
Game Project Completed

How Successful Indie Game Developers
Finish Their Projects

By Thomas Schwarzl

Copyright © Thomas Schwarzl, 2014

All rights reserved

ISBN-13: 978-1490555454

Table of Contents

Introduction .. 7

Motivation .. 8

Audience ... 8

What You Will Find in This Book 9

What You Won't Find in This Book 10

Personal Stories .. 11

Gender ... 11

Going Indie ... 13

The Dream of Overnight Success 14

Screw Small Games, Mine Will Be Epic! 16

Beginning, Disillusion and Transformation 18

Better or Different .. 19

Choose the Right Idols 21

Don't Think, Do .. 23

The Nay-Sayers .. 26

From Slave to Master 29

You Get Paid per Sale, Not per Hour 30

Have Goals .. 31

Focus ... 32

Reduce Context Switching 35

Keep a Work Journal ... 36

Restrict Yourself .. 38

Seek & Destroy Bottlenecks 41

The Curse of Do It Yourself 43

Getting Better by Intention 44

Security ... 46

Agility .. 49

Scrum 101 ... 50

Accept Imperfection ... 53

The Pareto Principle .. 53

Parkinson's Law .. 55

Get Yourself an Agile Mindset 56

Start Lean .. 58

Plans Are Worthless, Planning Is Everything 60

Software Is Organic ... 60

Correct Methods vs. Working Methods 62

Time Estimation Hell ... 63

Prematurity ... 67

Premature Optimization 67

Premature Game Design 69

Premature Promises .. 70

Premature Feature Integration 71

Premature Polish ... 73

Stamp Design .. 74

Mastering Emotions 77

Motivation .. 78

Procrastination .. 82

Embarrassment Happens 83

Feedback: Cure and Curse 84

The First Step Is the Hardest 85

Start Somehow .. 87

Price Shame .. 89

Don't Take It Personally 91

Emotions Equal Sales 93

Everyday Life Hacks 97

Knowledge Is worth Nothing 98

Discipline ... 99

Health .. 100

Speed Reading .. 103

Singleton To-Do List .. 106

Do First, Learn Later 107

Expand Your Comfort Zone 108

About the Author 113

Introduction

People all over the world dream about making a living from
games. Designers, programmers and artists form groups and
enthusiastically jump on the bandwagon to game
development fame. Unfortunately many of them are not
aware that cranking out design documents, code and graphics
alone does not take them to the finish line. A bunch of
additional project-saving skills is necessary. This is why
many developers suddenly see themselves in a death march
towards game development shame, where no game ever sees
the day of light.

Issues like feature creep, missed deadlines, hubris and
demotivation are common for inexperienced developers.
Therefore they hardly ever finish their games. They may have
the skills to design and implement a game. But what they are
missing is the mindset to stay focused, remain on track, stay
motivated and deliver in time. These are traits school hardly
teaches.

7

This book deals with the underserved topic of how to finish a
game project. Technical and artistic work are just the
ingredients of the overall process. What makes them stick
together and how to manage specific tasks make up the secret
sauce to success.

Motivation

This book took shape while I was struggling to finish my own
games. It wasn't the code, the design or the graphics of the
game which jammed the process. It simply was my mindset
and the way I approached different tasks which made me fail.

I started reading books about self-management and self
improvement. Additionally I started blogging about my
experiences at www.blackgolem.com. Finally I searched for
books about tricks to become a better (speak more effective)
game maker who can finish his projects. To my surprise,
there was no book dedicated to this specific topic. Or I just
could not find them. So I took up the challenge and wrote
such a book myself.

Audience

This book is mainly written for developers, artists and
executives who want to improve their method of making
games. But it is useful for anybody who works project-
oriented in general. Most parts of the book can be applied to
non-game projects as well.

If you want to improve your entrepreneur life, boost your
productivity, do more with less and have a good night sleep -

8

http://www.blackgolem.com/

this book is for you.

What You Will Find in This Book

When you start out making games alongside your day job,
school or even as a fulltime (indie) game developer you will
encounter problems you have never had before. You may
think of technical difficulties like annoying bugs, how to
write AI code, animating complex 3D assets or compile
errors. These problems will occur. But there is a more
dangerous threat out there. It's called the human factor and it
makes creating games quite difficult.

This book is a set of tricks and techniques to prevent human
nature from ruining your game project. Simple issues like
embarrassment, procrastination or perfectionism can become
death traps for your success. So you should be aware of these
perils to avoid them or to cope with them.

Here are the major points discussed throughout the book:

• Going from hobby to pro game making

• Thinking no longer as an employee but as an
entrepreneur

• Staying in time restraints and budget

• Improving your work habits

• Motivating yourself

This book is aimed to give you the necessary mindset to
successfully design, implement and sell your games. Finally,
it's your mind and willpower which make you successful.
They make the difference between a thriving game studio and

9

a bunch of hobby developers.

What You Won't Find in This Book

Topics like game design and game technology are already
discussed in other books ad nauseam. Therefore it would be a
waste of time to tackle them here again. Instead I assume that
you are familiar with the different disciplines of game
production. You don't have to be a designer, a coder, a
marketing guy and a music composer. You just should be one
of them.

Here is a list of topics you won't find in here:

• Game development technology

• Game code

• Game design

• Graphics and sound

• Artificial intelligence

• Marketing and public relations

• Team management

• Game business

If you're looking for any of these topics it's time for you to
close this book and head over to the “... for Dummies” book
shelf. Acquire the single knowledge pieces of the game
making puzzle there. Come back to this book when you feel
overwhelmed by putting together the 1 million piece jigsaw
puzzle called “my game”.

10

Personal Stories

Throughout the book I will share personal opinions and
stories from my own game development career. They will be
presented with a special formatting, like the following story:

Once upon a time there was a little boy who made dumb
table top games. After he had grown up he made less
dumb digital games and wrote books.

And he lived happily ever after.

The End.

Most of the stories added to the wish of sharing my
experiences in this book. Therefore I included them here, in
the creation they have spawned.

Gender

When it comes to writing for an unknown audience there's
always the question how to handle gender. Male pronouns or
female pronouns? Both? None at all? The latter is hardly
feasible...

I chose the male for a simple reason: the majority of people in
the games industry is male.

11

12

Going Indie

Indie.

This word has been floating around online for over a decade
now. Now is the year 2014. So many success stories fill the
Internet ether, with Braid, FTL, Super Meat Boy and
Minecraft's overnight success as poster children.

Reading all these impressive stories leads to a simple
conclusion: making games is fun, easy and makes you rich.
The first statement is true. The other two are not. At least not
without good skills and luck.

But then why are so many stories about sky-rocketing indie
game developers in the news? The simple answer is: this is
what people want to read. Nobody wants to hear about hard
work, long nights, running out of money, stressed
relationships and other things you already may know from
your own life. People just want the exciting stuff.

Does that mean that most indie game developers are

13

suffering?

No, that's not the case. But being indie is very different from
being employed, regardless if it's in games or any other
business. Most schools don't prepare their students for
independence (in short: indie) and therefore they miss
important advice how to make it as indie. School is meant to
produce workers for predefined job positions, not
independent personalities.

If you want to become a successful indie game developer you
have to become a self-reliant person. This is the point where
this book comes into play.

The Dream of Overnight Success

Overnight success stories dominate the media. Minecraft,
Angry Birds and Tiny Wings make you ponder starting your
own game project. Their stories make you daydream about
your own journey to fame, money and artistic expression. It
just looks so easy.

There is an oft-overlooked detail though:

Overnight success happens after failing the
foregone day and night.

Before Markus Persson started Minecraft he had cut his teeth
on many small, sometimes unfinished projects hardly
anybody knows about. Minecraft itself started as a rehashed
version of the rather unknown game Infiniminer. Rovio, the
studio behind Angry Birds, had released more than 30 “not so
good” games before they rose to fame with shooting birds

14

https://mojang.com/notch/
http://www.squidoo.com/stop-stealing-dreams

into pig shacks. Tiny Wings is an exception in this list. It took
the developer about 6 months to complete the game, then it
took off. Exceptions prove the rule.

There are misconceptions about how to become a successful
game maker. The first one is that good games sell well by
nature. When people begin making and selling things on their
own they expect the world to beat a path to their doors.

Fact is: most ideas are already implemented and available on
the market, in one way or another. The majority of new
games is neither that innovative nor that outstanding. Why
should a player buy your game instead of similar game X?

The second misconception is that a good product promotes
itself. The most amazing game won't sell when nobody
knows about it. Having your own website with a “buy
button” on it is not enough. Driving interested people to your
website is way more important. The dreaded word
“marketing” comes into play.

Finally there is the hope for "getting chosen". The App Store
is such a bottleneck, beating the drum for only a handful of
lucky developers. Betting on this resembles playing the
lottery for income.

Success is not the outcome of luck or help from others. The
word “success” derives from “to succeed” in terms of “to
result from”. Success results from target-oriented dedication.
Luck may make you successful for a short while. But it's the
improvement of skills, the application of knowledge and
plenty of trial and error that makes you successful for the
long haul.

Overnight success rarely happens. It's rather that people get

15

surprised by no-names while watching the elite.

Screw Small Games, Mine Will Be Epic!

How do you spot a game developer who's new to the
industry? He will tell you about his new game having
hundreds of characters, thousands of weapons and a million
hours of gameplay. The numbers are exaggerated but you get
it.

Newcomers want to funnel all their dreams into one game.
They don't mind that each asset and each feature takes time to
implement. Therefore unrealistic ideas take shape which can't
be finished in the end.

This is an important lesson to learn for indies: you can't have
everything. The better rule would be: you can have only a
little.

You will make plenty of mistakes in your first game. Game
by game the mistakes become fewer and less critical. It's not
so important to avoid mistakes. This is a myth propagated by
conventional school systems. It's more important to identify
mistakes, learn from them and do it better next time.

“Better next time” is a key phrase. Releasing a few small
games within a year makes you a better game developer than
releasing just one in the same amount of time. Lessons
learned from the foregone game automatically improve the
next game. Just keep in mind that your first game(s) will
suck.

If you have plans for going full-time indie small projects have
another advantage: they bear less risk. “All in” on one poker

16

hand looks cool in movies but kills businesses in reality. It's
better to have a few smaller chances of winning, not just one
big shot.

Motivation is another factor which profits from short
projects. Many games never see the light of day just because
their developers suffer from fatigue. Small projects – we are
speaking about a few months – are over before they get
cumbersome.

A small project also need less staff. If it's small enough you
even can do it on your own. No meetings, no discussions, no
diverging opinions and all the income for you.

Once I worked in a startup studio which was founded by
two fresh-baked university graduates. They entered the
App Store with the right game at the right time and took
off (during the App Store gold rush years). They hired
some people to make bigger games. Suddenly the
founders found themselves no longer coding and
designing games but managing their staff and having
business talks. What they really wanted to do was now
carried out by their employees. The staff had all the fun
the founders wanted in the first place.

Today they have dropped their staff and have gone back
to design and code their games themselves again.

“Start small” is a universal rule. Babies crawl first, then they
start walking. Weight lifters don't start out with 400 pounds.
The biggest trees grow from small seeds.

17

Take it easy. Start small.

Beginning, Disillusion and Transformation

When people start writing games they are enthusiastic about
creating something they like with their own hands. Crazy
ideas are flowing and all of them go into the game design.
“It's going to be killer!”

In this phase, folks work for the joy of creation and
achievement. In the beginning money is an afterthought, a
by-product of the game making process, if you will. At this
stage we are talking about a hobby.

While happily coding away time, raising the first playable
alpha version, minor problems start to occur. Coding is fun
but the issues popping up every once in a while start to get
annoying. It should be fun and problem solving isn't.

After a while the first alpha version is done. But it's not as
cool as expected. So much time went into the code and the
assets but the visible gameplay is not what it should be. How
is that possible? Aside from the scarce gameplay, hardly any
of the cool ideas have been implemented yet. There is still so
much work left to do.

Slowly the team becomes aware that this isn't just sunshine
and roses. It smells more like work. Some team members
start to lose motivation. Everything else suddenly seems more
important. The dream of their own game starts to crumble and
every new problem further disillusions the creators.

What now? Struggle on? Quit? Start a new game?

At this point a transformation happens. The team becomes

18

aware that making games isn't a cakewalk. It's work with all
its ups and downs other disciplines have as well.

Some may start over now to get the good startup feeling back.
Others may quit, tagging game development as “not fun”,
“too difficult” or “not for me”. But the best teams go on and
tackle the problems, one after the other. Problem solving is a
basic trait for success. Rough seas make good sailors. So
overcoming problems is an important skill to learn.

In later chapters this book will show you how to handle
problems like disillusion, fatigue, feature creep and doubts.
The key principle is prevention. Knowing how to avoid a
problem is way better than knowing how to solve it. This
book is a guide which will teach you how to get around the
pitfalls of game development.

Better or Different

Human beings love to categorize. People will pigeon-hole
your game into a genre to make it comparable to other games.
They will ask themselves: “Why should I buy this game
instead of [other game of same genre]?” What will be your
answer? Yours has more weapons? More characters? A lower
price? More impressive graphics? Epic play length? Hats?

As you may have guessed the list goes on and on. All these
answers have one thing in common: comparability. To stand
out you have to have an advantage over other games in your
niche. For example “greener trees” won't knock somebody's
socks off. It's just too vague to be recognized as a benefit.
Numbers like number of levels, number of characters or play
hours are more persuasive. These numbers can be compared

19

with the fact sheets of other titles. That's the reason why
game packages sport feature bullet lists on the back. They
aim for customer reactions like “wow, twice as many guns as
the other game – let's buy it!”

Comparability fuels competition. Game makers producing
similar games have to outperform each other to make sales.
That's good for the player. Prices drop and the games get
better due to forced improvement. But can you stay in
business with shrinking profit margins while the pressure of
“higher-faster-further” increases? Do you want that at all?

To avoid this rat race you have just one option: avoid
comparability and be different.

Being different means that you should make your game as
incomparable to other games as possible. This reduces
competition. Less competition automatically increases your
rank in a niche. Being #2 isn't that difficult when there are
just two other games in your niche.

Genres don't get invented every day. So don't consider that as
your goal. Just have one or two features which make your
game stick out of the vast sea of “me-too” titles. Business
people would call this a unique selling proposition, a USP. I
call it bait to hook players and game journalists.

There's another benefit of being different: you can leave
behind conventions. Genres establish rules and best practices
over time. You have to either fulfill them or break them with
a better solution. Either approach can be quite tough. When
your game is different, it has its own rules and therefore has
less conformity issues.

So what's your decision? Being better or being different?

20

Choose the Right Idols

Most game developers have a favorite genre. Usually that's
the genre in which they want to make games. Further
developers have favorite games which they see as paragons
for their own games. It's the chill going down your spine
when you imagine your own version of Assassin's Creed or
Grand Theft Auto in action which boosts your motivation.
Well, these games are not really indie games but you get it.

Entering the ring of game development this way is romantic
but also very dangerous. Replicating prominent idols has a
high probability of killing your ambitions by exhausting you.
The problem is that inexperienced game makers don't think
about the huge amount of time, money, blood, sweat and tears
which went into their paragons.

The following points highlight common pitfalls in choosing
idols. Keep them in mind and save yourself from yet another
never-done game project.

Graphics Idols

Don't make the mistake of following eye-candy idols. Today's
AAA games spend millions of dollars on visuals. As long as
you can't afford an army of artists and animators you can't
compete in this category. Idolizing games which have simple
graphics is way easier and cheaper.

Here is a list of links to successful indie game sites which list
games with simple graphics:

• Distractionware

• Spiderweb Software

21

http://spiderwebsoftware.com/
http://distractionware.com/blog

• Sword and Sworcery

• Towerfall Ascension

• Terraria

• Hotline Miami

• Super Crate Box

• Thomas Was Alone

• RYMDKAPSEL

Even indie games climb the ladder of fancy graphics these
days. Therefore “not so wealthy” game makers have to go a
different route. They prefer style over realism (that is,
expensiveness). The best examples for style are Sword and
Sworcery, Thomas Was Alone or RYMDKAPSEL.

It's simple: be better or be different.

Multiplayer Idols

Multiplayer games are more difficult to write than single
player games. There are plenty of issues like network latency,
narrow bandwidth, additional programming for servers,
security holes, state persistence, load balance, etc. It's a long
list of things to take care of. The complexity for testing
games rises with the number of players. As you can see there
are many threats which may blow your time schedule when
you're not aware of them. There is also the need for
knowledge and experience in network programming. I just
say multi-threading.

22

http://rymdkapsel.com/
http://www.mikebithellgames.com/thomaswasalone
http://www.supercratebox.com/
http://www.gog.com/game/hotline_miami
http://www.terraria.org/
http://www.towerfall-game.com/
http://www.swordandsworcery.com/

Epic RPG Idols

Are you fascinated by the epic stories of Mass Effect, Elder
Scrolls or Final Fantasy? Is it your goal to provide your own
role playing game with +50 hours of gameplay?

Let's take a closer look at the costs. For long hours of
gameplay you will need many different types of scenery like
countryside, towns, buildings, interior, temples, caves,
mountains, etc. There also will be plenty of characters. At this
point a costly visual style already makes it impossible for a
small team to finish the project. When you have more
favorable visuals there is still an epic story left to write.
Depending on your writing skills it can draw a large part from
your development time.

Simple graphics and 10 hours of gameplay can already ramp
up to several months of work. Try measuring the time needed
for creating the first few hours of your RPG and see how
much time it would take to finish it. This, by the way, is a rule
applicable to every game project.

Don't Think, Do

Many people dream about following their ambitions. There
are instruments they want to learn to play, books they want to
write or games they want to make.

Unfortunately there is always a reason not to get started.
Popular ones are “I'm not able to do that” or “who am I to do
that” thoughts. Even when people have the knowledge and
skills, they think “I'm not good enough to do that”. Further
reasoning: “nobody will buy this” aka “I can't charge for
this”. Finally the lack of spare time due to job, friends, kids

23

or simply watching favorite TV series makes it seem like an
impossible endeavor.

“I don't have any time.” is a lame excuse. How much time do
you spend surfing the web or watching TV? How much time
are you hanging out with friends? All these activities have
their value and deliver joy. Nevertheless, channeling off a few
hours a week from your spare time activities won't make a
big difference.

Imagine the following: you are hungry and your fridge is
empty. What would you do? You would go to the next shop
and buy some food. It's an everyday routine you won't think
about. Now imagine this: you see a girl for the first time and
you want to ask her out for a date. What would you do?
(sorry ladies, I told you this book's target readership is male)
Unless you're a seasoned badass, thoughts of anxiety will pop
up in your mind:

• “What should I say?”

• “What if I get nervous?”

• “She is out of my league, isn't she?”

• “What if she laughs at me?”

All these thoughts bring up the worst case scenario which you
finally want to avoid. It feels too dangerous to risk getting
shot down in flames.

The same worst case thinking is what prevents us from doing
the things we dream of. “What if they hate what I do?”. It's
the fear of failure which holds us back. The first example of
buying food does not bear this threat. You already know that
there's nothing to fear. The latter example of approach anxiety

24

resembles the fear of failure you may have when thinking
about doing something new like writing a game. People may
not like your attempt. So you don't even try.

Now you may think “What are you talking about? I'm already
coding my game and it's nearly finished”. Well, are you
already selling it for real cash? Making a game resembles
pondering how to approach the girl. Selling it is the step
where you walk over to her and open your mouth. Player
feedback resembles the answer she gives you. The feedback
is what you fear.

OK, now that we know the problem - what's the solution?

Using the girl approach metaphor, it's much easier to
approach a girl you're not interested in. Ask her the time, ask
for a light or just give her a smile while walking by. Next
time bandy a few words. Following this metaphor, keep your
first game simple, don't expect anything and see what the
resonance is. Learn from that and try again with a more
extensive game. Rinse, repeat. Don't worry about your
reputation. As long as you keep it honest and friendly,
nothing can go wrong.

Soon you will have the knowledge and guts to accomplish
and sell the games you really want to make. This is the
moment when you stop dissuading yourself from doing it and
get started. It's easy now because you know there is no real
danger except in your own mind.

The same goes for the ladies.

I always wanted to write a book. I started a novel at the
age of 16 but never finished it. Nobody ever read these

25

150 pages because I feared getting laughed at.

Fast forward to 2012: I was coding a game and listened
to Rage Against the Machine. Then my thoughts strayed
off to book writing. I had a few ideas for books but still
hesitated. Then I heard the Guerrilla Radio lyrics:

What better place than here, what better time than now?

I stopped coding and started writing my first book about
collision detection.

Sometimes you just need a sign.

The Nay-Sayers

Everything that's beyond common sense is hard to accept for
most people. When there is something revolutionary on the
horizon, they try to approve it with common sense. The
problem with revolutions is: they change common sense.
Therefore they often get declined because they look odd or
threaten the status quo.

Love has to be a roller-coaster of emotions, devotion till
death, roses all over the bed, Mr. and Mrs. Right, etc. This is
what television and movies show us all day long. But our gut
feeling tells us that there is more to it. There are many more
possibilities to keep a fulfilling relationship.

The same holds true for games. Does a platformer game

26

http://www.collisiondetection2d.net/
http://www.collisiondetection2d.net/

always have to have the possibility of jumping? What about
elevators? What about teleportation or a grappling hook?

When you come up with an odd game idea, many will say
“that won't work”. First of all: do they have the background
in game development to tell you so? And if they have, what is
the reasoning behind their opinion? How can they predict the
future of your idea? Nobody knows the future. Thus, nobody
can know if your idea will soar or bomb until you have
proved one of the two.

Derek Sivers, the founder of CDBaby, said:

“Revolution is a word that people use when you are
successful. Before that, you are just a corky person
who does things differently.”

Evolution extends common sense gently. Revolution, on the
other hand, jumps at the uncommon sense and transforms it
into common sense. Therefore, if you have no nay-sayers
against you, you hardly can have a revolutionary idea. Right?

27

28

From Slave to Master

Children, students and employees have something in
common: they have authorities that tell them what to do. On
the one hand, this is really annoying. Sometimes you just
don't feel like doing what your parents, teacher or boss wants
you to do. On the other hand, it frees you from decisions and
responsibility. When your boss tells you to work on a new
task, you don't have to think about if this task is worth the
effort. That's your boss' problem.

When you become self-employed, some kind of
schizophrenia will (have to) emerge in your mind. You will
become a master-slave hybrid. As the slave you have to
design the game, write the code, do the audio, test the game,
and so on. As the master you have to make market-driven
decisions, cut features and force your slave-self to work extra
hours. This is especially the case for solo indies. If you work
with other people you still will have to wear more than one
hat. One day you craft something just to decide to throw it

29

away the very next day.

Usually compromises are made between 2 or more people.
Self-employed entrepreneurs have to make compromises
between their personalities.

A big threat of being your own boss is the freedom to take
time off whenever you want. When you are part-time indie
that's not as dangerous as when you're full-time indie. If you
have a day job, skipping your spare time project does not
affect your income. At least not immediately. Full-time indies
who skip work also skip progress and therefore stop money
from coming in.

The following chapters will show you tricks and insights how
to make the transition from employee to self-employee.

You Get Paid per Sale, Not per Hour

As an employee you receive your pay checks on a regular
basis. What you do and how well you do it has no direct
effect on your money stream. Self-employment, on the other
hand, means you don't get any money for making a game.
You only get money when you sell it. So it's no longer your
goal to fill your day with working hours. Now it's your job to
score as many sales as possible. Don't get me wrong - it's not
just about marketing. A good game is mandatory. But
marketing is what makes your game visible to potential
customers.

Try to keep a work journal for a little while and enter all your
working hours in it. Then multiply the number of hours with
the hourly wage you want. The result - how fast money goes
down the drain - may be surprising.

30

When you keep in mind that everything you do has to pay
itself off in some way, you start to think like a business man.
You will start looking for ways to cut down your work,
optimize tasks, reuse code and use third-party software more
often. You will consider buying commercial tools, paying for
services and buying assets instead of doing everything
yourself. For example, searching for a free texture, coloring
it, fixing repetitive patterns and making it seamless is often
more expensive than buying a canned texture for a few bucks
online. When you start out without a budget, doing it yourself
is OK. But as soon as you have money at hand, rethinking the
best economical option becomes important.

Have Goals

Many game developers start their career as a hobby. They
write games for the sake of it, because it's what they like to
do. As long as the work itself brings joy there is no need for a
goal. But as soon as they want to make a living from their
hobby, new priorities take shape. The main priority is, as you
may guess, making enough money to stay in business.
Despite the fact that this is obvious, newbie indies keep doing
what they did as a hobby: having limitless fun. The fun keeps
being unbound until the money is depleted.

I was once one of these easygoing indies. Bankruptcy is
not the end of the world but it cures naivety the hard
way.

Goals have an uncomfortable trait: not meeting them is

31

failure. Maybe that's the reason why people avoid having
goals or pursuing them. Who wants to set up his own
emotional punishment anyway?

But why are goals missed? One explanation for this is the
wrong scope. “I want to make a living from games” is way
too vast a resolution. On the other hand, “I want to make $1
from my game” sounds too simple to be a serious goal. But
why not? It sounds achievable. The game does not have to be
clever, beautiful or epic. It just has to earn you a single buck.

A narrow scope is what bootstraps success and the
accompanying feeling of confidence. Start with a small goal,
reach it, feel good and set up the next one. Raise the bar as
you go along. Break down goals into subgoals when they get
too big. Flesh out an action plan for each goal to know what
needs to be done. It's easy to get lost in game development
without a roadmap.

Some plans will work out, others won't. Find out what does
not work and use this knowledge for further planning. This is
important especially for time estimation. When goals and
deadlines keep being unmet, plans become pointless.

The skill of setting and achieving goals is an important
characteristic of successful people. Money is just a side effect
of success. It succeeds from being an achiever.

Focus

Employment usually means working in a specific domain.
Programming, 2D graphics, 3D modeling, audio, testing,
management, public relations, you name it.

32

When you become self-employed this belongs to the past.
You will have to wear several hats. Let's say you're a coder
with an artist to help you out. This means you have the
following jobs (at least):

• CEO

• Lead programmer

• Lead tester

• Public relations

• Coffee machine expert

Simply put, you have to do everything yourself. Does this
mean you have to do everything simultaneously?

You may have heard of multitasking. It's the art of doing
different things at the same time. This is a business owner's
wet dream. One worker who can do several jobs at once. No
extra ancillary wage costs. That would be great!

Forget about multitasking, it's a misconception. It's true that
human beings can do several tasks at once, for example
walking while eating while talking on their mobile phone.
This is possible because walking and eating don't need much
conscious brain power. Multitasking has its limits when it
comes to full-focus tasks like writing source code while
talking to somebody. It simply does not work.

When I'm driving and talking to my co-driver, my brain
immediately switches to autopilot mode. This means I
either drive home or hit the road towards the town
where I'm currently living in.

33

Sometimes I'm not aware of the wrong direction until
my co-driver asks me where I'm heading to.

No joke.

The solution for handling multiple tasks in parallel can be
learned from central processor unit cores (CPUC) in
computers. A CPUC runs one execution thread at a time.
When a CPUC has to execute multiple threads
simultaneously it uses context switching. This means it runs
one thread for a short time, switches over to the next, runs
this thread for a short time, switches to the next, and so on.
CPUCs focus on one task at a time and switch over in a
scheduled manner.

The conclusion is simple: focus on one task at a time.

Aside from the clear separation of different tasks, there is also
the alignment of tasks to your brain capacities. Writing code,
for example, needs a different type of brain power than
answering emails. Animating 3D models needs other brain
areas than designing levels does. Some tasks can be carried
out better in the morning while others fit better in the
afternoon or at night. This is different for every person. So
find out what works best for you and schedule your work
accordingly.

Last but not least: forget ordinary working hours. If you are
fully motivated on weekends, work on weekends. If your best
time is 4am than get started at 4am. If you love to work at
night get some coffee and burn the midnight oil. I'm aware
this can heavily interfere with a day job, family and friends.

34

Nevertheless, it's worth being taken into consideration. It's
better to work highly focused for two hours at 4am than
wasting the same hours at 6pm when you're tired from your
day job.

Reduce Context Switching

This chapter goes hand in hand with the chapter Focus. The
chapter Focus suggests that context switching is a good thing.
It is. Nonetheless, it follows the common rule less is more.
With context-switching comes switch overhead. When you
switch to another task, it takes time to pause the current task
and get into the new one. Then, after working on the second
task for a while, you have the overhead of going back to the
first task. The overhead of this context-switching can be quite
high. It can go as far as to ruin your motivation for the whole
day.

When you keep the switching frequency as low as possible,
you foster “the flow”. This is the state of mind which makes
you 100% focused on your current work. Everything comes
naturally in this state. People get lost in the flow for several
hours, just to get brought back by their growling bellies. It's
common to forget about time, space and food intake if you
are in “the flow”. It's the synchronicity of your vibe and the
vibe of your work which makes you become one with it.

Distractions like meetings or small side jobs (or even day
jobs) are often inevitable. The trick is to block them together
in as few interruptions as possible. This is the same reason
why some offices have limited hours open to the public. It's
simply a reduction to one context switch a day, from serving
citizens to working through piled up work.

35

Be into a task when you call it a day. This is a simple ruse to
get back into the task faster when you take it up the next day.
The psychological background is that a small sub-task is
easier to continue than tackling a whole new task. The
smaller the mental image of the task in your mind, the faster
you can gain momentum.

Keep a Work Journal

Employers want to know how much time their employees
spend on their tasks. First and foremost, this is for comparing
the timetable with the real numbers. If there's too much
overtime a red light starts flashing at the boss' desk.
Understandably, the project falls behind schedule with each
extra hour.

Having an eye on your own progress is also important when
you are self-employed. Any schedule is useless when its tasks
always take longer than planned. To know if you're behind
schedule, you have to take notes about your work hours.

A simple spread sheet as a work journal is enough. This work
trace should enable you to get an overview of how much time
went into which part of your project.

My own work journal is a simple OpenOffice
spreadsheet with the columns date, work description,
duration and work category. The category column
contains only a few different values like “gfx creation”,
“coding” or “design”. This simple setup lets me
generate nice pie charts from the time and category

36

http://www.openoffice.org/

columns which tell me how long I spend on which
category.

That's all very well, but what are these statistics good for?

First of all, it tells you what your hourly wage is. Take the
project's generated income and divide it by the sum of its
work hours. Often this makes one thing clear: you would earn
more if you went back to the treadmill of employment.
Another insight is that more work for the same income thins
out your hourly wage. Therefore, future work has to be more
effective regarding income generation than finished work.
This is especially true for marketing.

Secondly, a work journal allows you to derive estimations
from former tasks, for example, from creating a mid-sized
enemy unit. You can't say two similar tasks will take the same
time. But you can assume that the upcoming task will take
plus/minus a few hours or days of what the last similar task
took. That's a lot better than a shot in the dark.

Thirdly, a proper journal and its statistics can tell you where
you should start optimizing your performance. If the graphics
take up half of your budget, it would be wise using a simpler
graphics style, get faster at cranking out assets or hiring a
more efficient artist.

After completing the first endboss for my shoot 'em up
game Nordenfelt, I analyzed the work hours for this task.
The coding hours took up more than 40%. A little detail
research in the work journal made it clear: it's the test-

37

adapt-test cycle in combination with recompilation. To
speed this up, I integrated a script language. No longer
having to recompile C++ code gave the cycle a higher
momentum.

Last but not least, knowing how long your project took is
great for your next game. If your last game is well-received,
you may consider a successor. The good thing about
successors is that the code base is already there. So you can
estimate that coding will take up less time than it did for the
first game. This way, it's easier to set a release date for the
second installment.

Restrict Yourself

Modern computers are so powerful, you can implement
nearly anything you want for them. Photo-realism, for
example, wasn't possible on the old consoles and computers
of the 90s. Today it is. Modern technology creates a vacuum
of endless possibilities which is tempting to fill. The sky is
the limit. The only restriction is your budget. There are so
many opportunities, but so little time and money.

Self-imposed restrictions are your best friend in this regard.
Limit yourself for the sake of completing your game. Cut
down the screen resolution and reduce the color palette.
Avoid physics engines and abstract your animations. Limit
controls to the D-pad and one button. You can surely come up
with more constraints for your own game.

That sounds like handicapping yourself. Why should you do

38

that?

Many amazing things result from restrictions and scarcity.
There are several proverbs which apply here:

Necessity begets ingenuity.

Less is more.

However large the ear, it cannot hear seven
speeches at once.

Perfection is achieved when there is nothing left to
take away.

You can often find in rivers what you cannot find in
oceans.

Sometimes, sticking to your self-imposed restrictions can be
hard. For example, when you want to add a new specific
particle effect to your engine which it does not support yet.
This is when the feature creep starts.

Once I started coding a game called Amorphous (it's a
bad sign if you have a name for your product before it is
definite - true for books and Amorphous). It was a
strategy game heavily influenced by X-Com and Silent
Storm. It had large maps and a rectangular floor raster

39

similar to the X-Com games. When I saw the first melee
fight of two units in Amorphous I became aware that
they needed to stand closer together during the battle.
Therefore I increased the resolution of the floor raster.
This way the unit movement became smoother and
melee fights could be fought at the right distance.

Unfortunately, this caused some problems. The high-
resolution raster made the path-finding algorithm halt
the game for a few seconds each time I commanded a
unit to go somewhere far off. Back then I didn't know
anything about hierarchical path search or navigation
meshes. So it was an insurmountable obstacle for me.
Further, the memory consumption of the raster cells
exploded. If my memory serves me right, it was about
50MB per floor, with 5 possible floors per level. Don't
ask me what was stored in these cells. Most of it was
just over-the-top realism crap like clearance height for
different unit sizes.

Today I would stick to the low-resolution floor raster. It
does not matter if units really can reach each other with
their melee weapons. It just has to serve the gameplay
which does not need realism of this kind. Most games
are abstract anyway. So there is no need for realistic
combats when everything else is actually symbolic.

Limiting movement and animations to an abstract level
would have saved me tons of development time. At least
it made for a nice anecdote about my greenhorn game

40

dev years.

Work with what you already have. If a new feature can't be
implemented with your engine's current feature set,
reconsider whether you really need the new feature. Keep in
mind that each extension has to be designed, implemented
and tested. Is the new feature worth it?

An interesting side effect of restrictions, hardware-dependent
or artificial, is that they define stereotypes. Mario's
moustache and blue overalls, for example, are results from
low screen resolution for the Donkey Kong arcade machines.
Sprite art would not exist if old computers provided more
than just a handful of colors per sprite. Isometric-view games
would not have become that stereotypical if this form of
pseudo-3D wouldn't have been so easy to implement and
resource-efficient for the 2D machines of the 80s and 90s.

Sometimes restrictions can get in your way. But then, they
avert feature creep, keep you focused on the important things
like gameplay, force ingenuity and keep your code simple.

Limits simply work.

Seek & Destroy Bottlenecks

The same way you fix frame rate drops in a game, you should
fix bottlenecks in your work process. There are always steps
which need much time. Usually these are manual tasks like
bundling your game and its assets into a zip file. Uploading
this bundle is another task, often done by hand.

When you find yourself repeating a specific task often, try to

41

write a script which does the work for you. This can be a
simple Windows batch script or something more sophisticated
like Python or JavaScript. Software test suites, build steps,
asset filters and deploys are predestined for scripting. Build
server software already covers many of these aspects. Yet
there are tasks which should run just locally, for example
wiping out temporary files of some kind. Keep automation in
mind and you will find plenty of possibilities to boost your
daily work.

Another bottleneck destroyer is extruding game settings and
often-changed functionality into configuration files and
scripts. I would suggest scripts also for settings. They can be
used as configuration files as well as for defining behaviour.
Recompilation needs much time. Scripts don't need
recompilation. Without the need for a compiler, in
combination with access to a game's assets, the game also
becomes moddable. This can be a big advantage when you
want to build an active community around your game.

Keep in mind that languages and their environments have
different attributes. If you write your whole game in a script
language like Python, for example, then there is no reason to
include configuration files. You can define your settings in
Python scripts anyway. On the other hand, if you write your
game in a compiled language like C++, configuration files
and scripts will increase your work performance a lot.

Aside from the technical bottlenecks, there may be a mental
bottleneck: low concentration. Forcing yourself to work when
you have no concentration left is counterproductive. Your
effectiveness will approach level zero mercilessly. It would
be just a waste of time. Instead refill your concentration tank
with a simple trick: rest. Either for 10 minutes or for 10 hours

42

if you need. But rest when your mind gets weary.

The Curse of Do It Yourself

Coders love to have control over as many parts of their
software as possible. This easily leads to a do-everything-
yourself attitude. It feels great to write code which stretches
from the GUI to the metal and does exactly what you want it
to do. It feels like dominating the machine and tickles the god
complex in us.

A good programmer writes quality code in decent time. A
better coder builds software from preexisting parts in less
time. The former is the mason, the latter is the architect.
Guess who gets more money and kudos.

Carl Sagan, astronomer and author of the novel Contact, once
said:

“If you wish to make an apple pie from scratch, you
must first invent the universe.”

This quote makes it clear that “from scratch” isn't possible.
There is always a raised level zero, a set of existing parts and
tools to start with. Even if you write everything yourself, you
have to use at least a text editor and a compiler. So why not
use as much 3rd party software as possible to get faster and
cheaper results? If you really want to learn the basics of game
engines, write an engine. But if you want to make a game, be
sure to cover as much functionality as possible with available
software. This frees up your time for the game-defining parts
which you have to implement anyway.

43

There are plenty of libraries, tools and middleware out there
for free. But be aware that free software often does not get
the same care as paid software. There are many factors beside
the price to consider when you are searching for 3 rd party
software:

• License

• Features

• Age

• Extensibility

• Support

• Community

• Simplicity

• Documentation

Tools which cost less than $100 amortize very fast. Always
ask yourself - how many of your working hours are
equivalent to the price? How long would it take to code it
yourself? Self-made libraries, engines and tools need lots of
care. Care equals working hours. Working hours equals cash.
Can you afford to do it yourself?

Getting Better by Intention

With practice, you get better at anything you do. Steady
programming, for example, makes you code faster and think
more logically. Getting better at your daily business is
natural. Nevertheless, this natural progress often just takes
you to the local maximum. The term “local maximum” comes

44

from mathematics and means “the maximum within a specific
range”. In the case of natural progress (of any discipline), the
range is called our comfort zone. Athletes, for instance,
always go beyond their comfort zones. Growth happens
outside your current limits. Athletes check out how other
athletes perform and train to get better than them. In
mathematical terminology, this would be going for the global
maximum aka the best anyone can perform in this sport.

Now I don't want you or your team to compete with all the
big and successful game development studios out there. I just
want you to go beyond your own limitations. Let's say you
took the time for drawing animation cycles for character
sprites. One animation cycle takes you about 2 hours. Could
you do it within 1 hour? Or even within half an hour? Usually
faster drawing won't get you there. It's more about
streamlining your work, learning to be less precise (big one)
and designing (that is to say, deciding) before you flesh out
the details. The hour limit or half-hour limit may not be
possible. Nevertheless, the attempt of tackling these limits
takes you out of your local maximum to your own global
maximum.

A further trick for pushing your maxima is to read a lot. Read
news about game development, blogs, books, magazines -
whatever serves you. Read regularly. Set yourself a minimum
of books you want to read in a year, for example 1 book per
month. As long as you keep your knowledge at its current
level, you can optimize your effectiveness and efficiency just
to the boundaries of this knowledge level. Apply your
knowledge continuously so that it manifests in your daily
deeds. Knowledge without application is worth nothing.

Aside from the advantageous challenges it's beneficial to

45

experiment with new tools, procedures and disciplines. Have
an experiment per week, per month or whatever interval you
are comfortable with. Set aside time for exploring new
territories.

My calendar reminds me once a month to spare one day
for an experiment. I have a list of experiment ideas,
going from “try script language X” over “compose a
song” to “invest in stocks”.

When this reminder pops up, I always think “I don't
have the time right now”. But then, I think about the
percentage one day is in a month. It's less than 5%. If I
can't spare these few hours, I'm doing something wrong.

Experiments bring different results. One non-starter was
the attempt to sell digital assets on stock sites. Another,
more successful, was trying the Squirrel script language.
It's so much easier now to test AI than it was with pure
C++. Long compilation times are very distracting.

Another way to get faster is doing less. Cut off unnecessary
work like pointless meetings, reading irrelevant blogs or
discussing in forums just for the sake of it. Resist the
temptation of polish when it's not necessary. Don't add game
engine features which you don't really need.

Security

Have you ever heard your computer beep suddenly, followed

46

http://squirrel-lang.org/
http://squirrel-lang.org/

by a virus warning popping up on your screen and watched
this virus delete your game project from your hard drive
immediately? Even if this horror scenario is rather
improbable, it can happen anytime. It does not have to be a
virus. It simply can be your laptop getting out of hand,
crashing on the floor and ruining your hard drive, undoing
months or years of hard work.

Once, my girlfriend at that time was playing games on
my laptop while I was at work. When I came home, she
was all in tears. She had spilled a glass of juice all over
my laptop keyboard. Accidentally, of course. A cold
shiver ran down my spine. My whole (now defunct)
project had been on that laptop. I hadn't made regular
backups back then, just occasional snapshots of the
project folder, stored on a rewritable CD. What if
everything was lost?

Despite the total loss of the laptop, I was able to save all
the important data on an external hard drive. This
incident taught me two lessons: backup regularly and
keep liquids away from the machine.

Regular backups should not be neglected. They can be as
simple as copying snapshots of your project to an external
hard drive. Set yourself a reminder to do so. Better yet,
automate the backup via a scheduled script or a dedicated
backup tool. Everything that runs automatically is good.

Backups should be stored on a medium physically separated
from your workstation. For example, integrate a hard drive

47

for backups into your LAN. You can also use Dropbox,
Google Drive or similar services to store your backups
online. Every service that synchronizes backup folders
automatically is welcome.

A more sophisticated solution would be a version control
system like Git, Mercurial or SVN. Either you run them on
your own server, hard drive or you use one of the many
online version control services like Assembla, GitHub or
Bitbucket.

I use a heterogeneous backup environment. Firstly, I
have a SVN repository, mainly for projects including
coding and writing. Not all project files go into this
repository, e.g. drafts and temporary files. Therefore, I
clone my whole hard drive every two weeks and store
the image on an external hard drive. Active projects
reside in a Dropbox folder. This way I can access them
from multiple devices and can restore their latest
versions with all unversioned files (regarding SVN)
without consulting the latest image on the external
backup hard drive.

Last but not least, there are viruses, worms and similar
threatening pieces of sh..., ahem, software, lurking in the
shadows of the internet. Using a simple, free virus scanner is
better than not using any protection at all.

And please, for god's sake, keep drinks away from your
machine.

48

https://bitbucket.org/
https://github.com/
http://www.assembla.com/

Agility

Old school software development was done, and sometimes
still gets done, like building a house: design it, draw the plan
and build it. This methodology sounds appropriate but has a
fundamental flaw. Software, in contrast to a house, has many
novel parts. So there are unknown details which unfold their
complexity only while the project is already in progress. This
dynamic makes it hard to estimate the costs upfront.

Agile software development (ASD) tackles the problem of
unknown details in new software. ASD is an umbrella term
for different methodologies like Scrum, Extreme
Programming or Feature-Driven Development which can be
combined. I won't go into detail about ASD here. I just want
to put it in a nutshell:

ASD is software development in small, efficient
steps, directed by user feedback.

49

Imagine it like driving a car along an unknown road. You
know that the road leads to the goal but not how its course
will unfold. With a car, you won't set course towards your
goal and start driving as the crow flies. This works for planes
or ships in open water. Cars, on the contrary, would
immediately crash into the next building or would fall down a
cliff. Driving a car needs continuous direction adjustment to
follow the course of the road.

Using the car-driving metaphor for ASD, you regularly have
to check where the road leads (user feedback) and where to
turn the steering wheel next (adapting plans). This way you
can navigate around all the unknown obstacles and
roadblocks to reach your goal.

ASD allows you to adapt plans according to emerging
information. Think, for example, about a game which allows
the player to ride on arbitrary animals. In theory, it sounds
amazing to cross the land on a horse, a bear or even a dragon.
But testing this feature in the game made it clear that riding
players have such high advantages in speed and combat over
walking players, it ruins the whole gameplay. This became
clear after the feature had been implemented. Now either
countermeasures in game design can be taken to balance the
gameplay or the riding feature has to be removed completely.
Without ASD, you would be doomed to keep it in the game as
it was planned.

Scrum 101

Scrum is a light-weight ASD methodology, used by many
companies all over the world. The tag “light-weight” means
that this methodology introduces only a small management

50

overhead to a project. Scrum is easy to learn and, in contrast
to old project management methodologies, is simple to
maintain. It does not stand in the way of developers but
focuses their efforts on the goal.

An Introduction to Scrum

Software projects usually have a financier, somebody who
pays for the project and its results. In Scrum this person is
called the product owner. Usually this is a customer. For indie
teams, this is the team itself. Otherwise the venture wouldn't
be ind(-i-)e(-pendent). The product owner creates a
prioritized wish list called a product backlog. Indie teams
form their product backlog in game design discussions. It's
good to have a moderator for these discussions, called Scrum
master. Typically this is the team leader. Somebody has to
have the final world.

Work is separated into sprints which usually last two to four
weeks. When a new sprint starts, the team pulls a small chunk
from the top of the product backlog, a sprint backlog, and
decides how to implement those pieces.

The team members meet each day to share their progress.
There are three basic questions which have to be answered by
everybody:

• What did I do yesterday?

• What will I do today?

• Is there any problem which needs to be solved?

This way the Scrum master gets an overview, what the
current state of progress is. Furthermore, it's good for the
whole team to know what the allies are working on right now.

51

Progress-halting problems are detected early and can be
wiped out before they get a chance to stall the whole project.

At the end of a sprint, the work should be shippable. In game
development, this means either a game prototype, an alpha or
beta version, the final version or a patch for the released
game. Normally shipping means just uploading the newest
version to a server or portal, accompanied by a release note
via email or blog post.

After shipping the latest version, the team reviews the sprint
and decides what can be improved for the next one. There
could be tasks which were too large for the last sprint or a
lack of tools which kept productivity low. The former gets
noticed if people are working on one task for several days in
a row. Try to break down big task into smaller, one-day
accomplishments.

The product owner checks out the latest version and updates
the product backlog. In game development this is done by the
whole team, influenced by player feedback.

As the next sprint begins, the team fetches another chunk
from the product backlog and starts the sprint. This is when
the cycle starts over.

Scrum is a time-boxed method to develop software
incrementally. Development happens in self-contained steps,
the sprints, where external influence is not allowed. Feedback
and adjustment is only allowed between sprints. Because
there should be a shippable product after each sprint Scrum
forces early playable game versions naturally. So it saves you
from procrastinating releases. What's done gets issued.

52

Accept Imperfection

The very first thing you have to internalize for ASD is the
fact that nothing is perfect. But hardly any software exists
which is entirely bug-free. But your job is not writing bug-
free code or drawing perfect sprites anyway. Your job is to
get as close to perfect as possible with an adequate amount of
effort.

Get used to imperfection. For example, your main character's
hair may have small clipping errors (hair goes into body).
Hardly any player would complain about that. So why fix it?
A counterexample would be slightly odd collision detection.
This can kill your gameplay immediately. That's something
you should fix as soon as possible. Different flaws have
different severities. Don't worry about every little bug or flaw
that pops up. Note all issues in an issue list and forget them
for the moment. Come back to the list when your current task
is done. Find the most critical issues and fix them. Some may
be left unchanged when time runs out. Nobody will care
because the issues leftover are the least significant ones.

Most products are not perfect. Their creators know that but
the customers don't. They just assume it. Therefore always
ask yourself if a specific issue will be noticed by anybody
other than you. If so, is it really crucial? Only if you can
answer both questions with “yes” - should the issue be fixed.

The Pareto Principle

The Pareto principle, better known as the 80-20 rule, says
that 80% of the effects come from 20% of the causes. It can
also be interpreted as 20% of the inputs create 80% of the

53

outputs. Here are some examples to illustrate what this
means:

• 80% of gameplay is executed by 20% of the code.

• 20% of the customers generate 80% of the income.

• 80% of complaints come from 20% of the users.

There are also variations of this rule, like 90-10, 95-5 or 99-1.
However, they all state that a fraction of the overall effort
brings most of the results.

Tim Ferriss recommends in his bestseller The 4-Hourweek
focusing on the most important 20% and skipping the other
80%. Additionally, he gives the advice to get rid of the 20%
which cause 80% of the hassle you have.

Now, how does this rule apply to game development? If you
think about the core mechanics of your game, you will
realize, that they resemble 20% of your work which drive
80% of the fun. The rest is decoration aka graphics, audio,
gameplay depth, optional features, etc. On a lower level, e.g.
asset creation, you can also find that the bigger part of many
assets is done in a fraction of their amount of work. What
makes it take so long are the details. On a higher level, you
can check out which games of your portfolio make the most
income. If the support for a less lucrative game becomes a
nuisance, stop supporting it. If your game needs deploy
systems for several platforms like PC, Mac, Android or iOS,
you can cut off the peanut-generating platforms. Always
compare what the cost is and what the gain is.

The 80-20 rule also is good for time estimation. When you
think most of your work is done (that is to say, 80%), you still
need four times more work to get to the finish line. This

54

disproportionality makes it clear why many projects fall
behind schedule.

Parkinson's Law

Parkinson's Law says that work expands so as to fill the time
available for its completion. This means, if you schedule one
year for a game, for example, it will take one year to
complete it. If you budget only six months, it will magically
be done within this shorter time span.

Why is this? And how short can a schedule get?

Parkinson's Law does not say anything about the outcome.
Depending on how much you shrink your time frame by,
quality and scope will get reduced. This does not have to be
proportional, though. Reducing a one-year plan to a period of
6 months may not compromise your game's quality. But
cutting it back to a quarter, the number of features and hours
for polish will have to shrink.

This can be explained with the 80-20 rule. Let's assume we
have a game project schedule spanning over 100 days. The
core gameplay takes 20% of the time, which is 20 days. Now
we have 80 days left for to add new features like enemy
variety, more locations, a score board, etc. Further, let's say
we get one feature done in 10 days which results in 8
additional features. When we cut back the project schedule to
only 50 days, we get only 3 features done. This may be
enough when the less important features get skipped. Now,
what happens when we go even more tight, for example 30
days? Then we can implement only the most important
feature. This scope may be not sufficient for players to pick

55

up your game. So there is a minimum for how short schedules
can be.

Another explanation for the time indifference is that people
work more efficiently when they are under pressure. If there
is plenty of time left, people take it easy. But if a deadline
appears on the horizon, they gain momentum. A shorter
schedule casts more light on the release date. Therefore,
people will be more focused on the important work and won't
get lost in details.

Parkinson's Law, in combination with the 80-20 rule can
reduce your work tremendously. They are also very helpful in
focusing your efforts on the important work. They just
demand the guts to cut back gameplay depth, features, game
length, graphics, bug fixes and polish. But this is an
emotional skill you have to develop anyway, if you want to
work in an agile way.

Get Yourself an Agile Mindset

One of my major problems in the past was being late. I was
unable to get anywhere on time. There was always something
I started just before I had to go to meet a date. There always
was this gut feeling which told me that “this short task can be
done in a minute”. My gut feeling turned out to be the worst
time estimator ever.

Now I no longer trust this feeling. I use task lists instead.

When I have an appointment with a client, for example, I set
up a simple list like this:

• Prepare the prototype

56

• Make a presentation

• Have a meal

The list is sorted by importance. Thus the most important task
is the prototype. Without it, it would not make sense to meet
the client. After the top task is done the next one gets tackled.
This is repeated until everything is done or I have to hit the
road. The worst case would be when the prototype takes up
all the time and I have to show up at the customer's place
without the presentation and I'm a little hungry.

This example should illustrate the following points:

• Do the most important thing first.

• Skip tasks you can't complete, whatever it is.

• An agile mindset helps in projects as well as in
everyday life.

You may get tempted to rearrange a task list while you are
cleaning it. Don’t give in to this gut feeling. You, or more
precisely, your boss-self, have/has set the order according to
rational reasoning. So the priorities are defined and you have
to comply with them.

ASD relies on adaption which relies on optional tasks. The
smaller and the more there are of them, the more flexible
your project becomes. Start to think in terms like prioritized,
optional and minimal. Set priorities and start with the most
important task, not with the first in line. Keep tasks as small
as possible. Drop incomplete stuff when time runs out. Cut
everything that doesn't fit in, even if it's a favorite of yours.
Update priorities regularly or according to new
circumstances.

57

This way the agile mindset will soon sneak into your project
management skills. Sometimes you will revert to old
behavioral patterns, for example working overtime to add a
new feature at the last moment. Changing a mindset is
continuous work, so don't get deterred if you fail sometimes.

I am still late sometimes. But sometimes is better than
always.

Start Lean

Software companies often have sophisticated infrastructures.
This includes large and bright office rooms, top-notch
hardware, multiple high resolution monitors per desk, server
rooms, build servers, issue tracking software, version control
systems, dedicated homepages, Facebook pages, Twitter
accounts and so on and so forth. It's tempting to get such an
infrastructure for your own start-up. It has this professional
appeal and seems to be common courtesy for software
development of today.

Now ask yourself: What do you and your team really need to
accomplish your goals? Do you need the latest hardware?
Self-hosted servers which run your issue tracker and version
control system? A Facebook page? What about a dedicated
office? An office is mandatory, isn't it?

The question is not what today's standard equipment is but
what your minimum requirements are. The very first thing
you will need is a PC or Mac. It can be a laptop or a desktop
machine. It should be stronger than your game's minimum

58

requirements. The second important part is an Internet
connection. You could go without one but it's way easier and
faster to solve problems with online help. Furthermore, it
becomes helpful when you want to acquire middleware and
do your marketing.

Outlining the Internet as an optional tool feels a little
sarcastic.

The last thing you need is your game-making skills.

That's it.

At the beginning you don't need your own website, a
Facebook page, a build server or an issue tracking system.
Set them up when the time has come for them. Keep them out
as long as there is no need for them. Don't use tools just for
the sake of it. This may sound self-evident but fancy
“gadgets” promise the feeling of sophistication. Who doesn't
want to seem professional?

Keep your infrastructure, that is, hardware and software, as
lean as possible. Start with simple tools. Here are some
examples of light-weight solutions anybody can use for free:

• Spread sheets for work journals, calculations and
evaluations

• Google Docs for collaboration

• Dropbox and/or zip archives for backup systems

• Simple .txt files for to-do lists

Your toolbox should grow along with your needs instead of

59

you adapting to a bloated infrastructure. Switch to better tools
on demand, not because they make you feel more
professional.

Plans Are Worthless, Planning Is Everything

The title of this chapter is a quote which was coined by
Dwight D. Eisenhower, the 34th president of the United
States.

At first glance it does not make any sense. Planning is done
to make plans which are worthless in the end? Why should
we plan at all then?

This quote embodies the essence of ASD. You always have to
plan your next steps while being aware that they can change
any time. Eisenhower's quote means that it's vital to keep
figuring out what to do next. Revisit your plans on a regular
basis and adapt them to the current circumstances.

Despite the volatility of short-term plans, it's important to
have a fixed overall strategy. It defines the rough steps to
your goal. These steps will then become more detailed as you
address them.

Software Is Organic

When I graduated from university, my understanding of
writing software was of sequential nature: design it, build it,
test and release it. We ran all our exercise projects this way.

ASD was a fairly new concept back then. That may have

60

been the reason why I had this outdated view on
software project management.

Out in the field of employment I became aware that:

• Software is never “final”.

• Software is an invisible art.

• Adapting code is the rule, not the exception.

There is no limit how many features software, of any kind,
can have. You can always add one more. Therefore there is no
such thing as a final state. You just work until you can release
version 1.0. Software gets abandoned, not finished.

Does the question “When will it be finished?” sound familiar
to you? Have you ever answered your project leader with the
words “That's hard to tell.” or “It depends.” because you
hadn't anything to show, even after several weeks of work?
Inexperienced programmers tend to think of software as
homogenous constructions. It's either done or it's not. That's
true if you build it bottom-up, layer by layer. This way the
visible part (mainly the user interface) is always the last step.
Logically, your work won't be visible until the end. There is a
solution to this problem: take a single feature of the software
and fully implement it. Then do the next feature. If a feature
is too big, break it up into smaller features if possible. This
way software can grow in small, visible steps. Demonstrating
progress becomes easy. Furthermore, your motivation will
remain at a high level fueled by the small accomplishments.

Last but not least there is adaptation. Imagine a building
under construction. The owner inspects the construction site

61

but isn't happy about the results. His complaints are “I would
prefer this ceiling to be higher” and “the baths should be on
the other side of the building”. Such changes would be very
expensive and would blow the completion date. So changing
the construction plan is not an option.

Software, on the other hand, is highly adaptable. It's much
easier and cheaper to “raise the ceiling” and “move the baths”
in software than in architecture. There is no material
involved, just working hours. Good software design makes
changes cheaper. If you're using a version control system like
Git, Mercurial or SVN you can even restore an old version of
your software in a breath. In contrast: restoring an old version
of a building would be very expensive.

The statement is clear. Software grows and changes as long
as you work on it. It's vital to extend and adapt it in small,
iterative steps. Prepare your mind and projects for these
principles and your productivity and motivation will get a
boost.

Correct Methods vs. Working Methods

In school, everything is about correct answers, correct results,
correct techniques and correct behaviour. As opposed to this,
real life does not care about correctness. The only question
which matters is: does it work?

Money counting machines in banks are an interesting
example regarding correct vs. working. When you throw a
handful of coins into such a machine you would not notice a
few percent incorrectness. You would have to count the coins
beforehand to find out if it works correctly. This would make

62

a mockery of using the machine. Correctness may not be
given but it works in the eye of the beholder.

The money counting machine example stands in contrast to
exact but slow algorithms. Imagine a game, for example,
which computes interactions on a molecular level. The
physico-chemical simulation would be exact. Nevertheless,
the player would freak out because the game would update
the screen only every few minutes.

Approximation, fakery and abstraction are vital for
games.

Hollywood, the cousin of the game industry, creates illusions
by shallow facades, smoke and mirrors. Building real cities
for town shots or scrapping dozens of real vehicles in car
chases would be way too expensive. So they fake it. And it
works. The same goes for games. Leave out every detail on
assets which won't be seen at any camera angle. Bake
procedural particle effects into simple sprite animations. Use
approximating algorithms instead of realistic ones.

In many cases it's better to ignore school wisdom (i.e.
correctness) and do what simply works. A working shortcut is
often enough.

Time Estimation Hell

One of the biggest problems in game development, and in
software project management in general, is time estimation.
The question of how long it will take to implement a specific
task is a horror for many coders and artists. Often, it's
estimating how long something will take which you have

63

never done before. Where should you get this knowledge
from? You would need to have a similar task already
completed to make an educated guess. It's a chicken-and-egg
problem.

ASD tries to circumvent this problem by breaking down
software design into its core and extending parts. The core
should be as small as possible so that it can be tested as early
as possible. The extensions get added as long as there is time
and money left.

Now we have the homogeneous core which still needs to be
estimated. The problem isn't gone, but it became smaller and
less threatening.

To get estimable tasks, make them as small and simple as
possible. I would even suggest reducing them to
primitiveness. If you have an online game, for example,
which needs a nickname for each player: generate it. Don't let
the player enter it. Don't plan a credential system if you don't
have to. Just throw a random yet unique name at the player
and let him play. When it needs to be more complicated than
this: so be it. But you may get away with the primitive
version. This happens more often than you think.

Small and simple tasks have the advantage that they can be
accomplished within a few hours. If you are not used to task
estimation yet, try to break some tasks down into sub-tasks of
less than an hour. When you implement them you may be
surprised how long even the tiniest task can take. Another
insight for newbies is the “sponginess” of some tasks. “Is it
done now or not?” It's important to define your tasks
properly. Define what the task's result is and what isn't.
Otherwise it's free for interpretation and you hardly know

64

when it's done. Imagine yourself instructing somebody else.
Maybe you really have to instruct a team member. The more
precise you are, the better and faster the result will be.

After a while in the cycle of task division and
implementation, you will get a feeling for what is an hour
task and what's a day task. And that's everything you need.
The core of most games should be playable within a few
weeks (yes, that's doable – just focus on the core mechanic
and cut out graphics, sounds and other “fancy stuff”).
Therefore there can't be that many tasks you will have to
estimate for the core. Avoid estimating future tasks. This is
especially true for the extension parts. ASD makes ever-
changing adventures out of software projects. Thus don't
waste too much time estimating far-off tasks which easily
become obsolete.

65

66

Prematurity

This section discusses several problems of tackling issues
before they really become issues. This sounds a little bit
strange. Nevertheless, it happens quite often. Coders,
designers and artists spot flaws in their workings and tend to
fix them immediately. That sounds like a good idea. So why
should that be a problem? Well, there is always the
economical question: does it pay off? Premature work often
results from gut feeling instead of proper consideration.
Without consulting the bigger picture, premature work
quickly becomes counterproductive.

Premature Optimization

Donald Knuth, a pioneer of computer science, once said:

“Premature optimization is the root of all evil.”

67

This quote addresses the problem that optimization often
affects the design and the readability of source code. On the
one hand it improves the execution speed of a program. On
the other hand, it increases the cost for maintenance and
debugging. It's an economical question: does the speedup
outweigh the higher complexity?

When it comes to software optimization, rookies can easily
be distinguished from the pros. The former guess which code
is slow and jump right into fixing it. The latter measure
what's slow, ponder several solutions and apply the best one.

Do you feel exposed as an optimization rookie? Don't
worry. I have been one for over a decade, unknowingly.

Now, how can software be optimized?

There are multiple levels of optimization. The most important
level is the software design. It's all about architecture and
choosing the right algorithms. This has the biggest effect on
the overall performance. The next optimization level is the
source code. This is where programmers spend most of the
day. Therefore it seems to be the most promising area for
optimization. The truth is: most compilers are better at
optimizing code for their target platforms than most
programmers. The same is true for the assembly level.
Nowadays the messing around with assembly language is a
forsaken art. Modern compilers apply the optimization
knowledge of several decades to your program. Therefore it
makes more sense to use the best tools for optimization
instead of doing it yourself.

68

I consider choosing the right languages and tools to be a
separate optimization step. It can speed up coding,
debugging and code execution tremendously.

Program flaws often unfold only at runtime. This is especially
true for speed issues. Only profiling, the measurement of
execution times, can tell you where bottlenecks are located.
Don't guess where code could be slow. Measure where it is
actually slow. Also think twice if you really need a specific
optimization. Fix it only if it becomes a problem for the
player. Not for you, for the player.

Premature Game Design

Hardly any initial game design makes it to the end. Ideas
which initially seem innovative and fun often just turn out to
be boring or don't work at all.

You won't be able to come up with a working game design on
the first attempt unless you have quite some game design
experience under your belt. Even seasoned designers need to
field-test their ideas to wipe out the bad seed. So spending a
long time in the game design ivory tower, pondering features,
mechanics and graphics styles for the ultimate game doesn't
work. It's vital to test ideas for their potential under real
world conditions as soon as possible. Otherwise you run the
risk of spending months on an idea which has no chance of
survival.

When you have finally found a potential game idea, field
tests are still necessary. Premature game design happens

69

when you start detailing aspects of your game too soon.
Designing an inventory management, for example, may
become pointless when it's not certain that the items will
actually be in the game. Considering multiplayer aspects in a
single-player game to avoid “spoiling that possibility” is
expensive wishful thinking. The control scheme for a lock
pick feature becomes worthless when there are no locked
doors in the final version. The latter sounds silly.
Nevertheless, such mistakes are made.

The root of the premature design problem is the “wouldn't it
be cool if...” thought. Some ideas are so tempting that
designers integrate them without thinking twice. Games are
all about feelings. About the player's feelings, to be exact.
Newbie game designers often misinterpret the “wouldn't it be
cool if...” feeling with the “this is fun to play” feeling. When
you know the difference between the two feelings, half the
battle against premature game design is won.

Premature Promises

Don't promise 100s of different weapons and dozens of levels
for your game before you have made any of them. Only when
you know how long it takes to design, draw, implement, test
and polish your game's elements can you estimate how much
you can achieve with your budget.

The better solution is to promise nothing at all. It just restricts
your freedom before you know if you can keep your word.

The first game I really wanted to publish had the

70

working title Bionic. It was an adventure game in
isometric view like Baldur's Gate. The core feature was
the main character's artificial limbs, which were
exchangeable. The initial game design proposed dozens
of different arms, hands, weapons, legs and feet. My
enthusiasm let me promise thousands of limb
combinations to my followers. A bad idea.

What I hadn't taken into consideration during design
was that each limb needed animations for eight different
views (due to the isometric view) multiplied by the
number of different actions like walking, climbing, item
usage, etc. The effort escalated exponentially. Even
cutting back the number of limbs did not help. It was
just too much work. Stripping the limb feature was a KO
criterion for the game. Despite this fact the romantic
vision of the finished game kept me working on it for
about 3 years before I gave in.

As you may guess, Bionic never saw the light of day.

Premature Feature Integration

Sometimes, when coding a new interface (in terms of source
code), it's tempting to do more than necessary. The
underlying engine provides sprite rotation, for example.
When it's there, why shouldn't rotation be brought to the
Knight class interface? It's so easy. Let's do it. Everything you
do have is good.

71

http://www.gog.com/game/baldurs_gate_the_original_saga

Forget it. First of all: a wider interface needs more testing.
Then there will be effects on the implementation of the
Knight class. For instance, there are armor and weapons a
knight can hold. You have to rotate them as well. What about
collision detection? The rotation has to be taken into account
for collisions too. And so on and so forth.

Each new feature introduces new dependencies and therefore
more work. All this extra effort for a feature you may use one
day.

Don't add a skin color slider to your character creation just
because the underlying engine enables it out of the box. Don't
add terrain-specific attacks just because it's possible. Forget
implementing multiple weapon slots when you've planned
only one weapon per character.

The initial design of my shoot 'em up game Nordenfelt
included multiple battle ships with different weapon slot
layouts. Today Nordenfelt has just one battle ship with
one equipment slot. Implementation and tests for ship
selection, handling multiple slots and other functionality
were for the birds.

Wait a minute! Premature feature integration sounds just like
premature game design, doesn't it? That's true. Both result in
features which may never be used. The difference is that
premature design brings out unnecessary work from the game
designer while premature features come from the coder. The
former goes top-down while the latter goes bottom-up.

72

Premature Polish

An example of premature polish is completing an asset's
initial design without testing the design in the game. A
combat mech may look great as a sketch but may not fit into
the game due to several reasons. The mech's shape may not
align to the overall design concept. Its size could be too large
or the shape may result in problematic animations.

Testing assets as rough drafts in your game saves time.
Sometimes the rough version is already enough, for example
for fast-paced backgrounds. On the other hand you can wipe
out inappropriate assets early in the development process.

When I started working on my steampunk shoot 'em up
game Nordenfelt, I published all my progress on its blog.
One step in Nordenfelt's asset creation process was
modeling vehicles in 3D for rendering them as 2D
sprites. I felt convinced in making the models good-
looking on the blog. Following the steampunk theme, I
added details like pipes, folds, rivets and grunge to make
the models look cool in close-up view. As you may
guess, these details took a very long time. Then, when I
rendered the models as sprites and scaled them down to
in-game size, I realized that hardly any details were
visible. All the polish work was all for nothing. It made
for nice close-ups for the blog but did nothing for the
game.

Polish should only be allowed for assets which are
guaranteed a place in the game. The same is true for any type
of feature. Don't polish a turd.

73

Stamp Design

Before I got into writing games, I attended a school for
interior design and architecture. There I learned how to
design homes, restaurants and stores, which all follow the
same procedure. First, you have to come up with the room
layout. In interior construction language, this means figuring
out where the walls are, where doors and windows are
located, measuring room heights, etc. After gathering these
limits, you start designing the floor plan. In this regard, the
most important advice from our teachers was to limit our
sketches to the size of stamps. The advantage of this
restriction is that there is no chance of getting lost in details.
Positioning furniture or installations at such a small size is
hardly possible and pointless anyway.

This trick is applicable for game design as well. Sometimes
it's hard to keep one's hands off pleasing detail work like
drawing sprites, improving enemy behaviour or fiddling
around with special effects. Staying focused on formal,
theoretical work can be tough. It's grinding, actually, working
through tasks you don't like.

The stamp size limit can be used in any tier of a design
process. In architecture, after figuring out the floor plan in
stamp size, each room again can be roughly designed with
stamp sized sketches. Game design has these tiers too. The
following list is an example of the design tiers of a generic
FPS game:

• Rough background story

• Story details per chapter

• Missions derived from chapters

74

• Level maps derived from missions

• Buildings, interior, vegetation and other assets in
levels

• Design of the level assets

While working on any of these tiers, the tier below should be
ignored. Limit your design space, either by a maximum
number of words used to describe a story or a restricted size
for sketches and layouts. This way, the next tier is hard to
touch. There is just enough space for the details in the current
tier.

75

76

Mastering Emotions

Emotions can be dangerous in game development. Decision-
making based on gut feeling leads your game project towards
your very own preferences. This sounds good at first. It is
good if your project is only a hobby. But if you want to make
money, there are more important emotions than your own
which you have to consider: the emotions of your audience.
That does not mean yours are unimportant. It's just a question
of setting priorities.

Here is an example. Choosing fun tasks over necessary tasks
is an emotional problem. Everybody understands that work
should be fun and motivational. But the focus should lie more
on the results and less on the path leading to them. Otherwise
you will have fun until you realize that there is no progress.
This is the point when fun is superseded by demotivation. A
simple solution to this problem would be taking on tasks as
they come. This way, fun and struggle will merge.

77

This section touches on common emotions which can easily
overwhelm game makers.

Motivation

Motivation is the mental fuel for success. Neither an
extensive set of skills, nor the best equipment, nor an
abundant budget will take your project to the finish line when
all your motivation has gone down the drain.

Facilitate Your Initial Motivation

Usually people are bursting with energy when they start with
a new project. They can't wait to get cracking. This
motivation comes from the desire for creation, to bring a
vision into reality. At the beginning you can't get your idea
out of your head. It wants you to get started. This drive is the
same which keeps you going when things get complicated. I
guess everyone who has ever started making a game knows
this feeling of being highly motivated.

Fatigue is the natural enemy of motivation. It arises when
tasks never get completed. Keeping projects short is a good
way to prevent yourself from suffering from fatigue. The
longer they take, the higher is the risk of losing momentum,
that is to say, leaking motivation.

Take the following as a rule of thumb for scheduling your
game projects:

Don't let your project see the same season twice.

In other words: get it done within a year. If you take the usual

78

misestimation factor into account (some say it's PI), your
initial schedule for the game should fit into a quarter of a
year. The inevitable delay resulting from unexpected
problems and unconsidered efforts will make it expand to a
year anyway. The less game development experience you
have, the shorter your project should be. You can go bigger
anytime.

Another piece of advice for keeping your motivation high is
choosing your project wisely. You may have several game
ideas to choose from. Which one do you really want to make?
There can be several reasons. One is the outcome. Maybe it's
an interesting idea like a mix of Battlefield and Braid.
Wouldn't it be cool if you were the designer of such a game?
Another reason can be the path to the goal. Which works do
you enjoy and which do you hate? Find out which tasks you
really like and choose a project which promises them. Bear in
mind: you will work quite some time on the game. Deciding
on an action game would be counter-productive if you are
into strategy games. Finally, it's helpful to know if there are
similar games out there. If you want to make decent money
from your game, it would be foolish to enter a crowded
genre.

How to Stay Motivated

The initial motivation, as explained above, won't continue
forever. It depletes as your project progresses. That's natural
because transforming theoretical ideas into reality undergoes
some friction. This means that many of the shiny features of
your idea won't be doable in reality. A procedurally-generated
storyline, for example, won't be as interesting as a
handcrafted one. It's more likely to be boring, repetitive and

79

generic. Additionally, as you implement your game, problems
will pop up by the dozen. Each new bump in the road of
development “helps” to diminish your motivation.

To avoid running out of motivation, it's good to have some
tricks at hand to revive it. The following list shows tricks how
to rekindle the flame of enthusiasm:

• Cut off distractions: Turn off your email client,
your phone and, if you need it hardcore, unplug the
Internet. Motivation is fragile and can fall to pieces if
you are disrupted continuously.

• Jump right into it: Hesitating to get going with
uninspiring tasks is often the only obstacle which
separates you from motivation. It builds up as you
go. Just start without thinking. Start slowly, start
poorly if necessary and feel your motivation rise.

• Quotes: Pin your favorite motivational quotes to
your wall right in front of you at your workplace or
use them as screensaver. I prefer the screensaver
method because it moves. Things that don't move get
ignored easily.

• People: Talk with other people about your lack of
motivation. They may have some words of
encouragement for you. Others may be an
inspirational source for you to go on. If you are
working in a team, motivation can come from group
members as well. But don't overdo the lamenting
within your team. It may ruin the shared work
morale.

• Rest: Sometimes it just needs a night of good sleep

80

to get back on track. Rest regularly to recharge your
batteries. Take a day off. If a day doesn't help,
consider going on a short vacation.

• Exercise: When you stress your muscles, your brain
can roam. I use the word “roam” instead of “rest”
because the human brain never rests. There is always
something going on in there. Thus, ideas come easily
when you are not pondering. Your motivation gets
recharged when you can forget your troubles for a
short time. Think in terms of a mind vacation.

• Deal with setbacks: Your enthusiasm can come to a
halt quickly when you get negative feedback or fail
somehow. Sit back and distance yourself from the
setback. Sleep on it and find the lesson in it. Even
the hardest setbacks bear opportunities you may not
have recognized yet. Find them.

• Resolve overload: Sometimes it's just a cluttered
schedule which depletes your drive. Do only one
thing at a time. Tidy up your to-do list and focus on
the most important task you have to do right now.
Everything else is secondary.

• Expose yourself: Tell others what you want to
achieve and when. This will make you stick to it. To
make it even juicier: make a bet. Set up a date when
you plan to have a specific milestone accomplished.
Then give a certain amount of money to a friend and
instruct him to donate it to an organization you
dislike when you miss the deadline. This way it
becomes real punishment if you let it slide.

• Meditation aka visualization: Sit quietly for a few

81

minutes, relax and ask yourself “What do I really
want?” Let the answer come by itself, regardless
what it may be. When you have the answer, imagine
which actions you have to take to get what you
desire. Then imagine the first step and start doing it.
This process can take some time until you get a clear
vision of what you have to do. Don't rush it. It's
better spending a few hours on clarifying your goals
and actions than wasting months heading into the
wrong direction.

Consult this list whenever you feel demotivated. Read
through it, pick a piece of advice and fuel your motivation
with it. Everybody has a different approach to motivate
himself. Not all advice works for everyone. Try them and find
out what works best for you.

Procrastination

Humans love to delay decisions. This is because making a
decision is often taking up a position, a statement, which
other people can then criticize. So a decision yields the threat
of being attacked by others.

A common example is postponing release dates. The decision
that your game's current version is ready for the public is a
statement which can be attacked. What will they think about
it? Is it good enough? These questions can make you feel
uncomfortable about going public. So you add a “game
changing” feature or improve some graphics to make it
releasable. After that, the same questions arise and you spend
yet another week improving the game. This cycle can go on
for a very long time.

82

The chapter Accept Imperfection has the cure to fight this
feeling. Your game will never be perfect. Therefore, you can
release it anytime. Nowadays, people are aware that software
is updated regularly. They will not complain when the first
version of your game is in beta state or even in alpha. Just let
them know what they can expect and deliver it.

Decisions underlie the rule of habit. The more decisions you
make, the easier it gets. In particular, experiencing the fact
that hardly any decision is written in stone makes it easier to
shoot from the hip.

So: decide often and decide now!

Embarrassment Happens

Do any of the following thoughts sound familiar to you?

• “My game does not look as good as I had in mind.”

• “The gameplay does not work as expected.”

• “It sucks compared to game X.“

Usually these thoughts come up just before you want to
release your game. It's the anxiety of getting shot down in
flames which lets them bubble up in your mind. The fear of
possible harm from the Internet community alone makes you
feel embarrassed.

There is one fact that makes dealing with embarrassment
easier:

People forget very fast.

83

Publish your game as it is, receive some good reviews and
feedback (people are not that picky), receive some bashing
(some people are always picky) and fade into obscurity
(people forget). Repeat this a few times and the
embarrassment will go away. Fight this emotion by knowing
that you just fear the worst case scenario. Do it a few times
and you will see that the worst case never happens. Well,
almost never.

Matt Mullenweg, the founder of Wordpress, once said:

"If you are not embarrassed when you ship your
first version, you waited too long."

It's reassuring to know that even successful people are
embarrassed sometimes.

Feedback: Cure and Curse

Software development relies heavily on user feedback. At
least it should. Therefore you will have to deal with many
different opinions about your game, both positive and
negative. Getting good reviews, on the one hand, is always
nice. Bad reviews, on the other hand, can really drag you
down.

First of all you have to know:

Everything has fans and enemies.

Check out any fast-selling goods on Amazon. The more
reviews there are, the higher the chance is that somebody

84

shares his particular dislike. I would even go so far as to say
that good stuff must have enemies. The question is not if your
game is disliked by somebody but what its like/dislike ratio
is.

Feedback is necessary to steer your game project in the right
direction. But don't overdo the feedback integration. Not
everything that's essential in the eye of a player is really good
for your game. Following each piece of advice leads
nowhere.

Try to satisfy everybody and you will satisfy nobody.

Always ask yourself if a suggested feature really fits into
your game (vision) and if it's important. Don't trip over fixing
tester-detected bugs immediately. Emotions of emergency
and accommodation should not dictate your work. For this,
it's helpful to dump all feedback on a list first and let
emotions settle. Then sort the feedback by importance. Issues
which get mentioned again and again should bubble up on the
list. Always tackle the most important point first and update
the list regularly.

You will receive constructive critiques as well as destructive
ones. Take the former, leave the latter. If somebody just wants
to run you down without providing valuable information for
improvement, you are safe to put this person on your black
list. It is just a waste of time listening to such folk.

The First Step Is the Hardest

Doing a new type of task for the first time is tough. You
barely have a clue what to do and how to do it right. There

85

are so many unknown factors which can feel quite daunting.

Here are a few examples of first-time situations:

• Releasing your first game.

• Drawing 2D sprites for the first time.

• Sending out the first email to newsletter subscribers.

• Charging for a game for the first time.

• Writing your initial press release.

Going back to work you already know seems very tempting
in these situations. It's your comfort zone which calls you
back. Sometimes this call is enough to procrastinate an
uncomfortable task and do something else instead.

Taking the first step is hard. Postponing it is easy.

There is a trick to overcome the fear of getting started with
something new: start without thinking about it. The longer
you ponder the possible outcome, the harder it gets. The
primal part of your brain wants to dissuade you from entering
uncharted waters because it may be dangerous. When you are
in the wilderness this can save your life. In game
development this can only save you from success. After
plunging into a new challenge at the deep end without
preliminary consideration, you will realize that it's not as bad
as it seemed “from the outside”. It's just unfamiliar.

Another trick is to get rid of the illusion of perfectionism.
Nothing is perfect and nothing has to be. Author G.K.
Chesterton even went so far as to say:

“If a thing is worth doing, it is worth doing badly.”

86

This quote means that you don't have to be a professional to
do what's good or important. Raising firstborn kids, for
example, is an endeavor generally carried out by amateurs:
freshman parents. Apparently, evolution has no demand for
perfectionism. Evolution is the keyword here. Don't consider
a first attempt as the final one. It's just the first step in a series
of steps which will lead to a new skill.

Successful people don't think “I can't do that”. They just start
doing it and continue to do it until they have mastered it.
Most people are worried they will blame themselves along
the way. Don't get held back by this anxiety. Rather,
concentrate on the envisioned outcome and you will achieve
it. The thought of blame is lost quite fast.

Start Somehow

Creative people, like painters, authors or designers sometimes
suffer from blank canvas fear. This is when the mind goes
blank while facing a blank sheet of paper or a pristine canvas.
Ideas stop bubbling up and there is no chance to get a
workflow started. Often, this is just a temporary halt which
can be solved with a handful of tricks.

Ideas can't be forced. They only emerge naturally from
inspiration which can come from many sources like reading
books, watching movies or having interesting discussions. It
also comes from having an idle mind, e.g. while taking a
shower or going for a walk or run.

If ideas still don't come, despite of interesting input or
straying thoughts, steal. I'm not referring to taking away
something from another person. Just copy what's already

87

there. If you can't get a new endboss design going, for
example, search the Internet for images of other endbosses
for inspiration. Watch videos of bosses, copy what already
works in other games and adapt it for your own game. This is
way faster than pulling new, yet-to-be-tested behaviour,
sounds and graphics out of thin air. It may not be a novel
endboss. But it's a tried and tested one. And you can always
alter it to your likings.

Stealing, in this regard, is just a trick to get started quickly.

When it comes to the starting somehow, I like the map
metaphor. Pondering on the best start is like searching
for the highest peak (i.e. best solution or design) on an
endless map. When you start somehow, on the other
hand, you start at a random point on the map and try to
find the highest peak in proximity. You may not find the
highest peak, aka the best solution, there. But at least it's
a starting point, just to get your flow gain momentum.

Starting somehow can be used for any design purpose, like
character design, AI scripting, level prototypes or game
mechanics. Blank canvas fear can also happen when you start
making a game. You may get stuck in the preparation phase.
This is common for game dev newbies, who keep updating
their design documents, refining not yet implemented
mechanics and laying out level maps without a clue how the
whole game will evolve. All this is just procrastination of real
game development. The cure is to start somehow, with a
prototype. It can be ugly, bug-infested and boring. Yet it's
worth much more than the shiniest design document because

88

it leads to active development.

Don't mistake starting somehow for skipping plans. Planning
is good. Nevertheless, there are times when you just can't find
the right access point to a task. This is the time to start
somehow. Get into the flow of working on the task as fast as
possible, regardless of the initial value you may create. The
rest will unfold naturally.

Price Shame

A common emotional problem in selling games is setting a
price. On the one hand, it should make as much money as
possible. On the other hand, a high price feels greedy. So
what is the right price for your game?

First of all you have to know your market. If you sell a game
on the App Store or on Google Play you have to go free-to-
play or sell it for under $3. Only about 5% of all game apps
sell for more than $3. Unique strategy games for PC,
however, can sell for $15 or more. AAA blockbuster games
sell for more than 50 bucks. But you aren't working on an
AAA game, are you?

The numbers above were valid at the end of 2013. I
assume they won't get better than this.

Now that you have an idea what your market and its price
range are you can search for games similar to your own. If
you have problems finding similar games I congratulate you.
You seem to have something unique at hand. In this case, you
can try the upper limit of your market's price range. If you

89

find plenty of similar games, you will have to go to the lower
limit of the price range.

A rule of thumb: the more similar games, the lower the price.

Now comes the economical part. You have to know what
your total production costs are. This includes programming,
design, graphics, audio, marketing and all other expenses
which can be assigned to your game. Then you divide the
costs by the chosen price and see how many sales you need to
cover your costs. Don't forget that middlemen also take their
share.

The problem with the production costs is that you can't
estimate them without according experience. Therefore you
can't calculate the number of necessary sales. Only your game
on sale can bring you this knowledge. You can find some
game sales statistics on the Internet but they are hardly
applicable for your own game. Each project is different.

This chicken-and-egg problem has a disappointing solution:
you have to test the water with a small game which doesn't
need to cover its production costs. Experiment with its price
over time and find the maximum income. When you have a
free-to-play game the same goes for in-app purchases. Try to
market the game until it breaks even. If it fails, you know at
least what does not work. There is no better way than
learning by doing.

Last but not least: don't get affected by complaints about high
prices. It's the customer's job to go for the lowest price. Your
job, however, is to get the highest income. Customers are
highly reactive. So you will see what they are willing to pay
by your sales statistics, not by angry emails or criticizing
reviews. Rely on facts, not on feelings.

90

The price is always a question of supply and demand and not
of how you feel about it. So there's no need to feel ashamed
about a price. Not finding your optimal price is shameful at
best.

Don't Take It Personally

In private life, as well as in a professional career, you will
face critique and insults. They hurt emotionally. And they will
make your thoughts spin around the question “I am as bad as
they say?”

Have you ever talked to somebody about these feelings, just
to get confronted with “don't take it personally”? That sounds
much easier than it's done. How to not take something aimed
at you or your game personally? That would be like getting
shot and trying to not feel the bullet.

In contrast to the getting-shot metaphor, critique and insults
are not lethal. They are just words which can't harm you, at
least not physically. It's just your brain which transforms the
words into something offensive. The good thing is that your
brain can be trained to react differently.

Brain Reeducation Step #1

Give the benefit of the doubt. Maybe people are just joking
around or have a bad day. Your instinct may tell you to react
emotionally, but pause for a second. Maybe it's not about you
or the game you're working on. Don't jump to conclusions too
early.

People also may have poor communication skills and their
inner child acts out. When somebody insults you or butchers

91

your game, imagine this person as child who is still learning
how to behave. That way it's easier to be patient and to
distance yourself from apparent offense.

Brain Reeducation Step #2

In the same way that you should not take critique or insults
personally, you should stop taking compliments personally
too. If you base your self-worth on other people's
compliments you become dependent on other people's
opinions. Compliments, critique and insults are siblings.
Compliments don't make you a better person; they make the
complimenter a better person. The same is true for insults.
They don't make you a bad person. They just reflect what
others can't deal with. Your value remains unchanged, neither
affected by compliments nor insults.

Compliments, critique and insults only show how others see
you. If you get many compliments, you seem to have
something people resonate with. On the other hand, if you get
criticized often, folks don't resonate with your opinion or
deeds. Either you are on a wrong track or just into something
polarizing. Clarification is king in the latter case. To
understand, if you have to take specific critique seriously, it's
necessary to get a clear concept of what's “wrong”. If, for
example, critique about graphics comes from eye-candy
spoiled gamers, you can ignore it unless you are in the eye-
candy gamer maker business. If it's a proper analysis of your
gameplay which points out major flaws, you should take it
seriously and thank the author for it. Honest and constructive
feedback is vital for improving games.

92

Brain Reeducation Step #3

The last brain education step is a simple one. Let emotions
settle. Wait a little while before you deal with new critique.
This way your judgment will be more objective and goal-
oriented. Professional sports teams do the same. After a
match, they don't discuss what went well or what went
wrong. They calm down and review the match a day later.

Emotions Equal Sales

In contrast to the foregone chapters, this chapter is not about
dealing with emotional issues of game development. It's
about marketing and how it utilizes the emotions of
customers. So, let's see how customer brains work.

We humans think we are intelligent creatures, in full control
of our thoughts and led by rational decisions. This couldn't be
farther from the truth. Emotions control most of our
behaviour. Our intellect is just allowed to veto after a
decision was made by instinct. We are still apes, after all.

Emotions are reactions, based on integral knowledge, hard-
wired into our brains. They tell us right from wrong, with
reflex-like speed. Now think of this: what if you could trigger
specific emotions in other people's brains to influence them?
Sounds weird? It is. This is the point where marketing comes
into play.

Officially, marketing is communicating the value of products
and services to customers so that they spend money on them.
Put bluntly, the real core of marketing is psyche exploitation.
Let's take a car advertisement, for example. The value of a
car comes from the quality of its parts, their assemblage, the

93

design and its features. Yet, ads ignore most of these points.
Instead, they show some smiling guy driving along a coast
road at sunset, suggesting that this car brings its driver the
feeling of freedom. This is old marketing wisdom at work:
facts tell, but emotions sell. In other words: facts tell, stories
sell. Have you ever wondered why religious books and
mythology tell their wisdom as stories of saints and deities?
They could reduce their message to a set of propositions and
rules instead.

Rules are meant to be broken. Idols get imitated.

When David Darling, co-founder of Codemasters, was asked
how he thinks the game industry has changed since the 80s,
he answered:

“It's about human feelings, and they don't really
change.”

Like the car buyer, who decides for the ragtop instead of the
more reliable family van, people choose games which tickle
their emotions. They don't buy due to logical reasoning, but
due to how the game makes them feel.

Armed with this piece of knowledge, marketers have been
investigating the human mind for many centuries now.
Marketing became the art of bypassing the rational mind and
infiltrating the vulnerable yet mighty amygdala, the brain's
center of emotion.

Drug designers do the same. Just saying.

If your game or its advertisement can tell a poignant or funny
story, you have won half the battle. Think about viral content
on the Internet. Most shares involve fun, social connection,

94

horror or sex. This list isn't complete, but you get the idea.

The lesson is clear: serve the player's emotions and you will
earn big bucks. World of Warcraft and other MMORPGs have
close to perfect addiction traits. Some people got so hooked,
they died from playing for too long without food and sleep.
That's the dark side of the Force.

95

96

Everyday Life Hacks

This last section addresses tricks for everyday life. Many
lessons from game development can also be used for personal
growth and vice versa. Often good things from one discipline
can be adopted for other disciplines. Subtractive design, for
example, can be applied to game design, to martial arts or to
cooking. A short explanation of subtractive design is
“reducing a design or plan to a minimum to strengthen its
core”. In game design, this would be removing features
which are not necessary for the core gameplay. In martial
arts, it would be perfecting a minimum set of techniques. For
cooking, subtractive design means focusing on simple,
nutritious, yet delicious, meals.

Everyday life hacks should be used on a daily basis. This way
they become second nature and improve your mindset for
game development and any other work. Everything
incorporated in your subconscious mind works on autopilot.
So you can focus on the work you have to do, not on how you

97

do it.

Knowledge Is worth Nothing

You may have heard this proverb before:

Knowledge is power.

This phrase is attributed to Francis Bacon who lived from
1561 to 1626. At that time, only the wealthy were educated
which therefore had the power over the illiterate folks. Today,
in the information age, everyone has access to the knowledge
of the world. Nevertheless, there is a powerful minority and
the powerless majority. So why is that? Is it the difference in
education? It isn't. The proverb has just lost its validity in our
modern society. It needs a little update:

Applied knowledge is power.

It does not matter if you know everything about a topic. If
you don't apply your knowledge, you won't be successful in
this domain. Practice what you preach. Or rather practice
what you know. This is especially true for the content of this
book. If you just read through it and never apply at least one
of the concepts, you just bought a new dust catcher for your
book-shelf.

Theoretical wisdom without practice is just useful for
braggarts.

98

Discipline

Discipline is a very important characteristic of successful
people. Aside from the craftsmanship that your work
demands, it's vital to get a grip of yourself. The last sentence
may sound a little harsh. Usually discipline is seen as
stressing specific behaviour. The bad word here is
“stressing”. It has this negative connotation. People don't
want to be forced, stressed or have to leave their comfort
zones. Therefore they don't want discipline.

The good news is that discipline is not about keeping specific
behaviour up in difficult situations. It's about repeating
something regularly until it becomes second nature.
Discipline is about adopting traits by simple repetition. When
something has become second nature, there is no longer the
need to think about it. You just do it.

If you want to acquire a new skill or behaviour start small,
simple and repeat it regularly. Do it daily, weekly or at any
other interval you are comfortable with. Examples would be
getting fit, learning to draw sprite art, learning new tools or
learning to play a new instrument. There is only one rule:
keep doing it until it's natural to you. When you do it
automatically, you've reached your goal. Humans are
creatures of habit. So why not exploit this loophole by
installing wanted skills through repetition? Let good things
creep into your life in small doses.

I can't tell you when I started doing pushups regularly.
Many years have passed by since then. The only thing I
know is that I was able do 20 fast ones in the beginning.

99

I thought that wasn't too bad. But then I saw this guy in
the gym doing 50 pushups after lifting heavy weights at
the butterfly machine. At that moment I decided to get
better at it. So I set the goal doing pushups every day for
two weeks. To zest the plan I decided to do at least one
additional pushup every day. After fourteen days I was
able to do more than 40 pushups.

Effect 1: Pushups became a habit, not a hassle.

Effect 2: Bye bye, flat chest.

Health

Ah, the usual “live healthy” chapter. I guess you've
encountered this topic already if you are curious about self-
improvement in any regard. The point is: a healthy life is the
basis for good working conditions. The following proverb
from Roman poet Juvenal puts it straight:

“A sound mind (lives) in a healthy body.”

The first point, obviously, is a healthy diet. You are what you
eat. I think you know what to do. Reduce the baddies like
fried stuff and sugar and eat more of the goodies like
vegetables and fruit.

The second point is physical training. Go for a run, ride your
bicycle or lift weights. Any exercise helps.

100

Many people fail to follow this advice because they are
highly motivated at the beginning and jump right into eating
100% healthily and working out like crazy in the gym. Soon
they get back into their old habits, get demotivated and give
up flagging it as “too hard for me”. Sure, it's too hard to
change all your habits overnight. Ignore those TV shows
which show you how to crucify yourself in the name of
getting in shape. Forget the before and after photos. And
please, don't do drugs to get in shape.

Do the following instead: start slowly. If you don't do any
fitness yet, start with something simple like pushups, a short
run or a walk around the block. Do just a few pushups per
day and raise the number the next day. Increase the distance
of your walks or runs. Add a second training set to your
pushups, e.g. weight lifting. If you are a walker, try running
as well. Just for 10 minutes. Then run longer. You don't have
to go to a gym if you don't want to. But if it motivates you, go
there. Motivation is the key. As long as you keep exercising
within your limits, motivation will come naturally.

The same applies to food. Eat one piece of fruit or vegetable
per day. Then do without one piece of candy a day. Put
sweets and other unhealthy stuff away where you can't see
them. Not buying it in the first place is the best solution.
Incorporate the healthy food into your daily diet step by step.
Eat lean meat, drop refined grain like flour, replace simple
sugar with complex sugar like honey. And, for god's sake,
replace soft drinks with water. Consuming junk food every
once in a while is no problem. Just keep “every once in a
while” period longer than a week.

101

I love coffee and meat, as many people do. I could not
imagine living without them. The vitalizing feeling after
the first morning coffee was just too good to quit. A
meal without meat wasn't a full meal to me.

Today I'm vegetarian and drink coffee only occasionally.
Why? Coffee makes for yellow teeth, bad breath and
gives me a headache after the 3rd cup. Tea doesn't. The
reason why I switched to vegetarianism is a
philosophical one: I want to live without factory
farming. A pleasant side effect to being reduced to
healthy food is that it makes living healthily easy. I'm
not against eating meat. I'm just against inappropriate
husbandry.

I still love meat and coffee. Nevertheless, I removed
them from my diet plan, step by step. Little strokes fell
big oaks, even the ones you really like.

Aside from going for a better fitness level, there are tricks to
improving your health in the office. Rest your eyes every 1-2
hours for up to 10 minutes. Evolution did not intend for
human eyes to be staring into monitor light all day. Get a
second monitor to prevent neck strain. Switching between
monitors as you work keeps your neck muscles in motion.

Have you ever tried to work standing up? The first attempt
will be tiring. But after a few days of practice, you will be
able to work without a chair. It's highly recommended for
people who suffer from back pain.

102

The last tip of this chapter is: sleep well. The average person
needs 7-8 hours of good sleep. You will feel the lack of
concentration when you are sleep-deprived. Take a nap if you
didn't get enough sleep. This may sound embarrassing. That's
just for toddlers and old people! Think again. Humans are
geared towards multiple phases of sleep per day. We just are
not used to it anymore because the industrial revolution
forced us to stay up in factories and offices all day long. The
industrial age is vanishing. Therefore, when you take a nap,
be sure to not sleep too long. Sleep only 5-10 minutes, then
get up. Set an alarm clock if necessary. If you sleep too long,
you will feel like a zombie.

Feel free to have a nap when you get tired. That's one
advantage of being self-employed.

Speed Reading

I assume you are reading books on a regular basis. If you're
not, I hope you are reading blogs, magazines or game related
news. Otherwise you can skip this chapter, which is the first
piece of advice: skip information you don't need.

Still here? Good.

Think about the books you've read so far. How much do you
remember from them? Can you recall details of these books?
There may be books you know very well because you have
read them several times. Other books may need a glance at
their indexes to revive their topics in your head. Some books
you may have forgotten completely. A look at their cover
gives you an idea of what they are about. Yet you can't
remember any details.

103

What I want to point out is that varied information and topics
have different significance. To avoid spending time reading
information you don't need, it's useful to decide upfront if you
want to read it at all. You already do this when you decide if
you buy a specific book. So why not apply the same decision
process to the book's content? Just because you paid money
for it? This may sound ridiculous. Nonetheless, it's a proven
fact that people spend more time with things they have paid
for than with the same goods for free. This is especially true
for free-to-play games and paid games. Guess, which type of
game generates more true fans.

Back to speed reading. Decide for each chapter of a book if
it's useful for you. The title often tells you what you can
expect. Skim over the chapter if the title isn't that descriptive.
Go over it from start to end or use the shape technique. The
shape technique is simply moving your eyes from the top of
the page to its right side, to the page bottom, to the left side
and finally back to the top. Don't read the text, just take the
words in. Your subconscious mind recognizes more than you
consciously are aware of. You can use any figure you want
for the shape technique, for instance an S-curve or a diagonal
line. After skimming over the first few pages of the chapter,
sit back and decide if you are interested in it. If curiosity
doesn't arise, you can skip it. You know this chapter is there.
Thus, you can come back to it when it becomes useful for
you.

The whole process is also known as selective ignorance. It
works well for non-fiction books, magazines, blogs, news
feeds and other random accessible information. I wouldn't
recommend it for novels due to their sequential nature.

104

OK, wait... Isn't the title of this chapter Speed Reading?
Where is the advice for faster reading?

There are two speed-increasing techniques I can share
with you. I just can't say they work. At least they didn't
work for me.

The first trick is the blip page. Hold an open book in
front of you and focus on the center fold. The text
should be readable, that is to say, sharp. Then set the
focus behind the fold, so that you are looking through
the book. This makes the text blurry. It's like watching
those 3D images where suddenly some forms pop out,
when you do it right. You should start to see the blip
page, a seemingly small third page in the middle of the
book. This may need some training. When you have got
the blip page, you still can't read the text. You don't have
to either. Just look at the blurry text in the middle for a
few seconds, flip the page and do it again. This way the
subconscious mind should get an idea of the content.
Somehow...

The second trick is center skimming. Just read the first
few words of each line followed by the last few words
of the line. The full meaning should come about
automatically. At least they say so...

I could not personally profit from either of these
techniques. But maybe you can. If you want to know
more about this topic, just search for “speed reading” or

105

“photo reading”.

Singleton To-Do List

To-do lists are the backbone of every plan. Grocery lists,
Scrum backlogs or meeting agendas are examples. They vary
in complexity but are basically the same: a list of things to
do.

A to-do list in any form is helpful in several regards. It gives
you an overview of what you have to do and what's already
done. It keeps you on track to pursue your goals. Therefore,
it's like a boss who you consult for the next step. To-do lists
form the basis for estimations of time and costs. They also
give you a sense of progress - how much you have achieved
so far. This is a very important aspect, especially for your
inner feeling of advancement.

If you're already used to to-do lists, you may face the
problem of multiple to-do lists. They come written on sheets
of paper, via an issue tracking system, as voice recorded
notes, notes on your iPhone or sent to yourself by email.

Heck, I even write to-dos on my lower arms with a ball
pen when neither a device nor paper is around.

The distributed nature of multiple to-do lists makes it tough
managing them. There always will be a primary list which
you spend the most time with. Therefore other to-do lists
easily become forsaken. Tasks get lost and reappear on other

106

lists. Simply put, your management backbone becomes
scattered and out of sync.

The solution to this problem is simple: use a singleton online
to-do list. You can use issue tracking software like Trac, to-do
list managers like Wunderlist, Evernote, Google Drive or any
similar service.

Whenever there is no Internet access I note ideas and to-
dos on paper or write it on my lower arms. To keep
everything in sync I've formed the habit of integrating
new tasks in my singleton to-do list as soon as I go
online.

It's important to maintain just one to-do list. This way you
have a one-stop shop from where you can fetch your next
task when you're done with the last one. It's so easy to get lost
while you're engrossed in work. Thus it's very helpful to have
a single golden thread to follow.

Do First, Learn Later

The modern school system has its roots in the early 20th

century when factories had a high demand for compliant
workers. Back then, workers were instructed how to perform
specific tasks in their work area. It was like programming
robots to carry out repetitive tasks.

This is similar to how students are schooled today. There is
just one problem: the factories are vanishing. Modern jobs
have less and less hackwork but have a high demand for
entrepreneurship and autonomy. Entrepreneurs are used to

107

http://www.squidoo.com/stop-stealing-dreams
http://www.squidoo.com/stop-stealing-dreams
https://drive.google.com/
http://evernote.com/
http://www.wunderlist.com/
http://trac.edgewall.org/

solving problems in an economic manner. This resembles the
struggle of real life. Life throws you in the ring and you have
to learn the lessons while doing things you have never done
before. It's sink or swim. This may sound a little harsh but
humans are designed to learn this way.

This bears a huge opportunity. You can accomplish whatever
you want, not only what you have learned so far. So you don't
have to be instructed by a teacher first to apply new
knowledge later. You can happily start what you wanna do
right now and learn everything about it along the way.
Courses are helpful to shortcut the time you need to get to a
certain level. But learning through trial and error, without
help from teachers, makes you used to failing and creates
confidence when you succeed. Failing is an everyday part of
a successful life. So fail often and fail fast. Failure is not
weakness. Failures are just steps along the path to success.

Start doing what you want to do even when you have no clue
how. Learn what you need when you need it. Do it now and
learn on the go.

Expand Your Comfort Zone

Everything you are used to lies within your comfort zone.
This goes for work, school, social connections, partnerships –
everything. It's nice and safe in the comfort zone. There is
just one problem: if you are not successful, thus success has
to be sought after outside of the zone.

If you keep doing what you're doing you'll keep
getting what you're getting.

108

This saying is quoted so often that it's hard to trace back who
came up with it in the beginning. Anyways, it's not important
who said it. It's important what it means. It boils down to the
following:

Try new things to get better.

Change can come to you or you can come to (the) change.
Most people dislike the former, the successful follow the
latter.

Experiment with things which you have not done yet or
which may even frighten you. Start painting, for example.
Learn to program. Participate on a dance course. Talk to
strangers. The possibilities are endless and you can only win.

Maybe talking to strangers is not always a win. There
are some crime-infested cities out there...

Experiment on a regular basis. It does not matter what comes
out. Pushing the boundary of your comfort zone matters. This
way you tap into new territory over and over and therefore
lose the fear of entering the unknown. Soon you will enjoy
the thrill of the novel. There are just two rules: get it started
and get it done. No matter what, finish it. “Nearly done” does
not count.

When you tell others about a new project, you may encounter
nay-sayers. They will tell you that your undertaking won't
work because... Well, because they don't know how it works.
Don't listen to people who have no experience in the field you
want to try out. They just fear the edge of their own comfort

109

zone. Maybe you have been a nay-sayer yourself. If so, you
will understand that they just want to protect you from failure
and protect themselves from being left behind by your
success.

110

111

112

About the Author

Thomas Schwarzl is a game developer, author of the book 2D
Game Collision Detection and wannabe digital artist. He
resides in the European Alps, right in the heart of Austria.

Writing computer games since 2001 has let Thomas acquire
the knowledge how to cope with the inner game of game
development. Psychological aspects and especially
motivation are rarely discussed game development topics. So
it was time to share some wisdom.

After years of employment, writing games for arcade
machines, Thomas started the games company
www.blackgolem.com. Due to being a one-man show, he is
involved in every aspect of game development like game
design, programming, 2D graphics, 3D modeling and
marketing. But his favorite occupation is still cranking out
code all night while sipping black tea.

113

http://www.blackgolem.com/
http://www.collisiondetection2d.net/
http://www.collisiondetection2d.net/

	Introduction
	Motivation
	Audience
	What You Will Find in This Book
	What You Won't Find in This Book
	Personal Stories
	Gender

	Going Indie
	The Dream of Overnight Success
	Screw Small Games, Mine Will Be Epic!
	Beginning, Disillusion and Transformation
	Better or Different
	Choose the Right Idols
	Graphics Idols
	Multiplayer Idols
	Epic RPG Idols

	Don't Think, Do
	The Nay-Sayers

	From Slave to Master
	You Get Paid per Sale, Not per Hour
	Have Goals
	Focus
	Reduce Context Switching
	Keep a Work Journal
	Restrict Yourself
	Seek & Destroy Bottlenecks
	The Curse of Do It Yourself
	Getting Better by Intention
	Security

	Agility
	Scrum 101
	An Introduction to Scrum

	Accept Imperfection
	The Pareto Principle
	Parkinson's Law
	Get Yourself an Agile Mindset
	Start Lean
	Plans Are Worthless, Planning Is Everything
	Software Is Organic
	Correct Methods vs. Working Methods
	Time Estimation Hell

	Prematurity
	Premature Optimization
	Premature Game Design
	Premature Promises
	Premature Feature Integration
	Premature Polish
	Stamp Design

	Mastering Emotions
	Motivation
	Facilitate Your Initial Motivation
	How to Stay Motivated

	Procrastination
	Embarrassment Happens
	Feedback: Cure and Curse
	The First Step Is the Hardest
	Start Somehow
	Price Shame
	Don't Take It Personally
	Brain Reeducation Step #1
	Brain Reeducation Step #2
	Brain Reeducation Step #3

	Emotions Equal Sales

	Everyday Life Hacks
	Knowledge Is worth Nothing
	Discipline
	Health
	Speed Reading
	Singleton To-Do List
	Do First, Learn Later
	Expand Your Comfort Zone

	About the Author

