
PALGRAVE STUDIES IN DIGITAL BUSINESS 
AND ENABLING TECHNOLOGIES
SERIES EDITORS: THEO LYNN · JOHN G. MOONEY

Managing Distributed 
Cloud Applications 
and Infrastructure
A Self-Optimising Approach

Edited by
Theo Lynn · John G. Mooney 
Jörg Domaschka · Keith A. Ellis



Palgrave Studies in Digital Business & Enabling 
Technologies

Series Editors
Theo Lynn

Irish Institute of Digital Business
DCU Business School

Dublin, Ireland

John G. Mooney
Graziadio Business School

Pepperdine University
Malibu, CA, USA



This multi-disciplinary series will provide a comprehensive and coherent 
account of cloud computing, social media, mobile, big data, and other 
enabling technologies that are transforming how society operates and how 
people interact with each other. Each publication in the series will focus on 
a discrete but critical topic within business and computer science, covering 
existing research alongside cutting edge ideas. Volumes will be written by 
field experts on topics such as cloud migration, measuring the business 
value of the cloud, trust and data protection, fintech, and the Internet of 
Things. Each book has global reach and is relevant to faculty, researchers 
and students in digital business and computer science with an interest in 
the decisions and enabling technologies shaping society.

More information about this series at  
http://www.palgrave.com/gp/series/16004

http://www.palgrave.com/gp/series/16004


Theo Lynn • John G. Mooney 
Jörg Domaschka • Keith A. Ellis

Editors

Managing Distributed 
Cloud Applications 
and Infrastructure

A Self-Optimising Approach



ISSN 2662-1282     ISSN 2662-1290 (electronic)
Palgrave Studies in Digital Business & Enabling Technologies
ISBN 978-3-030-39862-0    ISBN 978-3-030-39863-7 (eBook)
https://doi.org/10.1007/978-3-030-39863-7

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access 
publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative 
Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the book’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information 
in this book are believed to be true and accurate at the date of publication. Neither the 
 publisher nor the authors or the editors give a warranty, expressed or implied, with respect to 
the material contained herein or for any errors or omissions that may have been made. The 
publisher remains neutral with regard to jurisdictional claims in published maps and 
 institutional affiliations.

This Palgrave Macmillan imprint is published by the registered company Springer Nature 
Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Theo Lynn
Irish Institute of Digital Business
DCU Business School
Dublin, Ireland

Jörg Domaschka
Institute of Information Resource 
Management  
Ulm University  
Ulm, Germany

John G. Mooney
Graziadio Business School
Pepperdine University
Malibu, CA, USA

Keith A. Ellis
Intel Labs Europe
Dublin, Ireland

https://doi.org/10.1007/978-3-030-39863-7
http://creativecommons.org/licenses/by/4.0/


v

This is the third book in the series, “Palgrave Studies in Digital Business 
& Enabling Technologies”, which aims to contribute to multi-disciplinary 
research on digital business and enabling technologies, such as cloud com-
puting, social media, Big Data analytics, mobile technologies, and the 
Internet of Things, in Europe.

Previous volumes sought to consider and extend conventional thinking 
on disrupting finance and on cloud computing architectures to greater 
support heterogeneity, and specifically high-performance computing 
workloads. This third volume focuses more specifically on distributed 
compute environments that encompass resources, services, and applica-
tions from the cloud to the edge. The emergence of the Internet of Things 
(IoT) combined with greater heterogeneity, not only online in cloud com-
puting architectures but across the cloud-to-edge continuum, is introduc-
ing new challenges for managing applications and infrastructure across 
this continuum. The scale and complexity are simply so complex that it is 
no longer realistic for IT teams to manually foresee the potential issues 
and manage the dynamism and dependencies across an increasing interde-
pendent chain of service provision. This book explores these challenges 
and offers a solution for the intelligent and reliable management of physi-
cal infrastructure and the optimal placement of applications for the provi-
sion of services.

The content of the book is based on contributions from researchers on 
the RECAP project, a European Union project funded under Horizon 
2020 (recap-project.eu). RECAP commenced in 2017 and brought 
together ten project partners from six countries across Europe to create a 

Preface

https://recap-project.eu/
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new way to optimally provision distributed heterogeneous resources to 
deliver services. The RECAP goal was to investigate and demonstrate an 
intelligent means to optimally place and scale dynamic applications and to 
manage the physical resources that underpin such applications, while tar-
geting lower costs and better quality of service (QoS). RECAP is a model- 
based methodology, encompassing a reference architecture, models, and 
proof-of-concept implementations. This book is an output of this joint 
research.

The book is organised around key research contributions from RECAP.
Chapter 1 introduces the context driving the need for more reliable 

capacity provisioning of applications and infrastructure in distributed 
clouds. While IoT offers the potential of tremendous value for the private 
sector, public sector, and society as whole, it introduces complexity of 
several orders of magnitude greater in an already complex feature space. 
Chapter 1 introduces RECAP, an architectural innovation to support reli-
able capacity provisioning for distributed clouds. It presents a high-level 
conceptual overview of RECAP and some of the major design concepts 
informing its design, namely separation of concerns, model-centricism, 
modular design, and support for the use of machine learning and artificial 
intelligence for IT operations. The remainder of this book is loosely organ-
ised around the four functional building blocks of RECAP followed by a 
series of case studies to illustrate how RECAP can be implemented 
modularly.

Chapter 2 defines and discusses RECAP’s Data Analytics and Machine 
Learning subsystem. This chapter describes the infrastructure for the 
acquisition and processing of data from applications and systems, and 
explains the methodology used to derive statistical and machine learning 
models from this data. These models are central to the operation of 
RECAP and are an input to all other subsystems, informing run-time 
planning, decision making, and optimisation support at both the infra-
structure and the application levels.

Chapter 3 introduces RECAP’s Application Optimisation subsystem. 
Optimising distributed cloud applications is a complex problem that 
requires understanding a myriad of factors. This chapter outlines the 
RECAP approach to application optimisation and presents its framework 
for joint modelling of applications, workloads, and the propagation of 
these workloads in applications and networks.

Chapter 4 introduces the RECAP Infrastructure Optimiser tasked with 
optimal application placement and infrastructure optimisation. This 
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chapter details the methodology, models, and algorithmic approach taken 
to augment RECAP Application Optimiser output in producing a more 
holistic optimisation, cognisant of both application and infrastructure pro-
vider interests.

Chapter 5 focuses on Simulation and Planning in RECAP. The size and 
complexity of modern infrastructures make a real-time testing and experi-
mentation difficult, time-consuming, and costly. The RECAP Simulation 
Framework offers cloud and communication service providers an alterna-
tive solution while retaining accuracy and verisimilitude. It comprises two 
simulation approaches, Discrete Event Simulation (DES) and Discrete 
Time Simulation (DTS), that provide enterprises with information about 
optimal virtual cache placements, resource handling and remediation of 
the system, optimal request servicing, and finally, optimal distribution of 
requests and resource adjustment. This information can inform better 
infrastructure capacity planning while taking in to account performance 
requirements and constraints such as cost and energy consumption.

Chapter 6 presents four case studies each illustrating an implementa-
tion of one or more RECAP subsystems. The first case study presents a 
case study on infrastructure optimisation for a 5G network use case. The 
second case study explores application optimisation for virtual content dis-
tribution networks on a large Tier 1 network operator. The third case 
study looks at how RECAP components can be embedded in an IoT plat-
form to reduce costs and increase quality of service. The final case study 
presents how data analytics and simulation components, within RECAP, 
can be used by a small-to-medium-sized enterprise (SME) for cloud capac-
ity planning.

Dublin, Ireland Theo Lynn
Malibu, CA, USA  John G. Mooney
Ulm, Germany  Jörg Domaschka
Dublin, Ireland  Keith A. Ellis
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Abstract The complexity of computing along the cloud-to-edge contin-
uum presents significant challenges to ICT operations and in particular 
reliable capacity planning and resource provisioning to meet unpredict-
able, fluctuating, and mobile demand. This chapter presents a high-level 
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conceptual overview of RECAP—an architectural innovation to support 
reliable capacity provisioning for distributed clouds—and its operational 
modes and functional building blocks. In addition, the major design con-
cepts informing its design—namely separation of concerns, model- 
centricism, modular design, and machine learning and artificial intelligence 
for IT operations—are also discussed.
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1.1  IntroductIon

The objective of this book is to introduce readers to RECAP, an architec-
tural innovation in cloud, fog, and edge computing based on the concepts 
of separation of concerns, model-centricism, modular design, and machine 
learning and artificial intelligence (AI) for IT operations to support reli-
able capacity provisioning for distributed clouds. The remainder of this 
chapter provides a brief overview of computing across the cloud-to-edge 
(C2E) continuum and the challenges of distributing and managing appli-
cations across geo-distributed infrastructure. This chapter also introduces 
some of the major design concepts informing the RECAP architectural 
design and provides an overview of the RECAP architecture and 
components.
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1.2  From the cloud to the edge and Back agaIn

The convergence and increasing ubiquity of wireless internet access, cloud 
computing, Big Data analytics, social and mobile technologies presage the 
possibilities of billions of people and things connected through mobile 
devices and smart objects in the cloud. This phenomenon is heralded as 
the coming of the fourth industrial revolution, the networked society, the 
Internet of Things (IoT), indeed the Internet of Everything. Connecting 
but a fraction of the 1.4 trillion “things” worldwide today is predicted to 
create US$14.4 trillion and US$4.6 trillion in private and public sector 
value, respectively, through accelerated innovation and improved asset 
utilisation, employee productivity, supply chain, logistics, and customer 
experience (Cisco 2013a, b).

Today, while we are moving towards a society whose social structures 
and activities, to a greater or lesser extent, are organised around digital 
information networks that connect people, processes, things, data, and 
social networks, the reality is still some distance away (Lynn et al. 2018). 
The dawn, if not the day, of the Internet of Things is here. Haller et al. 
(2009) define IoT as:

A world where physical objects are seamlessly integrated into the informa-
tion network, and where the physical objects can become active participants 
in business processes. Services are available to interact with these “smart 
objects” over the Internet, query their state and any information associated 
with them, taking into account security and privacy issues. (Haller et  al. 
2009, p. 15)

This definition largely assumes that smart objects (end-devices), rang-
ing from the simple to the complex in terms of compute, storage, and 
networking capabilities, will interact with each other and the cloud to 
provide and consume services and data, but not necessarily at all times. 
Furthermore, these smart end-devices, e.g. smart phones or transport sen-
sors, may move to different geographic areas where, for economic, geo-
graphic, or technological reasons, they cannot always be connected, yet 
will be expected to carry on functioning regardless. IoT embodies many of 
the drivers that see an increased move from cloud-centric deployments to 
distributed application deployments in the cloud or on the edge 
infrastructure.
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Within the traditional cloud computing paradigm, processing and stor-
age typically take place within the boundaries of a cloud and its underlying 
infrastructure, and are often optimised for specific types of applications 
and workloads with predictable patterns. Neither the cloud nor the net-
works connecting these objects to the cloud were designed to cater for the 
flood of geographically dispersed, heterogeneous end points in the IoT 
and the volume, variety, and velocity of data that they generate.

Fog computing and edge computing are two relatively new paradigms 
of computing that have been proposed to address these challenges. Fog 
computing is a horizontal, physical, or virtual resource paradigm that 
resides between smart end-devices and traditional cloud data centres. It is 
designed to support vertically isolated, latency-sensitive applications by 
providing ubiquitous, scalable, layered, federated, and distributed com-
puting, storage, and network connectivity (Iorga et al. 2018). In contrast, 
edge computing is local computing at the edge of the network layer 
encompassing the smart end-devices and their users (Iorga et al. 2018). If 
one imagines a cloud-to-edge (C2E) continuum, data processing and 
storage may be local to an end-device at the edge of a network, located in 
the cloud, or somewhere in between, in “the fog”.

As discussed, while fog computing and edge computing offer solutions 
for delivering IoT to industry and the masses, they introduce new and 
significant challenges to cloud service providers, network operators and 
enterprises using this infrastructure. These environments face a high 
degree of dynamism as an immediate consequence of user behaviour. 
Overall, this setting creates a set of challenges regarding how to distribute 
and run applications in such unpredictable geo-distributed environments. 
Similar demands are seen at the network edge given the growth of rela-
tively nascent services, e.g. Content Delivery Networks. Spreading infra-
structure out over large geographic areas increases the complexity and cost 
of planning, managing, and operating that physical infrastructure. Firstly, 
it raises the question of how much infrastructure of what type to place 
where in the network—a decision that must be made in advance of any 
service being offered. Secondly, applications deployed over large geo-
graphically distributed areas require a detailed understanding of the tech-
nical requirements of each application and the impact on the application 
when communication between an application’s components suffers due to 
increased latency and/or reduced bandwidth. Thirdly, for a service pro-
vider along the C2E continuum, the question arises about which (parts) 
of the various applications in a multi-tenant setting should be operated at 
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the edge and which should not be. This is of critical importance due to the 
potentially limited compute resources available at each edge location. To 
add to the complexity, some of these questions must be answered in 
advance with incomplete data on user demand while others require near 
real-time decision making to meet unpredictable and fluctuating user 
demands.

Incorrect placement decisions may result in inflexible, unreliable, 
expensive networks and services. This is more likely as the decision space 
becomes so complex; it is no longer realistic for IT teams to cost- effectively 
foresee and manually manage all possible configurations, component 
interactions, and end-user operations on a detailed level. As such, mecha-
nisms are needed for the automated and intelligent placement and scaling 
of dynamic applications and for the management of the physical resources 
that underpin such applications. RECAP—an architectural innovation in 
cloud and edge computing to support reliable capacity provisioning for 
distributed clouds—is posited as such a mechanism.

1.3  desIgn PrIncIPles

This section outlines some of the major design concepts informing the 
RECAP architectural design, namely separation of concerns, model- 
centricism, modular design, and machine learning and AI for IT operations.

1.3.1  Separation of Concerns

Separation of concerns is a concept that implements a “what-how” 
approach to cloud architectures separating application lifecycle manage-
ment and resource management where the end user or enterprise cus-
tomer focuses its efforts on what needs to be done and the cloud service 
provider or cloud carrier focuses on how it should be done (Lynn 2018). 
At its core, the end user or enterprise customer focuses on specifying the 
business functionality, constraints, quality of service (QoS), and quality of 
experience (QoE) (together KPIs) they require, with minimal interference 
with the underlying infrastructure (Papazoglou 2012). To support a sepa-
ration of concerns, a detailed understanding of the KPIs but also the rela-
tionship between the performance of the applications and underlying 
infrastructure, and the achievement of these APIs is required.

In multi-tenant environments, for example clouds and networks, the 
separation of concerns is complicated because the actors will, most likely, 
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belong to different organisations (including competitors), have very dif-
ferent KPIs, different load patterns, different network topologies, and 
more critically, different priorities. Any architecture for reliable capacity 
provisioning, whether from an application or infrastructure perspective, 
across the C2E continuum must have mechanisms to support separation 
of concerns in an agile way.

1.3.2  Model-Centricism

Due to the complexity, heterogeneity, and dynamic nature of (i) the busi-
ness domains in which enterprises, cloud service providers, and cloud car-
riers operate; (ii) the application landscape (including legacy and next 
generation applications); and (iii) the infrastructure in and upon which 
these applications operate and are consumed, a flexible software architec-
ture is required that can evolve in line with business, application, and infra-
structure requirements. Model-centricism is a design principle that uses 
machine-readable, highly abstract models developed independently of the 
implementation technology and stored in standardised repositories 
(Kleppe et al. 2003). This provides a separation of concerns by design, and 
thus supporting greater flexibility when architecting and evolving 
enterprise- scale and hyperscale systems. Brown (2004, pp. 319–320) enu-
merates the advantages of using models including:

• Models help people understand and communicate complex ideas.
• Many different kinds of elements can be modelled depending on the 

context offering different views of the world.
• There is commonality at all levels of these models in both the prob-

lems being analysed, and in the proposed solutions.
• Applying the ideas of different kinds of models and transforming 

them between representations provide a well-defined style of devel-
opment, enabling the identification and reuse of common approaches.

• Existing model-driven and model-centric conceptual frameworks 
exist to express models, model relationships, and model-to-model 
transformations.

• Tools and technologies can help to realise this approach, and make it 
practical and efficient to apply.

To meet the needs of infrastructure providers as well as application 
operators, an understanding is needed on how the impact of load and load 
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changes on the application layer influences the application’s resource 
demands at the infrastructure layer and further, how competing resource 
demands from multiple applications, and indeed multiple application pro-
viders, impact the infrastructure layer.

From a high-level perspective, users impose a certain load on the appli-
cations; that load will change over time. At the same time, users have 
performance requirements for a given application. For instance, a lack of 
responsiveness from a website may make them switch while otherwise they 
would have stayed. The operators of that application want to ensure that 
some level of performance is guaranteed in order to keep their customers. 
Hence, it is their task to adapt the performance of the application to the 
amount of workload imposed by the users. How and whether this can be 
done depends on the architecture and implementation of the application. 
For distributed applications (that constitute a huge portion of today’s 
applications), horizontal scaling increases the computational capacity. 
This, in turn, reduces queuing and keeps latency constant despite increas-
ing workload. Moreover, for applications composed of multiple different 
components, it is important to understand how load imposed at the 
customer- facing components ripples through the application graph and 
impacts the loads on each and every component. Finally, to understand 
how much performance a component running on a dedicated hardware 
unit (e.g. processor type, RAM type, and disk type) can deliver under a 
specific configuration (e.g. available RAM and available cores), a mapping 
needs to be available that translates load metrics on the application level 
such as arrival rate of requests of a specific type to load metrics on hard-
ware such as CPU used, RAM used, disk usage, as well as the performance 
achieved from it. In multi-tenant environments such as virtualised cloud 
and cloud/edge systems, the mutual impact of multiple, concurrently 
running components from different owners on the same physical hard-
ware is critical.

A model-centric approach for capacity provisioning for distributed 
clouds requires at least six models—(1) user models, (2) workload models, 
(3) application models, (4) infrastructure models, (5) load translation 
models, and (6) Quality-of-Service (QoS) models (Fig. 1.1).

User models describe the behaviour of users with respect to the usage 
of individual network-based services. That is, they capture different types 
of users and their usage patterns over time. What is more, they also describe 
their movement over geographical regions such that it becomes possible 
to understand which edge parts of the network will have dedicated 
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demands for specific services. This is of special interest to edge computing 
systems as user mobility impacts network load and application access 
patterns.

Workload models describe the workload issued on a system from users 
and external systems. While the user model captures the location and type 
of users, the workload model describes what actions these users execute 
and how this translates into interaction with which parts of an application.

Application models fulfil multiple purposes. First and foremost, they 
describe which components compose a distributed application and how 
these components are linked with each other (static application topology). 
This part of the application model also captures how to technically install 
the application in the infrastructure and how to update a running deploy-
ment. Deploying an application creates a run-time application topology 
that describes how many instances of each application component are cur-
rently available at which location and how they communicate with each 
other on a per-instance basis. The (work)load transition models as a 
sub-model of the application model describe for the application how 
incoming workload propagates through the applications’ components and 
the impact this has on the outgoing links of the component.

As application models are not capable of determining whether or not a 
given application topology (or scaling factor) is capable of servicing a cer-
tain amount of load, as they neither have an understanding of the available 
hardware and its capabilities nor about how the application load translates 
on load on the physical layers.

Fig. 1.1 Interdependencies between models
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Infrastructure models capture the layout of the physical and virtual 
infrastructure and represent key components such as compute, storage, 
and network capabilities, as well as their grouping in racks, data centres, 
and similar. Furthermore, they describe capabilities of the hardware 
including hardware architecture, virtualisation platform (e.g. type of 
hypervisor), and virtual machines (containers) running on the host.

Load translation models enhance the infrastructure models and pro-
vide a mapping from workload on application components to resource 
demands on the physical infrastructure. They are crucial for understanding 
whether enough physical resources are available to handle workload on 
application level. In addition, they describe the impact of congestion 
caused by components with similar hardware demands concurrently run-
ning on the same hardware.

Finally, Quality-of-Service (QoS) models provide a means to express 
QoS demands towards an application and monitor the fulfilment of these 
QoS requirements. In addition, they are able to represent the interdepen-
dencies between QoS aspects on different levels, e.g. what QoS require-
ments at the infrastructure level follow from QoS requirements on the 
application level. QoS models may be taken as constraints for the optimi-
sation problems solved for rearranging application and infrastructures.

1.3.3  Modular Design

A modular architecture is an architecture where at least some components 
are optional and there exists the ability to add or remove modules or com-
ponents according to the needs of a given use case (Aissaouii et al. 2013). 
The benefits of modular design are well known, not least it supports sepa-
ration of concerns and provides greater implementation flexibility thus 
reducing costs and risk. A discrete module or component can be imple-
mented without having to implement the entire system. Enterprises, cloud 
service providers, and cloud carriers (to a lesser extent) come in all sizes 
and with their own constraints. A modular design provides these firms 
with greater choice and flexibility.

1.3.4  Machine Learning and AI for IT Operations

As discussed above, the complexity and scale of distributed cloud infra-
structure increasingly require an automated approach. As the deluge of 
data generated by IoT continues to increase, and as demands from new 
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use cases increasingly require edge deployments, e.g. vCDN, the ability of 
cloud service providers and cloud carriers to respond quickly to demands 
on infrastructure, service incidents, and improve on key metrics decreases 
(Masood and Hashmi 2019). Increasingly, enterprises are looking to AI 
for IT Operations (or AIOps).

AI for IT Operations (AIOps) seeks to use algorithms and machine 
learning to dramatically improve the monitoring, operation, and mainte-
nance of distributed systems (Cardoso 2019). Although at a nascent stage 
of development, AIOps has the potential of ensuring QoS and customer 
satisfaction, boosting engineering productivity, and reducing operational 
costs (Prasad and Rich 2018; Dang et al. 2019). This is achieved by:

 1. automating and enhancing routine IT operations so that expensive 
and scarce IT staff have more time to focus on high value tasks,

 2. predicting and recognising anomalies, serious issues, and outages 
more quickly and with greater accuracy than humanly possible 
thereby reducing mean time to detect (MTTD) and increasing mean 
time to failure (MTTF), and

 3. suggesting intelligent remediation that reduces mean time to repair 
(MTTR) (IBM 2019; Masood and Hashmi 2019).

Predictions suggest that by 2024, 60% of enterprises will have adopted 
AIOps suggesting that novel solutions to capacity provisioning must 
accommodate this shift in enterprise IT operations (Gillen et al. 2018).

1.4  oPeratIonal modes

A model-centric approach assumes cloud-edge applications, and the envi-
ronments that they run in, can be described by a set of models and that, 
based on these models, it is possible to optimise both cloud-edge infra-
structures and their applications at run-time. As such, an optimisation 
(control) system and mechanism for creating, validating, and extrapolat-
ing these models to large-scale environments are required. This requires a 
variety of interoperating components, which we refer to here as modes.

Data Analytics Mode: The creation of high-quality models requires an 
in-depth understanding of many aspects ranging from users to application 
to infrastructure. For deriving this understanding, a sufficient amount of 
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data needs to be available that can either come from a live system or be 
derived from a simulation environment. The Data Analytics Mode pro-
vides the necessary tooling and guidelines to process those data and gener-
ate models from it. The analytics itself is a manual or semi-automated 
process that applies approaches from statistics and machine learning in 
order to create the models. It consists of pre-processing and data analysis 
(or model training respectively). When complete, there is a newly gener-
ated insight in the form of a mathematical formula, a statistical relation-
ship, some other model, or a trained neural network. These insights form 
the baseline of the models that are used by other modes and underlying 
components.

Run-time Operation Mode: The Run-time Operation Mode uses 
online optimisation to continuously update geo-distributed infrastructure 
based on the models and the current deployment scenario (deployed 
applications, available infrastructure, and user behaviour). Data on the 
actual usage of the hardware and software requirements are collected dur-
ing run-time. These data are used by optimisers in the system to weight 
the current placement and usage against other options and come up with 
new and better configurations. These are output in the form of an optimi-
sation plan that can then be enacted. This changes the configuration of the 
actual system. The decisions made in order to improve the system are 
based on mathematical, stochastic, or programmatic models of the system 
itself, e.g. the capabilities of the hardware, the needs of the application, 
current and predicted workload in the system, and the movement of users 
in the real world.

Simulation and Planning Mode: The Simulation and Planning Mode 
is capable of performing the same steps as the run-time in what-if scenar-
ios and, hence, evaluates the use and acquisition of new, updated, or re- 
allocated hardware. This mode supports scenario (what-if) analyses such 
as “what if I bought more or different hardware at existing sites”, “what if 
I added a new network site in the topology”, and “how much longer can 
the available hardware handle my workload, if it keeps growing as pre-
dicted”. Hence, simulation helps operators to take strategic decisions 
about their infrastructure. What is more, using simulation, different place-
ment scenarios are explored and weighed against each other to serve as 
calibration and constraints for optimisation algorithms.
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1.5  recaP concePtual reFerence model

Figure 1.2 presents an overview of the RECAP conceptual reference 
model which identifies the main components in RECAP and how they 
interoperate. The diagram depicts a generic high-level architecture and is 
intended to facilitate the understanding of how RECAP operates.

The diagram below outlines the components in the RECAP architec-
ture and shows the process flow loops in the optimisation framework. The 
Landscaper Component (1) acquires information on the state and con-
figuration of the physical and virtual infrastructure resources from dispa-
rate sources and presents same as a graph. The Monitoring Component 
(2) uses probes to collect telemetry metrics needed for the modelling and 
optimisation tasks, including CPU consumption, disk I/O, memory 
loads, network loads, and packet statistics—both from virtual and physical 
resources. These are input to the optimisers and the output is used to 
orchestrate and enact resource changes in the cloud network.

The Application Optimiser (3) is used to optimally autoscale the 
applications and resources. Application scaling refers to horizontal scaling, 
namely adding additional application components into the system dynam-
ically, while infrastructure scaling relates to vertical scaling, whereby vir-
tual resources are increased for a component. Applications can be scaled 
locally or globally and may be in response to run-time traffic limits or 

Fig. 1.2 RECAP conceptual reference model
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resource levels being reached or may be controlled by data analytic work-
load predictive systems. The application to be deployed is composed of 
multiple connected service components in the form of service function 
chains (SFC), which need to be placed together. In order to achieve better 
than a very sub-optimal application deployment onto a distributed virtual 
cloud infrastructure, it is necessary to introduce sufficient functional gran-
ularity into the application structure to allow separate components to be 
provisioned and scaled independently. Application optimisation is essen-
tially a mapping of a graph of application components and dependencies 
to the network of computing resources that delivers an optimal overall 
KPI target such as maximum latency or minimum throughput or maxi-
mum usage cost. The mapping is done subject to application-specific rules 
or constraints relating the individual resource requirements for compo-
nents (Minimum/Maximum instance constraints) and their mutual co- 
hosting needs (Affinity/Anti-Affinity constraints).

The outputs of the application optimiser are treated as requests or rec-
ommendations for application scaling and placement, to be subsequently 
evaluated by the Infrastructure Optimiser (4) which augments the ini-
tial placement decision by taking into account the additional knowledge of 
the available physical infrastructures, the infrastructure policies of the 
infrastructure provider and specific committed Service Level Agreement 
(SLA) targets. This allows the infrastructure optimiser to retain full con-
trol of the infrastructure resources and to ultimately decide what applica-
tion requests are enacted and how applications are orchestrated. The 
Infrastructure Optimiser (4) includes (1) Application Placement which 
optimally maps application components to virtual infrastructure resources 
to deliver an optimal overall target such as maximum power consumption, 
maximum operational cost, or specific committed Service Level Agreement 
(SLA) targets; (2) Infrastructure Optimisation to optimally utilise the 
physical infrastructure; and (3) Capacity Planning to perform what-if sce-
narios for additional physical infrastructure.

The Infrastructure Optimiser and Simulator use Infrastructure 
Models (landscapes) (6). These models/landscapes present the physical 
and virtual structure, configuration, and topology of the known resources. 
The telemetry utilisation and performance statistics and the application 
KPI information are also needed for the Infrastructure Optimiser. Together 
these inputs form a consolidated infrastructure model that has the appro-
priate granularity tailored for the given use case thus making optimisation 
practicably achievable.
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Application and Workload Models (7 and 9) describe the application 
components and their behaviours and dependencies and map the applica-
tion components with their virtual resource requirements. The Workload 
Models describe the traffic flows through the application components. 
Both models are used by the workload predictor and application optimiser 
to forecast workloads and application components and recommend how 
these components should be placed on the network topology based on 
optimising the overall application KPIs. The application models describe 
applications as graphs of components with interdependencies and con-
straints in the form of graph links. The workload models describe the 
relationships between control and data plane traffic, between end-to-end 
latency and traffic, and between traffic and resource usage. They have 
been built based on the data analysis of historical trace and synthetic work-
load data using statistical and machine learning techniques.

In the Application Optimiser (3), the traffic workloads are mapped to 
the application sub-components, and the propagation of workloads is 
modelled to account for the migratory capability of the components and 
the mobile nature of users. The Optimisers use Load Distribution 
Models (6) to account for this mobility of application components and 
the impact of component migration on application performance. They 
effectively model the traffic flows in the system and can predict the effect 
on workloads if application components are changed. They are based on 
the results of load balancing after a component migrates and on user mod-
els which drive component migration. These models are used by the opti-
misers to calculate the cost of component migration when selecting an 
optimisation option.

Load Translation Models (7) are used by the Infrastructure 
Optimiser (4) to map application configuration to physical infrastructure 
capacity. The optimiser correlates the virtual resources (VMs/Containers) 
to physical resources, and the physical resource utilisation with the appli-
cation component KPIs (throughput, response time, availability, speed of 
service creation, and speed of service remediation). The translation pro-
vides a mapping of actual (specific in time) telemetry metrics of physical 
resource consumption (utilisation metrics) to application components 
workloads (i.e. the utilisation of resources by the components that are 
running on those physical machines). Effectively, this maps the application 
placement with the performance of components so placed.

The User Models (9) are based on an agent-based modelling of users, 
e.g. citizens navigating through a city and utilising mobile services.
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It is possible to create models based on historical trace data and simu-
lated synthetic data. In this case, Simulators (5) are a valuable tool for 
generating the user mobile behaviour and demand for application services 
as well as the corresponding traffic from the related cloud services.

1.5.1  Optimisation Process Flows

Process A: The Application Optimiser (3) is fed with appropriate out-
put from the Landscaper Component (1) and Monitoring Component 
(2), which represents the current resource capacity and utilisation, as well 
as the Application Models, which represent the application workload and 
performance targets. The Application Optimiser’s (3) prediction engine 
produces a recommended deployment of components and outputs this to 
the Infrastructure Optimiser (4) for evaluation, and then to the 
Orchestrator (11) for orchestration. The Application Optimiser (3) 
can be subsequently triggered dynamically to handle variations in applica-
tion workloads and user behaviours so that placement and autoscaling can 
take place. In its most proactive mode, the optimiser can create virtual 
resources, placing and autoscaling based on machine-learning models that 
are run against workload and user metrics in real-time.

Process B: The Infrastructure Optimiser (4) uses the output of the 
Landscaper Component (1) and Monitoring Component (2), which 
represents the current resource capacity and utilisation, as well as the 
Workload and Infrastructure Models to optimise the utilisation of the 
physical hardware resources based on required Service Level targets and 
policies. The Infrastructure Optimiser (4) optimises the use of the phys-
ical resources taking energy, equipment, and operational costs into account 
as well as the plans and policies around physical resource utilisation. This 
is based on a logical model of the infrastructure, virtual and physical 
resources, and their utilisation mappings. The Infrastructure Optimiser 
(4) also needs to represent the mobile nature of workloads and the ability 
of application component migration to properly optimise the deployment. 
The Infrastructure Optimiser uses the Simulator (5) in a Human-in-the- 
Loop fashion, using the simulator to formulate deployment mapping 
selections and calibrating the optimiser’s algorithmic process. The 
Simulator (5) validates the results of the optimisation and provides 
“what-if” scenario planning.
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1.6  recaP BuIldIng Blocks

While the previous section presents RECAP as a loosely integrated con-
ceptual architecture, this section focuses on four high-level functional 
building blocks (subsystems) that encapsulate RECAP logic and provide 
the necessary functionality to realise the three operational modes discussed 
in Sect. 1.4. The respective building blocks are loosely coupled and are a 
frame for the RECAP architecture. The building blocks are themselves 
distributed so that the entire RECAP system represents a distributed 
architecture. The major functional building blocks (subsystems) are 
Infrastructure Modelling and Monitoring, Optimisation, Simulation and 
Planning, and Data Analytics and Machine Learning. Each of the blocks is 
discussed in-depth in the remaining chapters of the book.

1.6.1  Infrastructure Modelling and Monitoring

The old adage “garbage in, garbage out” particularly applies to making 
valued optimisation decisions. Thus, within RECAP’s Run-time Operation 
Mode, having an accurate understanding of the current state of applica-
tions and the underpinning infrastructure is of paramount importance. 
Furthermore, the long-term collection of accurate data is a key require-
ment for being able to apply meaningful data analytics and machine learn-
ing strategies (see Data Analytics Mode). Hereby the current state of 
application and infrastructure is represented by two complementary data 
sets, the infrastructure landscape and the infrastructure monitoring (telem-
etry) provided through the Landscaper Component and the Monitoring 
Component respectively. As discussed earlier, the Landscaper Component 
is tasked with providing physical and virtual infrastructure data as “a land-
scape” consisting of nodes and edges. In that landscape, nodes represent 
for instance physical servers, virtual machines, or application instances. In 
contrast, edges either represent mappings from applications to virtual 
resources and further to physical resources, or (network) connections 
between instances on the same abstraction layer. In short, the Landscaper 
Component identifies what type of infrastructure is available and where, 
while the Monitoring Component provides live data from that infrastruc-
ture. Both are essential for modelling and optimisation and are encom-
passed in a requisite distributed design.

As discussed in Sect. 1.5, the RECAP Monitoring Component collects 
telemetry-like data from physical infrastructure, virtual infrastructure, and 
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applications; stores this data in a unified format; and ultimately provides 
the data in a consumer-specific format to other components in the wider 
RECAP system. Both the Landscaper Component and the Monitoring 
Component have been designed to operate on a per-location (data centre) 
basis. This helps in respecting administrative domains and, in the case of 
monitoring, reduces overall network traffic.

1.6.2  Optimisation

Optimisation goals in a multi-tenant distributed cloud-edge environment 
vary depending on the respective perspective. On the one hand, infra-
structure optimisation has the goal to enforce a scheduling strategy that 
best reflects the intention of the infrastructure provider, e.g. to improve 
the utilisation of the available hardware or to save energy. On the other 
hand, application optimisation strategies try to find the best-possible con-
figuration for an application deployment. Hence, the latter will increase 
the available compute capacity when high workload is expected. This, 
however, will only lead to satisfaction when the scheduling at the infra-
structure level does not apply strategies that counteract these goals. 
Consequently, RECAP’s optimisation subsystem realises a cooperative 
two-level optimisation framework, in which the optimisers at the two lev-
els (application and infrastructure) interact in order to avoid conflicting 
scheduling decisions. Besides infrastructure-level and application-level 
optimisers, the subsystem further contains an optimisation orchestrator 
that mediates between the two levels. All entities in that subsystem con-
sume monitoring data, application load data, and infrastructure data. The 
outputs of the optimisation algorithms in turn are optimisation steps that 
are then processed by the Enactor.

Figure 1.3 illustrates the dependencies between the major components 
of the optimisation subsystem. While there is just one Infrastructure 
Optimiser in a given installation, there may be multiple Application 
Optimisers, one per deployed application. Each of these is equipped with 
its own application-specific optimisation strategy and optimisation rules. 
The Infrastructure Optimiser in turn is equipped with provider-specific 
optimisation policies.

The Application Optimisers constantly receive the current status infor-
mation from the Infrastructure and Modelling subsystems and, based on 
this information, estimate the future coming workload. Based on the cur-
rent and predicted workload, each Application Optimiser suggests 
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optimisation steps for its particular application. These suggestions are fed 
to the optimisation orchestrator, which, based on the input received, trig-
gers the infrastructure optimiser that then decides on whether these oper-
ations are feasible and also the mapping between application components 
(bundled in virtual machines or containers) and physical resources. 
Application Optimisation and Infrastructure Optimisation are presented 
in detail in Chaps. 3 and 4 respectively.

1.6.3  Simulation and Planning

Figure 1.4 illustrates the core architecture of the RECAP Simulation 
Framework. It consists of an API Component, a Simulation Manager, and 
Simulation Engines. The API component serves as an entry point for 
users, be they human or other RECAP components, or external parties. 
The API Component offers an interface for controlling simulation runs. 
In particular, it is used for submitting experiments and retrieving simula-
tion results from these runs. From the API Component, the experiment 
data is forwarded to the Simulation Manager, which, in turn, checks model 
validity and submits models to an appropriate Simulation Engine. The 
RECAP Simulation Framework currently supports two simulation engines 
that address different use case requirements. First, the discrete event simu-
lator (DES), based on CloudSim, is targeted towards the simulation of 

Fig. 1.3 Component-oriented overview of the RECAP optimisation subsystem
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large-scale cloud-computing infrastructures, data centres, virtual machines, 
and virtual machine components. It is tailored for fine-grained and detailed 
simulations. On the other hand, the discrete time simulator (DTS), based 
on the CloudLightning Simulator, is well suited for large-scale simulations 
that need to run at speed and whose execution time is bounded.

The primary input to a RECAP simulation is a simulation experiment 
comprising instances of the application model, the infrastructure model, 
the workload model, and in addition, an experiment configuration. All of 
these models are represented in the very same way for both simulation 
engines. Once the input has been validated by the Simulation Manager, it 
has to be transformed to the simulation engine-specific format. This is 
done by the Model Mapper components shown in Fig. 1.4.

1.6.4  Data Analytics and Machine Learning

The Data Analytics and Machine Learning subsystems make use of the 
data collected by Landscaper Component and the Monitoring Component. 
The primary goal of this functional block is to distil statistical properties 
and patterns from load traces. Previously, this activity would be under-
taken within an engineering team; however, due to the massive volume of 
data involved, this can no longer be easily undertaken by humans. As such, 
the Data Analytics and Machine Learning subsystem operates in a separate 
processing pipeline that is decoupled from the Optimisation and the 

Fig. 1.4 High-level overview on RECAP simulation framework

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING… 



20

Simulation and Planning subsystems. The steps for analytics cannot be 
fully automated and require the involvement of a data analyst. Despite this 
decoupled processing, the results of the analysis do flow back into the 
RECAP optimisation cycles, either through insights gained by the data 
analyst performing the analytics (generally in the case of descriptive and/
or visual statistical analysis) or through codified models integrated into 
other RECAP components as libraries or micro-services (more applicable 
in the machine learning case).

The overall approach of the Data Analytics and Machine Learning 
subsystem is shown in Fig. 1.5. First, a data scientist retrieves data col-
lected from the Monitoring Component. Then, they perform pre-process-
ing followed by the actual analysis and/or training on the pre-processed 
data set. Both steps take place in iterations so that the analyst may go back 
and perform different types of analysis, but they may also go back and 
perform different types of pre-processing. Finally, as a last step, the results 
are exported as mathematical models, as codified models, as a library, or as 
an instantiable service. Due to the decoupled nature of the offline process-
ing, requirements towards the API of the actual data analytics components 
are less strict than for other RECAP components. The only exception to 
that rule is the format of the data retrieved from the Monitoring 
Component. After the data has been fetched, pre-processing and all other 
steps performed by the data analyst are open and not fixed by APIs. Also, 
the integration of results into, for example, the optimisation algorithm 
needs to be defined on a case-to-case basis.

Fig. 1.5 The RECAP approach to retrieve data, analyse it, and export the result-
ing models to other RECAP components
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1.7  maPPIng FunctIonal Blocks 
to oPeratIonal modes

This section describes how the functional building blocks introduced in 
the previous section interact to deliver the operational modes introduced 
earlier.

1.7.1  Run-time Operation Mode

The Run-time Operation Mode (see Fig. 1.6) manages a set of applica-
tions spread out over a distributed physical and virtual infrastructure such 
as an IaaS infrastructure with different geo-distributed locations. Based on 
the user behaviour, and the current and predicted load in the system, the 
run-time cycle identifies improvements to the current live system on both 
infrastructure and application level and enacts them by executing optimi-
sation steps. For that purpose, the Run-time Operation Mode makes use 
of the infrastructure modelling and monitoring subsystem and the optimi-
sation subsystem. Depending on the type of system to optimise, the opti-
miser may be configured with or without the Infrastructure Optimiser. 
Not using it yields classical infrastructure unaware application-level opti-
misation. Internally, the optimisers may make use of additional compo-
nents generated by the Data Analytics and Machine Learning subsystem. 
The optimisation plans produced by the optimisers are consumed by the 
Enactor that interacts with application, physical infrastructure, and virtual 
infrastructure to enact the optimisations.

Infrastructure Models
and

Monitoring Data Application Models
and

Workload Models

Application
and

Infrastructure
Optimisation

Infrastructure and
Applications

RECAP
Operations

Fig. 1.6 Run-time loop of RECAP
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1.7.2  Simulation and Planning Mode

As discussed in Sect. 1.4, the purpose of the Simulation Mode is to per-
form two kinds of tasks. Firstly, it helps users and operators conducting 
experiments about the performance of their infrastructure and applica-
tions running therein. This includes the interplay of different types of 
applications but also the choice of configuration patterns for the Run-time 
Operation Mode. Secondly, it can be used as a tool for operators to esti-
mate future needs with respect to the amount and type of hardware. Both 
of these tasks require interaction with the Infrastructure Optimiser.

Figure 1.7 shows how the Simulation Mode is embedded in the wider 
RECAP architecture. It supports (but does not mandate) importing real- 
world telemetry and infrastructure landscape data that serve as input to 
the simulation. These data are combined with the user models, workload 
models, and load translation models to define a simulation (experiment). 
Alternatively, parts of the input, or even all of the input, to a simulation 
can be manually constructed by the user. For helping operators improve 
their hardware choice, the Simulation Component supports an 
optimisation- oriented approach that iterates over different simulation 
configurations and picks the best-possible one for a given application mix 
and usage scenario.

1.7.3  Data Analytics Mode

The Data Analytics Mode enables statistical evaluation and analysis, as well 
as applying state-of-the-art machine learning techniques to the data col-
lected by the Monitoring Component. This mode envisions a data 
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Fig. 1.7 High-level overview on simulation interaction
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scientist performing many of the steps. Hence, while a certain degree of 
automation can be achieved in the process, it still requires human interac-
tion, guidance, and input. Figure 1.8 summarises the interaction of the 
Data Analytics and Machine Learning subsystem with the other RECAP 
subsystems. It relies on the monitoring subsystems to export metrics as 
bulk in a normalised manner. This data is then analysed, and the resulting 
insights and models provided to other RECAP components. In particular, 
the optimisation components are users of these models, for instance, for 
the purpose of workload prediction.

1.8  conclusIon

The chapter introduces the challenges of reliable capacity provisioning 
across the cloud-to-edge continuum. The scale and complexity across this 
continuum is so complex; it is no longer realistic for IT teams to cost-
effectively foresee and manage manually cloud and network operations on 
a detailed level due to high levels of dynamism and dependencies in the 
system. This chapter, and the book as a whole, presents a high-level con-
ceptual overview of RECAP—an architectural innovation to support reli-
able capacity provisioning for distributed clouds— and some of the major 
design concepts informing its design, namely separation of concerns, 
model-centricism, modular design, and machine learning and artificial 
intelligence for IT operations.

The remainder of this book is organised around the four functional 
building blocks outlined in Sect. 1.6 above. Chapter 2 describes the Data 
Analytics and Machine Learning subsystem, followed by Application 
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Fig. 1.8 High-level overview on data analytics subsystems
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Optimisation (Chap. 3), Infrastructure Optimisation (Chap. 4), and 
Simulation and Planning (Chap. 5). The book ends in Chap. 6 with four 
case studies each illustrating an implementation of one or more RECAP 
subsystems. The first case study presents a case study on infrastructure 
optimisation for a 5G network use case. The second case study explores 
application optimisation for virtual content distribution networks (vCDN) 
on a large Tier 1 network operator. The third case study presents how data 
analytics and simulation components, within RECAP, can be used by a 
small-to-medium-sized enterprise (SME) for cloud capacity planning. The 
final case study looks at how RECAP components can be embedded in an 
IoT platform to reduce costs and increase quality of service.
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statistical and machine learning models from this data. These models are 
then used to identify relevant features and forecast future values, and thus 
inform run-time planning, decision making, and optimisation support at 
both the infrastructure and application levels. We conclude the chapter 
with an overview of RECAP data visualisation approaches.

Keywords Data analytics • Data acquisition • Machine learning • 
Application modelling • Infrastructure modelling • Distributed cloud 
computing • Edge computing

2.1  IntroductIon

The collection, analysis, and processing of data (e.g., infrastructure infor-
mation and telemetry) lie at the very heart of RECAP and constitute a 
crucial part of the entire RECAP system. Data make it possible to train 
machine learning and data analytics algorithms in the analytics mode; 
moreover, data provide the basis for run-time planning, decision making, 
and optimisation support at both the infrastructure and the application 
levels; finally, they can be used as calibration mechanisms for the RECAP 
simulators. As such, the data acquisition and analytics methodology com-
prises (1) data acquisition, defining how to collect data from the RECAP 
infrastructure and the applications running on top of it, how to store that 
data, and how to provision it to the various parts of the RECAP ecosys-
tem; and (2) data analytics, defining how to access the data and create 
usable models from it.

Accordingly, this chapter is structured as follows: Section 2.2 describes 
the infrastructure for the acquisition and processing of data (both from 
applications and from systems). This is followed by an overview of the data 
analytics methodology in Sect. 2.3, including the development of mathe-
matical models to identify relevant features and forecast future values. 
Section 2.4 provides an overview of visualisation in RECAP.

2.2  data acquIsItIon and storage

Data collection in RECAP serves three purposes: (i) to derive information 
about the flow of messages (hence, the load in the application layer) and 
use it to create workload and load transition models; (ii) to derive the 
impact of the application layer behaviour on resource consumption on the 
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physical layer; and (iii) to provide input to simulation and visualisation 
components.

As shown in Fig. 2.1, RECAP makes use of a central data repository, 
which serves as the single integration point for all elements of the RECAP 
ecosystem, and as the primary source of data for other parts of the RECAP 
platform.

In its databases, the repository stores information about: (i) time series 
of load metrics, (ii) information about the configuration of the data centre 
and virtual infrastructure, and (iii) information about the applications run-
ning on top of this infrastructure. While (i) is the primary focus of the 
repository, (ii) and (iii) are additional metadata that enrich the time series 
data and that help correlate time series of various metrics from different 
layers of the system. As an example, metadata could help correlate infra-
structure metrics, such as CPU usage, with application performance met-
rics from the application layer, such as worker queue length.

Technically, the data repository cannot be realised as a single entity, as 
it has to satisfy different requirements from various components. While 
the data analytics and machine learning functionality in RECAP require 
access to large chunks of CSV-formatted data, the visualisation compo-
nent requires the capability to flexibly query for data upon a user request. 
Finally, other RECAP components require access to a live stream of data: 
for instance, the optimisers constantly need to look up the current state of 
the system. In consequence, a polyglot approach to persistence is required, 
as will be presented in later in this chapter.

Fig. 2.1 Conceptual overview of data handling in RECAP
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2.2.1  Terminology

We now briefly cover the terminology that applies to the RECAP 
Monitoring Architecture.

2.2.1.1  Metrics and Monitoring
Formally, a metric is a function that takes a system as input and yields a 
scalar as a result. The application of a metric on a particular system is called 
a measurement and the result of the application is called the value of that 
metric. The unit of the value depends on the metric.

The monitoring process continuously (or periodically) applies metrics 
to systems and generates a series of timestamped values. This is called a 
time series (of a metric).

In order to distinguish values and time series that belong to the same 
metric, but come from different systems, we allow values to be further 
enhanced by metric properties (or tags). This enables values to be 
grouped, leading to a time series for that tag.

As an example, the cpu_load metric, when applied to a server, yields the 
current load of the central processing unit on that server. In order to be 
able to distinguish values measured from server A from those measured 
from server B, the value may be tagged with the tag origin that in this 
example can take the values A and B. In total, this creates three time series: 
one for A, one for B, and one for both servers.

2.2.1.2  Actors
Based on the context of RECAP and the requirements defined by the 
project’s use case providers, the monitoring infrastructure assumes a 
cloud-like environment where virtual resources (cloud resources) are 
made available through a Web-based API.

A (cloud) operator or infrastructure provider provides the physical 
resources on which virtual resources run. Physical resources may be geo-
graphically distributed, leading to a cloud-edge scenario. This actor is 
responsible for maintaining the physical set-up and for running the soft-
ware stack that enables access to the virtual resources. The infrastructure 
provider is also the actor that operates the RECAP infrastructure. Note 
that communications service providers, such as telecommunications com-
panies, can also be cloud operators and infrastructure providers.

(Cloud) users access the virtual resources offered by the cloud pro-
vider. In Infrastructure-as-a-service clouds, they acquire virtual machines 
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and virtual networks to operate their applications. This makes them 
(application) operators and therefore also users of RECAP.

Finally, end users access the applications provided by the application 
operator. Usually, they do not care where the application runs, as long as 
it provides an acceptable quality of service and experience.

2.2.2  Monitoring Layers

Figure 2.2 illustrates the four layers that can be monitored in order to 
derive insights on application behaviour and load propagation. Not all lay-
ers are required for all installations, so the set-up presented here is a super-
set of the possible set-ups.

The physical layer is provided by the infrastructure provider, and con-
tains the hardware used to run all higher layers. Here, monitoring metrics 
mainly include CPU, RAM, disk, and network consumption at specific 
points in time. The layout of the physical infrastructure is also important, 
e.g. which servers share the same network storage or uplink to the Internet. 
Figure  2.3 shows two data centre locations on the left and right hand 
sides, each with a router. Both are connected through the Internet. The 
infrastructure provides RECAP-aware monitoring support for the physical 
layer and report measurements for the metrics.
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Fig. 2.2 RECAP monitoring layers
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The virtual layer constitutes virtual infrastructure as realised for 
instance by Infrastructure-as-a-Service (IaaS) clouds. This infrastructure is 
composed of virtual machines, virtual storage, and virtual networks. It is 
run by the application operator, which is responsible for the measurements 
on that layer as well. Similar to the physical layer, metrics mainly include 
CPU, RAM, disk, and network consumption, but several instances of vir-
tual infrastructure (to be monitored separately) can exist in the virtual 
layer (cf. different colours in Fig. 2.2). Also, the number of virtual com-
ponents per virtual infrastructure as well as the number of virtual infra-
structures is not fixed, but can dynamically grow and shrink.

On top of the virtual (or physical) layer resides an optional container 
layer such as a Kubernetes1 cluster or a Rancher Cattle2 cluster. Basically, 
the same restrictions and considerations hold for this layer as for the vir-
tual layer. Yet, in contrast to both, the container layer can provide a seam-
less abstraction and hide the location of different data centres. Whether 
containers are used is a design choice by application owners or cloud pro-
viders: containers can be offered by a cloud provider or be deployed by a 
user on top of virtual machines.

1 https://kubernetes.io/
2 https://github.com/rancher/cattle
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At the top resides the application layer where application- and 
component- specific metrics can be applied. These include, for instance, 
the queue length of load balancers, detailed statistics on the use of data-
bases, and the message throughput of a publish-subscribe system. 
Application-specific metrics are important conveyors of KPIs or 
QoS. Although the RECAP monitoring platform cannot define all possi-
ble application-level metrics to be captured, it provides a structure to mea-
sure and store application-level metrics.

2.2.3  Monitoring Architecture

The RECAP Monitoring Architecture collects and provides the monitor-
ing data from the four layers described earlier to the RECAP simulator, 
run-time system, and users.

RECAP operators may manage infrastructure spread over several, geo-
graphically distributed locations. In each of these sites an edge or core/
cloud data centre resides. In order to limit data hauling across data cen-
tres, collected data are stored as close to their origin as possible. RECAP’s 
acquisition and retrieval strategy takes these circumstances into account. 
In the following, we first describe the acquisition and storage architecture 
per site and then the overall architecture spanning different sites.

2.2.3.1  Single Site Monitoring Set-up
This section describes the monitoring set-up for each site in a RECAP 
managed infrastructure. Each of the sites can run in isolation and is not 
affected by traffic and load on other sites. The per-site architecture con-
sists of monitoring probes on the physical layer and on the higher layers of 
the software stack. It also involves a data dispatcher that filters the incom-
ing data and relays it to three different data sinks: a data lake, a time series 
database, and a data stream emitter.

Components
Probe: Probes convey monitoring data out of monitored systems. 
Different probes may be necessary for different metrics, even though most 
probes will perform measurements for multiple metrics. Each probe may 
emit data in a different format and at different time intervals. In addition 
to a timestamp and value, an emitted data item contains metric properties 
to identify the source and scope of the data point. While it is the responsi-
bility of the infrastructure operator to provide probes for the physical 
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layer, the cloud user shall provide the necessary metrics for higher layers of 
the stack. All probes directly or indirectly send their data to the data 
dispatcher.

Data dispatcher: The data dispatcher is a site’s central data monitoring 
integration point. It receives and normalises all probe data and sends them 
to the data sinks. Normalisation depends on the probes: an individual 
transformation is needed per metric and per probe type. The dispatcher 
adds site information and similar attributes to collected data.

The data normalised by the dispatcher are then put in the sinks. In 
RECAP, different data post-processing demands exist with regard to the 
monitoring subsystem. Feature engineering and data analytics in RECAP 
operate on large data sets which need to be processed offline in dedicated 
servers. Visualisation works on smaller datasets, but requires high flexibil-
ity in data provisioning. Finally, optimisers require a snapshot that repre-
sents the most recent state of the managed infrastructure. Therefore, 
RECAP applies three different types of sinks:

• Data lake sink: accumulates large amounts of monitoring data in a 
durable storage for a long time using a compact representation. This 
data is the basis for data analytics and machine learning.

• Time series database sink (TSDB): stores monitoring data in time 
series. Through an underlying indexed search engine, it supports live 
queries of current and past data. It is the primary data source for the 
visualisation components.

• Stream emitter sink: relays a configurable subset of live monitoring 
data to other parts of the RECAP infrastructure. It is the primary 
data source for the application optimisation and infrastructure opti-
misation engines, which decide on the metrics of interest and any 
pre- processing (e.g. smoothing) to be applied.

A distinctive trait of RECAP is the “separation of concerns” between 
application and infrastructure optimisation procedures. This makes it pos-
sible to accommodate the (often contrasting) objectives, costs and con-
straints of both application and infrastructure providers, and to harmonise 
them as far as possible within the RECAP framework.

Practical Considerations
The dispatcher and all sinks are stateless and can be scaled to serve large 
hardware installations, large amounts of users, and high volumes of data. 
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Neither the architecture nor its implementation puts any restrictions on 
where dispatcher and sinks can be run. Yet, in order to ensure a correct 
interplay of the acquisition and storage components with other parts of 
the RECAP infrastructure, the following constraints have to be considered:

 1. All kinds of probes at a site need to be able to connect to the dis-
patcher of that site either directly or indirectly.

 2. Both the TSDB and data lake sink need to be accessible from the 
API component described later in Sect. 2.3.2.

 3. The stream emitter sink needs to communicate to other data cen-
tres, and particularly to the optimisation subsystem.

2.2.3.2  Cross-site Monitoring Set-up
As RECAP provides cross data centre resource and application manage-
ment, individual sites must be spanned to achieve a holistic view of the 
system. The Monitoring Architecture achieves this by introducing a 
RECAP entrypoint that may also be bound to a DNS name in order to 
ease access, and includes a load balancer to point to the various sites man-
aged by this instance of RECAP.

Figure 2.3 provides an overview of the overall architecture of the moni-
toring infrastructure spanning sites. It shows three locations, one of which 
functions as the RECAP entrypoint. Besides the local entities from Sect. 
2.3.1, it shows the visualisation endpoints that offer a dashboard with 
usage graphs as well as a GUI for bulk download of data from the data 
lakes. The more generic API entity component serves as an integration 
point for other RECAP components. In particular, the optimiser can use 
it to configure the stream emitter sink which provides input to the optimi-
sation cycle or in order to access time series data from the TSDB.

As detailed earlier, the data lake sink is instantiated per site and can be 
a distributed component that compresses and stores raw monitoring data. 
Its primary purpose is to serve files for bulk download. As this storage 
form is resource hungry, the monitoring infrastructure (1) switches off 
persisting raw metrics on a per-site basis (this is beneficial if the site cannot 
store larger amounts of data or no later data analysis shall be performed), 
and (2) deletes or moves away data older than a certain age. While this 
creates cross-site load, the fact that data is sent filtered and compressed 
requires much less bandwidth than uncompressed probe data.
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2.2.4  Data Structure for Storage

This section introduces the actual data that is collected on the four layers. 
We do not discuss the data sent by the various probes as RECAP does not 
enforce the use of specific probes. Instead, it assumes that the dispatcher 
performs probe-specific normalisation.

2.2.4.1  Metrics on the Physical Layer
The metrics gathered for the physical layer are split into seven metric sets 
(cpu, diskio, filesystem, memory, vms, and vm). Each of the metric sets 
contain several detailed metrics. The four metric sets host.cpu, host.diskio, 
host.memory, and host.filesystem capture the detailed usage and utilisa-
tion of basic system resources (cpu, block devices, memory, file systems). 
Instead, host.vms gives information about the virtual machines running 
on a host, and the metrics from the host.vm metric set detail the resource 
consumption per virtual machine.

We measure the resource consumption of a virtual machine from the 
host to avoid the misinterpretation of numbers seen from inside the virtual 
infrastructure. For example, a 100% CPU load seen inside the virtual 
machine may not mean that the machine uses a full physical core. The 
mapping of how many physical cores are represented by one virtual core 
for this particular virtual machine is subject to the CPU scheduler on the 
host/hypervisor and is heavily influenced by the overbooking factor of the 
physical server. Hence, the physical layer needs to report on the physical 
resource usage per virtual machine.

2.2.4.2  Metrics on the Virtual Layer
The metrics gathered at the virtual machine level (i.e. captured from 
within a virtual machine) start with vm. and are basically the same as the 
physical host except, for example, cpu.steal. In addition to resource con-
sumption, information about available containers is collected in the same 
way as resource utilisation per container.

2.2.4.3  Metrics on the Container Layer
On the container level, we collect the very same metric sets and metrics as 
for the virtual layer (cpu, diskio, memory, filesystem, and network). The 
names of the metric sets start with container. instead of vm.
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2.2.4.4  Metrics on the Application Layer
Applications differ and so do the metrics that can and need to be collected 
from them. In particular, the measurement gathering methods depend on 
the application and its software components. Hence, the data format and 
content for application metrics cannot be fixed in advance, and metric col-
lection must be part of the application lifecycle management.

A generic naming convention for application-level metrics is adopted in 
RECAP with the format app.<app name>.<comp name>.<metric name>, 
which includes the (system-wide unique) application name, the compo-
nent name (unique per application), and the metric name.

2.2.4.5  Metric Attributes: Tagging
So far, we have presented metrics per layer. Yet, with the information pro-
vided so far, it is not possible to distinguish data from different sources. 
This is achieved via metric attributes that also enable data grouping and 
correlation. For example, all metrics are tagged with the timestamp and 
the layer (physical, virtual, container, application). All physical layer met-
rics are further tagged with the data centre location, the name of the phys-
ical host, and the name of the infrastructure provider. Metrics on the 
virtual layer are enriched with information about the cloud they are run-
ning in, the current region they reside in, and their respective identifier. 
Similarly, container metrics contain information about the container iden-
tifier. On all levels, specific attributes are added if required by the metric. 
For instance, devicename helps distinguish network interfaces on physi-
cal hosts.

For application metrics, tagging needs to fulfil two orthogonal tasks: to 
distinguish different instances of the same application (e.g. WordPress 
installation for customer A and customer B), and to distinguish different 
instances of an application component, e.g. a scaled out application server. 
Hence, all application metrics are tagged with an application instance 
identifier and a component instance identifier, both automatically assigned 
by the platform and added by the RECAP data dispatcher system. If 
needed, application owners can provide further tags.

Second, tagging needs to convey on what physical resource an applica-
tion or component was running. Therefore, all application metrics are 
tagged with the type and identifier of the containing entity (e.g. virtual 
machine or container).
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2.2.5  Implementation Technology

The implementation technology for the monitoring system chosen for 
RECAP is largely based on experience gained from the FP7 CACTOS 
project (Groenda et al. 2016) using an OpenStack testbed and production 
system (bwCloud3) and from the Horizon 2020 Melodic project (Melodic 
2019). Where possible, all technical building blocks were components 
where technology was available under an open source and/or a commer-
cial licence. Finally, no chosen component makes any assumptions on the 
technology of the other components, facilitating replacements and 
upgrades.

The data dispatcher is realised through Elastic Logstash4 which offers 
pipelines for receiving, processing, and dispatching a wide range of moni-
toring data. It comes with an extensive list of input plugins, including 
software to accept TCP/UDP network traffic with JSON payload. Output 
plugins range from time series databases and overwrites to the file system 
to sending message streams through publish-subscribe platforms such as 
Apache Kafka. Filters are provided for data curation and transformation.

The time series database sink is realised via an InfluxDB instance, 
which supports both groups of metrics and metric attributes/tags. It also 
supports continuous queries and data aggregation, and integrates well 
with Grafana, an open source metric analytics and visualisation suite com-
monly used for visualising time series data for infrastructure and applica-
tion analytics.5

The stream emitter sink is realised by the Apache Kafka6 publish- 
subscribe system, due to its wide adoption and well-known scalability.

The data lake sink is based on CSV files stored in a compressed format.
Probes: The entire monitoring subsystem is independent from the spe-

cific monitoring technology. This allows RECAP to integrate into existing 
installations. Consequently, running RECAP does not require operators 
to perform major updates on their infrastructure. Therefore, the mapping 
from the data collected by the probes to the metrics schema must be 
implemented for the dispatcher per probe type. Based on the RECAP 
testbeds, a set of mapping rules have been implemented for specific probes. 
In particular, this is the case for the Elastic Metric Beat metric collector to 

3 https://www.bw-cloud.org/
4 https://www.elastic.co/products/logstash
5 https://grafana.com
6 https://kafka.apache.org/
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collect metrics on the physical and virtual layer, for Intel’s SNAP collector 
to collect metrics on the virtual container and application layer, and for a 
VMware vSphere7 collector.8

2.3  data analytIcs and ModellIng

2.3.1  Data Analytics Methodology

In this section, we describe the RECAP methodology for the analysis of 
datasets and the development of machine learning algorithms to support 
the application of RECAP’s results to new problems related to optimal 
resource allocation and capacity planning. The methodology is composed 
of five main steps as outlined in Fig. 2.4.

2.3.1.1  Step 1: Problem Definition and Data Assembling
The initial steps are to identify the problem to be solved and the available 
data that can help solve the problem through machine learning. In 
RECAP we merged these steps into a single task due to their high interde-
pendence. If the available datasets are insufficient, we have to change our 
expectations about the problem or find additional data. As an alternative, 
we later explain how to enrich existing datasets with synthetic datasets 
mimicking the same workload data collected from RECAP Use Cases.

2.3.1.2  Step 2: Metric for the Evaluation of the Results
Selecting the metric to evaluate the results of our model is critical, since 
that metric is exactly what the training algorithm will optimise. If the out-
put of the model is a continuous variable, the Root Mean-Square Error 
(RMSE) is a typical choice. In the case of a categorical response, typical 
metrics are accuracy, or the area under the receiver operating characteristic 
(ROC) curve (AUC).

There are multiple standard techniques to evaluate the performance of 
a machine learning model and detect issues, such as overfitting, early. 
These include train/test splits of the dataset, N-fold cross-validation, and 
bootstrapping. In RECAP, we use train/test splits for the early model 
prototyping, and apply a cross-validation to the final models before 

7 http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
8 https://github.com/Oxalide/vsphere-influxdb-go
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production. Techniques to avoid cross-validation altogether have also 
been investigated as a promising research direction (García Leiva 
et al. 2019).

2.3.1.3  Step 3: Data Curation and Enhancement
A data curation process to remove errors and anomalies and fix missing 
data is an important preparatory step before training a model. A visualisa-
tion of the dataset and a descriptive analysis provides valuable information 
about the quality of the data being used in the project. Outlier detection 
or the identification of ‘Not Available’ values could be applied as well. It 
might also be necessary to enhance the data by deriving new features 
based on those that already exist. This data enrichment could significantly 
improve the predictive capabilities of models.

Fig. 2.4 A summary  
of the main steps of the 
methodology for 
exploratory data  
analysis of new datasets
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2.3.1.4  Step 4: Model Development
Identifying the best model is often a daunting task in the presence of all 
possible alternatives. For example, in the case of a classification problem, 
we could apply techniques like K-means, decision trees, support vector 
machines, or neural networks. Moreover, each technique could have dif-
ferent alternative configurations. An approach to speed up the selection of 
the right family of models is to test the statistical power of the machine 
learning techniques. This test consists of performing fast training of the 
model, perhaps with a data subset, and in checking if the model has better 
predictive capabilities than random guessing. Any family of models with 
no predictive power should be discarded.

2.3.1.5  Step 5: Regularisation and Hyperparameter Selection
The final step of the methodology is to tune the model’s hyperparameters, 
whose values must be set before the learning process begins. Hyperparameter 
optimisation makes it possible to obtain the best predictive capabilities 
from a machine learning model, at the price of a higher risk of overfitting. 
Once hyperparameters have been optimised, the model can be applied to 
test data never used during training and validation. A clear sign of overfit-
ting is then a divergence between test performance and validation 
performance.

2.3.2  Exploratory Data Analysis

Descriptive statistics are metrics that quantitatively describe, characterise, 
and summarise the features of a data set. Even when data analysis draws its 
main conclusions using inferential statistics and predictive analytics, 
descriptive statistics can be used to provide a summary of the types of data 
involved in the use cases, and inform future inference and prediction steps.

Exploratory data analysis (EDA) is used to understand data beyond 
formal modelling or hypothesis testing. EDA is useful to check assump-
tions required for model fitting, to handle missing values, and understand 
the required variable transformations. Figure 2.5 shows an example of a 
decomposition of a time series in order to visually identify trends and pos-
sible cycles. The top panel visualises the original time series. From this 
data, we extract a trend (second panel), a seasonal component showing 
clear cyclic behaviour (third panel), and a residual behaviour not explained 
by trend and seasonal components (bottom panel). These exploratory 
steps are helpful to inform the choice of time series prediction techniques.
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2.3.3  Workload Prediction

After a careful survey of the available literature in the field (Le Duc et al. 
2019), three techniques were considered for the specific task of workload 
prediction—probabilistic models, regression-based models, and machine 
learning models.

2.3.3.1  Probabilistic Models
Probabilistic models are powerful tools to explain datasets, and are widely 
used in statistics, traffic engineering, simulations, etc. To facilitate work-
load prediction in RECAP, we attempt to fit several probability density 
functions to our datasets on a per-use-case basis. Parameter fitting is 
obtained through Maximum-Likelihood Estimation, and the resulting 
models are compared through the Kolmogorov-Smirnov test. The best 
fitting model is finally chosen (an example for cache content pulling is 
provided in Fig. 2.6).

2.3.3.2  Regression-based Models
Regression-based models are often simple and robust in generating pre-
dictions, and thus particularly suitable for offline modelling and prediction 
tasks. In RECAP, we consider autoregressive integrated moving average 
(ARIMA) models, which are composed of three parts. The AR part relies 

Fig. 2.5 Decomposition of received traffic at a cache
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on the lagged values of the variable of interest; the MA part is actually a 
linear combination of error terms whose values occurred in the past; and 
the I part (for “integrated”) indicates that the data values have been 
replaced with the difference between their values and previous values. We 
also extend ARIMA models with seasonal components (SARIMA).

2.3.3.3  Machine-Learning-based Models
In order to facilitate fast online workload predictions in RECAP, we con-
sider the Online Sequential Extreme Learning Machine (OS-ELM), which 
enables the generation of workload models and predictions online, and 
can flexibly handle workload changes. OS-ELM is an efficient technique 
for online time series modelling and prediction due to its accuracy compa-
rable to batch training methods and to its extremely fast generation of 
predictions (Huang et al. 2005; Liang and Huang 2006). It accepts input 
data either sample-by-sample or through varying- or fixed-size data chunks.

Different from other learning methods (e.g. single hidden layer feed-
forward neural networks), OS-ELM randomly initialises input weights 
and updates output weights using the recursive least squares method. This 
makes OS-ELM adapt quickly to new input patterns, and results into a 
better prediction performance than other online learning algorithms (Park 
and Kim 2017).

Fig. 2.6 Statistical distributions fitted to records of data sizes of pulled 
cache content
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2.3.4  Artificial Workload Generation

RECAP is interested in the availability of datasets describing the evolution 
of workloads of servers and services (applications), so that stochastic mod-
els can be trained to forecast future workloads. However, for reasons 
including commercial sensitivity and privacy, such datasets may be insuf-
ficient for research tasks. This issue can be circumvented by generating 
synthetic datasets that preserve the statistical properties of the datasets 
collected from real infrastructures.

Here, we briefly introduce the mathematical models used to generate 
artificial workload traces in RECAP. Relevant references are provided for 
the interested reader.

2.3.4.1  Structural Models-based Workload Generation
Structural time series models are a family of stochastic models for time 
series that includes and generalises modelling techniques, including 
ARIMA or SARIMA models (Harvey 1989). A structural time series 
model expresses an observed time series as the sum of simpler components:

 
f t f t f t f tn( ) = ( ) + ( ) +…+ ( ) +1 2 

 

where ϵ is a white error term following a normal distribution of mean 0 
and variance σ2.

For example, one component might encode a linear trend, a cycle, or a 
dependence of previous values. Structural time series models identify and 
encode assumptions about the processes that have generated the original 
data. In this way, they make it possible to generate artificial data traces that 
have the same statistical properties as the original datasets. The application 
of a structural time series model to requests coming to a search engine 
web server is shown in Fig.  2.7. We observe that predicted data (light 
grey) mimic well the general characteristics of ground truth (dark grey).

2.3.4.2  GAN-based Workload Generation
Synthetic data generation using Generative Adversarial Networks (GAN) 
has recently gained popularity. A GAN is based on a combination of two 
neural networks, a discriminator (D) and a competing generator network 
(G). In the training phase, D is trained to distinguish real data from gener-
ated data. In parallel, G is trained to fool D by producing better and better 
fake data that D will eventually accept.
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In RECAP, the overall idea behind the use of GANs is twofold. Firstly, 
using this approach provides a “what-if” analysis on a dataset, answering 
such questions as “how would this workload look for a larger number of 
nodes?” Secondly, the inherent training goal of a GAN is to estimate the 
probability distribution of the training data and to generate synthetic sam-
ples drawn from that distribution. Hence, when applied to a real dataset, 
the GAN learns to mimic its statistical properties.

2.3.4.3  Traffic-Propagation-based Workload Generation
RECAP implements five diffusion algorithms for workload generation. 
These algorithms can be divided into two groups: non-hierarchical and 
hierarchical workload diffusion. The former includes population-based, 
location-based, and bandwidth-based algorithm; the latter includes 
hierarchy- based and network-routing-based algorithm.

Diffusion algorithms can be applied in different use cases and under 
different assumptions related to the network topology, network links’ 
capacity, and the distribution of users throughout the network. Given 
these models, and real workload data traces collected as time series at a 
limited number of locations, it is possible to produce workload traces for 
any or all network locations.

Fig. 2.7 Simulated workload for a search engine
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2.3.4.4  Simulation System Model Data Sets
The role of simulation in the RECAP project is to go beyond the limita-
tions of an available testbed in terms of scale and complexity of experimen-
tations. Based on simulation, it is possible to generate synthetic datasets 
consisting of two parts: large-scale models of a system that is being simu-
lated, and simulated behaviour measurements of the modelled system. 
This is discussed further in Chap. 5.

2.4  data VIsualIsatIon

Data visualisation empowers end users and data scientists to analyse and 
reason about data and its features. With data visualisation, data sets pro-
duced by RECAP or collected from production systems of use cases are 
transformed to be more accessible, understandable and consumable. 
RECAP uses a range of visualisation tools which we will now discuss.

2.4.1  Visualisation for Data Analysis

To facilitate data analysis and reasoning, RECAP has adopted various visu-
alisation tools for data presentation, for instance the histogram, box plot, 
and scatter plot. Upon dealing with heterogeneous data sets, the selected 
tools enable both univariate and multivariate data visualisation, facilitating 
corresponding data analysis methods applied to different data sets. To 
illustrate the use of the visualisation tools as well as their facilitation of data 
analysis, different visualisations of features extracted from a real data set 
from a search engine are provided along with explanations of how each 
visualisation helps retrieving insights into the data.

Figure 2.8 visualises univariate data (specifically, the serving time of 
user requests in the given workload data set) in different forms. The histo-
gram provides the insight that the majority of user requests are served 
within very short time periods. The observable data distribution suggests 
a potential application of probabilistic modelling techniques is needed to 
construct models of the feature for further analysis or workload genera-
tion. The box plot of this serving time feature shows a large number of 
outliers exist in the data set. Further investigation is thus required for hints 
on the construction of predictive models. Figure 2.9 visualises multivariate 
data and shows a relationship between the response size and response time 
of the user requests. This visualisation suggests a correlation analysis on 
the data set is needed when addressing workload analysis and modelling.
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2.4.2  Visualisation of RECAP Telemetry Data

The visualisation of telemetry data makes the status of the infrastructure 
and applications operating on the infrastructure more comprehensible for 
the operators at both application and infrastructure level. This becomes 

Fig. 2.8 An exemplary presentation of serving time of requests in a workload 
data set. (a) Histogram of serving time of user requests. (b) Box plot of serving 
time of user requests
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Fig. 2.9 An exemplary presentation of a correlation of features in a workload 
data set
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crucial for the automation of system (application and infrastructure) man-
agement, in which trust is required and can be established based on visu-
alisations illustrating the response of the system to the triggered and 
ongoing management actions. In RECAP, telemetry data acquired from 
use case testbeds and production systems need to be visualised in order to 
aid the analysis of the workload and application behaviours as well as the 
mutual dependencies between metrics or features of both the infrastruc-
ture and applications.

As discussed, to facilitate the visualisation, Grafana was used as a visuali-
sation tool. This is an open source tool with a large community and a wide 
selection of plugins and pre-configured dashboards which accelerates visu-
alisation. Grafana has an easy-to-use interface with various graph visualisa-
tion techniques including line graphs, bars, heat maps, maps, and 
architecture. It enables grouping various graphs into a single-view dash-
board and supports multiple dashboards to provide different perspectives 
of a given data set. Figures 2.10 and 2.11 illustrate the snapshots of two 
dashboards. The first includes multiple graphs showing resource utilisa-
tion of the core of a testbed deployed at Ulm University (UULM), 
Germany, and the second illustrates the mobility and behaviour of users 
emulated in a testbed deployed at Tieto, Sweden, in a study of Infrastructure 
and Network Management.

Fig. 2.10 Snapshot of the dashboard for the testbed at UULM
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2.5  open data

The RECAP project adheres to the Open Data Pilot of the European 
Commission. This means that the project committed to providing the 
datasets required to reproduce the results in the project, unless this would 
result in, for example, a breach of confidentiality for the dataset provider 
or in the loss of intellectual property. Several datasets have been derived 
and provided in the context of RECAP. These datasets are described in 
RECAP’s Deliverable D5.3 and are available, where appropriate, at 
RECAP’s website—https://recap-project.eu.
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Abstract Optimisation of (the configuration and deployment of) distrib-
uted cloud applications is a complex problem that requires understanding 
factors such as infrastructure and application topologies, workload arrival 
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behaviour. This chapter outlines the RECAP approach to application 
optimisation and presents its framework for joint modelling of applica-
tions, workloads, and the propagation of workloads in applications and 
networks. The interaction of the models and algorithms developed is 
described and presented along with the tools that build on them. 
Contributions in modelling, characterisation, and autoscaling of applica-
tions, as well as prediction and generation of workloads, are presented and 
discussed in the context of optimisation of distributed cloud applications 
operating in complex heterogeneous resource environments.

Keywords Resource provisioning • Workload modelling • Workload 
prediction • Workload propagation modelling • Application 
optimisation • Autoscaling • Distributed cloud

3.1  IntroductIon

Key to the RECAP approach for application optimisation is application 
autoscaling, the dynamic adjustment of the amount and type of resource 
capacity allocated to software components at run-time (Le Duc and 
Östberg 2018). In principle, this type of scaling can be done reactively—
by dynamically adjusting the amount of capacity to match observed 
changes in load patterns, or proactively—by operating on predicted future 
load values. Naturally, proactive autoscaling requires the ability to predict 
or forecast future values of the workloads of applications, systems, and 
components.

In this chapter, we summarise the RECAP application optimisation 
system. Following the problem formulation, we discuss the RECAP 
approach to application modelling, workload modelling, and the models 
used for application optimisation (application and workload, including 
how models are constructed and trained), the optimisation approach, 
and the implementation and evaluation of the optimisation models. The 
application optimisation approach outlined in this chapter exploits the 
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advanced techniques for characterising, predicting, and classifying work-
loads presented in Chap. 2 to construct proactive autoscaling systems.

3.2  Problem FormulatIon

The problem of optimising the deployment and configuration of applications 
hosted in geo-distributed resource environments can conceptually be viewed 
as a graph-to-graph mapping problem. As discussed in previous chapters, 
RECAP models distribute applications as graphs of components where graph 
nodes denote application components and the edges of the graph represent 
the communication paths and dependencies among components. Similarly, 
infrastructure systems can also be represented as graphs where the nodes cor-
respond to resource sites and the edges model the interconnecting network 
links of site-connecting networks. The optimisation problem then is to find 
the optimal mapping of application nodes to infrastructure nodes. This map-
ping is subject to constraints that reflect requirements on the application 
level (e.g. minimal acceptable Quality of Service (QoS) for applications, or 
co-hosting restrictions of I/O-intensive processes).

A graph-based formulation of the mapping problem facilitates reason-
ing on the scaling of both application and infrastructure systems. 
Application scaling can on the one hand regulate the optimal number of 
instances to deploy for specific component-associated services (horizontal 
autoscaling) and on the other hand define how much resource capacity to 
allocate to a particular application on a specific site (vertical autoscaling). 
Furthermore, application scaling can be global, when the entire applica-
tion is scaled, or local, when only individual components are scaled inde-
pendently. Hybrid approaches are also possible where individual parts of 
applications or infrastructures are treated differently. In that respect, the 
RECAP optimisation approach includes the concept of application and 
infrastructure resource zones—subsets of application and infrastructure 
graphs that need to be treated as a group.

Based on studies of the technical trade-offs that influence optimality in 
scaling and placement, e.g, power-performance trade-offs and sensors and 
actuators that can used in optimisation of systems (Krzywda et al. 2018), 
we define four types of constraints on application and infrastructure place-
ment and scaling:
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 1. Affinity constraints—these specify co-hosting or pinning of 
components;

 2. Anti-affinity constraints—these prohibit co-hosting or pinning;
 3. Minimal number of instance constraints—these specify lower bounds 

of the number of instances to scale or the amount of capacity to 
allocate to application nodes; and,

 4. Maximal number of instance constraints—these specify upper 
bounds of the number of instances to scale or the amount of capac-
ity to allocate to application nodes.

3.3  oPtImIsatIon Framework

As well as infrastructure optimisation, RECAP provides an optimisation 
framework that enables the development and execution of optimisation 
tasks at application level. The core of the framework is an optimisation 
engine that consists of multiple modellers and optimisers. More specifically, 
the modellers produce dedicated models for each supported application, 
including workload models, load transition models, user models, and 
application models. These are used to provide a complete view of the 
application. In addition, they are used as input for optimisers to solve 
optimisation problems related to autoscaling. Depending on the type of 
optimiser, it can deal with a wide range of optimisation problems related 
to the placement, deployment, autoscaling, and remediation of applications.

For creating the respective modellers and optimisers, RECAP uses 
methodological framework that entails three optimisation levels for the 
deployment and management of applications in heterogeneous edge- 
cloud environments, see Fig. 3.1. The figure illustrates the three-level pro-
cess that constitutes the optimisation methodology: the first level of 
optimisation is the simplest and aims at the placement of applications 
throughout the edge-cloud environments under fixed network, applica-
tion, and quality-of-service requirements/constraints. Optimisation solu-
tions created by this level of optimisation can be used for long-term 
resource planning as well as initialisations for further optimisation levels.

In the next level of optimisation, the variations of workload and user 
behaviours are taken into account for dynamic application placement and 
autoscaling. The workload model and user models are used to estimate the 
demand of resources of individual application components over time. 

 P.-O. ÖSTBERG ET AL.



55

With the estimation results, resources are allocated for each application 
component. Furthermore, based on predictions, workload can be redi-
rected or migrated in order to maintain the load balance within applications.

The most advanced level of optimisation aims at proactive resource 
provisioning for applications. For that purpose, the RECAP Application 
Optimiser applies workload predictors that make use of workload models 
discussed in previous chapters. Machine learning is adopted to improve 
the understanding of both workload and application behaviours. This 
means more fine-grained models are derived and models can be refined 
and improved over time. Using these models, predictions can be per-
formed more accurately to support load balancing, autoscaling, and reme-
diation in a proactive manner.

Fig. 3.1 A stratified approach to application optimisation iteratively building on 
three optimisation building blocks—(1) classic optimisation on static data, (2) 
application adaptation to variations in workloads and resource availability, (3) joint 
autoscaling and optimisation in multi-tenancy scenarios using machine learning 
(adapted from Le Duc et al. (2019))
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3.4  aPPlIcatIon modellIng

This section addresses the application modelling from an optimisation 
perspective. It first introduces the basic requirements and fundamental 
assumptions behind the RECAP application optimisation framework. 
Then, Sect. 3.4.2 introduces the modelling framework.

3.4.1  Application Characteristics and Modelling Requirements

A key enabling technology of cloud and edge computing is virtualisation. 
Abstraction of physical resources through containers and virtual machines 
(VMs) enables consolidation of compute capacity and resources (e.g. pro-
cessors, storage, and networks) into software-defined infrastructures 
(SDIs). Such abstraction provides means for automation, scaling, and 
optimisation of resource allocations and resilience to variations in work-
load intensity.

The services that are running in an edge/cloud environment differ 
from the standard centralised cloud deployments. The difference is dic-
tated in the way applications are used, by the infrastructure topology, and 
the infrastructure availability at the network edges. Geo-distributed infra-
structures enable services (applications) to be brought closer to users, 
which increases the data exchange speeds and results in faster content 
delivery to consumers. However, the distributed nature of edge infrastruc-
ture comes with the limitation of physical space and associated limited 
hardware deployment capabilities. Different types of applications require 
different hardware profiles to process user requests. Varying hardware 
properties across distributed infrastructure stacks also require a distributed 
application architecture that is modular enough to adapt to the available 
edge/fog/cloud infrastructure horizontally and vertically.

As part of the application mode, the application topology depicts appli-
cation components that can be deployed as separate entities (containers or 
VMs), and network link connections between them. A simple example of 
such a topology would be a deployment of an application that has a front- 
end web server and a database as two components. The web server can be 
deployed as a separate component on a separate VM or node, or even on 
a different datacentre than the database component, but both of them 
should have a bidirectional data flow connection for data exchange.

Most web applications serve different types of user requests, and to do 
so, different amounts of resources are needed depending on the requests 
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made. For example, a request of streaming video from a content distribution 
network (CDN) would differ from a request to upload video to the ser-
vice. The first request can assume a data download; however, the second 
request requires data upload, resampling, encoding, and other types of 
content analysis and optimisations.

Elasticity is one of the major benefits of virtualised resources. Elasticity 
makes it possible to maintain application QoS by dynamically scaling 
application components based on workload intensity (provided that the 
application architecture caters for it). To take advantage of elastic proper-
ties, application components can be managed by a load balancer that can 
spawn extra parallel application components and redirect user requests to 
evenly distribute the load.

Another vital characteristic in a distributed system is the geolocation 
and content variability within the same type of application. For example, a 
database or a CDN can be distributed across the edge infrastructure, 
where some instances will contain the same type of data, but some will 
not. Depending on data needed to serve a user request, the request needs 
to be routed to an application instance that has these data. Such scenario 
requires additional intelligence in the workload orchestration. From a 
RECAP perspective, it also requires that the application model have a 
notion of data content available within the application component.

All the aforementioned characteristics should be captured and reflected 
in the constructed application models. Specifically, the models should pro-
vide the means to estimate computation, memory, and storage capacity 
requirements of each components, as well as to present and calculate the 
mapping of the applications and application components on the underly-
ing infrastructure. Moreover, they should help identify the type of traffic 
or content delivered to the users at different locations, and estimate the 
service delay for user requests.

3.4.2  Application Modelling Framework

The characteristics of the edge-cloud infrastructure and applications result 
in high complexity when it comes to application modelling. In particular, 
this modelling always has to be done in an application-specific manner. As 
such, it is necessary to have a comprehensive understanding of typical sys-
tems, models, and modelling tools from theoretical and practical perspec-
tive. This section outlines the strategy adopted in the RECAP methodology 
to perform application modelling for each system in its scope.
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Firstly, a literature survey generated a universe of general and common 
architectures of distributed applications including client-server architecture, 
cloudlet, service-oriented architecture, and micro-services. Secondly, desk 
research allowed a comparison of the previously identified architectures 
with those of real large-scale distributed systems/applications and related 
industrial technology standards used for the realisation of operational 
systems. These systems include, for instance, the multi-tier caching system 
of Akamai’s CDN, the operational architecture of Nextflix’s CDN, the 
architectural framework of ETSI NFV, and Service Function Chaining 
(SFC) (Halpern and Pignataro 2015) amongst others.

Thirdly, following the literature survey and desk research, we explored 
mathematical models and tools widely adopted in computing science, such 
as queuing theory, graph theory, and control theory. These have been 
used to model components and the interaction among components and 
are used together to model applications. For instance, a model may be a 
combination of queuing theory, graph theory, and control theory as 
follows:

• Queuing theory is used to model the processing logic of a compo-
nent, e.g. a VNF, a vCache, or a function node (database, data aggre-
gator, balancer).

• Graph theory is used to model the network topology, service func-
tion chain, communications between components.

• Control theory is used to model the control logic of dispatchers, 
balancers, or orchestrators.

Fourthly, we decomposed the application into isolated components and 
analysed the components in detail in order to understand the nature of 
each component as well as how they communicate to each other in the 
whole application. In addition to simplifying the modelling task, this 
helps to identify how components impact each other and to identify the 
bottlenecks within the entire topology. Once all components have been 
modelled, these sub-models can be integrated to form a complete applica-
tion model.

In order to keep the modelling effort manageable, it is further neces-
sary to identify in advance the factors or metrics that should be captured 
in the models in accordance with the requirements of the application. 
That is, an application model always needs to capture business-specific 
constraints and goals and cannot be constructed on a technical level alone.
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3.5  workload modellIng

Besides an application model, an application optimisation engine further 
requires predictions of the amount of work the application shall be able to 
process overall or per zone. This enables proactive optimisation approaches, 
where readjustments do not happen on a best-effort basis upon changing 
workload conditions, but rather anticipate future workload levels and scale 
the applications accordingly.

As discussed in previous chapters, workload analysis and modelling 
focuses on techniques efficiently applied to time series data collected from 
both real production systems and emulating systems. Before being anal-
ysed, original time-series data have gone through a pre-processing step 
(gap filling, smoothing, resampling, etc.). Next, the data flows through 
the two-stage process of workload analysis and workload modelling.

Workload analysis is composed of two main tasks: workload decomposi-
tion (which splits a time-series into the trend, the seasonality, and the 
random factors of the workload data) and workload characterisation 
(which aims to extract workload features as an input and driver of work-
load models). Such workload characterisation is performed by an 
Exploratory Data Analysis (EDA), which is typically a manual step.

With this understanding of key features (metrics) of the workload, it is 
possible to derive which aspects should be considered in modelling, and 
how to effectively construct and evaluate appropriate workload models. 
To perform the modelling task, we adopt different categories of tech-
niques in the RECAP methodology:

• Autoregressive integrated moving average (ARIMA) and seasonal 
ARIMA (SARIMA) models are chosen based on the analysis of the 
autocorrelation functions, partial autocorrelation functions, and 
tests of stationarity (for example, Dickey-Fuller tests).

• The family of autoregressive conditional heteroskedasticity models 
(ARCH, GARCH, NGARCH, etc.) is suited when the assumption is 
fulfilled that the variance of the time series is not constant but still a 
function of previous variances.

• Recursive neural networks and deep neural networks can be used to 
find more complex interactions between past and future requests.

• Long short-term memory neural networks (LSTM) shall be used 
when the aim is to detect if long past requests have a predictive value 
for future requests.
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The models obtained by workload analyses are expected to provide 
forecasting capability. That is, based on them, it shall be possible to gener-
ate future workload predictions at different periods of time and different 
intervals, as required by the application under analysis.

The predictions can be validated through various metrics so as to identify 
the best one for each case, i.e. the one with the smallest errors. Depending 
on the application, different models are required for different prediction 
purposes (online and offline predictions). More specifically, models used 
for offline prediction are expected to provide high accuracy so that the 
results can be used for long-term planning.

In contrast, models used for online prediction additionally focus on low 
execution time besides the accuracy in order to offer short-term predic-
tions in a timely manner. For the latter, it is necessary to evaluate the 
execution time in forecasting of each model and to balance between the 
error level and the execution time. Once selected, a model becomes the 
core of the online predictor component for that application within RECAP.

3.6  model-based aPPlIcatIon oPtImIsatIon

The key challenges of efficiently deploying distributed applications in edge 
and fog computing environments involve determining the optimal 
locations and allocations of resource capacity. This is complicated by the 
inherently varying load conditions of distributed infrastructures. Due to 
the complexity and distinct mathematical formulations of the problems for 
different applications, they are typically treated separately, often with the 
solution of one as input to the other.

3.6.1  Application Autoscaling

In this section, we focus on application load balancing and distribution, 
which can be seen as a special case of holistic application autoscaling (i.e. 
self-scaling of application capacity allocations) given specific workload 
arrival patterns and component placements. To avoid confusion, we use 
different terms for different types of load balancing in distributed, multi- 
tier applications. We denote (1) load balancing between multiple instances 
of one single application component as load balancing, and (2) load bal-
ancing within the entire application to balance the loads distributed to 
different application components as load distribution. This is addressed 
by load transition models that capture how workloads flow through 
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applications in workload models. Principally, RECAP assumes that a 
RECAP-enabled application is designed such that it is capable of making 
use of more instances (scale out) or more resources (scale up).

The RECAP application models describe applications as networks/
graphs of components with interdependencies and constraints in the form 
of network links, quality-of-service requirements, and communication 
patterns. Application components are split into front-end and back-end 
layers (modelling load balancing within components and management of 
component functionality respectively) that can be autoscaled indepen-
dently. Using RECAP application and transition models, application 
workload arrival patterns can be used to derive how load propagates 
through distributed applications, and how the resulting component work-
loads impact the resources (including networks) where component ser-
vices are deployed. Using prediction algorithms allows to provide improved 
performance and proactivity in autoscaling without changing the autoscal-
ing algorithms themselves.

Depending on the application, arrival patterns can be measured from 
instrumented applications or infrastructure, or derived from simulation 
models build on the user (including mobility) models. The value of such 
models lies in the increased understanding of user and system behaviour, 
but also in their potential use for prediction of workload fluctuations in 
predictive scaling algorithms. Overall, RECAP applies the following types 
of autoscaling algorithms:

• Local reactive scaling algorithms (similar to the autoscaling algo-
rithms used in Kubernetes) are used to individually scale component 
front-ends and back-ends. They apply varied degrees of downscaling 
inertia in order to reduce the amount of false positives.

• Global reactive scaling algorithms that predictively evaluate the per-
formance of individual component autoscalers, and selectively apply 
those that maximise application objective functions, and used to 
control back-ends.

• Global proactive algorithms that use short time-frame simulation 
techniques to evaluate application performance for heuristically 
selected subsets for autoscaling actions. This class of algorithms 
shows the greatest autoscaling performance but is also significantly 
slower and resource demanding. This limits its applicability in large- 
scale systems.
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3.6.2  Migration Techniques and Infrastructure Planning 
and Provisioning

In addition to the algorithms described above, which target application 
autoscaling in static deployment scenarios i.e. for deployments that do not 
change during or from autoscaling, RECAP also provides tools and tech-
niques for evaluating and performing migrations of service components at 
run-time. In order to incorporate this functionality in the autoscaling- 
oriented perspective of application optimisation, such migrations can be 
formulated to be part of the autoscaling problem by scaling the amount of 
service instances for a specific component at a specific location in the space 
of [0; n] (when there is no mobility of services and n is a maximum 
instance count). Alternatively, it can be treated as a separate placement 
problem that does not include autoscaling (beyond considering autoscal-
ing limits in the placement process) that is solved independently (either 
before or after the autoscaling).

RECAP explores and exploits both approaches to develop a flexible 
framework for application migration optimisation. The basic building 
blocks of this framework are application autoscaling algorithms, a set of 
heuristic functions that evaluate alternative deployment scenarios (under 
specified autoscaling settings), and an in-situ simulation framework that 
models application communication at message level within the application 
models. The simulation framework essentially uses application and (pre-
dicted) workload models to simulate how workloads will be processed 
under current application deployment and autoscaling settings. Heuristic 
functions are used to identify components and/or resource sites that 
underperform or for some other reason are candidates for reconfiguration, 
and alternative configuration settings are speculatively evaluated by the 
simulator to identify the reconfiguration actions most likely to improve 
application performance the most (according to application heuristics 
and KPIs).

Currently three types of heuristic functions are used for deployment 
cost evaluations:

• Local evaluation functions that build linear combinations of QoS or 
KPI metrics for individual component services or resources,

• Aggregate local evaluation functions that define statistical aggregates 
of local evaluation functions for sets of components (i.e. subsets of 
application components) or resources (e.g. regions of resource 
sites), and
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• Global evaluation functions that operate on application and infra-
structure models to aggregate QoS or KPI evaluation functions for 
all components of an application or large sets of resources.

Evaluation functions are defined as mathematical constructs and can be 
composed to develop utility functions that combine evaluation of both 
applications and infrastructure resources. Using the simulation techniques, 
recommendations for how to change application deployments (in single- 
and multi-tenancy scenarios) and autoscaling constraints can be derived 
from nominal size estimations of component placements and infrastruc-
ture capacities, or conversely component nominal sizes can be included in 
the decisions on the admission of scaled or migrated service instances from 
autoscaling constraints.

3.6.3  Workload Propagation Model

Workload propagation models describe how workload is propagating 
through an application (i.e. between application components), and how a 
fluctuation of workload at a certain component impacts the other ones. 
Such a model can be constructed using workload data collected from all 
the network nodes/locations in every system. Unfortunately, due to the 
size and complexity of large-scale systems, exhaustively collecting such 
data is extremely challenging (Le Duc et al. 2019). Therefore, the mecha-
nisms for workload generation and/or propagation are needed that enable 
the production of workload data for all network nodes using data traces 
collected only from a subset of nodes.

The five workload diffusion algorithms to address this problem are clas-
sified into non-hierarchical and hierarchical diffusion as follows:

 1. Non-hierarchical diffusion—these algorithms perform load 
propagation within networks according to a discrete spatial 
model of how heat is diffused in materials in physics or chemis-
try. They are applicable for controlling data exchange and the 
workload of synchronisation tasks that are carried out by neigh-
bouring network nodes. This also can be extended to cover 
some general cases of unstructured peer-to-peer overlays or ad-
hoc mobile networks.
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 2. Hierarchical diffusion—these algorithms rely on a hierarchical 
network model which slices the network into different layers. In this 
case, the workload propagation is directed through network layers 
from end users down to the core network layers or using prede-
termined routing paths destined to the dedicated service nodes. 
This diffusion technique is applicable for core broadband net-
works and CDNs.

3.6.4  Approach and Realisation

Non-hierarchical diffusion algorithms include population-based, location- 
based, and bandwidth-based algorithms, while hierarchical diffusion 
ones include hierarchy-based and network-routing-based algorithms. This 
section briefly describes the five algorithms including the assumptions, key 
inputs, the main flow, and properties (see Table 3.1). Further details about 
the calculations or formulae used in each task/step of the algorithms can 
be found in RECAP Deliverable 6.2 which can be downloaded at the 
RECAP website. The algorithms were tested with workload data traces 
collected as time series at three inner-core nodes of BT’s CDN; the repre-
sentative metric of the workload in this use case is the traffic generated at 
caches when serving user requests.

3.7  the recaP aPPlIcatIon 
oPtImIsatIon PlatForm

Elasticity is a key function for addressing the problem of reliable resource 
provisioning for edge-cloud applications as it ensures the reliability and 
robustness of the applications regardless of the non-linear fluctuation of 
the workload over time (Östberg et al. 2017; Le Duc et al. 2019). One of 
the key techniques adopted in RECAP to address elasticity and remedia-
tion is autoscaling. By flexibly adjusting the amount of resources allocated 
for applications and/or the number of application instances or compo-
nents, autoscaling enables applications to adapt to workload fluctuations, 
which helps prevent the applications from becoming unresponsive or 
terminating.
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The RECAP system model assumes that applications are dynamically 
distributed, and their behaviours are considerably difficult to predict and 
model. Moreover, each application component may be subject to different 
workloads, and an understanding of workload characteristics is required in 
order to autoscale efficiently. Therefore, workload analysis, modelling, 
and prediction based on time series analysis become the vital factor for the 
efficiency of our solutions, and especially so for the proactive schemes.

For application optimisation, RECAP has created a platform for the 
integration of application optimisers, workload modellers, and workload 
predictors, as shown in Fig. 3.2. The figure also shows how the optimisers 
(autoscalers) utilise the predictors when needed. Predictors, in turn, are 
fed by workload modellers.

By adopting different techniques, for example regression or machine 
learning, a workload modeller can construct multiple workload models. 
For flexibility in system integration, the modellers can be implemented 
using various technologies. The workload models are then wrapped and 
exported as a microservice using a REST API Gateway. On top of model 
services, a set of adapters are built to provide a unification layer. While 
workload models are constructed using historical workload data, they can 
be updated continuously at run-time by the workload modeller. Predictors 
in the platform make use of the adapters in order to access the available 
models and to make their predictions.

Workload
Modeller-1

Time Series Data

Workload
Modeller-2

Workload 
Modeller-N

REST API
Gateway

Model-1
Service 

Model-2
Service 

Model-N
Service 

Model-1
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Model-2
Adapter

Model-N
Adapter

<<interface>>

Adapter
<<interface>>

Predictor

Model-1
Predictor

Model-2
Predictor

Model-N
Predictor… …

…

…

UC-A Application
Optimiser

UC-B Application
Optimiser

UC-C Application
Optimiser

UC-D Application
Optimiser

General Client

Fig. 3.2 A platform for the integration of predictors and modellers
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On top of this platform, robust and efficient approaches for autoscal-
ing are constructed based on the results of workload modelling and 
prediction. Optimisers encapsulating optimisation algorithms and 
application- specific constraints make use of prediction for proactive 
optimisation. Note that an optimiser can call multiple predictors that 
access different models constructed using different techniques. This 
also implies that predictors are developed for every constructed model. 
Such implementation enables the capability of extension when a new 
optimiser (of a new application) or new model (using new techniques) 
is added to the system.

3.8  conclusIon

This chapter introduced the RECAP Application Optimisation approach 
and framework and outlined its the constituent building blocks. The inter-
action of the RECAP models and algorithms developed was further dis-
cussed. The RECAP Application Optimisation Framework addresses 
application placement and autoscaling, and provides models and tools for 
prediction, optimisation, and evaluation of the performance of distributed 
cloud applications deployed in heterogeneous resource environments.
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4.1  IntroductIon

As discussed in Chap. 3, the RECAP Application Optimiser derives initial 
placements from network topologies. These placements utilise applica-
tion, workload, and workload prediction models to derive scaling models, 
which are combined with Machine Learning (ML) tools to produce appli-
cation models and recommendations. So, one might think “given I have 
an application placement recommendation, what does the application 
placement and infrastructure optimiser do?”

Well, put simply, the application optimiser does not have all the requi-
site information to make an optimal decision. When considering an appli-
cation placement decision, one must take into account that typical 
operations perceive a separation of concerns between an application 
provider and an infrastructure provider, the latter typically dealing with 
multiple application provider requests.

In essence, the RECAP Infrastructure Optimiser brings the interests 
and heuristics of the infrastructure provider to bear on the overall place-
ment decision and is tasked with three functions:

 1. Application Placement: the mapping of individual application ser-
vice components to individual infrastructure resources. The focus 
being to identify, traverse, and optimally select from possible 
placements.

 2. Infrastructure Optimisation: focuses on optimising the availability 
and distribution of an optimal number, type, and configuration of 
physical resources, while optimising their utilisation, i.e. “sweating 
the assets”.

 3. Capacity Planning: considers future workloads and decides what 
type of physical resource/node should be placed in the network, 
how many nodes, and where to place them.

The remainder of this chapter is structured as follows. Section 4.2 
briefly outlines the RECAP Infrastructure Optimiser architecture followed 
by the problem formulation for making a more holistic placement optimi-
sation decision. We then present and discuss three different models used 
in the RECAP Infrastructure Optimiser, namely load distribution models, 
infrastructure contextualisation models, and load translation models. 
Finally, we outline the RECAP algorithmic approach for optimal place-
ment selection.

 R. LOOMBA AND K. A. ELLIS
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4.2  HIgH-LeveL ArcHItecture 
of tHe InfrAstructure optImIser

Functionally, the RECAP Infrastructure Optimiser as presented in Loomba 
et al. (2019), can be considered in terms of an “offline infrastructure opti-
misation modelling” process, Fig. 4.1, and an “online infrastructure opti-
miser” implementation, Fig. 4.2.

The offline infrastructure optimisation modelling process and the 
online implementation components/steps are illustrated within the grey 
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boxes in Figs. 4.1 and 4.2, although it should be noted that infrastructure 
optimisation is highly dependent on the veracity of its inputs as depicted 
by the leftmost boxes in Figs. 4.1 and 4.2.

The main steps in the RECAP infrastructure optimisation process are 
outlined in Table 4.1 below.

4.3  probLem formuLAtIon

The application placement and infrastructure optimisation challenge is 
threefold, i.e. how to:

• Optimally match the requirements of components, e.g. VMs to 
physical resources

• Adhere to SLAs negotiated between the infrastructure and applica-
tion providers

• And when to instantiate the virtual components relative to the 
required capacity

Each challenge is composed of several subchallenges, including but not 
limited to determining the optimal abstraction of components and 
resources, defining the objectives that bound the placement, and identifying 
a common means to compare deployment solutions. This may, in fact, 
involve multiple-competing objectives; hence, there must be a trade-off.

Current literature suggests stochastic bin-packing method (Jin et  al. 
2012), approximation algorithms (Meng et  al. 2010), and a variety of 
other heuristics (Li et al. 2014) with focus on specific resources or objec-
tives, e.g. resource usage, and power and thermal dissipation (Xu and 
Fortes 2010). However, often commercial and open source orchestration 
solutions schedule either pessimistically to avoid conflicts or opportunisti-
cally to gain from potential Total Cost of Ownership (TCO) benefits.

4.3.1  Infrastructure

Deploying applications or component instances as VMs or application 
containers, requires a rich understanding of the heterogeneity and state of 
the underlying infrastructure. This is mainly because the application work-
loads might be computation-, storage-, or network intensive. With respect 
to infrastructure, the requisite information is represented as a multi- 
layered graph of the physical and logical topology called a “landscape” 

 R. LOOMBA AND K. A. ELLIS
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Table 4.1 Steps in the RECAP infrastructure optimisation process

Step 
No.

Step title Description

1 Input 
collection

Manages the data ingress of inputs and is essentially the same for 
offline modelling and the online implementation; what changes is 
the context. Inputs include:
•  Composition and structure of infrastructure available, i.e. 

landscape
•  Composition and structure of the application (e.g. application 

model and load distributions)
•  Associated telemetry data, e.g. from testbed or system of 

interest
•  Infrastructure provider and service/application provider KPIs

2 Modelling 
and/or 
selection

Creates/utilises models primarily in the offline mode to produce 
outputs that are subsequently codified within the online optimiser.
(2a) Combines telemetry with an infrastructure landscape and 
filters as appropriate based on relevant KPIs. The process is the 
same for offline and online, only the context changes.
Offline (2b) creates application load translation models, which 
map how application load correlates to resources, associated 
telemetry and/or KPIs. Online this step more simply involves 
appropriate selection of a subset of “application load to physical 
capacity mappings” from those modelled offline.
Offline (2c) utilises KPIs and Multi-Attribute Utility Theory 
(MAUT) to formulate Utility Functions for application and 
infrastructure providers. Online this step selects a subset of utility 
functions from those previously formulated offline.

3 Modelling/
selection 
output

Offline (3a) represents a consolidated infrastructure model, i.e. a 
testbed specific landscape that feeds the “load translation 
modelling” process. Online this is the use-case-specific landscape 
and is fed directly to the algorithm module step 4.
Offline (3b) encompasses the complete set of possible “application 
load to physical capacity mappings” based on the testbed inputs. 
Online it is an appropriate subset of those modelled offline based 
on the use case inputs.
Offline (3c) is the complete set of possible “Utility Functions”. 
Online it is an appropriate subset based on the given use case.

4 Algorithmic 
optimisation

This step is illustrated in Fig. 4.2 and takes (3a) and (3b) as inputs. 
The algorithm subsequently provides several valid solutions, over 
which the utility functions selected in step (3c) are applied to 
select a near-optimal option. The output of step 4 is a real-time 
application placement or a future infrastructure optimisation.
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(Metsch et al. 2015). This landscape is built utilising the Neo4J database. 
It is primarily a graph describing a computing infrastructure, that also 
details what software stacks are running on what virtual infrastructure, and 
what virtual infrastructure is running on what physical infrastructure. The 
data within a landscape is collected via collectors and event listeners. 
Collectors are provided for physical hardware information (via the hwloc 
and cpuinfo files) and for OpenStack environments.

This rich representation helps to understand the capability of the infra-
structure. It is mathematically quantified as a landscape graph G = ( N ∗, E ∗) 
where N ∗  is the superset of all nodes of all geographical sites indicating 
resources such as CPU cores, processing units, and switches and E ∗ is the 
superset of all links between them, which might be communication links 
or links showing a relationship between two nodes.

Although this granularity of information is required, it increases the 
complexity of problem in terms of possible placement combinations and 
adds additional dimensions. For example, instead of determining at the 
aggregate server level, one must determine the cores, the processor bus, 
and the processing units involved in the mapping. As such, for simplicity, 
the landscape graph is abstracted in this initial formulation into a contex-
tualised landscape graph G1 = (X, E) where X ⊂ N∗ and set E ⊂ E ∗ con-
taining only two categories of node, namely network and compute. Set X 
is a collection of nodes with a compute or network category and Set E is 
the set of all links connecting these nodes. This abstraction defines a net-
work node to be of type, e.g. nic, vnic, switch, router or SRIOV channel. 
A compute node is defined as a resource aggregate of a given type, e.g. 
machine or virtual machine and is created by collapsing the properties of 
the individual compute, memory, and storage entities directly connected 
and contained within the node. This helps isolate the two categories of 
nodes while storing pertinent information regarding the other categories.

Building on work and experience of the Superfluidity project 
(Superfluidity Consortium 2017), these nodes also contain attributes 
which quantify their capacity. This is represented in a vector format as vx 
for node x along with telemetry information regarding utilisation (the 
average percentage of times a resource is deemed to be “busy” over a pre-
defined time window for the given resource), saturation (the average per-
centage of times a resource has been assigned more tasks than it can 
currently complete), cost models, etc. The superscripts c,  m, n, and s 
denote compute, memory, network, and storage category values respec-
tively. The compute node ς  has capacity vx =  v v vx

c
x
m

x
s, ,  where vx

c  
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represents the number of cores and vx
m  the amount of free or unused 

RAM from the total installed on the resource aggregate, and vx
s  represents 

disk size. A network node n  has a 2-tuple capacity vector vx =  
∗v vx

n ,
calculated based on its available bandwidth vn and available 
connections v∗.

Furthermore, for physical communication link e ∈ E representing the 
graph edge, link attributes are added including geographical distance 
len(e) and measured or observed throughput τe and latency le normalised 
for time δt, just before any application placement decision is made. Values 
such as Be for maximum bandwidth and associated rate Re

b  for a unit of 
bandwidth are also included in the infrastructure graph G1.

4.3.2  Application

The application to be deployed is itself described as a service request, com-
posed of either multiple connected service components in the form of 
service function chains (SFC), or disjointed service components, which 
need to be placed together. Using the definitions presented in (RECAP 
Consortium 2018), the application is represented in a service request 
graph G2 = (Z, F) with nodes represented by set Z and graph edges by set 
F. For this model, the nodes are further categorised similar to the method 
described above into either compute or network nodes and are termed as 
request nodes and request graph edges as they represent the service 
request.

4.3.3  Mapping Applications to Infrastructure

Each service component of the service request graph G2 is then mapped 
on to infrastructure resources and links in graph G1. This mapping is com-
posed of a subset of nodes and graph edges of graph G1, and as such it is 
important to first define the rules of such a mapping. This is represented 
in Fig. 4.3.

The nodes in graph G2 are defined as a 1:1 mapping with resource 
nodes, defined by the set of infrastructure nodes Y. This set Y ⊂ X con-
tains all compute and network nodes which have a service component 
mapped to them. This is also quantified as z → y where request node z ∈ Z 
is mapped to resource node y ∈ Y, also ensuring that Z ≅ Y. There is also 
a 1:N mapping for the graph edges as they get mapped to a set of 
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communication links also indicating a physical network path. This is 
defined as graph edge f ∈ F being mapped to the set of communication 
links or path g, which is a subset of all possible paths in the infrastructure 
graph, also quantified as f → g. These definitions describe a possible place-
ment solution, denoted by G2 → G1, which may or may not fulfil the cri-
terion of an optimal mapping.

4.3.4  Mapping Constraints

The RECAP Infrastructure Optimiser’s objective is to identify an optimal 
mapping, and this requires the analysis of several constraints. A subset of 
the most relevant constrains to be considered for an infrastructure resource 
request model along with its associated policies is presented here. 
These include the capacity requirement, compositional, SLA, and 
infrastructure- policies constraints.

Fig. 4.3 Mapping a service request graph and a contextualised landscape graph
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4.3.4.1  Capacity Requirement Constraint
This constraint defines the capacity, specified in terms of compute, 
memory, network and/or storage capacity that must be available on the 
resources and edges that are intrinsically part of the mapping. For the 
initial formulation, this capacity is considered static during the duration of 
the application deployment.

For compute, this includes request information from the application for 
customised virtual compute flavours, related to the software image and the 
number of requested cores. Additionally, details on acceleration capabili-
ties, CPU architecture, or clock frequency requests may also be included. 
For memory, this specifies the amount of virtual memory that needs to be 
allocated to the request node, and also includes details on whether Non- 
Uniform Memory Access (NUMA) support is required. For network, this 
includes request information on the required network bandwidth, the 
requested network interface (e.g. normal virtual NIC vs. SR-IOV) and 
additional acceleration capabilities. For storage, this includes request 
information on the required storage size, type of storage (e.g. SSD vs. 
HDD), and redundancy level (i.e. RAID).

In this scenario, it is imperative to remember that since the request 
edge is mapped to a set of communication links or a physical path, the 
aggregated bandwidth and aggregated latency of all edges that are a part 
of this physical path must meet the requirement. There are a number of 
reasons why this requirement must be met including propagation delay, 
serialisation, data protocols, routing and switching, and queuing and buff-
ering. Of these, the most significant ones are the propagation delays and 
the queuing delays. Since the network devices are considered in the model, 
the saturation value of the nodes on the physical path are summed to get 
the queuing latency, and the aggregation of the bandwidth and propaga-
tion latency are quantified as follows.

• The aggregated bandwidth of the physical path is the minimum 
observed throughput of all edges in the physical path. 
Mathematically, bg =

∈
min
e g eτ

• The aggregated latency of the physical path is the summation of the 
propagation latency in the physical path. Mathematically, lg =

∈
∑
e g

el

4.3.4.2  Compositional Constraint
Compositional constraint defines any rules that explicitly dictate the com-
position of the mapping at different levels of granularity such as resource 
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types (e.g. compute and network), resource groups (e.g. a set of compute 
resources), or resource zones (e.g. a set of machines deployed at a particu-
lar location). At each level of granularity, the constraint can be further 
quantified as being affinity (“same” or “share”) or anti-affinity specific 
(“not-same” or “not-share”). These dictates whether resources “share” 
the “same” physical resource, set of resources, properties or zones, or not.

The first example of such a constraint is the resource type mapping 
constraint; e.g. a virtual CPU (vCPU) must be mapped to a CPU or a 
virtual network interface (vNIC) must be mapped to a port of physical 
network interface (NIC). These are necessary since the network interface 
to which the vNIC is mapped needs to be on the same server as the CPU 
host, whereas depending on the configuration of the infrastructure and 
level of redundancy, the virtual storage component or disk can be mapped 
to a remote storage disk or to the local storage. Additionally, physical 
memory banks connected to the physical core allocated to the request 
deliver different performance in comparison to allocating memory banks 
connected to other physical cores.

4.3.4.3  Service Level Agreement Constraint
This constraint relates to specific customer service requirements and cov-
ers information regarding the scheduling prioritisation of individual ser-
vice customers and application instances, as well as control policies to be 
enforced to pre-emptively suspend/kill other currently deployed services 
by the same or a different service customer.

This is modelled by defining a set of SLAs denoted by set S, negotiated 
between the infrastructure provider and the service provider/customer. 
The infrastructure provider creates and offers more than one SLA tem-
plate. These are arranged in a hierarchical manner, with each level relating 
to a specific “type” of SLA such as “platinum”, “gold” or “silver”. Each 
template s ∈  S  is associated with one type that defines its rate Rs, the 
threshold of service level KPIs required by the customer for that template, 
the unit cost of SLA violations j ∈ Js for each KPI, and the list of failure- 
tolerant implementations h ∈ H that need to be made by the resource 
provider.

The customer selects the setting they want within the chosen SLA tem-
plate and can select more than one SLA for different applications. This 
becomes the agreed SLA for the application for the customer and is 
included as a customer request. As such, it also includes the total run-time 
(in hours) for the application instance Tr and other constraints that the 
customer requests.
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4.3.4.4  Infrastructure-Policies Constraint
Apart from scheduling prioritisation, it is also important for the resource 
provider to define policies and control protocols for the management of 
the infrastructure. These constraints include resource allocation prioritisa-
tion and allocation ratios.

The resource provider can prioritise certain resource types or groups, 
based on either their cost or performance. These resource groups can also 
be associated with a particular SLA template and with allocation restricted 
in certain situations. Also, policies related to overprovisioning of resources 
need to be defined by the resource provider. This controls the ratio of 
allocating virtual resources to the physical resource and may differ by cat-
egory of resource and specific use case. Additionally, it includes the mini-
mum and maximum capacity that is allocated to one instance over the 
entire run-time of the application instance, if any.

4.4  modeLs tHAt Inform InfrAstructure 
optImIsAtIon decIsIons

As discussed earlier, three models are used in the RECAP Optimisation 
Framework to inform optimisation decisions—load distribution models, 
infrastructure contextualisation models, and load translation models. As 
load distribution models have been discussed earlier in Chap. 3, we will 
focus on infrastructure contextualisation models and load translation 
models here.

4.4.1  Infrastructure contextualisation models

While “the map is seldom the territory”, a good map invariably helps. As 
discussed earlier, the “infrastructure representation (landscape)” is an 
important input to the RECAP Infrastructure Optimiser and aims to pro-
vide a rich representation of the resource composition, configuration, and 
topology of the various entities in the cloud/edge infrastructure, across 
three layers—physical, virtual, and service. However, a landscape for a 
given scenario may not have all the requisite data expected (e.g. geograph-
ical and capacity), or it may be too rich having redundant information 
irrelevant to the specific use case. Additionally, it will not have telemetry 
data needed to support the optimisation process, e.g. current utilisation. 
Furthermore, if granularity of the infrastructural information is increased, 
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multiple different mappings need to be considered, increasing the com-
plexity of the NP-hard problem.

To address this issue, a “contextualised modelling process” 
(Figs.  4.1(2a)/4.2(2a)) is undertaken so as to produce a “consoli-
dated infrastructure model” (Figs. 4.1(3a) and 4.2(3a)). This process 
may augment and/or filter the landscape input, adding telemetry, e.g. 
resource utilisation, KPIs (perhaps to filter), and important platform 
features identified for the individual use cases. But assuming the land-
scape provided meets the requirements of the optimiser, the only addi-
tion for creation of the consolidated model is telemetry, plus any 
required filtering based on appropriate KPIs. The type of information 
encapsulated in the consolidated model is illustrated by way of the fol-
lowing brief example. Figure 4.4 represents the network topology for 
the city of Umeå, Sweden.

The contextualised infrastructure model for such a network includes:

Fig. 4.4 Overview of Umeå network topology (site routers only)
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• The definition of resource sites (e.g. MSAN and Metro), i.e. informa-
tion pertaining to individual physical infrastructure elements, their 
physical attributes, and configurations, the communication links 
between them, and the properties inherent to these links.

• The definition of inter-site network bandwidth and latency, i.e. the 
available network bandwidth and latency values of the physical com-
munication links between resource sites.

The output of this process is a representative graph of the network 
landscape. At a more granular level, Fig. 4.5 below shows the modelled 
communication links across the tiers for just one resource site T21, as 
presented by the Neo4J database.

4.4.2  Load Translation Models

Given a good understanding of the physical infrastructure, one must then 
consider the applications that are to be optimally deployed. In that regard 
and building on Chap. 3, load translation models serve to:

 1. Quantify the association between virtual machine/container con-
figurations and specific infrastructure configurations, and

 2. Determine the lower and upper bounds on resource consumption in 
relation to varied application performance KPIs.

The RECAP load translation models are designed to be generally 
applicable to distributed application deployments and cloud/edge 

Fig. 4.5 Representation of a subgraph of contextualised network landscape
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infrastructures. The methodology presented here focuses on mapping the 
virtual workload of individual service components to a set of prioritised 
time series data-points, i.e. telemetry collected from the physical infra-
structure components. The correlation of service components and telem-
etry informs an offline modelling process that builds insights about 
application placement and related performance of deployed components. 
These insights which are then available to the online optimiser.

RECAP experimentation highlighted how understanding the profile 
mix of infrastructure features coupled with the different service compo-
nents, e.g. Virtual Network Functions (VNFs) deployed on the infrastruc-
ture impacts the efficient usage and distribution of physical resources, i.e. 
compute, memory, network, and storage.

The RECAP load translation methodology is illustrated in Fig. 4.6.
The methodology begins with understanding the following inputs:

• Infrastructure Information: It is important to understand the tes-
tbed/experimentation set-up and to understand its limitations, espe-
cially those relating to the heterogeneity of available server 
configurations. This helps define the information on the infrastruc-
ture, e.g. physical machine, virtual machine and container configura-
tions, total number of machines, and their connections.

• Associated Telemetry Data: A telemetry agent is initialised to col-
lect data over multiple domains, e.g. compute, network, storage, and 
memory. All incoming data from these metrics are aggregated and 
normalised based on the domain context and studied as time 
series data.

• Virtual Machine Configurations: The application to be placed on 
these machines needs to be understood, how many instances and 
types of instances can be run, whether they are deployed as service- 
chain or disjoint VMs/containers, along with the various configura-
tions of these VMs/containers. This information is typically provided 
via the application optimiser.

• End-User Metadata: The end-user behaviour to be emulated is 
determined based upon use case definitions and validation scenarios, 
and this specifies how users will access the applications, how many 
users will be initialised, how the number of users will increase/
decrease, and how different user behaviours will be simulated in 
the testbed.
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These four inputs are then used to define the context of experiments 
that have to be run which are based on, for example, the duration of each 
experimental run; the prioritisation of configurations; application instances 
and end-user workloads that will be varied; and the number, type, and 
behaviour of users that will be applied for each experiment, as well as the 
number of times the same experimental set-up will be replicated for redun-
dancy purposes. This helps define a set of profiles that are given to the load 
translation model to assess and analyse.

Once the experimental data is available and the experiment defined, the 
following data analysis steps are undertaken:

Associated
Telemetry Data

Virtual Machine 
Configurations

Data Wrangling
and Clean Up

Data Filtering

End-User
Meta Data

Infrastructure
Information

Data Analysis
and Validation

Experiment
Definition

Fig. 4.6 The load translation methodology in full
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• Data Wrangling: The collected data is isolated and labelled appro-
priately according to experimentally relevant timestamps.

• Data Filtering: Files are filtered and integrated as appropriate for 
comparison.

• Data Visualisation and Analysis: Visualisation and analysis are 
completed for each defined experiment. The appropriate metrics are 
defined and calculated per machine/VM/container as well as device 
names, e.g. for network interfaces and storage devices attached to 
the physical machine. The results are then summarised and are visu-
alised as a comparison between the average usage for compute, 
memory, network, and storage resources.

For illustration purposes, Fig. 4.7 shows compute utilisation for two 
machines (compute-1 and compute-3) for the different VNF placement 
profiles of Use-Case A, normalised given the number of cores of each 
machine. This type of analysis provides an initial and basic understanding 
of the relation between the workload, application, and infrastructure. But 
as more and more data gets collected and analysed, the accuracy of the 
normalisation across experiments, quantification of the relationship, and 
formulation of the mathematical equation for same increases. The results 
of this process are collated as a complete set of mappings to be used for 
specific use case optimisations.

Completing this may still seem relatively straightforward until one con-
siders the different KPIs, constraints, complexity, and scale to be addressed. 
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Given such scale and complexity, understanding, traversing, and promptly 
selecting from such nuanced options at scale must be mathematically 
derived and programmatically implemented, and this is the task of the 
algorithmic approach discussed next.

4.5  ALgorItHmIc ApproAcH to optImAL seLectIon

It should be apparent that application placement and infrastructure opti-
misation is highly dependent on the veracity of inputs received and that 
the optimiser is a collective of components and models coupled with the 
algorithmic approach applied to the output of those models, not just an 
algorithm. As such, this section describes (1) the utility functions, and (2) 
the evolutionary algorithm used in the RECAP Infrastructure Optimiser. 
The former is used as a uniform mathematical framework to normalise 
business objectives to compare possible placements identified by the algo-
rithm. The latter was chosen for its appropriateness in quickly identifying 
and selecting near-optimal placement options.

4.5.1  Utility Functions

Previously the application placement problem was defined as optimally 
matching service requests to the capabilities of available resources, instan-
tiating these components with the required capacity, and finally meeting 
SLAs between the resource and application providers. This transforms the 
problem into iteratively mapping individual service components on to 
various available infrastructural resources while meeting the constraints 
defined above. Solving this, presents many possible placement solutions 
out of which the optimal solution needs to be selected. Moreover, the 
number of possible solutions increases with growing sizes of application/
service requests and infrastructure, further increasing the complexity.

Determining the optimal solution is thus intrinsically challenging as it 
entails comparing deployments based on their benefits to either the pro-
vider or the service customer over a large solution space in both time and 
space. Furthermore, distinct yet complementary objectives and constraints 
must be handled, and trade-offs made. These objectives are often in differ-
ent scales, ranges, and units, and need to be normalised into a common 
reference space.

Enter “Utility Functions”, a key mechanism enabling analysis across 
varied objectives for different placement options and focused on 
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understanding the “reward” that is acquired per objective. Loomba et al. 
(2017) quantified these benefits as two utility functions, one for the 
resource provider denoted as UP  and one for the service customer denoted 
as Uc. These objectives are classified as being Provider-centric and 
Customer-centric, in Fig. 4.8.

 1. Provider-centric Objectives: These objectives relate to the 
resource provider and deal with the management of the entire 
infrastructure. Key objectives include:
• Gross Profit: This objective includes calculated revenue and 

expenditure costs for resource capacity allocated, cost of 
 associated SLAs and SLA violations, and other costs of concern 
to the infrastructure provider.

Fig. 4.8 Provider-centric vs customer-centric attributes (Loomba et al. 2017)
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• Service Distribution: This objective includes the analysis of avail-
able capacity of resources after the application deployment.

 2. Customer-centric Objectives: These objectives relate to the service 
customer, quantifying Quality of Experience (QoE) as well as 
Quality- of-Service (QoS). These also help reason over the goodness 
of a placement decision and key objectives include:
• Throughput: This objective includes the quantification of 

observed throughput over all physical links in the physical net-
work, along with the analysis of dropped packets.

• Latency: This objective includes the quantification of observed 
latency over all edges in the physical network, along with the anal-
ysis of packet delays.

This approach is extended in the RECAP methodology to consider 
enhanced constraints and use case definitions in defining a combined util-
ity function that negotiates trade-offs between these two utility functions. 
This combined utility incorporated the preferences and priorities of the 
various use case business objectives and was evaluated using the Multi- 
Attribute Utility Theory (MAUT).

In this formulation, a multiplicative function is used to capture the 
interdependence of k conditional utilities for each attribute ai ∈ . Here 
  = ∪ = … …{ }1 2 1a a ai K , with k ≥ 2 is the set of all objectives under 
consideration with subset 1 containing all provider-centric objectives 
and subset 2  containing all customer-centric objectives. For each of 
these conditional utilities, αk indicates weight or a priority value of the 
objective while βk is an additive weight that stores dependence on other 
objectives.

 
U f a aP i i i i= ( ) +( ) ∈α β· ,U Awhere 1  

 
U f a aC i i i i= ( ) +( ) ∈α β· ,U Awhere 2  

By assigning prioritisation weights to the provider utility and customer 
utility, the total utility of the placement can be calculated. These weights 
must be modifiable as they bias the selection of the placement solution. 
The total utility of the deployment with w1 weight to the provider utility 
and w2 weight to the customer utility can thus be defined as a weighted 
summation of the inputs. The optimisation function is then defined to 
maximise the total utility of the placement, considering minimum and 
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maximum thresholds for the provider utility and customer utility. This is 
designed to facilitate graceful expansion to accommodate any variables/
parameters outside the scope of the current formulation or that gain 
importance to the use case owner following this analysis. The optimisation 
function is represented as follows:

 Maximise : • •w U w UP C1 2+  

Subject to:

 1. min max
threshold threshold

U U UP P P( ) ≤ ≤ ( )  

 2.  min max
threshold threshold

U U UC C C( ) ≤ ≤ ( )  

These use case specific utility functions thus ensure that the optimiser 
can adapt and reason over placement decisions even when business objec-
tive weights or priorities are changed.

4.5.2  Algorithms for Infrastructure Optimisation 
and Application Placement

While utility functions provide a mathematical framework for comparison, 
an initial challenge exists in being able to quickly select a subset of optimal 
solutions from the large number of possible deployment solutions for 
comparison.

In addressing this challenge, a stochastic evolutionary algorithm was 
selected. Its appropriateness relates to its incorporation of enough ran-
domness and control to support decision making even for functions lack-
ing continuity, derivatives, linearity, or other features.

Additionally, its ability to exploit historical information makes the algo-
rithm much more efficient and powerful in comparison to exhaustive and 
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random search techniques. Its advantages further include the ability to 
isolate a set of “good” solutions instead of just one, the possibility of par-
allelisation to improve efficiency and the support for multi-objective 
problems.

The algorithm calculates the optimal solution(s) in an admissible region 
for this combinatorically complex problem, which otherwise could not be 
solved by polynomial time. The optimality of the solution is based on its 
quality criterion called the “fitness function” and is represented as fG G2 1→

for the deployment solution G2 → G1. This value is composed of the fitness 
of the individual mapping, based on the constraint definitions presented 
above. In the given application placement scenario, the objective of the 
algorithm is min ,f x G GG G2 1 2 1→ ∀ ∈ →[ ]  to ensure fast convergence for 
solutions that do not meet the required constraints. The output of the 
algorithm is thus the placement solution (or set of placement solutions) 
with minimum fitness or with fitness tending to zero (whichever is lower).

An overview of the algorithm is outlined in Fig. 4.9 and the accompa-
nying text:

The set of possible placement solutions represents a “population”, 
where each of these solutions is a “candidate” for the algorithm. The indi-
vidual mappings in the placement solution are treated as “genes” (e.g. the 
mapping of a service component to an infrastructure resource).

Initialization Termination

Evaluation

Evolution

Cut-Off

Cross-OverMutation

Fig. 4.9 Representation of the evolutionary algorithm
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Initialisation: The algorithm is defined by a set of placement solutions 
or a set of candidates, which defines the current “population”. These can-
didates can be arbitrarily chosen or can be based on prior knowledge from 
the use case to encompass a wide range of solutions. This is essential as 
with many different mappings from the placement solutions or “genes” 
present, it becomes easier to explore several different possibilities during 
the algorithm.

Evaluation: Each candidate in the population is evaluated according to 
the defined fitness function which numerically represents the viability of 
the solution. Thus, the next step is to eliminate the portion of the popula-
tion with worse fitness values. The population now contains fitter “genes” 
or those mappings that fulfil defined placement criterion and have low 
fitness values.

Evolution: This step involves two main operations, mutation and 
cross-over. Both these operations are probabilistic and are used to create 
the next population from the remaining candidates.

• Mutation is used to introduce new candidates in the population by 
spontaneously changing one gene. In RECAP, this means that mul-
tiple mappings within a possible placement solution are swapped to 
create a new possible placement solution.

• Cross-over creates a mix of the available genes in the population by 
merging the genes from two candidates. In RECAP, this means that 
two mappings of different service components are taken from two 
different possible placement solutions and combined to create a new 
possible placement.

In either case, the resulting candidate may have better or worse fitness 
than existing members.

Termination: The algorithm ends in two cases. First after 30 iterations 
of the algorithm, for statistical accuracy and the second when it has found 
deployment solutions with fitness value equal to zero. All identified solu-
tions are returned and evaluated and the solution with highest total utility 
is selected.
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4.6  concLusIon

The RECAP Infrastructure Optimiser and the RECAP Application 
Optimiser are interdependent components in the RECAP ecosystem. The 
RECAP Application Optimiser does not have all the requisite information 
for an optimal decision, especially when considering that the typical mode 
of operation perceives a separation of concerns between the application 
and infrastructure providers. Therefore, the RECAP Infrastructure 
Optimiser adds value by augmenting the application optimisation with 
additional infrastructure-specific information that can encompass the busi-
ness objectives of both application and infrastructure providers.

In this chapter, we detailed the infrastructure optimisation architecture 
tasked with establishing this more holistic optimisation recommendation. 
Section 4.3 outlined the problem formulation describing the varied and 
detailed inputs required for optimisation that must be mathematically and 
programmatically described and traversed, including infrastructural com-
ponents, the application, and constraints to optimisation. This was fol-
lowed by a description of the models that inform optimisation, and the 
evolutionary algorithm and utility functions used to mathematically and 
programmatically select from sub-optimal solutions.

The value in the described approach is difficult to articulate and visual-
ise. When one considers the size and complexity of modern hyperscale 
architecture, it is apparent that such a granular, mathematical, and pro-
grammatically implementable approach is required in order to extract 
value from the nuanced and humanly incomprehensible myriad of avail-
able options.
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Abstract As growth and adoption of the Internet of Things continue to 
accelerate, cloud infrastructure and communication service providers 
(CSPs) need to assure the efficient performance of their services while 
meeting the Quality of Service (QoS) requirements of their customers and 
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their end users, while maintaining or ideally reducing costs. To do this, 
testing and service quality assurance are essential. Notwithstanding this, 
the size and complexity of modern infrastructures make real-time testing 
and experimentation difficult, time-consuming, and costly. The RECAP 
Simulation Framework offers cloud and communication service providers 
an alternative solution while retaining accuracy and verisimilitude. It com-
prises two simulation approaches, Discrete Event Simulation (DES) and 
Discrete Time Simulation (DTS). It provides information about optimal 
virtual cache placements, resource handling and remediation of the sys-
tem, optimal request servicing, and finally, optimal distribution of requests 
and resource adjustment, with the goal to increase performance and con-
currently decrease power consumption of the system.

Keywords Simulation • Discrete event simulation • Discrete time 
simulation • Resource allocation • Capacity planning • CloudSim • 
CloudLightning Simulator • Distributed clouds

5.1  IntroductIon

In this chapter, an overview of the RECAP Simulation Framework which 
comprises two different simulation approaches is outlined and discussed—
Discrete Event Simulation (DES) and Discrete Time Simulation (DTS). 
The RECAP Simulation Framework offers two approaches to recognise 
the characteristics, requirements, and constraints of cloud and 
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communication service providers. As such, the RECAP Simulation 
Framework offers a solution for (1) SMEs and large hyperscale cloud and 
network operators, and (2) providers requiring rapid less-detailed simula-
tion results and those requiring a more-detailed simulation.

DES focuses on aggregating each incoming request in the form of 
events, regarding their entry timestamp, and usually in a pipelined man-
ner. These events are stored in an initialised list of tasks, retained in mem-
ory and augmented with each incoming task. In order to accommodate all 
this information, the required resources and especially memory require-
ments are significant and large. Thus, DES is suitable for simulating 
smaller and intensively detailed scenarios, in order to maintain accuracy at 
high levels. DTS on the other hand provides the potential to simulate 
larger scenarios with its ability to scale up significantly. This is feasible due 
to the fact that DTS does not need precomputation and storage of future 
events; it uses a time-advancing loop, where the requests are entering the 
system in respective time steps during the simulation. This results in a 
significant reduction in memory requirements, providing significant 
improvements in the ability to scale up the simulation. DTS does not offer 
the level of detail of DES, but it can be a useful and accurate tool for simu-
lating real large-scale scenarios, while maintaining resource consumption 
on reasonable levels.

In this chapter, a high-level overview of the RECAP Simulation 
Framework is presented and discussed. This is followed by a brief overview 
of the RECAP DES framework, followed by a short case study illustrating 
its applicability for cloud infrastructure and network management. Then, 
the RECAP DTS framework is presented with a short case study illustrat-
ing its applicability for simulating virtual content distribution networks.

5.2  HIgH-LeveL conceptuaL overvIew 
of tHe recap SImuLatIon framework

The RECAP Simulation Framework facilitates reproducible and control-
lable experiments to support the identification of targets for the deploy-
ment of software components and optimising deployment choices before 
actual deployment in a real cloud environment. It was designed specifically 
to simulate distributed cloud application behaviours and to emulate data 
centre and network systems across the cloud-to-thing continuum.

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM 
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Figure 5.1 presents a high-level conceptual overview of the RECAP 
simulation framework comprising the following components: Simulation 
Experiment Models, Application Programming Interface (API), 
Simulation Manager, and Model Mappers for DES and DTS simulators.

The system monitoring data obtained from the RECAP Data Analytics 
Framework (presented in Chap. 2) are used to compile the Simulation 
Experiment Models:

• Application Model: represents the application components and their 
connections and behaviour, i.e. application load propagation and 
operational model;

• Infrastructure Model: describes the physical infrastructure (network 
topology and (physical and virtual) machines’ configurations) where 
the application will be hosted;

• Workload Model: describes how the workload generated by the users 
is distributed and processed by the application components; and,

• Experiment Configuration: where the simulation user configures the 
simulation parameters, such as simulation time, simulation time step, 
log files, and input files.
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The RECAP Optimisation Framework makes use of the RECAP 
Simulation Framework to evaluate different application deployments and 
infrastructure management alternatives in terms of cost, energy, resource 
allocation, and utilisation, before actuating on real application deploy-
ments. This integration is done through an API that receives the models, 
the experiment configuration, and the set of simulation scenarios, and 
sends them to a web-based REST API. Depending on the type of API call, 
the experiment is forwarded to the RECAP DES or DTS simulator. Once 
simulation is completed the results can be accessed from the chosen stor-
age method, e.g. local CSV files or a database.

5.3  dIScrete event SImuLatIon

5.3.1  Overview

Discrete Event Simulation (DES) is a system modelling concept wherein 
the operation of a system is modelled as a chronological sequence of events 
(Law et al. 2000). DES-based decision support processes can be divided 
into three main phases: modelling, simulation, and finally, results analysis. 
During the modelling phase, a simulated system is defined by grouping 
interacting entities that serve a particular purpose together into a model. 
Once the representative system models are created, the simulation engine 
orchestrates a time-based event queue, where each event is admitted to the 
defined system model in sequence. An event represents actions happening 
in the system during operation time. Depending on the event type, the 
system reaction is simulated, and associated metrics captured. These met-
rics are collected at the end of the simulation for results analysis. Therefore, 
system behaviour can be examined under different conditions. Using DES 
is beneficial in a complex real non-deterministic small-to- medium-sized 
system environment (SME) where the system definition using mathemati-
cal equations may no longer be a feasible option (Idziorek 2010).

5.3.2  The RECAP DES Framework

The RECAP DES Framework captures system configurations by using 
Version 3 of the Google Protocol Buffers technology.1 This 
implementation approach was chosen to ensure model schema would 

1 https://developers.google.com/protocol-buffers/

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM 

https://developers.google.com/protocol-buffers/


98

remain programming language-neutral allowing serialised models to be 
used across multiple language platforms such as Java, C++, C#, or Python. 
In addition, Protocol Buffers are simple and faster to use and are smaller 
in size compared to XML or JSON notations. Speed and file size of the 
model are important when dealing with large-scale systems by managing 
the memory footprint of simulation framework and sending data over a 
RESTful web API client.

As shown in Fig. 5.2, the RECAP DES simulator root element is the 
Experiment class which contains nested system models, the name identifier 
of the simulation experiment, and its parameters used by the simulation 
engine, i.e. Duration, Granularity, PlacementPolicy, ConsolidationPolicy, 

Fig. 5.2 DES simulation model data format (inputs)

 M. SPANOPOULOS-KARALEXIDIS ET AL.



99

AutoScalingPolicy and RequestRoutingPolicy. The Duration parameter 
defines the length of the simulation experiment in simulated time while 
the Granularity is a multiplier for the number of requests represented by 
a single simulation event. Placement, consolidation autoscaling, and 
request routing policies are optional attributes which specify the name of 
any resource management policies which can be integrated within the 
simulator. In addition, the Experiment class contains nested Infrastructure, 
Workload, and ApplicationLandscape models, which describe edge to 
cloud system composition and behaviour.

The Infrastructure model captures the hardware characteristics of a dis-
tributed network and computes hardware locations. Each ResourceSite 
component in the model represents a virtualised cloud/edge/fog data-
centre location which is geographically distributed with Location class 
containing latitude and longitude spatial information. Nested 
NetworkSwitch, NetworkRouter and Node model components capture net-
work bandwidth, latency, and compute resource (CPU, memory, storage) 
capacity at each location.

The Workload model contains mappings between devices and requests 
devices made to the system. The Device system component has Name and 
ID attributes as well as a time-dependent Location array and an array of 
Requests. Each Request component describes a request of the device (user) 
made to the system at a specific geographical location. The Request attri-
butes capture the time of the request, amount of data to transfer, type of 
data, and application model API where the request is destined for.

The ApplicationLandscape component contains information on the 
applications running in the virtualised infrastructure. Each application can 
be composed of multiple interconnected components, and each applica-
tion component can have multiple functions expressed through an API 
definition; hence in the model, we have Application, Component, and API 
classes describing the relationships. The model assumes a one-to-one rela-
tionship between the application component and a Virtual Entity (VM or 
Container) it is deployed to. Therefore, the Component class also contains 
the Deployment class describing which hardware node it is deployed to and 
a VeFlavour class specifying what resources it requires.

The simulation results, called outputs, are also arranged in a structured 
form using Protocol Buffers. The proposed format structure is captured 
within a class diagram shown in Fig. 5.3.

The ExperimentResult root class splits into two arrays of simulated sys-
tem behaviour metrics: ResourceSiteMetrics and ApplicationMetrics. As the 
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name suggests the ResourceSiteMetrics class contains information on hard-
ware utilisation and ApplicationMetrics contains information on applica-
tion performance metrics. The subclass NodeMetrics stores per-node 
metrics of CPU, memory, storage, and power utilisation. The subclass 
LinkMetrics stores each link utilisation bandwidth. Similarly, the subclass 
ComponentMetrics captures utilisation of resources per individual virtual 
entity besides including a response time metrics for end-to-end application 
performance in the upper ApplicationMetrics class. All of the measure-
ments are captured at regular time intervals, hence attributes in the 
Utilisation class list time and the actual utilisation value. The Utilisation 
class is built as an abstract and can be extended to fit different types of 
measurements.

Once the models are created based on the desired system parameters, 
they can be then loaded into the RECAP DES Simulator. The RECAP 

ExperimentResults

ResourceSiteMetrics ApplicationMetrics

+ Name:string
+ ID:string

+ nodesMetrics:NodeMetrics
+ linksMetrics:LinkMetrics

+ Name:string
+ ID:string

+ componentMetrics:ComponentMetrics
+ ResponseTime:Utilization

+ Name:string
+ ID:string

+ cpuUtilization:Utilization
+ memoryUtilization:Utilization
+ storageUtilization:Utilization
+ powerUtilization:Utilization

+ vCpuUtilization:Utilization
+ vMemoryUtilization:Utilization
+ vStorageUtilization:Utilization

Utilization

NodeMetrics

LinkMetrics ComponentMetrics

+ Name:string
+ ID:string

+ linkUtilization:Utilization

+ time:double
+ utilisation:double

+ ExperimentId:string
+ siteMetrics:ResourceSiteMetrics

+ applicationMetrics:ApplicationMetrics

Fig. 5.3 DES simulation results format (outputs)
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DES Simulator is based on CloudSim2 with a custom DES implementa-
tion in the back-end. To load, read, and query the simulation input mod-
els and output results shown in Figs. 5.2 and 5.3, Google Protocol Buffers 
library provides auxiliary methods ensuring ease of use.3

5.3.3  Cloud Infrastructure and Network Management: 
A RECAP DES Framework Case Study

To illustrate how the RECAP simulation and modelling approach can be 
used by communication service providers, we present the application of 
the RECAP Simulation Framework for mobile technology service man-
agement within fog/cloud computing infrastructure. This case study is 
based on automated services and infrastructure deployment (using virtual 
network functions (VNF)), automated orchestration, and optimisation 
services to reach the desired QoS for the different network services. We 
model distributed infrastructure and a VNF service application chain using 
the RECAP DES Framework.

5.3.3.1  Infrastructure Model
The infrastructure simulation model was designed and implemented to 
capture available physical characteristics of real edge infrastructure and 
used input from the infrastructure models described in Chap. 4. It consists 
of several sites that are interconnected by links between each other. Each 
Site entity in the model represents a location that is hosting network and/
or computing equipment, such as switches, routers, and computing nodes. 
NetworkSwitch and NetworkRouter capture attributes of bandwidth and 
latency while Nodes in addition to bandwidth also capture properties of 
CPU, Memory, and Storage. For the simulation experiments, physical 
infrastructure for 45 distributed sites was modelled; each site contains a 
router for handling inbound and outbound internet traffic and two 
switches handling control plane and user plane traffic separately. This 
meant that any traffic that is received or transmitted from the site is tra-
versing through the router and internal traffic between physical hosts and 
is flowing through routers only. The user plane switch was assigned 40 
Gbps bandwidth and control plane switch 1 Gbps where routers were 

2 http://www.cloudbus.org/cloudsim/
3 The methods are well documented in tutorials widely available for a range of program-

ming languages: https://developers.google.com/protocol-buffers/docs/tutorials
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assigned 100 Gbps. Bandwidth assumptions were made based on the data 
gathered from testbed experiments and correspond to the volume of traf-
fic observed. In addition, links between sites were assigned additional 
latency delays proportionate to the distance between locations; hence, 
requests sent between sites take more time to arrive.

5.3.3.2  Application and Workload Propagation Model
Application behaviour for the simulation is realised by implementing a 
modelling concept that captures data flow through multiple intercon-
nected, distributed, components. Each component is represented as a vir-
tual entity (VM or container) that is assigned to a physical machine in a 
site and has access to the portion of resources.

Application behaviour logic is realised through multiple interconnected 
API elements that each component has. The API represents a model 
object that holds information on resource demand and connection to the 
next component in line, thus forming a logical path between different 
application components. The current use case is based around NFV para-
digm, and the used VNF chain is of a virtualised LTE stack which consists 
of user data plane and control data plane virtual components:

• eNodeB user plane denoted as CU-C
• Mobility Management Entity control plane denoted as MME-C
• eNodeB control plane denoted as CU-U
• Serving Gateway-User plane denoted as SGW-U
• Packet Data Network Gateway-User plane denoted as PGW-U

For example, Fig. 5.4 graphically describes one of the possible applica-
tion topologies where application components like CU-C, CU-U, SGW- 
U, and PGW-U are located on one site and component MME-C is located 
on another site. In this example, both user plane download (green) and 
upload (red) requests are executed on one site, but the control plane 
(blue) requests require to travel to another site to be processed resulting 
in longer processing delays. When a request arrives at a component, based 
on the API parameters number of resources are requested from the hard-
ware to process this request. Once the appropriate amount of resources is 
available, the request is sent further in the system according to the API 
connection path. During the simulation experiments, 1482 different 
application configurations (placements) were generated and combined 
with the infrastructure model and corresponding workload models.
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The workload simulation model was implemented to capture the num-
ber of end-user devices that use the system for the duration of the simula-
tion experiment. The model contains an array of devices each containing 
multiple requests. Furthermore, each request contains information on the 
arrival time, the size of the request, and application information for its 
destination. The number of users varies depending on the VNF placement 
on the infrastructure sites. More densely populated areas have more users, 
and this aspect is reflected in the workload models; hence, each placement 
experiment has a bespoke number of users. User-request parameters were 
based on the data gathered from testbed experiments, and an average of 
the quantity and size of the request was done, along with defining them 
into three categories User Download, User Upload, and Control. As shown 
in Table 5.1, on average data download request in user plane is 13,927 
bits and user makes 2808 requests per hour. For data upload requests user 
sends around 224 requests per hour each of 8572 bits in size and finally 
control plane administrative requests were taken as a fracture of upload 
traffic and amount to 6 requests per hour each 219 bits in size.

DES simulations were executed in concurrent batches of 5 parallel runs 
on a dedicated VM in a testbed. The VM configuration was set to 8 CPU 
cores, 64  GB of RAM, and 500  GB attached volume storage. Each 

Fig. 5.4 Application simulation model example
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 simulation experiment was set for 3600-second duration of simulated  
time and on average took around 30 seconds of wall clock time to 
complete.

The simulation results were analysed using utility functions with the 
total resource utilisation and the cost of the allocated machine serving as 
the provider utility with equal weighting, along with the network band-
width consumed and total latency serving as the customer utility with 
equal weighting. The mathematical formulation of these utility functions 
is available in Chap. 4. Our goal was to minimise resource utilisation util-
ity, latency utility, and cost utility while maximising network bandwidth 
utility. The total utility for the placement was then defined as an equally 
weighted sum of normalised provider and customer utility.

5.3.3.3  RECAP DES Results
Results showed that by fixing the provider utility or customer utility, there 
is further scope to maximise the corresponding utility by changing the 
placement distribution of the VNFs. This is highly beneficial for stake-
holders when making business decisions regarding the available infrastruc-
ture. These decisions map back to the values considered within the 
definition of both utility functions such as response time, bandwidth, 
latency, and utilisation costs.

5.4  dIScrete tIme SImuLatIon

5.4.1  Overview

Discrete Time Simulation (DTS) is a simulation technique based on a 
time-advancing loop of predefined starting and ending time. The defined 
time step is a portion of time values (usually seconds) that the user has the 
ability to set before the execution. During each time step, potential new 

Table 5.1 Average val-
ues of user requests

Request type Requests per  
user per hour

Request  
size (bits)

User download 2808 13,927
User upload 224 8572
Control 6 219
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requests/events enter the system from the defined entry points. The major 
advantage of DTS is that no precomputation and storage of future events 
are needed, thus resulting in a significant reduction in memory consump-
tion requirements. This also suggests the possibility to dynamically allo-
cate simulated resources based on current computational load.

5.4.2  The RECAP DTS Framework

The RECAP DTS simulation framework is based on the CloudLightning 
Simulation Platform, which is designed to simulate hyperscale heteroge-
neous cloud infrastructures (Filelis-Papadopoulos et al. 2018a, b). It was 
built using the C++ programming language utilising OpenMP to exploit 
parallelism and acceleration in computations where applicable. The 
RECAP Simulation Framework focuses on optimally placing VMs as 
caches or containers in a network while taking into account efficient 
resource utilisation, reduction of energy consumption and end-user 
latency, and load balancing for minimisation of network congestion.

The CloudLightning Simulation Platform was developed to simulate 
hyperscale environments and efficiently manage heterogeneous resources 
based on Self-Organisation Self-Management (SOSM) dynamic resource 
allocation policies. The simulated cloud architecture is based on the 
Warehouse Scale Computer (WSC) architecture (Barroso et al. 2013). It 
manages to maintain a simplistic approach by utilising models that do not 
demand extremely high computational effort and, at the same time, main-
tain accuracy at adequate levels. The utilisation of a time advancing loop, 
rather than a discrete sequence of events, enables the potential to use these 
dynamic resource allocation techniques while also providing high scalabil-
ity due to the lack of restrictions in memory requirements.

A brief summary of the basic characteristics of the CloudLightning 
Simulation architecture is as follows. The gateway lies at the topmost level 
on the master node and the cells, which are connected directly to the gate-
way, hosted on separate distributed computing nodes at a lower level. 
Each cell is responsible for the underlying components, such as cell’s bro-
ker, network, telemetry, and finally, hardware resources. Key responsibili-
ties of the gateway are (1) communication with the available cells, in the 
essence of data transport, fragmentation, and communication of the task 
queues between the cells with the appropriate load balancing on each time 
step; and (2) receiving and maintaining metrics and cells’ status, amongst 
others. From the cell’s perspective, the key responsibilities are (1) the 

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM 



106

aforementioned communication with the gateway, including simulation 
parameters and initialisation of the underlying components, and addition-
ally, sending status and metrics’ information to the gateway; and (2) task 
queue receipt on each time step, finding the optimal component with the 
required available resources, utilising the SOSM engine, and finally, exe-
cuting the tasks.

Considering the above, many CloudLightning Simulator components 
were adopted for the RECAP Simulation Framework including power 
consumption modelling, resource utilisation (vCPU, memory, storage), 
and bandwidth utilisation. Some of the most important differences 
between the two frameworks are: (1) the focus of the RECAP Simulator 
which is on the optimal cache placement in the network, and (2) the dif-
ference in task servicing, and specifically in task deployment to the avail-
able nodes. The CloudLightning Simulator utilises a Suitability Index 
formula and is based on the required weights communicated by the gate-
way to the underlying components. The most appropriate node is assigned 
with the incoming task, by adopting a first-fit approach. The RECAP 
Simulator, on the other hand, utilises caches with the corresponding con-
tent placed in the network. In order to assign a task to a respective node, 
it performs a search for the optimal available node, which offers, in excess, 
the required resources while adequately handling network congestion. 
Experimental results of the CloudLightning Simulator demonstrated that 
it can accurately handle simulations of hyperscale scenarios with relatively 
low computational resources. This is particularly suitable for large distrib-
uted networks that many Tier 1 network operators manage.

5.4.3  Network Function Virtualisation—Virtual Content 
Distribution Networks: A RECAP DTS Case Study

Traditional Content Distribution Network (CDN) providers occasionally 
install their hardware, such as customised hardware caches, in third-party 
facilities or within the network of an Internet Service Provider. BT has 
such a scenario, which the RECAP DTS simulator utilises as a case study. 
BT’s main activities focus on the provision of fixed-line services, broad-
band, mobile and TV products and services, and networked IT services as 
well. BT hosts customised hardware caches from the biggest CDN opera-
tors in their network. Considering the fact that it would be extremely 
hard, for sensitive reasons, for content providers to install their hardware 
in many locations across the UK in the edge nodes of BT’s network (also 
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known as Tier 1 MSANs (Multi-Service Access Nodes)), there lies the 
need to provide an alternate solution. In order to ensure the required QoS 
for their virtual network functionalities, the introduction of a Virtual 
CDN (vCDN) provides a beneficial approach, which aims to replace the 
presence of multiple physical caches in the network, with standard servers 
and storage providing multiple virtual applications per CDN operator. BT 
accomplishes that, by installing the appropriate compute infrastructure at 
its edge nodes (MSANs) and thus offering a CDN-as-a-Service (CDNaaS). 
In this way, operational costs are significantly declined and additionally, 
the content is stored in virtual caches closer to end user, thus minimising 
end-user latency and maximising user experience.

5.4.3.1  DTS Architecture and Component Modelling
The topological architecture is divided in four tiers, in a hierarchical order 
namely MSAN, Metro, Outer-Core, and Inner-Core, in a total number of 
1132 nodes; more information on infrastructure architecture is provided 
in the next subsection. Note that in order to maintain efficient simulation 
accuracy, a specific time interval is selected, at which all the components 
update their status. This provided the opportunity to reduce computa-
tional cost, but it is essential to mention that the choice of the interval 
value is critical. A small interval can lead to huge computational effort and 
reduce performance, while a large interval can lead to major accuracy 
leaks, considering that whole requests could be missed during the status 
update process. Considering all these, the RECAP DTS framework pro-
vides the essential scalability for the current use case. The ambition is to 
improve the efficiency of vCDNs systems by replacing multiple custom-
ised physical caches running multiple virtual applications per CDN 
operator.

Figure 5.5 depicts the DTS architecture optimised to simulate a vCDN 
network. The Graph Component is responsible for the input topology of 
the simulation, which is fed to the component as an input file in Matrix 
Market storage format. The structure is stored as a Directed Acyclic Graph 
(DAG) in the component, in the form of a sparse matrix, with the number 
of rows being the total number of sites and each row, the ID of a site. 
More specifically, it is stored both as a Compressed Sparse Row (CSR) and 
Compressed Sparse Column (CSC) format which results in a faster tra-
verse of the available connections. These connections are indicated by off- 
diagonal values and point to links with lower level sites, while the diagonal 
values denote the level/tier of the respective site.
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All the available sites are retained in a vector of sites, where a site is an 
object of the Site class which contains a number of attributes. Each site has 
a unique ID value and a type value, indicating the tier of the respective site. 
Furthermore, a two-dimensional vector retains the available connections 
input and output to the immediate upper and lower level respectively. 
Note that in case of the first level there are no input connections, and simi-
larly, there are no output connections in case of the last level. Another 
vector retains the output bandwidth of the output connections as double 
precision values (Gbps). All the attached nodes, of predefined type, to the 
site are also retained in a vector and contain resource information such as 
CPU, Memory, and Storage. These nodes are mostly utilised by the power 
consumption component. In addition to nodes, there is a list of the hosted 
VMs deployed to the nodes of each site and provide same information 
with the addition of Network. Additionally, a map, which contains the 
cached content in the VMs, is used in order to simplify and speed up the 
search of specific content type or available VMs. All the cache hits and 
misses are also stored into a vector; these refer to all active VMs hosted by 
a single site. Lastly, a site can forward requests to sites at a higher tier, due 
to lack of VMs or insufficient resources in them. These forwarded requests 
are also retained in a list and have an impact only on the network band-
width of the site.

The Content Component retains all the potential information referring 
to the type of content a VM in a site can serve. Specifically, this information 
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includes minimum and maximum duration of each type of content and the 
requirements that need to be met by the VM in order to serve it. Also, the 
probability of a cache hit for each type of content and maximum number 
of requests that can be served are included. The requirements of each type 
of cached content request is provided by the ratio of the VM require-
ments of this specific request to the aforementioned maximum number of 
requests the VM can serve.

The requests are generated by the Request Creation Engine, which is 
responsible for the insertion of a group of requests to the system in each 
time step. This component is based on a uniform distribution generator, 
which produces requests of each type of content and duration between a 
given interval denoting the minimum and maximum requests permitted in 
a time step. Each request contains the following information: duration of 
the request, type of content, and the site from which it enters the system. 
For each of the inserted requests, a path (list of sites) is formed showing 
the flow the content will follow in order to reach the user. During path 
creation, each site traversed and is appended to the end of the list; this 
continues until a cache hit occurs or otherwise. If the last element is not a 
cache hit, the request is rejected. When a cache hit occurs, the content 
flows downwards from that site to all sites of the path of a lower tier until 
it reaches the user.

During each time step, the duration of all requests is reduced until it 
reaches zero, at the point they are considered served and can be discarded 
from the system, thus freeing up resources. This procedure takes place in 
each site as well as in the site’s nodes and VMs that update their status. 
This is where OpenMP provides acceleration of the computations on 
shared memory systems. Each site is independent; thus, they can be 
assigned to the available threads and their status updated without any 
interference. During each time step, each site checks its current status, 
duration of requests, any new additions, or any finished, and respectively 
adjusts available resources. This procedure has no data traces, as sites are 
independent. Thus, this computational-intensive process, considering the 
number of sites and the huge number of time steps can be performed in 
parallel, saves significant amount of time and increases performance. Apart 
from status update, at each time step, another component is also used, the 
Power Consumption Component. This calculates the power/energy con-
sumption of the site’s nodes depending on their type (Makaratzis 
et al. 2018).
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Power consumption along with other metrics is stored in the last com-
ponent, the Statistics Engine which is deployed at specific time intervals. 
It contains all metrics of the vCDN network and each site generally. 
Metrics include the aforementioned power consumption, cache hits and 
misses, and other stats per level such as cumulative accepted and rejected 
requests per level, average vCPU, Memory, Storage, and Network utilisa-
tion per level. The Statistics Engine outputs these metrics to files at each 
specific time interval. Note again that accurate selection of this interval is 
critical otherwise it can lead to either huge writing effort (in the case of a 
small interval) or under-sampling (in the case of a large interval).

5.4.3.2  Infrastructure Model
The considered vCDN system is hierarchical and has sites located at four 
different levels: (1) inner core, (2) outer-core, (3) metro, and (4) Multi- 
Service Access Node (MSAN), as illustrated in Fig. 5.6.

The physical network topology is composed of 1132 sites. Each site can 
host physical machines (nodes) that, in turn, can host vCDNs containing 
content requested by customers. Moreover, each site has predefined 
upload and download bandwidth as well as inbound and outbound con-
nections. The general structure of a site is given in Fig. 5.7.

Each node inside a site can host multiple VMs and each VM services 
specific content. However, multiple VMs can service the same content if it 
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is requested by a large number of users, since each VM has predefined 
capacity to service customer.

5.4.3.3  Application and Workload Propagation Model
Each type of content (content with different sizes) characterises a VM. For 
example, content of type j is serviced by a specific VM with predefined 
characteristics described above. Thus, each type of content has its unique 
accompanying requirements. Moreover, each user of a specific content 
requires predefined bandwidth and occupies the system for a variable 
amount of time lying between predefined intervals. For each type of con-
tent, the requirements in terms of VMs as well as per user bandwidth are 
defined. The same content can be hosted in several VMs on the same site, 
since the number of users requiring a specific type of content serviced by 
a VM is limited. The characteristics of content include required vCPUs 
per VM, required memory per VM, required storage per VM, maximum 
number of customers per VM, network bandwidth required per VM at full 
capacity.

Inbound connection

Outbound connection

VM 1 VM M…
Node N

VM 1 VM M…
Node 1

…

Content 1

Content C

…

Fig. 5.7 A site architecture of DTS
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Regarding the creation of VMs, the DTS should offer two options:

 1. Static: In this case, no new VM can be created during a simulation. 
This requirement comes from Infrastructure Optimiser that will use 
the RECAP Simulation Framework to decide placements; or

 2. Dynamic: In this case, every time a cache miss occurs at MSAN site, 
the requested content is copied to that given MSAN site. Moreover, 
when there is no user requesting a given content, this content (VM) 
is deleted from the node. If the node has no more available resources, 
then the request is rejected.

The Request Creation Engine (RCE) creates a series of requests based 
on random number generators following a preselected distribution such as 
Uniform, Normal, or Weibull. Each request performed by a user is consid-
ered to have predefined requirements with respect to content. Thus, all 
customers of a certain content type require the same amount of resources. 
However, customers requiring different content require a different 
amount of resources.

5.4.3.4  RECAP DTS Results
The results of this simulation are presented in detail in C.  K. Filelis- 
Papadopoulos et al. (2019). In summary, we find that parallel performance 
(status update) is significantly increasing proportionally to the number of 
requests. In addition, resource consumption seems to reach stability, for 
all levels, by the time initial requests have finished execution. The lowest 
level contributes the most to resource and node underutilisation through 
request forwarding to upper layers as a result of probabilistic caching and 
single VM hosting. This leads to reduced active server utilisation and 
increased power consumption concurrently due to node underutilisation. 
Nevertheless, energy consumption is improved with the reduction of VMs 
on the lowest level; thus, these sites act as forwarders to the immediate 
upper layer. This impacts efficient resource utilisation in the upper layers, 
while they service more requests forwarded from the bottom tier.

Other experiments focused on different probabilities for a cache hit, 
such as 0.4 and 0.8. The former leads to requests servicing from the top-
most layer due to the fact that content requested is not potentially cached 
in the lower layers and thus a cache miss occurs and the requests are for-
warded. The latter increases the probability for a cache hit to occur and 
thus requests are serviced mostly from lower layers. More specifically, the 
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intermediate level serves a significantly increased amount of tasks. Note 
that, with 0.8 probability the energy consumption is considerably 
decreased when compared to the other two cases. Nevertheless, high 
probability denotes that the content is cached in a great portion of the 
distributed caches in the network, as the probability value acts as a mecha-
nism to transfer workload between the corresponding nodes and tiers of 
the network. Thus, potential deployment of virtual caches of specific con-
tent in great numbers could result in higher costs and storage require-
ments. On the other hand, lower probability denotes a significant reduction 
in virtual cache numbers, especially on lower levels. As discussed earlier, 
this results in higher service rates from the top layers and furthermore in 
potential network congestion due to increased data traffic in the links of 
the network, request rejection, and increased end-user latency in request 
servicing from nodes significantly further from the end users.

Finally, we performed experiments with an increased number of levels. 
The scalability performance results suggest that the simulator scales lin-
early with the number of input requests, considering the major increase 
(mostly two times) in memory requirements. The results illustrate that the 
framework is capable of executing large-scale simulations in a feasible time 
period even with significant memory requirements (as number of threads 
increases, the need of memory for local data storage also increases) and at 
the same time maintaining required high levels of accuracy. Thus, the 
RECAP DTS framework can be a useful tool for content providers to vali-
date their overall performance.

5.5  concLuSIon

In this chapter, the RECAP Simulator Framework, comprising two simu-
lation approaches—DES and DTS, was presented. The design and imple-
mentation details of the RECAP simulation framework were given in both 
simulation approaches, coupled with case studies to illustrate their applica-
bility in two different cloud and communication service provider use cases. 
The main advantage of this framework is the fact that depending on the 
target use case requirements, an appropriate simulation approach can be 
selected based on a time-advancing loop or a discrete sequence of events. 
Thus, by providing this flexibility, focus can be given on the level of accu-
racy of the results (DES) or the scalability and dynamicity (DTS) of the 
simulation platform.
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From the experimentation performed, the RECAP simulation platform 
was capable of efficiently simulating both discrete event and discrete time 
use cases thus providing a useful tool for non-data scientists to forecast the 
placement of servers and resources by executing configurable prediction.

referenceS

Barroso, L.A., J. Clidaras, and U. Hoelzle. 2013. The Datacenter as a Computer: 
An Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool. 
https://doi.org/10.2200/S00516ED2V01Y201306CAC024.

Filelis-Papadopoulos, C.K., K.M. Giannoutakis, G.A. Gravvanis, and D. Tzovaras. 
2018a. Large-scale Simulation of a Self-organizing Self-management Cloud 
Computing Framework. The Journal of Supercomputing 74 (2): 530–550. 
https://doi.org/10.1007/s11227-017-2143-2.

Filelis-Papadopoulos, C.K., K.M.  Giannoutakis, G.A.  Gravvanis, 
C.S.  Kouzinopoulos, A.T.  Makaratzis, and D.  Tzovaras. 2018b. Simulating 
Heterogeneous Clouds at Scale. In Heterogeneity, High Performance 
Computing, Self-organization and the Cloud, 119–150. Cham: Palgrave 
Macmillan.

Filelis-Papadopoulos, Christos K., Konstantinos M.  Giannoutakis, George 
A. Gravvanis, Patricia Takako Endo, Dimitrios Tzovaras, Sergej Svorobej, and 
Theo Lynn. 2019. Simulating Large vCDN Networks: A Parallel Approach. 
Simulation Modelling Practice and Theory 92: 100–114. https://doi.
org/10.1016/j.simpat.2019.01.001.

Idziorek, Joseph. 2010. Discrete Event Simulation Model for Analysis of Horizontal 
Scaling in the Cloud Computing Model. Proceedings of the 2010 Winter 
Simulation Conference, 3003–3014. IEEE.

Law, Averill M., W.  David Kelton, and W.  David Kelton. 2000. Simulation 
Modeling and Analysis. New York: McGraw-Hill.

Makaratzis, Antonios T., Konstantinos M. Giannoutakis, and Dimitrios Tzovaras. 
2018. Energy Modeling in Cloud Simulation Frameworks. Future Generation 
Computer Systems 79 (2): 715–725. https://doi.org/10.1016/j.
future.2017.06.016.

 M. SPANOPOULOS-KARALEXIDIS ET AL.

https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1016/j.simpat.2019.01.001
https://doi.org/10.1016/j.simpat.2019.01.001
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1016/j.future.2017.06.016


115

Open Access  This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/
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author(s) and the source, provide a link to the Creative Commons licence and 
indicate if changes were made.

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the chapter’s Creative Commons 
licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder.
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Abstract This chapter presents four case studies each illustrating an 
implementation of one or more RECAP subsystems. The first case study 
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optimisation for virtual content distribution networks (vCDN) on a large 
Tier 1 network operator. The third case study looks at how RECAP com-
ponents can be embedded in an IoT platform to reduce costs and increase 
quality of service. The final case study presents how data analytics and 
simulation components, within RECAP, can be used by a small-to-
medium-sized enterprise (SME) for cloud capacity planning.

Keywords Infrastructure management • Network management • 
Network functions virtualisation • Virtual content distribution networks 
• Smart cities • Capacity planning • Application optimisation • 
Infrastructure optimisation • Big Data analytics • 5G networks

6.1  IntroductIon

This chapter illustrates how RECAP’s approach to the management and 
optimisation of heterogeneous infrastructure across the cloud-to-edge 
spectrum can address challenges to a wide range of cloud actors and appli-
cations. Four illustrative case studies are presented:

• Infrastructure Optimisation and Network Management for 5G Networks
• Application Optimisation for Network Functions Virtualisation for 

Virtual Content Distribution Networks
• Application and Infrastructure Optimisation for Edge/Fog comput-

ing for Smart Cities
• Capacity Planning for a Big Data Analytics Engine

For each case, we can show that insights and models generated by 
RECAP can help the stakeholders to better understand their application 
and infrastructure behaviour. Preliminary results suggests cost savings of 
more than 25%, up to 20% reduction in bandwidth consumption, and a 4% 
performance increase.

6.2  case study on Infrastructure optImIsatIon 
and network management—5g networks

6.2.1  Introduction

This case study envisions a system that provides communication services 
for a variety of industry verticals including eHealth, eCommerce, and 
automotive. To facilitate the communications of diverse services in 
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different scenarios within the world of fifth generation (5G) networks, the 
communication system has to support various categories of communica-
tion services illustrated in Fig. 6.1.

Each service is needed for a specific type of application serving a par-
ticular group of customers/clients. This introduces different sets of char-
acteristics and requirements corresponding to each type of communication 
service as presented in Table 6.1.

The emergence of 5G mobile networks and the rapid evolution of 5G 
applications are accelerating the need and criticality of optimised infra-
structure as per this case study. Additionally, the management and opera-
tion of a 5G infrastructure and network are complex not only due to the 
diversity of service provisioning and consumer requirements, but also due 
to the involvement of many stakeholders (including infrastructure service 
providers, network function/service providers, and content and applica-
tion service providers). Each of these stakeholders has their respective and 
different levels of demands and requirements. As a result, a novel solution 
is required to enable:

• the adoption of various applications under different scenarios on a 
shared and distributed infrastructure;

• on-demand resource provisioning considering increased network 
dynamics and complexity; and

• the fulfilment of Quality of Service (QoS) and Quality of Experience 
(QoE) parameters set and agreed with service consumers.

Smartphones
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Smart Building & City

Logistics, Tracking, Fleet Management

Smart Meters

Smart Agriculture

Capillary Networks
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Industrial Applications
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Training, Surgery

Enhanced Mobile Broadband

Critical Machine Type Communication (cMTC)

Massive Machine Type Communication (mMTC)

Public Safety

Emergency
112

Blue light GovermentalWarning

Fig. 6.1 Categories of communication services and example of 5G use cases

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE… 



120

6.2.2  Issues and Challenges

The communication services between user mobile devices and content 
services/applications are realised with a set of network functions and 
numerous physical radio units. In the context of virtualised networks, net-
work functions are virtualised and chained to each other to form a net-
work service providing network and service access to user devices through 
radio units. A network function virtualisation (NFV) infrastructure is 
required to accommodate the network function components. Within this 
infrastructure, virtualised components are deployed in a distributed net-
working region including the access network, edge network, core net-
work, and remote data centres. Figure 6.2 illustrates a typical forwarding 
graph of a network service in an LTE network. The network service is 
composed of multiple virtual network functions (VNFs): eNodeB, 
Mobility Management Entity (MME), Serving Gateway (SGW), and 
Packet Data Network Gateway (PGW), and Home Subscriber Server (HSS).

The adoption of such a distributed architecture for the network and its 
services introduces four major challenges when rolling out a network 
service:

 1. The communication system facilitates various types of applications/
services, namely voice/video calls, audio/video streaming, web 
surfing, and instant messaging. This introduces a high complexity 
in understanding individual network services and associated 
dynamic workloads.

 2. The placement and autoscaling of VNFs are needed by the commu-
nication system in order to enable dynamic resource provisioning. 
VNF components in control and user planes have different features 
and requirements. As such, to fully address the placement and auto-

Table 6.1 Characteristics and requirements of communication services

Service Characteristics and requirements

Mobile BroadBand (MBB) Extremely high throughput and user/device mobility

Massive Machine Type 
Communication (mMTC)

Supports to diverse and massive number of mobile 
devices, and to enable energy-efficient 
communications

Mission-critical Machine Type 
Communication (cMTC)

Ultra-reliable low latency, but high availability and 
reliability in communications

Public safety (blue light) Intensely high integrity and availability in services
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scaling, it is necessary to understand and predict not only the varia-
tion of workload and resource utilisation but also the characteristics 
of the components. Diversity in requirements and implementa-
tion, together with the dispersion of components across the 
network infrastructure, makes placement and autoscaling of 
VNFs a significant challenge.

 3. User behaviour needs to be explored for accurate workload predic-
tions. To obtain knowledge of user behaviour, data communicated 
in control and user planes need to be analysed, and correlations 
thoroughly investigated. This analysis is challenging, as one 
requires domain knowledge regarding behaviour of network ser-
vices and the telecommunication network more broadly.

 4. Multi-tenancy is demanded in emerging 5G mobile networks where 
multiple network services are deployed and operating on top of a 
shared infrastructure. Different communication services come with 
different QoS requirements that desire a capability of adaptation 
and prioritising in resource allocation and management. In short, 
5G brings complexity in the shape of mixed criticality and scale.

6.2.3  Implementation

6.2.3.1  Requirements
To fully address all the aforementioned challenges, it requires a complete 
control loop from data collection and analysis to optimisations on both 
infrastructure and application levels, and further up to the deployment of 

eNodeB
control( )

eNodeB
user( )

SGW PGW

MME

HSS
Control Plane

User Plane
Internet

Fig. 6.2 A forwarding graph of a network service in an LTE network
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optimisation plans. This places an overall requirement on a system, such as 
RECAP, to enable a wide range of automation tasks as listed below:

• Profiling network/service functions and infrastructural resources
• Automated service and infrastructure deployment
• Automated orchestration and optimisation of services and the infra-

structural resource planning and provisioning
• Observability of behaviours of the system and services at run-time

To ensure end-to-end QoS (and by inference required service availabil-
ity and reliability) in a complex large-scale use case, the control loop 
together with automated solutions need to be capable of resource plan-
ning and provisioning in the short- and long term, e.g. in minutes or in 
months. The solutions are also required to satisfy constraints of multi- 
tenancy scenarios and multiple network services competing for shared 
infrastructural resources. In addition, the optimisation aspects of the solu-
tion need to manage resource provisioning that achieve utilisation and 
service performance goals. Moreover, the simulation aspects of the solu-
tion need to support evaluation, i.e. impact of changes in planning rules 
prior to any real deployments.

Table 6.2 summarises the requirements. For each requirement, a set of 
targeted solutions is presented to illustrate the requirements are met. A 
simplified mapping is presented but the solution for any single require-
ment could be derived from one or a combination of multiple solu-
tions listed.

6.2.3.2  Implementation
To demonstrate and validate the RECAP approach, a software/hardware 
testbed in Tieto is used. The testbed, deployed in a lab environment, emu-
lates a real-world telecommunication system to facilitate the development 
and evaluation of optimisation solutions for end-to-end communications 
in a 5G network and its applications. Figure 6.3 presents an overview of 
the testbed in which a distributed software-defined infrastructure is emu-
lated. This is achieved with heterogeneous resources collected from mul-
tiple physical infrastructures, located in a wide range of vertical regions, to 
provide communication and contents services to various applications that 
form different network services.

From the testbed’s perspective, the entire RECAP platform is repre-
sented through the RECAP Optimiser, an external component that 
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Table 6.2 Use case requirements and corresponding RECAP solutions

Requirement RECAP solution

• Allocation of infrastructural resources  
to uphold the QoS of a VNF for a 

products
• Allocation of a right amount of 

resources at right locations
• Automation of instant capacity  

checks to support the rollout of new 
communication services in a timely 
fashion

• Workload and workload propagation 
models enable estimations of bandwidth 
and resource utilisation for each VNF, 
service functions at application and 
infrastructure levels

• The load translation mapping model

resource utilisations
• Models for QoS metric assessment are 

requirements

• Automation of the optimisation in  
VNF deployment and autoscaling for 
service availability and reliability and  
the minimisation of the overhead and 
resource utilisation of communication 
services

• Automation of service remediation  
and infrastructure recovery to uphold 
required service availability and 
reliability

• The consolidation of aforementioned 
models and optimisation models facilitates
the production of optimisation plans and 
recommendations for system autoscaling

• The RECAP platform with automated  
optimisers empowers the realisation and
execution of optimisation plans. 

provisioning of resource-ef�cient

enables quanti�cation of infrastructural 

integrated with the above to ful�l all

A combination of quanti�cation and

• Predictions of future infrastructural 
resource demand for resource planning 
and provisioning in a proactive manner

• Detection of resource overbooking for 
VNFs and service functions to serve 
optimisation of the resource allocation

• Workload-related models and load 
translation mapping model enable the 
predictions of future workload and 
resource demands

•
predictions of resource demands facilitates 
overbooking detection

• Support infrastructure and 
communication service providers to 
maximise the utilisations of shared 
infrastructures

• Method to prove a VNF is behaving as 
required on shared infrastructures

• Optimisation plans produced by 
optimisers with a consideration of 
scenarios of multi-tenancy and multiple 
network services enable the maximisation 
of the utilisation of shared infrastructural 
resources

• The aforementioned models combined 
with telemetry enable VNF and service 
function performance monitoring and 
management
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produces and enacts optimisation plans (through its enactor) on the test-
bed. Each plan presents the in-directions of VNF placement and autoscal-
ing across the emulated network infrastructure and is executed by the 
testbed. Ultimately, results, in terms of both application and infrastructure 
performance, are collected and evaluated. These results are also fed back 
to the RECAP platform for further investigation and model improvement.

6.2.3.3  Deliverables and Validation
To facilitate validation, multiple validation scenarios covering all the 
requirements presented in Table 6.2 were defined:

• Scenario 1: the placement and autoscaling of VNFs to fulfil QoS 
constraints required by a given single communication service.

• Scenario 2: the placement and autoscaling of VNFs to fulfil QoS 
constraints required by multiple communication services under 
multi-tenant circumstances.

• Scenario 3: the capability of RECAP simulation and optimisation 
tools in supporting the offline initial dimensioning the (physical) 
infrastructure according to traffic demands.

• Scenario 4: the capability of RECAP simulation and optimisation 
tools supporting the offline planning by identifying future (physical) 
infrastructure needs.
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• Scenario 5: the observability and fulfilment of given QoS require-
ments from the VNF level put in the resources provided by the 
infrastructure.

The relevant models and components that form the solutions to be vali-
dated against these scenarios are summarised in Table 6.3.

The application model is developed based on the network services 
deployed in the Tieto testbed, and workload models are constructed using 
the synthetic traffic data collected from various experiments carried out 
within the testbed. The infrastructure network model pertains to the city 
of Umeå in Sweden but is influenced by BT’s national transport network 
and includes four network tiers (MSAN, Metro, Outer-Core, and Inner- 
Core). The network topology of the infrastructure is kept symmetrical, 
without including customisation for real-world aspects for asymmetrical 
node capacity, for asymmetrical node interconnection, and for asymmetri-
cal link latencies.

6.2.4  Results

This section presents exemplar validation results for the application place-
ment and infrastructure optimisation (Chap. 4). It addresses the problem 
of VNF placement across the network infrastructure. For the case study, 

Table 6.3 RECAP deliverables to address validation scenarios

Model/component Usage

Workload model To facilitate the implementation of the optimisers as well as 
optimisation solutions/plans in order to accomplish all the validation 
scenarios

Application model
Infrastructure 
model
Load translation 
model
Infrastructure 
optimiser

To produce optimisation plans of VNF deployment across the 
network infrastructure; to directly support validation Scenarios 3 and 
4, and together with the application optimiser to address all the 
scenarios

RECAP 
optimisation 
platform

To orchestrate all models and components and enact optimisation 
plans of VNF deployment that are fed to the testbed
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the RECAP Simulator (Chap. 5) was used to calibrate the models used by 
the Infrastructure Optimiser.

In the experiments, given a network service (Fig. 6.2), the eNodeB is 
deployed as two separate units on different planes: the Central Unit-User 
plane (CU-U) and the Central Unit-Control plane (CU-C). Additionally, 
the SGW and PGW VNF components are located on the user plane and 
are termed Service Gateway-User plane (SGW-U) and Packet Data 
Network Gateway-User plane (PGW-U).

The optimisation solutions presented address Scenarios 3 and 4 con-
cerned with placement and infrastructure optimisation. Five placement 
plans/distributions are identified as the input to the algorithm assuming 
(1) one forwarding graph per MSAN tier with CU-U as the user-request 
entry point, and (2) no currently deployed infrastructure. Table  6.4 
describes these five placement distributions.

Results obtained are evaluated based on a comparison of provider and 
customer utility.

In Fig. 6.4, maximum provider vs. customer utility is normalised [0,1] 
for all distributions. Distributions 1 and 2 only use physical hardware 

Table 6.4 Initial placement plans of VNFs

Placement 
plan

Description

Distribution 1 •  CU-U, CU-C, SGW-U, and PGW-U VNFs placed on the MSAN 
resource sites

•  MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites
Distribution 2 •  CU-U, CU-C, SGW-U, and PGW-U VNFs placed on the Metro 

resource sites
•  MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites

Distribution 3  • CU-U and CU-C VNFs placed on the MSAN resource sites
• SGW-U and PGW-U VNFs placed on the Metro resource sites
•  MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites

Distribution 4 •  CU-U and CU-C VNFs placed on the MSAN resource sites
•  SGW-U, PGW-U, and the MME/SGW-C/PGW-C VNFs placed on 

the Outer-Core resource sites
Distribution 5 • CU-U VNF placed on the MSAN resource sites

• CU-C and SGW-U VNFs placed on the Metro resource sites
•  PGW-U and the MME/SGW-C/PGW-C VNFs placed on the 

Outer-Core resource sites
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across two tiers (as per Table 6.4) and hence exhibit the highest provider 
utility; this decreases by approximately 50% as the distributions start to 
include more than two tiers in the placement. This is understandable as 
more infrastructure needs to be deployed and maintained. Customer util-
ity is highest for Distribution 5, which has three tiers MSAN, Metro, and 
Outer-Core (as per Table 6.4) included in the distribution. The lowest 
utility is when no VNFs are placed at the edge, i.e. Distribution 2, which 
has no MSAN; this is to be expected as the end-user request faces larger 
processing latency in travelling further into the network.

Figure 6.4 maps the normalised provider utility and normalised cus-
tomer utility of each VNF placement. The figure shows that a provider can 
manage its deployments by fixing the provider utility or customer utility in 
a way that balances business considerations.

For example, in Fig. 6.5 the provider utility is centred on 50% to ensure 
customer utility is centred on 75%. The intersection of threshold lines (the 
highlighted section in grey) identifies a set of placements that are optimal 
for each individual forwarding graph of the use case while satisfying 
defined constraints including application and infrastructure provider per-
spectives. The provider could choose Distribution 1, 2 or 4. However, 
Distribution 2 has poorer customer utility (no MSAN, higher latency) and 
so is disregarded. Distributions 1 and 4 utilise MSAN and Outer-Core 

Fig. 6.4 Maximum provider and customer utility of each distribution
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infrastructure and have comparable customer utility. However, Distribution 
1 has the higher provider utility, and thus would be the best option with 
caveats. It would be the best option if “consolidation” was the most 
important factor to the business, but not necessarily the best option if 
“flexibility” to service future requests was more important. In the latter 
case Distribution 4 is a better option because one’s current customer is 
satisfied (compared to Distribution 1) but the provider has significant up- 
swing capacity.

Figure 6.6 below illustrates simulation results for the same distributions 
without Distribution 2 which was disregarded due to no MSAN capacity. 
The graph represents all infrastructure and all remaining distributions. Utility 
is combined for simplicity (y-axis) and is graphed against 3 scenarios (x-axis) 
“normal day”, “event”, and “24% growth”. It should be more apparent that 
for the same scenarios and constraints as above, Distributions 1 and 4 remain 
the best options. Distribution 1 remains the best option and for this simula-
tion exercise could cope with the defined event and growth scenarios. But 
what is a little less obvious is that its utility remained essentially static while 
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the utility for Distribution 4 starts to trend upwards from the normal day to 
event to 24% growth scenario. This is primarily driven by provider utility 
improving as utilisation of physical assets improve; this scenario offers consid-
erably greater capacity for future growth/event scenarios.
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6.2.5  Summary

For this case study, an extensive evaluation and validation were performed 
for the scenarios outlined and utilising the models, components, and tech-
nologies described in Chaps. 1, 2, 3, 4, and 5. Current results contribute 
to more effective decision making for infrastructural resource dimensioning 
and planning for future 5G communication systems. The value presented 
is supporting informed, automated (if desirable) decisions similar to the 
consolidation vs. flexibility example illustrated in the Distribution 1 versus 
Distribution 4 options above.

6.3  case study In network functIons 
VIrtualIsatIon: VIrtual content 

dIstrIbutIon networks

6.3.1  Introduction

Network Function Virtualisation (NFV) replaces physical network appli-
ances with software running on servers. Content Distribution Networks 
(CDNs) offer a service to content providers that puts content on caches 
closer to the content consumers or end users. Traditional Content 
Distribution Network (CDN) operators install customised hardware 
caches across the globe—sometimes within an Internet Service Provider’s 
network and sometimes in third-party co-located data centre facilities. 
Each CDN operator develops its own caching software with unique 
features, e.g. transcoding methods, management methods, and high 
availability solutions.

As of now, network operators such as BT have hardware from each of 
several CDN operators deployed at strategic points in its network. 
However, this creates several potential issues:

• it is hard to organise sufficient physical space (in “telephone 
exchange” or “central office” buildings for instance) to support all 
the CDN operators;

• a lot of energy is needed to power and cool all the equipment; and
• a lot of physical effort is needed when a new CDN operator arrives 

or an existing one disappears.

Such factors make it attractive to consider a Virtual CDN (vCDN) 
approach that aims to replace the multiple customised physical caches with 
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standard servers and storage running multiple virtual applications per 
CDN operator. This lowers CDN and network operator costs and allows 
the content caches to be put closer to the consumer, which improves cus-
tomer experience. Also, the barriers to entry for new virtual CDN opera-
tors are likely to be lower than for a physical CDN operator.

6.3.2  Overview and Business Setting

Broadband traffic on BT’s network of 50% of broadband traffic on BT’s 
network originates from the content caches operated by the CDN opera-
tors. At the time of writing, BT hosts CDN operators customised cache 
hardware in two to eleven compute sites in the UK to reduce the amount 
and cost of Internet peering traffic. If the caches were installed in BT’s 
thousand edge nodes (also known as Tier-1 MSANs (Multi-Service 
Access Nodes) or “Telephone Exchanges”), the cost of delivering con-
tent would be reduced by 75% and BT would reduce its network load 
significantly. However, the CDN operators are unlikely to want to install 
their hardware at up to a thousand locations in the UK; for some inter-
national CDN operators, a single compute site in London is sufficient 
for the entire UK.

The vCDN proposition is that BT could install the compute infra-
structure at its edge sites and offer an Infrastructure-as-a-Service (IaaS) 
offering tailored towards CDN operators. The CDN operators would 
install and manage their own software on BT IaaS and thus they would 
maintain their unique selling points and ownership of the content pro-
vider customers. This is a potential win-win scenario: the network and 
CDN operators reduce operating costs and consumers get better service 
(Table 6.5). There are, however, several technical challenges to design-
ing and operating a vCDN service, not least performance, orchestra-
tion, optimisation, monitoring, and remediation. These are discussed 
later in Sect. 6.3.3.

An abstract representation of the BT UK network topology is 
shown in Fig. 6.7. The real locations of BT network sites are shown 
in Fig.  6.8; the black dots represent BT’s 5600 local exchanges, 
of which c. 1000 are MSANs and c. 100 BT’s Metro sites (Ofcom 
2016). The 4500 local exchanges that are not MSANs are consid-
ered unsuitable for deployment of caches as they do not contain 
enumerates the most important vCDN use case requirements.
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Table 6.5 vCDN use case requirements and corresponding RECAP components

Requirement RECAP solution

•  Optimise cost of compute and storage 
infrastructure vs. cost of network 
bandwidth.

•  CDN traffic forecast using a Seasonal 
Autoregressive Integrated Moving Average 
(SARIMA) model enables accurate 
prediction of demand.

•  CDN load translation models to calculate 
how much compute resource is required for 
the forecast workload.

•  Cache placement optimisation using 
state-of- the-art AI and genetic algorithms.

•  CDN application model to calculate where 
caches should be placed in the BT topology.

•  Infrastructure model of BT’s network and 
compute infrastructure.

 •  Simulator to calculate utility of 
infrastructure placement options.

 •  Take account of uneven distribution 
of consumers and traffic.

•  The RECAP methodology addresses this 
(further work is required to add customer 
distribution into the optimisations).

 •  The application model takes account of BT’s 
topology.

•  Different CDN operators may have 
different optimal locations for their 
caches

•  Application model can be run per CDN 
operator.

•  Network operator must take into 
account the potential demands across 
multiple CDN operators

 •  Infrastructure model can aggregate demand 
from the application model.

•  Content traffic has a 2:1 peak-to-
mean ratio and is highly seasonal with 
daily, weekly, and annual patterns. 
Power could be saved by turning off 
infrastructure when not required.

•  CDN operators will need tools to 
support a near real-time decision to 
activate or deactivate their caches.

•  Application cache placement optimiser is 
dynamic and can adjust according to traffic 
load.

(continued)
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Fig. 6.7 Abstract representation of BT UK network topology

Table 6.5 (continued)

Requirement RECAP solution

•  Total bandwidth consumed by 
content is consistently increasing (c. 
50% per annum); therefore, the 
network operator needs to constantly 
invest in adding more transmission or 
more vCDN infrastructure nodes and 
capacity to the network. Network 
operators need to improve the 
accuracy of future traffic predictions 
and where investments should be 
made so that infrastructure gets 
installed just in time and customer 
experience is always good.

•  The collection of RECAP workload 
predictors, models, and optimisers find 
solutions, which optimise cost and 
performance according to network operator 
preferences.
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Fig. 6.8 BT network locations in UK
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Table 6.6 vCDN technical challenge and RECAP solution

Technical challenge RECAP solution

Performance of virtualisation 
technologies, especially virtualised 
storage.

BT is conducting experiments to verify and 
improve the performance and orchestration 
of CDN virtualisation technologies.

Orchestration of a multi-tenant vCDN 
service and infrastructure.

BT is building an orchestration system proof 
of concept using OSM and OpenStack for its 
vCDN service.

•  Optimisation of placement and scaling 
of vCDN system.

•  BT decides where to install and grow 
or reduce the infrastructure.

•  The CDN operators decide where to 
install, grow, and reduce their virtual 
machines or containers for their caches.

•  BT will have to optimise how much of 
its infrastructure it dedicates to CDN 
operators.

•  CDN operators will have to optimise 
how much resource they need to 
consume.

•  Each CDN operator will be 
independent and may experience 
different traffic loads.

 •  Installing infrastructure requires the 
planning of the provisioning of 
hardware many months in advance, 
although once installed servers may be 
turned on and off, to reduce power 
consumption, in ~15 minute time 
periods.

•  CDN operators may activate and 
deactivate their cache virtual machines 
or containers very quickly in the 5 
minutes to sub-second timeframes and 
hence need more real-time 
optimisation than the infrastructure.

•  CDN operators may choose to 
deactivate their software to reduce 
infrastructure rental charges.

RECAP methodology can automate the 
decision making for the optimisation, scaling, 
monitoring, and repair of vCDN systems 
using modelling and statistical techniques.

 •  RECAP methodology is built around 
“separation of concerns” addressing the 
need for network and CDN operators to 
be treated separately.

•  RECAP forecast model can enable 
decisions to be made and acted upon just 
in time to optimise power consumption.

•  RECAP application model adjusts to 
traffic dynamics.

(continued)

6.3.3  Technical Challenges

The vCDN technical challenges can be grouped into several areas as shown 
in Table 6.6 below.
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Technical challenge RECAP solution

•  Monitoring and repair of the vCDN 
system.

•  Each CDN operator will have 
proprietary methods for the 
monitoring and remediation of their 
CDN software.

•  Many operate an architecture that is 
fault tolerant, with a caching hierarchy, 
where loss of a leaf will result in 
content being served from a cache 
higher in the hierarchy.

 •  CDN operators also have advanced 
load balancing mechanisms where a 
consumer’s initial request is switched to 
the best cache, according to load and 
location, and content is “chunked” and 
distributed so any failure mid-session 
will be recovered from.

•  The RECAP methodology can automate 
the decision making for the optimisation, 
scaling, monitoring, and repair of vCDN 
systems using modelling and statistical 
techniques

•  The CDN operators’ architectures permit 
re-optimisation of CDN cache locations 
and scale with minimal impact on service.

•  Detection and mitigation of impact of 
“noisy neighbours”.

 •  Proprietary solutions exist to monitor the 
quality of the content delivered to 
consumers.

•  Further work is required to feedback these 
quality measurements into a CDN cache 
placement optimisation and orchestration 
solution.

Table 6.6 (continued)

6.3.4  Validation and Impact

The RECAP consortium is engaged with various CDN operators to 
develop fine-grained infrastructure and application models to develop 
optimisation strategies for Virtual Content Distribution Networks 
(vCDN). The resulting strategies will aid BT to improve the accuracy of 
their planning and forecasting, reducing infrastructure investment while 
still giving BT’s customers a superior web browsing and video streaming 
experience. RECAP methods will reduce the amount of human support 
BT’s vCDN planning process requires, enabling BT to be more agile and 
cost efficient (Fig. 6.9).

Preliminary experimentation results are promising regarding the utility 
of RECAP for BT. They suggest:
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Fig. 6.9 Customer utility vs. number of vCDN sites

 1. The SARIMA models provide one-hour ahead workload forecasts of 
11.5% accuracy with 90% confidence. This should be sufficient for 
CDN operators to pre-emptively adjust the sizes and number of 
caches running while infrastructure operators should be able to shut 
down or power up servers to minimise power wastage.

 2. The RECAP DTS framework demonstrated the value of a caching 
hierarchy when compared to a single layer of caches at the 
MSAN. The results suggest a caching hierarchy can improve Provider 
Utility by up to 24% (see Fig. 6.10) and doubles Customer Utility 
at intermediate stages of infrastructure deployment, as illustrated in 
Fig. 6.9. Further, when compared to BT’s own optimisation strat-
egy, it improved Provider Utility by up to 6.4% at certain intermedi-
ate stages of infrastructure deployment. The BT and RECAP 
optimisation both converged on deploying the maximum number 
of 860 nodes because the caching business case is very compelling, 
i.e. deploying a cache at a site always saves money and improves 
customer utility. For a use case where the business case is more 
marginal, the RECAP methodology can find a solution more signifi-
cantly optimal.

 3. The RECAP Application Optimisation (autoscaling and simulation) 
systems provide BT with the ability to both improve on baseline 
cache deployment scenarios (through comparative analysis of 
 alternative deployment scenarios) and in run-time adapt to unfore-
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seen and unexpected changes in workload. Simulation allows experi-
mentation with alternative deployment strategies and evaluates the 
impact of changes in infrastructure, as well as application topologies 
and caching strategies. Validation experiments demonstrate a 4% 
improvement in cache efficiency when serving realistic workloads as 
well as the ability to efficiently adapt the amount of cache capacity 
deployed in heterogeneous and hierarchical networks to changes in 
request and network traffic patterns.

These results suggest that by implementing RECAP, BT and CDN 
operators can benefit from both decreased cost and increased competitive-
ness through:

 1. Providing more accurate modelling, infrastructure dimensioning, 
and resource allocation across the chain of service provision to sup-
port better infrastructure planning.

 2. Rapid accurate autoscaling to support fluctuations in demand and 
avoid under and over booking of resources.
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 3. Leveraging existing infrastructure and avoiding additional capital 
expenditure.

 4. Reducing staffing requirements and freeing up valuable IT expertise.
 5. Increased revenue through:

 (a) Delivering and maintaining high QoS.
 (b) Shortening the time for CDN operators to access infrastructure 

and accelerate revenue generation.
 (c) Reducing time to market for infrastructure and applications 

deployment.

6.4  case study In edge/fog computIng 
for smart cItIes

6.4.1  Introduction

This case study integrates RECAP mechanisms related to resource reallo-
cation and optimisation in a proprietary distributed IoT platform for smart 
cities, called SAT-IoT. Hence, it demonstrates the capabilities to integrate 
RECAP components into third-party systems as well as the immediate 
benefits of using the RECAP approach for optimisation.

Being IoT-centric, this case study deals with hardware-software infra-
structures and vertical applications as well as mobile entities and devices 
that move over the area of city. It is built on the assumption that smart 
cities provide infrastructure for handling IoT network traffic in a zone- 
based manner as shown in Fig. 6.11; wireless networks complement wired 
networks to form a hybrid network (Sauter et al. 2009); and these hybrid 
networks include the cloud nodes, edge nodes (IoT gateways), and fur-
ther mid (fog) nodes. Mid nodes are connected to the cloud and to each 
other forming a mesh network. Edge nodes receive data from wireless 
devices located in the same geographical area. Groups of edge nodes are 
connected to a mid node. Edge nodes are usually not connected to each 
other. In this kind of scenario, it is necessary to manage the IoT network 
topology to adapt to moving users and changing data streams. Such a 
topology administration will facilitate the dynamic deployment of distrib-
uted IoT applications, the interconnection of devices in the IoT platform, 
and the data exchange among platform network nodes.

Consequently, this use case study requires:
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• The capability to dynamically optimise the applications’ communica-
tion topologies under an “Edge/Cloud Computing Location 
 Transparency” model. In particular, it requires the optimal realloca-
tion of data flows periodically at run-time to reduce bandwidth con-
sumption and application latencies.

• A mechanism to consider limitations of the physical topology when 
planning the virtual topology.

For the sake of demonstration and validation purposes, the SAT-IoT 
platform in RECAP is running a distributed Route Planning and City 
Traffic Monitoring application. Figure 6.12 illustrates this scenario based 

Fig. 6.11 Example of IoT hybrid network for mobile devices

Fig. 6.12 Smart city structure
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on the city of Cologne. The city area is distributed into nine geographical 
regions, each of which has its own edge compute node.

6.4.2  Issues and Challenges

The formulated scenario presents some challenges with respect to the cur-
rent cloud IoT/smart city systems, the edge/fog computing paradigm, 
and the ICT architecture optimisation. The issues and challenges addressed 
in this case study include:

• Adoption of edge computing models to process the massive data 
generated from different IoT devices at their zone edge nodes in 
order to improve performance.

• Integration of edge, fog, and cloud paradigms to develop dynami-
cally configurable IoT systems, to achieve better optimisation results 
for both applications and underlying infrastructure.

• Dynamic management of smart city environments based on distribu-
tion of mobile devices and users and their resource demands.

6.4.3  Implementation

6.4.3.1  Requirements
In order to improve the performance of the IoT system, the edge comput-
ing model seeks to process the massive data generated from different IoT 
devices at their zone edge nodes. Only the processing results are transmit-
ted to the cloud infrastructure or to the IoT devices, reducing the band-
width consumption, the response latency, and/or the storage needed (Ai 
et al. 2018).

Considering an IoT system that uses a hybrid network similar to 
Fig.  6.11, any application that processes data from zones, North and 
Centre, cannot naively run data processing in the zones since it requires 
information from both zones. A conventional cloud computing architec-
ture is not well suited to applications where the location of devices changes, 
where the volume of data received in each edge node varies dynamically, 
or where the processing needs data from different geographical areas. Car 
route planners and city traffic analysers are good examples of smart city 
applications that make calculations with the information received from 
connected cars located in different zones of the city.
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Thus, to process the data from, for example, the North and Centre 
zones, it is necessary to send it to a processing node. As these edge nodes 
are not connected to each other, the data from one or both zones need to 
pass through Mid86. Indeed, Mid86 would be the closest node to run 
processing for both affected zones. When considering the scenario on a 
larger scale with multiple zones and applications that require data from all 
zones to complete the processing,1 the task of finding the most suitable 
processing node is non-trivial. Furthermore, where there are significant 
constraints on deployment capacity constraint, the underlying infrastructure 
becomes a factor too. Consequently, an IoT platform for smart city 
applications must be able to:

• integrate of cloud, fog, and edge computing models;
• manage the smart city data network topology at run-time;
• use optimisation techniques that support processing aggregated data 

by geographical zones; and
• monitor the IoT system and the optimisation process in run-time.

6.4.3.2  The SAT-IoT Platform
The IoT platform which forms the basis of this case study is based on the 
SAT-IoT platform. Its core architectural concept is edge/cloud comput-
ing location transparency. This computational property allows data to be 
shared between different zones and to be processed at any of the edge 
nodes, mid nodes, or cloud nodes.

The concept of edge/cloud computing location transparency is realised 
by two of the entities in the SaT-IoT architecture, the IoT Data Flow 
Dynamic Routing Entity, and the Topology Management Entity (see 
Fig. 6.13). They support a cloud/fog programming model with the capa-
bility of managing the network topology at run-time while also providing 
the necessary monitoring capabilities to understand the usage pattern and 
capacity limitations of the infrastructure. While they provide the necessary 
capabilities to reconfigure the topologies and data flow, they lack the capa-
bility to derive the best-possible placement of the data processing logic. 
This is realised by integrating the RECAP Application Optimiser in the 
SAT-IoT platform.

1 SAT-IoT is capable of managing and supporting multiple applications over the same IoT 
data network.
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IoT Topology Management Entity
IoT Data Flow Dynamic Routing is the cornerstone of SAT-IoT.  It 
dynamically manages IoT data flows between processing nodes (cloud 
nodes, edge nodes, and smart devices). In addition, this entity includes a 
distributed temporary data storage system to support data streaming and 
local processing services. In this case study, data flows are both the sets of 
data sent by the cars (position, speed, fuel consumption, etc.) and the 
route calculation requests between two locations in the city.

Fig. 6.13 SAT-IoT platform architectural model
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The IoT Data Flow Dynamic Routing Entity comprises:

• Data Streaming Management System: Provides the mechanisms to 
transfer IoT data flows directly from nodes (e.g. edge nodes or smart 
devices) to other internal or external services and applications that 
request them (on a publish/subscribe model).

• Computing Location Transparency Support System: Wraps the 
RECAP Application Optimiser for its integration into the SAT- 
IoT platform.

• Data Flow Routing Management System: Responsible for setting 
the routing of the data flows to the optimum computation node after 
inquiring about the best computation node for the data flow from 
the Computing Location Transparency Support System.

IoT Topology Management Entity
The IoT Topology Management Entity is responsible for the definition of 
an application network topology in every IoT system deployed by the 
platform. This application network topology defines which SAT-IoT entity 
communicates with which other SAT-IoT entities. The communication 
structure is based on the available underlying IT infrastructure (computa-
tion nodes and data network).

The application topology is defined as a graph of computing nodes and 
links between them, and it includes a variety of attributes like node fea-
tures (CPU, Memory, etc.), data link features (bandwidth), geolocation of 
the node, use of resources (hardware and communication metrics), etc. 
With this definition, the system dynamically manages the physical hard-
ware topologies, enables updating the logical structure of the topologies 
at any time, and includes a monitoring system that continuously provides 
the status of nodes and links in terms of performance metrics (consump-
tion of CPU, memory, storage, bandwidth, etc., and also data flows cross-
ing the network).

The three main functions of the Topology Management Entity are:

• IoT Topology Definition: It enables the modelling of the IoT 
architecture as an enhanced graph in which nodes are the hardware 
elements with processing capabilities. The nodes in the graph are 
defined containing all their attributes (node type, CPU, RAM, loca-
tion, etc.). Edges in the graph correspond to data links and have 
their attributes as well.
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• Topology Management: It is a set of services to query and modify 
the IoT topology definition to maintain the consistency between the 
physical installations and their definition in the platform. It supports 
the model of Edge/Cloud Computing Location Transparency sup-
ported by the platform.

• Topology Monitoring: It continuously gathers and stores metrics of 
each node and edge. It also provides these metrics to other internal sys-
tems (IoT Topology Visualisation System or Embedded Applications) 
and external systems (third-party applications and systems).

Application Optimisation
To find the optimal location of the data processing logic, the optimiser 
needs to consider response latency, bandwidth consumption, storage, and 
other properties. Furthermore, the selection of the computation nodes 
might change dynamically as the conditions of the system may vary over 
the time (shared data, application requests, data volume, network disrup-
tions, or any other relevant issue).

6.4.3.3  Implementation
For realising optimisation support, SAT-IoT integrates a RECAP applica-
tion optimisation algorithm. Using this algorithm, SAT-IoT can decide, in 
real time, the optimum node of the IoT data network to process a given 
data flow. The integration of the application optimisation algorithm is 
implemented in the Computing Location Transparency Support System 
module, part of the IoT Data Flow Dynamic Routing Entity (see 
Fig. 6.14).

The application optimisation algorithm uses IT resource optimisation 
techniques, graph theory (based on the topology graph definition), and 
machine learning processes to predict the needs of the system in the short 
term. The prediction considers the current state of the systems, e.g. met-
rics, IT resources used, links bandwidth consumption, application laten-
cies, distribution of nodes across the topology, and the data flows involved 
in each node. A RECAP Non-Dominated Sorting Genetic Algorithm is 
used to calculate the optimum node to process the application data flows 
received in the last time period.

The Application Optimiser systematically receives the virtual topology 
and the data flows (route calculation requests and information about 
them) for the last time period. It then calculates a cost function to move 
the flows to each server and finally selects the node with the minimum 
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value of the cost function. The application receives the node selected and 
requests the platform to configure the data flow routing to send the data 
flows to the optimum computation node.

The city traffic monitoring application makes use of the optimisation 
service provided by SAT-IoT and provides a user interface to execute the 
optimisation on demand. In a production setting, the Application 
Optimiser would be run automatically based on intervals. Every time the 
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optimisation is executed, SAT-IoT automatically changes the virtual net-
work routing configuration in order to send data flows to the optimum 
node for processing.

6.4.4  Validation Results

To validate the system, SAT-IoT runs a distributed Route Planning and City 
Traffic Monitoring application using a dataset of Cologne city traffic edited 
by the Simulation of Urban Mobility (SUMO) Eclipse project as an input. 
Software entities emulate cars moving in the city and send data such as posi-
tion, velocity, and road conditions captured from sensors periodically.

The IoT platform and application have been deployed in a virtual infra-
structure with a topology as shown in Fig. 6.15 where seven edge servers 
associated to ten areas of Cologne city are used (nine city zones and an 
additional zone to cover traffic close to those defined zones). Three mid 
nodes have been deployed to group sets of three areas, and a group of 
virtual servers acts as the cloud infrastructure. Runs cover traffic simula-
tion of two hours.

As discussed, SAT-IoT makes use of the RECAP Application Optimiser 
(see Fig. 6.13). Periodic optimisation is switched off and manual optimisa-
tion enabled to allow the user to execute the RECAP Application Optimiser 
on demand while the simulation scenario is running. This allows optimisa-
tions to be performed at different execution times where the conditions 
and status of the platform may vary. For instance, route requests and oper-
ational vehicles vary over time and executing the Application Optimiser at 
different points in time results in different optimisation results as shown at 
the top of Fig. 6.15. Here, the orange circle in the upper left diagram 
represents the optimal node for data processing at that point in time. 
Similarly, the chart at the upper right side shows the cost function for the 
selected node compared to cloud-based data processing.

In the lower left chart, Fig. 6.15 shows the values and results obtained 
from the optimisation process executed nine times during an experiment. 
In the first optimisation, the optimum destination node changes from the 
cloud to Node 86. The line chart on the right shows an immediate cost 
reduction. The table on the bottom left shows the cost saving/additional 
cost of moving the data to different nodes. In this case, the optimum node 
shows a reduction of 3311 cost points compared to moving the data to the 
cloud node. These results are evident in the bar chart at bottom right too.
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Figure 6.16 plots the overall amount of data transferred per time unit. 
It compares a standard cloud-based processing approach with an approach 
using RECAP-Optimised message routing. As can be seen, it shows a sig-
nificant reduction of transferred data and hence bandwidth consumption.

6.4.5  Results

Implementation of the RECAP Application Optimiser (1) reduced band-
width usage by up to 80% compared to a cloud-only processing of data, 
and (2) reduced the overall latency and improved the user experience by 
reducing the overall number of hops to send the data flows to the opti-
mum processing node by up to 20%.

In summary, the benefits of the implementation of the RECAP 
Application Optimiser embedded in the SAT-IoT platform include (1) 

Fig. 6.15 Optimisation results
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automated continuous optimisation; (2) enabling dynamic changes to 
computation nodes in an IoT network topology without administrator 
intervention to fulfil the efficiency criteria defined for the IoT system; and 
(3) global transparency across the entire IoT system, which together result 
in significantly reduced costs and increased quality of service.

6.5  case study In capacIty plannIng: bIg data 
analytIcs search engIne

6.5.1  Introduction

This case study illustrates how components of the RECAP approach, 
namely data analytics as well as simulation and planning, can be used for 
capacity planning for and small-to-medium-sized enterprises.

Linknovate (LKN) is a Spanish SME that develops and markets a cloud- 
base data analytics and competitive intelligence platform and service. 
LKN’s primary market is in the US. LKN generates knowledge insights by 
aggregating large amounts of (heterogeneous) research and scientific data 
using data mining and data analytics techniques for their clients. At the 
time of writing, LKN had indexed over 20 million documents, over 30 

Fig. 6.16 Number of records transferred for SAT-IoT running route planning 
and city traffic monitoring application using cloud-based processing and RECAP- 
optimised processing
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million expert profiles, over 2 million entity profiles, and more than 200 
million innovation topics.

LKN manages vast amounts of information through different offline 
and online layers. The offline layer, Data Acquisition, comprises several 
pre-processing components working in parallel over raw data to homoge-
nise structure and identify entities and semantic relations. The online layer, 
Processing and Indexing, is done over a virtual cluster of search nodes 
based on ElasticSearch (ES). Finally, the Web and Search layer is where user 
queries execute several internal queries over LKN indices, retrieving the 
data to be displayed in the User Interface (UI). User queries are received 
by the virtual Nginx web server that also renders the results pages. The 
LKN platform is deployed on a heterogeneous technology stack on the 
Microsoft Azure cloud with three types of nodes: web processing nodes, 
database nodes, and the aforementioned index and search nodes. An over-
view of the LKN platform components is provided in Table 6.7.

6.5.2  Issues and Challenges

Small businesses typically operate in constrained business environments 
with a tension between scaling for growth and cashflow. While cloud 
computing provides significant benefits in terms of cashflow management 
and scalability, controlling consumption and managing complex cloud 

Table 6.7 LKN platform components

Nodes Components

Online—index 
and search 
nodes

ElasticSearch v5 providing the search functionality and storing processed 
and structured data:
•  9 data nodes (Azure DS12 v2) running Debian GNU/Linux with 4 

processing cores and 28GB of RAM, where 24 shards of data with 
replicas of old and fresh data are stored and processed

•  1 client node (Azure DS14 v2) running Debian GNU/Linux with 16 
processing cores and 112GB of RAM, which coordinates and 
aggregates the search results.

Online—web 
processing 
node

Azure D12 v2 running Debian GNU/Linux with four processing cores 
and 28GB of RAM. Service running: Nginx server with Django-based 
web app. This node serves as the LKN web platform.

Online—
database node

Azure DS4 v2 virtualised machine) running Debian GNU/Linux with 8 
cores and 28 GB memory running Postgresql, Cassandra and 
MongoDB. This node stores diverse user information, mailing 
management, and storing input form data from users.
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infrastructure with a small IT team are significant challenges. Small businesses 
may not be able to accommodate reactive approaches to infrastructure 
provisioning (given the elevated warm-up times) and could save costs and 
improve QoS by using predictive solutions. Such solutions should allow 
effective and efficient provisioning/deprovisioning of cloud capacity by 
predicting spikes in demand in the short- and medium term and enabling 
boot-up instances in advance thereby addressing consume pattern predic-
tion by geographic region and accurately anticipating periodic time-based 
traffic patterns.

In this case study, LKN overprovision nodes in Azure to cope with 
unexpected or irregular request peaks by users with a focus on serving the 
Eastern US market. LKN would like to optimise their cloud resources to 
reduce the cost of overprovisioning and avoid platform replication in non- 
core geographic markets. RECAP Data Analytics and Simulation and 
Planning methodologies and tools were used to support LKN in the 
capacity planning.

6.5.3  Implementation

6.5.3.1  RECAP Data Analytics

Step 1: Exploratory Data Analysis

Web Server Error Analysis
Firstly, LKN data were evaluated from a quality perspective. Given that the 
workload is based on the number of user queries, the errors were evalu-
ated (number of invalid requests) reported by the web server as per 
Table 6.8 below.

Although 78.78% of the queries were successfully answered by the 
search engine, the number of errors is very high for this kind of service.

Request Source Analysis
In a second step, the source of all requests was analysed and ordered by 
the number of requests. Table 6.9 below presents data based on the first 
10 entries.2 45% of the requests are originated from a few IP addresses. 

2 IP addresses and other confidential data were anonymized by LKN before providing the 
data to RECAP.
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Table 6.8 Statistics of 
the response codes 
returned by the LKN 
search engine

HTTP status Description Number of entries

200 OK 1,692,070
302 Moved temporarily 175,577
301 Moved permanently 111,109
503 Service unavailable 82,905
404 Not found 45,439
304 Not modified 27,782
206 Partial content 8024
499 Client closed request 2497
403 Forbidden 1190
400 Bad request 699
500 Internal server error 117
405 Method not allowed 100
502 Bad gateway 72
504 Gateway timeout 19

Table 6.9 The top 10 
IP addresses directing 
the largest number of 
requests to the LKN 
search engine

Anonymous IP Count

IP_1 184,381
IP_2 124,093
IP_3a 90,711
IP_3b 85,367
IP_3c 78,317
IP_3d 70,576
IP_4 69,950
IP_5 55,806
IP_6a 44,459
IP_6b 29,771

These IPs correspond to web-spider bots from large search companies, 
e.g. Google and Yandex. As this provides visibility for LKN in search 
engine results, no remediation action was taken.

Response Size and Response Time
Figure 6.17 shows a histogram of the response volume of the LKN search 
engine. Figure 6.17(b) presents a histogram of the (total) time that the 
search engine requires to provide an answer to user queries. The 
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correlation between the response size and the response time was also stud-
ied and is shown in Fig. 6.17(c). The Pearson correlation coefficient is 
0.18. If only 200 (OK) requests are considered, it is 0.20. Both 0.18 and 
0.20 suggest a positive (although weak) correlation between both values.

Number of Requests
The number of requests has also been characterised through a time series 
with the number of requests that the server receives aggregated over inter-
vals of 30 minutes. This time series is the target workload that is analysed 
and modelled as part of the RECAP methodology. Peaks in this period can 
be explained by increased media attention during the period (Fig. 6.18).

Fig. 6.17 (a), (b), and (c): Histograms of the distribution of the responses, 
response time, and scatter plot of the response size and time for the LKN 
search engine
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6.5.3.2  Workload Predictor Model
From experience, the time to deploy a new data node in Azure clusters is 
about 30 minutes. The original dataset was aggregated in periods of 30 
minutes, and a new feature, number of requests, was derived. Predicting 
the number of servers required for the next period of 30 minutes (work-
load prediction) to deal with the expected user requests is the goal of 
the model.

As a preliminary step before fitting a model to predict future workloads, 
the stationarity of the time series was examined. A visual inspection of a 
moving average and a moving standard deviation, together with a decom-
position of the series in trends + cycles + noise, suggests a stationary time 
series. This intuition has been confirmed with a Dickey-Fuller test. The 
coefficients of the autoregressive integrated moving average (ARIMA) 
were estimated using an autocorrelation function (autoregressive part) 
and a partial autocorrelation function (for the moving average) where the 
already identified components were removed. The final ARIMA model 
trained corresponds to an autoregressive part of four periods, and a mov-
ing average of six periods, without requiring the integration of the original 
time series.

Figure 6.19 presents a sample dashboard with the Workload Predictor 
and the Application Modeller for LKN.  The dashboard is composed of 

Fig. 6.18 Time series of the LKN’s search engine workload (data aggregated 
over windows of 30 minutes)
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three independent but synchronised panes. The “Workload” pane, displayed 
in light blue, presents the actual workload (number of requests during each 
30-minute interval) of the search engine, along with the forecast number of 
servers required to deal with the predicted workload (in black). The 
“Capacity Planning” pane presents the overprovisioning of resources 
deployed to deal with the actual workloads. The current overprovisioning of 

Fig. 6.19 Workload predictor dashboard
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the servers in production used by LKN is displayed in light blue, while the 
overprovisioning given the RECAP models is displayed in dark blue together 
with the underprovisioning in red. The grey display depicts a conservative 
model that does not underprovision resources. Finally, the “Servers and 
Location” pane presents the recommended number of servers and their 
geographical locations, as they are predicted by the application model.

RECAP ran a simulation of the LKN workload based on a historical 
dataset collected at the production server for a period of one month 
(August 2017). Based on the collected data, LKN was overprovisioning 
during that period of time by an average number of 13.8 cores of Azure 
DS12 v2 i.e. 86.6% of overprovisioning of data processing capacity. 
Applying the RECAP models would reduce overprovisioning to 3.5 cores, 
or the equivalent of 60% overprovisioning.

6.5.3.3  RECAP Simulation and Planning Mode
The RECAP Simulation Framework supports a number of features that 
can help in ES-based system deployment and provisioning decisions. 
These include:

• Modelling and simulation of a distributed data flow with a hierarchi-
cal architecture;

• Custom policy implementation for distributing workload in the hier-
archical architecture;

• Synchronous communication between search engine components 
for data aggregation; and

• Flexible modelling that can be easily adapted to integrate with other 
CloudSim extensions.

Modelling
Figure 6.20 shows the online virtual layers of the LKN search engine con-
sidered in the implementation of the RECAP Simulation Framework. As 
discussed earlier, the deployed LKN search service stack consists of a web 
server where the users input their queries and an ES cluster which is 
responsible for the search and returning the response to the user query. 
The ES cluster consists of an ES client node and data nodes. The ES node 
is responsible for: (1) passing and distributing the queries among the data 
nodes; (2) coordinating and aggregating the search results of different 
data nodes; (3) and returning the query result to the web server, which in 
turn returns it to the user. The data nodes are responsible for storing and 
processing old and fresh data.
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A simulation model was built to reflect the behaviour of a real ES-based 
system deployed in a public cloud based on the LKN workload data as a 
reference. An ES-based search engine was then modelled and simulated 
using a Discrete Event Simulation (DES) approach. To do so, CloudSim, 
a widely used open source DES platform, was extended with the simula-
tion model and then compared with KPI traces collected from LKN.

Figure 6.21 illustrates the ES workload flow. Within CloudSim model-
ling concepts, a cloudlet represents a task submitted to a cloud environ-
ment for processing. When a query is launched, a set of cloudlets is 
generated and executed in sequential manner. The first cloudlet is exe-
cuted at a web server then the second cloudlet is executed at the ES node. 
From the ES node, a set of cloudlets (which is less or equal to the number 

Fig. 6.20 LKN conceptual ElasticSearch (ES) architecture
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of data nodes) is distributed and executed at data nodes. Next, another 
cloudlet is executed again at the ES node to merge the partial results com-
ing back from the data nodes. Finally, a last cloudlet goes from the ES 
node to the web server as a response to the user query.

Results
The simulated response time of a query was compared to its actual time as 
collected from real system traces. A subset of 100 valid queries was 
extracted from the data set used. Figure 6.22 compares actual and simula-
tion query response times across the 100 queries. As one can see, the 

Fig. 6.21 ElasticSearch (ES) workload flow

Fig. 6.22 Comparison of actual and simulation query response times
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actual query response times and the simulation query response times are 
very close and highly positively correlated across all the 100 queries tested.

The performance of the LKN system was analysed by running the simu-
lation with different workloads (query traffic) to see how much traffic the 
LKN system could handle. Query response time was monitored while 
varying the number of queries per second (q/s) received by the system. 
Figure 6.23 is a box plot (min, max, lower quartile, upper quartile) that 
shows the query response time based on the number of queries per second 
the system receives.

With query traffic of up to 80 q/s, the query response time for all the 
queries is the same and it is equal to having one q/s. That means the sys-
tem is capable of handling 80 q/s with no waiting time. Between 80 q/s 
and 120 q/s, a slight increase in the response time appears. However, this 
increase affects all the queries in the same way, i.e. there is no difference in 
response time between the queries. As we increase the query traffic beyond 
120 q/s, a divergence in query response times becomes apparent. Between 
130  q/s and 170  q/s, the system manages to execute several queries 
within a short time by delaying the excess of queries; however, with the 
increase in query traffic beyond 170 q/s, the system fails to execute even 
a single query in a short time.

Fig. 6.23 LKN system performance under different traffic scenarios
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6.5.4  Results

The analysis run for this case study has proven valuable in multiple ways. 
First, LKN was able to gain a better understanding of infrastructure plan-
ning, deployment, anomaly detection. Similar, workload prediction mod-
els estimate the potential cost savings due to improved resource 
consumption of 26.6%.

Using the RECAP DES simulator, it was possible to provide an insight 
for LKN into capacity planning in that it identifies thresholds at which 
point LKN’s QoS starts degrading and additional resources must be provi-
sioned. LKN can now use these data to reduce overprovisioning and at the 
same time set specific rules for scaling up and down in a cost- effective manner.

All these insights resulted in LKN changing their deployment strategy 
moving to a more advanced infrastructure configuration using only two data 
nodes (instead of nine) with NVMe (non-volatile memory express) storage.

references

Ai, Y., M. Peng, and K. Zhang. 2018. Edge Computing Technologies for Internet 
of Things: A Primer. Digital Communications and Networks 4 (2): 77–86.

Ofcom. 2016. Business Connectivity Market Review—Volume I—Review of 
Competition in the Provision of Leased Lines. https://www.ofcom.org.uk/__
data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf.

Sauter, T., J. Jasperneite, and L. Lo Bello. 2009. Towards New Hybrid Networks for 
Industrial Automation. 2009 IEEE Conference on Emerging Technologies & 
Factory Automation, 1–8. IEEE.

Open Access This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence and 
indicate if changes were made.

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to 
the material. If material is not included in the chapter’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copy-
right holder.

 M. A. LÓPEZ-PEÑA ET AL.

https://www.ofcom.org.uk/__data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


161© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications  
and Infrastructure, Palgrave Studies in Digital Business & Enabling 
Technologies, https://doi.org/10.1007/978-3-030-39863-7

Index

A
AI for IT Operations (AIOps),  

5, 9–10
Application modelling, 44, 70
Application models, 7, 8, 14, 15, 

19, 44, 46
Application optimisation, 13, 17, 

23–24, 52–67, 91, 137, 145
Application optimiser, 55, 66, 70, 82, 

142, 144–148
Application placement, 70–91
Application provisioning, 117–160
Artificial workload generation, 44–46
Autoscaling, 52–67

C
Cache, 105–110, 112, 113, 130, 131, 

137, 138
Capacity planning, 13, 24, 149–160

Capacity provisioning, 2–24
Case study, 118–160
Cloud-to-edge continuum, 23
Content distribution network (CDN), 

130, 131, 136–139

D
Data acquisition, 28–49
Data analytics, 3, 10, 13,  

16, 19–24, 28, 29, 34, 
39–43, 149–160

Data structure, 36–37
Data visualisation, 46–49
Discrete Event Simulation  

(DES), 94–104, 113,  
157, 160

Discrete Time Simulation (DTS), 
94–97, 104–113, 137

Distributed cloud, 2–24

https://doi.org/10.1007/978-3-030-39863-7#DOI


162 INDEX

E
Edge computing, 2, 4, 5, 8

F
5G communication system,  

119, 130
5G network emulator, 122
5G network service, 121

I
Infrastructure and network 

management, 118–130
Infrastructure modelling, 44, 96, 

101–102, 110–111
Infrastructure models, 7, 9, 13, 

19, 44, 99
Infrastructure optimisation, 13, 17, 

24, 70–91, 118–160
Infrastructure optimiser, 70–72, 126
Internet of Things (IoT), 3, 4, 9, 24

L
Load translation models, 7, 9, 

14, 22, 28

M
Machine learning, 28, 29, 34, 

39, 41, 42
Machine learning and artificial 

intelligence (AI) for IT 
operations, 2, 5, 9–10

Metrics, 29–41, 48
Model-centricism, 2, 5–9, 23
Modelling, 39–43, 46
Models, 70, 74–77, 79–85, 91, 

96–103, 105

Modular design, 2, 5, 9, 23
Monitoring, 30–35, 38

N
Network function virtualisation 

(NFV), 120, 130

O
Open data, 49

Q
Quality-of-Service (QoS) models, 

7, 9, 31

R
Resource allocation, 97, 105, 

121, 138
Resource management, 99, 121, 122
Resource provisioning, 55, 64, 79
Run-time Operation, 11, 16, 21–22

S
Separation of concerns, 2, 5–6, 9, 23
Simulation, 29, 42, 46, 94–104,  

106, 107, 112–114, 122,  
124, 128, 137, 138, 147, 
149, 156–159

Simulation and Planning, 11, 16, 
18–20, 22, 24

Simulation framework, 94–98, 101, 
105, 106, 112, 113, 156

U
User models, 7, 8, 14, 22



163 INDEX 

V
Virtual content distribution network 

(vCDN), 95, 106–113, 
118, 130–139

Virtual network chain, 101, 120
Virtual network functions (VNF), 

101–104, 120, 121,  
124–127

W
Workload modelling, 52, 54, 55, 60, 

62, 66, 67, 70
Workload models, 7, 8, 14, 19, 22, 28, 

42–44, 46
Workload prediction, 52–67, 70
Workload propagation modelling, 

63–64, 70–73, 79, 81–84


	Preface
	Acknowledgement
	Contents
	Notes on Contributors
	List of Figures
	List of Tables
	Chapter 1: Towards an Architecture for Reliable Capacity Provisioning for Distributed Clouds
	1.1 Introduction
	1.2 From the Cloud to the Edge and Back Again
	1.3 Design Principles
	1.3.1 Separation of Concerns
	1.3.2 Model-Centricism
	1.3.3 Modular Design
	1.3.4 Machine Learning and AI for IT Operations

	1.4 Operational Modes
	1.5 RECAP Conceptual Reference Model
	1.5.1 Optimisation Process Flows

	1.6 RECAP Building Blocks
	1.6.1 Infrastructure Modelling and Monitoring
	1.6.2 Optimisation
	1.6.3 Simulation and Planning
	1.6.4 Data Analytics and Machine Learning

	1.7 Mapping Functional Blocks to Operational Modes
	1.7.1 Run-time Operation Mode
	1.7.2 Simulation and Planning Mode
	1.7.3 Data Analytics Mode

	1.8 Conclusion
	References

	Chapter 2: RECAP Data Acquisition and Analytics Methodology
	2.1 Introduction
	2.2 Data Acquisition and Storage
	2.2.1 Terminology
	2.2.1.1	 Metrics and Monitoring
	2.2.1.2	 Actors

	2.2.2 Monitoring Layers
	2.2.3 Monitoring Architecture
	2.2.3.1	 Single Site Monitoring Set-up
	Components
	Practical Considerations

	2.2.3.2	 Cross-site Monitoring Set-up

	2.2.4 Data Structure for Storage
	2.2.4.1	 Metrics on the Physical Layer
	2.2.4.2	 Metrics on the Virtual Layer
	2.2.4.3	 Metrics on the Container Layer
	2.2.4.4	 Metrics on the Application Layer
	2.2.4.5	 Metric Attributes: Tagging

	2.2.5 Implementation Technology

	2.3 Data Analytics and Modelling
	2.3.1 Data Analytics Methodology
	2.3.1.1	 Step 1: Problem Definition and Data Assembling
	2.3.1.2	 Step 2: Metric for the Evaluation of the Results
	2.3.1.3	 Step 3: Data Curation and Enhancement
	2.3.1.4	 Step 4: Model Development
	2.3.1.5	 Step 5: Regularisation and Hyperparameter Selection

	2.3.2 Exploratory Data Analysis
	2.3.3 Workload Prediction
	2.3.3.1	 Probabilistic Models
	2.3.3.2	 Regression-based Models
	2.3.3.3	 Machine-Learning-based Models

	2.3.4 Artificial Workload Generation
	2.3.4.1	 Structural Models-based Workload Generation
	2.3.4.2	 GAN-based Workload Generation
	2.3.4.3	 Traffic-Propagation-based Workload Generation
	2.3.4.4	 Simulation System Model Data Sets


	2.4 Data Visualisation
	2.4.1 Visualisation for Data Analysis
	2.4.2 Visualisation of RECAP Telemetry Data

	2.5 Open Data
	References

	Chapter 3: Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Applications
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Optimisation Framework
	3.4 Application Modelling
	3.4.1 Application Characteristics and Modelling Requirements
	3.4.2 Application Modelling Framework

	3.5 Workload Modelling
	3.6 Model-based Application Optimisation
	3.6.1 Application Autoscaling
	3.6.2 Migration Techniques and Infrastructure Planning and Provisioning
	3.6.3 Workload Propagation Model
	3.6.4 Approach and Realisation

	3.7 The RECAP Application Optimisation Platform
	3.8 Conclusion
	References

	Chapter 4: Application Placement and Infrastructure Optimisation
	4.1 Introduction
	4.2 High-Level Architecture of the Infrastructure Optimiser
	4.3 Problem Formulation
	4.3.1 Infrastructure
	4.3.2 Application
	4.3.3 Mapping Applications to Infrastructure
	4.3.4 Mapping Constraints
	4.3.4.1	 Capacity Requirement Constraint
	4.3.4.2	 Compositional Constraint
	4.3.4.3	 Service Level Agreement Constraint
	4.3.4.4	 Infrastructure-Policies Constraint


	4.4 Models that Inform Infrastructure Optimisation Decisions
	4.4.1 Infrastructure contextualisation models
	4.4.2 Load Translation Models

	4.5 Algorithmic Approach to Optimal Selection
	4.5.1 Utility Functions
	4.5.2 Algorithms for Infrastructure Optimisation and Application Placement

	4.6 Conclusion
	References

	Chapter 5: Simulating Across the Cloud-to-Edge Continuum
	5.1 Introduction
	5.2 High-Level Conceptual Overview of the RECAP Simulation Framework
	5.3 Discrete Event Simulation
	5.3.1 Overview
	5.3.2 The RECAP DES Framework
	5.3.3 Cloud Infrastructure and Network Management: A RECAP DES Framework Case Study
	5.3.3.1	 Infrastructure Model
	5.3.3.2	 Application and Workload Propagation Model
	5.3.3.3	 RECAP DES Results


	5.4 Discrete Time Simulation
	5.4.1 Overview
	5.4.2 The RECAP DTS Framework
	5.4.3 Network Function Virtualisation—Virtual Content Distribution Networks: A RECAP DTS Case Study
	5.4.3.1	 DTS Architecture and Component Modelling
	5.4.3.2	 Infrastructure Model
	5.4.3.3	 Application and Workload Propagation Model
	5.4.3.4	 RECAP DTS Results


	5.5 Conclusion
	References

	Chapter 6: Case Studies in Application Placement and Infrastructure Optimisation
	6.1 Introduction
	6.2 Case Study on Infrastructure Optimisation and Network Management—5G Networks
	6.2.1 Introduction
	6.2.2 Issues and Challenges
	6.2.3 Implementation
	6.2.3.1	 Requirements
	6.2.3.2	 Implementation
	6.2.3.3	 Deliverables and Validation

	6.2.4 Results
	6.2.5 Summary

	6.3 Case Study in Network Functions Virtualisation: Virtual Content Distribution Networks
	6.3.1 Introduction
	6.3.2 Overview and Business Setting
	6.3.3 Technical Challenges
	6.3.4 Validation and Impact

	6.4 Case Study in Edge/Fog Computing for Smart Cities
	6.4.1 Introduction
	6.4.2 Issues and Challenges
	6.4.3 Implementation
	6.4.3.1	 Requirements
	6.4.3.2	 The SAT-IoT Platform
	IoT Topology Management Entity
	IoT Topology Management Entity
	Application Optimisation

	6.4.3.3	 Implementation

	6.4.4 Validation Results
	6.4.5 Results

	6.5 Case Study in Capacity Planning: Big Data Analytics Search Engine
	6.5.1 Introduction
	6.5.2 Issues and Challenges
	6.5.3 Implementation
	6.5.3.1	 RECAP Data Analytics
	Step 1: Exploratory Data Analysis
	Web Server Error Analysis
	Request Source Analysis
	Response Size and Response Time
	Number of Requests


	6.5.3.2	 Workload Predictor Model
	6.5.3.3	 RECAP Simulation and Planning Mode
	Modelling
	Results


	6.5.4 Results

	References

	Index

