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v

This is the fifth book in the series, Advances in Digital Business and 
Enabling Technologies, which aims to contribute to multi-disciplinary 
research on digital business and enabling technologies, such as cloud com-
puting, social media, big data analytics, mobile technologies and the 
Internet of Things, in Europe.

Previous volumes sought to consider and extend conventional thinking 
on disrupting finance, the business value of the cloud, and more specifi-
cally on cloud computing architectures to greater support heterogeneity 
and to reliably provision applications and infrastructure on distributed 
clouds. In many ways, this fifth volume is a companion to the last volume, 
Managing Distributed Cloud Applications and Infrastructure. Whereas 
that volume focussed on optimisation from the cloud to the edge, this fifth 
volume explores the cloud-to-thing continuum.

The ‘Network Nation’, the ‘Wired Society’, and ‘the Networked 
Society’ are just some of the terms used over the last forty years to describe 
communities organised around systems of interaction, systems of resource 
allocation, and systems of integration and co-ordination driven by advances 
in information and communications technologies (Martin 1978; Hiltz 
and Turoff 1978). In the last decade, we have seen the emergence of new 
terms, the ‘third ICT platform’ and the ‘fourth industrial revolution’ 
(4IR) characterized by the ubiquity, convergence and interdependence of 
next generation technologies—social media, mobile, cloud, big data, and 
sensor technologies—with the promised of transforming how society 
operates and interacts (IDC 2013). However, we are not there yet. The 
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Internet of Things represents a significant first step towards the networked 
society. It offers massive societal and economic opportunities while at the 
same time significant challenges not least the delivery and management 
of the technical infrastructure underpinning it and the deluge of data 
generated from it, ensuring privacy and security, and capturing value from 
it. This book explores these challenge, presenting the state of the art and 
future directions for research but also frameworks for making sense of this 
complex area.

The content of the book is based on contributions from researchers on 
the RECAP project, a European Union project funded under Horizon 
2020 [recap-project.eu] but also collaborators from SFI CONFIRM 
Centre in Ireland and UFPE, Brazil.

Chapter 1 defines the Internet of Things and introduces key concepts 
and enabling technologies. It provides a sense-making framework that 
marries technical and socio-technical perspectives and summarises some of 
the main Cloud-IoT reference architectures.

Chapter 2 revisits conventional cloud computing and discusses how 
cloud computing is evolving as a result of the Internet of Things. It dis-
cusses how new processor architectures and service models are changing 
the essence of what we think of as conventional cloud computing. But 
more than that, Chap. 2 explores how cloud computing is moving 
from being a centralised cloud to a distributed one and from being a 
homogenous cloud to a heterogeneous one. This presents the opportu-
nity for new approaches for resource provisioning, self-organisation and 
self- management, and delivering a separation of concerns, all critical for 
the future of a cloud capable of supporting the Internet of Things.

Chapter 3 tracks the evolution of 5G network technologies. While inno-
vations such as Ipv6 and new paradigms in computing such as fog, edge 
and dew computing are enabling the IoT, LTE and 5G play a critical role 
in network connectivity. This chapter explains why RAN designs are critical 
to 5G success and consequently, the success of the Internet of Things.

Chapter 4 review the state of the art with regards to orchestration along 
the cloud-to-thing continuum with a specific emphasis on container-based 
orchestration and fog-specific orchestration architectures. The effective 
management of complex and heterogeneous computing environments is 
one of the biggest challenges that service and infrastructure providers are 
facing in the cloud-to-thing continuum era. This chapter highlights the 
need for fog-specific standards and orchestrators to accelerate momentum 
in the same way that cloud-native applications gave momentum to the 
development of cloud orchestrators.
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Chapter 5 discusses some of the challenges in high-criticality Internet 
of Things use cases. Storing and processing at the end device (the edge), 
at the intermediary layer (the fog), or centrally (the cloud) introduces new 
points of potential failure. For high-criticality use cases, any downtime 
impacting one or more components in the architecture can result in 
adverse effects and/or additional logistical effort and cost. This chapter 
discusses extant research on how cloud, fog and edge computing is being 
used in smart city, smart agriculture and e-health systems.

Chapter 6 explores security issues in edge computing with a particular 
emphasis on distributed intelligence. Due to resource-constrained hard-
ware and software heterogeneities, most edge computing systems are 
prone to a large variety of attacks. Incorporating intelligence in edge com-
puting systems leads to new security vulnerabilities including data and 
model poisoning, and evasion attacks. This chapter presents a discussion 
on the most pertinent threats to edge intelligence and countermeasures to 
deal with the threats.

Chapter 7 explores privacy in the Internet of Things from the perspec-
tive of consumers. This chapter discuses data privacy and trust research on 
the Internet of Things and posits that to foster a sense of privacy and trust 
among consumers, IoT service providers must communicate with con-
sumers regarding their data practices in a transparent manner. This chapter 
proposes an Internet of Things Trust Label and present a framework for 
testing the effectiveness of privacy disclosures in building consumers’ 
perceptions of privacy and trust and empowering consumers to adopt IoT 
devices whilst retaining some level of privacy.

Chapter 8 presents a general framework for mapping the business value 
of investments in the Internet of Things which aims to support managers 
in their decision-making process by providing an overview of how specific 
resources needs to be linked together in order to generate business value. 
The presented framework is also used as a point of reference for identify-
ing current research gaps which may represent avenues for future research.

Dublin, Ireland Theo Lynn
Malibu, CA  John G. Mooney
Dublin, Ireland  Brian Lee
Recife, Brazil  Patricia Takako Endo
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1.1  IntroductIon

The Internet has evolved in a series of waves (Cisco 2012). The first three 
waves were device-centric. In the first wave, we went to a device, typically 
a desktop PC, to access the Internet. As mobile computing evolved, soon 
we brought our own devices with us and could access the Internet any-
where anytime. Today, we are in the midst of the so-called Internet of 
Things (IoT) where devices (things) are connected to the Internet and 
each other. These things comprise a multitude of heterogeneous devices 
ranging from consumer devices, such as mobile phones and wearables, to 
industrial sensors and actuators. Gartner (2017) estimated only 8.4 billion 
things were connected in 2017 representing just over 0.5% of the total 
estimated connectable physical objects worldwide.

This objective of this chapter is to introduce readers to the Internet of 
Things. The remainder of the chapter is organised as follows. First, we will 
explore perspectives on the definition of the Internet of Things (IoT) fol-
lowed by key constructs and concepts underlying IoT including a general 
research framework for conceptualising IoT. Then, we will delve into a 
further level of granularity and present a selection of IoT Reference 
Architectures before concluding.

1.2  defInIng the Internet of thIngs

The Internet of Things (IoT) has rapidly grown in prominence in the last 
ten years and, yet, it means different things to different people. Indeed 
Whitmore et  al. (2015) note that there is no universal definition of 
IoT. Two main conceptualisations exist—the technical and socio-technical 
perspectives. The first, the pure technical perspective, views IoT as an 
assemblage and ecosystem of technical artefacts. It is defined by reference 
to these artefacts and their capabilities. These range in detail. For example, 
Weyrich and Ebert 2016, p. 1) define IoT as being “[…] about innovative 
functionality and better productivity by seamlessly connecting devices.” In 
contrast, Tarkoma and Katasonov (2011, p.  2) is significantly more 
detailed defining IoT as a “global network and service infrastructure of 
variable density and connectivity with self-configuring capabilities based on 
standard and interoperable protocols and formats [which] consists of hetero-
geneous things that have identities, physical and virtual attributes, and are 
seamlessly and securely integrated into the Internet.” Similarly, Whitmore 
et al. (2015, p. 1) define the IoT as “a paradigm where everyday objects can 
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be equipped with identifying, sensing, networking and processing capabilities 
that will allow them to communicate with one another and with other devices 
and services over the Internet to achieve some objective.” Unsurprisingly, 
given the nature of these definitions, they dominate Computer Science 
literature.

The socio-technical perspective of IoT recognises not only the techni-
cal artefacts but also the associate actors and processes with which the IoT 
interacts. For example, Haller et al. (2009) recognises the role of the con-
nected objects as active participants in business processes. They define the 
IoT as “a world where physical objects are seamlessly integrated into the 
information network, and where the physical objects can become active par-
ticipants in business processes. Services are available to interact with these 
‘smart objects‘ over the Internet, query their state and any information asso-
ciated with them, taking into account security and privacy issues” (Haller 
et  al. 2009, p.  15). Shin (2014, p.  25) argues that the IoT is part of 
“wider, socio-technical systems, comprising humans, human activity, spaces, 
artefacts, tools and technologies.” Indeed, Shin et  al. note that in some 
instances, a biological entity may, in fact, be considered the connected 
thing, for example a human with a heart monitor implant or a farm animal 
with a biochip transponder.

This perspective taken in this book is not particularly concerned with a 
specific IoT-related definition or problem. Figure  1.1 below presents a 

Fig. 1.1 A general framework for conceptualising big data research in the 
Internet of Things

1 THE INTERNET OF THINGS: DEFINITIONS, KEY CONCEPTS… 
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general research framework for conceptualising IoT research. It is general 
in that it is capable of being used to understand IoT related problems and 
research questions in conjunction with widely accepted levels of generali-
sation (abstraction) in both the social sciences (nano, micro, meso, macro) 
and computer sciences (computation, algorithmic/representational, phys-
ical/implementation). Furthermore, it provides a sufficiently general 
abstraction of the IoT in that it facilitates sense making without getting in 
to a non-generalisable level of granularity.

In this framework, five core entities are identified and defined—social 
actors, things, data, networks, and events. Each of these entities has a 
myriad of characteristics that may change and evolve over time and inflect 
our understanding of how value can be generated and captured at differ-
ent units of analysis:

• Social Actors (S), while typically human, need not be; the framework 
is flexible enough to accommodate the emerging concept of com-
puters as social actors (Lynn et al. 2015; Zhao 2003).

• Things (T) are primarily physical however they may also be virtual 
and exist in augmented and/or virtual reality. Two key functional 
requirements of things in IoT and IoE are data sensing (collating 
data) and network connectivity.

• Data (D) here are discrete artefacts that can connect to other enti-
ties including other data and may be sourced from first party, second 
party, or third party sources. It recognises the existence of an IoT 
data chain. For example, Radio frequency identification (RFID) 
enables the tracking of objects through an electronic product code 
(EPC) serving serves as a link to data about the object that can que-
ried over the Internet (Haller et al. 2009).

• Networks (N) are systems of interconnected entities and are both 
conduits and entities in themselves. Our framework accommodates 
networks between different types of IoT entities and those of the 
same type, for example machine-to-machine (M2M) networks.

• Events (E) are occurrences of interest at given time and/or physical 
or virtual space.

• Processes (P) are obviously critical to how entities interoperate in the 
IoT and comprise general (e.g. communication) and domain-specific 
processes. They are essential to how value is created, captured, and 
delivered in the IoT.

 T. LYNN ET AL.
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All entities and processes take place in an infrastructural setting and the 
framework recognises that in the IoT, additional data and metadata is cre-
ated and collated at the infrastructural level. For example, depending on 
the networking, processing, and storage capabilities of a given device, 
these activities may be centralised (in the cloud), at the edge (at the 
device), or in an intermediary layer (the fog) and not only store or process 
this data but also may extract other hardware, software, functional use, or 
other ambient data that can provide different and/or new insights. Finally, 
each IoT use case is situated in space (physical or virtual) and time and it 
is against this context that different types of events occur and impact 
the IoT.

As the IoT can be explored from numerous perspectives, we argue that 
such a research framework can play an important role for researchers to 
make sense of a complex and dynamic environment and isolate the major 
constituents of the IoT experience. In addition, the proposed framework 
can be used as a general-purpose scaffold for crafting research agendas on 
the IoT and avoiding duplicated and unfocussed research endeavours.

1.3  Key concepts and constructs

IoT revolves around a number key concepts and enabling technologies 
including object (thing) identification (e.g. IPv6), information sensing 
(e.g. RFID, sensors, GPS, etc.), communications technologies for data 
exchange, and network integration technologies (Shin 2014).

It is important to note that legacy computing and telecommunications 
architectures were not designed with the IoT in mind. The scale of hetero-
geneous devices and an unprecedented volume, variety and velocity of 
data combined with an extreme variation in use context require new para-
digms in computing. Depending on the use case and service level require-
ments, IoT devices may require processing and storage locally, in the cloud 
or somewhere in between. In addition cloud computing, edge, fog, and 
dew computing are three new computing paradigms designed to support 
IoT. While beyond the scope of this chapter, it is useful to be aware of 
these concepts and technologies when consider the architectures in Sect. 
1.4. Table 1.1 provides a brief definition for technology.

1 THE INTERNET OF THINGS: DEFINITIONS, KEY CONCEPTS… 
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Table 1.1 Definitions of key technologies in IoT

Construct Definition

Cloud computing A model for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources (e.g. 
networks, servers, storage, applications, and services) that can be 
rapidly provisioned and released with minimal management effort 
or service provider interaction (Mell and Grance 2011, p. 2).

Dew computing Dew computing is an on-premises computer software-hardware 
organisation paradigm in the cloud computing environment where 
the on-premises computer provides functionality that is 
independent of cloud services and is also collaborative with cloud 
services (Wang 2016).

Edge computing Edge computing is the network layer encompassing the end devices 
and their users, to provide, for example, local computing capability 
on a sensor, metering or some other devices that are network- 
accessible (adapted from Iorga et al. 2017).

Fog computing Fog computing is a layered model for enabling ubiquitous access to 
a shared continuum of scalable computing resources. The model 
facilitates the deployment of distributed, latency-aware applications 
and services, and consists of fog nodes (physical or virtual), residing 
between smart end-devices and centralised (cloud) services 
(adapted from Iorga et al. 2017).

IPv6 Internet Protocol version 6 (IPv6) is the most recent version of the 
Internet Protocol (IP). It is an identification and location system 
for computers on networks and routes traffic across the Internet. It 
dramatically expands the addressing space (IPv6 2003) thus 
facilitating the identification of smart objects.

Machine-to- 
machine 
communication 
(M2M)

M2M communication technologies provide capabilities for devices 
to communicate with each other through wired and wireless 
systems (Tsai et al. 2012, p. 1).

Radio frequency 
identification 
(RFID)

RFID is a form of automatic identification and data capture 
(AIDC) technology that uses electric or magnetic fields at radio 
frequencies to transmit information. Each object that needs to be 
identified has a small object known as an RFID tag affixed to it or 
embedded within it. The tag has a unique identifier and may 
optionally hold additional information about the object. Devices 
known as RFID readers wirelessly communicate with the tags to 
identify the item connected to each tag and possibly read or update 
additional information stored on the tag. This communication can 
occur without optical line of sight and over greater distances than 
other AIDC technologies (Karygiannis et al. 2007, p. ES-1).

Wireless sensor and 
actuator networks 
(WSAN)

WSANs are networks of large numbers of minimal capacity sensing, 
computing, and communicating devices and various types of 
actuators (Stankovic 2008).

 T. LYNN ET AL.
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1.4  Iot reference archItectures

IoT devices are being used in a wide range of domains such as health, 
agriculture, smart cities, and process automation. The ‘things’ used can be 
characterised by their heterogeneity in terms of computing resources (pro-
cessing, memory, and storage), network connectivity (communication 
protocols and standards) and software development (high degree of distri-
bution, parallelisation, dynamicity). While such heterogeneity enables the 
depth and breadth of applications and use cases, it also introduces com-
plexity, particularly with respect to expected service level requirements, for 
example, user and device mobility, software dependability, high availabil-
ity, scenario dynamicity, and scalability. As such, an abstraction layer to 
promote interoperability amongst IoT devices is needed. However, lack of 
standardisation means that such interoperability is lacking (Cavalcante 
et al. 2015). Reference Architectures can help IoT software developers to 
understand, compare, and evaluate different IoT solutions following a 
uniform practice.

Several Reference Architectures have been proposed in order to stan-
dardise concepts and implementation of IoT systems in different domains. 
Breivold (2017), for instance, conducted a comparative study with eleven 
different Reference Architectures. This chapter focuses on the those 
Reference Architectures that enable IoT integration with cloud comput-
ing and/or fog and edge computing i.e. across the cloud to thing (C2T) 
continuum. Figure 1.2 shows the timeline containing the main Reference 
Architectures that support IoT across the C2T continuum, namely IoT 
Architectural Reference Model (IoT ARM), IEEE P2413 (IEEE P2413 
2014), Industrial Internet Reference Architecture (IIRA) (Lin et al. 
2019), WSO2 IRA, Intel SAS, Azure IRA, and SAT-IoT.

Each of the architectures below can be explored through the lens of the 
framework presented in Sect. 1.2 and embodies the key concepts and con-
structs discussed in Sect. 1.3.

2014 2015 2016 20172010 2011 2012 2013 2018 2019

IoT ARM

IEEE P2413

WSO2 IRA Azure IRA

Intel SAS

IIRA

SAT-IoT

Fig. 1.2 Timeline of selected IoT Reference Architectures
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1.4.1  Internet of Things Architectural Reference Model 
(IoT ARM)

The IoT-A project (IoT-A 2019) groups the specificities of IoT function-
alities and defines the IoT Architectural Reference Model (IoT ARM) to 
support the usage, the development and the analysis of different IoT sys-
tems, from communication to service level.

According to Bauer et al. (2013), the main contributions of the IoT 
ARM are twofold: (a) the Reference Model itself, which contains a com-
mon understanding of the IoT domain and definitions of the main IoT 
entities and their basic relationships and interactions; and (b) the Reference 
Architecture per se, which provides views and perspectives to generate IoT 
architectures adapted to one’s specific requirements. This way, the 
Reference Model and the Reference Architecture provide abstraction lev-
els (models, views and perspectives) to derive concrete IoT solutions (i.e. 
IoT ARM compliant IoT architectures and systems) (Fig. 1.3).

The Reference Architecture is independent from a specific use-case or 
application and includes three views: (a) functional, (b) information, and 
(c) deployment and operation. The functional view describes the function 
components of a system; these include components’ responsibilities, 
default functions, interfaces, and interactions. The architecture is com-
posed of five longitudinal functionality groups (FGs), namely service 
organisation, IoT process management, virtual entity, IoT services, com-
munication, and two transversal FGs, namely management and security.

The information view covers the information life cycle in the IoT sys-
tem, providing an overview of the information structures and flows (i.e. 
how information is defined, structured, exchanged, processed, and stored), 
and the list of the components involved in the process.

Lastly, the deployment and operation view has an important role in the 
realisation of IoT systems as they are bringing together a number of 
devices, each of which has different resources and connection interfaces, 
which can be interconnected in numerous ways. The deployment and 

Reference
Model

Reference
Architecture

IoT
Architecture

IoT
System

Domain
Understanding

Application
Independent

Platform
Independent

Platform
Specific

Fig. 1.3 Derivation from each IOT ARM step
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operation view provides a set of guidelines for system design, covering dif-
ferent aspects of technologies, communication protocols, services, 
resources, and information storage.

According to Bauer et al. (2013), evolution and interoperability, avail-
ability and resilience, trust, security and privacy, and performance and scal-
ability are the most important for perspectives for IoT systems.

Bauer et al. (2013) also present a reverse mapping to demonstrate how 
the concepts of the IoT ARM can be presented to existing architectures 
and to validate their proposal. One of the use cases was based on the use 
of RFID for tracing the towels before, during, and after the surgery to 
avoid towels being left on the patient’s abdomen. This use case was also 
based on the use of a cloud infrastructure for data storing. Even though 
the authors argue that the IoT ARM mapping was successfully done, there 
is no way to say that it can be applied to any existing concrete architecture.

1.4.2  IEEE Standard for an Architectural Framework 
for the Internet of Things (P2413)

To avoid silos in domain-specific standards, P2413 is a unified architec-
tural framework for IoT. As well as defining the framework, it includes 
descriptions of various IoT domains, definitions of IoT domain abstrac-
tions, and identification of commonalities between different IoT domains 
(energy, media, home, transport etc.). It provides a reference model that 
defines relationships among various IoT verticals and common architec-
ture elements. In this way it has similar design principles to IoT ARM. The 
Reference Architecture covers the definition of basic architectural building 
blocks and their ability to be integrated into multi-tiered systems. The 
Reference Architecture also addresses how to document and mitigate 
architecture divergence. P2413 also includes a blueprint for data abstrac-
tion and addresses the need for trust through protection, security, privacy, 
and safety. Applying P2413, the architectural transparency of IoT systems 
can be improved to provide benchmarking, safety, and security assessments.

The P2413.1 is the Standard for a Reference Architecture for Smart 
City (RASC) (P2413.1 2019). The RASC provides an architectural design 
for the implementation of a smart city, enabling interaction and interoper-
ability between domains and system components. The smart city applica-
tions may include water management, waste management, street lighting, 
smart parking, environmental monitoring, smart community, smart 

1 THE INTERNET OF THINGS: DEFINITIONS, KEY CONCEPTS… 
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campus, smart buildings, e-health, e-government, etc. The RASC includes 
the Intelligent Operations Center (IoC) and IoT.

The P2413.2 is the Standard for a Reference Architecture for Power 
Distribution IoT (PDIoT) (P2413.2 2019). Following a similar idea of 
RASC, the PDIoT also provides an architectural design but for imple-
menting power distribution systems, covering different domains, such as 
legacy grid systems, IoT and cloud computing. This standard defines a 
cloud based power distribution which supports microservices and migra-
tion from legacy systems to IoT based platforms.

1.4.3  Industrial Internet Reference Architecture (IIRA)

The term ‘Industrial Internet’ is largely attributed to General Electric 
(GE). In a joint report, Accenture and GE (2014, p. 7) define the indus-
trial internet as an architecture that:

[…] enables companies to use sensors, software, machine-to-machine learning 
and other technologies to gather and analyse data from physical objects or other 
large data streams—and then use those analyses to manage operations and in 
some cases to offer new, value-added services.

Today, the Industrial Internet has evolved in to the Industrial Internet 
of Things (IIoT). IIoT is defined Boyes et al. (2018, p. 3) as:

A system comprising networked smart objects, cyber-physical assets, associated 
generic information technologies and optional cloud or edge computing plat-
forms, which enable real-time, intelligent, and autonomous access, collection, 
analysis, communications, and exchange of process, product and/or service 
information, within the industrial environment, so as to optimise overall pro-
duction value.

Somewhat like IoT ARM and P2413, the Industrial Internet Reference 
Architecture (IIRA) (Lin et al. 2019) is an architecture framework to 
develop interoperable IIoT systems for diverse applications across indus-
trials verticals.

IIRA is composed of one frame and different representations (Fig. 1.4). 
According to (Lin et al. 2019), a frame is a collection of concepts repre-
sented by stakeholders (individual, team, organisation having interest in a 
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system), concerns (any topic of interest pertaining to the system), and 
viewpoints (conventions framing the description and analysis of specific 
system concerns). Representations are defined as views and models, which 
are collections of the results obtained through the application of the archi-
tecture frame to abstracted or concrete systems. These models and views 
are chosen for addressing a specific concern at an appropriate level of 
abstraction (Lin et al. 2019).

The IIRA identifies the main architectural concerns found in IIoT sys-
tems and classifies them into viewpoints related to their respective stake-
holders. Viewpoints are critical components in the IIRA; there are four 
different viewpoints (Fig. 1.5). Firstly, the Business Viewpoint is respon-
sible for inserting the vision, values, and objectives of business stakehold-
ers in the commercial and regulatory context. Secondly, the Usage 
Viewpoint describes how an IIoT system realises its key capabilities, by 
providing the sequence of activities that coordinates the system compo-
nents. Thirdly, the Functional Viewpoint relates the functional and struc-
tural capabilities of an IIoT system and its components. It is decomposed 
into five main functional domains: control domain, operation domain, 

Industrial Internet Reference Architecture

System
Architectures

Industrial Internet Architecture Framework

Identify,
evaluate and

Address concerns

Apply to
IIoT systems

Extend, enrich
and develop

Feedback and
improvement

Representations
Models
Describe, analyse and
resolve a set of
concerns specific to a
given viewpoints
through the
application of
conventions

Views
Consist of one or
more models.
Describe, analyse and
solve a specific set of
concerns from a given
viewpoints

Frame
Stakeholders
• Individual
• Team
• Organization 

having na interest 
in a system

Concerns
• Topics of interest 

to the system

Viewpoints
Business

Usage
Functional

Implementation

Fig. 1.4 Industrial internet Reference Architecture. (Adapted from Lin et al. 2019)
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information domain, application domain and business domain. Finally, the 
Implementation Viewpoint provides (1) a description the general archi-
tecture of an IIoT system, (2) a technical description of its components, 
(3) an implementation map of the activities identified in the Usage 
Viewpoint; and (4) an implementation map for the key system character-
istics (Lin et al. 2019).

By adopting IIRA, industries can integrate best practices into their pro-
cesses, use a generic architecture and common framework and as a result 
reduce operation expenditure. It should be noted that IIRA provides 
architectural patterns for both cloud and edge computing.

1.4.4  WSO2 IoT Reference Architecture (WSO2 IRA)

WSO2 is a US-based open source integration vendor. The WSO2 IoT 
Reference Architecture (WSO2 IRA) is illustrated in Fig. 1.6 and sup-
ports IoT device monitoring, management, and interaction, covering the 
communication process between the IoT and the cloud (Fremantle 
2015). The WSO2 IRA comprises five horizontal layers (client/external 
communication, event processing and analytics, aggregation layer, trans-
ports, and devices) and two cross-cutting layers (device management and 
identity and access management). Table 1.2 provides a brief definition of 
each layer.

Viewpoints

Business

Usage

Functional

Implementation

Visions
Values
Key objectives
Fundamental capabilities

Task
Role
Party
Activity

Control Domain
Operations Domain
Information Domain
Application Domain
Business Domain

Fig. 1.5 IIRA viewpoints. (Adapted from Lin et al. 2019)
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Fig. 1.6 WSO2 IoT Reference Architecture. (Adapted from Fremantle 2015)

Table 1.2 WSO2 IoT Reference Architecture layers

Layer Description

Communication Enables the devices to communicate outside of the device-oriented 
system web-based front-ends and portals, dashboards, and APIs.

Event processing 
and analytics

Takes the events from the bus and provides the ability to process 
and act upon these events.

Aggregation Aggregates and brokers communications between devices, 
aggregates and combine communications from different devices and 
routes communications to a specific device, and bridges and 
transforms between different protocols.

Transport Supports the connectivity of the devices.
Devices IoT devices, they must have some communications that either 

indirectly or directly attaches to the Internet.
Device 
management

  •  Communicates with devices via various protocols and provides 
both individual and bulk control of devices. It also remotely 
manages software and applications deployed on the device.

 •  Maintains the list of device identities and map these into 
owners. It must also work with the identity and access 
management layer to manage access controls over devices.

Access 
management

Provides identify and access management services.
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1.5  Intel system archItecture specIfIcatIons 
(Intel sas)

The purpose of the Intel System Architecture Specifications (SAS) is to 
connect any type of device to the cloud considering five key items: (1) 
C2T management, (2) real time analytics, (3) interoperability, (4) service 
and device discovery and provisioning, and (5) security (Intel 2015). Intel 
SAS has two distinct versions that co-exist in order to cover different infra-
structure maturity levels: version 1.0 for connecting the unconnected and 
version 2.0 for smart and connected things. Version 1.0 specifies how 
legacy devices that were not originally designed to be connected to the 
cloud can use an IoT gateway to be online. Version 2.0 specifies how to 
integrate heterogeneous smart things focusing on security, manageability 
and real time data sharing between things and cloud (Fig. 1.7).

Intel SAS recommends a layered architecture that encompasses hori-
zontal layers (users, runtime, and developers) and vertical layers (business 
and security). The data flow involves through eleven steps including 
analogue- to-digital conversion (ADC), gateways and reaching the cloud. 
Intel also recommends software components and interfaces to connect 
legacy devices with no connectivity functionality. The software compo-
nents are located at endpoint devices and in the cloud. Basically, the cloud 
software components receive data collected by on-premise components 
and are responsible for analysis, storage, and service orchestration.
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• Devices Management
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Data Flow: MQTT, HTTPS, WebSockets, XMPP, CoAP, REST,
AMQP, DDS et al.
Security and Management Flow: MQTT, EPID, OMA-DM, TR-069,
REST, et al.
Actuation and Control Flow: MQTT, CoAP, XMPP, AMQP,
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Fig. 1.7 Intel system architecture specifications. (Adapted from Intel 2015)
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1.5.1  Azure IoT Reference Architecture (Azure IRA)

The Azure IoT Reference Architecture (Azure IRA) represented in 
Fig. 1.8 relies on Microsoft Azure platform to connect sensors to intelli-
gent services at the cloud. The main goal of Azure IRA is to take actions 
on business insights that are generated through gathering data from IoT 
applications (‘things’) (Microsoft 2018). The reference document pro-
poses a recommended IoT architecture, describing foundational concepts 
and principals, IoT subsystems details and solution design considerations. 
Azure IRA is focused on flexibility. As such, IoT solutions are cloud native 
and microservice-based. As deployable services are independent of each 
other, they suggest that it is better for scaling, updating individual IoT 
subsystems, and flexibility in the selection of technologies per IoT 
subsystem.

Figure 1.8 shows the recommended Azure IRA covering both hybrid 
cloud and edge solution integration. In orange, one can see the core IoT 
subsystems: IoT devices, cloud gateway (IoT Hub), stream processing, 
and user interface. The IoT device should be able to register with the 
cloud gateway, which is responsible for managing the devices. The stream 
processor consumes and stores the data, and integrates with the business 
process. For each subsystem, the Azure IRA recommends a specific tech-
nology based on Azure services. There is also a set of optional IoT 
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Fig. 1.8 Azure IoT Reference Architecture. (Adapted from Microsoft 2018)
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subsystems (in blue): IoT edge devices, data transformation, machine 
learning, and user management. The edge devices are able to aggregate 
and/or transform and process the data on premise, while the data trans-
formation (at the cloud) can manipulate and translate telemetry data. The 
machine learning subsystem allow the IoT system to learn from past data 
and act properly, such as firing alert to predictive maintenance. Finally, the 
user management subsystem provides functionality for users to manage 
the devices.

1.5.2  SAT-IoT

SAT IoT is a platform (Fig. 1.9) developed by Spanish company, SATEC, 
as part of the Horizon 2020 RECAP project.1 Smart cities is a primary use 
case for SAT IoT. As such it needed an architecture that could (1) manage 
the smart city data network topology at run time, (2) use optimisation 
techniques that support processing aggregated data by geographical 
zones, and (3) monitor the IoT system and the optimisation process in 
run time (Peña and Fernández 2019).

Edge/cloud computing location transparency is a core feature of the 
platform allowing data to be shared between different zones (geographi-
cally and from the cloud to the edge), and thus to be processed at any of 
the edge nodes, mid nodes, or cloud nodes. This is realised by two of the 
entities in the SaT IoT architecture—the IoT Data Flow Dynamic Routing 
Entity and the Topology Management Entity. Together, they enable SAT 
IoT to manage the network topology at run time while also providing the 
necessary monitoring capabilities to understand the usage pattern and 
capacity limitations of the infrastructure. The IoT Data Flow Dynamic 
Routing Entity and the Topology Management Entity are augmented by 
the integration of the RECAP Application Optimiser in to SAT IoT, which 
derive the best possible placement of the data processing logic. Figure 1.9 
shows the SAT-IoT architecture composed of Physical Layer, Smart Device 
Entity, IoT Data Flow Collector Entity, IoT Data Flow Dynamic Routing 
Entity, IoT Topology Management Entity, IoT Visualisation Entity, IoT 
Cloud Entity, Platform Access Entity, Security and Privacy, and Embedded 
IoT Applications.

1 https://recap-project.eu/
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1.5.3  Summary of Architectural Features

Table 1.3 summarises the key functional features addressed in each IoT 
Reference Architecture, that is interoperability, scalability, security and pri-
vacy, data management, analytics, data visualisation and user interface, and 
supported computing paradigms.

By system interoperability, we mean that the architecture should address 
connectivity, data management and automatic integration in a transparent 
way for the end user. Scalability refers to the architecture’s ability to han-
dle increases in the number of IoT devices and endpoints. Security and 
privacy capability ensures that the information be where it should be and 
prevents data leakage to unauthorised persons. Data management refers to 
both the management and exchange of data between architectural 
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components. Analytics refers to the ability of the architecture to capture 
useful data from the deluge of data that travels on the network. Data visu-
alisation and user interface is related to whether the architecture provides 
a human interface. Finally, computing paradigm refers to whether the 
architecture addresses support for new computing paradigms and specifi-
cally cloud, fog, edge, and dew computing.

Table 1.3 summarises the key features of different IoT Reference 
Architectures. It clearly emerges that only two functionalities are met by 
all Reference Architecture proposals—interoperability and security and 
privacy. Another common area of focus, unsurprisingly, is data manage-
ment. Obviously, the primary value driver in the IoT is data and systems 
are required to manage the volume, velocity and variety of this data, not 
least where its stored and processes. The IEEE P2413 Reference 
Architecture presents less functionality; however this is due to the nature 
of such a standard. It is however the basis for a related smart cities stan-
dard (RASC).

When considering the IoT from a business, technical, or research per-
spective, each of these architecture features should be considered and 
addressed.

1.5.4  Conclusion

The chapter introduced two perspectives of the Internet of Things—a 
purely technical and a socio-technical perspective. The Internet of Things 
is not merely a technical phenomenon. It has the potential to transform 
how society operates and interacts. As such, it is critical to have a suffi-
ciently general abstraction of the Internet of Things that facilitates sense 
making without getting in to a non-generalisable level of granularity. We 
present such an abstraction organised around five entities—social actors, 
things, data, networks, and events—and the processes that occur between 
them, all situated in time and space. We provided a brief overview of some 
of the key enabling technologies and new computing paradigms. Section 
1.4 presented seven Reference Architectures for the Internet of Things 
and compared them across seven dimensions. This provides a further lens 
with which to consider the Internet of Things.

1 THE INTERNET OF THINGS: DEFINITIONS, KEY CONCEPTS… 
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2.1  IntroductIon

Cloud computing provides users with the potential to perform computing 
tasks utilizing resource physically distant to them. It offers virtually unlim-
ited capabilities regarding storage, memory and processing units that aug-
ment IoT devices and components with limited computation capabilities 
due to form factors. However, this convergence of the cloud and the edge, 
provides significant issues, not least complexity at several orders of magni-
tude higher than the past. Forecast increases in the numbers of devices 
lead to a humongous escalation in generated data exacerbates this com-
plexity. While Cloud-IoT cooperation seems perfect, managing the com-
plexity across the a continuum can induce potential violations in 
Quality-of-Service (QoS) and Quality-of-Experience (QoE) user require-
ments. Thus, an evolution in conventional cloud infrastructure is neces-
sary along with other infrastructure approaches such as fog and edge 
computing.

The remainder of this chapter is organized as follows. Section 2.2 pro-
vides a brief overview of the centralized cloud model and the significant 
impact of IoT on conventional cloud computing. Section 2.3 illustrates 
the changes in the centralized cloud paradigm. Next, decentralized cloud 
models are presented followed by a discussion of research opportunities 
and directions specifically focusing on the need for improved resource 
provisioning, support for resource heterogeneity, and self-management 
and self-organization patterns that cloud can adopt to address complexity. 
Concluding remarks are summarized in Sect. 2.6.

2.2  centralIzed cloud computIng model

In the cloud computing era, the substance of a computer can no longer be 
limited to its physical “box” shape. Thus, a computer in the cloud has to 
introduce the capability of dynamically adjusting the required physical 
resources (i.e. processors, memory, storage, network bandwidth) based on 
any potential occasion. These resources can be distributed across physical 
servers and virtual machines creating a pool of available resources (Bhavani 
and Guruprasad 2014). This “cloud computer” offers increased perfor-
mance levels, while dramatically reducing response time and opera-
tional costs.

 K. M. GIANNOUTAKIS ET AL.
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2.2.1  Defining Cloud Computing

As defined in Chap. 1, cloud computing is

A model for enabling ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and released with 
minimal management effort or service provider interaction. (Mell and Grance 
2011, p. 2)

Conventional single provider infrastructures hosting cloud services on 
data centers offer a lot of benefits but also hide many challenges (Trilochan 
and Verma 2017). A large data center’s energy consumption is high just to 
keep it operational and like any other centralized computing model, in 
case of a failure (single-point failure) the resulting issues would be adverse. 
Another issue is that required data may have to be transferred and stored 
to separate places, rather than the source, because data centers are often 
geographically distant from the application users. Thus, exchange of sensi-
tive or personal data is considered critical for applications. For these rea-
sons, alternate cloud infrastructure models which handle failures and use 
back up data centers have been introduced in recent years. Example mod-
els using cloud infrastructure rather than data centers are multi-cloud, 
micro cloud and cloudlet, ad hoc and heterogeneous clouds. The main 
cloud computing actors, characteristics and models are depicted in 
(Table 2.1).

A multi-cloud utilizes resources from multiple providers, thus making 
it possible to host large number of applications. Another form of multi- 
cloud is a federated cloud. This model is a federation of clouds from dif-
ferent cloud providers providing the potential to make applications 
portable, meaning that data from it or even the whole application can 
migrate from one cloud to another with the federation.

To incorporate resources located outside the cloud data centers. Micro 
cloud and cloudlet approaches offer a more decentralized computing 
infrastructure, as they are located closer to the edge of the network, thus 
minimizing transfer cost and communication latency as they are closer, 
sometimes a mere single hop, to the users and the generated data. 
Nevertheless, their computing power is much less than a conventional 
cloud infrastructure as they are composed of less powerful processors and 
are significantly smaller in size. An ad hoc cloud is an elastic infrastructure 
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Table 2.1 Cloud computing actors, essential characteristics, service models and 
deployment models. (Adapted from Liu et al. (2011) and Mell and Grance (2011))

Actors in cloud computing
Consumer A person or organization that maintains a business relationship with, 

and uses service from, cloud providers.
Cloud provider A person, organization, or entity responsible for making a service 

available to interested parties. Cloud auditor A party that can conduct 
independent assessment of cloud services, information system 
operations, performance and security of the cloud implementation.

Cloud auditor A party that can conduct independent assessment of cloud services, 
information system operations, performance and security of the cloud 
implementation.

Cloud broker An entity that manages the use, performance and delivery of cloud 
services, and negotiates relationships between cloud providers and cloud 
consumers.

Cloud carrier An intermediary that provides connectivity and transport of cloud 
services from cloud providers to cloud consumers.

Essential characteristics
On-demand 
self-service

Consumers can unilaterally provision computing capabilities as needed 
automatically without requiring human interaction with the cloud 
provider.

Broad network 
access

Capabilities are available over the network and accessed through 
standard mechanisms that promote use by heterogeneous thin or thick 
client platforms and interfaces (e.g. devices).

Resource 
pooling

The provider’s computing resources are pooled to serve multiple 
consumers using a multi-tenant model, with different physical and 
virtual resources dynamically assigned and reassigned according to 
consumer demand.

Rapid elasticity Capabilities can be elastically provisioned and released, in some cases 
automatically, to scale rapidly outwards and inwards to meet demand. 
To the consumer, the capabilities available for provisioning often appear 
to be unlimited and can be appropriated in any quantity at any time.

Measured 
service

Cloud systems automatically control and optimise resource use by 
leveraging a metering capability at some level of abstraction appropriate 
to the type of service. Resource usage can be monitored, controlled, and 
reported, providing transparency to the service provider and the 
consumer.

Service models
Software as a 
service

The capability provided to a consumer to use a provider’s applications 
running on a cloud infrastructure and accessible by client interface.

(continued)
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which deploys underutilized or spare resources of data centers, servers and 
any other mobile edge device in contribution to ad hoc computing 
(McGilvary et al. 2015). Finally, an heterogeneous cloud consists of differ-
ent types of processing units in the infrastructure, mostly composed of 
accelerators such as Graphical Processing Units (GPUs), Intel Xeon Phis, 
Field-Programmable Gate Arrays (FPGAs) and others, offered in the form 
of VMs or containers. The problem is that, building a framework that 
utilizes and provides provisioning of these resources is still a challenging 
and difficult task (see e.g. the Horizon 2020 CloudLightning project 
(Filelis-Papadopoulos et al. 2018; Lynn et al. 2016; Xiong et al. 2017).

Table 2.1 (continued)

Platform as a 
service

The capability provided to a consumer to deploy onto the cloud 
infrastructure consumer-created or acquired applications created using 
development technologies provided by the provider.

Infrastructure 
as a service

The capability provided to a consumer to provision computing resources 
to deploy and run arbitrary software such as operating systems and 
applications.

Deployment models
Private cloud The cloud infrastructure is provisioned for exclusive use by a single 

organisation comprising multiple consumers. Ownership, management, 
and operation of the infrastructure may be done by one or more of the 
organisations in the community, by a third party, or a combination of 
both, and it may exist on or off premise.

Community 
cloud

The cloud infrastructure is provisioned for exclusive use by a specific 
community of consumers from organisations that have shared concerns. 
Ownership, management, and operation of the infrastructure may be 
done by one or more of the organisations in the community, by a third 
party, or a combination of both, and it may exist on or off premise.

Public cloud The cloud infrastructure is provisioned for open use by the general 
public. It may be owned, managed, and operated by a business, 
academic, or government organisation, or some combination of them. 
It exists on the premises of the cloud provider.

Hybrid cloud The cloud infrastructure is a composition of two or more distinct cloud 
infrastructures (private, community, or public) that remain unique 
entities, but are bound together by standardized or proprietary 
technology that enables data and application portability.
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2.2.2  The Impact of IoT on Conventional Cloud Architectures

The evolution of the Internet of Things has had a significant impact on 
cloud computing generally and stretching the limitations of conventional 
cloud architecture. The number of connected devices is increasing expo-
nentially with estimations of dozens of billions of “things” going live in 
coming years (Bittencourt et al. 2018; Gubbi et al. 2013).

The connected devices (things) are extremely heterogeneous in form 
and function. The trend to combine and integrate more and more sensors 
to each and every device escalates the complexity of resource manage-
ment. As a consequence of connecting these sensors to the Internet, large 
volumes of data are being generated in unprecedented volumes, variety 
and velocity, the so-called Big Data (El-Seoud et al. 2017). This data is 
currently transferred and stored in the cloud in a centralized manner. Data 
transfer, especially in these volumes, is extremely expensive and retards 
computational performance. Thus, a more decentralized solution is 
required where data analysis could take place before transfer and storage. 
Emerging computing paradigms to support this decentralized or distrib-
uted cloud are discussed in detail in Sect. 2.4. Furthermore, most cloud 
infrastructures scale horizontally across multiple nodes in a data center or 
more thus making it necessary to develop cloud models that can scale 
vertically from low end processors to data center nodes.

The net result is that an enormous amount of data needs to be trans-
mitted over the network, stored and/or processed by the receivers in an 
efficient way. The heterogeneity of the connected devices is immense and 
can be discrete in many levels, such as computing performance, storage 
and network requirements, communication protocols, energy consump-
tion amongst others. This heterogeneity is adapted to many applications 
running on the IoT connected devices and as their numbers increase, so 
do their requirements accordingly, making it more complex and far more 
difficult to cope with the extensive needs that the computing system has 
to be able to accommodate.

2.3  changes to centralIzed cloud 
computIng model

More recently, application deployment in the cloud has been a challenge 
for the various providers in the network. To address this challenge, cloud 
architectures, infrastructure and deployment has evolved. This subsection 
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provides a brief summary of a number of changes applied to these fields, 
including the evolution of service provisioning, the timeline of service 
models and the addition of new resources and workloads over time.

Monolithic Architectures are those architectures where the applica-
tion is composed of a single program or platform, typically providing a 
user interface and data access through a database. Rationally, building and 
deploying an application of this model type is easy, especially when the 
application requirements are simple or the project is small. Nevertheless, 
the real challenge and the difficulties start to grow exponentially, when the 
application needs to scale up. Any adjustments, or any development and 
testing that needs to be made, initiates rebuilding of the whole code/
project as it is a single unit or component. This could be extremely time 
consuming and potentially harmful, especially in large projects.

Service Oriented Architectures (SOA) are based on services to be 
provided in order to develop software product. Services are built to work 
in an orchestrated manner to modularize the system and provide a total 
service as a group. It is more challenging to divide the application in to 
multiple services, but it enables greater flexibility, extensibility and reus-
ability of existing services for multiple use cases. The grouped services can 
communicate with each other by exchanging messages or events through 
APIs, which trigger the reaction of the corresponding services. The ben-
efits of this model are application modularity, service reusability and 
enhanced security in the (re)building process and development of the 
application. A major disadvantage is the complexity in orchestrating all the 
services from a centralized component, especially when the project is com-
plex and the components are huge.

Microservices introduced a solution for the gaps in the SOA approach. 
This approach divides applications in to more granular components by 
distributing them into small independent services. Each service imple-
ments and attends to separate business functions and capabilities to main-
tain independency from other services. They are the mainly deployed in an 
automated manner, through a container and communicating through 
RestAPIs, thus making the impact of programming language and data 
management techniques insignificant. This allows microservices to be eas-
ily deployed in the cloud, offering great reusability and minimal or no 
centralized management and orchestration. Essentially, microservices offer 
even more modularity than SOA and are more conducive in complex and 
large projects while, at the same time, providing independency in service 
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development and maintenance, thus enhancing security in business 
products.

In addition to architecture modeling, different approaches have 
emerged regarding service modeling. In addition to conventional SaaS, 
IaaS, PaaS models, a new approach in virtualization is bare metal or native 
virtualization (Scarfone et al. 2011). Here, the hypervisor can run directly 
on the underlying hardware of the provider without a host operating sys-
tem. Bare metal offers more security, providing that the hypervisor itself is 
well-secured. As the hypervisor is placed directly over the hardware, there 
is no host OS thus it cannot be harmed. This model is mostly used for 
servers in the cloud. Nevertheless, the hardware provided is limited so that 
a hypervisor does not consume the total available resources.

Hosted Virtualization is where the hypervisor runs over the host 
OS. The difference between hosted virtualization and bare metal is that 
the hypervisor is provided with more virtual resources but, on the other 
hand, the potential to harm the host OS is significantly increased.

Function as a Service (FaaS) is synonymous with serverless comput-
ing. Basically, FaaS enhances the microservices model development. 
During the development process, server operations are not taken into 
account, as services are hosted externally. Compared to conventional 
cloud models, where at least one server is utilized, FaaS triggers a server 
only when a function is conducted, executes the expected operations and 
then terminates. The major advantages of this model are increased scal-
ability and independency of the applications and lower costs. As costs are 
based only on per used functionality, expenses from inactive resources are 
eliminated. A major disadvantage is the reduced transparency as FaaS is 
managed externally.

Composable architecture and Infrastructure is an approach used for 
provisioning both physical and virtual resources. It is an application- 
centric approach which greatly enhances operational performance with 
dynamic and flexible on-demand provision of resources. With the ability 
to manage a great variety of resources, it can easily scale up at an even 
greater extent than a traditional infrastructure. The flexibility composable 
infrastructure offers with the on-demand provision of resources, both 
hardware and software ones. Different resources can be provisioned inde-
pendently (aggregated, disaggregated) and generally adjusted, based on 
their type (compute, storage, fabric) which is a major advantage of this 
approach.
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Finally, until recently workloads and tasks on the cloud were largely 
loosely coupled. As such, the use of distributed memory was enough for 
the execution of any task, while the need for data rate and bandwidth was 
low. Thus, in a loosely coupled multiprocessor system, a simple message 
transfer system was enough to connect all the modules in the network. As 
the need for larger data rates and bandwidths are becoming more and more 
demanding especially with the addition of the heterogeneous resources in 
everyday tasks and applications, tightly coupled workloads in the essence of 
High Performance Computing (HPC) have been introduced in to cloud 
computing. These tasks are continuously more dependent on each other, 
utilize a common shared memory and the need for data rate and transfer is 
huge. A tightly coupled workload requires inter- process communication 
patterns that rely on high bandwidth with low latency in order to maintain 
optimal performance. This could lead to significantly reduced number of 
executed tasks, considering the demanding requirements.

2.4  decentralIzed cloud computIng model

As the number of connected devices escalates rapidly, the generated data 
reaches unprecedented levels, and complexity increases as more and more 
sensors are integrated into user devices located at the edge of the network, 
conventional centralized data centers in the cloud can no longer provide 
an efficient and sustainable solution. It is necessary to provide resources 
and computational power closer to the edge users.

2.4.1  Fog Computing

Fog computing is a decentralized computing infrastructure which is used 
particularly as a complement to cloud computing. It leverages the com-
pute resources at the edge network and brings the computational process-
ing closer to the data source by offloading workload to edge nodes from 
cloud data centers. The network nodes near the edge providing these 
resources are called fog nodes. Overall, any device with computing, stor-
age and network connectivity can constitute a fog node, for example 
switches and routers, industrial controllers, embedded servers and video 
surveillance cameras. A major benefit of fog computing is the reduction in 
application latency and as a result the improvement in QoS and QoE for 
users. Its first level usually lays a single hop away from the edge and is an 
extension of edge computing. Fog nodes can be organized in clusters, 
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either vertically or horizontally depending on requirements, and can be 
either physical or virtual components that are tightly coupled with the 
end-devices. This introduces the need to be geographically aware in order 
to enhance performance and minimize end-user latency. Fog computing 
offers, similarly to conventional clouds, the aforementioned architectural 
service models (SaaS, PaaS and IaaS) and the deployment models (private, 
community, public, hybrid).

2.4.2  Mobile Edge Computing

Mobile Edge Computing, also referred to as just edge computing, takes 
place only on the edge of the network. Processing is executed closer to the 
data source and eliminates the costly data transfer to a remote data center 
or cloud (Ahmed and Ahmed 2016). This significantly improves user QoE 
as similar to fog computing, there is considerable network latency reduc-
tion and bandwidth consumption by the mobile subscribers.

2.4.3  Volunteer Computing

Volunteer Computing refers to a form of ad hoc cloud and cloudlets com-
posed mostly of spare resources from users’ computers or devices generally 
(Durrani and Shamsi 2014). The most common case where a VM is uti-
lized in this manner is for social networks where users share their hetero-
geneous resources in the form of the aforementioned ad hoc cloud. The 
most reliable ones are rewarded and occasionally rewarded by payment for 
their contribution. Two significant challenges have to be overcome in 
order to fully benefit from volunteer computing. The first one is the dif-
ficulty to set up a reliable and functional virtualized environment consider-
ing the obstacles the heterogeneous resources and the ad hoc nature of 
this model. The second one is the privacy and security concerns users 
might have and need to be overcome in order to make them offer their 
spare resources and become volunteers.

2.4.4  Serverless Computing

Serverless Computing involves building, running and providing applica-
tions and services without taking into consideration the server side. 
“Serverless” does not mean that there is no server usage but rather the 
main focus on the application itself and the virtual resource provisioning 

 K. M. GIANNOUTAKIS ET AL.



33

in the hosting VM, rather than what happens on the physical infrastruc-
ture (Hellerstein et al. 2018). Serverless Computing is synonymous with 
FaaS and event-based programming as the execution of an application will 
be executed only when necessary and not all the time, thus meaning that 
an event can trigger the execution of a function or more than one function 
concurrently.

2.4.5  Software-Defined Computing

Software-defined computing separates the control plane from data plane 
and the utilized hardware in the network from the data control traffic 
components (Badotra and Singh 2017). This approach can also be adapted 
to other QoS metrics, rather than networking, such as storage and com-
pute and resources located outside the data centers. It allows network 
managers to create a flexible, scalable pool of resources that are controlled 
by a software-driven cloud platform.

2.4.6  Mist Computing

Mist computing is a lightweight and elementary form of fog computing 
which resides even closer to the edge network and devices thus minimiz-
ing even more end-user latency (Iorga et  al. 2018). It is comprised of 
dedicated nodes, with specialized capabilities but with less computational 
resources than fog. It is usually implemented as an extra layer of fog com-
puting, closer or even on same layer with end-devices, but the existence of 
it is not considered mandatory.

2.5  research dIrectIons and opportunItIes

Cloud computing and associated technical evolutions is a solution to many 
IoT challenges but there are still obstacles that need to be overcome. The 
IoT-Cloud combination has to be able to provide accurate real-time pro-
cessing and resource and service provisioning (Biswas and Giaffreda 
2014). As already mentioned, these resources can be highly heteroge-
neous and require dynamic provisioning thus escalating complexity.

We identify five significant challenges for IoT-Cloud:

 1. Interoperability—applications on a platform should be able to amal-
gamate services and infrastructure from another Cloud-IoT platform.
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 2. Security and Privacy—personal and sensitive user data are subjected 
to high risk while many users access public and ad hoc clouds. In 
some instances, personal data may have to be stored closer to the 
users/devices in order to facilitate computing and processing on the 
edge or fog layer. Furthermore, there is also the challenge to develop 
suitable and reliable encryption-decryption mechanisms and algo-
rithms which could scale among distributed clouds and at the same 
time reduce energy consumption. This is discussed further in Chap. 6.

 3. Portability—efficient migration of each application and service has 
to be supported from platform to platform and follow the users’ 
traces and paths in the network.

 4. Reliability—establishing real-time communication between objects 
and applications with high connectivity and accessibility

 5. Virtualization—the potential to provision resources and provide 
access to heterogeneous resources and hardware such as GPUs, 
FPGAs, etc.

2.5.1  Resource Provisioning and Heterogeneous Resources

A central objective of cloud computing is to provide availability and share 
essential resources to each user to fulfill the QoS demands in respective 
SLAs (Parikh et al. 2017). Resource provisioning can be categorized into 
three main types:

 1. Static provisioning—workloads and resource demands of an applica-
tion are predefined or easily predictable.

 2. Dynamic provisioning—is applied to applications that can adjust 
their demands during service, thus further resource allocation, or 
deallocation, may be needed or even migrate the application to 
another VM on-the-fly.

 3. Self-provisioning—the user/application purchases specific resources 
from the cloud provider and can utilize them at will.

Efficient provisioning techniques target QoS metric improvement and 
reduce response times, SLA violations and power consumption. 
Furthermore, the cloud has to be operational even in case of a failure, that 
is being able to service user requests without making the failure noticeable 
to the outer world. This can be accomplished with optimal and novel 
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remediation techniques in the cloud infrastructure (Ostberg et al. 2017). 
Similarly, resource provisioning in fog cells has to provide optimal utiliza-
tion of fog resources and reduce offloading to cloud which dramatically 
increases costs (Skarlat et al. 2016). Additionally, data originated in the 
fog should be used in the particular fog and minimize data transfer 
between fog and cloud which significantly augments communica-
tion delays.

Evolving cloud infrastructures have introduced more heterogeneous 
resources, services and workloads while also augmenting complexity in 
resource provisioning. Heterogeneity can be discriminated in two types, 
machine heterogeneity and workload heterogeneity (Zhang et al. 2013). 
The addition of accelerators, such as GPUs and FPGAs, offer less powerful 
general purpose processors than a CPU but in distinctively greater num-
bers. These provide increased computational power and performance 
while reducing costs and improving energy efficiency. This is due to the 
potential of utilizing these many-core and multi-core systems for specific 
and specialized tasks like HPC. In this way, the overall computational and 
energy efficiency are noticeably increased. Workload analysis along with 
workload, machine and task heterogeneity can be characterized and classi-
fied (Zhang et al. 2014). A number of research studies have been under-
taken in this domain including Kollenstart et  al. (2018), Xiong et  al. 
(2017), and Dai et al. (2015).

2.5.2  Self-management, Self-organization Approach

The ultimate goal of cloud computing as an ∗aaS (IaaS, PaaS, SaaS), is 
obviously to provide efficient services to users and meet their QoS require-
ments. Nevertheless, there are many occasions where failures occur and 
SLA violations occur. Additionally, massive changes in the cloud structure 
can also introduce significant performance challenges, for example flash 
crowd events, significant adjustment in the number of nodes. These chal-
lenges necessitate the development of adaptive patterns that can also 
address the increasing complexity of the cloud. Self-management tech-
niques provide an approximate solution to the escalating complexity, as 
they tend to interact with both internal and external stimulus without any 
human intervention. They can be classified to four self-management 
aspects:
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 1. Self-configuration—the system manages the deployment of newly 
inserted nodes or disappearing ones by itself.

 2. Self-optimization—a node or a network link hits its capacity limits, it 
has to be able to offload some of the tasks to another (optimal con-
stituent) node/link,

 3. Self-protection—the ability to protect itself against third party 
attacks, such as Distributed Denial-of-Service (DDoS), and

 4. Self-healing—in the case of a failure, the active and executing appli-
cations have to be migrated and become available again elsewhere.

Generally, any cloud system has to guarantee its capacity to adapt and 
address the aforementioned challenges, that is continuous operation under 
any circumstances, load balancing, security, interoperability and energy 
efficiency. In order to achieve this, several patterns may be used based on 
service components and autonomic managers including self-organization 
and self-management (Xiong et al. 2017), P2P negotiation (Puviani et al. 
2013) and centralized autonomic managers (Puviani and Frei 2013).

2.5.3  Separation of Concerns

Another major challenge derived from cloud computing utilization is the 
distinction between consumer-aware and provider-aware services respec-
tively, along with a service interface establishment between them. This 
issue was first introduced by the CloudLightning project arising many 
considerable questions about services’ origin and handling (Lynn et  al. 
2016; Xiong et al. 2017). Separation of Concerns the need to distinguish 
the exact services that users and providers should be concerned with 
respectively. Consumers should only be concerned with what they want to 
do and accomplish, and providers with how that could be done and pro-
vided to the user. A successful interface establishment between those two 
actors can lead to minimal direct consumer interaction with provider’s 
infrastructure, thus allowing full control to the provider. Furthermore, 
this results in the assumption that various service implementations should 
already exist and the consumer himself does not have to be an expert and 
develop them. Additionally, physical resources provided by the infrastruc-
ture should not be consumer-aware and yet there may be several diverse 
implementations to meet specific service demands. These implementa-
tions can differ in hardware type and could be characterized by different 
price and performance attributes. Thus, consumers should be able to 
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differentiate and discriminate between these implementations and choose 
the appropriate one that meets their service delivery attributes. In address 
such a difficult challenge, and to find the golden ratio between consumer 
and provider services, additional research is necessitated.

2.6  conclusIon

As a result of the Internet of Things and related technologies, cloud com-
puting is experiencing a phase of rapid evolution. This chapter described 
how the Cloud-IoT convergence is moving cloud computing from a cen-
tralized model to a more distributed one and from a commoditized 
homogenous cloud to a specialized, heterogeneous one. New techniques 
and approaches are needed to exploit these new evolutions in cloud com-
puting and to support the Internet of Things.
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CHAPTER 3

Flying to the Clouds: The Evolution 
of the 5G Radio Access Networks
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Abstract The number of connected devices and the amount of data traffic 
exchanged through mobile networks is expected to double in the near 
future. Long Term Evolution (LTE) and fifth generation (5G) technolo-
gies are evolving to support the increased volume, variety and velocity of 
data and new interfaces the Internet of Things demands. 5G goes beyond 
increasing data throughput, providing broader coverage and reliable 
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ultra- low latency channels to support challenging future applications. 
However, this comes with a cost. As such, the architectural design of radio 
access network requires due consideration. This chapter explains why the 
radio access network is critical to 5G success and how novel trends on 
edge computing, network slicing and network virtualisation perform a 
critical role in optimising resources on emerging 5G infrastructures.

Keywords 5G • Network function virtualisation • Radio access 
networks • Cloud radio access networks

3.1  IntroductIon

The combination of widespread adoption of smartphones and the Internet 
of Things (IoT) presents telecommunications operators with significant 
challenges that legacy architectures were not designed to handle. An ever- 
increasing number of consumers use a plethora of bandwidth-intensive 
mobile applications, not least social media and video streaming, and device 
capabilities driven by affordable data plans. At the same time, the Internet 
of Things is driving data exchange; the number of smart end-points, for 
example, smart home and healthcare devices, will reach about 1.1 billion 
devices in 2022 (Cisco 2019). Globally, mobile devices and connections 
will grow to 12.3 billion by 2022 at a compound annual growth rate of 
7.5% generating 77 exabytes (EB) of mobile traffic (Cisco 2019).

As discussed in Chap. 1, innovations such as Ipv6 and new paradigms 
in computing such as fog, edge and dew computing are enabling the IoT, 
however, LTE and 5G play a critical role in network connectivity. 
Furthermore, 5G, in particular will stimulate innovation and value through 
new applications and business models to support unprecedented connec-
tivity and coverage. These applications and business models require 
increasingly heterogeneous and demanding service levels in terms of secu-
rity, reliability, latency, throughput and so on (Li et al. 2018). In order to 
support these requirements, 5G technology evolves the 4G network 
through a new high frequency radio technology that provides greater data 
rates. Due to the smaller coverage of the high frequency radio technology, 
5G needs more base stations to cover the same area than 4G, which in 
turn offers more resources to cope with the massive connectivity and low 
power demands of IoT devices. 5G technology can also ‘slice’ radio 
resources to offer more reliability, more bandwidth, or ultra-low latency 
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according to the demand of the heterogeneous services coexisting within 
the 5G network (Popovski et al. 2018).

One of the main economic issues for operators of mobile infrastructure 
is that the average revenue per user (ARPU) is not growing as quickly as 
the traffic demand. As such, network operators are looking for mecha-
nisms to sweat legacy infrastructure and reduce costs:

there has […] been a need for cost-effective solutions that can help operators 
accommodate such huge amounts of mobile network traffic while keeping addi-
tional investment in the mobile infrastructure minimal. (Taleb and Ksentini 
2013, p. 12)

5G may be the answer. However, this may be a blessing in disguise. 
Firstly, while new business models and use cases may generate new value 
and revenue streams, it will also result in even greater heterogeneity, data, 
and QoS demands. Secondly, the cost of a 5G base station cost is esti-
mated to be 4X of an equivalent Long-Term Evolution (LTE) base station 
and, due to the usage of higher frequencies, 5G is likely to need around 3 
times more base stations to achieve the same coverage as 4G networks. 
Wisely et  al. (2018) estimate that a 5G network with 100 times more 
capacity than a 4G network is 4 to 5 times more expensive than that 4G 
network. Finally, 5G’s base station power consumption is estimated to 
reach 3X that of an LTE’s. 5G uses massive multiple-input multiple- 
output (MIMO) antennas to perform beamforming and gain bandwidth. 
In contrast, LTE MIMO antennas usually use no more than 4 by 4 ele-
ments; 5G MIMO is expected to adopt 64 (at transmitter) by 64 (at 
receiver) antenna elements. It requires more power amplifiers and 
analogue- to-digital paths, and consequently increases power consumption 
to tens of kilowatts per base station. Clearly, the cost of deploying 5G is an 
important issue. Therefore, one solution is greater optimisation of the 5G 
radio access network (RAN) architecture in order to save resources. As a 
result, the telecommunication operators need to distribute their network 
infrastructure to the edge to cope with the growing number of mobile 
users and the related bandwidth-intensive mobile applications, minimising 
the communication path between users and services, and consequently 
decreasing the delay and alleviating pressure on core network operation. 
In this context, distributed cloud data centres, network virtualisation and 
slicing techniques (such as Software Defined Networking (SDN), Network 
Function Virtualisation (NFV), and Virtual Network Function (VNF)) 
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perform critical roles in ensuring service availability, network enhance-
ments and cost reduction. As Taleb et al. note

Along with recent and ongoing advances in cloud computing and their support 
of virtualised services, it has become promising to design flexible, scalable, and 
elastic 5G systems benefiting from advanced virtualisation techniques of cloud 
computing and exploiting recent advances relevant to network function virtu-
alisation. (Taleb et al. 2016, p. 84)

Understanding the components of distributed data centres (at both the 
infrastructure and application levels) and the relationship between them is 
very useful for analysing and optimising both infrastructure and resource 
placement for composing VNF chains.

In this chapter, we provide a summary of the evolution of 5G architec-
tures and explain why RAN designs are critical to 5G success and conse-
quently, the success of IoT. We describe how the components and their 
functionalities evolved over time to meet the user and application require-
ments. We also present how some key technologies, such as SDN and 
NFV, support the evolution of cellular networks. We conclude with cur-
rent research challenges and opportunities in this area.

3.2  the evolutIon of radIo access 
networks (rans)

The section outlines the evolution of RANs from Distributed RANs to 
Cloud RANs, Heterogeneous Cloud RANs and Fog Computing RANs.

3.2.1  Distributed Radio Access Networks

Early generations of cellular systems used to have a baseband unit (BBU) 
and remote radio head (RRH) components physically integrated and 
located at the bottom of a Base Station (BS) connected to a Radio 
Frequency (RF) antenna at the top of the tower through heavy electrical 
cables. However, this architecture presented significant RF signal propa-
gation loss in the electrical cable feed resulting in degraded signal trans-
mission/reception power and quality (Liu 2017). As a result, 
telecommunications operators began to adopt a separated BBU and RRH 
architecture based on distributed Radio Access Network (D-RAN or 
just RAN).
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In D-RAN, as shown in Fig.  3.1, each BS is composed of two co- 
located components: (1) a digital unit (DU) or BBU, and (2) a radio unit 
(RU) or RRH; these two components were connected through a Common 
Public Radio Interface (CPRI). The BBU is the component responsible 
for baseband processing, that is processing calls and forwarding traffic. 
The RRH is responsible for digital radio signal processing by transmitting, 
receiving and converting signals, as necessary. Each BS is connected to the 
core network through a backhaul.

In conventional D-RAN architectures, improving the operational 
capacity of a cell means to densify the network however this results in 
increased cost as additional BS’ need be deployed and each BS has an 

Fig. 3.1 A traditional D-RAN architecture

3 FLYING TO THE CLOUDS: THE EVOLUTION OF THE 5G RADIO ACCESS… 



46

associated RRH and BBU. Additionally, in this scenario, the processing 
resources of a BBU cannot be shared among other RRHs.

Wang et al. (2017) propose an alternative means to improve the system 
by making use of technologies, such as coordinated multipoint (CoMP), 
to reduce the interference and increase the throughput. However, this 
solution has two main drawbacks: (1) it applies stringent delay constraints 
for control and signalling to guarantee on-time coordination between BS 
(NGMN Alliance 2015), and (2) it is not designed to deal with the pro-
cessing capabilities of distributed BSs. As the volume of end users and 
complexity of the services offered by the operators has increased, new 
drawback in conventional D-RAN deployments emerged. For instance, 
average spectral efficiency gains of only 20% were observed in RAN 
deployments (Sun and Peng 2018). As a result, Cloud RANs (C-RANs) 
have emerged as a centralised solution, moving the BS functionalities to 
the cloud in order to optimise the resources and improve energy efficiency 
(Wu et al. 2015; Peng et al. 2015a, b).

3.2.2  Cloud Radio Access Networks (C-RANs)

The main design principle of C-RAN architecture is to relocate some of 
the cellular network functions to the cloud infrastructure. In 2010, IBM 
proposed a wireless network cloud (WNC) to decrease network costs and 
obtain more flexible network capabilities (Peng et  al. 2011). In 2011, 
China Mobile Research Institute launched the C-RAN architecture and 
ZTE Corporation proposed network solutions to comply with the C-RAN 
requirements. Following this lead, many telecom operators started to 
develop new solutions based on virtualisation techniques in order to guar-
antee flexibility and take advantage of cloud features. Network operators 
understand that the main cost of 5G is incurred at the RAN, therefore 
they decided to invest in new types of open and low-cost architectures.

To address the main limitations present in traditional RANs, the RRH 
and BBU functions were physically decoupled in C-RAN architectures. As 
shown in Fig. 3.2, the RRH is kept at the BS but now the BBU is migrated 
to cloud infrastructure. To connect the BBU with the respective RRHs, 
there is a need for a high-speed and low-latency front-haul communica-
tion channel (Hossain et al. 2019; Ren et al. 2018); bandwidth require-
ments for these links depends on the level of the split between BBU pool 
located in the cloud and RRH. As presented in (Peng et al. 2015a, b), 
there are three different functional split of C-RAN architectures: (1) fully 
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centralised, (2) partially centralised and (3) hybrid. In the fully centralised, 
all processing and management functions of base stations are performed 
by the BBU pool at the cloud. This way, basically all data need to be trans-
ferred from RRH to the cloud, requiring a high bandwidth. In the par-
tially centralised configuration, the RRH performs the functions related to 
RF, such as signal processing; and the other management functions are 
performed in the cloud by the BBU pool. This option reduces the band-
width requirements between the RRH and the cloud. However, the inter-
action between processing and managing functions can be complex, 
making the separation difficult. In this case, the third type of split, the 
hybrid, moves some types of processing functions to the cloud and assigns 
them to a new separated process. This option facilitates the resource man-
agement and reduces the energy consumption on the cloud side.

Fig. 3.2 A general architecture of a C-RAN cellular network
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The front-haul communication channel can be implemented using a 
wide variety of technologies including millimetre wave technologies, stan-
dard wireless communication, and optical fibre communication (Hossain 
et  al. 2019). While fibre optics are used to support high transmission 
capacity, these are constrained by cost and deployment flexibility. Wireless 
technologies with 5–40 GHz carrier frequencies are lower cost and more 
flexible in terms of deployment. Liu (2017) notes that with C-RANS:

…the conventional complicated and power-hungry cells can be simplified to 
RRH only, reducing capital expenditures (CAPEX) and operational expendi-
tures (OpEx) related to power consumption and cell maintenance. (Liu 
2017, p. 221)

In this way, several RRHs can be deployed at distributed BS to provide 
seamless coverage and high throughput for a large number of users (Pan 
et al. 2018), while a pool of BBUs can share computational resources in 
the cloud infrastructure thereby optimising resource usage. As such, in 
C-RANS, the most intensive computational tasks are now performance in 
BBUs allocated in the cloud. These tasks include signal modulation, pre- 
coding matrix calculation, channel state information estimation, and 
Fourier transformation (Hossain et al. 2019; Wang et al. 2018). In addi-
tion, the monitoring of the RRHs operational status can be used to 
dynamically adapt the number of active BBUs in the cloud reducing the 
energy and operational cost (Pan et al. 2018).

As highlighted in Hossain et al. (2019), there are several advantages in 
adopting C-RAN architectures. In a traditional RAN architecture, the 
deployment and the commissioning of a new BS is very expensive and 
time-consuming. In contrast, in C-RAN systems, the deployment of an 
equivalent infrastructure is relatively easier since only a new RRH need be 
installed and associated BBU services deployed in the cloud. With this, it 
is possible to cover new areas or split the cell in order to improve its capac-
ity. Suryaprakash et al. (2015) suggests that the adoption of C-RAN can 
reduce CAPEX by approx. 15%. Furthermore, it is possible to improve 
energy efficiency. As all BBUs are allocated in the cloud, the telecommu-
nications operator is able to monitor the BBUs operation and apply strate-
gies to dynamically change their mode (low power sleep mode or shut 
down) to save energy saving energy (Wu et al. 2015).

There are some drawbacks in adopting C-RANs, not least security. 
C-RAN architectures may suffer the same problems of traditional 
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networks, such as primary user emulation attack and spectrum sensing 
data falsification (Tian et al. 2017). In addition, if all BBUs run in the 
cloud, any problem in the cloud infrastructure can compromise the whole 
service operation. Peng et al. (2016a) note that centralised signal process-
ing in the cloud can introduce the risk of higher latency. The constrained 
capacity of front-haul links is also a problem. This results in a significant 
negative impact on both energy efficiency and spectral efficiency (Sun and 
Peng 2018). Two proposed innovation to address these issues are hetero-
geneous C-RAN (H-CRAN) and fog RAN (F-RAN).

3.2.3  Heterogeneous Cloud Radio Access Networks

Heterogeneous CRAN (H-CRAN) is an architecture that takes advantage 
of two approaches: CRAN and Heterogeneous Networks (HetNets). 
HetNets are composed of a set of small cells that transmit signals with low 
power within a traditional macro cell network (Anpalagan et al. 2015). 
Hetnets allows short radio transmission distance resulting in reduced cost 
and promotes capacity enhancement (Yang et al. 2015).

Small cells can be classified as microcells, picocells, or femtocells. These 
types of cells are differentiated by output power, cell radius, number of 
users, and Distributed Antenna Systems (DAS) integration (see Table 3.1). 
DAS is a distributed version of a MIMO system that aims to provide spa-
tial diversity to avoid path loss and shadowing. Consequently, the signal 
reception quality and the physical layer security at receivers are improved 
(Wang et al. 2016). H-CRANs, as well as HetNets, present different types 
of small cells in their architecture, which are spread along a macro cell 
coverage area (Marotta et al. 2017).

HetNets have two important types of nodes: high power nodes (HPNs) 
and low power nodes (LPNs). HPNs, such as macro cell base stations 
(MBS), are in charge of wide network coverage. LPNs, such as small cell 

Table 3.1 Cell specification. (Adapted from Mishra (2018))

Femto cells Pico cells Micro cells Macro cells

Output power 1–250 mW 250 mW–1 W 1–10 W 10–50+ W
cell radius 10–100 m 100–200 m 0.2–2 km 8–30 km
Users 1–30 30–100 100–2000 2000+
DAS integration No Yes Yes Yes
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base stations (SBS), are low powered nodes densely deployed, offering 
high data rates in hot spots and seamless mobility, referring to the SBSs 
(Sun and Peng 2018). To manage complexity and for efficiency and cost- 
effectiveness, HetNets support self-organisation, allowing cooperation 
between the base stations to optimally coordinate their resources.

The use of HetNet HPNs brings advantages to C-RAN architectures in 
terms of backward compatibility and seamless coverage in cellular net-
works, since in a C-RAN architecture, RRHs focus on high capacity 
instead of coverage. Furthermore, HPNs enable convergence of multiple 
heterogeneous radio networks and control signaling in the network (Alimi 
et al. 2017). In H-CRAN architectures, RRHs assume the role of LPNs by 
performing simple functions (such as radio frequency management and 
simple symbol processing). The BBU is responsible for coordination 
between HPNs and RRHs to mitigate inter-tier interference. The BBU 
pool is also responsible for important upper layer functions (Sun and Peng 
2018; Ali et al. 2017).

In H-CRANs, the control and data plane are decoupled. Data rate is 
the responsibility of an RRH (LPN) while control plane functionality is 
allocated to HPNs (Zhang and Wang 2016; Ali et al. 2017). Figure 3.3 
presents an H-CRAN architecture and its elements. The HPN located in 
the macro cell communicates with SBS’ through the control plane. RRHs 
located in small cells communicate by front-haul with the BBU pool 
through the data plane. In this architecture, the communication from the 
HPN to the cloud, from the cloud to the core network, and from the core 
network to the HPN are done by the back-haul channel.

3.2.4  Fog Computing Radio Access Networks

Fog Computing Radio Access Network (F-RAN) exploits the edge and 
storage capabilities of fog computing to address the front-haul constraints 
of previous architectures C-RANs and H-CRANs. The C-RAN and 
H-CRAN architectures centralise their software process at the cloud 
resulting in a heavy load on the front-haul link. To mitigate this problem, 
Peng et  al. (2016b) proposed the F-RAN architecture based on the 
H-CRAN architecture with the addition of two components: (1) a fog 
computing-based access point (F-AP), RRH equipment with caching, 
cooperative signal processing, and radio resource management (RRM); 
and (2) fog user equipment (F-UE), a smart user terminal that also con-
tains caching, cooperative signal processing, and RRM.  With both 
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components, the proposed architecture (Fig.  3.4) receives local traffic 
from the F-APs or F-UEs, preventing traffic overloads from the front-haul 
to the cloud BBU.

The F-UEs can communicate to each other through an adaptive tech-
nique device-to device (D2D) or using the F-UE based relay mode. For 
instance, the F-UE can exchange data directly with another F-UE using 
the D2D technology (Peng et al. 2016b). Meanwhile, the relay mode uses 
an F-UE as intermediary communication to other F-UEs. As mentioned 
earlier, the F-APs are RRH equipment that store a content cache and are 
used to forward and process incoming data. Because the F-APs and F-UEs 
contain caching, the control plane and part of the data plane can be trans-
ferred to them. As such, some requests will be processed locally addressing 
front-haul limitations (Peng et al. 2016b).

Although the F-RAN aims to minimise the disadvantages of C-RAN 
and H-CRAN, some questions about the new architecture are still open, 
such as caching, SDN and NFV. Caching on F-AP and F-UE devices 
requires intelligent resource allocation strategies to be efficient and thus 

Fig. 3.3 An H-CRAN architecture
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alleviate front-haul overhead. Device caching is limited and can save little 
data locally. Thus, if both resource allocation and caching are not efficient, 
using F-RAN will not make sense and will not help with front-haul relief 
(Peng et al. 2016b). SDN, originally designed to be applied in wired net-
works, has been adapted for use in F-RANs. However, its structure is 
based on a centralised operation, while the F-RAN is based on a distrib-
uted one. As such, SDN needs to be adapted to this new context. In the 
same way, virtualising the SDN controller in F-RAN architectures remains 
a challenge (Guizani and Hamdi 2017).

3.3  network functIon vIrtualIsatIon 
and 5G networks

5G networks deliver six benefits: high capacity, high data rate, low end-to- 
end latency, reduced costs, improvement of energy efficiency, and massive 
device connectivity (Zhang et  al. 2015). Consequently, it needs ultra- 
densified networks, device-centric architecture, and specialised hardware. 

Fig. 3.4 An F-RAN architecture
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There is also a need to coexist with legacy infrastructures, e.g. 2G, 3G, and 
4G technologies, which increases management cost and complexity. A 
solution to address these factors is to implement the 5G network functions 
as software components using NFV (Alimi et al. 2017).

The initial purpose of NFV was to reduce CapEx and OpEx using vir-
tualisation technology and to allow network operators sweat legacy infra-
structure. NFV implements, through virtualisation technologies and 
leveraging standard servers, network functions in software, instead of run-
ning them on purpose-built hardware (Gomes et al. 2015). SDN enables 
the network operator to manage network functions through the abstract 
lower-level functionality, separating the control plane and data plane. At 
the same time, NFV is a technology that enables flexible and fast deploy-
ment of network functions in commodity devices instead of dedicated 
purpose-built hardware (Zeng et al. 2017). The combination of NFV and 
SDN brings several advantages for the network operator such as energy 
efficiency, network programmability (Miozzo et al. 2018; De Souza et al. 
2018), network slicing (Ordonez-Lucena et  al. 2017; Chartsias et  al. 
2017; Zhang et  al. 2015; ETSI 2013; Zhou et  al. 2016; Schiller et  al. 
2015), and dynamic bandwidth adjustment to reduce the delay (Zhang 
et al. 2015; Jahan 2015). For example, it is possible to identify the optimal 
resources to meet a specific demand and allocate them into the network 
using SDN/NFV (De Souza et al. 2018). SDN/NFV is increasingly being 
adopted by network operators not only for reduced CapEx and OpEx but 
also because it offers new service and revenue generation opportunities 
from legacy infrastructure by reducing the maturation cycle, deploying 
services faster (reduced time to market), and targeting particular customer 
segments or geographic markets with specific software and software con-
figurations (Lynn et al. 2018).

In an effort to improve C-RANs, NFV has been used to virtualise the 
RAN architecture (ETSI 2013; Peng et  al. 2015a, b; Rost et  al. 2014; 
Dawson et al. 2014; Peña et al. 2019). ETSI outline a virtualised RAN use 
case in a C-RAN architecture where the BBU functions can be executed in 
a Network Function Virtualisation Infrastructure (NFVI) environment, 
such as a data centre. Peng et al. (2015a) used a H-CRAN solution based 
on NFV that included virtualised radio and computing resources for both 
intra and inter RAN technologies. Rost et al. (2014) proposed RAN- as- a-
Service (RANaaS) to ensure flexible a functional split between a central-
ised cloud (e.g. C-RAN) and a distributed operation (in conventional 
mobile networks). They sought to take advantage of the flexibility of 
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virtualised RAN functions, while delay-stringent functions remained at the 
BS’ with the less stringent ones deployed centrally in the cloud. Dawson 
et al. (2014) proposed a virtual network architecture for Cloud-RAN base 
stations that presents the core network with an abstracted view of the 
physical network. Abdelwahab et al. (2016) explored the potential of NFV 
for enhancing the functional, architectural, and commercial feasibility of 
5G RANs including increased automation, operational agility, and 
reduced CapEx.

The RECAP project developed the next generation of cloud, edge and 
fog computing resource management, that supports complex applications 
and networks, and make use of network and service function virtualisation 
to handle heterogeneous underlying architectures and dynamic resource 
provisioning. Representative uses cases were proposed to demonstrate the 
challenges and one of the use cases is owned by TIETO, the largest IT 
service company in the Nordics. TIETO provides new solutions leverag-
ing on the possibilities enabled by 4G and beyond mobile technologies in 
conjunction with cloud and fog computing. Through the RECAP project, 
TIETO evaluated 5G technologies by simulating network characteristics 
and QoS requirements, focused on improving reliability and reducing net-
work latency. The RECAP solution for TIETO relies on SDN and VNF to 
dynamically provide resources (application placement and infrastructure 
optimisation) considering the QoS and QoE requirements (Peña 
et al. 2019).

3.4  challenGes and future dIrectIons

C-RAN is currently established as an alternative to the distributed cellular 
RAN. It centralises mobile network functions and is shown to consistently 
reduce capital and operational expenditures of such networks. Despite 
this, there is currently a number of opportunities for architectural 
improvements.

In order to meet the requirements of 5G deployments, C-RAN tech-
nology must evolve to reduce the costs of high-speed front-haul networks. 
CPRI-based front-haul demands high data rates (typically 10 to 24 Gbps 
per RRH) and small latency (100 μs to 400 μs) due to the nature of the 
I/Q data (Gomes et al. 2015). As such, options like Ethernet-based links 
appear as cost effective alternatives to replace CPRI as they are based on 
low-cost equipment and it brings statistical multiplexing capabilities to the 
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front-haul. Despite offering high data rates, Ethernet presents delay and 
synchronisation issues that remain as barriers to further adoption.

Greater energy efficiency is critical for future 5G mobile networks. The 
deployment of small 5G cells and heterogeneous networks will increase 
network energy demands. Harvesting ambient energy (through solar and 
wind power technology) are needed to make such deployments economi-
cally feasible and environmentally sustainable thus reducing energy con-
sumption. At the same time, strategies to conserve energy at BBUs and 
RRHs (sleep mode) will be more and more employed (Hossain et al. 2019).

Even though the advantages of H-CRAN are well-documented, there 
are some open challenges in terms of operability. Front-haul and backhaul 
links may suffer additional burden due to the increasingly massive volumes 
of data received by the BBU pool (Zhang et al. 2017). The high density 
of base stations also may result in issues in H-CRAN architecture, such as 
inefficient resource usage, signal interference and degraded throughput in 
cases where distant cells are located at the cloud edge (Tran et al. 2017).

Supporting a massive amount of device-to-device communications 
brings several challenges that must be overcome in order to make 5G 
radio access the main infrastructure for the IoT. First, new IoT services 
and applications will change the traffic matrix at the RAN, as there will be 
an increase in connections between devices at the edge and between these 
devices and the distributed applications hosted close to the BBU. Such a 
traffic matrix will lead the front-haul to change uplink and downlink 
requirements. Second, the sheer mass of new IoT devices will bring new 
mobility management issues due to the increase in handoff and location 
operations. This will, in turn, be impacted by the centralised nature of 
C-RANs that can impose additional latency to perform these operations. 
To manage the complexity inherent in such a massive volume of heteroge-
neous and geographically distributed end-points, self-organisation pres-
ents itself as a solution and an avenue for further research (Hossain 
et al. 2019).

In terms of security, C-RAN technology is subject to threats from cloud 
systems and cellular systems (Hossain et al. 2019). Research in this area 
needs to employ security frameworks and techniques from both worlds 
(cloud and cellular) to promote new solutions for maintaining user pri-
vacy, trust among devices in HetNets, and among devices from different 
operators. The security challenges also extend to physical security. Wireless 
communications, by their nature, are susceptible to eavesdropping, and 
standard solutions based on encryption often impose infeasible or 
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unacceptable computing and communication overheads. This way, devel-
opment of strategies to exploit the physical characteristics of the radio 
channel for security is an active research field (Peng et al. 2016a)

3.5  conclusIon

Radio access networks, and 5G technologies in particular, provide the net-
work connectivity to enable the Internet of Things. In this chapter, a sur-
vey is presented on the evolution and improvements of radio access 
networks for 5G cellular networks (D-RAN, C-RAN, H-CRAN, and 
F-RAN) by presenting their infrastructure details, advantages, and limita-
tions. A selection of key emerging technologies, such as SDN and NFV, 
and their benefits are also discussed. 5G deployments, energy efficiency, 
massive device-to-device communications, and security in RAN-based 
architectures all present potentially fruitful and necessary avenues for 
research as the adoption of the Internet of Things accelerates. We believe 
that this survey serves as a guideline for future research in 5G networks, as 
well as a motivator to think about on the next generation 5G RAN archi-
tectures for the Internet of Things.
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CHAPTER 4

Orchestration from the Cloud to the Edge
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Abstract The effective management of complex and heterogeneous com-
puting environments is one of the biggest challenges that service and infra-
structure providers are facing in the cloud-to-thing continuum era. 
Advanced orchestration systems are required to support the resource man-
agement of large-scale cloud data centres integrated with the big data gen-
eration of IoT devices. The orchestration system should be aware about all 
available resources and their current status in order to perform dynamic 
allocations and enable short time deployment of applications. This chapter 
will review the state of the art with regards to orchestration along the cloud-
to-thing continuum with a specific emphasis on container- based orchestra-
tion (e.g. Docker Swarm and Kubernetes) and fog-specific orchestration 
architectures (e.g. SORTS, SOAFI, ETSI IGS MEC, and CONCERT).
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4.1  IntroductIon

The inarguable success of cloud computing combined with rapid growth 
in adoption of Internet services is resulting in an unprecedented demand 
for computing resources. However, cloud computing performance for 
many applications depends closely on the network latency. In particular, 
the strength of network connectivity is crucial for large data sets. As more 
and more data is generated by enterprises and consumers, particularly with 
the adoption of the Internet of Things (IoT), traditional cloud connectiv-
ity may not be sufficient (Carnevale et al. 2018). To make up for the lack 
of speed and connectivity with conventional cloud computing, processing 
for mission-critical applications will need to occur closer to the data source. 
Processing the data close to where it originated is referred to as edge com-
puting and fog computing.

Edge computing is pushing computing applications, data, and services 
away from centralised cloud data centre architectures to the edges of the 
underlying network (Barika et  al. 2019). It is defined by NIST (Iorga 
et al. 2018) “as a local computing at the network layer encompassing the 
smart end-devices and their users. It runs specific applications in a fixed logic 
location and provides a direct transmission service.” It promises to reduce 
the amount of data pushed to centralised cloud data centres avoiding load 
on the network and therefore is beneficial for analytics and knowledge-
based services. Edge computing also leads to lower latencies, hence 
increasing communication velocity, reducing wider network footprints 
and avoiding congestion. As it reduces the distance the data must travel, 
it boosts the performance and reliability of latency-critical applications 
and services.

Service orchestration is an arrangement of auxiliary system components 
that cloud providers can use for coordination and management of com-
puting resources to ensure service provision to cloud consumers (Bohn 
et al. 2011). Orchestration can also be defined as the use of programming 
technology to manage the interconnections and interactions among 
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workloads on distributed edge-cloud infrastructure (Mahmoudi et  al. 
2018). This is accomplished through three main attributes of orchestra-
tion, which are closely related: service orchestration, workload orchestra-
tion, and resource orchestration. An orchestration platform usually 
integrates permission, checks for security, and compliance (Ranjan et al. 
2015). Orchestration may also integrate components from various 
domains, for example provide connections between network-deployed 
components and fixed applications and resources. For some applications, 
the integration of virtualised components with the data centre is the only 
needed orchestration type.

Cloud-to-Edge orchestration is a crucial feature for many IT organisa-
tions and DevOps adopters as a way to speed the delivery of services, 
simplify optimisation, and reduce costs (Nygren et  al. 2010). A cloud 
orchestrator automates the management, coordination, and organisation 
of distributed computer systems, services, and middleware. In addition to 
reduced personnel involvement, orchestration eliminates the potential for 
errors introduced into provisioning, scaling, or other cloud processes. 
Orchestration supports the delivery of cloud resources to customers and 
end users, including in a self-service model where users request resources 
without IT’s involvement (Carnevale et al. 2018).

Major cloud providers, such as Microsoft and Google, as well as third- 
party vendors, provide tools for orchestration as part of their services 
(e.g. AWS Cloud Formation, Google Cloud Composer, Azure 
Automation). With orchestration, the overall goal is to ensure successful 
hosting and delivery of applications. Currently provided functionality is 
still lacking focus on Quality of Service (QoS) requirements, however 
meeting the QoS objectives of users will gain further importance in the 
future. Examples of QoS functional and non-functional attributes 
includes performance statistics, consistency, security, integrity, reliability, 
renting cost, scalability, availability, legal, and regulatory concerns (Pahl 
et al. 2019).

The rest of the chapter is organised as follows. The next section pro-
vides a summary overview of day to day challenges in Cloud-to-Edge 
orchestration. Next, we outline current industry standards for orches-
tration architectures and orchestration tools within their respective 
subsections. Finally, we conclude with some closing remarks on 
the topic.
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4.2  orchestratIon challenges

The orchestration of virtualised environments is challenging due to the 
scale, heterogeneity, and diversity of resource types and the uncertainties 
of the underlying cloud environment. The uncertainties arise from a num-
ber of factors including resource capacity demand (e.g. bandwidth and 
memory), failures (e.g. failure of a network link), user access pattern (e.g. 
number of users and location) and lifecycle activities of applications. In 
particular, cloud resource orchestration is challenging because applica-
tions are composed of multiple, heterogeneous software and hardware 
resources, which may have integration and interoperation dependencies 
(Barika et al. 2019).

Orchestration along the Cloud-to-Edge continuum adds another layer 
of complexity and challenges. In the cloud-to-thing era, applications as 
well as storage are geo-distributed. Therefore, applications will need to be 
restructured to distribute logic across the network. Storage will likewise 
need to be decentralised. This creates new issues of reliability and data 
integrity that are inherent in broadly decentralised networks. Cloud serv-
ers become control nodes for intelligent edge devices, performing sum-
mary analytics while leaving real-time decision making to edge servers 
(Jiang et al. 2018). Therefore, there is a need for comprehensive orches-
tration techniques that can coordinate and schedule network services 
simultaneously through different technologies across the Cloud-to-Edge 
network (Vaquero et  al. 2019). Table  4.1 summarises the emerging 
orchestration needs in the edge/fog computing technologies and the cor-
responding requirements for each need.

In order to orchestrate distributed system as cloud-to-thing comput-
ing, new architecture needs to be defined taking into account the above 
edge orchestration needs and requirements.

The orchestration and management of a cloud-to-thing architecture is 
mostly realised through virtualisation. As discussed in Chap. 2, the evolu-
tion of virtualisation has moved away from virtual machines towards more 
lightweight solutions such as containers. This is specifically relevant for 
application packaging at a software platform and application level. 
Different application packages such as containers have been proposed to 
cluster Cloud-to-Edge and solutions such as Docker container and 
Kubernetes architectures. Yet, there is still a need for a topology specifica-
tion and a derived orchestration plan for cloud edge computing.
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4.3  Industry standards

4.3.1  Network Function Virtualisation

Network Function Virtualisation (NFV) is a constantly evolving paradigm 
which enables the virtualisation of chains of communication services thus 
replacing purpose-built hardware appliances. With the increase in network 
traffic diversity and capacity growth in 5G NFV concept offers greater 
degree of flexibility for network, cloud, and mobile service providers 
(Barakabitze et al. 2019). The benefits of virtualisation include scalability, 
elasticity, and cost savings to the service; however the management of 
NFV chains becomes a challenge. The European Telecommunications 
Standards Institute (ETSI) Industry Specification Group for NFV (ETSI 
ISG NFV) has proposed an Open Source NFV Management and 
Orchestration (MANO) framework which provides NFV operators with 
the standard tools and framework for NFV orchestration (ETSI 2019). 
The NFV-MANO architecture is defined by three main functional blocks 
(ETSI 2014):

Table 4.1 Emerging orchestration needs in edge/fog computing. (Adapted 
from Vaquero et al. (2019))

Functional orchestration needs Requirements per need

Dynamic coalitions of edge devices and cloudlets • Locality-awareness
• Dynamism
• Churn
• Scalability
• Replacement
• Recovery

Going beyond shadow devices for reliability. • Device churn
Dynamic end-to-end service availability. • Multi-tenant

• Multi-domain
Smaller execution units, smaller state • Larger scale

• Finer grain
Diversity • Heterogeneity
M2M confidentiality, wireless-based attacks, trust management • Security
AAA, privacy-leakage • Privacy
Ensure quality-of-service on a variety of infrastructure elements • Heterogeneity

• Multi-domain
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• VNF Manager (VNFM)
• VNF Orchestrator (VNFO)
• Virtualised Infrastructure Manager (VIM)

The VNFM is responsible for the lifecycle management of the VNF 
instances such as image template instantiation, software upgrades, scaling, 
and instance termination. The VNFO is responsible for orchestrating 
numerous VIMs to fulfil more complex function objectives across multiple 
VNF groups. Finally, VIM is an interface for a single infrastructure domain 
that is responsible for control and management of resources such as com-
putation, storage, and network at that particular location. The latest 
implementation of Open Source Mano (OSM) Release 6 deploys the 
framework as a cohort of configurable Docker containers which provide 
VNF management capabilities and can integrate with multiple VIMs using 
plugins.

In a bid to bring unity to the NFV environment, the Open Platform for 
NFV (OPNFV) was launched through Linux Foundation (OPNFV 2019). 
The OPNFV project goal is to establish an ecosystem for NFV solutions 
that integrates through joint collaboration of development and testing. 
The OPNFV is a midstream project that drives new features based on the 
upstream user feedback, and also ensures component continuous integra-
tion downstream through composition deployment and testing 
(Brockners 2016).

4.3.2  OpenFog Reference Architecture

To standardise and promote the use of the fog computing paradigm across 
various disciplines the OpenFog consortium1 was founded by the industry 
and academia in the telecommunication field. The OpenFog consortium 
working group created the OpenFog Reference Architecture (RA) for fog 
computing which was adopted by the IEEE Standards Association 
(OpenFog Consortium 2018). The reference architecture provides an 
overview of fog opportunity areas, use cases, and introduces eight pillars 
of OpenFog RA:

• Security—trust, attestation, privacy
• Scalability—localised command control and processing, orchestra-

tion and analytics, avoidance of network taxes

1 Merged with Industrial Internet Consortium in January 2019
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• Openness—resource visibility and control, white box decision mak-
ing, interop and data normalisation

• Autonomy—flexible, cognition and agility, value of data
• Programmability—programmable SW/HW, virtualisation and 

multi-tenant, app fluidity
• RAS—Reliability, Availability, and Serviceability
• Agility—tactical and strategic decision making, data to wisdom
• Hierarchy—fully cloud enabled, computational and system, auton-

omy at all levels

The pillars provide guidance and describe requirements for hardware 
manufacturers, software developers, system vendors, and other parties in 
the fog supply chain. This view aligns well with the ISO/IEC CD 30141 
that defines an Internet of Things RA (International Organization for 
Standardization 2018). It points out several necessary capabilities of IoT 
systems including the realisation of automated network management; 
ensuring of maintainability over long periods of time and large geographi-
cal region, including the need for configuration changes; reliability, and 
resilience of the system; and the need for availability and therefore scal-
ability. The realisation of all of these capabilities requires a huge degree of 
automation and hence, are well-suited for the use of an orchestrator.

4.3.3  Orchestration Architectures

Multiple resource orchestration and provisioning architectures were devel-
oped to take advantage of Cloud-to-Edge infrastructure and its features. 
Munoz et al. (2015) present a management and orchestration architecture 
based on Software Defined Networking (SDN) and NFV. This architec-
ture allows dynamic deployment of virtual tenant networks (VTN) and 
required corresponding SDN controllers in distributed data centre net-
work as NFVs. The proposed solution is compatible with NFV MANO 
and consists of the following main functional blocks: Multidomain SDN 
Orchestrator, Multidomain Network Hypervisor, Intra-DC Cloud and 
Network Orchestrator and Global Cloud and Network Orchestrator.

The Multidomain SDN Orchestrator mechanism acts as a “controller of 
the controllers” of end-to-end provisioning services using Control 
Orchestration Protocol (COP). It orchestrates services across heteroge-
neous network layer components at a higher abstraction level thus sup-
porting multiple lower level technologies. The Multidomain Network 
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Hypervisor aggregates and partitions physical network resources into vir-
tual resources forming multiple connections among VTNs. The network 
hypervisor can dynamically create, change, and delete network resources 
based on matrix of QoS requirements. The Intra-DC Cloud and Network 
Orchestrator is responsible for VM lifecycle management, that is creation, 
migration, and deletion within a data centre. In a distributed data centre 
network, there is a need for an integrated orchestration. The Global Cloud 
and Network Orchestrator architecture component is responsible for global 
network and resource provisioning. It ensures VM migration and end-to- 
end connectivity links setup between distributed data centre site locations. 
The Integrated SDN/NFV Management and Orchestration Architecture 
was validated by an implementation that was deployed across three data 
centres in Spain and Poland.

Yannuzzi et al. (2017) propose a novel converged architecture called 
the Digital IoT Fabric, that complies with both OpenFog and MANO 
standards. The design of the Digital IoT Fabric aims to deliver a uniform 
management to NFV and IoT services with the deployment options from 
cloud to edge. The architecture is logically separated into four components:

 1. the sensors, actuators, and control layer;
 2. the system view of hardware resources and software view of virtuali-

sation layer components;
 3. five perspectives that comprise of platform capabilities i.e. manage-

ability, security, performance and scale, data analytics and control, 
IT business and cross-fog applications; and

 4. the User Interface (UI) and cloud and OpenFog services layer.

The logical connection between OpenFog and VNF MANO is achieved 
through the link between the OpenFog Node Management component 
and the MANO VIM component, both of which manage virtual functions 
and virtual infrastructures. Yannuzzi et al. (2017) argue that such archi-
tecture allows automated orchestration across the Edge-to-Cloud contin-
uum and can play a key role in merging of operational technology and 
information technology.

SmartFog is another novel fog architecture which was designed to 
resemble human brain functions, where fog devices and network commu-
nication channels are analogous to neurons and synapses (Kimovski et al. 
2018). This nature-inspired fog architecture makes use of graph theory, 
machine learning, and multi-criteria decision making to make fast 
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decisions and architecture structuring. The architecture enables self- 
clustering of fog devices based on functional areas, further extending par-
allels with nature, for example temperature sensors forming a group of 
thermoreceptors or camera sensors forming a group of photoreceptors. 
The proposed architectural model can be logically divided into three dis-
tinctive layers: cloud layer, fog layer, and IoT layer. The cloud layer is the 
top layer where IoT application components are deployed and governed 
by functional requirements. The fog layer is the intermediary tier between 
the cloud and IoT layers, where the SmartFog architecture evolves around. 
SmartFog manages fog layer resources available within fog devices to cre-
ate data transmission and processing paths through establishing commu-
nication gateways and assigning resources needed to host IoT application 
components and temporary storage blocks. The spectral clustering 
approach is applied to the lower IoT layer to classify and group fog devices 
based on their functional resemblance. Such groups are then connected to 
cloud applications in the upper cloud layer through dynamic communica-
tion gateways in the intermediary tier of the fog layer. The SmartFog 
architecture concept was validated via simulation only and as such, remains 
only a theoretical contribution.

Velasquez et al. (2017) recognise the difference between cloud com-
puting and fog computing requirements and propose the Supporting the 
Orchestration of Resilient and Trustworthy Fog Services (SORTS) frame-
work which introduces new mechanisms for services and resources orches-
tration specifically in fog environment. SORTS aims to maintain acceptable 
levels of QoS through ensuring resilience, trustworthiness and low latency 
within the dynamicity of a fog environment. The framework proposes a 
hybrid approach by using service orchestration and choreography man-
agement approaches. The orchestration is defined as a centralised manage-
ment mechanism for cloud level resource management in the upper tier of 
the architecture. While the choreography mechanism is dedicated to the 
lower architecture tier covering management of IoT device virtual clusters 
and fog instances. Such operational decoupling in management levels 
allows quicker reaction to the changes to virtual clusters without interven-
tion of higher level service management.

A Service Orchestration Architecture for Fog-enabled Infrastructures 
(SOAFI) is proposed by de Brito et al. (2017) which is based on the core 
requirements of fog computing focusing on heterogeneity and dynamics 
of IoT devices. Authors of SOAFI consider every exposed computer inter-
face as a resource, and therefore in control by a resource manager: resource 
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examples include microservices, sensors CPU, memory, network, VMs, 
accelerators. The framework itself is split in two tiers Fog Orchestrator 
(FO) and Fog Agent (FA). The FO manages the infrastructure of con-
nected fog nodes; it keeps a database of available resources through a built 
discovery service. The FA is running on a fog node and provides monitor-
ing and local access to resource management through the interface to the 
FO. The authors were successful in implementing and initial working pro-
totype of SOAFI which was deployed in their IoT testbed.

A Cloud-Based Architecture for Next-Generation Cellular Systems, 
named CONCERT is proposed by Jingchu Liu et al. (2015). As the name 
suggests the architecture is targeted for management of cellular edge infra-
structure embracing NFV services. The CONCERT approach is based on 
the concept of control and data plane decoupling where data plane embod-
ies physical resources of edge infrastructure and the control plane coordi-
nates physical resources through virtualisation. In addition, CONCERT 
allows physical resource placement and task scheduling in a bit for better 
service orchestration. The control plane entity, called Conductor, is at the 
centre of the proposed architecture design. It orchestrates and virtualises 
data plane resources as well as controlling software defined switches 
through centralised packet forwarding tables. This way the Conductor 
manages physical data plane resources as a central entity by provisioning 
them to a required VNF.

In an effort to bridge the gap between theory and practice, Santos et al. 
(2017) propose a container-based fog computing orchestration architec-
ture. The proposed architecture was implemented using Kubernetes, an 
open source management solution for containerised applications, which 
was extended with network-aware scheduling (NAS) (Santos et al. 2019) 
and Integer Linear Programming (ILP) decision support for IoT service 
placement (Santos et  al. 2017). The network-aware scheduling makes 
resource provisioning decisions by taking in consideration current load 
status of available network infrastructure and the target location of service. 
The ILP ensures close placement proximity of IoT application services to 
the end devices which use these services. The smart city scenario-based 
experiments show a 70% network latency reduction compared to the 
default Kubernetes scheduling setup with 1.22  ms scheduling decision 
time overhead.
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4.3.4  Orchestration Tools

Industry standard and proposed orchestration architectures define high 
level system design best practices for multiple integrated functional com-
ponents. However, in order to use any of the system design features in real 
world scenarios, an actual implementation has to take place. A wide range 
of resource management tools are available to orchestrate Cloud-to-Edge 
infrastructure which are outlined below.

Since edge site resources are considered to be limited due to constraints 
in physical hosting space, we focus primarily on container-supporting 
tools as containers have leaner resource overhead profiles when compared 
to virtual machines. A container is technology that provides lightweight 
virtualisation at the kernel level. It is a packaged, self-contained, ready-to- 
deploy set of parts of applications, that might include middleware and 
business logic in the form of binaries and libraries to run the applications 
(Pahl and Lee 2015). Containers address concerns at the cloud PaaS level 
allowing to spawn self-contained applications on demand. Containers are 
often called building blocks of PaaS due to flexibility to be spawned on 
both physical and virtual infrastructures. Containers also relate to the IaaS 
level through sharing and isolation aspects that exemplify the evolution of 
OS and virtualisation technology. Docker is one of the most popular con-
tainer tools for the Linux and Windows operating system with about 83% 
of market share followed by CoreOS rkt (12%), Mesos Containeriser (4%) 
and Li Linux Containers (LXC) (1%) (Carter 2018). Dockers are frame-
works built around container engines (Turnbull 2014). They make con-
tainers a portable way to package applications to run in containers. The 
Open Container Initiative2 is making a push to create de-facto standards 
for container runtime and image formats. In terms of a tiered application, 
a tier can be represented by a single container or a number of containers 
depending on application design and requirements.

Kubernetes is a popular open-source platform for managing containers 
and their hosted services. Kubernetes was initially developed by Google 
and open sourced in 2014; it is maintained by the Cloud Native Computing 
Foundation. Kubernetes is a modular platform that focuses on automation 
of container management tasks such as service discovery and load balanc-
ing, storage orchestration, deployment roll outs and rollbacks, container 
bin packing, self-healing, secret and configuration management. The 

2 https://www.opencontainers.org/
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architecture of Kubernetes is divided into three distinct component 
areas—Master Components, Node Components, and Add-ons. The 
Master Components form the control plane of the cluster making global 
decisions on scheduling, backup and ensuring node pod deployments to 
hardware nodes. The Node Components form and maintain usable 
Kubernetes environment on a hardware node. These components are 
deployed on each individual node in the data centre that are zoned to be 
used for container hosting providing network proxy features, healthy con-
tainer state and enable container runtime features. Add-ons are an optional 
component group that complements the Master and Node Components 
by providing additional DNS, web UI and resource monitoring features 
(Kubernetes 2019). Kubernetes is used as a base platform for Red Hat 
OpenShift3 and Rancher,4 which provide additional features for Kubernetes 
cluster management, resource provisioning, monitoring and security. 
Recently, Rancher released K3s specifically tailored towards low-end infra-
structure such as IoT gateways and extreme edge devices.

The Nebula Container Orchestrator5 is an open-source project designed 
to manage large-scale clusters of Docker containers. The solution is spe-
cifically targeted at large-scale scenarios such as IoT devices or virtual 
Content Delivery Networks (vCDN) running Docker containers. The 
Nebula Container Orchestrator provides a REST API that can be used for 
sending management instructions to the deployed container groups such 
as rolling out updates, mounting volumes, changing images, monitoring 
health and performance and adjusting resource allocation. The architec-
ture consists of two core components, Manager and Worker, and an 
optional monitoring component, Reporter. First the IoT device connects 
to the manager to retrieve group configuration information, and after 
configuration obtained the worker is handling device further. All of the 
architecture components are using a single scalable backend database (i.e. 
MongoDB6) to store configuration states and monitoring data. Manager 
is a fully stateless component that serves as an API endpoint to control the 
system. Worker is running on the remote container and manages the 
Worker by periodically pulling instructions from manager components. 
The Reporter component is used for collecting the data from the 

3 https://www.openshift.com/
4 https://rancher.com/
5 https://nebula-orchestrator.github.io/
6 https://www.mongodb.com/
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individual containers in the group to provide monitoring data to the sys-
tem administrator. The Nebula Container Orchestrator is designed with 
scale in mind, and each component can be scaled to meet the demands of 
the system. Stress test results suggest a linear increase in number of IoT 
devices a single Manager component can handle from 7780 devices check-
ing manager every 10 seconds to 466,800 devices checking every 600 
seconds (Nebula 2019). Since multiple Manager components can be 
dynamically deployed the orchestrator provides a flexible solution for 
large-scale containerised service deployments.

Swarm is an open-source native container orchestration engine build for 
the Docker platform. The Docker integration allows Docker Engine CLI 
to be used directly to issue Swarm commands providing streamlined Docker 
container cluster management experience. Since the Swarm mode is already 
a part of the Docker engine, no other additional orchestration tools are 
needed when working with Docker-based containers. The Swarm architec-
ture consists of manager nodes, distributed state store, and worker nodes 
(Docker Inc. 2019a). The manager nodes are responsible for maintaining 
cluster state, schedule services and provide access to the functionality over 
web API endpoints. It is recommended to run multiple managers as a safe-
guard against failures in order to maintain consistency of the entire swarm. 
The manager nodes use Raft (Ongaro and Ousterhout 2014) consensus 
algorithm for managing replicated logs via the internal distributed state 
store where each manager is connected. The worker nodes’ sole purpose is 
to execute containers. Worker nodes do not use distributed state storage 
and don’t provide services of manager nodes; however, a worker can be 
promoted to a manager with a single “promote” command as they are also 
instances of Docker Engine. This functionality is useful for node mainte-
nance and failure recovery scenarios. Swarm includes features as incremen-
tal node updates, TLS-based authentication and traffic encryption, internal 
load balancing specification, and an API to connect external load balancers 
with support for the overlay networking and scaling (Docker Inc. 2019b).

4.4  conclusIon

The last decade has brought a rapid emergence of smart devices which 
encouraged the development of cloud computing, hardware, networks, 
and mobility. Both the enterprise and consumer landscape are seeing an 
increase in these device numbers as the value of rapid information access is 
being realised in day-to-day scenarios. The devices are used in geographi-
cally remote locations where access to Internet connection as well as the 
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remote cloud services, is not stable, hence the need to process generated 
data locally. This introduces an additional unique layer of heterogeneity 
with physical form factor variability as well as unique network data transfer 
capability. Meanwhile the increasing consumer and enterprise service 
demand is creating significant strain on the telecommunication compute 
and network infrastructure. Hardware heterogeneity, scalability and 
latency are some of the main challenges that Cloud-to-Edge infrastructure 
providers are facing on a day-to-day basis in order to uphold QoS that are 
expected by customers.

Orchestrators on the other hand have emerged together with cloud 
computing and provide a mature approach to coordinate the automated 
managing tasks for distributed applications running on IaaS or container- 
based environments. The resource orchestration approach and tools stack 
play an important role in distributed service delivery. Considering that 
edge and fog applications need to deal with more dynamic and less pre-
dictable environments, their operators are even more dependent on reli-
able and efficient orchestrators that need to handle the new challenges: 
the use of geo-distributed infrastructure demands for more detailed 
understanding of application behaviour; support for federation, as there is 
a high chance that edge environments will span multiple providers.

There is currently a strong movement to establish cloud and fog com-
puting as business models and a movement towards fog orchestrators. 
Also, multiple active standardisation initiatives exist. Nevertheless, this 
chapter showed that the current state of the art in Cloud-to-Edge orches-
tration does not address all challenges and that more work in research and 
standardisation needs to be done. Just as the paradigm of cloud-native 
applications has given momentum to the development of cloud orchestra-
tors, establishing a commonly accepted definition of fog-native applica-
tions might accelerate the evolvement of fog orchestrators.
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CHAPTER 5

Living at the Edge? Optimizing 
availability in IoT

Guto L. Santos, Kayo H. de C. Monteiro, 
and Patricia Takako Endo

Abstract Cloud, edge, and fog computing enable Internet of Things 
(IoT) applications, offering high connectivity, scalability, and high avail-
ability. Smart cities, smart agriculture, and e-health systems are examples 
of IoT applications that can exploit the opportunities generated by these 
technologies. However, due to the scale and complexity of the IoT and 
the heterogeneity of the devices and service level expectations, resource 
management is not a trivial task. While facilitating storage and processing 

G. L. Santos (*) 
Universidade Federal de Pernambuco, Recife, Brazil
e-mail: guto.leoni@gprt.ufpe.br 

K. H. de C.  Monteiro 
Universidade de Pernambuco, Recife, Brazil
e-mail: khcm@ecomp.poli.br 

P. T. Endo 
Universidade de Pernambuco, Recife, Brazil

Irish Institute of Digital Business, Dublin City University, Dublin, Ireland
e-mail: patricia.endo@upe.br

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41110-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-41110-7_5#ESM
mailto:guto.leoni@gprt.ufpe.br
mailto:khcm@ecomp.poli.br
mailto:patricia.endo@upe.br


80

at the end device (the edge), at the intermediary layer (the fog), or cen-
trally (the cloud), new points of failure are introduced at and between 
each layer. In some use cases, such as e-health, device availability also has 
high criticality. Any downtime impacting one or more components in the 
architecture can result in adverse effects and/or additional logistical effort 
and cost. This chapter discusses extant research on how cloud, fog, and 
edge computing is being used in smart city, smart agriculture, and e-health 
systems.

Keywords Availability • Smart city • Smart agriculture • e-health • 
Internet of Things • Edge computing • Cloud computing • Fog 
computing

5.1  IntroductIon

For large-scale Internet of Things use cases, such as smart cities, cloud 
computing offers a flexible and on-demand infrastructure to execute real- 
time analytics applications and context-specific information systems. In 
addition, it also provides support for data retrieval and visualization, which 
can provide relevant information for city managers to create new public 
policies and consequently improve the city operations (Kakderi et  al. 
2019). While cloud computing can mitigate some of the limitations of 
IoT devices, the location of cloud data centres can introduce issues for 
delay-sensitive applications. Usually, cloud infrastructures are located far 
away from the edge devices resulting in a high delay for both transmitting 
large volumes of data and providing a response (Tang et  al. 2015). To 
solve this problem, fog computing is a technology that acts between the 
edge devices and cloud computing. Fog computing extends the cloud 
capabilities providing cloud features closer to the edge devices using low 
cost devices but with computational capabilities needed to support local 
data analysis (He et al. 2017; Santos et al. 2018).

Despite the advantages that cloud-to-thing (C2T) integration technol-
ogies bring to IoT applications, its adoption also brings challenges. In 
such scenarios, the system relies on different operational layers to offer a 
variety of applications to the end-user, increasing the complexity of 
resource management (da Silva Lisboa et  al. 2018). Moreover, while 
improving the availability of the service as a whole, C2T solutions present 
more points of possible failure, for example in the IoT sensors, fog devices, 
and data centre subsystems. In several scenarios, system availability is 
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critical due to strict requirements, such as real-time data health monitor-
ing, for example patient vital data, and real-time decision making, for 
example rerouting due a transit accident.

This chapter discusses extant research on how cloud, fog, and edge 
computing is being used in smart city, smart agriculture, and the Internet 
of Medical Things.

5.2  Smart cItIeS

By 2030, more than 60% of the world’s population will live in an urban 
environment (Gaur et  al. 2015). This urban growth places significant 
strains on the city infrastructure. New solutions are required to mitigate 
emerging problems from rapid urbanization and an aging population such 
as energy consumption, safety, public services, sustainable development 
amongst others (Arroub et al. 2016). The use of information technologies 
is a solution to create smart urban environments to both reduce the impact 
of population growth and improve overall quality of life (Chakrabarty and 
Engels 2016).

A smart city is an urban space composed of several complex systems, 
covering infrastructures, technologies, social and political structures, and 
the economy (Gaur et al. 2015). To control and monitor this environ-
ment, a vast array of heterogeneous devices, such as street cameras for 
security systems and sensors for utility and transportation systems are 
placed across the city, which generate a huge amount of data (Arasteh 
et al. 2016). Such data can be used to identify possible bottlenecks and 
also to provide insights for city managers thereby supporting better deci-
sion making. It unsurprising therefore that the market for smart city solu-
tions is forecast to grow to US$237.6 billion by 2025, expanding at a 
CAGR of 18.9% from 2019 to 2025 (Grand View Research 2019).

Notwithstanding the opportunities inherent in smart cities, they also 
bring several challenges. A smart city is a mixture of multiple systems with 
distinct, sometimes conflicting objectives. These systems may make use of 
their own (devices) end-points or share municipal devices to collect data 
over time, many of which have no significant computational capability to 
store and process this data. These simple devices act as the city’s sensing 
layer located at the edge of the network.

An example of smart city infrastructure for traffic monitoring that inte-
grates edge, fog and cloud computing is illustrated in Fig. 5.1. The cars 
and roadside units generate data about the number of cars driving on the 
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streets, street conditions, and unexpected events, such as accidents. This 
information can be used to adjust the traffic lights in order to relive poten-
tial traffic congestions in and around the location of the incident. This 
information can be processed locally by the traffic lights (fog nodes) to 
reduce the delay. However, the cars and the city infrastructure could pro-
cess incidents, for example car crashes, and send alerts to change the route 
for vehicles and give priority to city or emergency services to arrive at the 
scene of the incident (Ali and Ghazal 2017).

Integrating edge, fog, and cloud infrastructure to implement smart city 
services introduces high management complexity. Multiple devices and 
applications must work together to keep the services and data available for 
the applications. Generally, device failure or data loss can have a significant 
impact on critical systems and in smart cities, these problems can cause 

Fig. 5.1 Smart city use case with IoT sensors, fog devices, and cloud computing
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adverse effects in urban contexts (Baldoni et al. 2015). The infrastructure 
and massive volumes of data generated by smart cities, often requiring 
real-time analysis require robust and efficient resource planning and, con-
sequently, better resource utilization (Bawany and Shamsi 2015).

The importance of the availability of data and services of smart cities 
have been addressed by some authors considering different smart city sce-
narios. For instance, smart parking solutions using IoT and cloud tech-
nologies are being proposed to help drivers and as a consequence decrease 
the carbon footprint. However, such solutions rely on specialized infra-
structures (sensors) and real-time data availability.

Mugarza et al. (2019) address the need for high availability in smart 
city power management systems. They describe a solution for dynamic 
software updates for power system management. This type of system can-
not be interrupted as any system outage or malfunction may result in a 
blackout in some or all of the city. The solution presented enables building 
power management software to be updated without restarting, thus ensur-
ing that the system will be fully functioning.

The vehicular cloud, sometimes referred to as V2C, offers vehicular 
communication technologies and infrastructures for smart vehicles to 
communicate with other parties, among themselves and with the cloud 
(Soyturk et al. 2016). Smart-Vehicle-as-a-Service (SVaaS) acts as interme-
diary layer between the vehicular nodes (e.g. smart cars or municipal vehi-
cles) and the service providers (e.g. municipal authorities or commercial 
services) so that relevant services such as transport management, on- 
demand transportation services, and media services, can be provided 
(Aloqaily et al. 2017). Smart vehicles is a good example of heterogeneity 
in end devices as smart cars may use a wide range of technologies, be used 
by multiple drivers, and have different levels of criticality depending on 
their use or importance as perceived by service or infrastructure providers. 
Aloqaily et al. (2017) present a system for discovering and selecting vehic-
ular services based on QoE requirements and vehicle clusters that are geo-
graphically proximate and have similar service profiles.

As discussed, the provision of services and the availability of resources 
is a great challenge in smart city due to different demands, user require-
ments, and services specifications. For delay-sensitive applications, fog 
computing is a key technology since it provides cloud-like functionality 
close to the end-user thereby reducing the latency and increasing the 
application availability (Tang et al. 2015). In a smart city scenario, where 
a huge amount of data is generated, the fog nodes can act as a backup in 
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case of a cloud failure, increasing the availability of the system as a whole 
(Stantchev et al. 2015). Finally, different redundancy mechanisms can be 
used between the fog applications and the cloud data centres. The edge 
nodes may provide more essential services in a distributed way, and in case 
of failures, other edge nodes can keep the service available.

5.3  Smart agrIculture

Agriculture plays an important role in the world because as a source of 
livelihood and as its role in the global food supply chain. According to the 
WHO, an estimated 820 million people did not have enough to eat in 
2018. The situation is most alarming in Africa, as the region has the high-
est rate of hunger in the world. In Eastern Africa, for instance, about 
30.8% of the population is undernourished. Promoting the optimization 
of the food supply chain can help eradicate hunger and poverty in the 
world (Bu and Wang 2019) but also contribute significant to economic 
development (Gondchawar and Kawitkar 2016). 

In recent years, digital monitoring and control are being used in agri-
culture systems to improve the food supply chain from farm to fork. 
Precision agriculture involves the measurement and optimization of gran-
ular field operations. Currently, sensors can offer highly accurate measure-
ments of crop status, and based on those values, actuators are able to 
manage, for instance, irrigation, change climate factors, or enrich the soil 
with the needed nutrients (Mulla 2013). This, in turn, can result in 
improved harvest forecasting, collection, planning, and downstream oper-
ations (McKinsey 2016).

Again, smart agriculture bring challenges as well as opportunity. Smart 
agriculture is characterize by high volumes of heterogeneous sensors and 
actuators distributed across wide areas, often with intermittent connectiv-
ity. Figure 5.2 presents a smart agriculture use case with integrated IoT, 
fog, and cloud to increase process automation and efficiency. Heterogeneous 
sensors collect relevant crop data such as humidity, temperature, pH 
metering, and soil conditions; and heterogeneous actuators, such as water 
sprinklers, ventilation devices, lighting, automated windows (in glass-
houses), and soil and water nutrition pumps react according to the data.

To overcome some of the coverage and connectivity issues inherent in 
agriculture, Zamora-Izquierdo et al. (2019) propose that at the crop layer 
(farm), IoT sensors and actuators are deployed and connected to fog 
devices. This connection can be made by the intermediary layer 
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(represented by a microcontroller and/or a drone). These devices (e.g. 
Arduinos, ESP32, drones, etc.) have limited hardware capabilities to pro-
cess and store the data from sensors, but have connectivity to forward data 
for superior layers. Fog devices are located geographically close to the IoT 
sensors and microcontrollers and can provide computational resources to 
process or storage data locally. Delay-sensitive applications can use fog 
devices to obtain fasters responses. Finally, cloud computing provides 
“unlimited” computational resources to process and store the data col-
lected by sensors. Thus, further analysis that may demand more powerful 
resources, such as big data analysis and machine learning model training, 
may be executed on cloud environments. However, as cloud infrastructure 
is located far away from microcontrollers and fog devices, there may be a 

Fig. 5.2 Smart agriculture with integrated IoT sensors, microcontrollers, fog 
devices, and cloud computing
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significant delay in data transmission. This may compromise the perfor-
mance of the smart agriculture application.

Researchers have proposed a wide range of architectural solutions for 
smart agriculture. TongKe (2013) uses sensors to send information (such 
as water quality, monitoring of animal, and plant growth) directly to cloud 
data centres. This information is processed to provide relevant outputs for 
system users. Bawany and Shamsi (2015) propose a similar architecture 
where the information is sent for cloud and can be visualized using a 
smartphone app. As these architectures depend on the cloud for process-
ing and storage data, a basic requirement is an Internet connection; this 
can be a constraint in remote places. Therefore, for smart agriculture sce-
narios, the usage of fog devices to process data locally can increase the 
availability of smart agriculture systems. In large scenarios, with a huge 
number of sensors and actuators, the combination of fog and cloud can be 
used to increase the coverage area of the system and improve the service 
and data availability.

A precision farming system using IoT and cloud infrastructure is pre-
sented by Ibrahim et al. (2018) using a horticulture use case, and specifi-
cally ornamental flowers. System inactivity can cause severe damage to 
crops, since ornamental flowers are very sensitive to humidity and tem-
perature changes resulting in financial damage to the farmers. The pro-
posed system is composed of a large number of sensors, controllers, and 
actuators, and a 1-in-2 fault-tolerant management system to mitigate the 
likelihood and impact of failures. By using the fault-tolerant approach, the 
system availability increased from 99.45% to 99.997%.

In smart agriculture, downtime can be very costly (Ibrahim et al. 2018). 
For instance, if a temperature change is perceived but action is delayed or 
no action is taken, it can cause significant financial losses because the entire 
crop can be compromised. Downtimes can occur due to different reasons, 
such as sensor and actuator failure. In these cases, minimizing the system 
downtime becomes critical. Ibrahim et  al. (2018) suggest developing 
countries encounter high repair times as spare components are not usually 
stored on site and farmers may have to import them, and replacement 
costs are rarely predictable. Again linking, system failure and downstream 
replacement logistics could result in better mean time to repair metrics 
and mitigate financial losses.
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5.4  the Internet of medIcal thIngS

The promise of information technologies for health care has been a con-
tinuous theme in discourse by policymakers, academia, and industry. It is 
widely accepted that in the institution-centric health care system that 
dominates most developed economies, patients and health care profes-
sionals are separated from each other by time and space (Tachakra et al. 
2003; Topol 2015). Time, place and people drive not only costs but 
inconvenience in to health care systems suffering under the increasing 
pressure of aging populations and chronic diseases (Topol 2015; 
Deloitte 2018).

Gatouillat et al. (2018) defined the Internet of Medical Things (IOMT) 
as the interconnection of medical-grade devices with broader health care 
infrastructures, connecting personal medical devices with each other and 
with health care providers whether hospitals, medical researchers, or pri-
vate companies. The advantages of such a vision of e-health ubiquity and 
interconnectivity are multifold. As well as unburdening the health system, 
IoMT technologies can contribute to increased efficiency, reduced costs, 
risk mitigation, improved quality of care and quality of life, and increased 
transparency in the health system (Darkins et al. 2008; Ossebaard et al. 
2013; Farahani et al. 2018). Despite these advantages, the IoMT is not 
without challenges, not least structural and technical ones. For example, 
the pervasiveness and criticality of e-health technologies, the impact of 
adverse outcomes, and sensitivity of personal health information requires 
IoMT systems to have higher levels of reliability, safety, and security than 
typical systems (Gatouillat et al. 2018).

For the most part, the IoMT is configured along the C2T continuum 
comprising three layers (Fig. 5.3): (1) cloud computing and big data infra-
structure, (2) Internet-connected gateways, and (3) a (body) sensor or 
sensor networks (Rahmani et al. 2018). Advances in sensor design, cloud 
computing, and wireless communication technologies has made it possible 
to develop more affordable medical systems. In the last two decades, there 
has been a rapid advance in the sophistication of sensors including intelli-
gent sensors, in vivo sensors, and sensors that can increasingly mimic the 
biological senses. The availability of low cost relatively sophisticated sen-
sors for monitoring patient life plays a significant role in the evolution of 
the IoMT and vice-versa (Chiuchisan et al. 2014). A reliable system in the 
IoMT must achieve its functional goals at all times to avoid patient safety 
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issues, adverse outcomes, or additional effort and costs by patients or 
health care providers (Gatouillat et al. 2018). At the same time, budgetary 
constraints remain. The system architect therefore has a trade-off to 
resolve between system availability and cost.

Araujo et al. (2014) propose stochastic models, Stochastic Petri Nets 
(SPN), and Reliability Block Diagrams (RBD), to represent an e-health 
service relying on mobile cloud computing infrastructure, that is cloud 
infrastructure, wireless communications, and a mobile device. Availability 
analysis were conducted considering scenarios with different wireless com-
munication channels (Wi-Fi and 4G), different battery discharge rates, 
and different timeout values. Results suggested that the timeout for 
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Fig. 5.3 Smart e-health scenario integrating IoT sensors and wearable devices, 
microcontrollers, fog devices, and cloud computing
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delivering a message is the metric that had a greater impact on mHealth 
system availability, and that Wi-Fi and 4G communication channels pre-
sented similar impact.

Vargheese and Viniotis (2014) focus on usage of sensors to provide 
vital data as soon as the patient is discharged from the hospital, and they 
state that the availability of the cloud and IoT devices is a critical aspect in 
this scenario. However, not only do the devices (at software and hardware 
levels) play an important role regarding availability aspect; the role of the 
network connection also needs to be highlighted. Considering that com-
munication link is not always available, the Delay Tolerant Networking 
(DTN) approach can be exploited, storing the data locally and conducting 
updates as soon as a network connection becomes available (Sawand 
et al. 2014).

The availability of e-health systems is critical to ensure the sensing and 
integrity of vital information collected from the patient. According to 
(Yang 2014), “because resources, time, and money are always limited in real 
world applications, we have to find solutions to optimally use these valuable 
resources under various constraints.” This is particularly true in the context 
of an e-health monitoring system. Historically, one of the barriers to the 
widespread adoption of telemedicine was cost factors associated with het-
erogeneous devices and single point solutions (often for therapeutic appli-
cation) (Gatouillat et al. 2018). da Silva Lisboa et al. (2018) propose an 
e-health system architecture based on sensors, fog, and cloud computing. 
Stochastics models were proposed to evaluate how failures of the infra-
structure impact the availability of the e-health system. The authors evalu-
ated four different scenarios with different configurations. The experiments 
showed that the e-health system availability increases from 99.7299% to 
99.9709% when the application present in the fog and in the cloud are 
complementary and has redundancy. In addition, sensitivity analysis results 
shown that the fog and cloud applications are the components that have 
higher impact on the e-health system application.

5.5  concluSIon

The Internet of Things is huge opportunity for both business and society. 
However, as we rely more and more on the Internet of Things, we require 
more availability and uptime, particularly where the criticality of the use 
case is high. This chapter discussed some of the challenges and solutions 
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to address availability in smart cities, smart agriculture and the Internet of 
Medical Things.

Improving the availability of a system is not an easy task, especially if 
availability, including connectivity and coverage, are not considered in the 
conception phase. Some techniques, such as redundancy and geographic 
distribution, are commonly applied but at same time, from a management 
perspective, they bring many challenges.

When adopting resource redundancy and distribution, the service pro-
vider has to deal with both implementation and maintenance costs. 
Ibrahim et al. (2018) and da Silva Lisboa et al. (2018) demonstrate the 
availability gain of having a fault-tolerant approach with redundancy but 
they do not provide the cost analysis. Both physical and applications layers 
should be taken into account when analysing the costs of the system 
implementation and maintenance. The physical devices, connected 
through a network, host a set of software that most of the time is running 
on virtual machines (VMs). Orchestrating all these (physical and virtual) 
components is complex and demand specialist personnel or automated 
systems.

If the system is designed to scale (up and down), better resource utiliza-
tion can be achieved and the system will be able to handle different work-
loads with different requirements. As a result, downtime due to poor 
scaling capacity will be reduced. Virtualization is a technique that supports 
service scalability by allowing the deployment of new service instances on 
demand. Similarly, machine learning approaches are being used to predict 
workloads and propose better resource planning (Liu et al. 2017; Le Duc 
et al. 2019). However, there is no way to avoid failures. When it happens, 
automatic failover approaches should be in place to minimize the system 
unavailability and reduce mean time to repair.
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CHAPTER 6

Security of Distributed Intelligence in Edge 
Computing: Threats and Countermeasures
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Yuhang Ye, and Brian Lee

Abstract Rapid growth in the amount of data produced by IoT sensors 
and devices has led to the advent of edge computing wherein the data is 
processed at a point at or near to its origin. This facilitates lower latency, 
as well as data security and privacy by keeping the data localized to the 
edge node. However, due to the issues of resource-constrained hardware 
and software heterogeneities, most edge computing systems are prone to 
a large variety of attacks. Furthermore, the recent trend of incorporating 
intelligence in edge computing systems has led to its own security issues 
such as data and model poisoning, and evasion attacks. This chapter pres-
ents a discussion on the most pertinent threats to edge intelligence. 
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Countermeasures to deal with the threats are then discussed. Lastly, ave-
nues for future research are highlighted.

Keywords Edge AI • Edge computing • Distributed intelligence • 
Federated learning • Threats to Edge AI

6.1  EdgE Computing: thrEats and ChallEngEs

As discussed in Chap. 1, edge computing refers to data processing at or 
near the point of its origin rather than onward transmission to the fog or 
cloud. The ‘edge’ is defined as the network layer encompassing the smart 
end devices and their users, and is identified by the exclusion of cloud and 
fog (Iorga et al. 2018). For instance, a smartphone is the edge between 
body things and the cloud, and a gateway in a smart home is the edge 
between home things and the cloud (Shi et al. 2016).

Although edge computing brings a lot of advantages, and is being used 
in a variety of scenarios, it is not without its share of security threats and 
challenges. In fact, the following factors work towards expanding the 
attack surface in the case of edge computing:

Hardware Constraints: Since most edge computing hardware (edge 
devices, and even edge servers) have lower computational power and 
storage capacity as compared to a fog or cloud server, they are incapable 
of running dedicated attack prevention systems like firewalls, and are 
therefore more vulnerable to attacks.

Software Heterogeneities: Most devices and servers operating in the edge 
layer communicate using a large variety of protocols and operating sys-
tems without a standardized regulation. This makes the task of design-
ing a unified protection mechanism difficult.

Most of these threats are exacerbated due to design flaws, implementa-
tion bugs, and device misconfigurations in the edge devices and servers 
(Xiao et al. 2019). Also, the lack of full-fledged user interfaces in many 
edge devices often makes it impossible to discern an ongoing/trans-
pired attack.

In light of the above, understanding the security threats (and defenses) 
in edge computing assumes utmost importance. This section presents an 
overview of the state-of-the-art in the security threats and countermea-
sures employed in edge computing.
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As depicted in Fig. 6.1, most attacks on edge computing infrastructure 
may be placed in one of the following four categories: DDoS attacks, side- 
channel attacks, malware injection attacks, and authentication and autho-
rization attacks (Xiao et  al. 2019). Each of these attacks and the 
countermeasure devised to deal with the corresponding attacks are dis-
cussed next.

6.1.1  DDoS Attack

In this type of attack, the goal of the adversary is to engage all the resources 
and bandwidth available at the target in order to prevent legitimate users 
from using the victimized system. In a typical DDoS attack, the attacker 
persistently sends a huge number of packets to the target (also referred to 
as ‘flooding’) thereby ensuring that all the resources of the target are 
exhausted in handling the malicious packets, and therefore genuine 
requests cannot be processed. Such attacks assume greater importance in 
the edge computing paradigms as they are computationally less powerful 
(than cloud servers), and therefore cannot run strong defense systems. 
Such attacks may be further categorized as UDP flooding attacks, ICMP 
flooding, SYN flooding, ping of death (PoD), HTTP flooding, and 
Slowloris (Xiao et al. 2019). Apart from the flooding attacks, another type 
of DDoS attack is a zero-day attack in which an attacker finds and utilizes 
a still-unidentified vulnerability in the target system to cause system 
shutdown.

Defenses and Countermeasures: Most potent solutions against flooding 
attacks utilize the detect-and-filter technique. The detection of malicious 

Fig. 6.1 Different types of attacks against edge computing systems (Xiao 
et al. 2019)
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flooding packets may either be on a per-packet basis wherein each indi-
vidual packet is inspected and discarded if deemed to be suspicious, or on 
a statistical basis wherein malicious packets are identified using parameters 
like packet entropy or by employing machine learning tools. Countering 
zero-day attacks on edge computing hardware is more difficult due to the 
unavailability of original source codes for the programs running on the 
machine, and also due to the fact that in many cases the software comes 
embedded in a firmware and is not amenable for inspection.

6.1.2  Side-Channel Attacks

These attacks operate by first capturing publicly available, non-privacy- 
sensitive information pertaining to the target (also called the side-channel 
information), and then inferring the private and protected data from this 
information by exploiting the correlations that are inherently present 
between the public and the private information. Typical examples of such 
attacks include capturing communication signals (e.g. packets or wave sig-
nals) to leak user’s private data, monitoring the power consumption of 
edge devices to reveal usage patterns, and targeting the filesystem (e.g. the 
/proc filesystem in Android) and sensors (e.g. microphone, camera) on 
end devices like smartphones.

Defenses and Countermeasures: Due to their passive nature, side- channel 
attacks are difficult to defend against. Some commonly suggested defense 
mechanisms include data perturbation and differential privacy. The most 
popular data perturbation algorithm is k-anonymity which modifies the 
identifier information in the data prior to publishing its sensitive attri-
butes. Lastly, it is important to note that ironically most defense mecha-
nisms are themselves vulnerable to side-channel attacks (Xiao et al. 2019).

6.1.3  Malware Injection Attacks

The infeasibility of installing a full-fledged firewall on resource-constrained 
edge devices makes them vulnerable to malware injection attacks, wherein 
an attacker stealthily installs malicious programs in a target system. Such 
malware injection may either be performed at the edge server or the edge 
device(s). Server-side injection attacks can further be divided into four 
types: SQL injection, cross-site scripting (XSS), XML signature wrapping, 
and Cross-Site Request Forgery (CSRF) & Server-Site Request Forgery 
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(SSRF) (Xiao et al. 2019). Device-side injection attacks typically target the 
firmware of the end devices.

In a SQL injection attack, the attacker aims to destroy the backend 
database by sending carefully crafted SQL queries containing malicious 
executable codes. In a XSS attack, the adversary injects malignant HTML/
JavaScript codes into the data content which may be accessed and exe-
cuted by a server leading to its compromise. A CSRF attack is one in 
which the edge server is tricked into executing malicious programs embed-
ded in web applications, and a SSRF attack is carried out by compromising 
and using an edge server to alter the internal data and/or services. Lastly, 
an XML signature wrapping attack works by intercepting and modifying a 
XML message, and re-transmitting it to a target machine in order to run 
tainted code.

Defenses and Countermeasures: To counter the server-side injection 
attacks, the detect-and-filter technique has been shown to be the most 
promising. Defense mechanisms against injection attacks generally rely on 
static analysis for malicious code detection and fine-grained access control. 
Research on devising means to mitigate firmware modification is also 
being carried out for prevention of such attacks.

6.1.4  Authentication and Authorization Attacks

The authentication and authorization processes in edge computing sys-
tems may also be susceptible to attacks. Such attacks may be put into four 
different categories: dictionary attacks, attacks targeting vulnerabilities in 
authentication mechanisms, attacks exploiting susceptibilities in authori-
zation protocols, and over-privileged attacks (Xiao et al. 2019). Dictionary 
attacks employ a credential/password dictionary to get past the authenti-
cation systems. Attacks targeting vulnerabilities in authentication mostly 
work by utilizing loopholes in the WPA/WPA2 security protocols. 
Authorization based attacks exploit the logical weaknesses or design flaws 
that may exist in authorization protocols used by the edge computing 
systems. In over-privileged attacks, the attacker tricks the victim system 
into assigning higher (than required) access rights to an app or device, 
which can then be used to perform malicious activities inside the network.

Defenses and Countermeasures: The most potent defense against dic-
tionary attacks is the addition of one more layer of authentication (typi-
cally known as two-factor authentication). To counter the attacks which 
target authentication protocols, two common approaches are enhancing 
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the security of the communication protocols, and hardening the crypto-
graphic implementation. The OAuth 2.0 protocol is the best defense 
against authorization attacks, and has been proven to be theoretically 
secure. To counter the over-privileged attacks, the most effective solution 
involves strengthening the permission models for the operating systems 
running on edge devices.

Most of the security threats and challenges, along with the associated 
countermeasures, discussed above pertain to edge computing systems 
which are configured as passive data aggregation and processing nodes 
with little to no intelligence built into them. However, the recent trend of 
incorporation of intelligence (in the form of inference generation, and 
even on-device training, in the context of machine learning) into the edge 
nodes/devices, brings its own share of issues and challenges, and the need 
for specialized defenses and countermeasures.

This chapter aims to highlight the threat landscape for the scenario 
where edge devices are becoming smarter with the inclusion of machine 
learning. Therefore, the remainder of the chapter focuses on the tech-
niques for incorporation of intelligence into edge computing systems, the 
security threats associated with such systems, and the pertinent counter-
measures and defenses that have been devised against attacks on edge 
intelligence. Section 6.2 presents a discussion on the need for, and the 
techniques to bring intelligence to the edge computing systems. Security 
threats targeted towards intelligent edge systems are highlighted in Sect. 
6.3 (For a quick summary, please refer to Table 6.1). Techniques that have 
been developed to defend against the threats, and mitigate the attacks on 
edge computing systems are discussed in Sect. 6.4. Section 6.5 contains a 
discussion on future research directions in the field of intelligent edge 
computing. Section 6.6 presents concluding remarks.

6.2  EdgE intElligEnCE

The incorporation of artificial intelligence into the constituents of edge 
layer is referred to as Edge AI. The two biggest advantages of Edge AI are 
briefly discussed below.

Faster Inference: For applications which utilize a pre-trained machine 
learning model to output classifications or predictions, processing data 
at the edge leads to faster results. This is primarily due to the elimina-
tion of the data transfer time between the edge and the cloud.

 M. S. ANSARI ET AL.



101

T
ab

le
 6

.1
 

Se
cu

ri
ty

 t
hr

ea
ts

 t
o 

ed
ge

 c
om

pu
tin

g 
sy

st
em

s,
 d

ef
en

se
 m

ec
ha

ni
sm

s,
 a

nd
 a

ss
et

s 
ta

rg
et

ed
 b

y 
th

e 
di

ff
er

en
t 

at
ta

ck
s

A
tt

ac
k

T
yp

e
Su

b-
ty

pe
R

ef
.

D
ef

en
se

A
sse

t t
ar

ge
te

d

D
D

oS
 a

tt
ac

k
Fl

oo
di

ng
 b

as
ed

U
D

P 
flo

od
in

g
X

ia
om

in
g 

et
 a

l. 
(2

01
0)

D
et

ec
t-

an
d-

 fil
te

r
• 

 Pe
r 

pa
ck

et
 b

as
ed

 
de

te
ct

io
n

• 
 St

at
is

tic
s-

ba
se

d 
de

te
ct

io
n

• 
N

et
w

or
k 

in
fr

as
tr

uc
tu

re
• 

V
ir

tu
al

iz
at

io
n 

in
fr

as
tr

uc
tu

re

IC
M

P 
flo

od
in

g
U

dh
ay

an
 a

nd
 A

ni
th

a 
(2

00
9)

SY
N

 fl
oo

di
ng

B
og

da
no

sk
i e

t 
al

. (
20

13
)

H
T

T
P 

flo
od

in
g

D
ha

na
pa

l a
nd

 
N

ith
ya

na
nd

am
 (

20
17

)
Pi

ng
 o

f d
ea

th
So

na
r 

an
d 

U
pa

dh
ya

y 
(2

01
4)

Sl
ow

lo
ri

s
D

am
on

 e
t 

al
. (

20
12

)
Z

er
o-

da
y

N
IS

T
 (

20
10

)
C

od
e-

le
ve

l 
vu

ln
er

ab
ili

ty
 

id
en

tifi
ca

tio
n

Si
de

-c
ha

nn
el

 a
tt

ac
k

E
xp

lo
it 

co
m

m
un

ic
at

io
n 

ch
an

ne
ls

Pa
ck

et
s

C
he

n 
an

d 
Q

ia
n 

(2
01

8)
D

at
a 

pe
rt

ur
ba

tio
n

• 
k-

an
on

ym
ity

• 
D

iff
er

en
tia

l p
ri

va
cy

R
es

tr
ic

tin
g 

ac
ce

ss
 t

o 
si

de
-c

ha
nn

el
s

• 
U

se
r 

da
ta

• 
U

se
r 

pr
iv

ac
y

W
av

e 
si

gn
al

s
E

ne
v 

et
 a

l. 
(2

01
1)

E
xp

lo
iti

ng
 p

ow
er

 
co

ns
um

pt
io

n 
da

ta
Ö

rs
 e

t 
al

. (
20

03
)

T
ar

ge
t 

sm
ar

t 
de

vi
ce

s
O

S 
ba

se
d

Z
ho

u 
et

 a
l. 

(2
01

3)
Se

ns
or

 b
as

ed
C

he
n 

et
 a

l. 
(2

01
8b

)
M

al
w

ar
e 

in
je

ct
io

n 
at

ta
ck

s
Se

rv
er

-s
id

e 
in

je
ct

io
n

SQ
L

 in
je

ct
io

n
A

nl
ey

 (
20

02
)

D
et

ec
t-

an
d-

 fil
te

r
• 

E
dg

e 
se

rv
er

• 
E

dg
e 

de
vi

ce
s

X
SS

C
is

co
 (

20
16

)
C

SR
F 

&
 S

SR
F

C
os

tin
 (

20
18

)
X

M
L

 s
ig

na
tu

re
 

w
ra

pp
in

g
M

cI
nt

os
h 

an
d 

A
us

te
l 

(2
00

5)
D

ev
ic

e-
si

de
 

in
je

ct
io

n
B

uf
fe

r 
ov

er
flo

w
G

re
en

be
rg

 (
20

17
)

C
od

e-
le

ve
l a

na
ly

si
s

(c
on

ti
nu

ed
)

6 SECURITY OF DISTRIBUTED INTELLIGENCE IN EDGE COMPUTING… 



102

T
ab

le
 6

.1
 (

co
nt

in
ue

d)

A
tt

ac
k

T
yp

e
Su

b-
ty

pe
R

ef
.

D
ef

en
se

A
sse

t t
ar

ge
te

d

A
ut

he
nt

ic
at

io
n 

an
d 

au
th

or
iz

at
io

n 
at

ta
ck

s
D

ic
tio

na
ry

 a
tt

ac
k

N
ak

hi
la

 (
20

15
)

T
w

o-
fa

ct
or

 
au

th
en

tic
at

io
n

• 
E

dg
e 

se
rv

er
• 

 V
ir

tu
al

iz
at

io
n 

in
fr

as
tr

uc
tu

re
• 

E
dg

e 
de

vi
ce

s
A

ut
he

nt
ic

at
io

n 
pr

ot
oc

ol
 a

tt
ac

k
V

an
ho

ef
 a

nd
 P

ie
ss

en
s 

(2
01

8)
H

ar
de

ni
ng

 
au

th
en

tic
at

io
n 

pr
ot

oc
ol

s
• 

 E
nh

an
ce

 s
ec

ur
ity

 o
f 

pr
ot

oc
ol

• 
 Se

cu
re

 
cr

yp
to

gr
ap

hi
c 

im
pl

em
en

ta
tio

n
A

ut
ho

ri
za

tio
n 

pr
ot

oc
ol

 a
tt

ac
k

C
he

n 
(2

01
4)

H
ar

de
ni

ng
 

au
th

or
iz

at
io

n 
pr

ot
oc

ol
s

• 
O

A
ut

h 
2.

0
O

ve
r-

 pr
iv

ile
ge

d 
at

ta
ck

s
Su

n 
an

d 
B

ez
no

so
v 

(2
01

2)
St

re
ng

th
en

in
g 

pe
rm

is
si

on
 m

od
el

s 
fo

r 
m

ob
ile

 O
S

 M. S. ANSARI ET AL.



103

Data Locality: Since most of the data processing and inference is per-
formed it the edge layer, the data actually never leaves this layer (and is 
not sent to the fog/cloud). Such data locality is of paramount impor-
tance in safeguarding user privacy in applications like health monitor-
ing, indoor localization, etc. Further, keeping the data on or near the 
source, and not transferring it to the cloud (which may be in a different 
country), alleviates regulatory/legal issues pertaining to the data.

Although the advantage of faster inference with the data remaining 
localized is interesting, the resource constraints in most constituents of the 
edge layer dictate that specialized techniques have to be employed for 
performing inference and training in Edge AI.

6.2.1  Lightweight Models for Edge AI

The first case is where an edge computing node is only used for inference 
using a pre-trained model. In such cases, the emphasis is to build light-
weight models capable of running in resource constrained environments. 
This discussion will focus on image processing models because a major 
portion of available research on light models for Edge AI deals with com-
puter vision. This is driven by the success of Convolutional Neural 
Networks (CNN) for image recognition and classification tasks, albeit 
with huge computational requirements. AlexNet was the first CNN vari-
ant which employed a technique called Group Convolution to reduce the 
number of parameters, and resulted in a 240 MB sized model (Krizhevsky 
et al. 2012). Xception used a more stringent version of group convolution 
to further reduce the number of model parameters (88 MB model size) 
(Chollet 2017). GoogleNet managed to reduce the parameter size to 
27 MB while maintaining the accuracy (Szegedy et al. 2015). However, 
the breakthrough which enabled CNN variants to be used on edge devices 
was MobileNet (Howard et al. 2017), which required approximately 8–9 
times less computation than standard CNN, and had model size of 16 MB 
(Howard et  al. 2017). MobileNetV2 further provided a performance 
improvement while reducing the model size to 14  MB (Sandler et  al. 
2018). SqueezeNet is even more efficient, and is capable of providing 
AlexNet level accuracy with only 5 MB of parameters (Iandola et al. 2016), 
which is a sufficiently small sized model for deployment on low- complexity 
embedded hardware like Raspberry Pi.
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6.2.2  Data and Model Parallelism

For cases where the edge computing nodes are to be used for training as 
well, techniques like data parallelism and model parallelism are employed.

Data Parallelism: In data parallelism, the training dataset is divided into 
non-overlapping partitions and fed to the participating nodes. 
Figure 6.2(a) depicts the data parallelism applied to a group of three 
machines. All nodes train the complete model using a subset of data. 
The advantage is that the training task is performed at multiple nodes 
concurrently (for different data sub-sets). Specialized algorithms like 
Synchronous Stochastic Gradient Descent (Sync-SGD) (Das et  al. 
2016), and Asynchronous Stochastic Gradient Descent (Async-SGD) 
(Zhang et al. 2013) have been devised to ensure timely and efficient 
update of the global weights and parameters of the model.

Model Parallelism: In model parallelism, the ML model is divided into 
partitions and each participant node is responsible for maintaining one 
partition. Figure 6.2(b) depicts the model parallelism applied to a group 
of four machines. Designing the model partitions is non-trivial and NP- 
complete in this case, as the participating machines may have different 
storage, computing, and networking capabilities (Dean et  al. 2012). 
Further, dividing the training dataset is also not straightforward in this 
case, as the logical partitions have to be decided in accordance with the 
partition scheme of the input layer.

To reduce the communication of a large number of parameters between 
participating devices, model compression is used. It has been demonstrated 
that quantizing the parameter bitwidth from 32 bits to 8 bits does not 

Fig. 6.2 (a) Data parallelism and (b) model parallelism
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impact the accuracy of CNN-like architectures significantly (Cheng et al. 
2017). Further, reducing the communication overhead by quantizing the 
gradients (computed using Stochastic Gradient Descent) is referred to as 
Gradient Compression or Gradient Quantization.

6.2.3  Federated Learning

Data collected by a lot of devices may not be amenable for sharing over a 
cloud due to reasons of privacy. Examples include data collected by health 
monitoring devices, CCTV recordings, etc. For such cases, a distributed 
ML technique called Federated Learning (FL) has been proposed 
(Konec ̌ný et al. 2016), which enables smart devices to collaboratively learn 
a shared prediction model while keeping all the training data on device. 
This effectively decouples the learning process from the need to store the 
data centrally, and goes beyond the use of pre-trained models to make 
predictions on mobile devices by bringing model training to the device. As 
shown in Fig. 6.3, FL works by first downloading the current model to an 
edge device. Thereafter, the model is updated using locally stored data, 
and updates are forwarded to a central server where they undergo a 

Fig. 6.3 Federated learning over multiple smartphones
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Federated Averaging with the updates from other users. Since the user 
data never leaves the device, and individual updates are not stored in the 
cloud, data security and privacy is ensured.

The updates in this case are not simple gradient updates as in the case 
of conventional distributed ML models. Instead, high-quality updates 
containing much more information than just the changes in gradients are 
computed, compressed, and sent for processing. This ensures convergence 
with reduced communication (up to 100 times (Konečný et  al. 2016)) 
between the edge device and the central server. Scheduling algorithms are 
used to ensure that training happens only when the device is idle, charg-
ing, and on a free wireless connection, so there is no degradation in the 
end-user experience. With most flagship phones nowadays coming with a 
dedicated AI chip, there are estimated to be approximately two billion 
smartphones with underutilized processing capability. Federated Learning 
can leverage this enormous pool of computing resources to improve exist-
ing models, or to train new ones from scratch.

The distribution of intelligence over a multitude of end devices is there-
fore slated to bring significant improvements in the way conventional IoT 
devices function. However, this distribution of intelligence to the edge 
nodes also opens up a plethora of security issues which are discussed next.

6.3  thrEats to EdgE ai
Despite their widespread usage by virtue of the advantages they offer, 
Edge AI paradigms are not without their share of limitations and points of 
concerns. Incorporating intelligence in the edge layer is a double edged 
sword in the sense that although the impact of a potential attack is limited 
to a localized environment, the less potent security protocols on the 
resource-constrained edge hardware make them more vulnerable to 
attacks. The situation is further aggravated by the casual attitude of human 
operators responsible for the configuration and maintenance of the edge 
devices. For instance, a survey of 439 million households using WiFi net-
works showed that approximately 50% of them were unsecured, and of the 
remaining, 80% have their router still configured with the default pass-
words (Shi et al. 2016). The figure is even poorer for public WiFi hotspots, 
with 89% of them being unsecured or poorly configured (Shi et al. 2016). 
Furthermore, updating or re-configuration of the security software on 
edge devices is non-trivial because there may be legacy devices for which 
support has ended, or the constrained hardware resources available on the 
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device may present restrictions on the authentication protocols that could 
be run on the device. Moreover, the heterogeneous nature of the edge 
networks means that there can be no uniform security policy. Lastly, 
microservers used in the edge computing environment lack the hardware 
protection mechanisms available on commodity servers (Roman 
et al. 2018).

A discussion on the threats to Edge AI systems can be divided into two 
distinct cases: threats to Edge AI used for inference, and threats to Edge 
AI used for learning/training (as in Federated Learning). Each of these 
scenarios are discussed separately below. It needs to be mentioned that in 
the discussion that follows, it is considered that the intelligence is located 
in the edge device. However, this is not a restrictive scenario. In fact, the 
attacks and countermeasure discussed below are equally relevant in the 
case where the machine intelligence is located in an edge server or a 
gateway.

6.3.1  Threats to Edge AI for Inference

The vast majority of Edge AI deployments at present are used for inferenc-
ing based on pre-trained models. This is suitable for edge devices due to 
the limited computing resources they offer. As discussed before, there has 
been progress in model compression that allow high performance models 
(e.g. SqueezeNet) to be run in resource-constrained environments. In 
such a standalone environment, where the edge devices use the pre-trained 
model independently, the most probable attack is the feeding of adver-
sarial examples to the model thereby causing the model to output incor-
rect predictions. Such attacks are referred to as Evasion Attacks and are 
discussed next.

6.3.2  Evasion Attacks

The susceptibility of machine learning models to adversarial samples, 
which essentially are carefully perturbed inputs that look and feel exactly 
the same as their untampered counterparts to a human, is well docu-
mented (Biggio and Roli 2018). Although it may seem that adversarial 
examples are available only for image recognition models (Kurakin et al. 
2016), the earliest reported instance of such an attack is for a machine 
learning based email spam filter, wherein it was shown that linear classifiers 
could be tricked easily by carefully crafted changes in the text (Dalvi et al. 
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2004). It is still not proven why adversarial samples work, but a commonly 
accepted hypothesis, called the tilted boundary hypothesis, asserts that 
since the model can never fit the data perfectly (at least theoretically), 
there would always be adversarial pockets of inputs existing between the 
classifier boundary and the actual sub-manifold of sampled data (Szegedy 
et al. 2013). Since the models devised to be used in the low resource envi-
ronments of edge computing are compressed variants of bigger, deeper, 
and more robust models, these are generally more prone to such adver-
sarial attacks. Evasion attacks can be of different types: Gradient based, 
Confidence-score based, Hard Label based, Surrogate model based, and 
Brute-force attacks (Moisejevs 2019).

Gradient based attacks require access to the model gradients (and thus 
belong to the category of Whitebox attacks). Theoretically, such attacks 
are the most potent as the attacker may use the model gradients to gain 
insights into the working of the model, and can then mathematically opti-
mize the attack. This approach is the most probable one to target hard-
ened models, as it has been shown that if an adversary has access to the 
model gradients, it is always possible to generate adversarial samples irre-
spective of the robustness of the model (Carlini and Wagner 2017). Some 
examples of such attacks include Elastic-Net attack based on L1 norm 
(Chen et al. 2018a), an L2 Norm based attack (Carlini and Wagner 2017), 
and an L∞ Norm based attack (Madry et al. 2017).

Confidence-score based adversarial attacks utilize the output confi-
dence score to get estimates of the gradients of the model. The adversary 
may then use these estimated gradients to orchestrate an attack similar to 
the gradient based attack. Since this approach does not require any infor-
mation about the composition of the model, this attack may be classified 
as a Blackbox attack. Examples include the Zeroth Order Optimization 
based attack (Chen et  al. 2017a), the Natural Evolutionary Strategies 
(NES) based attack (Ilyas et al. 2018), and the Simultaneous Perturbation 
Stochastic Approximation (SPSA) based attack (Uesato et al. 2018).

Label based attacks rely on estimating the gradients by using the hard 
labels generated by the model. Since only the label information is required 
by the adversary, such attacks are generally simple to implement, and 
require little hyperparameter tuning. Boundary Attack is the most power-
ful attack in this category. It works by starting from a large adversarial 
perturbation and seeks to incrementally reduce the perturbation while 
staying adversarial (Brendel et al. 2017).
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Surrogate model based attacks first try to build a replica of the target 
model. If the internals of the target model are not known, the adversary 
can reverse engineer the structure of the model by repeatedly querying the 
target model and observing the input-output pairs. If the target model is 
not available for querying, then the attacker can start by guessing the 
architecture in the case of the model being applied for a standard machine 
learning problem like image classification (Moisejevs 2019). Thereafter, 
the gradient based attack can be fine-tuned on this surrogate model, and 
then used on the actual model.

Lastly, Brute-force attacks, as the name implies, work by generating 
adversarial examples by resorting to transformations, perturbations and 
addition of noise to the data samples. Such attacks do not rely on mathe-
matical optimization, and therefore require no knowledge of the model. 
Such an approach is generally used by adversaries who have access to large 
computational resources, and do not have a timeline for the success of 
their attacks.

6.3.3  Privacy Attacks

The previous section discussed the issues pertaining to evasion attacks 
wherein the goal of the attacker is to cause the model to output incorrect 
predictions. However, there is another class of attacks, known as Privacy 
Attacks, which aim to siphon off valuable information from the data used 
by the model. For instance, an adversary may be interested in knowing 
whether a certain person is enrolled in a healthcare program. There are 
several other examples of such private information which an attacker may 
want to unravel: credit card details, location information, and household 
energy consumption. While the risk with disclosure of credit card informa-
tion is obvious, the availability of location and energy usage information 
of a person can inform the attacker about when the person is away for a 
vacation (consequently leaving his house unattended). There are two 
broad categories of such privacy attacks on machine learning systems:

Membership Inference Attacks: This is the case when the adversary has one 
or more data points, and wants to ascertain whether the data points 
were part of the training set or not (Shokri et al. 2017). For instance, an 
attacker might want to find out whether a given person X is included in 
a critical illness list in the healthcare records of a state. Such attacks are 
increasingly being targeted towards recommender systems, wherein the 
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training dataset may contain information such as gender, age, ethnicity, 
location, sexual orientation, immigration status, political affiliation, net 
worth and buying preferences. An attacker who knows a few pieces of 
information from these may be able to expose other details using mem-
bership inference. A detailed study of such attacks has been carried out 
(Truex et al. 2019), which concluded that several factors affected the 
potency of membership inference attacks. Firstly, the model becomes 
more vulnerable with increase in the number of classes. Also, the choice 
of the algorithm for training is also an important factor. Algorithms 
whose decision boundaries are not significantly impacted by an indi-
vidual training sample are less vulnerable.

Model Inversion Attacks: Such attacks, also known as Data Extraction 
attacks, work by extracting an average representation of each of the 
classes the target model was trained on. For instance, a model trained 
for facial recognition may be attacked in the following manner. First, a 
base image is chosen based upon the physical characteristics (age, gen-
der, ethnicity) of the person whose image is to be extracted from the 
model. Then the attacker can repeatedly query the target model with 
different modifications in the base image, until a desired confidence 
level is reached. It has been shown that the final image in such an attack 
scenario can be fairly demonstrative of the face of the person concerned 
(Fredrikson et al. 2015). With the increasing integration of ML based 
face recognition systems in modern day security and surveillance setups 
including the ones at airports, such attacks may lead to the divulgence 
of private and sensitive information like photographs, visa and passport 
details, travel itineraries, and much more. In another instance, it has 
been demonstrated that it is possible to extract credit card details and 
social security numbers from a text generator trained on private data 
(Carlini et al. 2019).

6.3.4  Threats to Edge AI for Training

This section deals with the threats that are pertinent for Edge AI systems 
which are used for performing both machine learning training and infer-
ence. Firstly, the convergence guarantee of the federated learning algo-
rithms has not still been theoretically established (Ma et al. 2019). Only 
approximate convergence may be guaranteed, and that too requires some 
unrealistic assumptions: (1) training data is shared across devices or dis-
tributed amongst the participating devices in an independent and 
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identically distributed (IID) manner, and (2) all participating devices are 
involved in communication of updates for each round.

Secondly, in the federated learning scenario, an adversary can take con-
trol over one or more participating devices to inject spurious and arbitrary 
updates in order to manipulate the training process. This is generally 
referred to as model poisoning or logic corruption. Also, a malicious intruder 
may also compromise the training data in order to adversely affect the 
training process. This is commonly known as data poisoning, and may be 
in the form of either the manipulation of the labels in the training data, or 
the modification of the input itself. It has been shown that an adversarial 
participant can infer properties associated with a subset of training data 
(Bagdasaryan et  al. 2018). Also, there may exist eavesdroppers on the 
broadcast link used by the centralized server to communicate the interme-
diate model state to the participants. Another way of classifying the poi-
soning attacks on Edge AI systems can be based on the characteristic that 
is targeted to be compromised. For instance, attacks targeting the avail-
ability of the system generally work by injecting a lot of spurious data into 
the training set, thereby ensuring that whatever classification boundary 
the model learns becomes useless. It has been shown that a 3% poisoning 
of the dataset can lead to more than 10% drop in accuracy (Steinhardt 
et al. 2017). Such attacks are the ML counterparts to the conventional 
Denial-of-Service attacks. Another class of attacks do not aim to affect the 
availability of the ML system, and instead target the integrity of the sys-
tem. Such attacks are more sophisticated than availability attacks, and 
leave the classifier functioning exactly as it should, but with one or more 
backdoor inputs embedded into the model. These backdoor inputs cause 
the classifier to output incorrect predictions thereby compromising the 
integrity of the model. An example of such a backdoor input is a spam 
email checking scenario wherein an attacker teaches a model that if a cer-
tain string is present in the input, then that input is to be classified as 
benign (Chen et al. 2017b).

Further, although the concept of federated learning is appealing, it 
remains to be seen how it performs with scaling up. Several practical issues 
are expected to creep up when the FL systems are scaled up to involve a 
huge number of devices: limited device storage, unreliable connectivity, 
and interrupted execution. Moreover, it is still unknown whether a signifi-
cant increase in the number of participating devices would translate to 
better accuracy and/or faster convergence of the model.
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There can be another way of looking at the threats that may affect Edge 
AI. Typically, an Edge AI system is composed of three major components: 
network, services, and devices. The network (generally wireless network) 
may be susceptible to DoS and man-in-the-middle attacks, as well as prone 
to disruptions by a rogue node or gateway. The services running on the 
nodes may be infiltrated to cause privacy leakage, privilege escalation, and 
service manipulation. Lastly, the edge devices may themselves be prone to 
physical damage, as well as data poisoning.

6.4  CountEring thE thrEats to EdgE ai
This section presents a discussion on the techniques available for dealing 
with the threats against Edge AI. Since the threats could be against the 
data, the model, or even the entire system (e.g. Federated Learning), the 
following discussion is structured accordingly. At the onset, it needs to be 
mentioned that no available countermeasure can be guaranteed to com-
pletely eliminate the threats to Edge AI systems, and it is by a judicious 
mix of the defense techniques that we can hope for a reasonable safe system.

6.4.1  Defenses against Data Poisoning

In a data poisoning attack on a machine learning system, the adversary 
injects malicious samples into the training pool. These tainted data sam-
ples are typically significantly different from the benign data points, and 
are therefore ‘outliers.’ The process of outlier detection (also known as 
anomaly detection or data sanitization) aims to identify and eliminate such 
outliers before the training process (Paudice et  al. 2018). The anomaly 
detection process is obviously ineffective if the poisoned samples were 
introduced into the training dataset before the filtering rules were created. 
Further, if the attacker is able to generate data poison samples which are 
very similar to the pristine samples (‘inliers’), then this line of defense 
breaks down. Another variant of the anomaly detection approach is the 
use of micromodels (Cretu et al. 2008). The Micromodel approach was 
first proposed for use in network intrusion detection datasets, wherein 
multiple micromodels were generated by training the classifier on non- 
overlapping slices of the training sets (micromodels of the training set). A 
majority voting scheme was then used on the micromodels to ascertain 
which of the training slices were corrupted by poisoning. The institution 
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behind this approach is that network attacks are generally of a low time 
duration, and can only affect a few training slices.

Another commonly used defense technique is to analyze the effect of a 
new sample on the model’s accuracy before actually including that sample 
in the training set. For a tainted data sample used as a test sample, the 
model’s accuracy would degrade. Reject on Negative Impact (RONI) 
(Nelson et al. 2009), and target-aware RONI (tRONI) (Suciu et al. 2018) 
are defensive methods that use this approach. The RONI defense has been 
demonstrated to be extremely successful against dictionary attacks on 
email spam filters, identifying 100% of malicious emails without flagging 
any benign emails. However, RONI fails to mitigate targeted attacks 
because the poison instances in such cases might not individually cause a 
significant performance drop. Target-aware RONI was then proposed as a 
targeted variant which is capable of identifying instances that distort the 
target classification significantly.

A perturbation approach has also been employed for anomaly detection 
(Gao et al. 2019). STRong Intentional Perturbation (STRIP) intention-
ally perturbs the incoming data samples, for instance by superimposing 
different patterns on sample images, and observes the randomness of the 
predicted classes for the perturbed inputs. It is expected that a benign clas-
sifier would be affected significantly by the perturbations. A low entropy 
in the classes predicted by the model defies the input-dependence prop-
erty of a pristine model and implies the presence of a tainted input.

Another method known as TRIM has been proposed for regression 
learning. It estimates the parameters iteratively, while employing a trimmed 
loss function to remove samples which lead to large residuals. It has been 
demonstrated that TRIM is able to isolate most of the poisoning points 
and learn a robust regression model (Jagielski et al. 2018).

Lastly, even after significant strides in automated anomaly detection, 
the role of human factors in identifying malicious data samples cannot be 
completely eliminated. Human-in-the-loop approach works by focusing 
the attention of human data analysts on outliers which cause an unwar-
ranted boundary shift in a classifier model (Mei and Zhu 2015).

6.4.2  Countering Adversarial Attacks

Defenses against evasion attacks may be put into two broad categories: 
formal methods and empirical approaches. Formal methods are purely 
mathematical in nature, and work by testing the model on all possible 
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adversarial samples which can be generated within the allowable limits of 
perturbation. While this approach leads to virtually impenetrable models, 
the method is not amenable to most present day applications of machine 
learning due to its high requirement of computational resources. For 
instance, applying formal methods to a model working with image inputs 
would mean generating all adversarial images (within a certain noise 
range), feeding them to the model and verifying whether the output is as 
intended. Therefore, this class of countermeasures is still more theoretical 
than practical.

Empirical defenses, on the other hand, rely on experiments to ascertain 
the effectiveness of a defense mechanism. There are several defense strate-
gies which can be employed. Adversarial training refers to retraining of the 
model with adversarial samples included in the training set after including 
their correct labels. It is expected that this will ensure that the model learn 
to ignore the noise and focus on the more evident features in the entire 
training set. A technique called Ensemble Adversarial Training (EAT) has 
been proposed that augments training data with perturbations transferred 
from other models, thereby making the model more robust (Tramèr et al. 
2017). Cascade adversarial training, which transfers the knowledge of the 
end results of adversarial training on one model, to other models has been 
proposed to enhance the robustness of models (Na et al. 2017). A robust 
optimization based approach for identifying universally applicable, reliable 
training methods for neural networks has also been proposed (Madry 
et al. 2017).

Other commonly used technique to defend models against evasion 
attacks is input modification. In this case, an input sample, prior to being 
fed to the model, is passed through a sanitizing system to remove the 
adversarial noise, if any. Examples of such methods include denoising 
approaches like autoencoders and high level representational denoisers, 
JPEG compression, pixel deflection, and general basis function transfor-
mations (Moisejevs 2019). Lastly, there is an interesting NULL class 
approach (Hosseini et al. 2017), in which the classifier is trained to output 
a NULL class for inputs which it considers as adversarial.

6.4.3  Hardening Federated Learning Systems

Since the process of training, aggregation and model updating is spread 
over the client, server, and the network in a federated learning system, all 
the three segments need hardening against potential adversaries. Privacy 
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protection at the client side may be ensured by adding perturbations 
(noise) to the updates (Ma et al. 2019). The more sensitive attributes in 
the update can be obscured by using differential privacy techniques 
(Dwork et al. 2006).

The server side can be made more robust by incorporating Secure 
Multi-Party Computation (SMC) which ensures that individual updates 
are rendered uninspectable at the server (Rosulek 2017). A secure aggre-
gation protocol can be employed that uses cryptographic techniques so a 
coordinating server can only decrypt the average update if a certain num-
ber of users have participated, and no individual update can be inspected 
before averaging. A variety of other specialized approaches have also been 
employed to safeguard user privacy. These include, but are not limited to, 
de-identification schemes like anonymization, and cryptographic tech-
niques like homomorphic encryption. In FL systems incorporating the 
latter, user updates are encrypted before uploading to the server using 
public-private keys (Papernot et al. 2016). Moreover, since the source of 
the updates is not required for the aggregation, the updates can be trans-
ferred without including metadata related to the origin of the informa-
tion. Lastly, to safeguard against data poisoning attacks, anomaly detection 
schemes may be employed on the encrypted updates to identify any outli-
ers, and the nodes which contributed those malicious samples may be 
removed from subsequent rounds of updates. Further, a weight may also 
be assigned to each user update based on its quality, and this process may 
help in identifying clients which are helpful in faster convergence or higher 
performance of the model. Conversely, clients with lower ranked updates 
may be identified as stragglers.

To make the actual communication of updates over a network more 
resilient to eavesdroppers, the client may also consider sending the updates 
over a mixed network like Tor, or via a trusted third party (Ma et al. 2019).

6.5  FuturE dirECtions

The previous sections presented an outline of the concept, applications 
and issues related to the emerging area of Edge AI. It was mentioned that 
although appealing, the incorporation of distributed intelligence in the 
edge devices is not without its share of limitations which need to be 
addressed before Edge AI can be said to be mature. This section presents 
an overview of the future research avenues in the field of Edge AI.
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6.5.1  Open Issues in Federated Learning

As mentioned in the previous section, convergence in FL systems is still 
not theoretically proven. More research efforts are required towards 
improving learning performance, that is bettering learning accuracy with 
lesser communication between the edge devices and the centralized server. 
The present tradeoff between privacy preservation mechanisms and con-
vergence speed needs further investigation to tilt the balance in favor of 
faster training with maximal user privacy. Recognition and prevention of 
data and model poisoning attacks is still an open problem, as is the security 
of the transmitted updates against eavesdroppers. Lastly, the process of 
aggregation may be made robust by incorporating mechanisms like anom-
aly detection to identify outliers (malicious updates). The use of reward 
functions for participating nodes is still in infancy, and needs more study. 
Incorporation of rewards into the FL system would provide incentives to 
devices contributing more to the learning process (either due to their hav-
ing more data, or more computational capability). Lastly, the use of 
Blockchain has also been proposed to facilitate secure transmission of 
updates (Kim et al. 2018). However, blockchain based federated learning 
systems have yet to become mainstream.

6.5.2  Distributed Deep Reinforcement Learning

Reinforcement learning, being the closest ML algorithm to human learn-
ing in the sense that it learns from experience, is another technique which 
can be explored for improving the intelligence in edge devices. Such dis-
tributed Deep Reinforcement Learning (DRL) (also referred to as multi- 
agent DRL) is expected to bring revolutionary improvements in the way 
interconnected edge devices learn and infer. This assumes particular 
importance in Edge AI scenarios where most sensors participate in data 
generation without being able to obtain or assign class labels. Semi- 
Supervised DRL has already been proposed for such cases (Mohammadi 
et al. 2017), and Unsupervised DRL for incorporating learning in Edge 
AI systems with little to no supervision is another open area of research.

6.6  ConClusion

This chapter first presented a discussion on the security threats to conven-
tional edge computing systems. Thereafter, techniques to incorporate intel-
ligence into the edge devices were highlighted. This is pertinent since Edge 
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AI is ultimately expected to allow and encourage collaboration between vari-
ous edge nodes towards a globally intelligent model without explicit human 
support. An overview of the various threats to the rapidly growing field of 
Edge AI was then presented. Security issues in various aspects of Edge AI 
were discussed and some effective countermeasures were highlighted. Lastly, 
avenues for future research in the area were outlined wherein it was dis-
cussed that emerging technologies like Blockchain and Deep Reinforcement 
Learning could be leveraged to improve existing Edge AI systems.
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Abstract The Internet of Things (IoT) and the various applications it 
encompasses offer great potential for personalisation and convenience in 
all aspects of individuals’ lives from healthcare to transport and smart 
homes. However, IoT devices collect and share large volumes of personal 
data leading to concerns for the security and privacy of the data. While 
computer science research has explored technical solutions to security 
issues, it is important to explore privacy from the perspective of consum-
ers. To foster a sense of privacy and trust among consumers, IoT service 
providers must communicate with consumers regarding their data prac-
tices in a transparent manner. To do this, we propose that IoT service 
providers refine adopt transparent privacy disclosure approaches. We pres-
ent a framework for testing the effectiveness of privacy disclosures in 
building consumers’ perceptions of privacy and trust and empowering 
consumers to adopt IoT devices whilst retaining some level of privacy. We 
illustrate this framework with reference to a privacy label approach.
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7.1  IntroductIon

We now live in a world with more connected devices than people. In the 
near future, the Internet of Things (IoT) landscape will comprise of bil-
lions of connected devices and things with the ability to exchange data at 
any given time. IoT can be defined as

A world where physical objects are seamlessly integrated into the informa-
tion network, and where the physical objects can become active participants 
in business processes. Services are available to interact with these “smart 
objects” over the Internet, query their state and any information associated 
with them, taking into account security and privacy issues. (Haller et  al. 
2008, p. 15)

The potential value of IoT is enormous ranging from US$3.9 trillion to 
US$19 trillion in the coming years (Cisco 2013a, b; McKinsey Global 
Institute 2015). Notwithstanding this massive economic opportunity, 
IoT and the big data it generates further complicate the issues around 
privacy and security (Lowry et  al. 2017). The connection of devices 
enabled by IoT can heighten privacy and security challenges, not least 
excessive monitoring and data mining techniques that may enable data to 
be made available for purposes for which it was not previously intended 
(Abomhara and Køien 2014). The risks associated with these challenges is 
exacerbated by the long service chains inherent in the Internet of Things 
involving a multitude of actors including not only IoT software vendors 
and device manufacturers but network operators, cloud service providers, 
and the software and hardware vendors and services to support the infra-
structure underlying the IoT. While consumers may accept a degree of 
consumer surveillance from the Internet or IoT, they may be equally igno-
rant about the degree to which their data is being distributed to fulfil their 
service requirements. There is an onus on enterprises providing IoT 
products and services, and consuming IoT data, to both take privacy 
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preserving actions and to communicate with consumers on the use of their 
data in the Internet of Things.

While existing research has identified some solutions to security chal-
lenges in IoT, user privacy and issues around privacy in data collection, 
management, and dissemination must be addressed (Abomhara and Køien 
2014). Indeed, privacy and trust are categorised as two of the core security 
challenges facing the future of IoT (Sicari et al. 2015). Chapter 6 discusses 
some of the technical challenges at play in relation to the security of data. 
In this chapter, we focus on exploring the issues of privacy and trust related 
to IoT from the perspective of consumers. The remainder of the chapter 
is structured as follows; the next section explores perspectives and theories 
on privacy and the Internet of Things. It is followed by a brief discussion 
on the nature of trust and trust in technology. Next, we discuss approaches 
for influencing perceptions of privacy and trust. Following on from this 
literature, we propose an IoT privacy trust label as a potential means to 
influence perceptions and trust in relation to IoT. Based on theories, con-
structs, and concepts discussed in earlier sections, we present a framework 
for testing the effectiveness of privacy disclosures in building consumers’ 
perceptions of privacy and trust and empowering consumers to adopt IoT 
devices whilst retaining some level of privacy. We illustrate this framework 
with reference to a privacy label approach.

7.2  PrIvacy and the Internet of thIngs

Users’ privacy remains an important issue in IoT environments with con-
cerns raised around the leakage of location information and inferences 
from IoT device usage such as TVs (Alrawais et al. 2017). It would seem 
while parents were once worried about the amount of time kids spent 
watching television, we now need to worry about the amount of time our 
television spends watching us.

In the context of IoT, there are several dimensions of privacy that must 
be considered and protected. These include identity data or personally 
identifiable information (PII), location data which can reveal many forms 
of PII, footprint privacy, and data contained in queries (Daubert et  al. 
2015). Solutions have been identified for many of these dimensions, such 
as anonymisation (Daubert et al. 2015), but again these solutions are tech-
nical in nature and do not emphasise the user perceptions. When focusing 
on user privacy, there is a tendency to focus on the application layer as this 
is the layer closest to the consumer and the point at which privacy 
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perceptions can be addressed. It is also important to explore consumers’ 
perceptions of privacy and trust as research has shown concern for privacy 
and absence of trust can both reduce willingness to disclose information 
and adopt new technologies (Li 2012).

Privacy as a phenomenon has been studied for centuries across a range 
of academic disciplines and perspectives such as law, sociology, marketing, 
and information systems (IS). This chapter focuses on privacy from the IS 
perspective. Privacy is defined as an individual’s desire for greater control 
over the collection and dissemination of their personal information 
(Bélanger and Crossler 2011). This definition remains relevant in the con-
text of IoT, with privacy described in this chapter as consumers’ desire to 
be afforded a greater degree of control over the collection and use of their 
personal data by IoT devices and sensors. The IS literature on privacy has 
grown over the past three decades but privacy remains relevant today with 
polls continuing to find that individuals place value on their privacy. For 
example, Pike et  al. (2017) found that 84% of consumers in the US 
expressed data privacy concerns, 70% of whom felt these concerns had 
recently increased. This may be attributable in part to growing awareness 
of incidences of data breaches, but it is likely to be in part influenced by 
the ever increasing volume of data collection facilitated by the growing 
proliferation of technology such as IoT devices.

Extant privacy research in the IS domain leverages a number of theo-
retical lenses to understand the role of privacy across different contexts 
and information technologies. In his review of the literature Li (2012) 
categorises privacy theories into five areas of theories focused on; (1) driv-
ers of privacy concern, (2) behavioural consequences, (3) trade-offs, (4) 
institutional drivers and (5) individual factors. While the privacy literature 
in the IoT domain is in a nascent stage, the existing literature focuses on 
theories related to behavioural consequences, trade-offs, and individual 
factors to a lesser degree. In terms of behavioural consequences, many of 
the existing IoT studies leverage technology adoption models such as the 
theory of reasoned action (TRA) (Marakhimov and Joo 2017). These 
studies build understanding of the factors driving individuals’ initial adop-
tion decision making process, but do not enhance understanding of indi-
viduals’ post-use behaviours and barriers to the use of IoT (Marakhimov 
and Joo 2017).

One dominant stream of the broader privacy literature focuses on the 
trade-offs consumers make between the benefits and risks associated with 
new technology use and as a result information disclosure. The relevance 
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of trade-offs are apparent in the IoT context. As the number of devices a 
user connects with increases, the convenience and perceived benefits this 
usage facilitates increase (Hsu and Lin 2016) enabling users to query any-
thing from health data to weather or utility usage. The data generated 
from the various IoT devices and connected databases does offer benefits 
but also introduces undeniable risks to consumers’ privacy (Bélanger and 
Xu 2015). The most common theory to explore these trade-offs is the 
privacy calculus theory, which posits that individuals will disclose their 
personal information or interact with a technology for as long as the per-
ceived benefits outweigh the perceived risks or consequences (Culnan 
1993). The theory assumes that individuals conduct a cognitive cost- 
benefit analysis, considering the benefits of disclosure and the potential 
negative outcomes or repercussions the individual might experience as a 
result of using the technology (Culnan and Armstrong 1999). PCT has 
been recently leveraged in the IoT context. In their study of 508 Taiwanese 
citizens, Hsu and Lin (2016) found concern for information privacy had a 
negative influence on intentions to continue use of IoT, whereas perceived 
benefits had a positive influence on intentions. In a study of US consum-
ers, Kim et al. (2019) explored perceptions of trust and benefits and per-
ceived risk on three IoT services namely healthcare, smart home, and 
smart transport. In terms of healthcare, privacy risk had a significant nega-
tive influence on willingness to disclosure personal data, with trust and 
perceived benefits positively influencing willingness. In terms of both 
smart transport and smart homes, trust and perceived benefits had a sig-
nificant, positive effect but perceived risk was insignificant. Perceived ben-
efits was the biggest predictor of willingness to provide information in the 
case of healthcare and smart transport, whereas trust was the biggest pre-
dictor in the case of smart homes. These studies provide empirical support 
for the use of PCT in the IoT context, illustrating that both positive per-
ceptions (i.e. trust and benefits) influence adoption and information dis-
closure, and negative perceptions (i.e. risk and privacy concern) can have 
a negative influence.

Notwithstanding the foregoing, due to biases and cognitive limitations, 
consumer’s perception of the benefits often outweighs perceived risks or 
concerns. This view has also been presented in the IoT context with Kim 
et al. (2019) arguing that consumers seek benefits in spite of their privacy 
concerns and often underestimate the risks of IoT usage to their data pri-
vacy. This contradiction is termed the ‘privacy paradox’. However, research 
explaining the privacy paradox is still emerging. Furthermore, it is 
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important to consider potential knowledge gaps (Crossler and Bélanger 
2017). Individuals may assume their data remains private and is not shared 
with other parties (Kim et al. 2019), and thus their behaviours may only 
seem to contradict their desire for privacy. Furthermore, we do not yet 
fully understand how behaviours contradict privacy concerns (Keith 
et al. 2015).

In terms of individual theories, protection motivation theory (PMT) is 
frequently leveraged in the privacy literature to explore the influence of 
individuals’ threat and coping appraisals on their behaviours (Li 2012). In 
their study of 206 health wearable users in the United States, Marakhimov 
and Joo (2017) leverage PMT. They found that consumers’ threat appraisal 
was significantly influenced by their general privacy concerns and their 
health information privacy concerns, with threat appraisals significantly 
influencing problem and emotion focused coping and extended use inten-
tions as a result.

In the IoT context, no study has yet explored privacy using an institu-
tional based-theory. However, in their early stage work, Saffarizadeh et al. 
(2017) leverage social reciprocity theory to propose a model which 
explains consumers’ willingness to disclose personal data to conversational 
assistants. They include privacy concerns as a negative determinant on dis-
closure. As perceived trustworthiness leads to consumers being more likely 
to disclose information (McKnight et  al. 2011), to foster this trust, 
Saffarizadeh et al. (2017) argue that in line with social reciprocity theory, 
disclosures from conversational assistants may encourage users to trust 
them. These studies provide important insights into the perceptions driv-
ing behaviour in the IoT context, but it is important to explore approaches 
to influence these perceptions and engender perceptions of trust and pri-
vacy as a result.

7.3  trust, PrIvacy, and the Internet of thIngs

A consumer’s willingness to trust is based on their beliefs of the trustwor-
thiness of the organisation (van der Werff et  al. 2019). These beliefs 
together encapsulate the assumption that the organisation will not engage 
in opportunistic behaviour with the individual’s data (Dinev and Hart 
2006) and generally relate to beliefs regarding the organisation’s benevo-
lence, integrity, and competence (van der Werff et al. 2019). Benevolence 
relates to the belief the organisation has the individual’s best interests in 
mind, integrity refers to the belief in the morals and principles of the 
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organisation, and competence refers to the belief the organisation has the 
knowledge and skills to fulfil a service (Belanger et al. 2002).

Trust and privacy are often studied in tandem in many contexts includ-
ing IoT, with privacy concerns negatively impacting disclosure or technol-
ogy adoption and trust having the opposite influence. Generally speaking, 
trust in a privacy context relates to an individual’s willingness to be vulner-
able when transacting or sharing personal information with an organisa-
tion (McKnight et al. 2011). In the IoT context, trust can be described as 
consumers’ willingness to be vulnerable when interacting and sharing per-
sonal data with an IoT device, the associated application, and the 
organisation(s) providing these. In the IoT context, there are also dimen-
sions of trust to consider namely device trust, processing trust, connection 
trust to ensure data is exchanged appropriately and trust in the overall 
system (Daubert et al. 2015). The opaqueness of the IoT service chain 
makes this logistically near-impossible. While there are technical solutions 
in place or proposed to achieve these dimensions of trust such as trusted 
computing, confidentiality, certifications, and more recently, blockchain 
(Daubert et al. 2015; Chanson et al. 2019), there is a need to account for 
consumers’ perceptions of trustworthiness.

7.4  aPProaches for InfluencIng PercePtIons 
of PrIvacy and trust

As evidenced in the IoT and broader privacy literature, concern for privacy 
negatively impacts disclosure and willingness to use new technologies, 
whereas trust can positively impact adoption and disclosure behaviours 
(Kim et al. 2019). However, the nature of the Internet and interactions 
between consumers and technology or devices complicates mechanisms 
for building trust (van der Werff et  al. 2019). It is thus important to 
explore mechanisms to build a sense of privacy, that is perceived control 
over how one’s personal information is collected and used, and foster a 
sense of trust, that is consumers’ willingness to accept vulnerability when 
interacting with IoT devices.

In terms of overcoming privacy concerns, prevailing suggestions in the 
privacy literature include increasing consumers’ perceptions of control 
(Tucker 2014), building trust (Dinev and Hart 2006) and reducing per-
ceptions of risk (Xu et al. 2011). In order to influence consumers’ percep-
tions, organisations must transparently communicate with users with 
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regards to the controls they have over their personal data, what data is 
collected, and how data is used. While the efficacy of organisations’ com-
munication methods in the IoT context is yet to be tested, the need for 
communication prevails. For instance, in a study of smartwatch users, 
Williams et al. (2019) found that users who had not been primed on the 
risks to their personal data on smartwatches, did not perceive any risks as 
they hadn’t learned the value of this data. Researchers have proposed that 
IoT providers offer users an awareness of the privacy risks, provide users 
with control over the collection and usage of their data by smart devices 
(Ziegeldorf et al. 2014; Davies et al. 2016), and control over subsequent 
usage by additional third-party entities and devices (Hsu and Lin 2016). 
This again highlights the importance of education efforts for users of IoT 
devices.

In terms of trust, there are no means to assess trustworthiness of IoT 
devices (Alrawais et  al. 2017). Trust is typically developed over time as 
opposed to being formed based on a one-time interaction (Gefen et al. 
2008). This makes trust building between consumers and online organisa-
tions or IoT devices complex. To build trust in online organisations, sev-
eral approaches have been explored. Firstly the characteristics of a website 
such as website design, security seals or privacy policies have been exam-
ined in the literature (van der Werff et al. 2018). However, the findings on 
the effectiveness of these approaches have been mixed. Moreover, given 
that the interaction with IoT devices does not involve regular interaction 
with websites, many of these methods are impractical or insufficient. It is 
also important for the user to trust the device, as highlighted in the study 
by Saffarizadeh et  al. (2017), and the organisation itself (IoT service 
provider).

The dominant method for communicating how organisations collect 
and use consumers’ data are privacy policies. It is argued that privacy poli-
cies could reduce perceived risks, increase perceptions of control and trust 
(Xu et al. 2011; Pan and Zinkhan 2006) and thereby overcome any pri-
vacy obstacles. However, privacy policies tend to be quite lengthy and 
difficult to read (Kelley et al. 2010). Thus, when customers read privacy 
policies, they fail to understand the contents (Park et al. 2012) and as a 
result these disclosures may have the opposite to the intended impact and 
exacerbate concerns around control and risk. There is a need to both 
adjust the content of policies and develop methods which better inform 
consumers of how their information is used (Park et al. 2012). To combat 
these issues, researchers developed the privacy label based on the nutrition 
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label approaches and found that privacy labels could improve understand-
ing of privacy practices (Kelley et al. 2009, 2010) and build perceptions of 
trust (van der Werff et al. 2019). This approach has recently been adapted 
to develop GDPR-based (General Data Protection Regulation) privacy 
labels (see Fig. 7.1) (Fox et al. 2018).

Fig. 7.1 Example GDPR label (Fox et al. 2018)
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7.5  PrIvacy trust labels: desIgn PrIncIPles

We argue that IoT service providers should draw from this recent research 
on privacy and trust labels to develop an IoT based privacy label. The label 
should seek to build consumers’ understanding of how their data is used 
and collected to comply with privacy regulation and build positive privacy 
perceptions, as well as information on the organisation to build percep-
tions of trustworthiness. For example, in Europe, to comply with the 
GDPR, the labels must include the following information (ICO 2017):

 1. The identity and contact details of the data controller
 2. The processing purposes for the personal data and the legal basis 

for the processing
 3. The recipients or categories of recipients of the personal data
 4. The details of the safeguards in place if transferring data to a 

third country
 5. Data retention period
 6. The data subject’s rights to request: access to their data, rectifica-

tion, restriction of processing, erasure of data, and data portability
 7. If data processing is based on consent, the right to withdraw con-

sent at any time
 8. The right to complain to the supervisory authority
 9. whether the disclosure of personal data is a statutory or contractual 

requirement and the consequences of non-disclosure
 10. The use of automated decision-making such as profiling, the logic 

and impact of such processing
 11. The contact details of the data protection officer
 12. Information on further processing.

All information on the label should be framed in a manner, which demon-
strates the benevolence, integrity, and competence of the IoT service pro-
vider with regards to protecting consumers’ personal data. Traditionally, 
privacy labels are presented to users upon signing up to an online website 
or service. As IoT devices cross physical and informational boundaries, the 
physical security and wellbeing of citizens and their homes is intertwined 
in the security and privacy of the IoT devices and the network (Lowry 
et al. 2017). We thus, recommend the inclusion of physical privacy labels 
on the box of IoT devices, along with a digital label on the application 
presented to users at sign-up and an up to date label accessible within the 
application’s privacy features and on the service provider’s website.
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7.6  towards a framework for examInIng 
the ImPact of PrIvacy dIsclosures on PrIvacy 

PercePtIons and behavIours

In this section, we present a general framework for building consumers’ 
perceptions of trust and privacy in the IoT context in Fig. 7.2 below that 
can be used for examine privacy and trust perceptions and behaviours in 
the Internet of Things. We illustrate the use of this framework in the con-
text of the Privacy Trust Label described in Sect. 7.5 above.

With IoT technologies advancing at a faster pace than privacy regula-
tion and practices (Lowry et  al. 2017), it is important for IoT service 
providers to be proactive in addressing consumers’ privacy concerns. 
Consumer perceptions of privacy are situational in nature in that they are 
influenced by past experience and the context in question (Li 2011). For 
example, individuals have perceptions of how much privacy they have in 
the e-commerce context, which may be influenced by past experience of a 
positive nature, such as convenient online shopping, and experience of a 
negative nature, such as a privacy invasion. Furthermore, individuals’ have 
perceptions regarding well-known brands. These perceptions may relate 
to how the brand protects consumer privacy and how trustworthy the 
brand is with regards to protecting and fairly using personal data. For 
example, if a consumer perceives that Apple smartphones offer a 

Privacy 
Disclosure 

Artefact
(e.g. trust label)

Perceived 
Trustworthiness 

(benevolence, integrity, competence)

Perceived Privacy

Perceived Control

Privacy self-efficacy

Use and Disclosure
Behaviours

Motivation

Post-Exposure 
Perceptions

Privacy 
Knowledge

IOT Artefact 
(e.g. brand, packaging, 

hardware, software, 
connectivity etc.)

Individual Privacy and 
Trust Perceptions 

Technology

Brand

Context

Fig. 7.2 Integrated framework to examining privacy and trust perceptions and 
behaviours
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satisfactory level of privacy and the brand is trustworthy in terms of com-
petence to protect data, integrity and benevolence with how that data is 
used, the consumer may hold positive perceptions about the trustworthi-
ness and privacy offered by Apple products in other contexts such as the 
Apple watch or Apple TV. We present a framework that recognises that 
consumers have pre-existing perceptions and preferences regarding pri-
vacy and trust in technologies, brand and contexts (e.g. health, finance, 
social media, etc.). These may be general perceptions and preferences or 
specific to IoT. As such, these perceptions and preferences influence and 
are influenced by the brand, packaging, and the device hardware, software, 
and connectivity.

We draw from the integrative privacy framework developed by Li 
(2012) and the recently adapted Information–Motivation–Behavioural 
Skills Model by Crossler and Bélanger (2019). On the left hand of the 
model the IoT privacy label is presented. The label will seek to build con-
sumers’ privacy knowledge regarding how their personal data is collected 
and used by IoT devices. This label will in turn influence consumers’ per-
ceptions regarding the IoT device and service provider. In line with social 
contract theory (SCT) theory, we argue that the label will foster percep-
tions of control, trustworthiness, and privacy. SCT proposes that when 
organisations engage in transactions with customers which involve the 
disclosure of personal data, they enter into a social contract (Donaldson 
and Dunfee 1994). This contract implies that the organisation will only 
use the personal data in ways which align with social norms and that indi-
viduals have some level of control (Bélanger and Crossler 2011). We argue 
that the privacy label will form the basis of a social contract informing 
consumers of how their personal data is collected, stored, and dissemi-
nated in this specific context of the IoT device. Previous research has 
shown that privacy disclosures can enhance perceived control (Xu et al. 
2011). We therefore argue that if consumers believe they retain some level 
of control over their personal data, they are more likely be willing to use 
IoT devices and disclose personal data. Similarly, privacy disclosures can 
potentially lead individuals to form positive perceptions related to privacy 
and heighten individuals’ beliefs in the trustworthiness of the organisation 
(Culnan and Armstrong 1999). We propose a similar effect in the context 
of IoT devices.

Following on from perceptions and knowledge, Crossler and Bélanger 
(2019) discuss the privacy knowledge–belief gap and highlight the impor-
tance of contextualised privacy self-efficacy, that is individuals’ perceptions 
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that they have the knowledge and skills needed to protect the privacy of 
their data as required. We argue that the privacy label will provide context- 
specific insights into how users can retain control over their data collected 
by IoT devices. This self-efficacy will in turn influence consumers’ inten-
tions to engage in privacy-protective behaviours such as adapting privacy 
settings (Crossler and Bélanger 2017, 2019). On the right hand of the 
model is users’ usage and disclosure behaviours. We argue that the privacy 
label will build consumers’ privacy self-efficacy and provide them with the 
motivation to exercise control over their privacy by modifying the privacy 
settings on IoT devices. We propose that consumers with high self-efficacy 
will adopt and continue to use IoT devices due to the high perceptions of 
control, privacy, and trust fostered by the label and reconfirmed through 
exercising control over their data. Previous research has found that privacy 
labels can improve privacy knowledge (Kelley et al. 2009, 2010) and foster 
perceptions of trust and control (Xu et al. 2011; Pan and Zinkhan 2006). 
Furthermore, trust is positively associated with consumers’ willingness to 
disclose personal information (Joinson et al. 2010), whereas privacy con-
cern has the opposite influence (Culnan and Armstrong 1999). To over-
come privacy concerns, it is important to build perceptions of privacy and 
control. In summary, we posit that the clear transparency enabled by the 
privacy label approach can serve to enhance privacy knowledge, build con-
sumers’ perceptions of privacy, control and trust, and enhance privacy self- 
efficacy, thus empowering consumers to utilise IoT devices while retaining 
some level of privacy. We argue that with this knowledge, consumers can 
choose what personal data to disclose to IoT devices.

7.7  concludIng remarks

In the coming years, IoT is predicted to grow exponentially generating 
value for consumers in all aspects of their lives. Researchers have high-
lighted the importance of ensuring user privacy in the IoT context, stating 
users’ privacy ‘should be guaranteed’ (Sicari et  al. 2015, p.  151). 
Furthermore, as technology continues to increase in pervasiveness, it is 
important to explore how trust can be engendered in and between tech-
nologies that are built upon complex data exchange infrastructures and a 
lack of prior experience with the technology in question (van der Werff 
et al. 2018). In this chapter, we present a framework for examining the 
effectiveness of privacy disclosures on privacy and trust perceptions and 
consequently, enhancing adoption and sustained usage of IoT devices. 
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The framework is contextualised in the broad IoT context. Empirical 
research is needed to determine the effectiveness of the proposed privacy 
label and the framework itself in different IoT contexts, applications, and 
other dimensions. For example, adaptation may be required for use cases 
such as conversational assistants where data collection occurs verbally and 
may require the consideration of factors outlined by Saffarizadeh et  al. 
(2017). Moreover, there is a need for research that maps out the privacy 
issues across the broader IoT landscape including the device, connection, 
and application layers discussed in Chap. 1.

In addition to addressing consumer perceptions regarding privacy and 
trust related to IoT, it is important to consider technical advances such as 
fog computing. Fog computing can facilitate the realisation of many new 
applications on IoT devices, while also reducing latency, enabling mobil-
ity, location awareness and heterogeneity (Alrawais et al. 2017). In terms 
of security, the computational power offered by fog computing combined 
with the devices and sensors of the IoT could provide enhanced security 
to minimise attacks. However, issues related to privacy and trust are likely 
to be complicated by advances in fog computing (Alrawais et al. 2017). 
Further research, may look to adapt this framework for fog computing and 
other advances in technology that have privacy implications, not least arti-
ficial intelligence.
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CHAPTER 8

Mapping the Business Value of the Internet 
of Things
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Abstract The impacts of enterprise investments in technological infra-
structure for the Internet of Things (IoT) go well beyond the technical 
domain and require significant changes in an enterprise’s operations, strat-
egy and approach to market. This chapter presents a framework for map-
ping the business value of IoT investments which aims to support managers 
in their decision-making process by providing an overview of how specific 
resources need to be linked together in order to generate business value. 
The presented framework is also used as a point of reference for identify-
ing current research gaps which may represent avenues for future research.
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8.1  IntroductIon

Digital transformation is causing a strategic shift in organisations. Driven 
by key enabling technologies—big data analytics, cloud computing, 
mobile and social technologies—IT spending has been on the increase 
worldwide and forecasts to reach $6 trillion by 2022 (IDC 2018). While 
each of these technologies generates business and economic value on their 
own, they create much greater benefits when combined in to innovative 
solutions such as the Internet of Things (IoT) (Rosati et al. 2017).

Haller et al. (2009, p. 15) define IoT as “a world where physical objects 
are seamlessly integrated into the information network, and where the physi-
cal objects can become active participants in business processes. Services are 
available to interact with these ‘smart objects’ over the Internet, query their 
state and any information associated with them, taking into account security 
and privacy issues.” Even though the idea of connecting physical objects to 
the digital worlds is not completely new, the decreasing cost of sensors and 
computing resources, improvements in computing power and network 
infrastructures, and the flexibility and agility provided by cloud computing 
have made it possible for organisations to operationalise large IoT solu-
tions (Agrawal et al. 2011; Ji et al. 2012; Sagiroglu and Sinanc 2013).

While most of the academic discussion has focused on the technical 
aspects of IoT, it should be noted that it also generates significant business 
opportunities (Côrte-Real et al. 2019; Wolf et al. 2019). Recent studies 
have investigated how IoT impacts organisations’ business model (e.g., 
Fleisch et al. 2015; Dijkman et al. 2015; Metallo et al. 2018; Wolf et al. 
2019) and how specific aspects of IoT may affect business value creation 
and extraction (e.g., Karkouch et  al. 2016; Côrte-Real et  al. 2019). 
However, clear methodologies for mapping, and indeed measuring, the 
business value of IoT are still missing.

This chapter aims to fill this gap by introducing a framework for map-
ping the enterprise business value of IoT and exploring the main cost and 
value drivers associated with IoT investments. The remainder of this chap-
ter is organised as follows. Next, we introduce the typical IoT architecture 
and provide some exemplar use cases. Then we introduce the proposed 
mapping framework and discuss the main cost and value components. 
Finally, we conclude the chapter with a discussion and avenues for future 
research.
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8.2  the Internet of thIngs

As discussed in Chap. 1, the term “IoT” is often used as an umbrella term 
for describing various aspects related to the extension of the Internet in to 
the physical world through “smart” devices (Miorandi et al. 2012). From 
a business perspective, IoT can be seen as an innovative hybrid construct 
which consists of two elements, the “thing” and the digital service, that 
are strictly interconnected in order to generate value (Fleisch et al. 2015). 
These two elements are brought together through a complex, modular, 
multi-layered architecture similar to the one represented in Fig. 8.1.

In the device layer, sensors and actuators transform real-word events in 
to digital signals (Ji et al. 2012). The network layer provides the network 
structure that allows a high number of connected devices to send informa-
tion securely and with low latency (ITU 2012). The support layer pro-
vides the main functions related to data processing while the application 
layer provides the user interface of specific IoT application (ITU 2012).

According to recent estimates, worldwide hardware and software IoT 
spending is projected to grow, from $726 billion in 2019 to $1 trillion in 
2022 (IDC 2019), and IoT solutions are expected to generate $4.6 tril-
lion in value for the public sector and another $14.4 trillion for the private 
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Fig. 8.1 IoT architecture. (Adapted from ITU 2012)
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sector by 2023 (Cisco 2013a, b). Most of the value generated by IoT is 
linked to increased productivity and efficiency, cost reduction, better cus-
tomer/citizen experience, faster innovation and new revenue streams 
(Cisco 2013a, b; Lynn et al. 2018).

Smart factories, for example, leverage data generated by different types 
of sensors to track the location of materials, machines, and other moveable 
assets in real time therefore enabling self-organising production lines, 
seamless synchronisation of production schedules and just-in-time supply 
chain management (Bansal 2019). The reduced number of people required 
to manage similar factories, lower inventories, and improved production 
quality could increase manufacturing efficiency by 27 per cent and add 
between $500 billion and $1.5 trillion in value to the global economy by 
2022 (Capgemini 2017). Similarly, sensors embedded in a number of 
small connected devices enable remote monitoring of energy optimisation 
for smart buildings (King and Perry 2017).

Smart cities also represent a focus area with regard to IoT applications. 
In the context of smart cities, not only smart buildings, but also smart 
mobility and connected cars play a critical role (Singh 2016). Sensors can 
be used to map, for example, available parking slots throughout the city 
therefore reducing driving times and increasing the quality of life of citi-
zens. Similarly, connected vehicles can provide better integration between 
different transport services and represent a breakthrough for the adoption 
of more efficient Mobility-as-a-Service solutions (Lennert et  al. 2011; 
OECD 2019).

8.3  A VAlue MAppIng frAMework for the Internet 
of thIngs

While the technological infrastructure of IoT has attracted most of the 
attention from industry and academia (Del Giudice 2016), this is only part 
of the organisational ecosystem that enterprises have to build around their 
IoT offering. In this section, we discuss three parts of the IoT business 
value ecosystem—the value creators and generators, investment, and value 
generation and monetisation. We bring these together by adapting and 
extending Mikalef et al.’s (2019) value mapping framework for business 
data analytics.
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8.3.1  Value Creators and Consumers

Mapping business value in IoT depends heavily on the perspective taken. 
The five main categories of actors for whom the IoT can generate value are 
(1) computing infrastructure providers, for example, hyperscale cloud ser-
vice providers, (2) network infrastructure providers e.g. telecommunica-
tions companies, (3) application developers and providers (e.g. SAP), (4) 
device manufacturers or providers (e.g. Bosch or Apple), and (5) end 
users, whether organisations or consumers. Actors can play more than one 
role and indeed may create value together, for example, through co- 
creation. Regardless, to generate and capture the value from IoT, these 
actors must make investments.

8.3.2  Investment

Smart devices range from simple sensors with limited storage and process-
ing power to relatively more advanced and complex devices such as smart-
phones. These devices are key enablers of big data as they generate constant 
streams of data that then get processed and analysed in order to return 
better services/products to the final user (Chen et  al. 2012; Chanson 
et al. 2019). The expectation is that the IoT infrastructure enables these 
devices to interact with each other and with other systems with minimal 
latency regardless of their location or local computing power (Lynn et al. 
2018). The traditional cloud computing paradigm where all the data is 
sent to a centralised (remote) cloud infrastructure, processed and sent 
back to the local device was not designed to meet the requirements of the 
IoT world.

The new infrastructure paradigm requires a continuum of computing 
resources activity from the cloud to the “thing” (C2T) where computing 
resources are located in the cloud, at the thing (edge computing), and/or 
somewhere in between (fog computing). As such, IoT is effectively driving 
the transformation of cloud computing in to a decentralised service architec-
ture. Some of these new computing paradigms—fog computing, edge com-
puting and dew computing are defined in Chap. 1. In this new technological 
landscape, the success or failure of an enterprise IoT service depends on the 
quality of the service provided by both cloud service providers and network 
operators, who have to decide where best to locate compute and storage 
resources along the cloud-to-thing continuum in order to meet Quality of 
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Service and Quality of Experience (QoE) requirements. The IoT assumes a 
multi-layered operational context with long IT value chains, where multiple 
actors have to work in sync in order to manage system complexity, while 
delivering an agreed QoE to the final user. In this context, the availability 
and quality of in-house IT “know- how” and “know-why” is almost as 
important as the “know-who” (Rennie 1999; Uden and He 2017). While 
the implications of IT investments on human capital and human resources 
available within the organisation are relatively simple to foresee, the strategic 
benefits of relational capital1 (the “know who”) or the resources required to 
improve it can be easily overlooked (Zardini et al. 2015).

The scale and complexity of data generated by smart end-points in the 
IoT is so complex, it is no longer realistic for IT teams to cost-effectively 
foresee and manage manually the infrastructure underlying the IoT or the 
data generated by the IoT on a detailed level due to high levels of dyna-
mism and dependencies across the cloud-to-thing continuum (Domaschka 
et al. 2020). It is therefore necessary for enterprises to invest in organisation- 
wide analytics capability to realise value from the data generated by smart 
devices (Gupta and George 2016; Wamba et al. 2017) but also to manage 
the infrastructure and service chain underlying the IoT. As such, data ana-
lytics skills and resources are on the must-have list for enterprises that want 
to leverage IoT. However, given the high demand and scarcity of such 
resources, it is unsurprising that organisations are increasingly investing in 
algorithmic intelligence, one such example being AI/Ops—machine 
learning and artificial intelligence for IT operations (AI/Ops). It has also 
become evident that organisations must adopt a perspective that goes 
beyond the technical side when considering the effects and deployment of 
analytics (Mikalef et al. 2018). Skills and resources availability though is 
not enough to extract value from IoT. Enterprises have to find their way 
to combine all skills and resources in order to create unique capabilities 
which are aligned with the strategic objectives and allow them to adapt to 
the ever-changing competing landscape (Côrte-Real et  al. 2019). 
Implementing a strategic approach to IoT and data investments and 
creating routines for faster development and deployment may represent 
key enablers of faster innovation and higher value creation.

1 Relational capital can be defined as “all relationships—market relationships, power rela-
tionships and cooperation—established between firms, institutions and people, which stem 
from a strong sense of belonging and a highly developed capacity of cooperation typical of 
culturally similar people and institutions” (Capello and Faggian 2005, p. 75).
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8.3.3  Value Generation and Monetisation

Irrespective of whether an enterprise adopts IoT for serving internal or 
external customers, the investment is justified only if the value generated 
exceeds the investment required. For a comprehensive investment evalua-
tion of IoT though, the concept of value needs to be expanded to include 
the total value generated for all stakeholders (e.g. investors, employees, 
customers and suppliers) (Wolf et  al. 2019). According to Haller et  al. 
(2009), there are two main sources where enterprises can generate busi-
ness value from the IoT: real world visibility and business process decom-
position. Real word visibility is related to the fact that IoT bridges the gap 
between the physical and the digital words. In so doing, IoT provides 
enterprises with real-time insights in to what is happening in the real world 
thus enabling more effective optimisation, and better decision making. 
Business process decomposition relates to the fact the distributed nature 
of the IoT infrastructure enables more decentralised business processes 
therefore increased scalability, performance, and innovation.

Unfortunately, creating value is not enough. In an enterprise context, 
value is only relevant when captured and somehow monetised (Osterwalder 
et al. 2005; Zott et al. 2011), either directly (tangible benefits) or indi-
rectly (intangible benefits). Hui (2014) provides a comparison between 
the main drivers of value creation and value capture of traditional and IoT 
products (Table 8.1).

Table 8.1 Mindset for the IoT industry. (Adapted from Hui 2014)

Value creation Traditional product mindset IoT mindset

Customer needs Solve for existing needs and 
lifestyle in a reactive manner

Address real-time and emergent needs 
in a predictive manner

Offering Standalone product that 
becomes obsolete over time

Product refreshes through over-the-air 
updates and has synergy value

Role of data Single point data is used for 
future product requirements

Information convergence creates the 
experience for current products and 
enables services

Value capture
Path to profit Sell the next product or device Enable recurring revenue and increase 

efficiency
Control points Potentially includes commodity 

advantages, IP ownership, and 
brand

Adds personalisation and context; 
network effects between products

Capability 
development

Leverage core competencies, 
existing resources and processes

Understand how other ecosystem 
partners make money
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With regard to value creation, data and information availability and 
faster time-to-market clearly play a central role. Valuable IoT solutions 
combine and integrate “thing”-based functions with IT-based functions 
(Fleisch et al. 2017) and separate the information flow generated by the 
device from its physical attributes (Wolf et al. 2019). As such, informa-
tion (data) generates value in itself as it enables data-driven service inno-
vation, real-time interactions with customers and to better predict 
future or emerging customer needs (Bohli et  al. 2009; Bucherer and 
Uckelmann 2011; Holler et  al. 2015). The IT-based function of IoT 
products is arguably the one that adds most value and the fact that each 
device is connected to the network, and to each other, allows providers 
to implement updates and introduce additional features “over the air”. 
This dramatically reduce the time-to-market of innovation and it is par-
ticularly important for physical products with a longer lifecycle than 
software. A typical example comes from the automotive industry where 
Tesla Motors introduced the Autopilot function in to tens of thousands 
of cars already sold overnight through a software update (Kessler and 
Buck 2017).

IoT solutions also enable the creation of digital platforms where mul-
tiple actors can benefit from the unprecedented amount of information 
generated by connected devices. The value of information is non- 
exhaustive. On the contrary, it increases with use (Bohli et al. 2009). The 
amount of information available in the IoT world makes it the perfect 
environment for the nurturing inter-organisational collaborations and 
innovation, and for leveraging network effects which would ultimately 
benefit all stakeholders (Mejtoft 2011). IoT also allows enterprises to shift 
from unit-based revenue streams to value-based pricing which are more 
flexible and based on the value of service and information provided to the 
final user (Kindström 2010). However, this implies that the service pro-
vider is able to measure the value parameter associated with specific ser-
vices and provide customers with transparent and clear value proposition 
(Kindström 2010).

Finally, IoT investments should ultimately provide the enterprise with 
the basis for creating a competitive advantage. This is easier said than 
done; in the IoT world, success lays on the edge between open innovation 
and collaboration, and internal knowledge management (Santoro et  al. 
2018). This is even more challenging when the competitive and 
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technological landscape is in a constant state of change. Teece et al. (1997, 
p. 5) suggest that organisations should develop their dynamic capabilities 
“to integrate, build, and reconfigure internal and external competences to 
address rapidly changing environments”. However, potential configura-
tions are contingent upon the specific environment in which an organisa-
tion operates (Pavlou and El Sawy 2010). This implies that managers 
should develop and evaluate their own strategic approach to IoT as the 
impacts of technology investments permeate the entire business model 
and go well beyond the technical components.

8.3.4  Bring It All Together: A Value Mapping Framework 
for the Internet of Things

Figure 8.2 provides a graphical overview of our value mapping framework 
for the Internet of Things adapted an extended from Mikalef et al. (2019) 
for IoT. This framework is specifically designed to support managers when 
assessing the value of complex IoT investments.
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Fig. 8.2 Value mapping framework for the Internet of Things. (Adapted and 
extended from Mikalef et al. 2019)
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8.4  towArds A reseArch AgendA on the BusIness 
VAlue of Iot

The value mapping framework presented in Fig. 8.2. Table 8.1 can also be 
used as a point of reference for developing a research agenda on different 
aspects of the business value of IoT. As IoT is situated at the intersection 
of a number of technologies, this research agenda may present avenues for 
future research across a number of disciplines such as information systems, 
computer science, and management.

IoT is a key enabler of Big Data analytics as sensors allow enterprises to 
collect constant streams of data of various types to obtain real-time insights 
into the real world. While data is mostly perceived as a valuable asset. 
However, storing massive volumes of data may have significant implica-
tions from a business and IT perspective; data is only valuable as long as it 
generates business outcomes (Sivarajah et al. 2017). This last step is not 
always straightforward and in fact organisations tends to adopt more of a 
deductive than an inductive approach to analytics projects (Constantiou 
and Kallinikos 2015). It can be hard sometimes to understand what kind 
of insights can be extracted from a specific type of data ex-ante. In the 
context of IoT, sensors need be embedded in to physical products/devices 
and the temptation to include different kind of sensors can be high as it 
may be the difficult to add them post-sale/installation. These sensors may 
generate streams of data that may remain unused and have regulatory and 
cost implications. In contrast, if a sensor that is able to capture valuable 
data is missing from the device, this may generate significant loss in reve-
nues and/or costs post-sale for updates or replacements. Future research 
may clarify what are the benefits and challenges associated with inductive 
or deductive approaches toward analytics and potentially develop guide-
lines for IoT data monetisation.

From an infrastructure perspective, IoT introduces significant complex-
ity mostly due to the fact that it requires a number of actors (e.g., cloud 
providers, cloud carriers, cloud brokers, edge device producers, etc.) to 
work together towards the same goal, that is, a seamless user experience. 
Some of the technological investments made by one actor may impact 
positively or negatively the others involved in the IoT value chain and 
therefore generate unexpected outcomes. A comprehensive evaluation of 
potential investments and dependencies in the wider IoT infrastructure 
needs to be carefully evaluated in the context of a longer service chain, and 
consequently wider value chain, rather than at an organisational level. 
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Future research may investigate expected or unexpected value transfer 
with the IoT supply chain as a consequence of IT investments therefore 
providing useful insights with regard to supply chain value creation.

Human and relational capital represent the “softer” side of the IoT 
resource portfolio. Sousa and Rocha (2019) identify three main groups of 
skills that organisations need to have in order to create digital businesses, 
that is, innovation skills, leadership skills and management skills. While the 
need for further skills development in IT-oriented contexts is widely rec-
ognised, there is still a need for clear guidelines on how to develop such 
skills and how to update them over time in order to meet the ever- changing 
market requirements (Sousa and Rocha 2019). Relational capital consists 
of relations that the company creates with different stakeholders. This is 
particularly important in the context of IoT which is mostly characterised 
by high competition, a complex value chain and low switching costs. 
Future research may investigate how relational capital is built in this con-
text and hot it translates in business outcomes.

Resource orchestration is a key element for extracting value for IoT 
solutions. Collecting appropriate resources is not enough to be successful 
in the IoT world. Enterprises need to develop organisation-wide capabili-
ties for leveraging IoT resources (Gupta and George 2016; Mikalef et al. 
2019) but how this can be achieved is still unclear. Future research may 
provide organisations with a framework for developing such capabilities 
over time and map out potential enablers and constraining forces.

Once value it has been created, enterprises should be able to capture 
and somehow measure it. Value capturing can be mostly related to suitable 
business models for IoT. While previous studies have looked at the high- 
level impact of IoT on business models (Hui 2014; Dijkman et al. 2015; 
Fleisch et al. 2015; Metallo et al. 2018), future research may delve into 
each of the key elements of business models and explore different options 
available to enterprises to monetise their IoT solutions. Finally, enterprises 
should be able to measure the value generated by IoT investments. 
Enterprises are profit-driven organisations where value is typically mea-
sured in monetary terms. Over time, a number of methodologies to esti-
mate the financial value generated by IT investments have been developed 
(see Table 8.2).

The length, complexity and opacity of the chain of service provision in 
the IoT may make the quantitative measurement of IoT business value 
extremely difficult, not least establishing causal relationships. Measuring 
the business value of technology investments can be considered both a 
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science and an art (Tallon et al. 2020). In fact, the use of technology in 
enterprises today is so widespread and pervasive that the impacts of IT 
investments typically go beyond tangible operational benefits and costs to 
include organisational and business impacts (e.g., increased agility, faster 
innovation, better employees or customer experience) that are intangible 
in nature and therefore hard to quantify (Tallon and Kraemer 2007; Tallon 
et al. 2020; Rosati and Lynn 2020). This is unlikely to change for IoT 
and, indeed, may be exacerbated. The increasing adoption of IT “as-a- 
Service” makes it easier to forecast, monitor and quantify operational costs 
(Rosati et  al. 2017). This leaves managers with more time to evaluate 
potential intangible impacts of the investment. Unfortunately, there is no 

Table 8.2 Selected financial metrics for measuring the business value of IT 
investments

Metric Description

Cost-benefit 
analysis 
(CBA)

CBA compares costs to benefits and therefore represents a measure of 
efficiency.

Economic 
value added 
(EVA)

EVA measures the value generated by an investment net of all costs 
including the cost of the capital invested. When evaluating different 
investment opportunities with similar expected returns, managers should 
opt for the one that generates the highest EVA.

Internal rate 
of return 
(IRR)

IRR represents the discount rate that would return a value of zero for 
NPV. Financially valuable investments have an IRR that is equal or higher 
than the desired or minimum rate of return.

Net present 
value (NPV)

NPV is a measure of the present value of the future cash flows generated 
by an investment, net of the initial capital outlay and discounted by a rate 
that reflects the time value of money and the risk of the investment.

Payback 
period

Payback period measures the time needed for a project to repay the initial 
investment. Investments with a shorter payback period may be more 
attractive however this metric does not provide any indication about the 
value generated after the payback period and therefore investment 
decisions should not be based on this metric alone.

Return on 
investment 
(ROI)

ROI is an accounting ratio that compares the net benefit generated by an 
investment to the overall investment required. As such, it allows to 
directly compare investments of different scale.

Total cost of 
ownership 
(TCO)

This metric captures the overall cost of single components of an IT 
system such as hardware, software, maintenance etc. TCO is relatively 
simple to calculate but it does not capture the benefits the system 
generates to the organisation and therefore it only provides an 
incomplete picture of the overall investment.
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one-size-fits-all methodology for doing this. Tallon (2014) proposes a dis-
tributed sensemaking model where managers, in the absence of objective 
data, rely on the views of multiple internal stakeholders to notice, weigh, 
and filter informational cues from various sources in order to reach a rea-
soned, balanced judgment of the intangible value delivered by the IT 
investment. Future research may map out tangible and intangible costs 
and benefits generated by different types of IT investments for different 
actors along the IoT value chain, and provide guidelines to measuring the 
business value of IoT.

8.5  conclusIon

In this chapter, we presented a business value mapping framework for the 
Internet of Things with purpose of identifying the main actors, cost and 
value drivers associated with IoT. The scale, interconnectivity and com-
plexity of the Internet of Things makes conceptualising and measuring 
business value extremely challenging. Despite this, given the opportunity 
and risks, it is essential. Building on Mikalef et al. (2019), we provide a 
preliminary framework for mapping business value in the IoT that can be 
used by enterprises to identify areas for strategic investment and consider-
ation in this exciting new space.
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