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Preface The word 'basic* in the title of this text could be substituted by
'elementary' or by 'an introduction to'; such are the contents. We have chosen
the word 'basic' in order to emphasise our objective, which is to provide in a
reasonably compact and readable form a rigorous first course that covers all of
the material on linear algebra to which every student of mathematics should be
exposed at an early stage. By developing the algebra of matrices before
proceeding to the abstract notion of a vector space, we present the pedagogical
progression as a smooth transition from the computational to the general, from
the concrete to the abstract. In so doing we have included more than 125
illustrative and worked examples, these being presented immediately
following definitions and new results. We have also included more than 300
exercises. In order to consolidate the student's understanding, many of these
appear strategically placed throughout the text. They are ideal for self-tutorial
purposes. Supplementary exercises are grouped at the end of each chapter.
Many of these are 'cumulative' in the sense that they require a knowledge of
material covered in previous chapters. Solutions to the exercises are provided
at the conclusion of the text. In preparing this second edition we decided to
take the opportunity of including, as in our companion volume Further Linear
Algebra in this series, a chapter that gives a brief introduction to the use of
MAPLEI in dealing with numerical and algebraic problems in linear algebra.



We have also included some additional exercises at the end of each chapter.
No solutions are provided for these as they are intended for assignment
purposes. T.S.B., E.F.R. 1 MAPLE™ is a registered trademark of Waterloo

Maple Inc., 57 Erb Street West. Waterloo. Ontario. Canada. N2L6C2.
www.maplesoft.com

Foreword The early development of matrices on the one hand, and linear
spaces on the other, was occasioned by the need to solve specific problems,
not only in mathematics but also in other branches of science. It is fair to say
that the first known example of matrix methods is in the text Nine Chapters of
the Mathematical Art written during the Han Dynasty. Here the following
problem is considered: There are three types of com, of which three bundles of
the first, two bundles of the second, and one of the third make 39 measures.
Two of the first, three of the second, and one of the third make 34 measures.
And one of the first, two of the second, and three of the third make 26
measures. How many measures of com are contained in one bundle of each
type! In considering this problem the author, writing in 200BC, does something
that 1s quite remarkable. He sets up the coefficients of the system of three
linear equations in three unknowns as a table on a 'counting board' 12323 2
3112634 39 the middle column by 3 and subtract the right The same
instruction applied in respect ofthe 0 034 52 8 1 1 39 24 39 Next, the
leftmost column is multiplied by 5 and the middle column subtracted from and
instructs the reader to multiply column as many times as possible. first column
gives

viii Basic Linear Algebra it as many times as possible, giving0 03 052 36 1
1 99 24 39 from which the solution can now be found for the third type of corn,
then for the second and finally the first by back substitution. This method, now
sometimes known as gaussian elimination, would not become well-known until
the 19th Century. The idea of a determinant first appeared in Japan in 1683
when Seki published his Method of solving the dissimulated problems which
contains matrix methods written as tables like the Chinese method described
above. Using his 'determinants' (he had no word for them), Seki was able to
compute the determinants of 5 x 5 matrices and apply his techniques to the
solution of equations. Somewhat remarkably, also in 1683, Leibniz explained
in a letter to de 1'Hopital that the system of equations 10 + 1lx + 12? =0 20 +
2\x +227=030+3\x+32? =0 has a solution if 10.21.32+ 11.22.30 +



12.20.31 =10.22.31 + 11.20.32+ 12.21.30. Bearing in mind that Leibniz was
not using numerical coefficients but rather two characters, the first marking in
which equation it occurs, the second marking which letter it belongs to we see
that the above condition is precisely the condition that the coefficient matrix
has determinant 0. Nowadays we might write, for example, a2x for 21 in the
above. The concept of a vector can be traced to the beginning of the 19th
Century in the work of Bolzano. In 1804 he published Betrachtungen iiber
einige Gegenstande der Elementargeometrie in which he considers points,
lines and planes as undefined objects and introduces operations on them. This
was an important step in the axiomati- sation of geometry and an early move
towards the necessary abstraction required for the later development of the
concept of a linear space. The first axiomatic definition of a linear space was
provided by Peano in 1888 when he published Calcolo geo- metrico secondo
I' Ausdehnungslehre de H. Grassmann preceduto dalle operazioni della logica
deduttiva. Peano credits the work of Leibniz, Mobius, Grassmann and
Hamilton as having provided him with the ideas which led to his formal
calculus. In this remarkable book, Peano introduces what subsequently took a
long time to become standard notation for basic set theory.

Foreword IX Peano's axioms for a linear space are 1. a=b ifand only ifb = a,
ifa=band b =c thena = c. 2. The sum of two objects a and b is defined, i.e.
an object is defined denoted by a + b, also belonging to the system, which
satisfies Ifa-b thena+c=b+c,a+b=b+a,a+(b+c)={a+b)+c, and the
common value of the last equality is denoted bya + b + c. 3. If a is an object of
the system and m a positive integer, then we understand by ma the sum ofm
objects equal to a. It is easy to see that for objects a,b,... of the system and
positive integers m, n,... one has Ifa-b then ma - mb, m(a + b) = ma + mb, (m +
n)a = ma + na, m(na) = mna, \a = a. We suppose that for any real number m the
notation ma has a meaning such that the preceding equations are valid. Peano
also postulated the existence of a zero object 0 and used the notation a-b for a
+ (-b). By introducing the notions of dependent and independent objects, he
defined the notion of dimension, showed that finite-dimensional spaces have a
basis and gave examples of infinite-dimensional linear spaces. If one
considers only functions of degree n, then these functions form a linear system
withn + 1 dimensions, the entire functions of arbitrary degree form a linear
system with infinitely many dimensions. Peano also introduced linear
operators on a linear space and showed that by using coordinates one obtains a



matrix. With the passage of time, much concrete has set on these foundations.
Techniques and notation have become more refined and the range of
applications greatly enlarged. Nowadays Linear Algebra, comprising matrices
and vector spaces, plays a major role in the mathematical curriculum.
Notwithstanding the fact that many important and powerful computer packages
exist to solve problems in linear algebra, it is our contention that a sound
knowledge of the basic concepts and techniques is essential.

Contents Preface Foreword 1. The Algebra of Matrices 1 2. Some
Applications of Matrices 17 3. Systems of Linear Equations 27 4. Invertible
Matrices 59 5. Vector Spaces 69 6. Linear Mappings 95 7. The Matrix
Connection 113 8. Determinants 129 9. Eigenvalues and Eigenvectors 153 10.
The Minimum Polynomial 175 11. Computer Assistance 183 12. Solutions to
the Exercises 205 Index 231

1 The Algebra of Matrices If m and n are positive integers then by a matrix of
size m by n, or an m x n matrix, we shall mean a rectangular array consisting of
mn numbers in a boxed display consisting of m rows and n columns. Simple
examples of such objects are the following: size 1x5 : [IO 9 8 7 6] size 3x2:
size 4x4 1234234534564567size3x112345 6 Ingeneral we
shall display anmxn matrix as *11 *21 *31 *m\ x\2 *13 o *22 *23 ¢ #32 *33 »
Xm2 Xm3 ¢ e¢ *1, ¢ *2n ¢ *3n ¢ *mn. * Note that the first suffix gives the
number of the row and the second suffix that of the column, so that xtj appears
at the intersection of the i-th row and the j-\h column. We shall often find it
convenient to abbreviate the above display to simply and refer to xi} as the
(1,;)-th element or the (1,;")-th entry of the matrix. * Thus the expression X =

[ Xy]mxn will be taken to mean that 'X is the m x n matrix whose (1j)-th element
1s x,

2 Basic Linear Algebra Example 1.1 The 3x3 matrix X = Example 1.2 The 3 x
3matrix X=n2312232r 2333 =/Icanbe expressed as X = [Xy]3x3
where x*-1a00aa0aaa;m{canbe expressed as X = [x"]3x3 where a
1fi<;; 0 otherwise. Example 1.3 The n x nmatrix X =10 0. e 1.0. €2 <? 1 . en-\
en-2 en-1..0..0..0 .. 1 can be expressed as X = [jty],,™ where fe'-' ifi>;; \ 0
otherwi EXERCISES 1.1 Write out the 3 x 3 matrix whose entries are given by
xkj =1 +;. 1.2 Write out the 3 x 3 matrix whose entries are given by {1 if1+j is
even; 0 otherwise. 1.3 Write out the 3 x 3 matrix whose entries are given by xv



=(-1)"1". 1.4 Write out the n x n matrix whose entries are givenby f1 T -1
ifi>;; x{j =<0 1ifi=; 11 1f 1.

1. The Algebra of Matrices 1.5 Write out the 6 x 6 matrix A = [af]-] in which a”
is given by (1) the least common multiple of'1 and ;; (2) the greatest common
divisor of'1 andy. 1.6 Given the n x n matrix A = [a"], describe the n x n matrix
B = [b”] which is such that bi} = fl,ill+1_y. Before we can develop an algebra
for matrices, it is essential that we decide what is meant by saying that two
matrices are equal. Common sense dictates that this should happen only if the
matrices in question are of the same size and have corresponding entries equal.
Definition If A = [fl/yLx,, and B = [bjj]pxq then we shall say that A and B are
equal (and write A = B) if and only 1f (1) m = pandn= q\ (2) atj = bu for al\i,;.
The algebraic system that we shall develop for matrices will have many of the
familiar properties enjoyed by the system of real numbers. However, as we
shall see, there are some very striking differences. Definition Given m x n
matrices A =[a"] and B = [b"], we define the sum A + B to be the mx n matrix
whose (ij)-th element is ai} + bVy Note that the sum A + B 1s defined only
when A and B are of the same size; and to obtain this sum we simply add
corresponding entries, thereby obtaining a matrix again of the same size. Thus,
for instance, -1 [20'-2J+'12[-10j,,0[12"-2J Theorem 1.1 Addition of
matrices 1s (1) commutative [in the sense that if A, B are of the same size then
we have A+ B =B + A); (2) associative [in the sense that if A, B, C are of the
same size then we have A+ {B + C)={A + B) + C]. Proof (1) If A and B are
cach of size mx nthen A + B and B + A are also of size mx n and by the above
definition we have A + B =[aij + bu], B + A =[bij + at}).

4 Basic unearMiueuio Since addition of numbers is commutative we have ai}
+bVi =bWVi + fly for all 1j and so, by the definition of equality for matrices, we
conclude that A+ B=B + A. (2) If A, B, C are each of size m x n then so are A
+ (B + C) and (A + B) + C. Now the (/ j)-th element of A+ (B + C) is fly + (%
+ ci}) whereas that of {A + fi) + C is (fly + by) + cy. Since addition of
numbers is associative we have fly + (34 + ¢*,) = (ay+fcy)+cy for all 1,7 and
so, by the definition of equality for matrices, we conclude lhalA + {B + C) =
{A+ B) + C. D Because of Theorem 1.1(2) we agree, as with numbers, to
write A+ B + C for either A+ (5 + C) or (A+ B) + C. Theorem 1.2 77i£re « a
unique mx n matrix M such that, for every m x n matrix A, A+ M = A. Proof
Consider the matrix M = [wyLxl, all of whose entries are 0; i.e. mit - O for all



1j. For every matrix A = [at-[mytH we have A+ M = [fly + mij |mxn = [fl,v +
0]mxn = [flylmxn = A. To establish the uniqueness of this matrix My suppose
that B = [bl} )mxn is also such that A+ B - A for every mx n matrix A. Then in
particular we have M + B = M. But, taking fi instead of A in the property for
A/, we have fi + M = B. It now follows by Theorem 1.1(1) that B=M. D
Definition The unique matrix arising in Theorem 1.2 is called the m x n zero
matrix and will be denoted by Omxn, or simply by 0 if no confusion arises.
Theorem 1.3 For every m x n matrix A there is a unique mxn matrix B such that
A+ B =0. Proof Given A = latjJmxnt consider B = [-fly-Lxl,, ie. the matrix
whose (/,;)-th element is the additive inverse of the (ij)-lh element of A.
Clearly, we have >4 + B = [fly+(-fl,7)Lxn = 0. To establish the uniqueness of
such a matrix B, suppose that C = [cy]mx,, 1s also such that A + C = 0. Then for
all ij we have fly + Cy =0 and consequently cl} = -fly which means, by the
above definition of equality, that C-B. o Definition The unique matrix B arising
in Theorem 1.3 is called the additive inverse of A and will be denoted by -A.
Thus -A 1s the matrix whose elements are the additive inverses of the
corresponding elements of A.

1. The Algebra of Matrices 5 Given numbers jc, y the difference jc - y is
defined to be x + (-y). For matrices v4, B of the same size we shall similarly
write A - B for A + [-B), the operation '-* so defined being called subtraction
of matrices. EXERCISES 1.7 Show that subtraction of matrices is neither
commutative nor associative. 1.8 Prove that if A and B are of the same size
then -(A + B) =-A - B. X -w y-X z-y y-X z-y w-z So far our matrix algebra has
been confined to the operation of addition. This is a simple extension of the
same notion for numbers, for we can think of 1 x 1 matrices as behaving
essentially as numbers. We shall now investigate how the notion of
multiplication for numbers can be extended to matrices. This, however, is not
quite so straightforward. There are in fact two distinct 'multiplications' that can
be defined. The first 'multiplies' a matrix by a number, and the second
'multiplies' a matrix by another matrix. Definition Given a matrix A and a
number \ we define the product of A by \ to be the matrix, denoted by \A, that is
obtained from A by multiplying every element of A by \. Thus, if A = [flyLxn
then \A = [\au]mxn. This operation is traditionally called multiplying a matrix
by a scalar (where the word scalar is taken to be synonymous with number).
Such multiplication by scalars may also be thought of as scalars acting on
matrices. The principal properties of this action are as follows. Theorem 1.4 If



A and B are m x n matrices then, for any scalars \ and /1, (1) \(A + B)=\A + \B\
(2) \+Hh)A=\A +iiA; (3) MM) = (\MM,; (4) (-1),4 =-* (5)0A = Omxn. Proof
Let A = [fljmxn and B = [bij]mxn. Then the above equalities follow from the
observations (1) \(a,,#bu) =\au + \bu. (2) (X + n)ai} =\Oi1j + naij. 1.9 Simplify
X-y V-Z Z-W W-X X-y y-Z

6 Basic Linear Algepra (3) M%;)=(VK- (4) (-V)au=-fl,y. (5)0fl,v=0.D
Observe that for every positive integer nwe have nA=A+ A+ --+A(n
terms). This follows immediately from the definition of the product \A\ for the
(1,;)-th element of nA is nau = fly + fly + - « + fly, there being n terms in the
summation. EXERCISES 1.10 Given any m x n matrices A and B, solve the
matrix equation 3{X +\A) = 5(X - \B). 1.11 Given the matrices "100" 0100
01,*="11f11111I1 solve the matrix equation X + A =2[X - B). We shall
now describe the operation that is called matrix multiplication This is the
'multiplication’ of one matrix by another. At first sight this concept (due
originally to Cayley) appears to be a most curious one. Whilst it has in fact a
very natural interpretation in an algebraic context that we shall see later, we
shall for the present simply accept it without asking how it arises. Having said
this, however, we shall illustrate its importance in Chapter 2, particularly in
the applications of matrix algebra. Definition Let A = [fly]Jmxn and B =
[bij]nxp (note the sizes!). Then we define the product AB to be the mx p
matrix whose (1,,/)-th element is [AB]j = aixbXj + a”by + aaby + * m + ainbnlJ-
In other words, the (/',;)-th element of the product AB 1s obtained by summing
the products of the elements in the Z'-th row of A with the corresponding
elements in the y-th column of B. The above expression for [AB)ti can be
written in abbreviated form using the so-called £-notation:

1. The Algebra of Matrices The process for computing products can be
pictorially summarised as follows j-th column ofB I'M ** h »«. —» 0/1*1/ >
aabn > <"13fc3/ P ainhj n i-th row of A It is important to note that, in forming
these sums of products, there are no elements that are *Ieft over' since in the
definition of the product AB the number n of columns of A is the same as the
number of rows of B. Example 1.4 Consider the matrices A=01023t#=20
1 211 The product AB is defined since A is of size 2x3 and B is of size 3x2;
moreover, AB 1s of size 2 x 2. We have AB=0-2 + 11 +01 00 + 12+0-1 2-
2+3-1+ 11 20+3-2 + 11 1 2 8 7 Note that in this case the product BA is also
defined (since B has the same number of columns as A has rows). The product



BA is of size 3x3: BA=2-0+0-2 21 +0-3 20+01 1-0+2-2 1-1+23 10+21 10 +
1-211+1-310+11="020"472241 The above example exhibits a
curious fact concerning matrix multiplication, namely that if AB and BA are
defined then these products need not be equal. Indeed, as we have just seen,
AB and BA need not even be of the same size. It is also possible for AB and
BA to be defined and of the same size and still be not equal:

8 Basic Linear AigeDra Example 1.5 The matrices are such that AB = 0 and
BA = A. We thus observe that in general matrix multiplication is not
commutative. A=ro1i [0 0) B=[1 01 [o o) EXERCISES 1.12 Compute the
matrix product 3 1 -2 2 -2 -1 1 1.13 Compute the matrix product"l 10 11" -1 1
12"11T1"011001100110111 1.14 Compute the matrix products 1 2 3
4 1.15 Given the matrices A=12341234"30"-1211,B=[40-112,c
=[142]315]J compute the products (>4£)C and A(BC). We now consider
the basic properties of matrix multiplication Theorem 1.5 Matrix
multiplication is associative [in the sense that, when the products are defined,
A(BC) = (AB)C). Proof For A{BC) to be defined we require the respective
sizes to be mx «, n X p, p x q in which case the product A(BC) is also defined,
and conversely. Computing the

The Algebra of Matrices (ij)-th element of this product, we obtain A-I *=1 1=
[11 /1 A=1 1=1 If we now compute the (i',y)-th clement of { AB)C, wc obtain
the same. /' . « [(ab)c],j =5>*Un=E (E «A/k /=1/=1A=]1 = EErtA/<v /=1
A=l Consequently we see that A(BC) = (AB)C. D Because of Theorem 1.5 we
shall write ABC for either A(BC) or {AB)C. Also, for every positive integer n
we shall write A" for the product AA -A{n terms). EXERCISES 1.16 Compute
the matrix product xy\ah ghb fgfc X y1 Hence express in matrix notation
the equations (1) jc2 + 9*y+y2 + 8%+ S5y +2=0;22 JC V (3) jey=a2; (4)
y2 =4ax. 1.17 Compute v42 and A3 where >4 = Matrix multiplication and
matrix addition are connected by the following distributive laws. Theorem 1.6
When the relevant sums and products are defined, we have A{B + C) = AB +
AC,(B+C)A=BA+CA."000a00a2]a0

10 Basic Linear Algebra Proof For the first equality we require A to be of size
mxn and B, C to be of size n x p, in which case [A(B + Qlj = £ aik[|B + C]kj =
£ aik(bk] + ck]J) nn=£ aiAj + E fl«c*y *=1 *=1 = ["Ly + [*C]/y =[>4B +
>4C]/; and it follows that A(B + C) = AB + AC. For the second equality, in



which we require B, C to be of size mxn and A to be of size n x p, a similar
argument applies. D Matrix multiplication is also connected with
multiplication by scalars. Theorem 1.7 IfAB is defined then for all scalars \ we
have \(AB) = (\A)B = A(\B). Proof The (/,;)-th elements of the three mixed
products are A=l *=] *=| from which the result follows. D EXERCISES 1.18
Consider the matricesor 0 1, B=-1-1" 0 0 Prove that (A + B)2?A2 + 2AB +
B2, but that (A + B)3 = A3 + 3A2B + 3AB2 + B3. Definition A matrix is said
to be square if it is of size n x n\ i.e. has the same number of rows and columns.

» The Algebra of Matrices Our next result is the multiplicative analogue of
Theorem 1.2, but the reader should note that it applies only in the case of
square matrices. Theorem 1.8 There is a unique n x n matrix M with the
property that, for every n x n matrix A, AM = A = MA. Proof Consider the n x
nmatrix 100...0010..0M=001...0.000 ... 1 More precisely, if we define
the Kronecker symbol 6" by ifi=;; 0 otherwise, ".-{I then we have M =

[61] Jnxn. If A = [fliylnxil then [AM]t) = "£aik6kj = aijt the last equality
following from the fact that every term in the summation is 0 except that in
which k = ;, and this termi1s a”l = air We deduce, therefore, that AM - A.
Similarly, we can show that MA = A. This then establishes the existence of a
matrix M with the stated property. To show that such a matrix M 1s unique,
suppose that P is also annxn matrix such that AP = A = PA for everynxn
matrix A. Then in particular we have MP = M = PM. But, by the same property
for Mt we have PM - P = MP. Thus we see that P= M. D Definition The unique
matrix M described in Theorem 1.8 is called the n x n identity matrix and will
be denoted by /,,. Note that /,, has all of its 'diagonal’ entries equal to 1 and all
other entries 0. This is a special case of the following important type of square
matrix. Definition A square matrix D - [djj]nxn is said to be diagonal if dti = 0
whenever 1 fj. Less formally, D is diagonal when all the entries off the main
diagonal are 0. EXERCISES 1.19 If A and B are n x n diagonal matrices prove
that so also is AB.

12 Basic Linear Algebra 1.20 If A and B are n x n diagonal matrices prove that
so also is MB* for all positive integers p,q. There is no multiplicative
analogue of Theorem 1.3; for example, if then we haveab'cd"01'00="0a
0 ¢ so there 1s no matrix A/ such that MA = /2. Note also that several of the
familiar laws of high-school algebra break down in this new algebraic system.
This is illustrated in particular in Example 1.5 and Exercise 1.14 above.



Definition We say that matrices A, B commute if AB = BA. Note that for A B
to commute it 1s necessary that they be square and of the same size.
EXERCISES 1.21 If A and B commute, prove that so also do -4'" and B" for
all positive integers mand /?. 1.22 Using an inductive argument, prove that if
A and B commute then the usual binomial expansion is valid for (A + B)n.
There are other curious properties of matrix multiplication. We mention in
particular the following examples, which illustrate in a very simple way the
fact that matrix multiplication has to be treated with some care. Example 1.6 If
X 1s a non-zero real number then the equality 0 X' x-' 0 0 X" X"1 0 shows that
/2 has infinitely many square roots! Example 1.7 It follows by Theorem 1.4(5)
that the matrix OWXW has the property that 0/IXM>4 = °«xn = AOnxn for
every n x n matrix A. In Example 1.5 we have seen that it is possible for the
product of two non-zero matrices to be the zero matrix.

1. The Algebra of Matrices 13 Definition If A is an m X n matrix then by the
transpose of A we mean the n x m matrix A' whose (1,;)-th element is the
{jti)~\h element of A. More precisely, if A = [{l{/]/IIK/] then A' = [a"m- The
principal properties of transposition of matrices are summarised in the
following result. Theorem 1.9 When the relevant sums and products are
defined, we have (A")'=A, (A+B)' =A'"+ B\(\A)'=\A\ (AB)' = B'A’. Proof
The first three equalities follow immediately from the definitions. To prove
that [AB)' = B'A" (note the reversal!), suppose that A = [a*)mxll and B = [b
MA,. Then (AB)' and B'A" are each of size p x m. Since we deduce that (AB)' =
B'A'. D EXERCISES 1.23 Prove that, when either expression is meaningful,
[A(B + C)]'=B'A+CA'. 1.24 Prove by induction that (An)' = (A")n for every
positive integer n. 1.25 If A and B commute, prove that so also do A' and B'.
1.26 LetX=[flbc]and0-cbc0-a-ba0 A=wherea2 +b2 +c2=1.(1)
Show that y*2 = X'X-/2. (2) Prove that A3 =-A. (3) Find A* in terms of X.
Definition A square matrix A is symmetric if A - A"\ and skew-symmetric if A
=-A.

14 Basic Linear Algebra Example 1.8 For every square matrix A the matrix A
+ A' is symmetric, and the matrix A - A' is skew-symmetric. In fact, by
Theorem 1.9, we have {A+A") = A'+ {A")'=A+A\(A-A") =A-{A")' =A"-
A=-{A-A"). Theorem 1.10 Every square matrix can be expressed uniquely as
the sum of a symmetric matrix and a skew-symmetric matrix. Proof The
equality A=\{A + A")+\{ A-A% together with Example 1.8, shows that such an



expression exists. As for uniqueness, suppose that A - B + C where B is
symmetric and C is skew-symmetric. Then A' = ff+ C =B -C. It follows from
these equations that B=1(/\+ A'") and C=\{A-A"). D EXERCISES 1.27 Prove
that the zero square matrices are the only matrices that are both symmetric and
skew-symmetric. 1.28 Let A,B be of size n x n with A symmetric and B skew-
symmetric. Determine which of the following are symmetric and which are
skew- symmetric: AB + BA, AB-BA, A2, B2, AP&AP {pt q positive
integers). SUPPLEMENTARY EXERCISES 1.29 Let x and y be n x 1 matrices.
Show that the matrix A =xy' - yx' is of size n x n and is skew-symmetric. Show
also that x'y and y'x are of size 1 x 1 and are equal. If xX'x=yy=[1J and X'y =
y'x = [*], prove that A3 = (it2 - 1 )A. 1.30 Show that if A and B are 2 x 2
matrices then the sum of the diagonal elements of AB - BAis zero. [f£isa 2 x
2 matrix and the sum of the diagonal elements of E is zero, show that E2 =\12
for some scalar X. Deduce from the above that if A, B, C are 2 x 2 matrices
then {AB-BA)2C = C{AB-BA)2.

1. The Algebra of Matrices 15 1.31 Determine all 2 x 2 matrices X with real
entries such that X2 =12. 1.32 Show that there are infinitely many real 2x2
matrices A with A2 =-12. 1.33 Let A be the matrix TO a a2 f131 0 0 a a2 000 a
.00 00 . Define the matrix B by B=A-]1A2 +\A3-+A4 + --. Show that this
series has only finitely many terms different from zero and calculate B. Show
also that the series has only finitely many non-zero terms and that its sumis A.
1.34 UA = cos 1? sin t? -sin t? cost? andfl = cos <p sin <p —sin <p cos <p
prove that 1.35 HA =T cos(t? + p) sin(t? + p) AB=... v ., . -sin(t7 + p)
cos(t? + p) prove that An = cos t? sin t? -sin t? cost? 1.36 Prove that, for every
positive integer/i, cos /it? sin /it? -sin/it? cosnt? al 0" 0a 1 00an=/laal 0
n-15-/1(/1 -1)ana' an-2 1.37 If A and B are /1 x n matrices, define the Lie
product [AB] = AB-BA. Establish the following identities : (1) [[AB]C]+
[[BC]A] + [[CA]B) = 0-t (2)[(A + B)C) = [AC]H[BC]- (3) [[[AB)C)D] +
[[[BC]D)A] + [[[CD)A)B] + [[[DA)B)C] = 0. Show by means of an example
that in general [[>4B]CI f[A[BC\[. fliy + {12 . b.z+ b2 , c.z+c2 1.38 Given that
x=— and y=rl " prove that x = where a3y + a4 cx c2 .C3 C4. b3z + b4 a,
f12] r*1 a3 a4\ [b3 c3z+ c4

16 Basic Linear Algebra ASSIGNMENT EXERCISES {I) For each x £ IR
define [cosh x sinh x " sinh .v cosh x Prove that, for all .v.y 6 IR, AXAX =
Al+V. (2) For each real polynomial /?(X) = «,, + axX + ¢ ¢ « + rt"" denote its



derivative by D/?(X) and let=[ /'(°) ' " [Dp(0) />(0) ' Prove that, for all
polynomials p(X) and q{X), Mp + A/,, = M,,+v and A/;|A/,, = A/w. (3) A
square matrix A is nilpotent if/\" = 0 for some positive integer/?; and unipotent
if1,, -A 1s nilpotent. If N is nilpotent and U is unipotcent deline exp N=1,, + N
+1N+eee+ £ A/*+eee]ogi/=-(/,-¢/)-1{/,,-1/)2 \(in-u)k- * [Here the
notation reflects that for the series expansions of the functions ex and log(1 +
a) from analysis, bul in this situation there is no question of 'convergence' since
each expression is in fact a finite sum.| For the matrices n = verify that exp log
U- Uand logexp N - N. For each real number t deline U(t) = exp tM where 0
1230ab00c000.u=1XV01z001M=004500006 0000
Determine 1/(/) and verify that U{s)U(t) = U{s + t) for all s, t 6 IR.

2 Some Applications of Matrices We shall now give brief descriptions of
some situations to which matrix theory finds a natural application, and some
problems to which the solutions are determined by the algebra that we have
developed. Some of these applications will be dealt with in greater detail in
later chapters. 1. Analytic geometry In analytic geometry, various
transformations of the coordinate axes may be described using matrices. By
way of example, suppose that in the two-dimensional cartesian plane we rotate
the coordinate axes in an anti-clockwise direction through an angle t?, as
illustrated in the following diagram: Let us compute the new coordinates (jc',
/) of the point P whose old coordinates were (*,)")e

18 Basic Linear Algebra From the diagram we have x =rcos a and y=rsin a
so X' - rcos(a -t?) = rcosacost? + rsina sint? = x cos t? + ysint?; / =rsin (a
-1?) =rsin a cos t? - rcos a sin t? =y cost?-* sin t?. These equations give x'ty'
in terms of xty and t?. They can be expressed in the matrix form cost? sin t?"|
pel -sin1? cost?J [y\' The 2x2 matrix T cost? sint?1 * -sin t? cost?J is called
the rotation matrix associated with t?. It has the following property: RjRj =/2
— /?1/M1. In fact, we have _ 1" cost? sin t?] Tcost? —sin 17" * * ~ [-sin 1?
cost?J [sini? cost? ' cos2t? + sin2t? -cost?sin t? + sin t?cost?" -sin t?cost? +
cost?sin t? sin2t? + cos2t? "0 1j' and similarly, as the reader can verify, /?'tf/?tf
= /2. This leads us more generally to the following notion. Definition Annxn
matrix A is said to be orthogonal if AA' = IR = A'A. It follows from the above
that to every rotation of axes in two dimensions we can associate a real
orthogonal matrix ('real' in the sense that its elements are real numbers).
EXERCISES 2.1 If A is an orthogonal n x n matrix prove that A' is also



orthogonal. 2.2 If A and B are orthogonal nxn matrices prove that AB is also
orthogonal. x' y'

2. Some Applications of Matrices 19 2.3 Prove that a real 2x2 matrix is
orthogonal if and only if it is of one of the forms ab -b a b -a where a2 + b2 -
1. Consider now the effect of one rotation followed by another. Suppose that
we transform (xt y) into (x'ty') by a rotation through t?, then (*',/) into (*",/") by
a rotation through (p. Then we have x" /'. cosip -sin (p cosy? -sin <p sin cos
sin cos cost? sin t? | * shit? cost?J [y This suggests that the effect of one
rotation followed by another can be described by the product of the
corresponding rotation matrices. Now it is intuitively clear that the order in
which we perform the rotations does not matter, the final frame of reference
being the same whether we first rotate through t? and then through <p or
whether we rotate first through <p and then through t?. Intuitively, therefore, we
can assert that rotation matrices commute. That this 1s indeed the case follows
from the identities which the reader can easily verify as an exercise using the
standard identities for cos(t? + ip) and sin (t? + <p). Example 2.1 Consider the
hyperbola whose equation is x2 - y2 = 1. If this is rotated through 45° anti-
clockwise about the origin, what does its new equation become? To answer
this, observe first that rotating the hyperbola anti-clockwise through 45° is
equivalent to rotating the axes clockwise through 45°. Thus we have =/? n/4
Now since "ir/4"-1r/4 ~ ~*/4-n/4 = fy) - ' we can multiply the above equation
by /?w/4 to obtain X -"»/4=1111 .~vSv3. V'y. sothatr — 1 *'J. 1 v' & - |
'],/ y=-vx+vy

20 Basic Linear Algebra Thus the equation x2 - y2 = 1 transforms to i.e.
to2x'y= 1. EXERCISES 2.4 Two similar sheets of graph paper are pinned
together at the origin and the sheets are rotated. If the point (1,0) of the top
sheet is directly above the point (*, ||) of the bottom sheet, above what point of
the bottom sheet does the point (2,3) of the top sheet lie? 2.5 For every point
(xty) of the cartesian plane let (*',/) be its reflection in the x-axis. Prove that
10" H- 0 -1 2.6 In the cartesian plane let L be a line passing through the origin
and making an angle t? with the x-axis. For every point (x,y) of the plane let
(xLtyL) be its reflection in the line L. Prove that "cos2t? sin 2t?1 I sin2t? -
cos2t? \\y *L 2.7 In the cartesian plane let L be a line passing through the origin
and making an angle t? with the jc-axis. For every point {x,y) of the plane let
(x*, y*) be the projection of (X, y) onto L (i.e. the foot of the perpendicular



from (x, y) to L). Prove that cos2t? sin t?cost? sin t?cost? sin2t? 2. Systems of
linear equations As we have seen above, a pair of equations of the form
011*1+ 012*2 ="1. 021*1 + 022*2 = "2 can be expressed in the matrix form
Ax=b where A=011 012 .021 022. Let us now consider the general case. x =
*2 b =

2. Some Applications of Matrices 21 Definition By a system of m linear
equations in the n unknowns xx,..., xn we shall mean a list of equations of the
form Oii*1 + <»12*2 + 013*3 + emm + alnxn = bx «21*1 + f122*2 + "23*3 +' "
+ fl12¢«*« = *>2 alxxx + f132x2 + f133x3 + * m * + a3nxR = b3 flmi*i + am2x2 +
flm3x3 + mee + fI/nMxM = bm where the a/y- and the b, are numbers. Since
clearly "a,, a,2 fli3 ... aXnl pr,*| " a,,*, + anx2 + a,3x3 + m m m + alnxn ' Q2x
Q22 {123 m * * a2n x2 fI21*] + f122*2 + f123*3 + " m m + <*2nXn 131 132 «33 *
e ¢ aln *3 = f131*] + f132*2 + «33*3 + m m m + OytXn Pml aml <*m3 ¢ ¢ « {lmJ
L*J LOnl*T + "2*2 + flm3*3 +' "' + "»7 «*«. we see that this system can be
expressed succinctly in the matrix form Ax =b where A = [a;j]Jmxn and x, b are
the column matrices r*ii *2 -*«-, b=rM h X. The m x n matrix A is called the
coefficient matrix of the system. Note that it transforms a column matrix of
length n into a column matrix of length m. In the case where b = 0 (i.e. where
every bt = 0) we say that the system is homogeneous. If we adjoin to A the
column b then we obtain an m x (n+ 1) matrix which we write as A\b and call
the augmented matrix of the system. Whether or not a given system of linear
equations has a solution depends heavily on the augmented matrix of the
system. How to determine all the solutions (when they exist) will be the
objective in Chapter 3. EXERCISES 2.8 If, for given A and b, the matrix
equation Ax =b has more than one solution, prove that it has infinitely many
solutions. [Hint. If x, and x2 are solutions, show that so also is pxx + "x2
where p + g=1.)

22 OCtoK, LIIICdl /"Ujjooiu 3. Equilibrium-seeking systems Consider the
following situation. In normal population movement, a certain proportion of
city dwellers move into the country every year and a certain proportion of
country dwellers decide to become city dwellers. A similar situation occurs in
national employment where a certain percentage of unemployed people find
jobs and a certain percentage of employed people become unemployed.
Mathematically, these situations are essentially the same. The problem of how
to describe them in a concrete mathematical way, and to answer the obvious



question of whether or not such changes can ever reach a 'steady state™ is one
that we shall now illustrate. To be more specific, let us suppose that 75% of
the unemployed at the beginning of a year find jobs during that year, and that
5% of people with jobs become unemployed during the year. These
proportions are of course somewhat optimistic, and might lead one to
conjecture that 'sooner or later* everyone will have a job. But these figures are
chosen to illustrate the point that we want to make, namely that the system
'settles down™ to fixed proportions. The system can be described compactly by
the following matrix and its obvious interpretation: unemployed employed into
unemployment J * into employment J g Suppose now that the fraction of the
population that is originally unemployed is LO and that the fraction that is
originally employed is A/0 =1 - LO. We represent this state of affairs by the
matrix V More generally, we let the matrix V signify the proportions of the
unemployed/employed population at the end of the /-th year. At the end of the
first year we therefore have M.-jLo + gAfo and we can express these equations
in the matrix form V which involves the 2 x 2 matrix introduced above. = [ 1
420319 .470. MQ

2. Some Applications of Matrices 23 Similarly, at the end of the second year
we have L2 =\LX ++M, M2 =\Lx + gM, and consequently "2 M2 -Bflfe]-
J."-220 19 20 J M« Using induction, we can say that at the end of the it-th year
the relationship between LktMk and LO,MO 1s given by Mtr14 3 U20 12 20J
MQ Now it can be shown (and we shall be able to do so much later) that, for
all positive integers it, we have r1 4 3 1411201920Jk I~161+"1+5*
1- 15(1 -f) 15 + £ This is rather like pulling a rabbit out of a hat, for we are far
from having the machinery at our disposal to obtain this result; but the reader
will at least be able to verify it by induction. From this formula we can see
that, the larger k becomes, the closer is the approximationri 4 3 Ui 1 20 19 20
J*rvril16ISL1611 161IS 16 J Since LQ + MO = 1, we therefore have Lk
Mk 16 16 I1 "0 _ Put another way, irrespective of the initial values of L0 and
MO, we see that the system is 'equilibrium-seeking™ in the sense that
'‘eventually* one sixteenth of the population remains unemployed. Of course,
the lack of any notion of a limit for a sequence of matrices precludes any
rigorous description of what is meant by an 'equilibrium-seeking* system.
However, only the reader's intuition is called on to appreciate this particular
application. 4. Difference equations The system of pairs of equations *n+i =
axn + byn ynt+i = cxnt+dyn



24 Basic Linear Algebra is called a system of linear difference equations.
Associated with such a system are the sequences (jt,,)w>, and (>w)w"1, and
the problem is to determine the general values of xR,yR given the initial values
of xllyl. The above system can be written in the matrix form zw+, = Azn where
r *» w, A=acb] d\Clearly, we have z* = Azv z3 = Ai* = A2zv and
inductively we see that znt+| = A Z|. Thus a solution can be found if an
expression for A" is known. The problem of determining the high powers of a
matrix is one that will also be dealt with later. 5. A definition of complex
numbers Complex numbers are usually introduced at an elementary level by
saying that a complex number is 'a number of the form x + 1y where X, y are
real numbers and 12 = -1 \ Complex numbers add and multiply as follows: (x +
iy) +(x' +iy) = (x+x) +i(y +/); (x +iy)(x' +1iy') = (xx] -yy') +i(xy' +x'y).
Also, for every real number X we have \(x + 1y)=\x +1\y. This will be familiar
to the reader, even though (s)he may have little idea as to what this number
system is! For example, 1 - \fA is not a real number, so what does the product
iy mean? Is /0 = 0? If so then every real number x can be written as x = x + 10,
which is familiar. This heuristic approach to complex numbers can be
confusing. However, there is a simple approach that uses 2x2 matrices which
is more illuminating and which we shall now describe. Of course, at this level
we have to contend with the fact that the reader will be equally unsure about
what a real number is, but let us proceed on the understanding that the real
number system is that to which the reader has been accustomed throughout
her/his schooldays. The essential idea behind complex numbers is to develop
an algebraic system of objects (called complex numbers) that is 'larger' than
the real number system, in the sense that it contains a replica of this system,
and in which the equation x2 + I = 0 has a solution. This equation is, of course,
insoluble in the real number system. There are several ways of 'extending™ the
real number system in this way, and the one we shall describe uses 2x2
matrices. For this purpose, consider the collection C2 of all 2 x 2 matrices of
the forma b' M(a,b) = -b

2. Some Applications of Matrices 25 where a and b are real numbers. Invoking
Theorem 1.10, we can write M{a,b) uniquely as the sum of a symmetric matrix
and a skew-symmetric matrix: ab”-baa00a0b-b0 Thus, if we define A=
0 1 -1 0 we see that every such matrix M(a, b) can be written uniquely in the
form M(a,b) = al2 + bJ2. Observe now that the collection R2 of all 2x2
matrices in C2 that are of the form M(a, 0) = al2 is a replica of the real number



system; for the matrices of this type add and multiply as follows: x12 +yl2 =x
+y00x+y=(x+yV2'>x12yl2 =xy 0 0 xy =t0)/2, and the replication is
given by associating with every real number x the matrix x12 = Af(x,0).
Moreover, the identity matrix /2 =1 /2 belongs to /72, and we have -1 0 A=
onror -10J[—1 o0o0-1=-12.so0thatJ2 + /2 =0. In other words, in the system
C2 the equation x2 + 1 = 0 has a solution (namely J2). The usual notation for
complex numbers can be derived from C2 by writing each al2 as simply a,
writing J2 as 1, and then writing al2+bJ2 asa+bi. Since clearly, for each scalar
b, we can define J2b to be the same as bJ2 we have that a + b1 =a + 1b.
Observe that in the system C2 we have a bVia' br -b a\[-b' a' = M{a + a\b + b")\
Under the association = M(aa'-bb',ab' + ba'). M(a,b) *-> a + ib, the above
equalities reflect the usual definitions of addition and multiplication in the
system C of complex numbers. This is far from being the entire story about <C,
the most remarkable feature of which is that every equation of the form a,,Xn +
an xXn~* + e ¢ e + atX + a0 = 0, where each a, G <C, has a solution.

26 Basic Linear Algebra EXERCISES 2.9 Let A be a complex 2x2 matrix, i.e.
the entries of A are complex numbers. Prove that if A2 =0 then A is
necessarily of the formzw z2 1 —w?2 -zw for some z, w G C. By considering
the matrix 0 0* 1 0 show that the same 1s not true for real 2x2 matrices. 2.10
The conjugate of a complex number z = x + 1y is the complex number z = x-1y.
The conjugate of a complex matrix A = [z/yLx,, is the matrix A = [Iij Jmxn.
Prove that A = A' and that, when the sums and products are defined, A+ B =
A+Band7iB = AB. 2 11 A square complex matrix A is hermitian if A' - A, and
skew-hermitian if A' = -A. Prove that A + A' is hermitian and that A - A' is
skew- hermitian. Prove also that every square complex matrix can be written
as the sum of a hermitian matrix and a skew-hermitian matrix. ASSIGNMENT
EXERCISES (1) A quaternion is a matrix of complex numbers of the form H =
atibc+id-c+ida-ib10"[o1j,1="10"L° /J,j="0I"[-10j,k=0T1]i
oj Prove that the set of quaternions is closed under the operations of addition
and multiplication. Writing 1 = show that H=al + b1 + ¢j + dk and that 12=2 =
k2 =-1, y=-ji =k, jk=—kj =1, ki=-ik =]. (2) If H is a quaternion, prove that
HJT = WH= {a2 +b2 + ¢2 + d2)1. Un{H) = HIT prove that n{HK) =
n{H)n{K). (3) Show that the system of quaternions can be represented as a
system of real matrices of size 4x4.

3 Systems of Linear Equations We shall now consider in some detail a



systematic method of solving systems of linear equations. In working with such
systems, there are three basic operations involved: (1) interchanging two
equations (usually for convenience); (2) multiplying an equation by a non-zero
scalar; (3) forming a new equation by adding one equation to another. The
operation of adding a multiple of one equation to another can be achieved by a
combination of (2) and (3). We begin by considering the following three
examples. Example 3.1 To solve the systemy + 27z=1 (1) x-2y+ z= 0 (2) 3y-4z
=23 (3) we multiply equation (1) by 3 and subtract the new equation from
equation (3) to obtain -\0z = 20, whence we see that z = -2. It then follows
from equation (1) that y - 5, and then by equation (2) that x =2y - z=12.
Example 3.2 Consider the system x-2y-4z=0 (1) -2x + Ay + 3z=1 (2) -x + 2y
-z=1(3) If we add together equations (1) and (2), we obtain equation (3),
which is therefore superfluous. Thus we have only two equations in three
unknowns. What do we mean by a solution in this case?

28 DASII Ull ICOI rv\jm» " Example 3.3 Consider the systemx+y+z+t=1
(D)x-y-z+t=32)x-y+z-t=13)-3x+y-3z-3/=4(4) Adding
equations (1) and (2), we obtain x +1 =2, whence it follows that >>+ z=-1.
Adding equations (1) and (3), we obtain z= 1 and consequently y = -2.
Substituting in equation (4), we obtain -3x - 3/ =9 so that x + / = -3, which is
not consistent with x +/ = 2. This system therefore does not have a solution.
Expressed in another way, given the 4 x4 matrix A=.I1111-1-11-1-11
-1 -3 1 -3 -3 > there are no numbers xtytz,t that satisfy the matrix equation A x~
yzt="1"3 14 The above three examples were chosen to provoke the
question: is there a systematic method of tackling systems of linear equations
that (a) avoids a haphazard manipulation of the equations; (b) yields all the
solutions when they exist; (¢) makes it clear when no solution exists? In what
follows our objective will be to obtain a complete answer to this question. We
note first that in dealing with systems of linear equations the 'unknowns1 play a
secondary role. It is in fact the coefficients (which are usually integers) that are
important. Indeed, each such system is completely determined by its augmented
matrix. In order to work solely with this, we consider the following elementary
row operations on this matrix: (1) interchange two rows; (2) multiply a row by
a non-zero scalar; (3) add one row to another. These elementary row
operations clearly correspond to the basic operations on equations listed
above.



3. Systems of Linear Equations 29 It is important to observe that these
elementary row operations do not affect the solutions (if any) of the system. In
fact, if the original system of equations has a solution then this solution is also
a solution of the system obtained by applying any of the operations (1), (2),
(3); and since we can in each case perform the 'inverse* operation and thereby
obtain the original system, the converse is also true. We begin by showing that
the above elementary row operations have a fundamental interpretation in
terms of matrix products. Theorem 3.1 Let P be the mx m matrix that is
obtained from the identity matrix Im by permuting its rows in some way. Then
for any m x n matrix A the matrix PA is the matrix obtained from A by
permuting its rows in precisely the same way. Proof Suppose that the i-th row
of P is thej'-th row of Im. Then we have (*= 1 m) Pik = &ik- Consequently, for
every value of it, mm [PAlk = Z>,7f1* = £ Sjiatk = fly*. whence we see that
the 1-th row of PA is they-th row of A. O P = Example 3.4 Consider the matrix
"1000"00100100000 1 obtained from /4 by permuting the second and
third rows. If we consider any 4x2 matrix A= "fll f12 <*1 fl4 *1 hh *J and we
compute the product PA=1000"00100100000 1 "a, bx~ a2 bi a3 b3 a4
bA "a, bx~ a, b3 a2 b2 a4 /74 we see that the effect of multiplying A on the left
by P is to permute the second and third rows of A.

30 Basic Linear Algebra EXERCISES 3.1 Explain the effect of left
multiplication by the matrix "0 0 10" P=0001 1000 0 10 0 3.2 Explain the
effect of left multiplication by the matrix 00 10'P=10000100000 1
Theorem 3.2 Let Abeanmx m matrix and let Dbethemxm diagonal matrix X D =
m. Then DA is obtained from A by multiplying the i-th row of A by \,for i=

L,..., m. Proof Clearly, we have dti = yfiy. Consequently, m m [DAlj = £dikak]
= £\i6ikak) = X,fl/;, and so the i-th row of DA is simply \ times the 1-th row of
A. D Example 3.5 Consider the matrixD=10000a0000p00001
obtained from /4 by multiplying the second row by ct and the third row by /?. If
fl2bj A=03 b3 a4 fcd4

3. Systems of Linear Equations 31 and we compute the product DA=10 00" 0
a000o0p00001"fl,b{ a2 b2 a3 b3 a4 b4 ' a\ *i~ aa2 otbi 0a3 /3b3 . °4
M. we see that the effect of multiplying A on the left by D is to multiply the
second row of A by a and the third row by /?. EXERCISES 3.3 Explain the
effect of left multiplication by the matrix P=00700006a0000000
Theorem 3.3 Let Pbethemxm matrix that is obtained from Im by adding \ times



the s-th row to the r-th row (where 1, s are fixed with r * s). Then for any mxn
matrix A the matrix PA is the matrix that is obtained from A by adding \ times
the s-th row of A to the r-th row of A. Proof Let E)s denote the m x m matrix
that has A in the (r, j)-th position and 0 elsewhere. Then we have fAifi=1) =
s; 0 otherwise. 1% = m Since, by definition, P=Im+ /%4. it follows that [PA)ij
=[A+E"rsA)1J [A];; iflr. [A)r) +\[A)sj 1f/ = 1. Thus we see that PA is
obtained from A by adding A times the $-th row to the r-th row. D

32 Basic Linear Algebra Example 3.6 Consider the matrix P="100\100"0
1 which is obtained from /3 by adding \ times the second row of /3 to the first
row. If A="fll f12 .f13 *'1 h hi and we compute the product PA="1\0"0100
01'a,b{a-ibj fl3 h.=1fl|+Afl2 A1 "*" "2 {12 /?2 f13 "3 . we see that the
effect of multiplying A on the left by P is to add \ times the second row of A to
the first row. EXERCISES 3.4 Explain the effect of left multiplication by the
matrix "0 0 1 Of 13 1 1" 0 0 Definition By an elementary matrix of size nxnwe
shall mean a matrix that is obtained from the identity matrix /,, by applying to it
a single elementary row operation. In what follows we use the "punning
notation' p, to mean 'row 1\ Example 3.7 The following are examples of 3 x 3
elementary matrices: "1000010" 10 (P2<">P32"10000"2001 (2p2);
"TO0OO0O10f01 (PI+P3)

3. Systems of Linear Equations 33 Definition In a product AB we shall say that
B is pre-multiplied by A or, equivalently, that A is post-multiplied by B. The
following result is now an immediate consequence of Theorems 3.1,3.2 and
3.3: Theorem 3.4 An elementary row operation onanmxn matrix A is achieved
on pre-multiplying A by a suitable elementary matrix. The elementary matrix in
question is precisely that obtained by applying the same elementary row
operation to Im. D Having observed this important point, let us return to the
system of equations described in matrix form by Ax = b. It is clear that when
we perform a basic operation on the equations all we do is to perform an
elementary row operation on the augmented matrix A\b. It therefore follows
from Theorem 3.4 that performing a basic operation on the equations is the
same as changing the system Ax = b to the system EAx = Eb where E is some
elementary matrix. Moreover, the system of equations that corresponds to the
matrix equation EAx = Eb 1s equivalent to the original system in the sense that
it has the same set of solutions (if any). Proceeding in this way, we see that to
every string of k basic operations there corresponds a string of elementary



matrices Elt...tEk such that the the resulting system is represented by Ek - « ¢
E2ExAx - Ek - - « E2Elb, which is of the form Bx = ¢ and is equivalent to the
original system. Now the whole idea of applying matrices to solve systems of
linear equations is to obtain a simple systematic method of determining a
convenient final matrix B so that the solutions (if any) of the system Bx = ¢ can
be found easily, such solutions being precisely the solutions of the original
system Ax = b. Our objective is to develop such a method. We shall insist that
the method (1) will avoid having to write down explicitly the elementary
matrices involved at each stage; (2) will determine automatically whether or
not a solution exists; (3) will provide all the solutions. In this connection, there
are two main problems that we have to deal with, namely (a) what form should
the matrix B have?; (b) can our method be designed to remove all equations
that may be superfluous? These requirements add up to a tall order perhaps,
but we shall see in due course that the method we shall describe meets all of
them. We begin by considering the following type of matrix.

34 Basic Linear Algebra Definition By a row-echelon (or stairstep) matrix we
shall mean a matrix of the general form "0 ... O[* in which all the entries 'under
the stairstep™ are zero, all the 'corner entries' (those marked *) are non-zero,
and all other entries are arbitrary. * Note that the 'stairstep™ descends one row
at a time and that a 'step™ may traverse several columns. Example 3.8 The 5x8
matrix is a row-echelon matrix. Example 3.9 The 3x3 matrix is a row-echelon
matrix. Example 3.10 Every diagonal matrix in which the diagonal entries are
non-zero is a row-echelon matrix. Theorem 3.5 By means of elementary row
operations, a non-zero matrix can be transformed to a row-echelon matrix.
Proof Suppose that A = [aij]mxn is a given non-zero matrix. Reading from the
left, the first non-zero column of A contains at least one non-zero element. By a
suitable change'000001000030000040002901"03510"111
100000000

3. Systems of Linear Equations 35 of rows if necessary, we can move the row
containing this non-zero entry so that it becomes the first row, thereby
obtaining a matrix of the form B =b2X bn b22 b2k 0 b. 'm\ uml — umk. in
which bu 70. Now for 1 = 2,3,... ,#1 subtract from the i-th row biXlIbu times the
first row. This is a combination of elementary row operations and transforms B
to the matrix 0 ... 0" ... blk0... 00 ¢c22 ... c2kc=0 0 0 cml **m Cmk in
which we see the beginning of the stairstep. Now leave the first row alone and



concentrate on the (m- 1) x (* - 1) matrix [Cy]. Applying the above argument
to this submatrix, we can extend the stairstep by another row. Clearly, after at
most m applications of this process we arrive at a row-echelon matrix. Q The
above proof yields a practical method of reducing a given matrix to a row
echelon matrix. This process is often known as Gaussian elimination. Example
3111130011110120011f212"A'"10moil0101"10TV\O00MO
01-1-221-1-130011001111-22r1-31P2~P\P3"3pi Pi~Pi P*-Pi
10101 01-10100\\1-300 04 -8J p4 + 3p3 It should be noted carefully
that the stairstep need not in general reach the bottom row, as the following
examples show.

36 Basic Linear Algebra Example 3.1201-10-112"1-4 @®*1-11 p, +-
+p2002-11-41-1100]200-3Jp3+pi.P3+fP2"100-1f0200
Example 3.131-212-42-12-1'100-21"000 0 P2"2P1 P3+P1
EXERCISES 3.5 Reduce to row-echelon form the following matrices: "1 2 3"
312558*"123"312231 3.6 Reduce to row-echelon form the following
matrix: 11112201031133121331 3.7 Giventhe matrix A=110 14
20047 111051-3-1-10 a determine the value of a such that, in a row-
echelon form of A, the stairstep reaches the bottom.

3. Systems of Linear Equations 37 Definition By an Hermite (or reduced row-
echelon) matrix we mean a row-echelon matrix in which every comer entry is
1 and every entry lying above a comer entry is 0. An Hermite matrix therefore
has the general form0..0..0..0..0..0..0/100.00..00..00..00.0.01
.00...00...00...00...0.0.0.00010..0..0..000.01.00...00..0000
.0[1_. 00 in which the unmarked entries lying above the stairstep are
arbitrary Example 3.14 The 4x9 matrix"10000100102200002000
001000000120f01 0isanHermite matrix. Example 3.15 The identity
matrix /,, is an Hermite matrix. Theorem 3.6 Every non-zero matrix A can be
transformed to an Hermite matrix by means of elementary row operations.
Proof Let Z be a row-echelon matrix obtained from A by the process described
in Theorem 3.5. Divide each non-zero row of Z by the (non-zero) comer entry
in that row. This makes each of the comer entries 1. Now subtract suitable
multiples of every such non-zero row from every row above it to obtain an
Hermite matrix. 0 The systematic procedure that is described in the proof of
Theorem 3.6 is best illustrated by an example.



38 Basic Linear Algebra Examp [e3.16"1212443652871"47'100"1
00100~1001002121"0124202142121"T)24200~}-32212 1*
~5"12100j1-1210J"Tho100]i42000"Tho10o0]i-| p2-2p, P3"3pi
row-echelon P3"P2 Pi"2p3 P2 2P3 P1-P2 Hermite EXERCISES 3.8 Reduce
to Hermite form the matrix1-10-1-5-121-1-4 1-1 111-4-63 14 2-8-58 3.9
Reduce to Hermite form the matrices'0001"001001001000 *"1110
1101 1011 0 111 .10 Reduce to Hermite form the matrices "100 1" 0 110 0
1101001+'011010011001 0110

3. Systems of Linear Equations 39 The astute reader will have observed that
we have refrained from talking about the row-echelon form of a matrix. In fact,
there 1s no unique row-echelon form. To see this, it suffices to observe that we
can begin the process of reduction to row- echelon form by moving any non-
zero row to become the first row. However, we can talk of the Hermite form
since, as we shall see, this is unique. In fact, it is precisely because of this that
such matrices are the focus of our attention. As far as the problem in hand is
concerned, namely the solution of Ax - b, we can reveal that the Hermite form
of A is precisely the matrix that will satisfy the requirements we have listed
above. In order to establish these facts, however, we must develop some new
ideas. For this purpose, we introduce the following notation. Given anmxn
matrix A = [a/y] we shall use the notation and quite often we shall not
distinguish this from the i-th row of A. Similarly, the i-th column of A will
often be confused with the column matrix fli, a.= Definition By a linear
combination of the rows (columns) of A we shall mean an expression of the
form \Ixl +\2x2 + « » « + \pxp where each xk is a row (column) of A. Example
3.17 The row matrix [2 - 3 1] can be written in the form 2[1 0 0]-3[0 1 0]+I[0
0 1] and so is a linear combination of the rows of /3. Example 3.18 The
column matrix can be written 0" 4 -2 *0" 1 0 -2 "0" 0 1 and so is a linear
combination of the columns of /3.

40 Basic Linear Algebra Example 3.19 The column matrix 'I" 0 0 is not a
linear combination of the columns of the matrix "0 1 0 00 1 0' 1 0 Definition If
JC, »..., Xp are rows (columns) of A then we shall say that x,,..., xp are linearly
independent if the only scalars \,,..., \p which are such that \, jc, +\2X2 + e e+
"pXp =0 are\, =\2 =""- \» = 0- Expressed in an equivalent way, the rows
(columns) x,,..., xp are linearly independent if the only way that the zero row
(column) O can be expressed as a linear combination of X,,..., Xp is the trivial



way, namely 0 = Ojc, + 0*2 + » « « + Oxp. If x,,..., Xp are not linearly
independent then they are linearly dependent. Example 3.20 The columns of the
identity matrix /,, are linearly independent. In fact, we have *1 1000 +\2 0 1
00+30010+\. 101 00n=M>2>3 K. and this 1s the zero column if and
only if X, = X2 =+« ¢« = Xn = 0. Similarly, the rows of/,, are linearly
independent. Example 3.21 In the matrix A=12020 111 10 10

3. Systems of Linear Equations 41 the columns are not linearly independent.
Indeed, the second and fourth columns are the same, so that a2 = a4 which we
can write in the form 1a2 - 1a4 = 0. However, the first three columns of A are
linearly independent. To see this, suppose that we have X,a, +\2a2 +\3a3 = 0.
Then101+\2210+X,011=00 0 and consequently from which it is
easily seen that \, =\2 =\3 = 0. EXERCISES *[ *] +2\2 >2 + +>3 >3 ===

0 0 3.11 Prove that in the matrix"12 0110 0] 1 1 the rows are linearly
independent. 3.12 For the matrix"1212101103 113312 determine the
maximum number of linearly independent rows and the maximum number of
linearly independent columns. Theorem 3.7 If the rows/columns xu...txpare
linearly independent then none can be zero. Proof If we had xt = 0 then we
could write Ox, + m * m + Ox,., + \xj + Oxi+] + ¢ « + Oxp = 0, so that x,,..., Xp
would not be independent. o Theorem 3.8 The following statements are
equivalent: (1) xu...txp(p”2)are linearly dependent;

42 Basic Linear Algebra (2) one of the xt can be expressed as a linear
combination of the others. Proof (1) => (2): Suppose that xXt..., xp are
dependent, where p ” 2. Then there exist \,...., \p such that \xxx + --- + \pxp=0
with at least one of the \t not zero. Suppose that \k f 0. Then the above equation
can be rewritten in the form JC = -"-x. “x m** a* 1 A* P' i.e. x* 1s a linear
combination of xx ,..., xk x, xk+x,..., xp. (2) =} P (1): Conversely, suppose
that *k = /*1*1 + "' +/U-1**-1 + /1*+1**+1 + ¢ ¢ ¢« + /iPV Then this can be written
in the form /1,*, + eee + /1*-1%*-] + (1) + /*¥*+ **4 4 e o o + npxp = 0 where
the left-hand side is a non-trivial linear combination of xx,...txp. Thus xx,..., Xp
are linearly dependent. D Corollary The rows of a matrix are linearly
dependent if and only if one can be obtained from the others by means of
elementary row operations. Proof It suffices to observe that every linear
combination of the rows is, by its very definition, obtained by a sequence of
elementary row operations. D Example 3.22 The rows of the matrix A=1200
2 1-11 5 4-22 are linearly dependent. This follows from the fact that A3 = A, +



2A2 and from the Corollary to Theorem 3.8. We now consider the following
important notion. Definition By the row rank of a matrix we mean the maximum
number of linearly independent rows in the matrix.

3. Systems of Linear Equations 43 Example 3.23 The matrix A of the previous
example 1s of row rank 2. To see this, recall that the three rows A,, A2, A3 are
dependent. But the rows A, and A2 are independent since A|Aj+A2 «2 —
[IA|t£"2 ZAjm A2 — A2 "21 and this is zero if and only if X, =\2 - 0- Hence
the maximum number of independent rows is 2. Example 3.24 The identity
matrix /,, has row rank n. Example 3.25 By Theorem 3.7, a zero matrix has row
rank 0. EXERCISES 3.13 Determine the row rank of the matrix "1 25" 214
0-1-2 *0 1 2 It turns out that the row rank of the augmented matrix v4|b of the
system Ax = b determines precisely how many of the equations in the system
are not superfluous, so it is important to have a simple method of determining
the row rank of a matrix. The next result provides the key to obtaining such a
method. Theorem 3.9 Elementary row operations do not affect row rank. Proof
It is clear that the interchange of two rows has no effect on the maximum
number of independent rows, i.e. the row rank. If now the Jt-th row A* is a
linear combination of p other rows, which by the above we may assume to be
the rows A.,,..., Ap, then clearly so is A Ak for every non-zero scalar A. It
follows by Theorem 3.8 that multiplying a row by a non-zero scalar has no
effect on the row rank. Finally, suppose that we add the i-th row to they-th row
to obtain a newy-th row, say AJ = A,- + Ay. Since then X, A, + ¢+ A-A -+
ceet AyAJ teee+ ApAp=AA, teee+(X- T Ay)Ay+ oo e+ AyAy + e oo
+ ApAp,

44 Basic Linear Algebra it is clear that if A,,..., A,,..., Ay Ap are linearly
independent then so also are A,,..., \h..., Ay,..., Ap. Thus the addition of one
row to another has no effect on row rank. o Definition A matrix B is said to be
row-equivalent to a matrix A if B can be obtained from A by means of a finite
sequence of elementary row operations. By Theorem 3.4, we can equally
assert that B is row-equivalent to A if there is a product F of elementary
matrices such that B = FA. Since row operations are reversible, we have that if
an m X n matrix B is row- equivalent to the m x n matrix A then A 1s row-
equivalent to B. The relation of being row-equivalent is therefore a symmetric
relation on the set ofmxn matrices. It is trivially reflexive; and it is transitive
since if F and G are each products of elementary matrices then clearly so is



FG. Thus the relation of being row equivalent is an equivalence relation on the
set ofmxn matrices. The following result is an immediate consequence of
Theorem 3.9. Theorem 3.10 Row-equivalent matrices have the same row rank.
D The above concepts allow us now to establish: Theorem 3.11 Every non-
zero matrix can be reduced by means of elementary row operations to a unique
Hermite matrix. Proof By Theorem 3.6, every non-zero matrix M can be
transformed by row operations to an Hermite matrix. Any two Hermite
matrices obtained from M in this way are clearly row-equivalent. It suffices,
therefore, to prove that if A and B are each Hermite matrices and if A and B
are row-equivalent then A = B. This we do by induction on the number of
columns. We begin by observing that the only m x 1 Hermite matrix is the
column matrix 1 0 » 0 so the result is trivial in this case. Suppose, by way of
induction, that all row- equivalent Hermite matrices of size mx [n - 1) are
identical and let A and B be

3. Systems of Linear Equations £5 row-equivalent Hermite matrices of size m
x n. Then by Theorem 3.4 there is an m x n matrix F, which is a product of
elementary matrices, such that B = FA. Let A and B be the m x (n -1) matrices
that consist of the first /i - 1 columns of A, B respectively. Then we have B- FA
and so A and B are row-equivalent. By the induction hypothesis, therefore, we
have A - B. The result will now follow if we can show that the n-th columns of
A and B are the same. For this purpose, we observe that in an Hermite matrix
every non-zero row contains a corner entry 1, and these corner entries are the
only non-zero entries in their respective columns. The non-zero rows of such a
matrix are therefore linearly independent, and the number of such rows
(equally, the number of corner entries) is therefore the row rank of the matrix.
Now since the Hermite matrices A and B are row-equivalent, they have the
same row rank and therefore the same number of corner entries. If this is r then
the row rank of A = B must be either r or r -1. In the latter case, the n-th
columns of A and B consist of a corner entry 1 in the r-th row and 0 elsewhere,
so these columns arc equal and hence in this case A = B. In the former case, we
deduce from B = FA that, for 1 <i<r,r (1) [bn... />J=£>*K ... akn]. *=i In
particular, for the matrix A =B we have r [*il "e fl«>-1]=[*«l ee ¥*VII =$>*[*«
eee ak n-\Y *=1 But since the first r rows of A are independent we deduce from
this that X, = 1 and \k = 0 for k f'i. It now follows from (1) that [bn ... bin] =
[an ... ain] and hence that bin = ain. Thus the n-th columns of A and B coincide
and so A =B also in this case. D Corollary The row rank of a matrix is the



number of non-zero rows in any row-echelon form of the matrix. Proof Let B
be a row-echelon form of A and let H be the Hermite form obtained from B.
Since H is unique, the number of non-zero rows of B is precisely the number of
non-zero rows of //, which is the row rank of A. D The uniqueness of the
Hermite form means that two given matrices are row- equivalent if and only if
they have the same Hermite form. The Hermite form of A is therefore a
particularly important 'representative™ in the equivalence class of A relative to
the relation of being row-equivalent.

46 basic Linear Miyeum EXERCISES 3.14 Consider the matrix 1 1 12 1\1 2
11\214143-X6\6v4=Show thatif\ f 1,2 then the row rank of /\ is 4.
What 1s the row rank of A when \ =1, and when X =27? 3.15 Determine
whether or not the matrices "22 f13 11222 1-102-1-3-23 are row-
equivalent. Similar to the concept of an elementary row operation is that of an
elementary column operation. To obtain this we simply replace 'row™ by
'column™ in the definition. It should be noted immediately that such column
operations cannot be used in the same way as row operations to solve systems
of linear equations since they do not produce an equivalent system. However,
there are results concerning column operations that are 'dual* to those
concerning row operations. This is because column operations on a matrix can
be regarded as row operations on the transpose of the matrix. For example,
from the column analogues of Theorems 3.1, 3.2 and 3.3 (proved by
transposition) we have the analogue of Theorem 3.4: Theorem 3.12 An
elementary column operation on an m X n matrix can be achieved by post-
multiplication by a suitable elementary matrix, namely that obtained from In by
applying to In precisely the same column operation. D The notion of column-
equivalence is dual to that of row-equivalence. Definition The column rank of
a matrix is defined to be the maximum number of linearly independent columns
in the matrix. The dual of Theorem 3.9 holds, namely: Theorem 3.13 Column
operations do not affect column rank D

3. Systems of Linear Equations 47 Since it is clear that column operations can
have no effect on the independence of rows, it follows that column operations
have no effect on row rank. We can therefore assert: Theorem 3.14 Row and
column rank are invariant under both row and column operations. D
EXERCISES 3.16 Determine the row and column ranks of the matrix "0 2 3-4
1"0023422-524"20-69 7 We now ask if there is any connection between



the row rank and the column rank of a matrix; i.e. if the maximum number of
linearly independent rows is connected in any way with the maximum number
of linearly independent columns. The answer is perhaps surprising, and bears
out what the reader should have observed in the previous exercise. Theorem
3.15 Row rank and column rank are the same. Proof Given a non-zero m x n
matrix A, let H(A) be its Hermite form. Since H(A) is obtained from A by row
operations it has the same row rank, p say, as A. Also, we can apply column
operations to H(A) without changing this row rank. Also, both A and H(A)
have the same column rank, since row operations do not affect column rank.
Now by suitable rearrangement of its columns H(A) can be transformed into
the the general form11''p 0 0' in which the submatrix marked ? is unknown
but can be reduced to 0 by further column operations using the first p columns.
Thus H(A) can be transformed by column operations into the matrix\ 0" 0 0
Now by its construction this matrix has the same row rank and the same column
rank as A. But clearly the row rank and the column rank of this matrix are each
p. It therefore follows that the row rank and the column rank of A are the same.
D

48 Basic Linear Algebra Because of Theorem 3. IS we shall talk simply of the
rank of a matrix, meaning by this the row rank or the column rank, whichever is
appropriate. The following is now immediate: Corollary rank A =rank A'. D If
we reflect on the proof of Theorem 3.15 we see that every non-zero mx n
matrix A can be reduced by means of elementary row and column operations to
a matrix of the form riP 0 LO O the integer p being the rank of A. Invoking
Theorems 3.4 and 3.12, we can therefore assert that there 1s an m x m matrix P
and annxn matrix Q, each of which is a product of elementary matrices, such
that PAQ = Ip 0 0 0 The matrix on the right-hand side of this equation is often
called the normal form of A. How can we find matrices P, Q such that PAQ is
in normal form without having to write down at each stage the elementary row
and column matrices involved? If A is of size m x n, an expedient way is to
work with the array as follows. In reducing A, we apply each row operation to
the bottom m rows of this array, and each column operation to the first n
columns of this array. The general stage will be an array of the form FXF2-.FS
XAY E, me*E2EIAFIF2 ee<Fs tLf m m tL'jtL 2M where E,, E2,..., E, are
elementary matrices corresponding to the row operations and F,, F2...., Fs are
elementary matrices corresponding to the column operations. If N is the normal
form of A, the final configurationis Q NP



3. Systems of Linear Equations 49 Example 3.26 Consider the matrix A = 12-1
-2 -1-111 0 12 1 Applying row and column operations as described above, we
obtain10001-1001002-110010-1120001-211100010001
1001007001201010010-1020001-2-11101100001100
0010000107001 12-1-201000-1221-110-11100100v 0012
01000010-1010001-2-11111201~200121000100-2110
010000100120010-1111~20010~221000100-210101

01000100010001111-1001011221000100-21100100
001001-11-1100011~200101122

50 Basic Linear Algebra Thus we see that so that A is of rank 3; and N=P =1
1L21000"01000010,Q="1000-21100100-11-11 Asimple
computation on the reader's part will verify that PAQ = N. ¢ It should be noted
that the matrices P and Q which render PAQ = N are not in general uniquely
determined. The reader should do the above example in a different way (e.g.
reduce A to Hermite form before doing column operations) to obtain different
P and Q. EXERCISES 3.17 Show that the matrix A=2 -3 -2 1 -2 -3 is of rank
2 and find matrices P, Q such that /2 0 0 0 PAQ = 3.18 Write down all the
normal forms that are possible for non-zero 4x5 matrices. 3.19 Suppose that A
1s an n x n matrix and that m rows of A are selected to form an m x n submatrix
B. By considering the number of zero rows in the normal form, prove that rank
B “m - n+ rank A. Definition We say that two mxn matrices are equivalent if
they have the same normal form. Since the rank of matrix is the number of non-
zero rows in its normal form, it is clear from the above that two mxn matrices
are equivalent if and only if they have the same rank. The reader can easily
check that the relation of being equivalent is an equivalence relation on the set
ofimxn matrices. The normal form of A is a particularly simple representative
of the equivalence class of A

3. Systems of Linear Equations 51 EXERCISES 3.20 Prove that if A and B are
row-equivalent then they are equivalent. 3.21 Prove that every square matrix is
equivalent to its transpose. 3.22 Show that the following matrices are
equivalent: 12 153 -102-7-10124-1-6001-2-30102 1 10 0 3 4 We now
have to hand enough machinery to solve the problem in hand. This is dealt with
in the next three results. Theorem 3.16 If A is an m x n matrix then the
homogeneous system of equations Ax = 0 has a non-trivial solution if and only
ifrank A <n. Proof Let a, be the 1-th column of A Then there is a non-zero



column matrix x = such that v4x =0 if and only if *1ai +*2a2 + m ¢ * + Vyn=0;
for, as 1s readily seen, the left-hand side of this equation is simply Ax. Hence a
non-trivial (=non-zero) solution x exists if and only if the columns of A are
linearly dependent. Since A has n columns in all, this is the case if and only if
the (column) rank of A is less than n. D Theorem 3.17 A non-homogeneous
system Ax — b has a solution if and only if rank A = rank v4/b. Proof If A is of
size m x n then there is an n x 1 matrix x such that v4x =b if and only if there
are scalars jc, ,..., xn such that *lal + *2a2 + *m+xn*n = *> This is the case if
and only if b is linearly dependent on the columns of v4, which is the case if
and only if the augmented matrix A\b is column-equivalent to A, i.e. has the
same (column) rank as A D

52 Basic Linear aigeui a Definition We shall say that a system of linear
equations 1s consistent if it has a solution (which. in the homogeneous case, is
non-trivial); otherwise we shall say that it 1s inconsistent. Theorem 3.18 Let a
consistent system of linear equations have as coefficient matrix the m x n
matrix A. If rank A = p then n -p of the unknowns can be assigned arbitrarily
and the equations can be solved in terms of them as parameters. Proof Working
with the augmented matrix v4|b, or simply with A in the homogeneous case,
perform row operations to transform A to Hermite form. We thus obtain a
matrix of the form H(A)\c in which, if the rank of A is p, there are p non-zero
rows. The corresponding system of equations H{ A)x = ¢ is equivalent to the
original system, and its form allows us to assign n-poi the unknowns as
solution parameters. D The final statement in the above proof depends on the
form of H(A). The assignment of unknowns as solution parameters is best
illustrated by examples. This we shall now do. It should be noted that in
practice there is no need to test first for consistency using Theorem 3.17 since
the method of solution will determine this automatically. Example 3.27 Let us
determine for what values of a the systemjct+ y+z=12x-y+2z=1jc+2y+z
= a has a solution. By Theorem 3.17, a solution exists if and only if the rank of
the coefficient matrix of the system is the same as the rank of the augmented
matrix, these ranks being determined by the number of non-zero rows in any
row-echelon form. So we begin by reducing the augmented matrix to row-
echelonform: 112-112110-301"111010110-10a-1113010 a-
1A*111010000a-f

3. Systems of Linear Equations 53 It is clear that the ranks are the same (and



hence a solution exists) i1f and only if In this case the rank is 2 (the number of
non-zero rows), and the Hermite formis "1 01 £f0 10}. 0 0 0 0 Using Theorem
3.18, we can assign 3 -2 = 1 of the unknowns as a solution parameter. Since the
corresponding system of equations is X + z=j we may take as the general
solution y=\ and jc = | - z where z is arbitrary. Example 3.28 Consider now the
system jc+ y+ z + xHiy+ z + je+ >+ /?z + (3 2jc + 2> + 2z The augmented
matrix of the systemis "111 14" 1P1141103-062 22 06 which can be
reduced to row-echelon form by the operationsP2 ~P1» P3 ~P1» ar,d p4-2p.,.
We obtain"11 1 14" 0/9-1000K)00/3-12-0200 0 P-2 -2 Now ifp 1,2
then the rank of the coefficient matrix is clearly 4, as is that of the augmented
matrix. By Theorem 3.18, therefore, a unique solution exists (there being no
unknowns that we can assign as solution parameters). / =4 /=4 -/7)/ =6 /?/ =
6.

54 Basic Linear Algebra To find the solution, we reduce the above row-
echelon matrix to Hermite form: 11101000 1™~*uu*/3-1 0-1 POO 1 "
1111010000100001400/3-2Jn0o004+72010000 10 pooi * The
system of equations that corresponds to thisis x=4+-2-HT/3-2y=0z=0"
/3-2 which gives the solution immediately. Consider now the exceptional
values. First, let /? = 2. Then the matrix (2) becomes '11114" 0100000 102
0 0 0 0 -2 and in the system of equations that corresponds to this augmented
matrix the final equation is Ojc + Oy + 0z + 0/ = -2, which is impossible. Thus
when 0 = 2 the system 1s inconsistent. If now p - 1 then the matrix (2) becomes
111140000000012000-1-2

3. Systems of Linear Equations 55 which reduces to the Hermite form 1110 2 0
0012000000000 0 The corresponding system of equations is X +y + z -
2, r = 2. Here the coefficient matrix is of rank 2 and so we can assign 4-2 =2
of the unknowns as solution parameters. We may therefore take as the solution'
=2, jc = 2-y-z where v and z are arbitrary. EXERCISES 3.23 Show that the
system of equations 2y 2y + 3z3r =3 3/=1/=3 2/ =1 has no solution. 3.24
For what value of a does the system of equations jc - 3v-z- 10/ =axty+z=
52jc -4/=7 jc + y+ /=4 have a solution? Find the general solution when a
takes this value. 3.25 Show that the equations 2x +y+z=-6a2jc +y+ {0 +
\)z=4/?jc + 3>+ 2z =lot has a unique solution except when /3=0 and when
0=6. If /3 = 0 prove that there is only one value of a for which a solution
exists, and find the general solution in this case. Discuss the situation when 0 =



6.

56 Basic Linear Algebra SUPPLEMENTARY EXERCISES 3.26 Let Abe a
real 4x3 matrix. Determine the elementary matrices which, as post-multipliers,
represent each of the following operations (1) multiplication of the third
column by -2; (2) interchange of the second and third columns; (3) addition of
-2 times the first column to the second column. 3.27 If the real matrix'ala 00
0"06160000c1c0000d\d has rankr, prove that (1) r>2; (2) r =3 if
and only ifa=d =0 and be = 1; (3) r =4 in all other cases. 3.28 Given the
real matrices "32-15'1-122057a,B=r03" 0 -1 0 6 prove that the matrix
equation AX = B has a solution if and only if a =-1. 3.29 Show that the
equations X -y-u-5t-a2jcty-z4w+t=Pjcty+z-4u-6/=7jc+ Ay +
27 - 8w - 5/ =6 have a solution if and only if 8a-/?-117 + 56 = 0. Find the
general solution whena =P =-1,7=3,6 = 8. 3.30 Discuss the system of
equations -2jc + (n+ 3)y-\z=-3 jc+\z=1 2jc +4y + 3Xz=-X. 3.31 How
many different normal forms are there in the set ofmxn matrices?

3. Systems of Linear Equations 57 3.32 Give an example of a matrix that
cannot be reduced to normal form by means of row operations alone. 3.33
Give an example of two matrices that are equivalent but are not row-
equivalent. 3.34 Prove that two matrices are equivalent if and only if one can
be obtained from the other by a finite sequence of row and column operations.
3.35 Determine the values of a, b,c for which the parabola y =0x2 +bx + ¢
passes through the three points (-1,1), (0,2), (1,3). 3.36 Determine the set of
integer solutions of the system 3jc, +jc2 + 2jc3 - jc4 = 2jc, +jc2 +4jc3 +
3jcd +2jcS =jc, - 2jc2 + 34 + *5 =% — *3 — *4 + 3%e zE 2% + 3%2 + 3%3 -
*4 - JCS5 = in which =5 denotes congruence modulo 5. ASSIGNMENT
EXERCISES (1) Determine the rank of the matrix024 482 6 3 (2) Ifr is the
rank of the matrix 1 -/7004402a1-1-62810900112"0210"016 _
show that {a) r>1; (b) r=2 ifand onlyifap - -1 and *=6=0; (c) r =3 if and
only if either®) = 6 or aft = -1 and *,6 are not both zero. (3) If A, B, C are
(rectangular) matrices such that A = BC prove that rank A” min{rank B, rank
C}.

58 Basic Linear Algebra (4) Let A be an m x n matrix. Prove that the rank of A
is the smallest integer p such that A can be written as a product BC where
B'ismx p and C'ispx n. (5) Show that if X 0 then the system of equations \x{+



atxntx = bt (/= 1,..., n) n £ fli*i + **n+] = bn+tl n has a unique solution if and
only if X2 - £ af f 0. 1=1 (6) Consider on the one hand the system 5, of n linear
equations in n unknowns: a\\x\ + fl12*2 + 0|3*3 + eme + fljnJfn = bx\ a2lxx +
a22*2 + a23jr3 + eee + f12n" = fc2; f131*] + 132*2 + f133*3 + m" + a3nXn =
fc3; fl«a*i + fl«2*2 + 11,,3”3 + *em + amxn = bn, and on the other hand the
homogeneous system S2 of n linear equations in n+ 1 unknowns: fln>1 + f1[2>2
+ f1i3>3 + mem + fljn>n - *>1)Vi=0; 021?! + {122>2 + 023?73 + "' + flfcIn "
rtl = °1«31>1 + f132>2 + a33>3 + mmm + a3«>n " Mn+] = °1 flni>1 + an2y2
+ a,,3>3 + ee¢ + anny,, - b,,ynt+l = 0. Show that the homogeneous system
associated with S, has only the trivial solution if and only if every non-trivial
solution of 52 is such that yn+l f0.

4 Invertible Matrices In Theorem 1 3 we showed that every mxn matrix A has
an additive inverse, denoted by -A, which is the unique mxn matrix X that
satisfies the equation A + X = 0. We shall now consider the multiplicative
analogue of this. Definition Let A be an m x n matrix. Then an n X m matrix X is
said to be a left inverse of A if it satisfies the equation XA =/,,; and a right
inverse of A if it satisfies the equation AX = Im. Example 4.1 Consider the
matrices A=143.0r340.»*[-:-3310a0 1b A simple computation
shows that Xaj,A =/2, and so A has infinitely many left inverses. In contrast, A
has no right inverse. To see this, it suffices to observe that if Y were a 2 x 4
matrix such that AY = /4 then we would require [AY]4 4 = 1 which is not
possible since all the entries in the fourth row of A are 0. Example 4.2 The
matrix "1 002 00 0" 0 3 has a common unique left inverse and unique right
inverse, namely "1 0001200" 01 3.

60 Basic Linear Algebra Theorem 4.1 Let Abe an m x n matrix. Then {1) A has
a right inverse if and only if rank A =m\ (2) A has a left inverse if and only if
rank A - n. Proof (1) Suppose that the n x m matrix X is a right inverse of A, so
that we have AX =/,,,. If X; denotes the i-th column of X then this equation can
be expanded to the m equations (i=1,...,»t) Ax, = A( where A, denotes the 1-th
column of /,,,. Now each of the matrix equations Ax, = A- represents a
consistent system of m equations in n unknowns and so, by Theorem 3.17, for
each i we have rank A - rank A\AS. Since A,,..., A,,, are linearly independent,
it follows by considering column ranks that rank A = rank v4|A, = rank j4|A,
|A2 =rank A\AXIAM... |A,, = rank A\Im = m. Conversely, suppose that the rank
of A is m. Then necessarily we have that n®m. Consider the Hermite form of



A'. Since H(A') 1s an n x m matrix and rank H(A'") = rank A' = rank A- m, we
see that H(A') 1s of the form 1- H(A') = 0,,-m, As this is row-equivalent to A\
there exists annxn matrix Y such that yA' = “n-m,m Taking transposes, we
obtain Now let Z be the n x m matrix consisting of the first m columns of Y'.
Then from the form of the immediately preceding equation we see that AZ =
/m, whence Z is a right inverse of A. (2) It is an immediate consequence of
Theorem 1.9 that A has a left inverse if and only if its transpose has a right
inverse. The result therefore follows by applying (1) to the transpose of A. D

4. Invertible Matrices 61 EXERCISES 4.1 Show that the matrix'134 7" 23 5
8 14 5 9 has neither a left inverse nor a right inverse. Theorem 4.2 If a matrix
A has both a left inverse X and a right inverse Y then necessarily [1) A is
square; (2) X =Y. Proof (1) Suppose that A is of size m x n. Then by Theorem
4.1 the existence of a right inverse forces rank A = m, and the existence of a
left inverse forces rank A =n. Hence m=n and so A is square. (2) If A is of
size p x p then XA = Ip = AY gives, by the associativity of matrix
multiplication, X = XIp = X{AY) = (XA)Y=IpY=Y. D For square matrices we
have the following stronger situation. Theorem 4.3 If A is an n X n matrix then
the following statements are equivalent: (1) A has a left inverse; (2) A has a
right inverse; (3) A is of rank n\ (4) the Hermite formof Ais/,,; (5) Ais a
product of elementary matrices. Proof We first establish the equivalence of (1),
(2), (3), (4). That (1), (2), (3) are equivalent is immediate from Theorem 4.1.
(3) =>+ (4): If A is of rank n then the Hermite form of A must have n non-zero
rows, hence n corner entries 1. The only possibility is /,,. (4) =>{3): This is
clear from the fact that rank /,, = n. We complete the proof by showing that (3)
=>m (5) and (5) =>m (3) (3) =>+ (5): If A 1s of rank n then, since (3) => (1), A
has a left inverse X. Since XA =/,, we see that X has a right inverse A so,
since (2) => (4), there is a finite string of elementary matrices F1LF2,...} Fq
such that Fq-F2FI1X = In.

62 Basic Linear Algebra Consequently, we have A =InA = {Fq e+ * *« F2FXX)A
=Fq - F2FX (XA)=Fqm m m F2FX and so A is a product of elementary
matrices. (5) =» (3): Suppose now that A = EXE2-Ep where each £, is an
elementary matrix. Observe that Ep 1s of rank n since it is obtained from/,, by
a single elementary operation which has no effect on rank. Also, pre-
multiplication by an elementary matrix is equivalent to an elementary row
operation, which has no effect on rank. It follows that the rank of the product



EXE2>FEp i1s the same as the rank of £p, which 1s n. Thus the rank of Aisn. D It
1s immediate from the above important result that if a square matrix A has a
one-sided inverse then this is a two-sided inverse (i.e. both a left inverse and a
right inverse). In what follows we shall always use the word 'inverse' to mean
two-sided inverse. By Theorem 4.2, inverses that exist are unique. When it
exists, we denote the unique inverse of the square matrix A by A~I. Definition
UA has an inverse then we say that A is invertible. If A is an invertible nx n
matrix then so is A~l. In fact, since AA~l = In= A~]A and inverses are unique,
we have that A is an inverse of A-1 and so {A~1)~1 = A. We note at this
juncture that since, by Theorem 4.3, every product of elementary matrices is
invertible, we can assert that B is row-equivalent to A if and only if there is an
invertible matrix E such that B = EA. Another useful feature of Theorem 4.3 is
that it provides a relatively simple method of determining whether or not A has
an inverse, and of computing A~* when it does exist. The method consists of
reducing A to Hermite form: if this turns out to be /,, then A is invertible; and 1f
the Hermite form is not /,, then A has no inverse. In practice, just as we have
seen in dealing with normal forms, there is no need to compute the elementary
matrices required at each stage. We simply begin with the array A\In and apply
the elementary row operations to the entire array. In this way the process can
be described by A\l,, * EIA\El ** E2MM "2 *  m » m . At each stage we have
an array of the form S\Q = Er-E2EXA\Er-E2Ex in which QA - S. UA has an
inverse then the Hermite form of A will be /,, and the final configuration will
be h\Ep-E2Ex so that Ep * « « E2EXA =1,, and consequently A~l =Ep ¢ « *
E2EX.

4. Invertible Matrices 63 Example 4.3 Consider the matrix Applying the above
procedure, we obtain"1213143]44123134144100namely0100
01"40-1 @*\*@*\* @*\*@*\*@*\*-4-12100100100100100212
2102102100101"1-131131-130-100-10011-1-11-1110
140140-10010010010-2100-11-21-63-11-21-41-112-1
EXERCISES 4.2 Determine which of the following matrices are invertible and
find the inverses: "1 1 f123011>"12f132101>"122"131113
1111 12-121-12 1133211 11 1312 12-11 59 16 4.3 If A is an n x n matrix
prove that the homogeneous system Ax - 0 has only the trivial solution x =0 if
and only if A is invertible.

64 Basic Linear Algebra 4.4 Prove that the real 2x2 matrix A=abcd"l 111



020" 0 ais invertible if and only if ad-bef 0, in which case find its inverse.
4.5 Determine for which values of a the matrix A = is invertible and describe
A"1. We shall see later other methods of finding inverses of square matrices.
For the present, we consider some further results concerning inverses. We first
note that if A and B are invertible nxn matrices then in general A + Bis not
invertible. This is easily illustrated by taking A =/,, and B = -In and observing
that the zero nxn matrix is not invertible. However, as the following result
shows, products of invertible matrices are invertible. Theorem 4.4 Let A and B
be nxn matrices. If A and B are invertible then so is AB\ moreover, (AB)"' =
B~1A~1. Proof It suffices to observe that ABB'l A'l = AL, A~1 = AA~1=/,,
whence B~XA~X is a right inverse of AB. By Theorem 4.3, AB therefore has
an inverse, and {AB)~]1 = B~IA~I. D Corollary If A is invertible then so is Am
for every positive integer m\ moreover, (Am)"' = (A-")m. Proof The proofis by
induction. The result is trivial for m= 1. As for the inductive step, suppose that
it holds for m. Then, using Theorem 4.4, we have {A~)m+l = A-I(A~])m = A-
I(Amyl = (AmA)-1 = (A"*1)"1, whence it holds for m+ 1. D

4. Invertible Matrices 65 Theorem 4.5 If A is invertible then so is its transpose
A'\'moreover, (AT1 = (A'l)'. Proof By Theorem 4.4 we have /,,=/; = (AA-ly =
(A-lyA* and so (A~1)"1s a left inverse, hence the inverse, of A". D
EXERCISES 4.6 If A,, A2,..., Ap are invertible n x n matrices prove that so
also 1s the product AXA2 « m m Ap> and that 4.7 Let 1? be a fixed real number
and let 0 1 -sintf A=-1 0 costf — sin 19 cost? 0 Show that A3 = 0. For each
real number jc define the 3 x 3 matrix Ax by Ax =13 + xA + +x2A2. Prove that
AxAy = Ax+y and deduce that each Ax is invertible with A~1 = 4.8 For each
integer n let 1-« -nn 1 +n Prove that AnAm = An+m. Deduce that An is
invertible with /1"l = A_,,. Do the same for the matrices " [ -An 1+2« What is
the inverse of AmBml A = Recall that annxn matrix is orthogonal if it is such
that AA' =/,,= A'A. By Theorem 4.3, we see that in fact only one of these
equalities is necessary. An orthogonal matrix is therefore an invertible matrix
whose inverse 1s its transpose

66 Basic Linear Algebra Example 4.4 A 2 x 2 matrix is orthogonal if and only
1f it is of one of the forms 'a b'-ba *a b b -a in which a2 + /2 = 1. In fact,
suppose that '-til is orthogonal. Then from the equation [: :1 t;] — t\A'-- we
obtain a2 + b2=\, ac + bd =0} c¢2 + d2=\. The first two equations show that if a
= (0 then d = 0, and the second and third equations show that ifd = 0 then a = 0.



Now when a = d = 0 the equations give b =21 and ¢ = +£1. On the other hand,
when a and J are not zero the middle equation gives c/d - ~{b/a), so either c =
-b,d=aorc=>b, d=-a. It follows that in all cases the matrix is of one of the
stated forms. Note that the one on the left is a rotation matrix (take a = cos 1?
and b =sin19). Example 4.5 The matrix 1/v/3 1/vf-Vy/T 1/v/3 -2/v* 0 1/v/3
Vy/S 1/vT is orthogonal. If P and Aarcnxn matrices with P invertible then for
all positive integers m we have {P-XAP)M = p-lAmP. The proof of this is by
induction. In fact the result is trivial for m = 1; and the inductive step follows
from {P'l1AP)mt} = p-xAP(p-xAP)m = P~IAPP-1AmP = p-l1Al,,AmP = p-
'Am+,P.

4. Invertible Matrices 67 In certain applications it is important to be able to
find an invertible matrix P such that P~XAP is of a particularly simple form.
Consider, for example, the case where P can be found such that P~IAP is a
diagonal matrix D. Then from the above formula we have ZT = {p-1AP)m = p-
1Amp. Consequently, by multiplying the above equation on the left by P and on
the right by P~I, we see that Am = pirp-1. Since VF is easy to compute for a
diagonal matrix D (simply take the m-th power of the diagonal entries), it is
then an easy matter to compute Am. The problem of computing high powers of
a matrix is one that we have seen before, in the 'equilibrium-seeking™ example
in Chapter 2, and this is precisely the method that is used to compute Ak in that
example. Of course, how to determine precisely when we can find an
invertible matrix P such that P~IAP is a diagonal matrix (or some other "nice*
matrix) is quite another problem. A similar problem is that of finding under
what conditions there exists an orthogonal matrix P such that PAP is a diagonal
matrix. Why we should want to be able to do this, and how to do it, are two of
the most important questions in the whole of linear algebra. A full answer is
very deep and has remarkable implications as far as both the theoretical and
practical sides are concerned. EXERCISES 4.9 If A is an n x n matrix such that
/,, + A is invertible prove that (In-A)(In + A)-1 = (In+A)-1(In-A). Deduce that if
P=(n-A)(In+ A)-1 then P is orthogonal when A is skew-symmetric. Given that
0 cosi? 0 A=-cos1? 0 sin19 0 -sini? 0 prove that P = sin219 -cost? sintfcost?
costf 0 —sin1? sini? cos t? sini? cos21?

68 Basic Linear wyema SUPPLEMENTARY EXERCISES 4.10 Find the
inverse of H1 21 0-200 12 1-203 2 1 4.11 Let A and B be row-equivalent
nxn matrices. If A is invertible, prove that so also is B. 4.12 Let A and B be



nxn matrices. If the product AB is invertible, prove that both A and B are
invertible. 4.13 If A and B are n x n matrices with A invertible, prove that {A
+ B)A~\A -B) = (A -B)A~\A + B). 4.14 If A is an n x n matrix establish the
identity In-Ak+1 = (In-A)(In+tA+A2 + -- + AK). Deduce that if some power of
A is the zero matrix then /,, -A is invertible. Suppose now that'2 2-1 -r-100 0
-1-110 0 1-11 A = Compute the powers (74 -A)' for 1 =1,2,3,4 and, by
considering A =14 - (/4 -A), prove that A is invertible and determine A~I.
4.15 Let A and B be n x n matrices such that AB - /,, 1s invertible. Show that
(BA-In)[B(AB-InylA-In] = In and deduce that BA - /,, is also invertible.
ASSIGNMENT EXERCISES (1) If A e MatnxII R is such that al} =0 for 1=
and a%i = 1 for 1 %, show that A satisfies a polynomial equation of degree 2.
Hence determine A'l. (2) Determine the inverse of the complex matrix 1 1+1 -
10i11-2i1 11

5 Vector Spaces In order to proceed further with matrices we have to take a
wider view of matters. This we do through the following important notion.
Definition By a vector space we shall mean a set V on which there are defined
two operations, one called 'addition' and the other called 'multiplication by
scalars', such that the following properties hold: (V,) jc + v =v +jc for all jc,
yGV;(V2) (jc+y)+z=]jc+ {y+2z) forall xy,z GV, (V3) there exists an
element 0 € V such that jc + 0 = jc for every jc € V; (V4) for every jc e V there
exists -jc G V such that jc + (-jc) = 0; (V5) X(jc +v)=\x + \y for all jc,> GV
and all scalars X; (V6) (* + n)x ="x+ n* for all jc G V and all scalars X, %
(V7) ("n)x - Mm*) *°r all jc € V and all scalars X,”; (V8) ljc = jtforalljcG V.
When the scalars are all real numbers we shall often talk of a real vector
space; and when the scalars are all complex numbers we shall talk of a
complex vector space. * It should be noted that in the definition of a vector
space the scalars need not be restricted to be real or complex numbers. They
can in fact belong to any 'field' F (which may be regarded informally as a
number system in which every nonzero element has a multiplicative inverse).
Although in what follows we shall find it convenient to say that 'V is a vector
space over a field F* to indicate that the scalars come from a field F, we shall
in fact normally assume (i.e. unless explicitly mentioned otherwise) that F is
either the field IR of real numbers or the field C of complex numbers. * Axioms
(V,) to (V4) above can be summarised by saying that the algebraic structure (V;
+) 1s an abelian group. If we denote by F the field of scalars



70 Basic Linear Algebra (usually IR or C) then multiplication by scalars can
be considered as an action by F on V, described by (X, jc) »-» Xjc, which
relates the operations in F (addition and multiplication) to that of V (addition)
in the way described by the axioms (V5) to (V8). Example 5.1 Let MatmxlI IR
be the set of all m x n matrices with real entries. Then Theorems 1.1 to 1.4
collectively show that Matmxn IR is a real vector space under the usual
operations of addition of matrices and multiplication by scalars Example 5.2
The set IR" of n-tuples (jc, ,..., jc,,) of real numbers is a real vector space
under the following component-wise definitions of addition and mutiplication
by scalars: (*1 xn) + (yu...tyn) = (*1 +71 *+7,,), M*1,ee * ) = (“xu...t\xn).
Geometrically, IR2 represents the cartesian plane, whereas IR3 represents
three- dimensional space. Similarly, the set C" of n-tuples of complex numbers
can be made into both a real vector space (with the scalars real numbers) or a
complex vector space (with the scalars complex numbers). Example 5.3 Let
Map(IR, IR) be the set of all mappings/: IR -* R. For two such mappings/, g
define/ + g : IR -»IR to be the mapping given by the prescription (f+*)M=/M +
*M, and for every scalar X € IR define X/ : R -» R to be the mapping given by
the prescription W)M = x/W. Then it is readily verified that (V) to (V8) are
satisfied, with the role of the vector 0 taken by the zero mapping (i.e. the
mapping t? such that t?(x) = 0 for every jc € IR) and -/ the mapping given by (-
/)(*) =-/(jc) for every jc € R These operations therefore make Map(IR, IR)
into a real vector space. Example 5.4 Let IR,,[X] be the set of polynomials of
degree at most n with real coefficients The reader will recognise this as the set
of objects of the form a0 + axX +a2X2 + m ¢ * + anXn

5. Vector Spaces 71 where each a, G F and X is an 'indeterminate’, the largest
suffix 1 for which at £ 0 being the degree of the polynomial. We can define an
addition on IR,,[ X] by setting {aQ + axX + .. + anXn) + {b0 + bxX + ¢ ¢« +
AX") = («o + *0) + («« +*«)* + - + (0. + 6,, and a multiplication by scalars by
(a0 +axX ++eme*+a.X")=Xa0 +"*+ e« m*+\anXn. In this way IR,,[ X] has
the structure of a real vector space. We now list some basic properties of the
multiplication by scalars. For clarity, we shall denote (at least for a while) the
additive identity element of V by Ov and that of F (i.e. IR or C) by Of. We also
use the symbol V as an abbreviation of 'for all*. Theorem 5.1 If V is a vector
space over afield F then (1) (VXGF) X0V =0V, (2) (Vic GV) Ofjc =0/, (3)
1f\ x = Ov then either \ = OForx = Ov; (4) (Vjc G V)(VX G F) (-X)jc =-(X*) =
X(-*). Proof (0 By (V3) and (V5) we have X0V = X(0V + 0V) =\0V +\0V.



Now add ~{\0V) to each side. (2) By (V6) we have 0f x = (Of + Of )jc = Of jc
+ Of jc. Now add -(0f jc) to each side. (3) Suppose that \x = 0V and that X { Of.
Then X has a multiplicative inverse X"1 and so, by (V7) and (1), jc =1fjc =
(X ,X)jc =X-"(Xjc) = X-'Ov=0V. (4) By (2) and (V6) we have Ov=(X + (-
X)]je=Xjc + (-X)jc. Now add -(Xjc) to each side. Also, by (1) and (V5) we
have OV = X(jc + (-jc)] = Xjc + X(-jc). Now add -(Xjc) to each side. D
EXERCISES 5.1 Verify the various items of Theorem 5.1 in the particular case
of the vector space MatOTXn IR.

72 Basic Linear Algebra In order to study vector spaces we begin by
concentrating on the substructures, i.e. those subsets that are themselves vector
spaces. Definition Let V be a vector space over a field F. By a subspace of V
we shall mean a non-empty subset W of V that is closed under the operations
of 'V, in the sense that (1) ifjc.y G Wthenjc + y £ W; (2) if jc G W and X G
Flhcn \x G W. Note that (1) says that sums of elements of W belong also to W,
and (2) says that scalar multiples of elements of W also belong to W. When
these properties hold, W inherits from the parent space V all the other
properties required in the definition of a vector space. For example, by taking
X =-1fin (2) we see that if jc G W then -jc G W; and then, by taking y = -jc in
(1), we obtain 0OV G W. Example 5.5 Every vector space V is (trivially) a
subspace of itself. V itself is therefore the biggest subspace of V. Example 5.6
By Theorem 5.1(1), the singleton subset {0V} is a subspace of V. This is then
the smallest subspace of V since, as observed above, we have that 0V G W for
every subspace W of V. Example 5.7 R is a subspace of the real vector space
C. In fact, it is clear that properties (1) and (2) above hold with W =1IR and F
= IR. Example 5.8 In the real vector space IR2 the set X = {(jc,0) ; jc G IR} is
a subspace; for we have (*1,0)+(*2,0)=(*,+*2,0); \(x,0) = (Xjc.O), and so X is
closed under addition and multiplication by scalars. Thus (1) and (2) are
satisfied. This subspace is simply the 'jc-axis' in the cartesian plane IR2.
Similarly, the 'y-axis™* >'={(0,y);>GiR} is a subspace of IR2.

5. Vector Spaces 73 Example 5.9 We can expand on the previous example. In
the cartesian plane IR2 every line L through the origin has a description in the
form of a particular subset of IR2, namely L= {{x,y);ax + Py = 0}. If L makes
an angle t? with the jc-axis then the gradient of L is given by tan t? = -a/0.
Nowif(jc,,y,) G Land(jc2,y2) G £ then we have ckjc, =-/?>,and a a 2 = -fiy1
whence a(jc, + x2) = -fi[y\ + y1) and therefore (*1,1) + ("2,"2) = ("1 +2,



+>2)G” and 1f (jc,, >,) G Lthen ajc, = -/3y, gives aXjc, = -fi\yx for every \ G
IR, so that >("1,>1) =("1,”1) G Thus we see that every line L that passes
through the origin is a subspace of IR2. As we shall see later, apart from
{(0,0)} and IR2 itself, these are the only sub- spaces of IR2. Example 5.10 In
the cartesian space IR3 every plane through the origin has a description in the
form P={(x,y,2)\ ax + Oy + iz= O}. To see the geometry of this, observe that if
we fix z, say z = kt then 'the plane z = ky (i.e. the set {(jc, v, k); jc, y GIR})
slices through P in the line {{x,y,k); ax + Oy =-7k}. Nowif (jc,.y,,z,) G
Nand(jc2,y2,72) G P then it is readily seen that (*1.y1.Z1) + (*2,72,72) = (-"1 +-
M»>1+>2.71+72) GP\and if (jc, , v,, z,) G P then, for every X G IR,
HxuyuZi) = (\xlt\yu\z1)"P- Thus we see that every plane through the origin is a
subspace of IR3. We shall see later that, apart from {(0,0,0)} and IR3 itself,
the only subspaces of IR3 are lines through the origin and planes through the
origin. Example 5.11 Annxn matrix over a field F is said to be lower triangular
if it is of the form [fllI f12] «31 -flnl 0 0 . a22 0. 132 f133 * atil fiIn3 ' 01 . 0.
0 O1w-

74 Basic Linear Algebra i.e. if ay - 0 whenever 1 <j. The set of lower
triangular n X n matrices is a subspace of the vector space Mat, XII F. In fact, if
A and B are lower triangular then clearly so is A+ B and so 1s \A.
EXERCISES 5.2 In the vector space IR4 of 4-tuples of real numbers,
determine which of the following subsets are subspaces: 0) {(x,y,z,t)>x=Y, zZ
=1\ (2) {(fyz); x+y + 2+ t=0}; (3) {{xyz0\ *=1}; (4) {(*.2.0; xt =
yz). 5.3 Consider the set Con(IR.IR) of all continuous functions/ : IR -> IR.
What well-known theorems from analysis ensure that Con(IR, R) is a subspace
of the vector space Map(IR, IR)? 5.4 Let Diff (IR, R) be the subset of Con(IR,
IR) consisting of all differen- tiable functions/: IR —»IR. What well-known
theorems from analysis ensure that Diff (IR, IR) is a subspace of the vector
space Con (IR, IR)? 5.5 Determine which of the following are subspaces of the
vector space MatnxIIIR: (1) the set of symmetric nxn matrices; (2) the set of
invertible nxn matrices; (3) the set of non-invertible nxn matrices. 5.6 If A is a
real mx n matrix prove that the solutions of the homogeneous system Ax = 0
form a subspace of the vector space Matnx, IR. 5.7 Show that a line in R3 that
does not pass through the origin cannot be a subspace of IR3. As the above
examples illustrate, in order to show that a given set with operations is a
vector space it is often very easy to do so by proving that it is a subspace of
some well-known and considerably larger vector space. Suppose now that A



and B are subspaces of a vector space V over a field F and consider their
intersection A OB. Since 0V must belong to every subspace we have that 0V G
A and OV G B, and therefore 0OV G A D B so that AD B £0. Now if xty G
ADBthen jc,y G A gives jc + y G A, andjc.y G B gives Jc +y G B, whence we
have that jc + y G An B. Likewise, ifjc G A f) B thenjc G A gives \x G A, and
x G B gives \x G B, whence we have that \x G A n B. Thus we see that AD B
is also a subspace of V.

5. Vector Spaces 75 We can in fact prove a much more general statement:
Theorem 5.2 The intersection of any set of subspaces of a vector space Vis a
subspace of V. Proof Let C be a set of subspaces of V and let T be their
intersection. Then 770 since every subspace of V (and therefore every
subspace in C) contains Or/, whence so also doesf. Suppose now that x,y € T.
Since jc and y belong to every subspace W in the set C, so does jc +y and
hence jc +y G T. Also, ifjc € T then jc belongs to every subspace W in the set
C, whence so does Xjc and so Xjc € T. Thus we see that T is a subspace of V.
D In contrast with the above situation, we note that the union of a set of
subspaces of a vector space V need not be a subspace of V: Example 5.12 In
IR2 the jc-axis X and the y-axis Y are subspaces, but X U'Y is not. For
example, we have (1,0) G X and (0,1) G K, but (1,0)+(0,1) = (1, )£XuY so the
subset X U Y is not closed under addition and therefore cannot be a subspace.
Suppose now that we are given a subset S of a vector space V (with no
restrictions, so that S may be empty if we wish). The collection C of all the
subspaces of V that contain S is not empty, for clearly V itself belongs to C. By
Theorem 5.2, the intersection of all the subspaces in C is also a subspace of 'V,
and clearly this intersection also contains S. This intersection is therefore the
smallest subspace of V that contains S (and is, of course, S itself whenever 5 is
a subspace). We shall denote this subspace by (5). Example 5.13 In IR2
consider the singleton subset S = {(jc,>)}. Then (5) is the line joining (jc,y) to
the origin. Our immediate objective is to characterise the subspace (5) ina
useful alternative way. For this purpose, we consider first the case where S 1s
not empty and introduce the following notion. Definition Let V be a vector
space over a field F and let 5 be a non-empty subset of V. Then we say that v €
V is a linear combination of elements of 5 if there exist jct,..., jc,, € S

76 Basic Linear Algebra and X.,..., X,, € F such that n i=I n m It 1s clear that if
v = £ Kxi and m> = £ M;?.are'">near combinations of elements 1=l i=I of S then



so 1s v + *v; moreover, so 1s Xv for every X G F. Thus the set of linear
combinations of elements of 5 is a subspace of V. We call this the subspace
spanned by S and denote it by Span 5. The above notions come together in the
following result. Theorem 5.3 (5) = Span 5. Proof For every jc € S we have jc
= Ifjc € Span S and therefore we see that S C Span S. Since, by definition, (5)
is the smallest subspace that contains 5, and since Span S is a subspace, we
see that (5) C Span S. For the reverse inclusion, letjc, ,..., jc,, € S and X,,...,
X,, € F. If W 1s any subspace of V that contains S we clearly have jc, ,..., jc,, €
W and Consequently we see that Span S CW. Taking W in particular to be (S),
we obtain the result. D An important special case of the above arises when
Span S is the whole of V. In this case we often say that 5 is a spanning set of V.
Example 5.14 Consider the subset S = {(1,0), (0,1)} of the cartesian plane R2.
For every (.*, y) € IR2 we have (x.y) = (jt.O) + (0,y) - jt(1,0) + y(0,1), so that
every element of IR2 is a linear combination of elements of S. Thus 5 is a
spanning set of IR2. Example 5.15 More generally, if the n-tuple 6, =
(0....,0,1,0,...,0) has the 1 in the i-th position then for every (jc, ,..., jcJ G IR"
we have (*1 ) =1 + --- + -%. Consequently, {elt...,en} spans IR".

5. Vector Spaces 77 Example 5.16 In IR3 we have Span{(1,0,0)} = {X(1,0,0);
X € 1R} = {(X.0,0); X G IR}; i.e. the subspace of IR3 spanned by the singleton
{(1,0,0)} 1s the jc-axis. Example 5.17 In IR3 we have Span{(1,0,0),(0,0,1)} =
{jc(1,0,0) + z(0,0,1);jc,zGIR} = {(x.0.2); jc.zgIR}; i.e. the subspace of IR3
spanned by the subset {(1,0,0), (0,0,1)} is the 'jc, z-plane*. EXERCISES 5.8
Show that for all a, btc G IR the system of equations X4y +z=ax+2y+ 3z
=b x + 3v + 2z = c is consistent. Deduce that the column matrices 1 1 1 *12 3
* 1 3 2 span the vector space Mat3x, IR. 5.9 Let IR2[ X] be the vector space of
all real polynomials of degree at most 2. Consider the following elements of
IR2[*]: p(X) =1 +2X + X\ q(X) =2 + X2. Does {p(X),q(X)} spanIR: iW .10
Does the set {[1 :]* span the vector space Mat2 "0 0' | | x2R? *"1 0' 0 1 mc :]}
We now formalise, for an arbitrary vector space, a notion that we have seen
before in dealing with matrices.

78 Basic Linear Algebra Definition Let 5 be a non-empty subset of a vector
space V over a field F. Then S is said to be linearly independent if the only

way of expressing OV as a linear combination of elements of S is the trivial

way (in which all scalars are OF). Equivalently, S is linearly independent if,
for any given xu..., xn e S, we have Mi + - + UBOv => >, = -e- =>kB = oF.



Example 5.18 The subset {(1,0), (0,1)} of IR2 is linearly independent. For, if
\,(1,0) +\2(0,1) = (0,0) then (X,, \2) = (0.0) an<*hence *1 = *2 = °f- Example
5.19 More generally, if et = (0,..., 0,1,0,...,0) with the 1 in the i-th position then
{el,..., en} is a linearly independent subset of the vector space IR". Example
5.20 Every singleton subset {x} of a vector space V with x f0 is linearly
independent. This is immediate from Theorem 5.1(3). The following result is
proved exactly as in Theorem 3.7: Theorem 5.4 No linearly independent subset
of'a vector space V can contain OV. D A subset that is not linearly independent
is said to be linearly dependent. Note that, by the last example above, every
dependent subset other than {0V} must contain at least two elements. Linearly
dependent subsets can be characterised in the following useful way, the proof
of which is exactly as in that of Theorem 3.8: Theorem 5.5 Let V bea vector
space over afield F. IfS is a subset ofV that contains at least two elements then
the following statements are equivalent: (1) S is linearly dependent; (2) at least
one element ofS can be expressed as a linear combination of the other elements
ofS. D Example 5.21 The subset {(1,1,0), (2,5,3), (0,1,1)} of IR3 is linearly
dependent. In fact, we have (2,5,3) =2(1,1,0) + 3(0,1,1).

5. Vector Spaces 79 Example 5.22 In the vector space VR2[X] consider p{X)
=2+ X+ X2t q{X) =X +2X2, r{X) =2+ 2X + 3X2. A general linear
combination of these vectors is 2X, +2>3 + (X, +>2 + 2X3)X + (\, + 2\2 +
3X3)X2. This 1s the zero polynomial if and only if each of the coefficients is 0;
te.ifand onlyif202 112123 * >2w=00 0 The reader can easily verify
that the above coefficient matrix is of rank 2 so that, by Theorem 3.16, a non-
trivial solution exists. Hence there are scalars *1,”2. 3 which are not all zero
such that \iP {X) +\2q{X) + \3r(X) = 0 and so the given set is linearly
dependent. EXERCISES 5.11 Let 5, and S2 be non-empty subsets of a vector
space such that 5, C S2. Prove that (1) if S2 is linearly independent then so is
5,; (2) if 5, 1s linearly dependent then so 1s S2. 5.12 Determine which of the
following subsets of Mat 3x, IR are linearly dependent. For those that are,
express one vector as a linear combination of the others: f(1) - (2) - (3) « T O
01001 1-1**>"f2112-1011¢tt«"2V110'11.JJ1'20

80 Basic Linear Algebra 5.13 Determine which of the following subsets of
Mat 2x2,R are linearly dependent. For those that are, express one matrix as a
linear combination of the others: (1) (2) 3) { {[m"11"11"1£f11))"10'02
"23"12**"02'02"22"11}mm10021121032131212343}}m



1} 5.14 Determine which of the following subsets of IR2M are linearly
dependent. For those that are, express one vector as a linear combination of the
others: (1) {X,3 + X2, X +2X2}\(2) {-2 + X.3 + X.1+X2}; (3) {-5+X +
3X2,13 + X1+ X + 2X2}. We now combine the notions of linearly independent
set and spanning set to obtain the following important concept. Definition A
basis of a vector space V is a linearly independent subset of V that spans V.
Example 5.23 The subset {(1,0), (0,1)} is a basis of the cartesian plane IR2.
Likewise, the subset {(1,0,0),(0,1,0),(0,0,1)} is a basis of IR3. More
generally, {ex ej 1s a basis for IR" where ', = (0 0,1,0 0), the 1 being in the /-th
position. These bases are called the natural (or canonical) bases. Example
5.24 In IR2 the subset {(1,1),(1,-1)} is a basis. In fact, for every (jc, y) (= IR2
we have (*,y)-x,(i,1) + Mi,-0 where X, =\{x +y) and \2 = i(x -y). Thus {(1,1),
(1,-1)} spans IR2; and if <*(!, 0 +/3(1,-1) =(0,0)

5. Vector Spaces 817 thena + /7= Oanda-/?= 0 whencea = 0 = 0,s0{(l, 1),
(1,-1)} is also linearly independent. EXERCISES 5.15 Prove that the
monomials 1,X,... ,X" form a basis (the natural basis) forlR,,[X]. 5.16 Prove
that the m x n matrices EM described by pw,-{! if;=p:;=*; [0 otherwise form a
basis (the natural basis) for Matmxn IR. 5.17 Prove that the diagonal nxn
matrices form a subspace of Mat nxn R and determine a basis of it. 5.18 Annxn
matrix all of whose diagonal entries are the same is called a Toeplitz matrix.
Prove that the set of Toeplitz matrices is a subspace of Matnxn IR and exhibit a
basis for this subspace. 5.19 Let/, g, h : IR -»IR be the mappings given by f{x)
= c0s2 xt g{x) = sin2 X, h(x) = cos 2x. Consider the subspace of Diff(IR, IR)
given by W = Span {/, g, h}. Find a basis for W. A fundamental
characterisation of bases is the following. Theorem 5.6 A non-empty subset S
of'a vector space V is a basis of Vif and only if every element of V can be
expressed in a unique way as a linear combination of elements of S. Proof =» :
Suppose first that 5 is a basis of V. Then V = Span S and so, by Theorem 5.3,
every X € Vis a linear combination of elements of 5. Now since S is linearly
independent, only one such linear combination is possible for each Jt £ V; for if
51 Mixi * 51 Mi*/ where xf G S then 5(X, -/*1)*1 * ®v whence each \ -/*,¢ =
0V and therefore \ =, for each i. «j=: Conversely, suppose that every element
of V can be expressed in a unique way as a linear combination of elements of
S. Then, by Theorem 5.3, Span S is the whole of V. Moreover, by the
hypothesis, OV can be expressed in only one way as a linear combination of
elements of S. This can only be the linear combination in which all the scalars



are OF. It follows, therefore, that 5 is also linearly independent. Hence 5 is a
basis of V. D

82 Basic Linear Algebra Example 5.25 For 1 = 11... t n let Then the set {flj,...,
a,,; 1s a basis of R" if and only if the matrix A = [fl/y]nxn is invertible (or,
equivalently, has maximum rank ri). To see this, let x = (x,,..., jcJ G IR" and
consider the equation x-\lai +\2a2 + m + \nan. By equating corresponding
components, we see that this is equivalent to the system X2 =>ifl,2 +>2{122 +
» + Ka>a Xn="<*In+ *2f12n + * + *nam.e. to the system whereA =
[f101,,XII. From these observations we see that every x G IR" can be written
uniquely as a linear combination of ax,..., an if and only if the above matrix
equation has a unique solution. This is so if and only if A" is invertible, which
is the case if and only if A is invertible (equivalently, A has maximum rank r1).
Example 5.26 Consider the set Seq IR of all real sequences (fl«tai =
oua2la3l...tan,a,,"u... of real numbers. We can make Seq IR into a real vector
space in an obvious way, namely by defining an addition and a multiplication
by scalars as follows: Mn>1 + {bn)n>l = {an + b,,),,z1\ M<On>1'"M"ntai-
Define a sequence to be finite if there is some element am of the sequence such
that ap = 0 for all p> m\ put another way, if there are only finitely many non-
zero elements in the sequence. A'

5. Vector Spaces 83 The set Seq”- IR of all finite sequences is clearly closed
under the above addition and multiplication by scalars and so is a subspace of
Seq IR. Consider the (finite) sequences that are represented as follows: e, =
1,0,0,0,... €2 =0,1,0,0,... €3 =0,0,1,0,... *,=0,0,0,0 0,1,0,0,... *v'i-1 Clearly,
every finite sequence can be expressed in a unique way as a linear
combination of ex, €2, £3,.... Consequently, {ex, €2, eit...} forms a basis for the
subspace Seq” IR of finite sequences. Note that this basis is infinite.
EXERCISES 5.20 Determine which of the following are bases of IR3: (1)
{(1,1,1),(1,2,3),(2,-1,1)}; (2)((1,1,2),(1,2,5),(5,3,4)}. 5.21 Show that
{(1,1,0,0),(-1,-1,1,2),(1,-1,1,3),(0,1,-1,-3)} 1s a basis of IR4 and express a
general vector (a, b, ¢, d) as a linear combination of these basis elements. 5.22
Show that 1. mf2 1 *Y23>>r-'"0"01)T 25 are bases for the same
subspace of Mat 3xl IR. Our objective now is to prove that if a vector space V
has a finite basis B then every basis of V is finite and has the same number of
elements as B. This is a consequence of the following result. Theorem 5.7 Let
V be a vector space that is spanned by the finite set G = {v,,..., v,,}. If I =



{w,,..., wm} is a linearly independent subset of V then necessarily m’n.

84 Basic Linear Algebra Proof Consider w, G /* Since G 1s a spanning set of
V, there exist scalars \,...., \n such that w, = V,+ «+Vn and at least one of the \; 1s
non-zero (otherwise every \,- = 0 whence w, = 0V and this contradicts
Theorem 5.4). By a suitable change of indices if necessary, we may assume
without loss that X, £ 0. We then have v, = \\xwx -\\x\2v2-...-\l\nvnt which
shows that V= Span G = Span {v,,v2 vj C Span{wl,v2,v3,...,vIl}. It follows
that Vr=Span{w1,v2,V3,....vII}. Now u>2 can be written as a linear
combination of w,, v2,..., v,, in which at least one of the coefficients of the vj is
non-zero (otherwise w2 is a linear combination of w,, a contradiction).
Repeating the above argument we therefore obtain V=Span{wI,M>2,V3,....vJ.
Continuing in this way, we see that if p - min{m, n} then V=Span{n>,
*W,,...,v]. Now we see that m > n is impossible; for in this case p - nand we
would have V = Span{wl,...twn} whence the elements wn+lt...twm would be
linear combinations of w,,..., w,, and this would contradict the fact that / is
independent. Thus we conclude that m ¢. n. D Corollary 1 If V has a finite
basis B then every basis of V is finite and has the same number of elements as
B. Proof Suppose that B* were an infinite basis of V. Since, clearly, every
subset of a linearly independent set is also linearly independent, every subset
of B* is linearly independent. Now B*, being infinite, contains finite subsets
that have more elements than B. There would therefore exist a finite
independent subset having more elements than B. Since this contradicts
Theorem 5.7, we conclude that all bases of V must be finite. Suppose now that
the basis B has n elements and let B* be a basis with n* elements. By Theorem
5.7, we have n* < n. But, inverting the roles of B and B*, we deduce also that n
¢. n*. Thus n* =n and so all bases have the same number of elements. D

5. Vector Spaces 85 Corollary 2 If V has a finite basis then all linearly
independent subsets of V are finite. Proof If V has a finite basis of n elements
and if there existed an infinite independent subset then this would contain an
independent subset of n + 1 elements, and by the above this is not possible. D
Definition By a finite-dimensional vector space we shall mean a vector space
V that has a finite basis. The number of elements in any basis of V is called the
dimension of V and will be denoted by dim V. Example 5.27 The vector space
IR" has dimension n. In fact, as we have seen before, {ex...., en} 1s a basis.
Example 5.28 The vector space Mat,,, XII IR is of dimension mn. To see this,



observe that if E* is the m x n matrix that has 1 in the (/,;)-th position and 0
elsewhere then {Etj\1=1,....m, ;=1,...,n} 1s a basis for Matmxn IR. Example
5.29 The vector space IR,,[ X] of real polynomials of degree at most n is of
dimension n+1. In fact, {1, X, X2,..., X"} is a basis for this space. Example
5.30 The set V of complex matrices of the forma 0' 7 -a forms a real vector
space of dimension 6. In fact, V is a subspace of the real vector space Mat2x2
C. Morover, the matrixa +1b ¢ +1d e + 1f -a-1b can be writtenas 1 0'0 -1 +b
10"0-i+c01"00+d"01"00+e"00"10+/"00" and as the six
matrices involved in this belong to V and are clearly linearly independent over
F, they form a basis of the subspace that they span, whichis V. a 0 7 -Of

Basic Linear Algebra Example 5.31 The set W of complex matrices of the
form'a 0 -P -a is a real vector space of dimension 4. In fact, W is a subspace
of the real vector space Mat2x2 C. Morover, the matrix can be writtenas a 1 (
0-aP]-0-aa+ibc+id-c+id-a-1b3'1+b100"-i+c'or-10+dori
0 and as the four matrices involved in this linear combination belong to W and
are clearly linearly independent over IR, they form a basis of the subspace that
they span, which is W. EXERCISES 5.23 Let V be a vector space of dimension
2. 1f {v,, v2} 1s a basis of V and if wltw2€;V prove that the following
statements are equivalent: (1) Span{w, M*} =V; (2) there is an invertible
matrix A such that w2 = A v2 5.24 In the vector space IR4 let A= Span{(l,
2,0,1),(-1,1,1,1)}, B=Span{(0,0,1,1)}, (2,2,2,2)}. Determine A n B and
compute its dimension. 5.25 If V is a vector space over C of dimension n,
prove that V can be regarded as a vector space over IR of dimension In. [Hint.
Consider {vj,..., VB, iv,,..., ivn} where {v,,..., v,,} is a basis over C] The
reader will recall that the notion of linear independence was defined for a non-
empty subset of a vector space. Now it is convenient to extend to the empty set
0 the courtesy of being linearly independent, the justification for this being that
the condition for a set of elements to be linearly independent can be viewed as
being satisfied 'vacuously' by 0.

5. Vector Spaces 87 Since we know that the smallest subspace of V is the
singleton {0V}, and since this is clearly the smallest subspace to contain 0, we
can also regard the zero subspace as being spanned by 0. These courtesies
concerning 0 mean that we can usefully regard 0 as a basis for the zero
subspace, which we can then say has dimension 0. This we shall do
henceforth. We shall now establish some important facts concerning bases.



Theorem 5.8 Let V be a finite-dimensional vector space. IfG is a finite
spanning set of V and if I is a linearly independent subset of V such that ICG
then there 1s a basis B of V such that I C B C G. Proof Observe first that if |
also spans V then/ is a basis of V and there is nothing to prove. Suppose then
that V f Span /. Then we must have I C G (for otherwise I =G and is a
spanning set of V). We note first that there exists g, € G\l such that g, ¢. Span /;
for otherwise every element of GV belongs to Span [ whence V= Span G C
Span I and we have the contradiction V = Span I. We then observe that IU {g\}
is linearly independent; otherwise we have the contradiction g, € Span /. Now
if/ U {g|} spans V then it is a basis, in which case no more proof is required
since we can take B =1U {gt}. If/ U {gt} does not span V then we can repeat
the above argument to produce an element g2 G G\[1 U {gt}) with IU {gt, &}
linearly independent. Proceeding in this way we see, since G is finite by
hypothesis, that for some m the set B =1U {g,,g2» ¢ *« >8m} >s a basis of V
with I C B C G. D Corollary 1 Every linearly independent subset I of a finite-
dimensional vector space V can be extended to form a basis. Proof By
Corollary 2 of Theorem 5.7,1 is finite. Take G = IU B where B is any basis of
V. Then by the above there 1s a basis B* with I C B* C [U B. D Corollary 2 If
V is of dimension n then every linearly independent set consisting ofn elements
is a basis of V. Proof This is immediate by Corollary 1 and Corollary 1 to
Theorem 5.7. D

88 Basic Linear Algebra Corollary 3 If S is a subset of V then the following
statements are equivalent: (1) S is a basis; (2) S is a maximal independent
subset (in the sense that if I is an independent subset with SCI then S =/); (3) S
1s a minimal spanning set (in the sense that if G spans V and CCS then G = S).
Proof (1) => (2): If / is independent with SCI then by Corollary 1 there is a
basis B such that I C B. Since S is a basis, and since all bases have the same
number of elements, we deduce that S - B- 1. (2) => (1): By Corollary 1 there
is a basis B with S C B. But B is also independent so, by (2), we have S =B
and therefore S 1s a basis. (1) => (3): If G spans V then (recalling that 0 is
independent) there is a basis B with 0 C B C C. IfGCS then B CS and both are
bases. Again since bases have the same number of elements, we deduce that B
=G=3S.(3)=>(1): There is a basis B with 0 C B C S. But B also spans V so,
by (3), we have B =S and so S is a basis. D Corollary 4 If V is of dimension n
then every subset containing more than n elements is linearly dependent. No
subset containing fewer than n elements can span V. Proof This is immediate



from Corollary 3. D As for subspaces of finite-dimensional vector spaces, we
have the following consequence. Theorem 5.9 Let V be a finite-dimensional
vector space. If W is a subspace of V then W is also of finite dimension, and
dimW< dirnV. Moreover, we have dimW = dimV <=> W=V. Proof Suppose
that V is of dimension n. If / is a linearly independent subset of W then, by
Theorem 5.7,1 has at most n elements. A maximal such subset B is then, by
Corollary 3 of Theorem 5.8, a basis of W. Hence W is also of finite dimension,
and dim W <dim V.

5. Vector Spaces 89 Finally, if dim W = dim V = n then B is a linearly
independent subset of V having n elements whence, by Corollary 2 of Theorem
5.8, B is a basis of V. Hence W = SpanB=V. U Example 5.32 Consider the real
vector space IR2. This is of dimension 2 and so if W is a subspace of IR2 then
by Theorem 5.9 the dimension of W is either 0,1, or 2. If dim W = 0 then we
have W = {(0,0)}. If dim W = 2 then, by Theorem 5.9, we have W =1IR2. If
dim W = 1 then W has a basis of a single non-zero element (jc, y), so that W=
{\(x,y); IR} = {(\x,\y)\ X G IR}, which is none other than the line passing
through the origin (0,0) and the point (a ,)). Example 5.33 Arguing in a similar
way to the above, we can show that the subspaces of IR3, corresponding to the
dimensions 0,1,2,3, are: the zero subspace {(0,0,0)}; any line through the
origin; any plane through the origin; IR3 itself. Example 5.34 If V is a vector
space with dim V=10 and X, Y are subspaces of Vwithdim X - 8§ and dim'Y
= 9 then the smallest possible value of dim (X nY) is 7. To see this, begin with
a basis {v,,..., vp} of X n Y and, using Corollary 1 of Theorem 5.8, extend this
on the one hand to a basis {vi,--,VVi»--»v8} of X, and on the other hand to a
basis (vi vptw/t...tw9} of Y. Observe that none of w”,,..., =9 belongs to X
(for otherwise it belongs to X n K, a contradiction), and so
{",...",,...,\",,...,7 9} 1s linearly independent (otherwise one of the vectors
w”,,..., w9 would belong to Span {v,,..., v8} = X, a contradiction). Since dim
V =10, this set contains at most 10 elements. For this we must have p * 7. To
see that this lower bound of 7 1s attainable, consider V=1IR10 and take for X
the subspace consisting of those 10-tuples whose first and third components
are 0, and for Y the subspace consisting of those 10-tuples whose second
component is 0.

90 Basic Linear Algebra EXERCISES 5.26 Consider the subset of IR4 given
by X = {(2,2,1,3),(7,5,5,5),(3,2,2,1),(2,1,2,1)}. Find a basis of Span X and



extend this to a basis of IR4. 5.27 Find a basis for Mat 3x, IR that contains both
the vectors "1" 02 « "0" 2 4 5.28 Find a basis of IR3[ XJ containing the
polynomials 1+X+X2 andX -X3. SUPPLEMENTARY EXERCISES 5.29 For
each of the following statements give a proofifitis true and a counter-example
ifitis false: (1) If V is a vector space over a field F then a non-empty subset
W of Vis a subspace of V ifand only if (Vjc.y G W)(VX,/j € f) ** +py G W.
(2) The subspace {(jc, jc, jc) ; jc € IR} of IR3 is of dimension 3. (3) Every
spanning set contains a basis. (4) The subspace of IR3 spanned by {(1,2,1),
(2,2,1)} is (a) {(a + 2b, 2a+2bta + b); a,b G IR}. (b) {{x+ y,2y,y)\ JLYyGIR};
(5) If P, Q are subspaces of a finite dimensional vector space then (a) P C Q
implies dim P <dim Q\ (b) dim P~ dim Q implies P C Q. (6) If {xty, z} is a
basis of IR3 and w is a non-zero vector in IR3 then {w + x,y, z} is also a basis
of IR3. 5.30 Determine whether or not the following subsets of IR4 are
subspaces: (1) {{atbtctd)\a+b=c + d}-t(2) {(a,b,c,d)- a+b=\}; (3) {(fl,M,
<0;f12+ *=0)-. (4) {(atbtctd)-a2 + b2=1}. 5 31 Determine whether or not the
following subsets of IR4 are subspaces: (1) {(* +2yt0t2x -y,y); J.yGIR}; (2)

{{x + 2ytxt2x-y,y)'t *,yGIR}.

5. Vector Spaces 91 5.32 Prove that the subset {(3-,, 2 +2/,4),(2,2 + 41, 3),(1
-,', =21, -1)} 1is a basis of the complex vector space <C3. Express each of the
vectors (1,0,0), (0,1,0), (0,0,1) as a linear combination of these basis vectors.
5.33 Find a basis for the solution space of the homogeneous system [122 1 -11
022-1-2262\-4.1400-3."jc*yzt=1°10 0 LoJ 5.34 Let V be a finite-
dimensional vector space. If AtB are subspaces of V, prove that so also is the
set A+B-{a+b;aeA,bGB).Prove further that if C is any subspace of V
such that ACC and BCC then A + B C C (in other words, A + B is the smallest
subspace of V that contains both A and B). If L, A/, N are subspaces of V
prove that Ln[M + (Lr)N)} = (LnM) + (LnN). Give an example to show that in
general Ln(M + N)?(LnM) + {Lr\N). 5.35 Let n be a positive integer and let En
be the set of mappings/: IR —»IR that are given by a prescription of the formn
/(jc) = a0 + Y akcos kx + bk sin kx) jt=1 where ak,bk£ IR for each k. Prove
that En is a subspace of Map(IR, IR). It/ € £,, is the zero mapping, prove that
all the coefficients ak, bk must beO. [Hint. Proceed by induction. For this, find
a prescription for D2/4+ n2f] Deduce that the In + 1 functions jr i—» 1, x»-
>cosA:jc, x 1-* sinkx (k - 1,...,n) form a basis for E,,.

92 Basic Linear Algebra 5.36 Let a,@ G IR with a f @ and letr,s be fixed



positive integers. Show that the set of rational functions/ : IR —»IR given by a
prescription of the form where each a{ G IR, is a subspace of Map(IR, IR) of
dimensionr + s. [Hint. Show that the functions X *->fi(x) =-. 7-. — (x-aY(x-
0Y for1=0,..., r + s -1 constitute a basis.] Show also that if g- and hj are given
by fiM = (jr-a)\ hj(x) = (x-py then is also a basis. [Hint. It suffices to prove that
B is independent.] 5.37 For each positive integer k \elfk: IR —»IR be given by
fk{x) = exp rkx where each rk e IR. Prove that (/,)1",-",, is linearly
independent if and only if,,..., rn are distinct. 5.38 Let PO(X),P,(X),...,Pn(X)
be polynomials in IR,,[ X] such that, for each 1, the degree of P,(X) is 1. Prove
that {PO(X)tPI(X)t...tPn(X)} is a basis of IR,,[ X]. 5.39 A net over the closed
interval [0,1] of IR is a finite sequence (fl,)o”, “n+i such that 0 = fl0<fli < --m
<fl,, <fl,,*1 = 1. A step function on the semi-open interval [0,1[ is a map/:
[0,1[—»IR for which there is a net (0,)0%,,+1 over (O» 1) ar,d a finite sequence
(bi)o<i<n such that (VJItGk,flI+1[) f(x) = bt. Sketch a picture of a step function.
Show that the set E of step functions on [0,1 [ is a vector space.

5. Vector Spaces 93 Show also that a basis of £ is the set of functions ek : [0,
I[-» IR given by eM {0 1f00<Jt; 1 if*Yc<l. A piecewise linear function on
[0,1] is a map/: [0,1[-* IR for which there 1s a net (0,)0%,,+1 and finite
sequences (fc()0<"M, (0<k,$m sucn that (V*ek,fl,+1[) f{x) = bix + ci. Sketch a
picture of a piecewise linear function. Show that the set F of piecewise linear
functions on [0,1] is a vector space. If G is the subset of F consisting of those
piecewise linear functions g that are continuous with g(0) = 0, show that G is a
subspace of F. Show also that a basis of G is the set of functions gk : [0,1[—»>
IR given by {0 i1f0<jc<Jt; x-k Ifit"jc < 1. Show finally that every/ G F can be
written uniquely in the form g + e where g € G and e £E. ASSIGNMENT
EXERCISES (1) By a magic matrix we mean a real square matrix in which all
row sums, all column sums, and both diagonal sums are equal to some value a.
If M = [wjfyk” 1s magic, prove that 0 = 3m22. Deduce that, given a,b,c € IR
there is a unique 3x3 magic matrix M(a,b, c¢) such that m22 - fl, mn = a + bt m31
=a + c. Show that {M(a,b, ¢); a, b, c G IR} 1s a subspace of Mat 3x3 IR and
that 5={M(1,0,0),M(0,1,0),M(0,0,1)} is a basis of this subspace. By a
pseudomagic matrix we mean a real square matrix in which all row sums and
all column sums are equal to some value 0 (no requirement being made about
the diagonal sums). Prove that a matrix A is pseudomagic if and only if AJ =
JA = oJ where J is the matrix all of whose elements are 1.



94 Basic Linear Algebra Deduce that if A, B are pseudomagic matrices of the
same size then so also are xA + yB and AB. In contrast, provide an example to
show that the product of two magic matrices need not be magic. (2) [fAisa
non-empty subset of IR show that Map (A, IR) is a subspace of the vector
space Map(IR, IR). If, for each a G A, the mapping/,: A -»IR is given by, v f'1
if* =a; /aW"0 ifjc"l, prove that {fg;a G A} is a basis of Map (A, IR). (3)
Let V be the real vector space of all polynomial functions / : IR —» IR of
degree at most 2, 1.e. functions of the form f(x) = a0 + axx + a2x2 where a0l
alta2 € IR- If r is a fixed real number define/,,/2,/3 : IR —P> IR by the
prescriptions /iW=l. /2(*) = * + rt /sM-fr + r)2. Prove that B= {/, ,/2,/3} is a
basis for V. If/: IR -» IR is given by f{x) = a0 + axx + a2x2, express/ as a
linear combination of the elements in B. (4) Let F be the vector space of
infinitely differentiable functions / : C —» C and let Pn be the subspace
consisting of the complex polynomial functions of degree at most n. For each a
€ C define Pnja = {eazp(z)\p(z)ePHY Show that Pna is a subspace of F and
that “e1*4;,*-0,...,11} 1is a basis of Pnor. If D denotes the differentiation
mapping, prove that £-"7) = N0- <*>d)n/.

6 Linear Mappings In the study of any algebraic structure there are two
concepts that are of paramount importance. The first is that of a substructure
(i.e. a subset with the same type of structure), and the second is that of a
morphism (i.e. a mapping from one structure to another of the same kind that is
'structure-preserving'). So far, we have encountered the notion of a substructure
for a vector space; this is called a sub space. In this chapter we shall consider
the notion of a morphism between vector spaces, i.e. a mapping from one
vector space to another that is 'structure- preserving* in the following sense.
Definition If V and W are vector spaces over the same field F then by a linear
mapping (or linear transformation) from V to W we shall mean a mapping /: V
—» W such that (1)(Vjc,vGV) f(x + y)=f(x)+(y); (2)(VjcGV)(VXgF) f(\x) =
\f(x).  If/: V—» W is linear then V is sometimes called the departure space
and W the arrival space of/. Example 6.1 The mapping/: IR2 -»IR3 given by
f(a,b) = (a + bta-b,b) is linear. In fact, for all (a,b) and (a'tb') in IR2 we have
f((a,b) + W,b'))=f(a+a'tb+b')={a+a"+b+b'ta+a-b-b'tb+b")=(l +6,1l-
6,6) + (fl' + 6',11'-6',6") = /(*,*)+/(*,*")

96 Basic Linear Algebra and, for all (a, b) G IR2 and all X G IR, f(\(atb)) =
f(",\b) = (\a + \bt\a-M>,\b) = \(a + b,a-b,b) =>/(*,*>)s Example 6.2 The



mapping pr, : IR" -»IR described by pr((jr,,..., *,,) = */ (1.e. the mapping that
picks out the i-th coordinate) is called the i-th projection of IR" onto IR. It is
readily seen that (1) and (2) above are satisfied, so that pr, is linear. Example
6.3 Consider the differentiation map D: IR,,[X] -»IR,,[X] given by D(a0 + axX
+ e e e +anXn) =ax + 2a2X + ¢ ¢ « + nanXn~l. This mapping is linear; for if
p(X) and q(X) are polynomials then we know from analysis that D(>(X) +
q(X)) = Dp(X) + Dq(X) and that, for every scalar X, D(\p(X)) =\ Dp{X).
EXERCISES 6.1 Decide which of the following mappings/: IR3 -»IR3 are
linear: (1)f(x,y.2)=(3:2,0); (2) f{xtytz) = (zt-yp\ (3)/(%>,%)= (M,-2,0); (4)
f(xy,z) = {x-\txty)\ (5)/(*,y,2) = (* +)\z,0); (6)/(jc,y,z) = (2jc,v-2,4>). 6.2 Let
B G MatnxlI IR be fixed and non-zero. Which of the following mappings TB :
Matnxn IR -» MatnxlI IR are linear? (1) TB(X) = XB-BX- (2) TB{X) = XB2 +
BX; (3) TB(X) = XB1-BX2. 6.3 Which of the following mappings are linear?
(D/ (2)/ (3)/ R,,[X] -> IR3[X] given by /fc>(X)) = p(0)X2 + Dp(0)X3; IR,,M -
IRn+iM given by f{p(X)) = p(0) + Xp(X); «,,[*] - K,,+IM given by/fc>(X)) = 1
+ Xp(X).

6. Linear Mappings 97 6.4 Let A be a given real m x n matrix. Prove that the
mapping /A:MatnxlIR->MatmxIIR described by fA{\) - Ax is linear. 6.5 Let I:
IR,,[ X] -»IR be the integration map defined by i(pM)= fpW- Jo Prove that I is
linear. 6.6 For anmx n matrix A let/(/1) be the Hermite form of A if A £0, and
let/(0) = 0. Is/linear? The following result contains two important properties of
linear mappings that will be used constantly in what follows. Theorem 6.1 If
the mapping/: V— W is linear then (1)/(0,) = 0" (2) (VjcGV) /(-*)=/(*).
Proof (1) We have/(0v) =/(0f0v) = 0f/(0v) = OW. (2) Using (1) we have, for
every jc € Vt f(x)H{(-x)=f[x + (-x))=f(Qv) = Ow from which the result follows
on adding -/(jc) to each side. 0 EXERCISES 6.7 Let B G Mat,, XII IR be fixed
and non-zero. Prove that the mapping TB : MatnxBIR-MatBXIIIR given by
TB{A)=(A+B)2 -(A+2B)(A-3B) is linear if and only if B2 = 0. We shall
now consider some important subsets that are associated with linear mappings.
For this purpose we introduce the following notation. If/ : V ~* W is linear
then for every subset X of V we define /~*(X) to be the subset of W given by
1(X) = {f(x);xeX}; and for every subset Y of W we define f*~{Y) to be the
subset of V given by r(Y) = {xEV-f(x)eY }. We often call/~*(X) the direct
image of X under/, and/*~(K) the inverse image of Y under/.

98 Basic Linear Algebra ¢ The reader should be warned that this is not



'standard™® notation, in the sense that most authors write/(X) for/-(X), and fI(Y)
for f*~{Y). We introduce this notation in order to reserve the notation f~I as
the standard notation for the inverse of a bijection. One advantage that this non-
standard notation has to offer is that it gives a visually appealing reminder
that/"" sends subsets of V to subsets of W, and /*" lifts back subsets of W to
subsets of V. EXERCISES 6.8 Consider the differentiation map D: IR,,[X]
-»IR,,[ X]. Describe the sets D"*(IR,,[ Xj)andD’Y0). 6.9 Prove that/- =/-* o/-
o/- and that/- =f~of-+of-. The mappings/-* and/4- are each inclusion-
preserving in the sense that (a)X,CX2 =*/-(X,)C/-(X2). For, if v G/'(X,) then 'y
=/(*,) where jc, G X, C X2. (b) YXCY2 *r{Yx)cr(Y2). For, if x $r(Yx)
then/(jc) eK.C Y2. Moreover, each of these mappings carries subspaces to
subspaces: Theorem 6.2 Letf : V—»IV te /meor If X is a subspace of V
thenf~*(X) is a subspace of W\ and if Y is a subspace of W thenf*~(Y) is a
subspace of V Proof Observe first that if X is a subspace of V then we have 0V
G X and therefore OW = /(Ov)er(X).1Tius/-(X)"0. If now yXty2 G /-(X) then
yx = f(xx) and y2 =/(jc2) for some jc,,jc2 G X. Consequently, since X is a
subspace of V, >, +>2 =/(*)) +f{x2) =f(xx + *2) G/(X); and, for every scalar
\t av, = v(*))=/(xjc.) enn Thus/~*(X) 1s a subspace of W. Suppose now that Y is
a subspace of W. Observe that f{Ov) =0W g Y gives Ov G /0. and
therefore/(K) * 0. If now jc, , jc2 G f~(Y) then/(jc, ),/(jc2) G Y and therefore

6. Linear Mappings 99 whence jc, +jc2 e f*~(Y)\ and, for every scalar X,
f(\x]) = \f(xy)eY whence X*, G /-("). Thus f(Y) is a subspace of V. O
EXERCISES 6.10 Show that the subset X of polynomials in IF"nM a" of
whose odd coefficients fl2i+1 are zero forms a subspace of [F"nM- Describe
D~*{X) and D'(X). 6.11 Show that the mapping/: IR2 -»IR2 given by f(x,y) =
(x + ytx-y) is linear. For each subspace X of IR2 describe f~*(X) and/*~(X).
6.12 Let/: V—* W be linear. If X is a subspace of Vand Y is a subspace of W,
prove that r[xnr(Y))=r(x)nY. Deduce that Of particular importance relative to
any linear mapping /: V—» IV are the biggest possible direct image and the
smallest possible inverse image. The former is/~*(V); it is called the image
(or range) of/ and is denoted by Inv. The latter is/*~({0w}); it is called the
kernel (or null-space) of/ and is denoted byKer/. Pictorially, these sets can be
depicted as follows: Ker/ W

100 Basic Linear Algebra Example 6.4 Consider the i-th projection pr, : IR" -»
R. Recall that pr,(jc.,,..., jcJ = jc,. The image of pr, is therefore the whole of IR;



and the kernel of pr, is the set of n-tuples whose 1-th component is 0. Example
6.5 Consider the differentiation map D : IR,,[ X] -» IR,,[ X]. Its image 1s the set
of all polynomials of degree at most n -1; in other words, it is IR,, |[X]. The
kernel of D is the set of polynomials whose derivative is zero; in other words
itis IR. Example 6.6 If A is a given real n x n matrix, consider the linear
mapping /A:MatnxlIR-»MatnxIIR described by fA[x) = Ax. The image o(fA
consists of all n x 1 column matrices y = y\ for which there exists x = *i such
that Ax =y; 1.e. the set of all y such that there exist jc, ,..., jc,, with y="a,+ ¢
+xnan. In other words, Im fA is the subspace of Mat,,yl IR that is spanned by
the columns of A. As for the kernel of/ A, this is the subspace of Mat nx, IR
consisting of the column matrices x such that Ax =m 0; i.e. the solution space of
the system Ax = 0. Example 6.7 Consider the subspace of Map(IR, IR) that is
given by V= Span {sin, cos}, i.e. the set of all real functions/ given by a
prescription of the form /(jc) = a sinjc + 6 cos jc. Let . V—»IR be given by
1(/)="T/. Jo Using basic properties of integrals, we see that I is linear. Now
if/(jc) = a sin jc + bcos x then/ G Ker I if and only if I (a sin jc + bcos x)dx =
0. Jo This is the case if and only if a = 0. Consequently, we see that Ker [ =
Span {cos }

6. Linear Mappings 101 Example 6.8 Consider the mapping/: IR4 -> F3 given
by f(a,btctd) = (a + b,b -cya + d). Since (a + btb -cta + d) = a(1,0,1) + b{\, 1,0)
+¢(0, -1,0) + </(0,0,1) we see that Im/=Span{(1,0,1),(1,1,0),(0,-1,0),(0,0,1)}
To find a basis for Inv/, proceed as follows. Observe that I/ is the subspace
spanned by the rows of the matrix "[ 0 r 110 0-10' 0 0 1. The Hermite form of
Ais"100"010001'00 0. Since the rows of this matrix span the same
subspace, and since they are linearly independent, we deduce that a basis for
Im/is {(1,0,1),(1,1,0),(0,-1,0)}. Thuslm/=IR3. EXERCISES 6.13 Find I/
and Ker/ when/: IR3 -»IR3 is given by f{atbtc)= {a + btb + c,a + ¢). 6.14 1f/:
F2 ->1R2 is given by /(a, b) = (6,0), prove that Im /= Ker/. 6.15 Give an
example of a linear mapping for which I/ C Ker/; and an example where Ker/
C Inm/. 6.16 Let/: IRS — IR4 be given by f(a,b,ctdte) = (a-c + 3d-e,a + 2d-et2a-
¢ + 5d-et-c + d). Find bases for Im/ and Ker/. 6.17 Let/: IR2[XJ -> IR3[X] be
given by f(p(X)) = X2Dp(X). Prove that/ is linear and determine bases for Im/
and Ker/.

102 Basic Linear Algebra 6.18 Consider the subspace A of IR4 given by /1 =
{(jc,0,2,0); jc.zG R}. Determine linear mappings/, g : IR4 -»IR4 such that (1)



Im/=/1; (2) Kerg = A. Definition A linear mapping/ : V—» W is said to be
surjective if Im/ = W (in other words, if every element of W is the image
under/ of some element of V)\ and injective if /(jc) f f{y) whenever jc fy (in
other words, if/ carries distinct elements to distinct elements). We say that/ is
bijective if it is both injective and surjective. Example 6.9 The i-th projection
pr,: IR" —»IR is surjective but not injective. Example 6.10 The linear
mapping/: IR2 -»IR3 given by /(*,>) = (y,0,jr) is injective but not surjective.
Example 6.11 The differentiation map D : IR,,[ X] -»IR,,[ X] is neither injective
nor surjective From the above definition, a linear mapping/ : V—» W is
surjective if Im/ is as large as it can be, namely W. Dually, we can show that/ :
V—» W is injective if Ker/ is as small as it can be, namely {OW}: Theorem
6.3 If f: V—» W is linear then the following statements are equivalent: (1) fis
injective; (2)Ker/={0}. Proof (1) =» (2): Suppose that/ is injective. Then/ is
such that xfy"Mtfb) or, equivalent”, f(x)=f(y) => * = y- Suppose now that jc €
Ker/. Then we have f(x) = Ow={{(0v)

ungs whence we see that x = Ov and consequently Ker/ = {0}. (2) => (1):
Suppose that Ker/= {0} and let/(jc) =/(>). Then/(jc -y)=/[x + (-y)] = f(X) +/(-
y) =/(jc) -/(>) =0,, so that jc - y G Ker / = {0V} and hence jc =y, i.e./ is
injective. D Example 6.12 The linear mapping/: F3 -» F13 given by f(x>y>7) =
(x+Z*x +y+2zt2x + y + 37) is neither surjective nor injective. In fact, we
have that (a, bt ¢) € Im/ if and only if the system of equations jc + z=ax+y+
2z=Db 2x+y+ 3z =c is consistent. The augmented matrix of the systemis 'l 0
1 a' 112 6 2 13c and this has Hermite form'10 1a0 1 1b-a0 0 0 c-b-a

104 Basic Linear Algebra 6.20 Prove that if the linear mapping/: V -» W is
injective and {vi,,..., vn} is a linearly independent subset of V then
{/(v,),....,/(v,,)} 1s a linearly independent subset of W. In the case of finite-
dimensional vector spaces there is an important connection between the
dimensions of the subspaces Im/ and Ker/. Theorem 6.4 [ Dimension Theorem]
Let Vand W be vector spaces of finite dimension over afield F.Iff: V->Wis
linear then dim V = dim Im/ + dim Ker/. Proof Let {w,,..., wm} be a basis of
Im/, and let {v,,..., vn} be a basis of Ker/. Since each w, G Im/, we can
choose v\,..., v¥ G V such that/(v*) = w, for / = 1,..., m. We shall show that M
O1 »>] 1s a basis of V, whence the result follows. Suppose that x G V.
Since/(jc) G Im/ there exist X,...., \n G F such that /w=t *."". = E vw)=£/(vr)=/(
e vr). i=1 1=l i=1 »=1 It follows that *-f>fv?GKer/ i=1 and so there exist n,,...,



nn G F such that mn *-EVf= EM;Vr i=1 ;=1 Thus every x G V is a linear
combination of vf,..., v¥n, v,,..., vn and so V=Span{W v;,v, vj. Suppose now
that (1) EV: + Ew = o. i=1 y=1 Then we have EVf=-X>;VWGKer/ i=I y=1 and
consequently EVi = EVW)=/(EV?) =0 /=1 1=1 /=1

6. Linear Mappings 105 whence X, =. m. = Xm= 0 since {w,,..., wm} is a
basis of Im/. It now follows n from (1) that £ pjvj - 0 whence /z, =m * « = (j1,,
=0 since {v,,..., vn} is a basis of Ker/. Thus we see that the spanning set W Oi
V] is also linearly independent and is therefore a basis of V. D Definition If/ 1s
a linear mapping then dim Im/ is called the rank of/, and dim Ker / is called
the nullity of/. With this terminology, the dimension theorem above can be
stated in the form: rank + nullity - dimension of departure space. Example 6.13
Consider pr, :R3-»fi given by pr,(x,y,z) = x. We have Im pr, = IR which is of
dimension 1 since {1} is a basis of the real vector space IR; so pr, 1s of rank 1.
Also, Ker pr, 1s the y, z-plane which is of dimension 2. Thus pr, is of nullity 2.
EXERCISES 6.21 Let V be a vector space of dimensionn” 1. If/: V—» Vis
linear, prove that the following statements are equivalent: (1) Imv/=Ker/; (2) / £
0, f1 =0, nis even, and the rank of/ is jn. 6.22 Give an example of a vector
space V and a linear mapping/ : V—» V with the property that not every
element of V can be written as the sum of an element of Im/ and an element of
Ker/. 6.23 In the vector space of real continuous functions let W= Span {sin,
cos}. Determine the nullity of 1?: IV -» F when t? 1s given by OM(/)=/"/; Jo
(2)m=/"/; Jo (3) iH/) = D/(0).

106 Basic Linear Algebra 6.24 In the vector space of real continuous functions
let W= Span {/, gth} where M = e\ g(x) = e-\ h(x) =x. Let T: W -» W be the
linear mapping given by f(t?)=D219-19. Determine the rank and nullity of T. As
an application of the dimension theorem, we now establish another result that
is somewhat surprising. Theorem 6.5 Let V and W be vector spaces each of
dimension n over a field F. If f: V—» W is linear then the following
statements are equivalent. (1) fis injective; (2) / is surjective; (3) / is
bijective; (4) / carries bases to bases, in the sense that if{vlt...tvn}isa basis of
V then {/M f(vn)}isabasisofW. Proof (1) =» (3): Suppose that/ is injective.
Then Ker/ = {0} and so dim Ker/ = 0. By Theorem 6.4, it follows that dim Im/
=n=dimV - dim W. It now follows by Theorem 5.9 that Im/ =W and so/ is
also surjective, and hence is bijective. (2) =} P (3): Suppose that/ is
surjective. Then Im/ =W and so, by Theorem 6.4, dim Im/ = dim W=n - dim



V = dim Im /+ dim Ker/ whence dim Ker/ = 0. Thus Ker/ = {0} and so, by
Theorem 6.3,/ 1s also injective, and hence is bijective. (3) => (1) and (3) =>
(2) are clear. (1) =>. (4): Suppose that/ is injective. If {v,,..., v,,} is a basis of
V then the elements /(v,),...,/(vj are distinct. If now £ X/(v,) =0 then /( £ X,v]
=0 1=11=1 n and so, since Ker/ = {0}, we have £%vi =0 and hence X, =+ =
\n= 0. Thus {/(v,),...,/(v,,)} 1s linearly independent. That it is now a basis
follows from Corollary 2 of Theorem 5.8.

6. Linear Mappings 107 (4) => (2): Since every linear combination of/(v,),...
J/(v,,) belongs to Im/, it is clear from (4) that Im/ =W and so / is surjective. D
Definition A bijective linear mapping is called a linear isomorphism, or
simply an isomorphism. We say that vector spaces Vt W are isomorphic, and
write V ~ W, if there is an isomorphisn/: V—» W. Example 6.14 LeM =
{(x.y.0); x,y G IR} bethex,y-planeinF3,andletB= {{x,0,z); Jt.zG IR} be the x, z-
plane. Consider the mapping/: A—»B given by f(x,y,0)=(x,0,y). Clearly,/ is
linear and bijective. Thus/ is an isomorphism and so A ~ B. This example is a
particular case of the following general situation. Theorem 6.6 Let V be a
vector space of dimension n™\ over afield F. Then V 1s isomorphic to the vector
space Fn. Proof Let {v,,..., v,,} be a basis of V. Consider the mapping/: V—»
F" given by the prescription /(EV,) = (x,,...f Un Since for every x G V there are
unique scalars X,,..., \n such that x = £ X,vf, it is clear that/is a bijection. It is
clear that/ is linear. Hence/ is an isomorphism. D Corollary If V and W are
vector spaces of the same dimension n over F then V and W are isomorphic.
Proof There are isomorphisms fv: V-» F* and fw : W —» F". Since the
inverse of an isomorphism is clearly also an isomorphism, so then is the
composite mapping /-» 0fv : V— W. D EXERCISES 6.25 Exhibit an
isomorphism from fl,,[ X] to Fn+1.

108 Basic Linear Algebra 6.26 If/: F -> F is linear and 1?: F2 -» F2 is defined
by *(*>)= (*,y-/M), prove that 19 is an isomorphism. Our next objective is to
prove that a linear mapping enjoys the property of being completely and
uniquely determined by its action on a basis. This is a consequence of the
following result. Theorem 6.7 Let V and W be vector spaces over afield F. If
{v,,..., v,,} 1s a basis of V and w,,..., wn are elements of W (not necessarily
distinct) then there is a unique linear mapping f: V—» W such that (1 =1,...,11)
f(vi) = wt. Proof n Since every element of V can be expressed uniquely in the
form J"X.-v,-, we can define a mapping/: V—» W by the prescription /(EV,) =



£>.".. 1=1 /=1 1.e. taking x as a linear combination of the basis elements,
define/(x) to be the same linear combination of the elements w,,..., wn. It is
readily verified that/ is linear. Moreover, for each i, we have /(vt) =/( £ Sift)
= E S1jWj = w,. >=1 ;=1 As for the uniqueness, suppose that g: V -» W is also
linear and such that n g(vt) = w, for each i. Given x G Vt say x = £ \tvh we have
1=1 8M = g(t") = tKgM = t"wi=M i=1 i=1 i=1 whence g=/. o Corollary 1 >4
//mear mapping is completely and uniquely determined by its action on a basis.
Proof If / : V-> W is linear and B = {v,,..., v,,} is a basis of V let w, =/(v()
for each i. Then by the above / is the only linear mapping that sends v* to wt.
Moreover, knowing the action of/ on the basis B, we can compute f(x) for
every x\ for jc = EV, gives/(*) = £x/(vf). o 1=l i=1

6. Linear Mappings 109 Corollary 2 Two linear mappings f,g: V—* W are
equal if and only if they agree on any basis ofV. Proof If/(vi) = #(v1) f°r every
basis element v, then by the above uniqueness we have that /=* a Example 6.15
Consider the basis {(1,1,0), (1,0,1), (0,1,1)} of IR3. If/: IR3 -»IR2 is linear
and such that /(1,1,0)=(1,2), /(1,0,1) = (0,0), /(0,1,1)=(2,1), then we can
determine/completely. In fact, we have (1,0,0)=1(1,1,0)+1(1,0,1)-1(0,1,1) and
therefore /(1,0,0) =1/(1,1,0) +1/(1,0,1)-1/(0,1,1) . = 1(1,2) + 1(0,0)-1(2,1) =
(-1 1) Likewise, give (0,1,0)=1(1,1,0)-1(1,0,1) + 1(0,1,1), (0,0,1) =
-1(1,1,0)+1(1,0,1) + 1(0,1,1) /(0,1,0)= 1(1,2)+1(2,1)=(},)) /(0,0,1)=-1(1,2) +
1(2,1)=(1,-1). Consequently,/ is given by f(x,y,z)=/M1,0,0) + y(0,1,0) +
2(0,0,1)] =*/(!, 0,0) +y/(0,1,0) + 2/(0,0,1) = *(-L,1) + y(M) + z(1,-1) = (I(-*
+3y + z), i(x + 3y-z)). Note that, alternatively, we could first have expressed
(X, ¥, z) as a linear combination of the given basis elements by solving an
appropriate system of equations, then using the given data. Finally, let us note
that Theorem 6.5 is not true for vector spaces of infinite dimension:

110 Basic Linear Algebra Example 6.16 Let V = Seq” IR be the infinite-
dimensional vector space of finite sequences of real numbers described in
Example 5.26. Since every element of V is a (finite) linear combination of
basis elements, we can define a linear mapping/: V—» V by speci- fying/(e,)
for the basis elements elte2,e3t... and extending to all of V by linearity.
Consider then the definition {0 1f/ is odd; .... e\i if1 is even. Since/(e,) =0 =
/(e3) we see that/ is not injective. But, given any basis element en we have en
= f{e2,,) G Im/, so the subspace spanned by these elements (namely, the whole
of V) is contained in Im /. Hence Im/ =V and so/ is surjective. If we define g :



V—» V by specifying g(e1) - €21 for every 1 then we obtain an injective linear
mapping that is not surjective. EXERCISES 6.27 Show that {(1,1,1), (1,2,3),
(1,1,2)} is a basis of IR3. If/: IR3 ->IR3 is linear and such that /(1,1,1)=
(1,1,1),/(1,2,3) = (-1,-2,-3),/(1,1,2)=(2,2,4), determine f(x,y,z) for all (x.y.z) €
IR3- 6.28 If/: IR2[XJ - R3[X] is linear and such that/(1) = 1,/(X) = X2 and
/(X2) =X+ X3, determine f(a + bX + cX2). SUPPLEMENTARY
EXERCISES 6.29 Let/: C -» Cbegivenby/(x+1y) = jt-1y. Prove that ifC is
considered as a real vector space then/ is linear, whereas if C is considered
as a complex vector space/ is not linear. 6.30 Let V be a vector space of
dimension 3 with {v,, v2, v3} a basis. Let W be a vector space of dimension 2
with {w,, w2) a basis. Let/: V ->W be defined by /(Vi + *2V2 + V3) = (*1 +
MK + (*2 + ~3)"2- Determine the values of /j for whicly/ is linear. For these
values of /], determine a basis of Ker/. 6.31 For the linear mapping/: IR3
-»IR3 given by f{x,y,z)={x +y,0, y-z) determine Im/, Ker/, and a basis of
each. If A is the subspace {(x.y.z) GIR3 ; *=>-}, determine f~(A) and a basis
of'it.

6. Linear Mappings 111 6.32 Let/: IR3 -> IR3[X] be the linear mapping such
that /(1,0,0) =2X + X3; /(0,1,0) =-2X + X2; /(0,0,1) = X2+X\ Determine
(1)/(xy,2z)forall(x,y,z)GIR3; (2) Im/ and a basis of it; (3) Ker/ and a basis of it.
Extend the basis of (3) to a basis of IR3. 6.33 Show that {a, 6, c] is a basis of
IR3 where fl =(-1,1,1), 6 =(1,-1,1), ¢ = (1,1,-1). Let/: IR3 —» R4 be the
linear mapping such that /W = (1.0.1.X), /(6) = (0,1,-1,0), f(c) = (1,-1,X.-1). (1)
Determine f{x,y,z) for all (jt.y.z) € R3. (2) For which values of X is/ injective?
(3) Consider the subspace W of IR4 given by W = Span {/(0),/(6)}. Determine
dim W when X = -1. (4) With X =2 determine/(1,1,0) and/-{(1,1,0,0)}. 6.34 A
non-empty subset 5 of a vector space is convex if tx + (1 - t)y € S forallx.y
eSandallr €[0,1]. Prove that if 5 is a convex subset of IR" and/: IR" -4 IR" 1s
linear then /~*(5) is also convex. 6.35 A diagram of finite-dimensional vector
spaces and linear mappings of the form vx > v2 * v3 B * vn+tl is called an
exact sequence if (1)/, is injective; (2) /,, 1s surjective; (3) (/=1 n-1) In/. =
Ker/;+1. Prove that, for such an exact sequence, £(-1)'diniV;. = 0. i=1 6.36
Determine the rank and nullity of the linear mapping /:Mat3xIIR->Mat3X1IR

112 Basic Linear Algebra given by/(x) = Ax where "1021012"2 -2 A=
6.37If /: V-> W and g: W -> X are linear, prove that (1) Im(go/)CImg; (2)
Ker/CKer(goy); (3) rank / + rank g - dim W * rank gof™ min {rank /, rank g}.



6.38 Determine the rank and nullity of/: IR3[X] -> IR3[X] given by /(p(X)) =
(X-1)D3p(X). 6.39 Given x = {xux2,x3) and y = (y].y2.y3) 'n "3» define the
wedge product of X,y by xAy=(x2y3-x3y2, *3y, -*,y3, x,y2 -j1)- Define/,: IR3
—P> IR3 by fy{x) =x A'y. Show that/, is linear. If >+ * 0, prove that Ker/V is
the subspace spanned by {y}. 6.40 Let V be the real vector space of 2 x 2
hermitian matrices. Prove that the mapping/: IR4 -» V given by "w + xy + 1z
f(x,y,z,w) = y-iz w-x 1s an isomorphism. ASSIGNMENT EXERCISES (1) Let
AtB be subspaces of a finite-dimensional vector space V. Recall from Exercise
S.34 that the smallest subspace of V that contains AUB'is givenby 4 + B = {a
+ b ; a£A,b£B). Consider the mapping/: A x B—» V thatis given byf{a,b) =a
+ b. Prove that Ker/= {(jc, -j¢) ; jc G An B} and use the Dimension Theorem
to show that dim(>4 + B) = dim A + dim B-d\m(A n B). (2) Show that the set E
of real numbers of the forma + bV2 + cVi (fl.fr.cGO) is a vector space over
<D. Prove that for a, b, ¢ G 0 the polynomials a + bX + c¢X2 and X3 - 2 have
no common factor. Hence establish a vector space isomorphisn/: E -»<D3.

7 The Matrix Connection We shall now proceed to show how a linear mapping
from one finite-dimensional vector space to another can be represented by a
matrix. For this purpose, we require the following notion. Definition Let V be
a finite-dimensional vector space over a field F. By an ordered basis of V we
shall mean a finite sequence (vf), <I<n of elements of V such that {v,,..., v,,} is
a basis of V. Note that every basis of n elements gives rise to n\ distinct
ordered bases, for there are n\ permutations on a set of n elements, and
therefore n\ distinct ways of ordering the elements v.,..., v,,. In what follows
we shall find it convenient to abbreviate (v()|<(<,, to simply (v,),,. Suppose
now that V and W are vector spaces of dimensions m and n respectively over a
field F. Let (v,),,,, (Wwj)n be given ordered bases of V, W and let/: V -» W be
linear. We know from Corollary 1 of Theorem 6.7 that/ is completely and
uniquely determined by its action on the basis (v()m. This action is described
by expressing each/(v,) as a linear combination of elements from the basis
(wOn: /(v,) =xnwt + xI2w2 + ¢ ¢ « + xlnwn\ M = *2ITWI + #22w2 + " « +
X2nW,,\ flvm) = xmXwx + xm2w2 + ¢ ¢ « + xmnwn. The action of/ on (v,),,, is
therefore determined by the mn scalars x* appearing in the above equations.
Put another way, the action off is completely determined by a knowledge of the
m x n matrix X = [jc”]. For technical reasons that will be explained later, the
transpose of this matrix X



114 Basic Linear Algebra is called the matrix of/ relative to the fixed ordered
bases (v,)m, (w(),,. When it is clear what these fixed ordered bases are, we
denote the matrix in question by Mat /. * The reader should note carefully that it
1s an n X m matrix that represents a linear mapping from an m-dimensional
vector space to an n-dimensional vector space. Example 7.1 Consider the
linear mapping/: IR3 —»IR2 given by f{x,y,z)={2x-3y + z, 3x-2y). The action
of/ on the natural basis of IR3 is described in terms of the natural basis of IR2
as follows: /(1,0,0)=(2,3)=2(1,0) + 3(0,1) /(0,1,0) = (-3,-2)=-3(1,0)-2(0,1)
/(0,0,1)=(1,0)=1(1,0) + 0(0,1) and so we see that the matrix of/ relative to the
natural ordered bases of IR3 and IR2 is the transpose of the above coefficient
matrix, namely the 2 x 3 matrix'2 -3 3 -2 0' « Note how the rows of this
matrix relate to the definition of/. Example 7.2 The vector space IR,,[ X] is of
dimension n + 1 and has the natural ordered basis {i,x,x2,...,r}. The
differentiation mapping D : IR,,[ X] -» Bn[X] is linear, and DI =0\ +0 >X + >
* + 0 Xn~1 +0 m Xn DX =\\+0X+-+0Xn-1+0Xn dx2 = 0-i+2-jf + -+or' + or
DXn=01+0 X+ **+n Xn~] +0 Xn so the matrix of D relative to the natural
ordered basis of IR,,[ X] is the (n +1) x («+1) matrixm010..0-002..000
0..n1000...0

7. The Matrix Connection 115 EXERCISES 7.1 Consider the linear mapping/:
F2 -»IR3 given by f{x,y)={x + 2yt2x-yt-x). Determine the matrix of/ (1)
relative to the natural ordered bases; (2) relative to the ordered bases {(0,1),
(1,1)} and {(0,0,1),(0,1,1),(1,1,1)}. 7.2 Consider the linear mapping/: IR3
-»IR2 given by f(x,y,z) = {2x-y,2y-z). Determine the matrix of/ (1) relative to
the natural ordered bases; (2) relative to the ordered bases {(1,1,1),(0,1,1),
(0,0,1)} and {(0,1),(1,1)}. 7.3 Consider the linear mapping/: IR3 -»IR3 given
by fix,y,z)={2x + z,y-x + z, 3z). Determine the matrix of/ with respect to the
ordered basis {(1,-1,0),(1,0,-1),(1,0,0)}. 7.4 Suppose that the mapping/: R3
-»IR3 is linear and such that /(1,0,0)=(2,3,-2)-, /(1,1,0)=(4,1,4)-, /(1,1,1)=
(5,1,-7). Find the matrix of/ relative to the natural ordered basis of IR3. It is
natural to ask what are the matrices that represent sums and scalar multiples of
linear mappings. The answer is as follows. Theorem 7.1 If VtW are of
dimensions m,n respectively and if ftg : V—> W are linear then, relative to
fixed ordered bases, Mat(/+ g) - Mat/+ Mat g and, for every scalar \,
MatX/=XMat/.

116 Basic Linear Algebra Proof Let Mat / = [jc,y]nxin and Mat g = [yiy]nxm



relative to fixed ordered bases (v,),,, of Vand (wfin of W. Then fori=1,..., m
we have (recalling the transposition involved) n n y=1 y=1 It follows that n and
therefore Mat (f + g) = [xy + yij]Jnxm = Mat / + Mat g. Similarly, for every
scalar X we have (V)(v] = X>yiwy /-1 and so Mat X/ = X Mat/. D We can
express Theorem 7.1 in a neater way as follows. Consider the set Linm n{V,
W) of linear mappings from a vector space V of dimension m to a vector space
W of dimension n (each over the same field F). It is clear that, under the usual
addition and multiplication by scalars, Linmn(V, IV) is a vector space.
Consider now the mapping “L<n(V\W)-+MatnxmF given by !?(/)= Mat/ where
V and W are referred to fixed ordered bases (v,),,, and (wt)n throughout. This
mapping t? is surjective. To see this, observe that given any n X m matrix M =
[ffijy], we can define n (1= 1,...,w) /(V|)="m7lwy. By Theorem 6.7, this
produces a linear mapping/ : V -» W; and clearly we have Mat /= A/.
Moreover, 1? is injective. This follows immediately from Corollary 2 of
Theorem 6.7 and the definition of the matrix of a linear mapping. Thus t? is a
bijection and, by Theorem 7.1, is such that ti(f + g) = t?(/"") + t?(g) and t?(X/) =
\ti(f). In other words, t? is a vector space isomorphism and we have: Theorem
7.2 IfV,W are of dimensions m, n respectively over F then Lin"HO-Mat"F. D

7. The Matrix Connection 117 It is reasonable to ask if, for given ordered
bases (v,)m of V and (w/)n of W, there is a 'natural' basis for the vector space
Lin mn(V, W). Indeed there is, and this can be obtained from the natural basis
of Matnxm Ft namely {EM\ p=1,....nand g=\,...tm) where EM is the matrix that
has 1 in the (p, q)-1h position and 0 elsewhere. To see this, consider the linear
mapping/w : V—» W given by wp ifi =q\ (v,)={ W1" mnu - 0 otherwise.
Then we have /w(v,) = 0w,+ .. + Owp+-+0wn /w(v] = 0w, + - . + Owp+.
+0wB from which we see that Mat /w = £w, i.e. that t?(/") = E”. Now since
the inverse of an isomorphism is also an isomorphism, it follows by Theorem
6.5 that a (natural) basis for Linmn(Vr, W) is {fpq\ P=1,...,1 and 0=l,...,/n}.
We now turn our attention to the matrix that represents the composite of two
linear mappings. It is precisely in investigating this that we shall see how the
definition of a matrix product arises in a natural way, and why we have chosen
to use the transpose in the definition of the matrix of a linear mapping.
Consider the following situation: U; Mm -*- V; (v,),, -~ W't (W<), in which the
notation U\ (u()m for example denotes a vector space U with a fixed ordered
basis («,),,, and f\A denotes a linear mapping / represented, relative to the
fixed bases, by the matrix A. The composite mapping is described by v-M)m—



&m—>wi(WI1)r What is the matrix of this composite linear mapping? It is
natural to expect that this will depend on A and B. That this is so is the
substance of the following result. Theorem 7.3 Mat(go/) = Matg.Mat/.

118 Basic Linear Algebra Proof To find Mat (g of) we must express each
image (g o /)(«,) in terms of the ordered basis (wt)p of W. Now since Mat / =
A we have n 0=1 "0 /(«,)= 5>/ivy. /=1 and since Mat g = fl we have p (/=
1,....n) g(vy)=Efr*yM'*- Thus, for each1i, #,)1 =" ="") =l /=1"/p\/=1
*=] *=1 /=1 n Consequently the (A, 1)-th element of Mat (g of) is £ fc"flyi,
which is precisely the (*, 1)-th element of BA = Mat g Mat /. D Corollary A
square matrix is invertible if and only if it represents an isomorphism. Proof
Suppose that A is an n x n matrix that is invertible. Then there is an n x n matrix
B such that BA =/,,. Let V be a vector space of dimension n and let (v,),, be a
fixed ordered basis of V. If/, g: V—P> V are linear mappings that are
represented by A, B respectively then by Theorem 7.3 we have that g o/ 1s
represented by BA =/,,. It follows that g o/ = 1dv whence, by Theorem 6.5,/ is
an isomorphism. Conversely, if/ : V—» V is an isomorphism that is
represented by the matrix A then the existence of/"1 such that/"1 o/ = i1dv
implies the existence of a matrix B (namely that representing/"1) such that BA
=/,,, whence A is invertible. D Example 7.3 Consider IR3 referred to the
natural ordered basis. If we change reference to the ordered basis {(1,1,0),

(1,0,1),(0,1,1)}

7. The Matrix Connection 119 then the matrix of the identity mapping is
obtained from the equations 1d(1,0,0) =(1,0,0)= 1(1,1,0)+1(1,0,1)-5(0,1,1)
1d(0,1,0) =(0,1,0)=1(1,1,0)-1(1,0,1)+1(0,1,1) 1d(0,0,1)= (0,0,1)=
4(1,1,0)+1(1,0,1)+1(0,1,1) 1.e.itis 1 1 -1 1 -1 1 -1 1 1 The 1dentity mapping
being an isomorphism, this matrix is invertible. * The reader should note that it
1s to maintain the same order in which g f appear in Theorem 7.3 that we
choose to call the transpose of the coefficient matrix the matrix of the linear
mapping. If, as some authors do, we were to write mappings on the right (i.e.
write xf instead of/(jc)) then this convention is unnecessary. EXERCISES 7.5
A linear mapping/: IR3 -»IR3 is such that /(1,0,0)=(0,0,1),/(1,1,0)=
(0,1,1),/(1,1,1)=(1,1,1). Determine /(x,y,z) for all (x,ytz) G IR3 and compute
the matrix of/ relative to the ordered basis B= {(1,2,0),(2,1,0),(0,2,1)}.If g:
IR3 —»IR3 is the linear mapping given by g(*,;y,z)= {2x,y + z,-x), compute the
matrix of/ ogof relative to the ordered basis B. 7.6 Show that the matrix A =2



04-11-2233isinvertible. If/ : IR3 —» IR3 1s a linear mapping whose
matrix relative to the natural ordered basis of IR3 is A, determine the matrix
of/"1 relative to the same ordered basis. 7.7 If a linear mapping/: V—» Vis
represented by the matrix A prove that /" is represented by A".

120 Basic Linear Algebra We now consider the following important question.
Suppose that we have the situation v;(v,L——>w-(wt)m. If we refer Vto a
new ordered basis (vj)m and W to a new ordered basis (tvj)n then clearly the
matrix of/ will change. How does it change? To see how we can proceed,
consider the particular case where W =V and / is the identity mapping on V.
We then have the situation Vy(v,L—>V;(v))m T T old basis new basis * This is
precisely the situation described in the previous example. We call A the
transition matrix from the basis (v()m to the basis (v))m. The following result
is clear from the Corollary of Theorem 7.3: Theorem 7.4 Transition matrices
are invertible. D We can now describe how a change of bases is governed by
the transition matrices that are involved. Theorem 7.5 [Change of bases] If a
linear mapping f:V—*Wis represented relative to ordered bases (v, )m, (w, ),,
by thenxm matrix A then relative to new ordered bases (vj)m, (wj),, the matrix
representing f is thenxm matrix Q~IAP where Q is the transition matrix from
(w))nto {w{)n and P is the transition matrix from (vj)m to (v,)m. Proof Using
the notation introduced above, consider the diagram Vi(v,), >W;(ua i<V./»
1dw.Q v;«L>w; (*;.),, /** We have to determine the matrix X. Now this
diagram is 'commutative™® in the sense that travelling from the southwest corner
to the north-east corner is independent of whichever route we choose; for,
clearly, fo\dv = f=1dwo f. It therefore follows by Theorem 7.3 that the
matrices representing these routes are equal, i.e. that AP = QX. But Q, being a
transition matrix, is invertible by Theorem 7.4 and so X = Q~1AP. O

7. The Matrix Connection 121 Example 7.4 Suppose that/: IR3 -* IR3 is the
linear mapping whose matrix relative to the natural ordered basisis " 1 -3 fA
=3-20-4 12 and let us compute the matrix of/ when IR3 is referred to the
ordered basis B= {(1,-1,1),(1,-2,2),(1,-2,1)}. We apply Theorem 7.5 with W =
V =1R3, {wt) = (v,) =the natural ordered basis, and (wj) = (vj) =the new
ordered basis B. The transition matrix from the new ordered basis to the old is
111P=-1-2-2121 +Note that this is obtained by taking the elements of B
and turning them into the columns of P. This becomes clear on observing that
we have 1d(1,-1,1)= (1,-1,1)=1(1,0,0)-1(0,1,0)+ 1(0,0,1) 1d(1,-2,2) = (1,-2,2)=



1(1,0,0)-2(0,1,0) +2(0,0,1) id(1,-2,1) = (1,-2,1)=1(1,0,0)-2(0,1,0)+ 1(0,0,1)
and the transition matrix is the transpose of the coefficient matrix. Now P is
invertible (by Theorem 7.4) and the reader can easily verify that P~'=2 10 -1
0 10-1 -1 The matrix of/ relative to the new ordered basis B is then, by
Theorem 7.5, P~IAP =15 25 23 -8 -11 -12 -2 -5 -3 Example 7.5 Suppose that
the linear mapping/: IR3 —> IR2 is represented, relative to the ordered
bases{(1,0,-1),(0,2,0),(1,2,3) } oflR3and {(-1,1),(2,0) } ofIR2,bythematrix A = 2-13
3 1 0 To determine the matrices that represent/ relative to the natural ordered
bases, we first determine the transition matrices P, Q from the natural ordered
bases to the

122 Basic Linear Algebra given ordered bases. Making use of the observation
in the previous example, we can say immediately that 10 1 >-1 <r=r-12110
The reader can easily verify that P=\P~=30-1-12-1101022-10 3 and
hence that the required matrix is <2-Mp=1 3 3-5 5 -1 1 We now establish the
converse of Theorem 7.5. Theorem 7.6 Let {vj)mi {\Vj)n be ordered bases of
vector spaces V, W respectively. Suppose that A, B are n x m matrices such
that there are invertible matrices P, Q such that B = Q~XAP. Then there are
ordered bases (v|)m, (v>-),, of V, W and a linear mapping f: V—*W such that
A 1s the matrix off relative to (v,)m, {w,)n and B is the matrix off relative to
(VIL.K),,. Proof If P = \P1jLxm &"& Q = fajlnxn* define mn ('=1 «) vi =
X>;v/' (1 =),...,«) w\\ = Y,aawi- Since P is invertible there is, by the Corollary
of Theorem 7.3, an isomorphism fP : V—* V that is represented by P relative
to the ordered basis (r,-)m- Since by definition v\ = fP(v,) for each i, it follows
that (vj)mis an ordered basis of V and that P is the transition matrix from (vj)"
to (v,)m. Similarly, (w[)n is an ordered basis of W and Q is the transition
matrix from (vj),, to (w,-),,. Now let/: V—» W be the linear mapping whose
matrix, relative to the ordered bases (v,-)m and (h'-)m s A. Then by Theorem
7.5 the matrix of/ relative to the ordered bases (v;)m and (w'X is Q~IAP = B.
0 EXERCISES 7.8 Determine the transition matrix from the ordered basis
{(1,0,0,1),(0,0,0,1),(1,1,0,0),(0,1,1,0)} of IR4 to the natural ordered basis of
IR4.

7. The Matrix Connection 123 "01 11 f01 1 0 7.9 Consider the linear
mapping/: IR3 -»IR3 given by f{x,y,z) = (y,-x,2z)- Compute the matrix A of/
relative to the natural ordered basis and the B matrix of/ relative to the ordered
basis {(1,1,0),(0,1,1),(1,0,1)}. Determine an invertible matrix X such that A =



X~IBX. 7.10 Let/ : IR3 —P> IR3 be a linear mapping which is represented
relative to the natural ordered basis by the matrix A. If P 1s the invertible
matrix P = determine an ordered basis of IR3 with respect to which the matrix
of/ is P~IAP. We have seen in Chapter 3 that a matrix of rank p can be
transformed by means of row and column operations to the normal form 7, 0 0
0 We can also deduce this as follows from the results we have established for
linear mappings. The proofis of course more sophisticated. Let V and W be of
dimensions m and n respectively and let/: V—» W be a linear mapping with
dim Imf- p. By Theorem 6.4, we have dimKer /=dim V - dimIm/=m-/?, so
let {v,,..., vim_p} be a basis of Ker/. Using Corollary 1 of Theorem 5.8, extend
this to a basis B={Ui Mp,v, vim.p} of V. Observe now that IfM /(",)} pp is
linearly independent. In fact, if j”A/faj) = 0 thenj"*w,) = 0 and so i=l i=I p p m-
p 53 \«/ G Ker/ whence £ ~/M/ =51 /f/vy “eni=l1=I ;=] P nt-P EM/- E/w =0
1=1 y=1 and so, since B is a basis, every \{ and every nj is 0.

124 Basic Linear Algebra It follows by Corollary 2 of Theorem 5.8 that
{/(«1),...,/(«p)} 1s a basis of the subspace Im/. Now extend this, courtesy of
Corollary 1 of Theorem 5.8, to a basis C={f{ui) f{up),wlt...,wn p} of W.
Then, since/(v,) =<+ =1f(vm p) =0, we have /(«1) = 1/( «1) + 0/(«2) +**+
0/(«p) +..- + Own.p; f(u2) = 0/(«,) + 1/( «2) + m* + 0/(«p) + ..+ 0*VP; f(up) =
0/(«,) +0f(u2) + .. + l/(«p) +.. + Ovvp; /(v.) = 0/(«,) + 0/( «2) + * **+ 0/(«p)
+o+ 0w, p;/("-,) =0/(«,) +0/( «2) + e+ 0/(«p) + ..+ 0w,, p. The matrix
of/ relative to the ordered bases B and C 1s then [" °1 0 0;' where p 1s the rank
of/. Suppose now that A is a given n x m matrix. If, relative to fixed ordered
bases BV,BW this matrix represents the linear mapping/ : V -+ W then, Q and P
being the appropriate transition matrices from the bases B, C to the fixed
ordered bases Bv and Bw, we have *¢"-[;';]m Now since transition matrices
are invertible they are products of elementary matrices. This means, therefore,
that A can be reduced by means of row and column operations to the form0 0 "
The above discussion shows, incidentally, that the rank of a linear mapping f'is
the same as the rank of any matrix that represents /. Definition If A, B are nxn
matrices then B is said to be similar to A if there is an invertible matrix P such
that B = P~IAP. It is clear that if B is similar to A then A is similar to B; for
then A=PBP-1 = {P-1)-1AP-K

7. The Matrix Connection 125 Also, i1f B is similar to A and C is similar to B
then C is similar to A\ for B =P~IAP and C=Q~IBQ give c=0-"4/"=(per'"e-



Thus the relation of being similar is an equivalence relation on the set of n x n
matrices. The importance of similarity is reflected in the following result.
Theorem 7.7 Two n x n matrices A,B are similar if and only if they represent
the same linear mapping relative to possibly different ordered bases. Proof
This 1s immediate from Theorems 7.5 and 7.6 on taking W =V and, for every/,
W; =v,- and w\ = v\. D Corollary Similar matrices have the same rank. D The
notion of similar matrices brings us back in a more concrete way to the
discussion, at the end of Chapter 4, concerning the problem of deciding when
(in our new terminology) a square matrix is similar to a diagonal matrix; or,
equivalcntly, when a linear mapping can be represented by a diagonal matrix.
We are not yet in a position to answer this question, but will proceed in the
next chapter to develop some machinery that will help us towards this
objective. EXERCISES 7.11 Show that if matrices A, B are similar then so are
A', B>. 1.12 Prove that if A, B are similar then so are Ak, Bk for all positive
integers it. 7.13 Prove that, for every t? G IR, the complex matrices are similar.
"cost? sint? -sint? cost? 1 [V 0 ] 0 e~"m SUPPLEMENTARY EXERCISES
7.14 Determine the matrix of the differentiation map D on IR,,[ X] relative to
the ordered bases (1) {i,x,x2,...,*"}; (2) {X\Xn~x X,1}; (3) {1,1+X,1 +
X2,...,1+X"}.

126 Basic Linear Algebra 7 15 Let V be a vector space of dimension n over a
field F. A linear mapping /: V -» V is said to be nilpotent if f= 0 for some
positive integer p. The smallest such integer p is called the index of nilpotency
of/. Suppose that/ is nilpotent of index p. If x G V is such that/?"'(*) ~ 0, prove
that {xj(x)j2(x),~,rl(x)} 1s linearly independent. Hence prove that/ is nilpotent
of index n if and only if there is an ordered basis {vj)n of V such that the
matrix of/ relative to (v,),, 1s of the formro000...00100..00010...000
01..00000107.16 Let/: R,,[X] -> R,,[ X] be given by f(p(X)) = p(X+)).
Prove that/ is linear and find the matrix of/ relative to the natural ordered basis
{1, X,..., X"}. 7.17 Consider the mapping/: IR2[ X] —» Mat2x2 R given by [ D
C Show that/ is linear and determine the matrix of/ relative to the ordered
bases {1,X, 1 + X2} of IR2[XJand {{1000"ir001"11"10*"ir11of
Mat 2X2IR- Describe also Im/ and Ker /. 7.18 Let/: R3[XJ -» R3[XJ be given
by/(a+bX+cX2+<fX3)=a+(d-c-a)X+(d-c)X\ Show that/ is linear
and determine the matrix of/ relative to (1) the natural ordered basis
{1,X,X2,X3}; (2) the ordered basis {1 + X3, X, X + X3, X2 + X3}. 7.19 Ifv4
= [flylnx,, then the trace of A is defined to be the sum of the diagonal elements



of A: IX

7. The Matrix Connection 127 Prove that (1) tr(Xv4) = Xtrv4; (2) tr(v4 + B) =
trv4 + trB; (3) tr(v4B) = tr(Bv4). Deduce from (3) that if A and B are similar
then they have the same trace. Give an example of two matrices that have the
same trace but are not similar. ASSIGNMENT EXERCISES (1) If/ : MatnxJR
—» IR 1s linear, prove that the following statements are equivalent: (a) f(AB)
= f{BA) for all A,B e Matnxn IR; (b) / is a scalar multiple of the trace
function. Deduce that X G Matnx,, IR can be written as a sum of matrices of the
form AB-BA if and only if tr(X) = 0. (2) Consider the linear mapping/ : IR3 -»
IR3 whose matrix relative to the natural basis {¢,, €2, ¢3} 1s A=0 1 -sint? -1
0 cos t? - sint? cos t? 0 Show that {e\, €'2, €'3} is a basis of IR3 where tf; =
tf,cos0 + tf2sin0, 4=/("1). e3=f(e2). Determine the matrix of / relative to this
basis. (3) Let V be the real vector space of functions q : IR2 —»IR given by a
prescription of the form 0(*. y) - axl + bxy + cy2 +dx + ey+f. Let (p : V-» V be
the mapping described by setting <p{q) =" I<i(x>y)dy + g-J i1(x>y)dx- Show
that <p is linear. Determine the matrix that represents <p relative to the ordered
basis B of V given by B={x2txy,y2 1x,yt\}.

128 Basic Linear Algebra (4) Let V be a finite-dimensional vector space and
let B = {v,,..., v,,} be an ordered basis of V. Let C be the ordered basis of V
that is obtained from B by interchanging v, and vl+, in the ordering. If/ : V—*
V is linear, explain how Matc/ is related to Mat Bf. Describe 1 n general the
effect on Mat Bf that is caused by a change in the ordering offl. (5) Let V be a
finite-dimensional vector space over IR and let/ : V -* V be a linear mapping
such that/2 = -idv. Extend the action of IR on V to an action of C on V by
defining, for all x € V and all a + 1b£ C, (a + ib)x = ax - bf(x). Show that in this
way V becomes a vector space over C. Use the identity r r r E(fl/ - ibt)vt=E
aivt + E bJ(vt) i=] /=] r=1 to show that if {v,,..., vr} is a linearly independent
subset of the C-vector space V then {v,,..., vr,/(V,),....,/(vr)} is a linearly
independent subset of the R-vector space V. Deduce that the dimension of V as
a complex vector space is finite and that dimB V- 2dim€ V. Hence show that a
In x In matrix A over IR is such that A2 = -12n if and only if A is similar to the
matrixro -1, 1. 0

8 Determinants In what follows it will be convenient to write annxn matrix A
in the form A =[81,82,...,8,,] where, as before, a, represents the /-th column of



A. Also, the letter F will signify either the field IR of real numbers or the field
C of complex numbers. Definition A mapping D : Matnxn F -* F is
determinantal if it is (a) multilinear (or a linear function of each column) in the
sense that (0,)"....,",...1 =" 1+~ A1 (D2) £)[...,Xa,,...] = XZ)
[...,a,,...]; (b) alternating in the sense that (D3)Z)[....a,.,...,a;,...] = -Z)
[...,a¥,...,4,.,...]; (¢) 1-preserving in the sense that (D4)D(/n)=1f. We first
observe that, in the presence of property (D,), property (D3) can be expressed
in another way. Theorem 8.1 If D satisfies property (D,) then D satisfies
property (D3) if and only if it satisfies the property (1%4) D(A) = 0 whenever A
has two identical columns. Proof => : Suppose that A has two identical
columns, say a, = ay with i fj. Then by (D3) we have D(A) =-D(A) whence
D(A) =0.

130 Basic Linear Algebra <= : Suppose now that D satisfies (D,) and (LV3).
Then we have (/ ="...,3,+8, 8,1+3,,...] | =* H~.t*1 3,+3,,...)+1)1...,3, 3,+3,,..] *
£...,3,-a,,...] +£)[...,.3, a,,...] ¥D[...,SLy 3,,...1+1)1...,3, 3,,...] I=* D[...,ai
3,,...] T £)[....a,,...,a,,...] whence (D3) follows. D Corollary D is determinantal
if and only if it satisfies (Dj ),(D2),(D3).(D4). D - aua22 -02f12i- Example 8.1
Let D : Mat2x2 F -» F be given by D\a\\ an .f121 f122. Then it is an easy
exercise to show that D satisfies the properties (D, ).(D2),(D3),(D4) and so is
determinantal. In fact, as we shall now show, this is the only determinantal
mapping definable on Mat 2X2 F. For this purpose, let 6,= & = so that every A
€ Mat2x2 F can be written in the form A = [{1||6] + ~21/2» {1121 "*" 112272;-
Suppose that/: Mat2x2 F —» F is determinantal. Then, by (D,) we have
f(A)=f[au6ll ax2bx + f1227] +/[f121"2. a\i™\ + "22%4] Applying (D,) again, the
first summand can be expanded to /[fl,,6,, f1[26,] +/1f1||6|, *22%4] which, by
(D2), is By (D'3) and (D4), this reduces to 0°22- As for the second summand,
by (D,) this can be expanded to fa2162t al26x] +{[a2162, a”b"

8. Determinants 131 which, by (D2), is f121112/["2,"] + {1211122/[*2."]- By
(D'3) and (D4), this reduces to -alxal2. Thus/(;4) = a\\a22~a\2a2\ an(* we
conclude that there is a unique determinantal mapping on Mat2x2 F. In what
follows our objective will be to extend the above observation to Mat, XII F for
every positive integer n. The case where n=1 is of course trivial, for if A is
the 1 x 1 matrix [a] then clearly the only determinantal mapping is that given by
D(A) = a. For every A € Mat,, XII F we denote by Ati the (n-1) x (n-1) matrix
obtained from A by deleting the i-th row and thej-th column of A (i.e. the row



and column containing atJ). The following result shows how we can construct
determinantal mappings on the set of n x n matrices from a given determinantal
mapping on the set of (n-1) x (n-1) matrices. Theorem 8.2 Forn*3 letD:
Mat(n_|)x(n_|) F —» Fbe determinantal, and for i= 1,..., n define

fr. MMnxnF"Fby /=1 Then each ft is determinantal. Proof It is clear that D(Ai})
is independent of the j-th column of A and so avD(A jy) depends linearly on
the j-th column of A. Consequently, we see that f, depends linearly on the
columns of A, 1.e. that the properties (D,) and (D2) hold for/. We now show
that f{ satisfies (1%4). For this purpose, suppose that A has two identical
columns, say thep-th and the g-th columns with p fq. Then for j fp and j f q the
(n- 1) x(n- 1) matrix A" has two identical columns and so, since D is
determinantal by hypothesis, we have (/Yp.«) OMij) = o. It follows that the
above expression for/-(A) reduces to MA) = (-\)i+"aipD(Aip) + (-
ir<aiqD(Aiq). Suppose, without loss of generality, that p <q. Then it is clear
that Aiq can be transformed into Aip by effecting q -1 -p interchanges of
adjacent columns; so, by (D3) for D, we have D{Aiq)= (-\rl-"D(Aip).

132 Basic Linear Algebra Since aip - aiq by hypothesis, we thus have MA) =
[(-1)'e' + (-\)i+H-\rl-p)aipD(Aip) which reduces to 0 since (_!)'>/>+
()/+«(_1)?-1-p=(-1)(1 + (-1)29-2"] = (-\)i+r[\ +(-1)] = 0. Finally,/
satisfies (D4) since if A =Inthen aVi = 6" and Au=/,, |, so that /(/n)=(-
1)'%W,,-.)=1- Thus/ 1s determinantal for every /. D Corollary For every
positive integer n there is at least one determinantal mapping on Mat nxnF.
Proof We proceed by induction. By Example 8.1, the result is true for n= 2.
The inductive step 1s Theorem 8.2 which shows that a determinantal mapping
can be defined on Mat,, XII F from a given determinantal mapping on

Mat(,, 1)x(»1-1) F- E D - «l1«22 ~«|2«2I» Example 8.2 If D is the determinantal
mapping on the set Mat2x2 Fti.e. if «11 «12 L«2I «22. then by Theorem 8.2 the
mapping/, : Mat3x3 F —» F given by /. is determinantal. Likewise, so are/2
and/3 given by fi «11 «12 « 13 «21 «22 «23 «31 «32 «33. = «l|f «2 .«3 2 «23
2 «33. -«2# «21 «23 «31 «33. + al3D «21 «22 «31 «32. «11 «12 « 13 «21
«22 «23 «31 «32 «33.=a2ID «1 .«3 2 «13* 12 «33. -a2iD «11 «13 .«31 «33.
+a23D «11 «12 .«31 «32.

8. Determinants 133 /3 «11 «12 « 13 «21 «22 «23 «31 «32 « =«3.*>33 J «12
«13 .«22 «23. -a32D «11 «13 .«21 «23. +f1337) «11 «12 .«21 «22.
EXERCISES 8.1 Using the formula D «11 «12 .«21 «22 - «l1«22 ~«12«21I»



evaluate each of/j(v4),/2(v4),/3(v4) in the above example. What do you
observe? 8.2 Show that the mapping/: Mat3x3 F —» F given by / «11 «12 «1 3
«21 «22 «23 «31 «32 «2=«,,£> 13 22 «23 32 «33. -a21D «12 «13 .«32 «33.
+ a3ID «12 «13 .«22 «23. is determinantal. Our objective now is to establish
the uniqueness of a determinantal mapping on Matnxn F for every positive
integer n. For this purpose, it is necessary to digress a little and consider
certain properties of permutations (= bijections) on a finite set. On the set
{1,..., n} it is useful to write a permutation/ in the form 12 3 ... n/(1) /(2)
/(3)... f(n) Example 8.3 The permutation/on {O0,..., 9} described by/( jc) = x+\
modulo 9 can be described by / = 0123456789 1234567890

134 Basic Linear Algebra Example 8.4 The permutation on {1,2,3,4,5}
described by /1234511 245 3 'fixes' 1 and 2, and permutes cyclically 3,4,5.
Given permutations /, gon {1,..., n} we can compute the composite
permutation gofby simply treating them as mappings: 1 ... n M\)\-gW)\ Example
8.5 Consider the permutations (1 234 56\/12 3456 164352/ 72653 14
Working from the right, we compute the composite permutation go fas follows:
(123456\/123456\/1234562653 14/ 7164352/ V243516
EXERCISES 8.3 Compute the products 12 34567 *\ /12 34 5678 8623145 7/
\5 67 184 321234567 8\/1 234567 8 8623145 7/ 53467281 Definition By a
transposition on the set {1,2,..., n} we mean a permutation that interchanges
two elements and fixes the other elements. More precisely, a transposition is a
permutation r such that, for some 1j with1 "\ r{1) =;', r{j) =/, and (Vx f1j) t(x)
= X.

8. Determinants 135 We shall sometimes denote the transposition r that
interchanges 1 and j by the notationr : 1 *-*. Clearly, the inverse of a
transposition is also a transposition. The set of permutations on {1,2,...,«} will
be denoted by Pn. Theorem 8.3 If n> 2 then every a G P,, can be expressed as
a composite of transpositions. Proof We establish the result by induction on n.
When n =2 it is clear that cr 1s itself a transposition, in which case there is
nothing to prove. Suppose, by way of induction, that n>2 and that the result
holds for all permutations in P,, |. Let cr G P,, and suppose that o(n) =k. Letr
be the transposition r : n *-* k. Then rocr is such that (rocr)(n) = n\i.e. rocr
fixes n, and so induces a permutation, (rocr)* say, in P,, ,. By the induction
hypothesis, there are transpositions rj,..., r* in P,, , suchthat(rocr)*=t\om
m o r* Clearly, r*,..., r* induce transpositions in P,,, say T|...., rr, each of which



fixesn,androa=txo*mmorr. It follows thata=T~1 O T|O m m m O Tr as
required. D Given cr € P,, let /(cr) be the number of inversions in cr, i.e. the
number of pairs (/,;'") with1 <;' and o(j) < o(i). Definition For every cr G Pn
the signum (or signature) of a is defined by ea = (-1 )7”. Theorem 8.4 (Vp.aePj
epa = epea. Proof Consider the product v. = 11(/-0- For every a G Pn define
a(v;)=nb(/)-cT(/)]. Since a is a bijection, every factor of VH occurs precisely
once in o(Vn), up to a possible change in sign. Consequently we have °(K) = (-
1)'MV,, =ecV,,.

136 Basic Linear Algebra Given p,0 ePn we have similarly pa(Vn) = £po{Vn).
Consequently, SpoVn = po(Vn)=8po(Vn)=8(>80Vn whence, since Vn {0, we
obtain 8pa = 8p8a. D Corollary IfoePn then ea = £1 and 8a-1 = 8a. Proof It is
clear that et = -1 for every transposition r. It follows from Theorems 8.3 and
8.4 that 8a = £1 forevery permutation a. Moreover, since the signum of the
identity permutation is clearly 1, we deduce from £af£a-1 = 8aoa-1 =1 that 8a-\
= 8a. D We say that o is an even permutation if 8a = 1, and an odd permutation
ifea =-1. An even permutation is therefore one that has an even number of
transpositions, whereas an odd permutation is one with an odd number of
transpositions. This notion of parity is therefore an invariant associated with a
permutation. Example 8.6 Consider the permutation/ =12 345 6 16435 2 If we
join each i on the top line with the corresponding 1 on the bottom line we
obtain the diagram 1 1 In this the number of distinct crossings gives the number
of inversions. This is 8, which is even. The permutation is therefore even.
EXERCISES 8.4 Determine the parity of each of the following permutations: 1
2 345 6\/123456 614253/ V543612

8. Determinants 137 Theorem 8.5 There is a unique determinantal map D :
Matnxn F —» F, and it can be described by D{A)= E£afla(l),]"fla(n),n- 0£Pn
Proof We know by the Corollary of Theorem 8.2 that at least one determinantal
mapping D exists on MatnxlI F. If we write 6] for the i-th column of /,, then we
can represent annxn matrix A = [a,-] by A =[all8] +-+anl8n aXnBx + -- +
076,]. Using property (D,) we can write D(A) as a sum of terms of the form
Nfla(l),1”a(1)»" *» fla(n).A(«J. where 1 ~a(1) * n for every i. Using property
(D2) we can then write each of these terms as aa[l),l ' ' m fla(n),n"o(1). ® * *.
&o[n)]- But, by property (D'3), each such expression is 0 except those in
which we have a(i1) fo{j) for 1 fj\1i.e. those in which a is a permutation on
{1,...,n}. Thus we have that D{A) = £ fla(l)il » » m aa{n)jnD[6a{l) 6a{n)]. o



£P9 Now the columns 6a(1),..., 6a(nj occur in the permutation o of the standard
arrangement 6|,..., 6n. If, using Theorem 8.3, we write a as a composite of
transpositions, say (J=T|0"-OTi( then we have a~l =tJl om m* o 1j"1.
Restoring the standard arrangement of the columns by applying rj"1,..., rj' we
see, by property (D3) and the fact that ea - ea-1, that But by property (D4) we
have Z)[6.,..., 6,] = £)(/,,) = 1. We therefore conclude that D(A)= £ eaaa{l)tr'-
aa{n)jl. a£P,, The above argument also shows that D is unique. D An important
consequence of the above is that the expression for tk(A) given in Theorem 8.2
1s independent ofi.

138 Basic Linear Algebra Definition The unique determinantal mapping on
MatnxnF will be denoted by det. By the determinant of A = [a(y]nxn we shall
mean det A. By Theorem 8.5, we have that detv4d=Y, £aaa(l),] * * » aa[n),n- a
£P. Alternatively, by Theorem 8.2, we have that, for 1 - \,..., n, detv4 =
tH),+Sdetv41>, which is called the Laplace expansion along the i-th row. °
Note that, as pointed out above, the Laplace expansion is independent of the
row chosen. Example 8.7 Consider the matrix A=11-12131-51 Usinga
Laplace expansion along the first row, we have ' 1 3' [-51j -1 «det'2 3" [1]]
det A- 1 det=16-(-1)-(-11) = 28. Expanding along the second row, we
obtain=-2 e det+ 1 » d =-2(-4) + 2-3(-6) = 28. Finally, expanding along the
third row we obtain + (-1). detdet A=-2edet1 [-b-1"1j+1edetl [1-1"]j
3det211-514]detA=1¢<detl-113=4+55+(-1)=28-(-5)det112
-1"3J+ 1 edetlr[2]j EXERCISES 8.5 Compute, via a third row Laplace
expansion, m12-3 4- det3 0-20 . 1 0 2-5.

6. Determinants 139 8.6 Determine det 1-X 322 -1-X 3 3 0 1-X Theorem 8.6
If A 1s a square matrix then det A= det A'. Proof If a G PH then whenever o(1)
- J we have 1 = 0~1(j) and therefore aa”y = fl)i<ri(/). Consequently, fla(l).l * ¢
*aa{n),n=fll.a-'(1) """ fln.a-'(n) = Wir»0).1 ' " Wo'l (n),nm Now as a ranges
over P,, so does o~1; and ea = ea-\. Thus det A = £ efffloji).! e e caa{nU==£
ea-.[v4']a-'(1),1 ¢ * * [A")0-1{n)n = det v4'. D o€P. a-'FP. Corollary Fory =1,...,
n we have Proof We have i=] det A =det A' = £(-I)'+'ay/ det Ay, =
EH),'%detv4/y, i=1 the second summation being obtained from the first
summation by interchanging i and). D The reader should note that in the above
Corollary the summation is over the first index whereas in Theorem 8.2 it is
over the second index. We can thus assert that Laplace expansions via columns
are also valid. EXERCISES 8.7 For the matrix A of the previous example, find



det A by Laplace expansion via each of the three columns. 8.8 Compute det 12
3-4'0-56-700-89000 10

140 Basic Linear Algebra It is useful to know how row and column operations
on a square matrix effect the determinant of that matrix. It is clear from
property (D3) that < if B 1s obtained from A by interchanging two columns of A
then det B = -det A. Also, from property (D2) it follows that « ifB is obtained
from A by multiplying a column of A by some scalar A then det B = A det A.
Finally, i1fB is obtained from A by adding A times the i-th column of A to thej-
th column then, by properties (D,) and (D'3), we have detfl = det[...,a, a> +
Aa,,..] =det[...,a, a;,...] +det[...,a,,...,Aa,,...] =det A+ Adet[..., a,,..., a,,...]
=det A+ A0 = det A. Thus we have that « 1fB is obtained from A by adding to
any column of A a multiple of another column then det B = det A. Since row
operations on A are simply column operations on A', and since det A' = det v4,
it 1s clear from the above that similar observations hold for row operations.
Example 8.8 Any square matrix that has a zero row or a zero column has a zero
determinant. To see this, simply perform a Laplace expansion along that zero
row or column. Example 8.9 Consider again the matrix "I 1 -1v4=2131-51
Using row operations, we have det A=det=det"l 1-1"0-150-6-151-62
2 1>> P2"2p1 Pi-P1 by first column Laplace = -2 + 30 = 28.

8. Determinants 141 Example 8.10 Consider the matrix A=10-12031-51
By a Laplace expansion using the second column, we have 1 -1 det A= -(-5)
det2 3 =5-5=25. Example 8.11 For the matrix we have detv4 =A==1-12
3122021230.532-1.m1-123"04-4-403 1-3 .08 -8 -16. = det 4-4-4
31-38-8-16=4-8-det=32det=3 (2(-m4)"100=P2"2pi P3-P1 P4~5p,
by first column Laplace "l -1-1"31-31-1-1-1400-1-128. -2 >2-3p,
»3"Pl EXERCISES 8.9 What is the determinant of an n x n elementary matrix?
8.10 Prove that the determinant of an n x n upper triangular matrix is the

product of its diagonal elements. 8.11 Determine the values of x for which det
AfOwherex203112331011 1113 A=

142 Basic Linear Algebra 8.12 Using row and column operations, show that
m0a0000"det/0b0000g0c0000h0d0000k0<?0000mO0O
8.13 Compute the determinant of the matrix 12 3. -10 3. -1-2 0 . = -acethm. -1
-2 -3 ... 0 8.14 Compute the determinant of the matrix A = [fliy]nxl, given by fl
iff +7 =11 + 1; a.1 = 0 otherwise. 8.15 Consider the complex matrix A=01 +



11+2/ 1-10 2-3« 1-2/ 2 + 3/ 0 Show that det A = 6. We now consider some
further important properties of determinants Theorem 8.7 If A, Be Mat
nxnFthen det AB - det A ¢ det B. Proof If C = AB then the Jt-th column of C can
be written To see this, observe that the i-th element of c*isnn T " 1 Mi = cik
= E aijbjk = E Ma;l. = E fy*a> m y-1 y-1 ly=1 J«

8. Determinants 143 Thus we have that det AB = det C = det[6,,a, + * * + bnlan
fclna, ++ « + bnn* =Y, detK(i).iaa(i) ba{n)naa{n)] oGfl, = £ (d.1 "' K[n).n det
[aa(]),..., aa(n)] = £ bo(\).\ * * ba[n),nto det[» »J =det A+ £ C A(l),] " ba(n),no
£P9 = det A « det B. D Corollary /fA w invertible then det A j£ 0 and det A"1
= Proof det A This follows from det A » det A"l =det AA~l=det/,,=1.D,
p="012"201120EXEfIC/SES 8.16 Given the matrices ~b + &c 2¢c-2b 4b
-Ac A- 4c -4a c + %b 2a-2c¢ 2b-2a 4a-4b a + 8fc find P~I and compute P~1AP.
Hence determine det A. 8.17 If A 1s a square matrix such that Ap = 0 for some
positive integer p, prove that det A = 0. If A is an invertible n x n matrix then
we have seen above that det A £ 0. Our objective now is to show that the
converse of this holds. This will not only provide a useful way of determining
when a matrix is invertible but will also give a new way of computing
inverses. For this purpose, we require the following notion. Definition If A €
Matnxn F then the adjugate (or adjoint) of A is the n x n matrix adj A given by
[adjA]iy = (-irdetAyi, ¢ It is important to note the reversal of the suffices in the
above definition.

144 Basic Linear Algebra The adjugate matrix has the following useful
property. Theorem 8.8 For every n x n matrix A, A *adj A= (det A)L,,=adj A
* A. Proof We have 14 « adj 41,-, = £aik[ad)A)kj *=i = £ Oikdet Ajk k=1 {det
A ifi=)\ 0 \UH% the last equality resulting from the fact that when 1 f] the
expression represents the determinant of a matrix whose/-th row is the same as
its i-th row. Thus A ¢ adj A is a diagonal matrix all of whose diagonal entries
is det A; in other words, A * adj A = (det A)In. The second equality is
established similarly. D EXERCISES 8.18 Compute the adjugate of each of the
following matrices: abcdahghbfgfc*-10-10-10-10 -1 Theorem 8.9
A square matrix A is invertible if and only ifdel A~ 0, in which case the
inverse is given by i-1 >T = adj A. detv4 Proof If det A f0 then by
Theorem 8.8 we have whence A is invertible with A~l =adj A. det AJ
Conversely, if A 1 exists then, as we have observed above, it follows from
Theorem 8.7 that det A £ 0. O




8. Determinants 145 Theorem 8.9 provides a new way of computing inverses.
In purely numerical examples, one can become quite skilful in its use.
However, the adjugate matrix has to be constructed with some care! In
particular, notice should be taken of the factor {-1),+>==+1. The sign is given
according to the scheme + -+- -+- + + -+- Example 8.12 We have seen
previously that the matrix A=11-12131-51 1s such that det A =28. By
Theorem 8.9, A is therefore invertible. Now the adjugate matrixis'1-1-51
det-detdet1-5"2121-31311-5-detdetl1-113det-detl-111111
-S-detdet1-1231121i.e.1itis the following matrix (which with practice
can be worked out mentally): 16 4 4" B=12-5 -11 6 -1 It follows by Theorem
8.9 that A'l - —Bt which can of course be verified by direct multiplication.
EXERCISES 28 8.19 For each of the following matrices, compute its adjugate
and thenits inverse: '312121111>'532"231753*"100"120123

146 Basic Linear Algebra 8.20 For the matrix A=-4-3-310 14 4 3 show
that adj A= A. 8.21 If A is an invertible nxn matrix prove that detadjv4 =
(detv4)"-1. 8.22 If A and B are invertible nxn matrices prove that adj AB = adj
B« adj A. 8.23 If A is an invertible nxn matrix prove that adj(adjv4)=
(detv4)',-2v4. Deduce that, for n= 2, adj (adj A) = A. 8.24 If A 1s an upper
triangular matrix prove that so also 1s adj A. 8.25 If A is a symmetric matrix
prove that so also is adj A. 8.26 If A is an hermitian matrix prove that so also
is adj A. There are other methods of evaluating determinants that are often
useful, depending on the matrices involved. For example, there is the so-called
'inspection method* which is best illustrated by example. Example 8.13
Consider the matrix A=1jcjc2 ,21yy 1 zz2 Observe that if we setjc =y
then the first two rows are equal and so the determinant of A reduces to zero.
Thus jc - y is a factor of det A. Similarly, so are x - zand y - z. Consider now
the ~-expansion of det A as in Theorem 8.5. Every term a in this expansion
consists of a product of entries that come from distinct rows and columns
(since we are dealing with a permutation a). Now the highest power of x,ytz
appearing in this expansion is 2. Consequently, we can say that det v4 = *(jc -
>)(>m -z)(jc-z) for some constant k. To determine it, observe that the product
of the diagonal entries, namely yz2, is a term in the "-expansion (namely, that
which conesponds to the a identity permutation). But the term involving yz2 in
the above expression for det A is -kyz2. We conclude therefore that k - -1 and
so detv4 = (*-3y)(y-2)(z-%).



8. Determinants 147 Example 8.14 Consider the matrixa b cd A=a2 & c2 d2
b+c+d c+d+a d+a+b atb+c bed cda dab abc By the 'inspection method',
factors of det A are a-bt a-ct a-dt b-c, b-dt c-d. Now the product of the
diagonal entries, namely a2b3c[d + a + b)> is a term in the "-expansion. But
this 1s only partially represented in the product a (a-b)(a-c)(a-d)(b-c)(b-d)(c-
d), which suggests that we have to find another factor. This can be discovered
by adding row 1 to row 3: this clearly produces the factor a +b + ¢ + d. Thus
we have det A=k(a-b){a-c)(a-d)(b-c){b-d){c-d){a+b+c+d)for
some constant k. Comparing this with the product a2blc{d+a+b) of the
diagonal elements, we see that * =-1. Example 8.15 Consider the matrix A ="
Xylyz2lyz2alzbcl yztzttl. If x=y then the first column is y times the
second column whence the determinant is zero and so x - y is a factor of det A.
If z = t then the third and fourth rows are the same, so z -1 1s also a factor of
det A. If now y=zthenwe havec l ab~\det A=det=detz3zz1c2-1=
(I-/c)det .zt zttl.x1abz22z1¢2z237222z10001-fc;1az22z12322z=0
since p3 = zpi-

148 Basic Linear Algebra Thus we see that v - z is also a factor. It now
follows that det A = k{x -y){y -z){z-t) for some constant k> and comparison
with the product of the diagonal elements gives k=\. EXERCISES 8.27 For the
matrix A=1aa2a3 1 X X2 *31Db b2 b>express det A as a product of linear
factors. 8.28 Solve the equationdetxaaaaxaaaaxaaaax=0.8.29
Consider the real matrixxy2yz2 a? nya? 72 za yzt2 zt2 t2 t Show that,
whatever the entries marked ? may be, this matrix has determinant (x-ay){y-az)
{z-at)t. SUPPLEMENTARY EXERCISES 8.30 Let An be the n x n matrix
given by f0 ifi=;; °ij = 1 [ 1 otherwis otherwise Prove that det An=(-1)"\(/1 -
). 8.31 Consider the nxnmatrixa+baaA=a+baaa+ba+bProve that
det A =1f~x{na + b)

8. Determinants 149 8.32 Solve the equationdet 1 11 1\-x1112-jc.118.33
Consider the n x n matrixn-x=0. *n=bbbabb-bab-b-b-b-b-b-bbbb
bbb bbab Prove that 6elBn = {-\)ntlb{a-b)n-1. Hence show that if An is the
nxnmatrixabb..bl-bab..b-b-ba..bthenDeducethat-b-b-b..a
det An= {a +b) det An.x -b{a-b)n~\det/1,,=\[{a + b)n + {a-b)n]. 8.34 Let An
be the n x n matrix given by 0 ifji-;>1; 1 iffi-;=l; 2cos1? if 1=/. atj=<If A,, =
det An, prove that An+2-2cosi?An+1+A,, = 0. Hence show by induction that,
for 0 <t? <7r, sin (/i+ [)tf det Am=sin $



150 Basic Linear Algebra 8.35 Let An be the n x n matrix given by b1 ifi’y; fly
=<n-11l, +/>,if1 =j<n\bnif1 =; = «. Prove that det >4,, = bn J] fl,. 1=l If#,,
is given by 7 [fl. + fc, ifi=;\ prove that det Bn - det >4,, + an det £,, ,. Hence
show that det *,,=n «,+£(*,. n *>)* =1 1=l Jfi 8.36 If >4 and B are square
matrices of the same size, prove that \A #1 det B A = det (>1 + #) det (>*-#).
8.37 Let A/ =* QR S where P, Q, R, S are square matrices of the same size
and P is invertible. Find a matrix N of the form 7 P_10 A0 5 C such that 0 S-
RP~XQ Hence show that if P and /? commute then det M - det [PS - RQ)\ and
that 1f P and g commute then det A/ = det [SP - RQ). 8.38 [Pivotal
condensation]| Let A € MatRXR IR and suppose that a" £ 0. Let B be the [n-1)
X (n -1) matrix constructed from >4 by defining ifl<i<p-1(1<;<9-1; >,, = det det -
det det "fltf °pJ "flw flw fl,; -fl/y °M . fl/« fl/« flw au apj QP9 Qiq . °PJ «J if 1
MNT-1M+]1 <<« if p+ 121 <n( 0+ 17"y " n. Prove that det >4 =1 det 5.

8. Determinants 151 [Him. Begin by dividing the p-th row by am to obtain a
matrix X in which jew = I. Now subtract suitable multiples of the g-th column
of X from the other columns of X to make the elements of the p-th row 0 except
for xpg=\> thereby obtaining a matrix Y. Observe how the structure of the
matrix B arises. Now consider a Laplace expansion of Y via the p-th row.] ¢
The (n-1) x [n- 1) matrix B is called the matrix obtained from A by pivotal
condensation using aM as a pivot. This useful (and little publicised) result
provides a simple recursive way of computing the determinants of matrices
and is particularly effective when they have integer entries. The size of the
matrix reduces at each step and the calculations are simple since they involve
2x2 submatrices, and are made easier if it can be arranged that a 1 is chosen as
apivot. 3 23" =-17. For example, det="del -6 -5-8-1243 .4 3 HI
Compute, via pivotal condensation, the determinants of 123 11-5-f311"[2
3"231312*-10-1-2-1-2-3 ASSIGNMENT EXERCISES (1) Given a
real square matrix A = [fl,;],,x,,, consider a system Ax =b of n linear equations
in n unknowns. Suppose that A is invertible. Then the system has a unique
solution, namely x=A~I1b. If {Aj\ b) denotes the matrix that is obtained from A
by replacing the /-th column of A by b, use Theorem 8.9 to prove that the
components of x are given by det(>4(;b) X: = del A These equations, known as
Cramer's formulae, give the solution to Ax =b in the case where A is
invertible. They are of theoretical interest, though somewhat impractical in
computing solutions except when n is very small. Try the method on the system
f2jc+4>-3z=-1;jc+y-3z-2;3x+ Sy + 57z=3.



152 Basic Linear Aigeora (2) If A is an invertible matrix with integer entries
and det A== 1, use Cramer's formulae to show that A"1 also has integer
entries. (3) In IR2 consider the line pair fax+by+c¢=0;\a'x +b'y+c'=0.
Show that the lines intersect if and only if the matrix a b*a' b' is invertible. In
this case, use Cramer's formulae to obtain the point of intersection. (4) If a
triangle in IR2 has vertices (*,,?,), ("2.72). (*3.”3) prove that its area is the
absolute value of 1" 2 det Three lines, given by the system of equations r a,jc +
bxy+c¢,=0;-a2x+b2y+c2=0;*a3x + b3y + c3 =0, bound a triangle.
Prove that its area 1s the absolute value of +(det A)2 *1 y\*2>2/3>3 111
(0,62-*)("3-"2)("1 -albl) where A 1s the coefficient matrix of the system.

9 Eigenvalues and Eigenvectors Recall that annxn matrix B is similar to an n x
n matrix A if there is an invertible nxn matrix P such that B = P~XAP. Our
objective now is to determine under what conditions annxn matrix is similar to
a diagonal matrix. In so doing we shall draw together all of the notions that
have been previously developed. Unless otherwise specified, A will denote
annxn matrix over IR or C. Definition By an eigenvalue (or latent root) of A we
shall mean a scalar \ for which there exists a non-zero n x 1 matrix x such that
Ax =\x. Such a (column) matrix x is called an eigenvector (or latent vector)
associated with \. « Note that eigenvectors are by definition non-zero. Theorem
9.1 A scalar \ is an eigenvalue of A if and only if del{ A-\In) = 0. Proof
Observe that Ax = \x can be written in the form M-V,,)x = 0. Then \ is an
eigenvalue of A if and only if the homogeneous system of equations (A-\In)x =
0 has a non-zero solution. By Theorems 3.16 and 4.3, this is the case if and
only if the matrix A -\In is not invertible, and by Theorem 8.9 this is equivalent
to det {A -\In) being zero. D Corollary Similar matrices have the same
eigenvalues.

154 Basic Linear Algebra Proof It suffices to observe that, by Theorem 8.7,
tel(P~1AP-\In) = 6el[p-1{A-\In)P) = detP"1 6el { A-\In)6elP = tel(A-\!n). D
Note that with A = [fljy]BXII we have det(4-X/B) = det an-\ a2x 112 {122 —*
02* On«-V an\ an2 and, recalling that the product of the diagonal elements is a
term in the "-expansion, a we see that this is a polynomial of degree nin\. We
call this the characteristic polynomial of A. By the characteristic equation of A
we mean the equation det(y*-X/B) = 0. Thus Theorem 9.1 can be expressed by
saying that the eigenvalues of A are the roots of the characteristic equation.
Recall that over the field C of complex numbers this equation has n roots, some



of which may be repeated. If \,...., \k are the distinct roots (= eigenvalues) then
the characteristic polynomial factorises in the form We call r.,..., rk the
algebraic multiplicities of \,,..., \k. Example 9.1 Consider the matrix We have A
=det(4-V2) =detor-10-\1-1-\=\2 +\ Since X2 + 1 has no real roots, we
see that A has no real eigenvalues. However, if we regard A as a matrix over C
then A has two eigenvalues, namely i and -/', each being of algebraic
multiplicity 1.

9. Eigenvalues and Eigenvectors 155 Example 9.2 Consider the matrix A ="-3
1-75-66-f-1-2 Using the obvious row/column operations, we compute the
characteristic polynomial of A as follows: det(A-X/3) =det=det-3-X 1-1-7
5-X-1-66-2-X-2-X1-1-2-X5-X-106-2-X=-(2+ X)det=-(2 + X)det 1
1-115-X-106-2-X1I-104-X006-2-X=-2+ X)(4-X)(-2-X)=(2 +
X)2(4-X). It follows that the eigenvalues are 4 (of algebraic multiplicity 1)
and -2 (of algebraic multiplicity 2). EXERCISES 9.1 For each of the following
matrices, determine the eigenvalues and their algebraic multiplicity: "2-« 010
1+10102-/9.2 If X1is an eigenvalue of an invertible matrix A prove that X f
0 and that X"1 is an eigenvalue of A"1. 9.3 Prove that if X is an eigenvalue of
A then, for every polynomial p{X), p(X) is an eigenvalue of p(A). "10 1222
-1"13>'00110"01-33*

156 Basic Linear Algebra If\ is an eigenvalue of A then the set Ex= {x G
Matnxl F; Ax =\x} i.e. the set of eigenvectors associated with the eigenvalue \
together with the zero column 0, is readily seen to be a subspace of the vector
space Matnxl F. This subspace of eigenvectors is called the eigenspace
associated with the eigenvalue \. The dimension of the eigenspace £\ is called
the geometric multiplicity of the eigenvalue \. Example 9.3 Consider the matrix
A of the previous example. The eigenvalues are 4 and -2. To determine the
eigenspace E4 we must solve the system (A -4/3)x=0,1.e.-71-f-71-1-6 6-
6 The corresponding system of equations reduces lox =0, y-z= 0 and so E4 is
spanned by X yz=0 0 0 x = where y f 0 since by definition eigenvectors are
non-zero. Consequently we see that the eigenspace E4 is of dimension 1 with
basis uJ As for the eigenspace £ 2, we solve (A+2/3)x=0,1.e. Xyz—"0'
00-11-1-77-1-660 The corresponding system of equations reduces to x =
ytz=0and so E_2 is spanned by x X=X 0 where x f0. Thus E_2 is also of
dimension 1 withbasis 1 10 V.LJ



9. Eigenvalues and Eigenvectors 157 EXERCISES 9.4 For each of the
following matrices determine the eigenvalues and a basis of each of the
corresponding eigenspaces: "10f010101)"-257"10-1-1129.5 Show
that the matrix '-2 -3 -3" -1 0 -1 5 5 6 has only two distinct eigenvalues.
Determine a basis of each of the corresponding eigenspaces. The notions of
eigenvalue and eigenvector can also be defined for linear mappings. Definition
If/ : V—» W is linear then a scalar X is said to be an eigenvalue of/ if there is
a non-zero X € V such that /(jc) = Xjc, such an element x being called an
eigenvector associated with X. The connection with matrices is as follows.
Given annxn matrix A, we can consider the linear mapping fA:M<HnxIF-
+M<ilnxIF given by/,4(x) = Ax. It can readily be verified that, relative to the
natural ordered basis of Matnx, /\ we have Mat fA = A. Clearly, the matrix A
and the linear mapping fA have the same eigenvalues. Example 9.4 Consider
the vector space Diff(R, IR) of all real differentiate functions. The
differentiation map D : Diff(IR, IR) —» Map(IR, R) is linear. An eigenvector
of D is a non-zero differentiable function/such that, for some real X, D/ = X/.
By the theory of first-order differential equations we see that the eigenvectors
of D are therefore the functions/ given by /(jc) = keXx, where k f 0 since, we
recall, eigenvectors are by definition non-zero. Example 9.5 Consider the
linear mapping/: IR3 —»IR3 given by f(x,y,z) = {y + z, x + zx + y).

158 Basic Linear Algebra Relative to the natural ordered basis of IR3 the
matrix of/ is The reader can readily verify that"0 1 1 10 1 f1 0 det(v4-X/3) =
det-X111-X111-X=-(X+1)2(X-2). The eigenvalues of A, and hence
those of/, are therefore 2 and -1, the latter being of algebraic multiplicity 2.
EXERCISES 9.6 Determine the eigenvalues, and their algebraic multiplicities,
of the linear mapping/: IR3 —»IR3 given by 0) f{*y,z) = {x + 2y + 27, 2y + z,
-X + 2y + 27); (2)f(x,y,z) = {y + 2,0, x +y). Theorem 9.2 Eigenvectors
corresponding to distinct eigenvalues are linearly independent. Proof The
proof is by induction. If/ : V— V has only one eigenvalue and if x is a
corresponding eigenvector then since jc 0 we know that {jc} is linearly
independent. For the inductive step, suppose that every set of n eigenvectors
that correspond to n distinct eigenvalues is linearly independent. Let jc, ,...,
jc,,*, be eigenvectors that correspond to distinct eigenvalues X.,..., \n+l. If we
have (1) fl,jc, + ¢ ¢ + anx,, + antlxnt+l = 0 then, applying/ and using the fact
that/(jc,) = X,*,-, we obtain (2) a,**, + ¢ ¢ « + fI"X, " + antl\n+lxn+l = 0. Now
take (2) - Xn+I(1) to get 0|(*1 ->w1)*1 + m » m + A-"1)" = 0. By the induction



hypothesis and the fact that X)f...,Xn+1 are distinct, we deduce that It now
follows by (1) that ant+lxnt+]l = 0 whence, since xnt, f 0, we also have ant+1 = 0.
Hence jc, ,..., xnt1 are linearly independent and the result follows. D

9. Eigenvalues and Eigenvectors 159 Definition A linear mapping/: V—»
V is said to be diagonalisable if there is an ordered basis (v,),, of V with
repect to which the matrix of/ is a diagonal matrix. Thus/ is diagonalisable if
and only if there is an ordered basis (v;),, of V such that /(v,) =V, /(v2)= X2v2
/(vj- V» in which case the X, are the eigenvalues of/. We can therefore assert
the following: Theorem 9.3 A linear mapping f: V—*Vis diagonalisable if and
only if V has a basis consisting of eigenvectors of f. D Equivalently, if we
define a square matrix to be diagonalisable when it is similar to a diagonal
matrix then as a result on matrices Theorem 9.3 translates into the following
result: Theorem 9.4 Annxn matrix is diagonalisable 1f and only if it admits n
linearly independent eigenvectors. D We now proceed to show that/: V—» V
is diagonalisable if and only if, for every eigenvalue X, the geometric and
algebraic multiplicities of X coincide. For this purpose we require the
following results. Theorem 9.5 Let V be of dimension n. Iflu...t\k are the
eigenvalues of f: V—» V and if dx,..., dk are their geometric multiplicities
then rf1 + ¢ ¢ « + 4t <n with equality if and only iffis diagonalisable. Proof For
eachi let £, be a basis of £/ Observe first that if vi +' ¢ « + vk - © where each
v, € #, then necessarily each v, = 0. This follows from Theorem 9.2. k Observe
next that |J Bt is linearly independent. In fact, if Bt = {en,..., eid } 1=1 and -
/1,-1M + -- + Y41

160 Basic Linear Algebra then 53 Vj =0 gives, from the above, each v* =0
whence all the coefficients ntj = 0. /=1 Since the B, are pairwise disjoint, it
follows that 4, + .-. + 4 =k >= I <n. Finally, equality occurs if and only if V
has n linearly independent eigenvectors, i.e. by Theorem 9.3, if and only if/ is
diagonalisable. D Theorem 9.6 If \ is an eigenvalue off : V—» V then the
geometric multiplicity of\ is less than or equal to the algebraic multiplicity of\.
Proof Let {ex,..., ed} be a basis of Ey and extend this to a basis B = {ex,..., en}
of V. The matrix of/ relative to B 1s of the form"\Ild C 0 D A/ = The
characteristic polynomial of M is of the form (X - X)dp(X) where p(X) is a
polynomial of degree n-d. It follows that d is less than or equal to the algebraic
multiplicity of X. D We can now deduce from the above the following
necessary and sufficient condition for/: V -» V to be diagonalisable. Theorem



9.7 The following statements are equivalent: (1) /: V—» V is diagonalisable;
(2) for every eigenvalue \ of f, the geometric multiplicity ofi coincides with the
algebraic multiplicity of\. Proof The sum of the algebraic multiplicities of the
eigenvalues is the degree of the characteristic polynomial, namely n= dim V.
The result therefore follows from Theorems 9.5 and 9.6. D Example 9.6 As
observed in Example 9.2 above, the matrix A="'-3-7-6156 -f-1-2

9. Eigenvalues and Eigenvectors 161 has only two distinct eigenvalues, namely
4 and -2. The latter is of algebraic multiplicity 2. To determine the eigenspace
£ 2,wesolve (A+2/3)x=0,1e.-11-1"-77-1HS60Xyz="0"00 The
corresponding system of equations reduces to z= 0 so the rank of the
coefficient matrix is 2 and consequently the solution space is of dimension 3 -2
= I. Thus the eigenvalue -2 is of geometric multiplicity 1. It follows by
Theorem 9.7 that A is not diagonalisable. Example 9.7 Consider the matrix fl =
The reader can readily verify that det(fl-X/3) = (4-X)(X+2)2, so the
eigenvalues are 4 and -2, these being of respective algebraic multiplicities 1
and 2. To determine the eigenspace E 2 we solve (B +2/3)x=0,1.e."36-3
3"-53HS4"3-33"3-336-66 Xyz="0"00 The corresponding system of
equations reduces to x -y + z =0, so the coefficient matrix is of rank 1 and so
the dimension of the solution space is 3 -1 =2. Thus the eigenvalue -2 is of
geometric multiplicity 2. As for the eigenvalue 4, since its algebraic
multiplicity is 1, it follows by Theorem 9.6 that its geometric multiplicity is
also 1. It now follows by Theorem 9.7 that B is diagonal isable. If A is similar
to a diagonal matrix D then there is an invertible matrix P such that P~IAP =D
where the diagonal entries of D are the eigenvalues of A. We shall now
consider the problem of determining such a matrix P.

162 Basic Linear Algebra First we observe that the equation P~IAP = D can
be written AP = PD. Let the columns of P be p,,..., pn and let where X.,..., Xn
are the eigenvalues of A. Comparing the i-th columns of each side of the
equation AP = PD, we obtain ('-1 n) Ap”"XiPi. In other words, the i-th column
of P is an eigenvector of A corresponding to the eigenvalue X,. Example 9.8
Consider again the previous example. Any two linearly independent
eigenvectors in £ 2 constitute a basis for £ 2. For these we can choose, for
example, "I" 1 0 ) 0 -1 Any single non-zero vector in £4 constitutes a basis
for £4. We can choose, for example, T Clearly, the three eigenvectors 1 10) 1
0-1) 11 2 are linearly independent. Pasting these eigenvectors together, we



obtain the matrix P="1101f0 1 -1 2 and this is such that P~IBP=-2 0 0 0-2
0 0 0 4 » Note that, in order to obtain a particular arrangement of the
eigenvalues down the diagonal of the matrix D, it suffices to select the same
arrangement of the columns of P.

9. Eigenvalues and Eigenvectors 163 EXERCISES 9.7 For each of the
matrices A givenby [10f010101 *"-3-719"-2-18-2-310-25110
-1-112*%"-40-3"1314-23 find a matrix P such that P~]1AP is diagonal. Let
us now return to the problems of equilibrium-seeking systems and difference
equations as outlined in Chapter 2. In each of these, the matrix in question is of
size 2 x 2, so we first prove a simple result that will allow us to cut a few
corners. Theorem 9.8 If the 2x2 matrix A= a b c d has distinct eigenvalues \,,
\2 tnen It Is diagonalisable. When b f 0, an invertible matrix P such that P~IAP
= 1s the matrix P=X, 0 0 x2 b b Xi — a \j]—a Proof The first statement 1s
1mmediate from Theorems 9.2 and 9.4. As for the second statement, we
observe that fI-X b det =\2-(a + d)\ + ad-bc ¢ d-\ and so the eigenvalues of A
are *i- 12[ {a + d) + yJ(a-d)2 + 4bc], X2=I[(a+<0-V(<i-<02+4fcc] Consider
the column matrix - [ b

164 Basic Linear Algebra in which, by hypothesis, b f0. We have abUb ' ¢ d\
[a,-a 6a, cb + d&i -a) -*1 b A, -a the final equality resulting from the fact that
(M -a) -¢6 -(X, -a) =\]-(a+d)\l + ad-bc = 0. Thus X] is an eigenvector
associated with A,. Similarly, we can show that b x2 = A? -a is an eigenvector
associated with A2. Pasting these eigenvectors together, we obtained the
required matrix P. D Example 9.9 Consider the equilibrium-seeking system as
described in Chapter 2. The matrix in questionisr 14 3 14 1 -120 19 20 J The
eigenvalues of A are the roots of the equation (i-wg-M-A-o. The reader will
easily check that this reduces to (5A-1)(A -1) = 0 so that the eigenvalues are \
and 1. It follows by Theorem 9.8 that A is diagonalis- able, that an eigenvector
associated with X, = £ is 120. "20 J L5 4J and that an eigenvector associated
with A2 ="'>s 1 171 We can therefore assert that the matrix P=.4j11-1 151s
invertible and such that Since, as is readily seen, P'1AP=r16400115-111

9. Eigenvalues and Eigenvectors 165 we can compute An- P 0 1 P"1. We have
An—-L*~16~16~1611-11511-1151+701ruid"5"11]["11-it
11.15(1-4) 15 + “r. Example 9.10 Consider the Fibonacci sequence (0,),”q
defined recursively by a0 =0, ax = 1, and (Vn>0) fIn+2 - aB+1 + An- We can



write this as a system of difference equations in the following way: bnt2 =
fin+- This we can represent in the matrix form xn+2 - Axn+l where x =and A
=11 10 The eigenvalues of A are the solutions of X2 - X -1 =0, namely ", =
1(1 +7), x2-1(1->/5). By Theorem 9.8, A is diagonalisable, and corresponding
eigenvectors are Then the matrix P=>=11-1.="11-X2"""1. P"1 X2.>1
>2- 1 =1 1is invertible and such that 1Al [>— 0 0" Now clearly -X, -1 X2 1

166 Basic Linear Algebra and so, using the fact that X, X2 = -1, we can
compute A-1 f* MP- °lhx' ~r 1 v -x2 -xJLo xjJLx2 1. >J-Al 11 ] r-xr' -xj1 -x2
-Xj [*r'my) "ol oI\ O\ 1 A2 Al A2 Al " Ai"AI [ xs-x? X5 1-X""1.
Since it is given that bx =a0 =0 and a, = 1, we can now assertthat 1 | A2 A
0 -*1-*1 \n2-\« '«+1 and hence we see that * = sVW -*:>« *H(1+") 1" -#!<» -
Vs)]"- Example 9.11 Consider the sequence of fractions 2, 2+12 + 1 2+]J' 2 + 1
2 +1 2+J This is a particular example of what is called a continued fraction. If
we denote the n-th term in this sqeuence by -"- then we have bn °nt1 7, *
21l,, + bn K and so we can consider the difference equations fl«+i = 2fl,, + b,,
The matrix of the systemis 2 1 1 0 and we can write the system as xn+1 = Axn
where Now a, =2 and bx = 1, so we can compute xn+I from

9. Eigenvalues and Eigenvectors 167 The eigenvalues of A are the solutions of
X2 -2X -1 =0, namely X, = 1+v/2, X2=1-V2. By Theorem 9.8, the matrix is
invertible and such that Now it is readily seen that 1 1 -1+v/2 -1-V5 1 1 -X2 -X,
P~XAP =1+v/2 0 0 I-V2 Consequently, p-1 « 1 *-&=12v? 1 +v/2 11, -1 +v/2
-IAX,1-X2-11lirx-o01rx,1-x2 -x,J[oxsJ[-x2 -1 111 rxf'\1 -X2 -X,J [-X2+
-x21 rxy+1-xn+1 2 AIA2\n_\n\n-1 \n-1 Amnj At Aj and so we deduce
from fc::Hf] that a™* 2[(1 + y/2)n+] -(1- n/2P'] + (1 + y/If - (1 - y/jf bntl 2[(1
+10/2)" - (1-1n/2)"} +(1+0/2)"'1 -(1- /2)""1 (1+N3 + 27)-(1-13-27) (1 +
V2)"-'(3 +20/2) -(1 -y/Z)r1(3-2y/1)", this can be written Since 1 - V2 = 7= and
3-2V2 =14+v/2 "*v~3+2v/2 1 + V2 - (-1)0(1+M)2.-1(3+")1 from which we
see that I 1 (-1y-,(1+%/2)2"-2(3+2v")2 Um22il=1+V5.

168 Basic Linear Algebra Example 9.12 If #, is a positive rational, define n -2
+ * Then it 1s easy to show that P-dI<P-«?|. In other words, if qx is an
approximation to \fl then g2 is a better approximation. Starting with gx =1 and
applying this observation repeatedly, we obtain the sequence [ 1 1211 7?7 1V
5'12" 29' 70 We can use the techniques described above to determine the
general term in this sequence and show that it does indeed converge to \fl.



Denoting the n-th term by a —, we have bm Vh . 2+*K 2bn + a, K and so the
sequence can be described by the system of difference equations fl«+1 = <*n +
1bn K*\ - on + bn. The matrix of the systemis A=12 1 1 and its characteristic
equation is X2 -2\ - 1 =0, so that the eigenvalues are X, = 1+V2, X2=1-V2. By
Theorem 9.8, the matrix 2 2 y/2 -v/2 is invertible and such that P'XAP = 1+v/2
0 0 1-n/2 Now it is readily seen that />- = * [ \i1 1 -y/I

9. Eigenvalues and Eigenvectors Consequently, An _ [*~*4=14=1 4 and so
we deduce from that 2 v/2 2HX- °1 -y/5\[0 XJ. 1 I 1 -V2 2 21 "X; y/2\n 2X*
+2X5 2V2XY-2V2X; v/2XY-V2X; 2X7 + 2x3 =>T A, 2(i+r+2(1-"r _ X i+(")-
+1 *,+1 V2(1 + n/2)"+ -n/2(1 -N/2r' " ' 1-("M)"1" from which we see that lim " =
\fl. n-»oo frit is of course possible for problems such as the above to involve a
(non-diagonal) 2x2 matrix A whose eigenvalues are not distinct. In this case A
is not diagonalisable; for if X is the only eigenvalue then the system of
equations (A - X/2)x = 0 reduces to a single equation and the dimension of the
solution space is 2 - 1 = 1, so there cannot exist two linearly independent
eigenvectors. To find high powers of A in this case we have to proceed in a
different manner. If 'a b* A = ¢ d then the characteristic polynomial of A 1s /(*)
= X2 -{a+d)X + ad -be. Observe now that A2 =a2 + be b(a +d) c(a+d) bc
+d2abcd=(a+d)-{ad-be) 1 00 1 = {a+ d)A-(ad-bc)I2 and so we see
that f{A) = 0. For n " 2 consider the euclidean division of X" by f{X). Since/ is
of degree 2 we have

170 Basic Linear Algebra (3) X" M(X)q{X) + alX+a2. Substituting A for X in
this polynomial identity we obtain, by the above observation, An = axA + a2l2.
We can determine a, and a2 as follows. If we differentiate (3) and substitute X
(the single eigenvalue of A) for X then, since/(X) = 0, we obtain nX'-'-o,.
Also, substituting X for X in (3) and again using/(X) = 0, we obtain Xn=*a,X
+a2 =n\n +ot2 and so a2 = {I-n)\n. It now follows that An =n\n-1A + {I-n)\nl2.
Example 9.13 Consider the n x n tridiagonal matrix"2100...00A=12100
12100000000000021 12 Writing an = det An we have, using a
Laplace expansion along the first row, 1100 ... 0" on=21l,, ,-det02 100 12
10000.0.0=2an i~an 2. Expressing this recurrence relation in the usual
way as a system of difference equations K = an-\ we consider the system x,, =
v4x,, ,where."andvd=, K10x=

9. Eigenvalues and Eigenvectors Now det(>1-X/2) = MA-2)+1 = (X-1)2, and so



A has the single eigenvalue 1 of algebraic multiplicity 2. We as in the above:
[n+1—n An=nA+ (\-n)12 = Consequently we have n 1 —n = An~2 n-\-n +
2 n-2 3-n and hence we see that EXERCISES n+1 ndel Am=am=n+ 1. 9.8
Consider the tridiagonal matrix A=15000-415000.-4.1.0.0...0..
0..0.1.5000-41 Prove that deM,,= Jp-"-Hr1]. SUPPLEMENTARY
EXERCISES 9.9 Determine the characteristic polynomials of 12301200 1
>110-11101-111-42-2[-211

172 Basic Linear Algebra 9.10 Suppose that A and B are n x n matrices such
that /,, -AB is invertible. Prove that so also is /,, - BA with {In-BA)-1 =In +
B{In-AB)-1A. Deduce that XY and YX have the same eigenvalues. cost? sin t?
w—sin i1? cost? If p = compute the product P~XAP. 9.12 For each of the
following matrices determine an invertible matrix P such that P~IAP is
diagonal with the diagonal entries in increasing order of magnitude: 9.11 Show
that [Hi] are eigenvectors of A="010'101010)1"3-10-103001
9.13 Consider the system of recurrence relations If the matrixa 0 1 0 has
distinct eigenvalues X,, \2 prove thata" a" ",, = 7—4~"" -~X2"0)-v \ ("1 - Vo)-
A|~*a>2 [ ~* 2 What is the situation when the eigenvalues are not distinct?
9.14 Determine the n-th power of the matrix"2 11222 0" 11 9.15 Solve the
system of equations xnt+l = 2xn+6yn >«+i = 6x,, - 3y,, given that jc, =0 and >,
= -1. 9.16 Given the matrix A = find a matrix B such that B2 = A. D2 "2 72 -2+
61-21"2°272004

9. Eigenvalues and Eigenvectors 173 9.17 Given A G Matnx,,IR let k = max
la,y|. Prove that, for all positive integers r, For every scalar /?, associate with
A the infinite series SO(A) = In + PA + p2 A2+-+prAr+-- We say that Sp(A)
converges if each of the series J+0[Alj + P2[A2]Ju+ - .- + "1 ,- + - converges.
Prove that (1) SO{A) converges if |/?| <—; H nk (2) 1f Sq(A) converges then/,,
-0A has an inverse which is the sum of the series. Deduce that if A is a real nxn
matrix and X is an eigenvalue of A then [X|*nmax |a,;|. ASSIGNMENT
EXERCISES (1) Determine the characteristic polynomial of the matrix "-4 0
-2A=01051 31Is Adiagonal isable? (2) Determine the characteristic
polynomial of the nx nmatrix0a0..00"00a..;00000...00000..0a
Looo..00j(3)Ifa, b, c,d6 IR determine the characteristc polynomial of the
matrixabcd~-ba-dc-cda-b—d-cb a. [Hint. Look back at quaternions
in the assignment exercises for Chapter 2.]



174 Basic Linear Algebra (3) For the matrix A=2043-4121-25
determine an invertible matrix P such that P~1AP is diagonal. (4) Consider the
continued fraction2 2 JC, JC+ —, JC+ X .a» x+ JC + x + £ Determine its
limit. (5) Solve the system of equations *n+i = txH + (\-t)yH given that jc, =0
and y, = 1. (6) If v4 G Matnxn IR define the i-th row sum p,(v4) and the j-th
column sum Hj(A) respectively by ;=I i=Il Prove that if X is an eigenvalue of A
then [X| < min{maxpj(i4),max’\(i4)}.

10 The Minimum Polynomial In Chapter 9 we introduced the notions of
eigenvalue and eigenvector of a matrix or of a linear mapping. There we
concentrated our attention on showing the importance of these notions in
solving particular problems. Here we shall take a closer algebraic look. We
begin by considering again the vector space Matnxll F which, as we know, has
the natural basis {£,; ; 1j- 1,..., n) and so 1s of dimension n2. Thus, recalling
Corollary 3 of Theorem 5.8, we have that every set of n2 + 1 elements of
Matnxn F must be linearly dependent. In particular, given any A € Mat nxn F,
the n2 +1 powers A=1In, A, A, A, ... ,Aare linearly dependent and so there is
a non-zero polynomial p{X) = a0 + axX + a2X2 + mm- + a"X"2 G F[X] such
that p(A) = 0. The same 1s of course true for any / € Lin (V, V) where V is of
dimension n; for, by Theorem 7.2, we have Lin(V, V) ~ MatnxlI F. But we can
do better than this: there is in fact a polynomial p{X) which is of degree at
most n and such that p(A) = 0. This is the celebrated Cayley-Hamilton
Theorem which we shall now establish. Since we choose to work in MatnxII /\
the proof that we shall give is considered 'elementary®. There are other (much
more 'elegant') proofs which use Lin {V, V). Recall that if A € Matnx,, F then
the characteristic polynomial of A is cA{\) = 6ei(A-\In) and that cA(\) is of
degree n in the indeterminate X. Theorem 10.1 [Cayley-Hamilton] cA{A) = 0.
Proof Letfl = A-X/,,and cA(\) =det B=b0 + fc,X + ¢+ + b, \n-

176 Basic Linear Algebra Consider the adjugate matrix adj B. By definition,
this 1s an n x n matrix whose entries are polynomials in X of degree at most n -
1, and so we have adj B =B0 + Bx\ + m * * + Bn.x\n~| for some nx n matrices
BO,..., Bn_x. Recalling from Theorem 8.8 that B m adj B = (det B)In, we have
(det B)In =B adj B= (A -X/Jadj B =/ladj B-\ adj B, i.e. we have the
polynomial identity bOIn + b} In\ + *m + bnln\n = ABO + *m* + AB*1 -BO\
Bn.x\n. Equating coefficients of like powers, we obtain Vn = ABo bxIn = ABx-
B0 K-\K = ABn-1 ~Bn-2 Multiplying the first equation on the left by A0 =/,,,



the second by A, the third by A2, and so on, we obtain bOIn = AB0 bxA =
A2BX -ABO b"A"-1 = AnBn.x -An-1Bn_2 M" = -AnBn.x. Adding these
equations together, we obtain cA(A) - 0. D The Cayley-Hamilton Theorem is
really quite remarkable, it being far from obvious that annxn matrix should
satisfy a polynomial equation of degree n. Suppose now that k is the lowest
degree for which a polynomial p(X) exists such that p(A) = 0. Dividing p(X)
by its leading coefficient, we obtain a monic polynomial m{X) of degree k
which has A as a zero. Suppose that m' { X) 1s another monic polynomial of
degree k such that m'(A) = 0. Then m(X) - m'{X) is a nonzero polynomial of
degree less than k which has A as a zero. This contradicts the above
assumption on k. Consequently, m(X) is the unique monic polynomial of least
degree having A as a zero. This leads to the following: Definition If A ¢ Mat
nxnF then the minimum polynomial of A is the monic polynomial mA(X) of
least degree such that mA {A) = 0. Theorem 10.2 If p(X) is a polynomial such
that p(A) = 0 then the minimum polynomial mA {X) divides p(X).

10. The Minimum Polynomial 177 Proof By euclidean division, there are
polynomials q(X), r(X) such that p(X) = mA(X)q(X) + r(X) with r[X) =0 or
deg r(X) < deg mA[X). Now by hypothesis p(A) = 0, and by definition mA(A)
= 0. Consequently, we have r(A) = 0. By the definition of mA(X) we cannot
then have deg r(X) < deg mA(X), and so we must have r(X) = 0. It follows that
p{X) = mA(X)q(X) and so mA(X) divides p{X). D Corollary mA(X) divides
cA{X). D It 1s immediate from the above Corollary that every zero of mA(X)
is a zero of cA(X). The converse is also true: Theorem 10.3 mA(X) and cA(X)
have the same zeros. Proof Observe that if X is a zero of cA[X) then X is an
eigenvalue of A and so there 1s a non-zero x G MatBX, F such that Ax = Xx.
Given any h{X) =fl0 + fI,X + ... +takXk we then have h[A)x =a0x + a} Ax + * =
a0x + a,Xx + m = h(\)x m + akAkx ¢ + ak\kx whence h(\) is an eigenvalue of
h(A). Thus h(\) is a zero of ch’\(X). Now take h(X) to be mA(X). Then for
every zero X of cA(X) we have that mA(\) 1s a zero of cmA(A)(X) = "o(") =
det(-X/J = (-1)"Xfl. Since the only zeros of this are 0, we have mA(\) =0 so X
is a zero of mA(X). D Example 10.1 The characteristic polynomial of A= 1s
cA{X)=(X-2)3. Since A-213 f0 and (A-2/3)2 ~ 0, we have mA(X) =
cAX).10-1020f13

178 Basic Linear Algebra Example 10.2 For the matrix A=5 -6 -6 -14 2 3-6-4
we have cA(X) = (X - 1)(X -2)2. By Theorem 10.3, the minimum polynomial



is therefore either (X - 1)(X - 2)2 or (X -1)(X- 2). Since (A-13){A-2/3)=0,
it follows that mA(X) = (X - \)(X - 2). Theorem 10.4 A square matrix is
invertible if and only if the constant term in its characteristic polynomial is not
zero. Proof If A is invertible then, by Theorem 9.1,0 is not an eigenvalue of A,
and therefore 0 is not a zero of the characteristic polynomial. The constant term
in the characteristic polynomial cA(\) is then non-zero. Conversely, suppose
that the constant term of cA(\) is non-zero. By Cayley- Hamilton we have
cA{A) = 0 which, by the hypothesis, can be written in the form Ap(A) = In for
some polynomial p. Hence A is invertible. D Example 10.3 The matrix A= "1
00110f111ssuchthat cA{X)=(X-I)3. Thus, applying the Cayley-
Hamilton Theorem, we have that 0 = (A - /3)3 -A3- 3A2 + 3A - /3 which gives
A(A2 -3A +3/3) =/3 whence we see that A~x=A2-3A+3/,=1-1001-1
0 0 1 EXERCISES 10.1 If A G MatnxIIF is invertible and deg mA(X) = p,
prove that A~1 is a linear combination of /,,, At A2,..., Ap~l.

10. The Minimum Polynomial 179 10.2 Determine the characteristic and
minimum polynomials of each of the following matrices: "123"012001 *"
110"-11101-1>"00210-1011 10.3 Prove that the constant term in
the characteristic polynomial of A is det A. 10.4 Determine the minimum
polynomial of the rotation matrix cos t? sin t? ' [-sintf cost? Show that 1f t? is
not an integer multiple of tt then R$ has no real eigenvalues. The notion of
characteristic polynomial can be defined for a linear mapping as follows.
Given a vector space V of dimension n over F and a linear mapping/: V—» V,
let A be the matrix of/ relative to some fixed ordered basis of V. Then the
matrix of/ relative to any other ordered basis is of the form P~1 AP where P is
the transition matrix from the new basis to the old basis (recall Theorem 7.5).
Now the characteristic polynomial of P~1 AP is det (P-» AP - X/n) = det [P"1
(A - \In)P] = detP-! det(A-X/,,)detP = det(A-X/n), i.e. we have Cp-1AP(\) =
CA(\). It follows that the characteristic polynomial is independent of the
choice of basis, so we can define the characteristic polynomial of/ to be the
characteristic polynomial of any matrix that represents/. A similar definition
applies to the notion of the minimum polynomial of a linear mapping, namely
as the minimum polynomial of any matrix that represents the mapping.
EXERCISES 10.5 Determine the characteristic and minimum polynomial of the
differentiation map D : JRn[X] -» Rn[X].

180 Basic Linear Algebra 10.6 Determine the minimum polynomial of the



linear mapping/: IR2 -» F2 given by f{x,y)= {x+4y, \x-y). The full significance
of the minimum polynomial is something that we shall not develop here. The
interested reader may care to consult more advanced texts (see, for example
Further Linear Algebra in the SUMS series) that deal with the notions of
invariant subspace and direct sum of subspaces. To whet the appetite, let us
say simply that if the minimum polynomial of/ is where the pt{X) are distinct
irreducible polynomials then each of the subspaces V, = Ker[ft,{/)]* is/-
invariant and bases of the V, can be pasted together to form a basis of V. The
matrix of/ is then of the block diagonal form A2 This fundamental result is
known as the Primary Decomposition Theorem. In the case where each Pj(X)
is linear (i.e. all of the eigenvalues of/ lie in F), the matrix of/ is a Jordan
matrix. In this, each of the At is a Jordan block, i.e. is of the formr/, h in which
each J, 1s an elementary Jordan matrix, i.e is of the formTX 1 X 1 X 1 X 1 X,
If the characteristic and minimum polynomials are cf(x)=n(* - ii1l', «fW=n<* -
w 1= 1=1 then in the Jordan form the eigenvalue \, appears dt times in the
diagonal, and the number of elementary Jordan matrices associated with X(- is
the geometric multiplicity of X,-, with at least one being of size e{ x et.

10. The Minimum Polynomial 181 As a particular case of this, we obtain
another solution to the diagonalisability problem: Theorem 10.5 If Visa non-
zero finite-dimensional vector space over afield F then a linear mapping f: V
—» V [respectively, a square matrix over F) is diagonalisable if and only if its
minimum polynomial is a product of distinct linear factors. D Example 10.4
The matrix of Example 10.2 is diagonalisable. EXERCISES 10.7 Consider the
linear mapping/: IR3 —»IR3 given by f(*,y, z) - (* + z, 2y + z, -x + 3z). Prove
that/ is not diagonalisable. SUPPLEMENTARY EXERCISES 10.8 Let A, B be
square matrices over C and suppose that there exist rectangular matrices P, Q
over C such that A=PQ and B = QP. If h(X) is any polynomial with complex
coefficients, prove that Ah{A)=Ph{B)Q. Hence show that AmB(A) =0 =
BmA(B). Deduce that one of the following holds: mA(X) = mB{X)t mA{X) =
XmB {X)t mB(X) = XmA(X). 10.9 Express the r x rmatrix'l1...1122...2]
r...1r_as the product of a column matrix and a row matrix. Hence find its
minimum polynomial. 10.10 Let/: [ X] -» C2[*] be linear and such that /(1)=
-142X2 /(14X) =2 +2X + 3X2 /(1+X-X2) = 2 + 2X+4X2. Find the
eigenvalues and the minimum polynomial of/.

182 Basic Linear Algebra ASSIGNMENT EXERCISES (1) Determine the



minimum polynomial of the matrix cos2t? sin t?cost? sin t? cos # sin2t? (2) Let
V be a vector space withdim V> 2. If/: V—» V is linear and of rank 1 prove
that the minimum polynomial of/ is of the form X2 - atX for some scalar a. (3)
Let V be a vector space of dimension n over C and let/: V—» V be a linear
mapping that is represented, relative to some ordered basis of V, by the matrix
00..0a,000a,-1a, 0a2 0000 0 Determine the minimum polynomial
of/2. Deduce that/is diagonal isable if and only if, for each k, otk =0 a ntl -* =
0.

11 Computer Assistance Many applications of linear algebra require careful,
and sometimes rather tedious, calculations by hand. As the reader will be
aware, these can often be subject to error. The use of a computer is therefore
called for. As far as computation in algebra 1s concerned, there are several
packages that have been developed specifically for this purpose. In this
chapter we give a brief introduction, by way of a tutorial, to the package
'LinearAlgebra' in MAPLE 7. Having mastered the techniques, the reader may
freely check some of the answers to previous questions!

184 Basic Linear Algebra Having opened MAPLE, begin with the following
input: > with(LinearAlgebra) : (1) Matrices There are several different ways
to input a matrix. Here is the first, which merely gives the matrix as a list of its
rows (the matrix palette may also be used to do this). At each stage the
MAPLE output is generated immediately following the semi-colon on pressing
the ENTER key. For example, we can input the matrices from Exercise 1.12 as
follows: for the first, we do input: > ml:=Matrix([[3,1,-2],[2,-2,0],[-1,1,2]]);
output: ml :=31-22-20-11 2 In order to illustrate how to do matrix algebra
with MAPLE, let us input the second matrix of Exercise 1.12: >
m2:=Matrix([[1,1,1],[1,-1,1],[0,1,2]]);ml :="1 101 -1 1112 One way of
adding these matrices is by using the 'Add' command: > m3:=Add(ml,m2); m3
:=42-13-31-12 4 As for multiplying matrices, this can be achieved by using
the 'Multiply* command. To multiply the above matrices, for example, input: >
méd:=Multiply(ml,m2); mA := Now 'Add* also allows linear combinations to
be computed. Here, for example, 1s how to obtain3m 1 +4m2: "400] 0400
04

11. Computer Assistance 185 > Add(ml,m2,3,4); "13 7-2" 10-104 -3 7 14 (2)
A simpler method An more convenient way to input commands is to use



algebraic operations > ml+m2; "4 2-1" 3 -3 1 -1 24 Multiplication by scalars
is obtained by using a '*': > 3*ml+4*m2; "13 7-2" 10-104 -3 7 14
Multiplication of matrices is obtained by usinga V: > ml.m2;"4 00" 04000
4 As for a more complicated expression: > ml.(4*m2-5*ml*2); "-219 -25 230"
-110 86 60 85 -25 -74 m (3) Inverses Inverses of square matrices can be
achieved by using the '"Matrixlnverse' command: > MatrixInverse(ml); r 1 lin
Alternatively we can input the following (here it is necessary to insert brackets
round the -1):

186 Basic Linear Algebra > ml’(-1); Note that we can use negative powers in
products: > ml"(-3).m2rt3; 23 652532 64 81. 51. 55 16 64 32 45 65 201 64
64 64 J (4) Determinants To compute the determinant of a square matrix, use
the 'Determinant' command: > Determinant(ml); -16 Of course the determinant
of a product is the product of the determinants: > Determinant(ml.m2); 64 >
Determinant(ml)*Determinant(m2); 64 (5) More on defining matrices We now
look at other ways of defining a matrix. We start with a clean sheet (to remove
all previous definitions): > restart; > with(LinearAlgebra): We can enter a
matrix as a row of columns: > M0:= «a,b,ol<d,e, f>[<gh,i»; MO :=ad gb eh
cfi or as a column of rows (which can also be done using the matrix palette):

11. Computer Assistance 187 > Ml :=«alblc>,<dlelf>,<glhli>>; Ml
:=ab cdefghi Then, for example, we have > MI1"2; a2 + bd + egab + be +
chac + bf+ ci da + ed+fg bd + e2+th dc + ef + fi ga + hd + 1g gb + hc + ih
cgt+th + 12 > Determinant(Ml); aei - ath + dch - dbi + gbf - gee Particular types
of matrix can be dealt with. For example, consider the upper triangular matrix
given in Exercise 1.33. > A:=Matrix(4,[[0,a,a*2,a*3],[0f0fafa*2 [f]0f0Of0fa]f >
[0,0,0,0]], shape=triangular[upper]); A:="0aa2a300aa2000a0000
r3,A"4) ; O0f122a3'000a200000000*"000a3'000000000000
1"00000000000000 00 Consider now the matrix B. Since only the first
three powers of A are non-zero, we have: > B := A-(1/2)*A"2+(1/3)*A"3; B:=
0a000000a00I*3a0

188 Basic Linear Algebra > print(B*2,B*3,B*4); OOfl12 a3] 000020000 0
000"000a3!'000000000000°r0000000000000000 We
now check that the sum of the series for B gives the matrix A: > B+(1/2)*B"2+
(1/6)*B"3;0aa2a3'00aa2000a0000 To input symmetric matrices we
can proceed, for example, as follows: > M:=Matrix(3,3,shape=symmetric);



M:= then input, for example, >M[1,1]:=2; M[1,3]:=23; M[2,3]:=Pi; "0 00" 0 0
0000A/,.,A/M=2=23=7T>M;> Determinant(M); 2 02300 7T 23 7T
0 -2tt2 We now take a look at Exercise 1.26. >
A:=Matrix(3,3,shape=antisymmetric);

11. Computer Assistance 189 A:=0000000 00> A[L,2]:=-c; A[1,3]:=b;
A[2,3]:=-a;>A;"1,2",3"230C-b:=:=:=-cOa-cb-ob-a0>AA3+A;
0 -(-c2 - b2)c +ca2-c {-c2-b2)b-ba2 +b0b2a- {-c2-a2)a-a0(-c2-a2)c
-cb2 + ¢ c2b - {-b2 - a2)b - b -c2a + {-b2 - a2)a + a Now the question gives
us: >c:=sqrt( 1-a"-b™"); c:=V1-a2-b2 > A~3+A;0-(-1 +a2) % 1 +% 1 a2-% 1
(-1 +a2)b-ba2 +b (-1 +b2) % 1 - % \b2 +% 1 0 b2a-{-\+ b2)a-a (1-a2-
b2)b-H>2-<*2)b-b -(1-a2-b2)a + &2-a2)a+a 0 %1 :=y/l-a2-b2 >
simplify(A*3+A); "0 0 0 000 000 (6) Systems of linear equations To 1llustrate
the use of MAPLE in solving systems of linear equations, let us consider
Example 3.11. > restart; > with(LinearAlgebra): > A:=
«1,1,3,0>1<0,1,1,1>1<1,0,1,2>1<0,0,1,1>1 > <1,2,1,2>>;

190 Basic Linear Algebra A:=10101 110023 1111012 12>
GaussianElimination(A); 10 10 1 0 1-10 1 0 0-1 1-3 u0 0 0 4-8 Consider now
Example 3.16. > B:= «1,2,3>1<2,4,6>1<1,4,5>1<2,8,7><1,4,7»; 12 12 1 B :=2
44 8 4 w365 77 > GaussianElimination(B); 12 12 1 002 42 0 00-3 2 >
ReducedRowEchelonForm(B); 1200 0 ooio 1000 1 -fj Next, let us consider
the system of equations in Example 3.27. > restart; > with(LinearAlgebra): >
sys = [ xty+z=1,2*x-y+2*7=] x+2*y+7z=alpha |: > var :=[ x,y,z ]: > (A,b) :=
GenerateMatrix(sys,var); "1 1r2-1212 1+ "1" 1 Of Atb:=>
GaussianElimination(<Alb>); 1111 0-3 0 -1 0 00a-f Consider separately the
cases a f\and a =\\

11. Computer Assistance 191 > assume(alpha<>4/3); >
ReducedRowEchelonForm(<Alb>); '10 10" 0 100 000 1 - > alpha:=4/3: >
ReducedRowEchelonForm(<AIb>); " 10 1 "0 1 0+ 0000 (7) Writing
procedures We now show how to input matrices whose (i1, j)-th entry is a
function of 1 and j. > M:=Matrix(6,6,(1,))->1%); "123456"2468 10 12 3
69121518 *'~4812162024510152025306 12 18 24 30 36. More
complicated functions can be produced by writing a procedure. The following
example illustrates a very simple procedure in order to define the identity
matrix: > fi=proc(i,j ) ; > if1=j then 1 else 0 end if; > end proc; / := proc (/,;")



ifi=j then 1 else 0 end if end proc > MIl:=Matrix(6,6,1);'100000" 01000
000100000010000001000000 1 Here 1s a more complicated
procedure:

192 Basic Linear Algebra > f:=proc(i,j); > 1f 1>] then x else if i=) then O else -
y end if > end if; > end proc; / :=proc (/ J) if ] <i then x else if 1 =j then O else
- yend ifend if end proc > M2:=Matrix(6,6,f); M2:=> d:=Determinant(M2) ;
d = (x4 - x3y + y2x2 - y3x + y*)xy > expand(d*(x+y)); 6 . 6 x y + xy Hence d
= (x6y + xy6)/(x +y). Let us examine further cases: > for n from 2 to 8 do >
M2:=Matrix(n,n,f); > d:=Determinant(M2); > print(cat(' size ',n( > end do: 0 X
XXXX-y0XXXX-y-y0XXX-y-y-y0XX-y-y-y-y-y-y-y-y0-y
x 0 gives'), expand(d*(x+y))); size 2 gives yx2 + y2x size 3 gives -yx3 + y3x
size 4 gives yx* + y*x size 5 gives -yx5 + y5x size 6 gives yx6 + yox size 7
gives -yx1 + y7jt size 8 gives yx9 + y*x The general theorem should be easy to
spot. Try to prove it. Another way of inputting matrices uses the command
'BandMatrix' which we illustrate by referring to Exercise 8.34. Consider first
the case where n = 6. > M3:=BandMatrix([1,2*cos(x),1],1,6,6);

11. Computer Assistance 193 M3:=2 cos(jc) 10000 12 cos(x) 100001 2
cos(x) 1000012cos(x) 1000012cos(x) 1001 2cos(x)00>
d:=Determinant(M3) ; d := 64 cos(jc)6 - 80 cos(x)4 + 24 cos(jc)2 - 1 >
expand (sin(7*x)/sin(x)); 64 cos(x)6 - 80 cos(x)4 + 24 cos(x)2 - 1 The
following procedure will verify the identity of Exercise 8.34 for n taking the
values from 2 to 10, but may be used for any range of values of n. Try it out! >
for n from 2 to 10 do > mat:=BandMatrix([1,2*cos(x), 1], 1, n, n); >
d:=Determinant(mat); > dl:=expand(sin((n+1)*x)/sin(x)); > print(cat (‘case of
"'n,'x',n,' matrix')); > print(cat(' det="), d); > print(cat(' sin(',n+1,'x)/sin(x) ="),
dl); > print(' '); > end do: (8) More on determinants We now consider a
generalisation of Exercise 8.28. > restart; > with(LinearAlgebra): >
f:=proc(i,j); > if i=] then x else a end if; > end proc; / := proc (/J) if / = then
jc else a end if end proc > m:=Matrix(3,3, f); m:=xaaaxaaax

194 Basic Linear Algebra > d:=Determinant(m); </:=x3-3;ur + 2a3 > factor(d);
(2a + x)(a-x)2 > solve(d=0,x); -2a,a,a We can now do this for any range of
values of n. For example: > for n from 2 to 12 do > m:=Matrix(n,n,f); >
d:=Determinant(m); > print(solve(d=0,x)); > end do: -a,a -2a, a, a-3a, a, a, a
-4a,a,a,a,a -5a,a,a,a,a,a -da,a,a,a,a,a,a—la,a,a,a,a,a,a,a—Sa, a, a, a, a, a, a, a,



a-9a,a,a,a,a, a,a,a,a,a-Ma,a,a,a,a,a,a, a, a, a, a, a Consider now the
matrix A,, of Exercise 8.33. This we can investigate, first for n= 6, as follows.
> f:=proc(i,j); > i1f i=] then a else if i<j then b else -b end i1f > end if; > end
proc; / :=proc(/, j) if/ =j thena else ifi <) then b else - b end if end if end
proc > m:=Matrix(6,6,f); "abbbbb' -bobbbb-b-babbbm:-b-b-babb
-b-b-b-bab-b-b-b-b-ba

11. Computer Assistance 195 > d:=Determinant(m); d:=a6+\5a4b2+\5b4a2 +
b6 The following procedure does the same job for n =2 to n= 8: > for n from
2 to 8 do > m:=Matrix(n,n,f); > d:=Determinant(m); > print(d); > end do: a2 +
b2 a3 +1lab2 a4 + 6a2b2 + b4 a5 +\0a3b2 + 5ab4 a6 + \5a4b2 +\5a2b4 + b6
1742111562 + 351V + 71lfc6 a8 + 2Za6b2 + 70a4b4 + 2%a2bh + b* Now
carry out the following procedure to obtain the same display: > for i1 from 2 to
8 do > expand(((a+tbrit+(a-bri)/2); > end do; (9) Matrices with subscripted
entries Consider now a matrix of the type given in Example 8.13. >
m:=Matrix(3,3,(1,))->b[1]* (j-1)) ; m := 1 bx b2* 1 bj bj > d:=Determinant(m);
d :=bjby —bj b$ + b$b\ —bib$ +6"2 — 21 > factor(d); -(-"* + "2)"-"2)("1 -
% Of course MAPLE can find the determinant of matrices of this type for much
larger dimensions. For example, try the following: >
factor(Determinant(Matrix(6,6,(i,))->b[1]* (j-1))));

196 Basic Linear Algebra (10) Circulant matrices We now show how to define
the entries of a matrix by using a function that depends on certain preset global
variables. > restart; > with(LinearAlgebra): > a:=5; b:=8; > f:=proc(i,j) global
a, b; > 1f1>] then a else if i=) then a+b else b end if > end if; > end proc; a := 5
b:=% /:=proc(/,)) global a, 6; if) <i then a else ifi =) thena + b else b end if
end if end proc > m:=Matrix(6,6,f); '13 8 8§ 888" 5138888551388 8§ m:
55513885555138 55555 13. Bya circulant matrix we shall mean a
square matrix A = [a,y],,xn with the property that akj = 0,+1°+1, the subscripts
being reduced modulo n. For example, the matrix P of Exercise 3.1 is circulant.
We shall now describe a procedure that defines annxn circulant matrix with
three non-zero entries in each row, namely 1,1,-1, whose positions in the first
row of the matrix are at columns atbtc respectively. > a:=l: b:=2: ¢:=3: n:=6: >
g:=proc(i,)) global a, b, ¢, n; >if1 mod n = (j-a+1) mod n then 1 else > if1
mod n = (j-b+1) mod n then 1 else > if 1 mod n= (j-c+1) mod n then -1 else 0
end 1f > end if end if; > end proc;



11. Computer Assistance 1971 000-1111000-1-1110000-11100
00-1110000-111 g:=proc(ij) global a, btct n\if 1 mod n=(/"-a + 1) mod
nthen 1 else if i mod n = (j -b+\) mod nthen 1 else if 1 mod n= (j -c +\) mod
nthen - 1 else Oend if end if end if end proc Here is the 6 x 6 circulant matrix
that this defines: > ml:=Matrix(6,6,g); ml := We now compute the sequence of
absolute values of the determinants of the above matrices fromsize 1 x 1 to 20
x 20. > si: = [seq(abs(Determinant(Matrix(n,n,g))), n=1..20)]; s\ :=[1, 0, 4, 5,
11, 16, 29, 45, 76, 121, 199, 320, 521, 841, 1364,2205,3571,5776,9349,
15125] Can this sequence be suitably described? For this purpose, consider
the sequence (£,,)n>1 of Lucas numbers defined recursively as follows: £, =1,
£2 =3, (n£3K =4,.1+4-2. The Lucas sequence has the same recursive
definition as the Fibonacci sequence except for the second term, which is 1 for
Fibonacci. We can get MAPLE to remember the Lucas sequence as follows: >
lucas:=proc(x) option remember; > if x =1 then 1 else if x = 2 then 3 else >
lucas(x-I)+lucas(x-2) end if end if; > end proc; lucas := proc(jt) option
remember; if x =1 then 1 else if x =2 then 3 else lucas(x -1)+ lucas (x - 2) end
if end if end proc Here then are the first 20 Lucas numbers:

198 Basic Linear Algebra > s2:=[seq(lucas(i),i=1..20)]; $2:=(1,3.4,7, 11,
18,29,47,76, 123, 199,322,521,843, 1364, 2207, 3571, 5778, 9349, 15127] By
comparing the sequences s\ and s2, make a guess at the value of the determinant
of the above circulant matrix for arbitrary n. Then try to prove your answer.
(11) Vector spaces We shall now illustrate how MAPLE can tackle vector
space problems. First we compute bases for subspaces A, B spanned by given
row vectors, and for A D B. > restart; > with(LinearAlgebra): > vl :=
L2IR2I1[3>; > v2 :=<T|5I5I5>; > v3 := <3|2)2|1>; > v4 := <2|1211>; vl v2 v3 v4
> Basis([vl,v2,v3,v4]); [[2,2, 1,3], [7, 5, 5, 5], [3, 2, 2,1]] > x] := <2I2I3|1>; >
x2 = <5[75|5>; > x3 := <2I312|1>; > x4 := <3I52[4>; x\:=[2, 2, 3, 1] *2 := 5,
7,5,5]1x3:=[2,3,2, 1] x4 :=[3, 5, 2, 4] > Basis([x],x2,x3,x4]); [[2,2,3, 1],
[5,7, 5, 5], [2, 3, 2,1]] > IntersectionBasis([ [vl,v2,v3,v4], [x],x2,x3,x4] ]);
[ 11 2 T1[351231,114»4» 8»8J» U»4'8» 8\*:=(2,2,1,3]:=[7,5,5,
51=@3,2,2,11=1[2,1,2,1]

11. Computer Assistance 199 Now let us consider the matrix of a linear
mapping. We start with an example in which we determine the matrix of a
linear mapping relative to a 3-element basis. The method follows that of hand
calculation, in that we obtain the linear equations that express the images of the



basis vectors as linear combinations of the basis vectors and construct a matrix
whose columns are the coefficients in each of the equations. The example we
use is the mapping and the basis of Exercise 7.5. > restart; >
with(LinearAlgebra): > f:=(x,y,z) -> <z,y,x>; > bl:=1,2,0 > b2:=2,1,0 >
b3:=0,2,1 > B:=«bl>1<b2>1<b3»: > Ml:=
<LinearSolve(B,f(bl))ILinearSolve(B,f(b2)) I > LinearSolve(B,f(b3))>; /:=(*,
Y, Z) -Mz,V,X)"0-: Ml:="001-21"10 20 Of course, in this example we
have/ o/ = 1d and so the square of its matrix should be the identity matrix: >
MI"2;"1 001010001 As for the mapping g of Exercise 7.5, we compute its
matrix similarly: > g:=(x,y,z) -> <2*x,y+z,-x>; > bl:=1,2,0: > b2:=2,1,0: >
b3:=0,2,1: > B:=«bl>1<b2>1<b3»: > M2:=
<LinearSolve(B,g(bl))ILinearSolve(B,g(b2)) I > LinearSolve(B,g(b3))>; 8-=
(X%y,2)->(2x,y+zt-x) "222 Ml ;=01 -1 -1 -2 0 The composite mapping/ o g o/
then has matrix A/1-A/2 -A/1:

200 Basic Linear Algebra > M1.M2.M1;2 2-1-1-100 0 2 Here now is an
example in which we verify that, relative to a given ordered basis, the matrix
of/2 is the square of the matrix of/. > f: = (x,y,z,w) -> <2*x-y+2%z-3*w,3*x-
T*y+z-w,-x+y-z+5*w x+y-z-w>; bl:=0,1,1,0: b2:=1,0,1,0: b3:=1,1,0,0:
b4:=1,0,0,1: B: =«bl>1<b2>1 <b3> [ <b4x»: > M:=
<LinearSolve(B,f(bl))ILinearSolve(B,f(b2)) I >
LinearSolve(B,f(b3))ILinearSolve(B,f(b4))>; {'-= (x, y, z, w) —* (2x-y+2z-
3w,3x-7y+ z-w, -x + y-z+ Sw,x + y-z-w) M := 71 -f-I-f A "5 -f-| 002 0 We
now consider the composite/o/. > fl:=(x,y,z,w) -> <f(f(x,y,z,w))>: >
bl:=0,1,1,0: > b2:=1,0,1,0: > b3:=1,1,0,0: > b4:=1,0,0,1: >
B:=«bl>1<b2>1<b3>I<bdy»: > Ml:=
<LinearSolve(B,fl(bl))ILinearSolve(B,fl(b2)) [ >
LinearSolve(B,fl(b3))ILinearSolve(B,fl(b4))>; Ml :=25 129 2112J22-T
5-TT322652-512229B2—IS£L—521J22 10 -5 -3 We invite the
reader to use MAPLE to check that A/1 = A/2.

11. Computer Assistance 201 (12) Eigenvalues and eigenvectors We now
illustrate how to find eigenvalues and eigenvectors. The following is self-
explanatory. > a:=Matrix<[[-2,-3,-3],[-1,0,-1], [5,5,6]]); -2 -3 -3 a:=>
e:=Eigenvalues(a) ; e :=-1 0-1 55 6 > print(e[l],e[2],e[3]); 2,1,1 >>>>
ch:=CharacteristicPolynomial(a,X); ch :=5X-AX2-2+X3 factor(ch); (X -2)(X-
\)2 solve(ch=0,X); 2,1,1 evl:=Eigenvectors(a); ev\:=211+3-1-1110-50



1 In this display the column vector gives the eigenvalues of a and the matrix
has eigenvectors as its columns. Although MAPLE always finds correct
eigenvectors it may find different ones from the same code. For example,
consider the following input which provides more information:

202 Basic Linear Algebra > ev2:=Eigenvectors(a, output='list'); 2.1.-rr -1.
1.2-r"-1"101"-1"0 1> P ev2 := Here MAPLE returns a list of lists, each
of the form [eitmh {V[l, 1),..., v[nh 1]} ] where el is an eigenvalue, tnt is its
algebraic multiplicity, and {v[l, 1],..., v[n,-, 1)} gives nt linearly independent
eigenvectors where n, is the geometric multiplicity. Thus, for example, the
eigenvalue 1 has algebraic multiplicity 2 with "-1"1 0. "-1" 0 1 as two
linearly independent eigenvectors. The corresponding eigenspaces can be
determined by using the 'Nullspace' command: > id:=IdentityMatrix(3): >
kl:=NullSpace(a-1*id); *1:=> k2:=NullSpace(a-2*id); *2:=r<r-10." 0" -11
>>31-5>p:=Matrix([kKI[1],kI[2],k2[1]]); P-=013-1-1110-5 We can
now verify that p reduces the matrix a to diagonal form: > p”(-1).a.p; 10001 0
00 2 Finally, we can illustrate Theorem 10.3 for a particular 5x5 matrix

11. Computer Assistance 203 > A:=Matrix([[5,-1,-3,2,-5],[0,2,0,0,0],[ 1,
0,1,1,-2],>10,-1,0,3,1],[1,-1,-1,1,1]]); A:=5-1-32-502 000 10 11-20-1 0
3 1 1-1-11 1 > factor(CharacteristicPolynomial(A,X)); (-3 + X)2(X-2)3 >
factor(MinimalPolynomial(A,X)); (X-2)2(-3 + X)2 EXERCISES 11.1 In the
description of a circulant matrix, try changing the values of a, bt ¢ and compute
the corresponding determinants. 11.2 Find the eigenvalues and corresponding
eigenvectors of 1-2 3-4 -5 6-7 8 9-10 11 -12 -13 14-15 16 11.3 Find the
determinant and the inverse of the matrix 12 3 4 5 6 11.4 Consider the matrix A
=2:J4561345612456123561234612345"120x12331011
x 1 1 3 Determine the values of x for which A is invertible.

204 Basic Linear Algebra 11.5 In the diagram 205 204 20 206 193 208 200
192 4 207 k 6 196 400 each column and each row and each main diagonal
sums to 1000. Complete the square with positive integers and find what range
of values may replace k. ASSIGNMENT EXERCISES (1) Consider the nx n
version An of the matrix in Exercise 11.3. Devise a procedure similar to that
employed for circulant matrices to determine the sequence of values of det An
for n=1 to n=10. By observing that, for each of these, det An has a factor
\n2{n + 1), guess the general form of A~1. (2) Write a procedure which, for a



given positive integer n, returns the n x n matrix A whose (1, /)-th entry is -—: .
1+j-1 Incorporate your procedure in a program which, forn=1 to n= 16,
carries out the following calculation: It finds ¢ = Ab where b is the nx 1
matrix all of whose entries are 1. It then calculates the matrix X which is
defined as A except that the entries are 10-digit floating point numbers rather
than rational numbers. Finally, it calculates x = X ,c and displays the answer
x. Comment on the output of the program.

12 Solutions to the Exercises 1.1 1.5"234"345456.1.2"ior010101
.u232663412101520661-1-111-1f-11.140-1-1-110-1-11
.1.0.-1.1m.045410121542020512306'6612306< 11111112
1212311141111151232111121.6a\n...anana2,,...a-na2\oM ...
a,,2 a,,\ 1.7 Real numbers are 1 x 1 matrices. 1.8 Theorem 1.3. 1.10 X =J/\ +
%B.UIX=A+2B=1234246836912481216'*»[:: —yX-~Zy—
wWyx—zy—w 1.13"32r221111.1.14[="322"232223.1.12.
[30]. 1.15 Eachis "4 00'040004+'3459" 11 -11 177 17 13 1.16 The
product is the 1 x 1 matrix [t] where t= ax2+ Thxy + byl + 2gx + 2fy + ¢. Each
of = [0] with, respectively, M the matrices 0 0 -2a 0 1 0 -2a 0 0 the equations
can be written in the form [x y\IMPf'12152J214f2. 1.17A2=0£0.0
0-1."00a2'000000*"0JO"\0000-a2x~yi*, A3=0.

206 Basic Linear Algebra 1.18 We have/IB = 0,A2 = A,B2 =-B, and (A+B)2 -
2. On the other hand, A2+2AB+B2 =1 21 . Since {A + B)2 =12 we have (A +
£)3=(A+B)(A+B)2=A+ B; and since AB=0. A*=A, By=B we have
Ay +3A2B +3AB2 + B*= A+ B. 1.19 We have ay = 0 and bti - 0 whenever 1
fj and so [AB]j = £ a,kbkj =0 if if j. k 1.20 By Exercise 1.19 and induction, if
A 1s diagonal then so 1s Ap. 1.21 If A and £ commute then a simple inductive
argument shows that Am and £ commute for every positive integer m. Fixing m,
the same induction shows that B" commutes with Am for every positive integer
n. n 1.22 The proof'is the same as for the binomial theorem (jc + y)" =Y, 0*Y"
and 1s by /=0 induction, using properties of the binomial coefficients and the
hypothesis that xy = yx. 1.23 [A(B + O]' =[AB\+ [AC]' = [B'A"] + [CA'\. 1.24
The result is trivial for n= 1. Suppose it holds for n. Then (An+1)' - (A"A)' =
A'{A")' = A"{A'f=(/\")"+1. 1.25 If AB = BA then A'B' = (£/*)' = (>\fl)' = B'A'.
a2 —I ab ac ab b2-\be ac be c2 — 1 on the left by A then gives Al =—A.
Finally, A* =—A2 where d2 is as above. 1.27 If A is both symmetric and
skew-symmetric then ai} = ait and al} — -a,, whence fly=0. US A' = A and £'



=-B. Thus (/IB + BA)' =#/1'+ /1'# = -BA -AB=-(AB + BA) and so AB+BA
1s skew-symmetric. Similarly, AB-BA is symmetric. Next, (/12)"' = (/T')2 = A2
s0 142 is symmetric. Similarly, B2 is symmetric. Finally, { AP&AP)' =
(A"WEWK = /*(-£)*/* and so APB9AP is symmetric if a is even, and skew-
symmetric if a 1s odd 1.26 Using a2 + fc2 +c2 =1 we have A2 == X'X—I2.
Multiplying 1.29 A' = W -yx1)' = yx' -x/ = -/*. If x =V *«. andy = >r jy then X'y
=£>>> =yl* =1 If now x*x =y'y =[1] and x*y = y*x =[it] then A2 = (xy7 -
yx'Xxy' -yx') = xyV -yxV -xy'yx' + yx'yx' = Jixyl -yy* -xx' + Jfcyx' and hence
A> = (Jixyl -yy'-xx' + Jfcyx')(xy'- yx') = kxyxyl - yy'xy' - xx'xy' + fcyx'xy' -
fa/yx' + y'yx' + xx'yx* - Jfcyx'yx* = *2xy'-1tyy'-xy' + ltyy'-Jtxx' + yx' + itxx'-
i2yx' = it2(xy'-yx')-xy' + yx' = (it2 -1)/1. 130 [AB - BA]JU = al2b21 - a2lbl2
and [AB - BA]22 = a2lbi2 - ax2b2\ so the sumofthe ab ,,\a2 + bc 0 then E2
=,,, Cc-a 0 a2+ to- diagonal elements is 0. If E == (f12 + bc)12.

12. Solutions to the Exercises 207 For the last part, observe from the above
that (AB -BA)2 =\12 and therefore commutes with every C. a b], . ThenX2 =
/2ifandonlyif ¢ d 131 LetX =a2 + bc=\,b(a+d) =0, c(a +d) =0, cb + d2=\.
Suppose that b = 0. Then these equations reduce toa2 =1.c(a+d)=0,d2 =1
from which we see that either a — d— \.c=0';ora=d =—1, ¢ =0\ora =\,d=
—\,c arbitrary; or a = -\.d=\,c arbitrary. If b * 0 then we must have a+d =0
whence d = -a and ¢ = (1 - a2)/b. Thus the possibilities for Xare 1001 )-10
0-1)10c-1)-10c1*ab,211.32If(x,y) lies on the curve )-2 - x2 =1
then A - x y -y -x (\-a2)/b -a is such that A2 = -/2, so there are infinitely many
such matrices. 1.33 Simple calculations reveal that AA =0 whence A" = 0 for
n”"4 and so B=A-LA2 + 1A* = Likewise, B* =0 and so B" = 0 for n> 4.
Thus "0a {a200a0000000aa2ay00aa2000a0000WWa0"B+
+B2++B> = 134 The result follows from the standard formulae cos(i? + <p) =
cos md cos yj — sin 1? sin <p and sin(t? + <p) = sin t?cos ip + cos t?sin p. 135
For the inductive step, use the previous exercise: A"*1 = A" A= cos ifd sin m?
—sinm? cosnd cos t? sin t? -sint? cost? cos(n+1)t? sin(/i+1)t? -sin(n + 1)t?
cos(nt 1)1?7 1.36 Let B,, be the matrix on the right. Then clearly B\ = A so the
result is true for /1 = 1. For the inductive step, observe that B,,A = B,,+\. 1.37
pBJC] =(AB - BA)C - C(AB - BA) = ABC + CBA - BAC - CAB; and
similarly [[BC]A] = BCA+ ACB - CBA - ABC, [[CA]B] = CAB + BAC -
ACB - BCA. The first result follows by adding these expressions together. As
for the second, we have [(A+ B)C]=(A+B)C-C(A+B)=AC-CA+ BC -
CB =[AC] + [BC]. The third result follows by expanding as in the first. Take



A=B=01f0X=100"0Then[[AB]C]=0, [A[BC]]=200-21.38
Substitute for y in the expression for x and compare with the expression for x
in terms of z. We have C\ = a\b\ + a2bit etc.

208 Basic Linear Algebra 2.1 If A is orthogonal then AA'=/,, = A'A. Since A
= (A")'t we then have A'(A")' =1,, = (A")'A’" so that /T is orthogonal. 2.2
(AB)'AB = ffA'AB = B!InB =1,, and similarly AB(AB)' =/,,. 2.3 See Example
4.3 of the text 2.4 Let the top sheet be the (X, y)-plane and the bottom sheet the
(jc', /)-plane. If 1? is the angle of anti-clockwise rotation of the top sheet, we
have 5. 12 LI3J =/?- cost? —sini? sini? cos 1? cosi? sini1? and so cos 1? ="
and sin t? = {3. The point (jc¢',/) above which the point (2,3) lies is then T21
givenby 5. 1213 13ilL13 13 .1.e. (*,/))=(-2,3). 2.5 Clearlyjc' =jc and / = -
y, s0 1 0 0 -1 The other matrixis -1 0 0 1 2.6 To obtain (xL,yL), rotate the axes
through 17, take the reflection in the new jc-axis, then rotate through -1?. The
matrix in question is R-"MRt where M is the matrix of the previous [cos 21?
sin 21?" exercise. A simple calculation shows that this productis . v sin2i? -
cos 2d 2.7 Rotate the axes through 1?, project onto the new jc-axis, then rotate
the axes through -1?. The required matrix is cosi? — sint? sin 1?7 cos 1?7 1 00
0 cos 1? sin 1? -sini? cosi? cos21? sin 1? cos 1? sini? cosi? sin2 1? 2.8 A{pxi
+ qx2) - pA%\+ (1 -p)Ax2=pb+ (1 -p)b=bab2.9IfX-"" 1is such that X2
=0 thenwe have a2 +be=0,b(a+d)=0,c(a+d)=0, Tool be +dl =0. Ifb
= 0 then clearly a=d — 0 and X = A which is of the required form. If b * 0
then d = -a and a2 + be = 0 which gives X ="/t" . Writing z= y/band a b -a2/b
-a w — ajyjby we see that X is again of the required form. The result fails for
real matrices since. To ol for example, A=1 0 is such that A2 = 0 but there is
no b such that-b2 =1.2.10 [Alj = zi=[A%. That A+ B= A+ B and AB=BA
follow immediately from similar properties of complex numbers. 2.11 (A + #)'
=A'"+(X)'=A'+A=W+ A. Hence A + /F is hermitian. Similarly, A - A is
skew-hermitian. For the last part, follow exactly the proof of Theorem 1.10.
3.1 p1 becomes pi ;p4 becomes p2« Pi becomes P31p2 becomes P4. 3.2 ps
becomes pi; pi becomes p2;p2 becomes p3;p4 remains the same. 3.3 pi
becomes7P3ip2 becomes 6p4;P3 becomesapi;p4 becomesPp2. 3.4 pi becomes
ap2 + P3; P2 becomes (3p2; pi becomes pi + np2.

12. Solutions to the Exercises 209 3.53.6"1231312558mV*331201
2310113 1112111230-5-70-5-73120310-11-101230-5-700
012031003020-21-220-11-1012»r1231312231mV*11230-5



-70-1-52031120-5003-7 IK5.0-11-100-21-2220-10302020
-100-1000w000"311-100208303.7a=1.3.8100-2-30010-121
001-1-520000003.9 Eachis L. 3.10 Eachis 1001011000000000
3.11 \\p\ +>2P2 + "iPi — 0 gives \i + >3 =0 =2X|+>2 ="2 + 3. the only
solution of which is \=>2 =3 =0. 3.12 The maximum number of
independent rows (and columns) i1s 3. 3.13 The row rankis 2. 3.14 1 11 1\1
11\22214143-\6\61110X-1000\-\00014002-X2\-2-2s0ifX
" 1,2 then the row rank is 4. When X = 1 the row rank is 2, and when \ = 2 the
row rank is 4. 3.15 The Hermite form of each matrix is /3 so they are row-
equivalent. 3.16 The row and column rank are each 3. 01 3.17 Proceed exactly
as in Example 3.26.P—11Jf44-2-3andfi=1000-10f1 1 do the trick.
(The solution is not unique, so check your answer by direct multiplication.)
3.18 "* °Q forn=1,2,3,4. 3.19 The number of zero rows in the normal form of
Ais n - rank A and the number of zero rows in the normal form of B is m —
rank B. Since the latter must be less than the former we have n— rank A * m -
rank B whence rank B * m— n + rank A. 3.20 By Theorem 3.10, row-
equivalent matrices have the same rank and so are equivalent. 3.21 Both A and
A' have the same normal form. 3.22 Each has normal form [/3 0]. 3.23 The
coefficient matrix has rank 3 whereas the augmented matrix has rank 4. There
is therefore no solution (Theorem 3.17). 3.24 A row-echelon form of the
augmented matrixis 11014 0-20-6-1001-1 1000 0 a-1 Thus the
coefficient matrix and the augmented matrix have the same rank (i.e. the system
has a solution) only when a = 1. In this case, since the rank is 3 and the number
of unknowns is 4 we can assign 4-3=1 solution parameter. Taking this to be t,
the general solutionis x=1It+ | y=-3/+J.z=1 +1.

210 Basic Linear Algebra 3.25 In the augmented matrix interchange the first
two columns and the first two rows. This has no effect on the rank. A row-
echelon form of the resulting matrixis 12 1 -6a 0 0-6 -1 20a 0 0 /? 4 +6a Thus
if (3 m£ 6,0 the rank of the coefficient matrix is 3, as is that of the augmented
matrix. Hence a unique solution exists (Theorem 3.18). When * = 0 the last line
of the above matrix becomes [0004 + 6a] so a solution exists only if a = —3.
In this case the solutionis x=—"z+yand y=—\z— \ where z is a
parameter. When " = 6 the above matrix becomes 1 2 1 -6a00-120a00 6 4 +
6a*Vf120000 1 —6a-120a0 4+126a In this case a solution exists if and
only if a =—" and the general solutionis x=—"y—|,z=42 1 6.V3.26 [10
0]01000-21[100]001010)"1-20"010001 3.27 Itis readily seen



that rows 1, 3, 4 are linearly independent, so r * 3. If r = 3 then the second row
must be a linear combination of rows 1.3.4. This is the case if and only ifa =0
=d andbc= 1. 3.28 If AX = B then necessarily X is of size 3 x 2. Let the
columns of X be X]| and x2 Then AX = B is equivalent to the two equations Ax\
= 0 (homogeneous) and Ax2 = b2 (non- homogeneous). By the usual reduction
method the latter is easily seen to be consistent if and only ifa = -1. 3.29 1-10-
1-5221-1-41/9111-4-67 142-8-56"1-10-1-501-2112005-5-25000
00a/?-a-7a-20+ 37 8a-/?-117 + 56 so a solution exists if and only if 8a —0
-117 + 56 =0, and in this case the rank of the matrix 1s3. Whena = /3=-1.7 =
3,6 = 8thesolutionisjc = 2tt + 3/,y= 1 +u-2t,z = 2+u+5t where u, t are
parameters. 3.30 Interchange the second and third columns, and the first and
second rows. The matrix becomes 1X01 -2-\/1+3-323*4-\1\010\p+3
-1 00 1-p -\-\ If/x 7" 1 then the rank 1s 3 and a unique solution exists. If/i =1
then a solution exists if and only if\ = -1. In this case the rank is 2 and the
general solution involves one parameter. 3.31 min{m,rt}. 3.32 r 3.33 Consider
A=1-1-11-11andfl=10 00 The normal form of A is B so these matrices
are equivalent. But they are clearly not row-equivalent.

12. Solutions to the Exercises 211 334 Let A and B be equivalent. Then A can
be transformed into normal form N by a sequence of row and column
operations, and then N can be transformed into B by a sequence of row and
column operations (namely the 'inverses' of those that transform B into N).
Hence A can be transformed into B by a sequence of row and column
operations. Conversely, if A can be obtained from £ by a sequence of row and
column operations then A and B must have the same normal form. 3.35 a =
0,b=1.c = 2. 336 Treat the system as a system of equations in which all
calculations are done modulo S. For example, adding the first row to the
second gives [0 2 1 2 2 2]. 4.1 The given matrix has rank 2. By Theorem 4.1, it
therefore has neither a left inverse nor a right inverse. 4.2 Proceed as in
Example4.310-11-12-11-1"111"123011-1=121132101-t-11
-1JL20-n112312"1 3 has rank 2 so 1s not invertible; 1111 1 2-12 1-12 1
1332T"[1 ! 2n33"4 1 4"99 219922333J1111131212-1159
16 has rank 3 so is not invertible. 43 The product Ax can be written as x\&\ +
x2a2 + ¢ ¢ +]c,,a,,, 1.€. as a linear combination of the columns of A. Then Ax =
0 has only the trivial solution if and only if ai,..., a,, are linearly independent,
which is the case if and only if A has rank n, which is so if and only if A is
invertible. a b\ which is of rank 2 (i.e. A is invertible) if and only ifa £0, 4.4 If



¢ =0 we have A=0d d"O which is equivalent to ad * 0. If a = 0 then A \fbcfD.
IfafOandc fOthencdObabcdab0ad-bc whichis of rank 2 if and only
which is of rank 2 if and only ifa d -be 0. In this case we have A'l =™
apt~cp\d-b—ca4.511010012a"10001 00 0awhichis ofrank3 if
and only if a * 0. In this case, by the process of Example 4.3, A~1=0101 -1
0.111 La a a. 4.6 The proofis by induction. The result is trivial for p=1. By
Theorem 4.4, the inductive stepis(”,.-MPVi) I= A£Mi "Ar"1V'-V-

212 Basic Linear Algebra 4.7 That A3 = 0 is routine. Using this fact, we have
AxAy = (h + xA+ [jX2A2)(h + yA+1iyM2) =/3 + XA + \X2A2 +yA + xyA2 +
\y2A2 =h+ (xty)A + \(x + y)2A2 = Ax+y. It follows that AXA-X =A0-/3
whence Ax is inveitible with A~x = A-x. 4.8 That A,,A,, - A,,-m1s routine. It
follows that AnA-H = A0 =/2 so Anis invertible with A;1 = A _,,. Similarly.
BnBm = £ntmand B? = £ ,,. Finally, by Theorem 4.4, (A,,B,,)~1 = B-mA-,,.
4.9 Since (/,, + A)(L,,-A) =/,,-A2 =(/,, - A)(In+ A) we have that (/,, + A)(/,, -
A),,+A)"l1=(/,,-A)(In+A)(In+A)"l =/,,- Aand so (/,, -A)(In+ A)"1 =
(/,, + *)-m(#,, -A). If A 1s skew-symmetric then A' = -A and we have PF» = (/,
NN, FA)'T] = <Hmt*)-'</m-*)<#m + AV(In-A") = (/fI+A)-"(/1-A)(/
»-"(/"+A) = In- It follows that P is invertible with P_I =P\ i.e. P is orthogonal.
For the given matrix A it is readily seen that /,,"A =1 -cos tf 0 cost? 1 —sin 1?
0 sint? 1 whence P is the matrix stated. 4.10 -1 0-10-\0O0O 1111 5*552 12
152557, (fn+A)-1 ="1(I+sin2tf) j cost? 1 sin t? cos t? -jCosiS 1 2 4 sin " sin
v cos -h sin tf 1(I+cos2t?) 4.11 If B is row-equivalent to A then there is an
elementary matrix P such that B = PA. Thus, if A is invertible, we have that Bis
a product of invertible matrices and so is also invertible. 4.12 If AB is
invertible then there exist elementary matrices P, Q such that PABQ =/,,. It
follows that PA and QB are invertible, and from (PA)~IPA =/,, and BQ(BQ)'l
=/,, we see that A and £ are invertible. 4.13 (A + B)A-1(A -B)= (/,, + BA-!)(A
-B) = A-B + B- BA~IB=A - BA"" and similarly (A- £)A I(A+B)- A—
BA~IB whence we have the required equality. 4.14 Expand the right-hand
product using the distributive law. The resulting sum is the left-hand side. If
now A* =0 then A*+I =0 and the equality gives /i,= (/1,-A)(/fl+A+ A2 + ... +
A1) whence I,, — A is invertible.

12. Solutions to the Exercises 213 For the last part, follow the instructions;
A~1=4.15Wehave 0-100"102 1 1-13 1 0-111 (BA-In)[B(AB-L,)-1A-1,,] =
BAB(AB - 1,,)~1A -BA- B(AB - 1,,)-1A +1,, = [B(AB -1,,) + B](AB - In)~1A -



BA-B(AB - I,,)~IA+Inv v'=BA+ B(AB-l,,)-1A -BA-B(AB-L,)~1A+ !,, =/
.. Hence BA - In is also invertible. 5.2 (1) and (2) are subspaces; (3) is not
since it does not contain (0,0,0,0); (4) is not a subspace since, for example. (1,
-1,1, -1) and (0,0,0,1) belong to the set but their sum (1,-1,1,0) does not. S3
The sum of two continuous functions is continuous, and every scalar multiple
of a continuous function is continuous. 5.4 The sum of two differentiable
functions is differentiable. and every scalar multiple of a differentiable
function is differentiable. 5.5 (1) If A and B are symmetric nx n then so is A +
B\ and so is \A for every \. Hence the set of symmetric nx n matrices is a
subspace. (2) The set of invertible nxn matrices is not a subspace since every
subspace of Mat,,x,, R must contain the zero matrix, and this is not invertible.
(3) The matrices 1 0 o' 0 and 0 0 0" 1 are not invertible. but their sumis h
which is invertible. Hence the set of non-invertible matrices is not a subspace.
5.6 f Ax=0and Ay=0 then A(x+y) =Ax+ Ay=0. and A(\x) =\Ax=\Q =
0. Thus the solutions oMx = 0 form a subspace of MatmxI F. 5.7 Every
subspace must contain the zero of the parent space. 5.8 The rank of the
coefficient matrix is 3 and so for all given a,b,c the system is consistent. a €
Mat 3,(1 R there exist scalars *1,72,”3 such that Thus, for everyabc=>111
1+>2123+>3132 whence the three column matrices span Mat 3*1 JR.
5.9 No; for example, the constant polynomial 1 cannot be expressed as a linear
combination of the two given polynomials. 5.10 Let£,=1100 .£2=0011a
bcd.£3=1001.£4=011 1. Thenwe have = xE\ + y£2 + zEy + f£4

214 Basic Linear Algebra"1100001110010]1111ifandonlyifx+z=
a,x tt=b,y +t =c,y +z+ t =d. The coefficient matrix of this system of
equations is A = which is of rank 4 (hence invertible). The system therefore
has a solution (which is in fact unique). Hence the given set is a spanning set. k
5.11 (1) Suppose that “Xfx; = 0 where each x, E S{. Since 5, C 52 we have that
each X; £ S2 and so, since 52 is linearly independent (by hypothesis), every
X,-=0. Hence 5j is linearly independent. (2) If 5| is linearly dependent then by
Theorem S.S at least one element of S\ can be expressed as a linear
combination of other elements in 5|. But 5| C 52. so all of these elements
belong to 52. By Theorem S.S again, therefore, 52 is linearly dependent. 5.12
The sets (1) and (2) are linearly independent since the 3 x 3 matrices formed
from them are each of rank 3. As for (3), this set is linearly dependent; the third
column matrix is the sum of the first two. 5.13 (1) Linearly independent;
consider the entries in the (2,1) position. (2) Linearly independent; take a



linear combination of the four matrices to be equal to the zero matrix and solve
the corresponding equations (only the zero solution possible). (3) Linearly
dependent; we have 2343 1~~21002+11121+5-0321 5.14 Follow
the process in Example S.22. (1) and (2) are linearly independent. (3) is
linearly dependent; we have 13 + X=3(1+X +2X2) - 2(-5 + X + 3X2). 5.15
Every p(X) E IR,,[ X] can be written uniquely in the form p(X) = a0 + fl|* +
a2X2 +mm-+anX". mn5.16 Every A £ Matmxn IR can be written uniquely
in the form A= £ £ 0o”Ep”. 5.17 The sum of two diagonal matrices is a digonal
matrix, and every scalar multiple of a diagonal matrix 1s a diagonal matrix.
Hence the diagonal matrices form a subspace. A basis for this subspace is the
set of diagonal matrices Epp of the previous exercise. 5.18 The set of Toeplitz
matrices is clearly closed under addition and multiplication by scalars, and so
forms a subspace. A basis consists of the Toeplitz matrices Ew where p fq and
the Toeplitz matrix /,,. 5.19 Since cos 2x = cos2 x-sin2* we have that W= Span
{/,#}. Now/ = cos2andg= sin2 are linearly independent. To see this, let
X|Cos2x + >2sin2Jf = 0. Differentiate to get (\\ - X2)sin jccosx = 0. Since this
must hold for all x we must have \\ = X2, and since the original equation holds
for all x this means that \t =\2 - 0. Hence a basis for W is {cos2, sin2}. 5.20
Apply the process of Example S.28S. (1) is a basis; (2) is not.

12. Solutions to the Exercises 215 5.21 Apply the process of Example 5.25.
The matrix A = is invertible so the given set is a basis. Since A-1 = we deduce
that1100ce20-1-1-110"-11111-123-3-15-203-11-21100
(fl,*,c,<0=Ml, 1,0,0)+ M-1.-1,1.2) +Mi.-i. 1,3) +MO. 1,-1,-3) where \t =2a
-6 + 5¢-d,\2 = 3c-d, X3 =-a +b-2¢ +d. X4 =-a+ 6. 5.22 WritingX= {jt|,Jt2}
and Y = {.V|,V2} we observe that V| =j(jc2—jci) and >2 = 2.t2-.1|. It follows
that Y C Span X and therefore Span Y C Span X. Similarly, jci =y2 - Ay} and
JC2 = V2 — 2>'1 whence we have the reverse inclusion Span X C Span Y.
5.23 (1) =>m (2): Since {V|, v2} is a basis we can write w, and w, as unique
linear combinations of w\, w1 and so there i1s a matrix A such that = A Since
Span {w,, h>2 } =V, we can write V|, v2 as linear combinations of wx, w2 and
so there is a matrix B such that = B Consequently we have A is invertible. (2)
=>(1): If ve w, .W2. Vl yi = BA =AW\ ?2 V| V2 wil Since {V|, v2} is a basis
we must have BA = h whence with A invertible then we have = /T' whence
{vin»v2} C Span{H>|,H>2}. Since {vi,v2} is a basis of V it follows that V=
Span{u'|,H'2}. 5.24 Suppose that x € A n B. Then x =\\Q\ + 2 where ai,a2 are
the elements of the given spanning set of A, and similarly x = \$b\ + X4&2



where 61,62 are the elements of the given spanning set of B. Consequently we
have \xa\ + 72 - 7361 - 7462 = 0. But, as can readily be verified, the elements
,"2,61,62 are linearly independent. Hence each X-, = 0 and consequently x =
0. Thus we see that An B = {0} and so has dimension 0. 5.25 If {vi,..., v,,} is
a basis of V as a vector space over C then every x £ V can be written n
uniquely as x = £a4v4 where each ak € C. Writing ak - ak + 164 where ak ,bk
G Rwe *=i have x = £ akvk + £ 64(iv4). Thus {vi vn, 1 vi,..., 1v,,} is a
spanning set of V over IR. *=i k=\ This spanning set is linearly independent,
for if £ akvk + 52 bk(ivk) = 0 then 53 a*v* =0 and *=i *=i *=i 1 J] bkvk=0
whence ak = 0 = 64 for each it since {vi,..., vn) is a basis over C. Hence the
*=1 above set is a basis for V over IR in which case V is a real vector space of
dimension In.

216 Basic Linear Algebra 5.26 We have that (a, b, ¢, d) € Span X if and only if
the system[2732]2521152235 11 Xyzt=ab cdis consistent. Now,
by the usual reduction method. "2732a252\b1522¢3511d1522c010
1-2a+b+2c002-2\0a-6b-Sc 0 0 0 0 -\0a + \Ob + 6¢-2d For consistency,
we therefore require 5a-5b-3c + d=0. The first three vectors of X form a basis
for Span X. Since R4 is of dimension 4, any vector not dependent on these
three vectors (i.e. any vector not satisfying the above condition) may be added
to obtain a basis for R*. e.g. the vector (0,1,1,0). "0"' will do. 5.27 As a third
basis vector. 5.28 Recall from Exercise 5.15 that V\,,[ X] is of dimensionn + 1.
A possible basis is obtained by adding the monomials X2 and X3. 5.29 (1) is
true. The standard conditions are x + y e W and \x € VV. These together imply
\x+ny £W. Conversely, if the latter holds, take \ = /1 = 1, then p = 0, to obtain
the former. (2) is false; the subspace has dimension 1 with basis {(1,1,1)}. (3)
is true. If the given spanning set is also linearly independent then it forms a
basis and there is nothing to prove. If not, then at least one element is a linear
combination of others. Removing this element, we still have a spanning set.
Continuing in this way we discard elements one by one, obtaining a smaller
spanning set each time. Do this until the remaining set 1s also linearly
independent (in the worst case this will have only one element); it will then
form a basis. (4a) is true. We have a{ 1,2,1) + b(2,2,1) =(a +2b, 2a +2b, a +
b). Taking a'+ b =y and b = x we see that so also is (4b). (5a) is true. We can
extend a basis of P to a basis of Q. (5b) is false. For example, consider P =
{(x, x,x)\xER}, Q- {(jc, ¥, 0); x, ye IR}. We have dim P =1 (see (2) above)
and dimQ =2, but P £ Q. (6) is false. For example, take w = —x and recall



that 0 cannot belong to a basis. 5.30 (1) Yes. (2) No. For example (1,0,0,0) and
(0,1,0,0) belong to the set but their sum does not. (3) Yes. The set is {(0,0,c,rf);
c,d e JR). (4) No. For example. (1,0,0,0) and (0,1,0,0) belong to the set but
their sum does not. 5.31 Both sets are closed under addition and multiplication
by scalars, so are subspaces. 5.32 Given a,/?,7 e C, to determine \,n, ve C
such that (0,)0,7)="3-1,2 + 21,4) + 2,2 + 41,3) + 1/(1-1,-21,-1), solve the
resulting equations for \,\k, v to obtain the unique solution "\~ 1 12 + 121 -2 + 21
5-31-6-61 2-61 -7 + 51 6 + 61 -2-101 -1 + -31 6 + 61 This shows that the given
set is a basis. Moreover, taking a=1,/?7=7 = Owe obtain (1,0,0) in terms of the
basis, and similarly for the others.

12. Solutions to the Exercises 217 5 .33 We have "1220222621401 -1"
-1-21-40-3'V¥"1000100010002-*001 -10 0 The general
solution is therefore '-It - w £t +w Otw=1t'-2'1201.0.+w'-]'1 001 x=
The solution space is therefore of dimension 2. 534 As defined, A+ B is
closed under addition and multiplication by scalars, so is a subspace. If C is a
subspace such that AC C and B C C then for a £ A and b £ B we have a,beC
and so a +b e C. Hence A + BCC. To establish the equality we show that
LHSDRHS and LHSCRHS. For the former, observe that LHS D Ln A/ and
LHS D Ln N whence, by the above, LHSDRHS. As for the latter, if x e RHS
thenx - y+zwhere ye Ln A/ and z € LnN. Since y,ze Lwe have Jt=y+ze
L. Moreover, since y G A/ we have jc =y +z€ A/ + (LnN). It follows that
jceLn[M + (LnA/)]=LHS. For the last part, take L={(x,x,0);x,yen}, M=
{(0.y.2); v,zG H}, JV={(Jt.0,0); jc e K}. Then A/ + N=113. Ln (A/ +/V) =
L, Ln A/= {(0,0,0)}, LOW = {(0,0,0)}. and the stated inequality holds. 535 It
is readily verified that E,, is closed under addition and multiplication by
scalars and so 1s a subspace of Map(IR, IR). Suppose now that/ is the zero
map in E\. Then we have (Vjc e fl) a0+aicosx+b\s\nx = 0. Taking x =0 we
obtain a0 + a\ = 0, and taking x = 1t/2 we obtain a0 + b\ = 0. Thus o\ = b\ - -aQ.
Taking x = 7r/4 we obtain a0 + -jjfli + i = 0 whence a0 = ai =b\ - 0. Suppose
now, by way of induction, that the zero map of £,, 1 (withn " 2) has all its
coefficients 0 and let/be the zero map of En. It is readily verified that tff+rPfis
given by the prescription n-1 (DV+ n2f)(x) = n2a0 + Efa2 -*2)(a* cos ifcje +
bk sin itje) and since/ is the zero map of £,, we have that D*f+n2f\slbe zero
map of £,, j. By the induction hypothesis, therefore, we have that all the
coefficients aQ, ax,..., a,,-t, b\,..., bH-\ are 0 and the formula for/ reduces to
(Vjc gR) 0 =/(jc) = a,, cos jc + b,, sin jc. Taking jc = 0 we obtain an =0, and



taking jc = 7r/2n we obtain b,, = 0. Thus all the coefficients of/ are 0 and the
result follows by induction. It is clear that the 2n +1 functions generate £,,.
Moreover, by what we have just proved, the only linear combination of these
2n + 1 functions that is zero is the trivial linear combination. Hence these
functions constitute a basis for £,,.

218 Basic Linear Algebra 5.36 Let M be the set of rational functions
described. Then clearly M is closed under addition and multiplication by
scalars, so i1s a subspace of Map(IR, IR). Following the hint, observe that
each/ e M can be written uniquely in the form/ = fla/o + ¢ ¢ ¢ + Or+s-1fr+t-1
and so the/; form a basis of M. For the last part, it suffices by the hint (and by
Corollary 2 of Theorem 5.8) to show that B is linearly independent. For this
purpose, suppose that £m + ..+ a' +JL. + ...+ bl =0. x-a H(x-*)' x-p (x~PY
Multiplying both sides by (jc -a)r(x -fi)' we obtain ax{x -a)r-](x-pY + a2(x -
a)'-2(x-/?7)* + m m + a,(x -PY + bt(x "<*)'(* -PY-* +b2(x -qY(X ~PY~2 + *mm
+M* -a)' = 0. Taking the term ar(x~PY over to the RHS, what remains on the
LHS is divisible by x -a and, since a f/?, we deduce that a, = 0. Similarly, we
see that bs = 0. Extracting a resultant factor (x -a)(x -p), we can repeat this
argument to obtain ar-\ = 0 = bs-\. Continuing in this way. we see that every
coefficient is 0 and therefore that B 1s linearly independent. Hence B is a
basis. 5.37 The result is trivial if n=1 since f\ is non-zero. By way of
induction, suppose that (/1)1 $i$«-1's linearly independent whenever r,,..., 1,,-\
are distinct. Consider(/,),<i<n and suppose that r\r,, are distinct. If \rfx + ¢ ¢ o
+\,Jn =0 then (VxeR) " + .- + M= 0. Dividing by er"x (which is non-zero)
and differentiating, we obtain h(ri - /e><"-"">*+ - +> = (/e  -tN---"")* =0,
Since the n - 1 real numbersn-r,,1,, , - 1,, are distinct, the induction
hypothesis shows that \t =« « m =\,,-1 = 0. Consequently. \,Jn = 0 and hence \n=
0 (since e'""* " 0). Thus /,,...,/,, are linearly independent. Hence the result by
induction. Conversely, if the r, are not distinct then r, = r7 for some ij whence f;,
= fj and the/; are dependent. n 5.38 Suppose that £ XM = 0. Since degp;(X) =
1 we have, on differentiating n times, 1=0 n-1 X,, = 0 whence £ "M = 0-
Differentiating n - 1 times, we deduce that \n-\ = 0. i=0 Continuing in this way
we see that every coefficient \,m. = 0 and therefore the given set is linearly
independent. Since dim IR,,[X] =n + 1 and there are n+ 1 such functions, they
therefore form a basis (recall Corollary 2 of Theorem 5.8). 5-39 Since sums
and scalar multiples of step functions are also step functions it is clear that the
set £ is a subspace of the real vector space of all mappings from JR to IR.



Given t? £ E. the step function t?j that agrees with t? on the interval [a;, ai+1 [
and 1s zero elsewhere 1s given by the prescription t?,W = <?(fl1)k(x)-efl/tl(x)].
nt+i Since then t? = £ tf, it follows that {ek ; * ¢ [0,![} spans E. Since the
functions ek are 1=0 linearly independent they therefore form a basis of E.
Similarly, the set F of piecewise linear functions is a vector space.

12. Solutions to the Exercises 219 That C is a subspace is clear since it is
closed under addition and multiplication by scalars. That {gk; k G[0,1 [} is a
basis of C is similar to the above. That every f g F can be expressed uniquely
in the form g + e where g G C and e G E can be seen from geometric
considerations. A typical fE F can be depicted as in the diagram Now think of
strips of wood that can slide up and down and thereby manufacture g via e. 6.1
(1),(2). and (5) are linear; (3) 1s not linear since/(1,0,0) +/(-1,00) 7/(0,0,0);
(4) and (6) are not linear since in each case, for example,/[2(0,0,0)] £
2/(0,0,0). 6.2 (1) and (2) are linear. (3) is not linear since in general TB(\L,,) f
\TB(L,). 6.3 (1) and (2) are linear; (3) is not linear since in general /(\p{X)) f-
V(p(X)). 6.4 fA(x+y) = A(x+y) = Ax + Ay = fA(X) + fA(y) andfA(\x) = A\x
=\Ax = \fA(x). 6.5 By theorems in analysis, f(p + q) = fp+ fqand fip=\fp. 6.6
No. A and -A have the same Hermite form, so/(4) =/(-A) whence/(A) -/(-A) =
0. But/(A- (-A)) =/(2A) =/(A) since 2A has the same Hermite formas A. 6.7
Observe that T(0) = IB2 so if T is linear we must have B2 = 0. Conversely, if
B2 =0then T{A) = AB + BA- 2BA + 3AB =4AB - BA which is linear. 6.8
D-fIR,,!*]) = Hi-1[ X] and />-({0}) = R (the set of constant polynomials). 6.9
we have that rrrw = {/(*): *e rrw} = {/(*) ; /(*) Gr(A)} = (W); /(*>) =M for
some a g A} =/-(A), and/-/-/-(fl) = {a; /(a) grr(B)} = {fl ; /(a) = f(x)
where/(x) € B} = {a;/(a) G B) =/-(B). 6.10 D"(X) is the set of polynomials
whose even coefficients are zero. D""(X) is the set of polynomials whose even
coefficients, except possibly the constant term, are zero. 6.11 The image of the
x-axis is the line y = jc; the image of the v-axis is the line y = — jc; and the
image of the line y = mx where m f 1 is the line y =jzjjf +*. 6.12 Observe that if
x G /-(K) then/(x) G Y and therefore we have f~{f~{Y)) C Y. Since r is
inclusion-preserving, it follows that/"*[* 0/-(0] C r{X)nf~(f~{Y)) C fA(X)n Y.
For the reverse inclusion observe that ifa G f~{X) n Y then there exists b G X
such that f(b) = a£Y whence fr G x n/-(K) and so a = /(&) G /"*[* n/-(K)]. 6.13
/(flfr,c) = f1(1,0,1)+6(1. 1,0)+c(0,1, ).Im/=Span{(1,0,1),(1,1,0),(0,1,1)} =R\
and Ker / = {(0,0,0)}. 6.14 Ker/= {(a,b) GR2 ;b=0} =Im/. 6.15/ : Ft3 -*
Ft5 given by/(a,fc,c) = (c,0,0) is such that Im/ ¢ Ker/; and g : RS -> FI> given



by g(a, fc, c) = (fc, ¢, 0) 1s such that Ker gC\mg. 6.16/(0,~,""")=0(1,1,2,0) +
1,0,-1,-1) +73,2,5,1) + 6(-1,-1,-1,0) and so

220 Basic Linear Algebra Im/ is spanned by the rows of the matrix 1 120 -1 0
-1-13251-I-1-1000 00 which has Hermite formri oo 01 00 0 1 000
000 n-1 00 oj Abasis of Im/is {(l, 1,2,0),(-1,0,-1,-1),(-1,-1,-1,0)}. It is
readily seen that Ker/= {(-2c,fc,c,c,0) ;fc,ce JR), so a basis for Ker/is
{(0,1,0,0,0),(-2,0,1,1,0)}. 6.17 Abasisoflm/is{X2,X3};Ker/=R 6.18
Take/(Jt,>,z,r)= (jc,0,z,0)andg(je,>,z/)= (0,y,0,r), "1 i r 6.19 Argue as in
Example 6.12, noting that the matrix 2 -1 -1 is invertible. [1 2 -1 6.20 Suppose
that £ q/(v,-) = 0. Then/( £ a.v,) = 0 whence./being injective, £ aw - 0. The fact
that a\,..., a,, are linearly independent gives each a-, = 0 whence/(vi),...,/(Vv,,)
are linearly independent. 6.21 (I) => (2) : If (1) holds then for every x G V we
have/(jc) G Im/ = Ker/ whence /"j¢) = 0, so that/2 = 0. If/ = 0 then Ker/ =V
whence the contradiction n=dim V =dim Ker / =dim Im/ = 0. Hence / £ 0. By
Theorem 6.4 we have n=dim V=dimKer /+ dimIm/ =2 dimIm/ sonis
even and the rank of/ is "n. (2) => (I): If (2) holds (benf(x) = 0 gives/(j¢) G
Ker/ whence Im/ C Ker/. By the Dimension Theorem, dim V = rank + nullity,
i.e. n=1in+ nullity. Hence dim Ker/= n= dim Im/. It follows by Theorem 5.9
that Ker / =Im/. 6.22 Consider the differentiation map D: R2[X] -» R2[X]. It
is not possible to write X2 as the sum of an element of Im D and an element of
Ker D. 6.23 Writing/(jc) = a sin x + fccos jc we have (1) tf(f) = 2a so/ € Ker tf
if and only if a = 0. Hence Kerd = Span {cos} and the nullity is 1. (2) <?(0 =0
so Ker d = W and the nullity is 2. (3) ti{f) =0 if and only ifa = 0 in which
case the nullity is 1. 6.24 If tf = af + bg + ch then T{ti) {x) = -ex sorank T = .
Ker T= {aftbg; a,b£ IR} so the nullity of T 1s 2. 6.25Take/(£a.xO = (flo,...,a,,).
1=0 6.26 If (je,>) G Ker 1? then (jc,> -/(jc)) = (0,0) and so x=0 and y = f{x) =
/(0) =0 Hence Ker d = {(0,0)} and so d is injective. By Theorem 6.5, t? is an
isomorphism. "1 1 1] 123 J 1 2 is a basis of IR3. Proceed as in Example 6.15
to obtain Ax,y,z) = (4* ~4y + z, 5jc -5>+ z, 8* - 10y + 3z). 6.28 /(a + bX +
cX2) =1l1/(1) + bf(X) + cf(X2) =a + cX + bX2 + cX\ 6.29 If C 1s considered as
a complex vector space, then for \=1 -1 we have f{\( 1 +1))=/(2) =2
whereas >/( 1 +«) =(1 —1)(I1 -1) =-21, so that/ is not linear. 6.30 / is linear if
and only 1f 6.27 Recall Example 5.25: the matrix is invertible, so {(1,1,1),
(1,2,3),(1,1,2)} /(Vi +>2V2 + A3v3) = Ai/(v,) + X2/(v2) +>3/(v3),

12. Solutions to the Exercises 221 i.e. if and only if This is the case if and only



if/i =0. Then/(jcvi +yv2 +zv3) =0 if and only if x =0, y+z =0 and so Ker/ =
{a(v2 - v3);ae F). Thus a basis of Ker/ is {v2 - v3}. 6.31 A basis of Im/is
{(1,0,0),(1,0,1)} and a basis of Ker/is {(1,-1,-1)}./-(A) = {(jc,-j¢,2) ; jc,ze
R}, abasis of which s {(1,-1,0),(0,0,1)}. 632 f{x,ytz) = 2 {x-y)X+(y+z2) X2 +
(xt+z)X\ Abasisoflm/is {2X+X3,-2X+X2}. A basis of Ker/is {(1,1,-1)}. This
can be extended to the basis {(1,1,-1),(1,0,0),(1,1,0)}.r-1 1 1 is invertible so
{aybyc} is a basis. We have 6.33 The matrix 1 -1 111 -1 (x,ytz)=%(y + z)a +
+(x + z)b+=E(x + y)c and so f(xtytz)=(y+"x + 2)t{(z-yI"(\-\)x + (\ + Dyl {[(\-)y-x
+\z)). fis injective if \ f- 1 and \ f 2. The dimension of W 1s 2. If \ = 2 then
/(1,1,0) =(1,-1,2,0) andr{(l, 1,0,0)} =(2,-2,5). 634 If x =/(j|) and > =/($2)
where $1, $2 € S then for / € [0,1 ] we have tx + (1 -/)>=/1/5, + (1 -/)52] ertf)
and 50/-(5) is also convex. 635 By the Dimension Theorem (6.4) we have /\(-
O'dimV, = -dim Inm/,-dim Ker/, + dimIm /2 + dim Ker/2 - dimIm/3 - dim
Ker/3 +(-1)" dim Inv/, + (-1)"dim Ker/, Since the sequence is exact, dim Ker/,
=0 and Im/,, = V,,+1. Moreover, Im/ = Ker/+|. The n above display therefore
reduces to £(-1)' dim VJ = (-1)"dim V,,+] whence the result follows. 636 The
rank is 2 so the nullity is 1. 637 (1) (g of){x) = g(y) where y = f{x) so Im {g
of) CImg. (2) If/(jt) = 0 then g[f(x)] = g(0) = 0 so Ker/ C Ker(g of). (3) By (1)
we have rank {g of) " rank g. By (2) and Theorem 6.4, we have rank(go/) =
dim V-dim Ker(go/)" dim V-dim Ker/= rank/. Hence rank (go/)< min {rank /,
rank g). Let {ei,..., e,,) be a basis of V. Let m=dim IV and 5 =rank /. As basis
for IV we can take[f{ei)t...J {es),ws+] w,,). Then Img = Span{g/"(e,)

gfie,).giws+l) giw,,)} - Span{gf(e,) gfiep).g{ws+\) g(wm)} where p = rank
gf. It follows that rank g~ p + m -5 =rank g/" + dim IV - rank /

222 Basic Linear Algebra 6.38 {1,X,X2,XJ} is a basis of IR3[X] and/(1) =
0,f(X) =0,f{X2) =0,/(X") = 6(X - 1). So the nullity of/ is 3 and the rank is 4 -
3=16.39If {e,,e2,e3} is the natural basis of IRJ then /v(<?, )= (0,-"3,72),"2)
= (>3,0,-V)), /vfo) = (-"2,71,0). Since y f 0 we can assume that >, * 0. Then we
have /,(™.) = -"/,(")-%") y\ y\ where /v(e2),/y(ej) are linearly independent.
Hence a basis for Im /v is {"(€2),/v(e3)} so rank /v = 2. It follows that dim
Ker/y =3-2=1 whence Ker/v = Span {y} since fy{y) =0. 6.40/(1,0,0,0)=100
-1,/(0,1,0,00=0110./(0,0,1,00=01-10./(0,0,0,1) =100 1 So/ carries a
basis to a basis and therefore, by Theorem 6.5, is an isomorphism. 7.1 1 2" 2
-1-101-2-3-223722-0-10][02-2-1;;[1-2-11073"221]0300
-417.4/(0,1,0)=/(1,1,0)-/(1,0,0) =(2,-2,6) and/(0,0,1) =/(1,1,1)-/(1,1,0) =2
2 1" (1,-2,3) and so the matrix of/ relative to the natural basis of IRJ is 3 -2 -2



-2637.5/(*>>,Mat8/ =z) =(z>\ro-2r 010120 *) « Mal8g="22201-I
-1 -2 07.6 Ahas rank 3 and so is invertible. The matrix of/-1 is A Mat8/$/ =r
22-11-1-100021 is A~l, namely r-f-6 21 LI 3 -u 7.7 Use Theorem 7.3 and
induction. 79 A=78100100011I000]110r010"-100001;B=m
00-1]-1001 1 1 The matrix X represents the identity map relative to a
change of reference from the first basis to the second. Since (1,0,0) =
1(1,1,0)-1(0,1,1)+1(1,0,1) (0,1,0) = 1(1,1,0) +1(0,1,1) -1(1,0,1) (0,0,1) =
-1(1,1,0)+1(0,1,1)+1(1,0,1) 1 T-f-1 1 1 1-117.10 We have lo determine an
ordered basis B = {&,, b2t b)} of IR3 such that P is the transition matrix from
B to the natural ordered basis {ei,e2,ej}. B= {e2 + ehet +e”e\ +e2}. 7.11 If A
is similar lo B then there is an invertible matrix P such that A = P~]BP. Since P
is invertible. so is F. Then A' = PIB, {p-])' = [(/>"")']-,ff(/>"1)' and so A' is
similar lo fl'. 7.12 If A =P~IBP then by induction Ak = P~]BkP. we see thai X
-\

12. Solutions to the Exercises 223 7.13 cosi? -sini? _11isin1? cost?117.14
The respective matrices are "0 100...00020...00003...0mi-1(1)000
00000(2)0e00n00n\001i000n200000000(3)0100000
000-22000-3..0..3..0..0...—m.0.0n.0.000...10.7.15Ifxf0
is such that f~1 (x) f 0 then for every k * p - 1 we have/*(.r) 0. To show that
{*,/(*),. »» 1'W} i1s linearly independent, suppose that >u* + \if{x)+- + \p-1f-
1(x) = 0. Applying/p-1 to this we obtain Xv{V'x) = 0 whence X0 = 0. Thus we
have M*)+ .-+ MA(") = 0- Applying f'1 to this we obtain similarly \\ = 0.
Continuing in this way we see that every \, = 0 and consequently the set is
linearly independent. If/ is nilpotent of index n= dim V then {xj {x),... ,/""'(*)}
is a basis of V. The matrix of/ relative to this ordered basis is then that in the
question. Conversely, if there 1s an ordered basis with respect to which the
matrix of/ is of the given form then to see that/ is nilpotent of index n it suffices
to observe that the matrix M in question is such that M" = 0 and A/"-1 0. 7.16
We have /(1) =1 f{iX) =\+X f{X2) = (\+X)2=\2X + X2 f{X") = (1 + X)" =1
+(1)X + QX2 + mmm + Xn and so the matrix of/ isMil 012300131 ©000
0..17.17Wehave /(1) =/W/(1+X)01001010mm1101=100010
00+11001100t*1100+-1110"«1110+1111andsoMatf=
-1101-1101-100 1. The rank of this matrix is 3 and so dim Ker/ =0

224 Basic Linear Algebra Im/ 7.18 = Span<010010101001}m 100
0-10-11000000-11+[1000]000000100000 7.19 (1),(2),(3) are



routine. If A and B are similar then there is an invertible P such that A = P~IBP.
By (3), tr(A) = tr {P~IBP) = It(P~]PB) = ir{B). For the last part, observe for
example that tr 1 0 0 -1 = O=tr but these matrices are not similar. 8.1 All
expressions are the same. -,/12345678' W 1458 7 326 !)m 8.2 Routine. \
/12345678 Y\234567 8 8.4 Even; odd. 8.5 -28. 8.6 26 + 13* +\2 -\\ 8.8
400. 8.9 If the elementary matrix is obtained by interchanging two rows
(columns) then the determinant is —1; by multiplying a row (column) by \ it is
\; and by adding \ times one row (column) to another it is 1. 8.10 By induction.
For the inductive step, use a Laplace expansion via the first column. 8.11 x f\.
8.12 Use a Laplace expansion via the first row, then via the first column of the
resulting 5x5 matrix, then by the first row of the resulting 4x4 matrix, and so
on. 8.13 Add the first row to all the others; the answer is n\. 8.14 det0 000 0
00000001100001TI000000000=(-1)(--1)*H(--2)+-+1=(]21
=# 1\5-(--1) 8.15 For example, take ps — 2p2 then use a Laplace expansion
via the first column 8.16 I*"1 =1-2411-2441-28.17det A" =(det AY=16
and so det A= 0. 'be-fl fg-he hf-bg fg-hc ac-g2 hg-af hf — bg gh—af ab—nhl
and P~IAP="9a00]09b 0 0 0 9c det A=3fiabc 8.18 d-b1000-I0-101
8.19 The first two have determinant 1 so adjugate=inverse; these are
respectively [0-I111-2-3-1541-111-31-1_ 49 The third has determinant
6 and inverse 1 0 8.21 Since A- adj A= (det A)l,, we have 6-300030-22
(det A)(det adj A) =det [(det A)/,,] = (det A)".

12. Solutions to the Exercises 225 det A A being invertible, det A f0 and so
det adj A= (det A)"-1. 8.22 ABadjAB = {del AB)In= (det A det fl)/,, and so
adj AB=B~x A"l det A det B - B~1 adj A det B=B~1 det B adj A =adj flad;
A. 8.23 adj (adj A) =det adj A- (adj A)"1. By Exercise 8.21 and the fact that
(adj A)"1 = we obtain adj (adj A) = (det A)"~2A. 8.24 If A 1s upper triangular
then ai} =0 when 1 > j. Thus, for / <7 we have det A,-, = 0. Consequently, for
1 >7,[ad) Al,y =(—1)"*" det Ay,- = 0 and so adj A is also upper triangular.
8.25 For a symmetric matrix, A,j = Ay,. 8.26 Observe that [adjA],,- = (-
1),+>det A,, = (-1),+'det A*=[adj A% and so adjA* =adj A=adj A. 8.27 det
A=(c-a)(r-&)(jc -c)(a-b)(b-c){c-a). 8.28 det=(jc - a)3(x + 3a) so the
solutions are x — a and x = -3a. 8.29 Start withe 1 -yc2. 830 Begin by adding
all the rows to the first row, thereby obtaining a factorn-\. Then, for 1 > l.takep,
—pi. 831 Begin by adding all the rows to the first row. thereby obtaining a
factor na + b. Then, for 1 > l.takep, — ap\. 832 Begin by subtracting the first
column from the others. Then do Laplace expansions via the rows. The



solutions are x =0,..., n— 1. 8.33 For det B,, first subtract the first row from
the other rows, then subtract the last column from the other columns. For det
A,, first add the last column to the first column. Now do a Laplace expansion
via the new first column and use the result for det B,,-\. For the last part, use
the previous formula and induction. 8.34 Use a Laplace expansion via the first
row of A,,+2. The last part follows by induction and basic trigonometry. 835
For det A,, subtract the last column of A,, from the other columns and then use a
Laplace expansion via the first row. For the recurrence formula for det Bn use
a Laplace expansion via the last column. For the last part use induction. 836
We have det ABB A=det ABB-AA-B=det=det=det A+BBOA-BIB
0OA-B1BOA-BA+BOOIA+BO0OIdet=det(A-B)det(A+ B). 837
Clearly, only if AO BCP QAP AQR S BP + CR BQ+CS A=P~\
BP+CR=0,BQ+CS = S-RP~IQ and this is of the given form if and

226 Basic Linear Algebra Since B = -CRp-* we have C{S - RP~*Q) = S-
RP~XQ, so we can choose C =1 and then B=-RP~X. Now clearly
det/VdetA/=det 1 p-*Q 0 S-RP~1Q =det 1 0 0 S-RP~1Q = det (S-RP~IQ) i.e.
det P~1 det A/ = det (5 - RP~]Q), so det M = det P det (5 - RP~]Q) =det {PS -
PRP~1 Q). If now PR = RP then PRP~1 = K and so det A/ = det (#»S - RQ).
Likewise, we also have det M = det (5 - RP~1Q) det P = det (S/> - RP~XQP)
so if />(? = QP then det A/ = det {SP - RQ). 8.38 Follow the hint. 28; -18; n\.
9.1 (1) The eigenvalues are 1,2,3 each of algebraic multiplicity 1. (2) The only
eigenvalue 1s 1, of algebraic multiplicity 3. (3) The eigenvalues are 2,1 +1, 2 -
21, each of algebraic multiplicity 1. 9.2 Suppose that Ax = \x where x * 0. If X
were 0 then we would have the contradiction x = A~1Ax= A~1Q= 0. Hence\ "0.
Nowx= A~1Ax = A~I\x= Xi4"'xandsO14"'x= X"'x; i.e. X"1 1s an eigenvalue of
A~1. 9.3 If Ax = Xx then by induction we have Akx = X*x. Thus, for any
polynomial p{X) =a0 +a\X + e+ *+a,X" we have p{A)x =/?(X)x whence
p{)) is an eigenvalue of fj{A). 9.4 Proceed as in Example 9.3. (1) The
eigenvalues are 0,1,2, each of algebraic multiplicity 1. £0 = Span £1 = Span £2
=Spanx 0 —jr0x0JCOx;xf0\soabasisisx”0\soabasisisx”*0\so
a basis 1s (2) The eigenvalues are 0,1, -1, each of algebraic multiplicity 1. £0
= Span £1 = Span £-1 = Span x " 0 > so0 a basis x* (0 > so a basis is x * 0 > s0
a basis 1s 9.5 The eigenvalues are 1 and 2, of algebraic multiplicities 2,1
respectively. £1 has basis " 1" 01 -1j *r°1 1 L~1 and £2 has basis 3 1 -5

12. Solutions to the Exercises 227 9.6 (1) Relative to the natural ordered basis



of IR3 the matrix of/ 1s values are 1,2 of algebraic multiplicities 1,2. (2)
Relative to the natural ordered basis of R3 the matrixof/is 10-1222212
"0011011"00 The eigen- The eigenvalues are 0,1, -1 each of algebraic
multiplicity 1. 9.7 The first two matrices are those of Exercise 9.4. Suitable
matrices P are therefore, respectively. 10 1]010-10land1-12-1-2-111
1[312]121111andProceeding similarly with the other two, we see that
suitable matrices P are, respectively, 1 1-301 -1-1-259.8 Letdet A,, =a,,.
Use a Laplace expansion via the first column to obtain the recurrence relation
a,, = a,,-X + 20a,,-2. Consider therefore the system of difference equations an =
0,,.,420"-1 The matrix of the system is A = Theorem 9.8, the matrix P=1 20 1
0 20 20 -5 4 which has two distinct eigenvalues, -4 and S. By is invertible and
such that PIAP=-400 5 Now />"=1804-20520 A"=Pand so (-4)" 00
5" [>-'=e S« ((4)«t1 4-5M5-(-4)M 45", + 5+(-4)", 4.5" + 5(-4)n Finally, an
K=A"-2aibi=A"-2211-1"9 5«+i -/-4)1+1 5« (_4)« from which the
result follows. 9.9 (1 -X)\ X3-X2-X + 3, X3 +3X2 + 10*+ 30. 9.10 We have
(/,, - BA)[In+ B(l, - AB)~1A] =1,-BA+(/,,- BA)B(In- AB)~IA=1,,-BA +
{B- BAB){L, - Afl) ,/\=In-BA + B(In-AB){In-ABTXA =1n-BA+ BA=A,-
Hence (/,, - BA)~1 =1,, + B{In-AB)~XA. The last part follows from the fact
that \ is an eigenvalue of XY if and only if XY - \L,, is not invertible which, in
the case where X f0. is equivalent to /,, - \~1XY being not invertible. -1AD-
9.11 P~IAP=¢"00«**9.12P=1-11]-v/5S0oVv/5111;P-r°] 1101110
0

228 Basic Linear Algebra -IAD — 9.13 Proceed as in Example 9.10. By
Theorem 9.8 there 1s an invertible P such that P AP - X, 0 0 \2 and, since \ \ +
\2 =a, we have P=P P ">2 ->] When the eigenvalues are not distinct, use the
expression for A" given on page 170. " 4 +2-4" 3-4" -4 +4"] -24+2-4" 3-4" 2
+4".9.15 -2+ 2-4" 3-4" 2 + 4" 9.16 Diagonalising A in the usual way we
have P~IAP =D where n9.14\6 1 [6(-7)-1-6"] -*19(-7)--1 + 4-6"-"]] P =
Now the matrix E=r1101-100]11/>'=1-11122u001,0="400'09
0004[2000300'0 2 1s such that E2 = D and consequently the matrix B =
PEP -i has the property B2 = A. A simple computation shows that B=r f1J 2
220029.17 For the first part, use induction. The result clearly holds for r =
1. Suppose that it holds for r. Then IK+%] = \t"[ A%\ * EKIIMyl " £**v-' =
MHn'-' £ 1 =*+V =1 1=1 =1 =1 nk (1) [f}/?] <— then nk 1 + \P\Ua\\ +
\P2\A%\ +m+ I/HIM,! + ¢ ¢ ¢« A 1 + k\p\ + K2n\p\2 + m mm + kKTtrx\P\r + ¢ ¢ o =
1 +k\p\{\ + kn\p\ + * m m + K'-xrrx\p\'-x + ¢ ) which is less than or equal to a



geometric series which converges. Thus we see that if |/?| < the S$(A) is
absolutely convergent, hence convergent. (2) If Sp{A) is convergent then lim,-
* p'A' =0 so (In-PA)(L,, t0A+" + ---) =\\mlI"O(In-pA)(L,, + pA+ .-- + b"A") =
linwa.-zr' A"") = /«m Consequently /,, - PA has an inverse which is the sum of
the series. For the last part, let \ be an eigenvalue of A. Then \L,, - A is not
invertible. Suppose, by way of obtaining a contradiction, that |X| > nit. Then —
<—. Consequently, if we let |a] nk P=\~lwe have, by (1), that Se{A) converges
and so, by (2), /,, -/?A=/,, -\"'A 1s invertible. It follows that \l,, -A is
invertible, a contradiction. Hence we must have [X | * nit. 10.1 mA{X) =a0 +
axX + ¢ ¢ ¢+ apXp. We must have a0 f 0 since otherwise 0 = mA{A) = atA+ m
+ ApAp and therefore, since A is invertible. a,/,, + a2A + ¢ * * + OpA?'* =0
which contradicts the fact that mA(X) is the minimum polynomial of A.

12. Solutions to the Exercises 229 NowO = a0l,, + aiA + + apAp can be
written A{at + a”A + [+ <V4'-")=-fl()/n + apAr ). Thus A'1s a whence, since
A is invertible, we have A 1= (at + a2A + linear combination of /,,, A,..., Ap 1.
10.2 For each of the matrices the characteristic and minimum polynomials
coincide; they are respectively (X -1)3;-X3+X2 +X-3;-X3+X2-X+2.
10.3 cA(X) =det[A - XIn] =a0 + axX + ¢ * « + A, Xn. Taking X = 0 we obtain
det A= a0. 10.4 We have cj,, (X) = X2-2X cos t?+ 1 = (X-cost?-/sint?)(X-
cost? + tsint?). Then cgt[ X) = mKt[ X). If t? is not an integer multiple of 7r then
1 sint? ~ 0 and so rt has no real eigenvalues. 10.5 cD{X) = (-ir'"*-'-m"X) =
X""1. 10.6 The matrix of/ relative to the natural ordered basis {(1,0),(0,1)} is
A = mf(X)=mA(X) = X2-3.4 -1 10.7 Consider the matrix 10-10201"13.
The only eigenvalue is 2 (of algebraic multiplicity 3). The geometric
multiplicity of this eigenvalue is 2 so/is not diagonalisable. 10.8 For all
positive integers 1 we have A,+1 = {PQ)i+l = P{QP)IQ = PffQ. If now h(X) =
7q+7\X + + » + z«X" then we have Ah(A) = z0A + A2 +* * * + z«Antl =
Z0PQ + zZIPBQ+- + z,PBnQ = P[z0In + ZiB+ *m + z,,Bn)Q = Ph(B)Q. It
follows immediately that AmB(A) = PmB{B)Q = 0. Similarly, we have
BmA(B) = 0. Consequently, mA { X)\XmB(X) and mB { X)\XmA(X), and so we
can write XmB[X) = p{X)mA {X) and XmA(X) = q(X)mB(X). Comparing the
degrees of each of these equations, we deduce that deg p + deg q = 2. Thus,
either deg p =0 in which case p{X) = 1 and XmB(X) = mA(X), or degq=01n
which case q{X) = 1 and XmA(X) = mB(X), or degp =deg q =1 in which
case mA(X) = mB(X). 10.9 The matrix can be written as a product PQ where P
1s the column matrix [ 12 ¢ - * r]' and (2 1s the row matrix [ 1 1 * * * ]]. Note



that then B = QP is the 1 x 1 matrix whose entry is \r(r+ 1). We havem8(X) = -
$r(r+ 1) + X. Clearly,mA {X) f mB{X) andmB{X) f XmA(X). Thus, by the
previous exercise, we must have mA {X) = XmB{X) =-\r{r + 1)X + X2. 10.10
The matrix of/ relative to the ordered basis {I1,1 +X, 1 +X - X2} is A=-100
256-2-3-4c>(X)=(X-2)(X+1)2 =m>,(X). 11.2 The eigenvalues are
0,0,6 + 2VT7.

230 Basic Linear Algebra 11.3 The determinant is -27216 and the inverse is 1
126r-20111122111122-2011122-2011122-2011122-20111
22-20111111.4x=+V6.11.5 The MAPLE input is >
eql:=205+a+208+4+b=1000; > eq2:=c+206+d+207+6=1000; >
€q3:=204+e+200+f+196=1000; > eq4:=20+193+g+h+400=1000; >
eqd:=11+j+192+k+I1=1000; > eq6:=205+C+204+20+1=1000; >
eq7:=a+206+e+193+5=1000; > eq8:=208+d+200+g+192=1000; >
eq9:=4+207+f+h+k=1000; > eql0:=b+6+196+400+1=1000; >
eqll:=205+206+200+h+1=1000; > eql2:=b+207+200+193+1=1000; >
solve({eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eglO,eqll,eql2},
{a,b,c,d,e,f,gh,i,j,kl}); The solution is given in the formh =194, g=193, c =
374,;" =3,b=203,1=197,a 380,/= 195, =221 -;',/= 179+;, it=-/ + 416. It
follows that the range of values of it is 196 <it <415.
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