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1

UNFORGETTABLY UNBELIE VABLE

You’ve seen it, but not every day. You’re watching a sporting event 

and the seemingly impossible happens— a diving catch, a half- court 

shot, a lunge to the fi nish line. And the crowd erupts. It’s as if we are 

cheering humanity’s ability to overcome— in the last moment, with 

the last attempt, against incredible odds.

The memorable event may be a topic of discussion with friends 

or on social media for a day or a season. But most such highlights 

fade from memory before long, overshadowed by the next memo-

rable accomplishment. Only occasionally does the unbelievable be-

come the unforgettable. When something remarkable occurs, can 

we distinguish between the momentarily memorable and the truly 
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historic? The historic is not likely to happen again for a long time, 

if ever.

The unforgettable is often improbable. So understanding the 

probability of a surprising event is a clue to its historic signifi cance. 

How can we compute those odds? And can we do so quickly? Is it 

possible to see a remarkable accomplishment and by the end of a 

commercial break know that we likely saw an unforgettably improb-

able moment?

In this book, we’ll explore how to estimate the probability of 

events as a way to get in the game with sports analytics. We’ll focus 

on what counts as historic, but you can apply the tools we’ll use to 

more everyday questions: Who might win tonight’s game? Can last 

week’s star player continue at their current level of play? Who might 

be ready to slay a giant?

That could send you down a rabbit hole. A lot of math, statis-

tics, and computer science topics are relevant to such analysis. One 

could binge online videos, read hundreds of articles, or learn the nu-
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ances of complex and precise analytics tools. But looser estimates 

can take us a long way toward evaluating the improbable. Here we’ll 

fi nd insights in fl ipping a coin or rolling a die. We’ll learn what are 

often called “back of the envelope” computations, quick calcula-

tions to get a sense of a quantity, if not necessarily an exact value.

So grab a pencil and paper and your phone or a computer— you’ll 

want the calculator for some quick arithmetic, and you’ll sometimes 

need to download data. That, plus curiosity, is all you’ll need.

Let’s start by looking back a hundred years to the 1920 Major 

League Baseball season. Babe Ruth was synonymous with home 

runs. Grabbing stats from baseball -  reference .com, we see that in 

1920 Ruth hit 54 home runs. The league average that year for home 

runs by a team was 39. In other words, Ruth hit 54/39, or about 1.4 

times more homers than the average MLB team. Now jump ahead to 

2019, when the league average for home runs by a team was 226. Re-

peating Ruth’s feat, hitting 1.4 times the team average, would have 

meant hitting 313 home runs in the 2019 season— almost two home 

runs per game, 4.5 times the best rate ever.

Suppose you notice that Babe Ruth was a leftie. So you check the 

2020 Yankees roster and fi nd that about 21% of those players threw 
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leftie. That seems higher than the general population. But it’s just 

one statistic for one team in one season. To get a larger sample size, 

you could download data from SeanLahman .com, which has stats 

for more than twenty thousand MLB players, including whether 

they threw left-  or right- handed.

A quick spreadsheet calculation reveals that between 1871 and 

2019 about 20% of players threw left- handed, which is close to our 

2020 percentage for the Yankees. Are a fi fth of your friends left- 

handed? It’s unlikely. According to the Washington Post, about 10% 

of the people in the world are lefties.

So far we’ve used a calculator to compare Babe Ruth’s 1920 home 

run production with that of the average team, and a spreadsheet to 

tally the MLB’s historical percentage of lefties, which we then com-

pared with that of the general population. Now we’ll look at another 

enduring name in sports, NFL wide receiver Jerry Rice, and gain in-

sight from graphing.

Graphs often make outliers obvious. When we plot the num-

ber of career receptions for the top ten players in this category 

on a horizontal axis, look how much longer the horizontal bar is 

for Jerry Rice than for the others. This difference visually under-

scores Rice’s status as an outlier even among Hall of Fame wide 

receivers.
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That’s a remarkably unforgettable career stat. There are also re-

markably unforgettable moments in single games. In the 2015 FIFA 

Women’s World Cup fi nal, the USA beat Japan 5– 2, and Carli Lloyd 

scored a hat trick (three goals) in the fi rst sixteen minutes. Unbe-

lievably fast? How much time did it take to complete hat tricks in 

other World Cup games? In this next graph, the shorter the bar, the 

faster a hat trick was scored. The historic nature of Lloyd’s hat trick 

is again visually obvious: her bar is roughly half the length of the 

second shortest bar (which is very close in length to the third and 

fourth shortest).

Without much math, then, we’ve gained insight on what makes 

an athletic performance historic. A critical element is the data. Babe 

Ruth hit 1.4 times more homers than the average team in 1920. Jerry 

Rice was similarly far ahead of his nearest career competitor. And 

Carli Lloyd scored her hat trick in half the time of the next fastest 

effort. If you dig into the data, you’ll see that the other World Cup 

hat tricks not only took more time but did not occur in a fi nal. In 

each case, the numbers, calculated or visualized, emphasize the un-

believable improbability of a season, career, or game.
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 Playbook

An outlier is a data point that diff ers signifi cantly from other com-

parable data. We can visually spot Babe Ruth’s 1920 home run total 

as an outlier by graphing the number of homers hit by the top fi ve 

home run hitters that year.

Note that this defi nition leaves the analyst to decide if a diff erence 

is signifi cant.
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Graphs can help us spot outliers, but beware: they can also be 

misleading. These two graphs depict the same data— the number of 

shots by Wayne Gretzky in fi ve of his nine MVP seasons. So why do 

they look diff erent? The vertical axis of the graph on the left begins 

at 0 (like the horizontal axis of the 1920 home run graph), whereas 

the vertical axis of the graph on the right begins at 300. In the sec-

ond graph, the diff erence in shots between 1981– 82 (370) and 1983– 

84 (326) looks much bigger than it actually is.

 A response to all this 

analysis can be “I just want 

to watch the game.” But 

watching a game can still 

allow a lot of time for quick 

analysis. Take the NFL. An 

average game lasts well over 

three hours. How much ac-

tual action occurs? In foot-

ball, the clock often keeps 

running as teams huddle 

or take formation. According to statistics site FiveThirtyEight, the 

average amount of action in an NFL game is eighteen minutes. And 

how much of the three hours is commercials? Fifty minutes! With 

such limited opportunity to jump up and root for the home team, 

we might feel we’re putting down roots, becoming true couch pota-

toes. With the tools of this book, when someone says, “Wow, that’s 

amazing!” you’ll be able to fl ip a coin, roll a die, jot down a few num-

bers, or plot some data and reply, “Want to know just how amazing?”

Highlight reels could be renamed outlier reels. Within the stream 

of daily and weekly highlights are moments that will transcend 

time. Analytics can help us recognize the historic. We’ve begun as-

sembling our analytics toolbox. In the coming chapters, we’ll add 

to it so we can more fully appreciate the unforgettably unbelievable 

and get in the game of sports analytics.
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Personal Training— Workout #1

Each chapter will introduce new analytic tools and end with a work-

out where you can try them out. So, get warmed up— here is your 

fi rst personal training workout!

Any world record in sports is an outlier performance. But some 

world records stand signifi cantly longer than others. Let’s turn to 

swimming and look at the progression of records in the women’s 

1500 meter freestyle. Look online for the data and you’ll fi nd that 

since 1922 new records have been set forty- fi ve times. For this chal-

lenge, collect the dates these records were set, then determine how 

many days each record remained unbeaten. You’ll note that the 

longest- standing record (15 minutes, 52.10 seconds) was set by Ja-

net Evans of the United States on March 26, 1988, and held until 

June 17, 2007.

Question: How does the longevity of Evans’s 1988 record compare 

to that of other world records in this event? What is the best way to 

represent this data to reveal outliers?

After you’ve completed your work on this personal workout, turn 

to the back of the book for a discussion of the question.



2

SHOOT 3’S LIKE STEPH CURRY

On February 27, 2013, highlight reels played and replayed clips from 

the previous night’s game at Madison Square Garden. The focus was 

scoring by the losing team— and mainly by one player. Why? Ste-

phen Curry of the Golden State Warriors had racked up 54 points 

against the Knicks. The fi rst quarter had not been promising, as 

Steph scored only 4 points, making two out of fi ve two- point at-

tempts and missing his only three- point shot. But the unforgettable 

can quickly follow the unimpressive. Curry’s second- quarter total 

was 23 points: three of fi ve two- point shots, four of fi ve three- point 

shots, and all fi ve free throws. Impressive? Indeed! Improbable? 

How might we decide?
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Part of what makes an event unforgettable involves comparisons 

across history, as we saw in the last chapter with Carli Lloyd and Jerry 

Rice. Only seven players in NBA history had scored more points in 

one game at Madison Square Garden. Who? It’s like an NBA Who’s 

Who— Wilt Chamberlain, Kobe Bryant, Michael Jordan, Rick Barry, 

Bernard King, Elgin Baylor, and Richie Guerin. Curry accomplished 

several remarkable feats that night— 54 points in a game, 23 points 

in a quarter, and 11 of 13 three- pointers.

Consider that last statistic: 

Curry made 11 of 13, or 84.6% 

of his three- point shots. That’s 

a very high percentage— super 

high. Only twelve NBA Hall of 

Famers have a higher career 

shooting percentage from the 

free throw line, and no one 

has sustained such accuracy 

from the three- point arc.

Curry is among the players 

who have transformed dis-

tance shooting in the NBA. To 

see this, let’s compare Steph 

to his Warriors coach, Steve 
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Kerr. In his fi ve seasons with 

the Chicago Bulls in the 1990s, 

Kerr, also a distance shooter, 

attempted 898 three- pointers, 

making 430. In the 2012– 13 

season, Curry made 272 of 

600 three- point shots. These 

convert to similar percent-

ages: Kerr’s 430 of 898 is about 

47%, and  Curry’s 272 of 600 is 

about 45%.

How can we analyze the improbability of Curry’s 11 of 13 shoot-

ing? Steph, of course, played the game only once. You’ll play it mul-

tiple times. In a sense, you get to have a shooting contest with the 

back- to- back NBA MVP. No need to fi nd a court and a basketball. 

All you need is a penny! You’ll compete, and analyze Curry’s perfor-

mance, by fl ipping over three- pointers.

Playbook

A probability— the likelihood that an event will occur— is repre-

sented by a number between 0 and 1. An event with a probability of 

0 defi nitely won’t happen; an event with a probability of 1 defi nitely 

will happen. An event may consist of a single outcome (like rolling a 

particular number with one die) or a group of outcomes (like rolling 

a number with two dice, or hitting some percentage of attempted 

three- pointers).

We will often use the number of ways dice can be rolled to 

model more complex situations. If you roll one six- sided die there 

are six possible outcomes, each with an equal, one- in- six probability 

(1/6 = 0.167, or 16.7%). If you roll two dice, there are six possible out-

comes for each die— for example, you might roll a 4 with the fi rst die 

and a 3 with the second die (which we will write as 4- 3). That means 

there are thirty- six possible combined outcomes (6 × 6, or 62).

Each of these outcomes is equally likely. So then, what is the prob-
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ability of a particular event, for example, rolling a 3? Out of thirty- six 

total ways to roll two dice, just two yield a sum of 3: 1- 2 and 2- 1. The 

probability of rolling a 3 with two dice is the number of outcomes in 

which the event occurs (2) divided by the total number of possible 

outcomes (36): 2/36 = 0.055, or 5.5%.

To determine the improbability of Curry’s three- point fest, we’ll 

use his 2012– 13 three- point shooting percentage of 45.3% (which 

you can fi nd with a quick Google search). Let’s assume that a fl ipped 

coin is equally likely to land heads or tails. So the chance of fl ipping 

heads is 50%. You’ll fl ip to “shoot” and score by getting heads— 

meaning your accuracy is slightly greater than Curry’s season aver-

age (50% versus 45.3%). But for your one- on- one shooting contest, 

Steph’s turn is fi xed as his far better than average February 27 per-

formance. You fl ip your coin thirteen times. If you fl ip heads eleven 

times, you and Steph tie. If you fl ip more than eleven heads, you 

win. Else, Steph wins.

 Worksheet: One- on- One with Steph Curry

We’re ready to play our game. Curry’s results are locked in; he’s made 

11 of 13 three- point attempts. Now you need to take your 13 shoots.

1 Flip a coin.

2 If you get heads, you make the shot; tails, you miss.

3 Repeat the coin fl ip 13 times and keep track of your progress 

with the chart below.
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 Did you beat Steph by making more than eleven shots? If so, 

you’re lucky. Play again (and again), and you’ll likely see that your 

win isn’t easily repeated. In fact, you have less than a 1% chance of 

getting more than eleven heads in thirteen fl ips.

Of course, Curry is such a great shooter. Shouldn’t he win every 

shooting contest? On a physical court, almost certainly, but you are 

fl ipping a coin. Your shooting percentage is 50%, higher than his. 

Yet you’ll rarely beat him.

How do I know you are less than 1% likely to win this shooting 

contest? To establish that number, I also fl ipped a coin— just many, 

many more times.

Grab a dollar and cash it in for pennies. Give the pennies to a 

hundred people, and ask each person to fl ip their coin thirteen 

times. How many people get more than eleven heads? Given that 

the underlying probability is less than 1%, maybe no one.
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More games will mean a 

better estimate. Go big and 

ask a hundred thousand peo-

ple to each fl ip a coin thirteen 

times. You’d fi nd about 170 

people get more than eleven 

heads and around 1,000 

will get exactly eleven heads 

(meanwhile, about 42,000 

will get 6 or 7 heads). So your 

estimated probability of beat-

ing Steph’s shooting would 

be 170/100,000 = 0.17%, and 

the probability of matching 

Steph’s performance would 

be 1,000/100,000 or 1%.

We now have an important 

tool for our analytics toolkit. 

This process, called simu-simu-

lationlation, can uncover the im-

probable. Simulation helps 

analyze events. For us, the event was hitting eleven of thirteen shots. 

We made some assumptions. We were shooting 50% with our coin 

fl ipping, which is slightly high. We also assumed that every shot is 

the same. But is it? Steph was playing against other players, who 

would have made varying decisions as the game unfolded. Also, he 

missed his only three- point attempt in the fi rst quarter, then hit 4 

of 5 in the second. Do any of these conditions infl uence his second- 

half shooting? Our model assumes they do not.

Playbook

Our model for Steph Curry’s shooting assumes the same probability 

for every shot, meaning the outcome of one shot doesn’t infl uence 

the outcome of another shot. When the occurrence of one event 
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does not aff ect the probability of another, we say the outcomes are 

independentindependent. This is true of coin fl ips and dice rolls, but if Steph 

makes one shot, is he more or less likely to make the next? In this 

model, we assume it doesn’t make a diff erence. For a variety of rea-

sons this isn’t precisely true. Off enses and defenses change in re-

sponse to made shots, and it takes more complex models to inte-

grate such subtleties. Still, we can make useful estimates assuming 

the independence of events, as a variety of models throughout this 

book will do.

So what can our new tool tell us? Why aren’t we winning our 

shooting contests? Curry’s massive advantage in this one- on- one 

contest is our fi xing his shots to one improbable performance. Let’s 

assume that, as you watched Curry warm up in Madison Square 

 Garden on that February night, you somehow knew he’d shoot thir-

teen three- pointers. You’d have every right not to believe he would 

hit eleven of them. It’s improbable, and that unlikeliness is what 

made that night so memorable.
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Many of the best NBA and 

WNBA guards have shooting 

percentages over 40%. Having 

a coin handy can help you get 

a sense of the improbability of 

their shooting sprees.

Take another Steph Curry 

game. He made 13 of 17 three- 

pointers against New Orleans 

in November 2016 (that season 

he hit 41%, close enough to his 

2012– 13 percentage that we 

can use the same model). Was 

this performance likely? Grab 

your coin and fl ip seventeen 

times. Whether or not you fl ip 

thirteen heads, try it again and 

again. In chapter 4, we’ll learn a formula that demonstrates that get-

ting 13 heads in 17 fl ips is almost twice as likely as getting 11 heads 

in 13 fl ips. But two times a 1% probability is still not very likely. This 

quick fl ipping experiment signals that the 2016 shooting spree is 

also likely more than just a highlight.

But what about other situations in sports, where the probability 

isn’t close to 50%? We’ll learn about this and much more in coming 

chapters. For now, fi nd a good spot for that penny so it’s handy for 

your sports watching.

Analytic Toolkit

What if you don’t have a coin handy? Just type “fl ip penny” into 

Google and you’ll have an online, virtual coin fl ipper.

(And what if you don’t know 100,000 people you can ask to fl ip 

coins? Either step up the social networking or wait for the helpful 

formula in chapter 4.)
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Personal Training— Workout #2

Stephen Curry won the 2020– 21 NBA scoring title, averaging 32.0 

points per game. But not every game was a festival of swishes. In 

early January, Curry made only 2 of 16 shots against the Raptors, his 

worst shooting night to date.

Question: How improbable was it for Curry to go 2 for 16 from the 

fi eld in a game that season?

Approach 1: Look up Stephen Curry’s 2020– 21 regular season 

statistics. Can you use a coin to estimate his shooting?

Approach 2: How can you estimate Curry’s two- point shooting 

percentages with multiple coin fl ips? How about his three- point 

shooting?

Try working out an answer, then check out the discussion in the 

back of the book.
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DICEY HITTING STREAK

Sibling rivalries are nothing new. Cleopatra and Ptolemy XIII clashed 

over their father’s wish that they jointly rule in Egypt; in the end, 

Ptolemy drowned in the Nile while fi ghting to regain his throne. In 

the 1920s, Adolf and Rudolf Dassler created a shoe company in their 

mother’s laundry room. Success led to tension and their splitting in 

the aftermath of World War II. Adolf started Adidas, while Rudolf 

created Puma.

There are also the sibling rivalries in sports. In tennis, Serena 

and Venus Williams each hold an impressive number of Grand 

Slam titles. In football, NFL quarterbacks Eli and Peyton Manning 

have both won Super Bowls. In basketball, Reggie Miller is known 
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for scoring eight points in nine seconds in the 1995 NBA playoffs, 

while Cheryl Miller was a four- time All- American and one of the top 

rebounders in NCAA history. In boxing, Michael Spinks won all but 

one of his thirty- two fi ghts; brother Leon was less successful but 

could say one thing Michael couldn’t: “I beat Muhammad Ali!”

A sibling rivalry for the record books is that of Joe and Dom 

DiMaggio. Their two oldest brothers joined their father Giuseppe as 

fi shermen. Joe, Dom, and older brother Vince became major league 

baseball players via the sandlots of San Francisco. Vince DiMaggio 

was a two- time All- Star, but we’ll focus on Joe and younger brother 

Dom and their still unforgettable hitting streaks.

First, let’s check the stats. Joe DiMaggio had a career batting av-

erage of 0.325, with 361 home runs and 1,537 RBIs. Over thirteen 

seasons, he had only 369 strikeouts. His Hall of Fame career in-

cluded thirteen All- Star appearances, nine World Series titles, and 

three American League MVPs. Dom hit 0.298 over his career, with 

87 home runs and 618 RBIs. In eleven seasons, he had 571 strike-

outs and was a seven- time All- Star.
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Our duel takes place in the 1940s. In 1941 Joe DiMaggio posted a 

56- game hitting streak. In 1949, Dom had a 34- game hitting streak. 

Both are impressive: Joe’s streak is still the Major League Baseball 

record eighty years later, and Dom’s remains the longest in Boston 

Red Sox history.

In chapter 2, we played Steph Curry one- on- one. Because his 

three- point shooting percentage for the 2012– 13 season was close 

to 50%, we could get a sense of whether a memorable performance 

was an outlier by fl ipping a coin. 

No one hits close to 50% in Major 

League Baseball. Joe hit 0.357 in 

1941. Dom hit 0.307 in 1949. So, 

how can we play baseball? This is 

where things get dicey. A simple roll 

of a die will let us hit like a DiMag-

gio! When we roll a six- sided die, 

there are six possible outcomes, all 

equally likely. So rolling a 1 or a 2 

represents a third of the possibili-

ties. In other words, we have a 33% 

chance (0.333) of rolling a 1 or 2, 

which is between Joe’s and Dom’s 

batting averages. While we could 

roll a die for every at- bat, let’s ex-

pand our analytics toolkit to com-

pute the DiMaggios’ probabilities.
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Playbook

To analyze the improbability of the DiMaggio brothers’ hitting 

streaks, we need two more tools. First, if the probability of an event 

is p then the probability of that event not happening is 1 − p. Remem-

ber, a probability is represented by a number between 0 and 1. An 

event with a probability of 1 will certainly happen, whereas an event 

that can’t happen has a probability of 1 − 1 = 0. In between those ex-

tremes, the probability of, for example, fl ipping two tails in two coin 

fl ips is 0.25 (1 of 4 possibilities: T- T). The probability of not fl ipping 

two tails in two fl ips, then, is 1 − 0.25 = 0.75 (3 of 4 possibilities: 

H- H, H- T, T- H).

Second, to calculate the probability of one event happening and 

then another event happening, we can multiply their probabilities, 

as long as the events are independent. So, the probability of fl ipping 

two tails in a row and then, on the next two fl ips, not fl ipping two 

tails in a row is 0.25 × 0.75 = 0.1875.
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Let’s assume a player has a 0.250 batting average. (Note: we’ll 

keep the third decimal digit even if it’s a zero, since a 0.250 bat-

ting average is often referred to as “hitting 250.”) There are multiple 

ways to get at least one hit in a game but only one way to go hitless, 

which is helpful. If the probability of a hit is 0.250 for each at- bat, 

then the probability of not getting a hit is 1 − 0.250 = 0.750. So the 

probability of not getting a hit in two straight at- bats is 0.7502, and 

three straight at- bats is 0.7503. If our player comes to the plate four 

times in each game, then the probability of going hitless in a game 

is 0.7504 = 0.316. Since getting at least one hit is the opposite of go-

ing hitless, the probability of getting at least one hit is 1 − 0.316 = 

0.684. So the probability of getting a hit in two straight games is 

0.6842; in three straight games, 0.6843; and so on.

We can use the same analysis with Joe and Dom DiMaggio’s bat-

ting averages. We’ll assume each brother came to the plate four 

times in each of his games. Joe’s 1941 batting average was 0.357, so 

the probability of his not getting a hit was 1 − 0.357 = 0.643 each 

time he walked to the plate. And the probability he would be hitless 

in four consecutive at- bats would be 0.6434 = 0.171.

The probability of Joe DiMaggio getting at least one hit in a game, 

then, would be 1 − 0.171 = 0.829. Since 5/6 = 0.833, you can simu-

late the odds with a single die: roll 1 through 5 and you get a hit; roll 

a 6 and you don’t. Can you hit like Joe and roll fi fty- six straight times 

without rolling a 6?
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 Worksheet: Joe DiMaggio Hitting Contest

Joe DiMaggio got a hit in 56 straight games.

1 Roll a die.

2 If you get 6, you end the game hitless and Joe wins the contest. 

Else, you get a hit in one game.

3 Keep track of your progress with the chart below, through 

56 games or until your streak ends.

 It’s unlikely you beat Joe in the hitting contest. If a thousand peo-

ple try, it’s likely none of them will beat him either. How unlikely? 

The probability of not rolling a 6 on one roll (that is, the probability 

of rolling a 1, 2, 3, 4, or 5) is 5/6 (0.833). The probability of not roll-

ing a 6 on two rolls is 0.833 × 0.833 = 0.8332. The probability of not 

rolling a 6 on three rolls is 0.8333. And the probability of not rolling 

a 6 on fi fty- six straight rolls is 0.83356, or about 0.000036. Calculat-

ing the inverse of that number— 1/0.000036— gives us the odds for 

matching Joe’s 1941 streak: about 1 in 28,000. Let’s compare that 

to the odds of hitting in thirty- four straight games (the length of 

Dom’s 1949 streak), which would be 0.83334, or about 1 in 500.

Playbook

The assumption of four at- bats per game is a simplifi cation. For one 

thing, walks do not count as at- bats. Ted Williams, who was walked 
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much more frequently than Joe, set a record in 1949 of 84 straight 

games in which he got on base via a hit or a walk.

Our computation estimates the probability of Joe’s hitting streak 

beginning at a given moment. We’ll see in chapter 10 that consis-

tency can also be integrated into such models.

So far, we’ve used the same batting average for Joe’s and Dom’s 

hitting streaks. To better compare the improbability of the brothers’ 

accomplishments, we need to use their individual batting averages. 

Let’s begin with Joltin’ Joe. We’ve already computed the probability 

of Joe DiMaggio getting at least one hit in a game with four at- bats 

as 0.829. So, the probability of his getting at least one hit in two 

consecutive games would be 0.8292; in three games, 0.8293; and in 

56 games, 0.82956. Calculating 1/0.82956, we see that this probability 

is about 1 in 36,000.

Dom’s batting average in 1949 was 0.307. So his probability of 

going hitless in a game would be (1 − 0.307)4 = 0.231, making the 

probability of getting at least one hit 1 − 0.231 = 0.769. The proba-

bility of Dom hitting in thirty- four straight 

games, then, is 0.76934, or about 1 in 7,500.

So far, Dom’s hitting streak looks less 

unlikely than Joe’s— but of course, it was 

shorter. What if he’d kept it up? The for-

mula is easy enough to adapt. Dom’s 

chances of matching his brother’s 56- 

game hitting streak would be 0.76956, or 

about one in 2.5 million. Comparing to 

Joe’s 1 in 36,000 odds, we fi nd that it was 

over 65 times more likely for Joe than Dom 

to hit in fi fty- six straight games.

Our analysis helps explain why Joe 

DiMaggio’s record has stood for eighty 

years. Joe’s 1941 batting average (0.357) 

was higher than his career average, 0.325; 
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using that number in our analysis would reduce his chance of a 

56- game hitting streak to about 1 in 460,000. Out of approximately 

twenty thousand MLB players since 1871, Joe’s is among the top 

fi fty career batting averages, and his 1941 number is among the 

top 210 single- season batting averages. So if you were in the stands, 

watching a black- and- white TV, or listening to the radio during Joe’s 

hitting streak, our analysis confi rms you would have been right to 

think you were witnessing a feat that was not only unforgettably im-

probable but quite possibly unrepeatable.

If you see an MLB hitting streak, use our formulas or grab a die and 

see if you can repeat the player’s success. So next to that penny from 

the last chapter, you may want to put a die. If you prefer more exact 

probabilities, add some scrap paper to run through the calculations.

 Analytic Toolkit

What if you don’t have a die handy? Simply type “roll dice” into 

Google and you’ll have an online, virtual dice roller. The default, as 

shown here, is one six- sided die. Click “Roll” again and again and see 

if you can have a hitting streak like Joe DiMaggio.

You can also use Google’s calculator. Type “(5/6)^56” into 

Google’s search bar; Google will do the math and return the value 

of 0.0000368002.
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 Personal Training— Workout #3

During the 2007– 8 season, the Houston 

Rockets had a 22- game winning streak, 

the second- longest in NBA history at 

the time. When the streak began, in late 

January, the team had won just over half 

its games and was tenth in the Western 

Conference. Halfway through the streak, 

the Rockets lost their leading scorer and 

only All- Star, Yao Ming. Still, they kept 

on winning, and when the streak ended, 

they led the conference.

Given their record when the streak 

began, let’s assume the Rockets had a 50% chance of winning any 

game.

Question: Assuming a 50% chance of winning any game, how im-

probable was it for the Houston Rockets to win 22 straight games?

Work out your answer, then check out the discussion in the back 

of the book.



4

R ACKING UP THE WINS

Winning streaks can be unforgettable. The United States kept the 

America’s Cup in sailing for 132 years. In 1967 Richard Petty won 

ten NASCAR races in a row. Boxer Rocky Marciano entered the pro-

fessional ring in 1947 and retired in 1956 with an undefeated 49– 0 

record. A more recent streak began in the fall of 2014 when the 

University of Connecticut women’s basketball team, already two- 

time defending NCAA champions, began winning even more— a 

lot more! For more than two years, they didn’t lose. Across three 

seasons, they won 111 straight games, including two more national 

championships. In the course of the streak, they won by ten or more 

points in all but three games.
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The Huskies, now four- time defending champions, entered the 

2017 March Madness tournament with over a hundred straight 

wins. Las Vegas rated them 21.5- point favorites, with a 97.9% 

chance of victory, in their Final Four semifi nal game against Missis-

sippi State. A $200 bet on Mississippi State would return $4,000 if 

the Bulldogs won.

You might not have bothered tuning in until you heard the game 

was in overtime, which was a rollercoaster. With twelve seconds to 

go the game was again tied. Mississippi State held the ball, and a 

shot at the buzzer by Morgan William sailed through the air, seem-

ingly in slow motion, sinking into the net. Game over. Streak over. 

History made!

Such an amazing streak 

is clearly improbable. But 

can we say just how improb-

able? If you were watching 

the University of Connecti-

cut women notch their 50th, 

100th, or 111th win, how 

could you estimate the odds?

In the last chapter, we 

analyzed Joe DiMaggio’s 

hitting streak. To attempt 

a similar analysis here, we 
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need to specify the probabil-

ity of the Huskies winning 

each of their games. Now, 

we could vary the probabili-

ties from game to game. If 

you are 50% likely to win a 

given game and 30% likely to 

win the next game, then the 

likelihood of winning both 

games would be 0.5 × 0.3 = 

0.15, or 15%. But determin-

ing distinct probabilities for 

111 games would certainly be tedious and possibly quite diffi cult. 

The Huskies won all but three of those 111 games by ten or more 

points, so it seems safe to say the probability of each win would be 

high. To get a broad sense of the streak’s improbability, let’s assume 

the same high probability of a Husky win for every game.

Recall that odds- makers gave the Huskies a 97.9% chance of 

beating Mississippi State. Let’s start off a tad more pessimistic and 

assume a consistent 95% chance of winning each game. The Hus-

kies’ likelihood of winning 111 straight games would then be 0.95111, 

about 0.34%. That seems low, given their many convincing wins. So 

let’s try the Vegas odds: assuming a 97.9% chance of winning each 

game, the likelihood of a 111- game winning streak becomes 0.979111, 

or just under 9.5%. Let’s roll dice and allow only one in 63 options 

to signal a loss, giving you a 99.5% chance of winning a game. With 

such odds of winning, how long will your winning streak be?

 Worksheet: UConn Winning Streak Contest

The UConn women’s basketball team won 111 straight games. How 

many can you win?

1 Roll three dice (or one die three times) to see if you win or lose 

a game.
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2 If you get three ones, you lose the game; else you win.

3 Repeat this until you lose a game or win 111 games. Tally your 

winning streak with the chart below.

 Did you achieve a long winning streak? Probably. With three six- 

sided dice, there are 63 = 216 possible outcomes. Since only one of 

those outcomes counts as a loss, the probability of winning each 

game is 215/216, or about 99.5%, and your probability of winning 

111 straight games is (215/216)111, or 

just under 60%. Could UConn have en-

joyed such a high probability? Possibly. 

Our 97.9% probability was based on the 

bookmakers’ odds for the semifi nal game 

against Mississippi State. The teams tak-

ing part in March Madness are stronger 

than average, so the Huskies’ likelihood 

of winning many of their games those 

three seasons was easily higher.

With so many convincing wins, the 

Huskies could almost have seemed des-

tined to rack up wins. Our computations 

demonstrate the importance of a team’s 

dominance in a long winning streak. A 

team that is 90% likely to win each game 

has 1 chance in about 120,000 of winning 

111 straight games. For such a winning 

streak to have at least a 50– 50 likelihood, 
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the probability of winning 

has to be above 99%. The 

Huskies’ 111- game winning 

streak is unforgettable, and 

so was their dominance.

We have now explored 

two streaks. For the Hus-

kies, it was winning games. 

For Joe and Dom DiMaggio, 

it was hitting in consecutive 

games. Let’s analyze one 

more streak— Elena Delle 

Donne’s free throw shooting. Delle Donne is the WNBA’s all- time 

leader in free throw percentage, at 0.9390. From 2013 to 2021, she 

shot 1,018 free throws and missed only 62; in 2019, she missed only 

3 in 117 attempts. In 2017 she tied the WNBA record for longest 

single- season streak, sinking 59 consecutive free throws. What is 

the probability of shooting 59 straight free throws? Assuming Delle 

Donne’s career average of 93.84% holds for each shot, 0.938459, or 

about 2.3%. If you assume only 90% free throw shooting, the feat 

becomes ten times less likely.

Playbook

Using formulas is usually faster than counting possibilities by hand. 

The US women’s gymnastics team competes with four gymnasts in 

the team competition. Assuming no ties, in how many ways can the 

four gymnasts fi nish fi rst, second, third, and fourth on the balance 

beam? We have four choices for fi rst, which leaves three choices for 

second, which leaves two choices for third, which leaves only one 

choice for fourth: 4 × 3 × 2 × 1 = 24 diff erent ways. This can be ex-

tended. Suppose we have eight swimmers in the Olympic fi nals for 

the women’s 50 meter freestyle. How many ways can the swimmers 

come in fi rst, second, third, and fourth? This time we have eight 

choices for fi rst, seven for second, six for third, and fi ve for fourth: 
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8 × 7 × 6 × 5 = 1,680. In these cases, we are placing items (gym-

nasts or swimmers) in an order. When we select from a set of options 

and order matters, we are dealing with permutations. Selecting four 

items from eight options and placing them in order is denoted P(8,4).

When we select from a set of options and order does not mat-

ter, we are dealing with combinations. For example, the number of 

ways nine fi nalists in the 100 meter dash can fi nish fi rst, second, and 

third is P(9,3), or 9 × 8 × 7 = 504. But in the Olympic trials, each of 

those top three fi nishers makes the team. If we want to know how 

many teams of three can be selected, the order in which they fi nish 

doesn’t matter. A team made up of player 1, player 2, and player 3 is 

the same as a team made up of player 2, player 1, and player 3. So of 

those 504 permutations, we need to remove those that are just re-

orderings of the same three items. How many ways can three items 

be ordered? P(3,3) = 3 × 2 × 1 = 6 ways. So the number of possible 

teams is P(9,3)/P(3,3) = 504/6 = 84, denoted C(9,3).

The formulas for permutations and combinations can be written 

more simply using the factorialfactorial (a number followed by an exclama-

tion point): n! = n × (n − 1) × (n − 2) . . . × 2 × 1 (so 3 × 2 × 1 in the 

preceding example can be denoted 3!). Here’s the general formula 

for permutations, the number of ways you can choose r items from 

a group of n, when order in which they’re chosen matters:

P(n,r) = n!/(n − r)!

And here’s the general formula for combinations, C(n,r) (said “n 

choose r”), where the order in which the r items are chosen does 

not matter:

C(n,r) = n!/((n − r)! × r!)

We never found an exact probability for Steph Curry’s shooting in 

chapter 2. There is only one way to win 111 straight games but mul-
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tiple ways to make eleven out of thirteen shots. You can miss two, 

then make eleven, or make eleven, then miss two, or mix up hits and 

misses. How many ways can one do this? Armed with C(n,r), we can 

extend our analytics toolkit and tackle this question.

To use this tool, we need two things. First, there can only be two 

outcomes. In this case, Curry could make his shot or miss his shot. 

Second, we need to specify the probability of each outcome. Steph’s 

three- point shooting average for the 2012– 13 season was 45.3%. So 

the probability of making a shot is 0.453. Since there are only two 

options, the probability of missing a shot is 1 − 0.453.

When you have two outcomes and know the probabilities of each, 

you have a Bernoulli trial, named after Swiss mathematician Jacob 

Bernoulli. Applying his work to games of dice and cards, Bernoulli 

studied such trials in Ars Conjectandi, published in 1713, which is 

considered a founding work in the fi eld of probability.

Bernoulli’s formula for computing the probability of making 11 

of 13 shots, given a shooting percentage of 45.3%, is C(13,11) × 

(0.453)11 × (1 − 0.453)2.

Let’s take this piece by piece. First, C(13,11) = 13!/(2! × 11!) = 

78— the number of possible combinations where the order of hits 
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and misses does not matter. Next, (0.453)11 represents Curry’s eleven 

successes (with probability 0.453), while (1 − 0.453)2 represents the 

two missed shots (with probability 1 − 0.453). Multiplying these 

pieces together gives us a probability of 0.00384, or just under 0.4%.

In general, the probability of r successes out of n attempts where 

the probability of each success is p is

C(n,r) × pr × (1 − p)(n − r)

So the probability of Curry making 13 of 17 three- pointers, as in the 

game mentioned at the end of chapter 2, is

C(17,13) × (0.453)13(1 − 0.453)4 = 0.00721.

The probability of the UConn women’s 111- game winning streak, 

given a 99% chance of winning each game, is also a Bernoulli trial:

C(111,111)(0.99)111(1 − 0.99)0 = (0.99)111

This is the same value we found earlier.

The highlight reel can now take on a whole new meaning. You 

are armed with a toolbox to analyze streaks. If the series is relatively 

short, like Curry’s 11 of 13 shots, and the shooting or hitting per-

centage can be easily approximated by fl ipping coins or rolling dice, 

a quick simulation can yield insights. For lengthier streaks, like the 

Huskies’ 111- game run, plug the numbers into Bernoulli’s formula, 

then grab a calculator or use Google to do the computation. These 

tools alone can clarify whether a highlight is actually an unforget-

tably improbable event.

 Analytic Toolkit

Google’s virtual dice roller, introduced in chapter 3, off ers the option 

of multiple dice. As before, type “roll dice” into Google, then click 

the square in the row above the “Roll” button twice to add two more 
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six- sided dice to the one that appears by default. (The roller also of-

fers 4- , 8- , 10- , 12- , and 20- sided dice.) Click “Roll” repeatedly and 

see if you can match the UConn women’s basketball team’s winning 

streak.

 Personal Training— Workout #4

Combinations play an important role in computing probabilities. 

The 2019– 20 National Hockey League playoffs were scheduled to 

 begin in April, a few days after the end of the regular season. The sea-

son was suspended in March due to the COVID- 19 pandemic, and in 
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late May, the league settled on a 24- team playoff in lieu of the usual 

format. The playoffs were held in two “hub” cities— Edmonton and 

Toronto— to reduce team travel and minimize the risk of spreading 

COVID- 19.

Question: Possible playoff locations were limited to Canadian cit-

ies. From the seven Canadian cities with NHL arenas (Calgary, To-

ronto, Edmonton, Vancouver, Ottawa, Winnipeg, and Montreal), 

how many ways could the two hubs be selected?

Work out your answer, then check out the discussion at the back 

of the book.
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UNBREAKABLE TENNIS

There have been many great rivalries in tennis history: Serena Wil-

liams versus Venus Williams, Rafael Nadal versus Roger Federer, 

Steffi  Graf versus Monica Seles, John McEnroe versus Bjorn Borg, 

Martina Navratilova versus Chris Evert, Pete Sampras versus Andre 

Agassi. Such rivalies can stretch over decades. Tennis fans watch as 

the players’ games evolve with age and experience. In some cases, 

the players themselves evolve, as exemplifi ed by Andre Agassi’s hair, 

which transitioned from a 1990s rocker look to clean- shaven.

A tennis match is broken into sets. The best of three or fi ve sets, 

depending on the match, determines the winner. A set is broken 

into games. The fi rst player to reach six or seven games, and to be 
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ahead by two games, wins the 

set. If the set reaches a 6– 6 tie, 

a tiebreaker takes place, and 

whichever player reaches seven 

or more points with a lead of 

two points the set. Throughout 

the match, service alternates— 

one player serves in the fi rst 

game, the other in the sec-

ond, and so on— as the server 

has a signifi cant advantage. 

For the best players, the per-

centage of service games won 

can be as high as 90%. Andre 

Agassi, over his career, served 

in 10,419 games and won 84% 

of them. We can simulate Agassi’s winning percentage in service 

games by rolling a die. As long as you don’t roll a six (83.3% likely), 

Agassi wins the game and “holds serve.”

But we can also get more granular and simulate a game point by 

point. For each point, a ball is served; if it lands in the service box, 

play proceeds until the point is won. If it lands outside the service 

box, the server is given a second serve. That serve either lands within 

the service box and play proceeds, or the point is lost by the server 

with a “double fault.” The fi rst player to win four or more points 

and be ahead by two points wins the game. In a tennis game, the 

score begins at “love,” or zero points. Winning a point takes a player 

to 15, then 30, then 40, and then game point, which wins the game 

unless the players are tied at 40– 40, which is called “deuce.” From 

deuce, the game proceeds until a player pulls ahead by two points.

To simulate Agassi’s play point by point, we’ll use his career ser-

vice stats:

• fi rst serves in: 41,133/65,690 = 62.62%

• fi rst serves won: 29,998/41,133 = 72.93%

• second serves won: 13,256/24,557 = 53.98%
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Think about how we might estimate these stats by fl ipping a 

coin. Then use the worksheet to play point by point in an Agassi 

service game.

 Worksheet: Serve Like Agassi

To play a point like Agassi, follow these steps:

• First serve: fl ip a coin three times.

° If exactly two tails, serve is out. Go to second serve.

° Else, serve is in. Play proceeds: fl ip a coin two times.

• If exactly two tails, Agassi loses the point.

• Else, Agassi wins the point.

• Second serve: fl ip a coin one time.

° If tails, Agassi loses the point.

° If heads, Agassi wins the point.

How many straight service games can you win as Agassi?

 The 2001 US Open quarterfi nal match between Andre Agassi, 

seeded #2 in the tournament, and Pete Sampras, seeded #10, 

was a meeting of legends. Over his career, Sampras had held the 

world’s #1 ranking for a 

then- record 286 weeks. 

Agassi had topped the 

list for 101 weeks.

Sampras’s serve is of-

ten listed as one of the 

best ever in men’s ten-

nis. Agassi was known 

for his return. When 

the two met for the 2001 

 quarterfi nal in Arthur 
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Ashe Stadium, they had played 

each other thirty- one times, 

with Sampras winning seven-

teen matches. That day’s match 

would immediately be the talk 

of tennis.

The fi rst set reached a 6– 6 

tie with neither player los-

ing serve. The tiebreaker then 

reached 7– 7 before Agassi 

pulled away and won 9– 7, thus 

taking the fi rst set 7– 6. To this 

point in his career, Agassi had 

won all but one of fi fty matches 

in which he won the fi rst set. In 

his meetings with Sampras, the 

winner of the fi rst set had won twenty- four of the thirty- one previ-

ous matches.

The second set also reached a 6– 6 tie without a loss of serve, as 

did the third, and the fourth. In the end, despite Agassi’s fi rst- set 

momentum, Sampras won 6– 7, 7– 6, 7– 6, 7– 6. In the entire match— 

forty- eight straight games— neither player lost serve. Let’s estimate 

the probability of this remarkable event.
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We’ve already tried playing as Agassi. Now, we’ll also play as Sam-

pras. His service game stats are:

• fi rst serves in: 39,508/66,435 = 59.47%

• fi rst serves won: 31,969/39,508 = 80.92%

• second serves won: 14,167/26,927 = 52.61%

We will assume that both play-

ers’ career stats translate into 

probabilities for this match. They 

wouldn’t entirely. In playing Sam-

pras, Agassi was returning one of 

the best serves in tennis history. 

And Sampras was playing against 

 Agassi’s legendary return of a sec-

ond serve. But even without exact 

probabilities, we can get a sense 

of the improbability of their un-

breakable match.

To play like Sampras, we’ll use 

a batch of random numbers be-
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tween 0 and 1. How do we get them? One way is to open a Google 

Sheets spreadsheet and type =RAND() into 100 cells— and there 

they are!

Armed with randomness, here is how a computer can play like 

Pete Sampras:

• Pick a uniform random number between 0 and 1. If the number 

is less than 0.5947, Sampras’s fi rst serve goes in.

• If the fi rst serve goes in, pick another uniform random number 

between 0 and 1. If it is less than 0.8092, then Sampras wins the 

point.

• If the fi rst serve didn’t go in, pick a uniform random number be-

tween 0 and 1 for the second serve, and if it is less than 0.5261, 

then Sampras wins the point.

Now that we can simulate both Agassi’s and Sampras’s service games, 

we just keep track of how many points each player has and who wins 

each game. If Sampras is serving and Agassi wins, then Sampras 
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didn’t hold serve. Simulating 

100,000 service games for each 

player, Pete Sampras holds serve 

89% and Andre Agassi 84% of 

the time, with these percentages 

being the same across multiple 

simulations.

So what is the probability 

of a set reaching a 6– 6 tie, with 

neither player losing serve? The 

probability Sampras wins six 

straight service games is 0.896 = 

49.7%. Similarly, the probability 

Agassi wins six straight service 

games is 0.846 = 35.1%.

The probability of Sampras 

and Agassi reaching 6– 6, then, is 0.497 × 0.351 = 17.4%. So the 

probability of their playing four sets with neither player losing serve 

is about 0.1744 = 0.1%, or about 1 in 1,000— all the more striking 

when you remember that the players only met thirty- fi ve times over 

their entire careers.

Playbook

A big advantage of computer simulation is the speed of digital 

computation. It’s impractical to roll a die a hundred thousand times, 

but a computer can quickly run ten thousand, a hundred thousand, 

or even a million simulations. Simulation is, by defi nition, based on 

 randomness, so computations can vary. To compute the probabil-

ity of an event occurring, program a computer to simulate the phe-

nomenon. If you divide the number of times the event occurs in the 

simulation by the total number of simulations, you get an estimated 

probability for the event. How reliable is that number? A quick test is 

to run the experiment again. Do the estimated probabilities agree to 
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a suitable number of decimal places? If not, increase the number of 

simulations. For instance, suppose you run ten thousand simulations 

and get 0.15 for the estimated probability of success— but then get 

0.11 on the next run. Want more accuracy? Increase the number of 

simulations to twenty thousand, fi fty thousand, or more.

This isn’t the only improb-

able outcome in a tennis match. 

Consider a golden match, which 

occurs when a player does not 

lose a single point in an en-

tire match. There are only four 

 documented golden matches, 

the fi rst attributed to Hazel 

Wightman in a 1910 amateur 

match. Wightman dominated 

women’s tennis, winning seven-

teen Grand Slam titles and forty- 

fi ve US titles during her  career. 

She is known as the “Queen 

Mother of American Tennis” 

or “Lady Tennis” for her life-

long contributions to women’s 

tennis.

By using a computer in this 

chapter, we could integrate a more complicated game structure, 

simulating a tennis match point by point. While computer simula-

tion allows greater precision than rolling a die or fl ipping a coin, 

we saw again how those simple methods could give a sense of the 

improbability of an event. So, keep that die and coin handy if you 

decide to watch tennis. If you want to be more exact in your com-

putations, you can turn on your computer and have it simulate a 

seemingly improbable game, set, or match. If you code, you can 
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write a program to simulate the game many times. Or you can have 

a spreadsheet pick random numbers and play the game yourself to 

get a sense of whether you are watching the improbable and pos-

sibly unforgettable.

Analytic Toolkit

Again, you can type =RAND() in a cell of a Google Sheets spread-

sheet to produce a random number. There are also online random 

number generators. Remember, our random numbers should be uni-
formly distributed over the interval 0 to 1, that is, they should be 

equally likely to be any number in that range. Uniform distribution is 

important since other options are also available with random num-

ber generators.

Personal Training— Workout #5

Let’s have a personal training workout with Serena Williams, whose 

serve has been clocked at 128 mph (at the Australian Open in 2013). 

Between 2012 and 2017, accord-

ing to ESPN, Serena’s percent-

age of aces (unreturned fi rst 

serves) was 14.4%. For compari-

son, the ace percentage in all 

women’s matches from 1999 to 

2020 was 4.5%. Let’s look at Wil-

liams’s 2012 Wimbledon semi-

fi nal against Victoria Azarenka, 

where Serena hit an astounding 

24 aces in 71 serves, according 

to tennisabstract.com.
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Question: Assuming a 14.4% chance of serving an ace, what’s the 

probability of Serena Williams having exactly 24 aces in 71 serves?

Approach 1: Treat this as a Bernoulli trial (described in the last 

chapter) and compute the probability.

Approach 2: Feeling fuzzy, or simply want to confi rm your Ber-

noulli trial calculation? Write a computer simulation to estimate 

the probability. Explain the steps in the program.

See what you come up with, then check out the discussion in the 

back of the book.
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IMPROBABLE NFL PL AYOFF

The 2019 National Football League AFC wild- card playoff game 

started off one- sided. A touchdown and two fi eld goals had the Buf-

falo Bills up 13– 0 at halftime, and another fi eld goal in the third 

quarter made it 16– 0. Then came the rollercoaster. The Houston 

Texans scored nineteen straight points. Buffalo seemed set to at-

tempt a tying fi eld goal, but didn’t. Houston only needed to pick up 

a fi rst down to win, but didn’t. The Bills had one last chance for one 

last drive and, with no timeouts and seconds on the clock, evened 

the score with a fi eld goal, sending the game to overtime.

Announcers marveled. A score of 19 is unlikely, a 19– 19 tie all the 

more improbable. How improbable? To answer that, we fi rst need 

to consider how a team might reach a score of 19 points. Some com-

binations seem less remarkable than others. The Bills, for instance, 
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scored a touchdown and extra point, followed by four fi eld goals. 

The Texans, by contrast, took a less likely route: a touchdown with 

a two- point conversion, then a fi eld goal, then another touchdown 

with a two- point conversion.

There are eighteen possible ways to score 19 points in the NFL, 

some of which would only result from bizarre play on the fi eld. 

Among the scoring combinations:

• 3 + 3 + 6 + 7: two fi eld goals, two touchdowns with only one 

extra point

• 7 + 7 + 3 + 2: two touchdowns with extra points, a fi eld goal 

and a safety

• 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3: eight safeties and a fi eld goal

Can you work out the other thirteen?
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How much more likely are some of these scoring scenarios than 

others? Let’s next look at how often different scoring events oc-

curred in the 2019– 20 NFL season.

Scoring event Occurrences

Touchdown (6 points) 1,244

Extra point (1,210 attempted) 1,136

Two- point conversion (113 attempted) 54

Field goal (3 points) 802

Safety (2 points) 17

Total drives 5,728

(This list includes only rushing and reception touchdowns, not 

kickoff and punt returns and turnovers returned for a touchdown.) 

Given the frequency of each scoring event and the total number of 

possessions, we can compute some probabilities.

• touchdown (TD): 1244/5728 = 0.217

• extra point after TD: 1136/1210 = 0.934

• two- point conversion after TD: 54/113 = 0.478

• fi eld goal: 802/5728 = 0.140

• safety: 17/5728 = 0.00297

We can approximate these probabilities by rolling a die.

 Worksheet: NFL Drive

Roll a die four times to determine the outcome of your NFL 

possession:

• Safety— if you roll four 2’s, four 3’s, four 4’s, or four 5’s, giving a 

probability of 4/1296 = 0.003.

• Touchdown— if you roll

° 1 on the fi rst roll, giving 63 = 216 options or

° 2- 3 or 3- 4 on the fi rst two rolls giving an additional 2 × 
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62 = 72 options, so the probability of a touchdown is (216 + 

72)/64 = 0.22).

• Field goal— if you roll 6 on the fi rst roll, giving a probability of 

63/64 = 0.17.

When you score a touchdown, you get 6 points. Determine if you add 

0, 1, or 2 additional points by rolling a die twice. Note that two- point 

conversions are attempted after a touchdown 113/(113 + 1210), or 

8.5% of the time.

• If you roll 1- 1, 2- 2, or 3- 3, you are attempting a two- point conver-

sion, which equates to a probability of (3 × 62)/64, or 8.3%. Roll 

one die a third time, and if you get 1, 2, or 3, you score 2 points, 

which occurs 50% of the time!

• Otherwise (if you didn’t roll 1- 1, 2- 2, or 3- 3) you are attempting an 

extra point. Roll one die two more times. If you roll anything but 

1- 1 or 2- 2, you score 1 point, which occurs with a probability equal 

to 1 − (2 × 62)/64 = 0.944.

NFL teams average about twelve off ensive possessions per game. 

So, using one die, you can simulate the scoring in an entire game by 

playing twenty- four possessions— twelve for each team— according 

to the rules above. Just tally up the points to compute the fi nal score.
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 How often do you get 19? Which scores are most common? To 

determine this, we need to play a game many times. So let’s turn 

again to the computer. We’ll play over a million games and keep 

track of how often 19 points are scored by one of the teams, and in 

what combination.

How do we get a computer to simulate this type of game? Let’s 

simplify things and only consider our earlier probabilities for a 

touchdown (0.217), fi eld goal (0.140), or safety (0.00297). The com-

puter will again pick random numbers that are equally likely to be 

any number between 0 and 1. Here are the steps for the computer:

• Pick a uniform random number between 0 and 1. If the number 

is less than 0.217, a touchdown is scored. Then, pick another 

uniform random number.

• If the number is less than 0.085, a 

two- point conversion is attempted. 

Pick another uniform random num-

ber, and if it is less than 0.478, the 

two- point conversion succeeds.

• Else (if the number is greater than 

or equal to 0.085), an extra point is 

attempted. Pick another uniform 

random number, and if it is less than 

0.934, an extra point is scored.

• If the number is greater than or equal 

to 0.217 and less than 0.217 + 0.140 = 

0.357, a fi eld goal is scored.

• If the number is greater than or equal 

to 0.357 and less than 0.217 + 0.140 + 

0.00297 = 0.360, a safety is scored on your possession giving the 

other team 2 points.

• Else, the possession doesn’t end in a touchdown, fi eld goal, or 

safety.

When we have a computer play many games following this pro-

cedure, with twelve possessions per team, and tabulate the fi nal 
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scores, we fi nd that scores like 20 or 17 

are more than twice as likely as scores of 

19. There is only a 2.9% chance of scor-

ing 19 points. The most likely way to get 

to 19 points is two fi eld goals and two 

touchdowns with only one extra point. 

Not far behind is the Bills’ combination: 

one touchdown with an extra point plus 

four fi eld goals. The chance of getting 

two touchdowns, both with two- point 

conversations, and a fi eld goal is only 

0.01%. We’re about a hundred times 

more likely to reach 19 points the way the 

Bills did than the way the Texans scored. 

Consider the game’s mix of improbable 

and even more improbable events, and it 

becomes all the more memorable.

Oh yes, how did the game turn out? In 

overtime, Houston quarterback Deshaun 

Watson was sandwiched between rush-

ers. He bounced off one, then another, before throwing a short pass 

to Taiwan Jones, who darted down the fi eld for a huge gain. The next 

play, following two timeouts, was a successful fi eld goal. The game 

ended 22– 19, with the Texans’ kicker being hoisted into the air.

When will the next seemingly improbable game occur? When it 

does, start rolling a die or run some computer code to see just how 

improbable it is.
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Analytic Toolkit

Where do all the stats come from? How do we know the number of 

drives, touchdowns, fi eld goals, and safeties in a season? The collec-

tion of databases at www .sports -  reference .com boasts a huge array 

of stats on professional and college sports. I looked up the NFL’s 

2019– 20 season (at www .pro -  football -  reference .com/ years/ 2019/), 

then searched for stats on drives and scoring off ense.

How diff erent are other years’ statistics? What if you combine 

years? Dig in and develop your own analyses!

Personal Training— Workout #6

We developed a way to simulate a game of foot-

ball by rolling dice. Let’s take two steps toward 

simulating baseball in the same way.

In the 2016 Major League Baseball season (ac-

cording to baseball -  reference .com), there were 

165,561 at- bats resulting in 27,539 singles, 8,254 

doubles, 873 triples, and 5,610 home runs. We 

can convert each to a probability and link this 

to some roll or combination of rolls of a die. For 

each at- bat in 2016, there was a 27,539/165,561 

= 0.166 probability of hitting a single. We can 

simulate this by rolling one die. If you roll a 1, you hit a single, since 

1/6 = 0.166. The chances of hitting a double (8,254/165,561 = 0.050) 

are similar to those of fi rst rolling a 2 and then rolling either a 1 or a 

2 (2/36 = 0.055).

Question: What roll or combination of rolls would you choose to 

approximate a home run in a simulation where the roll of three dice 

determines the outcome of an at- bat?

Decide on your optimal roll or combination of rolls, then check 

out the discussion at the back of the book.
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FIFA OCTOPUS OR ACLE

The most popular sports around the world vary— cricket may fi ll 

screens in India while sumo streams in Japan. Still, some sporting 

events are worldwide phenomena, and few if any are bigger than 

the FIFA World Cup. A combined 3.6 billion viewers— more than 

half the global population aged four and over— tuned in to the 2018 

competition.

Along with the scores, tackles, yellow and red cards, and penalty 

kicks come the inevitable predictions. Who will win each match? 

Who will make it out of the group stage? Will a perennial power-

house chalk up another championship, or will an underdog make 

history? In the 2010 men’s World 

Cup, Spain gained bragging rights 

with a 1– 0 victory in the fi nal over 

the Netherlands. But not all the 

stars were on the pitch. In fact, 

one was not even on dry land.

Paul the Octopus, who lived at 

the Sea Life Center in Oberhau-

sen, Germany, established him-

self as an animal oracle. As the 

tournament progressed, his un-

canny knack for predicting win-

ners caught worldwide attention. 
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He correctly predicted all seven of Germany’s games, including its 

semifi nal loss. He also predicted Spain’s win over the Netherlands 

in the fi nal.

How did Paul pick his winners? To divine the result of an up-

coming match, his keepers would present him with two boxes, each 

containing a mussel. The boxes were identical except for the fl ags 

that adorned them. The predicted winner was the team whose fl ag 

decorated the box Paul ate from fi rst.

Was the seeming accuracy of Paul’s selections simply luck? Let’s 

look at his string of correct predictions for Germany’s seven games. 

We’ll start by assuming his picks were random, equivalent to fl ip-

ping a coin. Flip a coin seven times. Do you get all heads? We’ve 

seen this type of analysis. The chances of fl ipping seven consecutive 

heads are (1/2)7, which is 1 in 128, about 0.78%. Could guesswork 
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achieve that? We’ll return to 

this question in a moment.

Over Paul’s two- and- a- half- 

year life, he mainly predicted 

the outcomes of the German 

national team’s international 

matches. At his death, Paul 

had a success rate of 85.7%, 

having predicted twelve of 

fourteen matches.

His correct prediction for 

the 2010 fi nal made Paul an instant hero in Spain. The Spanish 

team held the trophy high after their win. The next day, the aquar-

ium presented Paul with his own (fake) World Cup trophy, contain-

ing mussels— and a Spanish town made him an honorary citizen.

Paul’s success was certainly memorable, but is his celebrated 

clairvoyance unforgettable? Let’s compute the probability of match-

ing Paul’s performance with coin fl ips.
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As with his predictions of Germany’s fate in the 2010 World Cup, 

we can assess his lifetime record with coin fl ipping. Flip a coin four-

teen times and see if you get twelve heads. As always, you could re-

peat those fourteen fl ips a million times and tabulate the likelihood 

of getting twelve heads. But instead, let’s calculate it. Remember the 

Bernoulli trial from chapter 4? Using that formula, our chances here 

become C(14,12) × p12 × (1 − p)2 = ((14 × 13)/2 × 1) × (0.5)12 × (1 − 
0.5)2 = 91 × (0.5)14 = 0.00555.

If happenstance led Paul 

to his successful guesses, 

we would expect roughly 

equal numbers of hits and 

misses. He would have been 

just as unlikely to make only 

two correct predictions as 

to miss only two. Making 

fewer than two or more than 

twelve correct predictions 

would be even less likely. If 

Paul were guessing, what’s 
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the probability that he could generate 0, 1, 2, 12, 13, or 14 correct 

predictions from fourteen random guesses?

To restate this question: What’s the probability that random 

chance (a coin fl ip) will generate results equal to or rarer than Paul’s 

guesses?

 Worksheet: Paul the Octopus’s Predictions

Let’s make FIFA predictions by guessing.

1 Flip a coin 14 times.

2 Keep track of the number of heads and tails in the grid below.

3 You match Paul’s unlikeliness by getting heads 2 or 12 times.

4 You beat Paul’s unlikeliness by getting heads 0, 1, 13, or 14 

times.
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 Just as before, the Bernoulli trial allows us to compute these 

probabilities exactly. Making 12, 13, or 14 correct guesses has a 

likelihood of (14 × 13)/(2 × 1) × (0.5)14 + 14 × (0.5)14 + (0.5)14 = 

0.00647, or 0.65%. Making 12, 13, or 14 incorrect guesses is exactly 

as likely, since the probability of being right (heads) is the same as 

that of being wrong (tails) when you fl ip a coin. So this probability, 

too, is also about 0.65%.

The overall probability, then, of guessing right or guessing wrong 

two of fewer times out of fourteen is 1.3%. That’s about 1 in 75. 

Some argue that this may be mildly memorable but isn’t especially 

improbable. That’s not just anti- octopedal naysaying. Given the 

worldwide notoriety of the World Cup and the number of different 

ways people try to divine the outcomes, someone or something will 

have a higher than expected success rate, and Paul could simply be 

the one who got lucky.
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In statistics our result of 1.3% is called a p- value. In fact, it’s a 

strong p- value, which could make someone sit up and take notice. 

It’s not compelling evidence for octopus ESP, just suffi cient rea-

son to seek to replicate the result. Could Paul predict another FIFA 

World Cup as accurately? We’ll never know. So the source of Paul’s 

predictive power remains an unanswered question.

Analytic Toolkit

A p- value is a measure of the probability that an observed diff er-

ence could be the result solely of random chance. The lower the p- 

value, the greater the statistical signifi cance. A p- value of less than 

0.05 (5%) is often the threshold for calling something statistically 

signifi cant. Depending on the application, a p- value of 0.01 may be 

required.

Personal Training— Workout #7

In 2015, President Barack Obama correctly pre-

dicted Connecticut as the women’s March Mad-

ness champions. He didn’t fare as well on the 

men’s side of the tournament, which was noticed 

by Emilia, an eleven- year- old North Carolinian, be-

fore the 2016 tournament. “You are a great presi-

dent, just not the best bracket picker,” she told 

him in a letter.

Obama’s 2016 bracket predicted the 13- seed Uni-

versity of Hawaii’s major upset of 4- seed University 

of California, Berkeley. Keep in mind, Obama grew 

up in Hawaii. Overall, Obama correctly picked 23 of 

32 games in the fi rst round of the 2016 men’s tour-

nament. Could he have just been guessing? Our 

analysis of Paul’s picks can help us answer.
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Question: What’s the probability that random chance (a coin fl ip) 

would generate results at least as good as Barack Obama’s 23- of- 32 

fi rst round 2016 March Madness picks?

Work on your answer, then turn to the back of the book for a dis-

cussion of this question.
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SUPER- SIZED SUPER BOWL TD

In late January 1986, the Chicago Bears met the New England Patri-

ots for Super Bowl XX in the New Orleans Superdome.

The Bears were coached by Mike Ditka, who had played tight end 

for the Bears during their last trip to the championship game, which 

they won in 1963, before the advent of the Super Bowl.

The 1985– 86 Bears had lost only one of their eighteen regular and 

postseason games that year. By contrast, the Patriots had lost fi ve, 

and hadn’t won their division.

The game started well for the Pa-

triots, who took the quickest lead in 

Super Bowl history (at the time) when 

Tony Franklin kicked a 36- yard fi eld 

goal only a minute and 19 seconds 

into the game. The glimmer faded 

quickly, though, as the Bears built a 

23– 3 lead by halftime. At that point, 

Chicago had gained a total of 236 

yards versus New England’s −19.

The outcome almost seemed pre-

destined. The Bears had posted the 

best regular season record at 15– 1. 

Some of the players had recorded a 
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rap song, “The Super Bowl Shuffl e,” the day after their only loss of 

the season and two months prior to the championship game. The 

single sold half a million copies; in February it would peak at No. 

41 on the Billboard Hot 100 chart, and it was even nominated for a 

Grammy.

The telecast of the game was watched by an estimated 92.6 mil-

lion viewers. Bears defensive end Richard Dent had 1.5 quarterback 

sacks, two forced fumbles, and one blocked pass, and was named 

the game’s Most Valuable Player.

The moment that will be the focus of our analysis came in the 



64 ·  C H A P T E R  8

third quarter when 300- pound- plus defensive tackle William “the 

Refrigerator” Perry trotted onto the fi eld and lined up as a running 

back. The ball was snapped, and Bears quarterback Jim McMahon 

handed the ball to the Fridge, who hurled his body forward for a 

one- yard touchdown, spiked the ball, and cemented a place in the 

Super Bowl highlight reels and in popular culture.

The game ended with the Bears winning 46– 10, setting a new 

NFL record for margin of victory. The Bears also set or tied Super 

Bowl records for sacks (7) and fewest rushing yards allowed (7).

The team had many notables. Ditka was named NFL Coach of the 

Year by AP, Sporting News, and UPI. Mike Singletary was the NFL’s 

Defensive Player of the Year. The defense is frequently cited as one 

of the best in NFL history. Many elements of Super Bowl XX could be 

analyzed. We’ll examine that one- yard rushing touchdown.
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Before the game, the 

most probable pick for 

a Bears rushing touch-

down was future Hall of 

Fame running back Wal-

ter Payton— the season’s 

UPI NFC Player of the 

Year. Payton also held re-

cords for career rushing 

yards, touchdowns, car-

ries, yards from scrim-

mage, and all- purpose 

yards.

Perry’s rushing touchdown extended a very different record. 

In a Monday- night game during the regular season, the Bears had 

needed one yard to score a touchdown and break a second- quarter 

tie. As he would at the Super Bowl, McMahon handed the ball to 

Perry, who rumbled into the endzone, becoming the heaviest man 

in NFL history to score a running touchdown off a set play.

Perry’s touchdowns prompted signifi cant fanfare. Were they un-

forgettably improbable or merely a by- product of the Bears’ acco-

lades and pop culture status? Let’s dig into the numbers.

Among players who 

have scored Super Bowl 

rushing touchdowns (as 

of 2020), Perry is the heavi-

est. That season, he was 

listed at 325 pounds— 125 

pounds more than Payton 

and 60 pounds more than 

the next heaviest player 

to score a Super Bowl 

rushing touchdown. The 

Fridge is clearly an outlier 

within that select group. 
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But Perry was also a defensive 

tackle. How heavy was he for 

that position? If another de-

fensive tackle launches into 

an endzone, should we ex-

pect a Fridge- like weight?

If we look at weights of 

some three thousand NFL 

defensive ends and tackles 

drafted between 1938 and 

2013, we fi nd that 97.74% 

these players weighed less 

than 325 pounds, putting Perry near the top in weight even for 

his position. We can plot these numbers in a histogram, which re-

sembles a bar chart but groups quantitative data into ranges. In 

our histogram showing the distribution of end and tackle weights, 

the highest proportion of weights are between about 250 and 268 

pounds (the value on the x- axis is the integer nearest the midpoint 

of the associated bar). The width of each bar is about nine pounds.
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Our histogram’s shape is similar to a normal distribution (or bell 

curve). A normal distribution represents a continuous probability, 

as opposed to a set of discrete probabilities like those for the pos-

sible outcomes of rolling a die. In the bell curve shown here, the 

dotted line occurs at the average value (also known as the mean) of 

the dataset. Some normal distributions are fl atter than others. This 

is captured in the standard deviation, which represents how much 

data varies. The bigger the standard deviation the more the under-

lying data varies and the fl atter the bell curve. For data following a 

normal distribution, you can fi nd the percentage of data between 

two values, or less than a given value, if you know the mean and 

standard deviation.
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For a normal curve, approximately 68% of the data lies within 

one standard deviation of the mean and 95% of the data lies within 

two standard deviations of the mean. Our NFL defensive end and 

tackle weights have an average of 272.42 pounds and a standard de-

viation of 25.98; Perry’s weight is (325 − 272.42)/25.98 = 2.02 stan-

dard deviations above the average. Note that Perry’s weight is on 

the far right side of the curve. Half of the weights more than 2.02 

standard deviations from the mean are on the right side (heavier 

than Perry) and half are on the far left (more than a hundred pounds 

lighter than Perry), so approximately 97.7% of NFL defensive ends 

and tackles are lighter than Perry, assuming a normal distribution 

of the data. In fact, exactly 97.3% of the data points were less than 

Perry’s weight, demonstrating the quality of our estimate.

Rolling dice can approximate an event with a normal distribu-

tion. The probabilities of rolling sums from 2 to 12 with two six- 

sided dice are easy to compute. For example, there are six ways to 

roll a sum of 7 (1- 6, 2- 5, 3- 4, 4- 3, 5- 2, 6- 1) out of thirty- six possible 

rolls (6 × 6 = 36), so the central bar on the histogram is the highest, 

representing a probability of 6/36 = 0.16. There is only one way to 

roll a sum of 12: 6- 6. So the probability of rolling a sum of 12 with 

two dice is 1/36; thus, the probability of rolling a sum less than 12 

is 1 − 1/36, or 0.972 (97.2%)— close to the chance that a random 

player pulled from our data will weigh at least 325 pounds.
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Worksheet: Weight and NFL Defensive Tackles

Each roll simulates pulling a random player who has played defen-

sive line or defensive tackle in the NFL.

1 Roll two dice (or one die twice).

2 If you roll a 12 (two 6’s), then your player weighs at least 325 

pounds.

3 Else, your player weighs less than the Fridge.

Try it several times. Did you get anyone heavier than Perry? If so, 

how many?

In the other chapters’ worksheets, we estimate an underlying 

probability. Here, the unlikeliness of a player of Perry’s weight 

rushing for a Super Bowl touchdown is evident. Perry is an outlier 



70 ·  C H A P T E R  8

in weight even for his defensive position. Further, he ran the ball, 

which is uncommon for that position. And not only did he run the 

ball, he scored a touchdown in the Super Bowl. All of this under-

scores why Perry’s one- yard rushing touchdown launched him into 

Super Bowl lore.

 Analytic Toolkit

Our histogram of the weights of defensive linemen was similar to a 

normal distribution but not a perfect match. This is to be expected. 

Let’s create a histogram showing the results of rolling a die twelve 

times.

You’ll notice that I didn’t even roll a 2. The sample size is too small 

to know if we have a fair die. So let’s roll it ten thousand times (a 

sample three times larger than our weight dataset). The new his-

togram still does not show exactly a 1/6 probability for each pos-

sible outcome due to randomness, but the distribution is very close 

to even.
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 Personal Training— Workout #8

Kareem Abdul- Jabbar, who played in the Na-

tional Basketball Association from 1969 to 1989, 

stood 7 feet, 2 inches tall. Yet he wasn’t the tall-

est NBA player. Manute Bol, who played from 

1985 to 1995, was a towering 7 feet, 7 inches. If 

we plot NBA players over sixty- seven seasons be-

ginning in 1950, we fi nd a fairly normal curve of 

heights. While Kareem might not be the tallest, 

let’s get a handle on how tall he is in terms of 

the data.

Question: The mean height of our NBA player 

dataset is 6 feet, 6 inches, with a standard devia-

tion of 3.65 inches. How many standard devia-

tions from the mean is Kareem Abdul- Jabbar’s 

height?

Calculate your answer, then turn to the back 

of the book for a discussion of this question.
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SCORING CONFIDENCE

In April 2019, a crowd of over seventeen thousand watched Alex Mor-

gan race toward the goal, sidestep an Australian defender, and, with 

a sliding kick, place the ball into the net. The spectators erupted, 

knowing they had just witnessed the American soccer star’s one 

hundredth career goal in international competition.

Morgan’s run to this milestone culminated in a scoring streak of 

twenty- seven goals in thirty- two games that began in 2017. Anticipa-

tion built as she scored goal 98 against Scotland in November 2018, 

but the next two goals required patience. Goal 99 came more than 

three months later, at the end of February 2019, against Japan. in 

late February 2019. Finally, some fi ve weeks later, Morgan hit the 

century mark.
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Morgan’s scoring skill had been evident early in her career. At 

the 2011 World Cup, the twenty- two- year- old— the youngest player 

on the US roster— scored in the semifi nal against France and again 

in the fi nal against Japan. She would be the third youngest player 

in the history of US women’s national soccer to score 100 goals (at 

29 years, 276 days). Only Mia Hamm (26 years, 185 days) and Abby 

Wambach (29 years, 47 days) had been younger. She was also the 

fourth fastest: only Wambach (129 caps), Michelle Akers (130), and 

Hamm (156) had needed fewer games.

Let’s convert these stats to goals per cap. Morgan scored 100 goals 

in 159 international games, for an average rate of 100/159 = 0.629 

goals/cap. (The term “cap” comes from the time when players re-

ceived actual caps for international play.) Wambach averaged 0.775 

goals/cap; Akers, 0.769 goals/cap; and Hamm, 0.641 goals/cap.

Game- to- game performance fl uctuates, of course. There were 
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months in which she scored no 

goals, and games in which she 

scored two or three (a complica-

tion, discussed later, that we will 

ignore in our fi rst simulations). 

Can we nonetheless use Mor-

gan’s stats to get a sense of her 

underlying ability?

Let’s simulate Alex Morgan’s 

play with the roll of a die. In 

chapter 2, we gave ourselves a 

three- point shooting percentage 

slightly better than Steph Cur-

ry’s. Here, your goal- per- cap rate 

will be slightly higher than Alex 

Morgan’s. Her average (for those fi rst 100 goals) was 0.629; yours 

will be 0.667 goals/cap. Each roll of a six- sided die will represent 

one game; if you roll a 1, 2, 3, or 4, you score. We’ll start with just 

ten games.

 Worksheet: Scoring Like Alex Morgan

To see if you score a goal in a cap:

1 Roll a die.

2 If you roll a 1, 2, 3, or 4, you score; else, you don’t.

3 Repeat this ten times and keep track of your progress with the 

chart below.
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 In how many games 

did you score? With only 

ten games, I’m not very 

confi dent that I can pre-

dict your results. I can say 

it’s fairly likely you scored 

in six, seven, or eight 

games. How likely? If we 

use a computer to repeat 

our ten- game series ten 

thousand times, we fi nd 

that 67% of the time, we 

score in six, seven, or eight 

games (for a goal/cap rate 

between 0.6 and 0.8). And 

about 95% of time, we score in four to nine games (a goal/cap be-

tween 0.4 and 0.9). If we want to be 95% sure of the underlying goal/

cap rate for a player who played only ten games, we have to allow a 

pretty big spread of potential values!

For a player with a longer 

career, however, we can be 

more certain. This time, let’s 

roll a die a hundred times 

and record the number of 

games in which we score a 

goal (as before, by rolling 

a 1, 2, 3, or 4). Once again, 

we’ll do this ten thousand 

times. This time, you’ll score 

in 58 to 76 games about 95% 

of the time. In other words, 

I’m about 95% confi dent 

that your goals/cap rate is 

between 0.58 and 0.76.

You could roll a die to 
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play a hundred games ten thousand times by hand, but it’s certainly 

faster to simulate those rolls using a computer. With a computer we 

can also set aside our virtual die and use Alex Morgan’s actual goal/

cap rate of 0.629. Here’s our automated procedure:

• For each game, pick a uniform random number between 0 

and 1.

• If the number is less than 0.629, Morgan scores in the game. 

Else, she doesn’t.

• Play 159 games, tally the number of games in which she scores, 

and compute the goals/cap rate.

• Repeat ten thousand times.

When the computer plays ten thousand sets of 159 games, Morgan’s 

goals/cap rate falls between 0.55 and 0.71 for about 95% of our sim-

ulations. This is called a 95% confi dence interval. If Morgan had 

played ten times as many games, then the 

spread in the confi dence interval would be 

smaller.

Alex Morgan will continue to score as 

she plays more games. At the end of her 

career, we shouldn’t expect her goals/cap 

rate to be exactly 100/159, but we can be 

fairly confi dent that it will be between 0.55 

and 0.71.

Playbook

We have been calculating and using Alex 

Morgan’s goals/cap rate as if her scoring 

were entirely the result of individual action. 

This overlooks the team aspect of soccer: 

Morgan’s goals are connected, for instance, 

to her teammates’ passing and positioning 



S C O R I N G  C O N F I D E N C E  ·  77

on the pitch— a collective eff ort to help her specifi cally (not all play-

ers equally) score goals. Another wave of analysis might work to cre-

ate or analyze a stat that more fully integrates these elements of the 

game. Simplifying assumptions are natural and necessary in analyt-

ics and modeling. An important part of the work is remaining aware 

of the assumptions you are making so you can recognize the limits 

they impose and their eff ects on the applicability of your analysis.

One use of confi dence intervals is to compare players. Suppose 

we run the same computer simulation using statistics for Abby 

Wambach, who scored 100 goals in 129 games (0.775 goals/cap). For 

Wambach, the computer plays 129 games ten thousand times, and 

we fi nd we can be 95% confi dent her goals/cap rate falls between 

0.70 and 0.85. Given these numbers, for Wambach and Morgan to 

have the same underlying scoring ability as they reached a hundred 

goals, Wambach would have to be performing at the low end of her 

confi dence interval and Morgan at the high end of hers.

Want to get even more realistic? You could add a variable to your 

simulation to allow for more than one goal per game, which con-

nects to how often the player scored. An advantage of computer 

simulation is how easily such factors can be included.
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Players develop and change over time. How will Alex Morgan play 

after her fi rst hundred goals? Time will continue to tell, of course, 

and during that time, we’ll likely have much to cheer for!

Analytic Toolkit

We assumed Alex Morgan’s fi rst hundred goals were evenly distrib-

uted across the international games she played up to April 2019. 

In fact, Morgan scored in 70 of her fi rst 159 caps. Of those 70, she 

scored one goal in 44 games, two goals in 22 games, and three goals 

in 4 games. We can approximate the likelihood of these possibili-

ties by rolling two six- sided dice. On your fi rst roll, let sixteen pos-

sible outcomes equate to Morgan scoring in a game (16/36 = 0.444; 

70/159 = 0.440). If she scores, roll the two dice again; let two out-

comes equate to Morgan scoring three goals in the game, eleven 

outcomes to her scoring two goals, and the remaining twenty- three 
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outcomes to her scoring one goal. Sports analytics often involves 

adding complexity to models in this incremental way. Try it and play 

even more like Alex Morgan.

Personal Training— Workout #9

Abby Wambach is among the leading career scorers in international 

soccer. From 2001 to 2015, in 256 caps, she scored 184 goals, giving 

her a goals/cap rate of 0.719 (near the low end of the confi dence in-

terval we calculated based on her fi rst 100 goals). As with our partial- 

career simulations for her and Alex Morgan, we can use a computer 

to simulate 256 games with Wambach’s career goals/cap rate.

Question: What would be the steps a computer would follow to fi nd 

Wambach’s goals/cap rate over 95% of the simulations?

Write down your steps, then turn to the back of the book for a 

discussion of this question. If you program, you may want to write 

your own simulation.
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TIGER’S CONSISTENCY

We’ve looked at a variety of statistically unlikely streaks. In chapter 4, 

we analyzed the UConn Huskies’ three- season run of 111 straight 

wins. And in chapter 3, we considered Joe DiMaggio’s 56- game 

major- league hitting streak. (He’d also had a 61- game hitting streak 

in the minor leagues.) After the hitless game that ended his MLB 

hitting streak, he hit in the next 16 games— meaning he hit in 72 out 

of 73 games. Some of the best athletes and teams in sports history 

sustain such remarkable streaks due to both ability and consistency.

In the previous chapter, we assessed Alex Morgan’s underlying 

ability. Here, we’ll analyze a streak, in golf, through the additional 

lens of consistency.



T I G E R ’S  C O N S I S T E N CY  ·  81

As pro golfer Arnold Palmer has said, “Golf is deceptively simple 

and endlessly complicated.” In most PGA Tour events, after two 

rounds roughly half the players make “the cut” and compete in 

the fi nal rounds of the tournament, playing for prize money and 

a championship. Our analysis will focus on Tiger Woods, who be-

tween 1998 and 2005, made the cut in 142 consecutive tournaments, 

a PGA record. Only two other modern players even have streaks that 

hit triple digits, Byron Nelson with 113 and Jack Nicklaus with 105. 

During Woods’s streak, he won thirty- six tournaments, including 

eight majors.

Suppose we model Tiger’s dominance by assuming he was 95% 

likely to make the cut; that would give him a 0.95142 = 0.07% chance 

of attaining his streak. Let’s dig into the numbers a bit more and 

integrate his consistency.

In the PGA, the average fi rst round score is about 70 with a stan-

dard deviation of about 4. Let’s assume golfers make the cut if their 

two- round score is at most 140. We’ll model a round in the PGA by 

rolling two dice. You score 70 with a two- dice roll that sums to 7. 

A sum of 6 corresponds to scoring one stroke below 70 (69), and a 

sum of 8, one stroke above (71). For each number below a sum of 6, 

we’ll subtract two additional strokes, and for each number above a 

sum of 8, we’ll add two strokes. So a sum of 10 yields a one- round 

score of 70 + 1 + 2 + 2 = 75. A sum of 2 corresponds to a spectacu-
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lar score of 61. How well does this dice model approximate our un-

derlying model of a mean of 70 and standard deviation of 4? Recall 

that about 68% of the data should lie within one standard devia-

tion of the mean. In our dice model, rolls that sum between 5 and 

9 are within four strokes (1 standard deviation) of 70 (the mean), 

equating to 24/36 of the possible rolls, or 66.6% of the data. Our 

dice model is thus a fairly good approximation. Remember, the cut 

is based on a two- round score. You’ll make the cut if two two- dice 

rolls (or one four- dice roll) sums to at most 14.

 Worksheet: Play Like a PGA Golfer

Can you make the cut in thirty straight tournaments?

1 Roll four dice (or a single die four times or two dice twice) and 

calculate the sum.
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2 If the sum is 14 or less, you make the cut. Mark a box in the grid 

below.

3 If the sum is 15 or more, you don’t make the cut, and your 

streak ends.

 It will help us in the coming pages to directly compute the prob-

ability of making the cut via dice rolls. There are six possible out-

comes when rolling a single die, giving us 64 = 1,296 ways to roll 

four dice. How many of those combinations sum to at most 14? You 

could tediously list every option and tabulate the answer— or take 

a shortcut and type “number of ways to roll 4 dice with sum <= 14” 

into WolframAlpha .com. Either way, you’ll fi nd there are 721 ways to 

sum to 14 or less when rolling four dice. (See the Analytics Toolkit at 
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the end of the chapter for details on using WolframAlpha to count 

possible combinations.)

The probability of a four- dice roll summing to at most 14, then, 

is 721/1296, giving you about a 55% chance of making the cut in 

a given tournament. Your probability of making the cut in thirty 

tournaments in a row, then, is (721/1296)30, or about 0.00000002. 

Matching Tiger’s record— making the cut 142 straight times— is, us-

ing this model, amazingly improbable: 7 × 10−37, or about a 1 in 1.5 

× 1036 chance! Were Tiger’s chances really that slim? Remember, 

he wasn’t an average PGA player. To get a more realistic probability, 

we’ll need to fold in Tiger’s ability relative to the fi eld.

For this, we turn to the strokes- gained statistic, which was for-

mally implemented by the PGA Tour for the 2004 season. The idea 

behind strokes gained is easy enough. We have collected a great deal 

of data from actual play by professional golfers and know the av-

erage score for a given hole for every location from which the ball 

might be played. Strokes gained for a shot equals the average score 

for the hole based on the position of the ball before a shot minus the 

average score for its position after the shot. Suppose a par 4 hole has 

an average score of 4.2. A golfer smacks a drive far down the middle 

of the fairway, which lands at a spot for which the average score is 

3.8. Strokes gained for the drive is 4.2 − 3.8 = +0.4.
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Strokes gained illuminates Tiger’s dominance in golf. Woods 

is the only golfer to fi nish a season with an average of over three 

strokes gained per round— a feat he accomplished three times. 

Only one other golfer has had even one season with over 2.5 strokes 

gained per round. Tiger’s average fi nish on the season- long strokes- 

gained list is 2.33.

We’ll account for this in our model by assuming Tiger Woods 

gains two strokes per round. For now, he will still have the same 

standard deviation (4) as the rest of the PGA fi eld. With this fac-

tored in, what’s the probability of his making the cut 142 times in a 
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row? With two strokes gained per round, Tiger Woods now makes 

the cut, in our model, when a four- dice roll sums to 16 or less. There 

are 986 ways to roll four dice that sum to 16 or less. So his prob-

ability of making the cut increases to 986/1296, or about 76%. We 

are now about twenty quintillion times more likely to match Tiger’s 

142- tournament streak than we were with our earlier 55% chance. 

Even so, the probability is extraordinarily slim (10−17).

The improved odds show the impact of ability. Now, let’s fold 

consistency into the model. Suppose the standard deviation is much 

smaller for Tiger Woods than for the overall fi eld. If we reduce his 

standard deviation from 4 to 2, how does this impact his chances? 

As before, we’ll approximate Tiger’s play in a round with two dice. 

Rolling a 7 gives Tiger a 68 for the round, thanks to his two strokes 

gained. Cutting the standard deviation in half means our simulated 

Tiger will be much more consistent. We will add only one stroke 

for each number above a sum of 7, and subtract only one stroke for 
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each number below a sum of 7. So Woods scores 69 with a roll that 

sums to 8, 66 for a sum of 5, and so on. A four- dice roll of 18 (two 

rounds of 70) or less makes the cut. For this model, Wood’s prob-

ability of making the cut is 1170/1296, or about 90%. Accounting 

for strokes gained and consistency of play in our model makes Tiger 

effectively three strokes per round better than the average golfer. 

The probability of Tiger’s streak rises by a further factor of over 35 

billion— but still only to about 1 in 2 million. Tiger’s streak remains 

spectacularly improbable.

A graph showing the underlying probabilities of the possible out-

comes of rolling four dice may be helpful. In our model, an average 

PGA golfer made the cut when we rolled a sum of 14 or less. The 

graph emphasizes how large a probability that leaves for not making 

the cut, with rolls summing to at least 15; an average PGA golfer’s 

chance of matching Tiger’s streak is minuscule, just 1 in 1036. In our 

Tiger- specifi c model, our simulated Tiger made the cut with a roll 

of 18 or less. Note how many fewer possibilities there are for failing 

rolls summing to 19 or more. Tiger’s streak was still improbable, 1 

in 2 million, but much more possible. The modifi cations we made, 

factoring in Tiger’s high strokes- gained average and reduced stan-

dard deviation, illustrate how streaks may result not simply from a 

player’s or team’s great skill but also from their consistency.
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Analytic Toolkit

WolframAlpha .com, an “answer- engine” developed by Wolfram 

Research, allows you to ask mathematical (and other) questions in 

“natural language.” You can learn the “probability of rolling sum of 

at most 14 with 4 dice” just by typing in that phrase (or “number of 

ways to roll 4 dice with sum <= 14” or some other variation). The 

response will spell out how your question was interpreted and give 

the probability of the occurrence as 0.5563, or about 1 in 1.8. Click 

the “Exact form” button, and this changes to 721/1296. As we have 

noted, 1,296 is the number of ways four dice can be rolled. Of these, 

721 ways produce a sum of 14 or less. (WolframAlpha is among the 

services Siri uses to answer questions, which means Siri can also 

help you with math, including calculus!)

Personal Training— Workout #10

In this chapter’s worksheet, our average PGA golfer made the cut 

when a four- dice roll summed to at most 14. We found the  probability 

of making the cut in thirty straight tournaments to be 0.00000002. 

Let’s switch to our fi nal, Tiger Woods model, which assumed two 

strokes gained per round and a standard deviation of two strokes 

per round (half the PGA average). With these modifi cations, Tiger 

made the cut when a four- dice roll summed to at most 18.

Question: What’s the probablity, using this model, that Tiger makes 

the cut in thirty straight tournaments?

Try it yourself, then check out the discussion in the back of the 

book.
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MONEYBALL ANALYTICS

So far, we’ve focused on athletes whose efforts created historic mo-

ments. In this chapter, we’ll meet a historic fi gure in baseball whose 

work was done off the fi eld. Bill James wielded a pencil rather than 

a bat and created calculations that could stretch a baseball team’s 

dollar. You can follow in his footsteps— all you need is a calculator, 

some data, and an appreciation of his insights.

Have you ever looked at an online sale and been wowed by the 

price? Analytics can sometimes create the equivalent of a 20% off 

coupon for, say, a player trade. In 2002 the Oakland A’s had one of 

the lowest team payrolls in Major League Baseball— barely a third 

of the salary total for the chart- topping New York Yankees. The A’s 

wanted to stretch their dollars. They needed more for their buck.



90 ·  C H A P T E R  1 1

Enter Bill James. James 

worked nights as a security 

guard at the Stokely– Van 

Camp’s pork and beans can-

nery. In the silence of the 

night, he also wrote pieces 

on baseball. He’d pose a lively 

question and answer with 

data and analysis. While his 

writing was engaging, it was 

unusual for the time, making 

it hard to fi nd a publisher. So in 1977, he self- published what would 

become an annual title: The Bill James Baseball Abstract.

Seventy- fi ve people purchased that fi rst volume. Fast- forward to 

2006, when Time magazine named Bill James one of the most infl u-

ential people in the world. Why? His baseball insights had trans-

formed the game.

How can a team with a small budget maximize its chances of suc-

cess? By fi nding players who can help them but who are underval-

ued. If every team knows how much a player could contribute, he’ll 

be highly desired and cost more. 

If you have an insight others lack, 

you might sign that player at a 

discount.

In 2002, teams relied heavily 

on their scouts’ opinions. Analyt-

ics offered another view. The Oak-

land A’s worked from the premise, 

based in part on James’s analysis, 

that statistics such as stolen bases, 

runs batted in, and batting aver-

age were fl awed. Other statistics, 

like on- base percentage, could be 

better indicators of offensive suc-

cess than speed and making con-
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tact with the ball. In baseball, whether 

you get a hit or get walked, you are on 

base, with the potential to score a run. 

Hits and walks both contribute to on- 

base percentage but not batting aver-

age. Acting on this outlook enabled the 

A’s to be competitive despite their small 

payroll. Today? Major League Baseball 

teams use baseball analytics, known as 

sabermetrics. Bill James is often consid-

ered a father of the fi eld.

We’ll look at just one of James’s formulas, the “Pythagorean ex-

pectation,” which proposes a connection between runs scored, runs 

allowed, and winning percentage. We’ll test the formula on the 

2019 Washington Nationals. First, we need the number of runs the 

team scored and allowed. In chapter 1, we drew on the trove of stats 

on baseball -  reference .com. WolframAlpha .com, which we used in 

chapter 10, is even simpler; type in “2019 Washington Nationals,” 

and it returns stats including the number of runs scored by the Na-

tionals and by their opponents. The 2019 Nationals scored 873 runs 

and allowed 724.

James’s Pythagorean expectation looks a bit like the Pythagorean 

theorem, which states c2 = a2 + b2, where c is the length of the hy-

potenuse of a right triangle, and a and b the lengths of the two other 

sides. Be forewarned, the connection between James’s formula and 

its classical namesake is quite loose. The Pythagorean expectation 

is similarly simple:

P = RS2/(RS2 + RA2),

where RS is runs scored, RA is runs allowed, and P is the percent 

of games the team is expected to have won. For the 2019 Nationals, 

we get

0.5925 = 8732/(8732 + 7242).
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There are 162 games in the regular season, and 0.5925 × 162 is 

about 96. That’s a pretty good estimate, as the Nationals won 93 

games in the 2019 regular season.

Worksheet: Compute Like Bill James

Test James’s Pythagorean expectation for another team. Pick a year 

and a Major League Baseball team.

1 Find runs scored by your team (RS): ___

2 Find runs allowed by your team (RA): ___

3 Compute P = RS2/(RS2 + RA2): ___

4 Compute P × 162: ___

The result in line 4 is an estimate of how many games your team 

won in the season you chose. How close is it to the actual statistic? 

(For a year before 1962 or the short 2020 season, substitute the ap-

propriate number of games.)

If we know how many runs a team scored and allowed in a given 

season, we most likely also already know how many games it won 

and lost and its winning percentage. So why use an estimate? 
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 Because, by connecting runs and winning percentage, James’s for-

mula also lets us get a sense of individual players’ contributions to 

a team.

Let’s turn to the 2007 New York Yankees. They outscored their 

opponents 968– 777, and their record, 94– 68, was good enough to 

make the playoffs.

That season, third baseman Alex Rodriguez, also known as A- 

Rod, led the league with 156 RBIs. To see the impact of A- Rod’s un-

forgettable year, suppose he had instead brought in only 103 RBIs, 

as he did the next season. (In both seasons, he was an All- Star and a 

Silver Slugger Award winner.)

The Pythagorean expectation estimates that the Yankees won 

9682/(9682 + 7772) = 0.608 of their games in 2007. If A- Rod had 

brought in 53 fewer runs (156 − 103), the estimate becomes (9152)/

(9152 + 7772) = 0.581. The difference, 0.027, may seem small, but 

when we multiply it by the 162 games in an MLB season, we see a dif-

ference of about four games. In pro sports, every win is important!
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Bill James’s analytics helped make the 2002 A’s competitive. If 

you can get four additional wins from one player and even one from 

another, it adds up and you increase your chances of going to the 

playoffs. Even better, the attributes the A’s were looking for in play-

ers were undervalued in 2002. So the team was able to sign them for 

much less than the value they’d bring to the team and its record.

In the years since, other teams have integrated analytics into 

their approach to the game. And Bill James? He went on to serve as 

senior advisor on baseball operations for the Boston Red Sox. Quite 

a change from the night shifts at the cannery.

Analytic Toolkit

For player and team stats, we can visit sportsreference .com, as in 

chapter 6. Its baseball -  reference .com database is an unparalleled 

archive of historical baseball stats, off ering myriad directions for ex-

ploration. Consider the unremarkable career of Edmund Porray, who 

pitched 10⅓ career innings across three games in 1914, allowing 

eighteen hits and nine runs while not striking out anyone. Why note 

his page? Look past the game stats to his personal details. He was 

born at sea, and the site lists his birthplace as the Atlantic Ocean.
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Personal Training— Workout #11

Bill James developed the Pythag-

orean expectation for baseball. 

Sports executive Daryl Morey 

adapted the formula to profes-

sional basketball. His formula 

to predict winning percentage is 

P = PF13.91/(PF13.91 + PA13.91), where 

PF denotes points for a given 

team and PA is points against. In 

2019 the Toronto Raptors became the fi rst Canadian team to win 

the NBA championship. Over the 2018– 19 regular season, the Rap-

tors scored 9,384 points while allowing 8,885 from their opponents.

Question: What would Daryl Morey’s adaptation of the Pythagorean 

expectation for basketball predict for the Raptors’ 2018– 19 winning 

percentage? How many of the Raptors’ 82 regular- season games 

would we expect them to have won?

Work on your calculation, then turn to the back of the book for a 

discussion of this question.
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R ACE USAIN BOLT

Jamaican sprinter Usain Bolt is, by many standards, the fastest hu-

man on earth. He holds world records in the 100 meter and 200 

meter sprints and the 4 × 100 meter relay. He is an eight- time 

Olympic gold medalist— the only sprinter to win gold in the 100 

meters and 200 meters at three consecutive Olympics (2008, 2012, 

and 2016). In the 2008 games, he set the 100 meter world record at 

9.69 seconds.

In this chapter, you get to race Usain Bolt! You’ll even have a 

chance of beating him! But with that hypothetical speed will come a 

warning about sports analytics.
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While his 2008 Olympic run established a new world record, Bolt 

appeared on track to run an even faster race— until twenty meters 

before he crossed the fi nish line, when he looked at the other lanes 

and saw the strength of his lead. Most athletes celebrate moments 

after the end of the race. Bolt started celebrating before he fi nished. 

While Bolt is amazingly fast, even he slows down if he’s celebrating 

while running.

We simply don’t know how fast Bolt might have run the 100 me-

ters that day. His coach suggested his time could have been 9.52 

seconds or better, and physicists have confi rmed that’s plausible.

To race Usain Bolt and his 9.69 second record we won’t go to a 

track. As with our other simulations, we’ll compete right where we 

are. So, what assumptions will we need to make this work?

Let’s start out with three:

1 The number of steps you can take in a given time is the same whether 

you are running in place or on a track.
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2 Your stride length will be 1.35 times your height.

3 Stride length never changes.

Want a more conservative estimate? The 1.35 multiplier does come 

from research published in the early 1970s— but other researchers 

calculated stride length to be only 1.14 to 1.17 times the sprinters’s 

height. I picked the higher value to give you a chance at winning! If 

you want a harder race, replace 1.35 with 1.14 in the computations.
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Worksheet: Racing Usain Bolt

Before chasing Bolt’s record, you need to answer two related 

questions:

• How long is your stride?

• How many strides, assuming constant stride length, will you need 

to complete 100 meters?

The computations are simple:

• stride length = (height in meters) × 1.35

• number of strides = 100/(stride length in meters)

• round the number of strides up to the nearest integer

I’ll use myself as an example: I’m 6 feet tall, or 1.83 meters. So my 

stride would be 1.83 × 1.35 = 2.47 meters. And how many 2.47 meter 

strides will it take me to cover 100 meters. Well, 100/2.47 = 40.4, 

which I round up to 41 strides.

Once you know the number of strides, the race is ready. Running 

in place, complete that many steps in under 9.69 seconds and you 

beat Usain Bolt! Run fast and, of course, be careful of celebrating 

early!

Did you beat Usain Bolt or almost win? If you and a few friends 

try, some will likely do so. But wait! How are we competing with, let 

alone beating, Bolt?

Let’s look again at our assumptions. We assumed a consistent 

stride length. This clearly does not hold true for an entire physi-

cal race. An athlete simply cannot take the same strides coming out 

of the starting blocks as later in the race. Our model set my stride 

length at 2.47 meters (or 2.09 meters if I use the more conserva-
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tive 1.14 multiplier) and assumes that 

I could take such strides at the same 

rate I can run in place. A little thought 

debunks the assumption. I obviously 

can take forty- one “strides” in place 

much faster than forty- one maximally 

extended strides down a track. These 

skewed assumptions partially explain 

how I can “beat” Bolt.

This is an important analytics les-

son. Surprising results can yield 

groundbreaking insight. But often they 

mean you need to check your work and 

assumptions. My beating Bolt would be 

unforgettable, but it is also simply im-

possible. It can be fun to set parameters 

that make the race appear competitive. But such a model is wildly 

distorted.

Herein lies a moral: Be wary of your assumptions.

Throughout this book, we’ve made simplifying assumptions, 

which have facilitated rough estimates 

of probabilities. Steph Curry was pre-

sumed to be about 43% likely to hit any 

three- point shot. Wouldn’t that depend 

in part on the defender? Alex Morgan’s 

goals/cap rate was presumed to hold for 

every game. Wouldn’t that, too, depend 

on the strength of the opposing team’s 

defense?

Want a better estimate? Complicate 

your assumptions! Remove some of the 

distortion inherent in simplication. 

Bear in mind, though, that less simpli-

fi ed models may require more advanced 

mathematics or statistics.
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If you don’t need the accuracy, then a simplifi ed model may serve 

your purpose. But be mindful that truly surprising results, like beat-

ing Usain Bolt, may mean the oversimplifi ed has lapsed into the 

unrealistic.

Personal Training— Workout #12

Let’s take a run at another world record, set 

in 1988 at the Seoul Olympics by Florence 

Griffi th Joyner. Rework the model in this 

chapter, and see what it would take to beat 

Flo- Jo’s record in the 200 meters— 21.34 

seconds.

Question: Assuming the same 1.35 ratio of 

stride length to height as we did in our race 

with Usain Bolt, how many absolutely con-
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sistent strides would someone 5 feet, 9 inches tall need to make in 

under 21.34 seconds to beat Flo- Jo’s world record– setting 200 meter 

sprint?

Calculate your answer, then turn to the back of the book for a 

discussion of this question.



q

GET IN THE GAME

When you witness the unlikely, the tools in this book can give you 

a better sense of whether it’s historic, allowing you to get more 

fully into the game. There is another way you can get in the game— 

becoming part of the team by contributing from the sidelines. How? 

Let’s start with my story.

In the fall of 2013, three students came to my offi ce and told me 

they wanted to create analytics for the Davidson College men’s bas-

ketball team. I’m a college professor— just imagine how thrilled I 

was as a teacher. Standing in front of me were students looking to 

do extra mathematics on their own time!
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The men’s basketball program was already highly successful. 

Steph Curry had played for Davidson in his college years. The stu-

dents understood that our efforts might not generate useful in-

sights, but they were eager to begin. Our fi rst step was an important 

one. We contacted the coaching staff. The coaches were interested, 

and over the next several months we met weekly to prepare for the 

season.

Week by week, our team posited ideas, prototyped analytics, 

and shared what we developed. And, crucially, we got feedback. We 

learned to understand the team’s needs, and the coaches learned 

what sorts of tools we could create and questions we could answer.

Not everything we developed worked. Sometimes, the coaches 

told us, a conclusion sim-

ply wasn’t “coachable.” 

For instance, knowing the 

team is ranked eleventh 

in the country in a type of 

defense is interesting. But 

knowing how the team can 

maintain that ranking, or 

improve it based on what 

higher- ranked teams are 

doing differently, can actu-

ally impact coaching.
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When a coach said some-

thing wasn’t coachable, we 

learned that the next ques-

tion should always be “Why?” 

Sometimes an uncoachable 

idea simply needed to be re-

framed to be very useful. Even 

ideas that were scrapped were 

far from useless, as they en-

abled us to better understand 

the coaches’ needs.

By tip- off of the fi rst game, we had our tools ready. Soon, we 

were rolling through the season. The coaches depended on us. 

Our  analytics became important in their game preparation. Our 

work had four components: We charted shots, recording position, 

shooter, and point value (later adding such features as time on the 

shot clock and shot type). We visualized the shot charts by point 

value (where do we miss?) and by athlete (where does one player 

make or miss?) over any combination of games. We prepared player 

and team scouting reports. And we logged statistics for every lineup 
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that took the court. This allowed us to analyze not only every fi ve- 

player combination but also smaller combinations, such as pairings 

of a particular guard and forward.

The program was a success. We supplied 

analytics and, as the coaches often noted, be-

came part of the team, playing from the side-

lines. In 2014 we had four students. Jump to 

now, and the sports analytics group numbers 

a hundred. We supply analytics to coaches in 

a range of sports: men’s and women’s bas-

ketball, baseball, men’s and women’s soccer, 

volleyball, football, lacrosse, and swimming. 

When we meet with a new coach, our fi rst 

question is “What do you do with numbers 

and what do you wish you could do?” Then, 

we listen and learn. Soon afterward, the 

group meets, with a lot of ideas and analytics 

being written.

As we develop our analytics, here are our 

guiding principles:
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• Coachable. Share insights that coaches can act on.

• Consumable. Present insights in formats that can be quickly 

synthesized.

• Understandable. Insights are an informed opinion. Be sure a 

coach can understand what led to the work.

Since those early days, the scope of our work has expanded well 

beyond our college. We fi eld questions from national media, from 

ESPN to the New York Times. We aid professional teams in the NBA, 

NFL, and NASCAR. We’ve also helped the US Olympic and Paralym-

pic Committee. In each setting, we focus on actionable, consum-

able, and understandable analytics. From college coaches to work 

seen on television, our goal is to be unforgettably dependable.

Now, how do you become part of a team? First, watch sports and 

pose questions. Yes, from your couch you can train to become part 

of a sports team. As we’ve done throughout this book, derive esti-

mates to answer your questions. Then think of new ones! Looking 

for a fi rst step? Write down whatever questions came to mind as you 

read this book. Or search the internet for articles and books on what 

others have done. Existing work can be a springboard for your own 

ideas. And then . . . 
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Jump in. Want to work in sports analytics? Think of a question 

related to one you already know how to solve. Then, just start. If you 

wait until you’re sure you are ready, you may never make that fi rst 

move.

Step into the unknown. When ESPN would call and ask for help, 

I rarely knew right off how to approach the problem. Part of analyt-

ics is learning to stand in the unknown waiting for that next step, 

which may not come instantly.

Keep learning. You may pose a question that requires math, 

stats, or computing that are beyond what you know. There are nu-

merous resources online. Continue to study and add to your skills. 

Be willing to ask someone who might know more for help!

So take the leap! Creating and answering your own questions is 

practice in sports analytics. As the great gymnast Simone Biles has 

said, “Practice creates confi dence. Confi dence empowers you.” Lis-

ten to your thoughts, as they can create direction, insight, and con-

fi dence. As Biles also stated, “If you’re having fun, that’s when the 

best memories are built.” So remember, too, to have fun.

Keep your tools handy— a die, a coin, a calculator, a computer. 

Take note when you hear “Wow!” during a sporting event. Analyzing 

surprising moments can make them all the more unforgettable. And 
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it’s improbable that all those computations won’t get you more fully 

into the game!

Personal Training— Workout #13

Want to jump into sports analytics? You’ll need data. While profes-

sional sports are extensively documented in public and private da-

tabases, many other levels of sport simply don’t have as much data. 

Recording data can be part of your analytics. The Cats Stats group 

began by charting shots for basketball. The half- court diagram 

comes from an app we developed for high schoolers to record their 

data. A roster is loaded. Then, the location of each shot is recorded, 

along with the name of the shooter, type of shot, and point value. 

What else would you record? The data you record opens doors to the 

type of analysis you can explore.

Write down your ideas, then turn to the back of the book for a 

discussion of this question.
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FURTHER READING

Chapter 1: Unforgettably Unbelievable

Unforgettable moments are often improbable moments. In this 

chapter, we looked at players who have outlier games, seasons, 

or careers. Once you’ve gathered data (I mentioned two baseball 

databases: baseball -  reference .com, which is part of www .sports 

-  reference .com, and SeanLahman .com), this short tutorial, on top-

ics from sorting in a spreadsheet to using statistical z- scores, can 

help you identify outliers:

Jim Frost. “5 Ways to Find Outliers in Your Data.” Statistics by Jim. Accessed 

July 13, 2021. https:// statisticsbyjim .com/ basics/ outliers/

I noted that graphs can be misleading. These authors explain some 

of the ways graphics deceive:

Becca Cudmore. “Five Ways to Lie with Charts.” Nau-

tilus. November 6, 2014. Accessed July 13, 2021. 

https:// nautil .us/ issue/ 19/ illusions/ fi ve -ways -to -lie -with -charts

Alberto Cairo. How Charts Lie: Getting Smarter about Visual Information. New 

York: W. W. Norton, 2020.

Christopher Ingraham. “You’ve Been Reading Charts Wrong: Here’s How a 

Pro Does It.” Washington Post. October 14, 2019. Accessed July 13, 2021. 

https:// www .washingtonpost .com/ business/ 2019/ 10/ 14/ youve -been 

-reading -charts -wrong -heres -how -pro -does -it/
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Chapter 2: Shoot 3’s like Steph Curry

Stephen Curry’s shooting accuracy is historic. The performance dis-

cussed in this chapter has led many to say he had a “hot hand” that 

evening. We showed that hitting 11 of 13 three- point attempts was 

highly unlikely in the context of being able to say on a given night, 

“Stephen Curry will shoot 11 of 13 or better tonight.” Was Curry 

hot? Is there a hot hand?

Many, including Nobel Prize winner Daniel Kahneman, have 

claimed the hot hand is an illusion. Yet, research has uncovered 

a fundamental fl aw in the work that launched the anti– hot hand 

belief.

Joshua Miller and Adam Sanjurjo. “Momentum Isn’t Magic: Vindicating the 

Hot Hand with the Mathematics of Streaks.” Scientifi c American. March 

28, 2018. https:// www .scientifi camerican .com/ article/ momentum -isnt 

-magic -vindicating -the -hot -hand -with -the -mathematics -of -streaks/

Ben Cohen. Hot Hand: The Mystery and Science of Streaks. New York: William 

Morrow, 2021.

Chapter 3: Dicey Hitting Streak

Want to read more about the DiMaggio brothers’ rivalry?

Scott Ostler. “Sibling Rivalry? DiMaggios Had No Peers.” SFGATE. July 15, 

2015. Accessed July 13, 2021. https:// www .sfgate .com/ sports/ ostler/ 

article/ Sibling -rivalry -DiMaggios -had -nopeers -6387146 .php

Here’s an argument for intentionally walking a big hitter like Joe 

DiMaggio:

Steven Goldleaf. “The Case for the Intentional Walk: Articles.” Bill James On-

line. March 20, 2021. Accessed July 13, 2021. https:// www .billjamesonline 

.com/ the _case _for _the _intentional _walk/

In the 1940s pitchers were often booed, even by home fans, for not 

throwing strikes, and the signifi cance of walks— and consequently 

Ted Williams’s 84- game on- base streak— was long undervalued. 

This article offers a more recent assessment:
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Ken Schultz. “Ted Williams’ Underappreciated On- Base Streak.” Bos-

ton. March 02, 2017. Accessed July 13, 2021. http:// boston .locals 

.baseballprospectus .com/ 2017/ 03/ 02/ ted -williams -underappreciated -on 

-base -streak

Chapter 4: Racking Up the Wins

Much has been written about the remarkable streaks discussed in 

this chapter. Here are two articles to start with:

Matt Bonesteel. “How Big Was Mississippi State’s Upset of U- Conn? In Vegas 

Terms, Huge.” Washington Post. April 1, 2017. Accessed July 13, 2021. 

https:// www .washingtonpost .com/ news/ early -lead/ wp/ 2017/ 04/ 01/ how 

-big -was -mississippi -states -upset -of -u -conn -in -vegas -terms -huge/

Doug Ammon. “Delle Donne’s Unprecedented Free- Throw Shooting Contin-

ues to Amaze.” WNBA .com. July 27, 2017. Accessed July 13, 2021. https:// 

www .wnba .com/ news/ elena -delle -donne -free -throw -foul -shooting/

By the end of the chapter, we knew the formulas for permutations 

and combinations. This blog and video offers more practice:

Brett Berry. “Combinations vs Permutations.” Medium. June 14, 2017. 

Accessed July 13, 2021. https:// medium .com/ i -math/ combinations 

-permutations-fa7ac680f0ac

Chapter 5: Unbreakable Tennis

Our analysis of Pete Sampras and Andre Agassi relied on their career 

stats. To fi nd stats on a player like Novak Djokovic visit the player’s 

page on ultimatetennisstatistics .com:

“Ultimate Tennis Statistics— Novak Djokovic.” ATP Tour. Accessed 

July 13, 2021. https:// www .ultimatetennisstatistics .com/ playerProfi le 

?playerId=4920

In this chapter, we discussed programming simulations. We could 

use languages such as Python or R or spreadsheets like Excel or 

Google Sheets. These articles consider two examples:
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Lloyd Danzig. “An Intro to Monte Carlo Simulation for Sports Betting Risk 

Management (in Excel).” Medium. July 19, 2020. Accessed July 13, 2021. 

https:// medium .com/ @lloyddanzig/ an -intro -to -monte -carlo -simulation 

-for -sports -betting -risk -management -in -excel -c951a144f13a

Michael Emmert. “Texas Hold’Em Simulator.” Medium. June 15, 2020. 

Accessed July 13, 2021. https:// towardsdatascience .com/ texas -holdem 

-simulator -e2b83537b133

Chapter 6: Improbable NFL Playoff 

This chapter dealt with an improbable score at the end of regulation 

play in an NFL playoff game. This article looks at other improbabili-

ties in football (and note its use of “Pythagorean games,” a variation 

of the Pythagorean expectation discussed in chapter 11):

Bill Barnwell. “Ranking the Most Unlikely Super Bowl Teams Ever, and 

Where the 2019 49ers Land.” ESPN. January 23, 2020. Accessed July 

13, 2021. https:// www .espn .com/ nfl / story/ _/ id/ 28538404/ ranking -most 

-unlikely -super -bowl -teams -ever-where-2019 -49ers -land

One tab on the www .sports -  reference .com site links to stathead .com, 

which covers football, baseball, hockey and basketball. Stathead re-

turns some results according to your criteria for free and many more 

with a subscription.

Chapter 7: FIFA Octopus Oracle

For more on the more or less improbable predictions of Paul the 

Octopus and Barack Obama:

Emily Shire. “The Amazing Tale of Paul the Psychic Octopus: Germany’s 

World Cup Soothsayer.” Daily Beast. July 12, 2014. Accessed July 13, 2021. 

https:// www .thedailybeast .com/ the -amazing -tale -of -paul -the -psychic 

-octopus -germanys -world -cup -soothsayer

Felippe Rodrigues. “Reviewing Every Barack Obama March Madness 

Bracket.” Game Plan. March 20, 2019. Accessed July 13, 2021. https:// web 

.northeastern .edu/ gameplan/ 2019/ 03/ 20/ reviewing -every -barack -obama 

-march -madness -bracket/
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For coaches seeking insight on the use of p- values:

Craig Pickering. “Understanding P- Values: A Practical Guide for Coaches.” 

SimpliFaster. Accessed July 13, 2021. https:// simplifaster .com/ articles/ 

understanding -p -values -practical -guide -coaches/

Chapter 8: Super- sized Super Bowl TD

Was the attention paid to William Perry’s Super Bowl touchdown 

merely a by- product of his team’s broader notoriety? Here’s one take 

on his team’s place in NFL history:

Matt Reagan. “1985 Chicago Bears: The Greatest Team Ever.” Bleacher Re-

port. March 10, 2009. Accessed July 13, 2021. https:// bleacherreport .com/ 

articles/ 136752 -1985 -chicago -bears -the-greatest-team -ever

Here’s a bit more reading on the normal distribution:

“Normal Distribution.” Math Is Fun. Accessed July 13, 2021. https:// www 

.mathsisfun .com/ data/ standard -normal -distribution .html

Other distributions are also relevant. Here’s a look at applications 

of the power law:

Brian Burke. “Earthquakes, Kevin Bacon, the Financial Crisis, and Pro Bowl 

Selections.” Advanced Football Analytics. Accessed July 13, 2021. http:// 

archive .advancedfootballanalytics .com/ 2009/ 04/ earthquakes -kevin -bacon 

-fi nancial .html

Chapter 9: Scoring Confi dence

For context and analysis of Alex Morgan’s hundredth goal:

“100: Alex Morgan Joins Exclusive WNT Club.” US Soccer. April 5, 2019. Ac-

cessed July 13, 2021. https:// www .ussoccer .com/ stories/ 2019/ 04/ 100 -alex 

-morgan -joins -exclusive -wnt -club

For more detail on confi dence intervals:
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Saul Mcleod. “What Are Confi dence Intervals?” Simply Psychology. June 

10, 2019. Accessed July 13, 2021. https:// www .simplypsychology .org/ 

confi dence -interval .html

Chapter 10: Tiger’s Consistency

For more on consistency in golf, and the wider world of golf analytics:

Roland Minton. “ShotLink and Consistency in Golf.” Access July 13, 2021. 

https:// apps .roanoke .edu/ minton/ consistency .pdf

Roland B. Minton. Golf by the Numbers: How Stats, Math, and Physics Affect 

Your Game. Baltimore, MD: Johns Hopkins University Press, 2012.

Chapter 11: Moneyball Analytics

For more on baseball analytics and its effect on baseball:

Benjamin Baumer and Andrew. Zimbalist. The Sabermetric Revolution: As-

sessing the Growth of Analytics in Baseball. Philadelphia: University of 

Pennsylvania Press, 2013.

For a popular account of how Bill James’s ideas entered Major 

League Baseball, later made into a movie:

Michael Lewis. Moneyball: The Art of Winning an Unfair Game. New York: 

W. W. Norton, 2013.

Or go straight to the source:

“Welcome to Bill James Online.” Bill James Online. Accessed July 13, 2021. 

https:// www .billjamesonline .com/

For the state of analytics, at least in 2015, within the NBA, MLB, 

NHL, and NFL:

Ben Baumer, Kevin Pelton, Craig Custance, and Kevin Seifert. “The Great 

Analytics Rankings.” ESPN. February 23, 2015. Accessed July 13, 2021. 

https:// www .espn .com/ espn/ feature/ story/ _/ id/ 12331388/ the -great 

-analytics -rankings
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Chapter 12: Race Usain Bolt

How fast can humans run? Our understanding of this question 

comes, in part, from considering the case of Usain Bolt:

“How Does Usain Bolt Run So Fast?” Runners Home. Accessed July 13, 2021. 

https:// www .run3d .co .uk/ news/ how -does -usain -bolt -run -so -fast

Teal Burrell. “How Fast Can Humans Go?” Discover. July 2, 2018. Accessed 

July 13, 2021. https:// www .discovermagazine .com/ health/ human -speed

Chapter 13: Get in the Game

For more on the Cats Stats sports analytics group at Davidson 

College:

Seth Berkman. “Davidson Math Students Lend a Hand to Basketball Team.” 

New York Times. March 14, 2015. Accessed July 13, 2021. https:// www 

.nytimes .com/ 2015/ 03/ 15/ sports/ ncaabasketball/ davidson -math -students 

-lend -a -hand -to -basketball -team .html

Martin Kessler. “Math Students Give Davidson Athletics an Edge.” Only 

a Game. NPR. January 17, 2020. Accessed July 13, 2021. https:// www 

.wbur .org/ onlyagame/ 2020/ 01/ 17/ davidson -college -cats -stats -advanced 

-analytics

With these resources and others you will fi nd as your own interests 

and questions arise, you are ready to dive into sports analytics, get 

in the game, and uncover the unforgettably improbable moments in 

the ongoing history of sports!





PERSONAL TR AINING —  ANSWERS

The personal training workout at the end of each chapter poses a 

question. Try to answer it before reading the discussions below.

Workout #1: The fi rst step in this workout is fi nding data on succes-

sive world records in the women’s 1500 meters freestyle. One quick 

resource is Wikipedia: https:// en .wikipedia .org/ wiki/ World _record 

_progression _1500 _metres _freestyle. For a more formal analysis, 

you should look for other sites to verify the numbers. Looking at 

world records from 1922 until today, we see that Janet Evans’s re-

cord, set in 1988, stood for 7,022 days, considerably longer than 

any of the others. How much longer? There are a variety of ways 

to answer this question. We can note that the next longest- held 

record was set by Ragnhild 

Hveger on August 20, 1941, 

and stood for 5,085 days. The 

third longest was set by Kim 

Linehan in 1979 and held 

for 2,903 days before being 

broken by Evans in 1987. We 

could graph the data, or we 

might decide that looking at 

the numbers is suffi cient to 

spot outliers. Spreadsheets 
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quickly tally the number of days between two days. You can also 

use WolframAlpha (type in the query “number of days between 

6/17/2007 and 3/26/1988”) to compute the length of Evan’s record 

as 7,022 days.

Workout #2: During the 2020– 21 NBA season, Stephen Curry’s fi eld 

goal shooting percentage was 48.2%— close enough to 50% that a 

coin fl ip provides a reasonably good model. A quick approach to 

estimating the improbability of 

 Curry’s going 2 for 16 in a game is 

to fl ip a coin sixteen times and see if 

you only fl ip two heads. Or you can 

break the analysis down by types of 

shot. Curry made 1 of 6 two- point 

attempts and 1 of 10 three- point 

attempts. His two- point shooting 

percentage for the regular season 

was 56.9% and his three- point 

shooting percentage was 42.1%. 

To approximate these chances with 

fl ips of a coin, we need simple frac-

tions close to these values. With 

four fl ips, there are sixteen possible 
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outcomes (2 × 2 × 2 × 2, or 24); 9/16 = 0.5625, which is close to 

Curry’s two- point shooting percentage, and 7/16 = 0.4375, a good 

approximation of his three- point percentage. So you can fl ip a coin 

four times and, for a two- point attempt, make nine of the possible 

outcomes count as a made shot; for a three- point attempt, seven of 

the possible outcomes represent a hit.

Workout #3: The Houston Rockets had won about half their games 

before late January 2008. If we assume their chance of winning 

any subsequent game was 0.5, then the probability of winning 

twenty- two straight games was 

0.522— about 0.00000024, or 1 

in 4.2 million. What if we as-

sume that the team’s fi nal re-

cord, 55– 27, better refl ects its 

ability? That makes the chance 

of the Rockets winning any 

game 0.67, and the probability 

of winning twenty- two straight 

games 0.6722, or about 0.00015. 

This is about 625 times more 

likely— but still only about 1 in 

6,700. Note that we are assum-

ing independence— that win-

ning any one game does not 

infl uence the outcome of the 

next game. This isn’t necessar-

ily the case. For example, winning streaks can lead to larger crowds, 

which may lead to more wins. Even so, assuming independence is a 

helpful place to begin and can help with basic estimates, which can 

springboard into more sophisticated models.

Workout #4: For the 2019– 20 NHL playoffs, two “hub” cities were 

selected from the seven Canadian cities with NHL arenas. How 

many ways could two cities have been selected? We have a group 

of seven items (cities) from which we are choosing two, and order 
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doesn’t matter (since selecting Edmonton and Toronto is the same 

as selecting Toronto and Edmonton). So our answer is C(7,2) = 7 × 

6/(2!) = 21.

Workout #5: In her 2012 Wimbledon 

semifi nal against Victoria Azarenka, 

more than a third of Serena Williams’s 

serves were aces. What’s the probabil-

ity of a player with an ace percentage 

of 14.4% matching her achievement of 

24 aces in 71 serves? One approach is 

to treat this as a Bernoulli trial: C(n,r) 

= n!/((n − r)! × r!). With 0.144 as the 

probability of success for each serve, 

the overall probability is C(71,24) × 

(0.144)24 × (1 − 0.144)(71 − 24) = 0.000022, or about 1 in 45,000.

Another approach is to write a computer simulation. Here is how 

a computer can serve like Serena Williams:

• Set success counter to 0. Then repeat the following steps a mil-

lion times.
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° Set the ace counter to 0. Then repeat the following steps 71 

times.

• Pick a uniform random number between 0 and 1.

• If the number is less than 0.144, the serve was an ace. Add 

one to the ace counter.

° Did you serve 24 aces? If so, add one to the success counter.

• Divide your total number of successes by one million and you 

have your estimate for the probability we just found treating this 

as a Bernoulli trial.

Why run the simulation a million times? The underlying probabil-

ity is so small that ten thousand repetitions produce an estimate 

of a zero probability on many runs. In fact, we’ll do best to make 

multiple runs of a million tries. When you see approximately the 

same value on multiple runs, you can trust your estimated value via 

simulation.

Workout #6: During the 2016 MLB season, there were 165,561 

at- bats and 5,610 home runs, making the probability of hitting a 
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home run 5,610/165,561 = 0.0339. We want to determine the best 

approximation of that probability in a simulation where the roll of 

three dice determines the outcome of an at- bat. There are 216 pos-

sible outcomes of rolling three dice (6 × 6 × 6, or 63). Multiplying 

0.0339 by 216 yields 7.32, and indeed, 7/216 = 0.0324 is the closest 

match. You can check 6/216 = 0.0278 and 8/216 = 0.0370 to verify 

that 7/216 is our best option.

Did your answer count only seven outcomes of rolling three dice 

as home runs? If so, you found an optimal combination of rolls to 

approximate the probability of hitting a MLB home run in 2016. 

There are a variety of ways to come up with seven options when roll-

ing one die three times. For example, we could call it a home run 

if we get 6’s on both the fi rst and second roll (plus any of six pos-

sibilities on the third) or if we roll three 5’s. This gives us a homer 

for rolling 6- 6- 1, 6- 6- 2, 6- 6- 3, 6- 6- 4, 6- 6- 5, 6- 6- 6, or 5- 5- 5. Grab a die, 

and play ball!

Workout #7: In 2016, President Barack Obama 

correctly predicted 23 of 32 games in the fi rst 

round of the 2016 men’s March Madness tourna-

ment. To determine the probability that random 

chance (a coin fl ip) could have done as well or 

better, you can use a Bernoulli trial assuming a 

probability of success of 50%. Either use the for-

mula from chapter 4, or take a shortcut by going 

to WolframAlpha .com and typing in “probability 

of at least 23 heads out of 32 fl ips,” which returns 

a probability of about 0.01. (With random picks, 

there is an equal chance of picking at least 23 of 

32 games wrong.)

Workout #8: Kareem Abdul- Jabbar’s height is 

recorded as 7 feet, 2 inches. If we plot NBA play-

ers’ heights over sixty- seven seasons beginning 

in 1950, we fi nd a fairly normal curve. The mean 
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height is 6 feet, 6 inches, with a standard devia-

tion of 3.65 inches. It will be easier to work with 

heights in consistent units and decimal form. 

In feet, Abdul- Jabbar’s height is 7.167, the mean 

NBA height is 6.5, and the standard deviation is 

0.3042. So his height is (7.167 − 6.5)/0.3042 = 

2.19 standard deviations above the average. Al-

though not part of the question, this converts to 

an estimate that just over 98.5% of NBA players 

have been shorter than Kareem Abdul- Jabbar. So 

even though he wasn’t the tallest, he’s very tall, 

even in the NBA.

Workout #9: Over her international soccer career, 

Abby Wambach scored 184 goals in 256 caps, giv-

ing her a goals/cap rate of 0.719. To simulate her 

scoring, a computer could follow these steps:

• For each game, pick a uniform random number between 0 

and 1.

• If the number is less than 0.719, Abby Wambach scores in the 

game. Else, she doesn’t.
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• Play 256 games, tally the number of games in which she scores, 

and compute the goals/cap rate.

• Repeat ten thousand times.

When the computer plays 256 games ten thousand times, we fi nd 

that 95% of the simulations have Wambach’s goals/cap rate be-

tween 0.66 and 0.78.

Workout #10: In chapter 10’s worksheet, a PGA golfer made the cut 

when a roll of four dice summed to at most 14. We determined that 

721 of the 1,296 possible outcomes of a four- dice roll summed to 14 

or less, and so calculated a (721/1296)30 chance— about 1 in 43 mil-

lion— of making thirty straight tournament cuts. In our fi nal model 

for Tiger Woods, he made the cut when the four dice summed to 

at most 18. There are 1,170 ways of rolling a sum of 18 or less with 

four dice, which improves his chances of making the cut in thirty 

straight tournaments to (1170/1296)30, or about 1 in 21. Skill and 

consistency massively improve the odds of a streak!
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Workout #11: Daryl Mo-

rey adapted Bill James’s 

Pythagorean expectation 

to predict winning per-

centage in professional 

basketball as P = PF13.91/

(PF13.91 + PA13.91). Plugging 

in stats numbers for the 

Toronto Raptor’s 2018– 

19 regular season— 9,384 

points for (PF), 8,885 

points against (PA)— we fi nd the Raptors could be expected to have 

won 0.6814 (68.14%) of their games. There are 82 games in the NBA 

regular season, making the expected number of wins 82 × 0.6814 = 

55.9. In fact, they won 58. John Hollinger, another prominent fi g-

ure in basketball analytics, tweaked the Pythagorean expectation 

for basketball using a different exponent, 16.5— which is a better 

predictor in the case of the 2018– 19 Raptors: 9,38416.5/(9,38416.5 + 

8,88516.5) = 0.7113; 82 × 0.7113 = 58.3.

Workout #12: In this workout, we apply the model that told us how 

many strides we would have to make in less than 9.69 seconds to 

beat Usain Bolt’s record in the 100 meters to a longer race. Here, 

our competitor is 5 feet, 9 inches tall and 

looking to beat Florence Griffi th Joyner’s 

time of 21.34 seconds in the 200 meter 

sprint. First, we convert 5 feet, 9 inches 

(5.75 feet) to 1.75 meters, then multiply by 

1.35 for a stride length of 2.37 meters. To 

cover 200 meters taking strides with a con-

stant length of 2.37 meters would require 

200/2.37 = 84.4, which we round up to 85 

strides. If our 5 foot, 9 inch runner can 

complete those 85 strides in under 21.34 

seconds, then she beats Flo- Jo, thanks 

again to an overly simplifi ed model!
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Workout #13: The Cats Stats sports analytics group at Davidson Col-

lege began by charting shots for basketball. We now also chart data 

for football, baseball, lacrosse, soccer, and other sports. For basket-

ball, we record the information noted at the end of the chapter— 

shot location, name of shooter, type of shot, and point value— plus 

shot clock, assist, and game clock information, as well as other data. 

When our student analysts record live at a basketball game, it now 

takes three of them to enter all the data. In the beginning, it took 

only one student. So think about what you want to record. Once 

you’ve charted a handful of games, you can begin looking for pat-

terns. In time, you can look for patterns based on individual players, 

groups of teammates, opponents, time in the game, or location on 

the court. What else comes to mind? Listen to your ideas, and you 

may develop a new direction offering new insight. You may develop 

the unforgettably new sports analytic.
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