Given the novel scheme in Fig. 6.1, the composite error dynamics x̄ =
[
x
zu

]
are

ė = ( Ā + K̄ C̄)e + B̄w + v (6.17a)
[
ėx
ėz

]
=

( [
Am B�u

0 Fu

]
+

[
Kx

Ku

] [
C 0

] ) [
ex
ez

]

+
[
B
0

]
w +

[
vx

vu

]
(6.17b)

=
[
Am + KxC B�u

KuC Fu

]

︸ ︷︷ ︸
Āc

[
ex
ez

]

+
[
B
0

]
w +

[
vx

vu

]
(6.17c)

ey = [
C 0

]
[
ex
ez

]
.

The convergence results for these error dynamics stem from the consideration of the Lya-
punov function considering both the error e and the adaptive gain�L . Consider a Lyapunov
function for the error e as

λmin(P̄)

2
||e||2 ≤ V1(e) ≡ 1

2
e∗ P̄e ≤ λmax(P̄)

2
||e||2 (6.18)

where P̄ is the appropriate symmetric positive matrix satisfying Definition 1. λmax(•) is
the largest eigenvalue of the argument. Correspondingly, λmin(•) is the smallest eigenvalue.
The time derivative of V1 is

V̇1(e) = e∗ P̄ ė (6.19a)

= e∗ P̄( Āce + B̄w + v) (6.19b)

= e∗ P̄ Āce + e∗ P̄ B̄w + e∗ P̄v (6.19c)

= 1

2
e∗(P̄ Āc + Ā∗

c P̄)e + e∗ P̄ B̄w + e∗ P̄v. (6.19d)
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Using the Kalman-Yakubovich conditions in Definition 1, V̇1 is reduced to

V̇1(e) = −1

2
e∗ Q̄e + e∗C̄∗w + e∗ P̄v (6.20a)

= −1

2
e∗ Q̄e + (ey, w) + (P̄e, v). (6.20b)

The adaptive gain �L may also cause instability. We introduce a second Lyapunov function
for the adaptive gain using tr(•), the matrix trace operator

V2(�L) ≡ 1

2
tr(�Lγ −1

e �L∗). (6.21)

γe is a tunable parameter which is also symmetric positive definite. The time derivative of
V2 is

V̇2(�L) = tr(�L̇γ −1
e �L∗) (6.22a)

= tr
(
(−ey y

∗γe − αL)γ −1
e �L∗) (6.22b)

= tr(−ey y
∗�L∗ − αLγ −1

e �L∗) (6.22c)

= tr(−ey y
∗�L∗) + tr(−αLγ −1

e �L∗) (6.22d)

= −(ey, w) + tr(−αLγ −1
e �L∗). (6.22e)

In order to prove the stability of the state error ex , the input error ez , and the adaptive gain
�L , the Lyapunov functions are combined into a composite Lyapunov function for further
analysis. The composite function is defined as

V (e, �L) ≡ V1(e) + V2(�L) (6.23)

= 1

2
e∗ P̄e + 1

2
tr(�Lγ −1

e �L∗). (6.24)

The time derivative of the composite Lyapunov function is therefore

V̇ (e, �L) = V̇1(e) + V̇2(�L) (6.25a)

= −1

2
e∗ Q̄e + (ey, w) + (P̄e, v)

− (ey, w) + tr(−αLγ −1
e �L∗) (6.25b)

= −1

2
e∗ Q̄e + (P̄e, v)

+ tr(−αLγ −1
e �L∗) (6.25c)

= −1

2
e∗ Q̄e + (P̄e, v)

+ tr(−α(�L + L∗)γ −1
e �L∗). (6.25d)
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Using Sylvester’s inequality yields

V̇ (e, �L) ≤ −λmin(Q̄)||e||2 − αtr(�Lγ −1
e �L∗)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)|. (6.26)

We make use of assumption (vi) resulting in

V̇ (e, �L) ≤ −λmin(Q̄)||e||2 − αtr(�Lγ −1
e �L∗)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)| (6.27a)

≤ −λmin(Q̄)||e||2 − αtr(�Lγ −1
e �L∗)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)|. (6.27b)

Equation (6.18) can be rewritten in terms of the error e, considering only the upper bound

1

λmax(P̄)
(e∗ P̄e) ≤ ||e||2. (6.28)

Substitute Eq. (6.28) into Eq. (6.27b)

V̇ (e, �L) ≤ −
(λmin(Q̄)

λmax(P̄)

)
e∗ P̄e

− αtr(�Lγ −1
e �L∗)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)|.

(6.29)

We make use of assumption (iv) to obtain

V̇ (e, �L) ≤ −αe∗ P̄e − αtr(�Lγ −1
e �L∗)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)|

≤ −α (e∗ P̄e + tr(�Lγ −1
e �L∗)

︸ ︷︷ ︸
2V

)

+ α|tr(L∗γ −1
e �L∗)| + |(P̄e, v)|

≤ −2αV + α|tr(L∗γ −1
e �L∗)|

+ |(P̄e, v)|.

(6.30a)

The Cauchy-Schwarz inequality is appropriate for the remaining trace operator

|tr(L∗γ −1
e �L∗)| ≤ ||L∗||2||�L||2 (6.31)

and inner product

|(P̄e, v)| ≤ ||P̄ 1
2 v||||P̄ 1

2 e|| =
√

(P̄v, v)

√
(P̄e, e). (6.32)



106 6 Reconstructing the BrainWave Unknown Input

Insert Eqs. (6.31) and (6.32) into Eq. (6.30a) for

V̇ (e, �L) ≤ −2αV + α||L∗||2||�L||2
+

√
(P̄v, v)

√
(P̄e, e) (6.33a)

V̇ + 2αV ≤ α||L∗||2 ||�L||2︸ ︷︷ ︸
≤√

2V 1/2

+
√

(P̄v, v)

√
(P̄e, e)

︸ ︷︷ ︸
≤√

2V 1/2

(6.33b)

V̇ + 2αV ≤
(
α||L∗||2 +

√
(P̄v, v)

)√
2V

1
2 . (6.33c)

We arrive at

V̇ + 2αV

V
1
2

≤ √
2
(
α||L∗||2 +

√
(P̄v, v)

)
. (6.34)

Now, we treat the ||L∗||2 term

||L∗||2 ≡ [tr(L∗γ −1
e L∗∗)]

1
2 . (6.35)

The trace operator is invariant under cyclic permutations

||L∗||2 = [tr(L∗L∗∗γ −1
e )] 12 . (6.36)

Further, because tr(AB∗) ≤ tr(AA∗) 1
2 tr(BB∗) 1

2 ,

||L∗||2 ≤
[
(tr(L∗∗L∗L∗L∗∗)

1
2 tr(γ −1

e γ −1
e )

1
2

] 1
2

= [tr(L∗L∗∗)]
1
2 [tr(γ −1

e )] 12 .
(6.37)

We make use of assumptions (ii) and (vii) resulting in

||L∗||2 ≤ (Mk)
( Mv

αMk

)
= Mv

α
. (6.38)

Substituting Eq. (6.38) into Eq. (6.34) yields

V̇ + 2αV

V
1
2

≤ √
2
(
Mv +

√
(P̄v, v)

)
(6.39a)

≤ √
2
(
Mv +

√
λmax(P̄)Mv

)
(6.39b)

≤ √
2
(
1 +

√
λmax(P̄)

)
Mv. (6.39c)
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Notice that
d

dt
(2eαt V

1
2 ) = eαt V̇ + 2αV

V
1
2

≤ √
2
(
1 +

√
λmax(P̄)

)
Mv.

(6.40)

Equation (6.40) can be integrated from 0 to τ resulting in

eατV (τ )
1
2 − V (0)

1
2

≤ (1 +
√

λmax(P̄))Mv

α
(eαt − 1).

(6.41)

This expression can be manipulated to yield

V (τ )
1
2 ≤ V (0)

1
2 e−αt

+ (1 +
√

λmax(P̄))Mv

α
(1 − e−αt ).

(6.42)

BecauseV (τ ) is a functionof the state error e and the adaptive gainmatrix L , the boundedness
of V (τ ) bounds e and L . Equation (6.42) bounds V (τ )

1
2 , so V (τ ) is necessarily bounded

also. The use of Sylvester’s inequality further yields

√
λmax(P̄)||e|| ≤ V (t)1/2. (6.43)

Equation (6.43) is substituted into Eq. (6.42) and we take the limit superior for the final
result

lim sup
t→∞

||e(t)|| ≤
(
1 +

√
λmax(P̄)

)

α
√

λmin(P̄)
Mv ≡ R∗ (6.44)

which exponentially bounds the state error e. As a result, given the assumptions inTheorem1,
the adaptive gain is bounded and the error dynamics converge to a ball of radius R∗. The
proof is complete.

6.2.4 Datasets

In the following section, wewill demonstrate the efficacy of this approach on a representative
dataset. As discussed in Sect. 6.1, the focus of this work is modeling, not analysis. Accord-
ingly, the dataset presented here is selected for its rigor in collection and preprocessing. The
Database for Emotion Analysis using Physiological Signals (DEAP) [13] was selected for
the results that follow. The database consists of 40 distinct 60 s long trial videos for each
of the 32 different subjects. The 60s trials are designed to elicit specific emotions from the
subjects, but that analysis is not focused on here. The data was collected according to the
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10–20 system, with 32 total channels of EEG data averaged to the common reference. This
means that our plant output y is a 32 by 1 column vector. For the purposes of this work, no
additional preprocessing was added to the data.

Additionally, the database accompanying [14] was considered as a validation data set for
the analysis in Sect. 6.3.3. This open source data set is comprised of EEG recordings for 25
different subjects using the Emotiv Epoc+ device, which has 14 electrodes. In this database,
subjects are shown e-commerce products from 14 different categories and asked to rate the
product into binary categories of like or dislike. The provided EEG signals are unprocessed,
so for the purposes of consistency, the same steps were done to this data as in the DEAP
data.

6.3 Results

Having established the technical background for this adaptive method of estimating EEG
dynamics in real time, we will demonstrate the efficacy of this approach on the EEG data
introduced in Sect. 6.2.4. Because of the nonstationary nature of EEG measures, we do
not expect the estimator error to converge for extended periods of time per Eq. (6.44). To
validate our approach,wewill compare the adaptiveUIO inEq. (6.3)with simpler estimators.
We hypothesize that the adaptive UIO will outperform the simpler estimators. First, if the
adaptive scheme and unknown input estimator were removed from Eq. (6.3), the estimator
would take a simplified form

˙̂xk = Am x̂k + Kkey; (6.45)

ŷ = Cx̂k, (6.46)

which is a Kalman filter. The estimator in Eq. (6.45) does not account for the input nor the
parametric uncertainty in Am , but it has been widely and successfully implemented in a
variety of applications and so is a good point of comparison [15]. We could reintroduce the
adaptive gain law alone, without treating the unknown input

˙̂x = (
Am + BL(t)C

)
x̂ + Kaey; (6.47)

ŷ = Cx̂, (6.48)

which we will denote as the adaptive only estimator. Third, we could estimate the unknown
input without accounting for the uncertainty in Am . This estimator takes the form

˙̂x = Am x̂ + Bû + KI ey; (6.49)

ŷ = Cx̂ . (6.50)

As for the static gains matrices, Kk, Ka, and KI are set via LQR methods with Q = I ,
R = I , and N = 0. This is the same cost function, though of a different dimension, as the
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one used to set the static gains in Eq. (6.3). We will compare our novel UIO with the Kalman
filter, adaptive only estimator, and input only estimator. As a reminder, we are putting aside
the formulation of (Am,C), as that process was developed previously in [16], but know that
it is a best-fit estimate of the linear dynamics without knowledge of the input.

6.3.1 Performance Benefits of UIO

Initially, we may be interested in the immediate comparison of the relative error between
our UIO and the other estimators. Figure6.2 shows the 2-norm of the error ||ey(t)||2 across
all subjects and trials in the DEAP database. That is, a matrix pair (Am,C) is determined
using the procedure in [16] from a single trial of 60 s EEG data in the dataset per subject. The
estimators in Eqs. (6.45) and (6.3) are then used to predict the EEG signal of the remaining
60s trials. For each of the 39 trials, an error ey = ŷ − y is obtained as a time series with
the same dimension as y. The norm of each error ey(t) is taken to give a single measure
of the error per trial. As a result, for 32 subjects with 40 trials each, 1248 normed errors
are obtained for each estimator, representing the accuracy of each estimator on unmodeled
data. For the purposes of comparison, γe was static across all trials, even though some of
the trials may need more or less influence from the adaptation of Am . The box plot for these
errors is presented in Fig. 6.2 as a method for comparing the relative performance of each
estimator. Note that on average, our adaptive UIO yields an error that is 26% smaller than
the error of the standard Kalman filter. That is, by accounting for the nonlinear effects and
exogenous input to the brain wave plant, the estimate improves as a whole. Even for the least
accurate case here, the adaptive UIO outperforms the best Kalman filter estimate. Of course,
it can also be seen that the adaptive scheme has a wider distribution; the “goodness” of the
estimate varies more. This effect is also seen in the performance of estimator Eq. (6.49), so
we attribute the spread to the inclusion of û. This effect may be mitigated by the possible
optimization of the unknown input basis functions [17]. It remains a curious result of this
approach which requires more exploration in the future. Of course, for a fair comparison,
the same LQR gains and γe are selected for all subjects in the database. Individually tuning
the gains and γe matrix for each case would improve the error spread.

Overall, we conclude that this novel UIO outperforms the Kalman filtering approach
by accounting for the unknown input and nonlinear effects in the true plant. Using the
estimator error ey as a metric for comparison is rigorously useful, but obscures some of the
other benefits of the adaptive UIO. It’s promising that the adaptive unknown input estimator
is more accurate than simpler estimators, but there are additional analytical benefits to this
approach also.
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Kalman Adaptive Only Input Only Our UIO
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Fig. 6.2 Comparison of estimator error for unmodeled data across proposed estimators. While our
adaptive UIO has an increased standard error, it outperforms Kalman filtering in all cases and is better
on average than the other estimators. (Reproduced from [11])

6.3.2 Analytical Benefits of UIO

The most obvious analytical benefit of this approach is the estimate of the input. It has been
difficult historically to translate common stimuli to “brain wave space”. Much discussion in
Sect. 6.2.2 was dedicated to the formulation of the input waveform generator. For effective
modeling, we must select the right cardinality and structure for the input basis. For example,
many previous applications have used four polynomial functions ([1, t, t2, t3]) with only
moderate improvement from higher order terms [18]. Here, we will consider this heuristic
basis set as a baseline for comparison. For brain wave EEGmodeling, we may choose to use
sine and cosine waveforms because EEG measures are known to have oscillatory behavior.
This approach yields more physical significance to the estimate of the unknown input. A
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single paired sine-cosine waveform may be generated with the following persistent input
matrix

Fu =
[

0 1
−ω2 0

]
, (6.51)

where ω is the angular frequency of the sine-cosine pair. Additional frequencies can be
generated by stacking the matrices along the diagonal. For example, a sine-cosine pair at 2
and 5 rad/s may simultaneously be generated with

Fu =

⎡

⎢
⎢
⎣

0 1 0 0
−22 0 0 0
0 0 0 1
0 0 −52 0

⎤

⎥
⎥
⎦ . (6.52)

Since this particular EEG data was bandpass filtered between 4 and 45Hz, we should expect
the estimator accuracy not to improve with additional waveforms past 45Hz. Figure6.3
shows the accuracy of all trials as the estimator generates increasingly many waveforms at
increasingly high frequencies. The solid horizontal line represents the baseline polynomial
estimator. As expected, the accuracy does not improve when generating sine-cosine pairs
faster than 45Hz, and the best-performing sine-cosine basis set outperforms the standard
polynomial basis. This reinforces the notion that the unknown input generator should be for-
mulated using insights from the plant output. Because the data was filtered between 4–45Hz,
the best input estimate will come from an input generator that covers this spectrum. For brain
wave models, we recommend sine and cosine waveforms for the input generator because
of the observed accuracy and physical insight attached to this particular basis. Additionally,
while the polynomial input generator is simpler than the sine-cosine input generator, the
polynomial input generator is a very sparse matrix and can result in uncontrollability of the
dynamics in Eq. (6.17a).

With a suitable input generator established, analysis of the unknown input estimate itself
is possible. Figure6.4 shows an example of the unknown input using an input generator
of sine and cosine waveforms. As we might expect, the estimate of the unknown input
resembles the source EEG data. This vector û improves the model efficacy and may be
correlated with external stimuli. Modeling, not analysis, is the focus of this work, so we
leave such a correlation for future efforts. As a reminder, the estimate of this waveform is
generated in real time. EEG data flows into the estimator, and the estimator provides an
estimate of the internal plant state x̂ and an estimate of unknown input û. The unknown
input estimate also includes the individual weighting coefficients for each of the generated
basis waveforms in Eq. (6.7).

6.3.2.1 L(t) Is a Measure of Nonlinearity
In addition to the estimate of the unknown input, the adaptive gain matrix L(t) may also be
useful in analysis. As a reminder, L(t) is generally not a scalar value, so for demonstration,
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Fig.6.3 UIO error as a function of basis generator cardinality. While the polynomial basis performs
well and is computationally efficient, the sine-cosine basis is physically meaningful and eventually
outperforms the polynomial estimate. (Reproduced from [11])

we may choose to look at the norm of the matrix ||L(t)||2 as an indicator of how important
the adaptation of the system internal dynamics Am is to the observed EEG data. A greater
value of ||L(t)||2 should be interpreted as a point where the initial model synthesization is
highly perturbed or where the data has nonlinear effects. Figure 6.6 demonstrates the time
series of ||L(t)||2 for the same 60s trial as was shown in Fig. 6.4. Here, this UIO shows
particular strength over the simpler formulation in Eq. (6.2). By accounting for the external
input and nonlinear behavior of the data, our estimate of the EEG wave is greatly improved.
This is especially true when the EEG data has sudden spikes.
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Fig. 6.4 A demonstrative example of the unknown input estimate for a single 60s trial using sine
and cosine waveforms. The input contains dynamics which cannot be generated by Am . (Reproduced
from [11])

Figure 6.5 is the key demonstration of this work. We show the time series of both our
estimator and the standard Kalman filter in comparison to the true EEG recording. This is
only a single channel in the 32 channel data, but it is representative of thewhole. Althoughwe
saw in Fig. 6.2 that the average error of our UIO outperformed the Kalman filter, we see here
that our UIO is especially effective in the important regions of the recording where there are
significant spikes or other nonlinear effects. Notice that correspondingly, the adaptive gain
becomes especially active at 42 s to compensate for this spike per Fig. 6.6. In thisway,wemay
conceptualize ||L(t)||2 as another metric for the efficacy of the linear model.When the linear
dynamics (Am,C) are ineffective, the adaptive component of the estimator compensates for
the observed dynamics. By treating the nonlinear behavior and compensating for uncertainty
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Fig.6.5 A demonstrative example of the EEG predictions for a single 60s trial compared to the true
recording. While the estimator errors are similar over the entire time series, our UIO is especially
effective in the spikes and other nonlinear regions of the data. (Reproduced from [11])

and the external input, our real-time estimate of the EEG data is greatly improved in the
regions where the dynamics are especially active.

6.3.3 The Predictive Capability of the UIO

As a demonstration of the predictive capability of this unknown input observer, we present a
binary classification task on two different datasets. In showing this result, we do not mean to
imply this is the best or onlyway to draw analytical conclusions from theUIO.Wedomean to
imply that this demonstration shows that the UIO and all the work that led to its development
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Fig. 6.6 A demonstrative example of the adaptive gain matrix for a single 60s trial using sine
and cosine waveforms. The estimator compensates for model error when the dynamics are highly
perturbed or the data exhibits nonlinear effects. (Reproduced from [11])

yields amodel that contains information relevant to analytical outcomes. In developing these
models, we noticed that there are a number of shared eigenmodes within each individual
subject. This suggests that there are stimuli independent and stimuli dependent modes as
reported in Chap.4. Accordingly, we hypothesized that eigenmodal decompositions from
the same self- reported outcome should have more in common than decompositions from
different self-reported outcomes.
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Table 6.1 Comparison of other emotion identification results on the DEAP database

Reference Valence accuracy (%) Arousal accuracy (%)

[13] 57.6 62.0

[22] 71.05 71.05

[23] 78.2 74.92

[24] 81.40 73.4

Eachof the 32 subjects in theDEAPdatabase viewed40music videoswhichwere selected
for their ability to elicit strong emotions. Along with the biomarkers, the database includes
self-reported ratings according to the valence-arousal scale [19]. This two-dimensional scale
for emotional ratings is widely used as one of the repeatable emotional rating systems
[20]. As with all self report measures, this scale is not perfect [21], but others have had
success estimating the valence from this database per Table 6.1, where the accuracy is the
binary classification accuracy of high or low valence and arousal. We note that the last three
works cited above are deep learning or machine learning classification approaches. Because
there are common eigenmodes within subjects, we hypothesized that an averaged view of
the linear dynamics would reveal shared features among trials with the same self report.
Therefore, the following procedure was empirically determined to classify valence from the
EEG data:

1. Generate the pair (Am,C) for 20% of the trials in the database for high and low valence
for each subject (e.g. 8 models for high valence and 8 models for low valence in the
DEAP database);

2. Average the generated models to determine an overall model for an individual subject
(e.g. ( ĀH , C̄H ) and ( ĀL , C̄L));

3. For each of the remaining unclassified trials, estimate each signal with the adaptive UIO
for both the high and low averaged models; and

4. Predict high or low based on which estimator is more accurate over the trial.

The same procedure applies to high and low arousal. This process involves the simulta-
neous estimation of two different models. Figure 6.7 makes the process more clear, wherein
the two averaged models estimate the same output data y. The estimator with a lower error
over the entire trial ||ey ||2, more closely matches the unlabeled data, and so is more likely
to have the same classification as that data.

While the estimator architectures are identical, we must find some deterministic way to
place KH and KL. We could tune these gains so they improve our prediction accuracy, but
that is somewhat arbitrary and would be an irregular estimation approach. Rather, we place
the static gains KH and KL so they give the lowest error on the modeled data. We do this
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Fig.6.7 Our approach to binary valence classification. By extracting averaged features for both high
and low valence, we can label new data based on which averaged model is more accurate

Table 6.2 Our reported accuracy on unmodeled EEG data

Classification task Estimator acc. (%) PSD features acc. (%)

DEAP valence 77.8 68.1

DEAP arousal 75.2 63.8

Like/Dislike 79.4 67.3

with a coarse grid search over the 20% of the data that is modeled. For a continuous-time
estimator such as this, the infinite-horizon cost function given by

J =
∫ ∞

0
[x∗Qx + u∗Ru]dt, (6.53)

where Q = Q∗ > 0 and R = R∗ > 0 yields the optimal control policy that minimizes the
relevant Hamilton-Jacobi-Bellman equation

0 = min
u

[x∗Qx + u∗Ru + ∂ J ∗

∂x
(Ax + Bu)]. (6.54)

Our approach here is to vary Q and R by a scalar constant ranging from 1 to 100, increasing
the constant by 10 after running the estimator over all the seen data. In the DEAP example,
this yields 8 errors per estimator per cost function, for a total of 8 × 100 different combina-
tions of Q and R. The gains which generate the lowest error over all the modeled data are
selected for the predictive estimator in Fig. 6.7.

Thismodeling approachwas applied to theDEAP database to classify high or low arousal
and high or low valence. It was further validated on the Neuromarketing database to classify
like or dislike from the unseen data. Table 6.2 shows the three fold classification accuracy
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for each of the classification tasks we considered in the middle column. For each fold, we
randomly selected a different 20% of the data for initial modeling and averaging to make
sure we were not biasing the estimation process.

As a means for relative comparison, the accuracy of a convolutional neural network
(CNN) using windowed power spectral features is shown in the right column of Table 6.2.
That is, the spectral density of each trial is calculated, and those features are provided to a
CNN for each classification task. It can be seen that the approach in Fig. 6.7 outperforms
this baseline spectral method, which suggests our approach is extracting some additional
useful information from the raw data.

It is important to note that this estimation accuracy classification is an individualized
model, not a global one. Each individual has two distinct estimators per Fig. 6.7. This is
aligned with the notion that brain waves are inter-individualized, but it is worth exploring
the possibility of a global estimator for the classification of unlabeled EEG data. For the
neuromarketing dataset, a global estimator for all subjects was extracted by averaging the
eigenmodes from all subjects in the database. The globalmodel was seen to correctly classify
the liked samples from the disliked samples with 52% accuracy on a three fold validation
approach. Because this result was not encouraging, the global estimator approach was not
extended to consider the DEAP database. However, since it has been demonstrated that the
eigenmodes can be used to distinguish one subject from another in Sect. 4.3.1, this work
recommends first that the subject be identified, and then the correct individually calibrated
classification algorithm be implemented.

One may argue with the process of selecting static gains that give the “best” error. In
Fig. 6.8, we show the number of correct classifications on the unmodeled data with ran-
domly selected estimator gains. Boxed in red is our reported average accuracy. Since our
classification accuracy by selecting gains that minimize the estimator error is lower than the
average from a random gain, we conclude that this is a reasonable approach. Note, there
are gains that yield more accurate classification outcomes, but we could only identify these
gains by searching the unseen data for them randomly. There is now way to determine them
from the modeled data, and it is our goal here to only adjust our classification procedure
based on the modeled data.

Again, we wish to reinforce that this result merely validates our modeling approach. In
the same way that the subject identification task in Chap.4 validated our linear models,
this classification task validates our adaptive UIO. There are vast other possibilities for
classification here, including the use of the adaptive modes from BL(t)C in conjunction
with the original linear modes from Am or the use of the unknown input, which we simply
have not had time to explore yet in this modeling focused work. However, note that while the
classification accuracy of the adaptive unknown input estimator in Table 6.2 is comparable to
the existing approaches in Table 6.1, the analytical information generated with the adaptive
unknown input observer is greater. Figure 6.9more clearly shows this comparison.Curiously,
the adaptive unknown input approach has greater accuracy on the arousal classification than
on the valence classification, which is not observed in the other classifiers. Further, notice
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Fig.6.8 Estimator accuracywhen the static gains are chosen randomly.A perfectly accurate estimator
would have 32 correct predictions. On average, our modeling approach, which places the static gains
to minimize error, correctly labels 23 of the 32 validation EEG recordings

Fig. 6.9 Comparison of adaptive unknown input DEAP classification with existing literature

the additional analytical information generated by the adaptive unknown input estimator.
The unknown input estimate, adaptive gain matrix L , estimator error ey , and brain wave
eigenmodes are all available to help interpret the classification results.

6.3.4 Limitations of the Input Estimate

While we have an approach for the estimation of u, this estimator does not tell us anything
about how the unknown input is distributed over the dynamics through the B matrix. In
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typical engineering systems, even if the input is unknown, we have some idea of how these
perturbations act on the physical system. For the analysis of EEG data, it’s unclear how the
external input influences the individual channels. Because we have limited knowledge here,
our approach is to estimate a single unknown input acting evenly over all channels. That is,
we set B equal to a column of ones and generate onewaveform û.We could generatemultiple
unknown inputs, each with a different B matrix, but this view quickly becomes arbitrary.
More importantly, the dynamics in Eq. (6.17a) can become unobservable when too many
unknown inputs are estimated. While a single unknown input with B = I may not seem
better, we argue that this represents an averaged view of the unknown input which mirrors
the smearing effect of EEG measures as a result of the cerebrospinal fluid, the skull, and the
other disturbances in and EEGdata.While this estimator is well suited to estimatingmultiple
unknown inputs, as we show in [10], the waveforms need to be linearly independent and we
do not have a good way to split the selected waveforms here into multiple different inputs.
Analytically, we will show that this approach, while coarse, gives good results. Moreover,
to our knowledge this is the first demonstration of an approach which yields an estimate of
the input to a brain wave system. There are limits to how many unknowns we can tolerate
in a given problem, and this assumption of a single input acting evenly over all channels
is an example of this limit. There are adaptive estimators which can estimate the B matrix
when the input is known, but this does not extend to the case when the input is unknown.
When the B matrix and the input are unknown, it is mathematically impossible to separate
between parametric error in the B matrix and error in the unknown input, so estimating both
simultaneously is not possible.

6.3.4.1 An Optimization Routine to Improve B
Because we cannot update the B matrix in the presence of an unknown input, we explored
optimization methods for improving the parametrization of B after the estimation process
was completed for a given time series.We hypothesized that adjusting the B matrix so it min-
imized the error during the estimation process might yield physically significant insight into
the unknown input and how it was acting on the brain. A convex function for minimization,
in this case, was

min ||y − ŷ − CBû||2. (6.55)

This convex function adjusts the values of B, while the other variables are constant. While it
is not the only possibleminimization function, it is aminimization function that is guaranteed
to converge in polynomial time and it is guaranteed to have every local minimum be a global
minimum. As a very simple example, consider the demonstration from Sect. 5.5, where we
modify the true B matrix to
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B =
⎡

⎣
1.2
1
1.6

⎤

⎦ , (6.56)

while our estimator is provided the column of ones as

Bm =
⎡

⎣
1
1
1

⎤

⎦ . (6.57)

We used CVX [25, 26] and fminsearch [27] routines to solve for an updated Bm using
the objective cost function in Eq. (6.55). Figure 6.10 shows the output response y of the true
plant compared to the optimized response and the unoptimized response. Note, while both
CVX and fminsearch improve the estimate, it does not exactly recover the correct B. The
identified B is

Bm, f =
⎡

⎣
1.18
1

1.37

⎤

⎦ . (6.58)

6.3.4.2 Optimizing the BMatrix for BrainWave Estimation
We can apply this approach to the estimation of EEG brain waves. Rather than show a long
32 × 1 updated B matrix, we can image the change at each spatial location. Figure 6.11
shows an illustrative estimate of the unknown input along with the corresponding update to

Fig. 6.10 A comparison of system responses for the true model, the original mode, and the model
with an optimized B matrix. Two different optimization routines are compared. The optimization
improves the estimate
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Fig.6.11 Example of the results from optimizing the B matrix. Notice that some spatial regions have
the effect of the unknown input increased, while others have it lessened

Fig.6.12 Mapping the optimized B matrix for the low valence and low arousal quadrants. We were
unable to estimate the self report from the spatial patterns in the optimized B

the B matrix. This spatial dependence of the B matrix was encouraging.Wemade significant
attempts to identify common spatial patterns between the same self-reported valence-arousal
quadrant in the DEAP database. Figure 6.12 shows the B matrix visualization for three
subjects who all self-reported low emotional valence and low emotional arousal, along with
the average B matrix for all subjects reporting low valence and low arousal. Notice, there are
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Fig. 6.13 The optimization of the B matrix has many solutions which yield the same minimum but
have different parameterizations

few shared features between any of the four mappings.Wewere unable to classify emotional
valence or arousal based on the B matrix optimization visually or with a convolution neural
network.

Ultimately, while disappointing, this conclusion should not surprise us. Convex functions
have the desirable characteristic of having all local minimums be global also. For this reason,
the optimization of the B matrix in this way will be subject to the initial condition. Indeed,
we determined that there are many B matrices that will yield a local minimum value of
the cost function. Figure 6.13 shows exactly this. The plot on the left shows that the same
minimum on the y-axis is achieved regardless of the initial condition on the x-axis, while
the plot on the right shows that the two norms of the resultant B matrix varies greatly by
initial condition. This problem does not have a unique solution, which makes classification
difficult. However, it does further improve the fidelity of our models. Overall, however, the
improvement is marginal compared to the computational complexity, so we generally do
not include this step in our analysis of brain wave dynamics. OMA in combination with the
adaptive state estimator, using a B matrix of ones, is sufficient to achieve excellent predictive
capability. The introduction of the B matrix optimization routine takes away the benefit of
real-time estimation, so we generally prefer not to include it in our modeling procedure.

6.4 Conclusions

In this work, we present the theoretical foundations for a real-time brain wave estimator
that treats three key uncertainties in EEG data. While our estimate of the unknown input is
hampered by uncertainty in the B matrix, we show that the performance of this estimator is
excellent in comparison with standard linear methods. In addition, this estimator provides
more information for the analysis of EEG recordings in the form of an estimate of the
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unknown input which compensates for the dynamics which cannot be generated by the
model alone, and in the form of the adaptive gain matrix which compensates for nonlinear
effects.

6.4.1 Recommendations

While the focus of thisworkwas on the theoretical foundations of our estimator andmodeling
as a whole, we hypothesize that this approach offers much analytical insight. Correlating
the unknown input with external stimuli is an especially appealing next step.

Overall, this novel adaptive approach to real-time estimation of EEG data demonstrates
what to our knowledge is the first architecture to demonstrate amethod of estimating an input
in “brain wave space”. It’s tolerance to modeling errors, general uncertainty, and real-time
implementation make it applicable to a wide variety of biomarker recordings.
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7Conclusions and FutureWork

7.1 Summary

The joint analysis of spatio-temporal brain wave patterns is a developing topic in the engi-
neering and neuroscience community. While the exact relationship between neuronal level
activity and EEG data is unclear, useful clinical and diagnostic information has repeatedly
been extracted from brain wave data. Because brain waves are not generated by any known
first principles system, a wide variety of modeling techniques exist. Because the spatial
dynamics are so important in the analysis of brain wave measures, this work proposes the
development of a rigorous modeling procedure for brain waves in canonical state-space
terms, which treats the brain wave process as a black box. Specifically, this includes the
use of a modal representation of linear brain wave models, which are highly interpretable
and physically significant. Of course, brain wave measures have significant nonlinear and
nonstationary phenomena which must be accounted for in our modeling approach. From
this background, Chap.2 took a survey of the key modeling considerations as they related
specifically to EEG data, including common corrupting artifacts and preprocessingmethods.

To solve this problem, a variety of modal system identification methods were introduced
inChap.3 to extract linear spatio-temporal patterns fromEEGdata. The relative performance
of each technique was discussed and analyzed. Ultimately, the OMA and DMD algorithms
were shown to extract highly consistent representations of brainwave dynamics. That is, they
had the least variation in the extracted modes for a given subject’s brain waves. Some initial
analysis was presented, mainly the physical significance of the modes and a demonstration
of how a superposition of the modes recreates the observed EEG data.

Further development of the modal approach to brain wave dynamics was presented in
Chap.4, where technical details of the OMA and DMD algorithm were presented. Analysis
of the EEG modes was shown, including the existence of subject-independent common
modes, which are spatial patterns at distinct frequencies appearing in every subject of the
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DEAP database. While these EEG modes only model the linear behavior of brain wave
dynamics, it was shown that they are sufficient to distinguish one subject from the next with
perfect accuracy using a machine learning classification approach.

Following this analysis, additional work was undertaken to model the nonlinear phenom-
ena and parametric uncertainty associated with brain waves. To solve this problem, a general
architecture for the treatment of nonlinear plant dynamics while estimating the unknown
external system input was presented in Chap.5. This novel estimator was designed specifi-
cally to update the brain wave model in real time to account for nonlinear or nonstationary
effects through the implementation of an adaptive gain law. Additional proofs for a robust
adaptive unknown input estimator and an adaptive unknown input estimator are presented
in the appendices.

In Chap.6, the adaptive unknown input estimator was applied to EEG recordings. The
efficacy of the approach was demonstrated and the resultant models were analyzed. This
novel estimator was shown to outperform other common estimators, especially when non-
linear effects were obvious in the data. The adaptive unknown input estimator was used to
categorize subjective valence and arousal ratings from subjects in the DEAP database with
comparable accuracy to existing deep learning approaches.

7.2 Key Contributions of ThisWork

7.2.1 Modal Identification of Linear BrainWave Dynamics

Brain wave recordings via EEG are known to have stochastic, nonlinear, and nonstationary
dynamics. As a result, there are significant complexities associated with the synthesiza-
tion of accurate dynamical models from EEG recordings. This work presented a structured,
canonical modeling pipeline to extract such models from EEG data. Accordingly, the first
contribution of this work is the analysis and validation of modern system identification
techniques to extract modal decompositions from EEG data. These dynamic modal decom-
positions represented observed data in a discrete set of spatiotemporal patterns that may be
superposed to recreate the original data. These modes are amenable to the imaging and anal-
ysis of dynamic brain wave activity. Because the input to the brain wave plant is unknown, a
significant portion of this contribution involvedmethods for identifying the number ofmodes
necessary to describe a given EEG recording, and how those modes may be truncated. Ulti-
mately, this work demonstrated that over the right time interval, brain wave dynamics may
be described by modes that are separable in space and time.
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7.2.2 Analysis of Spatio-Temporal BrainWaveModes

While not all of the brain wave dynamics were captured with the linear state-space models,
the models still had useful analytical information. This work demonstrates a number of
analytical findings in the modal representation of brain waves, including that the brain wave
modes are highly inter-individualized. In particular, a set of commonmodeswere observed in
subjects at distinct frequencies. That is, in the data sets analyzed for this work, there are task
independent spatial patterns that vary from subject to subject. This reinforces the notion that
future brain wave models must be inter-individualized. Additional analysis demonstrated
methods for reducing the number of EEG electrodes needed for a given classification task
and demonstrated the physical significance and interpretation of the brain wave modes.

7.2.3 Theoretical Considerations for the Estimation of Unknown Inputs

Thework further contributes a significant bodyof knowledge to the theoretical underpinnings
of unknown input estimators. In particular, an adaptive observer approach was taken to
simultaneously recover the physical structure of the internal plant dynamics and the unknown
input waveform. Sensitivity to general process and sensor noise was further investigated,
resulting in a robust version of the unknown input estimator. Finally, the stability proof was
further extended to treat known nonlinear plant dynamics robustly. While the input can be
unknown, the engineer must select a basis of waveforms that is believed to comprise the
unknown input. Much analysis was dedicated to evaluating different and less than optimal
bases for the unknown input estimator.

7.2.4 Online Estimation of Nonlinear BrainWave Dynamics

The developed robust adaptive unknown input estimator was applied for the modeling of
nonlinear brain wave dynamics. It was demonstrated that by compensating for nonlinear
effects, the adaptive unknown input architecture could estimate brain wave recordings in
real time. By updating the modes while recording the data, an improvedmodel fit is obtained
while the physical interpretability of the model is retained. A surprising outcome here
was that the estimator converges even if the model is initialized with a perturbed set of
modes. This estimator was used in a binary classification task on the DEAP database. This
binary classification was further validated on a second dataset. The resultant accuracies were
comparable to those of the existing deep learning approaches.
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7.3 Recommendations for FutureWork

Many additional questions were generated during the preparation of this work. Following
are some of the main questions that are left unexplored.

7.3.1 ConsideringMultiple Data Types

Much of the discussion on modes and neural dynamics has thus far been constrained to EEG
measures. However, OMA andDMD can extract modes from any output vector y. Any set of
biomarkers could be included in the output y for modal decomposition. Moreover, multiple
biomarkers could be analyzed. With only EEG data, the generated eigenvectors capture the
spatial relationship between each channel for a given frequency λi . If another biomarker
was included, such as EKG measures, the extracted modes would inform the relationship
between the two measures, because the mode shape will include all available channels in
y. This is common practice, for example, in flight dynamics, where the joint interaction of
roll, pitch, and yaw are controlled with mode shaping [1].

7.3.2 Improved Diagnostics and Analysis

This work was primarily focused on the task of developing high-fidelity real-time models
of brain waves. A huge amount of potential exists for clinical and modeling diagnostics.
For example, a serious exploration of the analytical information in the unknown input was
not undertaken. Certainly, by the improvement in the model, there is exogenous information
to the brain wave plant which is captured in the estimate of the unknown input. One of
the key struggles of this work was interpretation. Additional insight from the neuroscience
community is needed to truly understand modeling outcomes. As this is an engineering
document, there is little sense in drawing clinical conclusions from ourmodels. Accordingly,
the analysis here was restricted to modeling and estimation. However, this technique offers
a spatio-temporal online model of neural activity, which should be relevant to the outcomes
related to neuroscience.

7.3.2.1 Accessibility of Modeling Procedure
The modeling pipeline of generating a good linear brain wave model and then using an
adaptive estimator to correct the model in real time is well described in this work. However,
recreation of the results would require an experienced graduate engineer. All of themodeling
hyperparameters (system order, estimator poles, number of Hankel matrix rows) are tied to
some rigorous engineering metric that determines their value.
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In order to achieve widespread implementation in clinical trials, this modeling procedure
would need to be increasingly automated. For example, the number of rows in the Hankel
matrix should exceed the ratio of system order to the number of samples in the time series
data, so automating the selection of the Hankel rows is possible. Improved packaging of the
pipeline is necessary for widespread use.

7.3.3 Spatial Filtering of Biomarkers

Biomarker analysis generally suffers from the existence of many different filtering and
feature extraction methods. Data collection and processing methods vary from lab to lab,
which may impact modeling outcomes. This work has demonstrated a high-fidelity method
for the real-time estimation of general biomarker data, but it will model whatever data is
provided. If there are corrupting noise sources or filtering artifacts, these will appear in the
identified eigenmodes. More work is needed to analyze the consequences of filtering on the
provided biomarker data.

In order to preserve as much useful analytic information as possible, the approach in
this work was to minimally process the EEG data. It may be possible to identify and correct
common corrupting sources, such as ocular artifacts, by analyzing the identified eigenmodes.
In this work, such artifacts were generally accepted as part of the system, because theywould
be present in the real-timemeasurement. Offline analysis may improve the feature extraction
and modeling outcomes.

7.3.4 Probabilistic Considerations

From the analysis of common brain wave modes, it is clear that individualized models of
brain wave dynamics are necessary. This work did not explore how much different external
stimuli perturb the uncommon modes. Analysis in this area may indicate which regions of
the brain are more or less influenced by different tasks, such as EEG.

More importantly, we note that this work demonstrated a highly efficacious model of
brain waves. The dynamics of EEG recordings are captured by this process. However, the
classification accuracies on cognitive modeling outcomes, such as valence and arousal for
the DEAP database, left something to be desired. Since the dynamics are well modeled
and the classification is only moderate, it may be concluded that human cognition is a
probabilistic process. The same brain wave dynamics may not give rise to exactly the same
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self- reported cognitive outcome. More importantly, humans may be unreliable sources of
self-investigation. This suggests that a probabilistic approach to brain wave dynamics may
be useful for improved modeling outcomes such as attention or situational awareness.
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