
PALGRAVE STUDIES IN DIGITAL BUSINESS
AND ENABLING TECHNOLOGIES
SERIES EDITORS: THEO LYNN · JOHN G. MOONEY

Managing Distributed
Cloud Applications
and Infrastructure
A Self-Optimising Approach

Edited by
Theo Lynn · John G. Mooney
Jörg Domaschka · Keith A. Ellis

Palgrave Studies in Digital Business & Enabling
Technologies

Series Editors
Theo Lynn

Irish Institute of Digital Business
DCU Business School

Dublin, Ireland

John G. Mooney
Graziadio Business School

Pepperdine University
Malibu, CA, USA

This multi-disciplinary series will provide a comprehensive and coherent
account of cloud computing, social media, mobile, big data, and other
enabling technologies that are transforming how society operates and how
people interact with each other. Each publication in the series will focus on
a discrete but critical topic within business and computer science, covering
existing research alongside cutting edge ideas. Volumes will be written by
field experts on topics such as cloud migration, measuring the business
value of the cloud, trust and data protection, fintech, and the Internet of
Things. Each book has global reach and is relevant to faculty, researchers
and students in digital business and computer science with an interest in
the decisions and enabling technologies shaping society.

More information about this series at
http://www.palgrave.com/gp/series/16004

http://www.palgrave.com/gp/series/16004

Theo Lynn • John G. Mooney
Jörg Domaschka • Keith A. Ellis

Editors

Managing Distributed
Cloud Applications
and Infrastructure

A Self-Optimising Approach

ISSN 2662-1282 ISSN 2662-1290 (electronic)
Palgrave Studies in Digital Business & Enabling Technologies
ISBN 978-3-030-39862-0 ISBN 978-3-030-39863-7 (eBook)
https://doi.org/10.1007/978-3-030-39863-7

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access
publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information
in this book are believed to be true and accurate at the date of publication. Neither the
 publisher nor the authors or the editors give a warranty, expressed or implied, with respect to
the material contained herein or for any errors or omissions that may have been made. The
publisher remains neutral with regard to jurisdictional claims in published maps and
 institutional affiliations.

This Palgrave Macmillan imprint is published by the registered company Springer Nature
Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Theo Lynn
Irish Institute of Digital Business
DCU Business School
Dublin, Ireland

Jörg Domaschka
Institute of Information Resource
Management
Ulm University
Ulm, Germany

John G. Mooney
Graziadio Business School
Pepperdine University
Malibu, CA, USA

Keith A. Ellis
Intel Labs Europe
Dublin, Ireland

https://doi.org/10.1007/978-3-030-39863-7
http://creativecommons.org/licenses/by/4.0/

v

This is the third book in the series, “Palgrave Studies in Digital Business
& Enabling Technologies”, which aims to contribute to multi-disciplinary
research on digital business and enabling technologies, such as cloud com-
puting, social media, Big Data analytics, mobile technologies, and the
Internet of Things, in Europe.

Previous volumes sought to consider and extend conventional thinking
on disrupting finance and on cloud computing architectures to greater
support heterogeneity, and specifically high-performance computing
workloads. This third volume focuses more specifically on distributed
compute environments that encompass resources, services, and applica-
tions from the cloud to the edge. The emergence of the Internet of Things
(IoT) combined with greater heterogeneity, not only online in cloud com-
puting architectures but across the cloud-to-edge continuum, is introduc-
ing new challenges for managing applications and infrastructure across
this continuum. The scale and complexity are simply so complex that it is
no longer realistic for IT teams to manually foresee the potential issues
and manage the dynamism and dependencies across an increasing interde-
pendent chain of service provision. This book explores these challenges
and offers a solution for the intelligent and reliable management of physi-
cal infrastructure and the optimal placement of applications for the provi-
sion of services.

The content of the book is based on contributions from researchers on
the RECAP project, a European Union project funded under Horizon
2020 (recap-project.eu). RECAP commenced in 2017 and brought
together ten project partners from six countries across Europe to create a

Preface

https://recap-project.eu/

vi PREFACE

new way to optimally provision distributed heterogeneous resources to
deliver services. The RECAP goal was to investigate and demonstrate an
intelligent means to optimally place and scale dynamic applications and to
manage the physical resources that underpin such applications, while tar-
geting lower costs and better quality of service (QoS). RECAP is a model-
based methodology, encompassing a reference architecture, models, and
proof-of-concept implementations. This book is an output of this joint
research.

The book is organised around key research contributions from RECAP.
Chapter 1 introduces the context driving the need for more reliable

capacity provisioning of applications and infrastructure in distributed
clouds. While IoT offers the potential of tremendous value for the private
sector, public sector, and society as whole, it introduces complexity of
several orders of magnitude greater in an already complex feature space.
Chapter 1 introduces RECAP, an architectural innovation to support reli-
able capacity provisioning for distributed clouds. It presents a high-level
conceptual overview of RECAP and some of the major design concepts
informing its design, namely separation of concerns, model-centricism,
modular design, and support for the use of machine learning and artificial
intelligence for IT operations. The remainder of this book is loosely organ-
ised around the four functional building blocks of RECAP followed by a
series of case studies to illustrate how RECAP can be implemented
modularly.

Chapter 2 defines and discusses RECAP’s Data Analytics and Machine
Learning subsystem. This chapter describes the infrastructure for the
acquisition and processing of data from applications and systems, and
explains the methodology used to derive statistical and machine learning
models from this data. These models are central to the operation of
RECAP and are an input to all other subsystems, informing run-time
planning, decision making, and optimisation support at both the infra-
structure and the application levels.

Chapter 3 introduces RECAP’s Application Optimisation subsystem.
Optimising distributed cloud applications is a complex problem that
requires understanding a myriad of factors. This chapter outlines the
RECAP approach to application optimisation and presents its framework
for joint modelling of applications, workloads, and the propagation of
these workloads in applications and networks.

Chapter 4 introduces the RECAP Infrastructure Optimiser tasked with
optimal application placement and infrastructure optimisation. This

vii PREFACE

chapter details the methodology, models, and algorithmic approach taken
to augment RECAP Application Optimiser output in producing a more
holistic optimisation, cognisant of both application and infrastructure pro-
vider interests.

Chapter 5 focuses on Simulation and Planning in RECAP. The size and
complexity of modern infrastructures make a real-time testing and experi-
mentation difficult, time-consuming, and costly. The RECAP Simulation
Framework offers cloud and communication service providers an alterna-
tive solution while retaining accuracy and verisimilitude. It comprises two
simulation approaches, Discrete Event Simulation (DES) and Discrete
Time Simulation (DTS), that provide enterprises with information about
optimal virtual cache placements, resource handling and remediation of
the system, optimal request servicing, and finally, optimal distribution of
requests and resource adjustment. This information can inform better
infrastructure capacity planning while taking in to account performance
requirements and constraints such as cost and energy consumption.

Chapter 6 presents four case studies each illustrating an implementa-
tion of one or more RECAP subsystems. The first case study presents a
case study on infrastructure optimisation for a 5G network use case. The
second case study explores application optimisation for virtual content dis-
tribution networks on a large Tier 1 network operator. The third case
study looks at how RECAP components can be embedded in an IoT plat-
form to reduce costs and increase quality of service. The final case study
presents how data analytics and simulation components, within RECAP,
can be used by a small-to-medium-sized enterprise (SME) for cloud capac-
ity planning.

Dublin, Ireland Theo Lynn
Malibu, CA, USA John G. Mooney
Ulm, Germany Jörg Domaschka
Dublin, Ireland Keith A. Ellis

ix

This book was funded by the European Union’s Horizon 2020 Research
and Innovation Programme through the RECAP project (https://recap-
project.eu) under Grant Agreement Number 732667.

acknowledgement

https://recap-project.eu
https://recap-project.eu

xi

 1 Towards an Architecture for Reliable Capacity Provisioning
for Distributed Clouds 1
Jörg Domaschka, Frank Griesinger, Mark Leznik,
Per- Olov Östberg, Keith A. Ellis, Paolo Casari,
Frank Fowley, and Theo Lynn

 2 RECAP Data Acquisition and Analytics Methodology 27
Paolo Casari, Jörg Domaschka, Rafael García Leiva,
Thang Le Duc, Mark Leznik, and Linus Närvä

 3 Application Optimisation: Workload Prediction and
Autonomous Autoscaling of Distributed Cloud Applications 51
Per-Olov Östberg, Thang Le Duc, Paolo Casari,
Rafael García Leiva, Antonio Fernández Anta,
and Jörg Domaschka

 4 Application Placement and Infrastructure Optimisation 69
Radhika Loomba and Keith A. Ellis

contents

xii CONTENTS

 5 Simulating Across the Cloud-to-Edge Continuum 93
Minas Spanopoulos-Karalexidis, Christos K. Filelis
Papadopoulos, Konstantinos M. Giannoutakis, George
A. Gravvanis, Dimitrios Tzovaras, Malika Bendechache,
Sergej Svorobej, Patricia Takako Endo, and Theo Lynn

 6 Case Studies in Application Placement and Infrastructure
Optimisation 117
Miguel Angel López-Peña, Hector Humanes, Johan Forsman,
Thang Le Duc, Peter Willis, and Manuel Noya

 Index 161

xiii

notes on contributors

Malika Bendechache is a Postdoctoral Researcher at the Irish Institute
of Digital Business at Dublin City University. She received her PhD in
Computer Science at University College Dublin (UCD) in the area of
parallel and distributed data mining. Bendechache was previously a
researcher at the Insight Centre for Data Analytics at UCD. Her research
interests span across distributed systems, Big Data analytics, and simula-
tion of large-scale distributed cloud, fog, and edge computing environ-
ments and associated applications.

Paolo Casari is a Research Assistant Professor at the IMDEA Networks
Institute, Madrid, Spain. His research interests include many aspects of
networked communications, such as channel modelling, network protocol
design, localisation, simulation, and experimental evaluations. He has (co)
authored over 200 scientific publications, is a Senior Member of IEEE,
and is an Associate Editor for the IEEE Transactions on Mobile Computing
and for the IEEE Transactions on Wireless Communications.

Jörg Domaschka is a Senior Researcher and Group Manager at the
Institute of Information Resource Management at Ulm University. He
holds a Diploma in Computer Science from FAU, Erlangen Nuremberg,
and a PhD in Computer Sscience from Ulm University. His research inter-
ests include distributed systems, fault-tolerance, middleware platforms,
and NoSQL databases. Current focus of his work lies on middleware and
run-time systems for geo-distributed infrastructure and applications.

xiv NOTES ON CONTRIBUTORS

Keith A. Ellis is a Senior Research Scientist and Manager of Intel Labs
Europe, Ireland. His research focus is orchestration and control in Cyber
Physical Systems. Ellis has led and been actively involved with
national, international, and European part-funded research—
REVISITE, COOPERATE, IMR, WISDOM, RealValue, and EL4L,
targeting various domains—built environment, industrial, water
management, smart grid. and agricultural. He is the holder of mul-
tiple patents and author of several journal articles, book chapters,
and conference papers. He holds an MSc in Tech and Innovation
Management and a BSc (Hons) in Tech.

Patricia Takako Endo is a Postdoctoral Research Fellow at Irish Institute
of Digital Business, Dublin City University, Ireland, and a Professor at
Universidade de Pernambuco, Brazil. Her research interests include cloud
computing, fog computing, Internet of Things, system availability, and
data analytics. Her articles have appeared in over 110 publications in the
above research areas.

Antonio Fernández Anta is a Research Professor at IMDEA Networks
Institute. Previously he was a Full Professor at the Universidad Rey Juan
Carlos (URJC) and was on the Faculty of the Universidad Politécnica de
Madrid (UPM). He spent sabbatical years at Bell Labs Murray Hill and
MIT Media Lab. He has more than 25 years of research experience and
more than 200 scientific publications. He was the Chair of the Steering
Committee of DISC and has served in the TPC of numerous confer-
ences and workshops. He is a Senior Member of ACM and IEEE.

Christos K. Filelis Papadopoulos received his Diploma in Engineering
degree from the Electrical and Computer Engineering Department of the
Democritus University of Thrace, Greece, in 2010 and his PhD in
Numerical Analysis and High Performance Scientific Computations from
the same university in 2014. His research interests include preconditioned
iterative methods, multigrid and multilevel methods, and parallel
computing.

Johan Forsman received an MS degree in Computer Science from Luleå
University of Technology, Sweden. He is a Product Manager and Principal
Solution Architect at Tieto Product Development Services. Forsman has
over 20 years of experience in development of mobile telecommunication
systems and is currently involved in business opportunities in the emerg-
ing telecoms landscape, introducing NFV, 5G, and IoT technologies. His

xv NOTES ON CONTRIBUTORS

domain of expertise includes mobile networks and specifically radio access
networks and virtualisation technology.

Frank Fowley is a Senior Research Engineer in the Irish Institute for
Digital Business (IIDB) and previously held the same position at the Irish
Centre for Cloud Computing and Commerce (IC4) in Dublin City
University (DCU). His main research revolves around cloud architec-
ture and migration. Prior to joining DCU, Fowley held a number of
senior positions in telecom and ICT companies in Ireland and abroad.
He holds an MSc in Security and Forensic Computing and a BSc in
Engineering.

Rafael García Leiva is a Research Engineer at the IMDEA Networks
Institute, Madrid, Spain. Before this appointment, he was a Research
Assistant at the University of Córdoba, R&D Coordinator at Andago
Ingeniería, and a Principal at Entropy Computational Services. His
research interests lie in the areas of Big Data and machine learning.

Konstantinos M. Giannoutakis is a Postdoctoral Research Fellow at the
Information Technologies Institute of Centre for Research and Technology
Hellas. His research interests include high-performance and scientific
computing, parallel systems, grid/cloud computing, service-oriented
architectures, and software engineering techniques. His articles have
appeared in over 80 publications in the above research areas.

George A. Gravvanis is a Professor in the Department of Electrical and
Computer Engineering of Democritus University of Thrace. His research
interests include computational methods, mathematical modelling and
applications, and parallel computations. He has published over 200
papers and is a member of the editorial board of international
journals.

Frank Griesinger is a Researcher and Software Engineer at the Institute
of Information Resource Management at Ulm University. He holds an
MSc in Computer Science. The focus of his research interest is on the
modelling, tracing, and self-adaptability of highly connected and dynamic
applications as well as description languages and execution environ-
ments for cloud native applications.

Hector Humanes received his degree in Software Engineering and mas-
ter’s in Embedded and Distributed Systems Software from Universidad
Politécnica de Madrid, Spain. Previously, he worked for the System and

xvi NOTES ON CONTRIBUTORS

Software Technology Group, a research group of the Universidad
Politécnica of Madrid. Since 2018, he has been the Technical Leader of
the Innovation Department in Sistemas Avanzados de Tecnología, S.A
(SATEC), a Spanish ICT company.

Thang Le Duc is a Senior Researcher at Tieto Product Development
Services with more than 10 years of R&D experience in both academia
and industry. He received his PhD in Computer Engineering from
Sungkyunkwan University (SKKU) and previously worked as a
Postdoctoral Researcher at SKKU and Umeå University. Prior to
that, he had held multiple academic positions and worked as a senior
engineer in different industrial projects. His research interests include
data analytics, system/workload modelling, cloud/edge computing,
and SDN/NFV.

Mark Leznik is a Researcher and PhD Candidate at the Institute for
Organisation and Management of Information systems at Ulm University.
He holds an MSc in Computer Science from Ulm University, with the
focus on computer vision, computer graphics, and machine learning.
His current research interests include time series analysis, data syn-
thesis, and anomaly detection using neural networks.

Radhika Loomba is a Research Scientist with Intel Labs Europe. She
holds a PhD and BTech (Hons) degree in Computer Science and
Engineering. Her PhD thesis focused on collaborative mobile sensing and
mobile cloud computing technologies. Her current research focus is on
orchestration, analytics, and optimisation for Cyber-Physical Systems from
a mathematical modelling perspective, and her research interests include
cloud computing, SDN, fog and edge computing, distributed collabora-
tive systems, control theory, orchestration, planning, and scheduling.

Miguel Angel López-Peña holds a BS degree in Computer Science from
Universidad Carlos III de Madrid, Spain, and a master’s from the Spanish
Ministerio de Educación (EQF level 7). He is currently pursuing a PhD in
Science and Computer Technologies for Smart Cities at the Universidad
Politécnica de Madrid. Since 2005, he has been an Innovation and
Development Manager with the Sistemas Avanzados de Tecnología,
S.A. (SATEC), a Spanish ICT company.

Theo Lynn is Full Professor of Digital Business at Dublin City University
and is Director of the Irish Institute of Digital Business. He was formerly

xvii NOTES ON CONTRIBUTORS

the Principal Investigator (PI) of the Irish Centre for Cloud Computing
and Commerce, an Enterprise Ireland/IDA-funded Cloud Computing
Technology Centre. Lynn specialises in the role of digital technologies in
transforming business processes with a specific focus on cloud computing,
social media, and data science.

John G. Mooney is Associate Professor of Information Systems and
Technology Management and Academic Director of the Executive
Doctorate in Business Administration at the Pepperdine Graziadio
Business School. Mooney previously served as Executive Director of the
Institute for Entertainment, Media and Culture from 2015 to 2018. He
was named Fellow of the Association for Information Systems in December
2018. His current research interests include management of digital inno-
vation (i.e. IT-enabled business innovation) and business executive respon-
sibilities for managing digital platforms and information resources.

Linus Närvä is a Software Engineer at Tieto Sweden Support Services
AB. His domain experience includes radio networks, radio base station
software, and cloud computing platforms.

Manuel Noya is a Co-founder and CEO of Linknovate. He holds an
MSc in Materials Science and Technology, a BSc in Chemical Engineering,
and a BSc in Materials Engineering. He is an International Fellow at
SRI International (Menlo Park, CA). His research interests include
materials science, and software technologies in the area of text and
data mining applied to business intelligence.

Per-Olov Östberg is a Research Scientist with a PhD in Computing
Science from Umeå University and more than half a decade of postgradu-
ate experience from both academic research and industry. He has held
Researcher and Visiting Researcher positions at five universities: Umeå
University, Uppsala University, and Karolinska Institutet in Sweden; Ulm
University in Germany; and the Lawrence Berkeley National
Laboratory (LBNL) at the University of California, Berkeley, in the
USA. He specialises in distributed computing resource management
and has worked in the Swedish government’s strategic eScience
research initiative eSSENCE, research and innovation projects funded
by the EU under the FP7 and H2020 programmes, and projects
funded by the Swedish national research council VR.

xviii NOTES ON CONTRIBUTORS

Minas Spanopoulos-Karalexidis is a Research Assistant at the
Information Technologies Institute of Centre for Research and Technology
Hellas. His research interests include high-performance scientific comput-
ing, simulation methods, sparse matrix technologies, iterative methods,
parallel and distributed systems, and static timing analysis.

Sergej Svorobej is a Postdoctoral Researcher in the Irish Institute of
Digital Business at Dublin City University. Svorobej’s research focus is on
complex systems, modelling and simulation with specific emphasis on
cloud computing applications and infrastructure. Prior to working on the
Horizon 2020 RECAP project, Svorobej was a Researcher at the
Irish Centre for Cloud Computing and Commerce and on the FP7
CACTOS project. Previously, he held roles in SAP Ireland and SAP
UK. He holds a PhD from Dublin City University and a BSc in
Information Systems and Information Technology from Dublin
Institute of Technology.

Dimitrios Tzovaras is the Director (and Senior Researcher Grade ‘A’) of
the Information Technologies Institute. He received a Diploma in
Electrical Engineering and a PhD in 2D and 3D Image Compression from
the Aristotle University of Thessaloniki, Greece in 1992 and 1997, respec-
tively. Prior to his current position, he was a Senior Researcher on the
Information Processing Laboratory at the Electrical and Computer
Engineering Department of the Aristotle University of Thessaloniki. His
main research interests include network and visual analytics for network
security, computer security, data fusion, biometric security, virtual reality,
machine learning, and artificial intelligence.

Peter Willis manages the Software Based Networks team in BT Applied
Research. He has been researching and developing Network Functions
Virtualisation since 2011. He published the first carrier NFV testing
results in June 2012 and is co-inventor of the term “NFV”. Willis is
currently leading BT’s research to improve NFV and SDN technol-
ogy and its management. Willis previously worked on the develop-
ment of PBB-TE, BT’s 21st Century Network Architecture, and BT’s
Internet service.

xix

Fig. 1.1 Interdependencies between models 8
Fig. 1.2 RECAP conceptual reference model 12
Fig. 1.3 Component-oriented overview of the RECAP optimisation

subsystem 18
Fig. 1.4 High-level overview on RECAP simulation framework 19
Fig. 1.5 The RECAP approach to retrieve data, analyse it, and export

the resulting models to other RECAP components 20
Fig. 1.6 Run-time loop of RECAP 21
Fig. 1.7 High-level overview on simulation interaction 22
Fig. 1.8 High-level overview on data analytics subsystems 23
Fig. 2.1 Conceptual overview of data handling in RECAP 29
Fig. 2.2 RECAP monitoring layers 31
Fig. 2.3 RECAP’s distributed monitoring architecture 32
Fig. 2.4 A summary of the main steps of the methodology for

exploratory data analysis of new datasets 40
Fig. 2.5 Decomposition of received traffic at a cache 42
Fig. 2.6 Statistical distributions fitted to records of data sizes of pulled

cache content 43
Fig. 2.7 Simulated workload for a search engine 45
Fig. 2.8 An exemplary presentation of serving time of requests in a

workload data set. (a) Histogram of serving time of user
requests. (b) Box plot of serving time of user requests 47

Fig. 2.9 An exemplary presentation of a correlation of features in a
workload data set 47

Fig. 2.10 Snapshot of the dashboard for the testbed at UULM 48
Fig. 2.11 Snapshot of the dashboard for the testbed at Tieto 49

list of figures

xx LIST OF FIGURES

Fig. 3.1 A stratified approach to application optimisation iteratively
building on three optimisation building blocks—(1) classic
optimisation on static data, (2) application adaptation to
variations in workloads and resource availability, (3) joint
autoscaling and optimisation in multi-tenancy scenarios using
machine learning (adapted from Le Duc et al. (2019)) 55

Fig. 3.2 A platform for the integration of predictors and modellers 66
Fig. 4.1 Offline infrastructure optimisation modelling process 71
Fig. 4.2 Online application placement and infrastructure optimiser 71
Fig. 4.3 Mapping a service request graph and a contextualised

landscape graph 76
Fig. 4.4 Overview of Umeå network topology (site routers only) 80
Fig. 4.5 Representation of a subgraph of contextualised

network landscape 81
Fig. 4.6 The load translation methodology in full 83
Fig. 4.7 Average compute utilisation by VNF placement profile for

compute-1 compute-3 84
Fig. 4.8 Provider-centric vs customer-centric attributes

(Loomba et al. 2017) 86
Fig. 4.9 Representation of the evolutionary algorithm 89
Fig. 5.1 High-level conceptual overview of the RECAP simulation

framework 96
Fig. 5.2 DES simulation model data format (inputs) 98
Fig. 5.3 DES simulation results format (outputs) 100
Fig. 5.4 Application simulation model example 103
Fig. 5.5 DTS architecture 108
Fig. 5.6 BT hierarchical level of sites 110
Fig. 5.7 A site architecture of DTS 111
Fig. 6.1 Categories of communication services and example of 5G use

cases 119
Fig. 6.2 A forwarding graph of a network service in an LTE network 121
Fig. 6.3 Logical view of the testbed 124
Fig. 6.4 Maximum provider and customer utility of each distribution 127
Fig. 6.5 Provider utility vs. customer utility for different distributions 128
Fig. 6.6 Total utility for normal day, event, and 24% growth scenarios 129
Fig. 6.7 Abstract representation of BT UK network topology 133
Fig. 6.8 BT network locations in UK 134
Fig. 6.9 Customer utility vs. number of vCDN sites 137
Fig. 6.10 Provider utility vs. number of vCDN nodes 138
Fig. 6.11 Example of IoT hybrid network for mobile devices 140
Fig. 6.12 Smart city structure 140
Fig. 6.13 SAT-IoT platform architectural model 143

xxi LIST OF FIGURES

Fig. 6.14 SAT IoT platform high-level conceptual architecture 146
Fig. 6.15 Optimisation results 148
Fig. 6.16 Number of records transferred for SAT-IoT running route

planning and city traffic monitoring application using cloud-
based processing and RECAP- optimised processing 149

Fig. 6.17 (a), (b), and (c): Histograms of the distribution of the
responses, response time, and scatter plot of the response size
and time for the LKN search engine 153

Fig. 6.18 Time series of the LKN’s search engine workload (data
aggregated over windows of 30 minutes) 154

Fig. 6.19 Workload predictor dashboard 155
Fig. 6.20 LKN conceptual ElasticSearch (ES) architecture 157
Fig. 6.21 ElasticSearch (ES) workload flow 158
Fig. 6.22 Comparison of actual and simulation query response times 158
Fig. 6.23 LKN system performance under different traffic scenarios 159

xxiii

list of tables

Table 3.1 Summary of diffusion algorithms 65
Table 4.1 Steps in the RECAP infrastructure optimisation process 73
Table 5.1 Average values of user requests 104
Table 6.1 Characteristics and requirements of communication services 120
Table 6.2 Use case requirements and corresponding RECAP solutions 123
Table 6.3 RECAP deliverables to address validation scenarios 125
Table 6.4 Initial placement plans of VNFs 126
Table 6.5 vCDN use case requirements and corresponding RECAP

components 132
Table 6.6 vCDN technical challenge and RECAP solution 135
Table 6.7 LKN platform components 150
Table 6.8 Statistics of the response codes returned by the LKN search

engine 152
Table 6.9 The top 10 IP addresses directing the largest number of

requests to the LKN search engine 152

1© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_1

CHAPTER 1

Towards an Architecture for Reliable
Capacity Provisioning for Distributed Clouds

Jörg Domaschka, Frank Griesinger, Mark Leznik,
Per- Olov Östberg, Keith A. Ellis, Paolo Casari,

Frank Fowley, and Theo Lynn

J. Domaschka (*) • F. Griesinger • M. Leznik
Institute of Information Resource Management, Ulm University, Ulm, Germany
e-mail: joerg.domaschka@uni-ulm.de; frank.griesinger@uni-ulm.de;
mark.leznik@uni-ulm.de

P.-O. Östberg
Umeå University, Umeå, Sweden
e-mail: p-o@cs.umu.se

K. A. Ellis
Intel Labs Europe, Dublin, Ireland
e-mail: keith.ellis5@mail.dcu.ie

Abstract The complexity of computing along the cloud-to-edge contin-
uum presents significant challenges to ICT operations and in particular
reliable capacity planning and resource provisioning to meet unpredict-
able, fluctuating, and mobile demand. This chapter presents a high-level

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_1#DOI
mailto:joerg.domaschka@uni-ulm.de
mailto:frank.griesinger@uni-ulm.de
mailto:mark.leznik@uni-ulm.de
mailto:mark.leznik@uni-ulm.de
mailto:p-o@cs.umu.se
mailto:keith.ellis5@mail.dcu.ie

2

P. Casari
IMDEA Networks Institute, Madrid, Spain
e-mail: paolo.casari@imdea.org

F. Fowley
Irish Institute of Digital Business, Dublin City University, Dublin, Ireland
e-mail: frank.fowley@dcu.ie

T. Lynn
Irish Institute of Digital Business, DCU Business School, Dublin, Ireland
e-mail: theo.lynn@dcu.ie

conceptual overview of RECAP—an architectural innovation to support
reliable capacity provisioning for distributed clouds—and its operational
modes and functional building blocks. In addition, the major design con-
cepts informing its design—namely separation of concerns, model-
centricism, modular design, and machine learning and artificial intelligence
for IT operations—are also discussed.

Keywords Capacity provisioning • Distributed cloud computing •
Edge computing • Infrastructure optimisation • Application
optimisation

1.1 IntroductIon

The objective of this book is to introduce readers to RECAP, an architec-
tural innovation in cloud, fog, and edge computing based on the concepts
of separation of concerns, model-centricism, modular design, and machine
learning and artificial intelligence (AI) for IT operations to support reli-
able capacity provisioning for distributed clouds. The remainder of this
chapter provides a brief overview of computing across the cloud-to-edge
(C2E) continuum and the challenges of distributing and managing appli-
cations across geo-distributed infrastructure. This chapter also introduces
some of the major design concepts informing the RECAP architectural
design and provides an overview of the RECAP architecture and
components.

 J. DOMASCHKA ET AL.

mailto:paolo.casari@imdea.org
mailto:frank.fowley@dcu.ie
mailto:theo.lynn@dcu.ie

3

1.2 From the cloud to the edge and Back agaIn

The convergence and increasing ubiquity of wireless internet access, cloud
computing, Big Data analytics, social and mobile technologies presage the
possibilities of billions of people and things connected through mobile
devices and smart objects in the cloud. This phenomenon is heralded as
the coming of the fourth industrial revolution, the networked society, the
Internet of Things (IoT), indeed the Internet of Everything. Connecting
but a fraction of the 1.4 trillion “things” worldwide today is predicted to
create US$14.4 trillion and US$4.6 trillion in private and public sector
value, respectively, through accelerated innovation and improved asset
utilisation, employee productivity, supply chain, logistics, and customer
experience (Cisco 2013a, b).

Today, while we are moving towards a society whose social structures
and activities, to a greater or lesser extent, are organised around digital
information networks that connect people, processes, things, data, and
social networks, the reality is still some distance away (Lynn et al. 2018).
The dawn, if not the day, of the Internet of Things is here. Haller et al.
(2009) define IoT as:

A world where physical objects are seamlessly integrated into the informa-
tion network, and where the physical objects can become active participants
in business processes. Services are available to interact with these “smart
objects” over the Internet, query their state and any information associated
with them, taking into account security and privacy issues. (Haller et al.
2009, p. 15)

This definition largely assumes that smart objects (end-devices), rang-
ing from the simple to the complex in terms of compute, storage, and
networking capabilities, will interact with each other and the cloud to
provide and consume services and data, but not necessarily at all times.
Furthermore, these smart end-devices, e.g. smart phones or transport sen-
sors, may move to different geographic areas where, for economic, geo-
graphic, or technological reasons, they cannot always be connected, yet
will be expected to carry on functioning regardless. IoT embodies many of
the drivers that see an increased move from cloud-centric deployments to
distributed application deployments in the cloud or on the edge
infrastructure.

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

4

Within the traditional cloud computing paradigm, processing and stor-
age typically take place within the boundaries of a cloud and its underlying
infrastructure, and are often optimised for specific types of applications
and workloads with predictable patterns. Neither the cloud nor the net-
works connecting these objects to the cloud were designed to cater for the
flood of geographically dispersed, heterogeneous end points in the IoT
and the volume, variety, and velocity of data that they generate.

Fog computing and edge computing are two relatively new paradigms
of computing that have been proposed to address these challenges. Fog
computing is a horizontal, physical, or virtual resource paradigm that
resides between smart end-devices and traditional cloud data centres. It is
designed to support vertically isolated, latency-sensitive applications by
providing ubiquitous, scalable, layered, federated, and distributed com-
puting, storage, and network connectivity (Iorga et al. 2018). In contrast,
edge computing is local computing at the edge of the network layer
encompassing the smart end-devices and their users (Iorga et al. 2018). If
one imagines a cloud-to-edge (C2E) continuum, data processing and
storage may be local to an end-device at the edge of a network, located in
the cloud, or somewhere in between, in “the fog”.

As discussed, while fog computing and edge computing offer solutions
for delivering IoT to industry and the masses, they introduce new and
significant challenges to cloud service providers, network operators and
enterprises using this infrastructure. These environments face a high
degree of dynamism as an immediate consequence of user behaviour.
Overall, this setting creates a set of challenges regarding how to distribute
and run applications in such unpredictable geo-distributed environments.
Similar demands are seen at the network edge given the growth of rela-
tively nascent services, e.g. Content Delivery Networks. Spreading infra-
structure out over large geographic areas increases the complexity and cost
of planning, managing, and operating that physical infrastructure. Firstly,
it raises the question of how much infrastructure of what type to place
where in the network—a decision that must be made in advance of any
service being offered. Secondly, applications deployed over large geo-
graphically distributed areas require a detailed understanding of the tech-
nical requirements of each application and the impact on the application
when communication between an application’s components suffers due to
increased latency and/or reduced bandwidth. Thirdly, for a service pro-
vider along the C2E continuum, the question arises about which (parts)
of the various applications in a multi-tenant setting should be operated at

 J. DOMASCHKA ET AL.

5

the edge and which should not be. This is of critical importance due to the
potentially limited compute resources available at each edge location. To
add to the complexity, some of these questions must be answered in
advance with incomplete data on user demand while others require near
real-time decision making to meet unpredictable and fluctuating user
demands.

Incorrect placement decisions may result in inflexible, unreliable,
expensive networks and services. This is more likely as the decision space
becomes so complex; it is no longer realistic for IT teams to cost- effectively
foresee and manually manage all possible configurations, component
interactions, and end-user operations on a detailed level. As such, mecha-
nisms are needed for the automated and intelligent placement and scaling
of dynamic applications and for the management of the physical resources
that underpin such applications. RECAP—an architectural innovation in
cloud and edge computing to support reliable capacity provisioning for
distributed clouds—is posited as such a mechanism.

1.3 desIgn PrIncIPles

This section outlines some of the major design concepts informing the
RECAP architectural design, namely separation of concerns, model-
centricism, modular design, and machine learning and AI for IT operations.

1.3.1 Separation of Concerns

Separation of concerns is a concept that implements a “what-how”
approach to cloud architectures separating application lifecycle manage-
ment and resource management where the end user or enterprise cus-
tomer focuses its efforts on what needs to be done and the cloud service
provider or cloud carrier focuses on how it should be done (Lynn 2018).
At its core, the end user or enterprise customer focuses on specifying the
business functionality, constraints, quality of service (QoS), and quality of
experience (QoE) (together KPIs) they require, with minimal interference
with the underlying infrastructure (Papazoglou 2012). To support a sepa-
ration of concerns, a detailed understanding of the KPIs but also the rela-
tionship between the performance of the applications and underlying
infrastructure, and the achievement of these APIs is required.

In multi-tenant environments, for example clouds and networks, the
separation of concerns is complicated because the actors will, most likely,

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

6

belong to different organisations (including competitors), have very dif-
ferent KPIs, different load patterns, different network topologies, and
more critically, different priorities. Any architecture for reliable capacity
provisioning, whether from an application or infrastructure perspective,
across the C2E continuum must have mechanisms to support separation
of concerns in an agile way.

1.3.2 Model-Centricism

Due to the complexity, heterogeneity, and dynamic nature of (i) the busi-
ness domains in which enterprises, cloud service providers, and cloud car-
riers operate; (ii) the application landscape (including legacy and next
generation applications); and (iii) the infrastructure in and upon which
these applications operate and are consumed, a flexible software architec-
ture is required that can evolve in line with business, application, and infra-
structure requirements. Model-centricism is a design principle that uses
machine-readable, highly abstract models developed independently of the
implementation technology and stored in standardised repositories
(Kleppe et al. 2003). This provides a separation of concerns by design, and
thus supporting greater flexibility when architecting and evolving
enterprise- scale and hyperscale systems. Brown (2004, pp. 319–320) enu-
merates the advantages of using models including:

• Models help people understand and communicate complex ideas.
• Many different kinds of elements can be modelled depending on the

context offering different views of the world.
• There is commonality at all levels of these models in both the prob-

lems being analysed, and in the proposed solutions.
• Applying the ideas of different kinds of models and transforming

them between representations provide a well-defined style of devel-
opment, enabling the identification and reuse of common approaches.

• Existing model-driven and model-centric conceptual frameworks
exist to express models, model relationships, and model-to-model
transformations.

• Tools and technologies can help to realise this approach, and make it
practical and efficient to apply.

To meet the needs of infrastructure providers as well as application
operators, an understanding is needed on how the impact of load and load

 J. DOMASCHKA ET AL.

7

changes on the application layer influences the application’s resource
demands at the infrastructure layer and further, how competing resource
demands from multiple applications, and indeed multiple application pro-
viders, impact the infrastructure layer.

From a high-level perspective, users impose a certain load on the appli-
cations; that load will change over time. At the same time, users have
performance requirements for a given application. For instance, a lack of
responsiveness from a website may make them switch while otherwise they
would have stayed. The operators of that application want to ensure that
some level of performance is guaranteed in order to keep their customers.
Hence, it is their task to adapt the performance of the application to the
amount of workload imposed by the users. How and whether this can be
done depends on the architecture and implementation of the application.
For distributed applications (that constitute a huge portion of today’s
applications), horizontal scaling increases the computational capacity.
This, in turn, reduces queuing and keeps latency constant despite increas-
ing workload. Moreover, for applications composed of multiple different
components, it is important to understand how load imposed at the
customer- facing components ripples through the application graph and
impacts the loads on each and every component. Finally, to understand
how much performance a component running on a dedicated hardware
unit (e.g. processor type, RAM type, and disk type) can deliver under a
specific configuration (e.g. available RAM and available cores), a mapping
needs to be available that translates load metrics on the application level
such as arrival rate of requests of a specific type to load metrics on hard-
ware such as CPU used, RAM used, disk usage, as well as the performance
achieved from it. In multi-tenant environments such as virtualised cloud
and cloud/edge systems, the mutual impact of multiple, concurrently
running components from different owners on the same physical hard-
ware is critical.

A model-centric approach for capacity provisioning for distributed
clouds requires at least six models—(1) user models, (2) workload models,
(3) application models, (4) infrastructure models, (5) load translation
models, and (6) Quality-of-Service (QoS) models (Fig. 1.1).

User models describe the behaviour of users with respect to the usage
of individual network-based services. That is, they capture different types
of users and their usage patterns over time. What is more, they also describe
their movement over geographical regions such that it becomes possible
to understand which edge parts of the network will have dedicated

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

8

demands for specific services. This is of special interest to edge computing
systems as user mobility impacts network load and application access
patterns.

Workload models describe the workload issued on a system from users
and external systems. While the user model captures the location and type
of users, the workload model describes what actions these users execute
and how this translates into interaction with which parts of an application.

Application models fulfil multiple purposes. First and foremost, they
describe which components compose a distributed application and how
these components are linked with each other (static application topology).
This part of the application model also captures how to technically install
the application in the infrastructure and how to update a running deploy-
ment. Deploying an application creates a run-time application topology
that describes how many instances of each application component are cur-
rently available at which location and how they communicate with each
other on a per-instance basis. The (work)load transition models as a
sub-model of the application model describe for the application how
incoming workload propagates through the applications’ components and
the impact this has on the outgoing links of the component.

As application models are not capable of determining whether or not a
given application topology (or scaling factor) is capable of servicing a cer-
tain amount of load, as they neither have an understanding of the available
hardware and its capabilities nor about how the application load translates
on load on the physical layers.

Fig. 1.1 Interdependencies between models

 J. DOMASCHKA ET AL.

9

Infrastructure models capture the layout of the physical and virtual
infrastructure and represent key components such as compute, storage,
and network capabilities, as well as their grouping in racks, data centres,
and similar. Furthermore, they describe capabilities of the hardware
including hardware architecture, virtualisation platform (e.g. type of
hypervisor), and virtual machines (containers) running on the host.

Load translation models enhance the infrastructure models and pro-
vide a mapping from workload on application components to resource
demands on the physical infrastructure. They are crucial for understanding
whether enough physical resources are available to handle workload on
application level. In addition, they describe the impact of congestion
caused by components with similar hardware demands concurrently run-
ning on the same hardware.

Finally, Quality-of-Service (QoS) models provide a means to express
QoS demands towards an application and monitor the fulfilment of these
QoS requirements. In addition, they are able to represent the interdepen-
dencies between QoS aspects on different levels, e.g. what QoS require-
ments at the infrastructure level follow from QoS requirements on the
application level. QoS models may be taken as constraints for the optimi-
sation problems solved for rearranging application and infrastructures.

1.3.3 Modular Design

A modular architecture is an architecture where at least some components
are optional and there exists the ability to add or remove modules or com-
ponents according to the needs of a given use case (Aissaouii et al. 2013).
The benefits of modular design are well known, not least it supports sepa-
ration of concerns and provides greater implementation flexibility thus
reducing costs and risk. A discrete module or component can be imple-
mented without having to implement the entire system. Enterprises, cloud
service providers, and cloud carriers (to a lesser extent) come in all sizes
and with their own constraints. A modular design provides these firms
with greater choice and flexibility.

1.3.4 Machine Learning and AI for IT Operations

As discussed above, the complexity and scale of distributed cloud infra-
structure increasingly require an automated approach. As the deluge of
data generated by IoT continues to increase, and as demands from new

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

10

use cases increasingly require edge deployments, e.g. vCDN, the ability of
cloud service providers and cloud carriers to respond quickly to demands
on infrastructure, service incidents, and improve on key metrics decreases
(Masood and Hashmi 2019). Increasingly, enterprises are looking to AI
for IT Operations (or AIOps).

AI for IT Operations (AIOps) seeks to use algorithms and machine
learning to dramatically improve the monitoring, operation, and mainte-
nance of distributed systems (Cardoso 2019). Although at a nascent stage
of development, AIOps has the potential of ensuring QoS and customer
satisfaction, boosting engineering productivity, and reducing operational
costs (Prasad and Rich 2018; Dang et al. 2019). This is achieved by:

 1. automating and enhancing routine IT operations so that expensive
and scarce IT staff have more time to focus on high value tasks,

 2. predicting and recognising anomalies, serious issues, and outages
more quickly and with greater accuracy than humanly possible
thereby reducing mean time to detect (MTTD) and increasing mean
time to failure (MTTF), and

 3. suggesting intelligent remediation that reduces mean time to repair
(MTTR) (IBM 2019; Masood and Hashmi 2019).

Predictions suggest that by 2024, 60% of enterprises will have adopted
AIOps suggesting that novel solutions to capacity provisioning must
accommodate this shift in enterprise IT operations (Gillen et al. 2018).

1.4 oPeratIonal modes

A model-centric approach assumes cloud-edge applications, and the envi-
ronments that they run in, can be described by a set of models and that,
based on these models, it is possible to optimise both cloud-edge infra-
structures and their applications at run-time. As such, an optimisation
(control) system and mechanism for creating, validating, and extrapolat-
ing these models to large-scale environments are required. This requires a
variety of interoperating components, which we refer to here as modes.

Data Analytics Mode: The creation of high-quality models requires an
in-depth understanding of many aspects ranging from users to application
to infrastructure. For deriving this understanding, a sufficient amount of

 J. DOMASCHKA ET AL.

11

data needs to be available that can either come from a live system or be
derived from a simulation environment. The Data Analytics Mode pro-
vides the necessary tooling and guidelines to process those data and gener-
ate models from it. The analytics itself is a manual or semi-automated
process that applies approaches from statistics and machine learning in
order to create the models. It consists of pre-processing and data analysis
(or model training respectively). When complete, there is a newly gener-
ated insight in the form of a mathematical formula, a statistical relation-
ship, some other model, or a trained neural network. These insights form
the baseline of the models that are used by other modes and underlying
components.

Run-time Operation Mode: The Run-time Operation Mode uses
online optimisation to continuously update geo-distributed infrastructure
based on the models and the current deployment scenario (deployed
applications, available infrastructure, and user behaviour). Data on the
actual usage of the hardware and software requirements are collected dur-
ing run-time. These data are used by optimisers in the system to weight
the current placement and usage against other options and come up with
new and better configurations. These are output in the form of an optimi-
sation plan that can then be enacted. This changes the configuration of the
actual system. The decisions made in order to improve the system are
based on mathematical, stochastic, or programmatic models of the system
itself, e.g. the capabilities of the hardware, the needs of the application,
current and predicted workload in the system, and the movement of users
in the real world.

Simulation and Planning Mode: The Simulation and Planning Mode
is capable of performing the same steps as the run-time in what-if scenar-
ios and, hence, evaluates the use and acquisition of new, updated, or re-
allocated hardware. This mode supports scenario (what-if) analyses such
as “what if I bought more or different hardware at existing sites”, “what if
I added a new network site in the topology”, and “how much longer can
the available hardware handle my workload, if it keeps growing as pre-
dicted”. Hence, simulation helps operators to take strategic decisions
about their infrastructure. What is more, using simulation, different place-
ment scenarios are explored and weighed against each other to serve as
calibration and constraints for optimisation algorithms.

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

12

1.5 recaP concePtual reFerence model

Figure 1.2 presents an overview of the RECAP conceptual reference
model which identifies the main components in RECAP and how they
interoperate. The diagram depicts a generic high-level architecture and is
intended to facilitate the understanding of how RECAP operates.

The diagram below outlines the components in the RECAP architec-
ture and shows the process flow loops in the optimisation framework. The
Landscaper Component (1) acquires information on the state and con-
figuration of the physical and virtual infrastructure resources from dispa-
rate sources and presents same as a graph. The Monitoring Component
(2) uses probes to collect telemetry metrics needed for the modelling and
optimisation tasks, including CPU consumption, disk I/O, memory
loads, network loads, and packet statistics—both from virtual and physical
resources. These are input to the optimisers and the output is used to
orchestrate and enact resource changes in the cloud network.

The Application Optimiser (3) is used to optimally autoscale the
applications and resources. Application scaling refers to horizontal scaling,
namely adding additional application components into the system dynam-
ically, while infrastructure scaling relates to vertical scaling, whereby vir-
tual resources are increased for a component. Applications can be scaled
locally or globally and may be in response to run-time traffic limits or

Fig. 1.2 RECAP conceptual reference model

 J. DOMASCHKA ET AL.

13

resource levels being reached or may be controlled by data analytic work-
load predictive systems. The application to be deployed is composed of
multiple connected service components in the form of service function
chains (SFC), which need to be placed together. In order to achieve better
than a very sub-optimal application deployment onto a distributed virtual
cloud infrastructure, it is necessary to introduce sufficient functional gran-
ularity into the application structure to allow separate components to be
provisioned and scaled independently. Application optimisation is essen-
tially a mapping of a graph of application components and dependencies
to the network of computing resources that delivers an optimal overall
KPI target such as maximum latency or minimum throughput or maxi-
mum usage cost. The mapping is done subject to application-specific rules
or constraints relating the individual resource requirements for compo-
nents (Minimum/Maximum instance constraints) and their mutual co-
hosting needs (Affinity/Anti-Affinity constraints).

The outputs of the application optimiser are treated as requests or rec-
ommendations for application scaling and placement, to be subsequently
evaluated by the Infrastructure Optimiser (4) which augments the ini-
tial placement decision by taking into account the additional knowledge of
the available physical infrastructures, the infrastructure policies of the
infrastructure provider and specific committed Service Level Agreement
(SLA) targets. This allows the infrastructure optimiser to retain full con-
trol of the infrastructure resources and to ultimately decide what applica-
tion requests are enacted and how applications are orchestrated. The
Infrastructure Optimiser (4) includes (1) Application Placement which
optimally maps application components to virtual infrastructure resources
to deliver an optimal overall target such as maximum power consumption,
maximum operational cost, or specific committed Service Level Agreement
(SLA) targets; (2) Infrastructure Optimisation to optimally utilise the
physical infrastructure; and (3) Capacity Planning to perform what-if sce-
narios for additional physical infrastructure.

The Infrastructure Optimiser and Simulator use Infrastructure
Models (landscapes) (6). These models/landscapes present the physical
and virtual structure, configuration, and topology of the known resources.
The telemetry utilisation and performance statistics and the application
KPI information are also needed for the Infrastructure Optimiser. Together
these inputs form a consolidated infrastructure model that has the appro-
priate granularity tailored for the given use case thus making optimisation
practicably achievable.

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

14

Application and Workload Models (7 and 9) describe the application
components and their behaviours and dependencies and map the applica-
tion components with their virtual resource requirements. The Workload
Models describe the traffic flows through the application components.
Both models are used by the workload predictor and application optimiser
to forecast workloads and application components and recommend how
these components should be placed on the network topology based on
optimising the overall application KPIs. The application models describe
applications as graphs of components with interdependencies and con-
straints in the form of graph links. The workload models describe the
relationships between control and data plane traffic, between end-to-end
latency and traffic, and between traffic and resource usage. They have
been built based on the data analysis of historical trace and synthetic work-
load data using statistical and machine learning techniques.

In the Application Optimiser (3), the traffic workloads are mapped to
the application sub-components, and the propagation of workloads is
modelled to account for the migratory capability of the components and
the mobile nature of users. The Optimisers use Load Distribution
Models (6) to account for this mobility of application components and
the impact of component migration on application performance. They
effectively model the traffic flows in the system and can predict the effect
on workloads if application components are changed. They are based on
the results of load balancing after a component migrates and on user mod-
els which drive component migration. These models are used by the opti-
misers to calculate the cost of component migration when selecting an
optimisation option.

Load Translation Models (7) are used by the Infrastructure
Optimiser (4) to map application configuration to physical infrastructure
capacity. The optimiser correlates the virtual resources (VMs/Containers)
to physical resources, and the physical resource utilisation with the appli-
cation component KPIs (throughput, response time, availability, speed of
service creation, and speed of service remediation). The translation pro-
vides a mapping of actual (specific in time) telemetry metrics of physical
resource consumption (utilisation metrics) to application components
workloads (i.e. the utilisation of resources by the components that are
running on those physical machines). Effectively, this maps the application
placement with the performance of components so placed.

The User Models (9) are based on an agent-based modelling of users,
e.g. citizens navigating through a city and utilising mobile services.

 J. DOMASCHKA ET AL.

15

It is possible to create models based on historical trace data and simu-
lated synthetic data. In this case, Simulators (5) are a valuable tool for
generating the user mobile behaviour and demand for application services
as well as the corresponding traffic from the related cloud services.

1.5.1 Optimisation Process Flows

Process A: The Application Optimiser (3) is fed with appropriate out-
put from the Landscaper Component (1) and Monitoring Component
(2), which represents the current resource capacity and utilisation, as well
as the Application Models, which represent the application workload and
performance targets. The Application Optimiser’s (3) prediction engine
produces a recommended deployment of components and outputs this to
the Infrastructure Optimiser (4) for evaluation, and then to the
Orchestrator (11) for orchestration. The Application Optimiser (3)
can be subsequently triggered dynamically to handle variations in applica-
tion workloads and user behaviours so that placement and autoscaling can
take place. In its most proactive mode, the optimiser can create virtual
resources, placing and autoscaling based on machine-learning models that
are run against workload and user metrics in real-time.

Process B: The Infrastructure Optimiser (4) uses the output of the
Landscaper Component (1) and Monitoring Component (2), which
represents the current resource capacity and utilisation, as well as the
Workload and Infrastructure Models to optimise the utilisation of the
physical hardware resources based on required Service Level targets and
policies. The Infrastructure Optimiser (4) optimises the use of the phys-
ical resources taking energy, equipment, and operational costs into account
as well as the plans and policies around physical resource utilisation. This
is based on a logical model of the infrastructure, virtual and physical
resources, and their utilisation mappings. The Infrastructure Optimiser
(4) also needs to represent the mobile nature of workloads and the ability
of application component migration to properly optimise the deployment.
The Infrastructure Optimiser uses the Simulator (5) in a Human-in-the-
Loop fashion, using the simulator to formulate deployment mapping
selections and calibrating the optimiser’s algorithmic process. The
Simulator (5) validates the results of the optimisation and provides
“what-if” scenario planning.

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

16

1.6 recaP BuIldIng Blocks

While the previous section presents RECAP as a loosely integrated con-
ceptual architecture, this section focuses on four high-level functional
building blocks (subsystems) that encapsulate RECAP logic and provide
the necessary functionality to realise the three operational modes discussed
in Sect. 1.4. The respective building blocks are loosely coupled and are a
frame for the RECAP architecture. The building blocks are themselves
distributed so that the entire RECAP system represents a distributed
architecture. The major functional building blocks (subsystems) are
Infrastructure Modelling and Monitoring, Optimisation, Simulation and
Planning, and Data Analytics and Machine Learning. Each of the blocks is
discussed in-depth in the remaining chapters of the book.

1.6.1 Infrastructure Modelling and Monitoring

The old adage “garbage in, garbage out” particularly applies to making
valued optimisation decisions. Thus, within RECAP’s Run-time Operation
Mode, having an accurate understanding of the current state of applica-
tions and the underpinning infrastructure is of paramount importance.
Furthermore, the long-term collection of accurate data is a key require-
ment for being able to apply meaningful data analytics and machine learn-
ing strategies (see Data Analytics Mode). Hereby the current state of
application and infrastructure is represented by two complementary data
sets, the infrastructure landscape and the infrastructure monitoring (telem-
etry) provided through the Landscaper Component and the Monitoring
Component respectively. As discussed earlier, the Landscaper Component
is tasked with providing physical and virtual infrastructure data as “a land-
scape” consisting of nodes and edges. In that landscape, nodes represent
for instance physical servers, virtual machines, or application instances. In
contrast, edges either represent mappings from applications to virtual
resources and further to physical resources, or (network) connections
between instances on the same abstraction layer. In short, the Landscaper
Component identifies what type of infrastructure is available and where,
while the Monitoring Component provides live data from that infrastruc-
ture. Both are essential for modelling and optimisation and are encom-
passed in a requisite distributed design.

As discussed in Sect. 1.5, the RECAP Monitoring Component collects
telemetry-like data from physical infrastructure, virtual infrastructure, and

 J. DOMASCHKA ET AL.

17

applications; stores this data in a unified format; and ultimately provides
the data in a consumer-specific format to other components in the wider
RECAP system. Both the Landscaper Component and the Monitoring
Component have been designed to operate on a per-location (data centre)
basis. This helps in respecting administrative domains and, in the case of
monitoring, reduces overall network traffic.

1.6.2 Optimisation

Optimisation goals in a multi-tenant distributed cloud-edge environment
vary depending on the respective perspective. On the one hand, infra-
structure optimisation has the goal to enforce a scheduling strategy that
best reflects the intention of the infrastructure provider, e.g. to improve
the utilisation of the available hardware or to save energy. On the other
hand, application optimisation strategies try to find the best-possible con-
figuration for an application deployment. Hence, the latter will increase
the available compute capacity when high workload is expected. This,
however, will only lead to satisfaction when the scheduling at the infra-
structure level does not apply strategies that counteract these goals.
Consequently, RECAP’s optimisation subsystem realises a cooperative
two-level optimisation framework, in which the optimisers at the two lev-
els (application and infrastructure) interact in order to avoid conflicting
scheduling decisions. Besides infrastructure-level and application-level
optimisers, the subsystem further contains an optimisation orchestrator
that mediates between the two levels. All entities in that subsystem con-
sume monitoring data, application load data, and infrastructure data. The
outputs of the optimisation algorithms in turn are optimisation steps that
are then processed by the Enactor.

Figure 1.3 illustrates the dependencies between the major components
of the optimisation subsystem. While there is just one Infrastructure
Optimiser in a given installation, there may be multiple Application
Optimisers, one per deployed application. Each of these is equipped with
its own application-specific optimisation strategy and optimisation rules.
The Infrastructure Optimiser in turn is equipped with provider-specific
optimisation policies.

The Application Optimisers constantly receive the current status infor-
mation from the Infrastructure and Modelling subsystems and, based on
this information, estimate the future coming workload. Based on the cur-
rent and predicted workload, each Application Optimiser suggests

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

18

optimisation steps for its particular application. These suggestions are fed
to the optimisation orchestrator, which, based on the input received, trig-
gers the infrastructure optimiser that then decides on whether these oper-
ations are feasible and also the mapping between application components
(bundled in virtual machines or containers) and physical resources.
Application Optimisation and Infrastructure Optimisation are presented
in detail in Chaps. 3 and 4 respectively.

1.6.3 Simulation and Planning

Figure 1.4 illustrates the core architecture of the RECAP Simulation
Framework. It consists of an API Component, a Simulation Manager, and
Simulation Engines. The API component serves as an entry point for
users, be they human or other RECAP components, or external parties.
The API Component offers an interface for controlling simulation runs.
In particular, it is used for submitting experiments and retrieving simula-
tion results from these runs. From the API Component, the experiment
data is forwarded to the Simulation Manager, which, in turn, checks model
validity and submits models to an appropriate Simulation Engine. The
RECAP Simulation Framework currently supports two simulation engines
that address different use case requirements. First, the discrete event simu-
lator (DES), based on CloudSim, is targeted towards the simulation of

Fig. 1.3 Component-oriented overview of the RECAP optimisation subsystem

 J. DOMASCHKA ET AL.

19

large-scale cloud-computing infrastructures, data centres, virtual machines,
and virtual machine components. It is tailored for fine-grained and detailed
simulations. On the other hand, the discrete time simulator (DTS), based
on the CloudLightning Simulator, is well suited for large-scale simulations
that need to run at speed and whose execution time is bounded.

The primary input to a RECAP simulation is a simulation experiment
comprising instances of the application model, the infrastructure model,
the workload model, and in addition, an experiment configuration. All of
these models are represented in the very same way for both simulation
engines. Once the input has been validated by the Simulation Manager, it
has to be transformed to the simulation engine-specific format. This is
done by the Model Mapper components shown in Fig. 1.4.

1.6.4 Data Analytics and Machine Learning

The Data Analytics and Machine Learning subsystems make use of the
data collected by Landscaper Component and the Monitoring Component.
The primary goal of this functional block is to distil statistical properties
and patterns from load traces. Previously, this activity would be under-
taken within an engineering team; however, due to the massive volume of
data involved, this can no longer be easily undertaken by humans. As such,
the Data Analytics and Machine Learning subsystem operates in a separate
processing pipeline that is decoupled from the Optimisation and the

Fig. 1.4 High-level overview on RECAP simulation framework

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

20

Simulation and Planning subsystems. The steps for analytics cannot be
fully automated and require the involvement of a data analyst. Despite this
decoupled processing, the results of the analysis do flow back into the
RECAP optimisation cycles, either through insights gained by the data
analyst performing the analytics (generally in the case of descriptive and/
or visual statistical analysis) or through codified models integrated into
other RECAP components as libraries or micro-services (more applicable
in the machine learning case).

The overall approach of the Data Analytics and Machine Learning
subsystem is shown in Fig. 1.5. First, a data scientist retrieves data col-
lected from the Monitoring Component. Then, they perform pre-process-
ing followed by the actual analysis and/or training on the pre-processed
data set. Both steps take place in iterations so that the analyst may go back
and perform different types of analysis, but they may also go back and
perform different types of pre-processing. Finally, as a last step, the results
are exported as mathematical models, as codified models, as a library, or as
an instantiable service. Due to the decoupled nature of the offline process-
ing, requirements towards the API of the actual data analytics components
are less strict than for other RECAP components. The only exception to
that rule is the format of the data retrieved from the Monitoring
Component. After the data has been fetched, pre-processing and all other
steps performed by the data analyst are open and not fixed by APIs. Also,
the integration of results into, for example, the optimisation algorithm
needs to be defined on a case-to-case basis.

Fig. 1.5 The RECAP approach to retrieve data, analyse it, and export the result-
ing models to other RECAP components

 J. DOMASCHKA ET AL.

21

1.7 maPPIng FunctIonal Blocks
to oPeratIonal modes

This section describes how the functional building blocks introduced in
the previous section interact to deliver the operational modes introduced
earlier.

1.7.1 Run-time Operation Mode

The Run-time Operation Mode (see Fig. 1.6) manages a set of applica-
tions spread out over a distributed physical and virtual infrastructure such
as an IaaS infrastructure with different geo-distributed locations. Based on
the user behaviour, and the current and predicted load in the system, the
run-time cycle identifies improvements to the current live system on both
infrastructure and application level and enacts them by executing optimi-
sation steps. For that purpose, the Run-time Operation Mode makes use
of the infrastructure modelling and monitoring subsystem and the optimi-
sation subsystem. Depending on the type of system to optimise, the opti-
miser may be configured with or without the Infrastructure Optimiser.
Not using it yields classical infrastructure unaware application-level opti-
misation. Internally, the optimisers may make use of additional compo-
nents generated by the Data Analytics and Machine Learning subsystem.
The optimisation plans produced by the optimisers are consumed by the
Enactor that interacts with application, physical infrastructure, and virtual
infrastructure to enact the optimisations.

Infrastructure Models
and

Monitoring Data Application Models
and

Workload Models

Application
and

Infrastructure
Optimisation

Infrastructure and
Applications

RECAP
Operations

Fig. 1.6 Run-time loop of RECAP

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

22

1.7.2 Simulation and Planning Mode

As discussed in Sect. 1.4, the purpose of the Simulation Mode is to per-
form two kinds of tasks. Firstly, it helps users and operators conducting
experiments about the performance of their infrastructure and applica-
tions running therein. This includes the interplay of different types of
applications but also the choice of configuration patterns for the Run-time
Operation Mode. Secondly, it can be used as a tool for operators to esti-
mate future needs with respect to the amount and type of hardware. Both
of these tasks require interaction with the Infrastructure Optimiser.

Figure 1.7 shows how the Simulation Mode is embedded in the wider
RECAP architecture. It supports (but does not mandate) importing real-
world telemetry and infrastructure landscape data that serve as input to
the simulation. These data are combined with the user models, workload
models, and load translation models to define a simulation (experiment).
Alternatively, parts of the input, or even all of the input, to a simulation
can be manually constructed by the user. For helping operators improve
their hardware choice, the Simulation Component supports an
optimisation- oriented approach that iterates over different simulation
configurations and picks the best-possible one for a given application mix
and usage scenario.

1.7.3 Data Analytics Mode

The Data Analytics Mode enables statistical evaluation and analysis, as well
as applying state-of-the-art machine learning techniques to the data col-
lected by the Monitoring Component. This mode envisions a data

Infrastructure Models
and

Monitoring Data

Application Models
and

Workload Models

Application
and

Infrastructure
Optimisation

Simulation
and Planning

Fig. 1.7 High-level overview on simulation interaction

 J. DOMASCHKA ET AL.

23

scientist performing many of the steps. Hence, while a certain degree of
automation can be achieved in the process, it still requires human interac-
tion, guidance, and input. Figure 1.8 summarises the interaction of the
Data Analytics and Machine Learning subsystem with the other RECAP
subsystems. It relies on the monitoring subsystems to export metrics as
bulk in a normalised manner. This data is then analysed, and the resulting
insights and models provided to other RECAP components. In particular,
the optimisation components are users of these models, for instance, for
the purpose of workload prediction.

1.8 conclusIon

The chapter introduces the challenges of reliable capacity provisioning
across the cloud-to-edge continuum. The scale and complexity across this
continuum is so complex; it is no longer realistic for IT teams to cost-
effectively foresee and manage manually cloud and network operations on
a detailed level due to high levels of dynamism and dependencies in the
system. This chapter, and the book as a whole, presents a high-level con-
ceptual overview of RECAP—an architectural innovation to support reli-
able capacity provisioning for distributed clouds— and some of the major
design concepts informing its design, namely separation of concerns,
model-centricism, modular design, and machine learning and artificial
intelligence for IT operations.

The remainder of this book is organised around the four functional
building blocks outlined in Sect. 1.6 above. Chapter 2 describes the Data
Analytics and Machine Learning subsystem, followed by Application

Infrastructure Models
and

Monitoring Data

Application Models
and

Workload Models

Application
and

Infrastructure
Optimisation

Data Analytics
and

Machine Learning

Fig. 1.8 High-level overview on data analytics subsystems

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

24

Optimisation (Chap. 3), Infrastructure Optimisation (Chap. 4), and
Simulation and Planning (Chap. 5). The book ends in Chap. 6 with four
case studies each illustrating an implementation of one or more RECAP
subsystems. The first case study presents a case study on infrastructure
optimisation for a 5G network use case. The second case study explores
application optimisation for virtual content distribution networks (vCDN)
on a large Tier 1 network operator. The third case study presents how data
analytics and simulation components, within RECAP, can be used by a
small-to-medium-sized enterprise (SME) for cloud capacity planning. The
final case study looks at how RECAP components can be embedded in an
IoT platform to reduce costs and increase quality of service.

reFerences

Aissaoui, Nabila, Mohammed Aissaoui, and Youssef Jabri. 2013. For a Cloud
Computing based Open Source E-Health Solution for Emerging Countries.
International Journal of Computer Applications 84 (11): 1–6.

Brown, A.W. 2004. Model Driven Architecture: Principles and Practice. Software
and Systems Modeling 3 (4): 314–327.

Cisco. 2013a. Embracing the Internet of Everything To Capture Your Share of
$14.4 Trillion. https://www.cisco.com/c/dam/en_us/about/business-
insights/docs/ioe-economy-insights.pdf.

———. 2013b. Internet of Everything: A $4.6 Trillion Public-Sector Opportunity.
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-
public-sector-vas-white-paper.pdf.

Cardoso, J. 2019. The Application of Deep Learning to Intelligent Cloud Operation.
Paper presented at Huawei Planet-scale Intelligent Cloud Operations Summit,
Dublin, Ireland.

Dang, Y., Q. Lin, and P. Huang. 2019. AIOps: Real-World Challenges and Research
Innovations. Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, 4–5. IEEE Press.

Gillen, A., C. Arend, M. Ballou, L. Carvalho, A. Dayaratna, S. Elliot, M. Fleming,
M. Iriya, P. Marston, J. Mercer, G. Mironescu, J. Thomson, and C. Zhang.
2018. IDC FutureScape: Worldwide Developer and DevOps 2019 Predictions. IDC.

Haller, S., S. Karnouskos, and C. Schroth. 2009. The Internet of Things in an
Enterprise Context. In Future Internet Symposium, 14–28. Berlin,
Heidelberg: Springer.

IBM. AIOps, IBM Cloud Education. 2019. https://www.ibm.com/cloud/
learn/aiops.

 J. DOMASCHKA ET AL.

https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-economy-insights.pdf
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-economy-insights.pdf
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-public-sector-vas-white-paper.pdf
https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioe-public-sector-vas-white-paper.pdf
https://www.ibm.com/cloud/learn/aiops
https://www.ibm.com/cloud/learn/aiops

25

Iorga, M., L. Feldman, R. Barton, M.J. Martin, N.S. Goren, and C. Mahmoudi.
2018. Fog Computing Conceptual Model. Special Publication No.
500-325. NIST.

Kleppe, A.G., J. Warmer, J.B. Warmer, and W. Bast. 2003. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Professional.

Lynn, T. 2018. Addressing the Complexity of HPC in the Cloud: Emergence,
Self-Organisation, Self-Management, and the Separation of Concerns. In
Heterogeneity, High Performance Computing, Self-Organization and the Cloud,
1–30. Cham: Palgrave Macmillan.

Lynn, T., P. Rosati, and P. Endo. 2018. Towards the Intelligent Internet of
Everything: Observations on Multi-disciplinary Challenges in Intelligent Systems.
Proceedings of the Research Coloquio Doctorados: Tecnología, Ciencia y
Cultura: una visión global.

Masood, A., and A. Hashmi. 2019. AIOps: Predictive Analytics & Machine
Learning in Operations. In Cognitive Computing Recipes, 359–382. Berkeley,
CA: Apress.

Papazoglou, M.P. 2012. Cloud Blueprints for Integrating and Managing Cloud
Federations. In Software Service and Application Engineering, 102–119.
Berlin: Springer.

Prasad, P., and C. Rich. 2018. Market Guide for AIOps Platforms. Gartner.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

1 TOWARDS AN ARCHITECTURE FOR RELIABLE CAPACITY PROVISIONING…

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

27© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_2

P. Casari (*) • R. García Leiva
IMDEA Networks Institute, Madrid, Spain
e-mail: paolo.casari@imdea.org; rafael.garcia@imdea.org

J. Domaschka • M. Leznik
Institute of Information Resource Management, Ulm University, Ulm, Germany
e-mail: joerg.domaschka@uni-ulm.de; mark.leznik@uni-ulm.de

T. Le Duc
Tieto Product Development Services, Umeå, Sweden
e-mail: thang.leduc@tieto.com

L. Närvä
Tieto Sweden Support Services AB, Karlstad, Sweden
e-mail: linus.narva@tieto.com

CHAPTER 2

RECAP Data Acquisition and Analytics
Methodology

Paolo Casari, Jörg Domaschka, Rafael García Leiva,
Thang Le Duc, Mark Leznik, and Linus Närvä

Abstract The collection, analysis, and processing of infrastructure infor-
mation and telemetry data lie at the very heart of RECAP. This chapter
describes the infrastructure for the acquisition and processing of data from
applications and systems, and explains the methodology used to derive

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_2#ESM
mailto:paolo.casari@imdea.org
mailto:rafael.garcia@imdea.org
mailto:joerg.domaschka@uni-ulm.de
mailto:mark.leznik@uni-ulm.de
mailto:thang.leduc@tieto.com
mailto:linus.narva@tieto.com

28

statistical and machine learning models from this data. These models are
then used to identify relevant features and forecast future values, and thus
inform run-time planning, decision making, and optimisation support at
both the infrastructure and application levels. We conclude the chapter
with an overview of RECAP data visualisation approaches.

Keywords Data analytics • Data acquisition • Machine learning •
Application modelling • Infrastructure modelling • Distributed cloud
computing • Edge computing

2.1 IntroductIon

The collection, analysis, and processing of data (e.g., infrastructure infor-
mation and telemetry) lie at the very heart of RECAP and constitute a
crucial part of the entire RECAP system. Data make it possible to train
machine learning and data analytics algorithms in the analytics mode;
moreover, data provide the basis for run-time planning, decision making,
and optimisation support at both the infrastructure and the application
levels; finally, they can be used as calibration mechanisms for the RECAP
simulators. As such, the data acquisition and analytics methodology com-
prises (1) data acquisition, defining how to collect data from the RECAP
infrastructure and the applications running on top of it, how to store that
data, and how to provision it to the various parts of the RECAP ecosys-
tem; and (2) data analytics, defining how to access the data and create
usable models from it.

Accordingly, this chapter is structured as follows: Section 2.2 describes
the infrastructure for the acquisition and processing of data (both from
applications and from systems). This is followed by an overview of the data
analytics methodology in Sect. 2.3, including the development of mathe-
matical models to identify relevant features and forecast future values.
Section 2.4 provides an overview of visualisation in RECAP.

2.2 data acquIsItIon and storage

Data collection in RECAP serves three purposes: (i) to derive information
about the flow of messages (hence, the load in the application layer) and
use it to create workload and load transition models; (ii) to derive the
impact of the application layer behaviour on resource consumption on the

 P. CASARI ET AL.

29

physical layer; and (iii) to provide input to simulation and visualisation
components.

As shown in Fig. 2.1, RECAP makes use of a central data repository,
which serves as the single integration point for all elements of the RECAP
ecosystem, and as the primary source of data for other parts of the RECAP
platform.

In its databases, the repository stores information about: (i) time series
of load metrics, (ii) information about the configuration of the data centre
and virtual infrastructure, and (iii) information about the applications run-
ning on top of this infrastructure. While (i) is the primary focus of the
repository, (ii) and (iii) are additional metadata that enrich the time series
data and that help correlate time series of various metrics from different
layers of the system. As an example, metadata could help correlate infra-
structure metrics, such as CPU usage, with application performance met-
rics from the application layer, such as worker queue length.

Technically, the data repository cannot be realised as a single entity, as
it has to satisfy different requirements from various components. While
the data analytics and machine learning functionality in RECAP require
access to large chunks of CSV-formatted data, the visualisation compo-
nent requires the capability to flexibly query for data upon a user request.
Finally, other RECAP components require access to a live stream of data:
for instance, the optimisers constantly need to look up the current state of
the system. In consequence, a polyglot approach to persistence is required,
as will be presented in later in this chapter.

Fig. 2.1 Conceptual overview of data handling in RECAP

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

30

2.2.1 Terminology

We now briefly cover the terminology that applies to the RECAP
Monitoring Architecture.

2.2.1.1 Metrics and Monitoring
Formally, a metric is a function that takes a system as input and yields a
scalar as a result. The application of a metric on a particular system is called
a measurement and the result of the application is called the value of that
metric. The unit of the value depends on the metric.

The monitoring process continuously (or periodically) applies metrics
to systems and generates a series of timestamped values. This is called a
time series (of a metric).

In order to distinguish values and time series that belong to the same
metric, but come from different systems, we allow values to be further
enhanced by metric properties (or tags). This enables values to be
grouped, leading to a time series for that tag.

As an example, the cpu_load metric, when applied to a server, yields the
current load of the central processing unit on that server. In order to be
able to distinguish values measured from server A from those measured
from server B, the value may be tagged with the tag origin that in this
example can take the values A and B. In total, this creates three time series:
one for A, one for B, and one for both servers.

2.2.1.2 Actors
Based on the context of RECAP and the requirements defined by the
project’s use case providers, the monitoring infrastructure assumes a
cloud-like environment where virtual resources (cloud resources) are
made available through a Web-based API.

A (cloud) operator or infrastructure provider provides the physical
resources on which virtual resources run. Physical resources may be geo-
graphically distributed, leading to a cloud-edge scenario. This actor is
responsible for maintaining the physical set-up and for running the soft-
ware stack that enables access to the virtual resources. The infrastructure
provider is also the actor that operates the RECAP infrastructure. Note
that communications service providers, such as telecommunications com-
panies, can also be cloud operators and infrastructure providers.

(Cloud) users access the virtual resources offered by the cloud pro-
vider. In Infrastructure-as-a-service clouds, they acquire virtual machines

 P. CASARI ET AL.

31

and virtual networks to operate their applications. This makes them
(application) operators and therefore also users of RECAP.

Finally, end users access the applications provided by the application
operator. Usually, they do not care where the application runs, as long as
it provides an acceptable quality of service and experience.

2.2.2 Monitoring Layers

Figure 2.2 illustrates the four layers that can be monitored in order to
derive insights on application behaviour and load propagation. Not all lay-
ers are required for all installations, so the set-up presented here is a super-
set of the possible set-ups.

The physical layer is provided by the infrastructure provider, and con-
tains the hardware used to run all higher layers. Here, monitoring metrics
mainly include CPU, RAM, disk, and network consumption at specific
points in time. The layout of the physical infrastructure is also important,
e.g. which servers share the same network storage or uplink to the Internet.
Figure 2.3 shows two data centre locations on the left and right hand
sides, each with a router. Both are connected through the Internet. The
infrastructure provides RECAP-aware monitoring support for the physical
layer and report measurements for the metrics.

physical
layer

virtual
layer

container
layer

application
layer

Load
Balancer

Application
server MySQL

Proxy

Master
DB

(write)

Slave
DB

(read)
Application

serverApplication
server

Slave
DB

(read)

Fig. 2.2 RECAP monitoring layers

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

32

The virtual layer constitutes virtual infrastructure as realised for
instance by Infrastructure-as-a-Service (IaaS) clouds. This infrastructure is
composed of virtual machines, virtual storage, and virtual networks. It is
run by the application operator, which is responsible for the measurements
on that layer as well. Similar to the physical layer, metrics mainly include
CPU, RAM, disk, and network consumption, but several instances of vir-
tual infrastructure (to be monitored separately) can exist in the virtual
layer (cf. different colours in Fig. 2.2). Also, the number of virtual com-
ponents per virtual infrastructure as well as the number of virtual infra-
structures is not fixed, but can dynamically grow and shrink.

On top of the virtual (or physical) layer resides an optional container
layer such as a Kubernetes1 cluster or a Rancher Cattle2 cluster. Basically,
the same restrictions and considerations hold for this layer as for the vir-
tual layer. Yet, in contrast to both, the container layer can provide a seam-
less abstraction and hide the location of different data centres. Whether
containers are used is a design choice by application owners or cloud pro-
viders: containers can be offered by a cloud provider or be deployed by a
user on top of virtual machines.

1 https://kubernetes.io/
2 https://github.com/rancher/cattle

optimisation

location 2
RECAP entrypoint location 1 location 3

app

infra

Visualisation
Dashboard

data
dispatcher app

app

data lake
TSDB

stream emitter

app

infra

data
dispatcher app

app

data lake
TSDB

stream emitter

app

infra

data
dispatcher app

app

data lake
TSDB

stream emitter

APIVisualisation
Download

Fig. 2.3 RECAP’s distributed monitoring architecture

 P. CASARI ET AL.

https://kubernetes.io/
https://github.com/rancher/cattle

33

At the top resides the application layer where application- and
component- specific metrics can be applied. These include, for instance,
the queue length of load balancers, detailed statistics on the use of data-
bases, and the message throughput of a publish-subscribe system.
Application-specific metrics are important conveyors of KPIs or
QoS. Although the RECAP monitoring platform cannot define all possi-
ble application-level metrics to be captured, it provides a structure to mea-
sure and store application-level metrics.

2.2.3 Monitoring Architecture

The RECAP Monitoring Architecture collects and provides the monitor-
ing data from the four layers described earlier to the RECAP simulator,
run-time system, and users.

RECAP operators may manage infrastructure spread over several, geo-
graphically distributed locations. In each of these sites an edge or core/
cloud data centre resides. In order to limit data hauling across data cen-
tres, collected data are stored as close to their origin as possible. RECAP’s
acquisition and retrieval strategy takes these circumstances into account.
In the following, we first describe the acquisition and storage architecture
per site and then the overall architecture spanning different sites.

2.2.3.1 Single Site Monitoring Set-up
This section describes the monitoring set-up for each site in a RECAP
managed infrastructure. Each of the sites can run in isolation and is not
affected by traffic and load on other sites. The per-site architecture con-
sists of monitoring probes on the physical layer and on the higher layers of
the software stack. It also involves a data dispatcher that filters the incom-
ing data and relays it to three different data sinks: a data lake, a time series
database, and a data stream emitter.

Components
Probe: Probes convey monitoring data out of monitored systems.
Different probes may be necessary for different metrics, even though most
probes will perform measurements for multiple metrics. Each probe may
emit data in a different format and at different time intervals. In addition
to a timestamp and value, an emitted data item contains metric properties
to identify the source and scope of the data point. While it is the responsi-
bility of the infrastructure operator to provide probes for the physical

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

34

layer, the cloud user shall provide the necessary metrics for higher layers of
the stack. All probes directly or indirectly send their data to the data
dispatcher.

Data dispatcher: The data dispatcher is a site’s central data monitoring
integration point. It receives and normalises all probe data and sends them
to the data sinks. Normalisation depends on the probes: an individual
transformation is needed per metric and per probe type. The dispatcher
adds site information and similar attributes to collected data.

The data normalised by the dispatcher are then put in the sinks. In
RECAP, different data post-processing demands exist with regard to the
monitoring subsystem. Feature engineering and data analytics in RECAP
operate on large data sets which need to be processed offline in dedicated
servers. Visualisation works on smaller datasets, but requires high flexibil-
ity in data provisioning. Finally, optimisers require a snapshot that repre-
sents the most recent state of the managed infrastructure. Therefore,
RECAP applies three different types of sinks:

• Data lake sink: accumulates large amounts of monitoring data in a
durable storage for a long time using a compact representation. This
data is the basis for data analytics and machine learning.

• Time series database sink (TSDB): stores monitoring data in time
series. Through an underlying indexed search engine, it supports live
queries of current and past data. It is the primary data source for the
visualisation components.

• Stream emitter sink: relays a configurable subset of live monitoring
data to other parts of the RECAP infrastructure. It is the primary
data source for the application optimisation and infrastructure opti-
misation engines, which decide on the metrics of interest and any
pre- processing (e.g. smoothing) to be applied.

A distinctive trait of RECAP is the “separation of concerns” between
application and infrastructure optimisation procedures. This makes it pos-
sible to accommodate the (often contrasting) objectives, costs and con-
straints of both application and infrastructure providers, and to harmonise
them as far as possible within the RECAP framework.

Practical Considerations
The dispatcher and all sinks are stateless and can be scaled to serve large
hardware installations, large amounts of users, and high volumes of data.

 P. CASARI ET AL.

35

Neither the architecture nor its implementation puts any restrictions on
where dispatcher and sinks can be run. Yet, in order to ensure a correct
interplay of the acquisition and storage components with other parts of
the RECAP infrastructure, the following constraints have to be considered:

 1. All kinds of probes at a site need to be able to connect to the dis-
patcher of that site either directly or indirectly.

 2. Both the TSDB and data lake sink need to be accessible from the
API component described later in Sect. 2.3.2.

 3. The stream emitter sink needs to communicate to other data cen-
tres, and particularly to the optimisation subsystem.

2.2.3.2 Cross-site Monitoring Set-up
As RECAP provides cross data centre resource and application manage-
ment, individual sites must be spanned to achieve a holistic view of the
system. The Monitoring Architecture achieves this by introducing a
RECAP entrypoint that may also be bound to a DNS name in order to
ease access, and includes a load balancer to point to the various sites man-
aged by this instance of RECAP.

Figure 2.3 provides an overview of the overall architecture of the moni-
toring infrastructure spanning sites. It shows three locations, one of which
functions as the RECAP entrypoint. Besides the local entities from Sect.
2.3.1, it shows the visualisation endpoints that offer a dashboard with
usage graphs as well as a GUI for bulk download of data from the data
lakes. The more generic API entity component serves as an integration
point for other RECAP components. In particular, the optimiser can use
it to configure the stream emitter sink which provides input to the optimi-
sation cycle or in order to access time series data from the TSDB.

As detailed earlier, the data lake sink is instantiated per site and can be
a distributed component that compresses and stores raw monitoring data.
Its primary purpose is to serve files for bulk download. As this storage
form is resource hungry, the monitoring infrastructure (1) switches off
persisting raw metrics on a per-site basis (this is beneficial if the site cannot
store larger amounts of data or no later data analysis shall be performed),
and (2) deletes or moves away data older than a certain age. While this
creates cross-site load, the fact that data is sent filtered and compressed
requires much less bandwidth than uncompressed probe data.

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

36

2.2.4 Data Structure for Storage

This section introduces the actual data that is collected on the four layers.
We do not discuss the data sent by the various probes as RECAP does not
enforce the use of specific probes. Instead, it assumes that the dispatcher
performs probe-specific normalisation.

2.2.4.1 Metrics on the Physical Layer
The metrics gathered for the physical layer are split into seven metric sets
(cpu, diskio, filesystem, memory, vms, and vm). Each of the metric sets
contain several detailed metrics. The four metric sets host.cpu, host.diskio,
host.memory, and host.filesystem capture the detailed usage and utilisa-
tion of basic system resources (cpu, block devices, memory, file systems).
Instead, host.vms gives information about the virtual machines running
on a host, and the metrics from the host.vm metric set detail the resource
consumption per virtual machine.

We measure the resource consumption of a virtual machine from the
host to avoid the misinterpretation of numbers seen from inside the virtual
infrastructure. For example, a 100% CPU load seen inside the virtual
machine may not mean that the machine uses a full physical core. The
mapping of how many physical cores are represented by one virtual core
for this particular virtual machine is subject to the CPU scheduler on the
host/hypervisor and is heavily influenced by the overbooking factor of the
physical server. Hence, the physical layer needs to report on the physical
resource usage per virtual machine.

2.2.4.2 Metrics on the Virtual Layer
The metrics gathered at the virtual machine level (i.e. captured from
within a virtual machine) start with vm. and are basically the same as the
physical host except, for example, cpu.steal. In addition to resource con-
sumption, information about available containers is collected in the same
way as resource utilisation per container.

2.2.4.3 Metrics on the Container Layer
On the container level, we collect the very same metric sets and metrics as
for the virtual layer (cpu, diskio, memory, filesystem, and network). The
names of the metric sets start with container. instead of vm.

 P. CASARI ET AL.

37

2.2.4.4 Metrics on the Application Layer
Applications differ and so do the metrics that can and need to be collected
from them. In particular, the measurement gathering methods depend on
the application and its software components. Hence, the data format and
content for application metrics cannot be fixed in advance, and metric col-
lection must be part of the application lifecycle management.

A generic naming convention for application-level metrics is adopted in
RECAP with the format app.<app name>.<comp name>.<metric name>,
which includes the (system-wide unique) application name, the compo-
nent name (unique per application), and the metric name.

2.2.4.5 Metric Attributes: Tagging
So far, we have presented metrics per layer. Yet, with the information pro-
vided so far, it is not possible to distinguish data from different sources.
This is achieved via metric attributes that also enable data grouping and
correlation. For example, all metrics are tagged with the timestamp and
the layer (physical, virtual, container, application). All physical layer met-
rics are further tagged with the data centre location, the name of the phys-
ical host, and the name of the infrastructure provider. Metrics on the
virtual layer are enriched with information about the cloud they are run-
ning in, the current region they reside in, and their respective identifier.
Similarly, container metrics contain information about the container iden-
tifier. On all levels, specific attributes are added if required by the metric.
For instance, devicename helps distinguish network interfaces on physi-
cal hosts.

For application metrics, tagging needs to fulfil two orthogonal tasks: to
distinguish different instances of the same application (e.g. WordPress
installation for customer A and customer B), and to distinguish different
instances of an application component, e.g. a scaled out application server.
Hence, all application metrics are tagged with an application instance
identifier and a component instance identifier, both automatically assigned
by the platform and added by the RECAP data dispatcher system. If
needed, application owners can provide further tags.

Second, tagging needs to convey on what physical resource an applica-
tion or component was running. Therefore, all application metrics are
tagged with the type and identifier of the containing entity (e.g. virtual
machine or container).

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

38

2.2.5 Implementation Technology

The implementation technology for the monitoring system chosen for
RECAP is largely based on experience gained from the FP7 CACTOS
project (Groenda et al. 2016) using an OpenStack testbed and production
system (bwCloud3) and from the Horizon 2020 Melodic project (Melodic
2019). Where possible, all technical building blocks were components
where technology was available under an open source and/or a commer-
cial licence. Finally, no chosen component makes any assumptions on the
technology of the other components, facilitating replacements and
upgrades.

The data dispatcher is realised through Elastic Logstash4 which offers
pipelines for receiving, processing, and dispatching a wide range of moni-
toring data. It comes with an extensive list of input plugins, including
software to accept TCP/UDP network traffic with JSON payload. Output
plugins range from time series databases and overwrites to the file system
to sending message streams through publish-subscribe platforms such as
Apache Kafka. Filters are provided for data curation and transformation.

The time series database sink is realised via an InfluxDB instance,
which supports both groups of metrics and metric attributes/tags. It also
supports continuous queries and data aggregation, and integrates well
with Grafana, an open source metric analytics and visualisation suite com-
monly used for visualising time series data for infrastructure and applica-
tion analytics.5

The stream emitter sink is realised by the Apache Kafka6 publish-
subscribe system, due to its wide adoption and well-known scalability.

The data lake sink is based on CSV files stored in a compressed format.
Probes: The entire monitoring subsystem is independent from the spe-

cific monitoring technology. This allows RECAP to integrate into existing
installations. Consequently, running RECAP does not require operators
to perform major updates on their infrastructure. Therefore, the mapping
from the data collected by the probes to the metrics schema must be
implemented for the dispatcher per probe type. Based on the RECAP
testbeds, a set of mapping rules have been implemented for specific probes.
In particular, this is the case for the Elastic Metric Beat metric collector to

3 https://www.bw-cloud.org/
4 https://www.elastic.co/products/logstash
5 https://grafana.com
6 https://kafka.apache.org/

 P. CASARI ET AL.

https://www.bw-cloud.org/
https://www.elastic.co/products/logstash
https://grafana.com
https://kafka.apache.org/

39

collect metrics on the physical and virtual layer, for Intel’s SNAP collector
to collect metrics on the virtual container and application layer, and for a
VMware vSphere7 collector.8

2.3 data analytIcs and ModellIng

2.3.1 Data Analytics Methodology

In this section, we describe the RECAP methodology for the analysis of
datasets and the development of machine learning algorithms to support
the application of RECAP’s results to new problems related to optimal
resource allocation and capacity planning. The methodology is composed
of five main steps as outlined in Fig. 2.4.

2.3.1.1 Step 1: Problem Definition and Data Assembling
The initial steps are to identify the problem to be solved and the available
data that can help solve the problem through machine learning. In
RECAP we merged these steps into a single task due to their high interde-
pendence. If the available datasets are insufficient, we have to change our
expectations about the problem or find additional data. As an alternative,
we later explain how to enrich existing datasets with synthetic datasets
mimicking the same workload data collected from RECAP Use Cases.

2.3.1.2 Step 2: Metric for the Evaluation of the Results
Selecting the metric to evaluate the results of our model is critical, since
that metric is exactly what the training algorithm will optimise. If the out-
put of the model is a continuous variable, the Root Mean-Square Error
(RMSE) is a typical choice. In the case of a categorical response, typical
metrics are accuracy, or the area under the receiver operating characteristic
(ROC) curve (AUC).

There are multiple standard techniques to evaluate the performance of
a machine learning model and detect issues, such as overfitting, early.
These include train/test splits of the dataset, N-fold cross-validation, and
bootstrapping. In RECAP, we use train/test splits for the early model
prototyping, and apply a cross-validation to the final models before

7 http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
8 https://github.com/Oxalide/vsphere-influxdb-go

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
https://github.com/Oxalide/vsphere-influxdb-go

40

production. Techniques to avoid cross-validation altogether have also
been investigated as a promising research direction (García Leiva
et al. 2019).

2.3.1.3 Step 3: Data Curation and Enhancement
A data curation process to remove errors and anomalies and fix missing
data is an important preparatory step before training a model. A visualisa-
tion of the dataset and a descriptive analysis provides valuable information
about the quality of the data being used in the project. Outlier detection
or the identification of ‘Not Available’ values could be applied as well. It
might also be necessary to enhance the data by deriving new features
based on those that already exist. This data enrichment could significantly
improve the predictive capabilities of models.

Fig. 2.4 A summary
of the main steps of the
methodology for
exploratory data
analysis of new datasets

 P. CASARI ET AL.

41

2.3.1.4 Step 4: Model Development
Identifying the best model is often a daunting task in the presence of all
possible alternatives. For example, in the case of a classification problem,
we could apply techniques like K-means, decision trees, support vector
machines, or neural networks. Moreover, each technique could have dif-
ferent alternative configurations. An approach to speed up the selection of
the right family of models is to test the statistical power of the machine
learning techniques. This test consists of performing fast training of the
model, perhaps with a data subset, and in checking if the model has better
predictive capabilities than random guessing. Any family of models with
no predictive power should be discarded.

2.3.1.5 Step 5: Regularisation and Hyperparameter Selection
The final step of the methodology is to tune the model’s hyperparameters,
whose values must be set before the learning process begins. Hyperparameter
optimisation makes it possible to obtain the best predictive capabilities
from a machine learning model, at the price of a higher risk of overfitting.
Once hyperparameters have been optimised, the model can be applied to
test data never used during training and validation. A clear sign of overfit-
ting is then a divergence between test performance and validation
performance.

2.3.2 Exploratory Data Analysis

Descriptive statistics are metrics that quantitatively describe, characterise,
and summarise the features of a data set. Even when data analysis draws its
main conclusions using inferential statistics and predictive analytics,
descriptive statistics can be used to provide a summary of the types of data
involved in the use cases, and inform future inference and prediction steps.

Exploratory data analysis (EDA) is used to understand data beyond
formal modelling or hypothesis testing. EDA is useful to check assump-
tions required for model fitting, to handle missing values, and understand
the required variable transformations. Figure 2.5 shows an example of a
decomposition of a time series in order to visually identify trends and pos-
sible cycles. The top panel visualises the original time series. From this
data, we extract a trend (second panel), a seasonal component showing
clear cyclic behaviour (third panel), and a residual behaviour not explained
by trend and seasonal components (bottom panel). These exploratory
steps are helpful to inform the choice of time series prediction techniques.

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

42

2.3.3 Workload Prediction

After a careful survey of the available literature in the field (Le Duc et al.
2019), three techniques were considered for the specific task of workload
prediction—probabilistic models, regression-based models, and machine
learning models.

2.3.3.1 Probabilistic Models
Probabilistic models are powerful tools to explain datasets, and are widely
used in statistics, traffic engineering, simulations, etc. To facilitate work-
load prediction in RECAP, we attempt to fit several probability density
functions to our datasets on a per-use-case basis. Parameter fitting is
obtained through Maximum-Likelihood Estimation, and the resulting
models are compared through the Kolmogorov-Smirnov test. The best
fitting model is finally chosen (an example for cache content pulling is
provided in Fig. 2.6).

2.3.3.2 Regression-based Models
Regression-based models are often simple and robust in generating pre-
dictions, and thus particularly suitable for offline modelling and prediction
tasks. In RECAP, we consider autoregressive integrated moving average
(ARIMA) models, which are composed of three parts. The AR part relies

Fig. 2.5 Decomposition of received traffic at a cache

 P. CASARI ET AL.

43

on the lagged values of the variable of interest; the MA part is actually a
linear combination of error terms whose values occurred in the past; and
the I part (for “integrated”) indicates that the data values have been
replaced with the difference between their values and previous values. We
also extend ARIMA models with seasonal components (SARIMA).

2.3.3.3 Machine-Learning-based Models
In order to facilitate fast online workload predictions in RECAP, we con-
sider the Online Sequential Extreme Learning Machine (OS-ELM), which
enables the generation of workload models and predictions online, and
can flexibly handle workload changes. OS-ELM is an efficient technique
for online time series modelling and prediction due to its accuracy compa-
rable to batch training methods and to its extremely fast generation of
predictions (Huang et al. 2005; Liang and Huang 2006). It accepts input
data either sample-by-sample or through varying- or fixed-size data chunks.

Different from other learning methods (e.g. single hidden layer feed-
forward neural networks), OS-ELM randomly initialises input weights
and updates output weights using the recursive least squares method. This
makes OS-ELM adapt quickly to new input patterns, and results into a
better prediction performance than other online learning algorithms (Park
and Kim 2017).

Fig. 2.6 Statistical distributions fitted to records of data sizes of pulled
cache content

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

44

2.3.4 Artificial Workload Generation

RECAP is interested in the availability of datasets describing the evolution
of workloads of servers and services (applications), so that stochastic mod-
els can be trained to forecast future workloads. However, for reasons
including commercial sensitivity and privacy, such datasets may be insuf-
ficient for research tasks. This issue can be circumvented by generating
synthetic datasets that preserve the statistical properties of the datasets
collected from real infrastructures.

Here, we briefly introduce the mathematical models used to generate
artificial workload traces in RECAP. Relevant references are provided for
the interested reader.

2.3.4.1 Structural Models-based Workload Generation
Structural time series models are a family of stochastic models for time
series that includes and generalises modelling techniques, including
ARIMA or SARIMA models (Harvey 1989). A structural time series
model expresses an observed time series as the sum of simpler components:

f t f t f t f tn() = () + () +…+ () +1 2 

where ϵ is a white error term following a normal distribution of mean 0
and variance σ2.

For example, one component might encode a linear trend, a cycle, or a
dependence of previous values. Structural time series models identify and
encode assumptions about the processes that have generated the original
data. In this way, they make it possible to generate artificial data traces that
have the same statistical properties as the original datasets. The application
of a structural time series model to requests coming to a search engine
web server is shown in Fig. 2.7. We observe that predicted data (light
grey) mimic well the general characteristics of ground truth (dark grey).

2.3.4.2 GAN-based Workload Generation
Synthetic data generation using Generative Adversarial Networks (GAN)
has recently gained popularity. A GAN is based on a combination of two
neural networks, a discriminator (D) and a competing generator network
(G). In the training phase, D is trained to distinguish real data from gener-
ated data. In parallel, G is trained to fool D by producing better and better
fake data that D will eventually accept.

 P. CASARI ET AL.

45

In RECAP, the overall idea behind the use of GANs is twofold. Firstly,
using this approach provides a “what-if” analysis on a dataset, answering
such questions as “how would this workload look for a larger number of
nodes?” Secondly, the inherent training goal of a GAN is to estimate the
probability distribution of the training data and to generate synthetic sam-
ples drawn from that distribution. Hence, when applied to a real dataset,
the GAN learns to mimic its statistical properties.

2.3.4.3 Traffic-Propagation-based Workload Generation
RECAP implements five diffusion algorithms for workload generation.
These algorithms can be divided into two groups: non-hierarchical and
hierarchical workload diffusion. The former includes population-based,
location-based, and bandwidth-based algorithm; the latter includes
hierarchy- based and network-routing-based algorithm.

Diffusion algorithms can be applied in different use cases and under
different assumptions related to the network topology, network links’
capacity, and the distribution of users throughout the network. Given
these models, and real workload data traces collected as time series at a
limited number of locations, it is possible to produce workload traces for
any or all network locations.

Fig. 2.7 Simulated workload for a search engine

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

46

2.3.4.4 Simulation System Model Data Sets
The role of simulation in the RECAP project is to go beyond the limita-
tions of an available testbed in terms of scale and complexity of experimen-
tations. Based on simulation, it is possible to generate synthetic datasets
consisting of two parts: large-scale models of a system that is being simu-
lated, and simulated behaviour measurements of the modelled system.
This is discussed further in Chap. 5.

2.4 data VIsualIsatIon

Data visualisation empowers end users and data scientists to analyse and
reason about data and its features. With data visualisation, data sets pro-
duced by RECAP or collected from production systems of use cases are
transformed to be more accessible, understandable and consumable.
RECAP uses a range of visualisation tools which we will now discuss.

2.4.1 Visualisation for Data Analysis

To facilitate data analysis and reasoning, RECAP has adopted various visu-
alisation tools for data presentation, for instance the histogram, box plot,
and scatter plot. Upon dealing with heterogeneous data sets, the selected
tools enable both univariate and multivariate data visualisation, facilitating
corresponding data analysis methods applied to different data sets. To
illustrate the use of the visualisation tools as well as their facilitation of data
analysis, different visualisations of features extracted from a real data set
from a search engine are provided along with explanations of how each
visualisation helps retrieving insights into the data.

Figure 2.8 visualises univariate data (specifically, the serving time of
user requests in the given workload data set) in different forms. The histo-
gram provides the insight that the majority of user requests are served
within very short time periods. The observable data distribution suggests
a potential application of probabilistic modelling techniques is needed to
construct models of the feature for further analysis or workload genera-
tion. The box plot of this serving time feature shows a large number of
outliers exist in the data set. Further investigation is thus required for hints
on the construction of predictive models. Figure 2.9 visualises multivariate
data and shows a relationship between the response size and response time
of the user requests. This visualisation suggests a correlation analysis on
the data set is needed when addressing workload analysis and modelling.

 P. CASARI ET AL.

47

2.4.2 Visualisation of RECAP Telemetry Data

The visualisation of telemetry data makes the status of the infrastructure
and applications operating on the infrastructure more comprehensible for
the operators at both application and infrastructure level. This becomes

Fig. 2.8 An exemplary presentation of serving time of requests in a workload
data set. (a) Histogram of serving time of user requests. (b) Box plot of serving
time of user requests

0

0

100

200

300

400

500

1000000 2000000 3000000

ResponseSize

R
es

po
ns

eT
im

e

4000000 5000000 6000000

Fig. 2.9 An exemplary presentation of a correlation of features in a workload
data set

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

48

crucial for the automation of system (application and infrastructure) man-
agement, in which trust is required and can be established based on visu-
alisations illustrating the response of the system to the triggered and
ongoing management actions. In RECAP, telemetry data acquired from
use case testbeds and production systems need to be visualised in order to
aid the analysis of the workload and application behaviours as well as the
mutual dependencies between metrics or features of both the infrastruc-
ture and applications.

As discussed, to facilitate the visualisation, Grafana was used as a visuali-
sation tool. This is an open source tool with a large community and a wide
selection of plugins and pre-configured dashboards which accelerates visu-
alisation. Grafana has an easy-to-use interface with various graph visualisa-
tion techniques including line graphs, bars, heat maps, maps, and
architecture. It enables grouping various graphs into a single-view dash-
board and supports multiple dashboards to provide different perspectives
of a given data set. Figures 2.10 and 2.11 illustrate the snapshots of two
dashboards. The first includes multiple graphs showing resource utilisa-
tion of the core of a testbed deployed at Ulm University (UULM),
Germany, and the second illustrates the mobility and behaviour of users
emulated in a testbed deployed at Tieto, Sweden, in a study of Infrastructure
and Network Management.

Fig. 2.10 Snapshot of the dashboard for the testbed at UULM

 P. CASARI ET AL.

49

2.5 open data

The RECAP project adheres to the Open Data Pilot of the European
Commission. This means that the project committed to providing the
datasets required to reproduce the results in the project, unless this would
result in, for example, a breach of confidentiality for the dataset provider
or in the loss of intellectual property. Several datasets have been derived
and provided in the context of RECAP. These datasets are described in
RECAP’s Deliverable D5.3 and are available, where appropriate, at
RECAP’s website—https://recap-project.eu.

references

Le Duc, Thang, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. 2019.
Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud
Computing: A Survey. ACM Computing Surveys 52 (5): 94:1–94:39.

García Leiva, Rafael, Antonio Fernández Anta, Vincenzo Mancuso, and Paolo
Casari. 2019. A Novel Hyperparameter-Free Approach to Decision Tree
Construction That Avoids Overfitting by Design. IEEE Access 7: 99978–99987.

Groenda, Henning, et al. 2016. CACTOS Toolkit Version 2. CACTOS Project
Deliverable.

Harvey, A.C. 1989. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press.

Fig. 2.11 Snapshot of the dashboard for the testbed at Tieto

2 RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY

https://recap-project.eu

50

Huang, Liang, et al. 2005. On-Line Sequential Extreme Learning Machine. The
International Conference on Computational Intelligence.

Liang, N.-Y., and G.-B. Huang. 2006. A Fast and Accurate Online Sequential
Learning Algorithm for Feedforward Networks. IEEE Transactions on Neural
Networks 17 (6): 1411–1423.

MELODIC. 2019. Multi-cloud Management Platform. http://www.
melodic.cloud/.

Park, Jin-Man, and Jong-Hwan Kim. 2017. Online Recurrent Extreme Learning
Machine and Its Application to Time-Series Prediction. Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

 P. CASARI ET AL.

http://www.melodic.cloud/
http://www.melodic.cloud/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

51© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_3

CHAPTER 3

Application Optimisation: Workload
Prediction and Autonomous Autoscaling

of Distributed Cloud Applications

Per-Olov Östberg, Thang Le Duc, Paolo Casari,
Rafael García Leiva, Antonio Fernández Anta,

and Jörg Domaschka

Abstract Optimisation of (the configuration and deployment of) distrib-
uted cloud applications is a complex problem that requires understanding
factors such as infrastructure and application topologies, workload arrival
and propagation patterns, and the predictability and variations of user

P.-O. Östberg (*)
Umeå University, Umeå, Sweden
e-mail: p-o@cs.umu.se

T. Le Duc
Tieto Product Development Services, Umeå, Sweden
e-mail: thang.leduc@tieto.com

P. Casari • R. García Leiva • A. Fernández Anta
IMDEA Networks Institute, Madrid, Spain
e-mail: paolo.casari@imdea.org; rafael.garcia@imdea.org;
antonio.fernandez@imdea.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_3#ESM
mailto:p-o@cs.umu.se
mailto:thang.leduc@tieto.com
mailto:paolo.casari@imdea.org
mailto:rafael.garcia@imdea.org
mailto:antonio.fernandez@imdea.org
mailto:antonio.fernandez@imdea.org

52

behaviour. This chapter outlines the RECAP approach to application
optimisation and presents its framework for joint modelling of applica-
tions, workloads, and the propagation of workloads in applications and
networks. The interaction of the models and algorithms developed is
described and presented along with the tools that build on them.
Contributions in modelling, characterisation, and autoscaling of applica-
tions, as well as prediction and generation of workloads, are presented and
discussed in the context of optimisation of distributed cloud applications
operating in complex heterogeneous resource environments.

Keywords Resource provisioning • Workload modelling • Workload
prediction • Workload propagation modelling • Application
optimisation • Autoscaling • Distributed cloud

3.1 IntroductIon

Key to the RECAP approach for application optimisation is application
autoscaling, the dynamic adjustment of the amount and type of resource
capacity allocated to software components at run-time (Le Duc and
Östberg 2018). In principle, this type of scaling can be done reactively—
by dynamically adjusting the amount of capacity to match observed
changes in load patterns, or proactively—by operating on predicted future
load values. Naturally, proactive autoscaling requires the ability to predict
or forecast future values of the workloads of applications, systems, and
components.

In this chapter, we summarise the RECAP application optimisation
system. Following the problem formulation, we discuss the RECAP
approach to application modelling, workload modelling, and the models
used for application optimisation (application and workload, including
how models are constructed and trained), the optimisation approach,
and the implementation and evaluation of the optimisation models. The
application optimisation approach outlined in this chapter exploits the

J. Domaschka
Institute of Information Resource Management, Ulm University, Ulm, Germany
e-mail: joerg.domaschka@uni-ulm.de

 P.-O. ÖSTBERG ET AL.

mailto:joerg.domaschka@uni-ulm.de

53

advanced techniques for characterising, predicting, and classifying work-
loads presented in Chap. 2 to construct proactive autoscaling systems.

3.2 Problem FormulatIon

The problem of optimising the deployment and configuration of applications
hosted in geo-distributed resource environments can conceptually be viewed
as a graph-to-graph mapping problem. As discussed in previous chapters,
RECAP models distribute applications as graphs of components where graph
nodes denote application components and the edges of the graph represent
the communication paths and dependencies among components. Similarly,
infrastructure systems can also be represented as graphs where the nodes cor-
respond to resource sites and the edges model the interconnecting network
links of site-connecting networks. The optimisation problem then is to find
the optimal mapping of application nodes to infrastructure nodes. This map-
ping is subject to constraints that reflect requirements on the application
level (e.g. minimal acceptable Quality of Service (QoS) for applications, or
co-hosting restrictions of I/O-intensive processes).

A graph-based formulation of the mapping problem facilitates reason-
ing on the scaling of both application and infrastructure systems.
Application scaling can on the one hand regulate the optimal number of
instances to deploy for specific component-associated services (horizontal
autoscaling) and on the other hand define how much resource capacity to
allocate to a particular application on a specific site (vertical autoscaling).
Furthermore, application scaling can be global, when the entire applica-
tion is scaled, or local, when only individual components are scaled inde-
pendently. Hybrid approaches are also possible where individual parts of
applications or infrastructures are treated differently. In that respect, the
RECAP optimisation approach includes the concept of application and
infrastructure resource zones—subsets of application and infrastructure
graphs that need to be treated as a group.

Based on studies of the technical trade-offs that influence optimality in
scaling and placement, e.g, power-performance trade-offs and sensors and
actuators that can used in optimisation of systems (Krzywda et al. 2018),
we define four types of constraints on application and infrastructure place-
ment and scaling:

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

54

 1. Affinity constraints—these specify co-hosting or pinning of
components;

 2. Anti-affinity constraints—these prohibit co-hosting or pinning;
 3. Minimal number of instance constraints—these specify lower bounds

of the number of instances to scale or the amount of capacity to
allocate to application nodes; and,

 4. Maximal number of instance constraints—these specify upper
bounds of the number of instances to scale or the amount of capac-
ity to allocate to application nodes.

3.3 oPtImIsatIon Framework

As well as infrastructure optimisation, RECAP provides an optimisation
framework that enables the development and execution of optimisation
tasks at application level. The core of the framework is an optimisation
engine that consists of multiple modellers and optimisers. More specifically,
the modellers produce dedicated models for each supported application,
including workload models, load transition models, user models, and
application models. These are used to provide a complete view of the
application. In addition, they are used as input for optimisers to solve
optimisation problems related to autoscaling. Depending on the type of
optimiser, it can deal with a wide range of optimisation problems related
to the placement, deployment, autoscaling, and remediation of applications.

For creating the respective modellers and optimisers, RECAP uses
methodological framework that entails three optimisation levels for the
deployment and management of applications in heterogeneous edge-
cloud environments, see Fig. 3.1. The figure illustrates the three-level pro-
cess that constitutes the optimisation methodology: the first level of
optimisation is the simplest and aims at the placement of applications
throughout the edge-cloud environments under fixed network, applica-
tion, and quality-of-service requirements/constraints. Optimisation solu-
tions created by this level of optimisation can be used for long-term
resource planning as well as initialisations for further optimisation levels.

In the next level of optimisation, the variations of workload and user
behaviours are taken into account for dynamic application placement and
autoscaling. The workload model and user models are used to estimate the
demand of resources of individual application components over time.

 P.-O. ÖSTBERG ET AL.

55

With the estimation results, resources are allocated for each application
component. Furthermore, based on predictions, workload can be redi-
rected or migrated in order to maintain the load balance within applications.

The most advanced level of optimisation aims at proactive resource
provisioning for applications. For that purpose, the RECAP Application
Optimiser applies workload predictors that make use of workload models
discussed in previous chapters. Machine learning is adopted to improve
the understanding of both workload and application behaviours. This
means more fine-grained models are derived and models can be refined
and improved over time. Using these models, predictions can be per-
formed more accurately to support load balancing, autoscaling, and reme-
diation in a proactive manner.

Fig. 3.1 A stratified approach to application optimisation iteratively building on
three optimisation building blocks—(1) classic optimisation on static data, (2)
application adaptation to variations in workloads and resource availability, (3) joint
autoscaling and optimisation in multi-tenancy scenarios using machine learning
(adapted from Le Duc et al. (2019))

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

56

3.4 aPPlIcatIon modellIng

This section addresses the application modelling from an optimisation
perspective. It first introduces the basic requirements and fundamental
assumptions behind the RECAP application optimisation framework.
Then, Sect. 3.4.2 introduces the modelling framework.

3.4.1 Application Characteristics and Modelling Requirements

A key enabling technology of cloud and edge computing is virtualisation.
Abstraction of physical resources through containers and virtual machines
(VMs) enables consolidation of compute capacity and resources (e.g. pro-
cessors, storage, and networks) into software-defined infrastructures
(SDIs). Such abstraction provides means for automation, scaling, and
optimisation of resource allocations and resilience to variations in work-
load intensity.

The services that are running in an edge/cloud environment differ
from the standard centralised cloud deployments. The difference is dic-
tated in the way applications are used, by the infrastructure topology, and
the infrastructure availability at the network edges. Geo-distributed infra-
structures enable services (applications) to be brought closer to users,
which increases the data exchange speeds and results in faster content
delivery to consumers. However, the distributed nature of edge infrastruc-
ture comes with the limitation of physical space and associated limited
hardware deployment capabilities. Different types of applications require
different hardware profiles to process user requests. Varying hardware
properties across distributed infrastructure stacks also require a distributed
application architecture that is modular enough to adapt to the available
edge/fog/cloud infrastructure horizontally and vertically.

As part of the application mode, the application topology depicts appli-
cation components that can be deployed as separate entities (containers or
VMs), and network link connections between them. A simple example of
such a topology would be a deployment of an application that has a front-
end web server and a database as two components. The web server can be
deployed as a separate component on a separate VM or node, or even on
a different datacentre than the database component, but both of them
should have a bidirectional data flow connection for data exchange.

Most web applications serve different types of user requests, and to do
so, different amounts of resources are needed depending on the requests

 P.-O. ÖSTBERG ET AL.

57

made. For example, a request of streaming video from a content distribution
network (CDN) would differ from a request to upload video to the ser-
vice. The first request can assume a data download; however, the second
request requires data upload, resampling, encoding, and other types of
content analysis and optimisations.

Elasticity is one of the major benefits of virtualised resources. Elasticity
makes it possible to maintain application QoS by dynamically scaling
application components based on workload intensity (provided that the
application architecture caters for it). To take advantage of elastic proper-
ties, application components can be managed by a load balancer that can
spawn extra parallel application components and redirect user requests to
evenly distribute the load.

Another vital characteristic in a distributed system is the geolocation
and content variability within the same type of application. For example, a
database or a CDN can be distributed across the edge infrastructure,
where some instances will contain the same type of data, but some will
not. Depending on data needed to serve a user request, the request needs
to be routed to an application instance that has these data. Such scenario
requires additional intelligence in the workload orchestration. From a
RECAP perspective, it also requires that the application model have a
notion of data content available within the application component.

All the aforementioned characteristics should be captured and reflected
in the constructed application models. Specifically, the models should pro-
vide the means to estimate computation, memory, and storage capacity
requirements of each components, as well as to present and calculate the
mapping of the applications and application components on the underly-
ing infrastructure. Moreover, they should help identify the type of traffic
or content delivered to the users at different locations, and estimate the
service delay for user requests.

3.4.2 Application Modelling Framework

The characteristics of the edge-cloud infrastructure and applications result
in high complexity when it comes to application modelling. In particular,
this modelling always has to be done in an application-specific manner. As
such, it is necessary to have a comprehensive understanding of typical sys-
tems, models, and modelling tools from theoretical and practical perspec-
tive. This section outlines the strategy adopted in the RECAP methodology
to perform application modelling for each system in its scope.

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

58

Firstly, a literature survey generated a universe of general and common
architectures of distributed applications including client-server architecture,
cloudlet, service-oriented architecture, and micro-services. Secondly, desk
research allowed a comparison of the previously identified architectures
with those of real large-scale distributed systems/applications and related
industrial technology standards used for the realisation of operational
systems. These systems include, for instance, the multi-tier caching system
of Akamai’s CDN, the operational architecture of Nextflix’s CDN, the
architectural framework of ETSI NFV, and Service Function Chaining
(SFC) (Halpern and Pignataro 2015) amongst others.

Thirdly, following the literature survey and desk research, we explored
mathematical models and tools widely adopted in computing science, such
as queuing theory, graph theory, and control theory. These have been
used to model components and the interaction among components and
are used together to model applications. For instance, a model may be a
combination of queuing theory, graph theory, and control theory as
follows:

• Queuing theory is used to model the processing logic of a compo-
nent, e.g. a VNF, a vCache, or a function node (database, data aggre-
gator, balancer).

• Graph theory is used to model the network topology, service func-
tion chain, communications between components.

• Control theory is used to model the control logic of dispatchers,
balancers, or orchestrators.

Fourthly, we decomposed the application into isolated components and
analysed the components in detail in order to understand the nature of
each component as well as how they communicate to each other in the
whole application. In addition to simplifying the modelling task, this
helps to identify how components impact each other and to identify the
bottlenecks within the entire topology. Once all components have been
modelled, these sub-models can be integrated to form a complete applica-
tion model.

In order to keep the modelling effort manageable, it is further neces-
sary to identify in advance the factors or metrics that should be captured
in the models in accordance with the requirements of the application.
That is, an application model always needs to capture business-specific
constraints and goals and cannot be constructed on a technical level alone.

 P.-O. ÖSTBERG ET AL.

59

3.5 workload modellIng

Besides an application model, an application optimisation engine further
requires predictions of the amount of work the application shall be able to
process overall or per zone. This enables proactive optimisation approaches,
where readjustments do not happen on a best-effort basis upon changing
workload conditions, but rather anticipate future workload levels and scale
the applications accordingly.

As discussed in previous chapters, workload analysis and modelling
focuses on techniques efficiently applied to time series data collected from
both real production systems and emulating systems. Before being anal-
ysed, original time-series data have gone through a pre-processing step
(gap filling, smoothing, resampling, etc.). Next, the data flows through
the two-stage process of workload analysis and workload modelling.

Workload analysis is composed of two main tasks: workload decomposi-
tion (which splits a time-series into the trend, the seasonality, and the
random factors of the workload data) and workload characterisation
(which aims to extract workload features as an input and driver of work-
load models). Such workload characterisation is performed by an
Exploratory Data Analysis (EDA), which is typically a manual step.

With this understanding of key features (metrics) of the workload, it is
possible to derive which aspects should be considered in modelling, and
how to effectively construct and evaluate appropriate workload models.
To perform the modelling task, we adopt different categories of tech-
niques in the RECAP methodology:

• Autoregressive integrated moving average (ARIMA) and seasonal
ARIMA (SARIMA) models are chosen based on the analysis of the
autocorrelation functions, partial autocorrelation functions, and
tests of stationarity (for example, Dickey-Fuller tests).

• The family of autoregressive conditional heteroskedasticity models
(ARCH, GARCH, NGARCH, etc.) is suited when the assumption is
fulfilled that the variance of the time series is not constant but still a
function of previous variances.

• Recursive neural networks and deep neural networks can be used to
find more complex interactions between past and future requests.

• Long short-term memory neural networks (LSTM) shall be used
when the aim is to detect if long past requests have a predictive value
for future requests.

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

60

The models obtained by workload analyses are expected to provide
forecasting capability. That is, based on them, it shall be possible to gener-
ate future workload predictions at different periods of time and different
intervals, as required by the application under analysis.

The predictions can be validated through various metrics so as to identify
the best one for each case, i.e. the one with the smallest errors. Depending
on the application, different models are required for different prediction
purposes (online and offline predictions). More specifically, models used
for offline prediction are expected to provide high accuracy so that the
results can be used for long-term planning.

In contrast, models used for online prediction additionally focus on low
execution time besides the accuracy in order to offer short-term predic-
tions in a timely manner. For the latter, it is necessary to evaluate the
execution time in forecasting of each model and to balance between the
error level and the execution time. Once selected, a model becomes the
core of the online predictor component for that application within RECAP.

3.6 model-based aPPlIcatIon oPtImIsatIon

The key challenges of efficiently deploying distributed applications in edge
and fog computing environments involve determining the optimal
locations and allocations of resource capacity. This is complicated by the
inherently varying load conditions of distributed infrastructures. Due to
the complexity and distinct mathematical formulations of the problems for
different applications, they are typically treated separately, often with the
solution of one as input to the other.

3.6.1 Application Autoscaling

In this section, we focus on application load balancing and distribution,
which can be seen as a special case of holistic application autoscaling (i.e.
self-scaling of application capacity allocations) given specific workload
arrival patterns and component placements. To avoid confusion, we use
different terms for different types of load balancing in distributed, multi-
tier applications. We denote (1) load balancing between multiple instances
of one single application component as load balancing, and (2) load bal-
ancing within the entire application to balance the loads distributed to
different application components as load distribution. This is addressed
by load transition models that capture how workloads flow through

 P.-O. ÖSTBERG ET AL.

61

applications in workload models. Principally, RECAP assumes that a
RECAP-enabled application is designed such that it is capable of making
use of more instances (scale out) or more resources (scale up).

The RECAP application models describe applications as networks/
graphs of components with interdependencies and constraints in the form
of network links, quality-of-service requirements, and communication
patterns. Application components are split into front-end and back-end
layers (modelling load balancing within components and management of
component functionality respectively) that can be autoscaled indepen-
dently. Using RECAP application and transition models, application
workload arrival patterns can be used to derive how load propagates
through distributed applications, and how the resulting component work-
loads impact the resources (including networks) where component ser-
vices are deployed. Using prediction algorithms allows to provide improved
performance and proactivity in autoscaling without changing the autoscal-
ing algorithms themselves.

Depending on the application, arrival patterns can be measured from
instrumented applications or infrastructure, or derived from simulation
models build on the user (including mobility) models. The value of such
models lies in the increased understanding of user and system behaviour,
but also in their potential use for prediction of workload fluctuations in
predictive scaling algorithms. Overall, RECAP applies the following types
of autoscaling algorithms:

• Local reactive scaling algorithms (similar to the autoscaling algo-
rithms used in Kubernetes) are used to individually scale component
front-ends and back-ends. They apply varied degrees of downscaling
inertia in order to reduce the amount of false positives.

• Global reactive scaling algorithms that predictively evaluate the per-
formance of individual component autoscalers, and selectively apply
those that maximise application objective functions, and used to
control back-ends.

• Global proactive algorithms that use short time-frame simulation
techniques to evaluate application performance for heuristically
selected subsets for autoscaling actions. This class of algorithms
shows the greatest autoscaling performance but is also significantly
slower and resource demanding. This limits its applicability in large-
scale systems.

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

62

3.6.2 Migration Techniques and Infrastructure Planning
and Provisioning

In addition to the algorithms described above, which target application
autoscaling in static deployment scenarios i.e. for deployments that do not
change during or from autoscaling, RECAP also provides tools and tech-
niques for evaluating and performing migrations of service components at
run-time. In order to incorporate this functionality in the autoscaling-
oriented perspective of application optimisation, such migrations can be
formulated to be part of the autoscaling problem by scaling the amount of
service instances for a specific component at a specific location in the space
of [0; n] (when there is no mobility of services and n is a maximum
instance count). Alternatively, it can be treated as a separate placement
problem that does not include autoscaling (beyond considering autoscal-
ing limits in the placement process) that is solved independently (either
before or after the autoscaling).

RECAP explores and exploits both approaches to develop a flexible
framework for application migration optimisation. The basic building
blocks of this framework are application autoscaling algorithms, a set of
heuristic functions that evaluate alternative deployment scenarios (under
specified autoscaling settings), and an in-situ simulation framework that
models application communication at message level within the application
models. The simulation framework essentially uses application and (pre-
dicted) workload models to simulate how workloads will be processed
under current application deployment and autoscaling settings. Heuristic
functions are used to identify components and/or resource sites that
underperform or for some other reason are candidates for reconfiguration,
and alternative configuration settings are speculatively evaluated by the
simulator to identify the reconfiguration actions most likely to improve
application performance the most (according to application heuristics
and KPIs).

Currently three types of heuristic functions are used for deployment
cost evaluations:

• Local evaluation functions that build linear combinations of QoS or
KPI metrics for individual component services or resources,

• Aggregate local evaluation functions that define statistical aggregates
of local evaluation functions for sets of components (i.e. subsets of
application components) or resources (e.g. regions of resource
sites), and

 P.-O. ÖSTBERG ET AL.

63

• Global evaluation functions that operate on application and infra-
structure models to aggregate QoS or KPI evaluation functions for
all components of an application or large sets of resources.

Evaluation functions are defined as mathematical constructs and can be
composed to develop utility functions that combine evaluation of both
applications and infrastructure resources. Using the simulation techniques,
recommendations for how to change application deployments (in single-
and multi-tenancy scenarios) and autoscaling constraints can be derived
from nominal size estimations of component placements and infrastruc-
ture capacities, or conversely component nominal sizes can be included in
the decisions on the admission of scaled or migrated service instances from
autoscaling constraints.

3.6.3 Workload Propagation Model

Workload propagation models describe how workload is propagating
through an application (i.e. between application components), and how a
fluctuation of workload at a certain component impacts the other ones.
Such a model can be constructed using workload data collected from all
the network nodes/locations in every system. Unfortunately, due to the
size and complexity of large-scale systems, exhaustively collecting such
data is extremely challenging (Le Duc et al. 2019). Therefore, the mecha-
nisms for workload generation and/or propagation are needed that enable
the production of workload data for all network nodes using data traces
collected only from a subset of nodes.

The five workload diffusion algorithms to address this problem are clas-
sified into non-hierarchical and hierarchical diffusion as follows:

 1. Non-hierarchical diffusion—these algorithms perform load
propagation within networks according to a discrete spatial
model of how heat is diffused in materials in physics or chemis-
try. They are applicable for controlling data exchange and the
workload of synchronisation tasks that are carried out by neigh-
bouring network nodes. This also can be extended to cover
some general cases of unstructured peer-to-peer overlays or ad-
hoc mobile networks.

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

64

 2. Hierarchical diffusion—these algorithms rely on a hierarchical
network model which slices the network into different layers. In this
case, the workload propagation is directed through network layers
from end users down to the core network layers or using prede-
termined routing paths destined to the dedicated service nodes.
This diffusion technique is applicable for core broadband net-
works and CDNs.

3.6.4 Approach and Realisation

Non-hierarchical diffusion algorithms include population-based, location-
based, and bandwidth-based algorithms, while hierarchical diffusion
ones include hierarchy-based and network-routing-based algorithms. This
section briefly describes the five algorithms including the assumptions, key
inputs, the main flow, and properties (see Table 3.1). Further details about
the calculations or formulae used in each task/step of the algorithms can
be found in RECAP Deliverable 6.2 which can be downloaded at the
RECAP website. The algorithms were tested with workload data traces
collected as time series at three inner-core nodes of BT’s CDN; the repre-
sentative metric of the workload in this use case is the traffic generated at
caches when serving user requests.

3.7 the recaP aPPlIcatIon
oPtImIsatIon PlatForm

Elasticity is a key function for addressing the problem of reliable resource
provisioning for edge-cloud applications as it ensures the reliability and
robustness of the applications regardless of the non-linear fluctuation of
the workload over time (Östberg et al. 2017; Le Duc et al. 2019). One of
the key techniques adopted in RECAP to address elasticity and remedia-
tion is autoscaling. By flexibly adjusting the amount of resources allocated
for applications and/or the number of application instances or compo-
nents, autoscaling enables applications to adapt to workload fluctuations,
which helps prevent the applications from becoming unresponsive or
terminating.

 P.-O. ÖSTBERG ET AL.

65

T
ab

le
 3

.1

 S
um

m
ar

y
of

 d
iff

us
io

n
al

go
ri

th
m

s

D
if

fu
sio

n
al

go
ri

th
m

A
ssu

m
pt

io
ns

K
ey

 in
pu

ts
D

es
cr

ip
ti

on

Po
pu

la
tio

n-

ba
se

d
•

 N
on

-h
ie

ra
rc

hi
ca

l
ne

tw
or

k/
ap

pl
ic

at
io

n
to

po
lo

gi
es

(e

.g
. t

el
ec

om
 n

et
w

or
ks

,
P2

P
ap

pl
ic

at
io

ns
)

•
 H

om
o-

ge
ne

ou
s

us

er

be
ha

vi
ou

r

U
se

r
di

st
ri

bu
tio

n
in

 t
he

ne

tw
or

k
 •

 It
er

at
iv

e
re

fin
em

en
t

al
go

ri
th

m
s

(s
im

ila
r

to
 h

ea
t

di
ff

us
io

n
an

d
sp

ri
ng

 r
el

ax
at

io
n

eq
ua

tio
ns

)
 •

 R
ep

ea
te

dl
y

so
lv

e
st

at
e

eq
ua

tio
ns

 t
o

di
st

ri
bu

te
 w

or
kl

oa
d

to

ne
ig

hb
ou

rs
 u

nt
il

th
e

ov
er

al
l l

oa
d

di
st

ri
bu

tio
n

ap
pr

oa
ch

es

eq
ui

lib
ri

um
•

 A
lg

or
ith

m
s

hi
gh

ly
 p

ar
al

le
lis

ab
le

L
oc

at
io

n-
 ba

se
d

G
eo

gr
ap

hi
ca

l n
od

e
lo

ca
tio

ns
B

an
dw

id
th

-
ba

se
d

B
an

dw
id

th
 c

ap
ac

ity
 o

f
ne

tw
or

k
lin

ks

H
ie

ra
rc

hy
-

 ba
se

d
 •

 H
ie

ra
rc

hi
ca

l n
et

w
or

k/
ap

pl
ic

at
io

n
to

po
lo

gi
es

(e

.g
. b

ro
ad

ba
nd

ne

tw
or

ks
, C

D
N

ap

pl
ic

at
io

n)
•

 Fu
ll

m
es

h
ne

tw
or

k

of
 t

he
 in

ne
r-

co
re

 n
od

es
•

 M
ul

tip
le

 s
ho

rt
es

t
pa

th

ro
ut

in
g

•
 H

om
o-

ge
ne

ou
s

us
er

be

ha
vi

ou
r

 •
N

et
w

or
k

hi
er

ar
ch

y
•

 B
an

dw
id

th
 c

ap
ac

ity
 o

f
ne

tw
or

k
lin

ks
•

 U
se

r
di

st
ri

bu
tio

n
in

 t
he

ne

tw
or

k

•
 H

ie
ra

rc
hy

-b
as

ed
 u

se
r

ag
gr

eg
at

io
n

to
 id

en
tif

y
th

e
ag

gr
eg

at
ed

 n
um

be
r

of
 u

se
rs

 a
t

ev
er

y
no

de
/

lo
ca

tio
n

ba
se

d
on

 b
an

dw
id

th
 c

ap
ac

ity
 o

f n
ei

gh
bo

ur
in

g
lin

ks
•

 B
ac

kw
ar

d
w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
to

 c
ol

le
ct

 t
he

 w
or

kl
oa

d
m

ea
su

re
m

en
ts

 fr
om

 e
ve

ry
 n

od
e

to
 t

he
 in

ne
r-

co
de

 n
od

es
•

 In
ne

r-
co

re
 w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
to

 e
xt

ra
po

la
te

w

or
kl

oa
d

at
 e

ve
ry

 in
ne

r-
co

re
 n

od
e

(i
f n

ee
de

d)
•

 W
or

kl
oa

d
pr

op
ag

at
io

n
to

 d
is

tr
ib

ut
e

th
e

w
or

kl
oa

d
fr

om

in
ne

r-
co

de
 n

od
es

 t
o

ev
er

y
no

de
 in

 t
he

 n
et

w
or

k
N

et
w

or
k-

ro
ut

in
g-

ba
se

d
 •

 N
et

w
or

k
hi

er
ar

ch
y

•
 B

an
dw

id
th

 c
ap

ac
ity

 o
f

ne
tw

or
k

lin
ks

•
 U

se
r

di
st

ri
bu

tio
n

in
 t

he

ne
tw

or
k

•

 A
 s

et
 o

f s
er

vi
ce

(i

nn
er

-c
or

e)
 n

od
es

 •
 R

ou
tin

g
pa

th
 d

is
co

ve
ry

 t
o

id
en

tif
y

(s
ho

rt
es

t)
 r

ou
tin

g
pa

th
s

fr
om

 c
lie

nt
-c

lu
st

er
s

to
 t

he
 s

er
vi

ce
 n

od
es

•
 N

et
w

or
k-

ro
ut

in
g-

ba
se

d
us

er
 a

gg
re

ga
tio

n
(u

si
ng

 r
ou

tin
g

pa
th

s)
•

 B
ac

kw
ar

d
w

or
kl

oa
d

ex
tr

ap
ol

at
io

n
•

 W
or

kl
oa

d
pr

op
ag

at
io

n

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

66

The RECAP system model assumes that applications are dynamically
distributed, and their behaviours are considerably difficult to predict and
model. Moreover, each application component may be subject to different
workloads, and an understanding of workload characteristics is required in
order to autoscale efficiently. Therefore, workload analysis, modelling,
and prediction based on time series analysis become the vital factor for the
efficiency of our solutions, and especially so for the proactive schemes.

For application optimisation, RECAP has created a platform for the
integration of application optimisers, workload modellers, and workload
predictors, as shown in Fig. 3.2. The figure also shows how the optimisers
(autoscalers) utilise the predictors when needed. Predictors, in turn, are
fed by workload modellers.

By adopting different techniques, for example regression or machine
learning, a workload modeller can construct multiple workload models.
For flexibility in system integration, the modellers can be implemented
using various technologies. The workload models are then wrapped and
exported as a microservice using a REST API Gateway. On top of model
services, a set of adapters are built to provide a unification layer. While
workload models are constructed using historical workload data, they can
be updated continuously at run-time by the workload modeller. Predictors
in the platform make use of the adapters in order to access the available
models and to make their predictions.

Workload
Modeller-1

Time Series Data

Workload
Modeller-2

Workload
Modeller-N

REST API
Gateway

Model-1
Service

Model-2
Service

Model-N
Service

Model-1
Adapter

Model-2
Adapter

Model-N
Adapter

<<interface>>

Adapter
<<interface>>

Predictor

Model-1
Predictor

Model-2
Predictor

Model-N
Predictor… …

…

…

UC-A Application
Optimiser

UC-B Application
Optimiser

UC-C Application
Optimiser

UC-D Application
Optimiser

General Client

Fig. 3.2 A platform for the integration of predictors and modellers

 P.-O. ÖSTBERG ET AL.

67

On top of this platform, robust and efficient approaches for autoscal-
ing are constructed based on the results of workload modelling and
prediction. Optimisers encapsulating optimisation algorithms and
application- specific constraints make use of prediction for proactive
optimisation. Note that an optimiser can call multiple predictors that
access different models constructed using different techniques. This
also implies that predictors are developed for every constructed model.
Such implementation enables the capability of extension when a new
optimiser (of a new application) or new model (using new techniques)
is added to the system.

3.8 conclusIon

This chapter introduced the RECAP Application Optimisation approach
and framework and outlined its the constituent building blocks. The inter-
action of the RECAP models and algorithms developed was further dis-
cussed. The RECAP Application Optimisation Framework addresses
application placement and autoscaling, and provides models and tools for
prediction, optimisation, and evaluation of the performance of distributed
cloud applications deployed in heterogeneous resource environments.

reFerences

Le Duc, Thang, and Per-Olov Östberg. 2018. Application, Workload, and
Infrastructure Models for Virtualized Content Delivery Networks Deployed in
Edge Computing Environments. Proceedings of the IEEE International
Conference on Computer Communication and Networks (ICCCN), 1–7.

Le Duc, Thang, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. 2019.
Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud
Computing: A Survey. ACM Computing Surveys (ACM) 52 (5): 39. https://
doi.org/10.1145/3341145.

Halpern, J., and C. Pignataro. 2015. Service Function Chaining (SFC)
Architecture. RFC 7665.

Krzywda, Jakub, Ahmed Ali-Eldin, Trevor E. Carlson, Per-Olov Östberg, and Erik
Elmroth. 2018. Power-Performance Tradeoffs in Data Center Servers: DVFS,
CPU Pinning, Horizontal, and Vertical Scaling. Future Generation Computer
Systems 81: 114–128.

Östberg, Per-Olov, James Byrne, Paolo Casari, Philip Eardley, Antonio Fernández
Anta, Johan Forsman, et al. 2017. Reliable Capacity Provisioning for Distributed
Cloud/Edge/Fog Computing Applications. European Conference on Networks
and Communications (EuCNC).

3 APPLICATION OPTIMISATION: WORKLOAD PREDICTION…

https://doi.org/10.1145/3341145
https://doi.org/10.1145/3341145

68

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

 P.-O. ÖSTBERG ET AL.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

69© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_4

CHAPTER 4

Application Placement and Infrastructure
Optimisation

Radhika Loomba and Keith A. Ellis

Abstract This chapter introduces the RECAP Infrastructure Optimiser
tasked with optimal application placement and infrastructure optimisa-
tion. The chapter details the methodology, models, and algorithmic
approach taken to augment the RECAP Application Optimiser output in
producing a more holistic optimisation, cognisant of both application and
infrastructure provider interests.

Keywords Resource provisioning • Application placement • Infrastructure
optimisation • Infrastructure modelling • Distributed clouds

R. Loomba • K. A. Ellis (*)
Intel Labs Europe, Dublin, Ireland
e-mail: r.l.loomba@ieee.org; keith.ellis5@mail.dcu.ie

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_4#DOI
mailto:r.l.loomba@ieee.org
mailto:keith.ellis5@mail.dcu.ie

70

4.1 IntroductIon

As discussed in Chap. 3, the RECAP Application Optimiser derives initial
placements from network topologies. These placements utilise applica-
tion, workload, and workload prediction models to derive scaling models,
which are combined with Machine Learning (ML) tools to produce appli-
cation models and recommendations. So, one might think “given I have
an application placement recommendation, what does the application
placement and infrastructure optimiser do?”

Well, put simply, the application optimiser does not have all the requi-
site information to make an optimal decision. When considering an appli-
cation placement decision, one must take into account that typical
operations perceive a separation of concerns between an application
provider and an infrastructure provider, the latter typically dealing with
multiple application provider requests.

In essence, the RECAP Infrastructure Optimiser brings the interests
and heuristics of the infrastructure provider to bear on the overall place-
ment decision and is tasked with three functions:

 1. Application Placement: the mapping of individual application ser-
vice components to individual infrastructure resources. The focus
being to identify, traverse, and optimally select from possible
placements.

 2. Infrastructure Optimisation: focuses on optimising the availability
and distribution of an optimal number, type, and configuration of
physical resources, while optimising their utilisation, i.e. “sweating
the assets”.

 3. Capacity Planning: considers future workloads and decides what
type of physical resource/node should be placed in the network,
how many nodes, and where to place them.

The remainder of this chapter is structured as follows. Section 4.2
briefly outlines the RECAP Infrastructure Optimiser architecture followed
by the problem formulation for making a more holistic placement optimi-
sation decision. We then present and discuss three different models used
in the RECAP Infrastructure Optimiser, namely load distribution models,
infrastructure contextualisation models, and load translation models.
Finally, we outline the RECAP algorithmic approach for optimal place-
ment selection.

 R. LOOMBA AND K. A. ELLIS

71

4.2 HIgH-LeveL ArcHItecture
of tHe InfrAstructure optImIser

Functionally, the RECAP Infrastructure Optimiser as presented in Loomba
et al. (2019), can be considered in terms of an “offline infrastructure opti-
misation modelling” process, Fig. 4.1, and an “online infrastructure opti-
miser” implementation, Fig. 4.2.

The offline infrastructure optimisation modelling process and the
online implementation components/steps are illustrated within the grey

Load Translation
Modelling

All App. To Phy.
Cap

All Utility
Functions

Infrastructure
Contextualization

Utility Function
Formulation

Infrastructure Optimisation Modelling [Offline]

Consolidated
Testbed models

Testbed
Landscapes

All App. models
& Distributions

KPI superset

Testbed
Telemetry

Input Collector
1

Testbed / Experimental Input

Generic Methodology / Process

Testbed / Experimental Output

3b

3a

3c

2a

2b

2c

Codified within the Infrastructure Optimiser

Fig. 4.1 Offline infrastructure optimisation modelling process

Load Translation
Selection

App. Model +
{App. ToPhy.
Cap}

{Utility Funct.}

Infrastructure
Contextualization

Utility Function
Selection

Infrastructure Optimiser [Online]

Output:
1. Real-time Application Placement

2. Future Infrastructure Optimisation

3b

Consolidated use-
case model

3a

3c

Placement &
Optimisation

Algorithm

Use-case KPIs

Use-case
Telemetry

Input Collector

1

Use-case Input

Generic Methodology / Process

Use-case Output

Use-case
Landscape

App. Model +
Distribution

4

2a

2b

2c

Fig. 4.2 Online application placement and infrastructure optimiser

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

72

boxes in Figs. 4.1 and 4.2, although it should be noted that infrastructure
optimisation is highly dependent on the veracity of its inputs as depicted
by the leftmost boxes in Figs. 4.1 and 4.2.

The main steps in the RECAP infrastructure optimisation process are
outlined in Table 4.1 below.

4.3 probLem formuLAtIon

The application placement and infrastructure optimisation challenge is
threefold, i.e. how to:

• Optimally match the requirements of components, e.g. VMs to
physical resources

• Adhere to SLAs negotiated between the infrastructure and applica-
tion providers

• And when to instantiate the virtual components relative to the
required capacity

Each challenge is composed of several subchallenges, including but not
limited to determining the optimal abstraction of components and
resources, defining the objectives that bound the placement, and identifying
a common means to compare deployment solutions. This may, in fact,
involve multiple-competing objectives; hence, there must be a trade-off.

Current literature suggests stochastic bin-packing method (Jin et al.
2012), approximation algorithms (Meng et al. 2010), and a variety of
other heuristics (Li et al. 2014) with focus on specific resources or objec-
tives, e.g. resource usage, and power and thermal dissipation (Xu and
Fortes 2010). However, often commercial and open source orchestration
solutions schedule either pessimistically to avoid conflicts or opportunisti-
cally to gain from potential Total Cost of Ownership (TCO) benefits.

4.3.1 Infrastructure

Deploying applications or component instances as VMs or application
containers, requires a rich understanding of the heterogeneity and state of
the underlying infrastructure. This is mainly because the application work-
loads might be computation-, storage-, or network intensive. With respect
to infrastructure, the requisite information is represented as a multi-
layered graph of the physical and logical topology called a “landscape”

 R. LOOMBA AND K. A. ELLIS

73

Table 4.1 Steps in the RECAP infrastructure optimisation process

Step
No.

Step title Description

1 Input
collection

Manages the data ingress of inputs and is essentially the same for
offline modelling and the online implementation; what changes is
the context. Inputs include:
• Composition and structure of infrastructure available, i.e.

landscape
• Composition and structure of the application (e.g. application

model and load distributions)
• Associated telemetry data, e.g. from testbed or system of

interest
• Infrastructure provider and service/application provider KPIs

2 Modelling
and/or
selection

Creates/utilises models primarily in the offline mode to produce
outputs that are subsequently codified within the online optimiser.
(2a) Combines telemetry with an infrastructure landscape and
filters as appropriate based on relevant KPIs. The process is the
same for offline and online, only the context changes.
Offline (2b) creates application load translation models, which
map how application load correlates to resources, associated
telemetry and/or KPIs. Online this step more simply involves
appropriate selection of a subset of “application load to physical
capacity mappings” from those modelled offline.
Offline (2c) utilises KPIs and Multi-Attribute Utility Theory
(MAUT) to formulate Utility Functions for application and
infrastructure providers. Online this step selects a subset of utility
functions from those previously formulated offline.

3 Modelling/
selection
output

Offline (3a) represents a consolidated infrastructure model, i.e. a
testbed specific landscape that feeds the “load translation
modelling” process. Online this is the use-case-specific landscape
and is fed directly to the algorithm module step 4.
Offline (3b) encompasses the complete set of possible “application
load to physical capacity mappings” based on the testbed inputs.
Online it is an appropriate subset of those modelled offline based
on the use case inputs.
Offline (3c) is the complete set of possible “Utility Functions”.
Online it is an appropriate subset based on the given use case.

4 Algorithmic
optimisation

This step is illustrated in Fig. 4.2 and takes (3a) and (3b) as inputs.
The algorithm subsequently provides several valid solutions, over
which the utility functions selected in step (3c) are applied to
select a near-optimal option. The output of step 4 is a real-time
application placement or a future infrastructure optimisation.

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

74

(Metsch et al. 2015). This landscape is built utilising the Neo4J database.
It is primarily a graph describing a computing infrastructure, that also
details what software stacks are running on what virtual infrastructure, and
what virtual infrastructure is running on what physical infrastructure. The
data within a landscape is collected via collectors and event listeners.
Collectors are provided for physical hardware information (via the hwloc
and cpuinfo files) and for OpenStack environments.

This rich representation helps to understand the capability of the infra-
structure. It is mathematically quantified as a landscape graph G = (N ∗, E ∗)
where N ∗ is the superset of all nodes of all geographical sites indicating
resources such as CPU cores, processing units, and switches and E ∗ is the
superset of all links between them, which might be communication links
or links showing a relationship between two nodes.

Although this granularity of information is required, it increases the
complexity of problem in terms of possible placement combinations and
adds additional dimensions. For example, instead of determining at the
aggregate server level, one must determine the cores, the processor bus,
and the processing units involved in the mapping. As such, for simplicity,
the landscape graph is abstracted in this initial formulation into a contex-
tualised landscape graph G1 = (X, E) where X ⊂ N∗ and set E ⊂ E ∗ con-
taining only two categories of node, namely network and compute. Set X
is a collection of nodes with a compute or network category and Set E is
the set of all links connecting these nodes. This abstraction defines a net-
work node to be of type, e.g. nic, vnic, switch, router or SRIOV channel.
A compute node is defined as a resource aggregate of a given type, e.g.
machine or virtual machine and is created by collapsing the properties of
the individual compute, memory, and storage entities directly connected
and contained within the node. This helps isolate the two categories of
nodes while storing pertinent information regarding the other categories.

Building on work and experience of the Superfluidity project
(Superfluidity Consortium 2017), these nodes also contain attributes
which quantify their capacity. This is represented in a vector format as vx
for node x along with telemetry information regarding utilisation (the
average percentage of times a resource is deemed to be “busy” over a pre-
defined time window for the given resource), saturation (the average per-
centage of times a resource has been assigned more tasks than it can
currently complete), cost models, etc. The superscripts c, m, n, and s
denote compute, memory, network, and storage category values respec-
tively. The compute node ς has capacity vx =  v v vx

c
x
m

x
s, , where vx

c

 R. LOOMBA AND K. A. ELLIS

75

represents the number of cores and vx
m the amount of free or unused

RAM from the total installed on the resource aggregate, and vx
s represents

disk size. A network node n has a 2-tuple capacity vector vx =  
∗v vx

n ,
calculated based on its available bandwidth vn and available
connections v∗.

Furthermore, for physical communication link e ∈ E representing the
graph edge, link attributes are added including geographical distance
len(e) and measured or observed throughput τe and latency le normalised
for time δt, just before any application placement decision is made. Values
such as Be for maximum bandwidth and associated rate Re

b for a unit of
bandwidth are also included in the infrastructure graph G1.

4.3.2 Application

The application to be deployed is itself described as a service request, com-
posed of either multiple connected service components in the form of
service function chains (SFC), or disjointed service components, which
need to be placed together. Using the definitions presented in (RECAP
Consortium 2018), the application is represented in a service request
graph G2 = (Z, F) with nodes represented by set Z and graph edges by set
F. For this model, the nodes are further categorised similar to the method
described above into either compute or network nodes and are termed as
request nodes and request graph edges as they represent the service
request.

4.3.3 Mapping Applications to Infrastructure

Each service component of the service request graph G2 is then mapped
on to infrastructure resources and links in graph G1. This mapping is com-
posed of a subset of nodes and graph edges of graph G1, and as such it is
important to first define the rules of such a mapping. This is represented
in Fig. 4.3.

The nodes in graph G2 are defined as a 1:1 mapping with resource
nodes, defined by the set of infrastructure nodes Y. This set Y ⊂ X con-
tains all compute and network nodes which have a service component
mapped to them. This is also quantified as z → y where request node z ∈ Z
is mapped to resource node y ∈ Y, also ensuring that Z ≅ Y. There is also
a 1:N mapping for the graph edges as they get mapped to a set of

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

76

communication links also indicating a physical network path. This is
defined as graph edge f ∈ F being mapped to the set of communication
links or path g, which is a subset of all possible paths in the infrastructure
graph, also quantified as f → g. These definitions describe a possible place-
ment solution, denoted by G2 → G1, which may or may not fulfil the cri-
terion of an optimal mapping.

4.3.4 Mapping Constraints

The RECAP Infrastructure Optimiser’s objective is to identify an optimal
mapping, and this requires the analysis of several constraints. A subset of
the most relevant constrains to be considered for an infrastructure resource
request model along with its associated policies is presented here.
These include the capacity requirement, compositional, SLA, and
infrastructure- policies constraints.

Fig. 4.3 Mapping a service request graph and a contextualised landscape graph

 R. LOOMBA AND K. A. ELLIS

77

4.3.4.1 Capacity Requirement Constraint
This constraint defines the capacity, specified in terms of compute,
memory, network and/or storage capacity that must be available on the
resources and edges that are intrinsically part of the mapping. For the
initial formulation, this capacity is considered static during the duration of
the application deployment.

For compute, this includes request information from the application for
customised virtual compute flavours, related to the software image and the
number of requested cores. Additionally, details on acceleration capabili-
ties, CPU architecture, or clock frequency requests may also be included.
For memory, this specifies the amount of virtual memory that needs to be
allocated to the request node, and also includes details on whether Non-
Uniform Memory Access (NUMA) support is required. For network, this
includes request information on the required network bandwidth, the
requested network interface (e.g. normal virtual NIC vs. SR-IOV) and
additional acceleration capabilities. For storage, this includes request
information on the required storage size, type of storage (e.g. SSD vs.
HDD), and redundancy level (i.e. RAID).

In this scenario, it is imperative to remember that since the request
edge is mapped to a set of communication links or a physical path, the
aggregated bandwidth and aggregated latency of all edges that are a part
of this physical path must meet the requirement. There are a number of
reasons why this requirement must be met including propagation delay,
serialisation, data protocols, routing and switching, and queuing and buff-
ering. Of these, the most significant ones are the propagation delays and
the queuing delays. Since the network devices are considered in the model,
the saturation value of the nodes on the physical path are summed to get
the queuing latency, and the aggregation of the bandwidth and propaga-
tion latency are quantified as follows.

• The aggregated bandwidth of the physical path is the minimum
observed throughput of all edges in the physical path.
Mathematically, bg =

∈
min
e g eτ

• The aggregated latency of the physical path is the summation of the
propagation latency in the physical path. Mathematically, lg =

∈
∑
e g

el

4.3.4.2 Compositional Constraint
Compositional constraint defines any rules that explicitly dictate the com-
position of the mapping at different levels of granularity such as resource

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

78

types (e.g. compute and network), resource groups (e.g. a set of compute
resources), or resource zones (e.g. a set of machines deployed at a particu-
lar location). At each level of granularity, the constraint can be further
quantified as being affinity (“same” or “share”) or anti-affinity specific
(“not-same” or “not-share”). These dictates whether resources “share”
the “same” physical resource, set of resources, properties or zones, or not.

The first example of such a constraint is the resource type mapping
constraint; e.g. a virtual CPU (vCPU) must be mapped to a CPU or a
virtual network interface (vNIC) must be mapped to a port of physical
network interface (NIC). These are necessary since the network interface
to which the vNIC is mapped needs to be on the same server as the CPU
host, whereas depending on the configuration of the infrastructure and
level of redundancy, the virtual storage component or disk can be mapped
to a remote storage disk or to the local storage. Additionally, physical
memory banks connected to the physical core allocated to the request
deliver different performance in comparison to allocating memory banks
connected to other physical cores.

4.3.4.3 Service Level Agreement Constraint
This constraint relates to specific customer service requirements and cov-
ers information regarding the scheduling prioritisation of individual ser-
vice customers and application instances, as well as control policies to be
enforced to pre-emptively suspend/kill other currently deployed services
by the same or a different service customer.

This is modelled by defining a set of SLAs denoted by set S, negotiated
between the infrastructure provider and the service provider/customer.
The infrastructure provider creates and offers more than one SLA tem-
plate. These are arranged in a hierarchical manner, with each level relating
to a specific “type” of SLA such as “platinum”, “gold” or “silver”. Each
template s ∈ S is associated with one type that defines its rate Rs, the
threshold of service level KPIs required by the customer for that template,
the unit cost of SLA violations j ∈ Js for each KPI, and the list of failure-
tolerant implementations h ∈ H that need to be made by the resource
provider.

The customer selects the setting they want within the chosen SLA tem-
plate and can select more than one SLA for different applications. This
becomes the agreed SLA for the application for the customer and is
included as a customer request. As such, it also includes the total run-time
(in hours) for the application instance Tr and other constraints that the
customer requests.

 R. LOOMBA AND K. A. ELLIS

79

4.3.4.4 Infrastructure-Policies Constraint
Apart from scheduling prioritisation, it is also important for the resource
provider to define policies and control protocols for the management of
the infrastructure. These constraints include resource allocation prioritisa-
tion and allocation ratios.

The resource provider can prioritise certain resource types or groups,
based on either their cost or performance. These resource groups can also
be associated with a particular SLA template and with allocation restricted
in certain situations. Also, policies related to overprovisioning of resources
need to be defined by the resource provider. This controls the ratio of
allocating virtual resources to the physical resource and may differ by cat-
egory of resource and specific use case. Additionally, it includes the mini-
mum and maximum capacity that is allocated to one instance over the
entire run-time of the application instance, if any.

4.4 modeLs tHAt Inform InfrAstructure
optImIsAtIon decIsIons

As discussed earlier, three models are used in the RECAP Optimisation
Framework to inform optimisation decisions—load distribution models,
infrastructure contextualisation models, and load translation models. As
load distribution models have been discussed earlier in Chap. 3, we will
focus on infrastructure contextualisation models and load translation
models here.

4.4.1 Infrastructure contextualisation models

While “the map is seldom the territory”, a good map invariably helps. As
discussed earlier, the “infrastructure representation (landscape)” is an
important input to the RECAP Infrastructure Optimiser and aims to pro-
vide a rich representation of the resource composition, configuration, and
topology of the various entities in the cloud/edge infrastructure, across
three layers—physical, virtual, and service. However, a landscape for a
given scenario may not have all the requisite data expected (e.g. geograph-
ical and capacity), or it may be too rich having redundant information
irrelevant to the specific use case. Additionally, it will not have telemetry
data needed to support the optimisation process, e.g. current utilisation.
Furthermore, if granularity of the infrastructural information is increased,

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

80

multiple different mappings need to be considered, increasing the com-
plexity of the NP-hard problem.

To address this issue, a “contextualised modelling process”
(Figs. 4.1(2a)/4.2(2a)) is undertaken so as to produce a “consoli-
dated infrastructure model” (Figs. 4.1(3a) and 4.2(3a)). This process
may augment and/or filter the landscape input, adding telemetry, e.g.
resource utilisation, KPIs (perhaps to filter), and important platform
features identified for the individual use cases. But assuming the land-
scape provided meets the requirements of the optimiser, the only addi-
tion for creation of the consolidated model is telemetry, plus any
required filtering based on appropriate KPIs. The type of information
encapsulated in the consolidated model is illustrated by way of the fol-
lowing brief example. Figure 4.4 represents the network topology for
the city of Umeå, Sweden.

The contextualised infrastructure model for such a network includes:

Fig. 4.4 Overview of Umeå network topology (site routers only)

 R. LOOMBA AND K. A. ELLIS

81

• The definition of resource sites (e.g. MSAN and Metro), i.e. informa-
tion pertaining to individual physical infrastructure elements, their
physical attributes, and configurations, the communication links
between them, and the properties inherent to these links.

• The definition of inter-site network bandwidth and latency, i.e. the
available network bandwidth and latency values of the physical com-
munication links between resource sites.

The output of this process is a representative graph of the network
landscape. At a more granular level, Fig. 4.5 below shows the modelled
communication links across the tiers for just one resource site T21, as
presented by the Neo4J database.

4.4.2 Load Translation Models

Given a good understanding of the physical infrastructure, one must then
consider the applications that are to be optimally deployed. In that regard
and building on Chap. 3, load translation models serve to:

 1. Quantify the association between virtual machine/container con-
figurations and specific infrastructure configurations, and

 2. Determine the lower and upper bounds on resource consumption in
relation to varied application performance KPIs.

The RECAP load translation models are designed to be generally
applicable to distributed application deployments and cloud/edge

Fig. 4.5 Representation of a subgraph of contextualised network landscape

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

82

infrastructures. The methodology presented here focuses on mapping the
virtual workload of individual service components to a set of prioritised
time series data-points, i.e. telemetry collected from the physical infra-
structure components. The correlation of service components and telem-
etry informs an offline modelling process that builds insights about
application placement and related performance of deployed components.
These insights which are then available to the online optimiser.

RECAP experimentation highlighted how understanding the profile
mix of infrastructure features coupled with the different service compo-
nents, e.g. Virtual Network Functions (VNFs) deployed on the infrastruc-
ture impacts the efficient usage and distribution of physical resources, i.e.
compute, memory, network, and storage.

The RECAP load translation methodology is illustrated in Fig. 4.6.
The methodology begins with understanding the following inputs:

• Infrastructure Information: It is important to understand the tes-
tbed/experimentation set-up and to understand its limitations, espe-
cially those relating to the heterogeneity of available server
configurations. This helps define the information on the infrastruc-
ture, e.g. physical machine, virtual machine and container configura-
tions, total number of machines, and their connections.

• Associated Telemetry Data: A telemetry agent is initialised to col-
lect data over multiple domains, e.g. compute, network, storage, and
memory. All incoming data from these metrics are aggregated and
normalised based on the domain context and studied as time
series data.

• Virtual Machine Configurations: The application to be placed on
these machines needs to be understood, how many instances and
types of instances can be run, whether they are deployed as service-
chain or disjoint VMs/containers, along with the various configura-
tions of these VMs/containers. This information is typically provided
via the application optimiser.

• End-User Metadata: The end-user behaviour to be emulated is
determined based upon use case definitions and validation scenarios,
and this specifies how users will access the applications, how many
users will be initialised, how the number of users will increase/
decrease, and how different user behaviours will be simulated in
the testbed.

 R. LOOMBA AND K. A. ELLIS

83

These four inputs are then used to define the context of experiments
that have to be run which are based on, for example, the duration of each
experimental run; the prioritisation of configurations; application instances
and end-user workloads that will be varied; and the number, type, and
behaviour of users that will be applied for each experiment, as well as the
number of times the same experimental set-up will be replicated for redun-
dancy purposes. This helps define a set of profiles that are given to the load
translation model to assess and analyse.

Once the experimental data is available and the experiment defined, the
following data analysis steps are undertaken:

Associated
Telemetry Data

Virtual Machine
Configurations

Data Wrangling
and Clean Up

Data Filtering

End-User
Meta Data

Infrastructure
Information

Data Analysis
and Validation

Experiment
Definition

Fig. 4.6 The load translation methodology in full

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

84

• Data Wrangling: The collected data is isolated and labelled appro-
priately according to experimentally relevant timestamps.

• Data Filtering: Files are filtered and integrated as appropriate for
comparison.

• Data Visualisation and Analysis: Visualisation and analysis are
completed for each defined experiment. The appropriate metrics are
defined and calculated per machine/VM/container as well as device
names, e.g. for network interfaces and storage devices attached to
the physical machine. The results are then summarised and are visu-
alised as a comparison between the average usage for compute,
memory, network, and storage resources.

For illustration purposes, Fig. 4.7 shows compute utilisation for two
machines (compute-1 and compute-3) for the different VNF placement
profiles of Use-Case A, normalised given the number of cores of each
machine. This type of analysis provides an initial and basic understanding
of the relation between the workload, application, and infrastructure. But
as more and more data gets collected and analysed, the accuracy of the
normalisation across experiments, quantification of the relationship, and
formulation of the mathematical equation for same increases. The results
of this process are collated as a complete set of mappings to be used for
specific use case optimisations.

Completing this may still seem relatively straightforward until one con-
siders the different KPIs, constraints, complexity, and scale to be addressed.

0

10

20

30

40

50

60

70

CU-U CU-C SGW-U PGW-U CU-U, CU-C SGW-U,
PGW-U

CU-U, SGW-
U, PGW-U

CU-C, SGW-
U, PGW-U

CU-U, CU-C,
PGW-U

CU-U, CU-C,
SGW-U

CU-U, CU-C,
SGW-U,
PGW-U

U
til

iz
at

io
n

(%
)

VNF Placement Profile

Average Compute U�liza�on

compute-1.domain.tld compute-3.domain.tld

Fig. 4.7 Average compute utilisation by VNF placement profile for compute-1
compute-3

 R. LOOMBA AND K. A. ELLIS

85

Given such scale and complexity, understanding, traversing, and promptly
selecting from such nuanced options at scale must be mathematically
derived and programmatically implemented, and this is the task of the
algorithmic approach discussed next.

4.5 ALgorItHmIc ApproAcH to optImAL seLectIon

It should be apparent that application placement and infrastructure opti-
misation is highly dependent on the veracity of inputs received and that
the optimiser is a collective of components and models coupled with the
algorithmic approach applied to the output of those models, not just an
algorithm. As such, this section describes (1) the utility functions, and (2)
the evolutionary algorithm used in the RECAP Infrastructure Optimiser.
The former is used as a uniform mathematical framework to normalise
business objectives to compare possible placements identified by the algo-
rithm. The latter was chosen for its appropriateness in quickly identifying
and selecting near-optimal placement options.

4.5.1 Utility Functions

Previously the application placement problem was defined as optimally
matching service requests to the capabilities of available resources, instan-
tiating these components with the required capacity, and finally meeting
SLAs between the resource and application providers. This transforms the
problem into iteratively mapping individual service components on to
various available infrastructural resources while meeting the constraints
defined above. Solving this, presents many possible placement solutions
out of which the optimal solution needs to be selected. Moreover, the
number of possible solutions increases with growing sizes of application/
service requests and infrastructure, further increasing the complexity.

Determining the optimal solution is thus intrinsically challenging as it
entails comparing deployments based on their benefits to either the pro-
vider or the service customer over a large solution space in both time and
space. Furthermore, distinct yet complementary objectives and constraints
must be handled, and trade-offs made. These objectives are often in differ-
ent scales, ranges, and units, and need to be normalised into a common
reference space.

Enter “Utility Functions”, a key mechanism enabling analysis across
varied objectives for different placement options and focused on

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

86

understanding the “reward” that is acquired per objective. Loomba et al.
(2017) quantified these benefits as two utility functions, one for the
resource provider denoted as UP and one for the service customer denoted
as Uc. These objectives are classified as being Provider-centric and
Customer-centric, in Fig. 4.8.

 1. Provider-centric Objectives: These objectives relate to the
resource provider and deal with the management of the entire
infrastructure. Key objectives include:
• Gross Profit: This objective includes calculated revenue and

expenditure costs for resource capacity allocated, cost of
 associated SLAs and SLA violations, and other costs of concern
to the infrastructure provider.

Fig. 4.8 Provider-centric vs customer-centric attributes (Loomba et al. 2017)

 R. LOOMBA AND K. A. ELLIS

87

• Service Distribution: This objective includes the analysis of avail-
able capacity of resources after the application deployment.

 2. Customer-centric Objectives: These objectives relate to the service
customer, quantifying Quality of Experience (QoE) as well as
Quality- of-Service (QoS). These also help reason over the goodness
of a placement decision and key objectives include:
• Throughput: This objective includes the quantification of

observed throughput over all physical links in the physical net-
work, along with the analysis of dropped packets.

• Latency: This objective includes the quantification of observed
latency over all edges in the physical network, along with the anal-
ysis of packet delays.

This approach is extended in the RECAP methodology to consider
enhanced constraints and use case definitions in defining a combined util-
ity function that negotiates trade-offs between these two utility functions.
This combined utility incorporated the preferences and priorities of the
various use case business objectives and was evaluated using the Multi-
Attribute Utility Theory (MAUT).

In this formulation, a multiplicative function is used to capture the
interdependence of k conditional utilities for each attribute ai ∈ . Here
  = ∪ = … …{ }1 2 1a a ai K , with k ≥ 2 is the set of all objectives under
consideration with subset 1 containing all provider-centric objectives
and subset 2 containing all customer-centric objectives. For each of
these conditional utilities, αk indicates weight or a priority value of the
objective while βk is an additive weight that stores dependence on other
objectives.

U f a aP i i i i= () +() ∈α β· ,U Awhere 1

U f a aC i i i i= () +() ∈α β· ,U Awhere 2

By assigning prioritisation weights to the provider utility and customer
utility, the total utility of the placement can be calculated. These weights
must be modifiable as they bias the selection of the placement solution.
The total utility of the deployment with w1 weight to the provider utility
and w2 weight to the customer utility can thus be defined as a weighted
summation of the inputs. The optimisation function is then defined to
maximise the total utility of the placement, considering minimum and

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

88

maximum thresholds for the provider utility and customer utility. This is
designed to facilitate graceful expansion to accommodate any variables/
parameters outside the scope of the current formulation or that gain
importance to the use case owner following this analysis. The optimisation
function is represented as follows:

 Maximise : • •w U w UP C1 2+

Subject to:

 1. min max
threshold threshold

U U UP P P() ≤ ≤ ()

 2. min max
threshold threshold

U U UC C C() ≤ ≤ ()

These use case specific utility functions thus ensure that the optimiser
can adapt and reason over placement decisions even when business objec-
tive weights or priorities are changed.

4.5.2 Algorithms for Infrastructure Optimisation
and Application Placement

While utility functions provide a mathematical framework for comparison,
an initial challenge exists in being able to quickly select a subset of optimal
solutions from the large number of possible deployment solutions for
comparison.

In addressing this challenge, a stochastic evolutionary algorithm was
selected. Its appropriateness relates to its incorporation of enough ran-
domness and control to support decision making even for functions lack-
ing continuity, derivatives, linearity, or other features.

Additionally, its ability to exploit historical information makes the algo-
rithm much more efficient and powerful in comparison to exhaustive and

 R. LOOMBA AND K. A. ELLIS

89

random search techniques. Its advantages further include the ability to
isolate a set of “good” solutions instead of just one, the possibility of par-
allelisation to improve efficiency and the support for multi-objective
problems.

The algorithm calculates the optimal solution(s) in an admissible region
for this combinatorically complex problem, which otherwise could not be
solved by polynomial time. The optimality of the solution is based on its
quality criterion called the “fitness function” and is represented as fG G2 1→

for the deployment solution G2 → G1. This value is composed of the fitness
of the individual mapping, based on the constraint definitions presented
above. In the given application placement scenario, the objective of the
algorithm is min ,f x G GG G2 1 2 1→ ∀ ∈ →[] to ensure fast convergence for
solutions that do not meet the required constraints. The output of the
algorithm is thus the placement solution (or set of placement solutions)
with minimum fitness or with fitness tending to zero (whichever is lower).

An overview of the algorithm is outlined in Fig. 4.9 and the accompa-
nying text:

The set of possible placement solutions represents a “population”,
where each of these solutions is a “candidate” for the algorithm. The indi-
vidual mappings in the placement solution are treated as “genes” (e.g. the
mapping of a service component to an infrastructure resource).

Initialization Termination

Evaluation

Evolution

Cut-Off

Cross-OverMutation

Fig. 4.9 Representation of the evolutionary algorithm

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

90

Initialisation: The algorithm is defined by a set of placement solutions
or a set of candidates, which defines the current “population”. These can-
didates can be arbitrarily chosen or can be based on prior knowledge from
the use case to encompass a wide range of solutions. This is essential as
with many different mappings from the placement solutions or “genes”
present, it becomes easier to explore several different possibilities during
the algorithm.

Evaluation: Each candidate in the population is evaluated according to
the defined fitness function which numerically represents the viability of
the solution. Thus, the next step is to eliminate the portion of the popula-
tion with worse fitness values. The population now contains fitter “genes”
or those mappings that fulfil defined placement criterion and have low
fitness values.

Evolution: This step involves two main operations, mutation and
cross-over. Both these operations are probabilistic and are used to create
the next population from the remaining candidates.

• Mutation is used to introduce new candidates in the population by
spontaneously changing one gene. In RECAP, this means that mul-
tiple mappings within a possible placement solution are swapped to
create a new possible placement solution.

• Cross-over creates a mix of the available genes in the population by
merging the genes from two candidates. In RECAP, this means that
two mappings of different service components are taken from two
different possible placement solutions and combined to create a new
possible placement.

In either case, the resulting candidate may have better or worse fitness
than existing members.

Termination: The algorithm ends in two cases. First after 30 iterations
of the algorithm, for statistical accuracy and the second when it has found
deployment solutions with fitness value equal to zero. All identified solu-
tions are returned and evaluated and the solution with highest total utility
is selected.

 R. LOOMBA AND K. A. ELLIS

91

4.6 concLusIon

The RECAP Infrastructure Optimiser and the RECAP Application
Optimiser are interdependent components in the RECAP ecosystem. The
RECAP Application Optimiser does not have all the requisite information
for an optimal decision, especially when considering that the typical mode
of operation perceives a separation of concerns between the application
and infrastructure providers. Therefore, the RECAP Infrastructure
Optimiser adds value by augmenting the application optimisation with
additional infrastructure-specific information that can encompass the busi-
ness objectives of both application and infrastructure providers.

In this chapter, we detailed the infrastructure optimisation architecture
tasked with establishing this more holistic optimisation recommendation.
Section 4.3 outlined the problem formulation describing the varied and
detailed inputs required for optimisation that must be mathematically and
programmatically described and traversed, including infrastructural com-
ponents, the application, and constraints to optimisation. This was fol-
lowed by a description of the models that inform optimisation, and the
evolutionary algorithm and utility functions used to mathematically and
programmatically select from sub-optimal solutions.

The value in the described approach is difficult to articulate and visual-
ise. When one considers the size and complexity of modern hyperscale
architecture, it is apparent that such a granular, mathematical, and pro-
grammatically implementable approach is required in order to extract
value from the nuanced and humanly incomprehensible myriad of avail-
able options.

references

Jin, Hao, Deng Pan, Jing Xu, and N. Pissinou. 2012. Efficient VM Placement with
Multiple Deterministic and Stochastic Resources in Data Centers. Proceedings of
the IEEE Global Communications Conference (GLOBECOM), 2505–2510.

Li, X., A. Ventresque, J. Murphy, and J. Thorburn. 2014. A Fair Comparison of
VM Placement Heuristics and a More Effective Solution. Proceedings of the
13th IEEE International Symposium on Parallel and Distributed Computing
(ISPDC), 35–42.

Loomba, R., T. Metsch, L. Feehan, and J. Butler. 2017. Utility-Driven Deployment
Decision Making. Proceedings of the 10th International Conference on Utility
and Cloud Computing, Austin, TX, 207–208.

4 APPLICATION PLACEMENT AND INFRASTRUCTURE OPTIMISATION

92

Loomba, Radhika, Keith A. Ellis, Paolo Casari, Rafael García, Thang Le Duc, Per-
Olov Östberg, and Johan Forsman. 2019. Final Infrastructure Optimisation
and Orchestration. RECAP Deliverable 8.4, Dublin, Ireland.

Meng, X., V. Pappas, and L. Zhang. 2010. Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement. IEEE
INFOCOM, San Diego.

Metsch, T., O. Ibidunmoye, V. Bayon-Molino, J. Butler, F Hernández-Rodriguez,
and E. Elmroth. 2015. Apex Lake: A Framework for Enabling Smart
Orchestration. Proceedings of the Industrial Track of the 16th International
Middleware Conference, Vancouver.

RECAP Consortium. 2018. Deliverable 6.1. Initial Workload, Load Propagation,
and Application Models.

Superfluidity Consortium. 2017. Deliverable 5.1. Function Allocation Algorithms
Implementation and Evaluation.

Xu, J., and J.A.B. Fortes. 2010. Multi-objective Virtual Machine Placement in
Virtualized Data Center Environments. Proceedings of IEEE/ACM
International Conference on Green Computing and Communications
(GreenCom) & International Conference on Cyber, Physical and Social
Computing (CPSCom), Hangzhou, 179–188.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

 R. LOOMBA AND K. A. ELLIS

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

93© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_5

CHAPTER 5

Simulating Across the Cloud-to-Edge
Continuum

Minas Spanopoulos-Karalexidis, Christos K.
 Filelis Papadopoulos, Konstantinos M. Giannoutakis,

George A. Gravvanis, Dimitrios Tzovaras,
Malika Bendechache, Sergej Svorobej,

Patricia Takako Endo, and Theo Lynn

Abstract As growth and adoption of the Internet of Things continue to
accelerate, cloud infrastructure and communication service providers
(CSPs) need to assure the efficient performance of their services while
meeting the Quality of Service (QoS) requirements of their customers and

M. Spanopoulos-Karalexidis • C. K. Filelis Papadopoulos • K. M. Giannoutakis
• D. Tzovaras
Information Technologies Institute, Centre for Research and Technology Hellas,
Thermi, Greece
e-mail: mspanopoulos@iti.gr; kgiannou@iti.gr; dimitrios.tzovaras@iti.gr

G. A. Gravvanis
Democritus University of Thrace, Xanthi, Greece
e-mail: ggravvan@ee.duth.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_5#DOI
mailto:mspanopoulos@iti.gr
mailto:kgiannou@iti.gr
mailto:dimitrios.tzovaras@iti.gr
mailto:ggravvan@ee.duth.gr

94

their end users, while maintaining or ideally reducing costs. To do this,
testing and service quality assurance are essential. Notwithstanding this,
the size and complexity of modern infrastructures make real-time testing
and experimentation difficult, time-consuming, and costly. The RECAP
Simulation Framework offers cloud and communication service providers
an alternative solution while retaining accuracy and verisimilitude. It com-
prises two simulation approaches, Discrete Event Simulation (DES) and
Discrete Time Simulation (DTS). It provides information about optimal
virtual cache placements, resource handling and remediation of the sys-
tem, optimal request servicing, and finally, optimal distribution of requests
and resource adjustment, with the goal to increase performance and con-
currently decrease power consumption of the system.

Keywords Simulation • Discrete event simulation • Discrete time
simulation • Resource allocation • Capacity planning • CloudSim •
CloudLightning Simulator • Distributed clouds

5.1 IntroductIon

In this chapter, an overview of the RECAP Simulation Framework which
comprises two different simulation approaches is outlined and discussed—
Discrete Event Simulation (DES) and Discrete Time Simulation (DTS).
The RECAP Simulation Framework offers two approaches to recognise
the characteristics, requirements, and constraints of cloud and

M. Bendechache • S. Svorobej (*)
Irish Institute of Digital Business, Dublin City University, Dublin, Ireland
e-mail: Malika.Bendechache@dcu.ie; sergej.svorobej@dcu.ie

P. T. Endo
Irish Institute of Digital Business, Dublin City University, Dublin, Ireland

Universidade de Pernambuco, Recife, Brazil
e-mail: patricia.endo@upe.br

T. Lynn
Irish Institute of Digital Business, DCU Business School, Dublin, Ireland
e-mail: theo.lynn@dcu.ie

 M. SPANOPOULOS-KARALEXIDIS ET AL.

mailto:Malika.Bendechache@dcu.ie
mailto:sergej.svorobej@dcu.ie
mailto:patricia.endo@upe.br
mailto:theo.lynn@dcu.ie

95

communication service providers. As such, the RECAP Simulation
Framework offers a solution for (1) SMEs and large hyperscale cloud and
network operators, and (2) providers requiring rapid less-detailed simula-
tion results and those requiring a more-detailed simulation.

DES focuses on aggregating each incoming request in the form of
events, regarding their entry timestamp, and usually in a pipelined man-
ner. These events are stored in an initialised list of tasks, retained in mem-
ory and augmented with each incoming task. In order to accommodate all
this information, the required resources and especially memory require-
ments are significant and large. Thus, DES is suitable for simulating
smaller and intensively detailed scenarios, in order to maintain accuracy at
high levels. DTS on the other hand provides the potential to simulate
larger scenarios with its ability to scale up significantly. This is feasible due
to the fact that DTS does not need precomputation and storage of future
events; it uses a time-advancing loop, where the requests are entering the
system in respective time steps during the simulation. This results in a
significant reduction in memory requirements, providing significant
improvements in the ability to scale up the simulation. DTS does not offer
the level of detail of DES, but it can be a useful and accurate tool for simu-
lating real large-scale scenarios, while maintaining resource consumption
on reasonable levels.

In this chapter, a high-level overview of the RECAP Simulation
Framework is presented and discussed. This is followed by a brief overview
of the RECAP DES framework, followed by a short case study illustrating
its applicability for cloud infrastructure and network management. Then,
the RECAP DTS framework is presented with a short case study illustrat-
ing its applicability for simulating virtual content distribution networks.

5.2 HIgH-LeveL conceptuaL overvIew
of tHe recap SImuLatIon framework

The RECAP Simulation Framework facilitates reproducible and control-
lable experiments to support the identification of targets for the deploy-
ment of software components and optimising deployment choices before
actual deployment in a real cloud environment. It was designed specifically
to simulate distributed cloud application behaviours and to emulate data
centre and network systems across the cloud-to-thing continuum.

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

96

Figure 5.1 presents a high-level conceptual overview of the RECAP
simulation framework comprising the following components: Simulation
Experiment Models, Application Programming Interface (API),
Simulation Manager, and Model Mappers for DES and DTS simulators.

The system monitoring data obtained from the RECAP Data Analytics
Framework (presented in Chap. 2) are used to compile the Simulation
Experiment Models:

• Application Model: represents the application components and their
connections and behaviour, i.e. application load propagation and
operational model;

• Infrastructure Model: describes the physical infrastructure (network
topology and (physical and virtual) machines’ configurations) where
the application will be hosted;

• Workload Model: describes how the workload generated by the users
is distributed and processed by the application components; and,

• Experiment Configuration: where the simulation user configures the
simulation parameters, such as simulation time, simulation time step,
log files, and input files.

Fog/Edge/Cloud

API

Application
Model

Infrastructure
Model

Workload
Model

Experiment
Configuration

Events
Discrete Event

Simulation (DES)

S
im

ul
at

io
n

Ex
pe

rim
en

t

Data
Collection
Framework

Optimisation
Framework

Discrete Time
Simulation (DTS)

Results

Fig. 5.1 High-level conceptual overview of the RECAP simulation framework

 M. SPANOPOULOS-KARALEXIDIS ET AL.

97

The RECAP Optimisation Framework makes use of the RECAP
Simulation Framework to evaluate different application deployments and
infrastructure management alternatives in terms of cost, energy, resource
allocation, and utilisation, before actuating on real application deploy-
ments. This integration is done through an API that receives the models,
the experiment configuration, and the set of simulation scenarios, and
sends them to a web-based REST API. Depending on the type of API call,
the experiment is forwarded to the RECAP DES or DTS simulator. Once
simulation is completed the results can be accessed from the chosen stor-
age method, e.g. local CSV files or a database.

5.3 dIScrete event SImuLatIon

5.3.1 Overview

Discrete Event Simulation (DES) is a system modelling concept wherein
the operation of a system is modelled as a chronological sequence of events
(Law et al. 2000). DES-based decision support processes can be divided
into three main phases: modelling, simulation, and finally, results analysis.
During the modelling phase, a simulated system is defined by grouping
interacting entities that serve a particular purpose together into a model.
Once the representative system models are created, the simulation engine
orchestrates a time-based event queue, where each event is admitted to the
defined system model in sequence. An event represents actions happening
in the system during operation time. Depending on the event type, the
system reaction is simulated, and associated metrics captured. These met-
rics are collected at the end of the simulation for results analysis. Therefore,
system behaviour can be examined under different conditions. Using DES
is beneficial in a complex real non-deterministic small-to- medium-sized
system environment (SME) where the system definition using mathemati-
cal equations may no longer be a feasible option (Idziorek 2010).

5.3.2 The RECAP DES Framework

The RECAP DES Framework captures system configurations by using
Version 3 of the Google Protocol Buffers technology.1 This
implementation approach was chosen to ensure model schema would

1 https://developers.google.com/protocol-buffers/

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

https://developers.google.com/protocol-buffers/

98

remain programming language-neutral allowing serialised models to be
used across multiple language platforms such as Java, C++, C#, or Python.
In addition, Protocol Buffers are simple and faster to use and are smaller
in size compared to XML or JSON notations. Speed and file size of the
model are important when dealing with large-scale systems by managing
the memory footprint of simulation framework and sending data over a
RESTful web API client.

As shown in Fig. 5.2, the RECAP DES simulator root element is the
Experiment class which contains nested system models, the name identifier
of the simulation experiment, and its parameters used by the simulation
engine, i.e. Duration, Granularity, PlacementPolicy, ConsolidationPolicy,

Fig. 5.2 DES simulation model data format (inputs)

 M. SPANOPOULOS-KARALEXIDIS ET AL.

99

AutoScalingPolicy and RequestRoutingPolicy. The Duration parameter
defines the length of the simulation experiment in simulated time while
the Granularity is a multiplier for the number of requests represented by
a single simulation event. Placement, consolidation autoscaling, and
request routing policies are optional attributes which specify the name of
any resource management policies which can be integrated within the
simulator. In addition, the Experiment class contains nested Infrastructure,
Workload, and ApplicationLandscape models, which describe edge to
cloud system composition and behaviour.

The Infrastructure model captures the hardware characteristics of a dis-
tributed network and computes hardware locations. Each ResourceSite
component in the model represents a virtualised cloud/edge/fog data-
centre location which is geographically distributed with Location class
containing latitude and longitude spatial information. Nested
NetworkSwitch, NetworkRouter and Node model components capture net-
work bandwidth, latency, and compute resource (CPU, memory, storage)
capacity at each location.

The Workload model contains mappings between devices and requests
devices made to the system. The Device system component has Name and
ID attributes as well as a time-dependent Location array and an array of
Requests. Each Request component describes a request of the device (user)
made to the system at a specific geographical location. The Request attri-
butes capture the time of the request, amount of data to transfer, type of
data, and application model API where the request is destined for.

The ApplicationLandscape component contains information on the
applications running in the virtualised infrastructure. Each application can
be composed of multiple interconnected components, and each applica-
tion component can have multiple functions expressed through an API
definition; hence in the model, we have Application, Component, and API
classes describing the relationships. The model assumes a one-to-one rela-
tionship between the application component and a Virtual Entity (VM or
Container) it is deployed to. Therefore, the Component class also contains
the Deployment class describing which hardware node it is deployed to and
a VeFlavour class specifying what resources it requires.

The simulation results, called outputs, are also arranged in a structured
form using Protocol Buffers. The proposed format structure is captured
within a class diagram shown in Fig. 5.3.

The ExperimentResult root class splits into two arrays of simulated sys-
tem behaviour metrics: ResourceSiteMetrics and ApplicationMetrics. As the

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

100

name suggests the ResourceSiteMetrics class contains information on hard-
ware utilisation and ApplicationMetrics contains information on applica-
tion performance metrics. The subclass NodeMetrics stores per-node
metrics of CPU, memory, storage, and power utilisation. The subclass
LinkMetrics stores each link utilisation bandwidth. Similarly, the subclass
ComponentMetrics captures utilisation of resources per individual virtual
entity besides including a response time metrics for end-to-end application
performance in the upper ApplicationMetrics class. All of the measure-
ments are captured at regular time intervals, hence attributes in the
Utilisation class list time and the actual utilisation value. The Utilisation
class is built as an abstract and can be extended to fit different types of
measurements.

Once the models are created based on the desired system parameters,
they can be then loaded into the RECAP DES Simulator. The RECAP

ExperimentResults

ResourceSiteMetrics ApplicationMetrics

+ Name:string
+ ID:string

+ nodesMetrics:NodeMetrics
+ linksMetrics:LinkMetrics

+ Name:string
+ ID:string

+ componentMetrics:ComponentMetrics
+ ResponseTime:Utilization

+ Name:string
+ ID:string

+ cpuUtilization:Utilization
+ memoryUtilization:Utilization
+ storageUtilization:Utilization
+ powerUtilization:Utilization

+ vCpuUtilization:Utilization
+ vMemoryUtilization:Utilization
+ vStorageUtilization:Utilization

Utilization

NodeMetrics

LinkMetrics ComponentMetrics

+ Name:string
+ ID:string

+ linkUtilization:Utilization

+ time:double
+ utilisation:double

+ ExperimentId:string
+ siteMetrics:ResourceSiteMetrics

+ applicationMetrics:ApplicationMetrics

Fig. 5.3 DES simulation results format (outputs)

 M. SPANOPOULOS-KARALEXIDIS ET AL.

101

DES Simulator is based on CloudSim2 with a custom DES implementa-
tion in the back-end. To load, read, and query the simulation input mod-
els and output results shown in Figs. 5.2 and 5.3, Google Protocol Buffers
library provides auxiliary methods ensuring ease of use.3

5.3.3 Cloud Infrastructure and Network Management:
A RECAP DES Framework Case Study

To illustrate how the RECAP simulation and modelling approach can be
used by communication service providers, we present the application of
the RECAP Simulation Framework for mobile technology service man-
agement within fog/cloud computing infrastructure. This case study is
based on automated services and infrastructure deployment (using virtual
network functions (VNF)), automated orchestration, and optimisation
services to reach the desired QoS for the different network services. We
model distributed infrastructure and a VNF service application chain using
the RECAP DES Framework.

5.3.3.1 Infrastructure Model
The infrastructure simulation model was designed and implemented to
capture available physical characteristics of real edge infrastructure and
used input from the infrastructure models described in Chap. 4. It consists
of several sites that are interconnected by links between each other. Each
Site entity in the model represents a location that is hosting network and/
or computing equipment, such as switches, routers, and computing nodes.
NetworkSwitch and NetworkRouter capture attributes of bandwidth and
latency while Nodes in addition to bandwidth also capture properties of
CPU, Memory, and Storage. For the simulation experiments, physical
infrastructure for 45 distributed sites was modelled; each site contains a
router for handling inbound and outbound internet traffic and two
switches handling control plane and user plane traffic separately. This
meant that any traffic that is received or transmitted from the site is tra-
versing through the router and internal traffic between physical hosts and
is flowing through routers only. The user plane switch was assigned 40
Gbps bandwidth and control plane switch 1 Gbps where routers were

2 http://www.cloudbus.org/cloudsim/
3 The methods are well documented in tutorials widely available for a range of program-

ming languages: https://developers.google.com/protocol-buffers/docs/tutorials

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

http://www.cloudbus.org/cloudsim/
https://developers.google.com/protocol-buffers/docs/tutorials

102

assigned 100 Gbps. Bandwidth assumptions were made based on the data
gathered from testbed experiments and correspond to the volume of traf-
fic observed. In addition, links between sites were assigned additional
latency delays proportionate to the distance between locations; hence,
requests sent between sites take more time to arrive.

5.3.3.2 Application and Workload Propagation Model
Application behaviour for the simulation is realised by implementing a
modelling concept that captures data flow through multiple intercon-
nected, distributed, components. Each component is represented as a vir-
tual entity (VM or container) that is assigned to a physical machine in a
site and has access to the portion of resources.

Application behaviour logic is realised through multiple interconnected
API elements that each component has. The API represents a model
object that holds information on resource demand and connection to the
next component in line, thus forming a logical path between different
application components. The current use case is based around NFV para-
digm, and the used VNF chain is of a virtualised LTE stack which consists
of user data plane and control data plane virtual components:

• eNodeB user plane denoted as CU-C
• Mobility Management Entity control plane denoted as MME-C
• eNodeB control plane denoted as CU-U
• Serving Gateway-User plane denoted as SGW-U
• Packet Data Network Gateway-User plane denoted as PGW-U

For example, Fig. 5.4 graphically describes one of the possible applica-
tion topologies where application components like CU-C, CU-U, SGW-
U, and PGW-U are located on one site and component MME-C is located
on another site. In this example, both user plane download (green) and
upload (red) requests are executed on one site, but the control plane
(blue) requests require to travel to another site to be processed resulting
in longer processing delays. When a request arrives at a component, based
on the API parameters number of resources are requested from the hard-
ware to process this request. Once the appropriate amount of resources is
available, the request is sent further in the system according to the API
connection path. During the simulation experiments, 1482 different
application configurations (placements) were generated and combined
with the infrastructure model and corresponding workload models.

 M. SPANOPOULOS-KARALEXIDIS ET AL.

103

The workload simulation model was implemented to capture the num-
ber of end-user devices that use the system for the duration of the simula-
tion experiment. The model contains an array of devices each containing
multiple requests. Furthermore, each request contains information on the
arrival time, the size of the request, and application information for its
destination. The number of users varies depending on the VNF placement
on the infrastructure sites. More densely populated areas have more users,
and this aspect is reflected in the workload models; hence, each placement
experiment has a bespoke number of users. User-request parameters were
based on the data gathered from testbed experiments, and an average of
the quantity and size of the request was done, along with defining them
into three categories User Download, User Upload, and Control. As shown
in Table 5.1, on average data download request in user plane is 13,927
bits and user makes 2808 requests per hour. For data upload requests user
sends around 224 requests per hour each of 8572 bits in size and finally
control plane administrative requests were taken as a fracture of upload
traffic and amount to 6 requests per hour each 219 bits in size.

DES simulations were executed in concurrent batches of 5 parallel runs
on a dedicated VM in a testbed. The VM configuration was set to 8 CPU
cores, 64 GB of RAM, and 500 GB attached volume storage. Each

Fig. 5.4 Application simulation model example

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

104

 simulation experiment was set for 3600-second duration of simulated
time and on average took around 30 seconds of wall clock time to
complete.

The simulation results were analysed using utility functions with the
total resource utilisation and the cost of the allocated machine serving as
the provider utility with equal weighting, along with the network band-
width consumed and total latency serving as the customer utility with
equal weighting. The mathematical formulation of these utility functions
is available in Chap. 4. Our goal was to minimise resource utilisation util-
ity, latency utility, and cost utility while maximising network bandwidth
utility. The total utility for the placement was then defined as an equally
weighted sum of normalised provider and customer utility.

5.3.3.3 RECAP DES Results
Results showed that by fixing the provider utility or customer utility, there
is further scope to maximise the corresponding utility by changing the
placement distribution of the VNFs. This is highly beneficial for stake-
holders when making business decisions regarding the available infrastruc-
ture. These decisions map back to the values considered within the
definition of both utility functions such as response time, bandwidth,
latency, and utilisation costs.

5.4 dIScrete tIme SImuLatIon

5.4.1 Overview

Discrete Time Simulation (DTS) is a simulation technique based on a
time-advancing loop of predefined starting and ending time. The defined
time step is a portion of time values (usually seconds) that the user has the
ability to set before the execution. During each time step, potential new

Table 5.1 Average val-
ues of user requests

Request type Requests per
user per hour

Request
size (bits)

User download 2808 13,927
User upload 224 8572
Control 6 219

 M. SPANOPOULOS-KARALEXIDIS ET AL.

105

requests/events enter the system from the defined entry points. The major
advantage of DTS is that no precomputation and storage of future events
are needed, thus resulting in a significant reduction in memory consump-
tion requirements. This also suggests the possibility to dynamically allo-
cate simulated resources based on current computational load.

5.4.2 The RECAP DTS Framework

The RECAP DTS simulation framework is based on the CloudLightning
Simulation Platform, which is designed to simulate hyperscale heteroge-
neous cloud infrastructures (Filelis-Papadopoulos et al. 2018a, b). It was
built using the C++ programming language utilising OpenMP to exploit
parallelism and acceleration in computations where applicable. The
RECAP Simulation Framework focuses on optimally placing VMs as
caches or containers in a network while taking into account efficient
resource utilisation, reduction of energy consumption and end-user
latency, and load balancing for minimisation of network congestion.

The CloudLightning Simulation Platform was developed to simulate
hyperscale environments and efficiently manage heterogeneous resources
based on Self-Organisation Self-Management (SOSM) dynamic resource
allocation policies. The simulated cloud architecture is based on the
Warehouse Scale Computer (WSC) architecture (Barroso et al. 2013). It
manages to maintain a simplistic approach by utilising models that do not
demand extremely high computational effort and, at the same time, main-
tain accuracy at adequate levels. The utilisation of a time advancing loop,
rather than a discrete sequence of events, enables the potential to use these
dynamic resource allocation techniques while also providing high scalabil-
ity due to the lack of restrictions in memory requirements.

A brief summary of the basic characteristics of the CloudLightning
Simulation architecture is as follows. The gateway lies at the topmost level
on the master node and the cells, which are connected directly to the gate-
way, hosted on separate distributed computing nodes at a lower level.
Each cell is responsible for the underlying components, such as cell’s bro-
ker, network, telemetry, and finally, hardware resources. Key responsibili-
ties of the gateway are (1) communication with the available cells, in the
essence of data transport, fragmentation, and communication of the task
queues between the cells with the appropriate load balancing on each time
step; and (2) receiving and maintaining metrics and cells’ status, amongst
others. From the cell’s perspective, the key responsibilities are (1) the

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

106

aforementioned communication with the gateway, including simulation
parameters and initialisation of the underlying components, and addition-
ally, sending status and metrics’ information to the gateway; and (2) task
queue receipt on each time step, finding the optimal component with the
required available resources, utilising the SOSM engine, and finally, exe-
cuting the tasks.

Considering the above, many CloudLightning Simulator components
were adopted for the RECAP Simulation Framework including power
consumption modelling, resource utilisation (vCPU, memory, storage),
and bandwidth utilisation. Some of the most important differences
between the two frameworks are: (1) the focus of the RECAP Simulator
which is on the optimal cache placement in the network, and (2) the dif-
ference in task servicing, and specifically in task deployment to the avail-
able nodes. The CloudLightning Simulator utilises a Suitability Index
formula and is based on the required weights communicated by the gate-
way to the underlying components. The most appropriate node is assigned
with the incoming task, by adopting a first-fit approach. The RECAP
Simulator, on the other hand, utilises caches with the corresponding con-
tent placed in the network. In order to assign a task to a respective node,
it performs a search for the optimal available node, which offers, in excess,
the required resources while adequately handling network congestion.
Experimental results of the CloudLightning Simulator demonstrated that
it can accurately handle simulations of hyperscale scenarios with relatively
low computational resources. This is particularly suitable for large distrib-
uted networks that many Tier 1 network operators manage.

5.4.3 Network Function Virtualisation—Virtual Content
Distribution Networks: A RECAP DTS Case Study

Traditional Content Distribution Network (CDN) providers occasionally
install their hardware, such as customised hardware caches, in third-party
facilities or within the network of an Internet Service Provider. BT has
such a scenario, which the RECAP DTS simulator utilises as a case study.
BT’s main activities focus on the provision of fixed-line services, broad-
band, mobile and TV products and services, and networked IT services as
well. BT hosts customised hardware caches from the biggest CDN opera-
tors in their network. Considering the fact that it would be extremely
hard, for sensitive reasons, for content providers to install their hardware
in many locations across the UK in the edge nodes of BT’s network (also

 M. SPANOPOULOS-KARALEXIDIS ET AL.

107

known as Tier 1 MSANs (Multi-Service Access Nodes)), there lies the
need to provide an alternate solution. In order to ensure the required QoS
for their virtual network functionalities, the introduction of a Virtual
CDN (vCDN) provides a beneficial approach, which aims to replace the
presence of multiple physical caches in the network, with standard servers
and storage providing multiple virtual applications per CDN operator. BT
accomplishes that, by installing the appropriate compute infrastructure at
its edge nodes (MSANs) and thus offering a CDN-as-a-Service (CDNaaS).
In this way, operational costs are significantly declined and additionally,
the content is stored in virtual caches closer to end user, thus minimising
end-user latency and maximising user experience.

5.4.3.1 DTS Architecture and Component Modelling
The topological architecture is divided in four tiers, in a hierarchical order
namely MSAN, Metro, Outer-Core, and Inner-Core, in a total number of
1132 nodes; more information on infrastructure architecture is provided
in the next subsection. Note that in order to maintain efficient simulation
accuracy, a specific time interval is selected, at which all the components
update their status. This provided the opportunity to reduce computa-
tional cost, but it is essential to mention that the choice of the interval
value is critical. A small interval can lead to huge computational effort and
reduce performance, while a large interval can lead to major accuracy
leaks, considering that whole requests could be missed during the status
update process. Considering all these, the RECAP DTS framework pro-
vides the essential scalability for the current use case. The ambition is to
improve the efficiency of vCDNs systems by replacing multiple custom-
ised physical caches running multiple virtual applications per CDN
operator.

Figure 5.5 depicts the DTS architecture optimised to simulate a vCDN
network. The Graph Component is responsible for the input topology of
the simulation, which is fed to the component as an input file in Matrix
Market storage format. The structure is stored as a Directed Acyclic Graph
(DAG) in the component, in the form of a sparse matrix, with the number
of rows being the total number of sites and each row, the ID of a site.
More specifically, it is stored both as a Compressed Sparse Row (CSR) and
Compressed Sparse Column (CSC) format which results in a faster tra-
verse of the available connections. These connections are indicated by off-
diagonal values and point to links with lower level sites, while the diagonal
values denote the level/tier of the respective site.

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

108

All the available sites are retained in a vector of sites, where a site is an
object of the Site class which contains a number of attributes. Each site has
a unique ID value and a type value, indicating the tier of the respective site.
Furthermore, a two-dimensional vector retains the available connections
input and output to the immediate upper and lower level respectively.
Note that in case of the first level there are no input connections, and simi-
larly, there are no output connections in case of the last level. Another
vector retains the output bandwidth of the output connections as double
precision values (Gbps). All the attached nodes, of predefined type, to the
site are also retained in a vector and contain resource information such as
CPU, Memory, and Storage. These nodes are mostly utilised by the power
consumption component. In addition to nodes, there is a list of the hosted
VMs deployed to the nodes of each site and provide same information
with the addition of Network. Additionally, a map, which contains the
cached content in the VMs, is used in order to simplify and speed up the
search of specific content type or available VMs. All the cache hits and
misses are also stored into a vector; these refer to all active VMs hosted by
a single site. Lastly, a site can forward requests to sites at a higher tier, due
to lack of VMs or insufficient resources in them. These forwarded requests
are also retained in a list and have an impact only on the network band-
width of the site.

The Content Component retains all the potential information referring
to the type of content a VM in a site can serve. Specifically, this information

Simulator

Sites

Content Engine

IC 2 OC 2 Metro
2

MSAN
2

IC 1 OC 1 Metro
1

MSAN
1

Graph

Power Consumption
Engine

Request Creation
Engine

Statistic Engine

Site

In
bo

un
d

co
nn

ec
tio

n

O
ut

bo
un

d
co

nn
ec

tio
n

Cache

Node 1

VM 2

VM 1

Rq 1

Rq 1

Node 2

VM 2

VM 1

Rq 1

Rq 1

noitazilellarap
yro

me
m

derahS

Fig. 5.5 DTS architecture

 M. SPANOPOULOS-KARALEXIDIS ET AL.

109

includes minimum and maximum duration of each type of content and the
requirements that need to be met by the VM in order to serve it. Also, the
probability of a cache hit for each type of content and maximum number
of requests that can be served are included. The requirements of each type
of cached content request is provided by the ratio of the VM require-
ments of this specific request to the aforementioned maximum number of
requests the VM can serve.

The requests are generated by the Request Creation Engine, which is
responsible for the insertion of a group of requests to the system in each
time step. This component is based on a uniform distribution generator,
which produces requests of each type of content and duration between a
given interval denoting the minimum and maximum requests permitted in
a time step. Each request contains the following information: duration of
the request, type of content, and the site from which it enters the system.
For each of the inserted requests, a path (list of sites) is formed showing
the flow the content will follow in order to reach the user. During path
creation, each site traversed and is appended to the end of the list; this
continues until a cache hit occurs or otherwise. If the last element is not a
cache hit, the request is rejected. When a cache hit occurs, the content
flows downwards from that site to all sites of the path of a lower tier until
it reaches the user.

During each time step, the duration of all requests is reduced until it
reaches zero, at the point they are considered served and can be discarded
from the system, thus freeing up resources. This procedure takes place in
each site as well as in the site’s nodes and VMs that update their status.
This is where OpenMP provides acceleration of the computations on
shared memory systems. Each site is independent; thus, they can be
assigned to the available threads and their status updated without any
interference. During each time step, each site checks its current status,
duration of requests, any new additions, or any finished, and respectively
adjusts available resources. This procedure has no data traces, as sites are
independent. Thus, this computational-intensive process, considering the
number of sites and the huge number of time steps can be performed in
parallel, saves significant amount of time and increases performance. Apart
from status update, at each time step, another component is also used, the
Power Consumption Component. This calculates the power/energy con-
sumption of the site’s nodes depending on their type (Makaratzis
et al. 2018).

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

110

Power consumption along with other metrics is stored in the last com-
ponent, the Statistics Engine which is deployed at specific time intervals.
It contains all metrics of the vCDN network and each site generally.
Metrics include the aforementioned power consumption, cache hits and
misses, and other stats per level such as cumulative accepted and rejected
requests per level, average vCPU, Memory, Storage, and Network utilisa-
tion per level. The Statistics Engine outputs these metrics to files at each
specific time interval. Note again that accurate selection of this interval is
critical otherwise it can lead to either huge writing effort (in the case of a
small interval) or under-sampling (in the case of a large interval).

5.4.3.2 Infrastructure Model
The considered vCDN system is hierarchical and has sites located at four
different levels: (1) inner core, (2) outer-core, (3) metro, and (4) Multi-
Service Access Node (MSAN), as illustrated in Fig. 5.6.

The physical network topology is composed of 1132 sites. Each site can
host physical machines (nodes) that, in turn, can host vCDNs containing
content requested by customers. Moreover, each site has predefined
upload and download bandwidth as well as inbound and outbound con-
nections. The general structure of a site is given in Fig. 5.7.

Each node inside a site can host multiple VMs and each VM services
specific content. However, multiple VMs can service the same content if it

Inner
core 1

Inner
core IC

Outer
core 1

Outer
core 2

Outer
core OC

Metro
MC

Metro 1 Metro 2

MSAN
M

MSAN
3

MSAN
4

MSAN
2

MSAN
1

…

…

…

…

Metro 3

Fig. 5.6 BT hierarchical level of sites

 M. SPANOPOULOS-KARALEXIDIS ET AL.

111

is requested by a large number of users, since each VM has predefined
capacity to service customer.

5.4.3.3 Application and Workload Propagation Model
Each type of content (content with different sizes) characterises a VM. For
example, content of type j is serviced by a specific VM with predefined
characteristics described above. Thus, each type of content has its unique
accompanying requirements. Moreover, each user of a specific content
requires predefined bandwidth and occupies the system for a variable
amount of time lying between predefined intervals. For each type of con-
tent, the requirements in terms of VMs as well as per user bandwidth are
defined. The same content can be hosted in several VMs on the same site,
since the number of users requiring a specific type of content serviced by
a VM is limited. The characteristics of content include required vCPUs
per VM, required memory per VM, required storage per VM, maximum
number of customers per VM, network bandwidth required per VM at full
capacity.

Inbound connection

Outbound connection

VM 1 VM M…
Node N

VM 1 VM M…
Node 1

…

Content 1

Content C

…

Fig. 5.7 A site architecture of DTS

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

112

Regarding the creation of VMs, the DTS should offer two options:

 1. Static: In this case, no new VM can be created during a simulation.
This requirement comes from Infrastructure Optimiser that will use
the RECAP Simulation Framework to decide placements; or

 2. Dynamic: In this case, every time a cache miss occurs at MSAN site,
the requested content is copied to that given MSAN site. Moreover,
when there is no user requesting a given content, this content (VM)
is deleted from the node. If the node has no more available resources,
then the request is rejected.

The Request Creation Engine (RCE) creates a series of requests based
on random number generators following a preselected distribution such as
Uniform, Normal, or Weibull. Each request performed by a user is consid-
ered to have predefined requirements with respect to content. Thus, all
customers of a certain content type require the same amount of resources.
However, customers requiring different content require a different
amount of resources.

5.4.3.4 RECAP DTS Results
The results of this simulation are presented in detail in C. K. Filelis-
Papadopoulos et al. (2019). In summary, we find that parallel performance
(status update) is significantly increasing proportionally to the number of
requests. In addition, resource consumption seems to reach stability, for
all levels, by the time initial requests have finished execution. The lowest
level contributes the most to resource and node underutilisation through
request forwarding to upper layers as a result of probabilistic caching and
single VM hosting. This leads to reduced active server utilisation and
increased power consumption concurrently due to node underutilisation.
Nevertheless, energy consumption is improved with the reduction of VMs
on the lowest level; thus, these sites act as forwarders to the immediate
upper layer. This impacts efficient resource utilisation in the upper layers,
while they service more requests forwarded from the bottom tier.

Other experiments focused on different probabilities for a cache hit,
such as 0.4 and 0.8. The former leads to requests servicing from the top-
most layer due to the fact that content requested is not potentially cached
in the lower layers and thus a cache miss occurs and the requests are for-
warded. The latter increases the probability for a cache hit to occur and
thus requests are serviced mostly from lower layers. More specifically, the

 M. SPANOPOULOS-KARALEXIDIS ET AL.

113

intermediate level serves a significantly increased amount of tasks. Note
that, with 0.8 probability the energy consumption is considerably
decreased when compared to the other two cases. Nevertheless, high
probability denotes that the content is cached in a great portion of the
distributed caches in the network, as the probability value acts as a mecha-
nism to transfer workload between the corresponding nodes and tiers of
the network. Thus, potential deployment of virtual caches of specific con-
tent in great numbers could result in higher costs and storage require-
ments. On the other hand, lower probability denotes a significant reduction
in virtual cache numbers, especially on lower levels. As discussed earlier,
this results in higher service rates from the top layers and furthermore in
potential network congestion due to increased data traffic in the links of
the network, request rejection, and increased end-user latency in request
servicing from nodes significantly further from the end users.

Finally, we performed experiments with an increased number of levels.
The scalability performance results suggest that the simulator scales lin-
early with the number of input requests, considering the major increase
(mostly two times) in memory requirements. The results illustrate that the
framework is capable of executing large-scale simulations in a feasible time
period even with significant memory requirements (as number of threads
increases, the need of memory for local data storage also increases) and at
the same time maintaining required high levels of accuracy. Thus, the
RECAP DTS framework can be a useful tool for content providers to vali-
date their overall performance.

5.5 concLuSIon

In this chapter, the RECAP Simulator Framework, comprising two simu-
lation approaches—DES and DTS, was presented. The design and imple-
mentation details of the RECAP simulation framework were given in both
simulation approaches, coupled with case studies to illustrate their applica-
bility in two different cloud and communication service provider use cases.
The main advantage of this framework is the fact that depending on the
target use case requirements, an appropriate simulation approach can be
selected based on a time-advancing loop or a discrete sequence of events.
Thus, by providing this flexibility, focus can be given on the level of accu-
racy of the results (DES) or the scalability and dynamicity (DTS) of the
simulation platform.

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

114

From the experimentation performed, the RECAP simulation platform
was capable of efficiently simulating both discrete event and discrete time
use cases thus providing a useful tool for non-data scientists to forecast the
placement of servers and resources by executing configurable prediction.

referenceS

Barroso, L.A., J. Clidaras, and U. Hoelzle. 2013. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool.
https://doi.org/10.2200/S00516ED2V01Y201306CAC024.

Filelis-Papadopoulos, C.K., K.M. Giannoutakis, G.A. Gravvanis, and D. Tzovaras.
2018a. Large-scale Simulation of a Self-organizing Self-management Cloud
Computing Framework. The Journal of Supercomputing 74 (2): 530–550.
https://doi.org/10.1007/s11227-017-2143-2.

Filelis-Papadopoulos, C.K., K.M. Giannoutakis, G.A. Gravvanis,
C.S. Kouzinopoulos, A.T. Makaratzis, and D. Tzovaras. 2018b. Simulating
Heterogeneous Clouds at Scale. In Heterogeneity, High Performance
Computing, Self-organization and the Cloud, 119–150. Cham: Palgrave
Macmillan.

Filelis-Papadopoulos, Christos K., Konstantinos M. Giannoutakis, George
A. Gravvanis, Patricia Takako Endo, Dimitrios Tzovaras, Sergej Svorobej, and
Theo Lynn. 2019. Simulating Large vCDN Networks: A Parallel Approach.
Simulation Modelling Practice and Theory 92: 100–114. https://doi.
org/10.1016/j.simpat.2019.01.001.

Idziorek, Joseph. 2010. Discrete Event Simulation Model for Analysis of Horizontal
Scaling in the Cloud Computing Model. Proceedings of the 2010 Winter
Simulation Conference, 3003–3014. IEEE.

Law, Averill M., W. David Kelton, and W. David Kelton. 2000. Simulation
Modeling and Analysis. New York: McGraw-Hill.

Makaratzis, Antonios T., Konstantinos M. Giannoutakis, and Dimitrios Tzovaras.
2018. Energy Modeling in Cloud Simulation Frameworks. Future Generation
Computer Systems 79 (2): 715–725. https://doi.org/10.1016/j.
future.2017.06.016.

 M. SPANOPOULOS-KARALEXIDIS ET AL.

https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1016/j.simpat.2019.01.001
https://doi.org/10.1016/j.simpat.2019.01.001
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1016/j.future.2017.06.016

115

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

5 SIMULATING ACROSS THE CLOUD-TO-EDGE CONTINUUM

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

117© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_6

CHAPTER 6

Case Studies in Application Placement
and Infrastructure Optimisation

Miguel Angel López-Peña, Hector Humanes,
Johan Forsman, Thang Le Duc, Peter Willis,

and Manuel Noya

Abstract This chapter presents four case studies each illustrating an
implementation of one or more RECAP subsystems. The first case study
illustrates how RECAP can be used for infrastructure optimisation for a
5G network use case. The second case study explores application

M. A. López-Peña (*) • H. Humanes
Sistemas Avanzados de Tecnología, S.A. (SATEC), Madrid, Spain
e-mail: miguelangel.lopez@satec.es; hector.humanes@satec.es

J. Forsman • T. Le Duc
Tieto Product Development Services, Umeå, Sweden
e-mail: johan.forsman@tieto.com; thang.leduc@tieto.com

P. Willis
BT plc, London, UK

M. Noya
Linknovate, Palo Alto, CA, USA
e-mail: manuel@linknovate.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_6#DOI
mailto:miguelangel.lopez@satec.es
mailto:hector.humanes@satec.es
mailto:johan.forsman@tieto.com
mailto:thang.leduc@tieto.com
mailto:manuel@linknovate.com

118

optimisation for virtual content distribution networks (vCDN) on a large
Tier 1 network operator. The third case study looks at how RECAP com-
ponents can be embedded in an IoT platform to reduce costs and increase
quality of service. The final case study presents how data analytics and
simulation components, within RECAP, can be used by a small-to-
medium-sized enterprise (SME) for cloud capacity planning.

Keywords Infrastructure management • Network management •
Network functions virtualisation • Virtual content distribution networks
• Smart cities • Capacity planning • Application optimisation •
Infrastructure optimisation • Big Data analytics • 5G networks

6.1 IntroductIon

This chapter illustrates how RECAP’s approach to the management and
optimisation of heterogeneous infrastructure across the cloud-to-edge
spectrum can address challenges to a wide range of cloud actors and appli-
cations. Four illustrative case studies are presented:

• Infrastructure Optimisation and Network Management for 5G Networks
• Application Optimisation for Network Functions Virtualisation for

Virtual Content Distribution Networks
• Application and Infrastructure Optimisation for Edge/Fog comput-

ing for Smart Cities
• Capacity Planning for a Big Data Analytics Engine

For each case, we can show that insights and models generated by
RECAP can help the stakeholders to better understand their application
and infrastructure behaviour. Preliminary results suggests cost savings of
more than 25%, up to 20% reduction in bandwidth consumption, and a 4%
performance increase.

6.2 case study on Infrastructure optImIsatIon
and network management—5g networks

6.2.1 Introduction

This case study envisions a system that provides communication services
for a variety of industry verticals including eHealth, eCommerce, and
automotive. To facilitate the communications of diverse services in

 M. A. LÓPEZ-PEÑA ET AL.

119

different scenarios within the world of fifth generation (5G) networks, the
communication system has to support various categories of communica-
tion services illustrated in Fig. 6.1.

Each service is needed for a specific type of application serving a par-
ticular group of customers/clients. This introduces different sets of char-
acteristics and requirements corresponding to each type of communication
service as presented in Table 6.1.

The emergence of 5G mobile networks and the rapid evolution of 5G
applications are accelerating the need and criticality of optimised infra-
structure as per this case study. Additionally, the management and opera-
tion of a 5G infrastructure and network are complex not only due to the
diversity of service provisioning and consumer requirements, but also due
to the involvement of many stakeholders (including infrastructure service
providers, network function/service providers, and content and applica-
tion service providers). Each of these stakeholders has their respective and
different levels of demands and requirements. As a result, a novel solution
is required to enable:

• the adoption of various applications under different scenarios on a
shared and distributed infrastructure;

• on-demand resource provisioning considering increased network
dynamics and complexity; and

• the fulfilment of Quality of Service (QoS) and Quality of Experience
(QoE) parameters set and agreed with service consumers.

Smartphones

10:00

Home, Enterprise

4K/8K UHD, VirtualReality/AR, BROADCASTING

Smart Building & City

Logistics, Tracking, Fleet Management

Smart Meters

Smart Agriculture

Capillary Networks

KG

Traffic Safety & Control

Industrial Applications
Remote Manufacturing,

Training, Surgery

Enhanced Mobile Broadband

Critical Machine Type Communication (cMTC)

Massive Machine Type Communication (mMTC)

Public Safety

Emergency
112

Blue light GovermentalWarning

Fig. 6.1 Categories of communication services and example of 5G use cases

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

120

6.2.2 Issues and Challenges

The communication services between user mobile devices and content
services/applications are realised with a set of network functions and
numerous physical radio units. In the context of virtualised networks, net-
work functions are virtualised and chained to each other to form a net-
work service providing network and service access to user devices through
radio units. A network function virtualisation (NFV) infrastructure is
required to accommodate the network function components. Within this
infrastructure, virtualised components are deployed in a distributed net-
working region including the access network, edge network, core net-
work, and remote data centres. Figure 6.2 illustrates a typical forwarding
graph of a network service in an LTE network. The network service is
composed of multiple virtual network functions (VNFs): eNodeB,
Mobility Management Entity (MME), Serving Gateway (SGW), and
Packet Data Network Gateway (PGW), and Home Subscriber Server (HSS).

The adoption of such a distributed architecture for the network and its
services introduces four major challenges when rolling out a network
service:

 1. The communication system facilitates various types of applications/
services, namely voice/video calls, audio/video streaming, web
surfing, and instant messaging. This introduces a high complexity
in understanding individual network services and associated
dynamic workloads.

 2. The placement and autoscaling of VNFs are needed by the commu-
nication system in order to enable dynamic resource provisioning.
VNF components in control and user planes have different features
and requirements. As such, to fully address the placement and auto-

Table 6.1 Characteristics and requirements of communication services

Service Characteristics and requirements

Mobile BroadBand (MBB) Extremely high throughput and user/device mobility

Massive Machine Type
Communication (mMTC)

Supports to diverse and massive number of mobile
devices, and to enable energy-efficient
communications

Mission-critical Machine Type
Communication (cMTC)

Ultra-reliable low latency, but high availability and
reliability in communications

Public safety (blue light) Intensely high integrity and availability in services

 M. A. LÓPEZ-PEÑA ET AL.

121

scaling, it is necessary to understand and predict not only the varia-
tion of workload and resource utilisation but also the characteristics
of the components. Diversity in requirements and implementa-
tion, together with the dispersion of components across the
network infrastructure, makes placement and autoscaling of
VNFs a significant challenge.

 3. User behaviour needs to be explored for accurate workload predic-
tions. To obtain knowledge of user behaviour, data communicated
in control and user planes need to be analysed, and correlations
thoroughly investigated. This analysis is challenging, as one
requires domain knowledge regarding behaviour of network ser-
vices and the telecommunication network more broadly.

 4. Multi-tenancy is demanded in emerging 5G mobile networks where
multiple network services are deployed and operating on top of a
shared infrastructure. Different communication services come with
different QoS requirements that desire a capability of adaptation
and prioritising in resource allocation and management. In short,
5G brings complexity in the shape of mixed criticality and scale.

6.2.3 Implementation

6.2.3.1 Requirements
To fully address all the aforementioned challenges, it requires a complete
control loop from data collection and analysis to optimisations on both
infrastructure and application levels, and further up to the deployment of

eNodeB
control()

eNodeB
user()

SGW PGW

MME

HSS
Control Plane

User Plane
Internet

Fig. 6.2 A forwarding graph of a network service in an LTE network

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

122

optimisation plans. This places an overall requirement on a system, such as
RECAP, to enable a wide range of automation tasks as listed below:

• Profiling network/service functions and infrastructural resources
• Automated service and infrastructure deployment
• Automated orchestration and optimisation of services and the infra-

structural resource planning and provisioning
• Observability of behaviours of the system and services at run-time

To ensure end-to-end QoS (and by inference required service availabil-
ity and reliability) in a complex large-scale use case, the control loop
together with automated solutions need to be capable of resource plan-
ning and provisioning in the short- and long term, e.g. in minutes or in
months. The solutions are also required to satisfy constraints of multi-
tenancy scenarios and multiple network services competing for shared
infrastructural resources. In addition, the optimisation aspects of the solu-
tion need to manage resource provisioning that achieve utilisation and
service performance goals. Moreover, the simulation aspects of the solu-
tion need to support evaluation, i.e. impact of changes in planning rules
prior to any real deployments.

Table 6.2 summarises the requirements. For each requirement, a set of
targeted solutions is presented to illustrate the requirements are met. A
simplified mapping is presented but the solution for any single require-
ment could be derived from one or a combination of multiple solu-
tions listed.

6.2.3.2 Implementation
To demonstrate and validate the RECAP approach, a software/hardware
testbed in Tieto is used. The testbed, deployed in a lab environment, emu-
lates a real-world telecommunication system to facilitate the development
and evaluation of optimisation solutions for end-to-end communications
in a 5G network and its applications. Figure 6.3 presents an overview of
the testbed in which a distributed software-defined infrastructure is emu-
lated. This is achieved with heterogeneous resources collected from mul-
tiple physical infrastructures, located in a wide range of vertical regions, to
provide communication and contents services to various applications that
form different network services.

From the testbed’s perspective, the entire RECAP platform is repre-
sented through the RECAP Optimiser, an external component that

 M. A. LÓPEZ-PEÑA ET AL.

123

Table 6.2 Use case requirements and corresponding RECAP solutions

Requirement RECAP solution

• Allocation of infrastructural resources
to uphold the QoS of a VNF for a

products
• Allocation of a right amount of

resources at right locations
• Automation of instant capacity

checks to support the rollout of new
communication services in a timely
fashion

• Workload and workload propagation
models enable estimations of bandwidth
and resource utilisation for each VNF,
service functions at application and
infrastructure levels

• The load translation mapping model

resource utilisations
• Models for QoS metric assessment are

requirements

• Automation of the optimisation in
VNF deployment and autoscaling for
service availability and reliability and
the minimisation of the overhead and
resource utilisation of communication
services

• Automation of service remediation
and infrastructure recovery to uphold
required service availability and
reliability

• The consolidation of aforementioned
models and optimisation models facilitates
the production of optimisation plans and
recommendations for system autoscaling

• The RECAP platform with automated
optimisers empowers the realisation and
execution of optimisation plans.

provisioning of resource-ef�cient

enables quanti�cation of infrastructural

integrated with the above to ful�l all

A combination of quanti�cation and

• Predictions of future infrastructural
resource demand for resource planning
and provisioning in a proactive manner

• Detection of resource overbooking for
VNFs and service functions to serve
optimisation of the resource allocation

• Workload-related models and load
translation mapping model enable the
predictions of future workload and
resource demands

•
predictions of resource demands facilitates
overbooking detection

• Support infrastructure and
communication service providers to
maximise the utilisations of shared
infrastructures

• Method to prove a VNF is behaving as
required on shared infrastructures

• Optimisation plans produced by
optimisers with a consideration of
scenarios of multi-tenancy and multiple
network services enable the maximisation
of the utilisation of shared infrastructural
resources

• The aforementioned models combined
with telemetry enable VNF and service
function performance monitoring and
management

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

124

produces and enacts optimisation plans (through its enactor) on the test-
bed. Each plan presents the in-directions of VNF placement and autoscal-
ing across the emulated network infrastructure and is executed by the
testbed. Ultimately, results, in terms of both application and infrastructure
performance, are collected and evaluated. These results are also fed back
to the RECAP platform for further investigation and model improvement.

6.2.3.3 Deliverables and Validation
To facilitate validation, multiple validation scenarios covering all the
requirements presented in Table 6.2 were defined:

• Scenario 1: the placement and autoscaling of VNFs to fulfil QoS
constraints required by a given single communication service.

• Scenario 2: the placement and autoscaling of VNFs to fulfil QoS
constraints required by multiple communication services under
multi-tenant circumstances.

• Scenario 3: the capability of RECAP simulation and optimisation
tools in supporting the offline initial dimensioning the (physical)
infrastructure according to traffic demands.

• Scenario 4: the capability of RECAP simulation and optimisation
tools supporting the offline planning by identifying future (physical)
infrastructure needs.

Network Operation

Site 20001

Site 20002

Site 20005

O
verlaid

2
3

1

Site 20003

Site 20004

Site 20006

Site 20007

Site 20008

Site 20009

5
6

4

8
9

7

11
12

10

14
15

13

17
18

16

19

20

21

Site 20010

Site 20011

Site 20014

23
24

22

Site 20012

Site 20013

Site 20015

Site 20016

Site 20017

26
27

25

29
30

28

32
33

31

35
36

34

38
39

37

40

41 Infrastructure LayerCompu
te

Virtualization
Infrastructure

Manager

Compu
teCompute

Compu
teSwitch

Infrastructure LayerCompu
te

Virtualization
Infrastructure

Manager

Compu
teCompute

Compu
teSwitch

Infrastructure LayerCompu
te

Virtualization
Infrastructure

Manager

Compu
teCompute

Compu
teSwitch

Infrastructure LayerCompu
te

Virtualization
Infrastructure

Manager

Compu
teCompute

Compu
teSwitch

Demo Manager

RECAP Optimizer NFV Management and Orchestration

Ex
te

rn
al

N
et

w
or

k

Management Network

Ex
te

rn
al

N
et

w
or

k

Fig. 6.3 Logical view of the testbed

 M. A. LÓPEZ-PEÑA ET AL.

125

• Scenario 5: the observability and fulfilment of given QoS require-
ments from the VNF level put in the resources provided by the
infrastructure.

The relevant models and components that form the solutions to be vali-
dated against these scenarios are summarised in Table 6.3.

The application model is developed based on the network services
deployed in the Tieto testbed, and workload models are constructed using
the synthetic traffic data collected from various experiments carried out
within the testbed. The infrastructure network model pertains to the city
of Umeå in Sweden but is influenced by BT’s national transport network
and includes four network tiers (MSAN, Metro, Outer-Core, and Inner-
Core). The network topology of the infrastructure is kept symmetrical,
without including customisation for real-world aspects for asymmetrical
node capacity, for asymmetrical node interconnection, and for asymmetri-
cal link latencies.

6.2.4 Results

This section presents exemplar validation results for the application place-
ment and infrastructure optimisation (Chap. 4). It addresses the problem
of VNF placement across the network infrastructure. For the case study,

Table 6.3 RECAP deliverables to address validation scenarios

Model/component Usage

Workload model To facilitate the implementation of the optimisers as well as
optimisation solutions/plans in order to accomplish all the validation
scenarios

Application model
Infrastructure
model
Load translation
model
Infrastructure
optimiser

To produce optimisation plans of VNF deployment across the
network infrastructure; to directly support validation Scenarios 3 and
4, and together with the application optimiser to address all the
scenarios

RECAP
optimisation
platform

To orchestrate all models and components and enact optimisation
plans of VNF deployment that are fed to the testbed

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

126

the RECAP Simulator (Chap. 5) was used to calibrate the models used by
the Infrastructure Optimiser.

In the experiments, given a network service (Fig. 6.2), the eNodeB is
deployed as two separate units on different planes: the Central Unit-User
plane (CU-U) and the Central Unit-Control plane (CU-C). Additionally,
the SGW and PGW VNF components are located on the user plane and
are termed Service Gateway-User plane (SGW-U) and Packet Data
Network Gateway-User plane (PGW-U).

The optimisation solutions presented address Scenarios 3 and 4 con-
cerned with placement and infrastructure optimisation. Five placement
plans/distributions are identified as the input to the algorithm assuming
(1) one forwarding graph per MSAN tier with CU-U as the user-request
entry point, and (2) no currently deployed infrastructure. Table 6.4
describes these five placement distributions.

Results obtained are evaluated based on a comparison of provider and
customer utility.

In Fig. 6.4, maximum provider vs. customer utility is normalised [0,1]
for all distributions. Distributions 1 and 2 only use physical hardware

Table 6.4 Initial placement plans of VNFs

Placement
plan

Description

Distribution 1 • CU-U, CU-C, SGW-U, and PGW-U VNFs placed on the MSAN
resource sites

• MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites
Distribution 2 • CU-U, CU-C, SGW-U, and PGW-U VNFs placed on the Metro

resource sites
• MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites

Distribution 3 • CU-U and CU-C VNFs placed on the MSAN resource sites
• SGW-U and PGW-U VNFs placed on the Metro resource sites
• MME/SGW-C/PGW-C VNF placed on the Outer-Core resource sites

Distribution 4 • CU-U and CU-C VNFs placed on the MSAN resource sites
• SGW-U, PGW-U, and the MME/SGW-C/PGW-C VNFs placed on

the Outer-Core resource sites
Distribution 5 • CU-U VNF placed on the MSAN resource sites

• CU-C and SGW-U VNFs placed on the Metro resource sites
• PGW-U and the MME/SGW-C/PGW-C VNFs placed on the

Outer-Core resource sites

 M. A. LÓPEZ-PEÑA ET AL.

127

across two tiers (as per Table 6.4) and hence exhibit the highest provider
utility; this decreases by approximately 50% as the distributions start to
include more than two tiers in the placement. This is understandable as
more infrastructure needs to be deployed and maintained. Customer util-
ity is highest for Distribution 5, which has three tiers MSAN, Metro, and
Outer-Core (as per Table 6.4) included in the distribution. The lowest
utility is when no VNFs are placed at the edge, i.e. Distribution 2, which
has no MSAN; this is to be expected as the end-user request faces larger
processing latency in travelling further into the network.

Figure 6.4 maps the normalised provider utility and normalised cus-
tomer utility of each VNF placement. The figure shows that a provider can
manage its deployments by fixing the provider utility or customer utility in
a way that balances business considerations.

For example, in Fig. 6.5 the provider utility is centred on 50% to ensure
customer utility is centred on 75%. The intersection of threshold lines (the
highlighted section in grey) identifies a set of placements that are optimal
for each individual forwarding graph of the use case while satisfying
defined constraints including application and infrastructure provider per-
spectives. The provider could choose Distribution 1, 2 or 4. However,
Distribution 2 has poorer customer utility (no MSAN, higher latency) and
so is disregarded. Distributions 1 and 4 utilise MSAN and Outer-Core

Fig. 6.4 Maximum provider and customer utility of each distribution

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

128

infrastructure and have comparable customer utility. However, Distribution
1 has the higher provider utility, and thus would be the best option with
caveats. It would be the best option if “consolidation” was the most
important factor to the business, but not necessarily the best option if
“flexibility” to service future requests was more important. In the latter
case Distribution 4 is a better option because one’s current customer is
satisfied (compared to Distribution 1) but the provider has significant up-
swing capacity.

Figure 6.6 below illustrates simulation results for the same distributions
without Distribution 2 which was disregarded due to no MSAN capacity.
The graph represents all infrastructure and all remaining distributions. Utility
is combined for simplicity (y-axis) and is graphed against 3 scenarios (x-axis)
“normal day”, “event”, and “24% growth”. It should be more apparent that
for the same scenarios and constraints as above, Distributions 1 and 4 remain
the best options. Distribution 1 remains the best option and for this simula-
tion exercise could cope with the defined event and growth scenarios. But
what is a little less obvious is that its utility remained essentially static while

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Provider Utility

C
us

to
m

er
 U

til
ity

Distribution 1 Distribution 3 Distribution 4 Distribution 5

Fig. 6.5 Provider utility vs. customer utility for different distributions

 M. A. LÓPEZ-PEÑA ET AL.

129

0.25

0.50

0.75

1.00

24% Population
Growth Simulation

Event Simulation Normal Day
Simulation

Simulation Scenario

To
ta

l U
til

ity

VNF Distribution
Distribution 1
Distribution 3
Distribution 4
Distribution 5

Number of Machines
30
40
50
60
70

Fig. 6.6 Total utility for normal day, event, and 24% growth scenarios

the utility for Distribution 4 starts to trend upwards from the normal day to
event to 24% growth scenario. This is primarily driven by provider utility
improving as utilisation of physical assets improve; this scenario offers consid-
erably greater capacity for future growth/event scenarios.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

130

6.2.5 Summary

For this case study, an extensive evaluation and validation were performed
for the scenarios outlined and utilising the models, components, and tech-
nologies described in Chaps. 1, 2, 3, 4, and 5. Current results contribute
to more effective decision making for infrastructural resource dimensioning
and planning for future 5G communication systems. The value presented
is supporting informed, automated (if desirable) decisions similar to the
consolidation vs. flexibility example illustrated in the Distribution 1 versus
Distribution 4 options above.

6.3 case study In network functIons
VIrtualIsatIon: VIrtual content

dIstrIbutIon networks

6.3.1 Introduction

Network Function Virtualisation (NFV) replaces physical network appli-
ances with software running on servers. Content Distribution Networks
(CDNs) offer a service to content providers that puts content on caches
closer to the content consumers or end users. Traditional Content
Distribution Network (CDN) operators install customised hardware
caches across the globe—sometimes within an Internet Service Provider’s
network and sometimes in third-party co-located data centre facilities.
Each CDN operator develops its own caching software with unique
features, e.g. transcoding methods, management methods, and high
availability solutions.

As of now, network operators such as BT have hardware from each of
several CDN operators deployed at strategic points in its network.
However, this creates several potential issues:

• it is hard to organise sufficient physical space (in “telephone
exchange” or “central office” buildings for instance) to support all
the CDN operators;

• a lot of energy is needed to power and cool all the equipment; and
• a lot of physical effort is needed when a new CDN operator arrives

or an existing one disappears.

Such factors make it attractive to consider a Virtual CDN (vCDN)
approach that aims to replace the multiple customised physical caches with

 M. A. LÓPEZ-PEÑA ET AL.

131

standard servers and storage running multiple virtual applications per
CDN operator. This lowers CDN and network operator costs and allows
the content caches to be put closer to the consumer, which improves cus-
tomer experience. Also, the barriers to entry for new virtual CDN opera-
tors are likely to be lower than for a physical CDN operator.

6.3.2 Overview and Business Setting

Broadband traffic on BT’s network of 50% of broadband traffic on BT’s
network originates from the content caches operated by the CDN opera-
tors. At the time of writing, BT hosts CDN operators customised cache
hardware in two to eleven compute sites in the UK to reduce the amount
and cost of Internet peering traffic. If the caches were installed in BT’s
thousand edge nodes (also known as Tier-1 MSANs (Multi-Service
Access Nodes) or “Telephone Exchanges”), the cost of delivering con-
tent would be reduced by 75% and BT would reduce its network load
significantly. However, the CDN operators are unlikely to want to install
their hardware at up to a thousand locations in the UK; for some inter-
national CDN operators, a single compute site in London is sufficient
for the entire UK.

The vCDN proposition is that BT could install the compute infra-
structure at its edge sites and offer an Infrastructure-as-a-Service (IaaS)
offering tailored towards CDN operators. The CDN operators would
install and manage their own software on BT IaaS and thus they would
maintain their unique selling points and ownership of the content pro-
vider customers. This is a potential win-win scenario: the network and
CDN operators reduce operating costs and consumers get better service
(Table 6.5). There are, however, several technical challenges to design-
ing and operating a vCDN service, not least performance, orchestra-
tion, optimisation, monitoring, and remediation. These are discussed
later in Sect. 6.3.3.

An abstract representation of the BT UK network topology is
shown in Fig. 6.7. The real locations of BT network sites are shown
in Fig. 6.8; the black dots represent BT’s 5600 local exchanges,
of which c. 1000 are MSANs and c. 100 BT’s Metro sites (Ofcom
2016). The 4500 local exchanges that are not MSANs are consid-
ered unsuitable for deployment of caches as they do not contain
enumerates the most important vCDN use case requirements.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

132

Table 6.5 vCDN use case requirements and corresponding RECAP components

Requirement RECAP solution

• Optimise cost of compute and storage
infrastructure vs. cost of network
bandwidth.

• CDN traffic forecast using a Seasonal
Autoregressive Integrated Moving Average
(SARIMA) model enables accurate
prediction of demand.

• CDN load translation models to calculate
how much compute resource is required for
the forecast workload.

• Cache placement optimisation using
state-of- the-art AI and genetic algorithms.

• CDN application model to calculate where
caches should be placed in the BT topology.

• Infrastructure model of BT’s network and
compute infrastructure.

 • Simulator to calculate utility of
infrastructure placement options.

 • Take account of uneven distribution
of consumers and traffic.

• The RECAP methodology addresses this
(further work is required to add customer
distribution into the optimisations).

 • The application model takes account of BT’s
topology.

• Different CDN operators may have
different optimal locations for their
caches

• Application model can be run per CDN
operator.

• Network operator must take into
account the potential demands across
multiple CDN operators

 • Infrastructure model can aggregate demand
from the application model.

• Content traffic has a 2:1 peak-to-
mean ratio and is highly seasonal with
daily, weekly, and annual patterns.
Power could be saved by turning off
infrastructure when not required.

• CDN operators will need tools to
support a near real-time decision to
activate or deactivate their caches.

• Application cache placement optimiser is
dynamic and can adjust according to traffic
load.

(continued)

 M. A. LÓPEZ-PEÑA ET AL.

133

Consumers

10 Million (BT)

Multi-Service
Access Nodes

Metro
Sites

Core
Sites

UK
Internet
Exchange
Points

1000 100 10 1

Content

Caches

Caches

Caches

Caches

Number of nodes

Type of nodes

Fig. 6.7 Abstract representation of BT UK network topology

Table 6.5 (continued)

Requirement RECAP solution

• Total bandwidth consumed by
content is consistently increasing (c.
50% per annum); therefore, the
network operator needs to constantly
invest in adding more transmission or
more vCDN infrastructure nodes and
capacity to the network. Network
operators need to improve the
accuracy of future traffic predictions
and where investments should be
made so that infrastructure gets
installed just in time and customer
experience is always good.

• The collection of RECAP workload
predictors, models, and optimisers find
solutions, which optimise cost and
performance according to network operator
preferences.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

134

Fig. 6.8 BT network locations in UK

 M. A. LÓPEZ-PEÑA ET AL.

135

Table 6.6 vCDN technical challenge and RECAP solution

Technical challenge RECAP solution

Performance of virtualisation
technologies, especially virtualised
storage.

BT is conducting experiments to verify and
improve the performance and orchestration
of CDN virtualisation technologies.

Orchestration of a multi-tenant vCDN
service and infrastructure.

BT is building an orchestration system proof
of concept using OSM and OpenStack for its
vCDN service.

• Optimisation of placement and scaling
of vCDN system.

• BT decides where to install and grow
or reduce the infrastructure.

• The CDN operators decide where to
install, grow, and reduce their virtual
machines or containers for their caches.

• BT will have to optimise how much of
its infrastructure it dedicates to CDN
operators.

• CDN operators will have to optimise
how much resource they need to
consume.

• Each CDN operator will be
independent and may experience
different traffic loads.

 • Installing infrastructure requires the
planning of the provisioning of
hardware many months in advance,
although once installed servers may be
turned on and off, to reduce power
consumption, in ~15 minute time
periods.

• CDN operators may activate and
deactivate their cache virtual machines
or containers very quickly in the 5
minutes to sub-second timeframes and
hence need more real-time
optimisation than the infrastructure.

• CDN operators may choose to
deactivate their software to reduce
infrastructure rental charges.

RECAP methodology can automate the
decision making for the optimisation, scaling,
monitoring, and repair of vCDN systems
using modelling and statistical techniques.

 • RECAP methodology is built around
“separation of concerns” addressing the
need for network and CDN operators to
be treated separately.

• RECAP forecast model can enable
decisions to be made and acted upon just
in time to optimise power consumption.

• RECAP application model adjusts to
traffic dynamics.

(continued)

6.3.3 Technical Challenges

The vCDN technical challenges can be grouped into several areas as shown
in Table 6.6 below.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

136

Technical challenge RECAP solution

• Monitoring and repair of the vCDN
system.

• Each CDN operator will have
proprietary methods for the
monitoring and remediation of their
CDN software.

• Many operate an architecture that is
fault tolerant, with a caching hierarchy,
where loss of a leaf will result in
content being served from a cache
higher in the hierarchy.

 • CDN operators also have advanced
load balancing mechanisms where a
consumer’s initial request is switched to
the best cache, according to load and
location, and content is “chunked” and
distributed so any failure mid-session
will be recovered from.

• The RECAP methodology can automate
the decision making for the optimisation,
scaling, monitoring, and repair of vCDN
systems using modelling and statistical
techniques

• The CDN operators’ architectures permit
re-optimisation of CDN cache locations
and scale with minimal impact on service.

• Detection and mitigation of impact of
“noisy neighbours”.

 • Proprietary solutions exist to monitor the
quality of the content delivered to
consumers.

• Further work is required to feedback these
quality measurements into a CDN cache
placement optimisation and orchestration
solution.

Table 6.6 (continued)

6.3.4 Validation and Impact

The RECAP consortium is engaged with various CDN operators to
develop fine-grained infrastructure and application models to develop
optimisation strategies for Virtual Content Distribution Networks
(vCDN). The resulting strategies will aid BT to improve the accuracy of
their planning and forecasting, reducing infrastructure investment while
still giving BT’s customers a superior web browsing and video streaming
experience. RECAP methods will reduce the amount of human support
BT’s vCDN planning process requires, enabling BT to be more agile and
cost efficient (Fig. 6.9).

Preliminary experimentation results are promising regarding the utility
of RECAP for BT. They suggest:

 M. A. LÓPEZ-PEÑA ET AL.

137

Fig. 6.9 Customer utility vs. number of vCDN sites

 1. The SARIMA models provide one-hour ahead workload forecasts of
11.5% accuracy with 90% confidence. This should be sufficient for
CDN operators to pre-emptively adjust the sizes and number of
caches running while infrastructure operators should be able to shut
down or power up servers to minimise power wastage.

 2. The RECAP DTS framework demonstrated the value of a caching
hierarchy when compared to a single layer of caches at the
MSAN. The results suggest a caching hierarchy can improve Provider
Utility by up to 24% (see Fig. 6.10) and doubles Customer Utility
at intermediate stages of infrastructure deployment, as illustrated in
Fig. 6.9. Further, when compared to BT’s own optimisation strat-
egy, it improved Provider Utility by up to 6.4% at certain intermedi-
ate stages of infrastructure deployment. The BT and RECAP
optimisation both converged on deploying the maximum number
of 860 nodes because the caching business case is very compelling,
i.e. deploying a cache at a site always saves money and improves
customer utility. For a use case where the business case is more
marginal, the RECAP methodology can find a solution more signifi-
cantly optimal.

 3. The RECAP Application Optimisation (autoscaling and simulation)
systems provide BT with the ability to both improve on baseline
cache deployment scenarios (through comparative analysis of
 alternative deployment scenarios) and in run-time adapt to unfore-

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

138

seen and unexpected changes in workload. Simulation allows experi-
mentation with alternative deployment strategies and evaluates the
impact of changes in infrastructure, as well as application topologies
and caching strategies. Validation experiments demonstrate a 4%
improvement in cache efficiency when serving realistic workloads as
well as the ability to efficiently adapt the amount of cache capacity
deployed in heterogeneous and hierarchical networks to changes in
request and network traffic patterns.

These results suggest that by implementing RECAP, BT and CDN
operators can benefit from both decreased cost and increased competitive-
ness through:

 1. Providing more accurate modelling, infrastructure dimensioning,
and resource allocation across the chain of service provision to sup-
port better infrastructure planning.

 2. Rapid accurate autoscaling to support fluctuations in demand and
avoid under and over booking of resources.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 100 200 300 400 500 600 700 800 900

Pr
ov

id
er

 U
til

ity

Number of vCDN Nodes

Provider Utility v. Number of vCDN Nodes

Fig. 6.10 Provider utility vs. number of vCDN nodes

 M. A. LÓPEZ-PEÑA ET AL.

139

 3. Leveraging existing infrastructure and avoiding additional capital
expenditure.

 4. Reducing staffing requirements and freeing up valuable IT expertise.
 5. Increased revenue through:

 (a) Delivering and maintaining high QoS.
 (b) Shortening the time for CDN operators to access infrastructure

and accelerate revenue generation.
 (c) Reducing time to market for infrastructure and applications

deployment.

6.4 case study In edge/fog computIng
for smart cItIes

6.4.1 Introduction

This case study integrates RECAP mechanisms related to resource reallo-
cation and optimisation in a proprietary distributed IoT platform for smart
cities, called SAT-IoT. Hence, it demonstrates the capabilities to integrate
RECAP components into third-party systems as well as the immediate
benefits of using the RECAP approach for optimisation.

Being IoT-centric, this case study deals with hardware-software infra-
structures and vertical applications as well as mobile entities and devices
that move over the area of city. It is built on the assumption that smart
cities provide infrastructure for handling IoT network traffic in a zone-
based manner as shown in Fig. 6.11; wireless networks complement wired
networks to form a hybrid network (Sauter et al. 2009); and these hybrid
networks include the cloud nodes, edge nodes (IoT gateways), and fur-
ther mid (fog) nodes. Mid nodes are connected to the cloud and to each
other forming a mesh network. Edge nodes receive data from wireless
devices located in the same geographical area. Groups of edge nodes are
connected to a mid node. Edge nodes are usually not connected to each
other. In this kind of scenario, it is necessary to manage the IoT network
topology to adapt to moving users and changing data streams. Such a
topology administration will facilitate the dynamic deployment of distrib-
uted IoT applications, the interconnection of devices in the IoT platform,
and the data exchange among platform network nodes.

Consequently, this use case study requires:

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

140

• The capability to dynamically optimise the applications’ communica-
tion topologies under an “Edge/Cloud Computing Location
 Transparency” model. In particular, it requires the optimal realloca-
tion of data flows periodically at run-time to reduce bandwidth con-
sumption and application latencies.

• A mechanism to consider limitations of the physical topology when
planning the virtual topology.

For the sake of demonstration and validation purposes, the SAT-IoT
platform in RECAP is running a distributed Route Planning and City
Traffic Monitoring application. Figure 6.12 illustrates this scenario based

Fig. 6.11 Example of IoT hybrid network for mobile devices

Fig. 6.12 Smart city structure

 M. A. LÓPEZ-PEÑA ET AL.

141

on the city of Cologne. The city area is distributed into nine geographical
regions, each of which has its own edge compute node.

6.4.2 Issues and Challenges

The formulated scenario presents some challenges with respect to the cur-
rent cloud IoT/smart city systems, the edge/fog computing paradigm,
and the ICT architecture optimisation. The issues and challenges addressed
in this case study include:

• Adoption of edge computing models to process the massive data
generated from different IoT devices at their zone edge nodes in
order to improve performance.

• Integration of edge, fog, and cloud paradigms to develop dynami-
cally configurable IoT systems, to achieve better optimisation results
for both applications and underlying infrastructure.

• Dynamic management of smart city environments based on distribu-
tion of mobile devices and users and their resource demands.

6.4.3 Implementation

6.4.3.1 Requirements
In order to improve the performance of the IoT system, the edge comput-
ing model seeks to process the massive data generated from different IoT
devices at their zone edge nodes. Only the processing results are transmit-
ted to the cloud infrastructure or to the IoT devices, reducing the band-
width consumption, the response latency, and/or the storage needed (Ai
et al. 2018).

Considering an IoT system that uses a hybrid network similar to
Fig. 6.11, any application that processes data from zones, North and
Centre, cannot naively run data processing in the zones since it requires
information from both zones. A conventional cloud computing architec-
ture is not well suited to applications where the location of devices changes,
where the volume of data received in each edge node varies dynamically,
or where the processing needs data from different geographical areas. Car
route planners and city traffic analysers are good examples of smart city
applications that make calculations with the information received from
connected cars located in different zones of the city.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

142

Thus, to process the data from, for example, the North and Centre
zones, it is necessary to send it to a processing node. As these edge nodes
are not connected to each other, the data from one or both zones need to
pass through Mid86. Indeed, Mid86 would be the closest node to run
processing for both affected zones. When considering the scenario on a
larger scale with multiple zones and applications that require data from all
zones to complete the processing,1 the task of finding the most suitable
processing node is non-trivial. Furthermore, where there are significant
constraints on deployment capacity constraint, the underlying infrastructure
becomes a factor too. Consequently, an IoT platform for smart city
applications must be able to:

• integrate of cloud, fog, and edge computing models;
• manage the smart city data network topology at run-time;
• use optimisation techniques that support processing aggregated data

by geographical zones; and
• monitor the IoT system and the optimisation process in run-time.

6.4.3.2 The SAT-IoT Platform
The IoT platform which forms the basis of this case study is based on the
SAT-IoT platform. Its core architectural concept is edge/cloud comput-
ing location transparency. This computational property allows data to be
shared between different zones and to be processed at any of the edge
nodes, mid nodes, or cloud nodes.

The concept of edge/cloud computing location transparency is realised
by two of the entities in the SaT-IoT architecture, the IoT Data Flow
Dynamic Routing Entity, and the Topology Management Entity (see
Fig. 6.13). They support a cloud/fog programming model with the capa-
bility of managing the network topology at run-time while also providing
the necessary monitoring capabilities to understand the usage pattern and
capacity limitations of the infrastructure. While they provide the necessary
capabilities to reconfigure the topologies and data flow, they lack the capa-
bility to derive the best-possible placement of the data processing logic.
This is realised by integrating the RECAP Application Optimiser in the
SAT-IoT platform.

1 SAT-IoT is capable of managing and supporting multiple applications over the same IoT
data network.

 M. A. LÓPEZ-PEÑA ET AL.

143

IoT Topology Management Entity
IoT Data Flow Dynamic Routing is the cornerstone of SAT-IoT. It
dynamically manages IoT data flows between processing nodes (cloud
nodes, edge nodes, and smart devices). In addition, this entity includes a
distributed temporary data storage system to support data streaming and
local processing services. In this case study, data flows are both the sets of
data sent by the cars (position, speed, fuel consumption, etc.) and the
route calculation requests between two locations in the city.

Fig. 6.13 SAT-IoT platform architectural model

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

144

The IoT Data Flow Dynamic Routing Entity comprises:

• Data Streaming Management System: Provides the mechanisms to
transfer IoT data flows directly from nodes (e.g. edge nodes or smart
devices) to other internal or external services and applications that
request them (on a publish/subscribe model).

• Computing Location Transparency Support System: Wraps the
RECAP Application Optimiser for its integration into the SAT-
IoT platform.

• Data Flow Routing Management System: Responsible for setting
the routing of the data flows to the optimum computation node after
inquiring about the best computation node for the data flow from
the Computing Location Transparency Support System.

IoT Topology Management Entity
The IoT Topology Management Entity is responsible for the definition of
an application network topology in every IoT system deployed by the
platform. This application network topology defines which SAT-IoT entity
communicates with which other SAT-IoT entities. The communication
structure is based on the available underlying IT infrastructure (computa-
tion nodes and data network).

The application topology is defined as a graph of computing nodes and
links between them, and it includes a variety of attributes like node fea-
tures (CPU, Memory, etc.), data link features (bandwidth), geolocation of
the node, use of resources (hardware and communication metrics), etc.
With this definition, the system dynamically manages the physical hard-
ware topologies, enables updating the logical structure of the topologies
at any time, and includes a monitoring system that continuously provides
the status of nodes and links in terms of performance metrics (consump-
tion of CPU, memory, storage, bandwidth, etc., and also data flows cross-
ing the network).

The three main functions of the Topology Management Entity are:

• IoT Topology Definition: It enables the modelling of the IoT
architecture as an enhanced graph in which nodes are the hardware
elements with processing capabilities. The nodes in the graph are
defined containing all their attributes (node type, CPU, RAM, loca-
tion, etc.). Edges in the graph correspond to data links and have
their attributes as well.

 M. A. LÓPEZ-PEÑA ET AL.

145

• Topology Management: It is a set of services to query and modify
the IoT topology definition to maintain the consistency between the
physical installations and their definition in the platform. It supports
the model of Edge/Cloud Computing Location Transparency sup-
ported by the platform.

• Topology Monitoring: It continuously gathers and stores metrics of
each node and edge. It also provides these metrics to other internal sys-
tems (IoT Topology Visualisation System or Embedded Applications)
and external systems (third-party applications and systems).

Application Optimisation
To find the optimal location of the data processing logic, the optimiser
needs to consider response latency, bandwidth consumption, storage, and
other properties. Furthermore, the selection of the computation nodes
might change dynamically as the conditions of the system may vary over
the time (shared data, application requests, data volume, network disrup-
tions, or any other relevant issue).

6.4.3.3 Implementation
For realising optimisation support, SAT-IoT integrates a RECAP applica-
tion optimisation algorithm. Using this algorithm, SAT-IoT can decide, in
real time, the optimum node of the IoT data network to process a given
data flow. The integration of the application optimisation algorithm is
implemented in the Computing Location Transparency Support System
module, part of the IoT Data Flow Dynamic Routing Entity (see
Fig. 6.14).

The application optimisation algorithm uses IT resource optimisation
techniques, graph theory (based on the topology graph definition), and
machine learning processes to predict the needs of the system in the short
term. The prediction considers the current state of the systems, e.g. met-
rics, IT resources used, links bandwidth consumption, application laten-
cies, distribution of nodes across the topology, and the data flows involved
in each node. A RECAP Non-Dominated Sorting Genetic Algorithm is
used to calculate the optimum node to process the application data flows
received in the last time period.

The Application Optimiser systematically receives the virtual topology
and the data flows (route calculation requests and information about
them) for the last time period. It then calculates a cost function to move
the flows to each server and finally selects the node with the minimum

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

146

value of the cost function. The application receives the node selected and
requests the platform to configure the data flow routing to send the data
flows to the optimum computation node.

The city traffic monitoring application makes use of the optimisation
service provided by SAT-IoT and provides a user interface to execute the
optimisation on demand. In a production setting, the Application
Optimiser would be run automatically based on intervals. Every time the

CLOUD

Historic
Database

Database

Database

RoutesCalculator

RoutesCalculator

Open Trip
Planner

TopologyService MetricsService

MID

LOW

Local Metrics

Local Metrics

Data Dispatcher

Data Dispatcher

Request Proxy

Data Extractor

Request Proxy

Data Extractor

AkkaCollector

Topology Client

Topology Client

SubscriptionService

Local Optimizer

Local Optimizer API Rest

MQTT

Optimizer

A
P

I P
roxy

A
P

I P
roxy

A
P

I P
roxy

ZoneService Traffic Demo

SAT-IoT
Components

Fig. 6.14 SAT IoT platform high-level conceptual architecture

 M. A. LÓPEZ-PEÑA ET AL.

147

optimisation is executed, SAT-IoT automatically changes the virtual net-
work routing configuration in order to send data flows to the optimum
node for processing.

6.4.4 Validation Results

To validate the system, SAT-IoT runs a distributed Route Planning and City
Traffic Monitoring application using a dataset of Cologne city traffic edited
by the Simulation of Urban Mobility (SUMO) Eclipse project as an input.
Software entities emulate cars moving in the city and send data such as posi-
tion, velocity, and road conditions captured from sensors periodically.

The IoT platform and application have been deployed in a virtual infra-
structure with a topology as shown in Fig. 6.15 where seven edge servers
associated to ten areas of Cologne city are used (nine city zones and an
additional zone to cover traffic close to those defined zones). Three mid
nodes have been deployed to group sets of three areas, and a group of
virtual servers acts as the cloud infrastructure. Runs cover traffic simula-
tion of two hours.

As discussed, SAT-IoT makes use of the RECAP Application Optimiser
(see Fig. 6.13). Periodic optimisation is switched off and manual optimisa-
tion enabled to allow the user to execute the RECAP Application Optimiser
on demand while the simulation scenario is running. This allows optimisa-
tions to be performed at different execution times where the conditions
and status of the platform may vary. For instance, route requests and oper-
ational vehicles vary over time and executing the Application Optimiser at
different points in time results in different optimisation results as shown at
the top of Fig. 6.15. Here, the orange circle in the upper left diagram
represents the optimal node for data processing at that point in time.
Similarly, the chart at the upper right side shows the cost function for the
selected node compared to cloud-based data processing.

In the lower left chart, Fig. 6.15 shows the values and results obtained
from the optimisation process executed nine times during an experiment.
In the first optimisation, the optimum destination node changes from the
cloud to Node 86. The line chart on the right shows an immediate cost
reduction. The table on the bottom left shows the cost saving/additional
cost of moving the data to different nodes. In this case, the optimum node
shows a reduction of 3311 cost points compared to moving the data to the
cloud node. These results are evident in the bar chart at bottom right too.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

148

Figure 6.16 plots the overall amount of data transferred per time unit.
It compares a standard cloud-based processing approach with an approach
using RECAP-Optimised message routing. As can be seen, it shows a sig-
nificant reduction of transferred data and hence bandwidth consumption.

6.4.5 Results

Implementation of the RECAP Application Optimiser (1) reduced band-
width usage by up to 80% compared to a cloud-only processing of data,
and (2) reduced the overall latency and improved the user experience by
reducing the overall number of hops to send the data flows to the opti-
mum processing node by up to 20%.

In summary, the benefits of the implementation of the RECAP
Application Optimiser embedded in the SAT-IoT platform include (1)

Fig. 6.15 Optimisation results

 M. A. LÓPEZ-PEÑA ET AL.

149

automated continuous optimisation; (2) enabling dynamic changes to
computation nodes in an IoT network topology without administrator
intervention to fulfil the efficiency criteria defined for the IoT system; and
(3) global transparency across the entire IoT system, which together result
in significantly reduced costs and increased quality of service.

6.5 case study In capacIty plannIng: bIg data
analytIcs search engIne

6.5.1 Introduction

This case study illustrates how components of the RECAP approach,
namely data analytics as well as simulation and planning, can be used for
capacity planning for and small-to-medium-sized enterprises.

Linknovate (LKN) is a Spanish SME that develops and markets a cloud-
base data analytics and competitive intelligence platform and service.
LKN’s primary market is in the US. LKN generates knowledge insights by
aggregating large amounts of (heterogeneous) research and scientific data
using data mining and data analytics techniques for their clients. At the
time of writing, LKN had indexed over 20 million documents, over 30

Fig. 6.16 Number of records transferred for SAT-IoT running route planning
and city traffic monitoring application using cloud-based processing and RECAP-
optimised processing

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

150

million expert profiles, over 2 million entity profiles, and more than 200
million innovation topics.

LKN manages vast amounts of information through different offline
and online layers. The offline layer, Data Acquisition, comprises several
pre-processing components working in parallel over raw data to homoge-
nise structure and identify entities and semantic relations. The online layer,
Processing and Indexing, is done over a virtual cluster of search nodes
based on ElasticSearch (ES). Finally, the Web and Search layer is where user
queries execute several internal queries over LKN indices, retrieving the
data to be displayed in the User Interface (UI). User queries are received
by the virtual Nginx web server that also renders the results pages. The
LKN platform is deployed on a heterogeneous technology stack on the
Microsoft Azure cloud with three types of nodes: web processing nodes,
database nodes, and the aforementioned index and search nodes. An over-
view of the LKN platform components is provided in Table 6.7.

6.5.2 Issues and Challenges

Small businesses typically operate in constrained business environments
with a tension between scaling for growth and cashflow. While cloud
computing provides significant benefits in terms of cashflow management
and scalability, controlling consumption and managing complex cloud

Table 6.7 LKN platform components

Nodes Components

Online—index
and search
nodes

ElasticSearch v5 providing the search functionality and storing processed
and structured data:
• 9 data nodes (Azure DS12 v2) running Debian GNU/Linux with 4

processing cores and 28GB of RAM, where 24 shards of data with
replicas of old and fresh data are stored and processed

• 1 client node (Azure DS14 v2) running Debian GNU/Linux with 16
processing cores and 112GB of RAM, which coordinates and
aggregates the search results.

Online—web
processing
node

Azure D12 v2 running Debian GNU/Linux with four processing cores
and 28GB of RAM. Service running: Nginx server with Django-based
web app. This node serves as the LKN web platform.

Online—
database node

Azure DS4 v2 virtualised machine) running Debian GNU/Linux with 8
cores and 28 GB memory running Postgresql, Cassandra and
MongoDB. This node stores diverse user information, mailing
management, and storing input form data from users.

 M. A. LÓPEZ-PEÑA ET AL.

151

infrastructure with a small IT team are significant challenges. Small businesses
may not be able to accommodate reactive approaches to infrastructure
provisioning (given the elevated warm-up times) and could save costs and
improve QoS by using predictive solutions. Such solutions should allow
effective and efficient provisioning/deprovisioning of cloud capacity by
predicting spikes in demand in the short- and medium term and enabling
boot-up instances in advance thereby addressing consume pattern predic-
tion by geographic region and accurately anticipating periodic time-based
traffic patterns.

In this case study, LKN overprovision nodes in Azure to cope with
unexpected or irregular request peaks by users with a focus on serving the
Eastern US market. LKN would like to optimise their cloud resources to
reduce the cost of overprovisioning and avoid platform replication in non-
core geographic markets. RECAP Data Analytics and Simulation and
Planning methodologies and tools were used to support LKN in the
capacity planning.

6.5.3 Implementation

6.5.3.1 RECAP Data Analytics

Step 1: Exploratory Data Analysis

Web Server Error Analysis
Firstly, LKN data were evaluated from a quality perspective. Given that the
workload is based on the number of user queries, the errors were evalu-
ated (number of invalid requests) reported by the web server as per
Table 6.8 below.

Although 78.78% of the queries were successfully answered by the
search engine, the number of errors is very high for this kind of service.

Request Source Analysis
In a second step, the source of all requests was analysed and ordered by
the number of requests. Table 6.9 below presents data based on the first
10 entries.2 45% of the requests are originated from a few IP addresses.

2 IP addresses and other confidential data were anonymized by LKN before providing the
data to RECAP.

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

152

Table 6.8 Statistics of
the response codes
returned by the LKN
search engine

HTTP status Description Number of entries

200 OK 1,692,070
302 Moved temporarily 175,577
301 Moved permanently 111,109
503 Service unavailable 82,905
404 Not found 45,439
304 Not modified 27,782
206 Partial content 8024
499 Client closed request 2497
403 Forbidden 1190
400 Bad request 699
500 Internal server error 117
405 Method not allowed 100
502 Bad gateway 72
504 Gateway timeout 19

Table 6.9 The top 10
IP addresses directing
the largest number of
requests to the LKN
search engine

Anonymous IP Count

IP_1 184,381
IP_2 124,093
IP_3a 90,711
IP_3b 85,367
IP_3c 78,317
IP_3d 70,576
IP_4 69,950
IP_5 55,806
IP_6a 44,459
IP_6b 29,771

These IPs correspond to web-spider bots from large search companies,
e.g. Google and Yandex. As this provides visibility for LKN in search
engine results, no remediation action was taken.

Response Size and Response Time
Figure 6.17 shows a histogram of the response volume of the LKN search
engine. Figure 6.17(b) presents a histogram of the (total) time that the
search engine requires to provide an answer to user queries. The

 M. A. LÓPEZ-PEÑA ET AL.

153

correlation between the response size and the response time was also stud-
ied and is shown in Fig. 6.17(c). The Pearson correlation coefficient is
0.18. If only 200 (OK) requests are considered, it is 0.20. Both 0.18 and
0.20 suggest a positive (although weak) correlation between both values.

Number of Requests
The number of requests has also been characterised through a time series
with the number of requests that the server receives aggregated over inter-
vals of 30 minutes. This time series is the target workload that is analysed
and modelled as part of the RECAP methodology. Peaks in this period can
be explained by increased media attention during the period (Fig. 6.18).

Fig. 6.17 (a), (b), and (c): Histograms of the distribution of the responses,
response time, and scatter plot of the response size and time for the LKN
search engine

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

154

6.5.3.2 Workload Predictor Model
From experience, the time to deploy a new data node in Azure clusters is
about 30 minutes. The original dataset was aggregated in periods of 30
minutes, and a new feature, number of requests, was derived. Predicting
the number of servers required for the next period of 30 minutes (work-
load prediction) to deal with the expected user requests is the goal of
the model.

As a preliminary step before fitting a model to predict future workloads,
the stationarity of the time series was examined. A visual inspection of a
moving average and a moving standard deviation, together with a decom-
position of the series in trends + cycles + noise, suggests a stationary time
series. This intuition has been confirmed with a Dickey-Fuller test. The
coefficients of the autoregressive integrated moving average (ARIMA)
were estimated using an autocorrelation function (autoregressive part)
and a partial autocorrelation function (for the moving average) where the
already identified components were removed. The final ARIMA model
trained corresponds to an autoregressive part of four periods, and a mov-
ing average of six periods, without requiring the integration of the original
time series.

Figure 6.19 presents a sample dashboard with the Workload Predictor
and the Application Modeller for LKN. The dashboard is composed of

Fig. 6.18 Time series of the LKN’s search engine workload (data aggregated
over windows of 30 minutes)

 M. A. LÓPEZ-PEÑA ET AL.

155

three independent but synchronised panes. The “Workload” pane, displayed
in light blue, presents the actual workload (number of requests during each
30-minute interval) of the search engine, along with the forecast number of
servers required to deal with the predicted workload (in black). The
“Capacity Planning” pane presents the overprovisioning of resources
deployed to deal with the actual workloads. The current overprovisioning of

Fig. 6.19 Workload predictor dashboard

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

156

the servers in production used by LKN is displayed in light blue, while the
overprovisioning given the RECAP models is displayed in dark blue together
with the underprovisioning in red. The grey display depicts a conservative
model that does not underprovision resources. Finally, the “Servers and
Location” pane presents the recommended number of servers and their
geographical locations, as they are predicted by the application model.

RECAP ran a simulation of the LKN workload based on a historical
dataset collected at the production server for a period of one month
(August 2017). Based on the collected data, LKN was overprovisioning
during that period of time by an average number of 13.8 cores of Azure
DS12 v2 i.e. 86.6% of overprovisioning of data processing capacity.
Applying the RECAP models would reduce overprovisioning to 3.5 cores,
or the equivalent of 60% overprovisioning.

6.5.3.3 RECAP Simulation and Planning Mode
The RECAP Simulation Framework supports a number of features that
can help in ES-based system deployment and provisioning decisions.
These include:

• Modelling and simulation of a distributed data flow with a hierarchi-
cal architecture;

• Custom policy implementation for distributing workload in the hier-
archical architecture;

• Synchronous communication between search engine components
for data aggregation; and

• Flexible modelling that can be easily adapted to integrate with other
CloudSim extensions.

Modelling
Figure 6.20 shows the online virtual layers of the LKN search engine con-
sidered in the implementation of the RECAP Simulation Framework. As
discussed earlier, the deployed LKN search service stack consists of a web
server where the users input their queries and an ES cluster which is
responsible for the search and returning the response to the user query.
The ES cluster consists of an ES client node and data nodes. The ES node
is responsible for: (1) passing and distributing the queries among the data
nodes; (2) coordinating and aggregating the search results of different
data nodes; (3) and returning the query result to the web server, which in
turn returns it to the user. The data nodes are responsible for storing and
processing old and fresh data.

 M. A. LÓPEZ-PEÑA ET AL.

157

A simulation model was built to reflect the behaviour of a real ES-based
system deployed in a public cloud based on the LKN workload data as a
reference. An ES-based search engine was then modelled and simulated
using a Discrete Event Simulation (DES) approach. To do so, CloudSim,
a widely used open source DES platform, was extended with the simula-
tion model and then compared with KPI traces collected from LKN.

Figure 6.21 illustrates the ES workload flow. Within CloudSim model-
ling concepts, a cloudlet represents a task submitted to a cloud environ-
ment for processing. When a query is launched, a set of cloudlets is
generated and executed in sequential manner. The first cloudlet is exe-
cuted at a web server then the second cloudlet is executed at the ES node.
From the ES node, a set of cloudlets (which is less or equal to the number

Fig. 6.20 LKN conceptual ElasticSearch (ES) architecture

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

158

of data nodes) is distributed and executed at data nodes. Next, another
cloudlet is executed again at the ES node to merge the partial results com-
ing back from the data nodes. Finally, a last cloudlet goes from the ES
node to the web server as a response to the user query.

Results
The simulated response time of a query was compared to its actual time as
collected from real system traces. A subset of 100 valid queries was
extracted from the data set used. Figure 6.22 compares actual and simula-
tion query response times across the 100 queries. As one can see, the

Fig. 6.21 ElasticSearch (ES) workload flow

Fig. 6.22 Comparison of actual and simulation query response times

 M. A. LÓPEZ-PEÑA ET AL.

159

actual query response times and the simulation query response times are
very close and highly positively correlated across all the 100 queries tested.

The performance of the LKN system was analysed by running the simu-
lation with different workloads (query traffic) to see how much traffic the
LKN system could handle. Query response time was monitored while
varying the number of queries per second (q/s) received by the system.
Figure 6.23 is a box plot (min, max, lower quartile, upper quartile) that
shows the query response time based on the number of queries per second
the system receives.

With query traffic of up to 80 q/s, the query response time for all the
queries is the same and it is equal to having one q/s. That means the sys-
tem is capable of handling 80 q/s with no waiting time. Between 80 q/s
and 120 q/s, a slight increase in the response time appears. However, this
increase affects all the queries in the same way, i.e. there is no difference in
response time between the queries. As we increase the query traffic beyond
120 q/s, a divergence in query response times becomes apparent. Between
130 q/s and 170 q/s, the system manages to execute several queries
within a short time by delaying the excess of queries; however, with the
increase in query traffic beyond 170 q/s, the system fails to execute even
a single query in a short time.

Fig. 6.23 LKN system performance under different traffic scenarios

6 CASE STUDIES IN APPLICATION PLACEMENT AND INFRASTRUCTURE…

160

6.5.4 Results

The analysis run for this case study has proven valuable in multiple ways.
First, LKN was able to gain a better understanding of infrastructure plan-
ning, deployment, anomaly detection. Similar, workload prediction mod-
els estimate the potential cost savings due to improved resource
consumption of 26.6%.

Using the RECAP DES simulator, it was possible to provide an insight
for LKN into capacity planning in that it identifies thresholds at which
point LKN’s QoS starts degrading and additional resources must be provi-
sioned. LKN can now use these data to reduce overprovisioning and at the
same time set specific rules for scaling up and down in a cost- effective manner.

All these insights resulted in LKN changing their deployment strategy
moving to a more advanced infrastructure configuration using only two data
nodes (instead of nine) with NVMe (non-volatile memory express) storage.

references

Ai, Y., M. Peng, and K. Zhang. 2018. Edge Computing Technologies for Internet
of Things: A Primer. Digital Communications and Networks 4 (2): 77–86.

Ofcom. 2016. Business Connectivity Market Review—Volume I—Review of
Competition in the Provision of Leased Lines. https://www.ofcom.org.uk/__
data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf.

Sauter, T., J. Jasperneite, and L. Lo Bello. 2009. Towards New Hybrid Networks for
Industrial Automation. 2009 IEEE Conference on Emerging Technologies &
Factory Automation, 1–8. IEEE.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder.

 M. A. LÓPEZ-PEÑA ET AL.

https://www.ofcom.org.uk/__data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/72303/bcmr-final-statement-volume-one.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

161© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7

Index

A
AI for IT Operations (AIOps),

5, 9–10
Application modelling, 44, 70
Application models, 7, 8, 14, 15,

19, 44, 46
Application optimisation, 13, 17,

23–24, 52–67, 91, 137, 145
Application optimiser, 55, 66, 70, 82,

142, 144–148
Application placement, 70–91
Application provisioning, 117–160
Artificial workload generation, 44–46
Autoscaling, 52–67

C
Cache, 105–110, 112, 113, 130, 131,

137, 138
Capacity planning, 13, 24, 149–160

Capacity provisioning, 2–24
Case study, 118–160
Cloud-to-edge continuum, 23
Content distribution network (CDN),

130, 131, 136–139

D
Data acquisition, 28–49
Data analytics, 3, 10, 13,

16, 19–24, 28, 29, 34,
39–43, 149–160

Data structure, 36–37
Data visualisation, 46–49
Discrete Event Simulation

(DES), 94–104, 113,
157, 160

Discrete Time Simulation (DTS),
94–97, 104–113, 137

Distributed cloud, 2–24

https://doi.org/10.1007/978-3-030-39863-7#DOI

162 INDEX

E
Edge computing, 2, 4, 5, 8

F
5G communication system,

119, 130
5G network emulator, 122
5G network service, 121

I
Infrastructure and network

management, 118–130
Infrastructure modelling, 44, 96,

101–102, 110–111
Infrastructure models, 7, 9, 13,

19, 44, 99
Infrastructure optimisation, 13, 17,

24, 70–91, 118–160
Infrastructure optimiser, 70–72, 126
Internet of Things (IoT), 3, 4, 9, 24

L
Load translation models, 7, 9,

14, 22, 28

M
Machine learning, 28, 29, 34,

39, 41, 42
Machine learning and artificial

intelligence (AI) for IT
operations, 2, 5, 9–10

Metrics, 29–41, 48
Model-centricism, 2, 5–9, 23
Modelling, 39–43, 46
Models, 70, 74–77, 79–85, 91,

96–103, 105

Modular design, 2, 5, 9, 23
Monitoring, 30–35, 38

N
Network function virtualisation

(NFV), 120, 130

O
Open data, 49

Q
Quality-of-Service (QoS) models,

7, 9, 31

R
Resource allocation, 97, 105,

121, 138
Resource management, 99, 121, 122
Resource provisioning, 55, 64, 79
Run-time Operation, 11, 16, 21–22

S
Separation of concerns, 2, 5–6, 9, 23
Simulation, 29, 42, 46, 94–104,

106, 107, 112–114, 122,
124, 128, 137, 138, 147,
149, 156–159

Simulation and Planning, 11, 16,
18–20, 22, 24

Simulation framework, 94–98, 101,
105, 106, 112, 113, 156

U
User models, 7, 8, 14, 22

163 INDEX

V
Virtual content distribution network

(vCDN), 95, 106–113,
118, 130–139

Virtual network chain, 101, 120
Virtual network functions (VNF),

101–104, 120, 121,
124–127

W
Workload modelling, 52, 54, 55, 60,

62, 66, 67, 70
Workload models, 7, 8, 14, 19, 22, 28,

42–44, 46
Workload prediction, 52–67, 70
Workload propagation modelling,

63–64, 70–73, 79, 81–84

	Preface
	Acknowledgement
	Contents
	Notes on Contributors
	List of Figures
	List of Tables
	Chapter 1: Towards an Architecture for Reliable Capacity Provisioning for Distributed Clouds
	1.1 Introduction
	1.2 From the Cloud to the Edge and Back Again
	1.3 Design Principles
	1.3.1 Separation of Concerns
	1.3.2 Model-Centricism
	1.3.3 Modular Design
	1.3.4 Machine Learning and AI for IT Operations

	1.4 Operational Modes
	1.5 RECAP Conceptual Reference Model
	1.5.1 Optimisation Process Flows

	1.6 RECAP Building Blocks
	1.6.1 Infrastructure Modelling and Monitoring
	1.6.2 Optimisation
	1.6.3 Simulation and Planning
	1.6.4 Data Analytics and Machine Learning

	1.7 Mapping Functional Blocks to Operational Modes
	1.7.1 Run-time Operation Mode
	1.7.2 Simulation and Planning Mode
	1.7.3 Data Analytics Mode

	1.8 Conclusion
	References

	Chapter 2: RECAP Data Acquisition and Analytics Methodology
	2.1 Introduction
	2.2 Data Acquisition and Storage
	2.2.1 Terminology
	2.2.1.1	 Metrics and Monitoring
	2.2.1.2	 Actors

	2.2.2 Monitoring Layers
	2.2.3 Monitoring Architecture
	2.2.3.1	 Single Site Monitoring Set-up
	Components
	Practical Considerations

	2.2.3.2	 Cross-site Monitoring Set-up

	2.2.4 Data Structure for Storage
	2.2.4.1	 Metrics on the Physical Layer
	2.2.4.2	 Metrics on the Virtual Layer
	2.2.4.3	 Metrics on the Container Layer
	2.2.4.4	 Metrics on the Application Layer
	2.2.4.5	 Metric Attributes: Tagging

	2.2.5 Implementation Technology

	2.3 Data Analytics and Modelling
	2.3.1 Data Analytics Methodology
	2.3.1.1	 Step 1: Problem Definition and Data Assembling
	2.3.1.2	 Step 2: Metric for the Evaluation of the Results
	2.3.1.3	 Step 3: Data Curation and Enhancement
	2.3.1.4	 Step 4: Model Development
	2.3.1.5	 Step 5: Regularisation and Hyperparameter Selection

	2.3.2 Exploratory Data Analysis
	2.3.3 Workload Prediction
	2.3.3.1	 Probabilistic Models
	2.3.3.2	 Regression-based Models
	2.3.3.3	 Machine-Learning-based Models

	2.3.4 Artificial Workload Generation
	2.3.4.1	 Structural Models-based Workload Generation
	2.3.4.2	 GAN-based Workload Generation
	2.3.4.3	 Traffic-Propagation-based Workload Generation
	2.3.4.4	 Simulation System Model Data Sets

	2.4 Data Visualisation
	2.4.1 Visualisation for Data Analysis
	2.4.2 Visualisation of RECAP Telemetry Data

	2.5 Open Data
	References

	Chapter 3: Application Optimisation: Workload Prediction and Autonomous Autoscaling of Distributed Cloud Applications
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Optimisation Framework
	3.4 Application Modelling
	3.4.1 Application Characteristics and Modelling Requirements
	3.4.2 Application Modelling Framework

	3.5 Workload Modelling
	3.6 Model-based Application Optimisation
	3.6.1 Application Autoscaling
	3.6.2 Migration Techniques and Infrastructure Planning and Provisioning
	3.6.3 Workload Propagation Model
	3.6.4 Approach and Realisation

	3.7 The RECAP Application Optimisation Platform
	3.8 Conclusion
	References

	Chapter 4: Application Placement and Infrastructure Optimisation
	4.1 Introduction
	4.2 High-Level Architecture of the Infrastructure Optimiser
	4.3 Problem Formulation
	4.3.1 Infrastructure
	4.3.2 Application
	4.3.3 Mapping Applications to Infrastructure
	4.3.4 Mapping Constraints
	4.3.4.1	 Capacity Requirement Constraint
	4.3.4.2	 Compositional Constraint
	4.3.4.3	 Service Level Agreement Constraint
	4.3.4.4	 Infrastructure-Policies Constraint

	4.4 Models that Inform Infrastructure Optimisation Decisions
	4.4.1 Infrastructure contextualisation models
	4.4.2 Load Translation Models

	4.5 Algorithmic Approach to Optimal Selection
	4.5.1 Utility Functions
	4.5.2 Algorithms for Infrastructure Optimisation and Application Placement

	4.6 Conclusion
	References

	Chapter 5: Simulating Across the Cloud-to-Edge Continuum
	5.1 Introduction
	5.2 High-Level Conceptual Overview of the RECAP Simulation Framework
	5.3 Discrete Event Simulation
	5.3.1 Overview
	5.3.2 The RECAP DES Framework
	5.3.3 Cloud Infrastructure and Network Management: A RECAP DES Framework Case Study
	5.3.3.1	 Infrastructure Model
	5.3.3.2	 Application and Workload Propagation Model
	5.3.3.3	 RECAP DES Results

	5.4 Discrete Time Simulation
	5.4.1 Overview
	5.4.2 The RECAP DTS Framework
	5.4.3 Network Function Virtualisation—Virtual Content Distribution Networks: A RECAP DTS Case Study
	5.4.3.1	 DTS Architecture and Component Modelling
	5.4.3.2	 Infrastructure Model
	5.4.3.3	 Application and Workload Propagation Model
	5.4.3.4	 RECAP DTS Results

	5.5 Conclusion
	References

	Chapter 6: Case Studies in Application Placement and Infrastructure Optimisation
	6.1 Introduction
	6.2 Case Study on Infrastructure Optimisation and Network Management—5G Networks
	6.2.1 Introduction
	6.2.2 Issues and Challenges
	6.2.3 Implementation
	6.2.3.1	 Requirements
	6.2.3.2	 Implementation
	6.2.3.3	 Deliverables and Validation

	6.2.4 Results
	6.2.5 Summary

	6.3 Case Study in Network Functions Virtualisation: Virtual Content Distribution Networks
	6.3.1 Introduction
	6.3.2 Overview and Business Setting
	6.3.3 Technical Challenges
	6.3.4 Validation and Impact

	6.4 Case Study in Edge/Fog Computing for Smart Cities
	6.4.1 Introduction
	6.4.2 Issues and Challenges
	6.4.3 Implementation
	6.4.3.1	 Requirements
	6.4.3.2	 The SAT-IoT Platform
	IoT Topology Management Entity
	IoT Topology Management Entity
	Application Optimisation

	6.4.3.3	 Implementation

	6.4.4 Validation Results
	6.4.5 Results

	6.5 Case Study in Capacity Planning: Big Data Analytics Search Engine
	6.5.1 Introduction
	6.5.2 Issues and Challenges
	6.5.3 Implementation
	6.5.3.1	 RECAP Data Analytics
	Step 1: Exploratory Data Analysis
	Web Server Error Analysis
	Request Source Analysis
	Response Size and Response Time
	Number of Requests

	6.5.3.2	 Workload Predictor Model
	6.5.3.3	 RECAP Simulation and Planning Mode
	Modelling
	Results

	6.5.4 Results

	References

	Index

