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Preface to the Classics Edition This is the revised second edition of our 1982
book with the same title, which presents a rather comprehensive treatment of
static and dynamic noncooperative game theory, with emphasis placed (as in
the first and second editions) on the interplay between dynamic information
patterns and the structural properties of several different types of equilibria.
Whereas the second edition (1995) was a major revision with respect to the
original edition, this Classics edition only contains some moderate changes
with respect to the second one. There has been a number of reasons for the
preparation of this edition: • The second edition was sold out surprisingly fast.



• After some fifty years from its creation, the field of game theory is still very
alive and active, as also reinforced by the selection of three game theorists
(John Harsanyi, John Nash and Reinhard Selten) to share the 1994 Nobel prize
in economics. Quite a few books on game theory have been published during
the last ten years or so (though most of them essentially deal with static games
only and are at the undergraduate level). • The recent interest in such fields as
biological games, mathematical finance and robust control gives a new impetus
to noncooperative game theory. • The topic of dynamic games has found its
way into the curricula of many universities, sometimes as a natural supplement
to a graduate level course on optimal control theory, which is actively taught in
many engineering, applied mathematics and economics graduate programs. • At
the level of coverage of this book, dynamic game theory is well established by
now and has reached a level of maturity, which makes the book a timely
addition to SIAM's prestigious Classics in Applied Mathematics series. For a
brief description of and the level of the contents of the book, the reader is
referred to the Preface of the second edition, which follows. It suffices to
mention here the major changes made in this Classics edition with respect to
the second edition. They are: XI

Xll PREFACE TO THE CLASSICS EDITION • Inclusion of the "Braess
paradox" in Chapter 4. • Inclusion of new material on the relationship between
the existence of solutions to Riccati equations on the one hand and the
existence of Nash equilibrium solutions to linear-quadratic differential games
on the other, in Chapter 6. In the same chapter some new results have been
included also on infinite-horizon differential games. We hope that this revised
edition may find its way as its predecessors did. Tamer Ba§ar Urbana, June
1998 Geert Jan Olsder Delft, June 1998

Preface to the Second Edition This is the second edition of our 1982 book with
the same title, which presents an extensive and updated treatment of static and
dynamic noncooperative game theory, with emphasis placed again (as in the
first edition) on the interplay between dynamic information patterns and the
structural properties of several different types of equilibria. There were
essentially two reasons for producing this revised edition. One was the
favorable reception of the first edition and the other one was the need to
include new theoretical developments. Yet another reason was that the topic of
dynamic games has found its way into the curricula of many universities. This



new edition contains some substantial changes and additions (and also a few
deletions), but the flavor and the theme of the original text remain intact. The
first part of the book, part I, which comprises Chapters 2 to 4, covers the
material that is generally taught in an advanced undergraduate or first-year
graduate course on noncooperative game theory. The coverage includes static
finite and infinite games of both the zero-sum and nonzero-sum type and in the
latter case both Nash and Stackelberg solution concepts are discussed.
Furthermore, this part includes an extensive treatment of the class of dynamic
games in which the strategy spaces are finite—the so-called multi-act games.
Through an extensive tree formulation, the impact of information patterns on
the existence, uniqueness and the nature of different types of noncooperative
equilibria of multi-act games is thoroughly investigated. Most of the important
concepts of static and dynamic game theory are introduced in these three
chapters, and they are supplemented by several illustrative examples.
Exposition of the material is quite novel, emphasizing concepts and techniques
of multi-person decision making rather than mathematical details. However,
mathematical proofs of most of the results are also provided, but without
hindering the flow of main ideas. The major changes in this part over the first
edition are the inclusion of additional material on: randomized strategies, finite
games with repeated decisions and action-dependent information sets (Chapter
2); various refinements on the Nash equilibrium concept, such as trembling-
hand, proper and perfect equilibria (Chapter 3); and in the context of static
infinite games, stability of Nash equilibria and its relation with numerical
schemes, consistent conjectural xm

XIV PREFACE TO THE SECOND EDITION variations equilibrium, and
some new theorems on existence of Nash equilibria (Chapter 4). Some specific
types of zero-sum games on the square (Chapter 4) have been left out. The
second part of the book, Part II, which includes Chapters 5 to 8, extends the
theory of the first part to infinite dynamic games in both discrete and
continuous time (the so-known differential games). Here the emphasis is again
on the close interrelation between information patterns and noncooper- ative
equilibria of such multi-person dynamic decision problems. We present a
unified treatment of the existing, but scattered, results in the literature on
infinite dynamic games as well as some new results on the topic. The treatment
is confined to deterministic games and to stochastic games under perfect state
information, mainly because inclusion of a complete investigation on stochastic



dynamic games under imperfect state information would require presentation
of some new techniques and thereby a volume much larger than the present one.
Again, some of the major changes in this part over the first edition are the
inclusion of new material on: time consistency (Chapters 5-7); viscosity
solutions of the Hamilton-Jacobi-Bellman-Isaacs equation (Chapters 5 and 8);
affine-quadratic dynamic games and results on infinite-horizon games in
discrete and continuous time (Chapters 5 and 6); applications in robust (H°°)
controller designs (Chapter 8); incentive theory and relationship with Stackel-
berg solutions (Chapter 7); and Stackelberg equilibrium in the continuous time
(Chapter 7). The material on the dolichobrachistochrone which was in Chapter
8 of the first edition, has been left out. Furthermore, the three appendices (A-
C) are expanded versions of the earlier ones, and present the necessary
background material on vector spaces, matrix algebra, optimization,
probability and stochastic processes and fixed point theorems. Each chapter
(with the exception of the first) is supplemented with a problem section. Each
problem section contains standard exercises on the contents of the chapter,
which a reader who has carefully followed the text should have no difficulty in
solving, as well as exercises which can be solved by making use of the
techniques developed in the text, but which require some elaborate thinking on
the part of the reader. Following the problem section in each chapter (except
the first) is a notes section, which is devoted to historical remarks and sources
for further reading on the topics covered in that particular chapter. A one-
semester course on noncooperative game theory, taught using this book, would
involve mainly Part I and also an appropriate blend of some of the topics
covered in Part II, this latter choice depending to a great extent on the taste of
the instructor and the background of the students. Such a course would be
suitable for advanced undergraduate or first-year graduate students in
engineering, economics, mathematics, operations research and business
administration. In order to follow the main flow of Chapters 2 and 3 the student
need not have a strong mathematical background—apart from some elementary
analysis—but he should be able to think in mathematical terms. However,
proofs of some of the theorems in these two chapters, as well as the contents of
Chapter 4, require some basic knowledge of real analysis and probability,
which is summarized in the three appendices that are included towards the end
of the

PREFACE TO THE SECOND EDITION xv book. Part II of the book, on the



other hand, is intended more for the researcher in the field, to provide him with
the state of art in infinite dynamic game theory. However, selected topics from
this part could also be used as a part of a graduate course on dynamic
optimization, optimal control theory or mathematical economics. This edition
has been prepared by means of WT$i. Toward that end the text of the original
edition was scanned; the formulas and figures were added separately. Despite
the flexibility of IATgX and an intensive use of electronic mail, the preparation
of this new edition has taken us much longer than anticipated, and we are
grateful to the publisher for being flexible with respect to deadlines. The
preparation would have taken even longer if our secretaries, Francie Bridges
and Tatiana Tijanova, respectively, with their expertise of JMgX, had not been
around. In the first stage Francie was responsible for the scanning and the
retyping of the formulas, and Tatiana for the labeling and the figures, but in
later stages they helped wherever necessary, and their assistance in this matter
is gratefully acknowledged. The first author would also like to acknowledge
his association with the Center for Advanced Study at the University of Illinois
during the Fall 1993 semester, which provided him with released time (from
teaching) which he spent partly in the writing of the new material in this
second edition. The second author would like to thank INRIA Sophia-Antipolis
in the person of its director, Pierre Bernhard, for allowing him to work on this
revision while he spent a sabbatical there. We both would also like to take this
opportunity to thank many of our colleagues and students for their input and
suggestions for this second edition. Particular recognition goes to Niek Tholen,
of Delft University of Technology, who read through most of the manuscript,
caught many misprints and made penetrating comments and suggestions. We
hope that this revised edition may find its way as its predecessor did. Tamer
Ba§ar Urbana, March 1994 Geert Jan Olsder Delft, March 1994
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Chapter 1 Introduction and Motivation 1.1 Preliminary Remarks This book is
concerned with dynamic noncooperative game theory. In a nutshell, game
theory involves multi-person decision making; it is dynamic if the order in
which the decisions are made is important, and it is noncooperative if each
person involved pursues his or her1 own interests which are partly conflicting
with others'. A considerable part of everything that has been written down,
whether it is history, literature or a novel, has as its central theme a conflict



situation—a collision of interests. Even though the notion of "conflict" is as
old as mankind, the scientific approach has started relatively recently, in the
years around 1930, with, as a result, a still growing stream of scientific
publications. We also see that more and more scientific disciplines devote time
and attention to the analysis of conflicting situations. These disciplines include
(applied) mathematics, economics, engineering, aeronautics, sociology,
politics and mathematical finance. It is relatively easy to delineate the main
ingredients of a conflict situation: an individual has to make a decision and
each possible decision leads to a different outcome or result, which are valued
differently by that individual. This individual may not be the only one who
decides about a particular outcome; a series of decisions by several
individuals may be necessary. If all these individuals value the possible
outcomes differently, the germs for a conflict situation are there. The
individuals involved, also called players or decision makers, or simply
persons, do not always have complete control over the outcome. Sometimes
there are uncertainties which influence the outcome in an unpredictable way.
Under 1Without any preference to sexes, a decision maker, in this book, is most
times referred to as a ''he". It could equally well be a "she". 1

T. BA§AR AND G. J. OLSDER Table 1.1: The place of dynamic game theory.
One player Many players Static Dynamic Mathematical programming Optimal
control theory (Static) game theory Dynamic (and/or differential) game theory
such circumstances, the outcome is (partly) based on data not yet known and
not determined by the other players' decisions. Sometimes it is said that such
data is under the control of "nature", or "God", and that every outcome is
caused by the joint or individual actions of human beings and nature. The
established names of "game theory" (developed from approximately 1930) and
"theory of differential games" (developed from approximately 1950, parallel
to that of optimal control theory) are somewhat unfortunate. "Game theory",
especially, appears to be directly related to parlor games; of course it is, but
the notion that it is only related to such games is far too restrictive. The term
"differential game" became a generally accepted name for games where
differential equations play an important role. Nowadays the term "differential
game" is also being used for other classes of games for which the more general
term "dynamic game" would be more appropriate. The applications of "game
theory" and the "theory of differential games" mainly deal with economic and
political conflict situations, worst-case designs and also modeling of war



games. However, it is not only the applications in these fields that are
important; equally important is the development of suitable concepts to
describe and understand conflict situations. It turns out, for instance, that the
role of information—what one player knows relative to others—is very crucial
in such problems. Scientifically, dynamic game theory can be viewed as a
child of the parents game theory and optimal control theory.2 Its character,
however, is much more versatile than that of its parents, since it involves a
dynamic decision process evolving in (discrete or continuous) time, with more
than one decision maker, each with his own cost function and possibly having
access to different information. This view is the starting point behind the
formulation of "games in extensive form", which started in the 1930s through
the pioneering work of Von Neumann, which culminated in his book with
Morgenstern (Von Neumann and Morgenstern, 1947), and then made
mathematically precise by Kuhn 2 In almost all analogies there is a deficiency;
a deficiency in the present analogy is that the child is as old as one of his
parents—optimal control theory. For the relationship between these theories
and the theory of mathematical programming, see Table 1.1.

INTRODUCTION AND MOTIVATION 3 (1953), all within the framework of
"finite" games. The general idea in this formulation is that a game evolves
according to a road or tree structure, where at every crossing or branching a
decision has to be made as how to proceed. In spite of this original set-up, the
evolution of game theory has followed a rather different path. Most research in
this field has been, and is being, concentrated on the normal or strategic form
of a game. In this form all possible sequences of decisions of each player are
set out against each other. For a two- player game this results in a matrix
structure. In such a formulation dynamic aspects of a game are completely
suppressed, and this is the reason why game theory is classified as basically
"static" in Table 1.1. In this framework emphasis has been more on
(mathematical) existence questions, rather than on the development of
algorithms to obtain solutions. Independently, control theory gradually evolved
from Second World War ser- vomechanisms, where questions of solution
techniques and stability were studied. Then followed Bellman's "dynamic
programming" (Bellman, 1957) and Pontryagin's "maximum principle"
(Pontryagin et al., 1962), which spurred the interest in a new field called
optimal control theory. Here the concern has been on obtaining optimal (i.e.,
minimizing or maximizing) solutions and developing numerical algorithms for



one-person single-objective dynamic decision problems. The merging of the
two fields, game theory and optimal control theory, which leads to even more
concepts and to actual computation schemes, has achieved a level of maturity,
which the reader will hopefully agree with after he/she goes through this book.
At this point, at the very beginning of the book, where many concepts have yet
to be introduced, it is rather difficult to describe how dynamic game theory
evolved in time and what the contributions of relevant references are. We
therefore defer such a description until later, to the "notes" section of each
chapter (except the present), where relevant historical remarks are included.
1.2 Preview on Noncooperative Games A clear distinction exists between
two-player (or, equivalently, two-person) zero- sum games and the others. In a
zero-sum game, as the name implies, the sum of the cost functions of the
players is identically zero. Mathematically speaking, if ul and U denote,
respectively, the decision variable and the cost function of the ith player (to be
written Pi), then 52i=1 //(u1,^2) = 0 in a zero-sum game. If this sum is, instead,
equal to a nonzero constant (independent of the decision variables), then we
talk about a "constant-sum" game which can, however, easily be transformed to
a zero-sum game through a simple translation without altering the essential
features of the game. Therefore, constant-sum games can be treated within the
framework of zero-sum games, without any loss of generality, which we shall
choose to do in this book. A salient feature of two-person zero-sum games that
distinguishes them from other types of games is that they do not allow for any
cooperation between the players, since, in a two-person zero-sum game, what
one player gains incurs a

4 T. BA§AR AND G. J. OLSDER Figure 1.1: The rope-pulling game. loss to
the other player. However, in other games, such as two-player nonzero- sum
games (wherein the quantity 5 î=1 U(ul,v?) is not a constant) or three- or
more-player games, the cooperation between two or more players may lead to
their mutual advantage. Example 1.1 A point object (with mass one) can move
in a plane which is endowed with the standard (xi,X2)-coordinate system.
Initially, at t — 0, the point mass is at rest at the origin. Two unit forces act on
the point mass; one is chosen by PI, the other by P2. The directions of these
forces, measured counter-clockwise with respect to the positive Xj-axis, are
determined by the players and are denoted by u1 and u2, respectively; they may
in general be time-varying. At time t = 1, PI wants to have the point mass as far
in the negative Xi-direction as possible, i.e., he wants to minimize xi(l),



whereas P2 wants it as far in the positive xi-direction as possible, i.e., he
wants to maximize xi(l), or equivalently, to minimize -xi(l). (See Fig. 1.1.) The
"solution" to this zero-sum game follows immediately; each player pulls in his
own favorite direction, and the point mass remains at the origin—such a
solution is known as the saddle-point solution. We now alter the formulation of
the game slightly, so that, in the present set-up, P2 wishes to move the point
mass as far in the negative X2-direction as possible, i.e., he wants to minimize
x2(l). Pi's goal is still to minimize xi(l). This new game is clearly nonzero-
sum. The equations of motion for the point mass are x\ = cos^1) + cos(u2),
xi(0) = xi(0)=0; x2 = sin(u1) + sin(u2), x2{0) = x2(0) = 0. Let us now consider
the pair of decisions {u1 = n, u2 = —n/2} with the corresponding values of the
cost functions being L1 = Xi(l) — — \ and L2 — x2(l) = — \. If P2 sticks to u2
= —n/2, the best thing for PI to do is to choose ul = n; any other choice of
wx(t) will yield an outcome which is greater than — |. Analogously, if PI sticks
to u1 = n, P2 does not have a better choice than u2 = -n/2. Hence, the pair {u1
= n, u2 = —n/2} exhibits an equilibrium behavior, and this kind of a solution,
where one player cannot improve his outcome by altering his decision
unilaterally, is called a Nash equilibrium solution, or shortly, a Nash solution.

INTRODUCTION AND MOTIVATION 5 If both players choose ul = u2 =
57r/4, however, then the cost values become Ll = L2 — — â/2, which are
obviously better, for both players, than the costs incurred under the Nash
solution. But, in this case, the players have to cooperate. If, for instance, P2
would stick to his choice u2 = 57r/4, then PI can improve upon his outcome by
playing u1 = c, where c is a constant with tt < c < 57r/4. PI is better off, but P2
is worse off! Therefore, the pair of strategies {u1 = bir/i,u2 = 57r/4} cannot be
in equilibrium in a noncooperative mode of decision making, since it requires
some kind of faith (or even negotiation), and thereby cooperation, on part of
the players. If this is allowable, then the said pair of strategies—known as a
Pareto-optimal solution—stands out as a reasonable equilibrium solution for
the game problem (which is called a cooperative game), since it features the
property that no other joint decision of the players can improve the
performance of at least one of them, without degrading the performance of the
other. □ In this book we shall deal only with noncooperative games. The
reasons for such a seeming limitation are twofold. Firstly, cooperative games3
can, in general, be reduced to optimal control problems by determining a
single cost function to be optimized by all players, which suppresses the



"game" aspects of the problem. Secondly, the size of this book would have
increased considerably by inclusion of a complete discussion on cooperative
games. Actions and strategies Heretofore, we have safely talked about
"decisions" made by the players, without being very explicit about what a
decision really is. This will be made more precise now in terms of information
available to each player. In particular, we shall distinguish between actions
(also called controls) on the one hand and strategies (or, equivalently, decision
rules) on the other. If an individual has to decide about what to do the next day,
and the options are fishing and going to work, then a strategy is: "if the weather
report early tomorrow morning predicts dry weather, then I will go fishing,
otherwise I will go to my office". This is a strategy or decision rule: what
actually will be done depends on quantities not yet known and not controlled
by the decision maker; the decision maker cannot influence the course of the
events further, once he has fixed his strategy. Any consequence of such a
strategy, after the unknown quantities are realized, is called an action. In a
sense, a constant strategy (such as an irrevocable decision to go fishing without
any restrictions or reservations) coincides with the notion of action. In the
example above, the alternative actions are to go fishing and to go to work, and
the action to be implemented depends on information (the weather report)
which has to be known at the time it is carried out. In general, such information
can be of different types. It can, for instance, comprise the previous 3What we
have in mind here is the class of cooperative games without side payments. If
side payments are allowed, we enter the territory of (cooperative) games in
characteristic function form, which is an altogether different topic. (See Owen
(1968, 1982) and Vorob'ev (1977).)

6 T. BA§AR AND G. J. OLSDER initially: PI has 100 customers P2 has 150
customers y\ PI decides /O* /V™ P2 decides /n y\ /n y\ 80 75 145 125 number
of customers of PI 125 190 120 175 number of customers of P2 80 75 115 95
profit PI 125 160 120 145 profit P2 Figure 1.2: One-period advertising game.
actions of all the other players. As an example, consider the following
sequence of actions: if he is nice to me, I will be kind to him; if he is cool, I
will be cool, etc. The information can also be of a stochastic nature, such as in
the fishing example. Then, the actual decision (action) is based on data not yet
known and not controlled by other players, but instead determined by "nature".
The next example will now elucidate the role of information in a game
situation and show how it affects the solution. The information here is



deterministic; "nature" does not play a role. Example 1.2 This example aims at
a game-theoretic analysis of the advertising campaigns of two competing firms
during two periods of time. Initially, each firm is allotted a certain number of
customers; PI has 100 and P2 has 150 customers. Per customer, each firm
makes a fixed profit per period, say one dollar. Through advertisement, a firm
can increase the number of its customers (some are stolen away from the
competitor and others come from outside) and thereby its profit. However,
advertising costs money; an advertising campaign for one period costs thirty
dollars (for each firm). The figures in this example may not be very realistic; it
is, however, only the ratio of the data that matters, not the scale with respect to
which it is expressed. First, we consider the one-period version of this game
and assume that the game ends after the first period is over. Suppose that PI has
to decide first whether he should advertise (Yes) or not (No), and subsequently
P2 makes his choice. The four possible outcomes and the paths that lead to
those outcomes are depicted in Fig. 1.2, in the form of a tree diagram. At every
branching, a decision has to be made as how to proceed. The objective of each
firm is to maximize its profit (for this one-period game). The "best" decisions,
in this case, can be found almost by inspection; whatever PI does (Y or N), P2
will always advertise (Y), since that is more profitable to him. PI, realizing
this, has

INTRODUCTION AND MOTIVATION 7 80 75 115 95 } profits 125 160 120
145 Figure 1.3: P2 chooses independently of Pi's action. to choose between Y
(with profit 95) and N (with profit 75), and will therefore choose Y. Note that,
at the point when P2 makes his decision, he knows Pi's choice (action) and
therefore P2's choice depends, in principle, on what Pi has done. P2's best
strategy can be described as: "if PI chooses N, then I choose Y; if PI chooses
Y, then I choose Y", which, in this case is a constant strategy. This one-period
game will now be modified slightly so that PI and P2 make their decisions
simultaneously, or, equivalently, independently of each other. The information
structure associated with this new game is depicted in Fig. 1.3; a dashed curve
encircling the points D\ and D  ̂has been drawn, which indicates that P2 cannot
distinguish between these two points. In other words, P2 has to arrive at a
decision without knowing what PI has actually done. Hence, in this game, the
strategy of P2 has a different domain of definition, and it can easily be verified
that the pair {V, Y} provides a Nash solution, in the sense described before in
Example 1.1, yielding the same profits as in the previous game. We now extend



the game to two periods, with the objective of the firms being maximization of
their respective cumulative profits (over both periods). The complete game is
depicted in Fig. 1.4 without the information sets; we shall, in fact, consider
three different information structures in the sequel. First, the order of the
actions will be taken as PI — P2 — PI — P2, which means that at the time of
his decision each player knows the actions previously taken. Under the second
information structure to be considered, the order of the actions is (PI, P2)-(P1,
P2), which means that during each period the decisions are made
independently of each other, but that for the decisions of the second period the
(joint) actions of the first period are known. Finally, as a third case, it will be
assumed that there is no order in the actions at all; Pi has to decide on what to
do during both periods without any prior knowledge of what P2 will be doing,
and vice versa. We shall be looking for Nash solutions in all three games. The
P1-P2-P1-P2 information structure The solution is obtained by working
backward in time (a la "dynamic programming"). For the decision during the
second period, P2 knows to which point (Dj — D14) the game has proceeded.
From each of these points he chooses Y

T. BA§AR AND G. J. OLSDER P2 decides PI decides D, A ■«--- P2 decides
64 IIM 64 104 60 133 60 103 92 100 62 100 76 121 46 91 60 143 60 143 57
171 57 141 86 128 56 98 72 155 42 125 92 100 92 100 87 128 87 98 127 96
97 96 109 116 79 86 76 121 76 121 71 155 71 125 105 116 75 116 90 i 140 /
customers 60 \ profit 110 J 2nd period 144 140 142 126 135 132 131 117 207
202 212 194 171 166 170 155 i total 229 228 225 216 303 301 258 285 220
218 216 206 266 270 261 255 / profit Figure 1.4: The two-period advertising
game, without the information sets. or N, depending on which decision leads to
higher profit. These decisions are denoted by an asterisk in Fig. 1.4. At the
time of his decision during the second period, PI knows that the game has
proceeded to one of the points D  ̂— Dq. He can also guess precisely what P2
will do after he himself has made his decision (the underlying assumption
being that P2 will behave rationally). Hence, Pi can determine what will be
best for him. At point D3, for instance, decision N leads to a profit of 144 (for
PI) and Y leads to 142; therefore, PI will choose N if the game would be at
D3. The optimal decisions for PI at the second period are indicated by an
asterisk also. We continue this way (in retrograde time) until the vertex of the
tree is reached; all best actions are designated by an asterisk in Fig. 1.4. As a
result, the actual game will evolve along a path passing through the points D2,



D6, and D14, and the cumulative profits for PI and P2 will be 170 and 261,
respectively. The (P1,P2)-(P1,P2) information structure During the last period,
both players know that the game has evolved to one of the points D3 — D§,
upon which information the players will have to base their actions. This way,
we have to solve four "one-period games", one for each of the points D3 —
D§. The reader can easily verify that the optimal (Nash) solutions associated
with these games are: information action profit (starting point) PI P2 PI P2 D3
N N 144 229 D4 N N 135 303 D5 Y N 212 216 D6 NY 166 270

INTRODUCTION AND MOTIVATION 9 The profit pairs corresponding to
these solutions can be attached to the respective points D3 — Dq, after which
a one-period game is left to be solved. The game tree is: 144 135 212 166
profit PI 229 303 216 270 profit P2 It can be verified that both players should
play Y during the first period, since a unilateral deviation from this decision
leads to a smaller profit for both players. The realized cumulative profits of PI
and P2 under this information scheme are therefore 166 and 270, respectively.
The no-information case Both players have four possible choices: NN, NY,
YN and YY, where the first (respectively, second) symbol refers to the first
(respectively, second) period. Altogether there are 4 x 4 = 16 possible pairs of
realizable profits, which can be written in a matrix form: P2 \ chooses PI \
chooses NN NY YN YY NN 144 229 142 225 207 220 212 216 NY 140 228
126 216 202 218 194 206 YN 135 303 131 258 171 266 170 261 YY 132 301
117 285 166 270 155 255 If PI chooses YN and P2 chooses YY, then the
profits are 166 and 270, respectively. If any one of the players deviates from
this decision, he will be worse off. (If, for example, PI deviates, his other
profit options are 132, 117 and 155, each one being worse than 166.)
Therefore {(YN), (YY)} is the Nash solution under the "no-information"-
scheme. □

10 T. BA§AR AND G. J. OLSDER Game problems of this kind will be studied
extensively in this book, specifically in Chapter 3 which is devoted to finite
nonzero-sum games, i.e., games in which each player has only a finite number
of possible actions available to him. Otherwise, a game is said to be infinite,
such as the one treated in Example 1.1. In Chapter 3, we shall also elucidate
the reasons why the realized profits are, in general, dependent on the
information structure. The information structure (PI, P2)-(P1, P2) in Example
1.2 is called a feedback information structure; during each period the players



know exactly to which point ("state") the game has evolved and that
information is fed back into their strategies, which then leads to certain
actions. This structure is sometimes referred to as closed-loop, though later on
in this book a distinction between feedback and closed-loop will be made. The
no-information case is referred to as an open-loop information structure. Not
every game is well-defined with respect to every possible information
structure; even though Example 1.2 was well-defined under both a feedback
and an open-loop information structure, this is not always true. To exemplify
this situation, we provide, in the sequel, two specific games. The game to be
formulated in Example 1.3 does not make much sense under an open-loop
information structure, and the one of Example 1.4 can only be played under the
open-loop structure. Example 1.3 "The lady in the lake." A lady is swimming
in a circular lake with a maximum speed v\. A man who wishes to intercept the
lady, and who has not mastered swimming, is on the side of the lake and can
run along the shore with a maximum speed vm. The lady does not want to stay
in the lake forever and wants eventually to escape. If, at the moment she
reaches the shore, the man cannot intercept her, she "wins" the game since on
land she can run faster than the man. Note that open-loop solutions (i.e.,
solutions corresponding to the open-loop information structure) do not make
sense here (at least not for the man). It is reasonable to assume that each player
will react immediately to what his/her opponent has done and hence the
feedback information structure, whereby the current position of man and lady
are fed back, is more appropriate. D Example 1.4 "TTie princess and the
monster." This game is played in complete darkness. Just like the previous
example, this one is also of the pursuit- evasion type. Here, however, the
players do not know where their opponent is, unless they bump into each other
(or come closer to each other than a given distance e); that moment in fact
defines the termination of the game. The velocities of both players are bounded
and their positions are confined to a bounded area. The monster wants to bump
into the princess as soon as possible, whereas the princess wants to push this
moment as far into the future as possible. Since the players cannot react to each
other's actions or positions, the information structure is open-loop. D The
solution to Example 1.3 will be given in Chapter 8; for more infor-
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Foreman (1977). This latter example also leads, rather naturally, to the concept
of "mixed strategies"; the optimal strategies in the "princess and monster" game



cannot be deterministic, as were the strategies in Examples 1.1 and 1.2, for
instance. For, if the monster would have a deterministic optimal strategy, then
the princess would be able to calculate this strategy; if, in addition, she would
know the monster's initial position, this would enable her to determine the
monster's path and thereby to choose for herself an appropriate strategy so that
she can avoid him forever. Therefore, an optimal strategy for the monster (if it
exists) should dictate random actions, so that his trajectory cannot be predicted
by the princess. Such a strategy is called mixed. Equilibria in mixed strategies
will be discussed throughout this book. What is optimal? In contrast to optimal
control problems (one-player games) where optimality has an unambiguous
meaning, in multi-person decision making, optimality, in itself, is not a well-
defined concept. Heretofore we have considered the Nash equilibrium
solution, which is a specific form of "optimality". We also briefly discussed
Pareto-optimality. There exist yet other kinds of optimality in nonzero-sum
games. Two of them will be introduced now by means of the matrix game
encountered in the "no-information"-case of Example 1.2. The equilibrium
strategies in the "Nash" sense were YN for PI and YY for P2. Suppose now
that P2 is a careful and defensive player and wants to protect himself against
any irrational behavior on the part of the other player. If P2 sticks to YY, the
worst that can happen to him is that PI chooses YY, in which case P2's profit
becomes 255 instead of 270. Under such a defensive attitude P2 might play
YN, since then his profit is at least 258. This strategy (or, equivalently, action
in this case) provides P2 with a lower bound for his earnings and the
corresponding solution concept is called minimax. The player who adopts this
solution concept basically solves a zero-sum game, even though the original
game might be nonzero-sum. Yet another solution concept is the one that
involves a hierarchy in decision making: one of the players, say Pi, declares
and announces his strategy before the other player chooses his strategy and he
(i.e., PI) is in a position to enforce this strategy. In the matrix game of the
previous paragraph, if Pi says "I will play YY" and irrevocably sticks to it (by
the rules of the game we assume that cheating is not possible), then the best P2
can do is to choose YN, in which case Pi's profit becomes 170 instead of 166
which was obtainable under the Nash solution concept. Such games in which
one player (called the leader) declares his strategy first and enforces it on the
other player (called the follower) are referred to as Stackelberg games. They
will be discussed in Chapter 3 for finite action sets, and in Chapters 4 and 7
for infinite action sets. Static versus dynamic As the last topic of this section,



we shall attempt to answer the question: "When is a game called dynamic and
when is it static?" So far, we have talked rather

12 T. BA§AR AND G. J. OLSDER loosely about these terms; there is, in fact,
no uniformly accepted separating line between static games on the one hand
and dynamic games on the other. We shall choose to call a game dynamic if at
least one player is allowed to use a strategy that depends on previous actions.
Thus, the games treated in Example 1.2 with the information schemes PI - P2 -
PI - P2 and (P1,P2)-(P1,P2) are dynamic. The third game of Example 1.2, with
the "no-information" scheme, should be called static, but, by an abuse of
language, such a game is often also called dynamic. The reason is that the
players act more than once and thus time plays a role. A game in which the
players act only once and independently of each other is definitely called a
static game. The game displayed in Fig. 1.3 is clearly static. 1.3 Outline of the
Book The book comprises eight chapters and three appendices. The present
(first) chapter serves the purpose of introducing the reader to the contents of
the book, and to the conventions and terminology adopted. The next three
chapters constitute Part I of the text, and deal with finite static and dynamic
games and infinite static games. Chapter 2 discusses the existence, derivation
and properties of saddle-point equilibria in pure, mixed and behavioral
strategies for two-person zero-sum finite games. It is in this chapter that the
notions of normal and extensive forms of a dynamic game are introduced, and
the differences between actions and strategies are delineated. Also treated is
the class of two-person zero-sum finite games in which a third (chance) player
with a fixed mixed strategy affects the outcome. Chapter 3 extends the results
of Chapter 2 to nonzero-sum finite games under basically two different types of
equilibrium solution concepts, viz. the Nash solution and the Stackelberg
(hierarchical) solution. The impact of dynamic information on the structure of
these equilibria is thoroughly investigated, and in this context the notion of
prior and delay commitment modes of play are elucidated. Chapter 4 deals
with static infinite games of both the zero-sum and nonzero- sum type. In this
context it discusses the existence, uniqueness and derivation of (pure and
mixed) saddle-point, Nash and Stackelberg equilibria, as well as the consistent
conjectural variations equilibrium. It provides explicit solutions for some
types of games, with applications in microeconomics. The remaining four
chapters constitute Part II of the book, for which Chapter 5 provides a general
introduction. It introduces the class of infinite dynamic games to be studied in



the remaining chapters, and also gives some background material on optimal
control theory. Furthermore, it makes the notions of "representations of
strategies on given trajectories" and "time consistency" precise. The major
portion of Chapter 6 deals with the derivation and properties of Nash
equilibria with prescribed fixed duration under different types of deterministic
information patterns, in both discrete and continuous time. It also presents as a
special case saddle-point equilibria in such dynamic games, with important

INTRODUCTION AND MOTIVATION 13 applications in worst-case
controller designs (such as ff°°-optimal control). Chapter 7 discusses the
derivation of global and feedback Stackelberg equilibria for the class of
dynamic games treated in Chapter 6, and also the relationship with the theory
of incentives. Finally, Chapter 8 deals with the class of zero-sum differential
games for which the duration is not fixed a priori —the so-called pursuit-
evasion games— and under the feedback information pattern. It first presents
some necessary and sufficient conditions for the saddle-point solution of such
differential games, and then applies these to pursuit-evasion games with
specific structures so as to obtain some explicit results. Each chapter (with the
exception of Chapter 1) starts with an introduction section which summarizes
its contents, and therefore we have kept the descriptions above rather brief.
Following Chapter 8 are the three appendices, two of which (Appendices A
and B) provide some background material on sets, vector spaces, matrices,
optimization theory and probability theory to the extent to which these notions
are utilized in the book. The third appendix, on the other hand, presents some
theorems which are used in Chapters 3 and 4. The book ends with a list of
references, a table that indicates the page numbers of the Corollaries,
Definitions, Examples, Lemmas, Propositions, Remarks and Theorems
appearing in the text and an index. 1.4 Conventions, Notation and Terminology
Each chapter of the book is divided into sections, and occasionally sections
are divided into subsections. Section 2.1 refers to Section 1 of Chapter 2, and
Section 8.5.2 refers to subsection 2 of Section 8.5. The following items appear
in this book and they are numbered per chapter, such as Prop. 3.7 referring to
the seventh proposition of the third chapter: Theorem (abbreviated to Thm.)
Corollary Lemma Definition (abbreviated to Def.) Problem Equation Figure
(abbreviated to Fig.) Property Example Proposition (abbreviated to Prop.)
Remark Unlike the numbering of other items, equation numbers appear within
parentheses, such as equation (2.5) which refers to the fifth numbered equation



in Chapter 2. References to bibliographical sources (listed alphabetically at
the end of the book) are made according to the Harvard system (i.e., by
name(s) and date). The following abbreviations and symbols are adopted in
the book, unless stated otherwise in specific contexts: RHS right-hand side
LHS left-hand side w.p. a with probability a LP linear programming = equality
sign

14 T. BA§AR AND G. J. OLSDER = defined by □ end of proof, remark,
example, etc. || parallel to r +1, if x> 0 sgn (x) dA Pi P(E) U J1 N N ul 7* rf K
K M X x(t) V V V vm R Rn |x| IMI =< undefined , if x = 0 I -1, if x<0 boundary
of the set A player i pursuer (evader) cost function(al) of Pi for a game in
extensive form cost function(al) of Pi for a game in normal form number of
players = {1,..., N} players' set; i € N action (decision, control) variable of Pi;
ul € Ul strategy (decision law) of Pi; 7* € Tl information available to Pi
number of stages (levels) in a discrete-time game ±{l,...,K};keK time interval
on which a differential game is defined: te[o,T\ state variable; x(£) in
continuous time and Xfc in discrete time time-derivative of x(t) value of zero-
sum game (in pure strategies) upper value lower value value of a zero-sum
game in mixed strategies real line n-dimensional Euclidean space Euclidean
norm of a finite-dimensional vector x, i.e., norm of a vector x in an infinite-
dimensional space. {x'xY'2 Other symbols or abbreviations used with regard
to sets, unions, summation, matrices, optimization, random variables, etc., are
introduced in Appendices A and B. A convention that we have adopted
throughout the text (unless stated otherwise) is that in nonzero-sum games all
players are cost-minimizers, and in two-person zero-sum games PI is the
minimizer and P2 is the maximizer. In two-person matrix games PI is the row-
selector and P2 is the column-selector. The word "optimality" is used in the
text rather freely for different equilibrium solutions when there is no ambiguity
in the context; optimum quantities (such as strategies, controls, etc.) are
generally identified by an asterisk (*).

Part I
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Chapter 2 Noncooperative Finite Games: Two-Person Zero-Sum 2.1
Introduction This chapter deals with the class of two-person zero-sum games
in which the players have a finite number of alternatives to choose from. There



exist two different formulations for such games: the normal (matrix) form and
the extensive (tree) form. The former constitutes a suitable representation of a
zero-sum game when each player's information is static in nature, since it
suppresses all the dynamic aspects of the decision problem. The extensive
form, on the other hand, displays explicitly the evolution of the game and the
existing information exchanges between the players. In the first part of the
chapter (Sections 2.2 and 2.3), the normal form is introduced together with
several related concepts, and then existence and computation of saddle-point
equilibria are discussed for both pure and mixed strategies. In the second part
of the chapter (Sections 2.4 and 2.5), extensive form description for zero-sum
finite games without chance moves is introduced, and saddle-point equilibria
for such games are discussed, also within the class of behavioral strategies.
This discussion is first confined to single-act games in which each player is
allowed to act only once, and then it is extended to multi- act games. The third
part of the chapter (comprising the remaining three sections) discusses
extensions in a number of directions. Section 2.6 is devoted to a brief
discussion on the nature of equilibria for zero-sum games which also
incorporate chance moves. Section 2.7 deals with two extensions: games with
nonstandard information patterns and randomized strategies, and games in
extensive 17

18 T. BA§AR AND G. J. OLSDER form which exhibits cycles. Finally,
Section 2.8 deals with games with action- dependent information sets, where
the information on which the players can base future moves depends on
previous moves. 2.2 Matrix Games The most elementary type of two-person
zero-sum games are matrix games. There are two players, to be referred to as
player 1 (PI) and player 2 (P2), and an (m x n)-dimensional (real-valued)
matrix A = {a^}. Each entry of this matrix is an outcome of the game,
corresponding to a particular pair of decisions made by the players. For PI, the
alternatives are the m rows of the matrix, while for P2 the possible choices are
the n columns of the same matrix. These alternatives are known as the
strategies of the players. If PI chooses the ith row and P2 the jth column, then
a -̂ is the outcome of the game, and PI pays this amount to P2. In case o  ̂is
negative, this should be interpreted as P2 paying PI the positive amount
corresponding to this entry (i.e., — o )̂. To regard the entries of the matrix as
sums of money to be paid by one player to the other is, of course, only a
convention. In a more general framework, these outcomes represent utility



transfers from one player to the other. Thus, we can view each element of the
matrix A (i.e., a possible outcome of the game) as the net change in the utility
of P2 for a particular play of the game, which is equal to minus the net change
in the utility of PI. Then, regarded as a rational decision maker, PI will seek to
minimize the outcome of the game, while P2 will seek to maximize it, by
independent decisions. Assuming that this game is to be played only once, then
a reasonable mode of play for PI is to secure his losses against any (rational or
irrational) behavior of P2. Under such an incentive, PI is forced to pick that
row (i*) of matrix .A, whose largest entry is no bigger than the largest entry of
any other row. Hence, if Pi adopts the i*th row as his strategy, where i*
satisfies the inequalities V"(^4) = maxaj-j < maxoy, i = l,...,m, (2.1) i i then his
losses will be no greater than V which we call the loss ceiling of PI, or
equivalently, the security level for his losses. The strategy "row i*" that yields
this security level will be called a security strategy for PI. Adopting a similar
mode of play, P2 will want to secure his gains against any behavior of PI, and
consequently, he will choose that column (j*) whose smallest entry is no
smaller than the smallest entry of any other column. In mathematical terms, j*
will be determined from the n-tuple of inequalities Y_(A) — minojj. > minoy,
j = 1,..., n. (2.2) i i By deciding on the j*th column as his strategy, P2 secures
his gains at the level V which we call'the gain-floor of P2, or equivalently, the
security level for his gains. Furthermore, any strategy for P2 that secures his
gain-floor, such as "column j*", is called a security strategy for P2.

TWO-PERSON ZERO-SUM FINITE GAMES 19 Theorem 2.1 In every matrix
game A = {a^}, (i) the security level of each player is unique, (ii) there exists
at least one security strategy for each player, (Hi) the security level of PI (the
minimizer) never falls below the security level o/P2 (the maximizer), i.e.,
minaij. = Y_(A) < V(A) = max. a ĵ, (2.3) i j where i* and j* denote security
strategies for PI and P2, respectively. Proof The first two parts follow readily
from (2.1) and (2.2), since in every matrix game there is only a finite number
of alternatives for each player to choose from. To prove part (iii), we first note
the obvious set of inequalities mm aa < a î < max a ĵ i J which holds true for
all possible k and /. Now, letting k = i* and I — j*, the desired result, i.e.,
(2.3), follows. D The third part of Thm. 2.1 says that, if played by rational
players, the outcome of the game will always lie between V and V_. It is for
this reason that the security levels V and V_ are & ŝo called, respectively, the
upper value and lower value of the matrix game. Yet another interpretation that



could be given to these values is the following. Consider the matrix game in
which players do not make their decisions independently, but there is a
predetermined ordering according to which the players act. First PI decides on
what row he will choose, he transmits this information to P2 who subsequently
chooses a column. In this game, P2 definitely has an advantage over PI, since
he knows what his opponent's actual choice of strategy is. Then, it is
unquestionable that the best play for PI is to choose one of his security
strategies (say, row i*). P2's "optimal" response to this is the choice of a
"column j°", where j° is determined from di*jo = maxaj.j = V = minmaxay,
(2.4) j » 3 with the "min max" operation designating the order of play in this
decision process. Thus, we see that the upper value of the matrix game is
actually attained in this case. Now, if the roles of the players are interchanged,
this time PI having a definite advantage over P2, then P2's best choice will
again be one of his security strategies (say, column j*), and Pi's response to
this will be a "row i°", where i° satisfies aioj, =mmaij» = V_ — max min a ij,
(2.5) i j i with the "max min" symbol implying that the minimizer acts after the
maximizer. Relation (2.5) indicates that the outcome of the game is equal to the
lower value V_, when PI observes P2's choice.

20 T. BA§AR AND G. J. OLSDER To illustrate these facets of matrix games,
let us now consider the following (3 x 4) matrix. P2 1 0 -2 3 -1 2 3 2 0 -2 1 1
Here P2 (the maximizer) has a unique security strategy, "column 3" (i.e., j* =
3), securing him a gain-floor of V_ = 0. PI (the minimizer), on the other hand,
has two security strategies, "row 2" and "row 3" (i.e., i* — 2, i\ — 3),
yielding him a loss-ceiling of V — maxj a2j = maxj a3j = 2 which is above the
security level of P2. Now, if P2 plays first, then he chooses his security
strategy "column 3", with Pi's unique response being "row 3" (i° — 3),
resulting in an outcome of 0 = V_. If PI plays first, he is actually indifferent
between his two security strategies. In case he chooses "row 2", then P2's
unique response is "column 3" (j° = 3),4 whereas if he chooses "row 3", his
opponent's response is "column 2" (j° = 2), both pairs of strategies yielding an
outcome of 2 = V. The preceding discussion validates the argument that, when
there is a definite order of play, security strategies of the player who acts first
make complete sense, and actually they can be considered to be in
"equilibrium" with the corresponding response strategies of the other player.
By two strategies (of PI and P2) to be in equilibrium, we roughly mean here
that, after the game is over and its outcome is observed, the players should



have no ground to regret their past actions. In a matrix game with a fixed order
of play, for example, there is no justifiable reason for the player who acts first
to regret his security strategy after the game is over. But what about the class of
matrix games in which the players arrive at their decisions independently? Do
security strategies have any sort of an equilibrium property, in that case? To
shed some light on this question, let us consider the (3 x 3) matrix game of
(2.7) below, with the players acting independently, and the game to be played
only once. P2 4 0 1 0 -1 2 -1 3 1 Both players have unique security strategies,
"row 3" for PI and "column 1" for P2, with the upper and lower values of the
game being V = 2 and V_ = 0, respectively. If both players play their security
strategies, then the outcome of the game is 1, which is midway between the
security levels of the players. But after the game is over, PI might think: "Well I
knew that P2 was going to play his security strategy, it is a pity that I didn't
choose row 2 and enjoy an outcome of 0". Thinking along the same lines, P2
might also regret that he did not play column 2 and achieve an outcome of 2.
This, then, indicates that, in this matrix game, the security strategies of the
players cannot possibly 4Here, and also earlier, it is only coincidental that
optimal response strategies are also security strategies.

TWO-PERSON ZERO-SUM FINITE GAMES 21 possess any equilibrium
property. On the other hand, if a player chooses a row or column (whichever
the case is) different from the one dictated by his security strategy, then he will
be taking chances, since there is always a possibility that the outcome of the
game might be worse for him than his security level. For the class of matrix
games with equal upper and lower values, however, such a dilemma does not
arise. Consider, for example, the (2 x 2) matrix game P2 3 -1 1 1 in which
"row 2" and "column 2" are the unique security strategies of PI and P2,
respectively, resulting in the same security level V = V_ = 1. These security
strategies are in equilibrium, since each one is "optimal" against the other one.
Furthermore, since the security levels of the players coincide, it does not make
any difference, as far as the outcome of the game is concerned, whether the
players arrive at their decisions independently or in a predetermined order.
The strategy pair {row 2, column 2}, possessing all these favorable features,
is clearly the only candidate that could be considered as the equilibrium
solution of the matrix game (2.8). Such equilibrium strategies are known as
saddle-point strategies, and the matrix game, in question, is then said to have a
saddle point in pure strategies. A more precise definition for these terms is



given below. Definition 2.1 For a given (mx n) matrix game A — {a^},
let{rowi*, column j*} be a pair of strategies adopted by the players. Then, if
the pair of inequalities a-i-j < aj-j- < dij* (2.9) is satisfied for all i = 1,..., m
and all j = 1,..., n, the strategies {row i*, column j*} are said to constitute a
saddle-point equilibrium (or simply, they are said to be saddle-point
strategies,), and the matrix game is said to have a saddle point in pure
strategies. The corresponding outcome a ĵ- of the game is called the saddle-
point value, or simply the value, of the matrix game, and is denoted by V(A).
Theorem 2.2 Let A = {ajj} denote an (m x n) matrix game with V(A) = V(A).
Then, (i) A has a saddle point in pure strategies, (ii) an ordered pair of
strategies provides a saddle point for A if, and only if, the first of these is a
security strategy for PI and the second one is a security strategy for P2, (Hi)
V(A) is uniquely given by V{A) = V(A) = V_(A).
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PI and j* denote a security strategy for P2, which always exist by Thm. 2.1 (ii).
Now, since V = V_, we have Oj«j < maxOj-j — V = V_ = minay < ay o « for
all i = 1,..., m and j = 1,..., n; and letting i = i*, j = j* in this inequality, we
obtain V = V_ = a ĵ-. Using this result in the same inequality yields which is
(2.9). This completes the proof of (i) and the sufficiency part of (ii). We now
show that the class of saddle-point strategy pairs is no larger than the class of
ordered security strategy pairs. Let {row i*, column j*} be a saddle-point
strategy pair. Then it follows from (2.9) that maxaj*j < ay < maxay i — 1,... ,
m, j j thus proving that "row i*" is a security strategy for PI. Analogously, it
can be shown that "column j*" is a security strategy for P2. This completes the
proof of (ii). Part (iii) then follows readily from (ii). D We now immediately
have the following property of saddle-point solutions, which follows from
Thm. 2.2 (ii). Corollary 2.1 In a matrix game A, let {row i\, column j\} and
{row %i, column J2} be two saddle-point strategy pairs. Then {row i\, column
J2}, {row 12, column j\} are also in saddle-point equilibrium. This feature of
the saddle-point strategies, given above in Corollary 2.1, is known as their
ordered interchangeability property. Hence, in the case of nonunique (multiple)
saddle points, each player does not have to know (or guess) the particular
saddle-point strategy his opponent will use in the game, since all such
strategies are in equilibrium and they yield the same value—indeed a very
desirable property that an equilibrium solution is expected to possess. For the
case when the security levels of the players do not coincide, however, no such



equilibrium solution can be found within the class of (pure) strategies that we
have considered so far. One way of resolving this predicament is, as we have
discussed earlier, to assume that one player acts after observing the decision of
the other one, in which case the security level of the player who acts first is
attained by an equilibrium "strategy pair". Here, of course, the strategy of the
player who acts last explicitly depends on the action of the first acting player
and hence the game has a "dynamic character". The precise meaning of this
will be made clear in Section 2.4, where more details can be found on these
aspects of zero-sum games.
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approach to obtain an equilibrium solution in matrix games that do not possess
a saddle point, and in which players act independently, is to enlarge the
strategy spaces, so as to allow the players to base their decisions on the
outcome of random events—thus leading to the so-called mixed strategies.
This is an especially convincing approach when the same matrix game is
played over and over again, and the final outcome, sought to be minimized by
PI and maximized by P2, is determined by averaging the outcomes of
individual plays. To introduce the concept of a mixed strategy, let us again
consider the matrix game A = {fly} with m rows and n columns. In this game,
the "strategy space" of PI comprises m elements, since he is allowed to choose
one of the m rows of A If r1 denotes this space of (pure) strategies, then T1 =
{row 1,... , row m}. If we allow mixed strategies for PI, however, he will pick
probability distributions on T1. That is, an allowable strategy for PI is to
choose "row 1" with probability (w.p.) 2/i, "row 2" w.p. j/2, • • ■ , "row m"
w.p. ym, where t/i + y2 H H ym - 1. The mixed strategy space of PI, which we
denote by Y, is now comprised of all such probability distributions. Since the
probability distributions are discrete, Y simply becomes the space of all
nonnegative numbers j/; that add up to 1, which is a simplex. Note that, the m
pure strategies of PI can also be considered as elements of Y, obtained by
setting (i) 2/1 = 1, t/j = 0, Vi  ̂1; (ii) 2/2 = 1, 2/i = 0, Vi  ̂2; The mixed
strategy space of P2, which we denote by Z, can likewise be defined as an n-
dimensional simplex. A precise definition for a mixed strategy now follows.5
Definition 2.2 A mixed strategy for a player is a probability distribution on the
space of his pure strategies. Equivalently, it is a random variable whose values
are the player's pure strategies. Thus, in matrix games, a mixed strategy for
each player can be considered either as an element of a simplex, or as a



random variable with a discrete probability distribution. Typical mixed
strategies for the players, under the latter convention, would be independent
random variables u and v, defined, respectively, by {1 w.p. 2/1 m , ,̂Vi = h
Vi>0, (2.10a) m w.p. 2/m »=i 1 W.p. Z\ n , £*i = l, *>°- (2-10b) n w.p. zn i=\
Now, if the players adopt these random variables as their strategies to be
implemented during the course of a repeated game, they will have to base their
sThis definition of a mixed strategy is valid not only for matrix games but also
for other types of finite games to be discussed in this and the following chapter.
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or column to choose during each play of the game) on the outcome of a chance
mechanism, unless the probability distributions involved happen to be
concentrated at one point—the case of pure strategies. If the adopted strategy
of PI is to pick "row 1" w.p. 1/2 and "row m" w.p. 1/2, for example, then the
player in question could actually implement this strategy by tossing a fair coin
before each play of the game, playing "row 1" if the actual outcome is "head",
and "row m" otherwise. It should be noted, here, that the actual play (action)
dictated by Pi's strategy becomes known (even to him) only after the outcome
of the chance mechanism (tossing of a fair coin, in this case) is observed.
Hence, we have a sharp distinction between a player's (proper mixed)
strategy6 and its implemented "value" for a particular play, where the latter
explicitly depends on the outcome of a chance experiment designed so as to
generate the odds dictated by the mixed strategy. Such a dichotomy between
strategy and its implemented value does not exist for the class of pure
strategies that we have discussed earlier in this section, since if a player
adopts the strategy "to play row i", for example, then its implementation is
known for sure—he will play "row i". Given an (m x n) matrix game A, which
is to be played repeatedly and the final outcome to be determined by averaging
the scores of the players on individual plays, let us now investigate as to how
this final outcome will be related to the (mixed) strategies adopted by the
players. Let the independent random variables u and v, defined by (2.10a) and
(2.10b), be the strategies adopted by PI and P2, respectively. Then, as the
number of times this matrix game is played gets arbitrarily large, the
frequencies with which different rows and columns of the matrix are chosen by
PI and P2, respectively, will converge to their respective probability
distributions that characterize the strategies u and v. Hence, the average value
of the outcome of the game, corresponding to the strategy pair {u, v}, will be



equal to m n J{y,z) = Yl ]C yiaiizj = y'Az> (2-11) where y and z are the
probability distribution vectors defined by y = (yi,---,ymy, z = (zi,...,zn)'.
(2.12) Pi wishes to minimize this quantity, J(y, z), by an appropriate choice of
a probability distribution vector y € Y, while P2 wishes to maximize the same
quantity by choosing an appropriate z £ Z, where the sets Y and Z are,
respectively, the m- and n-dimensional simplices introduced earlier, i.e., m y=
{i/eRm:2/>0,^2/,-l}, (2.13a) 6Since, by definition, the concept of mixed
strategy also covers pure strategy, we shall sometimes use the term "proper
mixed" to emphasize (whenever the case is) that the underlying probability
distribution is not one point.
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(2.13b) j=i The following definitions now follow as obvious extensions to
mixed strategies of some of the concepts introduced earlier for matrix games
with strategy spaces comprised of only pure strategies. Definition 2.3 A vector
y* eY is called a mixed security strategy for PI, in the matrix game A, if the
following inequality holds for all y € Y: Vm(A) = maxy*'Az<maxy'Az, y£Y.
(2.14) zez zez Here, the quantity Vm is known as the average security level
o/Pl (or equiv- alently the average upper value of the game/ Analogously, a
vector z* e Z is called a mixed security strategy for P2, in the matrix game A, if
the following inequality holds for all z € Z: V_m(A) = min y'Az* > mmy'Az, z
e Z. (2.15) y€Y y€Y Here, V_m is known as the average security level of P2
(or equivalently, the average lower value of the game,). Definition 2.4 A pair
of strategies {y*,z*} is said to constitute a saddle point for a matrix game A, in
mixed strategies, if y*'Az < y*'Az* < y'Az*, Vy€Y,z€Z. (2.16) The quantity
Vm(A) = y*'Az* is known as the saddle-point value, or simply the value, of the
game, in mixed strategies. Remark 2.1 The assumptions of existence of a
maximum in (2.14) and a minimum in (2.15) are justifiable since, in each case,
the objective functional is linear (thereby continuous) and the simplex over
which optimization is performed is closed and bounded (thereby compact).
(See Appendix A.) □ As a direct extension of Thm. 2.1, we can now verify the
following properties of the security levels and security strategies in matrix
games when the players are allowed to use mixed strategies. Theorem 2.3 In
every matrix game A in which the players are allowed to use mixed strategies,
the following properties hold: (i) The average security level of each player is
unique. (ii) There exists at least one mixed security strategy for each player.



26 T. BA§AR AND G. J. OLSDER (Hi) The security levels in pure and mixed
strategies satisfy the following inequalities: V(A)<Vm(A)<Vm(A)<V(A).
(2.17) Proof, (i) Uniqueness of Vm follows directly from its definition, V  ̂=
infy maxz y'Az, in view of Remark 2.1. Analogously, the quantity V_m = supz
miny y'Az is also unique. (ii) The quantity, maxz ẑy'Az, on the right-hand side
(RHS) of (2.14) is a continuous function of y € Y, a result which can be proven
by employing standard methods of analysis. But since Y is a compact set, the
minimum of this function is attained on Y, thus proving the desired result for the
security strategy of PI. Proof of existence of a security strategy for P2 follows
along similar lines. (iii) The middle inequality follows from the simple
reasoning that the maxi- mizer's security level cannot be higher than the
minimizer's security level. The other two inequalities follow, since the pure
security strategies of the players are included in their mixed strategy spaces. D
As an immediate consequence of part (ii) of Thm. 2.3 above, we obtain the
following. Corollary 2.2 In a matrix game A, the average upper and lower
values in mixed strategies are given, respectively, by Vm(A) = minmax y'Az
(2.18a) and Y_m(A) - maxmin y'Az. (2.18b) Now, one of the important results
of zero-sum game theory is that these upper and lower values are equal, that is,
Vm(A) = Vm(A). This result is given in Thm. 2.4, below, which is known as
the "Minimax Theorem". In its proof, we shall need the following lemma.
Lemma 2.1 Let A be an arbitrary (m x n)-dimensional matrix. Then, either (i)
there exists a nonzero vector y € Rm, y > 0 such that A'y < 0, or (ii) there exists
a nonzero vector z € Rn, z > 0 such that Az > 0. Proof. Consider in Rn the unit
vectors e\,..., en, together with the rows of A, to be indicated by a,., i = 1,..., m.
Denote the convex hull of these n + m vectors by C. Two possibilities exist:
either 0 € C or 0 £ C. Assume first that 0 € C. Then there exist nonnegative
coefficients yi (i = 1,..., m) and rjj (j = 1,..., n), normalized to 1, YhLi V* +
2j=i Vj = 1. such that m n
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equation reads Yl^Li Viaij + Vj = 0> 3' — 1j • ■ ■ in- Since all the yi's cannot
be zero simultaneously (otherwise all jjj-'s would also be zero— which is an
impossibility due to the normalization), we have m ][^y»ay =-ffr < 0, j = l,...,n.
t=i Now, if we take y 6 Rm as the vector whose components are the j/j's
defined above, then the validity of possibility (i) of the lemma follows.
Assume next that 0  ̂C. Then, there exists a hyperplane passing through the
origin (characterized by the equation z'x = 0, where x, z € Rn, and where x is



the running variable), such that C is on one side of it; furthermore, z'x > 0 for x
£ C. If we choose x = ti (which belongs to C by construction), then it follows
that Zi > 0, and hence the vector z is nonzero. Similarly, if we choose x — a[.,
then z'a  ̂> 0 and hence Az > 0, which validates the possibility (ii). D Theorem
2.4 (The Minimax Theorem) In any matrix game A, the average security levels
of the players in mixed strategies coincide, that is, Vm(A) = minmax y'Az =
maxminy'Az = V_m{A). (2.19) Y /j /j Y Proof. We first show, by applying
Lemma 2.1, that for a given matrix game A, at least one of the following two
inequalities holds: Vm{A) < 0, (i) Vm(A) > 0. (ii) Assume that the first
alternative of Lemma 2.1 is valid. Then, there exists a vector y° € Y such that
A'y° < 0, which is equivalent to the statement that the inequality y°'Az < 0
holds for all z £ Z. This is further equivalent to saying max y° Az < 0 which
definitely implies (by also making use of (2.18a)) Vm(A) = minmaxy'Az < 0.
Now, under the second alternative of Lemma 2.1, there exists a vector z° £ Z
such that Az° > 0, or equivalently, y'Az° > 0, \/ye Y. This is further equivalent
to the inequality miny'Az0 > 0,
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use of (2.18b), since V_m(A) = maxmin y'Az > m\ny'Az°. Thus we see that,
under the first alternative of Lemma 2.1, inequality (i) holds; and under the
second alternative, inequality (ii) remains valid. Let us now consider a new (m
x n)-dimensional matrix B = {bij} obtained by shifting all entries of A by a
constant, c, that is, b  ̂— a,ij — c. This results in a shift of the same amount in
both t4„(A) and V_m(A), that is, Vm(B) = Vm(A) - c and Vm{B) = Vm{A)-c.
Since matrix A was arbitrary in (i) and (ii), we replace A with B, as defined
above, in these inequalities, and arrive at the following property with regard to
the upper and lower values of a matrix game A, in mixed strategies. For a
given matrix game A and an arbitrary constant c, at least one of the following
two inequalities holds true: Vm(A) < c, (tit) Vm(A) > c. (iv) But, for this
statement to be valid for arbitrary c, it is necessary that Kn(j4) — V_m(A).
For, otherwise, the only possibility is Vm(A) = V_m(A) + k, in view of the
middle inequality of (2.17), where k > 0; and picking c = V_m(A) + (l/2)fc in
(iii) and (iv), it readily follows that neither (iii) nor (iv) is satisfied. Thus, this
completes the proof of the theorem. D Corollary 2.3 Let A denote an (m x n)
matrix game. Then, (i) A has a saddle point in mixed strategies, (ii) a pair of
mixed strategies provides a saddle point for A if, and only if, the first of these
is a mixed security strategy for PI, and the second one is a mixed security



strategy for P2, (iii) Vm(A) is uniquely given by Vm{A) = Vm(A) = Y_m(A),
(iv) in case of multiple saddle points, the mixed saddle-point strategies
possess the ordered interchangeability property. Proof. This corollary to Thm.
2.4 is actually an extension of Thm. 2.2 and Corollary 2.1 to the case of mixed
strategies, and its verification is along the same lines as that of Thm. 2.2. It
should only be noted that equality of the average upper and lower values of the
matrix game is a fact, in the present case, rather than a part of the hypothesis,
as in Thm. 2.2. D We have thus seen that, if the players are allowed to use
mixed strategies, matrix games always admit a saddle-point solution which,
thereby, manifests itself as the only reasonable equilibrium solution in zero-
sum two-person games of that type.
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Equilibrium Strategies We have seen in the previous section that two-person
zero-sum matrix games always admit a saddle-point equilibrium in mixed
strategies (cf. Thm. 2.4). One important property of mixed saddle-point
strategies is that, for each player, the corresponding one also constitutes a
mixed security strategy, and conversely, each mixed security strategy is a
mixed saddle-point strategy (Corollary 2.3(ii)). This property, then, strongly
suggests a possible way of obtaining the mixed saddle-point solution of a
matrix game, which is to determine the mixed security strategy(ies) of each
player. To illustrate this approach, let us consider the (2 x 2) matrix game P2 3
-1 0 1 which clearly does not admit a pure-strategy saddle point, since V = 1
and V_ = 0. Let the mixed strategies of Pi and P2 be denoted by y = (2/1,2/2)'
and z = (zi,z2)', respectively, with yt > 0, zt > 0 (i = 1,2), t/i + y2 = zx + z2 = 1,
and consider first the average security level of PI. It should be noted that,
while determining the average security level of a player, we can assume,
without any loss of generality, that the other player chooses only pure strategies
(this follows directly from Defs. 2.3 and 2.4). Hence, in the present case, we
can take P2 to play either {zx = l,z2 = 0) or (zi = 0, z2 = 1); and under different
choices of mixed strategies for PI, we can determine the average outcome of
the game as shown in Fig. 2.1 by the bold line, which forms the upper envelope
to the two straight lines drawn. Now, if the mixed strategy (t/jf = \,V2 = §)
corresponding to the lowest point of that envelope is adopted by PI, then the
average outcome will be no greater than |. For any other mixed strategy of PI,
however, P2 can y, =1 yf = 2/5 y1=0 y2 = 0 yj = 3/5 y2 = 1 Figure 2.1: Mixed
security strategy of PI for the matrix game (2.20).
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4/5 Z2 = l Figure 2.2: Mixed security strategy of P2 for the matrix game (2.20).
obtain a higher average outcome. (If, for instance, 2/1=5,2/2 = 5, then P2 can
increase the outcome by playing z\ = I, z% = 0.) This then implies that the
strategy (t/i = |,j/2 = §) is a mixed security strategy for PI (and his only one),
and thereby, it is his mixed saddle-point strategy. The mixed saddle-point
value can easily be read off from Fig. 2.1 to be Vm = §. To determine the
mixed saddle-point strategy of P2, we now consider his security level, this
time assuming that PI adopts pure strategies. Then, for different mixed
strategies of P2, the average outcome of the game can be determined to be the
bold line, shown in Fig. 2.2, which forms a lower envelope to the two straight
lines drawn. Since P2 is the maximizer, the highest point on this envelope is
his average security level, which he can guarantee (on the average) by playing
the mixed strategy (z\ — \,z\ — |) which is also his saddle-point strategy. The
computational technique discussed above is known as the "graphical solution"
of matrix games, since it makes use of a graphical construction directly related
to the entries of the matrix. Such an approach is practical not only for (2 x 2)
matrix games but also for general (2 x n) and (m x 2) matrix games. Consider,
for example, the (2 x 3) matrix game P2 1 6 3 2 0 7 for which Pi's average
security level in mixed strategies has been determined in Fig. 2.3. Assuming
again that P2 uses only pure strategies (z\ — l,z2 = z3 = 0 or z\ = Z3 = 0, z-i =
1 or z\ = z2 = 0, Z3 = 1), the average outcome of the game for different mixed
strategies of PI is given by the bold line drawn in Fig. 2.3, which is again the
upper envelope (this time formed by three straight lines). The lowest point on
this envelope yields the mixed security strategy, and thereby the mixed saddle-
point strategy, of PI, which is (j/j" = |, j/| = 5)-
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y2* = l/3 y2=l Figure 2.3: Mixed security strategy of PI for the matrix game
(2.21). The mixed saddle-point value, in this case, is Vm — |. To determine the
mixed saddle-point strategy of P2, we first note that the average security level
of PI has been determined by the intersection of only two straight lines which
correspond to two pure strategies of P2, namely "column 1" and "column 2". If
PI uses his mixed security strategy, and P2 knows that before he plays, he
would of course be indifferent between these two pure strategies, but he would
never play the third pure strategy, "column 3", since that will reduce the
average outcome of the game. This then implies that, in the actual saddle-point



solution, he will "mix" only between the first two pure strategies. Hence, in the
process of determining P2's mixed security strategies, we can consider the (2 x
2) matrix game P2 1 6 3 2 which is obtained from (2.21) by deleting the last
column. Using the graphical approach, P2's mixed security strategy in this
matrix game can readily be determined to be [z\ = \, z| = f) which is also his
mixed saddle-point strategy. Relation with linear programming One alternative
to the graphical solution when the matrix dimensions are high is to convert the
original matrix game into a linear programming (LP) problem and make use of
some of the powerful algorithms available for LP. To elucidate the close
connection between a two-person zero-sum matrix game and an LP problem,
let us start with an (m x n) matrix game A = {a^} with all entries
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n). Then, the average value of this game, in mixed strategies, is given by
Vm(A) — min max i/'-Az = max mint/Az, (2.23) which is necessarily a
positive quantity by our positivity assumption on A. Let us now consider the
min-max operation used in (2.23). Here, first a y € Y is given, and then the
resulting expression is maximized over Z\ that is, the choice of z € Z can
depend on y. Hence, the middle expression of (2.23) can also be written as
minvi(y), y€Y where Vi(y) is a positive function of y, defined by ui(t/) =
maxy'Az > y'Az Vz € Z. (2.24) Since Z is the n-dimensional simplex as defined
by (2.13b), the inequality in (2.24) becomes equivalent to the vector inequality
A'y<lnvi{y), where in (̂i,...,i)'eRn. Further introducing the notation y = y/v\ (y)
and recalling the definition of Y from (2.13a), we observe that the optimization
problem faced by PI in determining his mixed security strategy is minimize v\
(y) over Rm subject to This is subject further to A'y y'lm y>o, < In, = My)]"1. y
= yvi{y). equivalent to the maximization problem i nax y'\m A'y < ln, y>o,
(2.25a) (2.25b) (2.25c) which is a standard LP problem. The solution of this
LP problem will give the mixed security strategy of PI, normalized with the
average saddle-point
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Hence, if y* £ Y is a mixed saddle-point strategy of PI, in the matrix game A,
then the quantity y* = y*/Vm(A) solves the LP problem (2.25a)-(2.25c), whose
optimal value is in fact l/Vm(A). Conversely, every solution of the LP problem
will correspond to a mixed strategy of PI in the same manner. Now, if we
instead consider the right-hand expression of (2.23), and introduce v2(z) =



mmy'Az < y'Az Vy £ Y, and z = z/v2(z), following similar steps and reasoning
leads us to the minimization problem minz'ln (2.26a) subject to Az > lm,
(2.26b) z > 0, (2.26c) which is the "dual" of (2.25a)-(2.25c). We thus arrive at
the conclusion that if z* £ Z is a mixed saddle-point strategy of P2, in the
matrix game A, then z* — z*/Vm(A) solves the LP problem (2.26a)-(2.26c),
whose optimal value is again l/Vm(A). Furthermore, the converse statement is
also valid. We have thus shown that, given a matrix game with all positive
entries, there exist two LP problems (duals of each other) whose solutions
yield the saddle-point solution(s) of the matrix game. The positivity of the
matrix A, however, is only a convention here, and can easily be dispensed
with, as the following lemma shows. Lemma 2.2 Let A and B be two (m x n) -
dimensional matrices related to each other by the relation A = B + clml'n,
(2.27) where c is some constant. Then, (i) every mixed saddle-point strategy
pair for matrix game A also constitutes a mixed saddle-point solution for
matrix game B, and vice versa, (ii) Vm(A) = Vm(B) + c. Proof. Let (y*,z*) be
a saddle-point solution for A, thus satisfying inequalities (2.16). If A is
replaced by B + clml  ̂in (2.16), then it is easy to see that (y*,z*) also
constitutes a saddle-point solution for B, since y'lml'nz = 1 for every y £Y, z £
Z. Since the reverse argument also applies, this completes the proof of part (i).
Part (ii), on the other hand, follows from the relation Vm(A) = y*'[B +
clml'n}z* = y*'Bz* + cy*'lml'nz* = Vm(B) + c. Q
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lemma, we call matrix games which satisfy relation (2.27) strategically
equivalent matrix games. It should now be apparent that, given a matrix game
A, we can always find a strategically equivalent matrix game with all entries
positive, and thus the transformation of a matrix game into two LP problems as
discussed prior to Lemma 2.2 is always valid, as far as determination of
saddle-point strategies is concerned. This result is summarized below in Thm.
2.5. Theorem 2.5 Let B be an (m x n) matrix game, and A be defined by (2.27)
with c chosen to make all its entries positive. Introduce the two LP problems
maxy'lm "J A'y < ln > "primal problem", (2.28a) 2/>0 J minz'ln  ̂Az>lm \
"dual problem", (2.28b) z>0 J with their optimal values (if they exist) denoted
by Vp and Va, respectively. (i) Both LP problems admit a solution, and Vp =
Va = l/Vm(A). (ii) If (y*,z*) is a mixed saddle-point solution of the matrix
game B, then y*/Vm(A) solves (2.28a), and z*/Vm(A) solves (2.28b). (Hi) If
y* is a solution of (2.28a), and z* is a solution of (2.28b), the pair



(y*/Vp,z*/Vd) constitutes a mixed saddle-point solution for matrix game B.
Furthermore, Vm(B) = (1/Vp) - c. Proof. Since A is a positive matrix and
strategically equivalent to B, the theorem has already been proven prior to the
statement of Lemma 2.2. We should only note that the reason why both LP
problems admit a solution is that the mixed security strategies of the players
always exist in the matrix game A. D Theorem 2.5 provides one method of
making games "essentially" equivalent to two LP problems that are duals of
each other, thus enabling the use of some powerful algorithms available for LP
in order to obtain their saddle- point solutions. (The reader is referred to
Dantzig (1963), Luenberger (1973), Gonzaga (1992), or Karmarkar (1984) for
LP algorithms.) There are also other transformation methods available in the
literature, which form different kinds of equivalences between matrix games
and LP problems, but the underlying idea is essentially the same in all these
techniques. For one such equivalence the reader is referred to the next chapter,
to Corollary 3.2, where an LP problem, not equivalent to the one of Thm. 2.5,
is obtained as a special case of a more general result on nonzero-sum matrix
games. More details on computational techniques for matrix games can be
found in Luce and Raiffa (1957) and Singleton and Tyndal (1974).

TWO-PERSON ZERO-SUM FINITE GAMES 35 Dominating strategies We
conclude this section by introducing the concept of "dominance" in matrix
games, which can sometimes be useful in reducing the dimensions of a matrix
game by eliminating some of its rows and/or columns which are known from
the very beginning to have no influence on the equilibrium solution. More
precisely, given an (m x n) matrix game A = {a^}, we say that "row t"
dominates "row k" if ai} < akj, j = 1, •. ■, n, and if, for at least one j, the strict
inequality-sign holds. In terms of pure strategies, this means that the choice of
the dominating strategy, i.e., "row i", is at least as good as the choice of the
dominated strategy, i.e., "row k". If, in the above set of inequalities, the strict
inequality-sign holds for all j = 1,... ,n, then we say that "row i" strictly
dominates "row k", in which case, regardless of what P2 chooses, PI does
better with "row i" (strictly dominating strategy) than with "row fc" (strictly
dominated strategy). It therefore follows that PI can always dispense with his
strictly dominated strategies and consider only strictly undominated ones, since
adoption of a strictly dominated strategy is apt to increase the security level for
PI. This argument also holds for mixed strategies, and strictly dominated rows
are always assigned a probability of zero in an optimal (mixed) strategy for PI.



Analogously for P2, "column j" of A is said to dominate (respectively, strictly
dominate) "column P, if a  ̂> an, i = l,...,m, and if, for at least one i
(respectively, for all i), the strict inequality-sign holds. In an optimal (mixed)
strategy for P2, strictly dominated columns are also assigned a probability of
zero. Mathematical verifications of these intuitively obvious assertions, as
well as some other properties of strictly dominating strategies, can be found in
Vorob'ev (1977). We have thus seen that, in the computation of (pure or mixed)
saddle-point equilibria of matrix games, strictly dominated rows and columns
can readily be deleted, since they do not contribute to the equilibrium solution
—and this could lead to considerable simplifications in the graphical solution
or in the solution of the equivalent LP problems, since the matrix is now of
smaller dimension(s). With (nonstrictly) dominated rows and columns,
however, this may not always be so. Even though every saddle-point solution
of a matrix game whose dominated rows and columns are deleted is also a
saddle-point solution of the original matrix game, there might be other saddle
points (of the original game) which are eliminated in this process. As a
specific illustration of this possibility, consider the (2 x 2) matrix game P2 0 -1
X, X which admits two saddle points, as indicated. For PI, "row 2" is clearly
dominating (but not strictly dominating), and for P2, "column 2" is strictly
dominating. Thus, by eliminating dominated rows and columns, we end up with
the (1 x 1) game corresponding to the dominating strategies of the players,
which trivially has a unique saddle point.

36 T. BA§AR AND G. J. OLSDER Motivated by this result, we call the
saddle-point solutions of the "reduced" game which does not have any
dominated rows or columns dominant saddle- point solutions. Even though the
original game might have other saddle points, it may still be reasonable to
confine attention only to dominant saddle points, since any game that possesses
a saddle point also possesses (by definition) a dominant saddle point, and
furthermore the saddle-point value (in pure or mixed strategies) is unique; in
other words, there is nothing essential to gain in seeking saddle-point
equilibria which are not dominant. 2.4 Extensive Forms: Single-Act Games
There exist different mathematical descriptions for two-person zero-sum
games with finite strategy sets, the matrix form (also known as the normal
form) being one of these. A normal form does not in general provide the full
picture of the underlying decision process, since it only describes the
correspondences between different ordered strategy pairs and outcomes. Some



important issues like the order of play in the decision process, information
available to the players at the time of their decisions, and the evolution of the
game in the case of dynamic situations are suppressed in the matrix description
of a zero-sum game. An alternative to the normal form, which explicitly
displays the dynamic character of the decision problem, is known as the
extensive form of a two- person zero-sum game. An extensive form basically
involves a tree structure with several nodes and branches, providing an
explicit description of the order of play and the information available to each
player at the time of his decision(s); the game evolves from the top of the tree
to the tip of one of its branches. Two such tree structures are depicted in Fig.
2.4, where in each case PI has two alternatives (branches) to choose from,
whereas P2 has three alternatives, and the order of play is such that PI acts
before P2 does. The numbers at the end of the lower branches represent the
pay-offs to P2 (or equivalently, losses incurred to PI) if the corresponding
paths are selected by the players. The uppercase letters L, M, R stand for Left,
Middle, and Right branches, respectively. 130627130627 (a) (b) Figure 2.4:
Two zero-sum games in extensive form differing only in the information
available to P2.
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two zero-sum games displayed in Figs 2.4(a) and 2.4(b) are equivalent in
every aspect other than the information available to P2 at the time of his play,
which is indicated on the tree diagrams by dotted lines enclosing an area
(known as the information set) including the relevant nodes. In Fig. 2.4(a), the
two possible nodes of P2 are included in the same dotted area, implying that,
even though PI acts before P2 does, P2 does not have access to his opponent's
action. That is to say, at the time of his play, P2 does not know at what node he
really is. This is, of course, equivalent to the case when both players act
simultaneously. Hence, simultaneous play can also be represented by a tree
structure, provided that the relevant information set is chosen properly. The
extensive form of Fig. 2.4(a) can now easily be converted into the normal
form, with the equivalent matrix game being the one given by (2.21) in Section
2.3. As it has been discussed there, this matrix game admits a saddle-point
solution in mixed strategies, which is (y*L = |, y*R = 5> ZL = \->z*m ~ f i ZR =
0)' with the mixed saddle-point value being Vm = 8/3. The extensive form of
Fig. 2.4(b), however, admits a different matrix game as its normal form and
induces a different behavior on the players. In this case, each node of P2 is



included in a separate information set, thus implying that P2 has perfect
information as to which branch of the tree PI has chosen. Hence, if u1 denotes
the actual choice of PI and 72() denotes a strategy for P2, as a maximizer P2's
optimal choice will be 72V) = { R tf ui=jR; (2.29a) Not knowing this situation
ahead of time, Pi definitely adopts the strategy 71*=u1* = L (2.29b) with the
equilibrium outcome of the game being 3, which is, in fact, the upper value of
the matrix game (2.21). Thus, we have obtained a solution of the zero-sum
game of Fig. 2.4(b) by directly making use of the extensive tree formulation.
Let us now attempt to obtain the (same) saddle-point solution by transforming
the extensive form into an equivalent normal form. To this end, we first
delineate the possible strategies of the players. For PI, there are two
possibilities: 71 = L and 71 — R. For P2, however, since he observes the
action of PI, there exist 32 = 9 possible strategies, which are 72(mx) = u1,
72(u1) = L, 7|(m1) = M, 72(m1) = R, L if u1 = L, M if ul = R, R if «' = L, L if «'
= R,

38 T. BA§AR AND G. J. OLSDER 77V) 78V) 79V) where the subscripts i =
1,..., 9 denote a particular ordering (labeling) of the possible strategies of P2.
Hence, the equivalent normal form of the zero-sum game of Fig. 2.4(b) is the
2x9 matrix game 1 7 1 6 3 2 0 7 1 2 0 6 ?> 7 'X 6 0 2 123456 7 89 which
admits two saddle points, as indicated, with the dominant one being {L,
column 7}. It is this dominant saddle-point solution that corresponds to the one
given by (2.29a)-(2.29b), and thus we observe that the derivation outlined
earlier, which utilizes directly the extensive tree structure, could cancel out
dominated saddle points. This, however, does not lead to any real loss of
generality, since, if a matrix game admits a pure-strategy saddle point, it also
admits a dominant pure-strategy saddle point, and furthermore, the saddle-
point value is unique (regardless of the number of pure-strategy equilibria). We
should now note that the notion of "(pure) strategy introduced above within the
context of the zero-sum game of Fig. 2.4(b) is somewhat different from (and, in
fact, more general than) the one adopted in Section 2.2. This difference arises
mainly because of the dynamic character of the decision problem of Fig. 2.4(b)
—P2 being in a position to know exactly how PI acts. A (pure) strategy for P2,
in this case, is a rule that tells him which one of his alternatives to choose, for
each possible action of PI. In mathematical language, it is a mapping from the
collection of his information sets into the set of his alternatives. We thus see
that there is a rather sharp distinction between a strategy and the actual action



dictated by that strategy, unless there is only one information set (which is the
case in Fig. 2.4(a)). In the case of a single information set, the notions of
strategy and action definitely coincide, and that is why we have used these two
terms interchangeably in Section 2.2 while discussing matrix games with pure-
strategy solutions. We are now in a position to give precise definitions of some
of the concepts introduced above. Definition 2.5 An extensive form of a two-
person zem-sum finite game without chance moves is a finite tree structure
with (i) a specific vertex indicating the starting point of the game, M R M L R
M if if if if if if u1 u1 u1 u1 u1 u1 = L, = R, = L, = R, = L, = R,
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assigning a real number to each terminal vertex of the tree, which determines
the pay-off (respectively, loss) to P2 (respectively, pi;, (Hi) a partition of the
nodes of the tree into two player sets (to be denoted by N1 and N2 for PI and
P2, respectively), (iv) a subpartition of each player set Nl into information sets
{??'}, such that the same number of immediate brunches emanates from every
node belonging to the same information set, and no node follows another node
in the same information set.7 Remark 2.2 This definition of an extensive form
covers more general types of two-person zero-sum games than the ones
discussed heretofore since it also allows a player to act more than once in the
decision process, with the information sets being different at different levels of
play. Such games are known as multi-act games, and they will be discussed in
Section 2.5. In the remaining parts of this section we shall confine our analysis
to single-act games—games in which each player acts only once. □ Remark 2.3
It is possible to extend Def. 2.5 so that it also allows for chance moves by a
third party called "nature". Such an extension will be incorporated in Section
2.6. In the present section, and also in Section 2.5, we only consider the class
of zero-sum finite games which do not incorporate any chance moves. □
Definition 2.6 Let N% denote the class of all information sets of Pi, with a
typical element designated as rf. Let UlL denote the set of alternatives ofPi at
the nodes belonging to the information set rf. Define Ul = Ul/  ̂where the union
is over rf € Nz. Then, a strategy Y for Pi is a mapping from N* into Ul,
assigning one element in U% for each set in Nl, and with the further property
that îrf) € £/'i for each rf £ Nl. The set of all strategies for Pi is called his
strategy set fspacej, and it is denoted by P. Remark 2.4 For the starting player,
it is convenient to take TV* = a singleton, to eliminate any possible ambiguity.
□ Example 2.1 In the extensive form of Fig. 2.4(b), P2 has two information sets



(N2 = {(node 1), (node 2)}) and three alternatives (U2 = {L, M, R}).
Therefore, he has nine possible strategies which have actually been listed
earlier during the normalization phase of this extensive form. Here, by an
abuse of notation, rj2 — {u1}. □ 7For tree structures in which an information
set contains more than one node from any directed path in the tree or for games
in which the underlying graph contains cycles (and hence is not a tree
anymore), the reader is referred to subsection 2.7.1.
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to be constant if its value does not depend on its argument r\l. Saddle-point
equilibria of single-act games The pure-strategy equilibrium solution of single-
act two-person zero-sum games in extensive form can be defined in a way
analogous to Def. 2.1, with appropriate notational modifications. To this end,
let 7(71,72) denote the numerical outcome of a game in extensive form,
interpreted as the loss incurred to PI when PI and P2 employ the strategies 71
G T1 and 72 6 T2, respectively. This loss function in fact defines the
correspondences between different ordered strategy pairs and outcomes, and
thus describes the equivalent normal form of the zero-sum game. Then, we
have the following. Definition 2.8 A pair of strategies {71* £ r\72* € T2} is in
saddle-point equilibrium if the following set of inequalities is satisfied for
allj1 € T1, 72 6 T2: J(71*,72) < JhU,l2*) < J{l\l2')- (2-30) The quantity
(̂71*,72*) is known as the saddle-point value of the zero-sum game. Since a

saddle-point equilibrium is defined in terms of the normal form of a game, a
direct method for solving two-person single-act games in extensive form
would be first to convert them into equivalent normal form and solve for the
saddle-point solution of the resulting matrix game, and then to interpret this
solution in terms of the original game through the one-to-one correspondences
that exist between the rows and columns of the matrix and strategies of the
players. This method has already been illustrated in this section in conjunction
with the solution of the zero-sum game of Fig. 2.4(b), and as we have observed
there, a major disadvantage of such a direct approach is that one has to list
down all possible strategies of the players and consider a rather high
dimensional matrix game, especially when the second-acting player has
several information sets. An alternative to this approach exists, which makes
direct use of the extensive form description of the zero-sum game. This, in fact,
is a recursive procedure, and it obtains the solution without necessarily
considering all strategy combinations, especially when the second-acting



player has more than one information set. The strategies not considered in this
procedure are the dominated ones, and this has actually been observed earlier
in this section when we employed the technique to arrive at the equilibrium
strategy pair (2.29a)- (2.29b) for the zero-sum game of Fig. 2.4(b). Before
providing a general outline of the steps involved in this derivation, let us first
consider another, somewhat more elaborate, example which is the zero-sum
game whose extensive form is depicted in Fig. 2.5. To determine the saddle-
point strategies associated with this zero-sum game, we first note that if u1 =
R, then P2 should choose 72(i?) = L, to result in a loss
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extensive form that admits a saddle-point equilibrium in pure strategies. of 2 to
PI. If PI picks L or M, however, P2 cannot differentiate between these two,
since they belong to the same information set; and hence now a matrix game
has to be solved for that part of the tree. The equivalent normal form is P2 3 -1
1 W L R which clearly admits the unique saddle-point solution u1 = M, u2 = R,
yielding a cost of 1 for PI. Hence, in the actual play of the game, PI will
always play u1 = 71 = M, and P2's optimal response will be u2 = R. However,
the saddle-point strategy of P2 is and not the constant strategy 72(u1) — R,
since if P2 adopts this constant strategy, then PI can switch to R to a loss of 0
instead of 1. The strategy for PI that is in equilibrium with (2.31) is still 71* =
M, (2.32) since AT1 is a singleton. The reader can now easily check that the
pair (2.31)- (2.32) satisfies the saddle-point inequalities (2.30). The preceding
analysis now readily suggests a method of obtaining the pure- strategy saddle-
point solution of single-act zero-sum games in extensive form, provided that it
exists. The steps involved are as follows. Derivation of pure-strategy saddle-
point solutions of single-act games in extensive form (1) For each information
set of the second-acting player, solve the corresponding matrix game (assuming
that each such matrix game admits a pure- strategy saddle point). For the case
in which an information set is a

42 T. BA§AR AND G. J. OLSDER singleton, the matrix game involved is a
degenerate one with one of the players having a single choice—but such
(essentially one-person) games always admit well-defined pure-strategy
solutions. (2) Record the saddle-point value of each of these matrix games. If
PI is the starting player, then the lowest of these is the saddle-point value of the
extensive form; if P2 is the starting player, then the highest one is. (3) The



saddle-point strategy of the first-acting player is his saddle-point strategy
obtained for the matrix game whose saddle-point value corresponds to the
saddle-point value of the extensive game. (4) For the second-acting player, the
saddle-point strategy is comprised of his saddle-point solutions in all the
matrix games considered, by appropriately identifying them with each of his
information sets. We leave it to the reader to verify that any pair of equilibrium
strategies obtained by following the preceding procedure does, indeed,
constitute a saddle- point strategy pair that satisfies (2.30). The following
conclusions can now readily be drawn. Proposition 2.1 A single-act zero-sum
two-person finite game in extensive form admits a (pure-strategy) saddle-point
solution if, and only if, each matrix game corresponding to the information sets
of the second-acting player has a saddle point in pure strategies. Proposition
2.2 Every single-act zero-sum two-person finite game in extensive form, in
which the information sets of the second-acting player are singletons,8 admits
a pure-strategy saddle-point solution. If the matrix game corresponding to an
information set does not admit a saddle-point solution in pure strategies, then it
is clear that the strategy spaces of the players have to be enlarged, in a way
similar to the introduction of mixed strategies in Section 2.2 within the context
of matrix games. To pave the way for such an enlargement in the case of games
in extensive form, let us first consider the single-act two-person zero-sum
game whose extensive form is depicted in Fig. 2.6. Here, P2 is the second-
acting player and he has two information sets. If his opponent picks R, then he
can observe that choice, and his best response (strategy) in that case is L,
yielding an outcome of 1. If PI chooses L or M, however, then P2 is ignorant
about that choice, since both of these nodes are included in the same
information set of P2. The relevant matrix game, in this case, is P2 3 -1 0 1 L R
8The node corresponding to each such information set is known as the "state"
of the game at that level (stage) of play. Games of this type are known as
perfect information games.
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in extensive form that admits a mixed (behavioral)-strategy saddle-point
solution. which is the matrix game (2.20) considered earlier in Section 2.3,
and it is known to admit the mixed saddle-point solution ($/£ = \,y*M = §) for
PI and (z£ = |,ZjR = |) for P2, yielding an average outcome of |. Since | < 1, it is
clear that PI will prefer to stay on that part of the tree and thus stick to the
strategy L w.p. 2/5, M w.p. 3/5, (2.33a) R w.p. 0, which is "mixed" in nature.



P2's equilibrium strategy will then be 7 u 72' = L w.p. L w.p. R w.p. 1 1/5 4/5
if u1 = R, otherwise (2.33b) since he also has to consider the possibility of PI
playing R (by definition of a strategy). The pair (2.33a)-(2.33b) now yields the
average outcome of |. In order to declare (2.33a)-(2.33b) as the equilibrium
solution pair of the extensive form of Fig. 2.6, we have to specify the spaces in
which it possesses such a property. To this end, we first note that PI has three
possible pure strategies, 7J = L, 72 = M and 73 = R, and in view of this,
(2.33a) is indeed a mixed strategy for PI (see Def. 2.2). For P2, however, there
exist four possible pure strategies, namely and i2(«2) = i!(v2) = 74V) - 72V) =
R, L if u1 = R, R otherwise R if u1 = R, L otherwise Hence, a mixed strategy
for P2 is a probability law according to which these four strategies will be
"mixed" during the play of the game, and (2.33b) provides
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assigns a weight of | to the first pure strategy and a weight of | to the third one.
We have thus verified that both (2.33a) and (2.33b) are well-defined mixed
strategies for PI and P2, respectively. Now, if J(71,72) denotes the average
outcome of the game when the mixed strategies 71 and -y2 are adopted by PI
and P2, respectively, the reader can easily check that the pair (2.33a)-(2.33b)
indeed satisfies the relevant set of saddle-point inequalities J(iu,y2)<J(ju,y2*)
<J(y\y2*) and thus constitutes a saddle-point solution within the class of mixed
strategies. However, the class of mixed strategies is, in general, an
unnecessarily large class for the second-acting player. In the extensive form of
Fig. 2.6, for example, since P2 can tell exactly whether PI has played R or not,
there is no reason why he should mix between his possible actions in case of
u1 = R and his actions otherwise. That is, P2 can do equally well by
considering probability distributions only on the alternatives belonging to the
information set including two nodes, and (2.33b) is, in fact, that kind of a
strategy. Such strategies are known as behavioral strategies, a precise
definition of which is given below. Definition 2.99 For a given two-person
zero-sum finite game in extensive form, let Yvi denote the set of all probability
distributions on U\, where the latter is the set of all alternatives of PI at the
nodes belonging to the information set 771. Analogously, let Zvi denote the set
of all probability distributions on U22. Further define Y = UNi Yn\, Z = Uap
Zn2. Then, a behavioral strategy 71 for PI is a mapping from the class of all his
information sets (N1) into Y, assigning one element in Y for each set in N1,
such that 71(t?1) € Yvi for each 771 € TV1. A typical behavioral strategy -y2



for P2 is defined, analogously, as a restricted mapping from N2 into Z. The set
of all behavioral strategies for Pi is called his behavioral strategy set, and it is
denoted by P. Remark 2.5 Every behavioral strategy is a mixed strategy, but
every mixed strategy is not necessarily a behavioral strategy, unless the player
has a single information set. □ For games in extensive form, the concept of a
saddle-point equilibrium in behavioral strategies can now be introduced as in
Def. 2.8, but with some slight obvious modifications. If .7(71,72) denotes the
average outcome of the game resulting from the strategy pair {71 € T1,72 £
T2}, then we have the following. Definition 2.10 A pair of strategies {71 €
r1,72 £ T2} is said to constitute a saddle point in behavioral strategies for a
zero-sum game in extensive form, if the set of inequalities Hiu,i2) < J(yu,y2*)
< J(i\i2*) (2-34) 9This definition is valid not only for single-act games, but
also for multi-act games which are treated in section 2.5.
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72 € f2. The quantity J(71*,72*) is known as the saddle-point value of the
game in behavioral strategies. For a given single-act zero-sum game in
extensive form, derivation of a behavioral-strategy saddle-point solution
basically follows the four steps outlined earlier for pure-strategy saddle
points, with the only difference being that this time mixed equilibrium solutions
of the matrix games are also allowed in this process. The reader should note
that this routine extension has already been illustrated within the context of the
extensive form of Fig. 2.6. Since every matrix game admits a saddle point in
mixed strategies (cf. Corollary 2.3), and further, since the above derivation
involves only a finite number of comparisons, it readily follows that every
single-act zero-sum game in extensive form admits a saddle point in behavioral
(or, equivalently, mixed) strategies. We thus conclude this section with a
precise statement of this property, and by recording another immediate feature
of the saddle-point solution in extensive games. Corollary 2.4 In every single-
act two-person zero-sum finite game, (i) there exists at least one saddle point
in behavioral strategies, (ii) if there exist more than one saddle-point solution
in behavioral strategies, then they possess the ordered interchangeability
property, and (Hi) every saddle point in behavioral strategies is also a saddle
point in the larger class of mixed strategies. We should note that a finite single-
act game in extensive form might also admit a mixed-strategy saddle point
(which is not behavioral) in addition to a behavioral saddle point. The
corresponding average saddle-point values, however, will all be the same,



because of the interchangeability property, and therefore we may confine our
attention only to behavioral strategies, particularly in view of Corollary 2.4(i).
2.5 Extensive Games: Multi-Act Games Zero-sum games in which at least one
player is allowed to act more than once and with possibly different information
sets at each level of play, are known as multi-act zero-sum games.10 In the
study of extensive forms of such games, and in accordance with Def. 2.5, we
consider the case when the number of alternatives available to a player at each
information set is finite. This leads to a finite tree structure, incorporating
possibly different information sets for each 10Such games are also referred to
as "multi-stage zero-sum games" in the literature. They may be considered also
as "dynamic games", since the information sets of a player do, in general, have
a dynamic character, providing information concerning the past actions of the
players. In this respect, the single-act games of the previous section may also
be referred to as "dynamic games" if the second-acting player has at least two
information sets.
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strategy of a player is again defined as a restricted mapping from the collection
of his information sets to the finite set of all his alternatives, exactly as in Def.
2.6, and the concept of a saddle-point solution then follows the lines of Def.
2.8. This general framework, however, suppresses the dynamic nature of the
decision process and is not constructive as far as the saddle-point solution is
concerned. An alternative to this set-up exists, which brings out the dynamic
nature of the problem, for an important class of multi-act zero-sum games
known as "feedback games", a precise definition of which is given below.
Definition 2.11 A multi-act two-person zero-sum game in extensive form is
called a two-person zero-sum feedback game in extensive form, if (i) at the
time of his action, each player has perfect information concerning the current
level of play, i.e., no information set contains nodes of the tree belonging to
different levels of play, (ii) information sets of the first-acting player at every
level of play are singletons, and the information sets of the second-acting
player at every level of play are such that none of them include nodes
corresponding to branches emanating from two or more different information
sets of the other player, i.e., each player knows the state of the game at every
level of play. Figure 2.7: Two multi-act zero-sum games which are not
feedback games. Figure 2.7 displays two multi-act zero-sum games in
extensive form, which are not feedback games, since the first one violates (i)



above, and the second one violates (ii). The one displayed in Fig. 2.8,
however, is a feedback game. Now, let the number of levels of play in a zero-
sum feedback game be K. Then, a typical strategy Y of Pi in such a game can
be viewed as composed of K components (7J,..., 7)5-), where 7J stands for the
corresponding strategy of Pi at his j'th level of action. Moreover, because of
the nature of a feedback game, 7J can be taken, without any loss of generality,
to have as its domain only those information sets of Pi which pertain to the jth
level of play. Let us denote the collection of all such strategies for Pi at level j
by rj. Then, we can rewrite the saddle-point inequality (2.30), for a feedback
game in extensive
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Figure 2.8: A zero-sum feedback game in extensive form. form, as A » , „ ,
1.2* 2,N (2-35) ' 7k 17i i ■ ■ ■ j Ik ) = J*< J{ll which is to be satisfied for all
7] € rj, i = 1,2; j = 1,..., K. Such a decomposition of the strategies of the
players now allows a recursive procedure for the determination of the saddle-
point solution {71*,72*} of the feedback game, if we impose some further
restrictions on the pair {71*,72*}- Namely, let the pair {71*>72*} also satisfy
(recursively) the following set of K pairs of inequalities foraU7Jerj)i = l)2;i7
= l,...,/if: (̂7i1,---.7 -̂„7 ;̂7i2,---,7 )̂< (̂7i.---,7k-i,7 ;̂7i2,---, 7&-1.7&) <-
/(7l,.--.7k;7?,...,7&-i,Ik), J(ll ■ • ■ .7ir-2.7jf-i.7jr ;7i, ■ • • ,7*-i. Ik ) < (̂7i. ■
• • >7k-2>7k-i,7k ;7i. ■ • ■ > 7k-2. 7k_ i,7k ) < (̂7i,---i7k-i.7k;7i,---,7k-2.7k-
i.7k). ) (2.36) (̂7iU,---,7k*;7i2,722*,---,7k*)< (̂7i1*.---,7k+;7i2*,---,7k*)
<J(7i1,7 .̂---.7A?;7?,,.-.,72?). J Definition 2.12 For a two-person zero-sum
feedback game in extensive form with K levels of play, let {71*,72*} be a pair
of strategies satisfying (2.35) and (2.36) for all 7j e V), i = 1,2; j = 1,... ,K.
Then, {71*,72*} is said to constitute a pair of (pure) feedback saddle-point
strategies for the feedback game. Proposition 2.3 Every pair {71*, 72*} that
satisfies the set of inequalities (2.36) also satisfies the pair of saddle-point
inequalities (2.35). Hence, the requirement for satisfaction of (2.35) in Def.
2.12 is redundant, and it can be deleted without any loss of generality.
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inequalities of the set (2.36) by 7i*> • • • >7^*-i> respectively. Then, the LHS
inequalities of (2.36) read J{l\\---,ll l̂l---n2K)<J{l\*,-..,llK-nl.--,l2K-l,l2K),
J(j\*,---,i1K-nli22*,-.-,i2K)<Jh\*,---,i1K*^2i* -̂-n2K*) for all 7? G T*, j —
1,..., K. But this set of inequalities reduces to the single inequality



J(711*,.-.,7 ;̂7?,.-.,7l:)< (̂7i1*,---,7j<:*;7r,...,7 )̂, since they characterize the
recursive dynamic programming conditions for a one-person maximization
problem (Bellman (1957)). This then establishes the validity of the LHS
inequality of (2.35) under satisfaction of (2.36). Validity of the RHS inequality
of (2.35) can likewise be verified by considering the RHS inequalities of
(2.36). D The appealing feature of a feedback saddle-point solution is that it
can be computed recursively, by solving a number of static games at each level
of play. Details of this recursive procedure readily follow from the set of
inequalities (2.36) and the specific structure of the information sets of the
game, as it is described below. A recursive procedure to determine the (pure)
feedback saddle-point strategies of a feedback game (1) Starting at the last
level of play, K, solve each single-act game corresponding to the information
sets of the first-acting player at that level K. The resulting (pure) saddle-point
strategies are the saddle-point strategies {7^*, 7j£} sought for the feedback
game at level K. Record the value of each single-act game corresponding to
each of the information sets of the first-acting player, and assign these values to
the corresponding nodes (states) of the extensive form at level K. (2) Cross out
the Kih level of play, and consider the resulting (K — 1) level feedback game.
Now solve the last level single-act games of that extensive form, with the
resulting saddle-point strategies denoted by {tIk-iiIk-i}' and repeat the
remaining deeds of step 1 with K replaced by K — 1. (K) Cross out the second
level of play, and consider the resulting single-act game in extensive form.
Denote its saddle-point strategies by {7f*,7i*},
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original feedback game in extensive form admits a saddle-point solution
{(7J*,..., 7^*), (7?*,. ■ ■, 7 )̂} and has value J* =V. Example 2.2 As an
illustration of the above procedure, let us consider the 2-level feedback game
whose extensive form is depicted in Fig. 2.8. At the last (second) level, there
are four single-act games to be solved, which are all equivalent to matrix
games. From left to right, we have the normal forms T* 0 2 3 n* 3 -1 F^T 1 3 4
1 2 0 -2 with the encircled entries indicating the location of the saddle-point
solution in each case. The saddle-point strategies 72* and 7I* are thus given by
1? til) R L if u\ = L, otherwise, R, if [ril) (2.37a) where u\ denotes the choice
of Pi at level 1. It is noteworthy that the saddle- point strategy of P2 is a
constant at this level of play. Now, crossing out the second level of play, but
retaining the encircled quantities in the four matrix games as costs attached to



the four nodes, we end up with the equivalent single- act game 0 2 whose
normal form is admitting the unique saddle-point solution ' 1 2 0 1 1* T ** T 7i
=L, 7i = L, (2.37b) and with the value being V — 1, which is also the value of
the original 2-level feedback game. The feedback saddle-point strategies of
this feedback game are now given by (2.37a)-(2.37b), with the actual play
dictated by them being U, = Uo — U, = U, = L. (2.38) D
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not admit a feedback saddle point in pure strategies, then it could still admit a
saddle point in accordance with inequalities (2.35). If that is not possible
either, then one has to extend the strategy spaces of the players so as to include
also behavioral strategies. Definition of a behavioral strategy in multi-act
games is precisely the one given by Def. 2.9 and the relevant saddle-point
inequality is still (2.34), of course under the right kind of interpretation. Now,
in a zero-sum feedback game with K levels of play, a typical behavioral
strategy jl of Pi can also be viewed as composed of K components (7J,... ,
7} )̂, where 7J stands for the corresponding behavioral strategy of Pi at his jth
level of play—a feature that follows readily from Defs. 2.9 and 2.11. By the
same token, 7] can be taken, without any loss of generality, to have as its
domain only those information sets of Pi, which pertain to the jth level of play.
Let us now denote the collection of all such behavioral strategies for Pi at
level j by Tj. Then, since the saddle-point inequality (2.34) corresponding to a
K-level feedback game can equivalently be written as (2.39) < jtfl... ,7Jo7i2*,
• • • ,7&),V7J € f},i = 1,2; j = 1,...,K, it follows that a recursive procedure can
be devised to determine the behavioral saddle-point strategies if we further
require satisfaction of a set of inequalities analogous to (2.36). Such a
recursive procedure basically follows the K steps outlined in this section
within the context of pure feedback saddle-point solutions, with the only
difference being that now also behavioral strategies are allowed in the
equilibrium solutions of the single-act games involved. Since this is a routine
extension, we do not provide details of this recursive procedure here, but only
illustrate it in the sequel in Example 2.3. It is worth noting at this point that
since every single-act two-person zero- sum game admits a saddle-point
solution in behavioral strategies (cf. Corollary 2.4), every feedback game will
also admit a saddle-point solution in behavioral strategies. More precisely, we
have the following proposition. Proposition 2.4 Every two-person zero-sum
feedback game, which has an extensive form comprised of a finite number of



branches, admits a saddle point in behavioral strategies. Example 2.3 As an
illustration of the derivation of behavioral saddle point(s) in feedback games,
let us reconsider the game of Fig. 2.8 with two modifications: The outcomes of
the game corresponding to the paths u\ = R,u{ = L, u\ = L, u\ = L and u\ = R, u\
= L, u\ = L, u\ = R, respectively, are now taken as 0 and —1, respectively.
Then, the four single-act games to be solved at the last (second) level are
equivalent to the matrix games (respectively, from left to right) which all admit
pure-strategy solutions, as indicated. w 3 -1 4 W 2 0 3 'kK 2 0 -2
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at this level are, in fact, as given by (2.37a). Now, crossing out the second
level of play, but retaining the encircled quantities in the four matrix games as
costs attached to the four nodes, we end up with the equivalent single act game
o o whose normal form 1 0 0 1 admits a mixed saddle-point solution: u _ j L
w.p. 1/2, 1/2, 7i { w.p. w.p. 1? = L w.p. R w.p. 1/2, 1/2. (2.40) Furthermore,
the average saddle-point value is Vm — 1/2. Since, within the class of
behavioral strategies at level 2, the pair (2.37a) can be written as 72 R L L R
w.p. w.p. w.p. w.p. 1 0 1 0 if u\ = L,u\ = R, 722* otherwise L R w.p. w.p.
(2.41) (2.40) and (2.41) now constitute a set of behavioral saddle-point
strategies for the feedback game under consideration, leading to a behavioral
saddle-point value of J* = 1/2. D For multi-act games which are not feedback
games, neither Prop. 2.4 nor the recursive procedures discussed in this section
are, in general, applicable, and there is no general procedure that would aid in
the derivation of pure or behavioral saddle-point solutions, even if they exist.
If we allow for mixed-strategy solutions, however, it directly follows from
Corollary 2.3 that an equilibrium solution exists, since every multi-act zero-
sum finite game in extensive form has an equivalent normal form which is
basically a matrix game with a finite number of rows and columns. More
precisely, we have the following. Proposition 2.5 Every two-person zero-sum
multi-act finite game in extensive form admits a saddle-point solution in mixed
strategies.

52 T. BA§AR AND G. J. OLSDER The following example now illustrates
derivation of mixed-strategy saddle- point equilibria in multi-act games, which
basically involves solution of an appropriate matrix game. Example 2.4 Let us
reconsider the extensive form of Fig. 2.8, but with a single information set for
each player at each level of play, as depicted in Fig. 2.9. 1023230-12134102-



2 Figure 2.9: A zero-sum multi-act game that does not admit a behavioral
saddle- point solution. Each player has four possible ordered choices
(LL,LR,RL,RR), and thus the equivalent normal form of the matrix game is PI
P2 which admits the unique mixed saddle-point solution LL LR RL RR LL 1 2
2 3 LR 0 3 1 4 RL 2 0 1 2 RR 3 -1 0 -2 f -{ LL RR w.p. w.p. 3/5, 2/5, (2.42a)
(2.42b) LL w.p. 4/5, RR w.p. 1/5 with the saddle-point value in mixed
strategies being V  ̂= 7/5. (The reader can check this result by utilizing Thm.
2.5.) □ Even though every zero-sum multi-act game in extensive form admits a
saddle point in mixed strategies, such a result is no longer valid within the
class of behavioral strategies, unless the mixed saddle-point strategies happen
to be behavioral strategies. A precise version of this property is given below
in Prop. 2.6. Proposition 2.6 Every saddle-point equilibrium of a zero-sum
multi-act game in behavioral strategies also constitutes a saddle-point
equilibrium in the larger class of mixed strategies for both players.
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contrary, that the behavioral saddle-point value (J*) is not equal to the mixed
saddle-point value (Jm), where the latter always exists by Prop. 2.5, and
consider the case J* < Jm. This implies that PI does better with his behavioral
saddle-point strategy than with his mixed saddle- point strategy. But this is not
possible, since the set of mixed strategies is a much larger class. Hence, we
can only have J* > Jm. Now, repeating the same argument on this strict
inequality from P2's point of view, it follows that only the equality J* = Jm can
hold. D Proposition 2.6 now suggests a method for derivation of behavioral
saddle- point strategies of zero-sum multi-act games in extensive form. First,
determine all mixed saddle-point strategies of the equivalent normal form, and
then investigate whether there exists, in that solution set, a pair of behavioral
strategies. If we apply this method on the extensive form of Example 2.4, we
first note that it admits a unique saddle-point solution in mixed strategies,
which is the one given by (2.42a)-(2.42b). Now, since every behavioral
strategy for PI is in the form {LL w.p. 2/12/2, LR w.p. 2/1(1-2/2), RL w.p.
2/2(1-2/1), RR w.p. (l-2/i)(l-3/2) for some 0 < 2/1 < 1, 0 < j/2 < l,11 and
every behavioral strategy for P2 is given by LL W.p. 2i22, LR. w.p. z1(l-z2),
RL w.p. z2(l - -zi), RR w.p. (i-Zl)(i-Z2) for some 0 < z\ < 1, 0 < zi < 1, it
follows (by picking 2/1 = 1, 3/2 = 3/5) that (2.42a) is indeed a behavioral
strategy for PI; however, (2.42b) is not a behavioral strategy for P2. Hence the
conclusion is that the extensive form of Fig. 2.9 does not admit a saddle point



in behavioral strategies, from which we deduce the following corollary to
Prop. 2.6. Corollary 2.5 A zero-sum multi-act game does not necessarily admit
a saddle- point equilibrium, in behavioral strategies, unless it is a feedback
game. We now introduce a special class of zero-sum multi-act games known as
open-loop games, in which the players do not acquire any dynamic information
throughout the decision process, and they only know the level of play that
corresponds to their action. More precisely, see below. uNote that j/i and 2/2
(and also z\ and 22, in the sequel) are picked independently, and hence do not
necessarily add up to 1. 72 = <
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be an open-loop game, if, at each level of play, each player has a single
information set. The multi-act game whose extensive form is depicted in Fig.
2.9 is an open- loop game. Such games can be viewed as one extreme class of
multi-act games in which both players are completely ignorant about the
evolution of the decision process. Feedback games, on the other hand,
constitute another extreme case (with regard to the structure of the information
sets) in which both players have full knowledge of their past actions. Hence,
the open-loop and feedback versions of the same multi-act game could admit
different saddle-point solutions in pure, behavioral or mixed strategies. A
comparison of Examples 2.2 and 2.4, in fact, provides a validation of the
possibility of such a situation: the extra information embodied in the feedback
formulation actually helps PI in that case. It is of course possible to devise
examples in which extra information in the above sense instead makes P2
better off or does not change the value of the game at all. A precise condition
for the latter property to hold is given below in Prop. 2.7 whose proof is in the
same spirit as that of Prop. 2.6 and is thus left as an exercise for the reader.
Proposition 2.7 A zero-sum open-loop game in extensive form admits a (pure-
strategy) saddle-point solution if, and only if, its feedback version admits
constant saddle-point strategies at each level of play}2 Prior and delayed
commitment models Since there is no extra information available to the players
throughout the duration of an open-loop game, the players can decide on their
actions at the very beginning, and then there is no real incentive for them to
renege during the actual play of the game. Such games in which decisions are
made at the outset, with no incentive to deviate from them later, are known as
"prior commitment" games. Mixed saddle-point strategies can then be
considered to constitute a reasonable equilibrium solution within such a



framework. Feedback games, on the other hand, are of "delayed commitment''''
type, since each player could wait until he finds out at what information set he
really is, and only then announces his action. This then implies that mixed
strategies are not the "right type" of strategies to be considered for such games,
but behavioral strategies are. Since feedback games always admit a saddle
point in behavioral strategies (cf. Prop. 2.3), equilibrium is again well defined
for this class of games. There are also other classes of multi-act games of the
delayed commitment type, which might admit a saddle point in behavioral
strategies. One such class of multi-act zero-sum games are those in which
players recall their past actions but are ignorant about the past actions of their
opponent. As an illustrative example, let us reconsider the extensive form of
Fig. 2.9, but under the present set-up. The information sets of the players
would then look as displayed in 12It is implicit here that these constant
strategies might differ from one level to another and that they might not be
feedback saddle-point strategies, i.e., they might not satisfy (2.36).
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2.10: A multi-act game of the delayed commitment type that admits a
behavioral saddle-point solution. Fig. 2.10. Now, permissible behavioral
strategies of the players in this of the form ,i / L w.p. yi 7i R w.p. l-2/i, 72>i) L
R L R w.p. w.p. w.p. w.p. 2/2 1-2/2 2/3 1-2/3 if u\ = L, if u\ = R, it L w.p. z\, R
w.p. 1 - z\, -C2/2 7*(«f) = < L w.p. z2 R w.p. 1 — z2 L w.p. Z3 i? w.p. 1 - 23
if Mi — L, if u\ = #, where 0 < t/i < 1, 0 < Zi < 1, i = 1,2,3, and the average
outcome of corresponding to these strategies can be determined to be game are
(2.43a) (2.43b) (2.43c) (2.43d) the game J{V,Y) = zlz2{2y1y2 - 2yiy-i + 2y-i -
1) +Zi(52/i2/3 - 2yx - lyxy2 - 5t/3 + 6) +z3(zi - l)(2j/i2/2 + 3j/i + 3t/3 - 32/!j/3
- 4) +42/12/2 + 2/1 + 22/3 - 2/12/3 - 2 = F{y1,y2,y3;z1,z2,zz). The reader can
now check that the values (y\ = \,y2 — 3/5,2/3 = 0; z\ 4/5, z2 — 1, £3 = 0)
satisfy the inequalities (̂2/1. 2/2. 2/3; *1.*2, ^3) < (̂2/1, 2/2. 2/3; zl,z2 ^3) <
F(yi,V2,2/3; r̂,4> 4) (2.44)
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hence, when they are used in (2.43a)-(2.43d); the resulting behavioral
strategies constitute a saddle-point solution for the multi-act game under
consideration, with the average value being 7/5. We thus observe that a
modified version of the extensive form of Fig. 2.9, in which the players recall
their past actions, does admit a saddle- point solution in behavioral strategies.



Derivation of the behavioral saddle-point solutions of multi-act games of the
delayed commitment type involve, in general, solution of a pair of saddle-
point inequalities of the type (2.44). For the present case (i.e., for the specific
example of Fig. 2.10) it so happens that F admits a saddle-point solution
which, in turn, yields the behavioral strategies sought; however, in general it is
not guaranteed that it will admit a well-defined solution. The kernel F will
always be a continuous function of its arguments which belong to a convex
compact set (in fact a simplex), but this is not sufficient for existence of a
saddle point for F (see Section 4.3). The implication, therefore, is that there
will exist multi- act games of the delayed commitment type which do not admit
a saddle-point solution in pure or behavioral strategies. Randomized strategies
As observed above, and also in Example 2.4, not every multi-act finite game
would admit a behavioral saddle-point solution, but whenever it exists, one
method for obtaining the behavioral saddle-point policies would be first to
construct the average cost of the game on the set of behavioral strategies (such
as the kernel F defined prior to (2.44)), and then find the saddle point of that
kernel in pure strategies. The (pure) strategies in this case are in fact the
probability weights attached to different actions at each information set, which
belong to closed and bounded subsets of finite dimensional spaces. Let us
denote these subsets for PI and P2 by Y and Z, respectively. For the game of
Example 2.4, for instance, both Y and Z are positive unit squares, whereas for
the multi-act game of Fig. 2.10, they are positive unit cubes. In all cases, the
kernel F will be continuous on Y x Z, and Y and Z will further be convex. We
shall study the derivation of saddle-point equilibria of such continuous-kernel
games in Chapter 4, where we will see that F does not necessarily admit a
pure-strategy saddle point on Y x Z unless it is convex-concave. Clearly,
neither F defined earlier in conjunction with the multi-act game of Fig. 2.10,
nor the one that could be constructed for the game of Example 2.4, is convex-
concave,13 which is one of the reasons why these two games do not admit
behavioral saddle points. The theory of Chapter 4, and particularly of Section
4.3, will tell us, however, that such continuous-kernel games defined on
closed-bounded convex sets will admit mixed saddle-point equilibria, where
mixed strategies in this case are probability distributions on Y and Z. For
present application, since the elements of Y and Z already correspond to
behavioral strategies for the original finite game 13We leave it as an exercise
for the reader to construct the kernel F for the game of Example 2.4, and show
that it is not convex-concave (i.e., convex over Y and concave over Z).
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types of mixed strategies), and to avoid confusion, the further mixed strategies
defined on Y and Z are often called randomized strategies (for the original
finite game). Hence, the message here is that every finite multi-act game admits
a saddle point in randomized strategies—a full verification of which is
postponed until Chapter 4. Some further discussion on randomized strategies,
in this chapter, can be found in subsection 2.7.1. 2.6 Zero-Sum Games with
Chance Moves In this section, we briefly discuss the class of two-person zero-
sum finite games which also incorporate chance moves. In such decision
problems, the final outcome is determined not only by the decisions (actions)
of the two players, but also by the outcome of a chance mechanism whose odds
between different alternatives are known a priori by both players. One can
also view this situation as a three-player game wherein the third player,
commonly known as "nature", has a fixed mixed strategy. Figure 2.11: A zero-
sum single-act game in extensive form that incorporates a chance move. As an
illustration of such a zero-sum game, let us consider the tree structure of Fig.
2.11, where N (nature) picks L w.p. 1/3 and R w.p. 2/3. Not knowing the
realized outcome of the chance mechanism, the players each decide on whether
to play L or R. Let us now assume that such a game is played a sufficiently
large number of times and the final outcome is determined as the arithmetic
mean of the outcomes of the individual plays. In each of these plays, the matrix
of possible outcomes is either PI 3 P2_ L 1 L R (2.45a)
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occurring w.p. 1/3 and the latter w.p. 2/3. Each of these matrix games admits a
pure-strategy saddle-point solution as indicated. If AT's choice were known to
both players, then P2 would always play R, and PI would play R if TV's
choice is L and play L otherwise. However, since TV's choice is not known a
priori, and since the equilibrium strategies to be adopted by the players cannot
change from one individual play to another, the matrix game of real interest is
the one whose entries correspond to the possible average outcomes of a
sufficiently large number of such games. This matrix game can readily be
obtained from (2.45a) and (2.45b) to be P2 PI 'X ~ 1/2 3 L R (2.46a) R which
admits, as indicated, the unique saddle-point solution (2.46b) with an average
outcome of 1. This solution is, in fact, the only reasonable equilibrium solution
of the zero-sum single-act game of Fig. 2.11, since it also uniquely satisfies the
pair of saddle-point inequalities •7(7U,72) < %X*,72*) < J{l\l2*) (2.47) for



all 71 e T1, 72 € T2, where r r̂2 = {l,r} and (̂7X,72) denotes the expected
(average) outcome of the game corresponding to a pair of permissible
strategies {71,72} with the expectation operation taken with respect to the
probability weights assigned a priori to different choices of N. For this
problem, the correspondences between J and different choices of (71,72) are
in fact displayed as the entries of matrix (2.46a). It is noteworthy that P2's
equilibrium strategy is L for the extensive form of Fig. 2.11 (as discussed
above), whereas if ./V's choice were known to both players (Fig. 2.12), he
would have chosen the constant strategy R, as shown earlier. Such a feature
might, at first sight, seem to be counter-intuitive—after all, when his
information sets can distinguish between different choices of N, P2 disregards
AT's choice and adopts a constant strategy (R), whereas in the case when this
information is not available to him, he plays quite a different one. Such an
argument is misleading, however, because of the following reason:
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2.12: A modified version of the zero-sum game of Fig. 2.11, with both players
having access to nature's actual choice. In the tree structure of Fig. 2.12, Pi's
equilibrium strategy is not a constant but is a variant of Ws choice; whereas in
Fig. 2.11 he is confined to constant strategies, and hence the corresponding
zero-sum game is quite a different one. Consequently there is no reason for
P2's equilibrium strategies to be the same in both games, even if they are
constants. Remark 2.6 It should be noted that the saddle-point solution of the
zero-sum game of Fig. 2.12 also satisfies a pair of inequalities similar to
(2.47), but this time each player has four permissible strategies, i.e., V1 is
comprised of four elements. It directly follows from (2.45a)-(2.45b) that the
average saddle-point value, in this case, is (1/3)(1) + (2/3)(l/4) = 1/2, which
is less than the average equilibrium value of the zero-sum game of Fig. 2.11.
Hence, the increase in information with regard to the action of N helps PI to
reduce his average losses but works against P2. □ The zero-sum games of both
Fig. 2.11 and Fig. 2.12 are in extensive form, but they do not fit the framework
of Def. 2.5 since the possibility of chance moves was excluded there. We now
provide below a more general definition of a zero-sum game in extensive form
that also accounts for chance moves. Definition 2.14 An extensive form of a
two-person zero-sum finite game that also incorporates chance moves is a tree
structure with (i) a specific vertex indicating the starting point of the game, (ii)
a pay-off function assigning a real number to each terminal vertex of the tree,



which determines the pay-off (respectively, loss) to P2 (respectively, Pi) for
each possible set of actions of the players together with the possible choices of
nature, (in) a partition of the nodes of the tree into three player sets (to be
denoted by Nl and N2 for Pi and P2, respectively, and by N° for nature),
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each node of N°, among the immediate branches (alternatives) emanating from
this node, (v) a subpartition of each player set JV' into information sets {rf-}
such that the same number of immediate branches emanates from every node
belonging to the same information set, and no node follows another node in the
same information set. This definition of a zero-sum game in extensive form
clearly covers both single-act and multi-act games, and nature's chance moves
can also be at intermediate levels of play. For such a game, let us denote the
strategy sets of Pi and P2 again as T1 and T2, respectively. Then, for each pair
{71 e T1,72 e T2} the pay-off function, ./(71,72), is a random variable, and
hence the real quantity of interest is its expected value which we denote as
./(71,72). The saddle-point equilibrium can now be introduced precisely in the
same fashion as in Def. 2.8, with only J replaced by J. Since this formulation
converts the extensive form into an equivalent normal form, and since both T1
and T2 are finite sets, it follows that the saddle-point equilibrium solution of
such a game problem can be obtained by basically solving a matrix game
whose entries correspond to the possible values of J(71,72). This has actually
been the procedure followed earlier in this section in solving the single-act
game of Fig. 2.11, and it readily extends also to multi-act games. When a pure-
strategy saddle point does not exist, it is possible to extend the strategy sets so
as to include behavioral or mixed strategies and to seek equilibria in these
larger classes of strategies. Proposition 2.5 clearly also holds for the class of
zero-sum games covered by Def. 2.14, and so does Prop. 2.6. Existence of a
saddle point in behavioral strategies is again not guaranteed, and even if such a
saddle point exists there is no systematic way to obtain it, unless the players
have access to nature's actions and the game possesses a feedback structure (as
in Def. 2.11). For games of this specific structure, one can use an appropriate
extension of the recursive derivation developed in Section 2.5 for feedback
games, which we do not further discuss here. Before concluding we should
mention that the notions of prior and delayed commitment introduced in the
previous section also fit within the framework of games with chance moves,
and so does the concept of randomized strategies, with the extensions being



conceptually straightforward. 2.7 Two Extensions In this section we discuss
two possible extensions of the extensive form description of finite zero-sum
games—one where the restriction of (cf. Def. 2.5 and Def. 2.14) "no nodes
following another node in the same information set" is dispensed with (see
subsection 2.7.1), and another one where the tree structure, viewed as a
directed graph, is allowed to have cycles (see subsection 2.7.2).
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game in extensive form in which the tree enters an information set twice. 2.7.1
Games with repeated decisions We start this subsection with a specific
example. Example 2.5 Consider the zero-sum game in extensive form shown in
Fig. 2.13. PI has two information sets, one of which (77J) contains two nodes
from one path in the tree; P2 has a single information set. If the probability of
going right from 77} is given by 2/1, and going left by 1 — 2/1, and if 2/2 and
z\ are the corresponding probabilities for r)\ and rj{, respectively, then the
behavioral normal form is given by the kernel14 6(1 - 2/0(1 - Zl) + 2/i(l - zi) +
2y1z1(l - 2/2) + 6yiziy2yi. (2.48) First minimizing this expression with respect
to 2/2 £ [0,1] leads to the kernel A J 6(1 - 1/0(1 - zi) + 2/i(l - 2l) + 6(2/i)22i if
t/i < 1/3, if 2/i > 1/3, K{yi,z{) - 1 6(1 _ yi)(1 _ Zi) + yi(i _ Zl) + 2yiZl with a
corresponding minimizing 2/2 being 2/2 if if 2/1 > 1/3, 2/i < 1/3. Now, the
function K above is to be minimized by PI and maximized by P2. Toward this
end consider the max-min problem: max2, minyi K(y\, z\), defined on the unit
square; see Fig. 2.14 for a sketch of the function K. Some calculus leads to the
result that this max-min is uniquely achieved for z\ — (3 — (170 + 40V6)/386
= 0.694. This behavioral strategy is optimal for P2. To obtain 14When there
are two (or more) nodes following each other in the same information set, a
behavioral strategy is defined as one where the odds for different alternatives
are the same at each node (since a player cannot differentiate between two
nodes belonging to the same information set), but the random mechanism that
generates the actions (moves) according to these odds is independent from one
node to another. Hence, moves from different nodes belonging to the same
information set can be considered as independent random variables with
identical probability distributions.
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strategy of PI, consider the minimization problem min  ̂K{y\,0), where the
minimum is attained at only two points: y\ — a = 5(1— /?)/12/3 = .184 and j/i



= l. Hence it follows that PI should use two behavioral strategies, viz. j/(1) =
(yi - a,y2 = 1) and j/(2) = (z/i = 1,2/2 = 0), in an appropriate mix. To find this
right "mix", consider the 2x2 P2 PI 6 — 5a 1 6a  ̂2 z\ = 0 z\ = 1 2/(D 2/(2) The
solution to this game is given by the following: choose z\ = 1 with probability
(3 and z\ = 0 with probability 1 - /?; choose y  ̂with probability -l/(6a2 + 5a -
7) = 0.17 and y(2) with probability 0.83. Thus it has been established that PI
mixes between two behavioral strategies, the result of which is a randomized
strategy. □ The preceding example has shown features which have also
surfaced in the discussion on randomized strategies in Section 2.5. In both
cases the starting point was a behavioral normal form which more generally
has the form K E fc=i i\(k) %2{k) ,(fe) Ji(k) h(k) y3n(k) where the exponents it
(k) and ji (k) are nonnegative integers. This form is sometimes called a
multinomial. It is to be minimized by PI by choosing a vector (t/i,..., ym) on [0,
ljm and to be maximized by P2 by choosing (z\,..., zn) on [0, ljn. It is fairly
easy to see that an arbitrary game in extensive form, of the
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subsection, and without chance moves, has a behavioral normal form which is
a multinomial. The converse is also true: every multinomial is the behavioral
normal form of an appropriately defined game in extensive form, as shown by
Alpern (1988). The theory of Chapter 4 will tell us that the zero-sum game just
described in the behavioral normal form does indeed have a saddle point in
mixed strategies. This means that the optimal solution of the underlying game in
extensive form exists in the class of randomized strategies. In Alpern (1988),
an even stronger result can be found: for the saddle-point solution of finite
games in randomized strategies, each player needs to average over only a finite
number of behavioral strategies. Counterparts of these results do exist for
games in extensive form which also include chance moves. Since the basic
features are the same as above, and no new difficulties emerge, we will not
treat them separately here. 2.7.2 Extensive forms with cycles In this subsection
we consider finite zero-sum dynamic games without chance moves, in which
the underlying (directed) graph is no longer a finite tree; it will contain cycles,
though the number of nodes remains finite. Moreover, it is assumed that the
players have perfect information, i.e., each information set consists of a single
node. If the players prefer to do so, such games can go on forever by moving
and staying within one (or more) cycle(s). Thus infinite play is possible. It is
of course possible to 'unfold' the underlying graph with cycles so as to obtain a



tree whose nodes are paths of the original game. However, the resulting tree
will be infinite and no useful general results for such trees are known. Games
with terminal pay-off We now first discuss the case when the game has only a
terminal pay-off. Definition 2.15 A two-person zero-sum deterministic graph
game with terminal pay-off consists of a finite directed graph of which the
nodes are partitioned into three sets: (i) a specific vertex indicating the starting
point of the game, (ii) a pay-off function assigning a real number to each
terminal vertex of the graph, which determines the pay-off (respectively, loss)
to P2 (respectively, PlJ for each possible set of actions of the players, (Hi) a
partition of the nonterminal nodes of the graph into two sets (to be denoted by
N1 and N2 for PI and P2, respectively). If the players choose their actions in
such a way that the game does not end in a finite number of steps (i.e., a
terminal node is never reached), the pay-off will, by definition, be zero. A pure
strategy for Pi in the current context is a rule that assigns to any path that ends
in N% one of its successor nodes deterministically.
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only depends on the final node of the path. It is possible to devise an algorithm
that yields a pair of stationary strategies which form a saddle-point solution for
the game. To introduce such an algorithm, we assign a value V to each node x
of the graph, with V(x) denoting the value of the game if node x is chosen as the
starting point of the game. The set of nodes for which the value has already
been calculated while running the algorithm is denoted by H; note that H will
be increasing as long as the algorithm is running, until the entire graph has been
covered by H. Let us also introduce the notation a(x) to denote the set of all
immediate successor nodes of node x. Then, the algorithm proceeds as
follows. 1. For all terminal nodes, the function V(x) equals the pay-off if the
game terminates at x; the set of all terminal nodes is denoted by H. 2. Consider
all x £ H for which e(x) D N1 £ H. The value for such an x is defined as V(x) =
mincr(x) V{a{x)). The argument(s) for which this minimum is achieved is then
part of the saddle-point strategy for PI. Increase H with new nodes for which a
value has been obtained. Repeat this as long as new nodes x £ N1 are found
such that a(x) £ H. 3. Consider all x $ H for which a{x) D N2 € H. The value
for such an x is defined as V(x) = maxCT(x) V(a(x)). The argument(s) for
which this maximum is achieved is then part of the saddle-point strategy for
P2. Increase H with new nodes for which a value has been obtained. Repeat
this as long as new nodes x £ N2 can be found such that a(x) £ H. 4. Repeat



steps 2 and 3 until no new nodes can be found. 5. Consider those x <£ H for
which a(x) n N1 n H  ̂0. Define node y to be that node (or those nodes) of the
set o{x) n H which has (have) the smallest value, i.e., V(y) = min2eo.(a.)n^
V{z). If V(y) < 0, then increase H by node x and define V(x) = V(y). The arc
between x and y then constitutes part of the saddle-point strategy for PI. (If
V(y) > 0, then H is not increased: PI prefers nontermination with value 0 over
a positive pay-off.) Repeat this as long as H can be increased. 6. Consider
those x £ H for which a(x) n N2 n H  ̂0. Define node y to be that node (or
those nodes) of the set a(x) C\ H which has (have) the largest value, i.e., V(y)
= max2ea.(x)n# V(z). If V(y) > 0, then increase H by node x and define V(x) =
V(y). The arc between x and y then constitutes part of the saddle-point strategy
for P2. (If V{y) < 0, then H is not increased: P2 prefers nontermination with
value 0 to a negative pay-off.) Repeat this as long as H can be increased. 7.
Repeat steps 5 and 6 until no new nodes can be found. 8. Repeat steps 2-7 until
no new nodes can be found.

TWO-PERSON ZERO-SUM FINITE GAMES 65 9. The remaining nodes x get
assigned the value 0. Any arc departing from such an x to another node not
belonging to H is part of the saddle-point strategies. (The players do not have
any desire to terminate the game once they reach any one of these remaining
nodes.) Intuitively it should be clear that this algorithm indeed yields the
saddle- point strategies for the game (the algorithm is in the spirit of dynamic
programming and is identical to the recursive procedures introduced earlier in
the context of feedback games, but here one also takes into account the
possibility of nontermination). A formal proof is given in Washburn (1990).
Games with local pay-offs So far we have discussed only games with terminal
pay-offs. Other pay-off structures are also possible, such as assigning a 'local'
pay-off to each arc of the underlying graph. For games in extensive form in
which the underlying graph is a finite tree, this is not a real generalization,
since the local pay-offs assigned to arcs can be moved to the terminal nodes
(and added together so as to obtain the 'total' pay-off at each terminal node).
For extensive games with cycles in which pay-offs are assigned to arcs, this is
not possible and other means are necessary to study saddle-point solutions (if
they exist). For such games it brings in no loss of generality to assume that the
underlying directed graph does not have terminal nodes (games with some
terminal nodes can be modeled with a loop at those nodes: a terminal pay-off
can then be assigned to the corresponding loop). Thus all plays are infinite.



The total pay-off associated with a play of the game is defined to be the long
term average of the local pay-offs obtained during the play. If necessary one
can consider Cesaro limits and/or take the Urn in}'or Urn sup. Note that if a
'terminal' node is reached (if such a node existed in the original game) to
which a loop has been added, then the total pay-off converges to the local pay-
off corresponding to that loop. For a theory of zero-sum games on graphs
without terminal nodes, but with perfect information and with local pay-offs,
the reader is referred to Ehrenfeucht and Mycielski (1979) and Alpern (1991).
The theory and results are built around an auxiliary game defined on the same
graph and with the same rules except for the fact that it ends as soon as a node
is repeated. This auxiliary game has therefore a finite number of moves. 2.8
Action-Dependent Information Sets The classes of zero-sum dynamic games
we have seen heretofore all carried one common feature, which is that the
information sets were fixed a priori. There are other important classes of
games, however, where this side condition does not hold, which means that the
information sets change with the actions of the players. In this section we
discuss the theory behind such games, within the context of two specific
examples—a class of duels, and a searchlight game.
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men (PI and P2) walk towards each other, taking one step at a time, at time
instants t = 0,1,..., N. If nothing intervenes, then they will meet at t — N. Each
player has a pistol with exactly one bullet in it, and he may fire the pistol at
any time t € {0,1,..., N}. If one of them fires and hits the other, the duel is
immediately over and the one who has fired successfully is declared the
winner. If neither one fires successfully or if both fire simultaneously and
successfully, the duel becomes a stand-off. The probability of hitting the
opponent after the pistol has been fired is a function of the distance between
the two men. If a player fires at t € {0,1,..., N}, then the probability of hitting
the opponent is t/N. To complete the formulation of the game, we have to
specify whether the game is 'silent' or 'noisy'. In the silent duel a player does
not know whether his opponent has already fired, unless, of course, he is hit. In
a noisy duel a player knows when his opponent has fired and if he has not yet
fired himself and is not hit he will wait until t = N to fire his own pistol,
because at t = N he is certain to hit his opponent. Suppose that Pi fires at tl.
Then, if t1 < t2, the probability that P2 is hit is tl/N, and the probability that PI
will be hit at t2 > t1 is (1 - tl/N)t2/N for the silent duel and is 1 - t1 /N for the



noisy duel (in which case P2 fires at t2 — N). Mutatis mutandis similar results
are obtained if t1 > t2. With these probabilities one can construct a matrix A of
size (N + 1) x (JV 4-1), the (t1 + 1, t2 + l)-th element of which, with t1 < t2
and t\ V e {0,1,..., AT}, is tl/N - (1 - tl/N)t2/N for the silent case and (N -
2t1)/N for the noisy case. The (t1 + 1, t2 + l)-th element with t1 > t2 is t2/N -
(1 - t2/N)tl/N for the silent case and 1 — 2t2/N for the noisy case. The
diagonal elements of A equal 0 in both cases. Finding the optimal strategies for
the duel now boils down to obtaining a saddle-point solution for the matrix
game characterized by matrix A in which the minimizer (PI) chooses the row
vector and the maximizer (P2) the column vector. We now note that for the
extensive-form description of the noisy game, the extent of a player's
knowledge on the evaluation of the game depends explicitly on his own and/or
his opponent's actions. Hence, the noisy duel is a game with action-dependent
information sets. 2.8.2 A searchlight game In this game, two players, PI and P2,
move in a certain closed domain and are not aware of each other's position
unless one of them flashes a searchlight which illuminates an area of known
shape around him. By flashing his searchlight a player thus discloses his own
position to the other player, regardless of their relative positions. Termination
of the game occurs only if a player flashes his searchlight and the other player
finds himself trapped in the area illuminated. Each player's objective is to
catch the other player in his searchlight before he himself is caught. Therefore
flashing has two competing consequences: in order for a player to win, he must
flash; if, however, during such a flash the other
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flashing player is in a more vulnerable position because he has disclosed his
location to the other player. We will provide here some explicit results for the
case when the players are confined to n points on the circumference of a circle,
which makes the underlying decision process a finite game. At each time step
(the time is considered here to be discrete) a player can either move to one of
the two adjacent nodes or stay where he is. Even if the players occupy the
same position, they will not be aware of this, unless of course one of them (or
both) flashes (flash). Flashing illuminates the position of the player who
flashes, as well as the two adjacent positions. In the specific situation when
only one of the players (say PI) has a searchlight at his disposal, the game
becomes a survival game: PI wants to catch the other player (P2), whereas P2
wants to avoid capture. A practical motivation for this game might be the



following. P2 is a smuggler who wants to steer his boat to the shore and PI is a
police boat. For obvious reasons P2 wants to avoid PI, and therefore he
performs his practices only during the night, and that is exactly the reason why
the police boat will use a searchlight. Of course in this case the search domain
will not be the circumference of a circle, but rather a two-dimensional plane.
The basic game The basic game to be formulated below is a building block for
the more general game described above. Initially both players know each
other's position on the circle (but not thereafter if mixed strategies are
involved); PI is at position p\ and P2 is at position p2,Pi 6 {1,2,..., n}. Player
PI can flash only once during the time instants t = 1,2,... , T, where T is the final
time which is fixed and known to both players. P2 does not have any flashes at
his disposal. Once the time proceeds the players do not acquire any new
information on each other's new position (unless PI flashes). The optimal
strategies of this basic game can be found by solving the matrix game min max
y'P2APl,P2iTzPl, yP2es3T zP1esdj, where the notation is as follows. At each
instant of time, P2 can choose from three options (move to one of the two
adjacent nodes or stay where he is) and therefore he has 3r pure strategies.
Each component of yP2 denotes the probability with respect to which one of
the 3T pure strategies will be chosen. The set S3t is the simplex to which the
3r-vector yP2 belongs. The components of zPl: on the other hand, indicate Pi's
pure strategies, determined by when and where to flash. After one time step PI
can flash at three different positions, after two time steps at five different
positions, etc. Hence the number of pure strategies equals 3 + 5 + ■ ■ ■ + (2T
+ 1) = T2 + 2T, provided that T < [n/2\. (For T > [n/2], all points on the circle
can be reached by Pi.) Vector zPl has dr — T2 + 2T components and SdT
denotes the simplex from which zPl must
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and the elements of this matrix are either 1 (corresponding to the cases when
for the particular strategies capture takes place) or 0 (if no capture takes
place). The first index of A refers to Pi's initial position, the second index to
P2's initial position, and the third index is the T introduced earlier. If the
saddle-point value of this matrix game is denoted by JPi,P2,t, then it should be
intuitively clear (and this has been rigorously proven in Olsder and
Papavassilopoulos (1988a)) that Jpi,p2,l  ̂■'Pi,p2.2 — ' ' ' — /pi,p2,[n/2] =
^pi,p2,[n/2] + l = ' ' ' > for all p\,P2 € {1,2,..., n}. Hence, in the solution of the
game, we can restrict the time horizon to [n/2] steps, without any loss of



generality. The idea behind the proof of this result is that in [n/2] steps each
player can reach any point on the circle with an arbitrary underlying
probability distribution. Now, consider the following generalization of the
basic game. At t = 0 P2 still knows where PI is (at node p\), but PI only knows
the probability distribution of P2's position. The probability for P2 to be at
node P2 at t = 0 is vP2. The probability vector v = (v\,... ,un)' is assumed to be
known to both players. Of course P2 knows his own position at t = 0. Such a
generalization arises if one considers the following game: two players move
on the circumference of a circle and do not know each other's initial position
(other than in a probabilistic way). Each player has exactly one flash at his
disposal. Suppose that PI flashes first and that he does not capture P2 in this
flash. Then P2 knows where PI is at the time of the flash, but PI only knows
that P2 is not in the area just illuminated. If PI does not have any other
information about P2's position, then he may assume a uniform distribution on
the nodes which were not illuminated at the time of the flash. This is the
starting point for this generalization (with all Vi's corresponding to
nonilluminated nodes being equal and adding up to one). This generalization
can again be formulated as a matrix game: n min max V Viy\AP1 tPa tTzpl.
This minimax problem is not in the standard form treated earlier in Section 2.3,
but it can also be solved by means of LP, viz., max]T(j/i)j
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<(i,i,...,i); £j=i(Vi)j = £j=i(£0j, »' = 2,... ,n; {Vi)i >0. i = l,...,n; j = l,...,3T. The
saddle-point value of this game when vt — 0 for i = 1, 2, 3 and i  ̂= l/(n — 3)
for i = 4,..., n will be indicated by Jt, tacitly assuming that n > 3. Both players
have one flash each We will now solve the problem where each player has
exactly one flash at his disposal and the players do not know each other's
initial position, other than that they are given by the uniform distribution on the
n nodes with no correlation between the two initial positions. If both players
flash at t = 1, then the probability with which P2 captures PI is 3/n (since three
positions are illuminated) and so is the probability for PI to capture P2. Thus
the pay-off is (3/n) — (3/n) = 0. Let us now consider the situation where P2
flashes at t = 1 and PI does not. Then the pay-off for P2 is (3/tz) — (1 —
3/ti)Jt-i- In other words, the pay-off equals the probability that P2 captures PI
minus the probability that P2 does not capture PI, times the probability that PI
captures P2 during the remaining T — 1 period game. Similarly, if P2 flashes
at t — 2 and PI does not flash at t — 1 or t — 2, then the pay-off for P2 is



(3/ra)-(1-3/n) jr_2, etc. Define ck = (3/n)-(l-3/ra)Jr_fc, and consider the
matrix M± ( 0 -ci \ -ci 0 -c2 -C2 0 -C3 0 CT-1 Cl  ̂C2 c3 CT-1 0/ Let s = (s\
..., st)' and r = (ri,..., tt)' represent probability vectors according to which PI
and P2 choose to flash at times t = 1,..., T. Then the players face the following
game: minmax r'Ms. The solution(s) to this latter matrix game provides the
solution to our problem. Since the matrix M is skew-symmetric, it turns out that
the value of the
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Some further analysis regarding the signs and monotonicity properties of the
elements Ck shows that the optimal strategies as when to flash are pure
strategies. This is no longer true, however, if the illuminated areas for both
players have different sizes. See Olsder and Papavassilopoulos (1988a) for
further details and extensions. In conclusion, for the searchlight game as
described above to be solved, one must solve a hierarchy of matrix games. The
first matrix game determines the coefficients c ,̂ which are subsequently used
as elements in the second matrix game defined by means of the matrix M. 2.9
Problems 1. Obtain the security strategies and the security levels of the players
in the following matrix game. Does it admit a (pure) saddle-point solution? P2
PI Obtain the mixed security strategies and the average security levels of the
players in each of the following matrix games. -2 2 1 -1 1 3 2 1 -1 -1 3 0 1 2 4
1 P2 PI 4 0 3 0 2 1 P2 PI 1 3 4 -1 3. Verify that the quantity sup  ̂miny y'Az is
unique. 4. Prove that the quantity max  ̂y'Az is a continuous function of y € Y. 5.
Determine graphically the mixed saddle-point solutions of each of the
following matrix games. P2 PI 1 -3 0 3 -2 2 -1 2 -2 2 1 1 P2 PI 2 -1 - 3 0 1 -1
4 6. Convert the following matrix games into linear programming problems and
thereby numerically evaluate their saddle-point solutions. P2 P2 PI 3 2 1 1 2 3
PI 0 1—1 0 -1 1 0 1 0 2 1 0 1 3 2 1 0
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n) matrices A — {a^} can be considered to be isomorphic to the mn-
dimensional Euclidean space Rmn. Let Smn denote the set of all real (m x n)
matrices which, considered as the pay-off matrix of a zero-sum game, admit
pure strategy saddle-point equilibria. Then Smn is isomorphic to a subset of
Rmn, to be denoted by Sm'n. (i) Is Sm'n a subspace? (ii) Is Sm'n closed,
convex? (iii) Describe S2'3 explicitly. 8. Let Tl(A) denote the set of all mixed
saddle-point strategies of Pi in a matrix game A. Show that T%(A) is



nonempty, convex, closed and bounded. 9. A matrix game A, where A is a
skew-symmetric matrix, is called a symmetric game. For such a matrix game
prove, using the notation of Problem 8, that T\A) = T2(A), and Vm(A) = 0. 10.
Obtain the pure or behavioral saddle-point solutions of the following single-
211210 10011221 11. Obtain a feedback saddle-point solution for the feedback
game in extensive form depicted in Fig. 2.15. What is the value of the game?
What is the actual play dictated by the feedback saddle-point solution? Show
that these constant strategies also constitute a saddle-point solution for the
feedback game. 12. Show that the feedback game in extensive form depicted in
Fig. 2.16 does not admit a pure-strategy feedback saddle-point solution. Obtain
its behavioral saddle-point solution and the behavioral saddle-point value.
Compare the latter with the value of the game of Problem 11. What is the actual
play dictated by the feedback saddle-point solution? 13. What is the open-loop
version of the feedback game of Fig. 2.16? Obtain its saddle-point solution and
value. 14. Prove that if a feedback game in extensive form admits a feedback
saddle- point solution with the value J{, and its open-loop version (if it exists)
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Feedback game of Problem 11. 0-1 15-1-2-2-323341-102 Figure 2.16:
Feedback game of Problem 12. admits a unique saddle-point solution with the
value J0, then J{ = J0. Furthermore, show that the open-loop saddle-point
solution is the actual play dictated by the feedback saddle-point solution.
(Hint: make use of Prop. 2.7 and the interchangeability property of saddle-
point strategies.) 15. Verify the following conjecture: If a feedback game in
extensive form admits a behavioral saddle-point solution which actually
dictates a random choice at least at one level of play, then its open-loop
version (if it exists) cannot admit a pure-strategy saddle-point equilibrium. 16.
Investigate whether the following multi-act game of the delayed commitment
type admits a behavioral saddle-point solution or not. 2-30417230-1-5210-12
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behavioral saddle-point solution of the game in extensive form depicted in Fig.
2.17. 0 1-10 0 110 Figure 2.17: The two-person dynamic game of Problem 17.
18. Determine the pure or behavioral saddle-point solution of the game in
extensive form depicted in Fig. 2.18, which also incorporates a chance move.
09093993 Figure 2.18: The game of Problem 18. 19. Determine the solutions
to the previous problem in the cases in which (i) PI has access to nature's



choice; (ii) P2 has access to nature's choice; and (iii) both players have access
to nature's choice. What is the value of this extra information to individual
players in each case? 20. Construct an example of a matrix with only real
eigenvalues, which, when considered as a zero-sum game, has a value in
mixed or pure strategies that is smaller than the minimum eigenvalue. 21. A
matrix game is said to be completely mixed if it admits a mixed saddle- point
solution which assigns positive probability weight to all pure strategies of the
players. Show that in a completely mixed game it does not matter whether PI is
minimizing and P2 is maximizing or the other way around, i.e., PI is
maximizing and P2 is minimizing. In both cases the saddle-point value and the
strategies are the same. (For further results on completely mixed games the
reader is referred to Bapat and Raghavan (1997).)

74 T. BA§AR AND G. J. OLSDER 0-1-1 o Figure 2.19: The game of Problem
18. 22. Obtain for PI his minimum guaranteed (average) costs in mixed,
behavioral and randomized strategies, for the game with incomplete
information, described by the tree of Fig. 2.19. (Answers: In mixed strategies,
PI can guarantee an average (minimum) outcome of —3/4, in behavioral
strategies his security level is —25/64, and in randomized strategies it is
-9/16.) 23. 23. Consider the following matrix game. P2 11+a; 5 7 9 + 3/ If the
parameters x and y would be known to both players, the matrix game is a
standard one. Parameter x is known to PI only, however, and y is only known
to P2. What both players do know is that both parameters are stochastic, and
independently and uniformly distributed on the interval [0, T], with T — 1.
Show that the optimal solutions are l* _ / first row, if 0 < x < c1, [ second row,
if c1 < x < 1, 2* _ / first column, if 0 < y < c2, [ second column, if c2 < y < 1,
where the real constants cl are (uniquely) determined by 0 < c1 < 1 and 2c2(8
+ c1) + (c2)2 -5 = 0, 2c1(8 + c2) + (c1)2 - 8 - 2c2 = 0. For x — c1 and/or y
— c2 the solution is not unique. Investigate the solution for lim T | 0 and
compare the limit behavior with the solution of the original matrix game with x
— y = 0.
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theory of finite zero-sum games dates back to Borel in the early 1920s whose
work on the subject was later translated into English (Borel, 1953). Borel
introduced the notion of a conflicting decision situation that involves more than
one decision maker, and the concepts of pure and mixed strategies, but he did



not really develop a complete theory of zero-sum games. He even conjectured
that the minimax theorem was false. It was Von Neumann who first came up
with a proof of the minimax theorem and laid down the foundations of game
theory as we know of today (Von Neumann, 1928, 1937). His pioneering book
with Morgenstern definitely culminates his research on the theory of games
(Von Neumann and Morgenstern, 1947). A full account of the historical
development in finite zero-sum games, as well as possible applications in
social sciences, is given in Luce and Raiffa (1957). The reader is also referred
to McKinsey (1952) and the two edited volumes by Kuhn and Tucker (1950,
1953). The original proof of the minimax theorem given by Von Neumann is
nonelementary and rather complicated. Since then, the theorem has been
proven in several different ways, some being simpler and more illuminating
than others. The proof given here seems to be the simplest one available in the
literature. Section 2.3. Several illustrative examples of the graphical solution
of zero-sum matrix games can be found in the nontechnical book by Williams
(1954). Graphical solution and the linear programming approach are not the
only two applicable in the computation of mixed saddle-point solutions of
matrix games; there is also the method of Brown and Von Neumann (1950)
which relates the solution of symmetric games (see Problem 9 in Section 2.9
for a definition) to the solution of a particular differential equation.
Furthermore, there is the iterative solution method of Brown (1951) by
fictitious play (see also (Robinson, 1951)). A good account of these two
numerical procedures, as well as another numerical technique of Von Neumann
(1954) can be found in Luce and Raiffa (1957, Appendix 6). For a more recent
development in this area, see Lakshmivarahan and Narendra (1981). Sections
2.4, 2.5 and 2.6. Description of single- and multi-act games in extensive form
again goes back to the original work of Von Neumann and Morgenstern (1947),
which was improved upon considerably by Kuhn (1953). For a critical
discussion of prior and delayed commitment approaches to the solution of
zero-sum games in extensive form the reader is referred to Aumann and
Maschler (1972). Section 2.7. The theory presented in this section is based on
Alpern (1988, 1991), Isbell (1957), and Washburn (1990). Washburn (1990)
also discusses computational complexity of the solutions of zero-sum games on
finite graphs with cycles and terminal pay-off. Extensions to discounting are
also given in that reference, but extensions to games with random moves lead
to complications in the solution algorithm in an essential way. Alpern (1991),
on (not necessarily zero-sum) games with perfect information on finite graphs



with cycles and with local pay-offs, gives a constructive way to find optimal
stationary strategies. See also Ehrenfeucht and Mycielski (1979) for earlier
work on this topic. The former reference also discusses m-automated
strategies; such strategies can be played by an automaton with m internal states
and where inputs and outputs are coded to the nodes of the graph.

76 T. BA§AR AND G. J. OLSDER Section 2.8. The two duels presented, the
silent and the noisy one, are discretized versions (discretization with respect to
time) of duels played in continuous time as given in Karlin (1959). For further
discussion on extensions of game of timing see the Notes section of Chapter 4,
with reference to Section 4.7. The theory of the searchlight game as presented
here has been taken from Olsder and Papavassilopou- los (1988a, 1988b).
Such games with a finite state space belong to the realm of Markov chain
games; for a survey see Parthasaxathy and Stern (1977), and Raghavan and
Filar (1991). For other types of search games, see Gal (1980). Section 2.9.
Problem 20: For more results on the relation between games and their spectra,
see Weil (1968). Problem 22 has been taken from Isbell (1957).

Chapter 3 Noncooperative Finite Gaines: TV-Person Nonzero-Sum 3.1
Introduction This chapter develops a general theory for static and dynamic
nonzero-sum finite games under two different types of noncooperative solution
concepts—those named after J. Nash and H. von Stackelberg. The analysis
starts in Section 3.2 with bimatrix games which basically constitute a normal
form description of two-person nonzero-sum finite games, and in this context
the Nash equilibrium solution (in both pure and mixed strategies) is introduced
and its properties and features are thoroughly investigated. The section
concludes with some computational aspects of mixed-strategy Nash equilibria
in bimatrix games. Section 3.3 extends the analysis of Section 3.2 to iV-person
games in normal form and includes a proof for an important theorem (Thm.
3.2) which states that every iV-person finite game in normal form admits Nash
equilibria in mixed strategies. In Section 3.4, the computational aspects of
mixed-strategy Nash equilibria are briefly discussed, and in particular the
close connection between mixed-strategy Nash equilibria in bimatrix games
and the solution of a nonlinear programming problem is elucidated. Section 3.5
deals with properties and derivation of Nash equilibria (in pure, behavioral
and mixed strategies) for dynamic TV-person games in extensive form. The
analysis is first confined to single-act games and then extended to multi- act



games. In both contexts, the concept of "informational inferiority" between two
finite games in extensive form is introduced, which readily leads to
"informational nonuniqueness" of Nash equilibria in dynamic games. To
eliminate this feature, the additional concept of "delayed commitment" type
equilibrium strategy is introduced, and such equilibria of special types of
single-act and 77
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recursive procedures. Other refinement schemes discussed in this section are
the "perfectness" and "properness" of Nash equilibria. Section 3.6 is devoted
to an extensive discussion of hierarchical equilibria in TV-person finite games.
First, the two-person games are treated, and in this context both the (global)
Stackelberg and feedback Stackelberg solution concepts are introduced, also
within the class of mixed and behavioral strategies. Several examples are
included to illustrate these concepts and the derivation of the Stackelberg
solution. The analysis is then extended to many-player games. The final section
of the chapter discusses extension of the results of the earlier sections to ./V-
person finite games in extensive form which also incorporate chance moves.
3.2 Bimatrix Games Before developing a general theory of nonzero-sum
noncooperative games, it is most appropriate first to investigate equilibria of
bimatrix games which in fact constitute the most elementary type of decision
problems within the class of nonzero-sum games. In spite of their simple
structure, bimatrix games still carry most of the salient features and intricacies
of noncooperative decision making. A bimatrix game can be considered as a
natural extension of the matrix game of Section 2.2, to cover situations in
which the outcome of a decision process does not necessarily dictate the
verdict that what one player gains the other one has to lose. Accordingly, a
bimatrix game is comprised of two (m x n)-dimensional matrices, A = {ay}
and B = {fry}, with each pair of entries (a,ij,bij) denoting the outcome of the
game corresponding to a particular pair of decisions made by the players. As
in Section 2.2, we call the alternatives available to the players strategies. If PI
adopts the strategy "row i" and P2 adopts the strategy "column j", then aij
(respectively, btj) denotes the loss incurred to PI (respectively, P2). Being a
rational decision maker, each player will strive for an outcome which provides
him with the lowest possible loss. Stipulating that there exists no cooperation
between the players and that they make their decisions independently, let us
now investigate which pair(s) of strategies to declare as equilibrium pair(s) of



a given bimatrix game; in other words, how do we define a noncooperative
equilibrium solution in bimatrix games? To recall the basic property of a
saddle-point equilibrium solution in zero-sum games would definitely help in
this investigation: "A pair of strategies is in saddle-point equilibrium if there is
no incentive for any unilateral deviation by any one of the players" (Section
2.2). This is, in fact, a most natural property that an equilibrium solution is
expected to possess, and surely it finds relevance also in nonzero-sum games.
Hence, we have the following definition. Definition 3.1 A pair of strategies
{row i*, column j*} is said to constitute a noncooperative (Nash) equilibrium
solution to a bimatrix game (A — {aij}, B =
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pair of inequalities is satisfied for all i — 1,..., m and all j = l,...,n: bi*j* <
bi.j. (3.1a) (3.1b) Furthermore, the pair (aj-j-,6i*j-) is known as a
noncooperative (Nash) equilibrium outcome of the bimatrix game. Example 3.1
Consider the following (2 x 2) bimatrix game P2 P2 a=ilJT1aIpi b = 1 2 0 H) 1
3 PI. It admits two Nash equilibria, as indicated: {row 1, column 1} and {row
2, column 2}. The corresponding equilibrium outcomes are (1,2) and (—1,0).
□ We now readily observe from the preceding example that a bimatrix game
can admit more than one Nash equilibrium solution, with the equilibrium
outcomes being different in each case. This then raises the question of whether
it would be possible to order different Nash equilibrium solution pairs among
themselves so as to declare only one of them as the most favorable equilibrium
solution. This, however, is not completely possible, since a total ordering does
not exist between pairs of numbers; but, notions of "betterness" and
"admissibility" can be introduced through a partial ordering. Definition 3.2 A
pair of strategies {row i\, column ji} is said to be better than another pair of
strategies {row ii column J2} if aiij1 < di2j2, and if at least one of these
inequalities is strict. '«Ul <bt, Definition 3.3 A Nash equilibrium strategy pair
is said to be admissible if there exists no better Nash equilibrium strategy pair.
In Example 3.1, out of a total of two Nash equilibrium solutions only one of
them is admissible ({row 2, column 2}), since it provides uniformly lower
costs for both players. This pair of strategies can therefore be declared as the
most "reasonable" noncooperative equilibrium solution of the bimatrix game.
In the case when a bimatrix game admits more than one admissible Nash
equilibrium, however, such a clean choice cannot be made. Consider, for
example, the (2 x 2) bimatrix game P2 P2
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equilibrium solutions: {row 1, column 1}, {row 2, column 2}, with the
equilibrium outcomes being (-2,-1) and (—1, -2), respectively. These Nash
equilibria are definitely not interchangeable, and hence a possibility for the
outcome of the game to be a nonequilibrium one in an actual play emerges. In
effect, since there is no cooperation between the players by the nature of the
problem, PI might stick to one equilibrium strategy (say, row 1) and P2 might
adopt the other one (say, column 2), thus yielding an outcome of (1,1) which is
unfavorable to both players. This is indeed one of the dilemmas of
noncooperative nonzero-sum decision making (if a given problem does not
admit a unique admissible equilibrium), but there is really no remedy for it
unless one allows some kind of communication between the players, at least to
ensure that a nonequilibrium outcome will not be realized. In fact, a possibility
of collusion saves only that aspect of the difficulty in the above example, since
the "best" choice still remains indeterminate. One way of resolving this
indeterminacy is to allow a repetition and to choose one or the other Nash
equilibrium solution at consecutive time points. The average outcome is then
clearly (-3/2,-3/2), assuming that the players make their choices dependent on
each other. However, this favorable average outcome is not an equilibrium
outcome in mixed strategies, as we shall see in the last part of this section. The
solution proposed above is acceptable in the "real" decision situation, known
as the battle of the sexes, that the bimatrix game (3.2) represents. The story
goes as follows. A couple has to make a choice out of two alternatives for an
evening's entertainment. The alternatives are a basketball game which is
preferred by the husband (PI) and a musical comedy which is preferred by the
wife (P2). But they would rather go together, instead of going separately to
their top choices. This then implies, also in view of the bimatrix game (3.2),
that they will eventually decide to go together either to the game or to the
comedy. It should be noted that there is a flavor of cooperation in this example,
but the solution is not unique in any sense. If repetition is possible, however,
then they can go one evening to the game, and another evening to the comedy,
thus resolving the problem in a "fair" way. Such a solution, however, does not
carry any game-theoretic meaning as we shall see in the last part of this
section. The message here is that if a bimatrix game admits more than one
admissible Nash equilibrium solution, then a valid approach would be to go
back to the actual decision process that the bimatrix game represents, and see
whether a version of the bimatrix game that also accounts for repetition admits



a solution which is favored by both parties. This, of course, is all valid
provided that some communication is allowed between the players, in which
case the "favorable" solution thus obtained will not be a noncooperative
equilibrium solution. Thus, we have seen that if a bimatrix game admits more
than one admissible Nash equilibrium solution, then the equilibrium outcome
of the game becomes rather ill-defined—mainly due to the fact that multiple
Nash equilibria are in general not interchangeable. This ambiguity disappears,
of course, whenever the equilibrium strategies are interchangeable, which
necessarily requires the corresponding outcomes to be the same. Since zero-
sum matrix games are special types of bimatrix games, in which case the
equilibrium solutions are known to
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(Corollary 2.1), it follows that there exists some nonempty class of bimatrix
games whose equilibrium solutions possess such a property. This class is, in
fact, larger than the set of all (m x n) zero-sum games, as it is shown below.
Definition 3.4 Two (m x n) bimatrix games (A, B) and (C, D) are said to be
strategically equivalent if there exist positive constants a\, a2, and scalars 0\,
02, such that a-ij = OLidj + 0i, (3.3a) bij = a2dij + 02, (3.3b) for alii = 1,..., m;
j — 1,..., n. Remark 3.1 The reader can easily verify that the pair (3.3a)-(3.3b)
is indeed an equivalence relation since it is symmetric, reflexive and
transitive. □ Proposition 3.1 All strategically equivalent bimatrix games have
the same Nash equilibria. Proof. Let (A, B) be a bimatrix game with a Nash
equilibrium solution {row i*, column j*}. Then, by definition, inequalities
(3.1a)-(3.1b) are satisfied. Now let (C, D) be any other bimatrix game that is
strategically equivalent to (A, B). Then there exist Qi > 0, a2 > 0, 0i, 02 such
that (3.3a)-(3.3b) are satisfied for all possible i and j. Using these relations in
(3.1a) and (3.1b), we obtain, in view of the positivity of a\ and a2, for all i —
1,..., m and all j = 1,..., n, which proves the proposition since (A, B) was an
arbitrary bimatrix game. D Proposition 3.2 Multiple Nash equilibria of a
bimatrix game (A, B) are interchangeable if (A,B) is strategically equivalent to
(A, —A). Proof. The result readily follows from Corollary 2.1 since, by
hypothesis, the bimatrix game (A, B) is strategically equivalent to a zero-sum
game A. D The undesirable features of the Nash equilibrium solutions of
bimatrix games, that we have witnessed, might at first sight lead to questioning
appropriateness and suitability of the Nash equilibrium solution concept for
such noncooperative multi-person decision problems. Such a verdict, however,



is not fair, since the undesirable features detected so far are due to the
noncooperative nature of the decision problem under consideration, rather than
to the weakness of the Nash equilibrium solution concept. To supplement our
argument, let us consider one extreme case (the so-called "team" problem) that
involves two players, identical goals (i.e., A = B), and noncooperative
decision making. Note that, since
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this case, a total ordering of outcomes is possible, which then makes the
admissible Nash equilibrium solution the only possible equilibrium solution
for this class of decision problems. Moreover, the admissible Nash
equilibrium outcome will be unique and be equal to the smallest entry of the
matrix that characterizes the game. Note, however, that even for such a
reasonable class of decision problems, the players might end up at a
nonequilibrium point in case of multiple equilibria; this being mainly due to the
noncooperative nature of the decision process which requires the players to
make their decisions independently To illustrate such a possibility, let us
consider the identical goal game (team problem) with the cost matrices P2 A =
B=EE-]P1, (3.4) which both parties try to minimize, by appropriate choices of
strategies. There are clearly two equilibria, {row 1, column 1} and {row 2,
column 2}, both yielding the minimum cost of 0 for both players. These
equilibria, however, are not interchangeable, thus leaving the players at a very
difficult position if there is no communication between them. (Perhaps tossing
a fair coin and thereby securing an average cost of | would be preferred by
both sides to any pure strategy which could easily lead to an unfortunate cost of
1.) This then indicates that even the well-established team-equilibrium solution
could be frowned upon in case of multiple equilibria when the decision mode
is noncooperative. One can actually make things look even worse by replacing
matrix (3.4) with a nonsymmetric one P2  ̂= B = PrTirlpi> (3-5) which admits
the same two equilibria as in the previous matrix game. But what are the
players actually going to play in this case? To us, there seems to be only one
logical play for each player: PI would play "row 2", hoping that P2 would play
his second equilibrium strategy, but at any rate securing a loss ceiling of 1. P2,
reasoning along similar lines, would rather play "column 1". Consequently, the
outcome of their joint decision is 1 which is definitely not an equilibrium
outcome. But, in an actual play of this matrix game, this outcome is more likely
to occur than the equilibrium outcome. One might counter-argue at this point



and say that P2 could very well figure out Pi's way of thinking and pick
"column 2" instead, thus enjoying the low equilibrium outcome. But what if PI
thinks the same way? There is clearly no end to this so-called second-guessing
iteration procedure if adopted by both players as a method that guides them to
the "optimum" strategy.
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point as to why, while the multiple Nash equilibria of bimatrix games
(including identical-goal games) possess all these undesirable features, the
saddle-point equilibrium solutions of zero-sum (matrix) games are quite robust
—in spite of the fact that both are noncooperative decision problems. The
answer to this lies in the nature of zero-sum games: they are completely
antagonistic, and the noncooperative equilibrium solution fits well within this
framework. In other nonzero-sum games, however, the antagonistic nature is
rather suppressed or is completely absent, and consequently the
"noncooperative decision making" framework does not totally suit such
problems. If some cooperation is allowed, or if there is a hierarchy in decision
making, then equilibrium solutions of nonzero-sum (matrix) games could
possess more desirable features. We shall, in fact, observe this later in Section
3.6 where we discuss equilibria in nonzero-sum games under the latter mode
of decision making. The minimax solution One important property of the
saddle-point strategies in zero-sum games was that they were also the security
strategies of the players (see Thm. 2.2). In bimatrix games, one can still
introduce security strategies for the players in the same way as it was done in
Section 2.2, and with the properties cited in Thm. 2.1 being valid with the
exception of the third one. It should of course be clear that, in a bimatrix game
(A, B) the security strategies of PI involve only the entries of matrix A, while
the security strategies of P2 involve only those of matrix B. In Example 3.1,
considered earlier, the unique security strategy of PI is "row 1", and the unique
security strategy of P2 is "column 1". Thus, considered as a pair, the security
strategies of the players correspond to one of the Nash equilibrium solutions,
but not to the admissible one, in this case. One can come up with examples of
bimatrix games in which the security strategies do not correspond to any one of
the equilibrium solutions, or examples of bimatrix games in which they
coincide with an admissible Nash solution. As an illustration of the latter
possibility, consider the following bimatrix game: P2 P2 w 30 0 2 W 0 30 2
This admits a unique pair of Nash equilibrium strategies, as indicated, which



are also the security strategies of the players. Moreover, the equilibrium
outcome is determined by the security levels of the players. The preceding
bimatrix game is known in the literature as the prisoners' dilemma. It
characterizes a situation in which two criminals, suspected of having
committed a serious crime, are detained before a trial. Since there is no direct
evidence against them, their conviction depends on whether they confess or
not. If the prisoners both confess, then they will be sentenced to 8 years. If
neither one confesses, then they will be convicted of a lesser crime and
sentenced to
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puts the blame on the other one, then he is set free according to the laws of the
country and the other one is sentenced to 30 years. The unique Nash
equilibrium in this case dictates that they both should confess. Note, however,
that there is in fact a better solution for both criminals, which is that they both
should refuse to confess; but implementation of such a solution would require a
cooperation of some kind (and also trust), which is clearly out of the question
in the present context. Besides, this second solution (which is not Nash) is
extremely unstable, since a player will find it to his advantage to unilaterally
deviate from this position at the last minute. Even if the security strategies
might not be in noncooperative equilibrium, they can still be employed in an
actual game, especially in cases when there exist two or more
noninterchangeable Nash equilibria or when a player is not completely sure of
the cost matrix, or even the rationality of the other player. This reasoning leads
to the following second solution concept in bimatrix games. Definition 3.5 A
pair of strategies {row i, column j} is known as a pair of minimax strategies
for the players in a bimatrix game (A, B) if the former is a security strategy for
PI in the matrix game A, and the latter is a security strategy for P2 in the matrix
game B. The corresponding security levels of the players are known as the
minimax values of the bimatrix game. Remark 3.2 It should be noted that
minimax values of a bimatrix game are definitely not lower (in an ordered
way) than the pair of values of any Nash equilibrium outcome. Even if the
unique Nash equilibrium strategies correspond to the minimax strategies, the
minimax values could be higher than the values of the Nash equilibrium
outcome, mainly because the minimax strategy of a player might not constitute
optimal response to the minimax strategy of the other player. □ Mixed
strategies In our discussion of bimatrix games in this section, we have so far



encountered only cases in which a given bimatrix game admits a unique or a
multiple of Nash equilibria. There are other cases, however, in which Nash
equilibrium strategies might not exist, as illustrated in the following example.
In such a case we simply say that a Nash equilibrium does not exist in pure
strategies. Example 3.2 Consider the (2 x 2) bimatrix game P2 P2 3 0 2 1 1 2 0
-1 It clearly does not admit a Nash equilibrium solution in pure strategies. The
minimax strategies, however, exist (as they always do, by Thm. 2.1 (ii)) and
are given as {row 1, column 2}. □
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the case of nonexistence of a saddle point in zero- sum games (Section 2.2),
we now enlarge the class of strategies so as to include all mixed strategies,
defined as the set of all probability distributions on the set of pure strategies of
each player (see Def. 2.2). This extension is in fact sufficient to ensure the
existence of a Nash equilibrium solution (in mixed strategies, in a bimatrix
game)—a result which we state below in Thm. 3.1, after making the concept of
a Nash equilibrium in this extended space precise. Using the same notation as
in Defs. 2.3-2.5, wherever appropriate, we first have the following definition.
Definition 3.6 A pair {y* EY,z* € Z} is said to constitute a noncooperative
(Nash) equilibrium solution to a bimatrix game (A, B) in mixed strategies, if
the following inequalities are satisfied for ally e Y and z € Z: y*>Az* < y'Az*,
yeY, (3.7a) y*'Bz* < y*'Bz, z£Z. (3.7b) Here, the pair (y*'Az*, y*'Bz*) is
known as a noncooperative (Nash) equilibrium outcome of the bimatrix game
in mixed strategies. Theorem 3.1 Every bimatrix game has at least one Nash
equilibrium solution in mixed strategies. Proof. We postpone the proof of this
important result until the next section where it is proven in a more general
context (Thm. 3.2). D Computation of mixed Nash equilibrium strategies of
bimatrix games is more involved than the computation of mixed saddle-point
solutions, and in the literature there are very few generally applicable methods
in that context. One of these methods converts the original game problem into a
nonlinear programming problem, and it will be discussed in Section 3.4. What
we intend to include here is an illustration of the computation of mixed Nash
equilibrium strategies in (2 x 2) bimatrix games by directly making use of
inequalities (3.7a)-(3.7b). Specifically, consider again the bimatrix game of
Example 3.2 which is known not to admit a pure-strategy Nash equilibrium. In
this case, since every y € Y can be written as y — (j/i,(l — 2/i))'i with 0 < j/i
< 1, and similarly every z € Z as z = (zi,(l — z\)Y, with 0 < z\ < 1, we first



obtain the following equivalent inequalities for (3.7a) and (3.7b), respectively,
for the bimatrix game under consideration: -2y\z\+y\ < -2yizl+y,, 0 < Vl < 1,
2y\z\-z\ < 2y*Zl-zu 0 < zx < 1. Here (y{, (1 -y{))' and [z\, (1 — z\))' denote the
mixed Nash equilibrium strategies of PI and P2, respectively, which have yet
to be computed so that the preceding pair of inequalities is satisfied. A way of
obtaining this solution would be to find that value of z\ (if it exists in the
interval [0,1]) which would make the RHS of the first inequality independent
of j/i, and also the value of y\ that
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inequality independent of z\. The solution then readily turns out to be (y* = ,̂z*
= \) which can easily be checked to be the unique solution set of the two
inequalities. Consequently the bimatrix game of Example 3.2 admits a unique
Nash equilibrium solution in mixed strategies, which is {y* = (!,!)',** = (!,!)'}.
Remark 3.3 In the above solution to Example 3.2 we observe an interesting,
and rather counter-intuitive, feature of the Nash equilibrium solution in mixed
strategies. The solution obtained, i.e., {y*,z*}, has the property that the
inequalities (3.7a) and (3.7b) in fact become independent of y € Y and z € Z. In
other words, direction of the inequality loses its significance. This leads to the
important conclusion that if the players were instead seeking to maximize their
average costs, then we would have obtained the same mixed equilibrium
solution. This implies that, while computing his mixed Nash equilibrium
strategy, each player pays attention only to the average cost function of his co-
player, rather than optimizing his own average cost function. Hence, the nature
of the optimization (i.e., minimization or maximization) becomes irrelevant in
this case. The same feature can also be observed in mixed saddle-point
solutions, yielding the conclusion that a zero-sum matrix game A could have
the same mixed saddle-point solution as the zero-sum game with matrix —A.
(See Problem 21 in section 2.9.) D The following proposition now makes the
conclusions of the preceding remark precise. Proposition 3.3 Let Y and Z
denote the sets of inner points (interiors) of Y and Z, respectively. If a bimatrix
game (A, B) admits a mixed-strategy Nash equilibrium solution {y* € Y, z* G
Z},15 then this also serves as a mixed-strategy Nash equilibrium solution for
the bimatrix game (—A, —B). Proof By hypothesis, inequalities (3.7a) and
(3.7b) are satisfied by a pair {y* &Y,z* e Z}. This implies that mmyy'Az* is
attained by an inner point of Y, and hence, because of linearity of y'Az* in y,
this expression has to be independent of y. Similarly, y*'Bz is independent of z.



Consequently, (3.7a)- (3.7b) can be written as y*'Az* = y'Az*, Vy e Y, y*'Bz* =
y*'Bz, Mz £ Z, which further leads to the inequality-pair y*'{-A)z* < y'(-A)z*,
My e Y, y*'(-B)z* < y*'(-B)z, Vz € Z, which verifies the assertion of the
proposition. D 15Such a solution is also known as a completely mixed Nash
equilibrium solution or as an inner mixed-strategy Nash equilibrium solution.
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proposition, we now immediately have the following result for zero-sum
matrix games. Corollary 3.1 Any inner mixed saddle point of a zero-sum
matrix game A also constitutes an inner mixed saddle point for the zero-sum
matrix game —A. Even though we have introduced the concept of a mixed
noncooperative equilibrium solution for bimatrix games which do not admit a
Nash equilibrium in pure strategies, it is quite possible for a bimatrix game
that admits (pure) Nash equilibria to admit a mixed Nash equilibrium as well.
To verify this possibility, let us again consider the bimatrix game of the "battle
of the sexes", given by (3.2). We have already seen that it admits two
noninterchangeable Nash equilibria with outcomes (—2,-1) and (—1,-2). Let
us now investigate whether it admits a third equilibrium, this time in mixed
strategies. For this bimatrix game, letting y = (yi,(l — J/i))' € Y and z = (21, (1
— zi))' 6 Z, we first rearrange the inequalities (3.7a)-(3.7b) and write them in
the equivalent form -5yJzJ + 2yJ < -5yizJ+2y1( 0 < yx < 1, -hy\z\ + Zz{ <
-5t/iZi + 3zi, 0 < zi < 1. Now it readily follows that these inequalities admit
the unique inner point solution {y\ = \,z{ = |) dictating the mixed Nash
equilibrium solution {y* — (|,|)',z* = (|, !)'}, and an average outcome of {—\,
—\)- Of course, the above inequalities also admit the solutions (yj" = 1, z\ = 1)
and (y\ = 0, z\ = 0) which correspond to the two pure Nash equilibria which
we have discussed earlier at some length. Our interest here lies in the nature of
the mixed equilibrium solution. Interpreted within the context of the "battle of
the sexes", this mixed solution dictates that the husband chooses to go to the
game with probability I and to the musical comedy with probability |. The
wife, on the other hand, decides on the game with probability | and on the
comedy with probability |. Since, by the very nature of the noncooperative
equilibrium solution concept, these decisions have to be made independently,
there is a probability of 13/25 with which the husband and wife will have to
spend the evening separately. In other words, even if repetition is allowed, the
couple will be together for less than half the time, as dictated by the unique
mixed Nash equilibrium solution; and this so in spite of the fact that the



husband and wife explicitly indicate in their preference ranking that they would
rather be together in the evening. The main reason for such a dichotomy
between the actual decision process and the solution dictated by the theory is
that the noncooperative equilibrium solution concept requires decisions to be
made independently, whereas in the bimatrix game of the "battle of the sexes"
our way of thinking for a reasonable equilibrium solution leads us to a
cooperative solution which inevitably asks for dependent decisions. (See
Problem 4, Section 3.8, for more variations on the "battle of the sexes".) The
conclusion we draw here is that bimatrix games with pure-strategy Nash
equilibria could also admit mixed-strategy Nash solutions which, depending on
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two matrices, could yield better or worse (and of course also noncomparable)
average equilibrium outcomes. 3.3 iV-Person Games in Normal Form The
class of TV-person nonzero-sum finite static games in normal form models a
decision making process similar in nature to that modeled by bimatrix games,
but this time with TV(> 2) interacting decision makers (players). Decisions are
again made independently and out of a finite set of alternatives for each player.
Since there exist more than two players, a matrix formulation on the plane is
not possible for such games, thus making the display of possible outcomes and
visualization of equilibrium strategies rather difficult. However, a precise
formulation is still possible, as it is provided below together with the notation
to be used in describing TV-person finite static games in normal form.
Formulation of an TV-person finite static game in normal form (1) There are N
players to be denoted by P1,P2,... ,PN. Let us further denote the index set
{1,2,..., N} by N. (2) There is a finite number of alternatives for each player to
choose from. Let mj denote the number of alternatives available to Pi, and
further denote the index set {1,2,..., m,} by M,, with a typical element of M,
designated as n,. (3) If Pj chooses a strategy nj £ Mj, and this so for all j € N,
then the loss incurred to Pi is a single number alnin2 ...,nN- The ordered AT-
tuple of all these numbers (over i e N), i.e., (01, .̂ ,̂0 .̂ ,̂0  ̂nJ, constitutes the
corresponding unique outcome of the game. (4) Players make their decisions
independently and each one unilaterally seeks the minimum possible loss, of
course by also taking into account the possible rational choices of the other
players. The noncooperative equilibrium solution concept within the context of
this AT-person game can be introduced as follows as a direct extension of Def.
3.1. Definition 3.7 An N-tuple of strategies {nj, ,̂ • • • ,n*N}, with n* € Mj, i €



N, is said to constitute a noncooperative (Nash) equilibrium solution for an N-
person nonzero-sum static finite game in normal form, as formulated above, if
the following N inequalities are satisfied for all ni £ Mj, i € N: ai* A 1 < 1 ° -
°n;,n;,...,nj, ^B „2* A 2 < 2 " ~ un"1,n',...,n'N — "n*,1x2,1X3, «i)i5,.-->«jv'
nN* A N < N (3.8)
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2* aN*) is known as a noncooperative (Nash) equilibrium outcome of the N-
person game in normal form. There is actually no simple method to determine
the Nash equilibrium solutions of iV-person finite games in normal form. One
basically has to check exhaustively all possible combinations of iV-tuples of
strategies, to see which ones provide a Nash equilibrium. This enumeration,
though straightforward, could at times be rather strenuous, especially when N
and/or m,, ieN, are large. However, given an ./V-tuple of strategies asserted to
be in Nash equilibrium, it is relatively simpler to verify their equilibrium
property, since one then has to check only unilateral deviations from the given
equilibrium solution. To get a flavor of the enumeration process and the method
of verification of a Nash equilibrium solution, let us now consider the
following example. Example 3.3 Consider a 3-person game in which each
player has two alternatives to choose from. That is, N = 3 and mi = mi = m  ̂=
2. To complete the description of the game, the 23 = 8 possible outcomes are
given as (ffli,i,iai,i,iai,i,i) = U.-1.0). (al,2,lal,2,lal,2,l) = (2,1,1), Ki,i4u4i,i) =
(2,0,1), (a2,2,la2,2,la2,2,l) = (0,-2,1), (ai,l,2al,l,2al,l,2) = (1,1,1),
(ai,2,2fll,2,2al,2,2) = (°,1,°), (aii,24,i,2ah,2) = (0,1,2), (a2,2,2a2,2,2a2,2,2) =
( — 1,2,0). These possible outcomes can actually be displayed in the form of
two (2 x 2) matrices P2 "3 = 1 * (1,-1,0) (2,0,1) (2, 1, 1) (0,-2,1) PI. (3.9a)
rc3 = 2 P2 (1,1,1) (0,1,2) (0,1,0) (-1,2,0) PI, (3.9b) where the entries of the
former matrix correspond to the possible outcomes if P3's strategy is fixed at
n% = 1, and the latter matrix provides possible outcomes if his strategy is
fixed at 713 = 2. We now assert that the "starred" entry is a Nash equilibrium
outcome for this game. A verification of this assertion would involve
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unilateral deviation of each player. If PI deviates from this asserted
equilibrium strategy n\ = 1, then his loss becomes 2 which is not favorable. If
P2 deviates from n-i = 1, his loss becomes 1 which is not favorable either.
Finally, if P3 deviates from n% = 1, his loss becomes 1 which is higher than



his asserted equilibrium loss 0. Consequently, the first entry of the first matrix,
i.e., (1,-1,0), indeed provides a Nash equilibrium outcome, with the
corresponding equilibrium strategies being {n\ — \,n\ — l,n  ̂= 1}. The reader
can now check by enumeration that this is actually the only Nash equilibrium
solution of this 3-person game. D When the Nash equilibrium solution of an
./V-person nonzero-sum game is not unique, we can again introduce the concept
of "admissible Nash equilibrium solution" as direct extensions of Defs. 3.2 and
3.3 to the AT-person case. It is of course possible that a given ./V-person game
will admit more than one admissible Nash equilibrium solution which are also
not interchangeable. This naturally leads to an ill-defined equilibrium outcome;
but we will not elaborate on these aspects of the equilibrium solution here
since they were extensively discussed in the previous section within the
context of bimatrix games, and that discussion can readily be carried over to fit
the present framework. Furthermore, Prop. 3.1 has a natural version in the
present framework, which we quote below without proof, after introducing an
extension of Def. 3.4. Proposition 3.2, on the other hand, has no direct
counterpart in an iV-person game with N > 2. Definition 3.8 Two nonzero-sum
finite static games in normal form are said to be strategically equivalent if the
following three conditions are satisfied: (i) The two games have the same
number of players (say N), (ii) each player has the same number of alternatives
in both games, (Hi) if {(a\lt. ..,nN>---)a ,̂ ...,nN)»ni e Mj, i e N} is the set of
possible outcomes in one game, and {(^1?...,njv, • • • ,b  ̂nN),nt € Miyi e N} is
the set of possible outcomes in the other, then there exist positive constants «i,
i € N, and scalars /3it i € N, such that < „„=<*<,...,»*+&» iGN> (3-10) for
allnj € Mj, j G N. Proposition 3.4 All strategically equivalent nonzero-sum
finite static games in normal form have the same set of Nash equilibria.
Minimax strategies introduced earlier within the context of bimatrix games
(Def. 3.5) find applications also in AT-person games, especially when there
exist more than one admissible Nash equilibrium which are not
interchangeable. In the present context their definition involves a natural
extension of Def. 3.5, which we do not provide here.
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person game of Example 3.3, the minimax strategies of PI, P2 and P3 are hi = 1
or 2, n2 = 1 and h% = 1, respectively. It should be noted that for PI any strategy
is minimax. The security levels of the players, however, are unique (as they
should be) and are 2, 1 and 1, respectively. Note that these values are higher



than the unique Nash equilibrium outcome (1,-1,0), in accordance with the
statement of Remark 3.2 altered to fit the present context. D Mixed-strategy
Nash equilibria Mixed noncooperative equilibrium solutions of an ./V-person
finite static game in normal form can be introduced by extending Def. 3.6 to N
players, i.e., by replacing inequalities (3.7a) and (3.7b) by an /V-tuple of
similar inequalities. To this end, let us first introduce the notation V to denote
the mixed strategy space of Pi, and further denote a typical element of this
space by y1, and its fcth component by ylk. Then, we have the following
definition. Definition 3.9 An N-tuple {yl* e Yl;i e N} is said to constitute a
mixed- strategy noncooperative (Nash) equilibrium solution for an N-person
finite static game in normal form if the following N inequalities are satisfied
for all y] € Y\ j € N: j\*  ̂T ■■■ T uuu2* ■■■vN*a1 J 2-t 2-i yniyn2 ynNuni,
Mi £•• Mi <£ Mi Mj L-d Vn\ Vn2 ' ' ' Vns an\, V wx*7,2* ...vN*a2 Z_> i/ni
"712^713 ■ ■ y??.a2 <£•■ Mi i»JV. n/v n\ ,...,n/y, JN* A V ■ • ■ V vuv2* ■ ■
■ vN*nN J — 2-i 2-i yniyn2 ynNani,...,nN Mi Mjv 2—i yn\ MN ■ Vn (3.11)
Here, the N-tuple (J1*,-.., JN*) is known as a noncooperative (Nash)
equilibrium outcome of the N-person game in mixed strategies. One of the
important results of static game theory is that every ./V-person game of the type
discussed in this section admits a mixed-strategy Nash equilibrium solution
(note that pure strategies are also included in the class of mixed strategies). We
now state and prove this result which is also an extension of Thm. 3.1.
Theorem 3.2 Every N-person static finite game in normal form admits a non-
cooperative (Nash) equilibrium solution in mixed strategies.
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tuple of mixed strategies for the TV-person game, and introduce l&fo1.
■■■.!/N)=E'".E^1!/n!-' 2/£X. uN Mi Mj ~ Z_< ' ' " E E ' ' ' E 3/ni ' ' ' J/ni-i^n.+
i ' " 'VnNanx, Mi M;_i M;+i Mjv ,,nwi for each m € Mj, and i e N. Note that
this function is continuous on the product set UnY1. Now, let cln. be related to
</£. by 4, =max{</4,0} for each rn € Mj and teN. It readily follows that cj,.
(j/1,... ,yN) is also a continuous function on Ii.^Yl. Then, introducing the
transformation •&,= ■■ IV  ̂i' "^M êN, (3.12) and denoting it by T: (y\...,yN) =
T(y\...,yN), (3.13) we observe that T is a continuous mapping of Yl^Y1 into
itself. Since each Yl is a simplex of appropriate dimension (see Section 2.2),
the product set HnY1 becomes closed, bounded and convex. Hence, by
Brouwer's fixed point theorem (see Appendix C), the mapping T has at least
one fixed point. We now prove that every fixed point of this mapping is



necessarily a mixed-strategy Nash equilibrium solution of the game, and
conversely that every mixed-strategy Nash equilibrium solution is a fixed point
of T, thereby concluding the proof of the theorem. We first verify the latter
assertion: If {yl*\ i € N} is a mixed-strategy equilibrium solution, then, by
definition (i.e., from inequalities (3.11)), the function ipln. (y1*,..., yN*) is
nonpositive for every n, e Mj and i e N, and thus cj,. = 0 for all rij € Mj, i S N.
This readily yields the conclusion T(y1*,...,yN*) = (yl*,...,yN*), which is that
{y'*; i 6 N} is a fixed point of T, For verification of the former assertion,
suppose that {y%; i € A''} is a fixed point of T, but not a mixed equilibrium
solution. Then, for some i € N (say i — 1) there exists a y1 £ Y1 such that J2 "
' " S *Ma • ' • ^«ni,...,nN > J2 ' ' ' Yl l̂  ̂' " ' »nw°i1,..,nN- (3-14) Mi MN Mi
Mn Now let hi denote an index for which the quantity £•••£& •■•»£»<•■..,«*
(3-15) Mi Mj;
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over n\ e Mi. Then, since y1 is a mixed strategy, the RHS of (3.14) can be
bounded below by (3.15) with m = h\, thus yielding the strict inequality E-E "ni
' ' ' ynfjani,...,nN >E-E Mi Ms Mj M  ̂which can further be seen to be
equivalent to (̂y\y2,...,yN)>0. (3.16) This inequality, when used in the
definition of c ,̂ implies that c\x > 0. But since c  ̂is nonnegative for all n\ £ Mi,
the summation term YIm ctu becomes positive. Now, again referring back to
inequality (3.14), this time we let hi denote an index for which (3.15) attains
its maximum value over n\ 6 Mi. Then, going through an argument similar to the
one used in the preceding paragraph, we bound the LHS of (3.14) from above
by (3.15) with n\ = hi, and arrive at the strict inequality l̂(y\y2,...,yN)<0. This
then implies that c\ — 0, which, when used in (3.12) with i = 1 and ni — ni,
yields the conclusion y\x < 2/iL since ^2M clni > 0. But this contradicts the
hypothesis that {yl\i 6 N} is a fixed point of T. D The proof of Thm. 3.2, as
given above, is not constructive. For a constructive proof, which also leads to
a numerical scheme to obtain the equilibrium solution, the reader is referred to
Scarf (1967). But, in general, it is not possible to obtain the equilibrium
solution explicitly. If a given game admits an inner mixed-strategy equilibrium
solution, however, then a possibility of obtaining the corresponding strategies
in explicit form emerges, as the following proposition (which could also be
considered as an extension of Remark 3.3 and Prop. 3.3) indicates. Proposition
3.5 Let Yl denote the interior ofY1 with i 6 N. Then, any inner mixed Nash
equilibrium solution {yl* € Yl; i 6 N} of an N-person finite static game in



normal form satisfies the set of equations l î ' ' ' Z î Vn2 ' ' ' VnN (ani,...,nN ~
al,n2,...,nN) = ^  ̂M2 MN m eMi, m  ̂1, V V • • • V 7/1*?/3* ■ • -iiN*(n2 - n2
) — D l—ii—d i—d i)n\ilni Jtijirri! n« ""n\ ,l,n3,...,nN I "> Mi M3 Mjv n2 €
M2, n2  ̂1, V--- V vl* ■■■vN'1*(aN -aN ) = 0 I—1 Z_, i/ni »nN-i v ni,...,n»
u'ni,...,nN_lil / "t Mi MN î nN e MW, nN  ̂1. (3.17)
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provide a mixed-strategy Nash equilibrium solution for the N -person game
structured in a similar way but with some (or all) of the players maximizing
their average costs instead of minimizing. Proof Since {yl* € Yl; i € N} is an
equilibrium solution, yl* minimizes the quantity E... \  ̂u1* ■ ■ • vi~uvi vi+u ■
■ ■ vN*al Mi M, over Yl, and with i € N. Let us first take i = 1, and rewrite
the preceding expression (in view of the relation ^M y  ̂= 1) as £■■•£ M2 M,
i- £ yl \ "1*1 v2* N* 1 i »H(1'llnjl...,nN / + S ^  ̂■vN*a1 Stjjv ni,«2 ,"N
»1€M1 Now, since the minimizing y1* is an inner point of Y1 by hypothesis,
and since the preceding expression is linear in {y^ni £ Mi,ni  ̂1}, it readily
follows that the coefficient of y  ̂has to vanish for each ni £ Mi, ni  ̂1. This
condition then yields the first set of equations of (3.17). The remaining ones
can be verified analogously, by taking i = 2,3,..., N. Finally, the last part of
Prop. 3.5 follows, as in Prop. 3.3, from the property that at the equilibrium
point {yl* € Yl,i € N,i  ̂j} Pj's average cost is actually independent of 2/J
(which has just been proven), and thus it becomes immaterial whether he
minimizes or maximizes his average cost. D Since the hypothesis of Prop. 3.5
requires the mixed-strategy Nash equilibrium solution to be an inner point of
the product set Y1 x • ■ • x YN, the set of equations (3.17) is satisfied under
quite restrictive conditions, and even more so under the conjecture of Problem
5 (Section 3.8), since then it is required that the number of alternatives of each
player be the same. Nevertheless, the proposition still provides a
characterization of the equilibrium solution, and enables direct computation of
the corresponding strategies by merely solving coupled algebraic equations,
under conditions which are not totally void. As an illustration of this point we
now provide the following example. Example 3.5 Consider a 3-person game in
which each player has two alternatives to choose from and in which the
possible outcomes are given by P2 P2 n3 = 1 (1,-1,0) (2,0,0) (0,1,0) (0,0,1)
PI, n3 = 2 (1,0,1) (0,3,0) (0,0,0) (-1,2,0) PI.
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elements for each i = 1,2,3, the set (3.17) involves only three equations for this
game, which can be written as 1 - Vl - 2y| + 2/22/1 = 0, ] 2 - 2y\ - 2y\ + y\y\ =
0, \ (3.18) 2/i+t/l-l = 0. J This coupled set of equations admits a unique
solution with the property 0 < vhvhvl < !. which is y\" = y/l-\; t/22* = 2-v/3;
yl* = 1 - |V5. Hence, this 3-person game admits a unique inner Nash
equilibrium solution in mixed strategies, which is y1*=(2-y/3,yfi-l)', y2* = (V5
- 1, 2 - V5)', y3* = QV3,1 - )̂'. It should be noted that this game admits also
two pure-strategy Nash equilibria with outcomes (1,-1,0) and (-1,2,0). □ 3.4
Computation of Mixed-Strategy Nash Equilibria in Bimatrix Games We have
discussed in Section 3.3 a possible approach toward obtaining mixed- strategy
Nash equilibria of iV-person games in normal form when these equilibria have
the property of being inner solutions. In other words, when a mixed- strategy
equilibrium solution assigns positive probabilities to all possible pure-
strategy choices of a player, and this so for all players, then the corresponding
equilibrium strategies can be determined by solving a set of algebraic
equations (cf. Prop. 3.5). For the special case of bimatrix games, this
requirement of Prop. 3.5 says that the pair of mixed Nash equilibrium
strategies y* and z* should be elements of Y and Z, the interiors of Y and Z,
respectively, which is a rather restrictive condition. If this condition is not
satisfied, then one natural approach would be to set some components of the
strategies y and z equal to zero and obtain algebraic equations for the other
components, in the hope that the solutions of these algebraic equations will be
nonnegative. If such a solution does not exist, then one can set some other
components equal to zero and look for a nonnegative solution of the algebraic
equation obtained from the other components, and so on. Since there is only a
finite number of possibilities, it is obvious that such an approach will
eventually yield mixed-strategy Nash equilibria of bimatrix games, also in
view of Thm. 3.2. But, then, the natural question that comes to mind is whether
this search can be done in a systematic way. Indeed it can, and this has been
established by Lemke and Howson (1964) in their pioneering work. In that
paper, the authors' intention has actually been to give an algebraic
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solutions in bimatrix games (i.e., the result of Thm. 3.1), but, as a byproduct,
they also obtained an efficient scheme for computing mixed Nash equilibria,
which was thereafter referred to as the "Lemke-Howson" algorithm. The
reader should consult the original work (Lemke and Howson, 1964) and the



expository article by Shapley (1974) for the essentials of this algorithm and its
application in bimatrix games. Relation to nonlinear programming Yet another
general method for the solution of a bimatrix game is to transform it into a
nonlinear (in fact, a bilinear) programming problem, and to utilize the
numerical techniques developed for solutions of nonlinear programming
problems. In the sequel, we establish this equivalence between bimatrix games
and a specific class of bilinear programming problems with linear constraints
(see Prop. 3.6); we refer the reader to Luenberger (1973) for algorithms on the
numerical solution of nonlinear programming problems. Proposition 3.6 A pair
{y*, z*} constitutes a mixed-strategy Nash equilibrium solution to a bimatrix
game (A, B) if, and only if, there exists a pair (p*, q*) such that {y*,z*,p*,q*}
is a solution of the following bilinear programming problem: min [y'Az +
y'Bz+p+q] (3.19) y,z,p,q subject to Az > -plm, B'y > -qln, y>0,z>0, y'lm = l,z'ln
= l. Proof. The constraints evidently imply that y'Az + y'Bz + p + q > 0, (i)
which shows that the optimal value of the objective function is nonnegative. If
{y*, z*} is an equilibrium pair, then the quadruple y*,z*,p*=y*'Az*, q*=y*'Bz*
(it) is feasible and the corresponding value of the objective function is zero.
Hence (ii) is an optimal solution to the bilinear programming problem.
Conversely, let {y, z, p, q] be a solution to the bilinear programming problem.
The fact that feasible solutions to this problem exist has already been
established by (ii). Specifically, by Thm. 3.2, the bimatrix game (A, B) has an
equilibrium pair (y*,z*) and hence (ii) is a feasible solution. Furthermore, (ii)
also yields the conclusion that the minimum value of the objective function is
nonpositive, which, in view of (i), implies y'Az + y'Bz +p + q = 0. For any y >
0, z > 0 such that y'lm = 1 and z'ln = 1, we have y'Az > -p, y'Bz > -q, (3.20)

TV-PERSON NONZERO-SUM FINITE GAMES 97 and hence, y'Az + y'Bz >
-p - q = y'Az + y'Bz. In particular, we have y'Az > — p, y'Bz > —q, y'Az +
y'Bz = p + q. Thus y'Az = —p, y'Bz — —q, and therefore, y'Az > y'Az, y'Bz >
y'Bz. This last set of inequalities verifies that {y, z} is indeed a mixed-strategy
Nash equilibrium solution of the bimatrix game (A, B). D For the special case
of zero-sum matrix games, the following corollary now readily follows from
Prop. 3.6, and establishes an equivalence between two- person zero-sum
matrix games and LP problems. Corollary 3.2 A pair {y*,z*} constitutes a
mixed-strategy saddle-point solution for a two-person zero-sum matrix game A
if and only if, there exists a pair (p*,q*) such that {y*,z*,p*,q*} is a solution of
the LP problem min \p + q] (3.21) y,z,p,q subject to Az>-plm, A'y<qln, "I . .



y>0,z>0, y'lm = l,z'ln = l. j { ' } Remark 3.4 Note that Prop. 3.6 directly
extends to TV-person finite games in normal form. Furthermore, it is
noteworthy that the LP problem of Corollary 3.2 is structurally different from
the LP problem considered in Section 2.3 (Thm. 2.5), which also provided a
means of obtaining mixed-strategy saddle- point solutions for matrix games. □
3.5 Nash Equilibria of TV-Person Games in Extensive Form This section is
devoted to noncooperative (Nash) equilibria of TV-person finite games in
extensive form, which do not incorporate chance moves. Extensive tree
formulation for finite games without chance moves has already been introduced
in Chapter 2 within the context of zero-sum games (cf. Def. 2.5), and such a
formulation is equally valid for finite nonzero-sum games, with certain
appropriate modifications. Hence first, as a direct extension of Def. 2.5, we
have the following definition which covers both single-act and multi-act
games. Definition 3.10 An extensive form of an N-person nonzero-sum finite
game without chance moves is a tree structure with (i) a specific vertex
indicating the starting point of the game,
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real number to each terminal vertex of the tree, where the ith cost function
determines the loss to be incurred to Pi, (Hi) a partition of the nodes of the tree
into N player sets, (iv) a subpartition of each player set into information sets
{/?)}, such that the same number of branches emanates from every node
belonging to the same information set and no node follows another node in the
same information set. Figure 3.1: Two typical nonzero-sum finite games in
extensive form. Two typical nonzero-sum finite games in extensive form are
depicted in Fig. 3.1. The first one represents a 3-player single-act nonzero-sum
finite game in extensive form in which the information sets of the players are
such that both P2 and P3 have access to the action of PI. The second extensive
form of Fig. 3.1, on the other hand, represents a 2-player multi-act nonzero-
sum finite game in which PI acts twice and P2 only once. In both extensive
forms, the set of alternatives for each player is the same at all information sets
and it consists of two elements. The outcome corresponding to each possible
path is denoted by an ordered TV-tuple of numbers (a1,...,aN), where N stands
for the number of players and a1 stands for the corresponding cost to Pi. Pure-
strategy Nash equilibria We now introduce the concept of a noncooperative
(Nash) equilibrium solution for TV-person nonzero-sum finite games in
extensive form, which covers both single-act and multi-act games. To this end,



let us first recall the definition of a strategy from Chapter 2 (cf. Def. 2.6).
Definition 3.11 Let Nl denote the class of all information sets of Pi, with a
typical element designated as rf. Let £/\ denote the set of alternatives of Pi
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the information set rf. Define Ul — U t/\, where the union is over rf 6 N8.
Then, a strategy Y for Pi is a mapping from Nl into Ul, assigning one element
in U% for each set in Nl, and with the further property that l̂{rf) £ £/\ for each
rf € N*. The set of all strategies of Pi is called his strategy set (space,), and it
is denoted by P. Let Jt(71,..., jN) denote the loss incurred to Pi when the
strategies 71 € T1,..., 7  ̂e FN are adopted by the players. Then, the
noncooperative (Nash) equilibrium solution concept for such games can be
introduced as follows, as a direct extension of Def. 3.7. Definition 3.12 An N-
tuple of strategies {71*,72*,... ,7^*} with 7" £ P, i € N, is said to constitute a
noncooperative (Nash) equilibrium solution for an N-person nonzero-sum
finite game in extensive form, if the following N inequalities are satisfied for
all 7* £ P, i £ N: ji* ĵi(7i*,72*,...,7N*)<ji(7ij72%...;7 )̂j
j2* ĵ2(7l%72*573%...)7N»)<J2(7l%72]73*)_..)7iV»)j Jw* =
JAr(71*,,...,7Ar-u,7Ar*)< JN(71*,...,7Ar-1*,7JV). The N-tuple of quantities
{J1*,..., JN*} is known as a Nash equilibrium outcome of the nonzero-sum
finite game in extensive form. We emphasize the word a in the last sentence of
the preceding definition, since the Nash equilibrium solution could possibly be
nonunique with the corresponding set of Nash values being different. This then
leads to a partial ordering in the set of all Nash equilibrium solutions, as in the
case of Defs. 3.2 and 3.3 whose extensions to the iV-person case are along
similar lines and are therefore omitted. Nash equilibria in mixed and
behavioral strategies The concepts of noncooperative equilibria in mixed and
behavioral strategies for nonzero-sum finite games in extensive form can be
introduced as straightforward (natural) extensions of the corresponding ones
presented in Chapter 2 within the context of saddle-point equilibria. We should
recall that a mixed strategy for a player (Pi) is a probability distribution on the
set of all his pure strategies, i.e., on P. A behavioral strategy, on the other hand,
is an appropriate mapping whose domain of definition is the class of all the
information sets of the player. By denoting the behavioral strategy set of Pi by
P, and the average loss incurred to Pi as a result of adoption of the behavioral
strategy iV-tuple {71 e f \ ... ,yN e fN} by J -̂y1,... ,yN), the definition of a
Nash equilibrium (3.23)



100 T. BA§AR AND G. J. OLSDER solution in behavioral strategies may be
obtained directly from Def. 3.12 by replacing 7', P and J1 by 7', P and J\
respectively. We now discuss, in the four subsections to follow, properties and
derivation of these different types of Nash equilibria for finite games in
extensive form—first for single-act games, and then for multi-act games. 3.5.1
Single-act games: Pure-strategy Nash equilibria In single-act games, each
player acts only once, and the order in which the players act could be a variant
of their strategies. If the order is fixed a priori, and further if the single-act
game is static in nature (i.e., if each player has a single information set), then
there is no basic difference between extensive and normal form descriptions,
and consequently no apparent advantage of one form over the other. Since such
static games in normal form have already been extensively studied in Sections
3.2 and 3.3, our concern here will be primarily on dynamic single-act games,
that is, games in which at least one of the players has access to some nontrivial
information concerning the action of some other player. Figure 3.1(a), for
example, displays one such game wherein both P2 and P3 have access to Pi's
action, but they are ignorant about each other's actions. Yet another single-act
game with dynamic information is the 2-person nonzero- sum game depicted in
Fig. 3.2, wherein P2's information sets can differentiate between whether PI
has played L or not, but not between his possible actions M and R. 0,-1 -2,1
3,2 0,3 2,1 -1,0 Figure 3.2: A 2-person nonzero-sum single-act game with
dynamic information. One method of obtaining Nash equilibria of a dynamic
single-act finite game in extensive form is to transform it into an equivalent
normal form and to make use of the theory of Sections 3.2 and 3.3. This direct
method has already been discussed earlier in Section 2.4 within the context of
similarly structured zero- sum games, and it has the basic drawback that one
has to take into consideration all possible strategy combinations. As in the case
of dynamic zero-sum games, an alternative to this direct method exists for
some special types of nonzero-sum games, which makes explicit use of the
extensive form description, and obtains a subclass of all Nash equilibria
through a systematic (recursive) procedure. But
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understanding the essentials and the limitations of such a recursive procedure,
it will be instructive first to consider the following specific example. This
simple example, in fact, displays most of the intricacies of Nash equilibria in
dynamic finite games. Example 3.6 Consider the 2-person nonzero-sum single-



act game whose extensive form is displayed in Fig. 3.2. The following is an
intuitively appealing recursive procedure that would generate a Nash
equilibrium solution for this game. At the first of his two information sets
(counting from left), P2 can tell precisely whether PI has played L or not.
Hence, in case u1 — L, the unique decision of P2 would be u2 — L, yielding
him a cost of — 1 which is in fact the lowest possible level P2 can hope to
attain. Now, if u1 — M or R, however, P2's information set does not
differentiate between these two actions of PI, thus forcing him to play a static
nonzero-sum game with PI. The corresponding bimatrix game (under the usual
convention of A denoting the loss matrix of PI and B denoting that of P2) is P2
P2 A = M R 0 PI, B = M R L R 3 pi. (3.24) L R This bimatrix game admits (as
indicated) a unique Nash equilibrium {i?, R] with an equilibrium cost pair of (
— 1,0). This then readily suggests 72V) L R if ul = L, otherwise (3.25a) as a
candidate equilibrium strategy for P2. PI, on the other hand, has two possible
strategies, u1 = L and u1 = R, since the third possibility u1 = M is ruled out by
the preceding argument. Now, the former of these leads (under (3.25a)) to a
cost of J1 = 0, while the latter leads to J1 ~ — 1. Hence, he would clearly
decide on playing R, i.e., 7 l* (v1) = R (3.25b) is a candidate equilibrium
strategy for PI. The cost pair corresponding to (3.25a)-(3.25b) is J1* = -l,
J2*=0. (3.25c) The strategy pair (3.25a)-(3.25b) is thus what an intuitively
appealing (and rather straightforward) recursive procedure would provide us
with, as a reasonable noncooperative equilibrium solution for this extensive
form. It can, in fact, be directly verified by referring to inequalities (3.23) that
the pair (3.25a)- (3.25b) is indeed in Nash equilibrium. To see this, let us first
fix P2's strategy at (3.25a), and observe that (3.25b) is then the unique cost-
minimizing decision for PI. Now, fixing Pi's strategy at (3.25b), it is clear that
P2's unique

102 T. BA§AR AND G. J. OLSDER cost-minimizing decision is u2 = R which
is indeed implied by (3.25a) under (3.25b). The recursive scheme adopted
surely resulted in a unique strategy pair which is also in Nash equilibrium. But
is this the only Nash equilibrium solution that the extensive form of Fig. 3.2
admits? The reply is, in fact, no! To obtain the additional Nash equilibrium
solution(s), we first transform the extensive form of Fig. 3.2 into an equivalent
normal form. To this end, let us first note that r1 = {L,M,R} and T2 =
{72,722,732,742}, where 72(/?2) = L, 72V) = R, 7l(^2) ■{ if u1 = L,
otherwise 74V) "{ otherwise Hence, the equivalent normal form is the 3x4



bimatrix game P2 P2 A = L M R 0 3 2 -2 0 -1 0 0 Q -2 3 2 PI, B = L M R -1 2
1 1 3 0 -1 3 ® 1 2 1 PI, 1 which admits two pure-strategy Nash equilibria, as
indicated. The encircled one is {R;i%} which corresponds to the strategy pair
(3.25a)-(3.25b) obtained through the recursive procedure. The other Nash
equilibrium solution is the constant strategy pair TV) = L, 7V) = L, with a
corresponding cost pair of Ji = 0, J2 = -1. (3.26a) (3.26b) (3.26c) A
comparison of (3.25c) and (3.26c) clearly indicates that both of these
equilibria are admissible. It is noteworthy that, since (3.26a) is a constant
strategy, the pair (3.26a)- (3.26b) also constitutes a Nash equilibrium solution
for the static single-act game obtained from the one of Fig. 3.2 by replacing the
dynamic information of P2 with static information (i.e., by allowing him a
single information set). It is, in fact, the unique Nash equilibrium solution of
this static game which admits the normal form (bimatrix) description P2 P2 A
= L M R 0 3 2 -2 0 -1 PI, B = L M R R -1 2 1 1 3 0 PI. R The actual play (R,R)
dictated by (3.25a)-(3.25b), however, does not possess such a property as a
constant strategy pair. D
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has displayed certain important features of Nash equilibria of a single-act
game, which we now list below. We will shortly see, in this section, that these
features are, in fact, valid on a broader scale for both single-act and multi-act
nonzero-sum games. Features of the single-act game of Example 3.6 (i) The
single-act game admitted multiple (two) Nash equilibria. (ii) The (unique)
Nash equilibrium solution of the static version of the single- act game
(obtained by replacing the information sets of the second-acting player by a
single information set) also constituted a Nash equilibrium solution for the
original single-act game with the dynamic information. (iii) A recursive
procedure that involves solution of only bimatrix games (which could also be
degenerate games) at each information set yielded only one of the two Nash
equilibria. The actual play dictated by this equilibrium solution did not
constitute an equilibrium solution as constant strategies. We now show that
appropriate (and more general) versions of these features are retained in a
more general framework for ./V-person single-act games. To this end, we first
introduce some terminology and also a partial ordering of extensive forms in
terms of their information sets. Definition 3.13 A single-act N-person finite
game in extensive form (say, I) is the static version of a dynamic single-act N-
person finite game in extensive form (say, 11 ,̂ ifl can be obtained from II by



replacing the information sets of each player with a single information set
encompassing all the nodes pertaining to that player.16 The equivalent normal
form of the static game I is called the static normal form of II. Definition 3.14
Let I and II be two single-act N-person games in extensive form, and further let
F\ and T  ̂denote the strategy sets of Pi (i £ N) in I and II, respectively. Then, I
is said to be informationally inferior to II if T\ C Tjj for all i £ N, with strict
inclusion for at least one i. Remark 3.5 In Fig. 3.3, the single-act game I is
informationally inferior to II and III. The latter two, however, do not admit any
such comparison. □ Proposition 3.7 Let I be an N-person single-act game that
is informationally inferior to some other single-act N-person game, say II.
Then, (i) any Nash equilibrium solution of I also constitutes a Nash
equilibrium solution for II, 16It should be noted that a single-act finite game
admits a static version only if the order in which the players act is fixed a
priori and the possible actions of each player are the same at all of his
information sets.

104 T. BA§AR AND G. J. OLSDER 1,2 0,1 0,0 -1,2 2,-1 1,0 1,2 0,1 0,0 -1,2
2,-1 1,0 1,2 0,1 0,0 -1,2 2,-1 1,0 III Figure 3.3: Extensive forms displaying
informational inferiority. (ii) if {71,..., 7^} is a Nash equilibrium solution of II
so that Y £ T\ for all i € N, then it also constitutes a Nash equilibrium solution
for I. Proof (i) If {71* e ri,...,7W* e rf} constitutes a Nash equilibrium solution
for I, then inequalities (3.23) are satisfied for all 7* € F\, i € N. But, since T\ C
Tjj, i e N, we clearly also have 7* 6 T\v i 6 N. Now assume, to the contrary,
that {71*,... ,7^*} is not a Nash equilibrium solution of II. Then, this implies
that there exists at least one i (say, i = N, without any loss of generality) for
which the corresponding inequality of (3.23) is not satisfied for all 7l € rjj. In
particular, there exists a jN £ T  ̂such that JN*>JN(11';...;1N-1*-nN). (t) Now,
the ./V-tuple of strategies {71*,... ,7W_1*,7W} leads to a unique path of
action, and consequently to a unique outcome, in the single-act game II. Let us
denote the information set of PJV, which is actually traversed by this path, by
fjii, and the specific element (node) of fji( intercepted by nN. Let us further
denote the information set of PJV in game I, which includes the node nN, by
7$. Then, there exists at least one element in Y  ̂(say, *yN) with the property
;yN(fJi') = JN(fjji). If this strategy replaces jN on the RHS of inequality (i), the
value of JN clearly does not change, and hence we equivalently have JN*>
JN(71*;...;7N-1*;7W). But this inequality contradicts the initial hypothesis that
the ./V-tuple of policies {71*;...; jN*} was in Nash equilibrium for the game I.



This then completes the proof of part (i). (ii) Part (ii) of the proposition can be
proven analogously. D
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3.7 now verifies a general version of feature (ii) of the single-act game of
Example 3.6 for ./V-person single-act finite games in extensive form. A
counterpart of feature (i) also readily follows from this proposition, which is
that such games with dynamic information will in general admit multiple Nash
equilibria. A more definite statement cannot be made, since there would
always be exceptional cases when the Nash equilibrium solution of a single-
act dynamic game is unique and is attained in constant strategies which
definitely also constitute a Nash equilibrium solution for its static version,
assuming that it exists. It is almost impossible to single out all these special
games, but we can comfortably say that they are "rarely" met, and existence of
multiple Nash equilibria is a rule in dynamic single-act games rather than an
exception. Since this sort of nonuniqueness emerges mainly because of the
dynamic nature of the information sets of the players, we call it informational
nonuniqueness. Q Now, to elaborate on the third (and the last) feature listed
earlier, we have to impose some further structure on the "relative nestedness"
of the information sets of the players, which is already implicit in the extensive
form of Fig. 3.2. It is, in fact, possible to develop a systematic recursive
procedure, as an extension of the one adopted in the solution of Example 3.6, if
the order in which the players act is fixed a priori and the extensive form is in
"ladder-nested" form— a notion that we introduce below. Definition 3.15 In an
extensive form of a single-act nonzero-sum finite game with a fixed order of
play, a player Pi is said to be a precedent of another player Pj if the former is
situated closer to the vertex of the tree than the latter. The extensive form is
said to be nested if each player has access to the information acquired by all
his precedents. If, furthermore, the only difference (if any) between the
information available to a player (Pi) and his closest (immediate) precedent
(say Pi — 1) involves only the actions of Pi — 1, and only at those nodes
corresponding to the branches of the tree emanating from singleton information
sets of Pi — 1, and this so for all players, the extensive form is said to be
ladder-nested.17 A single-act nonzero-sum finite game is said to be nested
(respectively, ladder-nested) if it admits an extensive form that is nested
(respectively, ladder-nested). Remark 3.7 The single-act extensive forms of
Figs. 3.1(a) and 3.2 are both ladder-nested. If the extensive form of Fig. 3.1(a)



is modified so that both nodes of P2 are included in the same information set,
then it is only nested, but not ladder-nested, since P3 can differentiate between
different actions of PI but P2 cannot. Finally, if the extensive form of Fig.
3.1(a) is modified so that this time P3 has a single information set (see Fig.
3.4(a)), then the resulting extensive form becomes non-nested, since then even
though P2 is a precedent of P3 he actually knows more than P3 does. The
single-act game that this 17Note that in 2-person single-act games the concepts
of "nestedness" and "ladder- nestedness" coincide, and every extensive form
is, by definition, ladder-nested.
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same nested single-act game. extensive form describes is, however, nested
since it also admits the extensive form description depicted in Fig. 3.4(b). D
One advantage of dealing with ladder-nested extensive forms is that they can
recursively be decomposed into simpler tree structures which are basically
static in nature. This enables one to obtain a class of Nash equilibria of such
games recursively, by solving static games at each step of the recursive
procedure. Before providing the details of this recursive procedure, let us
introduce some terminology. Definition 3.16 For a given single-act dynamic
game in nested extensive form (say, I), let r) denote a singleton information set
of Pi's immediate follower (say Pj); consider the part of the tree structure of I,
which is cut off at n, has T) as its vertex and has as immediate branches only
those that enter into that information set ofPj. Then, this tree structure is called
a sub-extensive form of I. (Here, we adopt the convention that the starting
vertex of the original extensive form is the singleton information set of the
first-acting player.) Remark 3.8 The single-act game depicted in Fig. 3.2
admits two sub-extensive forms which are as follows: The extensive form of
Fig. 3.1(a), on the other hand, admits a total of four sub-extensive forms which
we do not display here. It should be noted that each sub-extensive form is itself
an extensive form describing a simpler game. The
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above describes a degenerate 2-player game in which PI has only one
alternative. The second one again describes a 2-player game in which the
players each have two alternatives. Both of these sub-extensive forms will be
called static since the first one is basically a one-player game and the second
one describes a static 2-player game. A precise definition follows. D



Definition 3.17 A sub-extensive form of a nested extensive form of a single-
act game is static if every player appearing in this tree structure has a single
information set. We are now in a position to extend the recursive procedure
adopted in Example 3.6 to obtain (some of) the Nash equilibrium solutions of
./V-person single-act games in ladder-nested extensive form. A recursive
procedure to determine pure-strategy Nash equilibria of ./V-person single-act
games in ladder-nested extensive form (1) For each fixed information set of the
last-acting player (say, PiV), single out the players who have precisely the
same information as PN, determine the static sub-extensive form that includes
all these players and their single information sets, and solve the static game
that this sub-extensive form describes. Assuming that each of these static
games admits a unique pure- strategy Nash equilibrium solution, record the
equilibrium strategies and the corresponding Nash outcomes by identifying
them with the players and their information sets. (If any one of the static games
admits more than one Nash equilibrium solution, then this procedure as well as
the following steps are repeated for each of these multiple equilibria.) (2)
Replace each static sub-extensive form considered at step 1 with the
immediate branch emanating from its vertex that corresponds to the Nash
strategy of the starting player of that sub-extensive form; furthermore, attach the
corresponding iV-tuple of Nash equilibrium values to the end of this branch.
(3) For the remaining game in extensive form, repeat steps 1 and 2 until the
extensive form left is a tree structure comprising only a vertex and some
immediate branches with an ./V-tuple of numbers attached to each of them. (4)
The branch of this final tree structure which corresponds to a minimum loss for
the starting player is his Nash equilibrium strategy, and the corresponding AT-
tuple of numbers at the end of this branch determines a Nash outcome for the
original game. The corresponding Nash equilibrium strategies of the other
players in the original single-act game can then be determined from the
solutions of the static sub-extensive forms, by appropriately identifying them
with the players and their information sets.
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nestedness property of the single-act game, it can readily be shown that every
solution obtained through the foregoing recursive procedure is indeed a Nash
equilibrium solution of the original single- act game. D A most natural question
to raise now is whether the preceding recursive procedure generates all the
Nash equilibrium solutions of a given TV-person single- act game in ladder-



nested extensive form. We have already seen in Example 3.6 that this is, in
fact, not so, since out of the two Nash equilibrium solutions, only one of them
was generated by this recursive procedure. Then, the question may be
rephrased as: precisely what subclass of Nash equilibria is generated by the
preceding scheme? In other words, what common feature (if any) can we
attribute to the Nash equilibria that can be derived recursively? To shed some
light on this matter, it will be instructive to refer again to Example 3.6 and to
take a closer look at the two Nash equilibria obtained: EXAMPLE 3.6
(continued) For the single-act game of Fig. 3.2, the recursive procedure
generated the solution (3.25a)-(3.25b) with Nash cost pair (—1,0). When
compared with the other Nash cost pair which is (0,-1), it is clear that the
former is more advantageous for PI. Hence, P2 would rather prefer to play the
constant strategy (3.26a) and thereby attain a favorable cost level of J2 = — 1.
But, since he acts later, the only way he can ensure such a cost level is by
announcing his constant strategy ahead of time and by irrevocably sticking to it.
If he has the means of doing this, and further if PI has strong reasons to believe
in such an attitude on the part of P2, then (0,-1) will clearly be the only cost
pair to be realized. Hence, the constant-strategy Nash solution in this case
corresponds to a "prior commitment" mode of play on the part of the last acting
player—a notion which has been introduced earlier in Section 2.5 within the
context of multi-act zero-sum games, and which also has connections with the
Stackelberg mode of play to be discussed in the next section of this chapter.
Now, yet another mode of play for P2 (the second-acting player) would be to
wait until he observes at what information set he is at the time of his play, and
only then decide on his action. This is known as the "delayed commitment"
type of attitude, which has also been introduced earlier in Section 2.5, within
the context of zero-sum games and in conjunction with behavioral strategies.
For the single-act game of Example 3.6, a Nash equilibrium solution of the
delayed commitment type is the one given by (3.25a)-(3.25b), which has been
obtained using the recursive procedure. D This discussion now leads us to the
following definition. Definition 3.18 A Nash equilibrium solution of a ladder-
nested single-act finite N-person game is of the delayed commitment type if it
can be obtained through the recursive procedure outlined earlier, i.e., by
solving only static single-act games.
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remark, it is noteworthy that in the single-act game of Example 3.6 additional



information for P2 concerning the action of PI could be detrimental. For, if his
information set was a single one (i.e., the static version), then the game would
admit the unique Nash solution (3.26a)-(3.26b) with P2's Nash cost being J2 =
— 1. In the set-up of the extensive form of Fig. 3.2, however, he could end up
with a higher Nash cost of J2 = 0. Hence, in nonzero-sum games, additional
information could be detrimental for the player who receives it. □ We now
illustrate, giving two examples, the steps involved in the outlined recursive
procedure to obtain admissible Nash equilibrium strategies of the delayed
commitment type. Example 3.7 Consider the 3-person single-act game whose
extensive form (of the ladder-nested type) is depicted in Fig. 3.1(a). Here, both
P2 and P3 have access to the action of Pi (and to no more information), and
hence they are faced with a bimatrix game at each of their information sets.
Specifically, if u1 = L, then the corresponding bimatrix game is '0 R 1 P3 P3
P2, B L R 1 0 P2, L R L R where the entries of matrix A denote the
possible.losses to P2 and the entries of matrix B denote the possible losses to
P3. This bimatrix game admits a unique admissible Nash equilibrium solution
which is {u2* = L,u3* = L}, with the corresponding Nash values being —1
and 0 for P2 and P3, respectively. If u1 = i?, on the other hand, the bimatrix
game of interest is P3 P3 A = L R 0 C-2J 1 2 P2, B = L R L R 1 o 2 0 P2. L R
This game admits a unique Nash solution which is {u2* = R,v?* — L} with a
Nash cost pair of (—2, —1). Hence, regardless of what PI plays, the delayed
commitment type admissible Nash equilibrium strategies of P2 and P3 in this
ladder-nested game are unique, and they are given as 2* (r,2) = u\ 73V) = £. (0
(Note that P3's equilibrium strategy is a constant.) Now, if PI picks u1 = L, his
loss under (i) will be 1, but otherwise his loss is 0. Hence he also has a unique
equilibrium strategy 71* = R. (ii) Strategies (i) and (ii) now constitute the
unique delayed commitment type admissible Nash equilibrium solution of the
single-act game of Fig. 3.1(a), which
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referring to the set of inequalities (3.23). The corresponding Nash equilibrium
outcome is (0, —2, —1). Q Figure 3.5: A 4-person single-act ladder-nested
game in extensive form. Example 3.8 Consider the 4-person single-act game
whose extensive form (of the ladder-nested type) is depicted in Fig. 3.5. The
last-acting player is P4 and he has three information sets. The first one
(counting from left) tells him whether PI has actually played L or not, but
nothing concerning the actions of the other players. The same is true for P2 and



P3. The corresponding three-player static game admits an equivalent normal
form which is the one considered in Example 3.3, with only Pj replaced by Pj
+ 1 in the present context. Furthermore, we now also have the costs of an
additional player (PI) showing up at the end of the branches (i.e., in the present
context we have a quadruple cost instead of a triple). It is already known that
this game admits a unique Nash equilibrium solution which, under the present
convention, is u2* = L, u3* = L, u4* = L, and this is so if PI has picked u1 —
L, with the corresponding cost quadruple being (1,1,-1,0). The second
information set of P4 tells him whether PI has picked R and P2 has picked L;
and P3 also has access to this information. Hence, we now have a bimatrix
game under consideration, which is essentially the first bimatrix game of
Example 3.6, admitting the unique solution u3* = L, u4* = L, and this is so if u1
= R, u2 = L, with the corresponding cost quadruple being (0,1,-1,0). The third
information set of P4 provides him with the information u1 = R, u2 = R. P3 has
access to the same information, and thus the equivalent normal
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bimatrix game of Example 3.7, which admits the unique Nash solution u3* =
i?,w4* = L, with the corresponding cost quadruple being (0,0, —2,1). Using
all these, we can now write down the unique Nash equilibrium strategies of P3
and P4, which are given as j;jt)=f R Uu1 =R,u2=R 74V) = £- («) Deletion of
all the branches of the extensive tree already used now leads to the simpler
tree structure depicted below: 7 W >-) L otherwise , (> 0,1,-1,0 0.0,-2,1 In this
game, P2 acts only if u1 — R, in which case he definitely picks u2 — R, since
this yields him a lower cost (0) as compared with 1 which he would obtain
otherwise. This also completely determines the delayed commitment type Nash
equilibrium strategy of P2 in the game of Fig. 3.5, which is unique and is given
by 72*(,72) = ui. (Hi) Then, the final equivalent form that the game takes is pi j
1,1,-1,0 0,0,-2,1 from which it is clear that the optimal unique strategy for PI is
71* = R. (iv) The strategies (i)-(iv) constitute the unique delayed commitment
type Nash equilibrium solution of the extensive form of Fig. 3.8 (which is
clearly also admissible), and the reader is also encouraged to check this result
by verifying satisfaction of inequalities (3.23). The corresponding unique Nash
equilibrium outcome is (0,0,-2,1). □

112 T. BA§AR AND G. J. OLSDER Nested extensive forms which are not
ladder-nested cannot be decomposed into static sub-extensive forms, and



hence the recursive derivation does not directly apply to such games.
However, some nested extensive forms still admit a recursive decomposition
into simpler sub-extensive forms, some of which will be dynamic in nature.
Hence, an extended version of the recursive procedure applies for nested
games, which involves solution of simpler dynamic sub-extensive forms. In
this context, the delayed commitment mode of play also makes sense as to be
introduced in the sequel. Definition 3.19 A nested extensive (or sub-extensive)
form of a single-act game is said to be undecomposable if it does not admit any
simpler sub-extensive form. It is said to be dynamic, if at least one of the
players has more than one information set. Definition 3.20 For an N-person
single-act dynamic game in nested undecomposable extensive form (I) let J
denote the set of games which are informa- tionally inferior to I. Let {71*,... ,
7^*} be an N-tuple of strategies in Nash equilibrium for I, and further let j*
denote the number of games in J to which this N-tuple provides an equilibrium
solution. Then, {71*,... ,7^*} is of delayed commitment type if there exists no
other N-tuple of Nash equilibrium strategies of I which constitutes an
equilibrium solution to a smaller (than j*) number of games in J.18 The
following example now provides an illustration of these notions as well as a
derivation of delayed commitment type Nash equilibria in nested games.
Example 3.9 Consider the 3-person single-act game whose extensive form is
displayed in Fig. 3.6. In this game P3 has access to Pi's action, but P2 does not.
Hence, the game is nested but not ladder-nested. Furthermore, it is both
dynamic and undecomposable, with the latter feature eliminating the possibility
for a recursive derivation of any of its Nash equilibria. Then, the only method
is to bring the single-act game into equivalent normal form and to obtain the
Nash equilibria of this normal form. Toward this end, let us first note that PI
and P2 each have two possible strategies: {7J = £,72 = R',7i = L, 7! = R}. P3,
on the other hand, has four possible strategies: 7ifo3)=£, ll(v3)=R, ll(v3)=u\
and liKT] > \ R otherwise. 18The reader should verify that every single-act
game that admits Nash equilibria in pure strategies has at least one equilibrium
solution of the delayed commitment type, i.e., the set of such equilibria is not
empty unless the game does not admit any pure-strategy Nash equilibrium
solution.
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single-act game in extensive form which is dynamic and undecomposable.
Using the terminology of Section 3.3, we now display the normal form as two



(2 x 4) matrices, one for each strategy of Pi: n\ = 1 : 1 2 (0, 0, 0) (1, 2, 1) P3
(1,-1,1) (1,1,1) (0,0,0)* (1,2,1) (1,-1,1) (1,1,1) P2, ni 2: 1 2 (-1,1,2) (1,0,1)
P3 (1,0,-1)* (-1, 2, 0) (1,0,-1) (-1,2,0) (-1,1,2) (1, 0, 1) P2. 1 Here, the
integers 1,2,... identify particular strategies of the players in accordance with
the subscripts attached to 7*'s. This normal form admits two Nash equilibria,
as indicated, which correspond, in the original game, to the strategy triplets {V
..2* and b1* = Rn2 There exists only one game which is informationally
inferior to the single-act game under consideration, which is the one obtained
by allowing a single information set to P3 (i.e., the static version). Since the
second Nash solution dictates a constant action for P3, it clearly also
constitutes a Nash solution for this informationally inferior static game (cf.
Prop. 3.7). Hence, for the second set of Nash strategies, j* = 1, using the
terminology of Def. 3.20. The first set of Nash strategies, on the other hand,
does not constitute a Nash equilibrium solution to the informationally inferior
game, and hence in this case j* = 0. This then yields the conclusion that the
nested single-act game of Fig. 3.6 admits a unique delayed commitment type
Nash equilibria, given by (i) and with an outcome of (0,0,0). □
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games in nested extensive form, a recursive procedure could be used to
simplify the derivation by decomposing the original game into static and
dynamic undecomposable sub-extensive forms. Essential steps of such a
recursive procedure are given below. Nash equilibria obtained through this
recursive procedure will be called the delayed commitment type. A recursive
procedure to determine delayed commitment type pure- strategy Nash
equilibria of /V-person single-act games in nested extensive form (1) Each
information set of the last-acting player is included in either a static sub-
extensive form or a dynamic undecomposable sub-extensive form. Single out
these extensive forms and obtain their delayed commitment type Nash
equilibria. (Note that in static games every Nash equilibrium is, by definition,
of the delayed commitment type.) Assuming that each of these games admits a
unique pure-strategy Nash equilibrium solution of the delayed commitment
type, record the equilibrium strategies and the corresponding Nash outcomes
by identifying them with the players and their information sets. (If any one of
these games admits more than one Nash equilibrium solution of the delayed
commitment type, then this implies that the original game admits more than one
such equilibrium, and this procedure as well as the following steps will have



to be repeated for each of these multiple equilibria.) (2) Replace each sub-
extensive form considered at step 1 with the immediate branch emanating from
its vertex that corresponds to the delayed commitment Nash strategy of the
starting player of that sub-extensive form; furthermore, attach the
corresponding /V-tuple of Nash equilibrium values to the end of this branch.
(3) For the remaining game in nested extensive form, repeat steps 1 and 2 until
the extensive form left is a tree structure comprised of only a vertex and some
immediate branches with an ./V-tuple of numbers attached to each of them. (4)
The branch of this final tree structure which corresponds to a minimum loss for
the starting player is his Nash equilibrium strategy of the delayed commitment
type, and the corresponding ./V-tuple of numbers at the end of this branch
determines a Nash outcome for the original game. The corresponding delayed
commitment type Nash equilibrium strategies of the other players in the
original single-act game can then be captured from the solution(s) of the sub-
extensive forms considered, by appropriately identifying them with the players
and their information sets. Example 3.10 To illustrate the steps of the foregoing
recursive procedure, let us consider the 3-person single-act game of Fig. 3.7,
which is in nested extensive
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game of Example 3.10. form. At step 1 of the recursive procedure, we have
two 2-person static sub- extensive forms and one 3-person dynamic
undecomposable sub-extensive form. Counting from the left, the first static sub-
extensive form admits the unique Nash equilibrium solution (from Example
3.7): {u2* =L,u3* = L}. (i) The second static sub-extensive form also admits a
unique solution which is (again from Example 3.7): {u2* =R,u3* =L}. («) It
should be noted that (i) corresponds to the information sets rj2 = rf = {ul = L}
and (ii) corresponds to rj2 = rf — {u1 = Ml}. Now, the dynamic
undecomposable sub-extensive form is in fact the single-act game of Example
3.9, which is already known to admit the unique delayed-commitment type
Nash equilibrium solution V*=M2 v2* = L -Y3*(n3) = lL ifu' = M2' 7 mi, 7 l, 7
\ji ) | R iiui=R At step 2, therefore, the extensive form of Fig. 3.7 becomes
1,-1,0 0,-2,-1 0,0,0 and it readily follows from this tree structure that PI has
two Nash equilibrium strategies: 71* = Ml and 71* = M2.
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admits two Nash equilibria of the delayed commitment type: 1* „, 2*/ 2n f R if



w1 = Ml, V* = mi, 72-(,2) = | L otherwlse; 73V) = {* R if u1 = i?, otherwise
and 1* „„ 2*/ 2n f & if 11*= Ml, !V) = { L otherwise 3*( 2) = r -r if«x=i?, ' [^
L otherwise , with equilibrium outcomes being (0, —2, -1) and (0,0,0),
respectively. D Remark 3.11 As we have discussed earlier in this section,
single-act nonzero- sum finite dynamic games admit, in general, a multiple of
Nash equilibria, mainly due to the fact that Nash equilibria of informationally
inferior games also provide Nash solutions to the original game (cf. Prop. 3.7)
the so-called informational nonuniqueness of Nash equilibria. The delayed
commitment mode of play introduced for nested and ladder-nested games,
however, eliminates this informational nonuniqueness, and therefore
strengthens the Nash equilibrium solution concept for dynamic single-act
games. D 3.5.2 Single-act games: Nash equilibria in behavioral and mixed
strategies If an TV-person single-act game in extensive form does not admit a
Nash equilibrium solution (in pure strategies), then an appropriate approach is
to investigate Nash equilibria within the enlarged class of behavioral
strategies, as has been done in Section 2.5 for zero-sum games. If the nonzero-
sum single-act finite game under consideration is of the "ladder-nested" type,
then it is relatively simpler to obtain Nash equilibria in behavioral strategies
(which also fit well within a delayed commitment framework), since one still
follows the recursive procedure developed in this section for pure strategies,
but this time by also considering the mixed-strategy Nash equilibria of the
static sub-extensive forms. Then, these mixed strategies, obtained for each
equivalent normal form, will have to be appropriately concatenated and
written in the form of a behavioral strategy. The following example now
illustrates the steps in the derivation of behavioral Nash equilibria. Example
3.11 Consider the 3-person single-act game depicted in Fig. 3.8. This is of the
ladder-nested type, and both P2 and P3 have access to the
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single-act game of Example 3.11. action of PI, but to no other information.
Hence, we first have to consider two bimatrix games corresponding to the
possible actions L and R of PI. If u1 ~ L, then the bimatrix game is the one
treated in Example 3.2, which admits the unique mixed-strategy Nash
equilibrium 2, J L w.p. 1/2, s R w.p. 1/2, , _ J L w.p. 1/2, R w.p. 1/2, with the
corresponding average cost triple being (0,1/2,3/2). If u1 = R, on the other
hand, the bimatrix game is P3 A = R 3 2 P3 P2, B L R L R 0 2 P2, L R which
admits the unique Nash solution (in pure strategies) ,.3* with the corresponding



cost triple being (1,1,1). Comparing this outcome with the previous one, it is
obvious that the unique equilibrium strategy of PI is .1* = L. Appropriate
concatenation now yields the following unique behavioral Nash equilibrium
strategies for P2 and P3, respectively: r*w) 73V) = L R L R L R L R w.p. w.p.
w.p. w.p. w.p. w.p. w.p. w.p. 1/2 1/2 1 0 1/2 1/2 1 0
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outcome in behavioral strategies is (0,1/2, 3/2). D Since the recursive
procedure involves solution of static games in normal form at every step of the
derivation, and since every N-person nonzero-sum finite game in normal form
admits a mixed strategy Nash equilibrium solution (cf. Thm. 3.2), it follows
that a Nash equilibrium solution in behavioral strategies always exists for
single-act games in ladder-nested extensive form. This result is summarized
below in Prop. 3.8, which is the counterpart of Corollary 2.4 in the present
framework. Proposition 3.8 In every single-act N-person game which has a
ladder-nested extensive form comprising a finite number of branches, there
exists at least one Nash equilibrium solution in behavioral strategies. Remark
3.12 It should be noted that, as opposed to Corollary 2.4, Prop. 3.8 does not
claim an ordered interchangeability property in case of multiple Nash
equilibria, for reasons which have extensively been discussed in Sections 3.2
and 3.3. Furthermore, the result might fail to hold if the single-act game is not
ladder-nested, in which case one has to consider the even larger class of mixed
strategies. □ Remark 3.13 Since the players have only a finite number of
possible pure strategies, it readily follows from Thm. 3.2 that there always
exists a Nash equilibrium in mixed strategies in single-act finite games of the
general type. However, computation of these mixed equilibrium strategies is
quite a nontrivial problem, since a recursive procedure cannot be developed
for finite single-act games which are not ladder-nested. □ 3.5.3 Multi-act
games: Pure-strategy Nash equilibria In the discussion of the Nash-equilibria
of multi-act nonzero-sum finite games in extensive form, we shall follow rather
closely the analysis of Section 2.5 which was devoted to similarly structured
zero-sum games, since the results to be obtained for multi-act nonzero-sum
games will be direct extensions of their counterparts in the case of zero-sum
games. Not all conclusions drawn in Section 2.5, however, are valid in the
present context and these important differences between the properties of
saddle-point and Nash equilibrium solutions will also be elucidated in the
sequel. In order to be able to develop a systematic (recursive) procedure to



obtain Nash equilibria of multi-act nonzero-sum finite games, we will have to
impose (as in Section 2.5) some restrictions on the nature of the informational
coupling among different levels of play. To this end, we confine ourselves to
multi-act games whose Nash equilibria can be obtained by solving a sequence
of single- act games and by appropriate concatenation of the equilibrium
strategies determined at each level of play. This reasoning, then, brings us to
the so-called
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precise definition of which is given below (as a counterpart of Def. 2.11).
Definition 3.21 A multi-act N-person nonzero-sum game in extensive form with
a fixed order of play is called an TV-person nonzero-sum feedback game in
extensive form, if (i) at the time of his act, each player has perfect information
concerning the current level of play, i.e., no information set contains nodes of
the tree belonging to different levels of play, (it) information sets of the first-
acting player at every level of play are singletons, and the information sets of
the other players at every level of play are such that none of them includes
nodes corresponding to branches emanating from two or more different
information sets of the first-acting player, i.e., each player knows the state of
the game at every level of play. If, furthermore, (Hi) the single-act games
corresponding to the information sets of the first- acting player at each level of
play are of the ladder-nested (respectively, nested) type (cf Def. 3.15), then the
multi-act game is called an ./V-person nonzero-sum feedback game in ladder-
nested (respectively, nested,) extensive form. Remark 3.14 It should be noted
that, in the case of two-person multi-act games, every feedback game is, by
definition, also in ladder-nested extensive form; hence, the zero-sum feedback
game introduced earlier by Def. 2.11 is also ladder-nested. □ Now, paralleling
the analysis of Section 2.5, let the number of levels of play in an iV-person
nonzero-sum feedback game in extensive form be K, and consider a typical
strategy 7* of Pi in such a game to be composed of K components (7i> • ■ •
>7/f)- Here, 7J stands for the corresponding strategy of Pi at his jth level of
act, and it can be taken to have as its domain the class of only those
information sets of Pi which pertain to the jth level of play. Let us denote the
collection of all such strategies for Pi at level j by T*. Then, for such a game,
the set of inequalities (3.23) can be written as (as a counterpart of (2.35))
■/ ĴHTiV^TioT2*;---^*), JN.<JN(7i.._.yv-i..7iN_>7N)) (3.27) which are to be
satisfied for all 7] € Tlj, i = 1,..., N; j = 1,..., K. On any iV-tuple of Nash



equilibrium strategies {71*,... ,JN*} that satisfies (3.27), let
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also satisfies (recursively) the following K TV-tuple inequalities for all 7] €
TJ, i — 1,..., N; j — 1,..., K: Tlf~A ~,1 „,l*.-,,2 „,2 .,2*. . ,,N 1k-v1k 1 > J 17 ,
7i>- ■ ■)7if-ii7/c !-• • >7i >•• ->7/f-i>7/f ; level level if-i T2C-,1 _,1 ~1*.^2
2 2*. ._,AT J Hi,- ■ • >7K-i>7if i7i> • • • >7/f-u7/fi • • • >7i '■••> 1k-v1k ) ^
t2|-„,1 „,1 „,1*.„,2. ...AT „,N „,AT*\ < J l7i.---.7/f-i.7/f>7 ,---,7i .•■•i7/f-i.7/f J
tNu,1 ..1 -,1*.~2 ~2 -.2*. ...AT ■  ̂l7i>---.7/f-u7/f.7i.---.7/f-i)7/f.---.7i >-■•>
<JN{i\,---,1k-v11k\iI---,12k-i,12k;---:1N) 1^1 ■/'M -,,1 -,,1* „,1* „,2 „,2*
„,2*. .7/f-2.7/f-i»7/f»7i,---,7/f-i.7/fi 7i >■• • >7/f-2>7/f-n7K' 1 < J\lh■ ■ ■,Ik-
2. 7*-i,Ik57i, • • •,7*_2,7*-i» 7*5 7i >•• •)7/f_2i7/f-iI7K J T2C_1 -.1 _,1*
l̂*.-,2 2 2* 2*. J I7i>■•• >7/f-2'7/f-i>7/f)7i>- ■•>7/f-2>7/f-i)7/f >••• > _iV

AT AT* Af*\ 7i >• • ■ i7/f-2i7/f-n7/f J < J2(7i1,...,7x-2,7k-i17x;7?,---,7x-
2.7a:-i.7 ;̂ _Af Af -,AT* _,A/*\ 7i i- ■ • i7/f-2'7/v-i>7/f ; tWc î -,1 ~i* ~i* -,2
2 ^2* 2*. J I7i>-- -i7/f-2>7/f-i)7/fi7i>- • •i7/f-2>7/f-i»7/f ?• ■ ■ 1 ^Af ^Af
^Af* 0/Ar*l 7i )---.7K--2.7/f-i.7/f J < (̂7j, • • • ,7 -̂2,7i?-x,7 ;̂7i2, ■ • ■
,7 -̂2.7 -̂1,7 ;̂ „N N ~N N*\ 7i , • ■ ■ ,7/v-2)7/f-i,7/f J level 1 (3.28) f
J1(71*;72*;---;7w*)<-/1(7i1,7 ,̂-..,7is?;72*;---;7w*) J2(71*;72*;---;7 )̂
<^2(71*;7i2,722*,---,7^72*;---;7w*) { Jw(71*;72*---;7w*)< (̂71*;72*;---
;7iw,72V*,---,7 )̂- Definition 3.22 For an N-person nonzero-sum feedback
game in extensive form with K levels of play, let {71*, • • • ,7^*} be an N-
tuple of strategies satisfying (3.27) and (3.28) for all 7} G Y), i = 1,...,N; j =
1,...,K. Then, {71*,... ,7^*} constitutes a (pure) feedback Nash equilibrium for
the feedback game.
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tuple {71*,..., 7A*} that satisfies the set of inequalities (3.28) also satisfies the
set of N inequalities (3.27). Hence, the requirement for satisfaction of (3.27) in
Def. 3.22 is redundant, and it can be dispensed with without any loss of
generality. Proof. This basically follows from the lines of argument used in the
proof of Prop. 2.3, with two inequalities at each level of play replaced by N
inequalities in the present case. D The set of inequalities (3.28) now readily
suggests a recursive procedure for derivation of feedback Nash equilibria in
feedback nonzero-sum games. Starting at level K. we have to solve a single-act
game for each information set of the first-acting player at each level of play,
and then appropriately concatenate all the equilibrium strategies (with



restricted domains) thus obtained. If the single- act games encountered in this
recursive procedure admit more than one (pure- strategy) Nash equilibrium,
the remaining analysis will have to be repeated for each one of these equilibria
so as to determine the complete set of feedback Nash equilibria the multi-act
game admits. For nested multi-act feedback games one might wish to restrict
the class of Nash equilibria of interest even further, so that only those obtained
by concatenation of delayed commitment type equilibria of single-act games
are considered. The motivations behind such a further restriction are: (i) the
delayed commitment mode of play conforms well with the notion of feedback
Nash equilibria and it eliminates informational nonuniqueness, and (ii) Nash
equilibria at every level of play can then be obtained by utilizing the recursive
technique developed earlier in this section for single-act games (which is
computationally attractive, especially for ladder-nested games). A precise
definition now follows. Definition 3.23 For a nonzero-sum feedback game in
extensive form, a feedback Nash equilibrium solution is of the delayed
commitment type if its appropriate restriction at each level of play constitutes a
delayed commitment type Nash equilibrium (cf. Defs. 3.18, 3.20) for each
corresponding single-act game to be encountered in the recursive derivation.
Heretofore, the discussion on multi-act feedback games has been confined only
to feedback Nash equilibria (of the delayed commitment type or otherwise).
However, such games could very well admit other types of Nash equilibria
which satisfy inequalities (3.23) but which do not fit the framework of Def.
3.22. The main reason for this phenomenon is the "informational
nonuniqueness" feature of Nash equilibria in dynamic games, which has been
discussed earlier in this section within the context of single-act games. In the
present context, a natural extension of Prop. 3.7 is valid, which we provide
below after introducing some terminology and also the concept of
informational inferiority in nonzero-sum feedback games. Definition 3.24 Let I
be an N-person multi-act nonzero-sum game with a fixed order of play, which
satisfies the first requirement of Def. 3.21. An N-person
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11) (cf Def 3.13) is said to be the static (open-loop) version of I if it can be
obtained from I by replacing, at each level of play, the information sets of each
player with a single information set. The equivalent normal form of the open-
loop version of I is the static normal form of I. Definition 3.25 Let I and II be
two N-person multi-act nonzero-sum games with fixed orders of play, which



satisfy the first requirement of Def. 3.21. Further let Y\ onrfrji denote the
strategy sets of Pi in I and II, respectively. Then I is informationally inferior to
II ifT\ C Y\i for all i G N, with strict inclusion for at least one i. Proposition
3.10 Let I and II be two N-person multi-act nonzero-sum games as introduced
in Def. 3.25, so that I is informationally inferior to II. Then, (i) any Nash
equilibrium solution for I is also a Nash equilibrium solution for II, (ii) if
{71,..., jN} is a Nash equilibrium solution for II so that 'f € T\ for all i = 1,...,
N, then it is also a Nash equilibrium solution for I. Proof. The proof is
analogous to the proof of Prop. 3.7, and is therefore omitted. D Remark 3.15 It
should now be apparent why informationally nonunique Nash equilibria exist
in nonzero-sum multi-act feedback games. Every nontrivial multi-act feedback
game in which the players have at least two alternatives at each level of play
admits several informationally inferior multi-act games. These different games
in general admit different Nash equilibria which are, moreover, not
interchangeable. Since every one of these also constitutes a Nash equilibrium
for the original multi-act game (cf. Prop. 3.10), existence of a plethora of
informationally nonunique equilibria readily follows. The further restrictions
of Defs. 3.22 and 3.23, imposed on the concept of noncooperative equilibrium,
clearly eliminate this informational nonuniqueness, and they stand out as
providing one possible criterion according to which a further selection can be
made. This "informational nonuniqueness" property of noncooperative
equilibrium in dynamic games is, of course, also featured by zero-sum games,
since they are special types of nonzero-sum games, in which case the Nash
equilibrium solution coincides with the saddle-point solution. However, since
all saddle- point strategies have the ordered interchangeability property and
further since the saddle-point value is unique, nonuniqueness of equilibrium
strategies does not create a problem in zero-sum dynamic games—the main
reason why we have not included a discussion on informational nonuniqueness
in Chapter 2. It should be noted, however, that for two-person zero-sum multi-
act feedback games, Def. 3.23 is redundant and Def. 3.22 becomes equivalent
to Def. 2.12, which clearly dictates a delayed commitment mode of play. □
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now serves to illustrate both the recursive procedure and the informational
nonuniqueness of Nash equilibria in feedback nonzero-sum games. 0,1 1,0 2,-1
-1,2 3,1 4,2 1,1 5,2 0,-1/2 2,1 2,1 2,0 0,-1 -2,1 3,2 0,3 2,1 -1,0 Figure 3.9: The
multi-act feedback nonzero-sum game of Example 3.12. Example 3.12



Consider the multi-act feedback game whose extensive form is depicted in Fig.
3.9. Since this is a 2-person game (of the feedback type) it is definitely also
ladder-nested (or equivalently, nested), and hence derivation of its delayed
commitment type feedback Nash equilibria involves solutions of only static
sub-extensive forms. At the second (and the last) levels of play, there are four
single-act games, one for each singleton information set of PI. The first of these
(counting from left) admits the unique Nash equilibrium solution of the delayed
commitment type 2*, i2*m = L, 7f( )̂ R iiu\= L, L otherwise , (0 with the Nash
equilibrium outcome being (1,0). The second one admits the unique Nash
equilibrium solution 2*/„2\ 72 ( )̂ = .̂ 72*W) = i, («) with an outcome of (1,1).
The third single-act game again has a unique Nash equilibrium, given by 7r( )̂
= i, i?m = L (Hi) with an outcome of (0, —1/2). The last one is the single-act
game of Example 3.6, which admits the unique delayed commitment type Nash
equilibrium solution -rfW-R, 7|*(?2) L if u\ = L, R otherwise (iv)
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When (i)-(iv) are collected together, we obtain the delayed commitment type
Nash equilibrium solution of the feedback game at level 2 to be uniquely given
as 7i*(%2) = 2-=L,u\ = L,u\ = L, 1 -- R,u\ = R,u\ = M ox R, otherwise . (3.29a)
Now, crossing out the second level of play, we end up with the single-act game
pi/ P2Q lI 1,0 X \ru ' 1,1 0,-1/2 y r -1,0 whose equivalent normal form is the
bimatrix game P2 P2 PI A = R ® 1 -1 L R 0 Q i 0 PI R L R which admits, as
indicated, the unique Nash equilibrium solution with the corresponding
outcome being (0,-1/2). (3.29b) (3.29c) In conclusion, the feedback game of
Fig. 3.9 admits a unique feedback Nash equilibrium solution of the delayed
commitment type, which is given by (3.29a)- (3.29b), with the corresponding
Nash outcome being (3.29c). This recursively obtained Nash equilibrium
solution, although it is unique as a delayed commitment type feedback Nash
equilibrium, is clearly not unique as a feedback Nash equilibrium solution,
since it is already known from Example 3.6 that the fourth single-act game
encountered at the first step of the recursive derivation admits another Nash
equilibrium solution which is not of the delayed commitment type. This
equilibrium solution is the constant strategy pair given by (3.26a)-(3.26b), that
is, ll*{r,\) = L, it*{r$) = L which has to replace (iv) in the recursive
derivation. The Nash outcome corresponding to this pair of strategies is (0, —
1). The strategy pair (3.29a) will now
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(%2) = R ifuJ=L,u? = iJ, L otherwise , R if u\ = L,u\ = L,u\ = L, L otherwise ,
(3.30a) which also provides a Nash equilibrium solution at level 2. Now,
crossing out the second level of play, this time we have the single-act game 1,0
1,1 0,-1/2 0,-1 whose equivalent normal form is P2 t, n A = P2 L R 1 0 1 w PI,
B = L R L R 0 -1/2 1 kr1) PI, R which admits, as indicated, the unique Nash
equilibrium solution with the corresponding outcome being (0,-1). (3.30b)
(3.30c) We therefore arrive at the conclusion that (3.30a)-(3.30b) provides
another feedback Nash equilibrium solution for the multi-act game of Fig. 3.9,
which is, however, not of the delayed commitment type. It is noteworthy that
the unique feedback Nash solution of the delayed commitment type is in this
case inadmissible, which follows immediately by a comparison of (3.29c) and
(3.30c). To determine the other (non-feedback type) Nash equilibria of this
multi-act game, the only possible approach is to bring it into equivalent normal
form and to investigate Nash equilibria of the resulting bimatrix game. This is,
however, quite a strenuous exercise, since the bimatrix game is of rather high
dimensions. Specifically, at level 1 each player has two possible strategies,
while at level 2 PI has 23 x 3 = 24 and P2 has 26 = 64 possible strategies.
This then implies that the bimatrix game is of dimensions 48 x 128. Two Nash
equilibria of this bimatrix game are the ones given by (3.29a)-(3.29b) and
(3.30a)-(3.30b), but there are possibly others which in fact correspond to Nash
equilibria of multi- act games which are informationally inferior to the one of
Fig. 3.9; one of these games is the open-loop game which is the static version
of the original feedback game. □
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mixed equilibrium strategies Behavioral equilibrium strategies for an TV-
person feedback game in ladder- nested extensive form can be derived by
essentially following the recursive procedure developed in Section 3.5.3 for
pure-strategy feedback equilibria, but this time by also considering the
behavioral-strategy Nash equilibria of the single-act games to be encountered
in the derivation. The justification of applicability of such a recursive
procedure is analogous to the one of behavioral saddle-point equilibria of
feedback games discussed in Section 2.5. Specifically, if K denotes the number
of levels of play in the ./V-person feedback game of the ladder-nested type,
then a typical behavioral strategy 7* of Pi in such a game can be decomposed
into K components 7},... ,7 ,̂ where 7] € rj- is the corresponding behavioral



strategy of Pi at his jth level of play. Furthermore, 7! has, as its domain, only
the class of those information sets of Pi which pertain to the jth level of play.
Then, the set of inequalities that determines the behavioral Nash equilibrium
solution can be written as (3.31) j»*<J"tf*;...;j"-^»,...,j») , which have to be
satisfied for all 7] e T*r, j — 1,..., K; i e N. Under the delayed commitment
mode of play, we impose the further restriction that they satisfy the K TV-tuple
inequalities similar to (3.28), with only 7J replaced by 7] and J1 by J\ A
counterpart of Prop. 3.9 also holds true in the present framework and this
readily leads to recursive derivation of behavioral-strategy Nash equilibria in
feedback games of the ladder-nested type. This procedure always leads to a
Nash equilibrium solution in behavioral strategies as the following proposition
states. Proposition 3.11 Every finite N-person nonzero-sum feedback game in
ladder- nested extensive form admits a Nash equilibrium solution in
behavioral strategies which can be determined recursively. Proof. This result
is an immediate consequence of Prop. 3.8, since every feedback game in
ladder-nested extensive form can be decomposed recursively into ladder-
nested single-act games. D For feedback games which are not of the ladder-
nested type, and also for other types of (non-feedback) multi-act games, Prop.
3.11 is not in general valid, and the Nash equilibrium in behavioral strategies
(even if it exists) cannot be obtained recursively. Then, the only approach
would be to bring the extensive form into an equivalent normal form, obtain all
mixed-strategy Nash equilibria of this normal form, and to seek whether any
one of these equilibria would constitute a Nash equilibrium in behavioral
strategies. This argument is now
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following two propositions which are direct counterparts of Props 2.5 and 2.6,
respectively. Proposition 3.12 Every N-person nonzero-sum multi-act finite
game in extensive form admits a Nash equilibrium solution in mixed strategies.
Proof. The result readily follows from Thm. 3.2, since every such game can be
transformed into an equivalent normal form in which each player has a finite
number of strategies. D Proposition 3.13 Every Nash equilibrium of a finite N-
person nonzero-sum multi-act game in behavioral strategies also constitutes a
Nash equilibrium in the larger class of mixed strategies. Proof. Let {71* G
f1,...,^* e tN} denote an TV-tuple of behavioral strategies stipulated to be in
Nash equilibrium, and let fl denote the mixed- strategy set of Pi, i e N. Since P
C P, we clearly have jl* e f \ for every i € N. Assume, to the contrary, that



{71*,... , 7^*} is not a mixed-strategy Nash equilibrium solution; then this
implies that there exists at least one i (say, i — N, without any loss of
generality) for which the corresponding inequality of (3.31)19 is not satisfied
for all 7* e P. In particular, there exists a ^N e fN such that JN*>JN(y1*;...;TN-
1*;iff) = F*. (t) Now, abiding by our standard convention, let TN denote the
pure-strategy set of PAT, and consider the quantity FIt")*^1*;...; -̂1* )̂ defined
for each 7  ̂e TN. (This is well defined since TM c TN.) The infimum of this
quantity over TN is definitely achieved (say, by 7^* £ TN), since TN is a finite
set. Furthermore, since fN is comprised of all probability distributions onTN,
inf FHN) = inf FhN) = F(yN*). We therefore have F* = F(jN*), (H) and also
the inequality jN* > jr(7Af*) in view of (i). But this is impossible since JN*
— inf^N F(yN) and TN c TN, thus completing the proof of the proposition. D
19Here, by an abuse of notation, we take J1 to denote the average loss to Pi
under also mixed-strategy JV-tuples.
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equilibria As we have seen heretofore in this chapter, existence of multiple
Nash equilibria for a given dynamic game is more a rule rather than an
exception, with the multiplicity arising because of the informational richness of
the underlying decision problem as well as the structure of the players' cost
matrices. As a means of shrinking the set of Nash equilibria in a rational way,
we have introduced heretofore the notions of "delayed commitment",
"informational inferiority", "feedback games" and "admissibility". There are,
however, several other refinement schemes which have been introduced in the
literature, some of which we discuss below. To motivate the discussion, let us
start with a two-player matrix game (A, B) where the players have identical
cost matrices. P2 A = B L R 0 1 1 1 PI. (3.32) L R The game admits two pure-
strategy Nash equilibria: (L,L) and (R,R). Note, however, that if we perturb the
entries of the two matrices slightly, and independently: P2 P2 A + AA = «il 1 +
^1 1+^12 1+^22 PI, B + AB = *fl 1+e'll 1 + e'f 2 1+^22 PI, where e  ̂i, j, k =
1,2, are infinitesimally small (positive or negative) numbers, then (L,L) will
still retain its equilibrium property (as long as |e*-| < 1/2), but (R, R) will not.
More precisely, there will exist infinitely many perturbed versions of the
original game for which (R, R) will not constitute a Nash equilibrium. Hence,
in addition to admissibility, (L, L) can be singled out in this case as the Nash
solution that is robust to infinitesimal perturbations in the entries of the cost
matrices. Can such perturbations be induced naturally by some behavioral



assumptions imposed on the players? The answer is yes, as we discuss next.
Consider the scenario where a player who intends to play a particular pure
strategy (out of a set of n possible alternatives) errs and plays with some small
probability one of the other n — 1 alternatives. In the matrix game (3.32), for
example, if both players err with equal (independent) probability e > 0, the
resulting matrix game is (At,Bt), where P2 Ae = Bt = L R e{2 - t) 1-e + e* 1-e
+ e' 1-e* PI. R Note that for all e € (0,1/2) this matrix game admits the unique
Nash equilibrium (L,L), with a cost pair of (e(2 — e),e(2 — e)), which
converges to (0,0)
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one of the Nash cost pairs of the original game. A Nash equilibrium solution
that can be recovered this way is known as a perfect equilibrium, which was
first introduced in precise terms by Selten (1975), in the context of ./V-player
games in extensive form. Given a game of perfect recall, denoted Q, the idea is
to generate a sequence of games, Q\, G2, ■ ■., Gk, ■ ■ ■, a limiting
equilibrium solution of which (in behavioral strategies, and as k —> oo) is an
equilibrium solution of Q. If Qk is obtained from Q by forcing the players at
each information set to choose every possible alternative with positive
probability (albeit small, for those alternatives that are not optimal), then the
equilibrium solution(s) of Q that are recovered as a result of the limiting
procedure above is (are) called perfect equilibrium (equilibria).20 Selten
(1975) has shown that every finite game in extensive form with perfect recall
(and as a special case in normal form) admits at least one perfect equilibrium,
thus making this refinement scheme a legitimate one. The procedure discussed
above, which amounts to "completely" perturbing a game with multiple
equilibria, is one way of obtaining perfect equilibria; yet another one, as
introduced by Myerson (1978), is to restrict the players to use completely
mixed strategies (with some lower positive bound on the probabilities) at each
information set. Again referring back to the matrix game (A, B) of (3.32), let
the players' mixed strategies be restricted to the class „! i L w.p. y „2 J L WP-
z-, -{ R w.p. 1 — y ' 1 fi w.p. 1 — 2, where e < y < 1 — e, e < z <1 — e, for
some (sufficiently small) positive e. Over this class of strategies, the average
cost functions of the players will be Jl = j2 = -2/2 + 1, which admits (assuming
that 0 < e < \) a unique Nash equilibrium: -i* _ -2* _ ) L WP- 1 — e t1* _ ?2*
Such a solution is called an e-perfect equilibrium (Myerson, 1978), which in
the limit as e | 0 clearly yields the perfect Nash equilibrium obtained earlier.



Myerson in fact proves, for ./V-person games in normal form, that every
perfect equilibrium can be obtained as the limit of an appropriate e-perfect
equilibrium, with the converse statement also being true. More precisely, using
the notation of Section 3.3, we have the following. Proposition 3.14 For an N-
person finite game in normal form, a mixed- strategy Nash equilibrium {yl* €
Yl,i £ N} is a perfect equilibrium if, and only if there exist some sequences
{efcj îj, {y* € Y%,i € N} ĵ such that 20This is also called "trembling hand
equilibrium", as the process of erring at each information set is reminiscent of
a "trembling hand" making unintended choices with small probability. Here, as
k —> oo, this probability of unintended plays converges to zero.
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N} is an e -̂perfect equilibrium in) limfe-.oo y\k = f*, i £ N. Furthermore, a
perfect equilibrium necessarily exists, and every perfect equilibrium is a Nash
equilibrium. Even though the notion of perfect equilibrium provides a
refinement of the notion of Nash equilibrium with some appealing properties, it
also carries some undesirable features as the following example of an identical
cost matrix game (due to Myerson (1978)) exhibits: P2 L A = B= M [ljl I 8 I
PI. (3.33) 0 1—1 10 1 1—1 8 10 8 8 R { ^T M R~ Note that this is a matrix
game derived from (3.32) by adding a completely dominated row and a
completely dominated column. It now has three Nash equilibria: {L,L), (M,M),
(R,R), the first two of which are perfect equilibria, while the last one is not.21
Hence, inclusion of completely dominated rows and columns could create
additional perfect equilibria not present in the original game—a feature that is
clearly not desirable. To remove this shortcoming of perfect equilibrium,
Myerson (1978) has introduced the notion of proper equilibrium, which
corresponds to a particular construction of the sequence of strategies used in
Prop. 3.14. Proper equilibrium is defined as in Prop. 3.14, with only the ek-
perfect equilibrium in ii) replaced by the notion of e -̂proper equilibrium to be
introduced next. Toward this end, let Jl{j;ye) denote the average cost to Pi
when he uses his jth strategy (such as jth column or row of the matrix) in the
game and all the other players use their mixed strategies y\, fc € N, k  ̂i.
Furthermore, let y\j be the probability attached to his jth strategy under the
mixed strategy y\. Then, the TV-tuple {y\,i £ N} is said to be in e-proper
equilibrium if the strict inequality J'fe) > J\k;yt) implies that y%  ̂< ty\'k, this
being so for every j, k e M;, and every i € N. In other words, an e-proper
equilibrium is one in which every player is giving his better responses much



more probability weight than his worse responses (by a factor 1/e), regardless
of whether those "better" responses are "best" or not. Myerson (1978) proves
that such an equilibrium necessarily exists as follows. Proposition 3.15 Every
finite N-player game in normal form admits at least one proper equilibrium.
Furthermore, every proper equilibrium is a perfect equilibrium (but not vice
versa). The reader is encouraged to verify this conclusion.

iV-PERSON NONZERO-SUM FINITE GAMES 131 Remark 3.16 The reader
should verify that in the matrix game (3.33) there is only one proper
equilibrium, which is {L,L): the perfect equilibrium of (3.32). □ Another
undesirable feature of a perfect equilibrium is that it is very much dependent
on whether the game is in extensive or normal form (whereas the Nash
equilibrium property is form-independent). As it has been first observed by
Selten (1975), and further elaborated on by van Damme (1984), a perfect
equilibrium of the extensive form of a game need not be perfect in the normal
form, and conversely a perfect equilibrium of the normal form need not be
perfect in the extensive form. To remove this undesirable feature, van Damme
(1984) has introduced the concept of quasi-perfect equilibria for games in
extensive form, and has shown that a proper equilibrium of a normal form
game induces a quasi-perfect equilibrium in every extensive form game having
this normal form. Quasi-perfect equilibrium is defined as a behavioral strategy
combination which prescribes at every information set a choice that is optimal
against mistakes ("trembling hands") of the other players; its difference from
perfect equilibrium is that here in the construction of perturbed matrices each
player ascribes "trembling hand" behavior to all other players (with positive
probability), but not to himself. Other types of refinement have also been
proposed in the literature, such as sequential equilibria (Kreps and Wilson,
1982), and strategic equilibria (Kohlberg and Mertens, 1986), which we do
not further discuss here. None of these, however, are uniformly powerful, in
the sense of shrinking the set of Nash equilibria to the smallest possible set.
We will revisit the topic of "refinement on Nash equilibria" later in Chapters 5
and 6, in the context of infinite dynamic games and with emphasis placed on
the issue of time consistency. 3.6 The Stackelberg Equilibrium Solution The
Nash equilibrium solution concept that we have heretofore studied in this
chapter provides a reasonable noncooperative equilibrium solution for
nonzero- sum games when the roles of the players are symmetric, that is to say,
when no single player dominates the decision process. However, there are yet



other types of noncooperative decision problems wherein one of the players
has the ability to enforce his strategy on the other player(s), and for such
decision problems one has to introduce a hierarchical equilibrium solution
concept. Following the original work of H. von Stackelberg (1934), the player
who holds the powerful position in such a decision problem is called the
leader, and the other players who react (rationally) to the leader's decision
(strategy) are called the followers. There are, of course, cases of multi-levels
of hierarchy in decision making, with many leaders and followers; but for
purposes of brevity and clarity in exposition we will first confine our
discussion here to hierarchical decision problems which incorporate two
players (decision makers)—one leader and one follower. To set the stage to
introduce the hierarchical (Stackelberg) equilibrium so-
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bimatrix game (A, B) displayed (under our standard convention) as P2 A = L
M R 0»i 1 -1 2 1N 2 3/2  ̂3 2 P2 PI, B= M 2 (T 1 PI. L M R M R -1*1 2 0 1
0jv 1 -2/2** 1 -1/2 M R (3.34) This bimatrix game clearly admits a unique
Nash equilibrium solution in pure strategies, which is {M, M}, with the
corresponding outcome being (1,0). Let us now stipulate that the roles of the
players are not symmetric and PI can enforce his strategy on P2. Then, before
he announces his strategy, PI has to take into account possible responses of P2
(the follower), and in view of this, he has to decide on the strategy that is most
favorable to him. For the decision problem whose possible cost pairs are
given as entries of A and B, above, let us now work out the reasoning that PI
(the leader) will have to go through. If PI chooses L, then P2 has a unique
response (that minimizes his cost) which is L, thereby yielding a cost of 0 to
PI. If the leader chooses M, P2's response is again unique (which is M), with
the corresponding cost incurred to PI being 1. Finally, if he picks R, P2's
unique response is also R, and the cost to PI is 2. Since the lowest of these
costs is the first one, it readily follows that L is the most reasonable choice for
the leader (Pi) in this hierarchical decision problem. We then say that L is the
Stackelberg strategy of the leader (PI) in this game, and the pair {L, L} is the
Stackelberg solution with PI as the leader. Furthermore, the cost pair (0,-1) is
the Stackelberg (equilibrium) outcome of the game with PI as the leader. It
should be noted that this outcome is actually more favorable for both players
than the unique Nash outcome—this latter feature, however, is not a rule in
such games. If, for example, P2 is the leader in the bimatrix game (3.34), and



PI the follower, then the unique Stackelberg solution is {L, R} with the
corresponding outcome being (3/2,-2/3) which is clearly not favorable for PI
(the follower) when compared with his unique Nash cost. For P2 (the leader),
however, the Stackelberg outcome is again better than his Nash outcome. The
Stackelberg equilibrium solution concept introduced above within the context
of the bimatrix game (3.34) is applicable to all two-person finite games in
normal form, but provided that they exhibit one feature which was inherent to
the bimatrix game (3.34) and was used implicitly in the derivation: the
follower's response to every strategy of the leader should be unique. If this
requirement is not satisfied, then there is ambiguity in the possible responses
of the follower and thereby in the possible attainable cost levels of the leader.
As an explicit example to demonstrate such a decision situation, consider the
bimatrix game A = L R P2 0 2 1 2 3 -1 PI. B = L R L M R P2 0 -1 0 0 1 -1 PI
(3.35) M R
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leader. Here, if PI chooses (and announces) L, P2 has two optimal responses L
and M, whereas if PI picks R, P2 again has two optimal responses, L and R.
Since this multiplicity of optimal responses for the follower results in a
multiplicity of cost levels for the leader for each one of his strategies, the
Stackelberg solution concept introduced earlier cannot directly be applied
here. However, this ambiguity in the attainable cost levels of the leader can be
resolved if we stipulate that the leader's attitude is toward securing his
possible losses against the choices of the follower within the class of his
optimal responses, rather than toward taking risks. Then, under such a mode of
play, Pi's secured cost level corresponding to his strategy L would be 1, and
the one corresponding to R would be 2. Hence, we declare 71* — L as the
unique Stackelberg strategy of PI in the bimatrix game of (3.35), when he acts
as the leader. The corresponding Stackelberg cost for PI (the leader) is J1* —
1. It should be noted that, in the actual play of the game, PI could actually end
up with a lower cost level, depending on whether the follower chooses his
optimal response 72 = L or the optimal response 72 = M. Consequently, the
outcome of the game could be either (1,0) or (0,0), and hence we cannot talk
about a unique Stackelberg equilibrium outcome of the bimatrix game (3.35)
with PI acting as the leader. Before concluding our discussion on this example,
we finally note that the admissible Nash outcome of the bimatrix game (3.35)
is ( — 1,-1) which is more favorable for both players than the possible



Stackelberg outcomes given above. We now provide a precise definition for
the Stackelberg solution concept introduced above within the context of two
bimatrix games, so as to encompass all two-person finite games of the single-
act and multi-act type which do not incorporate any chance moves. For such a
game, let T1 and T2 again denote the pure-strategy spaces of PI and P2,
respectively, and JZ(7X,72) denote the cost incurred to Pi corresponding to a
strategy pair {71 € r',72 € T2}. Then, we have the following definitions.
Definition 3.26 In a two-person finite game, the set R2^1) C T2 defined for
each 71 € T1 by i?2(71)-{eer2:J2(71,0< (̂71,72), V72er2} (3.36) is the
optimal response (rational reaction) set o/P2 to the strategy 71 € T1 of PI.
Definition 3.27 In a two-person finite game with PI as the leader, a strategy
71* e T1 is called a Stackelberg equilibrium strategy for the leader, if max
J1(71*-72)= min max J1(71,72)  ̂J1*. (3.37) 72Gfl2(71*) 7leri 72ejR2(7i) '
The quantity J1* is the Stackelberg cost of the leader. If, instead, P2 is the
leader, the same definition applies with only the superscripts 1 and 2
interchanged.
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game admits a Stackelberg strategy for the leader. Proof Since T1 and T2 are
finite sets, and R2^1) is a subset of T2 for each 71 e T1, the result readily
follows from (3.37). D Remark 3.17 The Stackelberg strategy for the leader
does not necessarily have to be unique. But nonuniqueness of the equilibrium
strategy does not create any problem here (as it did in the case of Nash
equilibria), since the Stackelberg cost for the leader is unique. □ Remark 3.18
If R2^1) is a singleton for each 71 e T1, then there exists a mapping T2 : T1 ->
T2 such that 72 e R2^1) implies 72 = T27x. This corresponds to the case in
which the optimal response of the follower (given by T2) is unique for every
strategy of the leader, and it leads to the following simplified version of (3.37)
in Def. 3.27: J1(71*,r271*)= min J1(71,T271) = J1*. (3.38) Here J1* is no
longer only a secured equilibrium cost level for the leader (PI), but it is the
cost level that is actually attained. □ From the follower's point of view, the
equilibrium strategy in a Stackelberg game is any optimal response to the
announced Stackelberg strategy of the leader. More precisely, we have the
following. Definition 3.28 Let 71* e T1 be a Stackelberg strategy for the
leader (PI). Then, any element 72* € R2(~fU) is an optimal strategy for the
follower (P2) that is in equilibrium with 71*. The pair {71*, 72*} is a
Stackelberg solution for the game with PI as the leader, and the cost pair



(^1(71*,72*),^2(71*,72*)) is the corresponding Stackelberg equilibrium
outcome. Remark 3.19 In the preceding definition, the cost level J1(71*,72*)
could in fact be lower than the Stackelberg cost J1*—a feature which has
already been observed within the context of the bimatrix game (3.35).
However, if R2^1*) is a singleton, then these two cost levels have to coincide.
□ For a given two-person finite game, let J1* again denote the Stackelberg cost
of the leader (PI), and J  ̂denote any Nash equilibrium cost for the same player.
We have already seen within the context of the bimatrix game (3.35) that J1* is
not necessarily lower than Jjy, in particular, when the optimal response of the
follower is not unique. The following proposition now provides one sufficient
condition under which the leader never does worse in a "Stackelberg game"
than in a "Nash game".
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given two-person finite game, let J1* and Jjj be as defined before. If R2^1) is a
singleton for each 71 e V1, then JU < 4. Proof Under the hypothesis of the
proposition, assume to the contrary that there exists a Nash equilibrium
solution {710 e Ti,~f2° € T2} whose corresponding cost to PI is lower than
J1*, i.e., Jl* >i7l(710)72o) (0 Since R2^1) is a singleton, let T2 : T2 —> T1
be the unique mapping introduced in Remark 3.18. Then, clearly, 720 = T,271°,
and if this is used in (i), together with the RHS of (3.38), we obtain which is a
contradiction. min JV.rV) = Ju > J1(71M,V°), D Remark 3.20 One might be
tempted to think that if a nonzero-sum game admits a unique Nash equilibrium
solution and a unique Stackelberg strategy (71*) for the leader, and further if
R2^1*) is a singleton, then the inequality of Prop. 3.16 still should hold. This,
however, is not true as the following bimatrix game demonstrates: P2 P2 L R
0*1 _1« 1 2 PI, B = L R 0*1 1JV 2 1 PI. R R Here, there exists a unique Nash
equilibrium solution, as indicated, and a unique Stackelberg strategy 71* = L
for the leader (PI). Furthermore, the follower's optimal response to 71* = L is
unique (which is 72 = L). However, 0 = -1. This counterexample indicates that
the sufficient condition of n* > 71 JN Prop. 3.16 cannot be relaxed any further
in any satisfactory way. D Since the Stackelberg equilibrium concept is
nonsymmetric as to the roles of the players, there is no recursive procedure
that can be developed (as in Section 3.5) to determine the Stackelberg solution
of dynamic games. The only possibility is the brute-force method, that is, to
convert the original two-person finite dynamic game in extensive form into an
equivalent normal form (which is basically a bimatrix game), to exhaustively



work out the possible outcomes of the game for each strategy choice of the
leader, and to see which of these is the most favorable one for the leader. Since
this is a standard application of Def. 3.27 and is no different from the approach
adopted in solving the bimatrix games (3.34) and (3.35), we do not provide
any further examples here. However, the reader is referred to Section 3.8 for
problems that involve derivation of Stackelberg equilibria in single-act and
multi-act dynamic games.
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solution Within the context of multi-act dynamic games, the Stackelberg
equilibrium concept is suitable for the class of decision problems in which the
leader has the ability to announce his decisions at all of his possible
information sets ahead of time—an attitude which naturally forces the leader to
commit himself irrevocably to the actions dictated by these strategies. Hence,
in a sense, the Stackelberg solution is of the prior commitment type from the
leader's point of view. There are yet other types of hierarchical multi-act
(multi-stage) decision problems, however, in which the leader does not have
the ability to announce and enforce his strategy at all levels of play prior to the
start of the game, but can instead enforce his strategy on the follower(s) at
every level (stage) of the game. Such a hierarchical equilibrium solution,
which has the "Stackelberg" property at every level of play (but not globally),
is called a feedback Stackelberg solution.22 We now provide below a precise
definition of this equilibrium solution within the context of two-person
nonzero-sum feedback games in extensive form (cf. Def. 3.21). To this end, let
us adopt the terminology and notation of Section 3.5, and consider I to be a
two-person nonzero-sum feedback game in extensive form with K levels of
play and with PI being the first-acting player at each level of play. Let a typical
strategy jl e P of Pi be decomposed as (7i € r'i> • ■ ■ i 7k € ^k)> where 7]
stands for the corresponding strategy of Pi at the jth level of play. Furthermore,
for a given strategy Y £ P, let Y'k and jiyk denote two truncated versions of 71,
defined as 7  ̂= (71---,7k) (3.39a) and 7*,fc = (7i,---,7k-i)- (3.39b) Then, we
have the following. Definition 3.29 Using the preceding notation and
terminology, a pair {(31 6 T1,/?2 £ T2} constitutes a feedback Stackelberg
solution for I with PI as the leader if the following two conditions are fulfilled:
(i) J1(7i,k,Phk;72,k,^k) = min max /(wl^^ l̂P2 )̂ (3-40a) fieri 7jeflJW;Tn,*+i)
for all 7*. e n, j = 1,..., k — 1; i — 1, 2; and with k = K, K - 1,..., 1, where
R2{{3; 7i,fe+i) is the optimal response set of the follower at level k, 22We



shall henceforth refer to the Stackelberg equilibrium solution introduced
through Defs. 3.26-3.28 as the global Stackelberg equilibrium solution
whenever it is not clear from the context which type of equilibrium solution we
are working with.

AT-PERSON NONZERO-SUM FINITE GAMES 137 defined by =
ita/(7U,iri;T5,l.if+1)}. Tfeerfc (3.40b) (ii) R\(f3; 0l, 71,fc) is a singleton, with
its only element being 0\, fc — l,...,K. The quantity J /̂?1,/?2) is the
corresponding feedback Stackelberg cost of the leader. Relations (3.40a) and
(3.40b) now indicate that the feedback Stackelberg solution features the
"Stackelberg" property at every level of play, and this can in fact be verified
recursively—thus leading to a recursive construction of the equilibrium
solution. Before we go into a discussion of this recursive procedure, let us first
prove a result concerning the structures of R\{-) and Jl{-)- Proposition 3.17
For a two-person feedback game that admits a feedback Stackelberg solution
with PI as the leader, (i) R%(f3;71 fe+i) is not a variant of 71 *., and hence it
can be written as (ii) J1(7i>fc,/?1,fc;72,t,/?2'fc) depends on-yi  ̂andj2,k only
through the singleton information sets ri\ of PI at level k. Proof. Both of these
results follow from the "feedback" nature of the two- person dynamic game
under consideration, which enables one to decompose the K-level game
recursively into a number of single-act games each of which corresponds to a
singleton information set of PI (the leader). In accordance with this
observation, let us start with k — K, in which case the proposition is trivially
true. Relation (3.40a) then defines the (global) Stackelberg solution of the
single-act game obtained for each information set rj\ of PI, and the quantity on
the RHS of (3.40a) defines, for k = K, the Stackelberg cost for the leader in
each of these single-act games, which is actually realized because of condition
(ii) of Def. 3.29 (see Remark 3.19). Then, the cost pair transferred to level fc
— K — 1 is well defined (not ambiguous) for each information set r\xK of PI.
Now, with the Kth level crossed out, we repeat the same analysis and first
observe that J2() in (3.40) depends only on the information set r\lK_x of PI and
on the strategies l̂K_i and ry]<_1 of PI and P2, respectively, at level k = K —
1, since we again have essentially single-act games. Consequently, ^k-i(')
depends only on 7k_i- If the cost level of PI at fc = K — \ is minimized subject
to that constraint, /3j<_l is by hypothesis a solution to that problem, to which a
unique response of the follower corresponds. Hence, again a well- defined
cost pair is determined for each game corresponding to the singleton



information sets r]]<_1 of PI, and these are attached to these nodes to provide
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level game. An iteration on this analysis then proves the result. D The
foregoing proof already describes the recursive procedure involved to obtain a
feedback Stackelberg solution of a two-person feedback game. The
requirement (ii) in Def. 3.29 ensures that the outcomes of the Stackelberg
games considered at each level are unambiguously determined, and it imposes
an indirect restriction on the problem under consideration, which cannot be
tested a priori. This then leads to the conclusion that a two-person nonzero-
sum feedback game does not necessarily admit a feedback Stackelberg
solution. There are also cases in which a feedback game admits more than one
feedback Stackelberg solution. Such a situation might arise if, in the recursive
derivation, one or more of the single-act Stackelberg games admit multiple
Stackelberg strategies for the leader whose corresponding costs to the
follower are not the same. The leader is, of course, indifferent to these
multiple equilibria at that particular level where they arise, but this
nonuniqueness might affect the (overall) feedback Stackelberg cost of the
leader. Hence, if {(3l,02} and {C1,^2} are two feedback Stackelberg solutions
of a given game, it could very well happen that J1 (/J1,/J2) < Jl{£l,£2), in
which case the leader definitely prefers 01 over £* and attempts to enforce the
components of/J1 at each level of the game. This argument then leads to a total
ordering among different feedback Stackelberg solutions of a given game,
which we formalize below. Definition 3.30 A feedback Stackelberg solution
{/31, P2} of a two-person nonzero- sum feedback game is admissible if there
exists no other feedback Stackelberg solution {£\£2} with the property J1^1, )̂
< J1{01,P2). It should be noted that if a feedback game admits more than one
feedback Stackelberg solution, then the leader can definitely enforce the
admissible one on the follower since he leads the decision process at each
level. A unique feedback Stackelberg solution is-clearly admissible. We now
provide below an example of a 2-level two-person nonzero-sum feedback
game which admits a unique feedback Stackelberg solution. This example also
illustrates recursive derivation of this equilibrium solution. Example 3.13
Consider the multi-act feedback nonzero-sum game of Fig. 3.9. To determine
its feedback Stackelberg solution with PI acting as the leader, we first attempt
to solve the Stackelberg games corresponding to each of the four information
sets of PI at level 2. The first one (counting from the left) is a trivial game,



admitting the unique equilibrium solution with the corresponding outcome
being (1,0). The next two admit, respectively, the following bimatrix
representations whose unique Stackelberg equilibria are
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P2 P2 L R L R 3 <£ 4 5 L R P2 w 2 2 2 PI, B = PI, B L R L R & pi, I 7? P2 (-
£> i i 0 PL (it) (Hi) L R L R Finally, the fourth one admits the trivial bimatrix
representation P2 ^P2 PI, L R *- '0 1 PI (iv) together with the 2x2 bimatrix
representation P2 L R P2 A M R 3 2 0 u PI, B = L R M R 2 1 3 ffi PI (V) L R
with the unique Stackelberg solutions being as indicated, in each case. By a
comparison of the leader's cost levels at (iv) and (v), we conclude that he
plays R at the fourth of his information sets at level 2. Hence, in going from the
second to the first level, we obtain from (i), (ii), (iii) and (v) the unique cost
pairs at each of Pi's information sets to be (counting from the left): (1,0), (1,1),
(0,-1/2) and (-1,0). Then, the Stackelberg game at the first level has the
bimatrix representation P2 P2 A = L R 1 (A 1 -1 PI, B = L R R 0 G i 0 Pi (vi) L
R whose unique Stackelberg solution with Pi as leader is as indicated. To
recapitulate, the leader's unique feedback Stackelberg strategy in this feedback
game is ll*(ri{) = R, 721*(%1) = «i. and the follower's unique optimal
response strategy is {R if u\ = L and u\ — L, or u\ = R and u\ = R and u\ ± L, L
otherwise . The unique feedback Stackelberg outcome of the game is (0, —
1/2), which follows from (vi) by inspection. □
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feedback Stackelberg equilibrium solution, we should mention that the same
concept has potential applicability to multi-act decision problems in which the
roles of the players change from one level of play to another, that is, when
different players act as leaders at different stages. An extension of Def. 3.29 is
possible so that such classes of decision problems are also covered; but since
this involves only an appropriate change of indices and an interpretation in the
right framework, it will not be covered here. Mixed and behavioral
Stackelberg equilibria The motivation behind introducing mixed strategies in
the investigation of saddle-point equilibria (in Chapter 2) and Nash equilibria
(in Section 3.2) was that such equilibria do not always exist in pure strategies,
whereas within the enlarged class of mixed strategies one can ensure existence
of noncooperative equilibria. In the case of the Stackelberg solution of two-
person finite games, however, an equilibrium always exists (cf. Thm. 3.3), and



thus, at the outset, there seems to be no need to introduce mixed strategies.
Besides, since the leader dictates his strategy on the follower, in a Stackelberg
game, it might at first seem to be unreasonable to imagine that the leader would
ever employ a mixed strategy. Such an argument, however, is not always valid,
and there are cases in which the leader can actually do better (in the average
sense) with a proper mixed strategy, than the best he can do within the class of
pure strategies. As an illustration of such a possibility, consider the bimatrix
game (A, B) displayed below: P2 P2 A - L — °_ Pi B- L ll2 \ PI (3 41*1 L R L
R If PI acts as the leader, then the game admits two pure-strategy Stackelberg
equilibrium solutions, which are {L, L} and {R, R}, the Stackelberg outcome
in each case being (1,1/2). However, if the leader (PI) adopts the mixed
strategy which is to pick L and R with equal probability 1/2, then the average
cost incurred to PI will be equal to 1/2, quite independent of the follower's
(pure or mixed) strategy. This value J1 = 1/2 is clearly lower than the leader's
Stackelberg cost in pure strategies, which can further be shown to be the
unique Stackelberg cost of the leader in mixed strategies, since any deviation
from (1/2,1/2) for the leader results in higher values for J1, by taking into
account the optimal responses of the follower. The preceding result then
establishes the significance of mixed strategies in the investigation of
Stackelberg equilibria of two-person nonzero-sum games, and demonstrates
the possibility that a proper mixed-strategy Stackelberg solution could lead to
a lower cost level for the leader than the Stackelberg cost level in pure
strategies. To introduce the concept of mixed-strategy Stackelberg equilibrium
in mathematical terms, we take the two-person nonzero-sum
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normal form (without any loss of generality) and associate with it a bimatrix
game (A, B). Abiding by the notation and terminology of Section 3.2, we let Y
and Z denote the mixed-strategy spaces of PI and P2, respectively, with their
typical elements designated as y and z. Then, we have the following. Definition
3.31 For a bimatrix game (A,B), the set R2{y) = {z° eZ : y'Bz° < y'Bz,Vz e Z)
(3.42) is the optimal response (rational reaction,) set o/P2 in mixed strategies
to the mixed strategy y G V of PI. Definition 3.32 In a bimatrix game (A, B)
with PI acting as the leader, a mixed strategy y* £ Y is called a mixed
Stackelberg equilibrium strategy for the leader if max y"Az = inf max y'Az =
J1*. (3.43) z£R2(y*) y£Y z€R2(y) The quantity J1* is the Stackelberg cost of
the leader in mixed strategies. It should be noted that the "maximum" in (3.43)



always exists since, for each y 6 Y, y'Az is continuous in z, and R2(y) is a
closed and bounded subset of Z (which is a finite dimensional simplex).
Hence, J1* is a well-defined quantity. The "infimum" in (3.43), however,
cannot always be replaced by a "minimum", unless the problem admits a mixed
Stackelberg equilibrium strategy for the leader. The following example now
demonstrates the possibility that a two- person finite game might not admit a
mixed-strategy Stackelberg strategy even though J1* < J1*. Example 3.14
Consider the following modified version of the bimatrix game of (3.41): P2 P2
A = L R 1 0 0 1 PI, B = L R L R 1/2 1 1 1/3 PI. L R With PI as the leader, this
bimatrix game also admits two pure-strategy Stackelberg equilibria, which are
{L, L) and {R, R), the Stackelberg cost for the leader being J1* = 1. Now, let
the leader adopt the mixed strategy y = (yi, (1 — j/i))', under which J2 is
J2(y,z) = y'Bz= \--yi + 2 1 21 + ZVl + 3' where z = (z\, (1 — z\))' denotes any
mixed strategy of P2. Then, the mixed- strategy optimal response set of P2 can
readily be determined as {z = (1,0)} if j/! > 4/7, R2(V)={ U = (0,1)} if 2/1 <
4/7, Z if yi = 4/7.
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"column 1" with probability 1, and this leads to an average cost of J1 = y\ for
PI. For y\ < 4/7, on the other hand, P2 chooses "column 2" with probability 1,
which leads to an average cost level of J1 = (1 — 2/i) for PI. Then, clearly, the
leader will prefer to stay in this latter region; in fact, if he employs the mixed
strategy y = (4/7—e, 3/7+e)' where e > 0 is sufficiently small, his realized
average cost will be J1 — 3/7 + e, since then P2 will respond with the unique
pure-strategy 72 = R. Since e > 0 can be taken as small as possible, we arrive
at the conclusion that J1* = ~<\ = J1*. In spite of this fact, the leader does not
have a mixed Stackelberg strategy since, for the only candidate y° = (4/7,3/7),
R2(y°) = Z, and therefore max^ )̂ )̂ y° Az = 4/7 which is higher than J1*. □ The
preceding example thus substantiates the possibility that a mixed Stackelberg
strategy might not exist for the leader, but he can still do better than his pure
Stackelberg cost J1* by employing some sub-optimal mixed strategy (such as
the one y = (4/7 - e, 3/7 + e)' in Example 3.14, for sufficiently small e > 0). In
fact, whenever J1* < J1*, there will always exist such an approximating mixed
strategy for the leader. If J1* = J1*, however, it is, of course, reasonable to
employ the pure Stackelberg strategy which always exists by Thm. 3.3. The
following proposition now verifies that J1* < J1* and J1* = J1* are the only
two possible relations we can have between J1* and J1*; in other words, the



inequality J1* > J1* never holds. Proposition 3.18 For every two-person finite
game, we have Ju < Ju. (3.44) Proof. Let Yq denote the subset of Y consisting
of all one-point distributions. Analogously, define Zq as comprised of one-
point distributions in Z. Note that Vb is equivalent to T1, and Z$ is equivalent
to T2. Then, for each y e Vb min y'Bz = min y'Bz zez zez0 since any minimizing
solution in Z can be replaced by an element of Zq. This further implies that, for
each y £ Yq, elements of R2(y) are probability distributions on R2(y), where
the latter set is defined by (3.42) with Z replaced by Zq- Now, since Y0 C Y,
J1* = min max y'Az < min max y''Az, y€Y z€R2(y) y&Yo z€R2(y) and further,
because of the cited relation between .R2(-) and R2(-), the latter quantity is
equal to min max y' Az y€Y0 z6R2(y) which, by definition, is J1*, since R2(y)
is equivalent to the pure-strategy optimal response set of the follower, as
defined by (3.36). Hence, J1* < J1*. D

iV-PERSON NONZERO-SUM FINITE GAMES 143 Computation of a mixed-
strategy Stackelberg equilibrium (whenever it exists) is not as straightforward
as in the case of pure-strategy equilibria, since the spaces Y and Z are not
finite. The standard technique is first to determine the minimizing solution(s) of
minu'Sz as functions of y e Y. This will lead to a decomposition of Y into
subsets (regions), on each of which a reaction set for the follower is defined.
(Note that in the analysis of Example 3.14, Y has been decomposed into three
regions.) Then, one has to minimize y'Az over y eY, subject to the constraints
imposed by these reaction sets, and under the stipulation that the same quantity
is maximized on these reaction sets whenever they are not singletons. This
brute- force approach also provides approximating strategies for the leader,
whenever a mixed Stackelberg solution does not exist, together with the value
of J1*. If the two-person finite game under consideration is a dynamic game in
extensive form, then it is more reasonable to restrict attention to behavioral
strategies (cf. Def. 2.9). Stackelberg equilibria within the class of behavioral
strategies can be introduced as in Defs. 3.31 and 3.32, by replacing the mixed-
strategy sets with the behavioral-strategy sets. Hence, using the terminology
and notation of Def. 2.9, we have the following counterparts of Defs. 3.31 and
3.32, in behavioral strategies. Definition 3.33 Given a two-person finite
dynamic game with behavioral-strategy sets (T1^2) and average cost functions
(J1, J2) the set &tf) = {72° e f2 : J2(7\72°) < J2(7\72),V72 e T2}, (3.45) is the
optimal response (rational reaction) set of P2 in behavioral strategies to the
behavioral strategy 71 £ T1 of PI. Definition 3.34 In a two-person finite



dynamic game with PI acting as the leader, a behavioral strategy 71* € T1 is
called a behavioral Stackelberg equilibrium strategy for the leader if sup
J1(71*,72)= inf sup J1 ft1,-*2) = J1*. (3.46) 72ei?2(y*) y1^1 êk2^1) The
quantity J1* is the Stackelberg cost of the leader in behavioral strategies.
Remark 3.21 The reason why we use "supremum" in (3.46), instead of
"maximum", is because the set R2^1) is not necessarily compact. The
behavioral Stackelberg cost for the leader is again a well-defined quantity, but
a behavioral Stackelberg strategy for the leader does not necessarily exist. □
We now conclude our discussion on the notion of behavioral Stackelberg
equilibrium by presenting an example of a single-act dynamic game that admits
a Stackelberg solution in behavioral strategies.
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two-person single-act game of Example 3.15. Example 3.15 Consider the two-
person single-act game whose extensive form is depicted in Fig. 3.10. With P2
acting as the leader, it admits two pure- strategy Stackelberg solutions: ^2*(2)=
(L ifu1=fi, 1./ lx £ 7 {V > \ R otherwise , 7 {T} ' ' and 72*(r72) = L, lU(r,1) =
R,v with the unique Stackelberg outcome in pure strategies being (0, §). Now,
let us allow the leader to use behavioral strategies. The bimatrix game at the
first (counting from the left) of the leader's information sets is P2 P2 4 = L M 2
1 1 2 PI, B = L M 0 1 1 0 PI, L R L R for which J2* = 1/2. The mixed
Stackelberg strategy exists for the leader, given as 2 _ / L w.p. 1/2, 7 \ R w.p.
1/2, and any mixed strategy is an optimal response strategy for PI (the
follower) yielding him an average cost level of J1 = 3/2. We thus observe that
if the leader can force the follower to play L or M, his average cost can be
pushed down to 1/2 which is lower than J2* = 2/3, and the follower's cost is
then pushed up to 3/2 which is higher than the cost level of J1 = 0 which would
have been attained if P2 were allowed to use only pure strategies. There
indeed exists such a (behavioral) strategy for P2, which is given as {L w.p. 1/2
1 .. i r ,. t-> , ,n f if w = i or M, ... R w.p. 1/2 / ' (,) R w.p. 1 ifu1 = R, and the
behavioral Stackelberg cost for the leader is J1* = 1/2. («)
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follower (PI) does not dare to play u1 = R since, by announcing (i) ahead of
time, the leader threatens him with an undesirable cost level of J1 = 2. We now
leave it to the reader to verify that the behavioral strategy (i) is indeed a
Stackelberg strategy for the leader and the quantity (ii) is his Stack- elberg cost



in behavioral strategies. This verification can be accomplished by converting
the original game in extensive form into equivalent normal form and then
applying Def. 3.34. Another alternative method is to show that (ii) is the
mixed-strategy Stackelberg cost for the leader, and since (i) attains that cost
level, it is also a behavioral Stackelberg strategy, by the result of Problem 21
(Section 3.8). a Many-player games Heretofore, we have confined our
investigation on the Stackelberg concept in nonzero-sum games to two-person
games wherein one of the players is the leader and the other one is the
follower. Extension of this investigation to iV-player games could be
accomplished in a number of ways; here we discuss the possible extensions to
the case when N = 3, with the further generalizations to N > 3 being
conceptually straightforward. For three-person nonzero-sum games, we
basically have three different possible modes of play among the players within
the framework of noncooperative decision making. (1) There are two levels of
hierarchy in decision making—one leader and two followers. The followers
react to the leader's announced strategy by playing according to a specific
equilibrium concept among themselves (for instance, Nash). (2) There are still
two levels of hierarchy in decision making—now two leaders and one
follower. The leaders play according to a specific equilibrium concept among
themselves, by taking into account possible optimal responses of the follower.
(3) There are three levels of hierarchy. First PI announces his strategy, then P2
determines his strategy by also taking into account possible responses of P3
and enforces this strategy on him, and finally P3 optimizes his cost function in
view of the announced strategies of PI and P2. Let us now provide precise
definitions for the three types of hierarchical equilibria outlined above. To this
end, let J1^1, 72,73) denote the cost function of Pi corresponding to the
strategy triple {71 e T1^2 € T2,73 € I^}. Then, we have the following.
Definition 3.35 For the three-person finite game with one leader (PI) and two
followers (T*2 and P3), 71* € T1 is a hierarchical equilibrium strategy for the
leader if max J1(71*,72,73) = min max J1(71,72.73), (3.47a)
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of the followers' group and is defined for each 71 6 T1 by ^F(71) =
{(e2,aer2xr3:J2(71,e2,e3)<J2(71,72,e3) and J3h\e,e) < J3d\e,i3), v72 e r2,73
e r3>. -̂47b) Any (72*,73*) € RF(ju) is a corresponding optimal strategy pair
for the followers ' group. Definition 3.36 For the three-person finite game with
two leaders (Pi and P2) and one follower (P3), 7" € P is a hierarchical



equilibrium strategy for Pi (t = l,2) tf max J1(71*,72*,73)= min max Jl{ll,l2*
,13), (3.48a) s.pT* 2./V*,72*,73)= min max, J2(7U,72,73), (3.48b)
73€R3(7*;72*) 72€r2 736R3(71*;72) where i?3(7x;72) is the optimal
response set of the follower and is defined for each (7X,72) € T1 x T2 by
R'ilW) = « 6 T3; J3(71,72,0 < J3(71,72,73),V73 e T3}. (3.48c) j4nj/ strategy
73* G i?3(71*;72*) is o corresponding optimal strategy /or the follower (P3).
Definition 3.37 For tte three-person finite game with three levels of hierarchy
in decision making (with PI enforcing his strategy on P2 and P3, and P2
enforcing his strategy on P3J, 71* € T1 is a hierarchical equilibrium strategy
for PI if t1/„.1* 2 _,3\ max max J (7 ,7 ,7 ) 72gS2(7l.) 73€S3(71..72) = min
max max J (7 ,7 ,7 ), (3.49a) 7l€rl 72g52(7l) 73€S3(7l;72) where SV) = tt e I*
: max jV.e, )̂ 73€S3(71;J) < max J2(71,72,73),V72€r2}, (3.49b) 73€S3(71;72)
S3(lW) = {£ € T3 : J3(71,72,0 < J3(71,72,73),V73 6 T3}. (3.49c) j4nt/ 72* £
52(7X*) is a corresponding optimal strategy for P2, and any 73 € 53(7J*, 72*)
is an optimal strategy for P3 corresponding to the pair (71*, 72*). Several
simplifications in these definitions are possible if the optimal response sets are
singletons. In the case of Def. 3.35, for example, we would have the following.
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three-person finite game of Def. 3.35, if RF (ryl) is a singleton for each 71 £
T1, then there exist unique mappings T2 : T1 —* V2 and T3 : T1 -» T3 such
that and J1(71*,T27U,T37U) = min J1(71,T271,T371) 7'gr1 jV.ry.rV) <
J2(71,72,r371),v72er2, j3(71,rV,rV) < J3(71,TV,73),v73er3 (3.50a) (3.50b)
(3.50c) and for each 71 € T1. Analogous results can be obtained in the cases of
Defs. 3.36 and 3.37, if the optimal response sets are singletons. The following
example now illustrates all these cases with singleton optimal response sets.
Example 3.16 Using the notation of Section 3.3, consider a three-person game
with possible outcomes given as (ai,i,i>ai,i,i'ai,i,i) (al,2,lial,2,lial,2,l)
(a2,l,lia2,l,lia2,l,l) (a2,2,l,a2,2,l'a2,2,l) (al,l,2,al,l,2>al,l,2)
(al,2,2,al,2,2)al,2,2) (a2,l,2, a2,l,2' a2,I,2) (a2,2,2, a2,2,2' a2,2,2) (1,0,0),
(2,1,-1), (0,0,1), (2,-1,1), (1,-1,1), (0,1,0), (-1,2,0), (0,1,2), and determine its
hierarchical equilibria (of the three different types discussed above). 1. One
leader (PI) and two followers (P2 and P3). For the first alternative of PI (i.e.,
n\ = 1), the bimatrix game faced by P2 and P3is P2 (1,0,0)* (1,-1,1) (2, 1, -1)
(0,1,0) P3 which clearly admits the unique Nash equilibrium solution {n*. =
l,n*. = 1} whose cost to the leader is J1 = 1. For n\ = 2, the bimatrix game is
P2 (0,0,1) (-1, 2, 0) (2,-1,1)* (0,1,2) P3 with a unique Nash equilibrium



solution {n*. = 2, rig = 1} whose cost to PI is J1 = 2. This determines the
mappings T2 and T3 of Prop. 3.19 uniquely. Now, since 1 < 2, the leader has a
unique hierarchical equilibrium strategy that
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"alternative 1", and the corresponding unique optimal strategies for P2 and P3
are y2* = "alternative 1", y3* — "alternative 1", respectively. The unique
equilibrium outcome is (1,0,0). 2. Two leaders (PI and P2) and one follower
(P3). There are four pairs of possible strategies for the leaders' group, which
are listed below together with the corresponding unique optimal responses of
the follower and the cost pairs incurred to PI and P2: {m=l,n2 = l} : n* = 1-
(1,0), {ni = l,n2 = 2} : n* = l->(2,l), {ni=2,n2 = l} : n* = 2-(-l,2), {m=2,n2 =
2} : nj = 1 -» (2, -1). The two leaders axe faced with the bimatrix game P2
(1,0) (-1,2) (2,1) (2,-1)* whose Nash solution is uniquely determined as {n* =
2,n*. = 2}. Hence, the hierarchical equilibrium strategies of the leaders are
unique: 71* = "alternative 2", 72* = "alternative 2". The corresponding unique
optimal strategy of P3 is 73* = "alternative 1", and the unique equilibrium
outcome is (2, —1,1). 3. Three levels of hierarchy (first PI, then P2 and finally
P3). We first observe that S2^1) is a singleton and is uniquely determined by
the mapping P2 : T1 —> T2 defined by [2 if rii = 2. Hence, if PI chooses ni =
1, his cost will be J1 = 1, and if he chooses n\ — 2, his cost will be J1 = 2.
Since 1 < 2, this leads to the conclusion that Pi's unique hierarchical
equilibrium strategy is 71* = "alternative 1" and the corresponding unique
optimal strategies of P2 and P3 are j2* — "alternative 1" and 7s* =
"alternative 1", respectively. The unique equilibrium outcome is (1,0,0). □ 3.7
Nonzero-Sum Games with Chance Moves In this section, we briefly discuss an
extension of the general analysis of the previous sections to the class of
nonzero-sum games which incorporate chance moves, that is, games wherein
the final outcome is determined not only by the actions of the players, but also
by the outcome of a chance mechanism. A special class of such decision
problems was already covered in Section 2.6 within the context of zero-sum
games, and the present analysis in a way builds on the material of Section 2.6
and extends that analysis to nonzero-sum games under the Nash and
Stackelberg solution concepts. To this end, let us first provide a
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extensive form description of a nonzero-sum finite game with chance moves.



Definition 3.38 An extensive form of an N-person nonzero-sum finite game
with chance moves is a tree structure with (i) a specific vertex indicating the
starting point of the game, (ii) N cost functions, each one assigning a real
number to each terminal vertex of the tree, where the ith cost function
determines the loss incurred to Pi for each possible set of actions of the player
together with the possible choices of nature, (Hi) a partition of the nodes of the
tree into N + 1 player sets (to be denoted by Nl for Pi, i € N, and by N° for
nature), (iv) a probability distribution, defined at each node of N°, among the
immediate branches (alternatives) emanating from that node, (v) a subpartition
of each player set Nl into information sets {rfA such that the same number of
immediate branches emanates from every node belonging to the same
information set and no node follows another node in the same information set.
For such a game, let us again denote the (pure) strategy space of Pi by P, with a
typical element designated as 7*. For a given iV-tuple of strategies {7  ̂€ rj; j £
N} the cost function J*(71,... ,-yN) of Pi is in general a random quantity, and
hence the real quantity of interest is the one obtained by taking the average
value of J% over all relevant actions of nature and under the a priori known
probability distribution. Let us denote that quantity by L1 (71,... , 7W) which in
fact provides us with a normal form description of the original nonzero- sum
game with chance moves in extensive form. Apart from a difference in
notation, there is no real difference between this description and the normal
form description studied heretofore in this chapter, and this observation readily
leads to the conclusion that all concepts introduced and general results
obtained in the previous sections on the normal form description of nonzero-
sum games are also equally valid in the present context. In particular, the
concept of Nash equilibrium for iV-person nonzero-sum finite games with
chance moves can be introduced through Def. 3.12 by merely replacing J1 with
Ll (i = 1,...,N). Analogously, the Stackelberg equilibrium solution in two-
person nonzero-sum finite games with chance moves can be introduced by
Defs. 3.26-3.29. Rather than list all these apparent analogies, we shall
consider, in the remaining part of this section, two examples which illustrate
derivation of Nash and Stackelberg equilibria in static and dynamic games that
incorporate chance moves. Example 3.17 Consider the two-person static
nonzero-sum game depicted in Fig. 3.11. If nature picks the left branch, then the
bimatrix game faced by the
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sum game that incorporates a chance move. players is P2 L R (4,0) (0,0) (0,4)
(-4,4) PI, (i) L R whereas if nature picks the right branch, the relevant bimatrix
game is P2 L 1 (8,-4) I (4,-8)~| R I (4,4) 1 (0,-4)1 ri" L R («) Since the
probabilities with which nature chooses the left and right branches are 1/4 and
3/4, respectively, the final bimatrix game of average costs is P2 L R (7,-3)
(3,3) (3,-5) (-1,-2) PI. (iii) R This game admits a unique Nash equilibrium
solution in pure strategies, which is ..i* 7 R, Y* = R with an average outcome
of (—1, —2). To determine the Stackelberg solution with PI as the leader, we
again focus our attention on the bimatrix game (iii) and observe that the
Stackelberg solution is in fact the same as the unique Nash solution determined
above. D Example 3.18 Let x0 be a discrete random variable taking the values
%o = -1 w.p. 1/4, 0 w.p. 1/2, 1 w.p. 1/4.
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random initial state of some system under consideration. PI, whose decision
variable (denoted by u1) assumes the values —1 or +1, acts first, and as a
result the system is transferred to another state (xi) according to the equation xi
= x0 +U1. Then P2, whose decision variable u2 can take the same two values
(-1 and +1), acts and transfers the system to some other state (£2) according to
£2 = £1 +u2. It is further assumed that, in this process, PI does not make any
observation (i.e., he does not know what the real outcome of the chance
mechanism (value of £q) is), whereas P2 observes sgn (£1), where 1 \ A sgn
(x) = This observation provides P2 with partial information concerning the
value of £0 and the action of PI. The cost structure of the problem is such that
Pi wishes to minimize J1, i = 1,2, where J1=g(x2) + u1, J2 = g{x2)-u2 with f
-1, if x- -3,-1,2, g(x) \̂ 0, if x = 0,3, { 1, if £ = -2,1. We now seek to obtain
Nash equilibria and also Stackelberg equilibria of this single-act game with
either player as the leader. To this end, let us first note that this is a finite
nonzero-sum game which incorporates a chance move, but it has not been cast
in the standard framework. Though, by spelling out all possible values of J1
and J2, and the actions of the players leading to those values, an extensive tree
formulation can be obtained for the game, which is the one depicted in Fig.
3.12. This extensive form also clearly displays the information sets and
thereby the number of possible strategies for each player. Since PI gains no
information, he has two possible strategies: 7i=-l. 72=+l- P2, on the other
hand, has eight possible strategies which can be listed as 7fV) = -i, t2V) = +i,
73V) = 1;!;  ̂ilin2) = { +1'if"2 = '?i' -y2(n2) = { ~lAin 74 {T} ' \ -1, otherwise



, 7sW ' \ +1, otr 2 - n2 otherwise ,

152 T. BA§AR AND G. J. OLSDER uz= -1 -2,0 -2,-2 0,0 2,0 0,2 -1,-1 1,1 0,-2
-2,0 0,0 2,2 1,-1 Figure 3.12: Extensive tree formulation for the single-act two-
person game of Example 3.18. ~2(r?\-l +l,if/?2= l̂, 2 2 f -l,if 7eI'M -  ̂_1?
otherwise , 7?WJ ( +1, c 78fo) = ( _lj0 r?2 = rj32, otherwise ri2 = nl
otherwise . Then, the equivalent bimatrix representation in terms of average
costs is P2 A = B = 1 2 1 2 -1 1 -1 3/4 1 2 1 1 -1 -5/4 -1/2 3/4 3 1 -5/4 -3/2 1
-3/2 1/4 -1/2 3/2 4 5 6 P2 -1 1 -1 -3/4 1 1 -1 1 -1 3/2 7 1 -3/4 -1 1/4 8 - PI PI,
Since the first row of matrix A strictly dominates the second row, PI clearly
has a unique (permanent) optimal strategy 71* = —1 regardless of whether it is
a Nash or a Stackelberg game. P2 has four strategies that are in Nash or
Stackelberg equilibrium with 71*, which are 7!, 74, 75 and 77. Hence, we
have four sets of Nash equilibrium strategies, with the equilibrium outcome
being either (—1, —1) or (—3/2, -1). If PI is the leader, his Stackelberg
strategy is 71* = -1 and the Stackelberg average cost (as defined in Def. 3.27)
is Lu — —1. He may, however, also end up with the more favorable average
cost level of L1 — —3/2, depending on the actual play of P2. If P2 is the
leader, he has four Stackelberg strategies (7I, 74, 75 and 77), with his unique
Stackelberg average cost being L2* = — 1. To summarize the results in terms
of the terminology of the original problem, regardless of the specific mode of
play (i.e., whether it is Nash or Stackelberg), PI always chooses u1 = —1, and
P2 chooses u2 — -1-1 if £1 < 0, and is indifferent between his two
alternatives (-1 and +1) if x\ > 0. D
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Determine the Nash equilibrium solutions of the following bimatrix game, and
investigate the admissibility properties of these equilibria: A = P2 8 6 12 0 0
-4 1 0 0 4 8 6 0 12 0 PI, B = P2 4 0 0 0 0 0 0 4 4 1 0 4 0 0 0 PI. 2. Verify that
minimax values of a bimatrix game are not lower (in an ordered way) than the
pair of values of any Nash equilibrium outcome. Now, construct a bimatrix
game wherein minimax strategies of the players are also their Nash
equilibrium strategies, but in which the minimax values are not the same as the
ordered values of the Nash equilibrium outcome. 3. Obtain the mixed Nash
equilibrium solution of the following bimatrix game: P2 P2 A = 10 -1 -2 1 PI,
B = -5 1 2 -1 PI. What is the mixed Nash equilibrium solution of the game (—
A, —B)l If a bimatrix game {A, B) admits multiple minimax strategies for a



player, then these can be ordered according to the notion of admissibility
(which is different from the admissibility of Nash equilibrium a la Def. 3.3). A
minimax strategy for PI, say "row i", is said to be admissible if there exists no
other minimax strategy, say "row j", with the property a-ik >a-jk Vfc = 1,... ,n
with the inequality being strict for at least one k. An admissible minimax
strategy for P2 can be defined analogously. (i) Does every bimatrix game admit
admissible minimax strategies for PI and P2? If they do, are they necessarily
unique? (ii) Obtain the set of all admissible minimax strategies for PI and P2 in
the following bimatrix game: P2 P2 1 3 1 2 4 1 3 0 3 PI, B 4 0 0 0 4 0 0 3 4 PI.
5. Let (A, B) be an (m x n) bimatrix game admitting a unique Nash equilibrium
solution in mixed strategies, say (y*, z*). Prove that the number
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How would this statement have to be modified if the number of mixed-strategy
equilibrium solutions is greater than one? 6. Prove (or disprove) the following
conjecture: Every bimatrix game that admits more than one pure Nash
equilibrium solution with different equilibrium outcomes necessarily also
admits a Nash equilibrium solution in proper mixed strategies (that is, mixed
strategies that are not pure). 7. Determine all Nash equilibria of the three-
person nonzero-sum game, with mi = m2 = m3 = 2, whose possible outcomes
are given below: (oi.i.i (al,2,l (a2,l,l (a2,2,l (°1,1,2 (°1,2,2 (a2,l,2 (a2,2,2 2 2
al,2,l 2 a2,l,l 2 a2,2,l 2 al,l,2 2 al,2,2 2 a2,l,2 2 a2,2,2 al,l,l) «1.2,l) „3 \ °2,l,l)
a2,2,l) 3 \ al,l,2j 3 \ al,2,2j 3 \ °2,1,2J a2,2,2) = = = = = = = = (0,0,1), (-2,1,2),
(0,-3,1), (-1.1.-2) (-2,1,1), (-2,0,1), (-1,-2,2) (1,0,0). 8. Obtain the minimax
strategies of the players in the three-person game of Problem 7. What are the
security levels of the players? 9. Consider the following bimatrix game, which
admits three pure-strategy Nash equilibria: P2 P2 1 1 2 3 2 2 1 1 2 1 2 1
Which of these three Nash equilibria are (i) perfect, (ii) proper? (Note: See
the discussion in subsection 3.5.5.) 10. This problem is concerned with a
specific TV-person zero-sum game23 (N > 2) which is called Mental Poker
after Epstein (1967). Each of the TV players chooses independently an integer
out of the set {1,2,... ,n}. The player who has chosen the lowest unique integer
is declared the winner and he receives N — 1 units from the other players each
of whom loses one unit. If there is no player who has chosen a unique integer,
then no one wins the game and everybody receives zero units. If for instance N
= 3, n = 5 23In terms of the notation of Section 3.3, the game is zero-sum if ^Z
cNa"i "at = ,̂ Vnj € Mj, j € N.
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are 2, 2 and 5, then the player who has chosen 5 is the winner. Show that for N
= 2, n arbitrary, there exists a unique saddle-point strategy for both players,
which is to choose integer 1 with probability 1. Next consider the case N = 3.
A mixed strategy for Pi will be denoted by y* = {y\,..., yi), i = 1,2,3, with y) >
0 and ££=1 y) = 1. We seek a Nash equilibrium solution {yu, y2*, y3*} with
the property y1* = y2* = y3*. Show that there exists a unique such Nash
equilibrium solution, which is given by j/j* = (1/2)*, j = 1,..., n - 1, yl* =
(1/2)"-1. Generalize these results to N > 3. 11. Obtain all pure-strategy Nash
equilibria of the following single-act games in extensive form. Which of these
equilibria are (i) admissible, (ii) of the delayed commitment type? 0.1 2,1 1,3
-1,2 1,1 1,0 0,0 0,1 2,1 1,3 -1,2 1,-2 0,-2 (a) (b) 12. Obtain all pure-strategy
Nash equilibria of the following three-player single- act game wherein the
order in which P2 and P3 act is a variant of Pi's strategy. (Hint: A recursive
procedure still applies here for each fixed strategy of Pi.) 13. Investigate
whether the three-person single-act game in nested extensive form depicted in
Fig. 3.13 admits a Nash equilibrium of the delayed commitment type.
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13. 14. Determine all multi-act nonzero-sum feedback games which are
informa- tionally inferior to the feedback game whose extensive form is
depicted in Fig. 3.9. Obtain their delayed commitment type feedback Nash
equilibria. 15. Investigate whether the multi-act game of Fig. 3.14 admits pure-
strategy Nash equilibria, by transforming it into equivalent normal form. Figure
3.14: Multi-act game of Problem 15. 16. Determine the perfect Nash equilibria
(in pure and mixed strategies) of the multi-act game of Problem 15. 17.
Determine the Stackelberg strategies for the leader (PI) and also his
Stackelberg costs in the single-act games of Problem 11. Solve the same game
problems under the Stackelberg mode of play with P2 acting as the leader. 18.
Let I be a two-person single-act finite game in extensive form in which P2 is
the first-acting player, and denote the Stackelberg cost for the leader (PI) as
J/*. Let II be another two-person single-act game that is infor- mationally
inferior to I, and whose Stackelberg cost for the leader (PI) is J/j*. Prove the
inequality J/* < Jj-j*.
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Stackelberg solution of the two-person dynamic game of Problem 15 with (i)



PI as the leader, (ii) P2 as the leader. 20. Obtain the pure, behavioral and
mixed Stackelberg costs with P2 as the leader for the single-act game of Fig.
3.15. Does the game admit a behavioral Stackelberg strategy for the leader
(P2)? 10,-5 -2,2 -1,1 1,-1 -1,1 0,2 -2,1 Figure 3.15: Single-act game of
Problem 20. 21. Let 71* £ f1 be a mixed Stackelberg strategy for the leader
(PI) in a two-person finite game, with the further property that 71* € T1, i.e., it
is a behavioral strategy. Prove that 71* also constitutes a behavioral
Stackelberg strategy for the leader. 22. Prove that the hierarchical equilibrium
strategy 71* introduced in Def. 3.37 always exists. Discuss the reasons why
71* introduced in Def. 3.35, and 71* and 72* introduced in Def. 3.36, do not
necessarily exist. 23. Determine hierarchical equilibria in pure or behavioral
strategies of the single-act game of Fig. 3.4(b) when (i) P2 is the leader, PI and
P3 are followers, (ii) PI and P2 are leaders, P3 is the follower, (iii) there are
three levels of hierarchy with the ordering being P2, PI, P3. 24. In the four-
person single-act game of Fig. 3.5, let P3 and P4 form the leaders' group, and
Pi and P2 form the followers' group. Stipulating that the noncooperative Nash
solution concept is adopted within each group and the Stackelberg solution
concept between the two groups, determine the corresponding hierarchical
equilibrium solution of the game in pure or behavioral strategies. 25.
Determine the pure-strategy Nash equilibria of the three-person single-act
game in extensive form depicted in Fig. 3.16, which incorporates a chance
move. Also determine its (pure-strategy) Stackelberg equilibria with (i) PI as
leader, P2 and P3 as followers (i.e., two levels of hierarchy), (ii) P2 as leader,
PI as the first follower, P3 as the second follower (i.e., three levels of
hierarchy).
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person single-act game of Problem 25. 26. Let xq be a discrete random
variable taking the values x0 — 1 w.p. 1/3, 0 w.p. 1/3, 1 w.p. 1/3. Consider
the two-act game whose evolution is described by Xl = Xo+Uq+uI, x2 = xi +
u\ + u\, where Uq (respectively, u\) denotes the decision (action) variable of Pi
at level 1 (respectively, level 2), i — 1,2, and they take values out of the set {
— 1,0,1}. At level 1 none of the players make any observation (i.e., they do
not acquire any information concerning the actual outcome of the chance
mechanism (xo)). At level 2, however, P2 still makes no observation, while PI
observes the sign of x\. At this level, both players also recall their own past
actions. Finally, let ji = (_!)*+! mod (X2) + sgn (uj) + sgn (ui);i = lj2; denote



the cost function of Pi which he desires to minimize, where -1, if x = -4,-1,2,5
mod (x) = { 0, if x = -3,0,3 ; sgn (0) = 0. -1, if x=-5,-2,1,4 (i) Formulate this
dynamic multi-act game in the standard extensive form and obtain its pure-
strategy Nash equilibrium. (ii) Determine its pure-strategy Stackelberg
equilibria with PI as leader.
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and 3.3. The first formulation of nonzero-sum finite games dates back to the
pioneering work of Von Neumann and Morgenstern (1947). But the non-
cooperative equilibrium solution discussed in these two sections within the
context of JV-person finite games in normal form was first introduced by Nash
(1951) who also gave a proof of Thm. 3.2. For interesting discussions on the
reasons and implications of occurrence of nonunique Nash equilibria, see
Howard (1971). A nontechnical treatment of the "prisoner's dilemma"
phenomenon can be found in the recent book by Pound- stone (1992). Some
other selected texts on nonzero-sum (as well as zero-sum) games are Binmore
(1992), Fudenberg and Tirole (1991), Kreps (1990), Myerson (1991) and Szep
and Forgo (1985). Section 3.4. For further discussion on the relationship
between bimatrix games and nonlinear programming, see Section 7.4 of
Parthasarathy and Raghavan (1971). Section 7.3 of the same reference also
presents the Lemke-Howson algorithm which is further exemplified in Section
7.6 of that reference. Sections 3.5 and 3.7. A precise formulation for finite
nonzero-sum dynamic games in extensive form was first given by Kuhn (1953),
who also proved that every TV-person nonzero-sum game with perfect
information (i.e., with singleton information sets) admits a pure-strategy Nash
equilibrium solution (note that this is a special case of Prop. 3.11 given in
subsection 3.5.4). He also showed that in every game in extensive form with
perfect recall, every behavioral-strategy mixture (and hence a mixed strategy)
for a player can be replaced by a realization-equivalent behavioral strategy,
and hence equilibrium can be sought in the class of behavioral strategies. The
notion of ladder-nested extensive forms and the recursive derivation of the
Nash equilibrium solution of the delayed commitment type are introduced here
for the first time. The "informational nonuniqueness" property of the Nash
equilibrium solution in finite dynamic games is akin to a similar feature in
infinite nonzero-sum games observed by Bas.ar(1974, 1976a, 1977b); see also
Section 6.3. A special version of this feature was observed earlier by Starr
and Ho (1969a,b) who showed that, in nonzero-sum finite feedback games, the



feedback Nash equilibrium outcome could be different (for all players) from
the open-loop Nash equilibrium outcome. The result of Prop. 3.10 was also
proved in Dubey and Shubik (1981), and later included in the text by Shubik
(1983). This latter reference calls the static (open-loop) version of an
extensive form the most coarsened form, and its (open-loop) Nash equilibria
information-insensitive equilibria, as they also constitute equilibria for all
refined versions. The material of subsection 3.5.5 is based on Selten (1975)
and Myerson (1978). Further refinements on Nash equilibrium can be found in
Kreps and Wilson (1982), Kohlberg and Mertens (1986) and van Damme
(1987, 1989). A detailed study of JV-player nonzero-sum games on finite
graphs with cycles, viewed as "nonzero-sum extensions" of the zero-sum
theory treated in subsection 2.7.1, can be found in Alpern (1991). The cost jV-
tuples corresponding to an infinite path on the graph in such dynamic games are
the long term averages of the local cost JV- tuples. Results have been obtained
for the existence of Nash equilibria confined to certain classes of pure
strategies. If a static game (such as the game of the prisoners' dilemma) is
played repeatedly, one speaks of repeated games. In such games one gets to
know about the past behavior of the other player(s) which may therefore
influence the current decision to be made.
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past actions of the players, the repeated game must be viewed as a dynamic
one. It is possible to derive conditions for the existence of a Nash equilibrium
for such a dynamic game, which, if viewed at the individual time steps,
converges to a Pareto solution of the underlying static ("one shot") game as
time evolves. The reason why a "sequence of Pareto-like solutions" can form a
(stable) Nash equilibrium is the ability to perform threats, which, in its turn, is
possible by applying strategies which include history. Many results exist in this
direction. One can for instance consult Radner (1981, 1985), Mertens (1985,
1991) and the references therein. Sections 3.6 and 3.7. The Stackelberg
solution in nonzero-sum static games was first introduced by H. Von
Stackelberg (1934) within the context of economic competition and it was later
extended to dynamic games primarily in the works of Chen and Cruz, Jr (1972)
and Simaan and Cruz, Jr (1973a,b) who also introduced the concept of a
feedback Stackelberg solution, but their formulation is restricted by the
assumption that the follower's response is unique for every strategy of the
leader. The present analysis is free from such a restriction. The feature of the



mixed-strategy Stackelberg solution exhibited in (Counter-) Example 3.14 is
reported here for the first time. Its counterpart in the context of infinite games
was first observed in Ba§ar and Olsder (1980a); see also Section 4.4. For a
discussion on a unified solution concept, from which Nash, Stackelberg,
minimax solutions (and also cooperative solutions) follow as special cases,
see Blaquiere (1976).

Chapter 4 Static Noncooperative Infinite Games 4.1 Introduction This chapter
deals with static zero-sum and nonzero-sum infinite games, i.e., static
noncooperative games wherein at least one of the players has at his disposal an
infinite number of alternatives to choose from. In Section 4.2, the concept of e
equilibrium solutions is introduced, and several of its features are discussed.
In Section 4.3, continuous-kernel games defined on closed and bounded
subsets of finite dimensional spaces are treated, and general questions of the
existence and uniqueness of Nash and saddle-point equilibrium solutions in
such games are addressed; furthermore, some iterative algorithms are
developed for their computation. Section 4.4 is devoted to the Stackelberg
solution of continuous-kernel games, in both pure and mixed strategies; it
presents some existence and uniqueness results, together with illustrative
examples. Section 4.5 focuses on the consistent conjectural variations (CCV)
equilibrium in continuous-kernel games, and introduces different levels of
approximation to the CCV solution. Finally, Section 4.6 deals with quadratic
games and economic applications. Here, the theory developed in the previous
sections is specialized to games whose kernels are quadratic functions of the
decision variables, and in that context the equilibrium strategies are obtained
in closed form. These results are then applied to different price and quantity
models of oligopoly. Section 4.7 deals with the Braess paradox, which shows
that the Nash equilibrium solution concept could lead to rather counter-
intuitive results in certain situations. 161

162 T. BA§AR AND G. J. OLSDER 4.2 e Equilibrium Solutions Abiding by
the notation and terminology of the previous chapters, we have N players, PI,...
,PJV, where Pi has the cost function J1 whose value depends not only on his
action but also on the actions of some or all of the other players. Pi's action is
denoted by ul, which belongs to his action space U1.24 For infinite games, the
action space of at least one of the players has infinitely many elements. In
Chapters 2 and 3, we have only dealt with finite games in normal and extensive



form, and in that context we have proven that noncooperative equilibrium
solutions always exist in the extended space of mixed strategies (cf. Thm. 3.2)
The following example now shows that this property does not necessarily hold
for infinite games in normal form; it will then motivate the introduction of a
weaker equilibrium solution concept — the so-called e equilibrium solution.
Example 4.1 Consider the zero-sum matrix game A represented by P2 2 0 1/2
1/2 1/3 2/3 1/4 3/4 1/5 4/5 Here, PI has two pure strategies, whereas P2 has
countably many alternatives. As in finite zero-sum games, let us denote the
mixed strategies of PI and P2 by Hi, i = 1,2; and Zj, j = 1, 2,..., respectively;
that is, yt denotes the probability with which PI chooses row i, and Zj denotes
the probability with which P2 chooses column j. Obviously we should have y$
> 0, Zj > 0, yi + 1/2 = 1) If we employ a natural extension of the graphical
solution method described in Section 2.3, to determine the mixed security
strategy of PI, we arrive at Fig. 4.1. The striking feature here is that the upper
envelope is not well defined. Suppose that the matrix A is truncated to Ak,
where Ak comprises the first fc columns of A The mixed security strategy for
PI is then yj" = (fc — l)/(3fc — 2); y\ = (2k — l)/(3fc - 2), and the average
security level of PI is Vm(Ak) = 2(fc - l)/(3fc - 2). If we let fc -> 00, we
obtain y{ = ±, y| = §, V )̂ = §. Thus it is easily seen that (y\ = |>2/2 = §) is a
mixed security strategy for PI in the matrix game A. The mixed security
strategy for P2 in the truncated game Ak is (z* = (k — 2)/(3fc - 2),z£ = 2k/(3k
— 2)) and the average security level of P2 is Vm(Ak) = 2(fc - l)/(3fc - 2). In
the limit as fc -> 00, we obtain (zj" = \,z%o ~ f) and ¥-m{A) = §• But, P2
cannot guarantee for himself the average lower value Vm(A), since he cannot
choose column "00". We observe, however, that if he chooses column fc with
probability |, k being sufficiently large, then he can secure for himself an
average lower value arbitrarily close to V_m(A) = |. In accordance with this
observation, if P2 chooses k such that 24In this chapter, we deal with static
problems only, and in that context we do not distinguish between strategy space
and action space, since they are identical.
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solution to the (2 x oo) matrix game of Example 4.1. V_m(Ak) > | — c, then the
corresponding mixed security strategy is called an c-mixed security strategy,
which is also an e-mixed saddle-point strategy for P2. The reason for the
observed disparity between finite and infinite games lies in the fact that the set
of mixed strategies of P2 is not compact in the latter case. Consequently, an (m



x oo) matrix game might not admit a saddle point in mixed strategies, in spite
of the fact that the outcome is continuous with respect to mixed strategies of
P2. D The preceding example has displayed the non-existence of a saddle
point within the class of mixed strategies. It is even possible to construct
examples of zero-sum (semi-infinite) matrix games which admit e saddle-point
strategies within the class of pure strategies. This happens, for instance, in the
degenerate matrix game A, where A = [0 | | |...]. Similar features are also
exhibited by nonzero-sum matrix games under the Nash solution concept. We
now provide below a precise definition of an e equilibrium solution in iV-
person games within the context of pure strategies. Extension to the class of
mixed strategies is then immediate, and the last part of this section is devoted
to a discussion on that extension, as well as to some results on existence of
mixed e equilibrium solutions. Definition 4.1 For a given e > 0, an N-tuple
{u\",..., v£'}, with u\ £ Ul, i 6 N, is called a (pure) e Nash equilibrium solution
for an N-person nonzero- sum infinite game if J*(«f,...,«f*)< inf
Ji(«.1*1...,u*-1">«i1«*+1",...,« "̂)+e,teN. Fore = 0, one simply speaks of
"equilibrium" instead of "0 equilibrium" solution, in which case we denote the
equilibrium strategy of Pi by ux . For zero-sum two-person games the
terminology is somewhat different. For N = 2 and J1 = —J2 = J, we have the
following definition.
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{u\ ,u2 } 6 U1 x U2 is called an e saddle point if J(ul',u2)-e< J(u\',u2*) <
J{ul,u2~)+e for all {v},u2} £ Ul x U2. Fore = 0 one simply speaks of a
"saddle point". By direct analogy with the treatment given in Section 2.2 for
finite games, the lower value of a zero-sum two-person infinite game is
defined by V_= sup inf J(ux,u2), which is also the security level of P2 (the
maximizer). Furthermore, the upper value is defined by V— inf sup J{ux,u2),
U êU1 „2g[/2 which is also the security level of PI. Since the strategy spaces
are fixed, and in particular the structure of U% does not depend on uJ, i  ̂j, i,j
= 1,2, it can easily be shown, as in the case of Thm. 2.1 (hi), that V_ < V. If V_
= V, then V = V_ = V is called the value of the game. We should note that
existence of the value of a game does not necessarily imply existence of (pure)
equilibrium strategies; it, however, implies existence of an e saddle point—a
property that is verified in Thm. 4.1 below, which proves, in addition, that the
converse statement is also true. Theorem 4.1 A two-person zero-sum (infinite)
game has a finite value if and only if, for every e > 0, an e saddle point exists.



Proof. First, suppose that the game has a finite value (V = V_ = V). Then, given
an e > 0, one can find u\ e U1 and u2' £ U2 such that J(u\u2*)>V-\e, Vu^C/1, (i)
J(uf, u2) < v + ie, Vu2 e u2, (a) which follow directly from the definitions of
V_ and V, respectively. Now, since V_ = V = V, by adding e to both sides of the
first inequality we obtain J(u\u2') + e>V + ê> J(u\" ,u2'), Vu1 £ U1, (Hi)
where the latter inequality follows from (ii) by letting u2 — u2 . Analogously,
if we now add —e to both sides of (ii), and also make use of (i) with u1 = u\ ,
we obtain J{u\',u2)-t<V-l-e< J(ul',u2"), Vu2eU2. (iv)
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collected together, the result is the set of inequalities J{u\',u2) -e < J{u\\u2') <
J{ul,u2") + e, (v) for all u1 £ U1, u2 £ U2, which verifies the sufficiency part
of the theorem, in view of Def. 4.2. Second, suppose that for every e > 0, an e
saddle point exists, that is, a pair {uf <E Ul,u2* e U2} can be found satisfying
(v) for all ul € U1, u2 € U2. Let the middle term be denoted as Je. We now
show that the sequence {J£l, Jej,...}, with t\ > £2 > ■ • • > 0 and lim^oo e; —
0, is Cauchy.25 Toward this end, let us first take e = e*. and e = tj, j > fc, in
subsequent order in (v) and add the resulting two inequalities to obtain
J(ull,u2) - J(u\ufj) + J{u\],u2) - J(u\u2'k) < 2(efc + tj) < 4efc. Now, substituting
first {u1 = u\., u2 = u2 } and then {u1 = u\k, u2 = u2. } in the preceding
inequality, we get -4efe < Jlk - Jej < 4efe for any finite k and j, with j > k,
which proves that {Jfk} is indeed a Cauchy sequence. Hence, it has a limit in
R, which is the value of the game. It should be noted that, although the
sequence {J£fc} converges, the sequences {u\k } and {u2k } need not have
limits. D Extension to mixed strategies All definitions, as well as the result of
Thm. 4.1, of this section have been presented for pure strategies. We now
outline possible extensions to mixed strategies. We define a mixed strategy for
Pi as a probability distribution // on Ul, and denote the class of all such
probability distributions by Ml. For the case in which Ul is a finite set, we
have already seen in Chapters 2 and 3 that M' is a simplex of an appropriate
dimension. For an infinite U\ however, its description will be different. Let us
consider the simplest case in which Ul is the unit interval [0,1]. Then, elements
of M% are denned as mappings /i : [0,1] —> [0,1] with the properties /i(0) =
l-Ml)=0, ] n(u) > n(u) whenever u > u, > (4.1) /i(u) = /i(u+) if u  ̂0, J that is,
Ml is the class of all probability distribution functions defined on [0,1]. More
generally, if Ul is a closed and bounded subset of a finite dimensional space, a
mixed strategy for Pi can likewise be defined since every such U% has the



cardinality of the continuum and can therefore be mapped into the unit For a
definition of a Cauchy sequence, the reader is referred to Appendix A.
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However, such a definition of a mixed strategy- leads to difficulties in the
construction of the average cost function, and therefore it is convenient to
define fxl as a probability measure (see Ash (1972)) on [/', which is valid
even if U* is not closed and bounded. The average cost function of Pi is then
defined as a mapping J* : M1 x • • • x MN —> R by JV,•.•,/')= / •••/ Ji(u1,---
,«N)V(«1)---d/iiV(txiV) (4.2) Ju1 JuN whenever this integral exists, which has
to be interpreted in the Lebesgue- Stieltjes sense (see Appendix B.3). With the
average cost functions defined as in (4.2) the mixed e Nash equilibrium
solution concept can be introduced as in Def. 4.1, by merely replacing J1 by
J1, Ul by M%, u% by fi% and uf by /4*. Analogously, Def. 4.2 can be extended
to mixed strategies, and Thm. 4.1 finds a direct counterpart in mixed strategies,
with V_ and V replaced by Zm= sup inf J{n\n2) and Vm = inf sup Jifj,1,^2),
respectively, and with V replaced by Vm. We devote the remainder of this
section to the mixed e Nash equilibrium solution concept within the context of
semi-infinite bimatrix games. The two matrices, whose entries characterize the
possible costs to be incurred to PI and P2, will be denoted by A = {<%•} and
B = {hj}, respectively, and both will have size (m x oo). If m < oo, then we
speak of a semi-infinite bimatrix game, and if m = oo, we simply have an
infinite bimatrix game. The case when the matrices both have the size (oo x n)
follows the same lines and will not be treated separately. A mixed strategy for
PI, in this case, is an m-tuple {t/i, j/2, • • •, Vm} satisfying S^Li Vi — 1> Vi —
0- The class of such m-tuples is denoted by Y. The class Z is defined,
similarly, as the class of all sequences {z\,Z2,. ■ ■} satisfying £ î z% — 1> Zi
> 0. Each element of Z defines a mixed strategy for P2. Now, for each pair {y e
Y, z € Z}, the average costs incurred to PI and P2 are defined, respectively, by
J1 (2/.z) = YlY,yiaiizJ> J2(y,z) = '£,Ylyihiizv i j i j assuming that the infinite
series corresponding to these sums are absolutely convergent. If the entries of
A and B are bounded, for example, then such a requirement is fulfilled for
every y € Y, z e Z. The following theorem now verifies the existence of mixed
e equilibrium strategies for the case m < 00.

STATIC NONCOOPERATIVE INFINITE GAMES 167 Theorem 4.2 For each
e > 0, the semi-infinite bimatrix game (A,B), with A — {aij}?L1'jL1, B =



{bij} l̂=l°2.1,m < oo and the entries a  ̂and bij being bounded, admits an e
equilibrium solution in mixed strategies. Proof. Let N denote the class of all
positive integers. For each j € N, define Cj as the jth column of B, i.e., Cj =
Bej. The set C — {cj,j £ N} is a bounded subset of Rm. Let e > 0 be given.
Then, a finite subset C C C exists such that to each c £ C a c e C corresponds
with the property ||c —c||oo < e, which means that the magnitude of each
component of (c — c) is less than e. Without loss of generality, we assume that
C — {c\,C2,..-,cn} with n < oo. If necessary, the pure strategies of P2 can be
rearranged so that C consists of the first n columns of B. Define An =
{aii)VL$=l,Bn = {^}£i"=i- By Thm. 3.1, the "truncated" bimatrix game {An,
Bn) has at least one equilibrium point in mixed strategies, to be denoted by
(y,z). We now prove that (y,z) is a mixed e equilibrium solution for (A, B),
where z is defined as (z1,0,0,...)'. For all y £ Y we have y'Az = y'Anz > y'Anz
= y'Az. {%) For each r € N, we choose a b(r) £ {l,...,n} such that \\cr — cj,
(r)||oo < e- For each j e {1,... ,n}, let R(j) = {r € N : b(r) = j). Next, for each z
£ Z, we define z = (z\,...,zn) by 2j = Ylr€R(j)Zr- Then Zj > 0 and Yl ĵ = 1-
Subsequently, oo oo / \ Bz = H2ZrCr - H2\ Yl Zr) cj ~elm = Bn2 ~ elm> r=l j =
l \rGfi(» / where lm = (1,..., 1)' e Rm. Hence y'Bz > y'Bnz - c > y'Bnz - e =
y'Bz - t (ii) for all z e Z. Inequalities (i) and (ii) verify that (j/, z) constitutes a
mixed e equilibrium solution for (A, B). D Corollary 4.1 Every bounded semi-
infinite zero-sum matrix game has a value in the class of mixed strategies.
Proof. This result is a direct consequence of Thm. 4.2, and constitutes a natural
extension of Thm. 4.1 to mixed strategies. D For (oo x oo) bimatrix games such
powerful results do not exist as shown in the following (counter-) example.
Example 4.2 Each one of two players chooses a natural number, independently
of the other. The player who has chosen the highest number wins and receives
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players choose the same number, then the outcome is a draw. The matrix
corresponding to this zero-sum game is "0 1 11..." -10 11 ... -1-1 0 1 ... -1 -1 -1
0 ... whose size is (oo x oo). For this game, V_ — -1 and V = +1 and
consequently the average value Vm does not exist, in spite of the fact that the
matrix entries are bounded. □ 4.3 Continuous-Kernel Games: Reaction Curves,
and Existence and Uniqueness of Nash and Saddle-Point Equilibria This
section deals with static games in which the number of alternatives available
to each player is a continuum and the cost functionals are continuous. In
particular, we shall consider the class of games for which a pure strategy of



each player can be represented as an element of a finite-dimensional space,
and hence take U% C Rmi, where m,i is an integer denoting the dimension of
the decision vector of Pi. We will sometimes speak of "games on the square",
which will refer to two-player games where Ul — [0,1], i — 1,2. We first
discuss the role of reaction curves in the construction of pure- strategy Nash
equilibria in continuous-kernel games, and present some classification of Nash
equilibria based on the topological classifications of the reaction curves. Then,
we state and prove some results on the existence of Nash equilibria, and as a
special case the existence of saddle-point solutions in continuous- kernel
games, in both pure- and mixed-strategy spaces. Finally, we discuss some
computational algorithms motivated by the notion of stability of Nash
equilibria. Reaction curves and classification of Nash equilibria Pure-strategy
Nash equilibrium solution in infinite static games can be obtained as the
common intersection point of the reaction curves of the players. The concept of
a reaction set was already introduced in Chapter 3 (Def. 3.26) within the
context of finite games, and its counterpart in infinite games describes a curve,
or a family of curves, with some properties like continuity and differentiability,
depending on the structure of the action sets and the cost functionals. We now
make this notion precise for TV-person games.
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person nonzero-sum game, let the minimum of the cost function of PI, Jl{ul, ■ ■
■ ,uN), with respect to u1 € U1 be attained for each u_! e U-i, where u-\ =
{u2,... ,uN} and C/_i = U2 x • ■ • x UN. Then, the set i?1(u_i) c U1 defined by
is called the optimal response or rational reaction set of PI. If R}(u-i) is a
singleton for every u_i 6 U-i, then it is called the reaction curve or reaction
function of PI, and is denoted by l\(u-\). The reaction sets and curves of Pi, i —
2,..., N are similarly defined (simply by replacing the index 1 by i). J =
constant / J = constant -J Figure 4.2: Constant level curves for J1 and J2, and
the corresponding reaction curves {l\ and I2) of PI and P2, respectively. To
illustrate the role of reaction curves in the derivation of Nash equilibria, we
have drawn in Fig. 4.2, the "constant level" or iso-cost curves corresponding
to two cost functions J1 and J2 for a specific two-person game with U1 = U2 =
R. For fixed u1, say u1 =u1, the best P2 can do is to minimize J2 along the line
u1 = u1. Assuming that this minimization problem admits a unique solution, the
said optimal response of P2 is determined, in the figure, as the point where the
line u1 = u1 is tangent to iso-cost curve J2 = constant. For each different u1, a



possibly different unique optimal response can thus be found for P2, and the
collection of all these points forms the reaction curve of P2, indicated by \<i in
the figure. The reaction curve of Pi is similarly constructed: it is the collection
of all points (u1, u2) where horizontal lines are tangent to the iso-cost curves
of J1, and it is indicated by l\ in the figure. By definition, the Nash solution
must lie on both reaction curves, and therefore, if these curves have only one
point of intersection, as in the figure, the Nash solution exists and is unique.
The configuration of the reaction curves is not always as depicted in Fig. 4.2.
In Fig. 4.3, some other possibilities have been displayed. In all these cases it
has been assumed that U1 = U2 = R. In Fig. 4.3a, l\ and I2 are parallel straight
lines and neither a Nash nor an e Nash solution exists. In Fig. 4.3b, l\ and I2
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4.3: Possible configurations of the reaction curves. partly coincide and there
exists a continuum of Nash solutions. In Fig. 4.3c, there is a finite number of
Nash solutions. In Fig. 4.3d, one of the reaction curves is not connected and
neither a Nash solution nor an e Nash solution exists. The nonzero-sum games
associated with Figs. 4.3b and 4.3c both exhibit multiple Nash equilibria, in
which case, as discussed earlier in Section 3.2, the Nash concept is weak as an
equilibrium solution concept. Unless other criteria are imposed, there is no
reason why players should prefer one particular equilibrium solution over the
other(s). In fact, since the players make their decisions independently, it could
so happen that the outcome of their joint (but noncooperative) choices is not an
equilibrium point at all. Such nonequilibrium outcomes of unilateral
equilibrium strategies are shown in Figs. 4.3b and 4.3c, where PI picks a Nash
strategy u1 and P2 chooses a Nash strategy u2. In the case of nonunique Nash
equilibrium solutions, we can classify them in a number of ways. One such
classification is provided by the notion of "robustness" , which is introduced
below for (two-person) games on the square, which, however, easily extends
to general TV-person games covered by Def. 4.3. Definition 4.4 Given two
connected curves v? — hiu1) and u1 — h(u2) on the square, denote their weak
6-neighborhoods by Ng and Ng, respectively.26 Then, a point P of intersection
of these two curves is said to be robust if, given e > 0, there exists a 6q > 0 so
that every ordered pair selected from N2o and Ng has an intersection in an e-
neighborhood of P. As specific examples, consider the two-person nonzero-
sum games for which the reaction functions are depicted in Figs. 4.4a and 4.4b.
In Fig. 4.4a, the 26A weak -̂neighborhood Ns,ofl: [0,1] [0,1] such that |/(£) -



f(£)| < 6, V£ € [0,1]. [0,1] is defined as the set of all maps /: [0,1] —»

STATIC NONCOOPERATIVE INFINITE GAMES 171 u2" h /Oi /r2 V1 V1
~Z (a) (b) Figure 4.4: Games on the square, illustrating robust Nash solutions.
point Pi, constitutes a robust Nash solution, while point P  ̂is not robust. In Fig.
4.4b, however, all the Nash equilibrium solutions are robust. It should be noted
that the number of robust intersections of two connected curves is actually odd,
provided that possible points of intersections at the corners of the square are
excluded. Hence, we can say that nonzero-sum two-person static games on the
square, with well-defined reaction functions for both players, essentially admit
an odd number of Nash equilibrium solutions. An exception to this rule is the
case when the two reaction curves intersect only at the corners of the square.
Yet another classification within the class of multiple Nash equilibrium
solutions of a two-person nonzero-sum static game is provided by the notion of
"stability" of the solution(s) of the fixed point equation. Given a Nash
equilibrium solution, consider the following sequence of moves: (i) One of the
players (say PI) deviates from his corresponding equilibrium strategy, (ii) P2
observes this and minimizes his cost function in view of the new strategy of Pl,
(iii) PI now optimally reacts to that (by minimizing his cost function), (iv) P2
optimally reacts to that optimum reaction, etc. Now, if this infinite sequence of
moves converges to the original Nash equilibrium solution, and this being so
regardless of the nature of the initial deviation of Pl, we say that the Nash
equilibrium solution is stable. If convergence is valid only under small initial
deviations, then we say that the Nash equilibrium solution is locally stable.
Otherwise, the Nash solution is said to be unstable. A nonzero-sum game can
of course admit more than one locally stable equilibrium solution, but a stable
Nash equilibrium solution has to be unique. The reaction functions of two
different nonzero-sum games on the square are depicted in Fig. 4.5. In the first
one (Fig. 4.5a) the equilibrium solution is stable, whereas in the second one it
is unstable. The notion of stability, as introduced above for two-person games,
brings in a refinement to the concept of Nash equilibrium, which finds natural
extensions to the iV-player case. Essentially, we have to require that the
equilibrium be "restorable" under any rational readjustment scheme when there
is a deviation from it by any player. For N > 2 this will depend on the specific
scheme adopted, which brings us to the following formal definition of a stable
Nash equilibrium.
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stable and (b) an unstable Nash solution. Definition 4.5 A Nash equilibrium ul
, i £ N, is (globally,) stable with respect to an adjustment scheme S if it can be
obtained as the limit of the iteration: ur = lim ui{k\ fc—»oo (4.3) ui{k+1) =
arg min ./'(u .̂u*), ui(0) e IP, t € N, (4.4) where the superscript S  ̂indicates that
the precise choice of u_f depends on the readjustment scheme selected. One
possibility for the scheme above is (Sk) (fc) (4.5) which corresponds to the
situation where the players update (readjust) their actions simultaneously, in
response to the most recently determined actions of the other players. Yet
another possibility is ,(Sfc) (ul(fc+1),...,u-l(fe+1), l̂(fc),..., (̂fc)) (4.6) where
the players do the update in a predetermined (in this case numerical) order. A
third possibility is „<*> = (u1<k,...M-l{mUk\ui+l(mUk),...,uN{miN'k]), (4.7)
where m' k is an integer-valued random variable, satisfying the bounds
max(0,fc-d) < m)k < k + 1, j î,j£N,ieN, which corresponds to a situation where
Pi receives action update information from Pj' at random times, with the delay
not exceeding d time units. Clearly, if the iteration of Def. 4.5 converges under
any one of the readjustment schemes above (or any other readjustment scheme
where a player receives update information from every other player infinitely
often), then the Nash
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unique. Every unique Nash equilibrium, however, is not necessarily stable, nor
is a Nash equilibrium that is stable with respect to a particular readjustment
scheme necessarily stable with respect to some other scheme. Hence stability
is generally given with some qualification (such as "stable with respect to
scheme <S" or "with respect to a given class of schemes"), except when the
number of players is two, in which case all schemes (with at most a finite
delay in the transmission of update information) lead to the same condition of
stability, as one then has the simplified recursions u^+^> = li(ui(rki)), A: =
0,1,...; i = 1,2, where r\ ,̂ r2,i, r-$,i, ■. .denote the time instants when Pi
receives new action update information from Pj, j  ̂i, i, j = 1,2. Existence of
Nash equilibria In view of the discussion in the previous subsection, the
existence of pure- strategy Nash equilibria in iV-person continuous-kernel
games can be established by proving existence of well-defined reaction
functions with a common point of intersection. The following theorem does
precisely that, and provides a set of sufficient conditions under which ./V-
person nonzero-sum games admit pure- strategy Nash equilibria. Theorem 4.3



For each i € N, let U% be a closed, bounded and convex subset of a finite-
dimensional Euclidean space, and the cost functional J* : U1 x • • ■ x UN —►
R be jointly continuous in all its arguments and strictly convex in ul for every
uJ' G [P, j £ N, j'  ̂i. Then, the associated N-person nonzero-sum game admits
a Nash equilibrium in pure strategies. Proof. Let us take i = 1. By strict
convexity, there exists a unique mapping l\ : f/_i —» U1 such that u1 = l\(u2,...
,uN) uniquely minimizes ./'(u1, ■ •. ,uN) for any given (JV — l)-tuple {u2,...
,uN}. The mapping l\ is actually the reaction function of PI in this iV-person
game. Similarly, reaction functions lt, i = 2,..., N, can be defined as unique
mappings from U-i into Ul. Using vector notation, these relations can be
written in compact form as u = L(u), where u = (u1,..., uM) e U = Ul x • ■ ■ x
UN, and L = (li,..., In). It will be shown in the sequel that the individual
reaction functions U are continuous in their arguments, and hence I is a
continuous mapping. Since L maps a closed and bounded subset U of a finite-
dimensional space into the same subset, this then implies, by utilization of
Brouwer's fixed point theorem (see Appendix C), that there exists au'et/ such
that u* = L(u*) (that is, u* is a fixed point of L). Obviously, the individual
components of u* constitute a Nash equilibrium solution. To complete the proof
of the theorem, what remains to be shown is the continuity of /,. Let us take i =
1 and assume that, to the contrary, l\ is discontinuous at (uq, ..., Uq). Further, let
l\ (uq, ..., Uq) — u\. Then there exists
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= 1,2,...} such that (uq, . •., u )̂' is the limit of this sequence but uj is not the
limit of l\(u2,... ,u )̂ as j —> oo. Because of compactness of the action spaces,
there exists a subsequence of {uj}, say {ujk}, such that h(ujk) converges to a
limit uj  ̂uj, and simultaneously the following inequality holds: J\li(ujk),ujk)
<Jl{ul,ujk). Now, by taking limits with respect to the subsequence of indices
{jk}, one obtains the inequality which, together with u  ̂  ̂uj, forms a
contradiction to the initial hypothesis that uj is the unique u1 which minimizes
Jl(ul,u\,..., Uq). Hence, li is continuous. The continuity of /,, i > 1, can
analogously be proven. D One of the conditions of Thm. 4.3 was the
compactness of the action spaces Ul, which was needed in the proof of the
theorem to ensure that for each u-i £ [/_; there exists a ul e U* that minimizes
J', and hence that the reaction curve of each player is well defined. If the U%
are unbounded (such as Ul — Rmi), then the same end result can be obtained
provided that the cost function of the corresponding player becomes arbitrarily



large (positive) as its action variable becomes arbitrarily large in norm. Under
such a condition, the player's action variable can be restricted to a closed and
bounded set, without any loss of generality, and hence the theorem again
applies. This reasoning then leads to the following corollary to Thm. 4.3.
Corollary 4.2 For each i € N, let Ui = Rmi, the cost functional J* : U1 x • • • x
UN —* R be jointly continuous in all its arguments and strictly convex in u%
for every u  ̂£ [P, j £ N, j  ̂i. Furthermore, let J\ul,u-i) —> oo os lit1! —> oo,
Vu-i € U-i, ieN. Then, the associated N-person nonzero-sum game admits a
Nash equilibrium in pure strategies. The notion of stability introduced in the
previous subsection (cf. Def. 4.5) can be used to sharpen the result above for
two-person games, so as to establish unicity of equilibria under some
additional conditions. Toward that end, let J1 and J2 be twice continuously
differentiable on Rmi x Rm2, with J1 strictly convex on Rmi for each u2 €
Rm2, and J2 strictly convex on Rm2 for each u1 € Rmi. Consider the parallel
readjustment scheme whereby each player responds (optimally) to the
previously selected action of the other player, which can be written as u —
li{u ); u = h{u ), where li and fe are continuous (reaction) functions, uniquely
solvable from VulJ1(l1(u2),U2) = 0, Vu2J2(u1,/2(u1)) = 0.
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a stable Nash equilibrium, then 1* i- i(fc) u = am u , k—*oo where it is
generated from l(M-i) , , , i(*K U = (i o l2(U ). Now introduce the matrix
T(u,w,v)  ̂[V ĵi^ ĵ-'V Ĵ1 ,̂!;) ■[VliJ2(w,v)YlVu Ĵ2{w,v), (4.8) where w is an
arbitrary mi-dimensional vector, v = h(w), and u — l\(v). If the operator norm
of T (equivalently, its spectral radius) is bounded above by a, 0 < a < 1, for all
w e Rmi, it can be shown (see Li and Bas,ar, 1987) that for some a, a < a < 1, i
l(fc + !) 1*1  ̂-| l(k) 1*1 l rv 1 O \u -u | < a|u -u |, k = 0,1,2,... which implies
(by a contraction mapping argument) that u —> u , and hence u2 = hiu ) —>
u2*—which proves existence of a stable Nash equilibrium, which by
definition is also unique. Hence, we have the following. Proposition 4.1 For a
two-person nonzero-sum game, in addition to the hypotheses of Corollary 4-2,
assume that J% is twice continuously differentiable in ul for each u  ̂€ Rmy, j ^
i, i,j = l, 2. Further assume that the matrix function (4-8) has operator norm
strictly less than 1. Then the game admits a unique Nash equilibrium, which is
also stable. Remark 4.1 One class of games for which the last condition of
Prop. 4.1 (that is, the one involving the operator norm of (4.8)) is satisfied is
that with weakly coupled players, that is one with cost functions: Jz(u\u2;e) =



.//(u'j + eJjV.u2), j + i, i,j = 1,2, where e is a sufficiently small scalar. More
precisely, there exists an fi > 0 such that for all e e (—ei, ei), this class of
convex-kernel games admits a unique stable Nash equilibrium, which can be
obtained as the limit point of the parallel update scheme introduced earlier
(see Srikant and Ba§ar, 1992). □ One important class of games not covered by
Thm. 4.3 are those where the action spaces (or the constraint sets) of the
players are not rectangular. As an example of such a scenario consider the
two-person scalar game on the unit circle (instead of the unit square), where
the scalar decision variables of the two players are coupled through the
inequality (u1)2 + (u2)2 < 1- Note that in such a case,
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which the actions of the players can be chosen independently, but rather a
single set U = {(u1, u2) : (it1)2 + (u2)2 < 1}, to which the pair (u1 ,u2)
belongs. Extending this to the TV-person case, we have the coupled constraint
set U C Rm, where the ./V-tuple u = (it1, u2,... ,uN) belongs, with m = X ĵ=i
rni- The concept of Nash equilibrium is still well defined in this general
framework, with the obvious modification that u £ U is a Nash equilibrium if
J'(u)< (̂u-i.v*), WeU^u-t), i€N, (4.9) where U'(u-i) is a subset of Rm<,
obtained by the projection [/>_*) = K € Rmi : (u )̂ £[/} . Note that (4.9) can
equivalently be written as J(u; u) < J(u; v), Vw £ U , (4.10) where N J(u;v) =
Ylji(u-i>vi)> i=l a form that we will have occasion to use in the sequel. The
following theorem now generalizes the result of Thm. 4.3 to such games.27
Theorem 4.4 Let U be a closed, bounded and convex subset o/Rm, and for each
i € N the cost functional J1 : U —> R be continuous on U and convex in ul for
every uJ £ W, j £ N, j  ̂i. Then, the associated N-person nonzero-sum game
admits a Nash equilibrium in pure strategies. Proof First note that under the
hypotheses of the theorem the function J(u; v) defined prior to the statement of
the theorem is continuous in u and v and is convex in v for every fixed v, with
(u, v) € U x U. Introduce the reaction set for the game: Tu = {v € U : J(u; v) <
J(u; w) Vw € U), which, by the continuity and convexity property of J cited
above, is an upper semicontinuous mapping that maps each point u in the
convex and compact set U into a closed convex subset of U. Then, by the
Kakutani fixed point theorem (see Appendix C), there exists a point u* &U
such that u* € Tu*, or equivalently such that it minimizes J(u*;v) over v € U.
Such a point indeed 27This theorem is of course also valid for the special case
in which the action constraint sets are rectangular, and for this class it relaxes



the assumption of strict convexity of the cost functions to simple convexity.
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equilibrium, because if it does not, then this would imply that for some i £ N
there would be a u1 £ t/'(u!_j) such that Ji(u*_i,ii')<J,(«*)) which would in turn
imply (by adding JJ(u*) to both sides and summing over j £ N, j 7  ̂i) the strict
inequality J(u*;u) < J(u*;u*), u = (u*_i,ul) , contradicting the initial hypothesis
that u* minimizes J(u*;v) over v £ U. D Since two-person zero-sum games are
special types of (two-person) nonzero- sum games, the statements of Thms. 4.3
and 4.4 are equally valid for saddle- point solutions. The first one can even be
sharpened to some extent. We first recall the ordered interchangeability
property of multiple saddle points (viewed as a direct extension of Corollary
2.1), which we will need in the sequel. Property 4.1 For a given two-person
zero-sum game with rectangular action sets U1 and U2 for the players, multiple
saddle points satisfy the ordered interchangeability property; that is, if {ul*
,u2*) and (v},u2) are two saddle-point equilibrium solutions, so are the pairs
{ul*,u2) and (v},u2*). Theorem 4.5 Consider a two-person zero-sum game on
convex finite-dimensional action sets U1 x U2, defined by the continuous
kernel J{ul,u2). Suppose that J(u1, u2) is strictly convex in ul for each u2 £ U2
and strictly concave in u2 for each u1 £ U1. Suppose that either (i) U1 and U2
are closed and bounded, or (ii) Ul =Rm',i = 1,2, andJ{u\u2) -► oo Vu2 as
jw11 -► oo, and J{ul,u2) —> —oo Vu1 as \u2\ ■—> oo. Then, the game
admits a unique pure-strategy saddle-point equilibrium. Proof. Existence of a
saddle-point equilibrium is a direct consequence of Thm. 4.3 and Corollary
4.2. Furthermore, by strict convexity and concavity, there can be no saddle-
point solutions outside the class of pure strategies. Hence only uniqueness
within the class of pure strategies remains to be proven, which, however,
follows readily from the ordered interchangeability property of multiple
saddle points (cf Property 4.1). D The next theorem, which follows as a
special case of Thm. 4.4, provides a generalization of the preceding theorem to
coupled constraint sets, but in the absence of uniqueness of equilibria.
Theorem 4.6 Let J{ul ,u2) be a functional defined on the (not necessarily
rectangular) convex and compact action set U. If J is continuous on U, concave
in u2 for each u1 € Ul{u2) and convex in u1 for each u2 € U2(v}), then a
saddle point exists in pure strategies, but it is not necessarily unique.
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games whose cost functionals are continuous but not necessarily convex. For
such games one cannot, in general, hope to obtain pure-strategy Nash
equilibria; however, in the enlarged class of mixed strategies, the Nash
equilibrium solution exists as it is stated in the following theorem. Theorem
4.7 An N-person nonzero-sum game in which the finite-dimensional action
spaces Ul (i € N) are compact and the cost functionals J1 (i € N) are
continuous onU1 x • • • x UN admits a Nash equilibrium in mixed strategies.
Proof. A proof of this theorem can be found in Owen (1974). The underlying
idea is to make the kernels J% discrete so as to obtain an TV-person finite
matrix game that suitably approximates the original game in the sense that a
mixed-strategy solution of the latter (which always exists by Thm. 3.1) is
arbitrarily close to a mixed equilibrium solution of the former. Compactness of
the action spaces ensures that a limit to the sequence of solutions obtained for
approximating finite matrix games exists. For yet another proof of this result,
see Glicksberg (1950). D As a special case of Thm. 4.7 we now have the
following. Corollary 4.3 Every continuous-kernel two-person zero-sum game
with compact action (strategy) spaces admits a saddle point in mixed
strategies. The question of the weakest conditions under which a mixed-
strategy saddle point exists naturally arises. Corollary 4.3 says that continuity
is a sufficient condition. But it is by no means necessary, and, in fact, it can be
replaced by semi-continuity conditions (see Glicksberg, 1950). However, it is
not possible to relax the semi-continuity conditions any further and still retain
existence of a mixed-strategy saddle point within a general enough framework
(see Sion and Wolfe, 1957). We conclude this section with an example of a
zero-sum game whose cost functional is continuous but not convex-concave,
and which admits a mixed saddle-point equilibrium. 'i 0 2 u1 Figure 4.6:
Reaction curves for the zero-sum game with kernel J = (u1 — u2)2. Example
4.3 Consider the two-person zero-sum game on the square [0,2]2 characterized
by the kernel J = (u1 - u2)2. In Fig. 4.6, the two reaction curves
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drawn, which clearly do not intersect. It can readily be verified that the upper
value V = 1 and the lower value V_ = 0, i.e., a pure- strategy saddle point does
not exist. In the extended class of mixed strategies, however, a candidate
saddle-point solution directly follows from Fig. 4.6, which is 1- ■. -, 2- f 0
w.p. 1/2, u1 = 1 w.~ 1- -  ̂- > F ' ' r.y. 1; u2 =\ 2 w.p. 1/2. It can readily be
verified that this pair of strategies indeed provides a mixed saddle-point



solution. □ 4.4 Stackelberg Solution of Continuous-Kernel Games This section
is devoted to the Stackelberg solution of static nonzero-sum game problems in
which the number of alternatives available to each player is not a finite set and
the cost functions are described by continuous kernels. For the sake of
simplicity and clarity in exposition, we shall deal primarily with two- person
static games. A variety of possible extensions of the Stackelberg solution
concept to TV-person static games with different levels of hierarchy will be
briefly mentioned towards the end of the section, with the details left to the
interested reader as exercises. Let ul € Ul denote the action variable of Pi,
where his action set U% is assumed to be a subset of an appropriate metric
space and, the cost function Jx of Pi be defined as a continuous function on the
product space Ul x U2. Then we can give the following general definition of a
Stackelberg equilibrium solution, which is the counterpart of Def. 3.27 for
infinite games. Definition 4.6 In a two-person game, with PI as the leader, a
strategy u1 € U1 is called a Stackelberg equilibrium strategy for the leader if
J1" = sup Jl(uv:u2)< sup Jl(u\u2) (4.11) for all u1 € U1. Here, i?2(u1) is the
rational reaction set of the follower as introduced in Def. 4-3. Remark 4.2 If
R2^1) is a singleton for each u1 £ U1, in other words, if it is described
completely by a reaction curve I2 : U1 —> U2, then inequality (4.11) in the
above definition can be replaced by J1* = jV.feCu1*)) < JV.fcfu1)) (4-12) for
all u1 eU1. D
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exists for the leader, then the LHS of inequality (4.11) is known as the leader's
Stackelberg cost, and is denoted by J1 . A more general definition for J1 is, in
fact, Jv = inf sup Jl{v},u2), (4.13) i êc/1 „2efi2(ui) which also covers the case
when a Stackelberg equilibrium strategy does not exist. It follows from this
definition that the Stackelberg cost of the leader is a well-defined quantity, and
that there will always exist a sequence of strategies for the leader which will
ensure him a cost value arbitrarily close to J1*. This observation brings us to
the following definition of e Stackelberg strategies. Definition 4.7 Let e > 0 be
a given number. Then, a strategy u\' 6 U1 is called an e Stackelberg strategy for
the leader (PI) if sup Jl{v£ ,u2) < J1* +e. u2€fi2(«D The following two
properties of e Stackelberg strategies now readily follow. Property 4.2 In a
two-person game, let J1 be a finite number. Then, given an arbitrary e > 0, an e
Stackelberg strategy for the leader necessarily exists. Property 4.3 Let {u*. }
be a given sequence of e Stackelberg strategies in U1, and with e, > tj for i < j



and lim^oo tj = 0. Then, if there exists a convergent subsequence {ulik} in U1
with its limit denoted as u1 , and further if supu2gjR2(ui) Jl{ul,u2) is a
continuous function of u1 in an open neighborhood of u1 € U1, u1 is a
Stackelberg strategy for PI. The equilibrium strategy for the follower, in a
Stackelberg game, would be any strategy that constitutes an optimal response
to the one adopted (and announced) by the leader. Mathematically speaking, if
u1 (respectively, u\ ) is adopted by the leader, then any u2 6 R2^1)
(respectively, u2 e R2(ul")) will be referred to as an optimal strategy for the
follower that is in equilibrium with the Stackelberg (respectively, e
Stackelberg) strategy of the leader. This pair is referred to as a Stackelberg
(respectively, e Stackelberg) solution of the two-person game with PI as the
leader (see Def. 3.28). The following theorem now provides a set of sufficient
conditions for two-person nonzero-sum games to admit a Stackelberg
equilibrium solution. Theorem 4.8 Let U1 and U2 be compact metric spaces,
and J1 be continuous on Ul x U2, i — 1,2. Further let there exist a finite family
of continuous mappings /W : JJ1 —> U2, indexed by a parameter i E I —
{1,..., M}, so that R2^1) — {u2 £ U2 : u2 — l l̂\ul),i £ I}. Then, the two-
person nonzero-sum static game admits a Stackelberg equilibrium solution.
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the hypothesis of the theorem that J1 , as defined by (4.13), is finite. Hence, by
Property 4.2, a sequence of Stackelberg strategies exists for the leader, and it
admits a convergent subsequence whose limit lies in U1, due to compactness
of U1. Now, since i?2() can be constructed from a finite family of continuous
mappings (by hypothesis), sup jV,U2)=max J^mV^m1)), u2efi2(uM *e/ and the
latter function is continuous on U1. Then, the result follows from Property 4.3.
D Remark 4.3 The assumption of Thm. 4.8, concerning the structure of R2(-),
imposes some severe restrictions on J2; but such an assumption is inevitable as
the following example demonstrates. Take U1 = U2 = [0,1], J1 = — ulu2 and
J2 = (u1 — \)u2. Here, R2{-) is determined by a mapping /(■) which is
continuous on the half-open intervals [0, )̂,(|,1], but is multivalued at u1 — \.
The Stackelberg cost of the leader is clearly J1 = — |, but a Stackelberg
strategy does not exist because of the "infinitely multivalued" nature oil. □ If
R2[ux) is a singleton for every u1 € U1, the hypothesis of Thm. 4.8 can
definitely be made less restrictive. One such set of conditions is provided in
the following corollary to Thm. 4.8 under which there exists a unique I which
is continuous (by an argument similar to the one used in the proof of Thm. 4.3).



Corollary 4.4 Every two-person nonzero-sum continuous-kernel game on the
square, for which J2(u1, •) is strictly convex for all u1 € U1 and PI acts as the
leader, admits a Stackelberg equilibrium solution. It should be noted that the
Stackelberg equilibrium solution for a two-person game exists under a set of
sufficiency conditions which are much weaker than those required for
existence of Nash equilibria (cf. Thm. 4.3). It should further be noted,
however, that the statement of Thm. 4.8 does not also rule out the existence of a
mixed-strategy Stackelberg solution which might provide the leader with a
lower average cost. We have already observed occurrence of such a
phenomenon within the context of matrix games, in Section 3.6, and we now
investigate to what extent such a result could remain valid in continuous-kernel
games. If mixed strategies are also allowed, then permissible strategies for Pi
will be probability measures // on the space Ul. Let us denote the collection of
all such probability measures for Pi by M\ Then, the quantity replacing J1 will
be the average cost function Ji(/i1,/i2)= / / Ji(«1,u2)d/i1(U1)dM2(M2), (4.14)
Jm Ju1 and the reaction set R2 will be replaced by J?V) = (A2 e M2 : JV,A2)
< J2(/AM2),V/i2 € M2}. (4.15)

182 T. BA§AR AND G. J. OLSDER Hence, we have the following. Definition
4.8 In a two-person game with PI as the leader, a mixed strategy fi1 g M1 is
called a mixed Stackelberg equilibrium strategy for the leader if Jv = sup
J\ixV,n2)< sup JVV) for all fi1 € M1, where J1" is known as the average
Stackelberg cost of the leader in mixed strategies. Proposition 4.2 J1* < J1*.
(4.16) Proof. Since Ml also includes all one-point measures, we have (by an
abuse of notation) U' C Ml. Then, for each u1 6 U1, considered as an element
of M1, inf JV./i2) = inf / J2(u\"W("2) = inf J2(u\u2), u2€E/2 where the last
equality follows since any infimizing sequence in M2 can be replaced by a
subsequence of one-point measures. This implies that, for one point measures
in M1,R2(fj,1) coincides with the set of all probability measures defined on
R2^1). Now, since M1 D U1, J1" = inf sup Jl{iil,n2) < inf sup J1^1,^2), and
because of the cited relation between R2 !̂1) and R2{v}), the last expression
can be written as inf sup J (u ,u ) = J . D We now show, by a counter-example,
that, even under the hypothesis of Thm. 4.8, it is possible to have strict
inequality in (4.16). Example 4.4 Consider a two-person continuous-kernel
game with U1 = U2 = [0,1], and with cost functions J êiu'f + u'V -̂u2; J2 = (u2-
^1)2)2, where e > 0 is a sufficiently small parameter. The unique Stackelberg
solution of this game, in pure strategies, is u1* — 0, u2* = (w1)2, and the



Stackelberg cost for the leader is J1* — 0. We now show that the leader can
actually do better by employing a mixed strategy.
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follower's unique reaction to a mixed strategy of the leader is u2 — [̂(u1)2]
which, when substituted into J1, yields the expression J1 = eEKu1)2} +
EtfWiEWm-EKu1)2]. Now, if the leader uses the uniform probability
distribution on [0,1], his average cost becomes fi e-i i A" J= — + 2V3 which
clearly indicates that, for e sufficiently small, J1' <0 = J1'. □ The preceding
example has displayed the fact that even Stackelberg games with strictly
convex cost functionals may fail to admit only pure-strategy solutions, and the
mixed Stackelberg solution may in fact be preferable.28 However, if we
further restrict the cost structure to be quadratic, it can then be shown that only
pure-strategy Stackelberg equilibria exist. Proposition 4.3 Consider the two-
person nonzero-sum game with U1 = Rmi, C/2=Rm2, and where R\t > 0, Rlu,
R\ ,̂ R1  ̂are matrices of appropriate dimensions, and r\, r*- are vectors of
appropriate dimensions. This "quadratic" game can only admit a pure-strategy
Stackelberg solution, with either PI or P2 as the leader. Proof. Without any loss
of generality take PI as the leader, and assume, to the contrary, that the game
admits a mixed-strategy Stackelberg solution, and denote the leader's optimal
mixed strategy by /j,1 . Furthermore, denote the expectation operation under /i1
by E[-]. If the leader announces this mixed strategy, then the follower's reaction
is unique and is given by vf -̂Rl^Rl.Elu -̂Rl r̂l By substituting this in J1* —
[̂J1], we obtain J1* = [̂ix1'^1] + E^YKElu1] + Elu '̂k + c, 28In retrospect,

this should not be surprising since for the special case of zero-sum games
(without pure-strategy saddle points) we have already seen that the minimizer
could further decrease his guaranteed expected cost by playing a mixed
strategy; here, however, it holds even if J1  ̂— J2.
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"12''*22 "21 > k = 7*1 — "21 "22 r2 — "12"22 r2 + "21 -^22 "22"22 r2i A 1
9't->2 — 1 n1 7->2 —1 2 2'7->2 —1 1 c = 2r2^22 ^22^22 r$ - r% Rfc r\.
Now, applying the Cauchy-Schwarz inequality (see Appendix B.4) on the first
term of J1*, we further obtain the bound J1" > l-E\uxyR\xE\ul\ + Elu '̂KEiu1} +
E[v}]'k + c, (i) which depends only on the mean value of u1. Hence, J1* = inf
{-u^R^u1+ ul'Kul+v}'k + c, \ < J1". This implies that enlargement of the
strategy space of the leader, so as to include mixed strategies as well, does not



yield him any better performance. In fact, since E[ul u1] > Elu1]'Elu1],
whenever the probability distribution is not one-point, it follows that the
inequality in (i) is actually strict for the case of a proper mixed strategy. This
then implies that, outside the class of pure strategies, there can be no
Stackelberg solution. D Graphical display of Stackelberg solutions and the
notion of relative leadership If U1 and U2 are one-dimensional spaces, and if,
in addition, R2{ul) is singleton for each u1 &U1, then the Stackelberg
equilibrium solution can easily be visualized on a graph. In Fig. 4.7, iso-cost
curves for J1 and J2 have been drawn, together with the reaction curves l\ and
l2. With PI as the leader, the Stackelberg solution will be situated on l2, at the
point where it is tangent to the Figure 4.7: Graphical construction of the
Stackelberg solution in a two-person game—a "stalemate" solution.
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curve of J1. This point is designated as Si in Fig. 4.7. The coordinates of Si
now correspond to the Stackelberg solution of this game with PI as the leader.
The point of intersection of l\ and li (which is denoted by N in the figure)
denotes the unique Nash equilibrium solution of this game. It should be noted
that the Nash costs of both players are higher than their corresponding
equilibrium costs in the Stackelberg game with PI as the leader. This is,
though, only a specific example, since it would be possible to come up with
situations in which the follower is worse off in the Stackelberg game than
under the associated "Nash game". However, when the reaction set 7?2(u1) is
a singleton for every u1 e U1, the leader cannot do worse in the "Stackelberg
game" than his best performance in the associated "Nash game" since he can, at
the worst, play the strategy corresponding to the most favorable (from the
leader's point of view) Nash equilibrium solution pair, as discussed earlier in
Section 3.6 (see, in particular, Prop. 3.14). To summarize, we have the
following. Proposition 4.4 For a two-person nonzero-sum game, let V  ̂denote
the infi- mum of all the Nash equilibrium costs of PI. Then, ifR2{uy) is a
singleton for every u1 e Ul, V  ̂> J1'. Hence, in two-person nonzero-sum games
with unique follower responses, the leader never prefers to play the "Nash
game" instead of the "Stackelberg game", whereas the follower could prefer to
play the "Nash game", if such an option is open to him. In some games, even
the option of who should be the leader and who should follow might be open to
the players, and in such situations there is the question of whether it is
profitable for either player to act as the leader rather than be the follower. For



the two-person game depicted in Fig. 4.7, for example, both players would
prefer to act as the follower (in the figure, point 5*2 characterizes the
Stackelberg solution with P2 as the leader). There are other cases, however, in
which both players prefer the leadership of only one of the players (see Fig.
4.8a, where leadership of P2 is more advantageous to both players) or in
which each player wants to be the leader himself (Fig. 4.8b). (a) (b) Figure
4.8: Different types of Stackelberg equilibrium solutions, (a) Concurrent
solution, (b) Nonconcurrent solution.
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the leadership of one of them, then this constitutes a stable situation since there
is no reason for either player to deviate from the corresponding Stackelberg
solution which was computed under mutual agreement—such a Stackelberg
equilibrium solution is called a "concurrent" solution. If each player prefers to
be the leader himself, then the Stackelberg solution is called "nonconcurrent".
In such a situation each player will try to dictate to the other player his own
Stackelberg strategy and thus force him to play the "Stackelberg game" under
his leadership. In this case, the one who can process his data faster will
certainly be the leader and announce his strategy first. However, if the slower
player does not actually know that the other player can process his data faster
than he does, and/or if there is a delay in the information exchange between the
players, then he might tend to announce a Stackelberg strategy under his own
leadership quite unaware of the announcement of the other player—which
certainly results in a nonequilibrium situation. Finally, for the case in which
neither player wants to be the leader (as in Fig. 4.7), the "Stackelberg game" is
said to be in a "stalemate", since each player will wait for the other one to
announce his strategy first. 4.5 Consistent Conjectural Variations Equilibrium
A third noncooperative solution concept for nonzero-sum games is the
consistent conjectural variations (CCV) equilibrium, which we introduce here
for the two- player case. This solution concept is in a sense a "double-sided
Stackelberg equilibrium", where an equilibrium is sought in the class of
reaction functions (or, more generally, reaction sets). For a precise
mathematical formulation, let 71 x T2 be the class of all mappings (Ti,T2), T*
: W -> X)\ j  ̂i, i,j = 1,2, with the property that the composite maps Ti oT2 and
T2oTi have unique fixed points. For a given pair (rf,T2c) e 71 x T2, let {v?,ur)
eU1 xU2 denote the unique fixed points, satisfying u1' = Tf o T2VC), uT = T2C
o Tf(u2C). Introduce the unique pair {ul,u2) € Ul x U2, defined by ux=arg min



/(u1,^^1)); u2 = arg min J2(Tf{u2),u2 it1€C/1 «2€t/2 Let Ai;V) = W) - TtWC),
3 * i, i,J = 1,2; g?TV) = arg min. J\u\ u> + AIf(u%j ? i, i,j = 1,2. Note that
AT^u?) is the "differential" reaction of Pi under Tf to a deviation AT? from u]C
to u3. Furthermore, gi 3 can be interpreted as a reaction function of (4.17)
(4.18) (4.19a) (4.19b)
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policy that is additively composed of a predetermined policy (uJ) and a policy
determined by the policy choice of Pi under the reaction function ATf. Clearly,
it1 introduced by (4.18) can also be obtained from V = gfhujc). (4.20) This
now brings us to the following definition. Definition 4.9 A pair of reaction
functions (T^T )̂ & T[ x T2; along with their unique fixed point (u1 ,u2 ) £ U1
x U2, constitute a consistent conjectural variations equilibrium (CCVE) if we
have the consistency of reaction functions: gf* = Tf, gf* = T2C (4.21) and
consistency of policies u1=u1\ u2 = u2\ (4.22) Remark 4.4 In the most general
case, it may be impossible to validate the consistency of the reaction functions,
though this may be possible to any "order" under appropriate smoothness
conditions on J1 and J2 (this will be further discussed in the sequel).
Consistency of policies, on the other hand, is more readily testable. □ To gain
more insight into CCVE, let us take U1 = U2 = R, and J1 and J2 to be
continuously differentiate and (jointly) strictly convex in their arguments.
Furthermore, let Ti x T2 be chosen such that J1(-,T2(-)) and J2(Ti(-),-) are
strictly convex in their arguments, for every pair (2\, T2) &T\xT2. To simplify
the notation, let u1 = u, u2 = v. Then, two reaction functions (Tf, T2) 6 T\ x T^
are in CCV equilibrium if (and only if) dj1(u,v) + dj1(u,v) .grjW foru = Tl>),
{l) ou dv ou 8  ̂+ 8^  ̂for ( } ov ou ov Note that these are two coupled partial
differential equations which are, in general, difficult to solve. To gain some
further insight, we expand these around the CCV solution (uc,vc) and perform a
local analysis. First, to third order in v. and likewise, to third order in u: .
dTUu0), CN d2T (̂uc). cn2 d3TZ(uc), cn3
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dJl(Tf(v),v) dTm*(v)) s R du dv du and using the above expansion for Tf(u)
around » = vc, we arrive at the following: zeroth order dJl{uc,vc) dJl{uc,vc)
dT$(uc) du dv du (0) first order (arguments at u = uc, v — vc) d2Jl dTf d2Jl
du2 dv dudv 1 + dT{ dv du dn d2Jl dT  ̂dJ1 dv2 du dv d î.dJ± = o (i) du2 dv '
{ ' second order (arguments at u = uc, v — vc) 2 d3j du KS) '1"dur~dv2 +



dudv , d3Jl dT? ' du2dv dv ' d2Tf dT% (dT?\ dv* du ' y dv J d3J* dTj tfj1
du2dv dv dudv2 2 d2T,<= du 1 J- dT° ^2 dv du + dT£ du Id3 J1 ['dv3' + d3Jx
dT  ̂dv2du dv + 2££ + ££3£ dudv dv tlL^EL j_ d£-tlL (#E±\ x. ĵ^ Îl ÎL _ dv +
dv du *(¥) + dv du2 dv2 = o, (2) where we assume that derivatives of all
required orders exist. Likewise, rewriting (ii) dJ2(u,TZ(u)) , dJ2(u,T%(u))
dTf(r2c(«)) _ + = o,ueR, dv du dv and using the above expansion for T2c(w)
around u = uc, we have the following: zeroth order dJ2(uc,vc) dJ2{uc,vc)
dT{{vc) dv du dv (0') first order (arguments at u = uc, v — vc) d2J2 dTZ d2J2
£. -| dv2 du dudv 1 + dT% dTf du dv d2J2 dT{ dJ2 d2T{ dTl du2 dv du dv2
du second order (arguments at u = uc, v = vc) d'f dv3 ( dT%\ \ du J + a2 J2
d2T. dv2 du f + , d3J2 dTl , Sl/i dv2du du dudv d3J2 | d3J2 dTl dvdu2 "*"
Thiol? du d2Tl dT{ , (dT2 \ ' du2 dv ' \ du J 4? + 1 + dTl dTl dv du d3J2 , &J2
dTl du3 ' du2dv du dTl dv + 2d2J2 , tfjldTl] fTldTl dJi^Tl (my . d£_d^Tl^Tl =
„ du2 dudv du dv2 du du dv'3 \ du J du dv2 du2 (2')
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relationships, we now refine the definition of CCVE for thrice continuously
differentiable cost functions J1 and J2. Definition 4.10 A pair of conjectured
response functions (Ti,T$) is in CCV equilibrium to zeroth order if (0) and (0')
are satisfied. It is CCV equilibrium to first order «/ (0)-(l) and (O')-(l') are
satisfied, and is in CCV equilibrium to second order i/(0)-(2) and (0')-(2') are
satisfied. It should now be clear from the above that this refinement of CCVE
can be extended to any order, provided that J1 and J2 are continuously
differentiable up to that order. An nth-order expansion (of CCVE) involves 2ra
+ 2 separate, recursively solvable equations, which yield derivatives of Tf and
Tf up to order n, evaluated at [uc,vc). If a pair of response functions (Tf, Tf)
satisfy these 2n + 2 equations, then we say that it is "in CCVE to nth-order",
which provides an nth-order approximation to the true (if it exists) CCVE. In
some cases one need not go to higher orders, as they may vanish beyond a
certain "n", in which case we clearly have the true CCVE. Games with
quadratic cost functions constitute one such class of problems, as we shall see
in the next section. Another point worth mentioning here is that the definition of
an nth-order CCVE can be given also if U1 and U2 are higher (than one)
dimensional Euclidean spaces, and even if they are (infinite-dimensional)
Banach spaces. In the latter case one deals with Frechet derivatives
(Luenberger, 1969) instead of regular (Euclidean) differentials. An
observation we can make from the analysis given above in the context of scalar



two-player games is that the Nash equilibrium (u*,v*), where each player takes
the policy of the other player as given (and fixed), is a zeroth-order CCVE,
with Tf(v) = u*, T£(u) = v*. It is also a first-order CCVE under the set of
restrictive conditions d2Jl{u*,v") 82J2{u*,v*) _ dudv ' dudv For (u*,v*) to be
a second-order CCVE, also the set of conditions d*Jl(u*,v*) d3J2(u\v") _
dudv2 ' dvdu2 has to be satisfied. Since the latter two conditions are overly
restrictive, we can say that generically the Nash equilibrium solution is a
zeroth-order CCVE. Clearly this holds not only for the scalar game, and hence
we have the following. Proposition 4.5 If a two-player nonzero-sum game
admits a unique Nash equilibrium, say (u1 , u2 ), then this pair is a zeroth-
order CCVE, where u1 and u2 are the constant reaction functions. The Nash
equilibrium is not necessarily a higher-order CCVE.

190 T. BA§AR AND G. J. OLSDER Remark 4.5 The notion of a CCVE can be
extended from two- to many- player games, at least at the conceptual level.
Computationally, however, the difficulties would be compounded here, as a
player's response now depends on the policies or actions of more than one
player (cf. Def. 4.3). □ 4.6 Quadratic Games with Applications in
Microeconomics In this section, we obtain explicit expressions for the Nash,
Stackelberg and consistent conjectural variations equilibrium solutions of
static nonzero-sum games in which the cost functions of the players are
quadratic in the decision variables—the so-called quadratic games. The action
(strategy) spaces will be taken as Euclidean spaces of appropriate dimensions,
but the results are also equally valid (under the right interpretation) if the
strategy spaces are taken as infinite-dimensional Hilbert spaces. In that case,
the Euclidean inner products will have to be replaced by the inner product of
the underlying Hilbert space, and the positive-definiteness requirements on
some of the matrices will have to be replaced by strong positive definiteness
of the corresponding self-adjoint operators. This section will also include
some discussion on iterative algorithms for the computation of Nash equilibria,
and an illustration of the quadratic model and its Nash and Stackelberg
solutions within the context of noncooperative economic equilibrium behavior
of firms in oligopolistic markets. A general quadratic cost function for Pi,
which is strictly convex in his action variable, can be written Ji = \ E E *'RUu"
+ E uj'rs+ci' (4-23) j=l fc=l j = l where v? e U  ̂= Rmj' is the m -̂dimensional
decision variable of Pj, Rl^k is an (m,j x mfc)-dimensional matrix with R\t > 0,
rj is an m -̂dimensional vector and cl is a constant. Without loss of generality,



we may assume that, for j  ̂k, Rjk = i?jL , since if this were not the case, the
corresponding two quadratic terms could be written as u^R)kuk + uk'RljUi =
i**' (R'k+2R>ki'\ uk + uk' (R'ik+2Rki'\ v? (4.24) and redefining Rl,k as (iftfc
4- Rlk )/2, a symmetric matrix could be obtained. By an analogous argument,
we may take i?j,- to be symmetric, without any loss of generality. Quadratic
cost functions are of particular interest in game theory, firstly because they
constitute second-order approximation to other types of nonlinear cost
functions, and secondly because they are analytically tractable, admitting, in
general, closed-form equilibrium solutions which provide insight into the
properties and features of the equilibrium solution concept under
consideration.
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equilibrium solution in strictly convex quadratic games, we differentiate J1
with respect to ul (i £ N), set the resulting expressions equal to zero, and solve
the set of equations thus obtained. This set of equations, which also provides a
sufficient condition because of strict convexity, is R*y+J2 ^+rt = 0 (ieN),
which can be written in compact form as Ru = —r, (4.25) (4.26a) where A Rn
#21 r>N #12 R2 -"■22 r>N nN2 I A / 1 2 u = (u ,u ,. I A I 1 2 R1 1 P2 r>N ■ ■
■ nNN _ ■,uN), ;r%). (4.26b) (4.26c) (4.26d) This then leads to the following
proposition. Proposition 4.6 The quadmtic N-player nonzero-sum static game
defined by the cost functions (4-23) and with Rlu > 0, admits a Nash
equilibrium solution if, and only if, (4- 26a) admits a solution, say u*; this
Nash solution is unique if the matrix R defined by (4.26b) is invertible, in
which case it is given by -R- (4.27) Remark 4.6 Since each player's cost
function is strictly convex and continuous in his action variable, quadratic
nonzero-sum games of the type discussed above cannot admit a Nash
equilibrium solution in mixed strategies. Hence, in strictly convex quadratic
games, the equilibrium analysis can be confined to the class of pure strategies.
D We now investigate the stability properties of the unique Nash solution of
quadratic games, where the notion of stability was introduced in Section 4.3.
Assuming N = 2, and directly specializing Prop. 4.1 to the quadratic case, we
arrive at the following iteration: tl(fc+l)=Ciu2(*)+  ̂u2(* + l) r< l(fc+1) , j
C2u1K +d2, k = 0,1, (4.28)

192 T. BA§AR AND G. J. OLSDER with an arbitrary starting choice u2 ,
where This iteration corresponds to the sequential (Gauss-Seidel) update



scheme where PI responds to the most recent past action of P2, whereas P2
responds to the current action of PI. The alternative to this is the parallel
(Jacobi) update scheme where (4.28) is replaced by u^^CrfW+d!,
u2(k+1)=C2ulik)+d2, fc = 0,l,... (4.29) starting with arbitrary initial choices (u
, u ). Then, the question of stability of the Nash solution (4.27), with N = 2,
reduces to the question of stability of the fixed point of either (4.28) or (4.29).
Note that, apart from a relabeling of indices, stability of these two iterations is
equivalent to the stability of the single iteration: ul(fc+i) = CiC2Ui(*) + Cid2
+di Since this is a linear difference equation, a necessary and sufficient
condition for it to converge (to the actual Nash strategy of PI) is that the
eigenvalues of the matrix C\C2, or equivalently those of C2C\, should be in the
unit circle, i.e., p(dC2) = piCid) < 1, (4.30) where p(A) is the spectral radius
of the matrix A. This spectral radius condition is precisely the one given in
Prop. 4.1, which shows that the condition of Prop. 4.1 is tight for the quadratic
case. Note that the condition of stability is considerably more stringent than the
condition of existence of a unique Nash equilibrium, which is det(J - CXC2) ^
0. (4.31) The question we address now is whether, in the framework of Gauss-
Seidel or Jacobi iterations, this gap between (4.30) and (4.31) could be shrunk
or even totally eliminated, by allowing players to incorporate memory into the
iterations. While doing this, it would be desirable for the players to need to
know as little as possible regarding the reaction functions of each other (note
that no such information is necessary in the Gauss-Seidel or Jacobi iterations
given above). To study this issue, consider the Gauss-Seidel iteration (4.28),
but with a one-step memory for (only) PI. Then, the "relaxed" algorithm will
be (using the simpler notation u — uk, u = ujt): Ufe+i = Cxvk + cfi -I- A{uk -
Cxvk - di), \ ,4 32> Vk+i = C2Uk+i +d2, J ' where A is a gain matrix, yet to be
chosen. Substituting the second (for vk) into the first, we obtain the single
iteration uk+l = [C + A(I - C)}uk + (I - A)  ̂+ C^},
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choosing A = -C(I-C)-1, (4.33) where the required inverse exists because of
(4.31), we obtain an immediate convergence, assuming that the true value of
C2 is known to PI. If the true value of C2 is not known, but a nominal value is
given in a neighborhood of which the true value lies, the scheme (4.32) along
with the choice (4.33) and using the nominal value, still leads to convergence
(but not in a finite number of steps) provided that the neighborhood is
sufficiently small (see Ba§ar, 1987). Now, if the original scheme is instead the



parallel (Jacobi) scheme, then a one-step memory for PI will not be sufficient
to obtain a finite-step convergence result as above. In this case we replace
(4.32) by Mfe+i = CiVk + di + B(uk-i -Civk -di), Vk+i = C2uk+d2, where B is
another gain matrix. Note that here PI uses, in the computation 01 ufc+i, n°t
Wfc but rather Uk-i- Now, substituting for v  ̂from the second into the first
equation of (4.34), we arrive at the iteration uk+i = [C + B(J-C)]«fc_i + (J-B)
[di + Cid2], which again shows immediate convergence, with B chosen as B =
-C(I-C)-1. (4.35) Again, there is a certain neighborhood of nominal C2 or
equivalently of the nominal C, where the iteration (4.34) is convergent. In
general, however, the precise scheme according to which P2 responds to Pi's
policy choices may not be common information, and hence one would like to
develop relaxation-type algorithms for PI which would converge to the true
equilibrium solution regardless of what particular scheme P2 adopts (for
example, Gauss-Seidel or Jacobi). Consider, for example, the scheme where
P2's responses for different k are modeled by (see also (4.7)) vk+i = C2uk+1-
ik +d2, (4.36) where ik > 0 is an integer denoting the delay in the receipt of
current policy information by P2 from PI. The choice ik — 0 for all k, would
correspond to the Gauss-Seidel iteration, and the choice ik = 1 for all k, to the
Jacobi iteration — assuming that ut+i is still determined according to (4.28).
An extreme case would be the totally asynchronous communication where
{ik}k>o could be any sequence of positive integers. Under the assumptions that
PI communicates (4.34)

194 T. BA§AR AND G. J. OLSDER new policy choices to P2 infinitely often,
and he uses the simple ("nonrelaxed") iteration ufc+i = Civk+du (4.37) it is
known from the work of Chazan and Miranker (1969) that such a scheme
converges if, and only if, p(\C\) < 1 (4.38) where \C\ is the matrix derived
from C by multiplying all its negative entries by-1. This condition can be
improved upon, however, by incorporating relaxation terms in (4.37), as well
as in (4.36), such as ufc+i = aCivk + {I - a)Civk-\ + du 1 . . vk+1 = (3C2uk +
(1 - 3)C2uk  ̂+ d2, j "̂  ̂where a and (3 are some scalars. A sufficient
condition for convergence of any asynchronously implemented version of
(4.39) is (see Ba§ar(1987) for details) p(A(a)) < 1, (4.40) where A(a) k ( °
maxCa.l-aJIdlN ' \ max(/3,l -0)\C2\ 0 / Clearly, there are values of a jt 0, /3 ^
0, for which (4.40) requires a less stringent condition (on C\ and C2) than
(4.38). For example, if C\ and C2 are positive scalars, and a = (3 = \,
inequality (4.40) dictates CiC2 < 4 while (4.38) requires that C\C2 < 1. From



a game-theoretic point of view, each of the iteration schemes discussed above
corresponds to a game with a sufficiently large number of stages and with a
particular mode of play among the players. Moreover, the objective of each
player is to minimize a kind of an average long horizon cost, with costs at each
stage contributing to this average cost. Viewing this problem overall as a
multi- act nonzero-sum game, we observe that the behavior of each player at
each stage of the game is rather "myopic", since at each stage the players
minimize their cost functions only under past information, and quite in
ignorance of the possibility of any future moves. If the possibility of future
moves is also taken into account, then the rational behavior of each player at a
particular stage could be quite different. For an illustration of this possibility
the reader is referred to Example 4.5 which is given later in this section. Such
myopic decision making could make sense, however, if the players have
absolutely no idea as to how many stages the game comprises, in which case
there is the possibility that at any stage a particular player could be the last one
to act in the game. In such a situation, risk-aversing players would definitely
adopt "myopic" behavior, minimizing their current cost functions under only the
past information, whenever given the opportunity to act.
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games Since zero-sum games are special types of two-person nonzero-sum
games with J\ = — J2 (PI minimizing and P2 maximizing), in which case the
Nash equilibrium solution concept coincides with the concept of saddle-point
equilibrium, a special version of Prop. 4.6 will be valid for quadratic zero-
sum games. To this end, we first note that the relation J\ — — J2 imposes in
(4.23) the restrictions Pl ' - -P2 P2 - -P1 P1 - -P2 r2 - -r1 r1 - -r2 r1 - -r2 ■"12
— -ft21» ■IX11 ~~ ■ftll!-ft22 — ■ft22i"l — "l'™2 — ~2ic ~ c ' under which
matrix R defined by (4.26b) can be written as r=( Rh> Rl2) \ ~^12 ^22 / which
has to be nonsingular for existence of a saddle point. Since R can also be
written as the sum of two matrices R-(Rln 0 \ ( 0 R\2\ R-{ 0 Rl2) + {-R[2' 0 )
the first one being positive definite and the second one skew-symmetric, and
since eigenvalues of the latter are always imaginary, it readily follows that R
is a nonsingular matrix. Hence we arrive at the conclusion that every quadratic
strictly convex-concave zero-sum game admits a unique saddle-point
equilibrium in pure strategies—a result that also follows as a special case of
Thm. 4.5. Corollary 4.5 The strictly convex-concave quadratic zero-sum game
with cost function J = l-uvR\y+uVR\2u2--u2'Rl2u2 + uvr\+u2'r\+c1-, R\x >



0,R%2 > 0, admits a unique saddle-point equilibrium in pure strategies, which
is given by uv = -[JR111+i?J2(JRi2)-1JR112']-1h1 + î2^22)-1 ]̂, u2' = [I%2
+ R112'(R\1)-1R112)-1[r12-R1i2\R1u)-1r{]. Remark 4.7 The positive-
definiteness requirements on R\x and R22 in Corollary 4.5 are necessary and
sufficient for the game kernel to be strictly convex- strictly concave, but this
structure is clearly not necessary for the game to admit a saddle point. If the
game is simply convex-concave (that is, if the matrices above are nonnegative
definite, with a possibility of zero eigenvalues), then in view of Thm. 4.6 a
saddle point will still exist provided that the upper and lower values are
bounded.29 If the quadratic game is not convex-concave, however, then either
the upper or the lower value (or both) will be unbounded, implying that a
saddle point will not exist. □ 29For a convex-concave quadratic game, the
upper value will not be bounded if, and only if, there exists a v £ R"12 such
that v'R%2v = 0 while v'r\  ̂0. A similar result applies to the lower value.
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of nonzero-sum games is the team problems in which the players (or
equivalently, members of the team) share a common objective. Within the
general framework, this corresponds to the case J1 = J2 = • •■ = JN — J, and
the objective is to minimize this cost function over all ul € Ul, i = 1,...,N. The
resulting solution TV-tuple (u1 ,u2 ,... ,uN ) is known as the team-optimal
solution. The Nash solution, however, corresponds to a weaker solution
concept in team problems, the so-called person-by-person (pbp) optimality. In
a two-member team problem, for example, a pbp optimal solution (u1 , u2')
dictates satisfaction of the pair of inequalities J(uv,u2") < J(u\u2"), Vu1 £ C/1,
J{uv,u2") < J(uv,u2), Vu2€t/2, whereas a team-optimal solution (u1 , u2 )
requires satisfaction of a single inequality J(ur,u2") < J(u\u2), Vu1 e U\u2 e U2.
A team-optimal solution always implies pbp optimality, but not vice versa. Of
course, if J is quadratic and strictly convex on the product space U1 x ■ ■ • x
UN, then a unique pbp optimal solution exists, and it is also team-optimal.30
However, for a cost function that is strictly convex only on individual spaces
Ul, but not on the product space, this latter property may not be true. Consider,
for example, the quadratic cost function J = (u1)2 + (u2)2 + lOu1!*2 + 2ux +
3u2 which is strictly convex in u1 and u2, separately. The matrix
corresponding to R defined by (4.26b) is U1") which is clearly nonsingular.
Hence a unique pbp optimal solution will exist. However, a team-optimal
solution does not exist since the said matrix (which is also the Hessian of J)



has one positive and one negative eigenvalue. By cooperating along the
direction of the eigenvector corresponding to the negative eigenvalue, the
members of the team can make the value of J as small as possible. In
particular, taking u2 = — fw1 and letting u1 —* +oo, drives J to — oo. The
Stackelberg solution We now elaborate on the Stackelberg solutions of
quadratic games of type (4.23) but with N — 2, and PI acting as the leader. We
first note that since the 30This result may fail to hold true for team problems
with strictly convex but nondifferen- tiable kernels (see Problem 10, Section
4.8).
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J1 is strictly convex in ul, by Prop. 4.3 we can confine our investigation of an
equilibrium solution to the class of pure strategies. Then, to every announced
strategy u1 of PI, the follower's unique response will be as given by (4.25)
with N = 2, i = 2: u2 = -{Rl2)-l[B l̂ul+rl). (4.42) Now, to determine the
Stackelberg strategy of the leader, we have to minimize J1 over U1 and subject
to the constraint imposed by the reaction of the follower. Since the reaction
curve gives u2 uniquely in terms of u1, this constraint can best be handled by
substitution of (4.42) in J1 and by minimization of the resulting functional (to
be denoted by J1) over U1. To this end, we first determine J1: JV) = \ux'RW +\
[RW +rl)\Rl2)-lR\2(Rl2)-\RW +r\] -u1'R\2(R222)-1lR221u1+r22}+u1'rl -
[ l̂U1+r22]'(i?|2)-1r'+C1. For the minimum of J1 over U1 to be unique, we
have to impose a strict convexity condition on J1. Because of the quadratic
structure of J1, this condition amounts to having the coefficient matrix of the
quadratic term in u1 positive definite, which is ^n + ^21 (-^22)" R22(R22) ^21
~~ -^12(^22) ^21 (4 43) -R21 (R22)~ Rn > 0. Under this condition, the unique
minimizing solution can be obtained by setting the gradient of J1 equal to zero,
which yields W1 = -[-Rll + ^2l(^22)-1^22(-^22)_1^21 ~ •R12(-^22)_1-^21 -
R'iARhr'RWr'iRliiRhr'RkiRh)-1  ̂(4.44) -R\2{R222)-lrl+r\-R^{Rl2)-'r\}.
Proposition 4.7 Under condition (4-43), the two-person version of the
quadratic game (4-23) admits a unique Stackelberg strategy for the leader,
which is given by (4-44)- The follower's unique response is then given by (4-
4%)- Remark 4.8 The reader can easily verify that a sufficient condition for
condition (4.43) is strict convexity of J1 on the product space U1 x U2. □ The
consistent conjectural variations equilibrium Again working with the two-
player version of the quadratic game defined by the cost functions (4.23), but
with i?Jx = / and R\2 = I for simplicity in notation (and without any loss of



generality), let us "conjecture" linear reaction functions: 2;V) = Km**!*, j?i,i,j
= 1,2, (4.45)
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matrix, and fc, G IRmi. Substituting this into (4.21) we arrive at u1 + R\2u2 +
r\ + K'2{R\2ul + R\2u2 + r\) = 0, for u1 = Kxu2 + fc1( u2 + R^u1 + r\ + K[
{R\iU2 + R2nv} + r2) = 0, for u2 = K2ux + k2. These subsequently lead to the
pair of equations {Ki + K&lt'K! + R\2 + K2R\2)u2 + k1+ r\ + K'2r\ + K'^h = 0,
(Ki + K'iRliKi + Rli + KiRl^+h + rl + Kirj + K1Rl1'k2 = 0, which are
required to hold for all {ul,u2) € Rmi x Rm2. A sufficient condition would be
the existence of K\, K2, fci, k2 that satisfy R\2, (4.46) R221, (4.47) r\-K'2rl
(4.48) r2 - K[r2. (4.49) Note that what we have here is a pair of quadratic
equations for K\ and K2, and after Ki and K2 are determined the next two
linear equations yield the corresponding choices for fci and k2. This shows
that a CCVE equilibrium in the form of linear reaction functions is plausible in
the quadratic case, but existence is by no means guaranteed. For some
numerical results on the scalar (R ) version of this problem we refer the reader
to Ba§ar, Turnovsky and D'Orey (1986), and Turnovsky, Ba§arand D'Orey
(1988). Applications in microeconomics We now consider specific
applications of the quadratic nonzero-sum game theory in microeconomics, in
establishing economic equilibria in certain types of markets. The markets we
have in mind are defined with respect to a specific good or a collection of
goods, and an individual participant (player) in these markets is either a buyer
or a seller. The traded goods are produced by the seller(s) and are consumed
by the buyer(s). An important characteristic of such markets is the number of
participants involved. Markets in which there are a large number of both
buyers and sellers, and in which each participant is involved with only a
negligible fraction of the transactions, are called (bilaterally) competitive. A
key characteristic of such competitive markets is that no single participant can,
by his own actions, have a noticeable effect on the prices at which the
transactions take place. There is a market price, and no seller needs to sell for
less, and no buyer needs to pay more. Our interest in the sequel will be on the
so-called oligopoly markets, which comprise a few sellers and many
competitive buyers. In the special case of (I + K^  ̂+ K  ̂= (I + KiRl^+KlR2! =
(I + K^Rl^h = {I + K[Rli)k2 =
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is known as a duopoly. In an oligopoly, the buyers cannot influence the price or
quantities offered, and it is assumed that the collective behavior of the buyers
is fixed and known. The sellers, however, have an influence via the price they
ask and the output (production) they realize. Example 4.5 This example refers
to what is known as a Cournot duopoly situation. There are two firms with
identical products, which operate in a market in which the market demand
function is known. The demand function relates the unit price of the product to
the total quantity offered by the firms. It is then assumed that the whole
production is sold at the prevailing price dictated by the demand function. Let
ql denote the production level of firm i (Pi), i — 1,2, and p denote the price of
the commodity. Then, assuming a linear structure for the market demand curve,
we have the relation p = a-{3(q1+q2), where a and (3 are positive constants
known to both firms. Furthermore, if we assign quadratic production costs to
both firms, the profit functions are given by P1 = q'p-hiq1)2, P2 = q2P-
k2(q2)2, for PI and P2, respectively, where k\, k2 are nonnegative constants. PI
wants to maximize P1 and P2 wants to maximize P2. Under the stipulation that
the firms act rationally and that there is no explicit collusion, the Nash
equilibrium concept seems to fit rather well within this framework. Formulated
as a nonzero- sum game, the Nash equilibrium solution of this decision
problem is ! a(/3 + 2k2) 2_ a((3 + 2ki) q ~ 3/324-4A;1fc2 + ^{ky+k2); Q ~~
3/32 + 4ktk2 + 4/3(fci + k2)' which has been obtained by solving equation
(4.25). The corresponding (Nash equilibrium) level of price is =
a{!32+2/3(k1+k2)+4k1k2) P 3p2 + Ahk2 + i/3(k! + k2) To obtain the
Stackelberg solution with, for instance, PI as the leader, we first compute the
reaction curve of P2, q2 = (a-Pq1)/[2(P + k2)}, and then substitute this into Pl
and maximize the resulting expression over ql. The result is the following
quantity level for the leader: r a{p + 2k2) q ~~ 2[P(p + 2k2) + 2{P + k2)kiy
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follower, and the price level are, respectively, 2. a 01 + 2/3k2 + 4fciQ3 + k2)
~ 4(/3 + fc2) ' f3(/3 + 2fc2) + 2(0 + k2)h ' a((3 + 2k2) 4(/3 + fc2)fci+/3(/3 +
2fc2) P 4{f3 + k2) 0(0 + 2k2) + 2(p + k2)ki' The CCV solution can be obtained
by making direct use of (4.46)-(4.49). For simplicity in computation, let us
consider the symmetric case where k\ = k2 = k, and let /3 = f3/k. Then, (4.46)-
(4.47) admit two pairs of solutions: ±y/l + 2P-{l + 0) Kl = K2 = - with the
corresponding values of fci and k2 from (4.48)-(4.49) being a l+P^yJl + 20
These two determine completely the optimum reaction functions (4.45) (in the



sense of CCVE). Now letting q1 =Kiq2 +ki, q2 = K2ql + k2 and solving for q1
and q2, we obtain the following unique quantity levels for this symmetric
duopoly under the CCVE: 1=a2= ccv = a(1+ )̂(1+2^Tv/l+2 )̂ q q q 2/3(2/3 +
1) □ Example 4.6 This is a somewhat more sophisticated, and extended
version of Example 4.5. There will be N firms or players in the oligopoly
problem to be defined, and it will be possible for the price of the product to
vary from one firm to another. Let us first introduce the following notation: P%
— the profit for the ith firm (Pi), p* — the price per unit product charged by
Pi, p = average price = (J2iPl) /-W> f3 = price sensitivity of overall demand,
V = the price at which demand is zero, c = fixed costs per unit product of Pi, dl
= demand for the product of the ith firm. Suppose that demand and price of the
product of Pi are related through the relation t^^&V-J-ltf-p)], (4.50)
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constant, or equivalently through p'=(,+iH)r(v+*i>- î- <45i) where we have
replaced dl with ql since the quantity produced by each firm is assumed to be
equal to the demand for the product of that firm under the price dictated by this
relation. The profit of Pi can then be written as Pl = (p* - c)d\ where dl is to be
interpreted as being equal to q% if (4.51) is used. Note that in this example all
firms enter symmetrically into the model. One could incorporate an asymmetry
by including weighting factors in the determination of the average price p or by
making c firm-dependent. This modified model would definitely be more
realistic; however, the structural properties of equilibria are not that sensitive
to such changes, and therefore we have avoided such a more complicated
model for the sake of simplicity in exposition. For this example, we again seek
the Nash equilibrium solution; but, from the model, it is not clear at the outset
which set of variables should be taken as the decision (action) variables: the
prices or the quantities? We shall elaborate here on both possibilities. In the
so-called "price game" the Nash solution must satisfy the set of equations dPi
— =0, J€N, (4.52) and in the so-called "quantity game" the first-order
conditions for Nash equilibrium are dPi w=0, ieN. (4.53) In the price game it
is assumed that the demands are determined via the prices according to (4.50),
whereas in the quantity game it is assumed that the prices satisfy (4.51). In both
cases the profit function of each firm is quadratic in the decision variables, and
strictly concave in his own decision variable, and therefore it suffices to
consider only the first order conditions. For the price game, the set of
equations (4.52) becomes d\P\...,pN) + (p ĉ)ddl{pldp-pN)=0, *€N, and since



the pl,s appear symmetrically in this set of equations, we may substitute p = p1
= p2 = ■ ■ ■ = pN and solve for p, to obtain >v±g+*?£, !6N. (4,4) 2 + 1V-7
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the following equilibrium values for the demands are obtained: dl = ... =
d*Ad~=£.l± .̂(v_c)i (4.55) Now, for the quantity game, the set of equations
(4.53) can be rewritten as pi(q\...,gN)-c + qidpi{ql--'qN)=0, i€N. (4.56) In
order to expresspl as a function of q1,... ,qN only, we must solve (4.51), which
as it stands is an implicit equation in the variables pl. Because of symmetry,
the solution should have the form pl = ai +a2dl+a3 Y ĵ t̂i $> where the
coefficients ajt, k = 1,2,3, do not depend on i. Some analysis then leads to
Because of symmetry reasons, in the equilibrium situation we have p = p1 = • •
■ = pN and q = q1 = ■■■ = qN and hence P = p* = V- ,̂ *€N. (4.58) Now
evaluating the quantity dpl/dql from (4.57), we obtain dp* N N + 7 d<t P N(l +
7) , i € N. (4.59) Substitution of (4.58) and (4.59) into (4.56) yields the
following unique equilibrium value for ql: If this value is further substituted
into (4.58), we obtain ,_^m+7)+ (̂1+7) ieN (461) P ~~P 2Ar + 7(l + AT) ' i
£iy- ^■bl) A comparison of (4.54) with (4.61) readily yields the conclusion
that the Nash equilibria of price and quantity games are not the same. For the
trivial game with only one firm, i.e., N = 1, however, we obtain in both cases
the same result, which is
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illustration of the effect of a coordinate transformation on Nash equilibria.
Also, in the limit as N —+ oo, the corresponding limiting equilibrium values
of p and q(d) in both games are again the same 2 + 7 For 1 < N < oo, however,
the Nash equilibria differ, in spite of the fact that the economic background in
both models is the same. Therefore, it is important to know a priori in this
market as to which variable is going to be adopted as the decision variable.
The price game with its equilibrium is sometimes named after Edgeworth
(1925), whereas the quantity game is named after Cournot who first suggested
it in the nineteenth century (Cournot, 1838). We now present a graphical
explanation for occurrence of different Nash equilibria when different
variables are taken as decision variables in the same model. Suppose that the
iso-cost curves for a nonzero-sum game are as depicted in Fig. 4.2, which have
been redrawn in Fig. 4.9, where the decision variables are denoted by p1 and
p2, and the reaction curves corresponding to these decision variables are



shown as l\ and I2, respectively. If a transformation to a new set of decision
variables (̂p1,^2), d2(p1,p2) is made, then it should be apparent from the
figure that we obtain different reaction curves mj and mi and hence a different
Nash solution. As a specific example, in Fig. 4.9 we have chosen d1 = p1, d2
= p1 + p2, in which case mi = U; but since m  ̂  ̂h Nash equilibrium becomes a
variant of the coordinate transformation. It should be noted, however, that if the
transformation is of the form d1(p1), d2(p2), then the Nash equilibrium
remains invariant. □ 4.7 Braess Paradox In this section we present a nonzero-
sum game for which the Nash equilibrium solution leads to a surprising
phenomenon, called the "Braess paradox", after Dietrich Braess who was the
first to publish about it (Braess, 1968). Braess' field of application concerned
traffic behavior, but the Braess paradox has since

204 T. BA§AR AND G. J. OLSDER been observed in other fields of
application as well (Cohen and Horowitz, 1991). We will more or less follow
here Braess' original paper. B D Figure 4.10: The routes of the Braess
paradox. Consider a network of roads as given in Fig. 4.10. All these roads
allow only one-way traffic, as indicated by the arrows. The drivers on this
network all want to go from point B to point E. They have to choose one of the
three possible routes: • route 1 consists of two segments: from B via C to E; •
route 2 consists of two segments: from B via D to E; • route 3 consists of three
segments: from B via C and D to E. There are many cars and this leads to
congestion on the roads. The time needed to drive along a segment depends on
the intensity i, i.e., the number of cars per time unit that choose this segment.
Measurements have shown that the time duration t needed to traverse each
segment is as follows: along along along along segment BC: segment BD:
segment CE: segment CD: along segment DE: t = t = t = t = t = ■ 10 x i; -- 50-
M; ■50 + i; '-10 + i; ■- 10 x i. Suppose that Xj drivers choose route j, j —
1,2,3. The total time needed to go from B to E is then • along route 1: 10 x (x\ +
2:3) -I- 50 + x\\ • along route 2: 50 4- £2 + 10 x (x2 + x3); • along route 3: 10 x
(xi + £3) + 10 + 2:3 + 10 x (x2 + 2:3).
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individually (and independently) choose that route for which the total driving
time is the smallest. At equilibrium, this will lead to all three total driving
times being equal. If we pick an arbitrary normalization, say x\ + X2 + £3 = 6
(this normalization leads automatically to integer-valued solutions), then these



driving times being equal leads to the unique Nash solution xi = x2 = £3 = 2,
and the total driving time along each of the three routes equals 92 time units.
Now reconsider the problem described above with one change: segment CD is
not available (due to roadworks) and the drivers must now choose between
route 1 and route 2 only. The unique Nash solution in this new game turns out
to be x\ — X2 — 3 (x3 = 0) and the total driving time along each of the two
routes equals 83 time units. Apparently, reducing the number of possibilities
has led to a uniformly better result (the driving time for each driver being now
83 rather than 92). Or, if we reason in the other direction, increasing capacity
leads to a worse equilibrium—a rather counter-intuitive result (Cohen, 1988).
If in the original problem, with three routes available, all drivers together
would agree upon minimizing the maximum of the three total driving times, i.e.,
minimizing the maximum of the three expressions above for the total driving
time, then the result turns out to be (the elementary calculation is left to the
reader) x\ — x  ̂— 3, £3 = 0. Hence in this group optimum, equivalently Pareto
optimum (see Chapter 1), route 3 is not used at all even though it is available.
However, this solution is cheating-prone as each individual driver would be
tempted to use route 3, since if he were the only one doing so, his total driving
time would be reduced to approximately 70. This, of course, is not an
equilibrium situation. 4.8 Problems 1. Solve the following zero-sum semi-
infinite matrix games: P2 0 0 1 -3/2 1 -4/3 1 -5/4 P2 3/4 | 8/9 1 0 15/16 0
24/25 0 2. The kernel of a zero-sum game on the unit square is given by
J{ul,u2) — (u1)3 — Zulu2 + (u2)3. Determine the pure or mixed saddle-point
strategies. (Hint: Note that J is strictly convex in u1, and that for any u1 the
maximum value of J with respect to u2 is attained either at u2 = 0 or at u2 = l.)
3. Consider the zero-sum continuous-kernel game on the unit square, defined by
J(u1,u2) = (u1 — u2)2 — a{u2)2, where a is a scalar parameter. Determine
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when (i) 1 < a < 2 and (ii) 0 < a<l. Consider the following zero-sum game,
known as a duel. Two men, starting at t = 0, walk toward each other at such a
speed that they meet each other at t = 1 if nothing intervenes. Each one has a
pistol with exactly one bullet, and may fire it at any time t e [0,1]. If one of
them hits the other, the duel is immediately over, and the one who has fired
successfully is declared the winner. If neither one fires successfully or if both
fire simultaneously and successfully, then the duel becomes a stand-off. The
probability of a hit after firing is inversely proportional with the distance



between the two duelists, and assuming a uniform distribution we can let this
probability (of hitting the other player) to be t at time t £ [0,1]. This is a
continuous-time version of the duel described in Section 2.8. Consider now the
following two versions of the duel: (i) Silent duel. Assuming that the players
do not know whether their opponents have fired (unless, of course, a particular
player is hit), first show that an appropriate zero-sum game modeling this
(silent) duel is one with the kernel -v}u2-ul+u2, u1 <u2, J(u\u2) = { 0, u1 =u2,
+u1u2 - u1 + u2, u1 > u2, where u1 and u2 are the instants at which the pistols
are fired by PI and P2, respectively. Then, noting that this is a skew-symmetric
game (a la Problem 9 of Section 2.9), show that its value in mixed strategies
(Vm) is zero, and the corresponding mixed saddle-point policies are: , («) = !*
(«)=( i(9_(l)2)j i<u<i • (ii) Noisy duel. Now consider the case where the
pistols are noisy, i.e., a player knows whether his opponent has already fired
or not. Show that this version of the duel game can be described by the kernel
l-2u\ u1 <u2, J(u\u2) = { 0, u1 =u2, 2u2-l, u1 >u2, and that it admits a saddle
point in pure strategies, given by {u''=\,u2'=\). 5. Consider the two-person
nonzero-sum game with cost functions J\u,v) - [u(i - u - vai)T01}-\ J2(u, v) =
[v(x -v- ua2)T02]-\
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action variables of PI and P2, respectively, belonging to the coupled constraint
set U = {u > 0.01, v > 0.01, u + vai < x, v + ua2 < x}, and x, 01,02 are positive
constants, and r,/3i,^2 are each positive and smaller than 1. (i) Using Thm. 4.4,
show that the game admits a pure-strategy Nash equilibrium. (ii) Using Prop.
4.1, obtain a set of sufficient conditions on the six parameters characterizing
the game, under which the pure-strategy Nash equilibrium is unique. Show that
this condition is satisfied for the set of values: x = 1.259, ai = 1.1, o2 = 1.2, ft
= 0.8, /32 = 0.48, r = 0.2852. (iii) For the same set of parameter values given
above, obtain the unique Nash equilibrium solution. Is it (globally) stable? If
yes, can you obtain the solution using an iterative procedure? Partial answer
for part (iii): The Nash equilibrium solution is (u* =Q.3,v* =0.9). 6. Prove the
statement of Remark 4.1, and find the range of values of the scalar parameter e
for which the Nash equilibrium solution of the following game (with weakly
coupled players) can be obtained using the Gauss-Seidel readjustment scheme
Jl{u\u2) = u^Qu1 +u1'r + e{u1'u1 +u1'u2), t2/ 1 2\ 2'/-i 2 , 2' i 2' 2 , l' 2\ J (u
,u) = u Qu +u r - e{u u +u u ), where 7. Consider the two-person Stackelberg
game defined by the cost functions J1 = a2(l + u1 + u2)2 + (u1)2, t = l,2, where



a*, i = 1,2, are scalar parameters; the decision variables u1 and u2 are also
scalars. For what values of (01,0:2) is the game (i) concurrent, (ii)
nonconcurrent, or (iii) stalemate? 8. Consider the two-person Stackelberg
game, with PI as the leader, defined on the unit square, and with the cost
functions J1 = (̂l-u'ju^ -̂lj+u1, J2 = ((u -̂u2)2,
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values of (3 and k does a mixed Stackelberg solution for the leader yield a
lower average cost for him than the pure Stackelberg solution? 9. In a three-
person game with three levels of hierarchy, first PI announces his strategy and
dictates it on both P2 and P3; subsequently P2 announces his strategy and
dictates it on P3. The cost functions are given by J1 = (* - 2)2 + (u1)2, J2 = (x-
1)2 + (U2)2, J3 = (x - 3)2 + (u3)2, where x = u1 + u2 + u3 and ul 6 R, i =
1,2,3. Determine the hierarchical equilibrium solution of this game. Compare
this with the Nash equilibrium solution of a nonzero-sum game having the same
cost structure. In which one (the three-level hierarchy or the Nash game) does
PI attain a better performance? 10. Consider a two-person game with J1 = J2 =
J. Show that the cost function J : R2 —> R defined by / (l-uY + C"1)2. v>>u2,
J-\ (l-ui)2 + (u2)2, ux<u2, is strictly convex on R2. What are the reaction sets
jR2(ux) and Jl ît2)? Prove that infinitely many person-by-person (pbp) optimal
solutions exist, but that the team solution is unique. Now prove that if J is
quadratic and strictly convex, the reaction curves can have at most one point in
common, and therefore the pbp optimal solution and the team solution are
unique and identical. 11. The purpose of this problem is to show that the notion
of stability of Nash equilibrium, as introduced in Def. 4.5, indeed depends on
the particular scheme used when the number of players is three or more.
Consider the scalar three-person game with the cost functions J1 = (u1)2 +
2eu1u2+3eu1u3-2u1, J2 = eu2u1+(u2)2+eu2u3-2u2, J3 = €u3u1+€u3u2 +
(u3)2-2u3, where e is a scalar parameter. The following two numerical
schemes for the determination of Nash equilibrium correspond to (4.5) and
(4.6), respectively: Scheme 1 : ujj.+ 1 = arg mm J1 (u, ul, ul), u ul+i = ar§
mmJ2(ul,u,u3k), u ufc+i = arg min J3(ufc,Ufc,u), U
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min J1(u, u ,̂ u )̂, "fc+i = arg minJ2(u^+1,u,u )̂, ul+i = arS mjn^3(ufc+i'ufc+i'u)'
where, by a slight abuse of notation, ulk denotes the value of ul at the fcth step
of iteration. (i) Prove that, for e = 0.36, if u\ is calculated according to scheme



1 (which is the Cournot-Jacobi iteration), the sequences {ulk}, i = 1,2,3, do
not converge, whereas they do converge if calculated according to scheme 2
(which is a particular Gauss-Seidel iteration). (ii) Obtain the complete range
of values of e for which (a) scheme 1 is convergent, (6) scheme 2 is
convergent. (iii) Repeat (ii) for the following variation of scheme 2: Scheme 3
: ul+i = arg mm J1 (u,uk+1,uk), "fe+i =arS minJ2(4,u,u|), u "A+i =arg mm
J3(ulk+l,ul+l,u), 12. Consider the following "relaxed" version of scheme 1 in
Problem 11, where a,/3,7 are the relaxation parameters (a la Section 4.6) yet to
be chosen: Relaxed Scheme 1 : ui+i = au\ + (1 - a) arg min Jl(u,u\,u\), u u2h+1
= 0ul + (1-0) arg min J2(u{,u, u3k), U "fe+i = 7"fc + (1 - 7) arg min J3(u\, u\,
u). Let e = 0.36, and show that there exist nonzero values of a, 0,7 such that the
sequences generated by the scheme above converge. 13. Relaxation algorithms
of the type used in Problem 12 above can also be used in the computation of
saddle-point solutions in zero-sum games, not only to assure convergence of a
particular scheme, but also to improve the speed of convergence to
equilibrium. To explore this possibility, consider the scalar zero-sum two-
person game with reaction functions ,1, x v ,2, \ 1-0.608m u2 + 0.1 ' w 1
-0.608m2' (i) First consider the Gauss-Seidel update scheme, written as:
Mfc+i = (̂vh), vk+i = l2(uk+i); vq arbitrarily chosen, k — 0,1,....
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as vo — 0, the sequence generated by this algorithm converges (to the nearest
six figures) to the unique saddle-point solution (u* = 0.9547778, v* =
0.94110625) in approximately 120 iterations. (ii) Now consider the "relaxed"
version: ufc+i = auk + (1 - a)ll{vk), vk+i = /3vk + (1 - f3)l2(uk+1); vq
arbitrarily chosen, k = 0,1,... and show by numerical experimentation that by
choosing the values of a and /3 appropriately the speed of convergence can be
improved significantly. Consider, for example, the values of a = l,/3 = 0.67, for
which the improvement is by a magnitude of 10. 14. Consider the "price" and
"quantity" models of oligopoly as introduced in Example 4.6, but with the roles
of the players such that PI is the leader and P2,..., PN are the followers.
Further assume that the followers play according to the Nash solution concept
among themselves. Obtain the solution of this "leader-followers" game, and
study its asymptotic properties as the number of followers goes to infinity. 15.
Consider a two-person nonzero-sum game with the cost functions defined by J1
= (u1)2 + (u2)2; J2 = (u1 - l)2 + (u2 - l)2. (i) Determine the Nash solution, the
consistent conjectural variations solution and the Stackelberg solution with PI



as the leader. (ii) Now assume that PI has access to the action variable u2 of
P2, and can announce a strategy in the form u1 =au2 +0, where a and /3 are
constants yet to be determined. Assuming that P2 is a rational player seeking to
minimize his own cost function J2, how should PI choose the values for a and
0? Show that the resulting value of J1 is its global minimum, i.e., zero. Provide
a graphical interpretation for this result. 4.9 Notes Section 4.2. The concept of
e equilibrium solution is as old as the concept of equilibrium solution itself.
The results presented in this section are standard, and our proof of Thm. 4.2
follows closely the one given in Burger (1966) where additional results on
equilibrium solutions can be found. Corollary 4.1, which follows from Thm.
4.2 in our case, was originally proven by Wald (1945) in a different way.
More recently, the concept of e equilibrium solution has received attention in
the works of Tijs (1975) and Rupp (1977).
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of a reaction curve (also called reaction function) was first introduced in an
economics context and goes as far back as 1838, to the original work of
Cournot. There are several results in the literature, known as minimax
theorems, which establish existence of the (saddle-point) value in pure
strategies under different conditions on Ul, U2 and J. Thoerem 4.5 provides
only one set of conditions which are sufficient for existence of a value. Some
other minimax theorems have been given (in more general spaces) by Sion
(1958), Fan (1953), Blackwell and Girshick (1954), Balakrishnan (1976) and
Bensoussan (1971). The result on the existence of Nash equilibria in pure
strategies (i.e., Thm. 4.3) is due to Nikaido and Isoda (1955), and extensions
to mixed strategies were first considered by Ville (1938). The extension of
Thm. 4.3 to coupled constraint sets (i.e., Thm. 4.4) is due to Rosen (1965),
who also introduces a dynamic (differential equation-based) model for the
computation of unique stable equilibrium. For extensions of these existence
results to more general topological spaces, with applications to economics,
see Aubin (1980). The discretization procedure alluded to in the proof of Thm.
4.7, in the text, suggests a possible method for obtaining mixed Nash equilibria
of continuous-kernel games in an approximate way, if an explicit derivation is
not possible. In this case, one has to solve for mixed Nash equilibria of only
finite matrix games, with the size of these matrices determined by the degree of
approximation desired. Section 4.4. The Stackelberg solution concept was first
introduced in economics through the work of H. Von Stackelberg in the early



1900s (cf. Von Stackelberg, 1934). But the initial formulation involved a
definition in terms of reaction curves, with the generalization to nonunique
reaction curves (or the so-called reaction sets) being relatively recent (cf.
Ba§arand Selbuz, 1979a; Leitmann, 1978). A different version of Thm. 4.8,
which accounts only for unique reaction curves, was given by Simaan and
Cruz, Jr (1973b), but the more general version given here is due to Bas.arand
Olsder (1980a). The latter reference is also the first source for extension to
mixed strategies. A classification of different static Stackelberg solutions as
given here is from Ba§ar(1973), but the concept of "relative leadership" goes
as far back as the original work of Von Stackelberg (1934). See also Ho and
Olsder (1981). Section 4.5. The material in this section is based on Bas.ar
(1986a). Other, more restrictive definitions of CCVE can be found in
Bresnahan (1981), and Kamien and Schwartz (1983). See also Olsder (1987)
for another perspective on CCVE. Section 4.6. Quadratic games have attracted
considerable attention in the literature partly because of analytic tractability
(reaction functions are always affine). For further discussion on asynchronous
implementation of Gauss-Seidel and Jacobi algorithms, and their generalized
versions, for two as well as three-player games we refer the reader to
Ba§ar(1987). Some other selective references which deal with asynchronous
algorithms in other contexts are Bertsekas and Tsitsiklis (1989a,b, 1991) and
Tsitsik- lis (1987, 1989). Two good sources for economic applications of
(quadratic) games are Friedman (1977) and Case (1979). Example 4.5 is the
so-called Cournot's quantity model and can be found in the original work of
Cournot (1838). Several later publications have used this model in one way or
another (see e.g., Intriligator (1971) and Ba§arand Ho (1974)). Example 4.6 is
a simplified version of a model presented in Levitan and Shubik (1971), where
the authors also provide a simulation study on some data obtained from the
automobile industry in the USA.
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after Braess who apparently was the first to write about a paradoxal
phenomenon in traffic control (Braess, 1968). This phenomenon can also occur
in other fields of application such as electric networks and mechanical
constructions (Cohen and Horowitz, 1991). Section 4.8. Problem 4 can be
found in Karlin (1959). Extensions of the game of timing involve the cases of
PI having m bullets and P2 having n bullets, where m and n are positive
integers. The general silent (m, n) case was solved by Restrepo (1957) and the



general noisy duel with m and n bullets was solved by Fox and Kimeldorf
(1969). The case of PI having m noisy bullets and P2 having n silent bullets
remains unsolved for m > 1. Problem 5 is taken from Li and Bas.ar (1987),
which the reader can consult with motivation and more theoretical as well as
numerical results. A theoretical development for weakly coupled games, in
which context Problems 11 and 12 arise, can be found in Srikant and
Ba§ar(1992). Problem 15 (ii) exhibits a dynamic information structure and can
therefore also be viewed as a dynamic game; for more details on such
Stackelberg games the reader is referred to Chapter 7 of this book, and in
particular to Section 7.4.

Part II
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Chapter 5 General Formulation of Infinite Dynamic Games 5.1 Introduction
This chapter provides a general formulation and some background material for
the class of infinite dynamic games to be studied in the remaining chapters of
the book. In these games, the action sets of the players comprise an infinite
number (in fact a continuum) of elements (alternatives), and the players gain
some dynamic information throughout the decision process. Moreover, such
games are defined either in discrete time, in which case there exists a finite (or
at most a countable) number of levels of play, or in continuous time, which
corresponds to a continuum of levels of play. Quite analogous to finite dynamic
games, infinite dynamic games can also be formulated in extensive form which,
however, does not lead to a (finite) tree structure, firstly because the action
sets of the players are not finite, and secondly because of existence of a
continuum of levels of play if the game is defined in continuous time. Instead,
the extensive form of an infinite dynamic game involves a difference (in
discrete time) or a differential (in continuous time) equation which describes
the evolution of the underlying decision process. In other words, possible
paths of action are not determined by following the branches of a tree structure
(as in the finite case) but by the solutions of these functional equations which
we also call "state equations". Furthermore, the information sets, in such an
extensive formulation, are defined as subsets of some infinite sets on which
some further structure is imposed (such as Borel subsets). A precise
formulation which takes into account all these extensions as well as the



possibility of chance moves is provided in Section 5.2 for discrete- time
problems and in Section 5.3 for game problems defined in continuous time. In
a discrete-time dynamic game, every player acts only at discrete instants of
time, whereas in the continuous-time formulation the players act throughout a
time interval which is either fixed a priori or determined by the rules of 215
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For finite games, the case in which the duration of the game is finite, but not
fixed a priori, has already been included in the extensive tree formulation of
Chapters 2 and 3. These chapters, in fact, included examples of multi-act
games wherein the number of times a player acts is explicitly dependent on the
actions of some other player(s)— and these examples have indicated that such
decision problems do not require a separate treatment, and they can be handled
by making use of the theory developed for multi-act games with an a priori
fixed number of levels. In infinite dynamic games, however, an a priori fixed
upper bound on the duration may sometimes be lacking, in which case
"termination" of the play becomes a more delicate issue, as already shown in
Section 2.7. Therefore, we devote a portion of Section 5.3 to a discussion on
this topic, which will be useful later in Chapter 8. Even though we shall not be
dealing, in this book, with mixed and behavioral strategies in infinite dynamic
games, we devote Section 5.4 to a brief discussion on this topic, mainly to
familiarize the reader with the difficulties encountered in extending these
notions from the finite to the infinite case, and to point out the direction along
which such an extension would be possible. Section 5.5 deals with certain
standard techniques of one-person single-goal optimization and, more
specifically, with optimal control problems. Our objective in including such a
section is twofold; first, to introduce the reader to our notation and terminology
for the remaining portions of the book, and second, to summarize some of the
tools for one-person optimization problems which will be heavily employed in
subsequent chapters in the derivation of noncooperative equilibria of infinite
dynamic games. Section 5.6 deals with the notion of "representations of
strategies on trajectories", and the issue of "time consistency", both of which
are of prime importance in infinite dynamic games, as it will become apparent
in Chapters 6 and 7. Finally, Section 5.7 deals with so-called viscosity
solutions. An important standard technique for continuous-time problems, as
described in Section 5.5, is the solution of a partial differential equation.
Among all possible solutions of this equation, the viscosity solution is a



particular one; it is quite often unique and has a clear interpretation in terms of
a generalized optimal control problem to which some stochastic perturbations
have been added. 5.2 Discrete-Time Infinite Dynamic Games In order to
motivate the formulation of a discrete-time infinite dynamic game in extensive
form, we now first introduce an alternative to the tree model of finite dynamic
games—the so-called loop model. To this end, consider an TV-person finite
dynamic game with strategy sets {Tl;i e N} and with decision (action) vectors
{V € U';i € N}, where the fcth block component (ulk) of ul designates Pi's
action at the fcth level (stage) of the game and no chance moves are allowed.
Now, if such a finite dynamic game is defined in extensive form (cf. Def. 3.10),
then for any given TV-tuple of strategies {7* € Tl;i e N} the actions of the
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relations u^ytf), *€N, (5.1) where rf denotes the information set of Pi.
Moreover, since each rf is completely determined by the actions of the players,
there exists a point-to-set mapping31 gl : Ul x U2 x • ■ ■ x UN -> N{ (ieN)
such that rf = gl(u\ ...,uN) (ieN) and when substituted into (5.1), yields the
"loop" relation ui=1i(gi(u\...,ulf))^pi(u1,...,uN), *€N. (5.2) This clearly
indicates that, for a given strategy N-tuple, the actions of the players are
completely determined through the solution of a set of simultaneous equations
which admits a unique solution under the requirements of Kuhn's extensive
form (Kuhn, 1953). If the cost function of Pi is defined on the action spaces, as
L1 : U1 x U2 x ■ ■ ■ x UN —» R, then substitution of the solution of (5.2) into
V yields L\ul,..., uN ) as the cost incurred to Pi under the strategy A -̂tuple {7*
e P; i £ N}. If the cost function is instead defined on the strategy spaces, as J* :
T1 x T2 x • • • x TN —> R, then we clearly have the relation J'i'y1, ■ ■ ■ ,~
(N) = Ll{ul,... ,uN) (i £ N). Now, if a finite dynamic game is described through
a set of equations of the form (5.2), with {pl;i € N} belonging to an
appropriately specified class, together with an N-tuple of cost functions {Ll;i £
N}, then we call this a loop model for the dynamic game (Witsenhausen,
1971a, 1975b). The above discussion has already displayed the steps involved
in going from a tree model to a loop model in finite deterministic dynamic
games. Conversely, it is also possible to start with a loop model and derive a
tree model out of that, provided that the functions pl : U1 x U2 x • • • x UN —>
Ul (i e N) are restricted to a suitable class satisfying conditions like causality,
unique solvability of the loop equation (5.2), etc. In other words, if the sets Pl
(i € N) are chosen properly, then the set of equations ui=pi(u1,...,uN), pl£P\



ieN, (5.3) together with the cost structure {Ll;i € N} leads to a tree structure
that satisfies the requirements of Def. 3.10. If the finite dynamic game under
consideration also incorporates a chance move, with possible alternatives for
nature being u> € Q, then the loop equation (5.3) will accordingly have to be
replaced by ui=pi(u1,...,uAr,w), p'eP1, weft, ieN, (5.4) where, by an abuse of
notation, we again let Pl be the class of all permissible mappings pl : U1 x U2
x ■ ■ ■ x UN x ft —> Ul. The solution of (5.4) will now be a function of w;
and when this is substituted into the cost function Ll : U1 x ■ ■ ■ x UN x ft —>
R and expectation is taken over the statistics of uj, the resulting quantity
determines the corresponding expected loss to Pi. 31Here iV* denotes the set
of all rf as in Def. 3.11.
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in discrete time, the tree model of Def. 3.10 is not suitable since it cannot
accommodate infinite action sets. However, the loop model defined by
relations such as (5.3) does not impose such a restriction on the action sets; in
other words, in the loop model we can take each Ul, to which the action
variable ul belongs, to be an infinite set. Hence, let us now start with a set of
equations of the form (5.3) with [7* (i G N) taken as infinite sets. Furthermore
let us decompose u% into K blocks such that, considered as a column vector,
v? = [u[',U2,...,uiK']', i€N, (5.5) where K is an integer denoting the maximum
number of stages (levels) in the game,32 and uk denotes the action (decision or
control) variable of Pi corresponding to his move during the fcth stage of the
game. In accordance with this decomposition, let us decompose each p% G Pl
in its range space, so that (5.3) can equivaiently be written as ui=Pi(u1,...,uN),
pie Pi, eeN,fceK. (5.6) Under the causality assumption which requires u\ to be
a function of only the past actions of the players, (5.6) can equivaiently be
written as (by an abuse of notation) «t =P*(«i.---.«fc-ii"-;«ir.---.«fcr-i). Pk ePl,
ieN,keK. (5.7) By following an analysis parallel to the one used in system
theory in going from input-output relations for systems to state space models
(Zadeh, 1969), we now assume that Pk is structured in such a way that there
exist sets T\, Yfel, X (i € N,fc G K), with the latter two being finite
dimensional, and functions fk : X x Ul x • • • x U? -> X, h{ : X -► Ykl (i G N,
k <= K), and for each p\ e Pl (i G N, k € K) there exists a 7jf G Y% (i G N, k
G K), such that (5.7) can equivaiently be written as «£=7Jfa£), ieN,keK, (5.8)
where rfk is a sub collect ion of {y{,■ ■ ■ ,vb■ ■ ■ ;vi,■ ■ ■ ,Vk '>u\>■ ■ •
>ul-i~>■ ■ ■ ;ui >■ ■ ■ ,uk-i}, and 2/fc=4(zfc)> »fc€lZ, (5.9a) Zfc+i =



fk{xk,ui,...,u )̂, xfe+iGX (5.9b) for some X\ € X. 32In other words, no player
can make more than K moves in the game, regardless of the strategies picked.
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call xk the state of the game, y\ the (deterministic) observation of Pi and rfk the
information available to Pi, all at stage k; and we shall take relations (5.8),
(5.9a)-(5.9b) as the starting point in our formulation of discrete-time infinite
dynamic games. More precisely, we define an TV-person discrete-time infinite
dynamic game of prespecified fixed duration as follows. Definition 5.1 An iV-
person discrete-time deterministic infinite dynamic game33 of prespecified
fixed duration involves (i) An index set N = {1,..., N} called the players' set.
(ii) An index set K = {1,..., K} denoting the stages of the game, where K is the
maximum possible number of moves a player is allowed to make in the game.
(Hi) An infinite set X with some topological structure, called the state set
(space) of the game, to which the state of the game (x )̂ belongs for all keKu{K
+ l}. (iv) An infinite set U\ with some topological structure, defined for each k
6 K and i 6 N, which is called the action (control) set of Pi at stage k. Its
elements are the permissible actions u\ of Pi at stage k. (v) A function fk-
XxUklx--x Uj? —> X, defined for each k e K, so that Xk+i = fk(xk,ul,...,Uk),k
eK (i) for some x\ G X which is called the initial state of the game. This
difference equation is called the state equation of the dynamic game,
describing the evolution of the underlying decision process. (vi) A set Y£ with
some topological structure, defined for each k G K and i € N, and called the
observation set of Pi at stage k, to which the observation y\ of Pi belongs at
stage k. (vii) A function h\ : X —> Y£, defined for each k € K and i € N , so
that yl = hk(xk), keK, ieN, which is the state-measurement (-observation)
equation of Pi concerning the value of x .̂ (viii) A finite set r\\., defined for
each k e K and i € N as a subset of {y\,■ ■ ■,vb ■ ■ ■;Vi , ■ ■ ■,Vk\ui.• •
■»ui~v ■ ■ ■;"f.■ • • >uk-i}> which deter- mines the information gained and
recalled by Pi at stage k of the game. Specification of rjlk for all k € K
characterizes the information structure (pattern) of Pi, and the collection (over
i £ NJ of these information structures is the information structure of the game.
33Also known as an "iV-person deterministic multi-stage game".
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i 6 N as an appropriate subset of {(Y^x--.xYkl)x---x(Y1Nx-xYkN)x(Ulx..-
xU1k_1)x.-.x(U1Nx • ■ • x C/ ĵ)}, compatible with rjk. Nk is called the



information space of Pi at stage k, induced by his information rfk. (x) A
prespecified class Tk of mappings 7  ̂: Nk —+ Uk which are the permissible
strategies of Pi at stage k. The aggregate mapping 7* = {7J, 72,..., 7^} is a
strategy for Pi in the game, and the class T% of all such mappings 7' so that jk
€ Ylk, k G K, is the strategy set (space,) of Pi. (xi) A functional Ll : (X x U\ x
■ ■ ■ x U?) x {X x U\ x ■ ■ ■ x U?) x ■ • • x (X x Uj^x,..., xUjl) —> R
defined for each i € N, and called the cost functional of Pi in the game of fixed
duration. The preceding definition of a deterministic discrete-time infinite
dynamic game is clearly not the most general one that could be given, first
because the duration of the game need not be fixed, but be a variant of the
players' strategies, and second because a "quantitative" measure might not exist
to reflect the preferences of the players among different alternatives. In other
words, it is possible to relax and/or modify the restrictions imposed by items
(ii) and (xi) in Def. 5.1, and still retain the essential features of a dynamic
game. A relaxation of the requirement of (ii) would involve introduction of a
termination set A C X x {1,2,...}, in which case we say that the game
terminates, for a given N-tuple of strategies, at stage k, if k is the smallest
integer for which (xjt, k) E A.34 Such a more general formulation clearly also
covers fixed duration game problems in which case A = X x {K}, where K
denotes the number of stages involved. A modification of (xi), on the other
hand, might for instance involve a "qualitative" measure (instead of the
"quantitative" measure induced by the cost functional), thus giving rise to the
so-called qualitative games (as opposed to "quantitative games" covered by
Def. 5.1). Any qualitative game (also called game of kind) can, however, be
formulated as a quantitative game (also known as game of degree) by assigning
a fixed cost of zero to paths and strategies leading to preferred states, and
positive cost to the remaining paths and strategies. For example, in a two-
player game, if PI wishes to reach a certain subset A of the state set X after K
stages and P2 wishes to avoid it, we can choose ji _ f 0 if xK+i e A L2 = f 0 if
xK+i G A, [ 1 otherwise ' | — 1 otherwise and thus consider it as a zero-sum
quantitative game. Now, returning to Def. 5.1, we note that it corresponds to an
extensive form description of a dynamic game, since the evolution of the game,
the information gains and exchanges of the players throughout the decision
process, and the interactions of the players among themselves are explicitly
displayed in such a 34It is, of course, implicit here that xk is determined by the
given AT-tuple of strategies, and the strategies are defined as in Def. 5.1, but
by taking K sufficiently large.
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give a normal form description of such a dynamic game, which in fact readily
follows from Def. 5.1. More specifically, for each fixed initial state x\ and for
each fixed iV-tuple permissible strategies {7* € F'; i e N} the extensive form
description leads to a unique set of vectors {u\ = 1k{rfk), xk+\; i € N, fc 6 K}
because of the causal nature of the information structure and because the state
evolves according to a difference equation. Then, substitution of these
quantities into U (i e N) clearly leads to a unique TV-tuple of numbers
reflecting the corresponding costs to the players. This further implies existence
of a composite mapping J1 : T1 x ■ ■ ■ x TN —> R, for each i e N, which is
also known as the cost functional of Pi (i e N). Hence, the permissible strategy
spaces of the players (i.e., T1,... ,TN) together with these cost functions (J1,...,
JN) constitute the normal form description of the dynamic game for each fixed
initial state vector x\. It should be noted that, under the normal form
description, there is no essential difference between infinite discrete-time
dynamic games and finite games (the complex structure of the former being
disguised in the strategy spaces and the cost functionals), and this permits us to
adopt all the noncooperative equilibrium solution concepts introduced in
Chapters 2 and 3 directly in the present framework. In particular, the reader is
referred to Defs 2.8, 3.12 and 3.27 which introduce the saddle-point, Nash and
Stackelberg equilibrium solution concepts, respectively, which are equally
valid for infinite dynamic games (in normal form). Furthermore the feedback
Nash (cf. Def. 3.22) and feedback Stackelberg (cf. Def. 3.29) solution
concepts are also applicable to discrete-time infinite dynamic games under the
right type of interpretation, and these are discussed in Chapters 6 and 7,
respectively. Before concluding our discussion on the ingredients of a discrete-
time dynamic game as presented in Def. 5.1 we now finally classify possible
information structures that will be encountered in the following chapters, and
also introduce a specific class of cost functions—the so-called stage-additive
cost functions. Definition 5.2 In an N-person discrete-time deterministic
dynamic game of prespecified fixed duration, we say that Pi's information
structure is a(n) (i) open-loop (OL) pattern iff}]. = {x\}, k € K, (ii) closed-
loop perfect state information (CLPS) pattern ifr\\ — {x\,... ,xk}, keK, (in)
closed-loop imperfect state information (CLIS) pattern ifrfk — {y\,..., ylh},
keK, (iv) memoryless perfect state information (MPS) pattern if' rfk = {xi,xk},
keK, (v) feedback (perfect state) information (FB) pattern if i)k = {xk}, keK,
(vi) feedback imperfect state information (FIS) pattern if' rfk = {yk}, keK,
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pattern iff]). = {x\, ■ ■ ■ ,xk-i}, (viii) one-step delayed observation sharing
(1DOS) pattern ifrfk = {y\,..., yk-\, y{}, keK, where Vj = {y),y},..., yf }•
Definition 5.3 In an N-person discrete-time deterministic dynamic game of
prespecified fixed duration (i.e., K stages), Pi's cost functional is.said to be
stage-additive if there exist g\ : X x X x Uk x • • • x U  ̂—>TL,(ke K), so that K
Li(u1,...,uN) = Y,9ik(xk+i,u1k,...,u%,xk), (5.10) fe=i where v? =(u{ ,...,u3K )'.
Furthermore, if Ll{v},...,uN) depends only onxk+\ (the terminal state), then we
call it a terminal cost functional. Remark 5.1 It should be noted that every
stage-additive cost functional can be converted into a terminal cost functional,
by introducing an additional variable Zk {k € K) through the recursive relation
zfc+i = zk+gk{fk{xk,u\,...,u )̂,ul,...,u ,̂xk),zi =0, and by adjoining zk to the state
vector xk as the last component. Denoting the new state vector as xk =
{x'k,zk)', the stage-additive cost functional (5.10) can then be written as
Li(u1,...,uN) = (Q,...,Q,l)xK+1 which is a terminal cost functional. D Games
with chance moves: Stochastic games Infinite discrete-time dynamic games
which also incorporate chance moves (the so-called stochastic games) can be
introduced by modifying Def. 5.1 so that we now have an additional player,
called "nature", whose actions influence the evolution of the state of the game.
These are, in fact, random actions which obey an a priori known probability
law, and hence what replaces the state equation (5.9b) in stochastic games is a
conditional probability distribution function of the state given the past actions
of the players and the past values of the state. An equivalent way of saying this
is that there exists a function Fk : X x Ul x • • • x U£ x 0 —> X, defined for
each k e K, so that Zfc+i =Fk{xk,uk,...,ukv,9k), keK,
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stage k, taking values in 0; the initial state xi is also a random variable and the
joint probability distribution function of {xi,#i,... ,8 k} is known. A precise
formulation of a stochastic dynamic game in discrete time would then be as
follows. Definition 5.4 An N-person discrete-time stochastic infinite dynamic
game of prespecified fixed duration involves all but items (v) and (xi) of Def
5.1, and in addition (0) A finite or infinite set 0, with some topological
structure, which denotes the action set of the auxiliary (N+lst) player, nature.
Any permissible action 8k of nature at stage k is an element o/0. (v) A function
Fk : X x U\ x • • • x Uk x 0 —> X, defined for each fc G K, so that
xk+1=Fk(xk,ul,...,u%,9k), fceK, (5.11) where xi is a random variable taking



values in X, and the joint probability distribution function of {x\, 8\,..., 6k} is
specified. (xi) A functional V : {X x U\ x • • • x U? x G) x (X x U\ x • • • x U? x
0) x • ■ • x (X x UK x • ■ • x U  ̂x G) —> R defined for each i e N, and called
the cost functional of Pi in the stochastic game of fixed duration. To introduce
the noncooperative equilibrium solution concepts for stochastic games as
formulated in Def. 5.4, we again have to transfer the original game in extensive
form into equivalent normal form, by first computing L*(-) (i £ N) for each AT-
tuple of permissible strategies {7* £ Tl,i € N} and as a function of the random
variables {xi,0\,..., 0^}, and then by taking expectation of the resulting ./V-tuple
of cost functions over the statistics of these random variables. The resulting
deterministic functions J1^1, ■ ■ ■ ,fN) (i € N) are known as the expected
(average) cost functionals of the players, and they characterize the normal form
of the original stochastic game together with the strategy spaces {P; i € N}. We
now note that, since such a description is free of any stochastic nature of the
problem, all the solution concepts applicable to the deterministic dynamic
game are also applicable to the stochastic dynamic game formulated in Def.
5.4, and hence the stochastic case need not be treated separately while
introducing the equilibrium solution concepts. Remark 5.2 Definition 5.4 does
not cover the most general class of stochastic dynamic games since (i) the state
measurements of the players could be of stochastic nature by taking hk to be a
mapping: X x 0 —> Yk, (ii) the duration of the game might not be fixed a
priori, but be a variant of the players' actions as well as the outcome(s) of the
chance move(s), and (iii) the order in which the players act might not be fixed
a priori, but again depend on the outcome of the chance move as well as on the
actions of the players (Witsenhausen, 1971a). Such extensions will, however,
not be considered in this book. Yet another
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deterministic dynamic games (and which is included in the formulation of finite
games in extensive form in Chapters 2 and 3) is the case when the action sets
XJlk (i 6 N, k £ K) of the players are structurally dependent on the history of
the evolution of the game. Such games will also not be treated in the following
chapters. □ 5.3 Continuous-Time Infinite Dynamic Games Continuous-time
infinite dynamic games, also known as differential games in the literature,
constitute a class of decision problems wherein the evolution of the state is
described by a differential equation and the players act throughout a time
interval. Hence, as a counterpart of Def. 5.1, we can formulate such games of



prespecified fixed duration as follows. Definition 5.5 A quantitative TV-
person differential game of prespecified fixed duration involves the following:
(i) An index setN = {1,..., TV} called the players' set. (ii) A time interval [0,
T] which is specified a priori and which denotes the duration of the evolution
of the game. (Hi) An infinite set Sq with some topological structure, called the
trajectory space of the game. Its elements are denoted as {x(t),0 < t < T} and
constitute the permissible state trajectories of the game. Furthermore, for each
fixedt £ [0,T], x(t) € S°, where S° is a subset of a finite dimensional vector
space, say Rn. (iv) An infinite set Ul with some topological structure, defined
for each i € N and which is called the control (action) space of Pi, whose
elements {u4(£),0 < t < T} are the control functions or simply the controls of
Pi. Furthermore, there exists a set Sl C Rmi (i g N) so that, for each fixed t€
[Q,T], u'(t) 6 5*. (v) A differential equation  ̂= f(t,x(t)y(t),...,uN(t)),x(0)=xOj
(5.12) whose solution describes the state trajectory of the game corresponding
to the N-tuple of control functions {ul(t), 0 <t <T} (i£N) and the given initial
state xq . (vi) A set-valued function rf{-) defined for each ieNas ni{t) = {x{s),
0<s<e\}, 0<el<t, (5.13) where e| is nondecreasing in t, and rf{t) determines the
state information gained and recalled by Pi at time t € [0,T]. Specification of
rf(-) (in fact,
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information structure (pattern) of Pi, and the collection (over i £ NJ of these
information structures is the information structure of the game. (vii) A sigma-
field N%, in So, generated for each i € N by the cylinder sets {x 6 So,x(s) 6
B} where B is a Borel set in S° and 0 < s < t\. The sigma-field /N\, t >to, is
called the information field of Pi. (viii) A prespecified class P of mappings Y :
[0, T] x S0 ■—> Sl, with the property that ul(t) = 7l(£, x) is N}-measurable
(i.e., it is adapted to the information field Nl). P is the strategy space of Pi and
each of its elements 7* is a permissible strategy for Pi. (ix) Two functionals qi
: 5° -> R, gi : [0, T\ x 5° x Sl x • ■ ■ x SN -  ̂R defined for each i £ N, so that
the composite functional L\u\...,uN)± f g\t,x{t),ul{t),---,uN{t))dt+?(x{T))
(5.14) ./o is well defined 35 for every u (̂t) = Y{t,x),Y € P (j e N), and for
each i € N. Ll is the cost function of Pi in the differential game of fixed
duration. A differential game, as formulated above, is yet not well defined
unless we impose some additional restrictions on some of the terms
introduced. In particular, we have to impose conditions on / and P(i € N), so
that the differential equation (5.12) admits a unique solution for every iV-tuple



{ul(t) = 7*(£,:r), i € N}, with 7* £ P. A nonunique solution to (5.12) is clearly
not allowed under the extensive form description of a dynamic game, since it
corresponds to nonunique state trajectories (or game paths) and thereby to a
possible nonuniqueness in the cost functions for a single iV-tuple of strategies.
We now provide below in Thm. 5.1 a set of conditions under which this
uniqueness requirement is fulfilled. But first we list down some information
structures within the context of deterministic differential games, as a
counterpart of Def. 5.2. Definition 5.6 In an N-person continuous-time
deterministic dynamic game (differential game) of prespecified fixed duration
[0, T], we say that Pi's information structure is a(n) (i) open-loop (OL) pattern
ifrf{t) = {xo},t £ [0,T], (ii) closed-loop perfect state (CLPS) pattern if Vl(t) =
{x(s),0<s<t}, t€[0,T], This term will be made precise in the sequel.
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(eDCLPS) pattern if {x0}, 0<t {x(s),0< s <t-e}, e<t )̂ = {{X°}' °-i-£ where e
> 0 is fixed, (iv) memoryless perfect state (MPS) pattern ifrjl(t) = {x0,x(t)}, t
£ [0, T],36 (v) feedback (perfect state) (FB) pattern ifrf{t) = {x(t)}, t e [0,T].
Theorem 5.1 Within the framework of Def 5.5, let the information structure for
each player be any one of the information patterns of Def 5.6. Furthermore, let
So =<7n[0,T]. Then, if (i) f(t,x,ul,...,uN) is continuous inte [0,T] for each x £ S
°, ieN, (ii) f(t,XjU1,... ,uN) is uniformly Lipschitz in x,ux,... ,uN; i.e., for some
k > 0,37 |/(«,s,«1,...,«iV/(t,2,u1,...,uiV)| !(■),*(•) € C"[o,:r]; «'(■),*'(■) £W (i e
N), (Hi) for -f £ V (i € N), l̂{t,x) is continuous in t for each x(-) € C"™[0, T]
and uniformly Lipschitz in x(-) € £""[0, T], ift,e differential equation (5.12)
admits a unique solution (i.e., a unique state trajectory) for every 7* € Tl (i €
N), so £fta£ ul(£) = 7l(£, x), and furthermore this unique trajectory is
continuous. Proof. It follows from a standard result on the existence of unique
continuous solutions to differential equations. See for instance Coddington and
Levinson (1955). D Remark 5.3 Theorem 5.1 provides only one set of
conditions which are sufficient to ensure existence of a unique state trajectory
for every TV-tuple of strategies {7* € Tz;i € N}, which necessarily implies a
well-defined differential game problem within the framework of Def. 5.5.
Since these conditions are all related to existence of a unique solution to dt
/(MWj'fM) yv(tli)),7,er*lieN, (5.15) they can definitely be relaxed (but
slightly) by making use of the available theory on functional differential
equations (see, for example, Hale (1977)). But, 36Note that (iv) and (v) are
not covered by (5.13) in Def. 5.5. 37|v| denotes here the Euclidean norm for the



vector v.
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sort of Lipschitz-continuity on the permissible strategies of the players.
However, although such a restriction could be reasonable in the extreme case
of one-person differential games (i.e., optimal control problems), it might be
quite demanding in an iV-player (N > 2) differential game. To illustrate this
point, consider, for instance, the one-player game described by the scalar
differential equation ^W, z(o) = o, (0 and adopt the strategy 71(i,x) = sgn
{x(t)). The solution to (i) with u1 )̂ = 71(£,:r) is clearly not unique; a multitude
of solutions exists. If we adopt yet another strategy, viz. 71(i,:r) = — sgn (x(t)),
then the solution to (i) does not even exist in the classical sense. Hence, a
relaxation of the Lipschitz-continuity condition on the permissible strategies
could make an optimal control problem quite ill-defined. In such a problem,
the single player may be satisfied with smooth (but sub-optimal) strategies. In
differential games, however, it is unlikely that players are willing to restrict
themselves to smooth strategies voluntarily. If one player would restrict his
strategy to be Lipschitz, the other player(s) may be able to exploit this.
Specifically in pursuit evasion games (see Chapter 8) the players play "on the
razor's edge", and such a restriction could result in a drastic change in the
outcome of the game. Extensive discussions on these issues, and on various
different definitions of "solution", can be found in the book by Krasovskii and
Subbotin (1988). In conclusion, non-Lipschitz strategies cannot easily be put
into a rigorous mathematical framework. On the other hand, in many games, we
do not want the strategy spaces to comprise only smooth mappings. These
difficulties may show up especially under the Nash equilibrium solution
concept. In two-person Stackelberg games, however, non-Lipschitz strategies
can more easily be handled in the general formulation, since one of the player's
(follower's) choice of strategy is allowed to depend on the other player's
(leader's) announced strategy. □ The saddle-point, Nash, Stackelberg and
consistent conjectural variations equilibrium concepts introduced earlier for
finite games are equally valid for (continuous-time) differential games if we
bring them into equivalent normal form. To this end, we start with the extensive
form description of a differential game, as provided in Def. 5.5 and under the
hypotheses of Thm. 5.1, and for each fixed TV-tuple of strategies {7' € V1; i €
N} we obtain the unique solution of the functional differential equation (5.15)
and determine the corresponding action (control) vectors ul(-) — jl(-,x),i £



N,x € S°. Substitution of these into (5.14), together with the corresponding
unique state trajectory, thus yields an ./V-tuple of numbers {Ll;i 6 N}, for each
choice of strategies by the players — assuming of course that functions gl (i e
N) are integrable, so that (5.14) are well defined. Therefore, we have
mappings J% : T1 x ■ • ■ x TN —> R (i e N) for each fixed initial state vector
xq, which we call the cost functional of Pi in a differential game in normal
form. These cost functionals, together with the strategy spaces {P;i( € N} of the
players, then constitute the equivalent
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differential game, which is the right framework to introduce noncooperative
equilibrium solution concepts, as we have done earlier for other classes of
dynamic games. Termination Definition 5.5 covers differential games of fixed
prespecified duration; however, as discussed in Section 5.2 within the context
of discrete-time games, it is possible to extend such a formulation so that the
end point in both state and time is a variable. Let S° again denote a subset of
Rn, and R+ denote the half-open interval [0,oo). Let a closed subset A C S° x
R+ be given, which we call a terminating (target) set, so that (:ro,0)  ̂A. Then,
we say that the differential game terminates, for a given N-tuple of strategies,
at time T £ R+ if T is the smallest element o/R+ with the property (x(T),T) €
A, i.e., T = min{<GR+ : (x(t),t) € A}. (5.16) This positive number T is called
the terminal time of the differential game, corresponding to the given TV-tuple
of strategies. Terminal time is sometimes defined in a slightly different way, as
the smallest time at which x(-) penetrates, A, i.e., T = ini{t GR+ : (x(t),t) € A},
where A denotes the interior of A. The two definitions can only differ in
situations where the trajectory x(-) belongs to the boundary of A for a while or
only touches A at one instant of time. Unless stated differently, we shall adopt
(5.16) as the definition of the terminal time. The question of whether a given
differential game necessarily terminates is one that requires some further
discussion. If there is a finite time, say t\, such that (x,t\) e A for all x e S°, then
the game always terminates, in at most ti units of time. Such a finite t\,
however, does not always exist, as elucidated by the following optimal control
(one-player differential game) problem. Example 5.1 Consider the optimal
control problem described by the two- dimensional state equation ±i = u, zi(0)
= l, ±2 — -x2 + u, x2(0) — 1, where u(-) is the control (action) variable
satisfying the constraint 0 < u(t) < 3 for all t € [0, oo). Let the terminal time T
be defined as T = min{£ € [0, oo) : x2(t) = 2}, and a permissible OL strategy 7



be defined as a mapping from [0,00) into [0,3]. Now, if the cost function is
L(u) — JQ 1 dt = T, then the minimizing strategy is j*(t) = 3, t > 0, with the
corresponding terminal time (and thereby the minimum value of L) being In 2.
D
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x\(T), however, the player may not have an incentive to terminate this "one-
player game" since, as long as termination has not been achieved, his cost is
not defined. So, on the one hand, he does not want to terminate the game; while
on the other hand, if he has an incentive to terminate it, he should do it as soon
as possible, which dictates him to employ the strategy j*(t) = 3, t > 0. The
player is faced with a dilemma here, since the latter cost function is not well
defined for all strategies available to the player. This ambiguity can, however,
be removed by either (i) restricting the class of permissible strategies to the
class of so-called playable strategies which are those that terminate the game
in finite time, or (ii) extending the definition of the cost functional so that L( )-
I Xl(T)> if T is finite'  ̂' \ oo, otherwise , which eliminates any possible
incentive for the player not to terminate the game. In both cases, the optimal
strategy will be 7*(i) = 3, t > 0. The difficulties encountered in the preceding
optimal control example, as well as the proposed ways out of the dilemma, are
also valid for differential games, and this motivates us to introduce the
following concept of "playability". Definition 5.7 For a given N-person
differential game with a target set A, a strategy N-tuple is said to be playable
(at (to, xq)) if it generates a trajectory x(-) such that (x(t),t) 6 A for finite t.
Such a trajectory x(-) is called terminating. Differential games with chance
moves38 Chance moves can be introduced in the formulation of differential
games by basically following the same lines as in the discrete-time case (cf.
Def. 5.4), but this time one has to be mathematically more precise. In
particular, if we assume the chance player (nature) to influence the state
trajectory throughout a given time interval, then actions of this additional
player will be realizations of a stochastic process {Ot,t > 0} whose statistics
are known a priori. If we adjoin such a stochastic process to (5.12), then the
resulting "differential equation"  ̂= F(t,x(t)y(t),.. .,uN(t),6t), i(0) = x0, might
not be well defined, in the sense that even though its solution might be unique
for each realization (sample path) of {6t,t > 0}, it might not exist as a
stochastic process. To obtain a meaningful formulation and tractable results,
one has to impose some restrictions of F and {9t,t > 0}. One particular such



38Here it is assumed that the reader has some prior knowledge of stochastic
processes. If this is not the case, either this part may be skipped (without much
loss, since this formulation is used later only in Section 6.7) or the standard
references may be consulted for background knowledge (Fleming and Rishel,
1975; Gikhman and Skorohod, 1972; Wong and Hajek, 1985).
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form xt = x0+ / F(s,xs,v}(s),...,uN(s))ds+ / a{s,xs)ABs, (5.17a) Jo Jo where F
satisfies the conditions imposed on / in Def. 5.5, the function a satisfies similar
conditions in its arguments s and xs and {8t,t > 0} is a special type of a
stochastic process called the Wiener process. Equation (5.17a) can also be
written symbolically as dxt = F(*,:rt,u1(£),...,uw(£))d*-f-cr(i,xt)du;t,
xt\t=0=x0, (5.17b) where we have used wt, instead of 6t, to denote that it is the
Wiener process. It should further be noted that in both (5.17a) and (5.17b), the
function x(-) is written as #(.), to indicate explicitly that it now stands for a
stochastic process instead of a deterministic function. Equation (5.17b) is
known as a stochastic differential equation, and existence and uniqueness
properties of its solution, whenever u'(-) = 7i(-,x),7i £ P (i € N), are elucidated
in the following theorem, whose proof can be found in Gikhman and Skorohod
(1972). Theorem 5.2 Let T1,... ,TN denote the strategy spaces of the players
under any one of the information patterns of Def. 5.6. Furthermore let So —
Cn[0, T], F satisfy the requirements imposed on f in Thm. 5.1, and f̂1 € T1 (i €
N) satisfy the restrictions imposed on 'f in Thm. 5.1 (Hi). If, further, a is a
nonsingular (n x n) matrix, whose elements are continuous in t and uniformly
Lipschitz in x, the stochastic differential equation (5.17b) with u'(-) = 7*(-,x), -
y' € P (i £ N), admits as its solution a unique stochastic process with
continuous sample paths, for every such N-tuple of strategies. To complete the
formulation of a differential game with chance moves (i.e., a stochastic
differential game), it will now be sufficient to replace IS in Def. 5.5 (ix) with
the expected value of the same expression, where the expectation operation is
taken with respect to the statistics of the Wiener process {wt,t > 0} and the
initial state xo. The game can then be converted into normal form by
determining, in the usual sense, functions J* : T1 x • • ■ x TN -> R (i G N),
which is now the suitable form to introduce the solution concepts already
discussed. 5.4 Mixed and Behavioral Strategies in Infinite Dynamic Games In
Chapter 2, we have defined a mixed strategy for a player as a probability
distribution on the space of his pure strategies, or equivalently, as a random



variable whose values are the player's pure strategies (cf. Def. 2.2), which
was also adopted in Chapters 3 and 4, for finite games and static infinite
games, respectively. Defined in this way, a mixed strategy is a mathematically
well-established
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are finite for the former class of problems, and at most a continuum for the
latter class of games, thereby allowing one to introduce (Borel-) measurable
subsets of these strategy spaces, on which probability measures can be
defined. An attempt to extend this directly to infinite dynamic games, however,
is hampered by several measure-theoretic difficulties (Aumann, 1964). To
illustrate the extent of these difficulties, let us consider a simple two-stage
two-person dynamic game defined by the state equation x2 = 1+w1, £3 = x2 +
u2, where -1 < u1 < 0, 0 < u2 < 1, and P2 has access to closed-loop perfect
state information (i.e., he knows the value of x2)- A mixed strategy for PI can
easily be defined in this case, since his pure strategy space is [—1,0] which is
endowed with a measurable structure, viz. its Borel subsets. However, for P2,
the permissible (pure) strategies are measurable mappings from [0,1] into
[0,1], and thus the permissible strategy space of P2 is T2 = I1, where / denotes
the unit interval. In order to define a probability distribution on I1, we have to
endow it with a measurable structure, but no such structure exists which is
suitable for the problem under consideration (see Aumann, 1961). Intuitively,
such a difficulty arises because the set of all probability distributions on / is
already an extremely rich class, so that if one wants to define a similar object
on a domain I1 whose cardinality is higher than that of J, such an increase in
cardinality cannot reflect itself on the set of probability distributions. An
alternative, then, is to adopt the "random variable" definition of a mixed
strategy. This involves a sample space, say fi, and a class of measurable
mappings from Q, into I1, with each of these mappings being a candidate
mixed strategy. The key issue here, now, is the choice of the sample space Cl.
In fact, since Q stands for a random device, the question can be rephrased as
the choice of a random device whose outcomes are rich enough to be
compatible with I1. But the richest one is the continuous roulette wheel which
corresponds to a sample space fl as a copy of the unit interval I.39 Such a
consideration then leads to the conclusion that the random variable (mixed
strategy) should be a measurable mapping / from Q, into I1. Unfortunately, this
approach also leads to difficulties, since one still has to define a measurable



structure on the range space I1. But now, if we note that, to every function f:Q
—+ I1, there corresponds a function g: CI x I —> I defined by g(u>,x) — f(u>)
(x), then the "measurability" difficulty is resolved since one can define
measurable mappings from CI x I into /. This conclusion of course remains
valid if the action set / is replaced by any measurable space U, and the
information space / is replaced by any measurable space N. Moreover, an
extension to multi-stage infinite dynamic games is also possible as the
following definition elucidates. 39This follows from the intuitive idea of a
random device (Aumann, 1964). It is, of course, possible to consider purely
abstract random devices which are even richer.
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time infinite dynamic game within the framework of Def 5.1, let U%k, N\ be
measurable spaces for each i £ N, k £ K. Then, a mixed strategy -y1 for Pi is a
sequence 7* = (7J,... , 7 )̂ of measurable mappings 7] : Q x Nj —» f/j (j £ K),
so £ha£ 7l(w, •) € P /or even/ u> € ft, where ft is a fixed sample space (taken
as a copy of the unit interval). A direct extension of this definition to
continuous-time systems would be as follows. Definition 5.9 Given a
differential game that fits the framework of Def. 5.5, let So and S'(i £ N) be
measurable spaces. Then, a mixed strategy 7* for Pi, in this game, is a
measurable transformation 7* : ft x [0, T] x 50 —* S', so that 7l(a;, •, ■) € P
for every u> £ ft, where Q is a fixed sample space (taken as a copy of the unit
interval). Equivalently, 7l(-,-,x) is a stochastic process for each x E Sq. A
behavioral strategy, on the other hand, has been defined (cf. Def. 2.9) as a
collection of probability distributions, one for each information set of the
player. In other words, using the notation of Section 2.4, it is a mixed strategy
j(-) with the property that 7(771) and 7(772) are independent random variables
whenever 771 and 772 belong to different information sets. If we extend this
notion directly to multi-stage infinite dynamic games (and within the
framework of Def. 5.8), we have to define a behavioral strategy as a mixed
strategy 7*(-, •) with the property that the collection of random variables {7j(-
,77J),77J € Nj;j £ K} is mutually independent. But, since ATj is in general a
non-denumerable set, in infinite dynamic games this would imply that we have
a non-denumerable number of mutually independent bounded random variables
on the same sample space. This is clearly not possible, since any bounded
random variable defined on our sample space ft should have a countable basis
(Loeve, 1963). Then, a way out of this difficulty is to define a behavioral



strategy as a mixed strategy which is independent from stage to stage, but not
necessarily stagewise. Aumann actually discusses that stagewise correlation is
quite irrelevant (Aumann, 1964), and the expected cost function is invariant
under such a correlation. Therefore, we have the following definition.
Definition 5.10 Given a K-stage discrete-time infinite dynamic game within the
framework of Def. 5.1, let Up., AT£ be measurable spaces for each i € N, k £
K. Then, a behavioral strategy 7* for Pi is a mixed strategy (cf. Def. 5.8) with
the further property that the sequence of random variables {t?(-, 77]), j £ K} is
mutually independent for every fixed rfc € Nj (j £ K). This definition of a
behavioral strategy can easily be extended to multi-stage games with a
(countably) infinite number of stages; however, an extension to continuous-time
infinite dynamic games is not possible since the time set [0, T] is not
denumerable.
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Since optimal control problems constitute a special class of infinite dynamic
games with one player and one criterion, the mathematical tools available for
such problems may certainly be useful in dynamic game theory. This holds
particularly true if the players adopt the noncooperative Nash equilibrium
solution concept, in which case each player is faced with a single criterion
optimization problem (i.e., optimal control problem) with the strategies of the
remaining players taken to be fixed at their equilibrium values. Hence, in order
to verify whether a given set of strategies is in Nash equilibrium, we inevitably
have to utilize the tools of optimal control theory. We, therefore, present in this
section some important results on dynamic one-person optimization problems
so as to provide an introduction to the theory of subsequent chapters. The
section comprises three subsections. The first two deal with the dynamic
programming (DP) technique applied to discrete-time and continuous-time
optimal control problems, and the third is devoted to the "minimum principle".
For more details on, and a rigorous treatment of, the material presented in
these subsections the reader is referred to Fleming and Rishel (1975), Fleming
and Soner (1993) and Boltyanski (1978). 5.5.1 Dynamic programming for
discrete-time systems The method of dynamic programming is based on the
principle of optimality which states that an optimal strategy has the property
that, whatever the initial state and time are, all remaining decisions (from that
particular initial state and particular initial time onwards) must also constitute
an optimal strategy. To exploit this principle, we work backwards in time,



starting at all possible final states with the corresponding final times. Such a
technique has already been used in this book within the context of finite
dynamic (multi-act) games, specifically in Sections 2.5 and 3.5, in the
derivation of noncooperative equilibria, though we did not refer explicitly to
dynamic programming. We now discuss the principle of optimality within the
context of discrete-time systems that fit the framework of Def. 5.1, but with
only one player (i.e., N = 1). Toward that end, we consider equation (5.9b),
assume feedback perfect state information and a stage-additive cost functional
of the form (5.10), all for N ~ 1, i.e., Zfc+i = fk(xk,uk), uk eUk,ke K, (5.18a) K
L{u)^Y^9k{xk+i,uk,xk), (5.18b) fe=i where u = {uk, k £ K}, uk = u\ = 7fc(xfc);
7*(-) denotes a permissible (control) strategy at stage k 6 K, and K is a fixed
positive integer. In order to determine the minimizing control strategy, we shall
need the expression for the minimum (or minimal) cost from any starting point
at any initial time. This is also called
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V(k, x) = min 7t,-,7K }gi(xi+i,Ui,Xi) A~k with Ui = ji(xi) G Ui and xk = x. A
direct application of the principle of optimality now readily leads to the
recursive relation V(k,x)= min [gk(fk(x,uk),uk,x)+V(k + l,fk(x,uk))}. (5.19)
ukeuk If the optimal control problem admits a solution u* — {uk,k € K}, then
the solution V(l,X\) of (5.19) should be equal to L(u*), and furthermore each
u*k should be determined as an argument of the RHS of (5.19). Affine-
quadratic problems As a specific application, let us consider the so-called
affine-quadratic (or linear- quadratic) discrete-time optimal control problem,
which is described by the state equation Xfe+i = Akxk + Bkuk + Cfe, (5.20a)
and cost functional 1 K L{u) = - ]T (x'k+1Qk+ixk+1 + u'kRkuk). (5.20b) Let us
further assume that xk e Rn, uk e Rm, ck e R", Rk > 0, Qk+i > 0 for all fc € K,
and Ak, Bk are matrices of appropriate dimensions. Here, the corresponding
expression for fk is obvious, but the one for gk is not uniquely defined; though,
it is convenient to take it as 9k(v-k,Xk) = < ^u\R\ui,k = 1, \u'kRkuk + \x'kQkxk,
k l̂,K + l, \x'K+lQK+\XK+\,k = K + 1. We now obtain, by inspection, that V(k,
x) should be a general quadratic function of x for all fc € K, and that V{K +
l,xx+i) = \x'k+1Qk+ixk+i- This leads to the structural form V(k, x) = ^x'Skx +
x'sk + qk. Substituting this in the recursive relation (5.19) we obtain the unique
solution of the optimal control problem (5.20a)-(5.20b) as follows.
Proposition 5.1 The optimal control problem (5.20a)-(5.20b) admits the
unique solution ut = lkixk) = -PkSk+iAkxk - Pk(sk+i + Sjt+iCfc), (5.21a)



GENERAL FORMULATION 235 for all k 6 K, where Pk = [Rk+B'kSk+1Bk}-
lB'k, Sk = Qk + A'kSk+1[I - BkPkSk+i}Ak; SK+1 = QK+1, } (5.21b) sfc =
A'k[I - BkPkSk+i]'[sk+i + Sk+iCk]; sK+i = 0. Furthermore, the minimum value
of (5.20b) is L{u*) = -xiSm + ziai+gi, (5.22) where 1 K <7i = 7> J2 (c'ksk+ick
- (sfc+i + 5fc+icfc)'PfcSfc(sfc+i + Sk+1ck) + 2c'ksk+i). Remark 5.4 If the
requirement Qk > 0 is not satisfied, a necessary and sufficient condition for
(5.21a)-(5.21b) to provide a unique solution to the affine- quadratic discrete-
time optimal control problem is Rk + B'kSk+1Bk >0, VfceK. D Infinite horizon
linear-quadratic problems To formulate a possibly meaningful linear-quadratic
optimal control problem when K —> oo, we take ck — 0, and the matrices
Ak,Bk,Qk and Rk to be independent of k (which will henceforth be written
without the index k). Thus the optimization problem is min - Y (̂x'k+iQxk+i +
u'kRuk); Q > 0, R > 0 fc=i subject to xk+l = Axk + Buk. It is natural to assume
here that the problem is well defined, in the sense that there exists at least one
control sequence that renders it a finite cost. Conditions which ensure this are
stabilizability of the matrix pair (A, B), and detectability of the matrix pair (A,
D), where D is a matrix such that D'D = Q.40 These notions of stabilizability
and detectability belong to the realm of the theory of linear systems; see for
instance Kailath (1980) or Anderson and Moore (1989). The pair (.A, B) is
stabilizable if an m x n matrix F exists such that (A+BF) is a stable matrix, i.e.,
all its eigenvalues lie strictly within the unit circle. The pair (A,D) is
detectable if its "dual pair", (A',D') is stabilizable. The following result is now
a standard one, which can be found in any textbook on linear control systems.
40Using standard terminology, we will also refer to the latter condition as
detectability of the pair (A, Q).
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B) is stabilizable and the pair (A, Q) is detectable. Then, there exists an n x n
nonnegative-definite matrix S such that (i) for fixed k, Sj. —> S as K —► oo,
where for each K, and arbitrary Qk+i > 0, Sfc is recursively defined by
(5.21a)-(5.21b); (ii) S is the unique solution of the algebraic Riccati equation
(ARE) S = Q + A'S[I-B{R + B'SB)-lB'S]A within the class of nonnegative-
definite matrices; (Hi) the (closed-loop) matrix A — B(R + B'SB)~1B'S is
stable, i.e., all its eigenvalues lie strictly within the unit circle; (iv) the
minimum value of the cost functional is ^x\Sxi; (v) the stationary optimal
control law is 7*(z) = -[R + B'SB]-lB'SAx. Under the stronger assumption that
(A, D) is observable (a sufficient condition for which is Q > 0 ,̂ the solution of



the ARE is positive definite. 5.5.2 Dynamic programming for continuous-time
systems The dynamic programming approach, when applied to optimal control
problems defined in continuous time, leads to a partial differential equation
(PDE) which is known as the Hamilton-Jacobi-Bellman (HJB) equation.
Toward this end we consider the optimal control problem defined by x(t) = f(t,
x(t), u(t)), x(0) = i0, * > 0, u{t) = 7(t,i(t))eS,7er, L(u) = £g(t,x(t),u(t))dt +
q(T,x(T)): \ (5-23) T = mm{f.l(t,x(t)) = 0}, j where I is a scalar function,
defining an n-dimensional smooth manifold in the product space Rn x R+, and
T is taken to be the class of all admissible feedback strategies. The minimum
cost-to-go from any initial state (x) and any initial time (t) is described by the
so-called value function which is defined by V(t, x) — min {u(s),t>s<T} J
g(s,x(s),u(s))ds+q(T,x(T)) (5.24a) satisfying the boundary condition V(T,x) =
q(T,x) along l(T,x) = 0. (5.24b)
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optimality on (5.24a), under the assumption of continuous differentiability of V,
leads to the HJB equation dV(t,x) ——-—• =min at u —q£—/(*, x, u) + g(t, x,
u) (5.25) which takes (5.24b) as the boundary condition. In general, it is not
easy to compute V{t, x). Moreover, the continuous differentiability assumption
imposed on V(t,x) is rather restrictive (see, for instance, Example 5.2 in
subsection 5.5.3, for which it does not hold). Nevertheless, if such a function
exists, then the HJB equation (5.25) provides a means of obtaining the optimal
control strategy. This "sufficiency" result is now proven in the following
theorem. Theorem 5.3 If a continuously differentiate function V(t,x) can be
found that satisfies the HJB equation (5.25) subject to the boundary condition
(5.24b), then it generates the optimal strategy through the static (pointwise)
minimization problem defined by the RHS of (5.25). Proof. If we are given
two strategies, 7* gf (the optimal one) and 7 £ V (an arbitrary one), with the
corresponding terminating trajectories x* and x, and terminal times T* and T,
respectively, then (5.25) reads , dV(t,x) ,, , dV(t,x) ,r „ . g(t. x, u) + —±L-Lf(t,
x,u) + Km ' > 0, (5.26a) g(t,x\u') + 9Vff]f(t,x*,u*) + dV{tdp = 0, (5.26b) where
7* and 7 have been replaced by the corresponding controls u* and u,
respectively. Integrating (5.26a) from 0 to T and (5.26b) from 0 to T*, we
obtain I T g(t, x, u) dt + V(T, x(T)) - V(0, x0) > 0, (5.27) I T" g(t,x*,u*) dt +
V(T*,x*(T*)) - V(0,x0) = 0- (5.28) Elimination of V(Q, xq) yields [ g(t,x,u)dt
+ q{T,x(T))> [ g{t,x\u*)dt + q(T*,x*(T*)), (5. 7o Jo 29) from which it readily
follows that u* is the optimal control, and therefore 7* is the optimal strategy.
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238 T. BA§AR AND G. J. OLSDER Remark 5.5 If, in the problem statement
(5.23), the time variable t does not appear explicitly, i.e., if /, g, q and / are
time-invariant, the corresponding value function will also be time-invariant.
This then implies that dV/dt = 0, and the resulting optimal strategy can be
expressed as a function of only x(t), i.e., u*(t) = 7*(:r(£)). In such cases, we
will write V(x) for V(t,x). □ Remark 5.6 There exists an alternative derivation
of the HJB equation (5.25), which is of a geometrical nature. This will not be
discussed here, since it is a special case of the more general derivation to be
given in Section 2 of Chapter 8 for two-player zero-sum differential games. □
Affine-quadratic problems We now consider an important class of problems—
the so-called affine-quadratic (or linear-quadratic) continuous-time optimal
control problems—for which V(t, x) is continuously differentiable, so that
Thm. 5.3 applies. Toward that end, let the system be described (as a
continuous-time counterpart of (5.20a)-(5.20b)) by x(t) = A(t)x(t) + B(t)u(t) +
c(t); x(0) = x0, (5.30a) and the cost functional to be minimized be given as 1 1
fT L(u) = -x'(T)Qfx{T) + - (x'Qx + 2x'p + u'Ru) dt, (5.30b) 2 2 J0 where x(t) €
Rn, u(t) G Rm, 0 < t < T and T is fixed. A(-), B(-), Q(-) > 0, R(-) > 0 are
matrices of appropriate dimensions and with continuous entries on [0, T]. The
matrix Qf is nonnegative-definite, and c(-) and p(-) are continuous vector-
valued functions, taking values in Rn. Furthermore, we adopt the feedback
information pattern and take a typical control strategy as a continuous mapping
7 : [0,T] xRn-> Rm. Denote the space of all such strategies by T. Then the
optimal control problem is to find a 7* € T such that J(l*)<J(l), V7er, (5.31a)
where J(7) = L(u), with u(-) = 7(-,x). (5.31b) Several methods exist to obtain
the optimal strategy 7* or the optimal control function u*(-) = 7*(-, z). We shall
derive the former by making use of Thm. 5.3. Simple arguments (see Anderson
and Moore, 1989) lead to the conclusion that minr J(~y) is quadratic in xo.
Moreover, it can be shown that, if the system is positioned at an arbitrary t e
[0, T] at an arbitrary point x £ R™, the minimum cost-to-go, starting from this
position, is quadratic in x. Therefore, we may assume existence of a
continuously differentiable value function of the form V(t, x) = -x'S{t)x + k'(t)x
+ m(t), (5.32)
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symmetric (n x n) matrix with continuously differentiable entries, fc(-) is a



continuously differentiate n-vector and m(-) is a continuously differentiable
function. If we can determine such S(-), fc(-) and m(-) so that (5.32) satisfies
the HJB equation (5.25), then Thm. 5.3 justifies the assumption of the existence
of a value function quadratic in x. Substitution of (5.32) into (5.25) leads to —
x'Sx — x'k — m 2 = min 1 1 (Sx + k)'(Ax + Bu + c) + -x'Qx + x'p + -u'Ru
(5.33) S(T) = Qf, k(T) = 0, m(T) = 0. (5.35a) (5.35b) (5.35c) Carrying out the
minimization on the RHS yields u*{t) = y*(t,x(t)) = -R-iB'lSMxtt) + k{t)],
(5.34) substitution of which into (5.33) leads to an identity relation which is
readily satisfied if S + SA + A'S- SBR^B'S + Q = 0, k + (A- BR-lB'S)'k + Sc +
p = 0, m + k'c-^k'BR-1B'k = 0, Thus we arrive at the following proposition.
Proposition 5.3 The linear-quadratic optimal control problem (5.30a)-(5.30b)
admits a unique optimum feedback controller 7* which is given by (5.34),
where S(-), k(-) and m(-) uniquely satisfy (5.35a)-(5.35c). The minimum value
of the cost functional is J{l*) = ^oS(0)zo + k'(0)x0 + m(0). Proof Except for
existence of a unique S(-) > 0, fc(-) and m(-) that satisfy (5.35a)-(5.35c), the
proof has been given prior to the statement of the proposition. Furthermore, if
there exists a unique S(-) that satisfies (5.35a), which is known as the matrix
Riccati equation, existence of unique solutions to the remaining two
differential equations of (5.35a)-(5.35c) is assured since they are linear in k
and m, respectively. Then, what remains to be proven is that a unique solution
S(-) > 0 to (5.35a) exists on [0,T\. This can be verified by either making use of
the theory of differential equations (cf. Reid, 1972) or utilizing the specific
form of the optimal control problem with Qf and Q(-) taken to be nonnegative-
definite (Anderson and Moore, 1989). D Remark 5.7 The solution (5.34) can
be obtained by other methods as well. Two of these are the minimum principle
(to be discussed shortly; see also (Bryson and Ho, 1975), and the "completion
of squares" method (see Brock- ett, 1970). Since the latter will be discussed in
Chapter 6 in the context of affine-quadratic differential games, it will not be
covered in this chapter. □
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requirements on Qf and Q(-) may be relaxed, but then we have to assume from
the outset the existence of a unique bounded solution to (5.35a) in order to
ensure the existence of a unique minimizing control as given by (5.34).41
Otherwise (5.35a) might not admit a solution; more precisely its solution may
exhibit finite escape (depending on the length of the time interval), implying in
turn that the "optimal" cost might tend to —oo. To exemplify this situation



consider the scalar example: x = x + u, x(Q) =x0, \ m = uT(-*2+u2)d*.) (5l36)
The Riccati equation (5.35a), for this example, becomes 5 + 25 - S2 - 1 = 0,
S(T) = 0 (5.37) which admits the solution SW = /-V-t (5-38) on the interval (T
— 1,T]. Hence, for T > 1, a continuously differentiate solution on the interval
[0,T] to (5.37) does not exist. This non-existence of a solution to the matrix
Riccati equation is directly related to the well-posedness of the optimal
control problem (5.36), since it can readily be shown that, for T > 1, L(u) can
be made arbitrarily small (negative) by choosing a proper u(t). In such a case
we say that the Riccati equation has a conjugate point in [0, T] (Sagan (1969)
and Brockett (1970)). This topic will be revisited in Chapter 6 in the context
of affine-quadratic zero-sum differential games. □ Infinite horizon linear-
quadratic problems Meaningful continuous-time linear-quadratic optimal
control problems where T —> oo can also be formulated. Toward that end we
take c(t) = 0, and the matrices A(t),B(t),Q(t) and R(t) to be independent of t.
Then the problem becomes 1 f°° min - / (x'Qx + u'Ru) dt; Q > 0, R > 0, u 2 70
subject to x = Ax + Bu. Conditions which ensure this problem to be well
defined (with a finite minimum) are precisely those of the discrete-time
analogue of this problem, i.e., the matrix pair (.A, B) must be stabilizable and
the matrix pair (A, D), where D is a matrix such that D'D = Q, must be
detectable; see for instance Kailath (1980) 41See Chapter 6, and particularly
Lemma 6.4 and Remark 6.15 for further elaboration of this point.
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notions in continuous time.42 The pair (A, B) is stabilizable if an m x n matrix
F exists such that (A + BF) is stable, i.e., all its eigenvalues lie in the open left
half of the complex plane (note the difference of this definition of stability from
the one for its discrete-time counterpart). Furthermore, the pair (A, D) is
detectable if its "dual pair" (A',D') is stabilizable. The following proposition,
which can be found in any textbook on linear control systems, summarizes the
main result. Proposition 5.4 Assume that the pair (A, B) is stabilizable and the
pair (A, Q) is detectable. Then, there exists an n x n nonnegative definite
matrix S such that (i) for fixed t, and for every Qf > 0, ST(t) —» S (uniformly
in t < T) as T —> oo, where S (t) is the unique nonnegative definite solution to
(5.35a), parameterized in T; (ii) S is the unique solution of the algebraic
Riccati equation (ARE) SA + A'S - SBR~XB'S + Q = 0 in the class of
nonnegative definite matrices; (Hi) the closed-loop matrix A — BR~1B'S is
stable, i.e., all its eigenvalues lie in the open left half of the complex plane;



(iv) the minimum value of the cost functional (v) the stationary optimum
control law is 7*(x) = -R~lB'Sx. Under the stronger condition that (A, D) is
observable (a sufficient condition for which is Q > 0), the solution to the ARE
is positive definite. 5.5.3 The minimum principle Continuous-time systems In
this subsection our starting point will be the HJB equation (5.25) under the
additional assumption that V is twice continuously differentiable, and we shall
convert it into a series of pointwise optimization problems, indexed by the
parameter t. This new form is in some cases more convenient to work with and
it is closely related to the so-called minimum principle, as also discussed here.
Toward this end we first introduce the function H(t, x, u) = 9V  ̂X> f(t, x, u) +
g(t, x, u), (5.39) 42As in the discrete-time case, we will refer to the latter
condition also as detectability of the pair (A, Q).
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written as dV —— =min H(t,x,u). (5.40) at u Being consistent with our earlier
convention, the minimizing u will be denoted by u*. Then H{tjXjU*) +
dXMt^0. (5.41) Since this is an identity in x, its partial derivative with respect
to x is also zero. This leads to, by also interchanging the orders of second
partial derivatives (which is allowed if V is twice continuously differentiate):
dx dt \dx J dx dx du dx If there are no constraints on u, then dH/du = 0 for u —
u* according to equation (5.40). If there are constraints on u, and u* is not an
interior point, then it can be shown that (dH/du)-(du*/dx) = 0 (because of
optimality, dH/du and du*/dx are orthogonal; for specific problems we may
have du*/dx — 0). In view of this, equation (5.42) becomes dg_ d_fdV\ <?
¥_<?l_0 dx dt \ dx J dx dx By introducing the so-called costate vector, p'(t) =
dV(t,x*(t))/dx, where x* denotes the state trajectory corresponding to u*,
(5.43) can be re-written as  ̂= -^{t,x*,u") +p'(t)f(t,x*,u*)) = ^H(t,p,x*,u*),
(5.44) where H is defined by H(t,p,x,u) = g(t,x,u)+p'f(t,x,u). (5.45) The final
time T is determined by the scalar relation l(T, x) = 0 and hence can be
regarded as a function of the state: T(x). The boundary condition for p(t) is
determined from dx dx ' In conclusion, we have arrived at the following
necessary condition for the optimal control u*{-): under the assumption that the
value function V(t,x) is twice continuously differentiable, the optimal control
u*(t) and corresponding
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following so-called canonical equations x*(t) = (-Q-) = f(t,x*,u*),x(t0)=x0; .



dH{t,p,x*,u*) P(t) = jb , P'(T) = 9qilf' along l(T,x) = 0- H(t,p,x,u) =
g(t,x,u)+p'f(t,x,u), u*(t) — arg min H(t,p,x*,u). u&S In the derivation of (5.47),
the controls have been assumed to be functions of time and state; i.e., u(t) —
7(4,x(i)). If, instead, one starts with the class of control functions which
depend only on time, i.e., u(t) = 7(4), the set of necessary conditions (5.47) can
be derived in quite a different way (by using perturbation functions, which is a
standard procedure in the classical calculus of variations), and under milder
assumptions. Following such a derivation, one obtains the following result
which can, for instance, be found in Pontryagin, et al. (1962) and which is
referred to as the minimum principle. Theorem 5.4 Consider the optimal
control problem defined by (5.23) and under the OL information structure. If
the functions f, g, q and I are continuously differ entiable in x and continuous in
t and u, then relations (5.47) provide a set of necessary conditions for the
optimal control and the corresponding optimal trajectory to satisfy. Remark 5.9
A particular class of optimal control problems which are not covered by Thm.
5.4 are those with a. fixed terminal condition, i.e., with the terminal time T and
the terminal state x(T) prescribed, since the function / is not differ- entiable in
this case. However, the necessary conditions for the optimal control are still
given by (5.47), with the exception that the condition on p{T) is absent and
instead the terminal state constraint x(T) = Xf replaces it. We also note, in
passing, that in the theory of zero-sum differential games, reasonable problems
with state space dimension > 2 will (almost) never be formulated with a fixed
prescribed terminal state, since it is not possible to enforce this end-point
constraint on both players if they have totally conflicting objectives. □ The
following example now illustrates how Thm. 5.4 can be employed to obtain the
solution of an optimal control problem for which the value function V is not
continuously differentiate. It also exhibits some features which are frequently
met in the theory of differential games, and introduces some terminology which
will be useful later in Chapter 8.
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control problem with systems dynamics described by dax2 )-Gi)©+G)- where
the scalar control satisfies the constraint —1 < u(t) < 1 for all t > 0. The
objective is to steer the system from an arbitrary but known initial point in the
( l̂) )̂ plane to the line x\ = x2 in minimum time. Hence, the cost function can be
written as L(u)= g(t,x,u)dt = ldt = T, Jo Jo where T is defined as the first
instant for which the function l(t,x1(t),x2(t)) =xi(t)-x2(t) becomes zero. In the



derivation to follow, we shall restrict ourselves to initial points satisfying xi
— x2 > 0. Initial points with the property xi — x2 < 0 can be dealt with
analogously. Now, application of relations (5.47) yields (with P = (Pi,P2)')- H
= 1 +pix2 +p2u, "I Pi = 0, p2 = -pi, \ (5.49) u*(t) = -sgn{p2(t)}. J where the
costate variable p2(t) here is also known as the switching function, since it
determines the sign of u*(t). For points on the line xi = x2, which can be
reached by optimal trajectories, obviously I = 0 and therefore the costate
vector p(T) = (p1(T),p2(T))' will be orthogonal to the line xi = x2 and point in
the direction "south-east". Since the magnitude of the costate vector is
irrelevant in this problem, we take Pi(T) = l, p2(T) = -l, (5.50) which leads to
assuming, of course, that T > 1. Now, by integrating (5.48) backwards in time
from an arbitrary terminal condition on the line xi = x2 (which we take as x\(T)
= x2{T) = a where a is the parameter), and by replacing u(t) with u*(t) as
given by (5.51), we obtain sift) = (*-T)a+i(*-T)2 + a, x2(t) = & + (t-T), forT-1
<t<T. Foit = T-l wegetii(T-l) = \,x2{T) = a-l. The line x\ = \, x2 — a — 1 is
called, for varying a, the switching line. O
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region of the state space, the trajectory (xi(t),X2(t)) should move into this
region from X\(T) = %2(T) = a if t goes backwards in time, which is only true
for a < 1. For a > 1, the trajectories first move into the region X2 > X\, in
retrograde time. Those trajectories cannot be optimal, since we only consider
the region X2 < £i, and, moreover, boundary conditions (5.50) are not valid for
the region X2 > x\. Hence only points x\{t) = X2(T) = a with a < 1 can be
terminal points. The half line x\ = X2 = a, a < 1, is called the usable part (UP)
of the terminal manifold or target set. Integrating the state equations backwards
in time from the UP, and substituting t = T — 1, we observe that only the line
segment Xi = |,X2=a— 1, a < 1, is a switching line. Using the points on this
switching line as new terminal state conditions, we can integrate the state
equations further backwards in time with u*(t) = — 1. The complete picture
with the optimal trajectories is shown in Fig. 5.1. These solutions are the only
ones which satisfy the necessary conditions of Thm. 5.4 and therefore they
must be optimal, provided that an optimal solution exists. Figure 5.1: The
solution of Example 5.2. The dotted lines denote lines of "equal time-to-go".
Once the optimal trajectories are known, it is not difficult to construct V(x).
Curves of "equal time-to-go", also called isochrones, have been indicated in
Fig. 5.1. Such a curve is determined from the equation V(x) = constant. It is



seen that along the curve AB the value function V(x) is discontinuous. Curves
along which V(x) is discontinuous are called barriers. The reason behind the
usage of such a terminology is that no optimal trajectory can ever cross a curve
along which V(x) is discontinuous in the direction from large V to small V.
Note that, because of the discontinuity in V(x), Thm. 5.3 cannot be used in
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strategy j*(t,x), which we write as j*(x) since the system is autonomous (i.e.,
time-invariant), can readily be obtained from Fig. 5.1: to the right of the
switching line and barrier, we have 7*(x) = —1, and to the left of the switching
line and barrier, and also on the barrier, we have 7* (a) = +1- Discrete-time
systems We now conclude this subsection by stating a counterpart of Thm. 5.4
for discrete-time optimal control problems. Such problems have earlier been
formulated by (5.18a) and (5.18b), but now we also assume that fk is
continuously differentiable in xk, and gk is continuously differentiable in xk
and xjt+i (fc e K). Then, the following theorem, whose derivation can be found
in either Canon et al. (1970) or Boltyanski (1978), provides a minimum
principle for such systems. Theorem 5.5 For the discrete-time optimal control
problem described by (5.18a) and (5.18b), let (i) /*;(•> uk) be continuously
differentiable on Rn, (k S K), ( H) 3fc('i Ufct •) be continuously differentiable
on Rn x Rn, (k G K), (Hi) fk(-, 0 be convex on Rn x Rm, (k € K). Then, if {uk,k
£ K} denotes an optimal control sequence, and {xj.+1,k G K} denotes the
corresponding state trajectory, there exists a finite sequence {p2, ■ ■ ■ ,Pk+i\
of n-dimensional costate vectors so that the following relations are satisfied:
xk+l ~ /fc(xfc>ufe)' Zl^ l̂, u*k = arg min Hk(pk+1,uk,x*k), uk€Uk Pk = - -̂
fk(x*k,u*k) Pk+i + f  ̂gk(x*k+1,u*k,x*k)j d > (5.52) + [Q^9k(xl+1,u*k,x*k)) ,
pk+i=0, Hk(pk+i,xk,uk) = gk{fk(xk,uk),uk,xk) + p'k+1fk(xk,uk), keK. D The
reader should now note that Prop. 5.1 also follows as a special case of this
theorem.
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Trajectories, and Time Consistency of Optimal Policies In our discussion of
some important results of optimal control theory in the previous section, we
have confined our treatment to two specific information patterns and thereby to
two types of strategies; namely, (i) the open-loop information pattern dictates
strategies that depend only on the initial state and time, (ii) the feedback
information pattern forces the permissible strategies to depend only on the



current value of the state and time. The former class of strategies is known as
open-loop strategies, while the latter class is referred to as feedback
strategies. Referring back to the discrete-time affine-quadratic optimal control
problem described by (5.20a)-(5.20b) (and assuming that ck = 0 for all k € K,
for the sake of brevity in the discussion to follow), the solution presented in
Prop. 5.1, i.e., 7£(xfc) = -PkSk+1Akxk, keK, (5.53) is a feedback strategy, and
in fact it constitutes the unique solution of that optimal control problem within
the class of feedback strategies. If the optimal control problem had been
formulated under the open-loop information pattern, then (5.53) would clearly
not be a solution candidate. However, the unique optimal open-loop strategy,
for this problem, can readily be obtained from (5.53) as u*k = -PkSk+1Akx*k,
k e K, (5.54a) where x*k is the value of the state at stage k, obtained by
substitution of (5.53) in the state equation; in other words, x* can be solved
recursively from the difference equation x*k+i = {Ak - BkPkSk+iAk)x*k, x* =
xx. (5.54b) It should be noted that (5.54a) is an open-loop strategy since it only
depends on the discrete-time parameter k and the initial state xi (through
(5.54b)). We can also interpret (5.54a) as the realization of the feedback
strategy (5.53) on the control set Uk, that is to say, (5.54a) is the action
dictated by (5.53). For this reason, we also sometimes refer to (5.54a) as the
open-loop realization or open-loop value of the feedback strategy (5.53). The
question now is whether we can obtain other solutions (optimal strategies) for
the optimal control problem under consideration by extending the strategy
space to conform with some other information structure, say the closed-loop
perfect state pattern. If we denote by Tk the class of all permissible closed-
loop strategies (under the CLPS pattern) at stage k (i.e., strategies of the form
7fc(xfc,xfc_i,... ,xi)), then (5.53) is clearly an element of that space, and it
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optimal control problem (5.20a)-(5.20b) also on that enlarged strategy space.
As a matter of fact, any element yk of Tk (k € K), which satisfies the boundary
condition lk(x*k,x*k_1,...,x*2,x*l) = -PkSk+1Akx*k, fceK, (5.55) also
constitutes an optimal solution. One such optimal policy is the one-step
memory strategy lk{xk, Zfc-i) = -PkSk+iAkxk + Ck[xk - Fk-iXk-i], where Fk =
Ak — BkPkSk+\Ak, and Ck is a matrix of appropriate dimensions. It should be
noted that all such strategies have the same open-loop value (which is the RHS
of (5.55)) and generate the same state trajectory (5.54b), both of which follow
from (5.55). Because of these properties, we call them different



representations of a single strategy, a precise definition of which is given
below. Since the foregoing analysis also applies to continuous-time systems,
this definition covers both discrete-time and continuous-time systems.
Definition 5.11 For a control problem with a strategy space T, a strategy 7 £ T
is said to be a representation of another strategy 7 £ T if (i) they both generate
the same unique state trajectory, and (ii) they both have the same open-loop
value on this trajectory. Remark 5.10 The notion of representation of a strategy,
as introduced above, involves no optimality. As a matter of fact, it is a
property of the strategy space itself, together with the control system for which
it is defined, and no cost functional has to be introduced. □ A significance of
the notion of "representations" in control problems is that it enables one to
construct equivalence classes (of equal open-loop value control laws) in the
general class of closed-loop strategies, so that there is essentially no
difference between the elements of each equivalence class. In fact, for an
optimal control problem, we can only talk about a unique optimal "equivalence
class", instead of a unique optimal "strategy", since as we have discussed
earlier within the context of the optimal control problem (5.20a)-(5.20b),
every representation of the feedback strategy (5.53) constitutes an optimal
solution to the optimal control problem, and there are uncountably many such
(optimal) strategies. As a converse to the italicized statement, we can say that
every solution of the optimal control problem (5.20a)-(5.20b) is a
representation of the feedback strategy (5.53). Both of these statements readily
follow from Def. 5.1, and they are valid not only for the specific optimal
control problem (5.20a)-(5.20b) but for the general class of control problems
defined in either discrete or continuous time.
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equivalence classes of representations of strategies for a control problem with
a given space (T) of closed- loop strategies, and first for discrete-time
systems. The procedure, which follows directly from Def. 5.11, is as follows.
For such a system, first determine the set (Tol) of all elements of T, which are
strategies that depend only on the initial state x\, and the discrete time
parameter k. The set Tol, thus constructed, is the class of all permissible open-
loop controls in T. Now, let 7 = {lk(xi); k 6 K} be a chosen element of Tol,
which generates (by substitution into (5.18a)) a (necessarily) unique trajectory
{£*., k 6 K}. Then, consider all elements 7 = {jki'), k £ K} of T with the
properties (i) 7 generates the same state trajectory as 7, and (ii)



7fe(xfc,xjfe_1,...,X2,a;i) = %(xi),k £ K. The subset of V thus constructed
constitutes an equivalence class of representations which, in this case, have the
open-loop value 7. If this procedure is executed for every element of 70L1 then
the construction of all equivalence classes of T becomes complete. For
continuous-time systems, essentially the same procedure can be followed to
construct equivalence classes of representations of strategies. In both discrete-
time and continuous-time infinite dynamic systems such a construction leads, in
general, to an uncountable number of elements in each equivalence class which
necessarily contains one, and only one, open-loop strategy. The main reason
for the "non-denumerable" property of equivalence classes is that in
deterministic problems the CLPS information pattern (which involves memory)
exhibits redundancy in information—thus giving rise to existence of a plethora
of different representations of the same open-loop policy. This "informational
nonuniqueness" property of the CLPS pattern is of no real concern to us in
optimal control problems, since every representation of an optimal control
strategy also constitutes an optimal solution. However, in dynamic games, the
concept of "representations" plays a crucial role in the characterization of
noncooperative equilibria, and the preceding italicized statements are no
longer valid in a game situation. We defer details of an investigation in that
direction to Chapters 6 and 7, and only provide here an extension of Def. 5.11
to dynamic games. Definition 5.12 For an N-person dynamic game with
strategy spaces {P;i € N} let the strategies of all players, except Pi, be fixed at
7J eP, jeN, j  ̂i. Then, a strategy -y1 € Tl for Pi is a representation of another
strategy 7* € Tl, with 7j e P (j <E N, j yt i) fixed, if (i) the N-tuples { l̂, \̂j €
N,j  ̂i] and {7*,7-7;j € N,j  ̂i) generate the same unique state trajectory, and
(ii) -y1 and 7* have the same open-loop value on this trajectory. Time
consistency In (one-player) optimal control problems, even though all
representations of an optimal control strategy constitute optimal solutions, as
discussed above,
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preferred over others due to additional appealing properties they carry, such as
robustness to modeling and decision errors. One such refinement scheme that
brings in a selection among different representations of a given optimal
strategy is provided by the notion of time consistency, which is valid not only
for one-player dynamic decision problems (such as optimal control), but also
for dynamic games in both discrete and continuous time. This notion manifests



itself in two forms—as weak and strong time consistency, which we introduce
below in the general framework of dynamic games. Toward that end, let us first
introduce the notation £>(r;[0,T]; sol) (5.56) to denote an iV-person dynamic
game, where T is the product strategy space, [0, T] is the decision interval,43
and sol stands for any particular solution concept according to which (optimal
or equilibrium) policies are determined.44 Furthermore, let 7MerM, 7[,,t] e
r|,it] (5.57) denote, respectively, the truncations of 7 6 V and rf G P, to the time
interval [s,t] C [0,T], and let D[st] = D(heT: Tio,») = Ao,«).7(t,r] = /%,t].7m
erM);M;so0 (5.58) denote a version of D(T; [0, T); sol), where the policies of
all players in the intervals [0, s) and {t,T\ are fixed as f3fQ *, ffit T,, i e N. An
underlying assumption here is that the cost functions of the players are of
additive type, such as (5.10) or (5.14). Then, we have the following two
definitions on the "time consistency" of a solution obtained for the original
game according to the concept "sol". Definition 5.13 An N-tuple of policies 7*
s F solving the dynamic game D(T; [0,T]; sol) is weakly time consistent
(WTC) if its truncation to the interval [s, T], 7,* T,, solves the truncated game
D? T,, this being so for all s € (0, T\. If a solution 7* GT is not WTC, then it is
time inconsistent. Definition 5.14 An N-tuple of policies 7* € T solving the
dynamic game D(T;[0,T]; sol) is strongly time consistent (STC  ̂if its
truncation to the interval [s,T], 7.* t ,, solves the truncated game D?T<,, for
every f3\olS) € F[o,s), this being so for every s € (0, T]. Both these
refinements essentially say that for a solution to be time consistent (in the weak
or strong sense), the players should have no rational reason, 43By an abuse of
notation, we will let this also denote the discrete interval for the discrete- time
problem, in which case [0, T] = {1,..., K}. 44In an optimal control problem,
for example, sol could stand for minimization or maximization, or reachability
to a target set; in a dynamic game it could stand for saddle-point, Nash or
Stackelberg equilibrium.
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from the adopted policies. The difference between weak and strong time
consistency lies in the consistency (or inconsistency) of the past actions with
the adopted policies. In the former (that is, weak time consistency) there is no
ground for reneging at future stages only if the past actions are consistent with
the original solution, 7*; whereas in the latter this is true even if there have
been deviations in the past from the actions which are dictated by the original
solution. Solutions of optimal control problems of the types discussed in



Section 5.5 (and of course also their representations) are weakly time
consistent—a fact that easily follows from Def. 5.13. Not every solution is
strongly time consistent, however; a case in point being the optimal open-loop
control Ur"0 r, — {7*(£),£ 6 [0,T]} obtained using the minimum principle (cf.
subsection 5.5.3). If a non- optimal open-loop policy U[o,«) is applied to the
system in the time interval [0, s), which brings the system to a state, say x(s),
that is not on the optimal trajectory, then the control uT T, will not necessarily
be optimal for the new truncated control problem D? T,. The reason for this is
that uT T, will no longer satisfy the necessary conditions given in Thm. 5.4 or
Thm. 5.5 on the interval [s,T], as the initial state at t = s is not on the optimal
trajectory. Hence, optimal open-loop control is only WTC. The optimal
feedback control, obtained from the dynamic programming equation (5.19) or
(5.25),45 however, is STC—a fact that follows from Def. 5.14. For the
discrete-time linear-quadratic problem (with Cfe = 0), for example, the policy
(5.53), which is obtained from a dynamic programming equation, is STC,
whereas its open-loop version (5.54a) is only WTC. For the more general
affine-quadratic problem described by (5.20a), the optimal feedback policy
(5.21a) is STC. In a way, an STC policy is one that is not only independent of
the initial state xo but also independent of other past values of the state. Not
every optimal policy that depends only on the current value of the state is
necessarily STC, however, especially if the initial state is a fixed known
quantity. To make the point here, consider the optimal feedback policy 7* =
{7 ,̂ fc € K} obtained from (5.19), for a discrete-time system whose initial
state xi is fixed and given, under which the optimal trajectory, {#£+1, k € K},
is just a sequence of known vectors. Now, if T is a policy space compatible
with the feedback (FB) information pattern, and we seek an optimal solution in
the class Y, then not only 7*, but every 7 € T given by 7fc(xfc) = (̂xfc,x|), k €
K, will be an optimal policy, where Vfc is any function satisfying the boundary
condition ipk(x*k,xl) = 7£(x£), k e K. Different choices of ip lead to different
representations of the same (optimal) policy on the optimal trajectory, and they
all (in this case) depend only on the current value of the state. Because of this
feature, one may be tempted to call all these different representations "optimal
feedback policies", but this would not be correct because only one of them,
namely 7*, is STC. The others cannot be obtained directly from (5.19) and do
not meet the "permanent optimality" property associated with an STC optimal
solution. 45Here, the feedback control is obtained by minimization of the right-
hand side of (5.19) or (5.25), depending on whether we have a discrete-time



or a continuous-time problem.

252 T. BA§AR AND G. J. OLSDER There are two points worth mentioning
here in connection with the notion of an STC optimal policy. The first one is
that it is quite possible for a constant policy to be STC, which would arise if
the optimization problem in (5.19) (or (5.25)) admits a solution which is
independent of x for every fc (or t). In such a case, the optimal feedback and
the optimal open-loop solutions would coincide, and hence the open-loop
solution would also be STC. The second point is that a given dynamic
optimization problem may not admit an STC optimal solution, even under the
CL information pattern. This would arise if the policy space has additional
structural restrictions imposed on the permissible policies. For example, one
may require the policies to depend only linearly on the current value of the
state, with no such restriction imposed on their dependence on past history. If
the unique optimal FB solution obtained from (5.19) (or (5.25)), i.e., 7*, is not
linear in its argument, then the problem would not admit an STC solution.
However, the problem would still admit a WTC optimal solution, such as (in
the discrete-time case) any policy of the form 7Jk(xfc,x\) — MfcXfc +~fk(x*k)
~ Mkxl, fc e K, where {Mk} is an arbitrary matrix sequence (of compatible
dimensions) and {x£} is the trajectory generated by 7*, in general as a function
of xi. The notions of weak and strong time consistency are of course also valid
in systems which incorporate lag variables, either in the state or in the control.
Consider, for example, the system where the evolution is governed by (as a
counterpart of (5.18a)): Xk+i = fk(xk,Xk-i,uk), ziandx0 given. This could be
converted into the form (5.18a) by introducing a new state vector £fc which
corresponds to the pair (xk,Xh~i), thus making our earlier discussion apply
here, with xk replaced by £&. Note that, in view of this, an STC solution will
exist for the discrete-time optimal control problem (under the cost function
(5.18a)) only if one allows the permissible policies at time fc to depend not
only on xk but also on xk-i- This can best be seen if one writes down the
counterpart of the dynamic programming (DP) equation (5.19) in terms of the
original variables: V(k,xk,xk-i) = min{V(k + 1, fk{xk,xk-i,u),xk) +
9k[fk[xk,Xk-i,u),u)} ueUk with the boundary condition being V(K + \,xk+i,xk)
= 0. Clearly, an STC solution will have to be of the form uk = 7fe(xfc, £fc-i). If
the information pattern is FB, then the problem may not admit a solution at all.
This concludes our discussion on WTC and STC optimal solutions in one-
person dynamic decision problems. The topic will be revisited later in



Chapters 6 and 7, in the context of saddle-point, Nash and Stackelberg
equilibria in dynamic games. Stochastic systems We devote the remaining
portion of this section to a brief discussion on the representation of closed-
loop strategies in stochastic control problems. In par-
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Def. 5.4, the class of control problems described by the state equation Xk+\ =
fk{xk,uk) + ek (5.59) where jk (k e K) is a random vector taking values in Rn,
and the joint probability distribution function of {x\,9i,... ,9k} is known. Then,
given a feedback strategy {jk(-), k G K}, it is in general not possible to write
down a representation of this strategy that also involves past values of the
state, since now there is no redundancy in the CLPS information, due to
existence of the disturbance vector 9k- In other words, while in deterministic
systems Xk+i can easily be recovered from Xk if one knows the strategy
employed, this is no longer possible in stochastic systems because xk+i also
contains some information concerning 9k- This is particularly true if the
random vectors x\, 9\,..., 9k are Gaussian, mutually independent and cov (9k) >
046 for all fceK. Hence, we have the following proposition. Proposition 5.5 //,
for the stochastic system (5.59), all random vectors are Gaussian, mutually
independent and the covariance of 9k is of full rank for all k € K, then every
equivalence class of representations is a singleton. Remark 5.11 The reason
why we do not allow some random vectors to be statistically dependent and/or
cov (9k) to have lower rank is because then some components of Xk+i can be
expressed in terms of some components of Xk, xk-i, etc., independent of 9k,
9k-i, ■ ■ ■, which clearly gives rise to nonunique representations of a strategy.
Furthermore, we should note that the requirement of having a Gaussian
probability distribution with positive definite covariance can be replaced by
having any probability distribution that assigns positive probability mass to
every nonempty open subset of Rn. The latter requirement is important
because, if any open subset of Rn receives zero probability, then nonunique
representations are possible on that particular open set. □ Optimal control of
stochastic systems described by (5.59) can be performed by following the
basic steps of dynamic programming applied to the deterministic system
(5.18a)-(5.18b). Toward this end, we first replace the cost functional (5.18b)
by " K J(l) = E ^2gk(xk+i,Uk,Xk)\uk =-yk(xi,l < k), k e K , (5.60) where {"fk'jk
€ K} is any permissible closed-loop strategy, and E[-\ denotes the expectation
operation denned with respect to the underlying statistics of Xi,6i,... ,6k which



we assume to be mutually independent. Then, the value function V(k, x) is
denned by " K Y^9i(xi+i,ll(xi,l < i),Xi) V(k,x) — min E Xk = x. (5.61a) cov
(6k.) stands for the covariance matrix of #*., i.e., E[(9k - E[6k])(dk — £
[#*,])'].

254 T. BA§AR AND G. J. OLSDER Following the steps of dynamic
programming, and by utilizing the assumption of independence of the random
vectors involved, it can readily be shown that the value function satisfies the
recursive relation47 V(k,x) = min EBk[gk(fk(xk,uk)+9k,uk,xk) ,,.„,, uk€Uk
(5.61b) +V(k + lJk{xk,uk) +9k)], xk=x, which also leads to the conclusion that
the optimal strategy 7  ̂(k € K) depends only on the current value of the state,
i.e., is a feedback strategy. This is also a strongly time consistent solution
under the CLPS information pattern, where the notion (introduced by Def.
5.14) applies equally to stochastic dynamic decision problems, since its
definition used strategies, and not actions. We now apply this result to the so-
called linear-quadratic discrete-time stochastic optimal control problem
described by the linear state equation xk+i - Akxk f Bkuk + 8k (5.62a) and the
quadratic cost functional J(7) = E 1 K -^2x'k+1Qk+ixk+i +u'kRkuk I uk = *fk(-
), keK k=l , (5.62b) where Rk+i > 0, Qk+\ > 0; (k e K); 9k (k € K) are n-
dimensional mutually independent Gaussian vectors with mean value ck, and
covariance A  ̂> 0, and 7A: (k € K) are permissible closed-loop strategies.
For this special case, V(k,x) again turns out to be a general quadratic function
in x, and this leads to the following counterpart of Prop. 5.1. Proposition 5.6
For the linear-quadratic stochastic control problem described by (5.62a)-
(5.62b), and under the closed-loop perfect state information pattern, there
exists a unique minimizing solution (which is a feedback strategy) given by uk
= 1kixk) = -PkSk+\Akxk - Pk(sk+i + Sk+ick), keK, (5.63) where all terms are
defined in Prop. 5.1. Remark 5.12 The solution of the stochastic linear-
quadratic optimal control problem depends only on the mean value (ck, k € K)
of the additive disturbance term but not on its covariance (Ak,k € K).48
Moreover, the solution coincides with the optimal feedback solution of the
deterministic version of the problem (as presented in Prop. 5.1), which takes
the mean value of the Gaussian disturbance term as a constant known input.
Finally, in view of Remark 5.11, uniqueness of the solution is valid under the
assumption that the covariance matrix A  ̂is positive definite for all k 6 K. D
47Eek denotes the expectation operation with respect to statistics of 6%.
48The minimum expected value of the cost function does, however, depend on



{A*., fc € K}.
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control problems can be obtained under other deterministic information
patterns also, but they are not representations of each other under the full-rank
condition of the independent additive noise. Hence, each different information
pattern requires a different derivation for the optimal solution. These solutions
are not all STC, but they are necessarily WTC. See Problem 5 in Section 5.8
for an illustrative example. a 5.7 Viscosity Solutions In this section another
solution approach to the HJB equation (5.25) will be given. This approach has
its origin in the theory of stochastic optimal control theory (in continuous time)
as will be explained soon. If in (5.25), or in its time-invariant analogue mm
f{x,u)+g(x,u) = 0, (5.64) the minimizing u, as a function of dV/dx, x (and t for
(5.25)), is substituted into the same expressions, the resulting equations will be
written formally as and dV - dV — +H(x,V,—,t) = 0, (5.65) dV H(x,V,—) = 0,
(5.66) respectively. For both equations we assume appropriate boundary
conditions. Sometimes finding a solution of (5.65) is referred to as a Cauchy
problem and of (5.66) as a Dirichlet problem. Note that, strictly speaking, the
function H in (5.65) and (5.66) does not directly depend on the argument V in
our case and that the format of (5.65) and (5.66) is more general than strictly
necessary. Rather than studying (5.65) it pays sometimes to study v-  ̂d2V dV -
dV *5:ssj+«-+^v-fc-'>=0' (5-67) where £ is a (small) positive parameter. The
first term of this expression is also written compactly as eAV. In the same way
one could add the same term with the second derivatives to (5.66): v-  ̂d2V -
dV The theory of partial differential equations tells us that existence and
unicity results are easier to obtain for (5.67) than for (5.65). One may hope to
get results

256 T. BA§AR AND G. J. OLSDER for (5.67) and then study their limits as e
tends to zero. Hopefully the solution of (5.67) (respectively, (5.68)) will
resemble a solution of (5.65) (respectively, (5.66)) in some sense if £ J. 0.
Quite often solutions to (5.65), (5.66), viewed as abstract mathematical
equations, are not unique, among others depending on the definition of solution
that one adopts. With the addition of a proper understanding of the underlying
optimal control problem, the solution becomes usually unique. Before
continuing along these lines, we will first indicate that (5.67) is not only an
auxiliary equation, but that it represents a condition for the value function of a



related stochastic optimal control problem. Consider the one-person version of
the AT-person stochastic differential equation as described by (5.17b): dxt =
F(t,xt,u(t))dt + 5(t,xt)dwt, xt |t=0= x0, (5.69) and the cost functional rT J(7) = E
J Jo g(t,xt,'f(t,xt))dt + q(xT) (5.70) where E stands for the expectation operator
(see Appendix B) and where u{t) = 7(<, xt) € S, i.e., only feedback strategies
are allowed. The following result from Fleming (1969) (see also Fleming and
Rishel (1975)) provides a set of sufficient conditions and a characterization
for the optimal solution of this stochastic control problem. Proposition 5.7 Let
there exist a suitably smooth solution W(t, x) of the semi- linear parabolic
partial differential equation dW lr .,. . d2W dt 2^—* ' dxidxi +mm[VxW-
F(t,x,u) + g(t,x,u)] = 0; V' ; W(T,x) = q(T,x), where al;> denotes the ijth
element of the matrix 55', and x% denotes the ith component of the vector x. If
there is a function u°(t,x,p) that minimizes \p'F(t,x,u) + g(t,x,u)} on S, then 7*
(t,a;) = u°(t,x, VXW) is an optimal control, with the corresponding expected
cost given by J* = W(0,xo). This proposition yields a partial differential
equation which the value function of the stochastic optimal control problem
should satisfy. The resemblance between (5.67) and (5.71) will be obvious.
Thus (5.67), for the time-invariant case, can also be considered as a condition
which the value function of an appropriately defined stochastic optimal control
problem should satisfy. The formulation of the stochastic optimal control
problem and the statement of the proposition have been rather informal. The
rigorous underlying mathematics is beyond the scope of this book and can for
instance be found in the references already mentioned and in Lions (1982) and
in Crandall and Lions (1983).
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solution when £ J. 0. To express the fact that the solution of (5.67) depends on
e, it will be indicated by Ve. If \\m.e[QVe{x) exists, this limit might be what is
called a viscosity solution of (5.66). The name "viscosity solution" comes
from a celebrated method in fluid dynamics where the term £ J2i . gf.g .̂.
represents physically a viscosity. In optimal control theory, however, the term
"viscosity solution" is reserved for a particular solution of (5.66), which may
equal the limit solution (with £ J. 0) of (5.68) if it exists. More properly, it then
could have been called the vanishing viscosity solution. Definition 5.15
Suppose that H is continuous in its arguments. A continuous function V{x) is
called a viscosity subsolution of (5.66) provided that for all continuously
differentiable 4>{x), which map Rn or an appropriate subset o/Rn into R (as



does V(x)), the following holds: if V — <f> attains a local maximum at xo,
then H(xo,V(xo),^ -̂)>0. (5.72) A continuous function V(x) is called a viscosity
supersolution of (5.66) provided that for all continuously differentiable 4>{x),
which map Rn or an appropriate subset of YC1 into R (as does V(x)), the
following holds: ifV—(f> attains a local minimum at xo, then H(xQ,V(xQ),^ -̂)
<0. (5.73) A continuous function V(x) is catted a viscosity solution of (5.66) if
it is both a viscosity subsolution and a viscosity supersolution. An equivalent,
somewhat more intuitive, definition of a viscosity subsolution is as follows. A
continuous function V(x) is a viscosity subsolution of (5.66) if H(x, V(x),p) > 0
for all peR" such that lim ml{V{x)-V{xQ)-p'{x-xo))\\x-XQ\\-1 > 0. Those
vectors p which satisfy this latter equation are sometimes referred to as
subdifferentials. A similar and somewhat more intuitive definition of a
viscosity supersolution can also be given. The equivalences of these
definitions have been shown in Crandall, Evans and Lions (1984). Remark
5.14 It should be noted that, in the definitions of viscosity sub- and
supersolutions, in the references cited the inequalities (5.72) and (5.73) are
both reversed in sign. The definitions given here, however, are consistent with
(5.68), in which it is assumed that £ is positive. In the references cited, the
second-order term in (5.68) is preceded by a minus sign. We have not adopted
the addition of this minus sign because of the fact that the second-order term is
directly
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the system equations (and hence has to be nonnegative). Another way to make
the definitions given here and in the references cited fully equivalent is to
change H into — H. □ The following simple result establishes the consistency
of the notions of viscosity and "classical solutions". Theorem 5.6 If the
continuously differentiable function V is a classical solution of (5.66), then it
is a viscosity solution. The following theorem relates the solutions of (5.66)
and (5.67). Theorem 5.7 Suppose that Ve is a continuously differentiable
solution of (5.67) and that it converges uniformly, as e \. 0, to some continuous
function V. Then V is a viscosity solution of (5.66). Proof. Let us check (5.72)
first for twice continuously differentiable 4>. Assuming that V — 4> has a
local maximum at xo, a function £ is chosen, differentiable a sufficient number
of times and with 0 < £ < 1 for x  ̂xq and £(xo) — 1, such that V - (4> - Q has
a strict local maximum at xq. Thus for £ sufficiently small, Ve — (4> — £) has
a local maximum at some x£ and xe —> xo as e J. 0. Then, VVe(xe) = V(<£ -



C)(xe), AVe(xe) < A(4> - C)(xe), and therefore H(xe,Ve(xe),V(4>-0(x£)) = -
eAVe(x£) > -eA(<f> - Q(xe). Now, if we take the limit e J. 0, this expression
becomes (5.72). Suppose now that <p is only once continuously differentiable.
The first part of the proof, as just given, is now repeated for 4>k, where 4>k is
twice continuously differentiable and 4>k —* 4> as k —* oo. This concludes
the part of the proof that V is a viscosity subsolution. The fact that V is also a
viscosity supersolution can analogously be shown, which then, together with V
being a viscosity subsolution, concludes the proof. D A weaker version of
Thm. 5.7 exists in the sense that the function H may also depend on e, to be
indicated by He. In the formulation of the extended version of Thm. 5.7 it is
then necessary that He converges to H uniformly on compact subsets of Rn x
Rx Rn, as e J. 0. This weaker version is useful, for instance, when the
continuous-time formulation of the problem is approximated by a discretized
one (for numerical purposes, for instance). Such a "discretized version" of H
could then coincide with He\ see Lions (1982), Bardi and Sartori (1992) and
Pourtallier and Tolwinski (1992). An issue not dealt with heretofore is that of
uniqueness of viscosity solutions. Consider (5.67) again. For special forms of
the function H the uniqueness has been shown (see Lions (1982) or Crandall,
Evans and Lions (1984)). In those
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explicitly on V, which is for instance the case if H has the following form: dV
dV H(x,V,-) = V+a(-)+0(x) for some scalar functions a and 0. However, as
remarked in the beginning of this section, H as introduced does not depend on
V. It is, however, possible to create such a dependence by means of the so-
called Kruzkov-transform of the value function V. This transform of the value
function is denned as v/x) * J t(V(x)) if V[x) < oo, ' \ 1 elsewhere, where ip(V)
= 1 — exp(—V). It is important to realize that v is bounded and is itself the
value function of an optimal control problem, viz., v(x) = inf t/)(L(u)), u with L
denned in (5.23). The transformed cost function ip(L(u)) can be rewritten in the
"standard form" of integral and terminal part as %j)(L(u)) — / g(t,x, u)exp I —
/ g(s,x, u)ds\ dt + exp[- / g(s,x,u)ds)(l-exp(-q(T,x(T)))). K As a side remark,
this latter cost function resembles cost functions with discount factors, which
have the form I T g{t,x,u)exp{-Xt)dt+q{T,x{T))exp(-XT), where the
nonnegative constant A is the so-called discount factor. Such cost functions can
be treated in the standard way but offer some advantages if T = oo and the
terminal term is not present. Under some mild conditions, see Bardi and



Soravia (1991), the following proposition can be shown to hold. Proposition
5.8 IfV is a viscosity solution of (5.66), where H does not depend on the
second argument V, and if there exists a constant go such that g(x, u) > go > 0,
then v is a viscosity solution of dv v + H(x,v,—) = 0, (5.74) where H I x,v, —
) = mm dv ■g-f(x, u) + g(x, u) - (g(x, u) - g0)v.
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equation H — 0, where H does not depend on the value function V directly,
can be transformed into (5.74), which has a linear term in the transformed
value function v. For the latter kind of partial differential equations, it is easier
to prove uniqueness of solution. It also offers a starting point for numerical
procedures to solve for v (and hence for V). Hitherto in this section, we have
taken V to be continuous. For the case in which it is discontinuous the
definition of viscosity solution can be modified as follows. Definition 5.16
Suppose that H is continuous in its arguments. An upper semicontinuous
function V is called a viscosity subsolution of (5.66) provided that for all
continuously differentiable 4>, which map Rn or an appropriate subset ofRn
into R (as does V), the following holds: ifV — (j> attains a local maximum at
xq, then H(xo,V(xo),^ -̂)>0. (5.75) ax A lower semicontinuous function V is
called a viscosity supersolution of (5.66) provided that for all continuously
differentiable (f>, which map Rn or an appropriate subset of Rn into R (as
does V), the following holds: ifV — (j> attains a local minimum at xq, then
H(xo,V(xo),^±)<0. (5.76) A function V is called a viscosity solution of (5.66)
if the upper and lower semicontinuous envelopes ofV, defined, respectively, by
V*(x) = lim supV(y), V.(x) = lim inf V{y), are respectively a viscosity
subsolution and a viscosity supersolution. For value functions with
discontinuities relatively few results are available as yet; see the notes section
5.9. 5.8 Problems 1. A company has x{t) customers at time t and makes a total
profit of /(<)= [ (cx(s)-u(s))ds, Jo up to time t, where c is a positive constant.
The function u(t), restricted by u(t) > 0, f{t) > 0, represents the money put into
advertising. The restriction f(t) > 0 indicates that the company is not allowed
to borrow
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number of customers according to x = u, x(0) = x0 > 0. The company wants to
maximize the total profit during a given time period [0,T], where T is fixed.
Obtain both the open-loop and feedback optimal solutions for this problem. 2.



Consider the two-dimensional system X\ = ~X2U, ±2 = -1+ZiU, where the
control variable u is scalar and satisfies \u{t)\ < 1. In polar coordinates, the
equations of motion become f = —cos a, ra = —ru + sina, where a is the angle
measured clockwise from the positive X2-axis. The target set A is |a| > a,
where 0 < a < ■k. (For an interpretation of this system see Example 8.3, later
in Chapter 8, with V2 = 0, or Lewin and Olsder (1979).) The decision maker
wants the state (rci, )̂ to stay away from A for as long as possible. Determine
the time-optimal-control. Show that, for a > tt/2, there is a barrier. 3. Consider
the following discrete-time, discrete state space optimal control problem. The
state space consists of the integers {0,1,2,...}. At time tk the decision maker
steers the system positioned at integer ifc > 1, either to {0} or to the integer {ik
+ 1}, where it arrives at time tk+i- The control problem terminates when the
system is steered to the origin {0}. The pay-off is completely determined by
the last move. If the system moves from {ik} to {0}, then the pay-off is 22lk, to
be maximized by the decision maker. Show that each playable pure strategy
leads to a finite value, and that the behavioral strategy which dictates both
alternatives with equal probability (j) at each stage leads to an infinite
expected pay-off (assuming that »o > 1). 4. Consider the discrete-time system
whose state evolves according to the dynamics Xk+i = fk(xk,Uk,Uk-i), u0=0,
fceK. (i) Show that every STC optimal policy for this system, under the cost
function (5.18b) and the information pattern that allows the control at stage k to
depend on the current and past values of the state and past values of control,
has to be in the form Uk = 7fc(:cfc,uA:-i)-
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for the linear-quadratic (LQ) problem where the cost is given by (5.20b), and
the system dynamics (exhibiting lagged dependence on the control) by xk+i =
Akxk + Bkuk + CkUk-i, uo = 0, k e K. (iii) Does the LQ problem above admit
(a) an STC optimal policy under the CLPS information pattern; (b) a WTC
optimal policy under the CLPS information pattern? In the latter case obtain
one such policy, if there exists one. 5. In Problem 4 above, replace the
deterministic linear dynamics by the stochastic difference equation xk+i - Akxk
+ Bkuk + Ckuk~i + 0k, u0 = 0, k e K, where x\,0\,. ..,0k are Gaussian, mutually
independent, and have zero mean and positive definite covariances. Further let
the cost function be given by (5.62b). (i) Does the problem admit an STC
optimal control under the CLPS information pattern? (ii) Obtain a WTC
optimal policy for this stochastic control problem under the CLPS information



pattern. (iii) Can you generate an optimal OL control policy from the solution
obtained above? Would it be WTC under the OL information pattern? 5.9
Notes Section 5.2. As already noted in Remark 5.2, the state-model description
of a discrete-time (deterministic or stochastic) infinite dynamic game as
presented here is clearly not the most general extension of Kuhn's finite game
model (cf. Chapters 2 and 3) to the infinite case. One such extension which has
not been covered in Remark 5.2 is the infinite-horizon problem wherein the
number of stages K tends to infinity. In such games, the so-called stationary
strategies (i.e., strategies which do not depend on the discrete-time parameter
k) become of real interest, and they have hitherto attracted considerable
attention in the literature (see Shapley, 1953; Sobel, 1971; Maitra and
Parthasarathy, 1970), but mostly for finite or at most denumerable state and
strategy spaces. The general class of discrete-time stochastic dynamic games
under the feedback information structure are also referred to as Markov games
in the literature. For two survey articles on this topic, see Parthasarathy and
Stern (1977) and Raghavan and Filar (1991). Section 5.3. Differential games
were first introduced by Isaacs (1954-1956), within the framework of two-
person zero-sum games, whose work culminated in the publication of his book
about ten years later (see Isaacs, 1975). Nonzero-sum differential games were
later introduced in the works of Starr and Ho (1969a,b), Case (1967) and

GENERAL FORMULATION 263 Friedman (1971), but under specific
information structures—namely, the open-loop and feedback perfect state
information patterns. Some representative references on stochastic differential
games, on the other hand, are Friedman (1972), Elliott (1976) and Ba§ar
(1977b). The book by Krasovskii and Subbotin (1988) has an extensive
discussions on non-Lipschitzian differential equations. A class of differential
games not covered by Def. 5.5 are those whose state dynamics are governed by
partial differential equations. These will not be treated in this book; for some
examples of practical games which fit into this framework, the reader is
referred to Roxin (1977). Yet another class of differential games not to be
covered in subsequent chapters are those on which the players are allowed to
employ impulsive controls; see Blaquiere (1977) for some results on this
topic. Section 5.4. Mixed and behavioral strategies in infinite dynamic games
were first introduced by Aumann (1964) who also provided a rigorous
extension of Kuhn's extensive form description of finite games to infinite
games, and proved in this context that if an JV-person nonzero-sum infinite



dynamic game is of "perfect recall" for one player, then that player can restrict
himself to behavioral strategies. For a further discussion of mixed strategies in
differential games and for an elaboration on the relation of this concept with
that of "relaxed controls" used in control theory (cf. Warga, 1972), the reader
is referred to Wilson (1977), who also proves the existence of mixed-strategy
saddle points in suitably structured zero-sum differential games of fixed
duration and with open-loop information structure. Some other references
which deal with existence of mixed-strategy equilibrium solutions in
differential games are Elliott (1976), Pachter and Yavin (1979), Levine (1979)
and Kumar and Shiau (1981). Section 5.5. Some classic texts on the theory of
optimal control where the reader can refer to for a more extensive coverage
and references are Bryson and Ho (1975), Hermes and LaSalle (1969) and
Fleming and Rishel (1975). Section 5.6. The concept of "representations of a
strategy" was introduced by Ba§arin a series of papers, within the context of
infinite dynamic games (see, e.g., Ba§ar, 1974, 1976a, 1977b), and it was
shown to be closely related to existence of nonunique Nash equilibria under
the CLPS information pattern, as it will be elucidated in Chapter 6. The
subsection on time consistency is based on the material in Ba§ar (1989b),
which the reader should refer to for extensive discussion on the motivation
behind these notions, and some specific results. Also, Chapters 6 and 7 contain
further discussion of time consistency in the context of Nash and Stackelberg
equilibria. The issue of time consistency (or inconsistency) has pervaded the
economics literature during the past two decades, following the stimulating
paper by Kydland and Prescott (1977). Section 5.7. Viscosity solutions in the
theory of optimal control (and also in the theory of zero-sum differential
games) became well known with the publication of the book by Lions (1982).
The theory presented in this section is based mainly on Crandall, Evans and
Lions (1984). Another reference in the same vein is Crandall and Lions
(1983). Viscosity solutions for minimum-time problems have been reported in
Bardi (1989) and Staicu (1989). In all these references it was assumed that the
value function V is continuous in its arguments, a property not often satisfied
(see
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Recently progress has been made on problems with discontinuous value
functions, notably for time-optimal control problems; see Ishii (1989), Bardi
and Soravia (1991) and Bardi and Staicu (1991). The notion of discontinuous



viscosity solutions was introduced by Ishii (1987). For a more recent rigorous
treatment of the topic of viscosity solutions in the context of optimal control,
see Fleming and Soner (1993).

Chapter 6 Nash and Saddle-Point Equilibria of Infinite Dynamic Games 6.1
Introduction This chapter discusses properties and derivation of Nash and
saddle-point equilibria in infinite dynamic games of prescribed fixed duration.
The analysis is first confined to dynamic games defined in discrete time, and
with a finite number of stages, and then extended to differential games. Some
results for infinite-horizon formulations are also presented, primarily for
affine-quadratic structures. Utilization of the two standard techniques of
optimal control theory, viz. the minimum principle and dynamic programming,
leads to the so-called open- loop and feedback Nash equilibrium solutions,
respectively. These two different Nash equilibria and their derivation and
properties (such as existence and uniqueness) are discussed in Section 6.2, and
the results are also specialized to affine-quadratic games, as well as to two-
person zero-sum games. When the underlying information structure for at least
one player is dynamic and involves memory, a plethora of (so-called
informationally nonunique) Nash equilibria with different sets of cost values
exists, whose derivation entails some rather intricate analysis—not totally
based on standard techniques of optimal control theory. This derivation, as
well as several important features of Nash equilibria under closed-loop
perfect state information pattern, are discussed in Section 6.3, first within the
context of a scalar three-person two-stage game (cf. subsection 6.3.1) and then
for general dynamic games in discrete time (cf. subsection 6.3.2). Section 6.4
is devoted to derivation of necessary and sufficient conditions for Nash
equilibria in stochastic nonzero-sum dynamic games with deterministic
information patterns. Such a stochastic formulation eliminates informational
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question of existence of unique Nash equilibrium under closed-loop perfect
state information pattern a meaningful one. Section 6.5 presents the
counterparts of the results of Section 6.2 in the continuous time, that is, for
differential games with fixed duration, and the next one (Section 6.6) discusses
some important applications of this theory to worst-case controller design (so-
called jET°°-optimal control), first in continuous and then in discrete time.



Finally, Section 6.7 presents the counterparts of the results of Section 6.4 in the
continuous time. 6.2 Open-Loop and Feedback Nash and Saddle- Point
Equilibria for Dynamic Games in Discrete Time Within the context of Def. 5.1,
consider the class of AT-person discrete-time deterministic infinite dynamic
games of prescribed fixed duration (K stages) which are described by the state
equation Xk+\ = /fc(xfc, «*,■■■,«*)> keK, (6.1) where n 6 I = R" and X\ is
specified a priori. Furthermore, the control sets Ul are taken as measurable
subsets of Rm* (t/£ C Rm'; k e K, i € N), and a stage-additive cost functional K
V{u\ ...,uN) = £>£(xfc+i,«£, ■ ■ • ,«£,**) (6.2) k=i is given for each player i
£N. In this section, we discuss derivation of Nash equilibria for this class of
nonzero-sum games when the information structure of the game is either (i)
open-loop or (ii) memoryless perfect state for all the players. In the former
case, any permissible strategy for Pi at stage k £ K is a constant function and
therefore can be considered to be an element of U ,̂ i.e., 1  ̂= U}., k £ K, i € N.
Under the latter information structure, however, any permissible strategy for Pi
at stage k € K is a measurable mapping 7  ̂: X —> U*, i € N, k € K. With Flk
(k € K, i € N) taken as the appropriate strategy space in each case, we recall
(from Def. 3.12) that an AT-tuple of strategies {7" £ r';i 6 N} constitutes a
Nash equilibrium solution if, and only if, the following inequalities are
satisfied for all {7* € P; i € N}: J1* = J1(7^7 .̂..;7Ar*)<./1(71;72*;...;7jn 72* ^
W; 72*; 73*; • • •; 7"*) < W; 72; 73*; • • •; 7*'), jn* a jN(yi*. _ . yv-i.. yv.) <
jAf(7i*;...; yv-i.. yv). (6.3)
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the aggregate strategy of Pi—and the notation 7* € r* stands for 7 .̂ € T^VA; €
K. Moreover, J*^1,... ,7 )̂ is equivalent to Z/(u\ ... ,uN) with 4 replaced by 7|.(-
) (ieN.fce K). Under the open-loop information structure, we refer to the Nash
solution as "open-loop Nash equilibrium solution", which we discuss in the
first subsection to follow. For the memoryless perfect state information, the
Nash solution will be referred to as "closed-loop no-memory Nash
equilibrium solution", and under a further restriction, which is the counterpart
of Def. 3.22 in the present framework. It will be called "feedback Nash
equilibrium solution". Both types of equilibria will be discussed in subsection
6.2.2. 6.2.1 Open-loop Nash equilibria One method of obtaining the open-loop
Nash equilibrium solution(s) of the class of discrete-time games formulated
above is to view them as static infinite games and directly apply the analysis of
Chapter 4. Toward this end we first note that, by backward recursive



substitution of (6.1) into (6.2), it is possible to express U solely as functions of
\u?\ j € N} and the initial state xx whose value is known a priori, where u-7 is
denned as the aggregate control vector (u\ ,u32 , ■ ■ ■,u3K)'. This then implies
that, to every given set of functions {fki9k',k € K}, there corresponds a unique
function Ll : X x U1 x ■ ■ ■ x UN —> R, which is the cost functional of Pi, i €
N. Here, C/-7 denotes the aggregate control set of Pj, compatible with the
requirement that if u-7 € C-7 then uJk € U ,̂ VA; € K, and the foregoing
construction leads to a normal form description of the original game, which is
no different from the class of infinite games treated in Chapter 4. Therefore, to
obtain the open-loop Nash equilibria, we simply have to minimize Ll{x\,u1,... ,
uJ_1, •,ul+1,... ,uN) over Ul, for each i € N, and then determine the intersection
point(s) of the resulting reaction curves. In particular, if Ll(x\, u1,..., uN) is
continuous on U1 x ■ • ■ x UN, strictly convex in u', and further if U* are
closed, bounded and convex, an open-loop Nash equilibrium (in pure
strategies) exists (cf. Thm. 4.3). Such an approach can sometimes lead to quite
unwieldy expressions, especially if the number of stages in the game is large.
An alternative derivation which partly removes this difficulty is the one that
utilizes techniques of optimal control theory, by making explicit use of the
stage-additive nature of the cost functionals (6.2) and the specific structure of
the extensive form description of the game, as provided by the state equation
(6.1). There is in fact a close relationship between derivation of open-loop
Nash equilibria and the problem of solving (jointly) N optimal control
problems, which can readily be observed from inequalities (6.3) since each
one of them (together with (6.1) and (6.2)) describes an optimal control
problem whose structure is not affected by the remaining players' control
vectors. Exploring this relationship a little further, we arrive at the following
result. Theorem 6.1 For an N-person discrete-time infinite dynamic game, let
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differentiable on Rn, (A; € K), (ii) glk(-,u\,...,uk,-) be continuously
differentiable on R" x R", (k € K, ieN), (Hi) fk(; ■,...,■) be convex on Rn x
Rmi x • ■ • RmN, (k e K). Then, if{Y*(x\) = u1*; i € N} provides an open-
loop Nash equilibrium solution and {x%+i',k € K} is the corresponding state
trajectory, there exists a finite sequence of n-dimensional (costate) vectors {p^
• ■ • >Pa"+i} for eac^1 * € N such that the following relations are satisfied:
*fc+i = /k(*fc.«fcV ■•.«£*). *I=*i, (6.4a) 7r( î) = arg min. fij(Pfc+i.«fc*.--
-.«fc'"1*.«fc.«fc+1*.---,«fcr*, )̂. (6-4b) w.eu: " ' ' * 1* „ N*\i Pi = /̂fc( ,̂«i*,---



,«n ,7V* „* + i /„* 1* TV* „*\ (6.4c) PiT+1 = °> * € N> fc € K> ff*(Pk+i, uj, •
• •>«*.**) = »*(/*(**>«£».. .,«£),«£,...,u .̂Xfc) ,g 4dv +Pfc+i/*(a:*'«fc'"-'ufcr);
fceK> i€N" Every such Nash equilibrium solution is weakly time consistent.
Proof. Consider the j'th inequality of (6.3), which says that Y*(xi) = «**
minimizes L^u1*,...,«*-1*,«*,«i+1*,... ,uN*) over [/* subject to the state
equation xk+1 = fk(xk, uk*,... ,uk~u,uk,uk+u,.. .,«£*), k € K. This is a standard
optimal control problem for Pi since u:* (j € K, j  ̂i) are open-loop controls
and hence do not depend on u\ The result, then, follows directly from the
minimum principle for discrete-time control systems (cf. Thm. 5.5). The "weak
time consistency" of the solution is a direct consequence of Def. 5.13, where
the "sol" operation is the Nash solution. D Theorem 6.1 thus provides a set of
necessary conditions (solvability of a set of coupled two-point boundary value
problems) for the open-loop Nash solution to satisfy; in other words, it
produces candidate equilibrium solutions. In principle, one has to determine
all solutions of this set of equations and further investigate which of these
candidate solutions satisfy the original set of inequalities (6.3). If some further
restrictions are imposed on fk and gk (i € N, k € K) so that
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U (defined earlier, in this subsection) is convex in uz for all v.i € Uj, j  ̂i, j e
K, the latter phase of verification can clearly be eliminated, since then every
solution set of (6.4a)-(6.4c) constitutes an open- loop Nash equilibrium
solution. A specific class of problems for which this can be done, and the
conditions involved expressed explicitly in terms of the parameters of the
game, is the class of so-called "affine-quadratic" games which we first
formally introduce below. Definition 6.1 An N-person discrete-time infinite
dynamic game is of the affine-quadratic type if Uk = Rf1 (i € N, k € ~K), and
49 fk(xk,u1k,...,u%) = Akxk + ^bkuk +ck (6.5a) J6N gUxk+i,uk,...,ukw,xk) = -
lx'k+1Qk+1xk+1 + ^2 ui Rkui h (6-5b) \ J€N / where Ak, Bk, Qk+1 Rk3 are
matrices of appropriate dimensions, Qk+i is symmetric, Rlkl > 0, ck € Rn is a
fixed vector sequence, and k £ K, i € N. An affine-quadratic game is of the
linear-quadratic type if ck = 0. Theorem 6.2 For an N-person affine-quadratic
dynamic game with Qlk+i > 0 (i € N, k € K), let Ak, Mk+1 (k € K,j £ N) be
matrices of appropriate dimensions, defined by Ak = / +  ̂Bl[RkrlBlMl+1,
(6.6a) Mi=Qi+^ t̂+iAfc%; M^+1 = QJf+1. (6.6b) If the matrices kk {k € K),
thus recursively defined, are invertible, the game admits a unique open-loop
Nash equilibrium solution given by 7«(x1) = ut = -m-'BilM^A^Akxl+ti], (k €



K,i € N), (6.7a) where {x1^+1; k £ K} is the associated state trajectory
determined from x*k+1 = A* f̂cxj + %]; x\ = Xl, (6.7b) and £lk, Tjk are
defined by fiHM^AfcSk+mj+i, (6.7c) 49The stagewise cost functions g'  ̂can
also be taken to depend on x  ̂instead of Xk+i, as in the proof of Prop. 5.1; but
we prefer here the present structure (without any loss of generality) for
convenience in the analysis to follow.
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mk recursively generated by mk = A'k{mk+1 + Mjj+xAj îfc], mjr+i = 0, i € N,
fc € K. (6.7e) Proof. Since Q^+i > 0, and iZjj.* > 0, Ll(x\,ul,... ,uN) is a strictly
convex function of ul for all uj € RmiK (j î,j € N) and for all ii £ R".
Therefore, every solution set of (6.4a)-(6.4c) provides an open-loop Nash
solution. Hence, the proof will be completed if we can show that (6.7a) is the
only candidate solution. First note that Hi = \[Akxk+Ck + 53B(ui Qi+i A^k+  ̂+
53Biui +\ 5Z <#kj<+Pk+i Ak*k+ck + 53 Biu{ , jGN \ j6N / and since Q'k+1 >
0, Rk > 0, minimization of this "Hamiltonian" over uk € Rmi yields the unique
relation «** = -[^BM+i+QLixUi]' (*') where 4+i = Akxt + ck + 53 Blkuk*; x\ =
xl (u) Furthermore, the costate (difference) equation in (6.4c) reads Pk =
A'k\Pk+i + Qk+ixUih Pk+i = 0. (Hi) Let us start with k = K in which case (i)
becomes «  ̂= -M_1^AfA:+1xJ:+1) (it;) and if both sides are first
premultiplied by BlK and then summed over i € N we obtain, by also making
use of (ii) and (6.6a), xk+i ~ Akxk = (I - Aa-)x^+1 + c  ̂which further yields
the unique relation x*k+x= '̂k[akx*k + ck\ which is precisely (6.7b) for k = K.
Substitution of this relation into (iv) then leads to (6.7a) for k — K.
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that the unique solution set of (i)-(iii) is given by (6.7a)-(6.7b) andpj! =
A'kiMk+ixk+i +mi+i\ (* € N, A; € K). Let us assume that this is true for k = / +
1 (already verified for / — K — 1) and prove its validity for k = /. First, using
the solution p\+1 = Al+1[Mf+2xf+2 + ^+2] *n (i) with k — I, we obtain, after
several algebraic manipulations, u? = -[ r̂ f̂ [M -̂h +m*+1]. («) Again,
premultiplying this expression by B[, and summing it over i € N leads to, also
in view of (ii), (6.6a) and (6.7d), *r+i = Aj-1[4a:r+J?j] which is (6.7b). If this
relation is used in (v), we obtain the unique control vectors (6.7a), for k = /,
and if it is further used in (iii) we obtain, in view of (6.7e), This then closes
the induction argument, and thereby completes the proof of the theorem. D
Remark 6.1 An alternative derivation for the open-loop Nash equilibrium



solution of the afRne-quadratic game is (as discussed earlier in this subsection
in a general context) to convert it into a standard static quadratic game and then
to make use of the available results on such games (cf. Prop. 4.6). By
backward recursive substitution of the state vector from the state equation into
the quadratic cost functionals, it is possible to bring the cost functional of Pi
into the structural form as given by (4.23), which further is strictly convex in ul
= (u\,..., ulK)' because of assumptions Q\ > 0, R%£ > 0, (A; € K).50
Consequently, each player has a unique reaction curve, and the condition for
existence of a unique Nash solution becomes equivalent to the condition for
unique intersection of these reaction curves (cf. Prop. 4.6).51 The existence
condition of Thm. 6.2, i.e., nonsingularity of A ,̂ (A; € K), is precisely that
condition, but expressed in a different (more convenient, recursive) form. As
in Prop. 4.6, it is of course possible for an afEne-quadratic dynamic game to
have multiple Nash equilibria, which would happen if Afc is singular for some
A;, which corresponds to R being singular in (4.26a), and r being in its range
space. For yet another derivation of the result of Thm. 6.2, by making use of
Prop. 5.1, the reader is referred to Problem 1, Section 6.8. □ 50The condition
Qlk+1 > 0 is clearly sufficient (along with R% > 0) to make U strictly convex
in u1, but is by no means necessary. It can be replaced by weaker conditions
(which ensure convexity) under which the statements of Thm, 6.2 and this
remark are still valid. One such condition, that is in fact tight, is given in
Lemma 6.1 later, which should be interpreted for the present context. 51 For a
derivation of open-loop Nash solution in two-person linear-quadratic games,
and along these lines, the reader is referred to Ba§ar (1976a) and Olsder
(1977a).
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our attention to another special class of nonzero-sum dynamic games—the two-
person zero-sum games—in which case (assuming, in accordance with our
earlier convention, that Pi is the minimizer and P2 is the maximizer), 1 _ 2 A
9k = -9k = 9k (6.8a) and the "Nash" inequalities (6.3) reduce to the saddle-
point inequality J(iu,i2) < J{iu,i2*) < Jtfrf'W e r\72 e r2, (6.8b) where J ^y1 -
J2. Directly applying Thm. 6.1 in the present context, we ,2 <± Pk, first have
from (6.4a)-(6.4c) (in view of (6.8a)) the relation pk = —p2. (k € K), and
therefore from (6.4d), Hk = — Hk = Hk, (k € K). Hence, we have arrived at
the following conclusion. Theorem 6.3 For a two-person zero-sum discrete-
time infinite dynamic game, let (i) fk(-,uk'ut) be continuously differentiable on



Rn, (k € K), (H) 9k(-, *4> *4> •) be continuously differentiable on Rn x Rn, (k
e K), (Hi) fk(-, •) •) be convex on Rn x U1 x U2, (k € K). Then, i/{71*(a;1) =
ul*;i = 1,2} provides an open-loop saddle-point solution, and {xk+1;k € K} is
the corresponding state trajectory, there exists a finite sequence of n-
dimensional (costate) vectors {p2,. ■ ■ ,pk+i} such that the following
relations are satisfied: xk+i=fk(x*k>uk*.«* )>*I=*i, ffk(pfe+i>Ufc*,«*>**) ^
Hkipk+uul^uf^D^Hkipk+i^^uf l̂), Vu\€Ulul€Ul £ /_* 1* 2*V Pk = g -̂fk{Xk,Uk
,Uk) Pk+1 + dxk +i (* 1* 2* *\ Xk+VUk >Uk >Xk) + /_* 1* . 2* „*\
g -̂9k{Xk+1,Uk ,Uk ,Xk) (6.9a) I, (6.9b) (6.9c) PK+l = 0, where
+p'k+1fk(xk,u1k,u2k),k eK. (6.9d)
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from Thm. 6.1, as discussed earlier. D As a specific application of this
theorem, we now consider the class of affine- quadratic two-person zero-sum
dynamic games (cf. Def. 6.1) described by the state equation xk+1 = Akxk +
Bluj. + B2ku2k + ck, fceK, (6.10a) and the objective functional 1 K , Liu1, u2)
= - ^2(x'k+1Qk+ixk+i + «fc u\ - u2ku\) (6.10b) which Pi wishes to minimize
and P2 attempts to maximize. It should be noted that we have taken the
weighting matrices for the controls in (6.10b) as unity, without any loss of
generality, since otherwise they can be absorbed in B\ and B2 provided, of
course, that R]} > 0 and Rf.2 > 0 which was our a priori assumption in Def.
6.1. Let us also assume that Qk+\ > 0 (A; € K) which essentially makes L(u}
,u2) strictly convex in u1. In order to formulate a meaningful problem, we also
have to require L(ux,u2) to be (strictly) concave in u2, since otherwise P2 can
make the value of L unboundedly large. The following lemma now provides a
necessary and sufficient condition for (6.10b) to be strictly concave in u2.
Lemma 6.1 For the affine-quadratic two-person zero-sum dynamic game
introduced above, the objective functional L(ux,u2) is strictly concave in u2
(for allu1 € RKmi) if and only if I-B2'Sk+1B2>0 (fc€K), (6.11a) where Sk is
given by Sk = Qk+ A'kSk+1Ak + A'kSk+1B2[I ~ B2kSk^B2\-^B2kSk+xAk;
Sk+i = Qk+i- (6.11b) Proof Since Z^u1, u2) is a quadratic function of u2, the
requirement of strict concavity is equivalent to existence of a unique solution
to the optimal control problem min [—L(ux,u )] «2eRKm2 subject to (6.10a)
and for each u1 € R^mi. Furthermore, since the Hessian matrix (matrix of
second partials) of L with respect of u2 is independent of u1 as well as of c,
we can instead consider the optimal control problem mi£ J2 (uku2k-
x'klQk+1xk+1) u eK fceK
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we can take uk = 0,ck =0 without any loss of generality. Then, the result
follows from the dynamic programming technique outlined in subsection 5.5.1,
and in particular from (5.19), which admits the unique solution V(k,x) = —
x'Skx + x'Qkx, if, and only if, (6.11a) holds. D We are now in a position to
present the open-loop saddle-point solution of the afEne-quadratic two-person
zero-sum dynamic game. Theorem 6.4 For the two-person affine-quadratic
zero-sum dynamic game described by (6.10a)-(6.10b) and with Qk+i >0(ke
K), let condition (6.11a) be satisfied and Ak, Mk (k € K) be matrices of
appropriate dimensions, defined through Afc = [/ + (BlkBl' - B2kBl')Mk+1],
(6.12a) Mk=Qk+ A'kMk+1A^Ak; MK+1 = QK+1. (6.12b) Then, (i) the
matrices Ak (k € K), thus recursively defined, are invertible, (ii) the game
admits a unique open-loop saddle-point solution given by 7iJ*(x1) = u\* = -
BjHMfc+iAfcMfcxJ +&], (6.13a) 7f (Xl) = u2k* = B2k{Mk+lA-kxAkxt + &],
k€K, (6.13b) where {x%+1;k € K} is the corresponding state trajectory
determined from x*k+1 = A [̂Akx*k + Vk], x\ = xu (6.13c) and £k, r)k are
given by & = Mk+iA r̂jk + mfc+i, (6.13d) r)k = ck - (BiBJ- - B2kBl')mk+1,
(6.13e) with mk generated by the difference equation mk = 4'fc[(Afc '̂mk+i +
Mfc+xA^Cfc], mK+1 = 0. (6.13f)
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with the open-loop information structure and under condition (6.11a) (cf.
Lemma 6.1), the game is a static strictly convex- concave quadratic zero-sum
game which admits a unique saddle-point solution by Corollary 4.5. Second, it
follows from Thm. 6.3 that this unique saddle-point solution should satisfy
relations (6.9a)-(6.9d), which can be rewritten, for the affine-quadratic game,
as follows: x*k+l = Akx*k + Blul* + B2ku2k + cfc, x\ = xi, (i)
Hk(pk+1,ul*,u2k,x*k) < Hk(pk+1,uk*,u2k*,x*k) < Hk(pk+1,ul,u2k*,x*k) («) Pk
= A'k\pk+1 + Qk+ix*k+i], PK+i ~ 0, (iii) Hk(pk+1,ulu2k,xk) = -[\Akxk + Blul
+ B2ku2k + ck\2Qk+i + |u£|2 - |u |̂2] +Pk+i(Akxk + Blul + Blu2k + ck), keK.
An inductive argument, as in the proof of Thm. 6.2, shows that this set of
equations admits the solution: uk* = (-lj'BftMk+iXk+i + mk+i], k e K,i = 1,2,
(iv) pk = Ak[Mk+1x*k+1 + mfc+i], k e K, where the corresponding value of
the state vector, xk, satisfies Akx*k+1 = Akx*k + rjk. Since there exists a
unique saddle-point solution, there necessarily exists a unique relationship
between x  ̂and xk+1, implying that the matrix Afc should be invertible for
each k € K. Hence, xk+i=K1[Akxk,+rik], A;€K, which verifies (6.13c). When



this is used in (iv), it leads to (6.13a)-(6.13b), also in view of (6.13d)-(6.13f),
thus completing the proof of the theorem. D Remark 6.2 The statement of Thm.
6.4 is valid even if the "nonnegative def- initeness" condition on Qk+i does not
hold, provided that some other appropriate conditions are imposed on the
game parameters to ensure that L denned by (6.10b) is strictly convex in u1.
One such set of conditions, which are in fact tight, can be obtained directly
from Lemma 6.1, by simply replacing Qk by -Qk, and B2 by B1, that is, I +
B%Sl+1Bl > 0 (fc€K), (6.14a) where Sk is generated by Si = Qk +
A'kSl+1Ak^A'kSl+1Bl[I + Bl'sl+1Bl}-lBl'Sl+1Ak;(6Uh) $K+1 ~ Qk+1- D
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feedback Nash equilibria We now turn our attention to a discussion and
derivation of Nash equilibria under the memoryless perfect state information
pattern which provides the players with only the current value of the state at
every stage of the game (and of course also the initial value of the state, which
is known a priori). For this class of dynamic games we first obtain the
following counterpart of Thm. 6.1, which provides a set of necessary
conditions for any closed-loop no-memory Nash equilibrium solution to
satisfy: Theorem 6.5 For an N-person discrete-time infinite dynamic game, let
(i) fk(-) be continuously differentiable on Rn x Uk x ■ • • x Ujf, (k € K), (ii)
9k{') be continuously differentiable on Rn x Uk x • • • x Uj  ̂x Rn, (k € K, i €
N). Then, if { (̂xk î) = ulk; k € K,i € N} provides a closed-loop no-memory
Nash equilibrium solution such that Yk*('>xi) *s continuously differentiable on
Rn forallk € K, i € N, fk (xk, ul, ... , ~/k*(xk,xi), ul+1, ..., uN) is convexin
(xfc.u1, .•. ,«*-1,«*+1, ...,uN) for every i € N, k € K, and if{xl+1;k € K} is the
corresponding state trajectory, there exists a finite sequence of n-dimensional
(costate) vectors {pl2,... tP%k+\}, for each isN such that the following
relations are satisfied: x*k+i = fk(x*k,Uk*,...,uj?*), x\=xx, (6.15a) 7fc*(*fc.zi)
= uj.*=arg min Hl{p{+l,u\*,... ,u\ *,u% .,*+!* ik ,...,ak ,j,k), uP*x*  ̂(6.15b) * =
irj '̂ where Pk+i + dxk+ ■9k(* + £&'> +E ieN L £-k^X*k'Xl) dui A9'M Pk+i +
d -&{*) dxk+i P'K+1 = o,ieN,keK, (6.15c) Hi(pk+i,ul,...,u ,̂xk) =
(̂/fc(xfe,« .̂..,uf),u .̂..,u ,̂xfe) +Pik+ifk(xk,u1k,...,uky), k€K,i€N, (6.15d)
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applies to A9J(,) and _|//c(*). Proof. The proof is similar to that of Thm. 6.1,
but here we also have to take into account the possible dependence of ulk* on
Xk (k € K, i € N). Accordingly, the ith inequality of (6.3) now says that {7 .̂*



(xk,x\); k € K} minimizes the function Ji(71V--,7i-1*,7i.7i+1V..,7Ar*)= E »£
(**+W*(*k,*i), /c6K = E 9k(xk+l,lk(xk>xl)^xk) over P subject to the state
equation constraint Zfc+l = fk(xk,jl*(xk,X1),...,'yifr1*
(Xk,X1),jlk(xk,X1),jtk+1*(xk,X1), ■ .■,~/k*(xk,x1)) = fk(xk, 7j.(xfe,x1)), A; €
K. Then, the result follows directly from Thm. 5.5 by taking fk as fk and gk as
§1 which are continuously differentiable in their relevant arguments because of
the hypothesis that the equilibrium strategies are continuously differentiable in
their arguments. D If the set of relations (6.15a)-(6.15d) is compared with
(6.4a)-(6.4d), it will be seen that they are identical, except for the costate
equations—the latter equation (6.15c) having two additional terms which are
due to the dynamic nature of the information structure, allowing the players to
utilize current values of the state. Furthermore, it is important to notice that
every solution of the set (6.4a)-(6.4c) also satisfies relations (6.15a)-(6.15c),
since every such solution is associated with static information, thereby causing
the last two terms in (6.15c) to drop out. But, the "open-loop" solution is not
the only one that the set (6.15a)-(6.15c) admits; surely it could have other
solutions which explicitly depend on the current value of the state, thus leading
to nonunique Nash equilibria, all of which are weakly time consistent (a la
Def. 5.13). This phenomenon of multiplicity of Nash equilibria is closely
related to the "informational nonuniqueness" feature of Nash equilibria under
dynamic information, as introduced in Section 3.5 (see, in particular, Prop.
3.10 and Remark 3.15), whose counterpart in infinite games will be thoroughly
discussed in the next section. Here, we deal with a more restrictive class of
Nash equilibrium solutions under memoryless perfect state information pattern
—the so-called feedback Nash equilibrium—which is devoid of any
"informational nonuniqueness" (see also Def. 3.22) and is also strongly time
consistent (cf. Def. 5.14).

278 T. BA§AR AND G. J. OLSDER Definition 6.2 For an N-person K-stage
discrete-time infinite dynamic game with memoryless perfect state information
pattern,52 let J% denote the cost functional of Pi (i € N) defined on F1 x ••• x
FN. An N-tuple of strategies {j1* € Tx;i € N} constitutes a feedback Nash
equilibrium solution if it satisfies the set of K N-tuple inequalities (3.28) for
all -yk € Ylk, i € N,fc € K. Proposition 6.1 Under the memoryless perfect state
information pattern, every feedback Nash equilibrium solution of an N-person
discrete-time infinite dynamic game is a closed-loop no-memory Nash
equilibrium solution (but not vice versa). Proof This result is the counterpart of



Prop. 3.9 in the present framework and therefore its proof parallels that of
Prop. 3.9. The result basically follows by showing that, for each i € N, the
collection of all the ith inequalities of the K iV-tuples imply the ith inequality
of (6.3). D Definition of the feedback Nash equilibrium solution directly leads
to a recursive derivation which involves solutions of static AT-person
nonzero-sum games at every stage of the dynamic game. Again, a direct
consequence of Def. 6.2 is that the feedback equilibrium solution depends only
on xk at stage k, and dependence on X\ is only at stage k = l.53 By utilizing
these properties, we readily arrive at the following theorem. Theorem 6.6 For
an N-person discrete-time infinite dynamic game, the set of strategies {*fk*
(xk); k € K, i € N} provides a feedback Nash equilibrium solution if, and only
if, there exist functions Vi(k, -):Rn —> R, k € K,j £ N, such that the following
recursive relations are satisfied: V«(fc,x) = mmi[gUfi*(x,ui), (̂x),...,1i-1*
(x),ulYk+u(x), ...,1»*(x),x) + V>(k + l,rk*(x,uk))} (6.16) =
4(/r(*>7r(*))>7r(z).--->7r(z),z) +Vi(k + l,fki*(x,1ik*(x))); Vi(K + l,x) = 0, i
£N, where fi\x,4) ± fk(x,1i\x),...,1i-i*(x),uini+i\x),...,1?*(x)). Every such
equilibrium solution is strongly time consistent, and the corresponding Nash
equilibrium cost for Pi is Vl(l,Xi). Proof. Let us start with the first set of N
inequalities of (3.28). Since they have to hold true for all 7  ̂€ Tk, i € N, k < K
— 1, this necessarily implies 52The statement of this definition remains valid
if the information pattern is instead "closed- loop perfect state". 53Tliis
statement is valid also under the "closed-loop perfect state" information
pattern. Note that the feedback equilibrium solution retains its equilibrium
property also under the feedback information pattern.
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for all values of state xk which are reachable by utilization of some
combination of these strategies. Let us denote that subset of Rn by Xk- Then,
the first set of inequalities of (3.28) becomes equivalent to the problem of
seeking Nash equilibria of an JV-person static game with cost functionals
9kUk(xk,uk,...,uk),uk,...,uk,xk), ieN, (i) which should be valid for all xk € Xk-
This is precisely what (6.16) says for k = K, with a set of associated Nash
equilibrium controls denoted by {Yk^k)'  ̂€ N} since they depend explicitly on
xk € Xk-, but not on the past values of the state (including the initial state X\).
Now, with these strategies substituted into (i), a similar argument (as above)
leads to the conclusion that the second set of inequalities of (3.28) defines a
static Nash game with cost functionals V*(K,xK) +gk-i(xK,uK-.i,-..,uK-i,XK-



i), i € N, where XK = fK-l(xK-l,UK-i, ■ ■ ■ ,UK-i), and the Nash solution has
to be valid for all xk- i € Xk- i (where Xk- i is the counterpart of Xk at stage k
= K — 1). Here again, we observe that the Nash equilibrium controls can only
be functions of xk-i, and (6.16) with k = K — 1 provides a set of necessary
and sufficient conditions for {yK'_l(xK-\)'-i € N} to solve this static Nash
game. The theorem then follows from a standard induction argument. Note that
the "strong time consistency" property of the feedback Nash equilibrium, and
the expression for the corresponding cost for each player, are direct
consequences of the recursive nature of the construction of the solution. D The
following corollary, which is the counterpart of Thm. 6.2 in the case of
feedback Nash equilibrium, now follows as a special case of Thm. 6.6.
Preliminary Notation for Corollary 6.1. Let P}. (i e N, k e K) be matrices of
appropriate dimensions, satisfying the set of linear matrix equations \W +
Bizi+1BtiPi+Bizi+1Y,BiH=BiZ{+lAk, i€N, (6.17a) where Z\. (i € N) are
obtained recursively from Zl = F&^Fk + Y, PMPk + Ql, Zk+i = Qk+v i € N,
(6.17b) and Fk^Ak-Y,BiPi keK- (6-17c) i6N

280 T. BA§AR AND G. J. OLSDER Furthermore, let a\ € Rmi (i € N, k € K)
be vectors satisfying the set of linear equations: W:+B(zi+1Bi\c4+Bizi+1 Y,
B{4 = 4(CUi+3Ui<*), i e N, (6.17d) where ££ (i € N) are obtained recursively
from C  ̂= JftGLi + Zk+iPk) + £ **'*?«*; Clr+i = 0,i € N, (6.17e) and /3fc =
cfc-53Bfa][, fc€K. (6.17f) Finally, let nj, £ R (i 6 N, fc £ K) be generated by 4
= "i+i + ^Hj+1 + Cfc+iA + ^£ l«*l««» nK+i = 0. (6.17g) J"6N Corollary 6.1
^4n N-person affine-quadratic dynamic game (cf. Def. 6.1) with Qk+i > 0 (i e
N,fc e K) and JR  ̂> 0 (i,j eN,j î,fceK) admits a unique feedback Nash
equilibrium solution i/j and only if, (6.17a) and (6.17d) admit unique solution
sets {P%*; i € N, k € K} and {ctl£; i € N, k £ K}, respectively, in which case
the equilibrium strategies are given by ji*(xk) = -Pfz* -at* (fc € K,t € N),
(6.18a) and the corresponding feedback Nash equilibrium cost for each player
is Ji(l1*,...,1N*)=Vi(l,x1) = ±\x1\2zi+tfx1+n\, (i€N). (6.18b) z i Proof. Starting
with k = K in the recursive equation (6.16), we first note that the functional to
be minimized (for each i € N) is strictly convex, since R%k + B1kQxk+\B1k >
0. Then, the first-order necessary conditions for minimization are also
sufficient and therefore we have (by differentiation) the unique set of equations
= bkQk+i [Akxk + ck\; i € N, which readily leads to the conclusion that any set
of Nash equilibrium strategies at stage k = K has to be affine in xk- Therefore,
by substituting 7  ̂= —P%kxk — otlK (i € N) into the foregoing equation, and



by requiring it to be
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we arrive at (6.17a) and (6.17d) for k = K. Further substitution of this solution
into (6.16) for k = K leads to V"l(K, x) = \x'{ZxK — Qk)x + Qix + nK\ that is,
Vl(K, •) has a quadratic structure at stage k = K- Now, if this expression is
substituted into (6.16) with k = K - 1, and the outlined procedure is carried out
for k = K — 1, and this so (recursively) for all k < K — 1, one arrives at the
conclusions that (i) Vl(k, x) — \x'{Zk ~Q\)x + Ckx + nk is the unique solution
of the recursive equation (6.16) under the hypothesis of the corollary and by
noting that Zk >0(i€N,fc€K), and (ii) the minimization operation in (6.16)
leads to the unique solution (6.18a) under the condition of unique solvability of
(6.17a) and (6.17d). The expression for the cost, (6.18b), follows directly
from the expression derived for the "cost-to-go" Vl(k,x). This, then, completes
verification of Corollary 6.1. D Remark 6.3 The result of Corollary 6.1 as
well as the verification given above extends readily to more general affine-
quadratic dynamic games where the cost functions of the players contain
additional terms that are linear in Xk, that is, with gl in (6.5b) replaced by
gi(xk+i,ul...,u% ,xk) = (̂x'k+1[Qlk+1xk+1+2lik+1}+ J2ukR%kuk)> where
lk+1 (k € K) is a known sequence of n-dimensional vectors for each i € N.
Then, the statement of Corollary 6.1 remains intact, with only the equation
(6.17e) that generates Q now reading a = HttLi + zlk+iPk) + Ylp(Rlk< + h;
CK+i = J*+i,t eN, and the cost-to-go functions admitting the compatibly
modified form V\k, x) = \x\Z\ - Q\)x + (a - l\)'x + nk, ie N. D Remark 6.4 The
"nonnegative-definiteness" requirements imposed on Q^+i and Rk: (i, j£N,j î;i
£ K) are sufficient for the functional to be minimized in (6.16) to be strictly
convex, but they are by no means necessary. A set of less stringent (but more
indirect) conditions would be Rt + BikZl+1Bik>0 (ieN.kK), under which the
statement of Corollary 6.1 still remains valid. Furthermore, it follows from the
proof of Corollary 6.1 that, if (6.17a) admits more than one set of solutions,
every such set constitutes a feedback Nash equilibrium solution, which is also
strongly time consistent. D
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precise condition for the unique solvability of the sets of equations (6.17a) and
(6.17d) for P£ and a\ (i € N, k € K), respectively. The said condition (which is
the same for both) is the invertibility of matrices $fc, k € K, which are



composed of block matrices, with the iith block given as R% + BkrZk+1Bk
and the ijth block as Bj.'Z£+1.Bj(, where i,j € N, j ? i. □ Zero-sum dynamic
games We now consider the general class of two-person discrete-time zero-
sum dynamic games and determine the "cost-to-go" equation associated with
the feedback saddle-point solution, as a special case of Thm. 6.6. Corollary
6.2 For a two-person discrete-time zero-sum dynamic game, the set of
strategies {Yk*(xk)> A; € K, i = 1,2} provides a feedback saddle-point
solution if, and only if, there exist functions V{k,-) : Rn —> R, k € K, such that
the following recursive relation is satisfied: V(k,x) = min max
[gk(fk(x,ul,ul),ul,ul,x) +V(k + l,fk(x,ul,ul))} max, minjgj /̂kfou^uj .̂ukuj^x)
+V(k+l,fk(x,ul,ul))} v»eu* »\eul (6.19) = gk(fk(x,11k*(x),1l*(x)Wk*(x),1l*
(x))x) +V(k + lJk(x,1l*(x),1l*(x))); V(K + l,x) = 0. Every such saddle-point
solution is strongly time consistent, and the unique saddle-point value of the
game is V{1,X\). Proof The recursive equation (6.19) follows from (6.16) by
taking N = 2, g\ = — g\ = gk (k € K), since then V1 = -V2 = V and existence of
a saddle point is equivalent to interchangeability of the min-max operations. D
For the further special case of an affine-quadratic zero-sum game, the solution
of (6.19) as well as the feedback saddle-point solution can be explicitly
determined in a simple structural form, but after a rather lengthy derivation. We
accomplish this in two steps: first we obtain directly the special case of
Corollary 6.1 for the affine-quadratic zero-sum game (see Corollary 6.3
below), and second we simplify these expressions further so as to bring them
into a form compatible with the results of Thm. 6.4 (see Thm. 6.7 in the
sequel). Corollary 6.3 For the two-person affine-quadratic zero-sum dynamic
game described by (6.10a)-(6.10b), the unique solutions of (6.17a) and (6.17d)
are given by Pi = [I + KlZk^BlY'KlZk^Ak, (6.20a)
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K2kZk+lBl]-lK2kZk+lAk, (6.20b) a\= [I + KlZ^Bl}-1 KKa+i + Zk+1ck),
(6.20c) a\ = -[I - KlZk+lB2k\-lKl^k+l + Zk+1ck), (6.20d) K\ = Bl'[I +
Zk+1B2k(I - Bl'zk+1B2k)-lBi'}, (6.21a) K2 ± Bt'[I - Zk+1Bl(I +
Bl'Zk^Blr'Bl'], (6.21b) and Z\ — —Z\ — Zk and £k = — (£ = £k satisfy the
recursive equations Zk = F'kZk+1Fk + Pi'Pi - P2'P2 + Qk; ZK+1 = QK+1,
(6.22a) and a = (̂a+i + zk+lCky, a+i = o (6.22b) Fk^Ak-BlPl-B2kP2k, Pk ĉk-
Blal-B2a2. Furthermore, the set of conditions of Remark 6.4 is equivalent to I
+ B^Zk+iBl > 0 (A; € K), (6.23a) / - B2kZk+1Bl > 0 (k e K). (6.23b) Proof By
letting N = 2, Qj+1 = -Qj>+1 £ Qfc+1) ii^1 = -J2j» = I, R22 = —Rk2 = I in



Corollary 6.1, we first observe that Z\ = —Zk and the equations for Zk and £k
are the same as (6.22a) and (6.22b),54 respectively, assuming of course that
Pk's and ak's in the these equations are correspondingly the same— a property
which we now verify. Toward this end, start with (6.17a) when i = 2, solve for
Pk terms of Pk (this solution is unique under (6.23b)), substitute this into
(6.17a) when i = 1 and solve for Pk from this linear matrix equation. The result
is (6.20a), assuming this time that the matrix [I + KkZk+\Bxk] is invertible.
Furthermore, by following the same procedure with indices 1 and 2
interchanged, we arrive at (6.20b), on account of the invertibility of [I —
KkZk+\Bk]. Repeating the same steps for a\ and a2., this time by working with
(6.17d), we arrive at (6.20c)-(6.20d), again under the same matrix invertibility
54Verification of (6.22b) requires some algebraic manipulations.
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case, Pk and Pk given by (6.20a)-(6.20b), and a\ and a\ given by (6.20c)-
(6.20d), are indeed the unique solutions of (6.17a) and (6.17d), respectively,
provided that the two matrices in question are invertible. A direct manipulation
on these matrices actually establishes nonsingularity under conditions (6.23a)-
(6.23b); however, we choose here to accomplish this by employing an indirect
method which is more illuminating. First note that (6.23a) and (6.23b)
correspond to the existence conditions given in Remark 6.4, and therefore they
make the functional to be minimized in (6.16) strictly convex in the relevant
control variables. But, for the zero-sum game, (6.16) is equivalent to (6.19),
and consequently (6.23a) and (6.23b) make the kernel in (6.19) strictly convex
in u\ and strictly concave in u\ (k € K). Since every strictly convex-concave
quadratic static game admits a (unique) saddle point (cf. Corollary 4.5), the
sets (6.17a) and (6.17d) have to admit unique solutions for the specific
problem (zero-sum game) under consideration. Hence, the required inverses in
(6.21a) and (6.21b) should exist. This, then, completes the proof of Corollary
6.3. D To further simplify (6.20a)-(6.22b), we now make use of the following
matrix identity. Lemma 6.2 Let Z = Z' and B be matrices of dimensions (n x n)
and (n x m), respectively, and with the further property that B'ZB does not have
any unity eigenvalues. Then, [In + ZB{Im - B'ZB)-XB'\ = {In - ZBB')-1. (6-24)
Proof. First note that the matrix inverse on the RHS of this identity exists,
under the hypothesis of the lemma, since nonzero eigenvalues of B'ZB and
ZBB' are the same (see Marcus and Mine, 1964, p. 24). Then, the result
follows by multiplying both sides of the identity by In — ZBB' from the right



and by straightforward manipulations. D Application of this identity to (6.21a)
and (6.21b) readily yields (by identifying B\ with B and Zk+i with Z in the
former, and B\ with B and —Zk+\ with Z in the latter)55 Kk - Bk [I -
Zk+iBkBk ]~ , K\ = B2k[I + Zk+1B\B'k]-\ Furthermore, if these are substituted
into (6.20a)-(6.20d), some extensive, but straightforward, matrix
manipulations which involve repeated application of (6.24) lead to the
expressions Plk = B£ Zk+1[I + (BIB1* - B2kB2k)Zk+1]-lAk, (6.25a) Pi - -
Bl'zk+1[I+ (BlkBl' - B2kB2k)Zk+l\~lAk, (6.25b) 55 Here we suppress the
dimensions of the identity matrices since they are clear from the context.
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BlB2k)}-\Qk+l + Zk+1ck), (6.25c) a\ = -B2k[I+Zk+1(BlBl' -B2kB2k)\-l(a+1
+Zk+1ck), (6.25d) and Fk, given in Corollary 6.3, is then expressed as Fk = [I-
(BlB1, - B2kBi)Zk+1\-lAk. (6.25e) Now, finally, if (6.25a)-(6.25b) are
substituted into (6.22a), we arrive at the conclusion that Zk satisfies the same
equation as Mk, given by (6.12b), and hence Fk = A^1 Ak, and furthermore £k
generated by (6.22b) is identical with mk generated by (6.13f). Therefore, we
have the following. Theorem 6.7 The two-person affine-quadratic zero-sum
dynamic game described by (6.10a)-(6.10b) admits a unique feedback saddle-
point solution if, and only if, I + BlkMk+lBlk > 0 (k e K), (6.26a) / -
BlMk+1Bl > 0 (fceK), (6.26b) in which case the unique equilibrium strategies,
which are also strongly time consistent, are given by 7 (̂xfc) =
~Bl'Mk+1A [̂Akxk + ck] - B»'(A'fc)_1Cfc+i, (6.27a) 7f (xk) = B2k Mk+lk-
kl[Akxk + ck\ + BfCAfc)"1 !̂, k € K, (6.27b) where Ok = (A^4)'((hi +
Mk+ick), Ck+i = 0, and Mfe+i, A  ̂(A; £ K) are as defined in Thm. 6.4- The
corresponding unique state trajectory {x*k+l; k £ K} satisfies the difference
equation xt+i = KX[Akxl + Vk], x\ = xu (6.27c) where r)k (k € K) is as defined
in Thm. 6.4, with mk+i replaced by the equivalent vector Ot+i. The
corresponding saddle-point value is J* = -f(71*,72*) = -x'iMiX! + C1X1 + nx.
Furthermore, ifQk+\ > 0 VA; € K, then Mk+\ > 0 VA; £ K, and hence condition
(6.26a) becomes superfluous.
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the last statement, follows from Corollary 6.1, Corollary 6.3 and the
discussion given prior to the statement of the theorem. To prove the last
statement, take ck = 0, without any loss of generality, and note that with Q^+i >
0 the lower value of any stage-truncated (from below) version of the game is



nonnegative (choose, e.g., u\ = 0), and hence the feedback saddle-point value
of each such truncated game, which is \xkMkXk, is nonnegative for any
arbitrary xk € Rn. Hence, Mk > 0 for all k e K.56 D Remark 6.6 As in the case
of Nash equilibria (cf. Remark 6.3), the result above extends naturally to the
more general affine-quadratic zero-sum dynamic games which have in the cost
function an additional linear term in i, to be denoted x'k+1lk+i- Then, the only
modification will have to be made in the equation for £&, which will now read
Ot = (A^1 Ak)'(Ck+i + Mk+1ck) + lk, Ck+\ = Ik+i- Otherwise, the statement of
Thm. 6.7 remains intact. □ Remark 6.7 A comparison of Thms. 6.4 and 6.7 now
readily reveals an important property of the saddle-point solution in such
games; namely, whenever they both exist, the unique open-loop saddle-point
solution and the unique feedback saddle-point solution generate the same state
trajectory in affine-quadratic zero-sum games. Furthermore, the open-loop
values (cf. Section 5.6) of the feedback saddle-point strategies (6.27a)-(6.27b)
are correspondingly the same as the open-loop saddle-point strategies (6.13a)-
(6.13b). These two features of the saddle-point solution under different
information structures are in fact characteristic of not only affine-quadratic
games, but of the most general zero-sum dynamic games treated in this section,
as it will be verified in the next section (see, in particular, Thm. 6.9). In
nonzero-sum dynamic games, however, the Nash equilibrium solutions
obtained under different information structures do not exhibit such a feature, as
it will also be clear from the discussion of the next section (see, in particular,
subsection 6.3.1). □ Even though the two saddle-point solutions of Thms. 6.4
and 6.7 generate the same state trajectory, the existence conditions involved
are not equivalent— a result that follows from a comparison of (6.11a) and
(6.14b) with (6.26b) and (6.26a). This point is further elaborated on in the
following proposition for the case Qk+i > 0, under which (6.14b) and (6.26a)
are automatically satisfied, which therefore leaves only (6.11a) and (6.26b) for
comparison. Proposition 6.2 For the affine-quadratic two-person zero-sum
dynamic game described by (6.10a)-(6.10b) and with Qk+i > 0 VA; £ K,
condition (6.11a) implies (6.26b), but not vice versa. In other words, every
affine-quadratic two- person zero-sum dynamic game (with nonnegative cost
on the state) that admits 56It is possible to verify this property of Mk also by
direct matrix manipulations; see Prop. 6.2 later for a hint in this direction.
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point also admits a unique feedback saddle point, but existence of the latter



does not necessarily imply existence of a saddle point in the open-loop
strategies. Proof. The proof of the implication from (6.11a) to (6.26b) is by
induction (on A;), where we have to show that for arbitrary k £ K, Sk+i >
Mk+1 =*■ Sk> Mk. To save from indices, let Sk+i = S, Mk+i = M, and
likewise for B1 and B2, and start with the relation S > M > 0, where the
nonnegative definiteness of M is a property that was already proven in Thm.
6.7. Consider the perturbed matrices Se = S + eI, Me=M + eI, c > 0, both of
which are positive definite for each e > 0. The following sequence of
implications (=*>) and equivalences (<») now follows from standard
properties of matrices:57 S£ > Me =► 5£_1 - B2B2' > Mf1 - B2B2' + BlB1'
<* SC(I-B2B2'SC)~1 > Mt{I + {BxB1' -B2B2')MC)~1. Since the last
inequality holds Ve > 0, and both sides are well denned as e j 0, we finally
have (using the continuous dependence of eigenvalues of the matrices above on
the parameter e) (7 - B '̂S)-1 > M(I + {BXBV - B2B2')M)-\ and pre- and post-
multiplying both sides by A' and A and then adding Q yields the desired result
Sk > Mf.- This completes the proof by induction, since for k = K + 1 both
matrices equal Qk+i- To verify that (6.26b) does not necessarily imply (6.11a),
we simply produce a counter example. Consider the scalar two-stage game
(i.e., K = 2) with Qk+1 = B{ = Ak = 1, B\ = l/\/2, (k = 1,2). Both (6.11a) and
(6.26b) are satisfied for k = 2. For k = 1, however, 52 = 3, Mi — 5/3, and
while (6.26b) is satisfied, the condition (6.11a) fails to hold true. D Remark
6.8 The condition (6.26b) of Thm. 6.7 is quite tight for affine-quadratic
dynamic games (with nonnegative cost on the state) under the CLPS
information structure, in the sense that if the matrix in (6.26b) has any negative
eigenvalues, then the upper value of the game becomes unbounded. This is
57For two positive definite matrices V and W, the inequality V > W means that
the matrix difference V — W is nonnegative definite, which also implies that
the difference of their inverses, V~l — W~l, is nonpositive definite. For a
proof of this last inequality, see, for example, Bellman (1970).
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value of the state, because then existence of a negative eigenvalue for the
matrix in (6.26b) at some stage k would imply that the recursive derivation of
the feedback saddle-point equilibrium solution encounters at stage k a static
game that is not concave in the maximizing variable—making the upper value
of that game unbounded (as in Remark 4.7). This argument can be extended
also to the general CLPS information structure, implying that even if the



minimizer is allowed to use also the past values of the state the upper value
would still be unbounded when the matrix in (6.26b) has at least one negative
eigenvalue.58 The lower value of the game, however, could still be bounded,
which means that if the minimizer is also allowed to have access to the
maximizer's actions (controls), then condition (6.26b) can be further relaxed;
this relaxed version of (6.26b) can in fact be obtained quite readily by
allowing (in the recursive derivation of the feedback saddle-point equilibrium)
the minimizer (PI) to choose uj, dependent not only on Xf. but also on u\, and
then requiring the resulting minimum value of the stagewise cost (in the
truncated game) to be strictly concave in u\. If the information structure is
CLPS, and the matrix in (6.26b) is nonnega- tive (but not positive) definite,
then whether the upper value is bounded or not depends on the specific
structures of the cost and system matrices, which we do not further discuss
here. □ 6.2.3 Linear-quadratic games with an infinite number of stages We now
consider stationary dynamic games with an infinite number of stages, and
restrict attention to linear-quadratic structures, which means that in the
formulation of Def. 6.1, all matrices are time invariant, c = 0, and K — oo or
K —> oo. Feedback Nash equilibria of such games can be obtained in two
different ways: as the limit of the feedback Nash solution of any time-truncated
version (with, say, K stages) as the number of stages (K) goes to infinity, or
from the outset as the Nash equilibrium of an infinite-horizon game under
CLNM information pattern. Of course, a natural procedure to follow would be
a combination of these two methods: find the limit of the finite-horizon solution
as K —> oo, and then verify that this limiting solution (if it exists) provides a
Nash equilibrium solution for the infinite-horizon game. Toward this end, first
note that a candidate solution can easily be obtained from Corollary 6.1, by
simply taking c = 0 and dropping the time indices from the various matrices.
Let z£ ' (i E N) denote the solution of (6.17b) when there are K stages (where
we show explicit dependence on if, as in the one-player case discussed in
subsection 5.5.1, Prop. 5.2), and let Z% (i € N) be its limit as K —> oo for
fixed k (assuming that this limit exists, and is independent of A;). Likewise, let
Pi (i € N) denote the limit of P^K) (i € N) as K -> oo. Then, these limiting See
Basfar (1991b) or Ba§arand Bernhard (1995) for details of this argument.
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the following two algebraic matrix equations [RH + BiZiBi\Pi + Bi'2i J2 BJPJ
= S*'ZM, i € N, (6.28a) p = F'PF + J2 Pi'RiiPi + Ql; ie N, (6.28b) where F = A



- J2 Bi -̂ (628c) The corresponding limiting feedback strategy for Pi is then
(from (6.18a)) 7i*(xfc) = -Pixik (ieN, A; = 1,2,...). (6.29) Conditions that will
guarantee that such an iV-tuple of stationary policies are in Nash equilibrium
can be obtained readily from Prop. 5.2, by simply holding all but one (say, ith)
players' strategies fixed at (6.29) and requiring that the resulting infinite-
horizon optimal control problem be well defined, as explained in subsection
5.5.1. This result is given below in Prop. 6.3 after introducing some notation.
Let Fi and Qi (i € N) be defined by Ft = A - J2 BiPJ\ Qt * Q{ + ^2 Pj'&>Pj (i
€N). J*i J/' Proposition 6.3 Let there exist two N-tuples of matrices {Zl, P\ i €
N} satisfying (6.28a) and (6.28b), and further satisfying the conditions that for
each ieN the pair (Fi,Bl) is stabilizable and the pair (Fi,Qi) is detectable.
Then, (i) the N-tuple of stationary feedback policies (6.29) provides a Nash
equilibrium solution for the linear-quadratic nonzero-sum dynamic game of this
subsection, leading to the finite infinite-horizon Nash equilibrium cost
±x'1Zix1 for Pi, (ii) the resulting system dynamics, described by xk+1 = Fxk,
A; = 1,2,..., are stable. A few remarks regarding the solution presented above
are now in order. First, we have not given any conditions on the parameters of
the game that will guarantee the existence of a solution set to (6.28a)-(6.28b);
obtaining such
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task. Second, even though the set of equations (6.28a)-(6.28b) was obtained by
taking a limit on the solution for the time-truncated version of the game, it is
quite possible that these equations will admit (other) solutions that are not
necessarily related to the solution(s) of the finite-horizon game. But, these
would also provide Nash equilibria, as long as the conditions on stabilizability
and detectability are satisfied. For the special class of linear-quadratic zero-
sum games it is possible to obtain stronger results. First, let us rewrite the
"stationary" counterparts of the feedback saddle-point policies (6.27a)-
(6.27b), along with the "stationary" counterparts of the relevant matrices (A
and M) which were introduced in Thm. 6.4, where we again use an "overbar"
to denote the limiting values (as K —► oo): ^1(xk) = -B1'MA~1Axk, (6.30a)
72(xfe) = B2'MA~1Axk, k = 1,2,...; (6.30b) A = [/ + {BlB1' - B2B2')M],
(6.30c) M^Q + A'MA^A. (6.30d) Furthermore, the counterpart of the concavity
condition (6.26b) is I-B2'MB2>0, (6.30e) and for convenience we also
introduce the following relaxed version of (6.30e): I-B2'MB2>0. (6.30f) Now,
the following lemma, whose proof can be found in (Ba§arand Bern- hard,



1995), provides precise relationships between the limit of the sequence
generated by (6.12b) and solutions of (6.30d) as well as the value of the
underlying infinite-horizon game, when Q > 0. Before stating the lemma, let us
introduce the notation Mk to denote the unique nonnegative-definite matrix
sequence generated by (6.12b) for a if-stage time-invariant linear-quadratic
game, with the terminal condition (at k = K + l) taken as Q, and with condition
(6.30f) satisfied. Lemma 6.3 For the linear-quadratic infinite-horizon zero-sum
dynamic game with Q > 0, let the pair (A, Q) be observable (respectively,
detectable). Then, (i) if there exists a nonnegative-definite solution to the
generalized algebraic Riccati equation (GARE) (6.30d), M, which also
satisfies (6.30e), then M is necessarily positive definite, (ii) if the GARE
(6.30d) does not admit a positive (respectively, nonnegative) definite solution
satisfying (6.30f), then the upper value of the game is unbounded,

NASH AND SADDLE-POINT EQUILIBRIA 291 (Hi) if M denotes a positive
(respectively, nonnegative) definite solution of (6.30d) satisfying (6.30e), then
for all K>1, M > M(kK) > MJZl, forallk<K. An important consequence of this
lemma is that if the GARE (6.30d) admits multiple positive (respectively,
nonnegative) definite solutions satisfying (6.30e), there is a minimal such
solution (minimal in the sense of matrix partial ordering), denoted M+, to
which the sequence {Mk } converges as K —> oo. In view of this observation,
and the result of Lemma 6.3, the following theorem can be established. Its
proof can be found in Ba§ar (1991b) and Ba§arand Bernhard (1995). Theorem
6.8 Consider the infinite-horizon discrete-time linear-quadratic zero- sum
dynamic game, with (A,Q) constituting an observable (respectively,
detectable) pair. Then, we have the following. (i) The game has equal upper
and lower values if, and only if, the GARE (6.30d) admits a positive
(respectively, nonnegative) definite solution satisfying (6.30e), and only if it
admits a positive (respectively, nonnegative) definite solution satisfying
(6.30f). (ii) If the GARE admits a positive (respectively, nonnegative) definite
solution, satisfying (6.30e), then it admits a minimal such solution, to be
denoted M+. Then, the finite value of the game is \x\M+X\. (Hi) The upper
(minimax) value of the game is finite if, and only if, the upper and lower values
are equal. (iv) If M+ > 0 (respectively, > 0) exists, as given above, the
controller 71 given by (6.30a), with M replaced by M+, attains the finite upper
value, in the sense that sup7(7!,72) = x\M+xx , and a maximizing solution
above is the stationary feedback policy given by (6.30b), again with M



replaced by M+. (v) If M+ > 0 (respectively, > 0), exists, the closed-loop
system under the policies (6.30a)-(6.30b), with M replaced by M+, is
asymptotically stable, that is, the matrix F defined below is Hurwitz: F = (I-
(BB' - DD^M+iA+y^A. Note that the theorem above does not say that the
feedback policies (6.30a)- (6.30b), with M replaced by M+, are in saddle-
point equilibrium. It only says that Pi's feedback policy as given assures a
finite upper value, which is also
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of the game may not, however, be assured by the corresponding feedback
policy of P2; more will be said on this point in the context of continuous-time
(differential) games, to be discussed in subsection 6.5.3. 6.3 Informational
Properties of Nash Equilibria in Discrete-Time Dynamic Games This section
is devoted to an elaboration on the occurrence of "information- ally nonunique"
Nash equilibria in discrete-time dynamic games, and to a general discussion on
the interplay between information patterns and existence- uniqueness
properties of noncooperative equilibria in such games. First, we consider, in
some detail, a scalar three-person dynamic game which admits uncountably
many Nash equilibria, and which features several important properties of
infinite dynamic games. Then, we discuss these properties in a general context.
6.3.1 A three-person dynamic game illustrating informational nonuniqueness
Consider a scalar three-person two-stage linear-quadratic dynamic game in
which each player acts only once. The state equation is given by x3 = x2 + u1
+ u2; x2=xi +u3, (6.31) and the cost functionals are defined as L1 = (x3)2 +
(u1)2; L2 = -L3 = -(x3)2 + 2(u2)2-(u3)2. (6.32) In this formulation, u% is the
scalar unconstrained control variable of Pi (i — 1,2,3), and x\ is the initial
state whose value is known to all players. Pi and P2, who act at stage 2, have
also access to the value of x2 (i.e., the underlying information pattern is CLPS
(or, equivalently, MPS) for both Pi and P2), and their permissible strategies
are taken as twice continuously differentiable mappings from R x R into R. A
permissible strategy for P3, on the other hand, is any measurable mapping from
R into R. This, then, completes the description of the strategy spaces T1, Y2
and T3 (for Pi, P2 and P3, respectively), where we suppress the subindices
denoting the corresponding stages since each player acts only once. Now, let
{71 € T1^2 € T2,73 € T3} denote any noncooperative (Nash) equilibrium
solution for this three-person nonzero-sum dynamic game. Since L% is strictly
convex in u% (i = 1,2), a set of necessary and sufficient conditions for 71 and



72 to be in equilibrium (with 73 € T3 fixed) is obtained by differentiation of Ll
with respect to ul (i — 1,2), thus leading to X2(-y3) + 2'y1(x2,x1)+'y2(x2,x1)
= 0, -S2(73)-71(^2,a;i)+72(S2, î) = 0,
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71(5;2,:e1) and *y2(x2,xi) from the foregoing pair of equations, we obtain 2
ll{x2,xl) = --x2, (6.33a) 72(x2,x1) = ^x2, (6.33b) which are the side
conditions on the equilibrium strategies 71 and 72, and which depend on the
equilibrium strategy 73 of P3. Besides these side conditions, the Nash
equilibrium strategies of Pi and P2 have no other natural constraints imposed
on them. To put it in other words, every Nash equilibrium strategy for Pi will
be a closed-loop representation (cf. Def. 5.12) of the open-loop value (6.33a),
and every Nash equilibrium strategy for P2 will be a closed-loop
representation of (6.33b). To complete the solution of the problem, we now
proceed to stage 1. Since {7!,72,73} constitutes an equilibrium triple, with {u1
= j1(x2,Xi),u2 = ~/2(x2, Xi)} substituted into L3, the resulting cost functional
of P3 (denoted as L3) should attain a minimum at u3 = 73(a:1); and since 71
and 72 are twice continuously differentiable in their arguments, this
requirement can be expressed in terms of the relations Ai3(73(a;i)) = X3(1 +
712 + 72j _ 2^  ̂+ 73(xi) = Qj ÎL3(73(x1)) = (1 + l\2 + ll? + x3(jl2X2 +
722I2) - 2(722)2 -2722a;272 + 1 > 0, 59 where we have suppressed the
arguments of the strategies. Now, by utilizing the side conditions (6.33a)-
(6.33b) in the above set of relations, we arrive at a simpler set of relations
which are, respectively, -[*! + 73(*i)][l + ll2(*2, Xi)) + 73(x0 = 0, (6.34a) 2
I1 + 7*2(*2,*i) +il2{x2,xx)}2 - -x l̂^x^xx) - 2[722(i2,zi)]2 + 1 > 0, (6.34b)
59Here, we could of course also have nonstrict inequality (i.e., >) in which
case we also have to look at higher-order derivatives of L3. We avoid this by
restricting our analysis at the outset only to those equilibrium triples
{71,72,73} which lead to an L3 that is locally strictly convex at the solution
point.
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x2=x1+j3(x1). (6.34c) These are the relations which should be satisfied by an
equilibrium triple, in addition to (6.33a) and (6.33b). The following
proposition summarizes the result. Proposition 6.4 Any triple {71* € T1^2* €
r2,73* € T3} that satisfies (6.33a)-(6.33b) and (6.3 â)-(6.3J^b), and also
possesses the additional feature that (6.34a) with 71 = 71* and j2 = j2* admits



a unique solution 73 = 73*, constitutes a Nash equilibrium solution for the
nonzero-sum dynamic game described by (6.31)-(6.32). Proof. This result
follows from the derivation outlined prior to the statement of the proposition.
Uniqueness of the solution of (6.34a) for each pair {71*, 72*} is imposed in
order to ensure that the resulting 73* is indeed a globally minimizing solution
for I?. D We now claim that there exists an uncountable number of triplets that
satisfy the requirements of Prop. 6.4. To justify this claim, and to obtain a set
of explicit solutions, we consider the class of 71 and 72 described as
71(x2,a;1) = -\x2 + p[x2 - x2(-y3)}, -y2{x2,x1) =-\x2 + q[x2 - x2( )̂}, where p
and q are free parameters. These structural forms for 71 and 72 clearly satisfy
the side conditions (6.33a) and (6.33b), respectively. With these choices,
(6.34a) can be solved uniquely (for each p, q) to give 73(*1) = -[(2 + 6p)/(ll +
6p)]xu p ? -11/6, with the existence condition (6.34b) reading (l + p) +2pq-q2
+ l>°- (6-35) The scalar x2 is then given by x2 = [9/(11 +6p)]si. Hence, we
have the following. Proposition 6.5 The set of strategies 2 71*(x2,a:1) = --
x2+p{x2- [9/(11 +6p)]*i}, 72*(x2,X!) = -~x2+q{x2- [9/(11 +6p)]Xl}, 73*(xx)
= -{(2 + 6p)/(ll+6p)]x1
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equilibrium solution for the dynamic game described by (6.31)- (6.32), for all
values of the parameters p and q satisfying (6.35) and with p  ̂—11/6. The
corresponding equilibrium costs of the players are Ju = 2[6/(ll + 6p)]2(x1)2,
j2. = _j3* = _[(22 + 24p + 36p2)/(ll + 6p)2](x1)2. Several remarks and
observations are in order here, concerning the Nash equilibrium solutions
presented above. (1) The nonzero-sum dynamic game of this subsection admits
uncountably many Nash equilibrium solutions, each one leading to a different
equilibrium cost triple. (2) Within the class of linear strategies, Prop. 6.5
provides the complete solution to the problem, which is parameterized by p
and q. (3) The equilibrium strategy of P3, as well as the equilibrium cost
values of all three players, depend only on p (not on q), whereas the existence
condition (6.35) involves both p and q. There is indeed an explanation for this:
the equilibrium strategies of PI and P2 are in fact representations of the open-
loop values (6.33a)-(6.33b) on appropriate trajectories. By choosing a
specific representation of (6.33a), Pi influences the cost functional of P3 and
thereby the optimization problem faced by him. Hence, for each different
representation of (6.33a), P3 ends up, in general, with a different solution to
his minimization problem, which directly contributes to nonuniqueness of Nash



equilibria. For P2, on the other hand, even though he may act analogously—
i.e., choose different representations of (6.33b)—these different
representations do not lead to different minimizing solutions for P3 (but instead
affect only the existence of a minimizing solution) since L2 = -L3, i.e., P2 and
P3 have completely conflicting goals (see Thm. 6.9, later in this section, and
also the next remark for further clarification). Consequently, 73*(xi) is
independent of q, but the existence condition explicitly depends upon q. (This
is true also for nonlinear representations, as it can be seen from (6.34a) and
(6.34b).) (4) If Pi has access to only x  ̂(and not to Xi), then, necessarily, p =
0, and both Pi and P3 have unique equilibrium strategies which are {^x*{x2) =
-|x2,73*(xi) = -(2/ll):ci}. (This is true also within the class of nonlinear
strategies.) Furthermore, the equilibrium cost values are also unique (simply
set p = 0 in Jl*,i — 1,2,3, in Prop. 6.5). However, the existence condition
(6.35) still depends on </, since it now reduces to q2 < 11/9. The reason for
this is that P2 still has the freedom of employing different representations of
(6.33b), which affects existence of the equilibrium solution but not the actual
equilibrium state trajectory, since P2 and P3 are basically playing a zero-sum
game (in which case the equilibrium (i.e., saddle-point) solutions are
interchangeable). (See Thm. 6.9, later in this section; also recall the feature
discussed in Remark 6.7 earlier.)
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obtain the unique feedback Nash equilibrium solution (cf. Corollary 6.1 and
Remark 6.4) of the dynamic game under consideration (which exists since p =
0  ̂11/6, and (6.35) is satisfied). (6) Among the uncountable number of Nash
equilibrium solutions presented in Prop. 6.5, there exists a subsequence of
strategies which brings Pi's Nash cost arbitrarily close to zero which is the
lowest possible value L1 can attain. Note, however, that the corresponding
cost for P3 approaches (x\)2 which is unfavorable to him. Before concluding
this subsection, it is worthy to note that the linear equilibrium solutions
presented in Prop. 6.5 are not the only ones that the dynamic game under
consideration admits, since (6.34a) will also admit nonlinear solutions. To
obtain an explicit nonlinear equilibrium solution, we may start with a nonlinear
representation of (6.33a), for instance, 2 l1{x2,xl) = --x2+p[x2-x2( )̂]2,
substitute it into (6.34a) and solve for a corresponding 73(x1), checking at the
same time satisfaction of the second-order condition (6.34b). For such a
derivation (of nonlinear Nash solutions in a linear-quadratic game) the reader



is referred to Ba§ar (1974). See also Problem 5, Section 6.8. 6.3.2 General
results on informationally nonunique equilibrium solutions Section 3.5 has
already displayed existence of "informationally nonunique" Nash equilibria in
finite multi-act nonzero-sum dynamic games, which was mainly due to the fact
that an increase in information to one or more players leaves the Nash
equilibrium obtained under the original information pattern unchanged, but it
also creates new equilibria (cf. Prop. 3.10). In infinite games, the underlying
reason for occurrence of informationally nonunique Nash equilibria is
essentially the same (though much more intricate), and a counterpart of Prop.
3.10 can be verified. Toward this end we first introduce the notion of
"informational inferior" in such dynamic games. Definition 6.3 Let I and II be
two N-person K-stage infinite dynamic games which admit precisely the same
extensive form description except the underlying information structure (and, of
course, also the strategy spaces whose descriptions depend on the information
structure). Let r}\ (respectively, rj )̂ denote the information pattern of Pi in the
game I (respectively, II,), and let the inclusion relation r\\ C 77  ̂imply that
whatever Pi knows at each stage of game I he also knows at the corresponding
stages of game II, but not necessarily vice versa. Then, I is informationally
inferior to II if r}\ C rjjj for all i£N, with strict inclusion for at least one i.
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be two N -person K-stage infinite dynamic games as introduced in Def. 6.3, so
that I is informationally inferior to II. Furthermore, let the strategy spaces of the
players in the two games be compatible with the given information patterns and
the constraints (if any) imposed on the controls, so that r]\ C 77jj implies Y\ C
Tfj, i € N. Then, (i) any Nash equilibrium solution for I is also a Nash
equilibrium solution for II, (ii) if {71,..., 7^} is a Nash equilibrium solution for
II such that 7* € F\ for all i € N, then it is also a Nash equilibrium solution for
I. Proof. Let {7";/ € N} constitute a Nash equilibrium solution for I. Then, by
definition, J1(71*,72*,...,77V*)<J1(71,72*,...,77V*), V71erI1; therefore, Pi
minimizes J1(-,72*,... ,~fN*) over Tj, with the corresponding solution being
71* € Tj. Now consider minimization of the same expression over Tjj Q Tj)
which reflects an increase in deterministic information concerning the values
of state. But, since we have a deterministic optimization problem, the minimum
value of J1(71,72*,... ,~fN*) does not change with an increase in information
(see Section 5.6). Hence, min J1(71I72*,77V*) = ^1(71*,72*,...I77V*); and
furthermore, since 71* € Tjj, we have the inequality J1(71*,72*,...,7iV*)



<J1(71,72*,...,7iV*), V71erl1I. Since PI was an arbitrary player in this
discussion, it follows in general that w,...,-,*,...,-,"•) < Ji(7i*!...!y-i*,y!7i+1*,.-
-,77V*) v7i e rfr (i e n) which verifies (i) of Prop. 6.6. Proof of (ii) is along
similar lines. D Since there corresponds at least one informationally inferior
game (viz. a game with an open-loop information structure) to every multi-
stage game with CLPS information, the foregoing result clearly provides one
set of reasons for existence of "informationally nonunique" Nash equilibria in
infinite dynamic games (as Prop. 3.10 did for finite dynamic games). However,
this is not yet the whole story, as it does not explain occurrence of uncountably
many equilibria in such games. What is really responsible for this is the
existence of uncountably many representations of a strategy under dynamic
information (cf. Section 5.6). To elucidate somewhat further, consider the
scalar three-person dynamic game of subsection 6.3.1. We have already seen
that, for each fixed equilibrium strat- egy 73 °f P3, the equilibrium strategies of
PI and P2 have unique open-loop
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respectively, but they are otherwise free. We also know from Section 5.6 that
there exist infinitely many closed-loop representations of such open-loop
policies; and since each one has a different structure, this leads to infinitely
many equilibrium strategies for P3, and consequently to a plethora of Nash
equilibria. The foregoing discussion is valid on a much broader scale (not only
for the specific three-person game treated in subsection 6.3.1), it provides a
general guideline for derivation of informationally nonunique Nash equilibria,
thus leading to the algorithm given below after introducing the concept of
"stagewise equilibrium". Definition 6.4 For an N -person K -stage infinite
dynamic game, a set of strategies {7**;i € N} satisfying the following
inequalities for all 7  ̂£ r'fc) i £ N, k € K, is a stagewise (Nash) equilibrium
solution: Ji(71*;--.;7i*;---;7Ar*)<./i(71*;...;7i*,...,7i*-i,7J, 7ki,...,7j?;...;7Ar*).
(6.36) Remark 6.9 Every Nash equilibrium solution (cf. the set of inequalities
(6.3)) is a stagewise Nash equilibrium solution, but not vice versa. □ An
algorithm to obtain informationally nonunique Nash equilibria in infinite
dynamic games First determine the entire class of stagewise equilibrium
solutions. (1) Starting at the last stage of the game (k = K), fix the AT-tuples of
strategies at every other stage k < K, and solve basically an AT-person static
game at stage K (which is defined by (6.36) with k = K) to determine the open-
loop values of the corresponding stagewise equilibrium strategies at k = K as



functions of the strategies applied previously. Furthermore, determine the
equivalence class of representations of these AT-tuples of open-loop values,
again as functions of the previous strategies and so that they are compatible
with the underlying information structure of the problem. (2) Now consider
inequalities (6.36) for k = K— 1 and adopt a specific member of the
equivalence class determined at step 1 as a strategy AT-tuple applied at stage
K; furthermore fix the AT-tuples of strategies at every stage k < K — l, and
solve basically an AT-person static game to determine the open- loop values of
the corresponding stagewise equilibrium strategies at stage K — 1 as functions
of the strategies applied previously. Repeat this for every member of the
equivalence class determined at step 1. Each will, in general, result in a
different set of open-loop values. Now, for each set of open-loop values thus
determined, find the corresponding equivalence class of representations which
are also compatible with the underlying
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which depend on the strategies applied at earlier stages. (K) Now, finally,
consider the set of inequalities (6.36) for k = 1, and adopt specific (and
compatible) members of the equivalence classes determined at steps 1,..., K —
1 as strategies applied at stages K,..., 2; solve the resulting AT-person static
game to determine the corresponding stagewise equilibrium strategies at stage
1, which will in general also require solution of some implicit equations.
Repeat this for every compatible (K — l)-tuple of members of the equivalence
classes constructed at steps 1,..., K — 1. This then completes the construction
of the entire class of stagewise equilibrium solutions of the given dynamic
game. Finally, one has to check to see which of these stagewise equilibrium
solutions also constitute Nash equilibria, by referring to the set of inequalities
(6.3). Remark 6.10 In obtaining a set of informationally nonunique equilibrium
solutions for the scalar example of subsection 6.3.1, we have actually
followed the steps of the foregoing algorithm; but there we did not have to
check the last condition since every stagewise equilibrium solution was also a
Nash equilibrium solution because every player acted only once. □ The
foregoing algorithm leads to an uncountable number of information- ally
nonunique Nash equilibria in deterministic multi-stage infinite nonzero-sum
games wherein at least one player has dynamic information. Furthermore, these
informationally nonunique Nash equilibria are, in general, not interchangeable
— thereby leading to infinitely many different equilibrium cost ./V-tuples. The



reason why we use the words "in general" in the preceding sentence is because
there exist some extreme cases of nonzero-sum games which do not exhibit
such features. One such class is the so-called team problems for which L1 =
L2 = • • • = LN, i.e., there is a common objective function. The Nash
equilibrium solution corresponds in this case to a person-by-person optimal
solution and it becomes a team solution under some further restrictions (see the
discussion given in Section 4.6). Deterministic team problems are no different
from optimal control problems discussed in Section 5.5, and in particular the
discussion of Section 5.6 leads to the conclusion that informational nonunique-
ness of equilibria does not create any major difficulty in team problems, since
all these equilibrium solutions are different representations of the same N-
tuple of strategies which is associated with the global minimum of a single
objective functional. Hence, for the special case of team problems,
informational nonuniqueness does not lead to different equilibrium cost AT-
tuples. Let us now consider the other extreme case—the class of two-person
zero- sum infinite dynamic games—in which case L1 = —L2. For such
dynamic games, informational nonuniqueness does not lead to different
(saddle-point)
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multiple saddle points are interchangeable; however, as we have observed in
subsection 6.3.1, existence of a saddle point will depend on the specific pair
of representations adopted. Therefore, contrary to team solutions, every
representation of a pair of saddle-point strategies is not necessarily a saddle-
point strategy pair. The next theorem makes this statement precise, and it also
provides a strengthened version of Prop. 6.6 for two-person zero-sum dynamic
games. Before giving the theorem, it will be convenient first to introduce the
notion of a strongly unique saddle point (say, {71*,72*}) on a given product
strategy space T1 x T2, as one where the pair {71*,72*} is unique as a saddle-
point solution, and in addition 71* € T1 is the unique response to 72* and j2* e
T2 is the unique response to 71*. Then, we have the following theorem.
Theorem 6.9 Let 1 be a two-person zero-sum K-stage dynamic game with
closed-loop perfect state information pattern. (i) If I admits a strongly unique
feedback saddle-point solution, and also an open-loop saddle-point solution,
then the latter is unique. (ii) Ifl admits a strongly unique feedback saddle-point
solution {7lf,72f} with a corresponding state trajectory {xk+1;k e K}, and
{71*,72*} denotes some other closed-loop saddle-point solution with



corresponding state trajectory {xl+1; k e K}, we have xk+i — xk+i> k € K,
Yk*(xl,...,x*2,x1) = 7f(4), keK, 7 = 1,2. (Hi) Ifl admits a strongly unique open-
loop saddle-point solution {71o,72°} with a corresponding state trajectory
{x^+1;k e K}, and if {71*,72*} denotes some other closed-loop saddle-point
solution with corresponding state trajectory {xl+1;k € K} we have xk+\ —
xk+i> keK, rff(xl,...,xl,Xl) = 7fe°(*i), keK, 7 = 1,2. Proof, (i) Let {7lf,72f} be
the strongly unique feedback saddle-point solution and {71o,72°} be any open-
loop saddle-point solution. It follows from Prop. 6.6 that {7lf,72f} and
{71o,72°} are also closed-loop saddle-point solutions. Furthermore, because
of the ordered interchangeability property of saddle points, {7l0,72f} and
{7lf,72°} are also closed-loop saddle-point strategy pairs, J(7lo,72) <
(̂7l0,72f) < J(71,72f), V71 e T1^2 € T2, (i) and an analogous pair of

inequalities for {7lf,72°}, where V1 denotes the closed- loop strategy space of
Pi. Now, let us consider the RHS inequality of (i), which is equivalent to
J(7l0,72f)= minJ .̂T2').
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control problem in discrete time with a cost functional fceK g(xk+1,ul,xk) =
gk(xk+i,ul>lt{(xk),Xk), uk = ll(-), and a state equation Zfc+i = A( f̂c,Ufc) =
fk(xk,ul,~/lf(xk)). Globally optimal solution of this problem over T1 can be
obtained (if it exists) via dynamic programming and as a feedback strategy. But
by hypothesis (since {7lf, 72f} is a strongly unique saddle-point pair), there
exists a unique feedback strategy (namely, 7lf) that solves this problem. Since
every closed-loop strategy admits a unique open-loop representation (cf.
Section 5.6), it follows that there exists a unique open-loop solution to that
optimum control problem, which is given by {7k°(xi) = lk{(xik)> k € K},
where {:cjj.+ 1; fceK} denotes the state trajectory corresponding to {7lf,72f}.
Therefore, 710 is unique whenever 7lf is. It can likewise be shown, by making
use of the LHS inequality of (i), that 72o(x1) = ~/2{{x{k), and hence 720 is
unique whenever 72f is unique. This then completes verification of part (i). We
note that a converse statement cannot be made here (i.e., strong uniqueness of
open-loop saddle point may not imply strong uniqueness of feedback saddle
point), because there could be cost- irrelevant states on which the feedback
solution can be chosen to be nonunique. (ii) By Prop. 6.6 and the ordered
interchangeability property of saddle points, {71*,72f} and {7lf,72*} are also
saddle-point strategy pairs; therefore J(71*,72f)= minJ(7\72f)- -psr1 This
equality defines an optimum control problem in discrete time, and as in the



proof of part (i), every globally optimal solution of this optimization problem
can be obtained via dynamic programming; and by hypothesis, 7lf is the unique
feedback strategy that renders the global minimum. Hence, every solution in T1
has the same open-loop representation as 7lf, that is, {7fe*(xfei-•• ix2ixi) =
7fef(xfe)>k e K}. Similarly, this time by starting with {7lfi72*}!7fc*(:cfc! • • •
i^L î) = 7fcf(:cfc)>k e K. Therefore, the pairs of strategies {7lf,72f} and
{71*,72*} have the same open-loop representations, and this necessarily
implies that the corresponding state trajectories are the same. (iii) The idea of
the proof here is the same as that of part (ii). By Prop. 6.6 and the ordered
interchangeability property of multiple saddle points, {71*, 720} and
{71o,72*} are also saddle-point strategy pairs; the former of these implies that
J(71*,72°)= minJtfn20)
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whose open-loop solution is known to be unique (namely, 710). Therefore,
every other solution of this optimization problem in T1 has to be a closed-loop
representation of 710 on the trajectory {x%+1;k € K}, i.e., -yl*(x°k,. ..,x%,xi)
= 7fc°(a:i)> k € K. Similarly, l1*{x°k,... ,£2,0:1) = lk°(xi)>k € K-
Furthermore, because of this equivalence between the open-loop
representations, we have x^+1 = x£+1, k € K. D Remark 6.11 The "uniqueness"
assumptions of parts (ii) and (iii) of Thm. 6.9 serve to simplify the statement of
the theorem, but do not bring in any loss of generality of conceptual nature.
"Uniqueness" can be dispensed with provided that the optimal responses to
each strategy in the set of saddle points is also a saddle-point strategy. To make
this qualification more precise, and to indicate the modification to be
incorporated in (ii) and (iii) of Thm. 6.9 in case of nonunique open-loop or
feedback saddle points, suppose that there exist two open-loop saddle-point
solutions, say {71o,72°} and {7loo,72o°}. Then, because of the ordered
interchangeability property, {71o,72o°} and {7loo,72°} will also be saddle-
point solutions. Now suppose that 720 and 7200 are the only two optimal
responses to 710 as well as to 7100, and likewise 710 and 7100 are the only
two optimal responses to 720 and 7200. Then, if {71*,72*} denotes some
closed-loop saddle-point solution, the open-loop representation of this pair of
strategies will be equivalent to one of the four open-loop saddle-point strategy
pairs. The saddle-point value is, of course, the same for all these different
saddle-point solutions. □ Theorem 6.9, together with Remark 6.11, provides a
complete characterization of the saddle-point solutions of two-person zero-



sum discrete-time dynamic games, if their open-loop and/or feedback saddle-
point solutions are known; every other saddle point can be obtained as their
representation under the given information pattern. Furthermore, whenever they
both are strongly unique, the open-loop representation of the feedback saddle-
point solution is necessarily the open-loop saddle-point solution. This does not
imply, however, that if a feedback saddle point exists, an open-loop saddle
point necessarily has to exist (and vice versa); we have already seen in
subsection 6.2.2 (cf. Prop. 6.2) that the former statement is not true in amne-
quadratic zero-sum games. In conclusion, a nonzero-sum multi-stage infinite
game with dynamic information will, in general, admit uncountably many
(informationally nonunique) Nash equilibria which are not interchangeable,
unless it is a team problem or a zero-sum game. In Ba§arand Selbuz (1976) it
has actually been shown within the context of a class of dynamic two-stage
nonzero-sum games that this is in fact a strict property, i.e., unless the nonzero-
sum game can be converted into an equivalent team problem or a zero-sum
game, it admits uncountably many Nash equilibria. One possible way of
removing informational nonuniqueness in the nonco- operative equilibria of
nonzero-sum dynamic games is to further restrict the equilibrium solution
concept by requiring it to be a feedback Nash equilibrium (cf. Def. 6.2) which
has been discussed thoroughly in subsection 6.2.2. However,
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restriction (which is compatible with a delayed commitment mode of play or
strong time consistency) makes sense only if all players have access to the
current value of the state (e.g., the CLPS, MPS or FB information pattern). If at
least one of the players has access to delayed or open-loop information, the
feedback equilibrium solution cannot be denned, and one then has to resort to
some other method for eliminating informational nonunique- ness. One such
alternative is to formulate the nonzero-sum game problem in a stochastic
framework, which is the subject of the next section. 6.4 Stochastic Nonzero-
Sum Games with Deterministic Information Patterns We have already seen in
the previous sections that one way of eliminating "informational
nonuniqueness" in the Nash solution of dynamic nonzero-sum games is to
further restrict the equilibrium concept by requiring satisfaction of a
"feedback" property (cf. Def. 6.2) which is, however, valid only under the
CLPS and MPS information patterns. Yet another alternative to eliminate
informational nonuniqueness is to formulate the dynamic game in a stochastic



framework, in accordance with Def. 5.4; for, under an appropriate stochastic
formulation, every strategy has a unique representation (cf. Prop. 5.5) and the
statement of Prop. 6.6 is no longer valid. This section is, therefore, devoted to
an investigation of existence, uniqueness and derivation of Nash equilibrium in
stochastic dynamic games with deterministic information patterns. The class of
AT-person If-stage discrete-time stochastic infinite dynamic games to be
treated in this section will be as described in Def. 5.4, but with the state
equation (5.11) replaced by xk+l = fk{xk,ulk,...,u%) + 6k, keK, (6.37) where
{x\,9\,... ,8 k} is a set of statistically independent Gaussian random vectors
with values in Rn, and cov (9k) > 0, Vfc € K. Furthermore, the cost functionals
of the players are taken to be stage-additive, i.e., K Li(u1,...,uN) =
^29l(^k+i,ul...,u ,̂xk), i€N. (6.38) fc=i Under the CLPS information pattern, the
following theorem now provides a set of necessary and sufficient conditions
for any Nash equilibrium solution of such a stochastic dynamic game to satisfy
the following Theorem 6.10 Every Nash equilibrium solution of an N-person
K-stage stochastic infinite dynamic game described by (6.37)-(6.38) and with
the CLPS information pattern (for all players) comprises only feedback
strategies; and for an N-tuple {7J?*(a:fc),fc € K;i € N} to constitute such a
solution, it is
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recursive relations are satisfied: V\k,x) = mmEek{gi{fl*{x,ui)+6k,1l*{x),...,1i-
\x),ul ri+1*(x),...,1»*(z),x) + Vi(k + l,fi*(x,ui) + 6k)} (6.39) j»*(x),x) + Vl{k +
1, fc(x,rt(x)) + 9k)}; Vi(K + l,x) = 0, i€N, where fl%x,ui) f̂k(x,1l%x),...,1i-l*
(x),ul1ik+l*(x),...,1N*(x)) (6.40) and Egk denotes the expectation operation
with respect to the statistics of 9k. Any solution obtained as above is strongly
time consistent, and the corresponding expected Nash equilibrium cost for Pi is
V'(l,xi). Proof The first step is to verify the statement of the theorem for
stagewise equilibrium solution (cf. Def. 6.4); hence, start with inequalities
(6.36) at stage k = K, which read /(71';...;7(,;...i7A") < W;- • • ;7?V •• ,7fc-
i,7Jo- • •!7Ar*), where /(71;...;V) = ,̂1[1[lV uw)|u'=y(.),j6N] and 0k =
{9i,...,9k}, keK. Because of the stage-additive nature of Ll, these inequalities
equivalently describe an AT-person static game denned by min.
EeKtXl{gK(f~%(xK,uK) + 0K,y}?(xK),.. .,l^u{xK), wKeu'K «k.7x+1*( )̂.-
-.7^*( )̂,xi)] (i) where x*k (k € K) is recursively defined by
4+i=/fcK>7fc(4)>---,7f(*fc)) + 0fc, x\=xx. (ii) Now, since 9k is statistically
independent of {9K~1,xi}, (i) can equivalently be written as E0k-iJ min



EeA9K(fk(*h")<) + 9k,1%(■),■■■,Ik"1*(■), l<6  ̂. (Hi) «Jc.7if+1'(-),...,7 (̂-
), )̂]|
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(x )̂7jf*(0) + flK,7 (̂0,---,7Jf (•),-••,7^*(-),a:K)]}. which implies that the
minimizing ulK will be a function of x*K; furthermore (in contrast with the
deterministic version) x*K cannot be expressed in terms of x tv- i,. . . ) Xi
S1HCG there is a noise term in (ii) which directly contributes to additional
errors in case of such a substitution (mainly because every strategy has a
unique representation when the dynamics are given by (ii)). Therefore, under
the CLPS information pattern, any stagewise Nash equilibrium strategy for Pi
at stage K will only be a function of x ,̂ i.e., a feedback strategy uK = 11k{xk)>
which further implies that the choice of such a strategy is independent of all the
optimal (or otherwise) strategies employed by the players at previous stages.
Finally note that, at stage k = K, the minimizing solutions of (iii) coincide with
those of (6.39) since the minimization problems are equivalent. Let us now
consider inequalities (6.36) at stage k = K — 1, i.e., Ji(71*;...;77V*)< (̂71*;..-
;7r,---,7)c-i!7ic*;-;77V*), v7jc_1eli_1,7€N, and these can further be written as
follows because of the stage-additive nature of Ll and since 7}  ̂(i € N) have
already been determined at stage K as feedback strategies (independent of all
the previous strategies): E6k-2,xA mm £,flK_1[sJf-i(/K-i(a:K-i'uK-i) + ^K-i, k
7 -̂i(-),---,7 -̂1;(-),«W-i,7)f+_1;(-),...,7 î(-),a:K-i) +V*(K,f%_1(xK_1,uK_1))
+9^  ̂{iv) = ^K-a>xl{^K-i[Sjf_1(/'f*_1(xJf_1,7JJ_1(-))+flK-i, 7ti(l--7ti(-
),-.,7fi(-),4-i) +Vi{K,f£_1(x'K_1,-y%_1(-)) + 0K-i]}. In writing down (iv),
we have also made use of the statistical independence property of 9K~2, x\,
9k-i and 9k- Through a reasoning similar to the one employed at stage k = K,
we readily conclude that any 7}f_1(') that satisfies (iv) will have to be a
feedback strategy, independent of all the past strategies employed and the past
values of the state; therefore ulK_x = 7 '̂_1(x^_i) (i € N). This is precisely
what (6.39) says for k = K - 1. Proceeding in this manner, the theorem can
readily be verified for stage- wise equilibrium; that is, every set of strategies
{7**;/ € N} satisfying (6.39) constitutes a stagewise equilibrium solution for
the stochastic game under consideration, and conversely every stagewise
equilibrium solution of the stochastic dynamic game is comprised of feedback
strategies which satisfy (6.39). To complete the last phase of verification of the
theorem, we first observe that every stagewise equilibrium solution
determined in the foregoing derivation is also a feedback Nash equilibrium



solution (satisfying (3.28)) since the construction of stagewise equilibrium
strategies at stage k = I did not depend on
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(note the italicized statements above). Now, since every feedback Nash
equilibrium under CLPS information pattern is also a Nash equilibrium (this is
a trivial extension of Prop. 6.1 to stochastic dynamic games), and furthermore
since every Nash equilibrium solution is a stagewise equilibrium solution (see
Remark 6.9), it readily follows that the statement of Thm. 6.10 is valid also for
the Nash equilibrium solution. The strong time consistency of the solution (cf.
Def. 5.14) follows readily from the constructive nature of the derivation given
above. Also, since Vl{k, x) is the expected cost-to-go function for Pi, Vt(l,x1)
indeed follows as the expected Nash equilibrium cost for him. D Remark 6.12
First, since every strategy admits a unique representation under the state
dynamics description (6.37) (with cov (9k) > 0, k € K), the solution presented
in Thm. 6.10 clearly does not exhibit any "informational nonunique- ness".
Therefore if nonunique Nash equilibria exist in a stochastic dynamic game with
CLPS information pattern, this is only due to the structure of fk and gk and not a
consequence of the dynamic nature of the information pattern as in the
deterministic case. Second, the Nash equilibrium solution presented in Thm.
6.10 will, in general, depend on the statistical properties (i.e., the mean and
covariance) of the Gaussian noise term 9k (k € K). For the special case of
affine-quadratic stochastic dynamic games, however, no such dependence on
the covariance exists as it is shown in the sequel. □ As an immediate
application of Thm. 6.10, let us consider the class of affine- quadratic
stochastic dynamic games wherein fk and gk are as denned by (6.5a)- (6.5b).
Furthermore, assume that E[9k\ = OVfc € K. Because of this latter assumption,
and since fk is affine and glk is quadratic, the minimization problem in (6.39)
becomes independent of the covariance of 9k, as far as the optimum strategies
are concerned, and a comparison with (6.16) readily leads to the conclusion
that they should admit the same solution, which is affine in the current value of
the state. Therefore, we arrive at the following corollary which we state here
without any further verification. Corollary 6.4 An N-person affine-quadratic
stochastic dynamic game as formulated above, and with Q\+l > 0 (i € N, k €
K), Rlk > 0 (i,j 6N,j/ i,k € K) and CLPS information pattern, admits a unique
Nash equilibrium solution if, and only if, (6.17a) and (6.17d) admit unique
solution sets {Pk*',i € N, k € K} and {alk; i € N, k € K} in which case the



equilibrium strategies are given by 1ik*(xk)=-Pkl*Xk-ak* (fc€K,i€N); (6.41)
that is, the unique solution coincides with the unique strongly time-consistent
feedback Nash equilibrium solution of the deterministic version of the game
(cf. Corollary 6.1). We therefore observe that an appropriate stochastic
formulation in affine- quadratic dynamic games with CLPS information pattern
serves to remove informational nonuniqueness of equilibria, since it leads to a
unique equilibrium
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uncountably many equilibria of the original deterministic game. This particular
equilibrium solution (which is also a strongly time- consistent feedback
equilibrium solution in this case) may be viewed as the unique robust solution
of the deterministic game, which is insensitive to zero- mean random
perturbations in the state equation. As an illustration, let us consider the three-
person dynamic game example of subsection 6.3.1, and, out of the uncountably
many Nash equilibrium solutions obtained there, let us attempt to select the one
which features such a property. The new (stochastic) game is now the one
which has zero-mean random perturbations in (6.31). More specifically, the
state equation is x3 = x2 + u1 + u2 + 02, "I *2 = Xi + U3+9i, J where E[92] =
E{0\] = 0; the variables 92,6i,xi are Gaussian, statistically independent, and
E[(92)2} > 0, E[(6\)2} > 0. The unique Nash equilibrium solution of this
stochastic game is {•y1*(x2) = -(2/3)x2, j2*(x2) = (l/3)x2, 73*( î) = -(2/ll)a;i}
which is also the feedback Nash equilibrium solution of the associated
deterministic game. If the underlying information pattern of a stochastic
dynamic game is not CLPS (or more precisely, if every player does not have
access to the current value of the state), the statement of Thm. 6.10 is not valid.
It is, in fact, not possible to obtain a general theorem which provides the Nash
equilibrium solution under all different types of deterministic information
patterns, and therefore one has to solve each such game separately. One
common salient feature of all these solutions is that they are all free of any
"informational nonuniqueness", and any nonuniqueness in equilibria (if it
exists) is only due to the structure of the cost functionals and state equation. In
particular, for affine- quadratic stochastic dynamic games, it can be shown that
the Nash equilibrium solution will in general be unique under every
deterministic information pattern. One such class of problems, viz. AT-person
linear-quadratic stochastic dynamic games wherein some players have CLPS
information and others OL information, have been considered in Ba§ar(1975)



and a unique Nash equilibrium solution has been obtained in explicit form.
This solution has the property that for the players with CLPS information the
equilibrium strategies are dependent linearly not only on the current value of
the state, but also on the initial state. The following example now illustrates the
nature of this solution and also serves to provide a comparative study of Nash
equilibria under four different information patterns. Example 6.1 Consider the
stochastic version of the three-person nonzero-sum game of subsection 6.3.1.
Under four different information structures, namely, when (i) Pi and P2 have
access to CLPS information and P3 has OL information (this case is also
covered by Corollary 6.4), (ii) Pi has CLPS information and P2, P3 have OL
information, (iii) P2 has CLPS information and Pi, P3 have OL information,
(iv) all three players have OL information. In these
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described by ^3 = X2 + U1 + U2 + 62, x2 = xx + u3 + 9i, where {#1,82, x\} is
a set of statistically independent Gaussian random variables with E[6k] = 0,
E[(6k)2} > 0, k = 1,2.60 The cost functionals are again as given by (6.32), but
now their expected values determine the costs incurred to the players. (i)
Under the first information pattern (CLPS for Pi and P2, OL for P3), the unique
solution also follows from Corollary 6.4 and is given by (as discussed right
after Corollary 6.4) 1#/ \ 2#/ \ 3*/ \  ̂7 (X2) = -3*2, 7 \x2) = -x2, 7 \?i) =
"Yl^1' The corresponding expected values of the cost functionals are Jl* =
WlE[{Xl)2] + l̂)2] + E[{d2n (6>42a) 72. = _j3, = _^B[(X1)2] _ 2 )̂2] _
E[{02n (642b) (ii) Under the second information pattern (CLPS for PI, OL for
P2 and P3), a direct derivation or utilization of the results of Ba§ar (1975)
leads to the unique Nash equilibrium solution ■yu{x2,x1) = --x2 - -xi, 72*(xi)
= -xi, 73*( î) = - î- Note that this unique solution of the stochastic game under
consideration corresponds to one of the uncountably many equilibrium
solutions presented in Prop. 6.5 for its deterministic version—simply set p =
1/6, q = 1/3. The corresponding expected values of the cost functionals are J1*
= l-E[(Xl)2} + \E\i6tf] + E[(e2n (6.43a) J2* = -J3* = -±E[(Xl)2} - \E\i6,)2] -
E[(e2n (6.43b) (hi) Under the third information pattern (CLPS for P2, OL for
Pi and P3), direct derivation leads to a finite solution set 71*(x1) = -g î, J2*
{x2,x1) =x2~ -xx, 73*(x1) = --aa, 60This Gaussian distribution may be
replaced by any probability distribution that assigns positive probability mass
to every open subset of Rn (see also Remark 5.11), without affecting the results
to be obtained in the sequel.
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one of the solution sets of Prop. 6.5, this time obtained by setting p = 2/3, q =
2/3. The corresponding expected values of the cost functionals are J1* = -
E )̂2} + 4B[( )̂2] + E{(92)2}, (6.44a) J2* = _j3. = _^E[(Xl)2} - 2E{{61)2] -
E[(92)2}. (6.44b) (iv) Under the fourth information pattern (OL for all three
players), the unique Nash equilibrium solution is 2 12 -y îxx) = --xi, 72*(*i) =
t*i, 73*(*i) = --xi, 5 5 5 which can also be obtained from Prop. 6.5 by letting p
= 2/3, q = —1/3. The corresponding expected cost values are JU = ^EE[{xi)2]
+ E[{9l)2] + E[i°2)2]< (6'45a) J2. = _j3. = -~E[(Xl)2} - E )̂2] - E[(92)2}.
(6.45b) A comparison of the expected equilibrium cost values of the players
attained under the four different information patterns now reveals some
interesting features of the Nash equilibrium solution. (1) Comparing (6.43a)
with (6.45a), we observe that when the other players' information patterns are
OL, an increase in information to PI (that is, going from OL to CLPS) could
improve his performance (if E[(9\)2] is sufficiently large) or be detrimental (if
£[(0i)2] is relatively small). (2) When P2 has CLPS information, a comparison
of (6.42a) and (6.44a) leads to a similar trend in the effect of an increase of
Pi's information to his equilibrium performance. (3) When PI has CLPS
information, an increase in information to P2 leads to degradation in J2*
(simply compare (6.42b) with (6.43b)). (4) When PI has OL information, an
increase in information to P2 leads to improvement in his performance
(compare (6.44b) with (6.45b)). These results clearly indicate that, in nonzero-
sum games and under the Nash equilibrium solution concept, an increase in
information to one player does not necessarily lead to improvement in his
equilibrium performance, and at times it could even be detrimental. D
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Saddle- Point Equilibria of Differential Games This section presents results
which are counterparts of those given in Section 6.2, for differential games that
fit the framework of Def. 5.5; that is, we consider N- person quantitative
dynamic games defined in continuous time, and described by the state equation
x(t) = f(t,x(t),u1(t),...,uN(t)); x(0)=xo (6.46a) and cost functional U(u\...,uN) = f
gi(t,x(t),u1(t),...,uN(t))dt + qi(x(T))] i € N. Jo (6.46b) Here, [0, T] denotes the
fixed prescribed duration of the game, xo is the initial state known by all
players, x(t) € Rn and u*(i) € S* C Rmi (i e N) Vi € [0,T]. Furthermore, / and
7* € r* (i € N) satisfy the conditions of Thm. 5.1 so that, for a given
information structure (as one of (i), (ii) or (iv) of Def. 5.6), the state equation



admits a unique solution for every corresponding AT-tuple {7* € Tl;i € N}.
Nash equilibrium solution under a given information structure is again defined
as one satisfying the set of inequalities (6.3) where J1 denotes the cost
functional of Pi for the differential game in strategic (normal) form. 6.5.1
Open-loop Nash equilibria The results to be described in this subsection are
counterparts of those given in Section 6.2.1; and in order to display this
relationship explicitly, we shall present them here in the same order as their
counterparts in subsection 6.2.1. We therefore first have the counterpart of
Thm. 6.1 in the continuous time. Theorem 6.11 For an N-person differential
game of prescribed fixed duration [0,T], let (i) /(*i")u* j • • • tuN) be
continuously differentiable on Rn, V< € [0, T], (ii) <7*(t,-jU1,... ,uN) and ql{-)
be continuously differentiable on Rn, V< € [0,T],i€N. Then, if {7**(t, xo) = ul*
(t); i € N} provides an open-loop Nash equilibrium solution, and {x*(t), 0 < t
< T} is the corresponding state trajectory, there exist N costate functions pl{-)
: [0,T] —> Rn,i € N, such that the following relations are satisfied: x*(t) =
f(t,x*(t),uu(t),...,uN*(t)), x*(0)=xo, (6.47a) Y*(t,x0) = ui*(<) = axg
mJnHi(t,pi(t),x*(t),v,1''(t), ui ŝ! • , ,r (6.47b) ...,U'-1*(<),<U*+1*(<),...,«"*
(<)),
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(t),...,«Ar*(0), a9* (6.47c) f'(T) = ^q\x*{T)), i£N, wftere
Hi(t,p\x,u1,...,uN)^gi(t,x,u\...,uN)+pi'f(t,x,u\...,uN), te[o,T], ieN. Every such
Nash equilibrium solution is weakly time consistent. Proof. The proof follows
the same lines as in the proof of Thm. 6.1, but now the minimum principle for
continuous-time control systems (i.e., Thm. 5.4) is used instead of Thm. 5.5. D
Remark 6.13 One class of differential games for which the necessity condition
of Thm. 6.11 is satisfied is that with weakly coupled players (a la Remark
4.1), that is one with the following state equation and cost functions (taking
N=2, without any loss of generality): *i(t) = fi(t,xi(t),u1(t)) + ef12(t,x2(t)y,
xi(0)=xio, (6.48a) ±2(<) = f2(t,x2{t),u2{t)) + ef21{t,x1(t)); x2{0) = x20 and
cost functional U{u\u2;i) = j [9«(t,xi(t),«i(t)) + îi(*, (̂0,«J'(*))]d* (6.48b) +q?
i(xi(T)) + eqti(xj(T)); j £ i, i,j = 1,2, where e is a sufficiently small scalar.
Under some appropriate convexity (on g '̂s) and differentiability conditions, it
can be shown (see Srikant and Ba§ar (1992)) that there exists an eo > 0 such
that for all e € (— eo, eo), the differential game admits a unique open-loop
Nash equilibrium solution that is stable with respect to Gauss-Seidel or Jacobi
iterations (see Def. 4.6 for terminology). This solution can be obtained by



expanding the state and control corresponding to the open- loop Nash
equilibrium solution in power series in terms of e, x*(t;e) = X>(fc)(*)efc, «"
(t;c) = £«|* \t)ek Sk), [ fe=0 fe=0 substituting these into (6.47a)-(6.47c), along
with a similar expansion for pl(t), and solving for the different terms x  ̂and u\ ,
k = 0,1,..., iteratively. It turns out that u\ (i = 1,2) are the (open-loop) optimal
controls associated with the decoupled optimal control problems: ii =
fi(t,Xi,u%(t)), Xi(0)=xiO, £'(«*) = I (̂t î^ '̂it^dt + îxiiT)), * = 1,2, Jo
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trajectory, with x  ̂= (x\ ,£2 )'• For k > 1, u[ and u2 are obtained by solving
some appropriate linear-quadratic optimal control problems (see Srikant and
Ba§ar(1991)). Hence this approach decomposes the original two-player
differential game into two nonlinear optimal control problems (the zeroth-
order problems) and a sequence of iteratively constructed linear-quadratic
control problems. Halting this iteration at the fcth step yields an e -̂
approximate open-loop Nash equilibrium solution. □ As indicated earlier,
Thm. 6.11 provides a set of necessary conditions for the open-loop Nash
equilibrium solution to satisfy, and therefore it can be used to generate
candidate solutions. For the special class of "affine-quadratic" differential
games, however, a unique candidate solution can be obtained in explicit terms,
which can further be shown to be an open-loop Nash equilibrium solution
under certain convexity restrictions on the cost functional of the players.
Definition 6.5 An N-person differential game of fixed prescribed duration is of
the affine-quadratic type if Sl = Rm* (i € N) and f(t,x,u\...,uN) = A(t)x +
J2Bi(t)ui + c(t)  ̂j'6N q\x) = -x'Q}x, where A(-), Bz(-), Ql(-), Rlj(-) are
matrices of appropriate dimensions, c(-) is an n-dimensional vector, all
defined on [0,T], and with continuous entries (i,j € N). Furthermore Q ,̂Q*(-)
are symmetric, and R"(-) > 0 (i € N). An affine-quadratic game is of the linear-
quadratic type ifc = 0. Theorem 6.12 For an N-person affine-quadratic
differential game with Ql(-) > 0, Q\ > 0 (i € N), let there exist a solution set
{M%;i € N} to the coupled matrix Riccati differential equations Ml + MlA +
A'Mi + Qi-Mi £ BUjeiyWM> = 0; i6N (6.49) Af*(T) = Q) (ieN). Then, the
differential game admits an open-loop Nash equilibrium solution given by y*
(<,x0) = «"(*) = -Ri{t)~lBi;{t)[Mi{t)x''{t) + m'it)] (i € N), (6.50) where {m'(-
), i € N} solve uniquely the set of linear differential equations: mj + A'mi +
Mlc - Mi T B^{R")-lB^m  ̂= 0; J6N (6.51) mi(T)=0 (i€N),
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equilibrium state trajectory, generated by x*(t) = <&{t,0)xo +[ $(t,a)r)(a)da, d
-<J>(i,<r) = F(t)$(t,a); $(*,*) = I, F(t) = A- YlB\Riiy1Bi'Mt{t), v(t) = c(t) - Y,
Bi(Ru)-1Bl'mi{t). Proof- For the affine-quadratic differential game, and in
view of the additional restrictions Ql{-) > 0, Q\ > 0, Ll{ux,... ,uN) is a strictly
convex function of «'(■) for all permissible control functions «■?'(■) (j  ̂i,j €
N) and for all xo € R"- This then implies that Thm. 6.11 is also a sufficiency
result and every solution set of the first-order conditions provides an open-
loop Nash solution. Hence, we now show that the solution given in Thm. 6.12
indeed satisfies the first-order conditions. First note that the Hamiltonian is
Hl(t,p,x,u\...,/) = ItfQ'x+Y, urRiju]) +pi'(Ax + c+J2 Bjuj) J6N j'SN whose
minimization with respect to ul(t) e Rmi yields the unique relation u»*(i;) =
_(R»(<))-1S4(<)V(<), i€N. (i) Furthermore, the costate equations are pi = -
Qix"-A'pi, p\T) = Q)x*{T) (i€N), and the optimal state trajectory is given by
x* =Ax*+c-Y^Bi{RiiylBi'pi, x*{0) = xq. (ii) This set of differential equations
constitutes a two-point boundary value problem. Now, substituting pl = Mlx*
+ml (i e N) into the costate equations, we arrive at the conclusion that if Ml (i
€ N) and ml (i e N) satisfy (6.49) and (6.51), respectively, this indeed solves
the two-point boundary value problem, along with x*. The expressions for the
open-loop Nash strategies follow readily from (i) by substituting pl — M%x*
+ m', and likewise the associated state trajectory (6.52) follows from (ii). Q
Remark 6.14 It is possible to obtain the result of Thm. 6.12 in a somewhat
different way, by directly utilizing Prop. 5.2; see Problem 10 in section 6.8. □
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sufficiency conditions for the Nash equilibrium solution to exist. It will now be
shown that a Nash equilibrium may exist even if (6.49) does not admit a
solution. For simplicity of presentation assume now that c(t) = 0. The
differential equations for pl(t) and x*(t) can be written jointly as S2 0 A' dt x \
\PN J ' Q1 Q2 S1 A' 0 \Q N 0 0 SN \ 0 0 0 A' J ( x \ I pi \ P2 \PN ) (6.53)
where S* = B^R^B7", i = 1,2,. are x(0) = x0, p^T) = Q}x(T), i -■ written as .
,N. The boundary conditions of (6.53) 1,2,...,AT. Symbolically (6.53) will be '
Q1 z = —Gz, with G = S1 A' 0 and with Q2 \QN Pz(0) + Qz(T) = (x'0 0 S2 0
A' 0 SN \ 0 0 0 A' J 0)', (6.54) (6.55) / I 0 \o o\ 0 Q  ̂( o f 0/ Q2f \ Q7 o 0 0 0 IJ
(6.56) From (6.55) we immediately get that a unique open-loop Nash
equilibrium solution exists if and only if the equation {PeGT + Q)e-GTz{0) =
{x'o0 ... 0)' (6.57) is uniquely solvable in z(0) for every xo- The matrix G



consists of (N + 1) x (N+l) blocks. The same block structure will be applied to
eGt and these blocks will be indicated by Wij(t), i, j = 1,2,..., N + 1. If we
define N H(T) ± Wn(T) + YtW^+i(T)Qkf, (6.58) k=l then the solvability of
(6.57) is equivalent to the invertibility of H(T). The following example now
shows that an open-loop Nash equilibrium solution can exist even if the
coupled set of Riccati differential equations (6.49) does not have a solution.
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two-person (N = 2) linear-quadratic game with A = ( 01 -5/22 ) ' Bl = ( 0 1 ) '
B" = ( 0 RU = ( 1 2 ) ''  ̂= l' Rl2 =  ̂= °- Choose T — 0.1. Then numerical
calculation leads to WU(T) = ( L1155 °-°°51 "l Wn(T) = ( °-10°7 °-1047 "l
1U ; ^0.0051 1.0230 J ' m > ^0.0964 0.2002,/ u. ( 0.1005 0 \ W"  ̂= { 0.0002
oj- O1 - f 1 hl Pick and where 2 J 10 h2 h2 (fci + i)/io Qf - \ h, (hi h (^11)12 +
(^12)21 +10(^13)21 (^12)22 (Wn)22 + (Wl2)2l(Q»12 + (W12)22(Q})22 2 ~
(w13)21 Here the notation {Wu)jk refers to the j'fcth element of the 2x2 matrix
Wu(T). Clearly both Q\ and Q2* are positive definite, whereas H(T) = Wn(T)
+ W12(T)Q) + W13(T)Q2 = (  ̂-752q6945 ) is not invert ible. The conclusion
therefore is that an open-loop Nash equilibrium does not exist and the
corresponding set of Riccati differential equations does not have a solution.
Now we modify the problem statement in one respect, viz. instead of T = 0.1
now take T = 0.11. Numerical calculation then shows that H(T) is now
invertible. However, the solution of the set of Riccati differential equations,
when integrated backward and starting at T — 0.11, blows up (i.e., becomes
00) at t = 0.01 (note that the solution of the Riccati equations is shift-invariant).
Thus it has been shown that for T = 0.11 an open-loop Nash equilibrium
solution exists despite the fact that the Riccati differential equations do not
have a solution on the interval [0,0.11]. □
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that for a linear-quadratic game defined on a fixed interval [0, T], existence of
a Nash equilibrium does not imply existence of a solution to the set of Riccati
equations (6.49). An equivalence between these two conditions exists,
however, if T is a variable, as shown in (Engwerda, 1998). What can be
shown is that the following three statements are equivalent, where 7/ is a
positive real number. • For each T £ (0, Tf] an open-loop Nash equilibrium
solution exists for the linear-quadratic game defined on [0,T], • H(T) is
invertible for all T e [0,7/]. • The set of Riccati differential equations (6.49)



has a solution on [0,7/]. Open-loop saddle points of zero-sum differential
games For the class of two-person zero-sum differential games, we rewrite the
cost functional (to be minimized by Pi and maximized by P2) as L(u\u2) = J
g(t,x,u1,u2)dt + q(x(T)), Jo and obtain the following set of necessary
conditions for the saddle-point strategies to satisfy. Theorem 6.13 For a two-
person zero-sum differential game of prescribed fixed duration [0,T], let (i)
f{t,-,ux ,u2) be continuously differentiable on Rn, V< € [0,T], (ii) gfaf-fU1,*!2)
and q(-) be continuously differentiable on Rn,V< £ [0,T]. Then, i/{7z*(<,x0) =
ul*(t); i = 1,2} provides an open-loop saddle-point solution, and {x*(t),0 < t <
T} is the corresponding state trajectory, there exists a costate function p(-) :
[0,T] —> Rn such that the following relations are satisfied: x*(t)=f{t,x*
{t),uu{t),u2*(t)); x*(0)=xo, (6.59a) H(t,p,x*,uu,u2) < H(t,p,x*,uu,u2*) <
H(t,p,x*,ul,u2*), (6.59b) ~iu\t)eS\u2{t)£S2, te [0,T], p'(t) = -
^H(t,p(t),x*,uu(t),u2*(t)); p'(T) = ^q(x*(T)), (6.59c) where
H(t,p,x,u1,u2)=g(t,x,u1,u2)+p'f(t,x,u1,u2), te [0,T]. (6.59d)
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directly from Thm. 6.11 by taking N = 2, g1 = —g2 = g,qx = -q2 = q, and by
noting that p1(-) = -p2{-) = p(-) and #*(•) = -H2(-)^H(-). 0 For the special
case of two-person zero-sum amne-quadratic differential games described by
the state equation x = A{t)x + B1{t)u1+B2(t)u2+c{t); x(0) = x0 (6.60a) and the
objective functional L{u\u2) = i/" (x'(t)Q(t)a:(0+«1(*)'«1(*)-«2(*)'«2(*))d* 2
Jo (6.60b) +-x'(T)Qfx(T), we now first impose additional restrictions on the
parameters so that L{ux ,u2) is strictly concave in u2. Lemma 6.4 For the
affine-quadratic two-person zero-sum differential game introduced above, the
objective functional L(ux,u2) is strictly concave in u2 for all permissible ux{-)
if, and only if, there exists a unique bounded symmetric solution S(-) to the
matrix Riccati equation S + A'S + SA + Q + SB2B2'S = 0; S(T) = Qf, (6.61)
on the interval [0,T]. Proof. A reasoning similar to the one employed in the
proof of Lemma 6.1 leads to the observation that the requirement of strict
concavity is equivalent to the condition of existence of a unique solution to the
optimal control problem min | J [u(t)'u(t) - y(t)'Q(t)y(t)} dt - y(T)'Qfy(T) 1
subject to y = A(t)y + B2(t)u; y(0) = x0. The lemma then follows, in view of
this observation, from Remark 5.8. Q Theorem 6.14 For the two-person affine-
quadratic zero-sum differential game described by (6.60a)-(6.60b) and with Qf
> 0, Q(-) > 0, let there exist a unique bounded symmetric solution to the matrix
Riccati differential equation (6.61) on [0,T\. Then, (i) there exists a unique



bounded symmetric solution M(-) to the (generalized) matrix Riccati
differential equation M + A'M + MA + Q- M{BlB1' - B2B2')M = 0; M{T) =
Qf, (6.62a)
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bounded solution m(-) to the linear vector differential equation m + [A - {BlBv
- B2B2')M]'m + Mc = 0; m{T) = 0, (6.62b) (ii) the game admits a unique
open-loop saddle-point solution given by jl*(t,x0)=ul*(t) = -B\t)'[M(t)x*(t) +
m(t)},\ ( 72*(<,x0)=U2*(<) = B2(t)'[M(t)x*(t)+m(t)}, } {b-M) where x*(-)
denotes the associated state trajectory, generated by x*(t) = *(t,0)xo + f *(l,ff)
[c(ff)-(B1B1'-B2B2')m(ff)]dff1 -$(t,a)=F(t)$(t,<ry, *{?,<?) = I (6'64) F = A-
{BXBV -B2B2')M. Proof. The steps involved in the proof of this theorem are
similar to those used in the proof of Thm. 6.4: we first establish existence of a
unique saddle- point solution to the affine-quadratic differential game under
consideration, and we then verify (i) and (ii) above in view of this property.
For the former step we shall proceed rather casually, since a rigorous
verification requires some prior knowledge of functional analysis which is
beyond the scope of this book. The interested reader can, however, refer to
Balakrishnan (1976) for a rigorous exposition of the underlying mathematics,
or to Bensoussan (1971) and Lukes and Russell (1971) for a framework
(Hilbert space setting) wherein similar mathematical techniques are used at a
rigorous level but in a somewhat different context.61 Let Ul, the space of
permissible control functions u'(-), be a complete (Ba- nach) space equipped
with an inner product fT (u,v)i= / u(t)'v(t)dt, for u, veU\ i = 1,2. Jo Then, since
L(u1,u2) is quadratic in x, ux,u2, and x is linear in u1 and u2, the cost L{ux
,u2) can be written as L(u\u2) = -(u1,Liu1)1-{u2,L2u2)2 + {u1,Li2U2)1 ,., +
{u\r1)i -(u2,r2)2 + r3, where Li : U1 -> U1, L2 : U2 -> U2, Li2 : U2 -> U1 are
bounded linear operators, n € U1, r2 € U2 and r3 € R. Moreover, since Q(-) >
0, Qf > 0, Lx is a strongly positive operator (written as Lx > 0), and
furthermore under 61 For an alternative rigorous verification of the result of
this theorem, see Ba§arand Bern- hard (1995).
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solvability of (6.61) (cf. Lemma 6.4) L2 > 0. Now, if L(u1,,u2) admits a unique
saddle point in open-loop policies, it is necessary and sufficient that it satisfy
the following two relations (obtained by differentiation of(i)) Liu1 +L12U2 +
ri = 0, -L^u1 + L2u2 +r2 = 0, where L\2 denotes the adjoint of L12. Solving for



u2 € U2 from the second one (uniquely), and substituting it into the first one,
we obtain the single relation (U + L^L^L^u1 + n - L^LjS = 0 (ii) which admits
a unique solution, since Li +Li2L2"1Li2 > 0 and is thereby invert- ible. (This
latter feature follows since Li > 0 and L^LJ1!.  ̂is a nonnegative self-adjoint
compact operator; see Balakrishnan (1976), for details.) We have thus
established existence of a unique open-loop saddle-point strategy for Pi under
the condition of Lemma 6.4. This readily implies existence of a unique open-
loop saddle-point strategy for P2 since L2 is invertible. Thus completing the
proof of existence of a unique saddle point, we now turn to verification of
(6.62a)-(6.62b) and (6.63). At the outset, let us first note that the unique
saddle-point solution should necessarily satisfy relations (6.59a)-(6.59d)
which can be rewritten for the affine-quadratic game as i* = A(t)x* + B1^1* )̂
+ B2(t)u2*(t) + c(t); x*(0) = x0, ) u1*(t) = -B1(t)'p(t); u2*(t) = B2(t)'p(t), \ (iii)
p(t) = -Q(t)x*(t)-A(t)'p(t); p(T) = Qfx*(T). J Since r\(-) and r2(-) introduced
earlier are afEne functions of xo, the unique solution u1* of (ii) is necessarily
an afEne function of xo, and so is u2*. Therefore, the dependence of p() on x0
in (iii) should be affine. This readily implies that we can write, without any
loss of generality, p(t) = M(t)x*(t) + m(t), where M(-) is some bounded matrix-
valued function of dimension (n x n) and m(-) is some bounded vector-valued
function of dimension n, both with continuously differentiable elements. Now,
substitution of this relation into (iii), and requiring (iii) to hold true for all xo €
Rn, leads to (6.62a)-(6.62b), which in turn yields (6.63). D Remark 6.15 The
statement of Thm. 6.14 is valid even if the "nonnegative- definiteness"
condition on Q(-) does not hold, provided that some other appropriate
conditions are imposed on the game parameters to ensure that L defined by
(6.60b) is strictly convex in u1. One such condition, which is in fact tight, can
be obtained directly from Lemma 6.4, by simply replacing Qf by —Q/, Q(-) by
—Q(-) and B2 by B1, which is the existence of a unique bounded symmetric
solution S1(-) to the matrix Riccati differential equation S1 +A'S1 +S1A + Q-
SB1B1'S = 0; S\T) = Qf, (6.65) on the interval [0, T]. D
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feedback Nash equilibria Under the memoryless perfect state information
pattern, the following theorem provides a set of necessary conditions for any
closed-loop no-memory Nash equilibrium solution to satisfy. Theorem 6.15
For an N-person differential game of prescribed fixed duration [0,T], let (i)
/(*>') be continuously differentiable on Rn x S1 x ■ x SN,Vt € [0,T], (ii) g'(t, •)



and ql(-) be continuously differentiable on Rn x S1 x • • • x SN and Rn,
respectively, Vi € [0,T], i € N. Then, if {jl*(t,x,xo);i € N} provides a closed-
loop no-memory Nash equilibrium solution such that 7i*(<,-,:eo) is
continuously differentiable on Rn (V< € [0, T],i € N), and {x*(t),0 < t <T} is
the corresponding state trajectory, there exist N costate functions p'(-) : [0,T]
—> Rn,i € N, such that the following relations are satisfied: x*(t)=f(t,x*
(t),uu(t),...,uN*(t)); x*(0)=xo, (6.66a) Y*{t,x\x0) = «"(*) =axg min tf'(t,p'(t),x*
(t),uu(<),..., u'es* (6.66b) «*-1,(t),«*,«i+1* (<),..-, /*(t)), P*'(t) = -
^Hi(t,pi(t),x*,71*(*,a:*,a:o),...,7i"1*(*,a:*,a:o),«i*, y+1*(<,x*,x0),...,7iV*
(<, ,̂a:o)), (6.66c) /(T) = kqi{x*{T))' ieN; wftere if* is as defined in Thm.
6.11. Proof. Let us consider the ith inequality of (6.3), which fixes all players'
strategies (except the ith one) at 7J = 7J* (j  ̂i,j € N) and constitutes an optimal
control problem for Pi. Therefore, relations (6.66a)-(6.66c) directly follow
from Thm. 5.4 (the minimum principle for continuous-time systems), as do
relations (6.47a)-(6.47c) of Thm. 6.11. We should note, however, that the
partial derivative (with respect to x) in the costate equations (6.66c) receives
contribution also from dependence of the remaining N — 1 players' strategies
on the current value of x—a feature which was clearly absent in the costate
equations of Thm. 6.11. D The set of relations (6.66a)-(6.66c) in general
admits an uncountable number of solutions, which correspond to
"informationally nonunique" Nash equilibrium solutions of the differential
game under memoryless perfect state information pattern. All of these are
weakly time consistent, one of which is the open-loop
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The analysis of subsection 6.3.1 can in fact be duplicated in the continuous
time to produce explicitly a plethora of informa- tionally nonunique Nash
equilibria under dynamic information; and the reader is referred to Ba§ar
(1977b) for one such explicit derivation. In order to eliminate informational
nonuniqueness in the derivation of Nash equilibria under dynamic information
(specifically under the MPS and CLPS patterns) we refine the Nash solution
concept further, by requiring it to satisfy conditions similar to those of Def. 6.2,
but now in the continuous time. Such a consideration leads to the concept of a
"feedback Nash equilibrium solution" which is introduced below. Definition
6.6 For an N-person differential game of prescribed fixed duration [0, T] and
with memoryless perfect state (MPS) or closed-loop perfect state (CLPS)
information pattern, an N-tuple of strategies {f1* € r*;i € N}62 constitutes a



feedback Nash equilibrium solution if there exist functionals V*(v) defined on
[0, T] x Rn and satisfying the following relations for each i € N: V'(T.x) = ?
•(*), V*(t,x) = J gi(s,x*(s),11*(s,Vs),.--,li*(s,r1s),...,1N*(s,ils))ds +ql(x*(T)) <
J gi(s,xi(s),11*(s,Vs),---,li-1*(s,r}s),Y(s,r}s),1i+1*(s,r}s), ... ,7iV*(5,r?s))d5
+ q\xl{T)), V7* € Yl,x € Rn, (6.67) where, on the interval [t,T], (̂s) =
f(s,xi(s),ju(s,Vs),---ni~u(s,Vs)ni(s,Vs), 7J+1*(5,r?s),...,7iV*(5,r?s)); xi(t)=x,
(6.68) **(s) = f(s,x*(s),-y1*(s,Vs),---,li*(s,Vs) -̂-,lN*(s,Vs)):, X*(t) = X, and
t)s, stands for either the data set {x(s),xo} or {x(a),a < s}, depending on
whether the information pattern is MPS or CLPS. One salient feature of the
concept of feedback Nash equilibrium solution introduced above is that if an
AT-tuple {7";/ € N} provides a feedback Nash equilibrium solution (FNES) to
an AT-person differential game with duration [0, T], its restriction to the time
interval [t, T] provides an FNES to the same differential game denned on the
shorter time interval [t, T], with the initial state taken as x(t), and this being so
for all 0 < t < T; hence, an FNES is strongly time consistent. An immediate
consequence of this observation is that, under either MPS or CLPS information
pattern, feedback Nash equilibrium strategies Here Tl is chosen to be
compatible with the associated information pattern.
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the current value of the state, but not on memory (including the initial state xo).
The following proposition now verifies that an FNES is indeed a Nash
equilibrium solution. Proposition 6.7 Under the memoryless (respectively,
closed-loop) perfect state information pattern, every feedback Nash
equilibrium solution of an N-person differential game is a closed-loop no-
memory (respectively, closed-loop) Nash equilibrium solution (but not vice
versa). Proof. Note that Vl(t,x) is the value function (cf. subsection 5.5.2)
associated with the optimal control problem of minimizing over Y e P the
function J'(7U, • • .,7*-1*, 7%7J+1* , •. •, 7^*) (see in particular, equation
(5.24a)). Therefore (6.67), together with the given terminal boundary
condition, implies satisfaction of the ith inequality of (6.3). Since i € N was
arbitrary, and the foregoing argument is valid under both the MPS and CLPS
information patterns, the result stands proven. Q If the value functions V1 (i €
N) are continuously differentiable in both arguments, then N partial differential
equations, related to the Hamilton-J acobi- Bellman equation of optimal
control (cf. subsection 5.5.2), replace (6.67). Theorem 6.16 For an N-person
differential game of prescribed fixed duration [0, T], and under either MPS or



CLPS information pattern, an N-tuple of strategies {jl* e Vl;i e N} provides a
feedback Nash equilibrium solution if there exist functions V% : [0, T] x Rn —
> R, i € N, satisfying the partial differential equations dVl{t,x) at «'6S*
dV t̂,X r̂(t,x,ui)+gi*(t,x,ui) dx Ox Vl{T,x) = g«(x), ieN, dvHtx)-. . - - (6'69) Kh
X) r (t, x, 7"(t, x))+r (t, x, r (t, x)), where r(t,x,ul) i /(<,x,{7:i(<,x),ui}), $'*
(*,*,«*) = gi(<,x,{7:i(<,x),ui}), {7V(<,x),Ui}  ̂71*(< )̂,...,7i-1*« )̂,<7i+1*
(< )̂,-..,77V*(< )̂. Every such equilibrium solution is strongly time consistent,
and the corresponding Nash equilibrium cost for Pi is Vl(0,xo). Proof. In view
of the argument employed in the proof of Prop. 6.7, this result follows by
basically tracing the standard technique of obtaining (5.25) from (5.24a). D
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affine-quadratic differential games (cf. Def. 6.5), it is possible to obtain an
explicit solution for (6.69), which is quadratic in x. This also readily leads to
a set of feedback Nash equilibrium strategies which are expressible in closed-
form. Corollary 6.5 For an N-person affine-quadratic differential game with
Q%{-) > 0, Q\ > 0, R (̂-) > 0 (i,j £N,j  ̂j), let there exist a set of matrix valued
functions Z%{-) > 0, i € N, satisfying the following N coupled matrix Riccati
differential equations: Z{ + ZiF + F'Zi + 'y ZjBjRjrlRijRjrlBj'zj + Qi = 0;  ̂(6-
70a) Z\T) = Q), where F{t) = A{t) - Yl B'i^R t̂y'B t̂yZ t̂). (6.70b) i6N Then,
under either the MPS or CLPS information pattern, the differential game admits
a feedback Nash equilibrium solution, affine in the current value of the state,
given by Y*(t,x) = -&i(t)-1Bi(t)'[Zi(t)x{t) + C(t)} (i € N), (6.71) where £* (i €
N) are obtained as the unique solution of the coupled linear differential
equations C + F'C + J2 ZjBjRjrlRijR""1 Bj'<:j + Zl(i = 0; C{T) = 0, (6.72a)
i6N with 0 £ c- 53 B* "̂-1 £''<*■ (6.72b) The corresponding values of the cost
functionals are J" = yJ(0,xo) = -x^Z'^xo + x'oC(0) + n*(0) (t € N), (6.73a)
where n%{-) (i € N) are obtained from n* + (3'C + - J3 C,jBjRjriRi:>RjrlBj'ci
= 0; n\T) = 0. (6.73b) Proof Simply note that, under the condition of solvability
of the set of matrix Riccati differential equations (6.70a), the partial
differential equation
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= ^x'Z*(t)x + x'C(t) + n t̂) (i € N) with the corresponding minimizing controls
being given by (6.71). The "nonnegative definiteness" requirement imposed on
Z%{-) is a consequence of the fact that V*(t, i)>0Vi6Rn,«6 [0, T], this latter
feature being due to the eigenvalue restrictions imposed a priori on Qz(-), Q\



and R%^{-). Finally, the corresponding "Nash" values for the cost functionals
follow from the definition of V{t,x) (see equation (6.67)). D Remark 6.16 The
foregoing corollary provides only one set of feedback Nash equilibrium
strategies for the affine-quadratic game under consideration, and it does not
attribute any uniqueness feature to this solution set. However, in view of the
discrete-time counterpart of this result (cf. Corollary 6.1), one would expect
the solution to be unique under the condition that (6.70a) admits a unique
solution set; but, in order to verify this, one has to show that it is not possible
to come up with other (possibly nonlinear) solutions that satisfy (6.67), and
hitherto this has remained an unresolved problem. What has been
accomplished, though, is verification of uniqueness of feedback Nash
equilibrium when the players are restricted at the outset to affine memoryless
strategies (cf. Lukes, 1971). □ Remark 6.17 As in the case of Remark 6.3, the
result above extends readily to more general affine-quadratic dynamic games
where the cost functions of the players contain additional terms that are linear
in x, that is, with g% and q% in Def. 6.5 replaced, respectively, by 9* = \
[AQ'itix + 2f (*)] + £ 4^4 1 ; 9* = \AQ)x + 21% where /*(•) is a known n-
dimensional vector-valued function, continuous on [0, T], and l  ̂is a fixed n-
dimensional vector, for each i € N. Then, the statement of Corollary 6.5 as
well as its derivation remains intact, with only the differential equation (6.72a)
that generates £*(•) now reading C + F'C + J2 ZJBjRjriRijRjrlBj'tj + Zl(3 + t =
0; C(T) = I}. J6N □ Remark 6.18 For general nonlinear-nonquadratic
differential games wherein the players are weakly coupled through the system
equation as well as the cost functions, the features observed in Remark 6.13
for the open-loop Nash solution can also be derived for the feedback Nash
solution, but now we have to use the sufficiency result of Thm. 6.16. Again
confining ourselves to the two-player case, we take the system equation and the
cost functions, as well as the expansion of
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structural form as in Remark 6.13, and only replace the expansion for ul(t; e)
by a similar expansion for the feedback strategy: 1i*(t,x;e) = f2^k\t,x)ek fc=o
Invoking a similar expansion on V% V»(tJx;e) = '£vr(t,x)6k1 fc=o it can be
shown (see Srikant and Ba§ar, 1991) that V-/ (i = 1,2), the ze- roth order terms,
satisfy decoupled Hamilton-Jacobi-Bellman equations (associated with the
optimal control problems obtained by setting e = 0), and the higher-order
terms, V> , k > 1, involve simple cost evaluations subject to some state



equation constraints. Furthermore, the higher-order feedback strategies, 7t ', k
> 1, are obtained from linear equations. More explicitly, for the zeroth order
we have --V{0)(t x) mm dx, Vi{0\t,x1,x2) ■ fz(t,xz,ui) + g îUxi^u1) 9 Vl{0)
(t,x1,x2)-fi(t,xi,1,l0)(t,x)) + g*(t,xl,1l0)(t,x)), dx, r(0) V ,̂(T,x)=q"(xi), i = l,2.
(6.74a) and to first-order v} ' satisfies d Mi d r(D (0), d r(0) dxi rW V>1>
(T,x) = qt>{Xj), j î, i,j = 1,2, (6.74b) J1) and 7) is obtained from the linear
equation d J°)( _d_ dxi r(l) vra,x) d + 7T-V ox (0) ,(0) Wt du*
/ifo*i,7r(t>*))7r(*.*: —ut,xinr{t,x)) + -^Lg"(t,xl,1lo\t,x))1l1\t,x)=0, i,j = 1,2.
(6.74c) au1 Note that (6.74a) is the Hamilton-Jacobi-Bellman equation
associated with the optimal control problem obtained by setting e = 0 in the the
differential game with weakly coupled players, and hence 7. ' is the feedback
representation
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Remark 6.13, on a common zeroth-order trajectory x\ . Hence, to zeroth order,
there exists a complete equivalence between open-loop and feedback Nash
equilibrium solutions in weakly coupled differential games—as in the case of
optimal control (see, for example, Bensous- san, 1988). For higher-order
terms, however, no such correspondence exists in nonzero-sum differential
games, which is one explanation for the nonequivalence of the equilibrium
trajectories under different information structures—a feature we have
observed throughout this chapter. □ Feedback saddle-point solution of zero-
sum differential games We now first specialize the result of Thm. 6.16 to the
class of two-person zero- sum differential games of prescribed fixed duration,
and obtain a single partial differential equation to replace (6.69). Corollary
6.6 For a two-person zero-sum differential game of prescribed fixed duration
[0, T], and under either MPS or CLPS information pattern, a pair of strategies
{7" € F*;i = 1,2} provides a feedback saddle-point solution if there exists a
function V : [0, T] x Rn —> R satisfying the partial differential equation -^df1
=J?§i „m!£ [ l̂~Kt,x,uW)+g(t,xtuW)] dV(t x) = Jfi&P* J&si [ ftj
f{t,x,u\u2)+g{t,x,u\u2)} (6J5j = ^ f̂(t,x, (̂t,xW*(t,x)) +g(t,x,ju(t,x),j2*{t,x)).
Every such saddle-point solution is strongly time consistent, and the unique
saddle-point value of the game is V(0,a:o). Proof. This result follows as a
special case of Thm. 6.16 by taking N = 2, g1 )̂ = -g2{-) = g{-) and g1(-) = -
q2{-) = q, in which case V1 = -V2 = V and existence of a saddle point is
equivalent to interchangeability of the min-max operations. D Remark 6.19 The
partial differential equation (6.75) was first obtained by Isaacs in the early



1950s (see Isaacs, 1954-1957; see also Isaacs, 1975) and is therefore
generally referred to as Isaacs equation, and also as Hamilton-Jacobi- Isaacs
equation. Furthermore, the requirement for interchangeability of the "min" and
"max" operations in (6.75) is also known as the "Isaacs condition". For more
details on this, the reader is referred to Chapter 8. □ We now obtain the
solution of the Isaacs equation (6.75) for the case of a two- person zero-sum
afEne-quadratic differential game described by (6.60a)-(6.60b). Since the
boundary condition is quadratic in x (i.e., V(T, x) = q(x) = ^x'Qfx), we try out a
solution in the form V(t,x) = \x'Z{t)x + x'(,{t) +n(t), where Z(-)
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Qf, and £(T) = 0, n{T) = 0. Substitution of this general quadratic structure in
(6.75) yields the following equation: --x'Z(t)x - x'£(t) - m(t) min  ̂max  ̂i [x'Z(t)
+ <(t)'] [A + BV + B2u2 + c] (;) +-x'Q{t)x + -u^u1 - -u2'u2 [. Since the kernel
on the RHS is strictly convex (respectively, strictly concave) in u1
(respectively, u2), and is further separable, it admits a unique saddle-point
solution given by u* = y%x) = (-l)'B'(*)'[Z(*)x + at)), i = 1,2. If these unique
values for u1 and u2 are substituted back into the RHS of the Isaacs equation,
we finally obtain the following differential equations for Z(-), £(•) and n(-), by
also taking into account the end-point conditions, the starting assumption that Z
is symmetric (which is no loss of generality) and the requirement that equation
(i) should be satisfied for all x € Rn: Z + A'Z + ZA + Q-Z^B1' -B2B2')Z = 0;
Z(T)=Qf, (6.76a) i + A'C + Zc-Z^B1' -B2B2'X = 0; C(T) = 0, (6.76b) n + cX-
\c,'{BxB1' -B2B2')(; = 0; n{T) = 0. (6.76c) The following theorem now even
strengthens this result. Theorem 6.17 Let there exist a unique symmetric
bounded solution to the generalized matrix Riccati differential equation (6.76a)
on the interval [0,T]. Then, the two-person affine-quadratic zero-sum
differential game described by (6.60a)- (6.60b), and under the MPS or CLPS
information pattern, admits a unique feedback saddle-point solution given by
1i*(t,x) = (-iyBi(t)'[Z(t)x(t) + at)l t = l,2, (6.77) where £(•) is obtained as the
unique solution of (6.76b). The state trajectory associated with this unique pair
of feedback saddle-point strategies is given by the solution of ±{t) = [A-
{BXB1' - B2B2')Z]x - {B'B1' - B2B2'X{t) + c(«); (6.78a) subject to the initial
condition x(0) = xq, and the saddle-point value of the game is Jh1*,!2*) =
\x'oZ(0)xo+x'oa0) + n(0). (6.78b) If, furthermore, Q(-) > 0 and Qf > 0, then the
solution to (6.76a), Z{t), is nonnegative definite for all t € [0, T\.
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"uniqueness" of the feedback saddle-point solution, and the nonnegative
definiteness of Z(-), the result follows as a special case of Corollary 6.6, as
explained prior to the statement of the theorem. To verify uniqueness of the
solution, one approach is to go back to the Isaacs equation and investigate
existence and uniqueness properties of solutions of this partial differential
equation. This, however, requires some advance knowledge on the theory of
partial differential equations, which is beyond the scope of our coverage in
this book. In its stead, we shall choose here an alternative approach which
makes direct use of the affine-quadratic structure of the differential game. This
approach will provide us with the uniqueness result, as well as the equilibrium
strategies (6.77). Toward this end, let us first note that, under the condition of
unique solvability of (6.76a), the linear differential equations (6.76b) and
(6.76c) admit unique solutions. Furthermore, x(T)'Qfx(T) can be written as
x{T)'Qfx{T) = x{T)'Z{T)x{T) + 2x{T)'C,{T) + 2m{T) = x'0Z{0)x0 + 2x'0(;
{0)+2m{0) + f £-[x(t)'Z(t)x(t) + 2x{t)X{t) + 2m(t)} dt Jo d' = x'oZ{0)xo +
2x'oC(0) + 2m(0) + / {x(t)'Z(t)x(t) + 2[x(t)'Z(t) + at)'] Jo +x(t) + 2x{t)'C,{t) +
2m(t)} dt, and using (6.76a)-(6.76c), the integrand can equivalently be written
as x'[-A'Z -ZA-Q + Z{BXB1' - B2B2')Z]x + 2[x{t)'Z{t) + £(*)']*(*) +2x'[-AX
-Zc + Z{BlB1' - B2B2')Q - c'C + \c,'{BlB1' - B2B2'X, where we have
suppressed the -̂dependencies of various terms. If we now substitute for x(-)
its expression from (6.60a), we obtain (after canceling out some common
terms) x{T)'Qfx(T) = x'oZ{0)xo+ [ {2u1'B1'{Zx + Q + 2u2'B2'{Zx + Q Jo -
x'Qx + [Zx + Q'iB^1' - B2B2')[Zx + Q dt +2a/0C(0) + 2m(0). If this identity is
used in (6.60b), the result is the following equivalent expression for L{;u},u2):
rp L{u\u2) = ^x'0Z{0)x0+x'oaO)+m{0) + ]- [ lu1 + Bl'[Zx + Q\2 dt * 2 Jo 1 f l
2 B2'[Zx + Q\2dt.
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independent of u1 and u2, L{ul,u2) is separable in u1 and u2, and it clearly
admits the saddle-point solution given by (6.77). The saddle-point value of
L{v},u2) also readily follows as ^x'oZ(0)xo+x'o (̂0)+m(0). To prove that ■£
(•).> 0 whenever Q(-) > 0 and Qf > 0, follow the line of reasoning used in
verifying the last statement of Thm. 6.7 (for the discrete-time counterpart).
With c() = 0, the value function is V(t,x) — ^x'Z(t)x, which is necessarily
nonnegative since the maximizer can assure such a lower bound by simply
choosing u2() = 0. D Remark 6.20 As in the case of Nash equilibria (cf.



Remark 6.17), the result above extends naturally to the more general afEne-
quadratic zero-sum dynamic games which have in the cost function additional
linear terms in x, to be denoted x(T)'lf for the terminal cost term, and x(t)'l(t)
for the integrand. Then, the only modification will have to be made in equation
(6.76b), for £(•), which will now read: $ + A'$ + Zc + l- Z{BXBV - B2B2'X =
0; C(T) = lf. Otherwise, the statement of Thm. 6.17 remains intact. □ Remark
6.21 A comparison of Thms. 6.14 and 6.17 reveals one common feature of the
open-loop and feedback saddle-point solutions in affine-quadratic differential
games with Q(-) > 0, Qf > 0, which is akin to the one observed for games
described in discrete time (cf. Remark 6.7). The two matrix Riccati
differential equations (6.62a) and (6.76a) are identical, and so are the two
linear differential equations for m and £ ((6.62b) and (6.76b), respectively)
and by this token the state trajectories generated by the open-loop saddle-point
solution and feedback saddle-point solution are identical; and furthermore the
open-loop values of the feedback saddle-point strategies are correspondingly
the same as the open-loop saddle-point strategies. A comparison of the
existence conditions of Thms. 6.14 and 6.17, on the other hand, readily leads to
the conclusion that existence of an open-loop saddle-point solution necessarily
implies existence of a feedback saddle-point solution (since then (6.62a)
(equivalently (6.76a)) admits a unique bounded symmetric solution), but not
vice versa. This latter feature is a consequence of the following observation:
for the class of affine-quadratic differential games satisfying the restriction
B\t)'B\t) - B2{t)'B2{t) >0 V<e [0,T], (6.79) the matrix Riccati differential
equation (6.76a) admits a unique nonnegative definite solution, whenever Qf >
0, Q(-) > 0 (since then (6.76a) becomes comparable with (5.35a)); however,
(6.79) is not sufficient for (6.61) to admit a bounded solution on [0,T]. This
situation is now exemplified in the sequel. □ Example 6.3 Consider a scalar
linear-quadratic two-person zero-sum differential game described by x =
V2.U1 - u2; x(0) = x0, <€[0,2];
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{u2(t)]2}dt. For these parametric values, the Riccati differential equation
(6.76a) can be written as Z - Z2 = 0; Z{2) = 1 which admits the unique solution
Hence, the differential game under consideration admits the unique feedback
saddle-point solution ju(t,x) = -[2/(3 - t)]x(t), 72*M = -[V(3 - t)]x(t). Let us
now investigate the existence of an open-loop saddle-point solution for the
same scalar differential game. The Riccati differential equation (6.61) can be



written, for this example, as S + S2=0; S{T) = l (t € [0,T],T = 2) which admits
a bounded solution only if T < 1, in which case For T > 1, the Riccati
differential equation does not admit a solution, and it displays (in retrograde
time) finite escape at t = T — 1; i.e., it has a conjugate point at t = T — 1. In
our case, since T = 2 > 1, the existence condition of Thm. 6.14 is thus not
satisfied, and therefore an open-loop saddle-point solution does not exist. This
implies, in view of Lemma 6.4, that under the open-loop information structure
L(ux, u2) is not concave in u2, and hence the upper value of the game is
unbounded (since it is scalar and quadratic). □ Even though feedback saddle-
point equilibrium requires less stringent existence conditions than open-loop
saddle-point equilibrium in afnne-quadratic differential games (as also
exemplified in the preceding example), this feature does not necessarily imply
(at the outset) that the least stringent conditions for existence of saddle-point
equilibrium under closed-loop information structure are required by the
feedback saddle-point solution. This also brings up the question of whether the
afRne-quadratic differential game still admits a saddle- point solution in spite
of existence of a conjugate point to the matrix Riccati equation (6.76a) on the
interval [0,T]. In other words, can a saddle point survive a conjugate point?
Intuitively, this could happen if at a conjugate point t*, while Z goes off to
infinity the corresponding state trajectory x* goes to zero at least at the same
rate, so that the control actions dictated by the feedback strategies
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and that Z does not change sign in any small open neighborhood of t*. To
permit for such behavior, the allowable strategies can no longer be
continuously differentiable, or even continuous, but their realizations will have
to be square-integrable for every square-integrable open-loop policy of the
opponent player. Bernhard (1979) has shown, by working in this more general
class of strategies, that a saddle point may survive a conjugate point, if the
conjugate point is of an "even" type. To give a brief description of this result,
let us first note that in the absence of a conjugate point, the solution of (6.76a)
can be decomposed as Z{t) = Y(t)X-\t), (6.80) where X and Y are n x n
matrices satisfying the linear matrix differential equations X = AX - {B'B1' -
B2B2')Y, X{T) = /, (6.81a) Y = -QX-A'Y, Y(T) = Qf. (6.81b) Clearly, being
linear, these equations admit unique solutions regardless of the length of the
time interval, and hence the conjugate point of Z is the first instant (in
retrograde time) when X becomes singular. Let us adopt the convention that at



points where X is singular, X~l in (6.80) is replaced by its pseudo-inverse XK
This then extends the solution of (6.76a) uniquely beyond a conjugate point.
The following result, which is from (Bernhard, 1979), now provides the
necessity part of Thm. 6.17. Theorem 6.18 Consider the affine-quadratic zero-
sum differential game described by (6.60a)-(6.60b), with Q(-) > 0, Qf > 0, and
under the CLPS information structure. The game admits a saddle point (with
finite value) if, and only if, the following four conditions are satisfied: (i) xo €
Range (X(0)), (ii) rank of X{t) is piecewise constant, (Hi) Range (B2(t)) C
Range (X(t)), Vt € [0,T], except, perhaps, at isolated points, (iv) Z(t) > 0 Vt €
[0,T], under the extended definition of a solution provided by (6.80) and
(6.81a)-(6.81b). Then, the pair of feedback strategies (6.77) provides a
saddle-point solution, and the saddle-point value is given by (6.78b). If the
conditions above are not satisfied, then the upper value of the game becomes
unbounded. The following example (again due to Bernhard (1979)) illustrates
the foregoing result, and demonstrates the occurrence of an "even" conjugate
point.
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scalar linear-quadratic differential game described by x = {2-t)u1+tu2, x(0)=l,
L{u\u2) = 1-[x(2)}2 + Jo({ul(t)}2~{u2(t)}2)dt. The Riccati equation (6.76a)
in this case is Z-4(l-t)Z2 = 0, Z(2) = ±, which has a conjugate point at t = 1.
Using the construction (6.80), however, we can obtain an extended solution as
Z(*) = 2(l-t)2' *e[M,*?*l- This shows that the conjugate point t* — 1 is of the
even type (i.e., Z(t) does not change sign in an open neighborhood of t*). Using
this solution, the strategies (6.77) can be written as 7r(*,*) = -i?~!i2*, l2'(t,x)-
* - 2(1-4)2 ' < v-/ 2(1 -t)2' with the corresponding state trajectory satisfying 2
1-t x*, x*{0) = 1. Note that, for t < 1, x*(t) = (1 — t)2, and hence open-loop
representations of both 71 and -y2 remain bounded as t | 1, and so does the
value function. Note also that all four conditions of Thm. 6.18 are satisfied in
this case, with X{t) = {l-t)2. □ Another perspective on the relationship
between existence of conjugate points and saddle points in zero-sum affine-
quadratic games can be obtained by studying the dependence of the solution on
a scalar parameter. Of particular importance (as we shall later see in Section
6.6) is the case when the parameter is chosen as the weighting on the control of
the maximizer. Consider, therefore, the modified cost (in place of (6.60b))
L^u^u2) = - / (x'(t)Qx(t) + u1(t)V(t)-Au2(t)V(t))dt 2 Jo (6.82) +-x'(T)Qfx(T),
where A is a scalar positive parameter, Q(-) > 0 and Qf > 0. Let the state



dynamics be again described by (6.60a). Then, the counterpart of the
generalized Riccati differential equation (6.76a) is Z + A'Z + ZA + Q-Z^B1' -
~B2B2'\z = 0; Z(T) = Qf, (6.83)
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interval [0,T] we will denote by Z\(-). Note that the limiting case A = oo yields
the Riccati equation (5.35a) associated with the one- player game (with the
maximizer being absent), which admits a nonnegative definite solution. Hence,
by continuity, for every fixed T there exists some range of values of A for
which (6.83) does not have any conjugate point on [0, T]. What can in fact be
shown (see Ba§arand Bernhard (1995)) is that there exists some threshold
value of A, say A*, such that (i) for all A > A*, (6.83) has no conjugate points
(and hence the game has a finite value under CLPS information), (ii) for all A
< A*, (6.83) has a conjugate point, and (iii) for all A < A*, the upper value of
the differential game is unbounded (regardless of the underlying information
structure). We summarize this result in the following theorem. Theorem 6.19
Consider the parameterized affine-quadratic zero-sum differential game
described by (6.60a) and (6.82), with Q{-) >0,Qf> 0. There exists a critical
value A* > 0 for A such that (i) For each A > A*, (6.83) admits a unique
nonnegative definite solution Zx(-) (which is positive definite if either Qf > 0
or Q(-) > 0), and the game has a finite saddle-point value, given by (6.78b)
with Z replaced by Zx, andB2B2' in (6.76b) and (6.76c) replaced by \B2B2'.
(ii) For A < A*, (6.83) has a conjugate point. (iii) For A < A*, the upper value
of the game is unbounded, even if the min- imizer has access to full information
(on the control action of the maximizer). (iv) For A > A*, the unique feedback
saddle-point strategies of the players are 7r(t,x) = -Bl'[Zx{t)x + Ut)\; j2"(t,x) =
jB2'[Zx(t)x + <;x(t)}; where Ca(') is given by (6.76b) with Z\ replacing Z and
jB2B2 replacing B2B2'. Proof. A proof of this result for the linear case (with c
= 0) can be found in Chapter 9 of Ba§arand Bernhard (1995), which readily
extends to the affine case in view of Thm. 6.17. D 6.5.3 Linear-quadratic
differential games on an infinite time horizon In this subsection, we will study
the limiting cases of the Nash equilibrium solution of the linear-quadratic
differential game as the time horizon becomes unbounded—first for the open-
loop case and then for the closed-loop feedback case.
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the limiting case of Thm. 6.12 as the time horizon becomes unbounded. The



starting point will be Def. 6.5, with the assumptions that N = 2 and all matrices
involved are time-invariant, and Q\ = Q2, — 0. Moreover, we will restrict
ourselves to the linear-quadratic case, i.e., c = 0. The so-called algebraic
Riccati equations (compare with (6.49)) MXA + A'MX+ Q1-N^&M1-
MXS2M2 = 0, (6.84) M2A + A'M2 + Q2 - M2S2M2 - M2SlMl = 0, (6.85)
where, as before, S% = Bl{R")~1BT , i = 1,2, play an important role here.
Under certain technical conditions solutions of (6.49), with N = 2, will
approach the solutions of (6.84) and (6.85) as T —> oo. Since the dependence
of the solutions of (6.49) on the final time T will be emphasized, these
solutions will be written as M*(t, T). We will elaborate on the relationship
between the solutions of these equations and the matrix G: (6.86) Define Gmv
= {K.\GK C £}, i.e., Qmv is the set of all G-invariant subspaces of R3n. It is
well known that this set consists of a finite number of (different) elements if
and only if all eigenvalues of G have geometric multiplicity one (otherwise
there is an infinite number of different elements). Next define the subset <?sub
of Q,nv such that wub  ̂frc^nvirasCVI T n 1 — TJ3« {icegmv\ic®Q\ i o =RJn},
where 3 refers to "image of. Note that the elements in asub are the images of
suitably chosen matrices of size 3n x n. In Engwerda (1998) the following
theorem has been proved. Theorem 6.20 The set of coupled algebraic Riccati
equations (6.84) and (6.85) have a real solution (M1, M2) if, and only if, M%
= XiX~x, i = 1,2 for matrices X, X\ and X2 such that X Xo IC = %\ Xx € £sub.
Moreover, if the control functions u**(t) = — (R™) XB% MJ$(t, Q)x§ are
used in the system equation x = Ax + 53,-=1 B3u3, the eigenvalues of the
closed-loop matrix A — Ylj=i S-'M3 coincide with the eigenvalues of — G\k,
which is the restriction of —G to the subspace K,.
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of Gsuh defines one solution of (6.84) and (6.85). If the geometric multiplicity
of all eigenvalues of G equals one, then the set Gsub has a finite number of
different elements and consequently (6.84) and (6.85) have at most a finite
number of real solutions. Equations (6.84) and (6.85) do not have a real
solution if and only if Gsnb is empty. An immediate consequence of Thm. 6.20
is the following corollary. Corollary 6.7 The algebraic Riccati equations
(6.84) and (6.85) have a set of stabilizing solutions (i.e., the closed-loop
matrix A — X^=i S^M  ̂has all its eigenvalues in the left-half plane) if, and
only if a G-invariant subspace K, € Gsub exists such that RA > 0 for all A €
a(G\/c) (the symbol a refers to the spectrum of its argument). We now introduce



a useful concept, which will lead to a technical condition needed in the main
result. Definition 6.7 The 3n x 3n matrix G is called dichotomically separable
if sub- spaces Vi and V2, with dimVi = n and dimV2 = 2n, exist such that GVi €
Vi7 i = 1,2, Vi © V2 = R3n and RA > R/x for all A € <r(G\Vl), \x € a{G\Vt). It
can be shown that dichotomic separability implies that Gsub is nonempty, but
the reverse implication is not necessarily true. Theorem 6.21 Assume that H(T)
is invertible for all finite T, G is dichotomically separable and span I Q) ] ©
V2 = R3n Then, M*(0, T) —> XjX 1, i = 1,2 ifT —> 00, where X and Xi are
defined as Vi =span(X'^X2)'. Corollary 6.7 and Thm. 6.21 immediately lead to
the following corollary. Corollary 6.8 // the time horizon of the linear
quadratic differential game tends to infinity, then the unique open-loop Nash
equilibrium converges to ul*(t) — -{R™)~~lB1'Ml$(0,t)xo, i = 1,2, which
leads to a stable system, if the following conditions are satisfied: • The
conditions of Thm. 6.21 are fulfilled; • ?ftX>0forallX€<T{G\Vl). For the cost
function of each player to remain bounded, we assume that Q% > 0, i = 1,2,
and under the equilibrium solution the state of the system converges to zero as t
tends to infinity.
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of (6.84) and (6.85) satisfying the additional constraint that the eigenvalues of
the resulting system matrix A — Yli=i S%M% are all in the left-half plane.
Then the controls u%{t) = — {Rll)~xBl Mt$(0,t)xo, i = 1,2, form an open-loop
Nash equilibrium solution. Proof. Let L%{ux,u2;T) denote the cost function of
P% on the time interval [0,T]. It can then be shown that the optimization
problem min lim Ll{ul,u2*\T), u\ T—>oo where u2*{t) = ~{R22)-
XB2'M2e(A-§lMl-§2M t̂x0, admits a solution given by uu{t) = -(fl -̂ '̂MV -̂
s'M'-^M2)  ̂A similar reasoning holds for the optimization problem min lim
L^u1*, ;̂ )̂, leading to the conclusion that (u1*^2*) forms an open-loop Nash
equilibrium solution. D The following example now demonstrates the
somewhat surprising fact that an infinite-horizon differential game may admit a
Nash equilibrium solution in open-loop policies, while its finite-horizon
version (with a particular terminal state weighting) may not. Example 6.5
Reconsider Example 6.2 and replace the ^4-matrix by -CD- The eigenvalues of
the related G-matrix are { ,̂ 1.8810,0.1883, \, -1.7966}. Further numerical
calculation shows that the algebraic Riccati equations have three stabilizing
solutions. Hence, according to Thm. 6.22, the infinite-horizon problem has at
least three open-loop Nash equilibrium solutions. On the other hand, the



matrices Q\, i — 1,2, can suitably be chosen such that the matrix G(t) fails to
be invertible for certain t, e.g., t = 0.1 as in Example 6.2. Thus the infinite-
horizon problem can have solutions whereas the finite-horizon problem fails to
have a solution. □ One might conjecture that if the finite-horizon game has a
unique solution for all finite T, then this solution converges to a solution of the
infinite-horizon game. This is not true, as shown in Engwerda (1998), which
presents an example in which the limiting solution does lead to a solution of
the coupled algebraic Riccati equations, but fails to be a stabilizing solution.
The closed-loop feedback case We now study the limiting cases of Corollary
6.5 and Thm. 6.17 (as well as Thm. 6.19) as the time horizon becomes
unbounded (that is, T —> 00), when
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matrices are time-invariant. This will constitute the counterparts of the
discrete-time results of subsection 6.2.3 in the continuous time. First we
consider the convex-quadratic Nash differential game covered by Corollary
6.5, and note that any asymptotically convergent (as T —> oo) limit of the
solution of (6.70a) will have to satisfy the coupled algebraic Riccati
equations: ZiF + F'Zi + '^ZjBjR»~1RiiRii~1Bj'zj + Qi = 0, (6.87a) J6N where
F is given by (6.70b), with all matrices replaced by their time-invariant
counterparts.63 The limiting stationary feedback (Nash) strategies are (from
(6-71)) 7i'(x) = -Rii~1Bi'zix, ieN. (6.87b) Furthermore, introduce for each i£N
the matrices Fx = A - J  ̂B'R'i^Bi'Z'; Q% = Qi +  ̂ZlBJRjr" Rtj R""'Bj'Zj. jgN
jgN Then the following result is the natural counterpart of Prop. 6.3 in the
continuous time. Proposition 6.8 Let there exist an N-tuple of matrices {Zl,i €
N} satisfying (6.87a), and further satisfying the conditions that for each i € N
the pair (Fi,Bl) is stabilizable and the pair {F%,Qi) is detectable.64 Then, (i)
the N-tuple of stationary feedback policies (6.87b) provides a Nash
equilibrium solution for the linear-quadratic nonzero-sum differential game of
this subsection, leading to the infinite-horizon Nash equilibrium cost \xq'Z%xq
for Pi, (ii) the resulting system dynamics, described by x = Fx, x(0) = x0 are
asymptotically stable. Again, as in the discrete-time case, there could exist a
Nash equilibrium for the infinite-horizon game (as covered by Prop. 6.8)
which is not obtainable as the limit of any Nash equilibrium of the time-
truncated finite-horizon version. Furthermore, we do not have any direct
conditions (on the system parameters) that would guarantee satisfaction of the
indirect conditions of Prop. 6.8 for any 63Note that here we are using the same



notation as in the discrete-time case, but this should not create any confusion.
64See subsection 5.5.2 for the terminology.
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differential games. For zero-sum games, however, more explicit results can be
obtained as will be discussed next. Consider the class of zero-sum differential
games described by (6.60a)-(6.60b), with c = 0, Qf = 0, all matrices time-
invariant, Q > 0, and T = oo. As in subsection 6.2.3, we would expect the
feedback saddle-point solution for this game to be in the form 7J(x) = -B1'Zx;
(6.88a) 72(x) = B2'2x, (6.88b) where Z is the limiting solution of (6.76a)
which (if it exists) should satisfy the continuous-time generalized algebraic
Riccati equation (GARE) A'Z + ZA + Q- Z{BlB1' - B2B2')Z = 0. (6.89)
Denote the solution of the generalized Riccati differential equation (6.76a) by
Z(t;T), where dependence on the terminal time is explicitly recognized. Now,
the first question that would be of interest is: If Z(t; T) is bounded for all T > 0
(i.e., (6.76a) does not have any conjugate points on [0,T] for any T) and limp
—oo Z(t, T) = Z exists, does this necessarily imply that the pair (6.88a)-
(6.88b) is in saddle-point equilibrium? The answer is "no", as the following
(counter) example, taken from (Mageirou, 1976) clearly illustrates. Example
6.6 Consider the scalar state dynamics x = x + u1 + u2, x(0) = xq and the
objective function /■oo L{u\u2)= {x2 + (u1 )2 - 2{u2)2) dt. Jo The generalized
Riccati differential equation (6.76a) associated with this game is Z + 2Z +
l~^Z2 = 0; Z{T;T) = 0 which admits the unique solution Z(t\T) = V6tanh [V6(T
— t) + tanh -H-zVg)] +2. This function has a well-defined limit, as T —> oo,
which is t-independent: Z = 2 + y/6. Hence the policies (6.88a)-(6.88b) are
j\x) = -(2 + V6)x; f(x) = H± .̂ 2 X-
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system under these policies is 2X which is asymptotically stable. Also, the
system only under 71 is ± = -(l-\/6)x + u2 which is bounded input-bounded
state stable. Now it is easy to see (using Prop. 5.4) that if u1 = 71(-)) the
policy for P2 that maximizes L is 72. However, when u2 = 72(-)> 71 is not a
minimizing solution for Pi . The underlying minimization problem is I [- (4 +
2>/6) x2 + (u1) subject to dt —> minimum . 4 + %/ei ! x = x + u . Since the
open-loop system is unstable, and there is a negative cost on state in the cost
function, the cost can be driven to -00 (pick, for example, u1 = 0). Even though
there is no continuity in the minimizer's policy at T = 00, nevertheless the value



of the game (even in the absence of a saddle point) is continuous. It can be
shown that given an e > 0, there exists a tc > 0 such that by choosing the time-
varying feedback policy 7£2(«,x(<)) = ( (VZ f̂o^M*). 0<t<tc, P2 can assure
that minL(u1,7£2) > (2 + V6)(x0)2 - e(x0)2, where (2 + v/6)(x0)2= lim Z(t-T)
(x0)2 T—>oo which is the limit of the value of the finite-horizon game (asT->
00).65 Since e > 0 can be chosen arbitrarily small, this shows that the infinite-
horizon game of this example indeed has a value. □ What has been
demonstrated in the last part of the example above actually turns out to be the
case for the general linear-quadratic differential game, under some general
conditions, as stated in the following theorem, which is the counterpart of Thm.
6.8, as well as of Lemma 6.3. 'tt above is chosen such that Z(0;te) + £ > 2 + \/6.
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horizon time-invariant linear-quadratic differential game, where Qf = 0, Q > 0
and the pair (A, Q) is observable. Then, (i) for each fixed t, the solution to
(6.76a), Z(t; T), is nondecreasing in T; that is, if (6.76a) has no conjugate point
in a given interval [0,T], Z(t;T') — Z(t; T") > 0, T > T' > T" > 0; (ii) every
nonnegative definite solution of (6.89) is in fact positive definite, and if there
exists a positive definite solution there is a minimal such solution, denoted Z+.
This matrix has the property that Z+ — Z{t\T) > 0 for all T>0; (Hi) the game
has equal upper and lower values if, and only if, the GARE (6.89) admits a
positive definite solution, in which case the common value is J°°* = x'0Z+x0;
(iv) the upper value is finite if, and only if, the upper and lower values are
equal; (v) if Z+ > 0 exists, as given above, the controller^1 given by (6.88a),
with Z replaced by Z+, attains the finite upper value, in the sense that supJiy1,-
/2) =x'0Z+x0, and the maximizing feedback solution above is given by (6.88b),
again with Z = Z+; (vi) the minimal positive definite solution of (6.89), Z+, is
feedback stabilizing, i.e., the closed-loop system x = [A-(B1B1' -B2B2')Z+\x
has no eigenvalues in the right-half plane. If Q > 0, then Z+ is the only
feedback stabilizing solution of (6.89). Proof. See Mageirou (1976) or
Ba§arand Bernhard (1995). □ The result of Thm. 6.23 above is not the
strongest possible, since the given policies (6.88a)-(6.88b) are not strictly
feedback stabilizing (i.e., the closed-loop feedback matrix could have some
eigenvalues on the imaginary axis of the complex plane) and furthermore the
policies are not necessarily in saddle-point equilibrium (as also observed in
Example 6.6). In view of this one would like to obtain conditions under which
the policies (6.88a)-(6.88b) would be in saddle- point equilibrium and/or they



would be strictly feedback stabilizing. If we assume that there exists a solution
to GARE (6.89) that is strictly feedback stabilizing, then it can be shown (see
Jacobson (1977)) that the strategy pair (6.88a)-(6.88b) is in saddle-point
equilibrium in the restricted class of feedback policies that are strictly
feedback stabilizing and under which x(t) —> 0 as t —► oo for all xq e Rn-
This result follows essentially from a completion
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the GARE (6.89). An alternative condition, again under the assumption of
existence of a strictly feedback stabilizing solution to (6.89), is to require that
under 72, the minimization problem faced by PI is well defined; this is
equivalent to requiring (using some results of Willems (1971)) that an
associated ARE has a negative definite solution (see Mageirou (1976)). But,
this is a rather complicated condition, and admits no clean interpretation in
terms of the parameters of the game. Yet another set of conditions can be
obtained, by parameterizing the differential game, as in the finite-horizon case
discussed earlier. Consider the infinite-horizon version of the cost function
(6.82), where A is again a scalar parameter (to be varied). For A = oo, the
underlying problem is essentially a single player game, which is the same as
the linear regulator problem discussed in subsection 5.5.2. We know from
Prop. 5.4 that if (A,B) is stabilizable and (A, Q) is observable (respectively,
detectable), then the associated ARE admits a positive (respectively,
nonnegative) definite solution, which is further strictly feedback stabilizing.
Since eigenvalues of the feedback matrix in the game case are continuous
functions of A, the result will also hold for some range of finite values for A.
This result is now made precise under also a weaker condition of detectability
in the following theorem, which is the infinite-horizon counterpart of Thm.
6.19. Its proof can be found in Ba§arand Bernhard (1995). Theorem 6.24 For
the parameterized infinite-horizon linear-quadratic differential game
formulated above, let (A, B) be stabilizable and {A, Q) be observable
(respectively, detectable). Then, there exists a threshold value A  ̂> 0 for A
such that the following three properties hold. (i) For every A > A ,̂ the GARE
A'Z + ZA + Q-Z{BXBV -\*00-1B2B2')Z = 0 (6.90) admits a minimal positive
(respectively, nonnegative) definite solution, Z\. (ii) For every A > A ,̂ the
game has a finite upper value, which is achieved by the pair of strategies 7i(x)
= -B '̂Z+X, H(x) = \b2'z+xx. (6.91) Furthermore, the closed-loop matrix FX =
A- {BlB1' - \-1B2B2')Z+ is Hurwitz (has all its eigenvalues in the open left-



half plane). (Hi) For A < A ,̂ the upper value of the game is unbounded.
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Designs: H°°-Optimal Control The results presented in the previous section on
zero-sum differential games, and especially on linear-quadratic games, as well
as their counterparts in Section 6.3, have important applications in a special
class of worst-case controller design problems, known as "jET00-optimal
control" problems (see Zames (1981); Francis (1987); Doyle et al. (1989);
Ba§arand Bernhard (1995); Stoorvogel (1992), Green and Limebeer (1995) to
cite just a few representative papers and books from this voluminous
literature). In these design problems, the (linear) plant has two types of inputs
(controlled and disturbance) and two types of outputs (regulated and
measured), and the objective is to obtain a controller (that uses the measured
output) such that the effect of the disturbance on the regulated output is
minimized. Even though both frequency and time domain formulations are
possible, the latter is preferable since it allows for transient analysis and can
handle time varying as well as nonlinear plants. In this section we first present
a general formulation of this worst-case design problem, and then show how
the theory of the previous section can directly be used to construct minimax
(jET°°-optimal) controllers. The presentation will be brief, and be restricted
to the continuous-time problem only. Further details, and counterparts of these
results in the discrete-time, can be found in the book by Bas,arand Bernhard
(1995). To introduce the jET°°-optimal control problem (in the continuous-
time), let us adopt the plant dynamics x = Ax + Bu + Dw, x(0) = 0 (6.92a) to
replace the linear state equation (6.60a). Here u is the controlled input, w is
the disturbance, and A, B, D are matrices which could have time-varying
entries if the time horizon is not infinite. Let the regulated and measured
outputs be given, respectively, by z = Hx + Gu, (6.92b) y = Cx + Ew, (6.92c)
where H, G, C, E are again appropriate dimensional matrices, with possibly
time-variant entries for the finite-horizon problem. The controlled input is
chosen as a function of the present and past values of the measured output y, a
relationship that we will write as u(t) = n(t,y(s),s <t), t> 0, (6.92d) or simply
as u = n(y). Here \i is the (causal) control policy. If in (6.92c) C = I and E = 0,
then we have the CLPS information pattern, where the control has access to all
components of the state. Now for any given /x e M, where M is chosen so that
some measurability and smoothness conditions are satisfied, substitution of u
into (6.92a) and (6.92c)
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from w to z, obtained from, z = Hx + G/j,(Cx + Ew), (6.93a) x = Ax + B\x(Cx
+ Ew) + Dw, x(0) = 0. (6.93b) Let us denote this mapping by Q ,̂ i.e., z =
g^w). (6.93c) Then, the jET°°-optimal control problem is to minimize the
induced (operator) norm of Q ,̂ that is, to solve the optimization problem inf
sup {||S,»|U/HU}, (6-94) H€M w€-ft where || • \\z and || • \\w denote Hilbert
space norms on the regulated output and disturbance spaces, respectively,
where the latter space is denoted by H- More specifically, for the finite-
horizon problem, defined on the interval [0,T], rp rp \\z\\2z ẑ'(T)Qfz(T)+ f
z(t)'z(t)dt, H|*=/ w(t)'w(t)dt Jo Jo and for the infinite-horizon problem T = oo,
and Qf = 0. Note that (6.94) defines the upper value of a differential game
where the minimizer (Pi) is the controller, and the maximizer (P2) is the
disturbance. Let the square of this upper value be denoted by A, and assume
for the moment that there exists a control policy, \x*, that achieves it. Then,
(6.94) can equivalently be expressed as (where we suppress the subindices on
different norms) (i) ||6M-HI|2< A||w||2, VweW, (6.95a) and (ii) there exists no
other /x e M (say, /x), and a corresponding A = A < A, such that ||S/»||2<A|H|2,
VweH. (6.95b) Now, introducing the parameterized (in A > 0) family of cost
functions Lx{v,W) = \\G»{w)\\2-nH2, (6-96) (i) and (ii) above become
equivalent to the problem of finding the "smallest" value of A > 0 under which
the upper value of the associated game with objective function L\(n, w) is zero,
and finding the corresponding controller that achieves this upper value.
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covered by Thms. 6.17, 6.19, 6.23 and 6.24, when the information pattern is
CLPS. Toward this end let us first make the simplifying assumptions that H'G =
0, G'G = I, H'(T)QfG{T) = 0 and G'(T)QfG(T) = 0. Then, Lx can be written as
(6.82), with Qf = H(T)'QfH(T), Q = H'H. (6.97) In the finite horizon, we then
have precisely the linear-quadratic game covered in Thm. 6.19, with B1
replaced by B, B2 replaced by D, and xo = 0. We know from Thm. 6.19,
together with Thm. 6.18, that the upper and lower values are equal whenever
the upper value is bounded, and that this finite value is zero (since x0 =0).
Furthermore, where this breaks down (that is, when the upper value becomes
unbounded) is at the largest value of A for which the generalized Riccati
differential equation (6.83), that is, Z + A'Z + ZA + Q-z(bB' -jDD'JZ = 0,
Z{T)=Qf, (6.98) has a conjugate point. This value of A (which we had denoted
A*) is precisely the A introduced earlier as the square of (6.94). Hence the



following result follows as a direct corollary to Thm. 6.19. Corollary 6.9 For
the finite-horizon H°°-optimal control problem formulated above, and with
CLPS information, let A* be defined as in Thm. 6.19, in connection with the
Riccati differential equation (6.98). Then, (i)\ = \*, (ii) for all A > A*, the
control policy Hx(t,x) = -B(t)'Zx(t)x, t>0 delivers a performance level of at
least -\/A, that is, for all w eH, {II^MII/HIKVa. For the infinite-horizon
problem, the counterpart of Corollary 6.9 is the following corollary to Thm.
6.24. Corollary 6.10 For the infinite-horizon H°°-optimal control problem, and
with CLPS information, let (A,B) be stabilizable and (A,Q) be observable
(respectively, detectable). Let A* be the smallest positive scalar with the
property that forall\>\*, the GARE AZ + ZA + Q- z(BB' -tDD'J 2 = 0 (6.99)
admits a minimal positive (respectively, nonnegative) definite solution Z\.
Then,
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feedback control policy jix(x) = -B'Zxx, t > 0 delivers a performance level of
at least V\, and under it the linear system x = (A-BB'Zx)x + Dw is bounded-
input bounded-state stable. The following scalar example (taken from
Ba§arand Bernhard (1995)) illustrates the two corollaries above. Example 6.7
Consider the scalar plant with dynamics X = U + W, and jET°°-performance
index: rT J\[x(t)]2 + [u(t)}2)dt J j\w{t)\ 'At The associated GRDE is Z + l '-i1*
0, Z(T) = 0, (0 (») whose unique solution takes two different forms, depending
on whether A > 1 or not. For the former case, A>1: ZA(0 = £tanh[<r(T-0], * =
\/(A - l)/A, and for the latter, A<1: Zx(t) = ±tan[m(T-t)], m = y/(l- A)/A, which
exists provided that Note that the given solution family is continuous at A = 1.
Now, for fixed T, the GRDE has a conjugate point in the interval [0, T] if A <
A*(T), and for all A < A*(T) the upper value of the related game is unbounded.
Hence, the optimum jET -̂performance level (that is, the upper value of the
game with performance index (i)) is y/\*{T). For A > A*(T), the controller that
guarantees this level of performance is H*x(t,x) = -Zx(t)x(t), 0<t<T. (Hi)
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hence the "optimum" controller is a high gain controller, which may not be
desirable. For any A > A*(T), however, the control gain is finite, and one can
achieve e-optimal performance (that is, one that is within an e-neighborhood of
A*(T)) using finite gain controllers of the type (iii). For the infinite-horizon
case, we simply let T t oo, leading to A* = 1, and the unique stationary



feedback controller - t  ̂  ̂for A > 1. Again note that the solution ceases to exist
as A J, A* =1, and hence an "optimal" controller does not exist, but an e-
optimal controller does. D We now consider the imperfect state measurements
case, as originally formulated. For technical reasons we will treat the initial
state xo as also unknown and as part of the disturbance, and attach weight to it
in the cost function. Furthermore, we take the system and measurement
disturbances to be independent (which is tantamount to taking ED' = 0), and
take without any loss of generality EE' = I and let Ew = v, which is viewed as
a separate disturbance (in addition to w and xo)- Then, the associated
parameterized game is one with state dynamics x = Ax + Bu + Dw, x(0) = xo,
measurement equation y{t) = Cx{t)+v{t), t>0, and objective function (for finite
horizon) Lx(u;w,v,x0) = \x{T)\2Qt + j (\x(t)\2Q + \u(t)\2)dt rp ~* -A \x0\%0+ I
(\w(t)\2 + \v(t)\2)dt Jo (6.100a) (6.100b) (6.100c) For the infinite horizon, we
simply let T — oo, Q/ — 0. In view of our earlier discussion in this section,
we seek the smallest value of A, say A*, such that for all A > A*, and with u =
{w,v,xq}, inf supLx(n(y);u}) = 0, (6.101) where M. is defined here as the class
of all (measurable, smooth) control policies that depend causally on y. The
theory we have developed in this chapter does not directly apply to this
problem, since the information structure is neither CLPS nor OL. Similar game
theoretic techniques can be used, however, to obtain a complete, very
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problem. The result is given below in Thm. 6.25 for the finite horizon, and
Thm. 6.26 for the infinite-horizon case. Verifications of these results will be
sketchy, since the details are lengthy and fairly technical. A complete treatment
can be found in Ba§arand Bernhard (1995). Before presenting Thm. 6.25, we
introduce a second GARE, dual to (6.98), again defined on [0,T\: -t + AZ +
EA' + £>£>'-£ (c'C - jq\ S = 0; 2(0) = Q„ *. (6.102) We further define G{t) = Z
[I - A-'EZ]-1 (6.103) whenever it exists, and introduce two different equations
x = [A-{BB'-\-xDD')Z\x + [I-\-l?,Z]-lY,C(y-Cx); x(0) = 0 (6.104a) and i = (j4-
ECC" + A_1EQ)s-|-Bu-|-ECV, x(0) = 0. (6.104b) Theorem 6.25 Let A be the
set of all X > 0 such that (a) the GRDE (6.98) does not have a conjugate point
on [0,T], (b) the GRDE (6.102) does not have a conjugate point on [0,T], and
(c) the matrix XI — H(t)Z(t) has only positive eigenvalues for all t e [0, T], or
equivalently p(H{t)Z(t)) < A, t € [0,T], (6.105) where p(-) is the spectral
radius. For each X e A, let a controller Hx £ M ê defined by Hx(t, y) = -
B(t)'Zx(t)xx(t), t > 0, (6.106a) where Z\ is the solution of (6.98), and x\ is



generated by (6.102). Then, (i) inf{A > 0 : A e A} = A*, where X* is the
smallest positive scalar X such that (6.101) holds; (ii) for each X > A*, the
controller given by (6.106a) delivers a performance level of at least •/X; (Hi)
for each X > A*, the controller (6.106a) can equivalently be written as
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where G\ is given by (6.103) and x is generated by (6.104b). Proof. We will
sketch here a proof of sufficiency, using completion of squares. First note that
since Q^1 > 0, the solution of (6.102) is positive definite, thus admitting an
inverse. Define the function V(t) = \x(t)\2G{t) + \\x(t)-x(t)\l-l{t) and add the
identically zero function V(0)-V(T)+ [ V(t)dt Jo to L\ given by (6.100c). The
derivative V involves the derivatives of G, E_1 and e = x — x, which can be
shown to be given by (through elementary but extensive manipulations) G +
G{A + A_1EQ) + (A + A_1EQ)'G + Q- G(BB' - A_1EG'GE)G = 0, E-1 + E-
M + j4'E-1 + E-^U'E-1 - C'C + A_1Q = 0; E_1(0) = Q0, e = (A- EC"C)e -
EC'w + Dw - A_1EQx; e(0) = x0. If all these relationships are used in L\, it
simplifies to Lx(u; w,v,x0) = -\e(T) + [Qf - X -̂1(T)]-1Qfx(T)\l1._l{T)_Qf
-2|x(T)|2Q/(A/_E(T)Q/)_lE(T)Q/ + ||U + B'Gxf (o) -X\\v + C{e - A-^Gx)!!2 -
A||tu - U'E-^H2, where || ■ || denotes the appropriate Hilbert space norm. Now,
invoicing condition (c) of the theorem we conclude that AE-^T) -Qf>0, Qf(XI -
XWQfr^WQf > 0, and hence the first two terms in (o) are nonpositive.
Furthermore, since the control given by (6.106b) makes the third (nonnegative)
term in (o) zero, we have the bound Lx(nx;w,v,x0) < 0, Vw,v,x0. Its maximum
is actually equal to zero, which can be seen by picking in (o), w = D"£~1e, w
= -C(e-A-1EGx), x0 = 0. This completes the proof of (ii). To prove (iii), we
start with the transformation x(t) = {I-\-1Z(t)Z(t)]-1x(t) and differentiate the
RHS with respect to t. This leads (after some algebra) to the conclusion that x
satisfies (6.104a) whenever x satisfies (6.104b). D
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given above for sufficiency (that is, parts (ii) and (iii)) is an indirect one, and
follows the arguments of Uchida and Fujita (1989). Ba§ar and Bernhard
(1995) provide a more constructive proof, for all three parts of the theorem.
Other proofs can be found in Limebeer et al. (1989), Khar- gonekar (1991) and
Khargonekar, Nagpal and Poolla (1991) to cite just a few. a An important
observation to be made in the context of Thm. 6.25 is the duality between the
two GRDEs (6.98) and (6.102). This duality enables us to deduce the behavior



of the minimax controller n\ given by (6.106a) for the time-invariant problem,
as T —> oo, by making direct use of the results of subsection 6.5.3, as well as
that of Corollary 6.10. This leads to the following counterpart of Corollary
6.10. Theorem 6.26 For the infinite-horizon H°°-optimal control problem with
imperfect state measurements, as defined above, let (A, B) be stabilizable, (A,
Q) be detectable, (A, C) be detectable, and (A,D) be stabilizable. Let A°° be
the set of all A > 0 such that (6.99) admits a minimal nonnegative definite
solution (denoted Zf), the following dual GARE admits a minimal nonnegative
definite solution (denoted S :̂ A£ + tia' + dd'-T}(c'c-jq\t: = o, (6.107) and the
following spectral radius condition is satisfied: P{t+xZ+) < A. (6.108) Then,
(i) inf{A > 0 : A e A00} = A ,̂, where A  ̂is the smallest positive scalar A such
that the infinite-horizon version of (6.101) holds; (ii) for each A > A ,̂ the
controller px(y) = -B'Z+(I - A-1E+Z+)-1x, (6.109a) where x = (A +
A_1E+Q)x + Bu + Z+C'(y - Cx); x(0) = 0, (6.109b) delivers a performance
level of at least VA. We close this section by revisiting Example 6.7 for the
imperfect state measurements case. Example 6.8 Consider Example 6.7 now
with a measurement equation y = x + v,
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compatibly replaced by m2 + h\\2)1/2/(\W\2 + \\v\\a)1/2, where we have
abused the notation and have taken Dw = w. Note that since x0 = 0, we have
taken in (6.100c) Qq1 = 0. In view of this, the second GRDE (6.102) reads t =
Q - l) S2 + 1, S(0) = 0, which is the dual of (ii) in Example 6.7 (simply the
time is reversed), and hence requires the same conjugate-point condition (A <
AT2/(AT2 + tt2)) as the Z equation. Using the notation of Example 6.7, for A >
A*(T) we have 1 r i Lj\ = — tanlmq, m and hence the spectral radius condition
(6.105) is —7? tanfm£l tan[m(T - t)] < A -4=> — tan mJ m which is more
restrictive than the other two conditions (which are identical): A < A*(T).
Hence, in this case the spectral radius condition is binding. For the infinite-
horizon case, again from duality existence of Z+ and S+ requires the same
condition, which is A > 1. The spectral radius condition is Z+E+ = -r^— < A
& A > 2. A — 1 Hence A  ̂= 2, and again the spectral radius condition is
binding. □ 6.7 Stochastic Differential Games with Deterministic Information
Patterns As it has been discussed in subsection 6.5.2, one possible way of
eliminating "informational nonuniqueness" of Nash equilibria in nonzero-sum
differential games is to require the equilibrium solution also to satisfy a
feedback property (cf. Def. 6.2), which necessarily leads to strongly time



consistent solutions; but this is a valid approach only if the information
structure of the problem permits the players to have access to the current value
of the state. Yet another approach to eliminate informational nonuniqueness is
to formulate the problem in a stochastic framework, and this has been done in
Section 6.4 for dynamic games defined in discrete time. A stochastic
formulation for quantitative differential games (i.e., dynamic games defined in
continuous time) of prescribed duration involves (cf. Section 5.3) a stochastic
differential equation dxt = i?( ,̂a;t,u1( )̂,...,uiV(0)d  ̂+a(t,xt)dwt, xt |t=0= x0,
(6.110) mT < Va
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evolution of the state (and replaces (6.37)), and N cost functionals L\ul,...,uN)=
f gi{t,x1,ul{t),...,uN{t))dt + qi{xT);ie'N. (6.111) Jo If T* (i e N) denotes the
strategy-space of Pi (compatible with the deterministic information pattern of
the game), his expected cost functional, when the differential game is brought
to normal form, is given by Ji(11,...nN) = E{Li(u\...,uN)\ul(-)= (̂;rf),J€N}
(6.112) with 7J e rj'(j e N) and E[] denoting the expectation operation taken
with respect to the statistics of the standard Wiener process {wt,t > 0}.
Furthermore, F and a are assumed to satisfy the requirements of Thm. 5.2, and
in particular a is assumed to be nonsingular. This section presents counterparts
of some of the results of Section 6.4 for stochastic nonzero-sum differential
games of the type described above; the analysis, however, will be rather
informal since the underlying mathematics (on stochastic differential equations,
stochastic calculus, etc.) is beyond the scope of this volume. Appropriate
references will be given throughout for the interested reader who requires a
more rigorous exposition of our treatment here. First, by way of introduction,
let us consider the one-person version of the AT-person stochastic differential
game, which is a stochastic optimal control problem of the type described in
Chapter 5, for which a sufficiency condition for existence of an optimal control
has been given in Prop. 5.7. This condition involves the existence of a solution
to a particular partial differential equation (specifically, (5.71)), which
corresponds to the Hamilton-Jacobi-Bellman equation (5.25) of dynamic
programming, but now we have the extra second term which is due to the
stochastic nature of the problem. We should note that if the control was
allowed to depend also on the past values of the state, the optimal control
would still be a feedback strategy since the underlying system is Markovian
(i.e., F and a depend only on xt and not on {xs,s < t} at time t). We now



observe an immediate application of Prop. 5.7 to the AT-person nonzero-sum
stochastic differential game of this section. Theorem 6.27 For an N-person
nonzero-sum stochastic differential game of prescribed fixed duration [0,T], as
described by (6.110)-(6.111), and under FB, MPS or CLPS information
pattern, an N-tuple of feedback strategies {7** e r*;i e N} provides a Nash
equilibrium solution if there exist suitably smooth functions W% : [0,T] x Rn
—> R, i e N, satisfying the coupled semilinear parabolic partial differential
equations dt 2  ̂{j >dxkdXj = min [Va.Wi-Fi*(<,x,«i)+s<*(<,x,«i)] (6.113) =
VXW> ■ F>*(t,x,Y*(t,x)) + g>*(t,x); W'(T,x) = ql(x) (iGN),
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symmetric matrix ad', F™{t,x,u>) t Ffax l̂i,**}), r .̂x.ti*) = g'it^^uy}), {lUy} =
{ll*{t,x),...,1i-1*{t,x),Ui,1i+l*{t,x),...,1N*{t,x)). Proof. This result follows
readily from the definition of Nash equilibrium and from Prop. 5.7, since by
fixing all players' strategies, except the j'th ones, at their equilibrium choices
(which are known to be feedback by hypothesis), we arrive at a stochastic
optimal control problem of the type covered by Prop. 5.7 and whose optimal
solution (if it exists) is a feedback strategy. D Theorem 6.27 actually involves
two sets of conditions: (i) existence of minima to the RHS of (6.113), and (ii)
existence of "sufficiently smooth" solutions to the set of partial differential
equations (6.113). A sufficient condition for the former is the existence of
functions u'° : [0,T] x Rn x Rn —> Sl which satisfy the inequalities W{t,x,pl;
ula,..., uio,..., u^0) < H*(t,x,tf; ulc,..., (6.114a) ui-l0,ui,ui+l0,.--,uA'0), Vti'6 5'
(ieN), where t e [0, T], pi e Rn, ifR" and Hi{t,x,pi;u)=pi'F{t,x,ul,...,uN) +
gi{t,x,ul,...,uN). (6.114b) If such functions ul°(t,x,pl) (i e N) can be found, then
we say that the Nash condition holds for the associated differential game.66 In
fact, Uchida (1978) has shown, by utilizing some of the results of Davis and
Varaiya (1973) and Davis (1973) obtained for stochastic optimal control
problems, that under the Nash condition and certain technical restrictions on F,
a, S\ gl and ql (i € N) there indeed exists a set of sufficiently smooth solutions
to the partial differential equations (6.113). Therefore, the Nash condition is
sufficient for a suitably well-defined class of stochastic differential games to
admit a Nash equilibrium solution;67 and a set of conditions sufficient for the
Nash condition to hold are given in Uchida (1979). For the special case of
zero-sum stochastic differential games, i.e., when l) = -I? = L and N = 2, every
solution set of (6.113) is given by W1 = -W2 = W, 66Note that such a
condition could also have a counterpart in Thm. 6.16, for the deterministic



problem. 67Uchida (1978) actually proves this result for a more general class
of problems for which the state equation is not necessarily Markovian, in
which case a more general version replaces (6.113).
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y âij(t,x)-—— = min max [VXW ■ F(t,x,v},u2) »j J +g(t,x,u1,u2)] = max min
[VSW • F(t,x, u1,?*2) + g(t,x, u1,**2)]; u2€S2 u'651 W(T,x)=q(x). (6.115)
Furthermore, the Nash condition (6.114a) can be re-expressed for the
stochastic zero-sum differential game as existence of functions ul°: [0,T] x R"
x R" —* Sl, i = 1,2, which satisfy H(t,x,p;ulo,u2°) = min m&xH(t,x,p\v},u2)
— max min H(t,x,pi .̂u2), u2es2 u'es1 (6.116a) where if (*, x,p; u1, u2) = p'F(t,
x,p; u1, u2) + g(t,x, u1, u2). (6.116b) Because of the similarity with the
deterministic problem, condition (6.116a) is known as the Isaacs condition.
Now, it can actually be shown (see Elliott, 1976) that, if the Isaacs condition
holds and if S1 and S2 are compact, there exists a suitably smooth solution to
the semilinear partial differential equation (6.115) and consequently a saddle-
point solution to the stochastic zero-sum differential game under consideration.
Therefore, we have the following.68 Corollary 6.11 For the two-person zero-
sum stochastic differential game described as an appropriate special case of
(6.110)-(6.111), and satisfying certain technical restrictions, let S1 and S2 be
compact and let the Isaacs condition (6.116a) hold. Then, there exists a saddle-
point solution in feedback strategies, which is 71*(<,x1) = ul0(t,xt,VxW(t,xt))
72*(<,x0 = u2°(t,xt,VxW(t,xt)) where W(t,x) satisfies (6.115) and ul°(t,x,p) (i e
N) are determined from (6.116a). This solution is strongly time consistent. For
the special case of affine-quadratic stochastic differential games, both Thm.
6.27 and Corollary 6.11 permit explicit expressions for the equilibrium
strategies. Toward this end, let F, gl and ql (i e N) be as given in Def. 6.5 (with
F replacing /), and let d(t,xt) = d{t) which is nonsingular. Furthermore, assume
that 5* = Rmi (i e N).69 Then, uio from (6.114a) is uniquely given by uio = -
irHtyiB'ityp', (i G N), :} 68 Elliott (1976) has proven this result for a non-
Markovian problem in which case (6.115) is replaced by a more complex
relation; here we provide a version of his result which is applicable to
Markovian systems. 69In order to apply Corollary 6.11 directly, we in fact
have to restrict ourselves to an appropriate (sufficiently large) compact subset
of Rm .̂
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as dW* _ 1V kj &W* dt 2  ̂UdxkdXj k,j 3 = V.W ■ ( Ax + c - J2
BjRjj~1Bj'vxWj) +ix'Q'x + -J2 V*Wi Bj'Rjj~1RijRjj~1BjVxWj'; W(T,x) =
\x'Q)x, which admits the unique solution set W\t, x) = \x'Z\t)x + x'C{t) + m\t) +
C(t) (i e N), where Z\ i£N, satisfy the AT coupled matrix Riccati differential
equations (6.70a), £' and m' satisfy (6.72a) and (6.73b), respectively, and £'
satisfies the differential equation C = ~Tr[a(t)a(tyz\t)\. Now, since jl* is given
by it readily follows that the Nash equilibrium solution of the stochastic afEne-
quadratic differential game coincides with that of the deterministic game, as
provided in Corollary 6.5. Therefore, we have the following. Corollary 6.12
The set of Nash equilibrium strategies (6.71) for the deterministic affine-
quadratic differential game with MPS or CLPS information pattern also
provides a Nash equilibrium solution for its stochastic counterpart, with a not
depending on the state xt- A similar analysis and reasoning also leads to the
following. Corollary 6.13 Under the conditions of Thm. 6.17, the set of saddle-
point strategies (6.77) for the deterministic affine-quadratic two-person zero-
sum differential game with MPS or CLPS information pattern also provides a
saddle- point solution for its stochastic counterpart, provided that a does not
depend on the state xt- Remark 6.23 Under appropriate convexity restrictions,
which hold for the afEne-quadratic nonzero-sum game treated here, existence
of a solution set to (6.113) is also sufficient for existence of a Nash
equilibrium (see Varaiya, 1976);
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referred to in Corollary 6.12 is the unique Nash equilibrium solution for the
afEne-quadratic stochastic differential game within the class of feedback
strategies. It should be noted that we do not rule out existence of some other
Nash equilibrium solution that depends also on the past values of the state
(though we strongly suspect that this should not be the case), since Thm. 6.27
provides a sufficiency condition only within the class of feedback strategies.
The reader should note, however, that we cannot have information- ally
nonunique equilibrium solutions here, since {wt,t > 0} is an independent-
increment process and a is nonsingular. For the zero-sum differential game, on
the other hand, an analogous uniqueness feature may be attributed to the result
of Corollary 6.13, by making use of a sufficiency result of Elliott (1976),
which is obtained for compact S1 and S2 but can easily be generalized to
noncompact action spaces for the affine-quadratic problem. □ 6.8 Problems 1.
An alternative derivation of the result of Thm. 6.2 makes use of Prop. 5.1. First



show that the ith inequality of (6.3) dictates an optimization problem to Pi
which is similar to the one covered by Prop. 5.1, with ck in Prop. 5.1 replaced
by ck + J2 êN Blul* which is only a function of Xi (and hence can be
considered as a constant). Then the open-loop Nash equilibrium solution is
given as the solution of the set of relations «f = -p£si+1Akxt-
piU+1+si+1ck+si+1Y,Bi< fc - [Kk +tSk^k+ltSkl -Ofci ■Sit = QX +
Aksk+1[i~~ - f̂c-Pfc-Sfc+il f̂c'' -Sfc+i =(2fc+i> 4 = AklI-
BlpiSl+1}'[sl+1+Si+lck + Sl+lY,B{<h )£N sk+i =0, k € K, i € N, where x*k+l
(k € K) denotes the corresponding state trajectory. Now finally prove that the
preceding set of relations admits a unique solution as given in Thm. 6.2, under
precisely the same existence condition. 2. Consider the general formulation of
an AT-person nonzero-sum dynamic game, as described by (6.1) and (6.2),
where the players have access to the state with a delay of one time step, i.e.,
the information available to each player at stage k is Vk = {xfc-i,Xfc-2, •••,a?
i}, k > 2. We wish to obtain a strongly time consistent Nash equilibrium
solution for this class of dynamic games.
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under this information structure. (ii) Specialize the result above to affine-
quadratic dynamic games, so as to obtain the counterpart of Corollary 6.1 for
this one-step delay CLPS pattern. 3. For the class of affine-quadratic zero-sum
dynamic games covered by Thm. 6.7, modify the information structure so that
now Pi is allowed to have access to the current and past actions of P2, i.e., Pi's
information structure is Tjl = {Xk,Uk,Xk-l,Uk-i, ■ ■ ■ ,Xi,V%}, k>l. Develop
the counterpart of the result of Thm. 6.7 for this class of games. In particular,
show that (i) there exists a saddle point under conditions that are less stringent
(for Pi) than the conditions of Thm. 6.7; (ii) the saddle-point policies of the
players that are also strongly time consistent are afEne functions of the current
information (which is {rcfcjUj?} for Pi, and Xk for P2, at stage k); (iii) the
corresponding state trajectory is the same as the one generated by the feedback
saddle-point solution of Thm. 6.7, whenever the latter exists. 4. Consider the
infinite-horizon two-player linear-quadratic dynamic game whose two-
dimensional state xk = (x\,x\)' is described by f̂c+i = 2xfc + uk + exk; xl = 1,
xk+l = —2xk+uk — exk; x1 = l, where e > 0 is a scalar parameter. Let the cost
functions be given by ^■ = £(4+i)2 + K)2- i = i,2. fc=i (i) Find the largest
value of e > 0 (say, e*), such that for all e < e*, the game admits a stationary
feedback Nash equilibrium solution. (ii) Obtain the feedback Nash equilibrium



solution when e = e*/2, by directly using (6.28a)-(6.28c), and also by iterating
on the solution of the finite-horizon game. Derive a set of nonlinear Nash
equilibrium solutions for the dynamic game of subsection 6.3.1. Specifically,
obtain a counterpart of the result of Prop. 6.5 by starting with the
representations 2 71(x2,a;i) = --x2+p[x2-X2{j3)]2, j2(x2,xi) = --x2 + q[x2-
X2{j3)}2,
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analysis that precedes Prop. 6.5, How does the underlying existence condition
compare with (6.35)? 6. Consider the scalar two-person three-stage stochastic
dynamic game described by the state equation X4 = X3 + u\ + 9, ^3 = X2 + u\ +
u\ + 9, x2 = x\ + u\ + 9, and cost functionals L1 = (x4)2 + (ul)2 + (utf, L2 =
(x4)2 + 2(u2)2 + (u2)2. Here 9 denotes a Gaussian random variable with mean
zero and variance 1, and both players have access to CLPS information. Show
that this dynamic game admits an uncountable number of Nash equilibria, and
obtain one such set which is linear in the state information available to both
players. Will there be additional Nash equilibria if 9 has instead a two-point
distribution with mean zero and variance 1? 7. For the stochastic dynamic
game of the previous problem, prove that the Nash equilibrium solution is
unique if the underlying information pattern is, instead, one-step delay CLPS
pattern. Obtain the corresponding solution, and identify it as a member of the
solution set determined in Problem 6. 8. Consider the class of two-person If-
stage linear-quadratic stochastic dynamic games with cost functional (6.10b)
and state equation xk+i = Akxk + Blul + Blu\ + 9k,k € K, where {9k',k € K}
denotes a set of independent Gaussian vectors with mean zero and covariance
In. Obtain the saddle-point solution when (i) both players have access to one-
step delayed CLPS information, (ii) Pi has access to CLPS information and P2
has access to one-step delayed CLPS information, and (iii) Pi has access to
CLPS information whereas P2 has only access to the value of x\ (i.e., OL
information). How do the existence conditions compare in the three cases,
among themselves and with (6.26a)-(6.26b)? (Hint: Make use of Thm. 6.9 in
order to simplify the derivation of the saddle-point strategies.) 9. Execute the
procedure outlined in Remark 6.13 (for two-person games with weakly
coupled players) when the state dynamics in (6.48a) are linear and the cost
functions in (6.48b) are quadratic, and obtain expressions for the first three
terms in the expansions for the open-loop Nash strategies of the



358 T. BA§AR AND G. J. OLSDER 10. Show that Thm. 6.12 can also be
obtained by directly utilizing Prop. 5.2 in a manner which is parallel to the one
outlined in Problem 1 for the discrete-time counterpart. 11. This problem
addresses a generalization of Problem 1 in Section 5.8. Assume that we now
have two companies, Pi and P2, with Pi having xi(t) customers at time t and
making a total profit of /«(*)= / [c'xtis) - u'is^ds Jo up to time t, where c* is a
constant. The function ul(t), restricted by ul(t) > 0, fl(t) > 0, represents the
money put into advertisement by Pi, which helps to increase the number of
customers attracted to that firm, according to ±i = u% - uj, Xi(0) = xio > 0, i, j
- 1,2, j j= i. The total number of customers shared between the two companies
is a constant, so that we may write, without any loss of generality, the
constraint relation *i(0+*2(0 = l. Vt€[0,T], where T denotes the end of the time
period when each firm wishes to maximize its total profit (i.e., /'(T)). Obtain
the open-loop Nash equilibrium solution of this two-person nonzero- sum
differential game wherein the decision variable for Pi is ul. (For details see
Olsder, 1976). 12. Consider a variation on the previous problem so that now
the state equation is described by ±\ = X2Ul — X\U2, ±2 = X\U —X2U1, and
the decision variables satisfy the constraints |«'(«)I<1. t = l,2. The objective
for Pi is still maximization of fl(T). (i) Obtain the open-loop Nash equilibrium
solution. (ii) Obtain the feedback Nash equilibrium solution when both players
have access to the current values of x\ and X2-
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of informationally nonunique linear Nash equilibrium solutions of the scalar
linear-quadratic two-person nonzero-sum differential game described by the
state dynamics ± = 2u1-u2, x(0) = 1, te[0,2] and cost Junctionals U = [x{2)}2+
f K'(t)]2dt, i = l,2, Jo and with the underlying information structure being MPS
for both players. Which of these would still constitute a Nash equilibrium
when (i) P2 has, instead, access to OL information, (ii) both players have
access to OL information? (Note that, in this case, OL information is in fact "no
information" since the initial state is a known number.) 14. Prove that the
statement of Thm. 6.9 is also valid for two-person zero-sum differential games
with prescribed fixed duration. 15. Repeat Problem 9 for the CLNM
information structure and using the feedback Nash equilibrium solution. Here
Remark 6.18 replaces Remark 6.13, and Corollary 6.5 replaces Thm. 6.12. 16.
Generalize the result of Thm. 6.17 to the case when the cost function has, under
the integral, the additional term ul(t)'K(t)u2(t), where K(-) is a matrix of



appropriate dimensions and with continuous entries. Is it possible for the
differential game to have a bounded lower value even if the conditions for
existence of a saddle point fail? 17. This problem uses the notation and
terminology introduced in Section 6.6. We wish to design optimal controllers
for the following two-dimensional system, under different information patterns,
using the H°° criterion: i\ = x2 + w; i2 = Xi+ x2 + u; z = x\ + x2; y - x\ + v.
Here, x\ and x2 denote the two states, whose initial values are completely
unknown, u is the scalar control variable, y is the measured output, z is the
regulated output, w is the scalar system disturbance and v is the measurement
disturbance. With this system, we associate the performance index {f z(t)\2 +
\u(t)\2]dt I / J \Xl(0)\2 + \x2(0)\2 + J [\w(t)\2 + \v(t)\2}dt where T is the
terminal time.
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access to perfect state information. Denote the optimum (minimax)
performance level for this problem by A*. Obtain the value of A*, and a
controller that will ensure a performance level no worse than A = A* + 0.01.
(ii) Repeat the above now under the original imperfect state information. (iii)
Now take the time horizon to be finite, and T — 1. Furthermore take the initial
state to be known to be zero. Obtain (approximately) the A* for this problem
under perfect state measurements by numerically solving the corresponding
generalized Riccati differential equation for different values of A. 18. The
following two-dimensional system description depends on a parameter e: ±i =
x\ + 2x2 + 2u + w; e±2 = 2x\ + 2^2 + « + 3iu. Given the cost function: if {2x2
+ 2x1x2 + xl + u2)dt\/i f K*)|2d*l, obtain the jET°°-optimal performance level
(A*(e)), under perfect state measurements, for e = 1,0.1,0.01,0.001,0.0001, to
the nearest four decimal places. Solution: 2.4332, 2.7843, 2.9724, 2.9972,
2.9997. 19. Repeat Problem 18 for the following system and cost function: ±\ =
2x\ + x2 + 2u + w; ex2 = —Xi — 2^2 + 2u + 3w, I / (2x\ + 2xxx2 + 3x1 +
u2)dt\ / I / \w(t)\2 dt I. Solution: 1.3306, 1.3393, 1.4212, 1.4237, 1.4240. 20.
Consider the following two-dimensional system which again depends on a
parameter e: X\ = X\ + X2 + 3u + 2w; e±2 = — X\ + 2x2 + 2u + w. We now
have a measurement equation y = 2x\ +x2 + 3v, where v is the measurement
noise. Given the cost function, U" (2x? + 2x!X2 + 3x^+u2)dtW{ / [\w(t)\2 +
\v(t)\2]dt\ obtain the jET°°-optimal performance level (A*(e)), under imperfect
state measurements, for e = 1,0.1,0.01,0.001,0.0001, to the nearest four
decimal places, and determine a controller (for each case) that assures a



performance no worse than A*(e) + 0.01.
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55.1993, 17.3221, 9.9331, 9.1197, 9.0308. 21. Consider the differential game
of Problem 13, but with the state equation replaced by x = 2ul - u2 + a, where
it is a random variable taking the values +1 and —1 with equal probability
1/2. Under the CLPS information pattern for both players, does this differential
game, which also incorporates a chance move, admit a unique Nash
equilibrium solution? In case the reply is "yes", obtain the unique solution; in
case it is "no", obtain the complete set of Nash equilibria that are linear in the
current value of the state. 22. Obtain the saddle-point solution of the class of
two-person zero-sum stochastic differential games described by the state
equation dxt = [A(t)xt + B t̂fu1 + B2(t)u2]dt + a(t)dwt and cost functional
(6.60b), where Pi has access to CLPS information and P2 has OL information.
Here, &(■) is a nonsingular matrix, {wt,t > 0} is the standard Wiener process,
and the initial state vector xq is a known quantity. (For details see Ba§ar
(1977b)). 6.9 Notes Section 6.2. Results pertaining to Nash equilibria in
infinite dynamic games first appeared in the works of Case (1967, 1969) and
Starr and Ho (1969a, b) but in the continuous time (i.e., for differential games).
Here we present counterparts of these results in discrete time, and with special
attention paid to affine-quadratic (nonzero- sum and zero-sum) games, and
existence conditions for equilibria under open-loop and memoryless perfect
state information patterns. A possible extension of these results would be to the
class of game problems in which the players also have the option of whether
they should make a perfect state measurement or not, if it is costly to do so; for
a discussion of such problems see Olsder (1977b). For applications of some of
these results in macroeconomics, see Pindyck (1977), Kydland (1975) and
Ba§ar, Turnovsky and d'Orey (1986). The last reference also studies, within
the context of a two-country macroeconomic model, the computation and
stabilizability of stationary feedback Nash equilibria using the solutions of a
sequence of time-truncated dynamic games. Section 6.3. Existence of
uncountably many informationally nonunique Nash equilibria in dynamic games
under closed-loop information was first displayed in Ba§ar (1974), Ba§ar
(1976a) for discrete-time games, and in Ba§ar (1977b) for differential games.
The underlying idea in this section therefore follows these references. The
algorithm of subsection 6.3.2 is from Ba§ar (1977d), and Thm. 6.9 was first
presented in Ba§ar( 1977a); some further discussion on the relation between



existence of a saddle point and the underlying information pattern in zero-sum
dynamic games can be found in Ba§ar (1976b)

362 T. BA§AR AND G. J. OLSDER and Witsenhausen (1971b), where the
latter reference also discusses the impact of information on the upper and
lower values of a game when a saddle point does not exist. Section 6.4.
Elimination of informational nonuniqueness in Nash equilibria through a
stochastic formulation was first discussed in Ba§ar (1976a), and further
elaborated on in Ba§ar(1975, 1979b, 1989b); this section follows basically the
lines of those references. The fact that an increase in information could be
detrimental for a player under Nash equilibria was first pointed out in
Ba§arand Ho (1974), but within the context of stochastic games with noisy
(imperfect) observation. For some results on the equilibrium solution of linear-
quadratic stochastic games with noisy observation, see Ba§ar(1978), Ba§arand
Mintz (1972, 1973). Section 6.5. Derivation of open-loop and feedback Nash
equilibria in nonzero-sum differential games was first discussed in Case
(1967, 1969) and Starr and Ho (1969a, b), where the latter two references also
display the differences (in value) between these two types of equilibria.
Derivation of open-loop saddle-point equilibria, however, predates this
development, and was first discussed in Berkovitz (1964) and Ho et al.
(1965), with the latter devoted to a particular class of linear-quadratic
differential games of the pursuit-evasion type, whose results were later put into
rigorous framework in Schmi- tendorf (1970); see also Halanay (1968) which
extends the results of Ho et al. (1965) to differential games with delays in the
state equation. For an excellent exposition on the status of nonzero-sum and
zero-sum differential game theory in the early 1970s, see the survey paper by
Ho (1970). Some selective references which display the advances on Nash and
saddle-point equilibria of deterministic differential games since the early
1970s are (in addition to those already cited in the text) Bensoussan (1974),
Ho, Luh and Olsder (1980), Leitmann (1974, 1977), Scalzo (1974),
Vidyasagar (1976) and related papers in the edited volumes Blaquiere (1973),
Hagedorn et al. (1977), Ho and Mitter (1976), Kuhn and Szego (1971),
Ba§ar(1986b), Ba§arand Bernhard (1989), Hamalainen and Ehtamo (1991),
Ba§arand Haurie (1994). For applications of this theory to problems in
economics, see Case (1971, 1979), Clemhout et al. (1973), Pohjola (1986),
Jorgensen (1986), Dockner and Feichtinger (1986) and Leitmann and Wan, Jr.
(1979), where the last one discusses a worst-case approach toward



stabilization of uncertain systems, that utilizes the zero-sum differential game
theory. Tolwin- ski (1978b) provides a rather complete account of the results
on existence of open-loop Nash equilibria in nonzero-sum differential games,
and Tolwinski (1978a) discusses a possible computational scheme for the
numerical evaluation of the Nash equilibrium solution; see also Varaiya (1967,
1970), Rosen (1965) and Friedman (1971) for existence results concerning
noncooperative equilibria. For the special class of linear-quadratic games,
Papavassilopoulos and Cruz, Jr. (1979b) and Papavassilopoulos et al. (1979)
discuss existence of a unique solution to the coupled set of Riccati equations
(6.70a), which plays an important role in the characterization of feedback Nash
equilibria; for computational algorithms for some specially structured games,
see Ba§ar (1991a), Srikant and Ba§ar (1991), Gajic, Petkovski and Shen
(1990). Papavassilopoulos and Olsder (1984) demonstrate that an infinite-
horizon linear-quadratic differential game might have multiple Nash equilibria
even though every time-truncated version of it has a unique feedback Nash
equilibrium. Eisele (1982) was one of the first to point out that linear-
quadratic differential games might admit multiple open-loop Nash equilibria,
whose results were later extended by Engwerda (1998) who showed that an
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solution may exist for a linear quadratic game even if the corresponding
differential Riccati equations may not have a solution. The latter reference also
studied the limiting behavior of finite time horizon open-loop solutions of
linear-quadratic games as the final time approaches infinite. For a discussion
of non- cooperative equilibria in differential games with state dynamics
described by partial differential equations, see Roxin (1977). Section 6.6. The
theory briefly presented here has extensions to other types of information
structures, such as sampled-data (both perfect state and imperfect state), and
delayed measurements, as well as to nonlinear systems; see Ba§arand Bern-
hard (1995). It is also possible to study the robustness (or sensitivity) of the H°
°- optimal controllers to unmodeled fast plant dynamics, within the framework
of singular perturbations; see Pan and Ba§ar(1993, 1994a,b). These papers
also develop, as a byproduct, a complete theory for the saddle-point equilibria
of singularly perturbed linear-quadratic differential games under perfect and
imperfect state measurements. It is also possible to combine Nash and saddle-
point equilibria to develop a counterpart of H°°-optimal control theory for
multiple controller systems under multiple worst-case design criteria (Ba§ar



1992). Section 6.7. For some explicit results in the case of stochastic quadratic
differential games with mixed information patterns, see Ba§ar (1977b,c,
1979a, 1980a). Extensions of these results to stochastic differential games with
noisy observation meet with formidable difficulties, some of which have been
resolved in the case of linear-quadratic zero-sum games (see Willman (1969),
Bagchi and Olsder (1981) and Ba§ar (1981c), where the latter reference deals
with the case of identical noisy measurements for the players). For a
distributed algorithm for the computation of Nash equilibria in linear-quadratic
stochastic differential games, see Ba§arand Li (1989).
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Chapter 7 Stackelberg Equilibria of Infinite Dynamic Games 7.1 Introduction
This chapter is devoted to derivation of the Stackelberg solution in infinite
dynamic games with fixed prescribed duration. The chapter starts with a
treatment of dynamic games denned in discrete time and with the number of
players restricted to two. Continuous-time counterparts of most of these results
and possible extensions to many-player games are treated in the latter part. The
next two sections, i.e., Sections 7.2 and 7.3, deal, respectively, with the
Stackelberg solution under open-loop information and the feedback
Stackelberg solution under CLPS information. These solutions are obtained
using two standard techniques of optimal control theory, viz. the minimum
principle and dynamic programming, respectively. Derivation of the (global)
Stackelberg solution under the CLPS information pattern, however, requires a
much more subtle analysis since all standard techniques and approaches of
optimal control theory fail to provide the solution. Therefore, Section 7.4 is
devoted exclusively to this topic and to elucidation of an indirect approach
toward derivation of the closed-loop Stackelberg solution. This indirect
approach is first introduced within the context of two scalar examples (cf.
subsections 7.4.1 and 7.4.2), and then its application is extended to the class of
two-person linear-quadratic dynamic games in subsection 7.4.3. There is a
clear relationship with the theory of "incentives", and this is the subject of
subsection 7.4.4. Section 7.5 discusses derivation of the Stackelberg solution
in stochastic dynamic games with deterministic information patterns, and
primarily for the open-loop information (cf. subsection 7.5.1) and for the CLPS
information structure under the "feedback Stackelberg" solution (cf. subsection
7.5.2). Derivation of the (global) Stackelberg solution under the CLPS



information pattern is a challenging topic, which is briefly discussed also in
subsection 7.5.1. Stochastic incentive problems are discussed in subsection
7.5.2, as the counterpart of 365

366 T. BA§AR AND G. J. OLSDER subsection 7.4.4 in the stochastic case.
Section 7.6 treats continuous-time games, first presenting the Stackelberg
solution under open-loop information for the leader (subsection 7.6.1), and
then deriving the feedback Stackelberg solution (defined as a natural extension
of the discrete-time FB Stackelberg solution concept) under CLPS information
(subsection 7.6.2). 7.2 Open-Loop Stackelberg Solution of Two-Person
Dynamic Games in Discrete Time In this section we discuss the Stackelberg
solution for the class of two-person deterministic discrete-time infinite
dynamic games of prescribed fixed duration (cf. Def. 5.1) when the underlying
information structure is open-loop (for both players) and Pi acts as the leader.
Hence, abiding by our standard terminology and notation, the state evolves
according to Xk+i =/*(**> "it,"*). keK, (7.1) where Xk € X = Rn, x\ is
specified a priori, and ulk € [/£ C Rm% i = 1,2; and the stage-additive cost
functional for Pi is introduced as K J\y\y2)±L\u\u2) = ,£9k(xk+i,u1k,4,xk), 1 =
1,2. (7.2) fc=i Because of the open-loop information structure, the game is
already in normal form, and therefore Defs 3.26, 3.27 and 3.28 readily
introduce the Stackelberg equilibrium solution with Pi acting as the leader
(since finiteness of the game was not essential in those definitions). One
method of obtaining the Stackelberg solution for this class of games is to make
use of the theory of Section 4.5, since these games can be viewed as static ones
under the open-loop information structure; such an approach also readily leads
to conditions for existence of a Stackelberg solution. Toward this end, we first
note that, by recursive substitution of (7.1) into (7.2), the cost functional
Jl(ul,u2) can be made to depend only on the control vectors u1, u2 (which are
of dimensions m\K and ni2K, respectively) and the initial state x\, which is
known a priori. Now, if (i) 7* is continuous on U1 x U2 (i = 1,2), (ii) J2(ux, ■)
is strictly convex on U2 for all ui € U1, (Hi) IP is a closed and bounded
(thereby compact) subset of Rmi(i = 1,2), then it follows from Corollary 4.4
(more generally from Thm. 4.8) that a Stackelberg equilibrium solution exists
for the open-loop infinite game. A brute-force
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corresponding solution would be first to determine the unique reaction curve of



the follower by minimizing J2{ul,u2) over u2 € U2 for every fixed u1 € U1,
which is a meaningful optimization problem because of assumptions (i)-(iii)
above. Denoting this unique mapping by T2 : Ul —> U2, the optimization
problem faced by PI (the leader) is then minimization of J1(u1,T2u1) over U1,
thus yielding a Stackelberg strategy for the leader in this open-loop game.
Despite its straightforwardness, such a derivation is not practical, especially if
the number of stages in the game is large—which directly contributes to the
dimensions of the control vectors u1, u2. An alternative derivation, which
parallels that of Thm. 6.1 in the case of open-loop Nash equilibria, utilizes
techniques of optimal control theory. Toward this end, we first determine the
unique optimal response of the follower to every announced strategy 71 € T1
of the leader. Since the underlying information pattern is open-loop, the
optimization problem faced by the follower is (for each fixed u1 € U1) min
L2(u1,u2) subject to Xk+i = fk(xk, ujt, ul), xi given. This is a standard optimal
control problem whose solution exists and is unique under conditions (i)-(iii),
and which can further be obtained by utilizing Thm. 5.5. Lemma 7.1 In addition
to conditions (i)-(iii) assume that70 (v°) fki'iU ĵU2.) is continuously
differentiable onR", and fk(-,uk,-) is convex on Rn x U2, (k e K), (v)
9jfc('>ujfc'ujfc>') is continuously differentiable on Rn x Rn, (k € K). Then, to
any announced strategy u1 = 71 € T1 of the leader, there exists a unique
optimal response of the follower (to be denoted by^1(x\) — u2) satisfying the
following relations: Xk+l = fk(Xk,ul,ul), Xi=Xi, u2k = arg min
Hl(pk+l,u\,u2k,xk), (7.3a) (7.3b) Pk dx. + ■fk(xk,uk,ul) 2\f Pk+i + I ^
gl(xk+i,ul,ul,xk) axk+i dxk 9k(xk+i,uk,uk,xk) Pk+i = 0, (7.3c) 70Except for
very special cases, conditions (iv) and (v) given below, and conditions (vi),
(vii), (ix) and (x) given later, are required for satisfaction of condition (i) (i.e.,
they are, in general, implicit in condition (i)); but we nevertheless rewrite them
here since they will be needed explicitly in some of the results obtained in the
sequel.
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9j(A(nl«i,ttJ)Iiilliil1n) /73d) +P'k+1fk(xk,ul,ul), keK. Here, {pi,- ■ ■ ,pk+i] is
a sequence of n-dimensional costate vectors associated with this optimal
control problem. If we further assume (™) fk(xk,Uk>') *s continuously
differentiate on Uk (keK), (vii) g (̂xk+i,u\, -,Xk) is continuously differentiable
on Uk (k e K), (viii) u2 in Lemma 7.1 is an inner-point solution for every u1 e
U1, then (7.3b) can equivalently be written as VulHZ(pk+1,u1k,u2k,xk)=0



(keK). (7.4) Now, to obtain the Stackelberg strategy of the leader, we have to
minimize £*(«*, u2), in view of the unique optimal response of the follower to
be determined from (7.4) in conjunction with (7.3a) and (7.3c). Therefore, Pi
is faced with the optimal control problem min L^u^u2) (7.5a) subject to Xk + l
= fk(Xk,Uk>uk)' Pk = Fk(xk,ul,ul,pk+1), Vu2Hk(Pk+i,uLuk,xk) = 0 xi given,
PK+l = 0, (k e K), (7.5b) (7.5c) (7.5d) where Hk is defined by (7.3d) and a d
Fk = -Q -̂fk(xk,Uk>uk)'Pk+i + d TT-9k(fk(xk,uLuk)>uk,uhxk) axk (7.5e) Note
that, in this optimal control problem the constraint equations involve boundary
conditions at both end points, and hence Thm. 5.5 is not applicable; but a
standard result of nonlinear programming (cf. Canon et al., 1970) can be
utilized to yield the following conclusion. Theorem 7.1 In addition to
conditions (i)-(viii) stated in this section, assume that (be) fk(xk,-,u )̂, g%
(xk+i,-,v%,xk) are continuously differentiable on Uk, keK,
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continuously differentiable on Rn x U£ x U% x Rn, k € K, (xi) fk(-, u\, ■) is
twice continuously differentiable on Rn x l]\, and g%(-, u£, • , •) is twice
continuously differentiable on Rn x Uk x Rn, k € K. Then, if {fk*(xi) — uk* €
Uk,k € K} denotes an open-loop Stackelberg equilibrium strategy for the
leader in the dynamic game formulated in this section, there exist finite vector
sequences {Ai,..., A^}, {/ii, • • •, Hk}, {v\, ■ ■ ■ ,vk} that satisfy the
following relations: 4+i= fk{xl,u\*,uf), x\=x1, (7.6a) VuiHl(\k, nk,vk,p*k+1,ul*
,u£ ,x*k) = 0, (7.6b) Vu2H1k{\k,vk,vk,pk>+l,uk*,u2k*,x*k) = 0, (7.6c) K-i =
^Hk(xk,Vk,Vk,pt+i,uk*,u2k,x%), XK=0, (7.6d) li'k+i = g
Hl{\k,nk,vk,p*k+1,ul*,ul*,x*k), Hi = 0, (7.6e) VulH2k(pl+l!ul*,u2k*,xl) = 0,
(7.6f) pl = Fk(xluk*,ul*,pi+1), p*K+i=0, (7.6g) where
+ f̂ci;,ik(xik,«i,«ipik+i)+i/i(Vu2fr|(pik+i,«i,«|,Xik))', W'°nj jET  ̂is defined by
(7.3d), Fk by (7.5e), and Uk denotes the interior of Uk. Furthermore, {u\*,k €
K.} is the corresponding unique open-loop Stackelberg strategy of the follower
(P2), and {x%+1,k € K} is the state trajectory associated with the Stackelberg
solution. Proof. As discussed prior to the statement of the theorem, the leader
(Pi) is faced with the optimal control problem of minimizing L1(u1,u2) over
U1 and subject to (7.5b)-(7.5d). Since the problem is formulated in discrete
time, it is equivalent to a finite dimensional nonlinear programming problem
the "La- grangian" of which is L = ^2{gk(xk+i,ul,ul,xk) + X'k[fk(xk,ul,ul)-
xk+1} fc<=K +Hk[Fk(xk,uk,uk,pk+i) -pk] + u'k[-£-pHk{pk+i,uk,uk,xk)}'},
where Xk: nk, vk (k € K) denote appropriate Lagrange-multiplier vectors.



Now, if {uk*,k € K} is a minimizing solution and {xk+1,p%+i,uf.*;k € K} are
the
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variables so that the constraints (7.5b)-(7.5d) are satisfied, then it is necessary
that (see, e.g., Canon et al., 1970, p. 51) V„iL = 0, Vu»L = 0, VXfcL = 0,
VPfc+1L = 0, (ft e K) wherefrom (7.6b)-(7.6e) follow. D Remark 7.1 If the
follower (P2) has, instead, access to closed-loop perfect state (CLPS)
information, his optimal response (cf. Lemma 7.1) will be any closed-loop
representation of the open-loop policy {u£,fc € K}; however, since the
constraints (7.5b)-(7.5d) are basically open-loop relations, these different
representations do not lead to different optimization problems for the leader
(Pi). Therefore, the solution presented in Thm. 7.1 also constitutes a
Stackelberg equilibrium for the case in which the follower has access to CLPS
information (with the leader still having OL information). Under this latter
information pattern, we may still talk about a unique open-loop Stackelberg
strategy for the leader; whereas for the follower the corresponding optimal
response strategy will definitely not be unique, since any closed-loop
representation of u2* given in Thm. 7.1 will constitute an optimal strategy for
P2. □ Remark 7.2 The open-loop Stackelberg (OLS) solution is not weakly
time consistent (a la Def. 5.13), since the OLS solution of any subgame does
not necessarily coincide with the OLS solution of the full game, not even on the
equilibrium trajectory. □ Linear-quadratic games We now specialize the result
of Thm. 7.1 to the class of linear-quadratic dynamic games (cf. Def. 6.1)
wherein fk{xk,ul,ul) = Akxk + Blul+Blul, (7.7a) 9k(xk+i,ul,ul,xk) =
^{x'k+xQi+xXk+x+uiui + ulR^ul), j î, i,j = 1,2. (7.7b) We further assume that
Q\+l > 0, R]? > 0, and Ulk = Rm% Vfc € K, i = 1,2. Under these assumptions,
it readily follows that the optimal response of the follower to any announced
control sequence of the leader is unique and affine, and moreover the minimum
of L1 under the constraint imposed by this affine response curve is attained
uniquely by an open-loop control sequence (for Pi) that is linear in x\.71 This
unique solution can be obtained explicitly by utilizing Thm. 7.1 and in terms of
the current (open-loop) value of the state; it should be noted that Thm. 7.1
provides in this case both necessary and 71This follows since L1(u1,u2) is
quadratic and strictly convex on Rmi xR"12. It should also be noted that the
assumptions made on Q\+l and Rj.2 are sufficient, but not necessary, for the
open-loop Stackelberg solution to exist and be unique; they are made here for



convenience in the derivation to follow.

HIERARCHICAL (STACKELBERG) EQUILIBRIA 371 sufficient conditions
because of strict convexity.72 The result is given below in Corollary 7.1,
which is obtained, however, under a condition of invertibility of a matrix
related to the parameters of the game. Corollary 7.1 The two-person linear-
quadratic dynamic game described by (7.7a)-(7.7b) under the parametric
restrictions Qlk+1 > 0, Rk2 > 0 (k € K,i = 1,2) admits a unique open-loop
Stackelberg solution with Pi acting as the leader, which is given, under the
condition of invertibility of the matrix appearing in the braces in (7.9c), by «£*
= 11k*(xl) = -Bl'K1kxi, (7.8a) «** = ll*(x1) = ~B2kK2x*k (fceK), (7.8b)
where K\ = [I+ Ql+lBlB2k r>Ak+1$k +Ql+1Bl[I + Bl'Ql+1BirRl2Bl'Pk+^k
+Ql+x{I + B2kB2kQ2k+l\-1AkMk, (7.9a) K2 £ Pk+1$k (7.9b) *fc  ̂{l +
B2B2kPk+1+BkBl'Q2k+1B2k(I + B2'Ql+lB2rlRk2B2kPk+1 +BlBl\l +
Ql+1BlBZ')-1Ak+1}~1 ■\Ak - BlBl'Q2+l(I + B2B2kQ2+irlAkMk), (7.9c) and
Pk, Ak, Mk are appropriately dimensioned matrices generated by the
difference equations Pk = A'kPk+l + A'kQ2k+1$k; PK+1 - Q2K+l, (7.10a) A*
= A'k[Ql+1$k + Ak+1 +Q2k+lAkMk -Q2k+lB2Nk\; AK+1 - QxK+l (7.10b)
Mk+1 = AkMk - B2kNk; Mx = 0 (7.10c) with Nk (̂I + B2kQ2k+lB2)-
l[B2k{Ak+^k + Q2k+1AkMk) - Rk2B2kK2). (7.10d) Furthermore, the unique
state trajectory associated with this pair of strategies satisfies xl+i = ^kX*k,
xl=xi. (7.10e) 72 Note that condition (iii) in the general formulation is also met
here since we already know that a unique solution exists with Ul taken as Rm*
and therefore it can be replaced by an appropriate compact subset of Rmi (i =
1,2).
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the linear-quadratic open-loop Stackelberg game has already been verified in
the discussion prior to the statement of the corollary. We now apply Thm. 7.1
to obtain the corresponding equilibrium strategies of the players, in the
structural form (7.8a)-(7.8b). Toward this end, we first rewrite (7.6b)-(7.6g),
under the "linear-quadratic" assumption (7.7a)-(7.7b), respectively, as
follows: «1* + BZQl+1xUi + Blk\k + BlkQl+lAknk + B}iQl+1B2kvk = 0, (i)
Rl2ul*+B*Ql+1xk+1+B*\k + BtQl+1Akfik + (I+B%Ql+1Bl)vk = 0, (ii) A*_!
= A'kQl+1x*k+1 + A'kXk + A'kQ2k+x(Aklxk + B2kvk); \K = 0, (Hi) Hk+i =
AkHk + B\vk; m = 0, (iv) vl* + Bl'(Ql+1x*k+1+pi+1) = 0, (v) pi = A'k\pi+i +
Ql+ixl+i]; p*k+i = o- («*) The coefficient of vk in (ii) is clearly positive



definite; therefore, solving for vk from (ii) and substituting this in (i), (iii) and
(iv), we obtain, respectively, 4* = -Bxk{Q\+1-Ql+1Bl{I + BtQl+1Bl)-
'BtQ\+1\xt+1 ~Bxk [I - Ql+lB2k(I + B*Ql+1Bl)-*B*]\k -Bi'Q2k+1[I - Bl(I +
B%Ql+1Bl)^B%Ql+1]Aknk +BlQl+xBl{I + BtQl+xBl)-'R^ut, (vii) U-i
A'k[Qi+i - Ql+iBUl + BiQl+lBl)-'B*Ql+l\xl+l +A'k{I - Ql+1Bl(I +
B*Ql+1Bl)-lB*]\k +A>kQl+llI-Btil + B*Ql+1Bl)-iB*Ql+1}Ak»k [U) -
A>kQl+1(I + BtQl+1Bl)-iR?ul*; XK = 0, W+1 = {I-Bl{I + BtQ2k+lBl)-
'B%Ql+1]AkHk -B2k(I + B2kQl+1Bl)-1 (ix) iRk2«k + B2k (Ql+1x%+1 +
A*)]; m = 0. Now, letting p*k+1 = (Pk+X -Q2k+l)x*k+l, Xk =
{^k+i~Qk+i)x%+1, Hk = Mkx%, and substituting (vii) and (v) into the state
equation, we obtain the relation xk+\ = $kxk (x) assuming that the required
inverse in the expression for $k (defined by (7.9c)) exists. In determining the
expression for $k, as given by (7.9c), we have also utilized the matrix identity
of Lemma 6.2 in simplifying some of the terms involved. Now, finally, by
further making use of (x) in (vii), (v), (vi), (viii) and (ix), we arrive at (7.9a),
(7.9b), (7.10a), (7.10b) and (7.10c), respectively. □
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coupled matrix difference equations (7.10a)-(7.10c) constitute a two-point
boundary value problem, since the starting conditions are specified at both end
points. If the problem is initially formulated as a (high dimensional) static
quadratic game problem, however, such a two-point boundary value problem
does not show up; but then one is faced with the task of inverting high
dimensional matrices (i.e., the difficulty again shows up in a different form). □
Remark 7.4 Corollary 7.1 extends naturally (without any conceptual
difficulties) to affine-quadratic games where the state equation has an
additional control-independent driving term and the cost functions have cross
terms between the current values of the state vector and the players' control
vectors. For this more general case, the follower's optimal response will again
be an affine function of the leader's control, and the leader's open-loop
Stackelberg control will be affine in the initial state xi, obtained from the
solution of a generalized quadratic optimization problem. □ 7.3 Feedback
Stackelberg Solution Under CLPS Information Pattern The feedback
Stackelberg solution concept introduced in Def. 3.29 for finite games is
equally valid for infinite dynamic games denned in discrete time and with
additive cost functionals, provided that the underlying information structure
allows the players to have access to the current value of the state (such as in



the case of CLPS or MPS information pattern). Furthermore, in view of Prop.
3.15 (which is also valid for infinite games denned in discrete time), it is
possible to obtain the solution recursively (in retrograde time), by employing a
dynamic programming argument and by solving static Stackelberg games at
every stage. Toward this end, we consider, in this section, the class of two-
person dynamic games described by the state equation (7.1), and the cost
functionals Ll{ul, u2) given by (7.2). Under the delayed-commitment mode of
play, we restrict attention to feedback strategies, i.e., ulk — fj.(xk)' k € K, i =
1,2, and seek to obtain the feedback Stackelberg solution that is valid for all
possible initial states xi € Rn. To complete the description of the dynamic
Stackelberg game, let T\ denote the class of all permissible strategies of Pi at
stage k (i.e., measurable mappings from R" into U )̂. Then, the cost functional
for Pi, when the game is in normal form, is (as opposed to (7.2)) K W.72) =
Y.9l(xk+ull{xk),lk{xk).xk); jI € T{, k € K, j = 1,2. Because of the additive
nature of this cost functional, the following theorem now readily follows from
Def. 3.29 and Prop. 3.15 (interpreted appropriately for the infinite dynamic
game under consideration), and it provides a sufficient condition for a pair of
strategies to constitute a feedback Stackelberg solution. Such
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consistent one, using the terminology introduced in Def. 5.14 with the sol
operator taken as the feedback Stackelberg equilibrium solution. Theorem 7.2
For the two-person discrete-time infinite dynamic game formulated in this
section, a pair of strategies {71* € T1^2* € T2} constitutes a feedback
Stackelberg solution with Pi as the leader if 1 ■%, n dkhlflxk) = Gl(rint*,xk),
Vx^R" (fceK), (7.11) where R%{fk) is a singleton set defined by Rlhl) = {& €
Tl.Gl l̂dlxk) = min G£(7J,7*,*jO Vxfc € R"}, (7.12a) GU7fe,7fe, )̂ = G (̂/*
(a:*,7*(a?*).7*(^*))»7fc(ar*)»'y*(a;*).a:*)» (7 12M i= 1,2, fc€K, v " ; and Gk
is recursively defined by G\{xk+l,il{xk),il{xk),xk) =
Gk+1{fk+i{xk+l,il*+i{xk+l), llXl{xk+i))nk'+l{xk+i),~l2k*+l{xk+l)1xk+l)+
9k{xk+\,ll(xk),ik{.xk)>Xk)\ G*K+1 = 0, i = 1,2. Furthermore, every such
solution is strongly time consistent. Remark 7.5 If the optimal response set R%
{-) of P2 (the follower) is not a singleton, then (in accordance with Def. 3.29)
we have to take the maximum of the LHS of (7.11) over all these nonunique
response functions. However, if G\{^k,-,xk) is strictly convex on Uk (k € K),
the underlying assumption of "unique follower response" is readily met, and
the theorem provides an easily implementable algorithm for computation of



feedback Stackelberg strategies. □ Linear-quadratic games For the special case
of linear-quadratic games with strictly convex cost function- als, the feedback
Stackelberg solution of Thm. 7.2 can be determined in closed form. Toward
this end, let fk and g'k be as defined by (7.7a) and (7.7b), respectively, with
Q[+1 > 0, Rk3 > 0 Vfc e K, i,j = 1,2, i  ̂j, and take U'k = Rm>. Then, solving
recursively for Gk, in view of (7.11) and (7.12a), we obtain the quadratic
structure G*(**+i> «£>«*)= i '̂k+i^k+^k+i + uiul + uiR^ul) *,j = 1,2; j  ̂i,
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backward recurrence relation L\ = (Ak - BlSi - BlSl)'L\+l{Ak - B\S\ - B\S\) +
s£si +siRliS{+Q\; L>K+1=Q\+1 (i,j = 1,2; j jk i), {' ' Si = [Bl{I +
Ll+1BlBi)^L\+1{I + BlBXLl+1)^BlBlLX+1Bl ■{I + Bl'Ll+1Bl)-iRk\l +
BtLl+lBl)^BiLl+xBl + T\~* ■Bl'[(I + Ll+lBlBl)-'L\+x{I + BlBl'Ll+1) +
L*+1Bl •(/ + BlLl+lBl)-*Rl'{I + B*Ll+lBl)-*B*Ll+1}Ak, (7.15a) Si = (I +
Bl'Ll+1Bl)-lB*Ll+1(Ak - BlSl). (7.15b) It should be noted that L\+1 > 0, Vfc €
K, i = 1,2 (since Q%+1 > 0, Rkj > 0), and therefore the required inverses in
(7.15a) and (7.15b) exist. By the same token, G\{ \̂,-,Xk) is strictly convex on
Rm2 and hence R\ is a singleton for every k € K; furthermore, the minimization
problem (7.11) admits a unique solution, again because of the strict convexity
(on Rmi). The implication, then, is the following corollary to Thm. 7.2, which
summarizes the feedback Stackelberg solution of the linear-quadratic game.
Corollary 7.2 The two-person linear-quadratic discrete-time dynamic game, as
defined by (7.7a) and (7.7b) and with strictly convex cost functionals and FB,
CLPS or MPS information pattern, admits a unique feedback Stackelberg
solution with Pi as the leader (under the delayed-commitment mode of play),
which is strongly time consistent and linear in the current value of the state:
Yk*(xk) = -Stxk, fceK; i = l,2. Here Sk and 5% are defined by (7.15a) and
(7.15b), respectively, via the recursive relations (7.14). Remark 7.6 The
counterpart of Remark 7.4 holds here, in the sense that Corollary 7.2 extends
naturally to amne-quadratic games where the state equation has an additional
control-independent driving term and the cost functions have cross terms
between the current values of the state vector and the players' control vectors.
In this case, the unique feedback Stackelberg strategies of the players will be
in the form: 7**(**) = -Skxk +4. k € K; i = 1,2, where §1 and S  ̂are some
matrix sequences generated as in (7.15a) and (7.15b), and sk and s£ are state-
independent vector sequences, again generated in retrograde time. The precise
expressions for these can readily be obtained by observing that in this more



general case the counterpart of G\ (cost-to-go for Pi) will also contain a state-
independent term, a term that is linear in xk+\, and some (quadratic) cross
terms between xk, uj. and u\. □
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CLPS Information Pattern We consider, in this section, the derivation of
(global) Stackelberg solutions when the leader has access to dynamic
information (e.g., CLPS information). Such decision problems cannot be
solved by utilizing standard techniques of optimal control theory (as in
Sections 7.2 and 7.3), because the reaction set of the follower cannot, in
general, be determined in closed form, for all possible strategies of the leader,
and hence the optimization problem faced by the leader on this reaction set
becomes quite an implausible one (at least, using the standard available
techniques of optimization). In finite games (cf. Section 3.6) this difficulty can
definitely be circumvented by converting the original game in extensive form
into normal form (which is basically a static (matrix) game) and then by
performing only a finite number of comparisons. In infinite dynamic games,
however, such an approach is apt to fail because of the "infinite" nature of the
strategy space of the leader (i.e., he has uncountably many alternatives). In the
sequel we first consider a specific example to elucidate the difficulties to be
encountered in a brute-force derivation of the Stackelberg solution when the
leader has access to dynamic information, and introduce (within the context of
that example which involves two stages—each player acting only once, first
the follower and then the leader) an indirect method to obtain the solution (see
subsection 7.4.1). Then, we extend this indirect approach to a modified
version of the example of subsection 7.4.1, in which the follower also acts at
the second stage (see subsection 7.4.2) and we obtain in subsection 7.4.3
closed- form expressions for linear Stackelberg strategies in general linear-
quadratic dynamic games, by utilizing the methods introduced in subsections
7.4.1 and 7.4.2. Finally, in subsection 7.4.4 we provide a brief discussion on
the closely related topic of incentives. 7.4.1 An illustrative example (Example
7.1) Example 7.1 Consider the two-stage scalar dynamic game described by
the state equations X2 = X'-U\> } (7.16) x3 = x2 - ul ) ' and cost functionals L1
= (x3)2 + 2(u1)2 + (3(u2)2, (3>0, (7.17a) L2 = (x3)2 + (u2)2. (7.17b) (Note
that we have suppressed the subindices on the controls, designating the stages,
since every player acts only once in this game.) The information structure of
the problem is CLPS, i.e., Pi (the leader), acting at stage 2, has access to both



x\ and X2, while P2 (the follower) has only access to the value of x\\ therefore,
a permissible strategy 71 for Pi is a measurable mapping from R x R
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permissible strategy 72 for P2 is a measurable mapping from R into R. At this
point, we impose no further restrictions (such as continuity, differentiability)
on these mappings, and denote the strategy spaces associated with them by T1
and T2, respectively. Now, to any announced strategy 71 € T1 of the leader, the
follower's optimal reaction (for fixed xi) will be the solution of the
minimization problem min {[xi - u2 - 71(a:1 - u2,:n)]2 + [u2]2} (7.18) u2eR
which determines R2^1). For the sake of simplicity in the discussion to follow,
let us now confine our analysis to only those strategies in T1 which lead to a
singleton R2(71). Denote the class of such strategies for the leader by T1, and
note that the follower's response is now a mapping 72 : R x F1 —> R, which
we symbolically write as 72[a;i;71]. There is, in general, no simple
characterization of 72 since the minimization problem (7.18) depends
"structurally" on the choice of 71 € T1. Now, the optimization problem faced
by the leader is min {[xf-1\xf1xl)}2+2[1\xf,x1)}2+m2[xin1}}2}, 7'er1 where
t1 A -2r 11 z2 =zi -7 Fi!7 ]• This is a constrained optimization problem which
is, however, not of the standard type, since the constraint is in the form of the
minimum of a functional. If we further restrict the permissible strategies of the
leader to be twice continuously differentiate in the first argument (in which
case the underlying T1 becomes a smaller set), the first- and second-order
conditions associated with the minimization problem (7.18) can be obtained,
which implicitly determine [̂xi^1]. The problem faced by the leader then
becomes one of calculus of variations, with equality and inequality constraints,
which is quite intractable even for the "simple" problem formulated in this
subsection. Besides, even if the solution of this constrained calculus of
variations problem is obtained (say, through numerical techniques), we cannot
be sure that it constitutes a Stack- elberg strategy for the leader in the game
problem under consideration (i.e., it might not be the best choice for the
leader) since the a priori assumption of twice differentiability might be overly
restrictive. We shall, in fact, see in the sequel that, depending on the value of
/?, the Stackelberg strategy of the leader could be nondifferentiable. These
considerations then force us to abandon the direct approach toward the
solution of the Stackelberg game under CLPS information pattern, and to seek
indirect methods. One such indirect method involves determination of a (tight)



lower bound on the (Stackelberg) cost of the leader, and then finding an
appropriate strategy for the leader that realizes that bound in view of possible
rational responses of the follower.
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method somewhat further, let us first observe that the lowest possible cost the
leader can expect to attain is  ̂VJ& Jl(71>72) (7-19) which is the one
obtained when the follower cooperates with him to (globally) minimize his
cost functional. This quantity clearly provides a lower bound to the leader's
Stackelberg cost; but it is not as yet known whether it can be realized,73 and
this is what we investigate in the sequel. First, solving the optimization
problem (7.19) in view of (7.16) and (7.17a), we obtain (by utilizing dynamic
programming or directly Prop. 5.1) the pair of feedback strategies 1l\x2) = \x2,
(7.20a) 72t(x0 = [2/(3/3 + 2)]*! (7.20b) as providing the unique globally
minimizing solution within the class of feedback strategies. The corresponding
optimum state trajectory, in this two-stage team problem, is described by 4 =
[30/(30+ 2)]*!, 1 ,72n v 4 = (2/3)4, J (7'20C) and the minimum cost is J1' ^
WNt2') = [2/?/(3/?+ 2)]*?. (7.20d) The superscripts in (7.20a)-(7.20d) stand
for "team", since (7.19) actually describes a two-member team problem with
the common objective being the minimization of (7.17a), and (7.20a)-(7.20b)
is the unique team-optimal solution in feedback strategies. We should note,
however, that if PI is also allowed to know (and utilize) the value of the initial
state x\, (7.20a) is no longer a unique team-optimal strategy for PI, but any
representation of it on the state trajectory (7.20c) also constitutes an optimal
strategy (cf. Section 5.6). Denoting the class of all such strategies by T1 , we
now have the more general result that any pair 7lterlt,72t(x1) = [2/(30 + 2)]x!
constitutes a team-optimal solution to (7.19). For each such pair, the state
trajectory and the corresponding cost value are still as given by (7.20c) and
(7.20d), respectively. Now, if (7.19), or equivalently (7.20d), is going to be
realized as the Stackelberg cost of the leader, there should be an element of T1
, say 71*, which forces 73Note that the follower in fact attempts to minimize
his own cost functional which is different from J1.
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j2 even though he is minimizing his own cost functional (which is J2—the
counterpart of L2 in the extensive form description). This, inevitably, asks for
a relation of the form 72' =arg min J2(71*,72), and this being so uniquely, i.e.,



the minimum of J2(-yu,-) on T2 should be attained uniquely at f2 .7i Intuitively,
an appropriate strategy for the leader is the one that dictates (7.20a) if the
follower plays (7.20b), and penalizes the follower rather heavily otherwise.
Since the leader acts, in this game, after the follower does, and since the state
equation is scalar and linear, he (the leader) is in a position to implement such
a strategy (by utilizing solely the state information available to him). In
particular, the strategy where k is any positive number, is one such candidate.
Such a strategy is clearly in T1 . Moreover, one may readily check validity of
the inequality min J2 (71 = gX2,72) < min J2^1 = -fcci,72) 72ep2 v ' J ■" ' /
72gr2 nil for k > 0,75 which implies that the strategy (7.21) does indeed force
the follower to the team strategy (7.20b), since otherwise he incurs a cost
which is higher than the one obtained under the strategy (7.20a). The
conclusion, therefore, is that the strategy (7.21) constitutes, for k > 0, a
Stackelberg strategy for the leader, with the unique optimal response of the
follower being (7.20b). □ To recapitulate: (1) For the dynamic game described
by (7.16), (7.17a) and (7.17b) and under the CLPS information pattern, a
Stackelberg solution exists for all nonnegative values of /?. (2) The
Stackelberg cost of the leader (Pi) is equal to the global minimum value of his
cost function (obtained by cooperative action of the follower), even though the
follower (P2) seeks to minimize his own (different) cost functional and may
not know the cost functional of Pi. (3) The leader's Stackelberg strategy is a
representation of his optimal feedback strategy in the related team problem
described by (7.19), and it necessarily involves memory. (A feedback strategy
for Pi cannot be a Stackelberg strategy.) 74In case of nonunique solutions, we
have to take the supremum of J1 over all those solutions, which should equal to
J1 . 75This inequality, in fact, holds for k > — 1 + /̂8/13, but we consider
only positive values of k for the sake of simplicity in presentation.
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nonunique (parameterized, in this case, by a positive scalar k), but the optimal
response of P2 to all those strategies of PI is unique (and independent of k); it
is the strategy that minimizes the leader's cost function, even though the
follower's objective is quite different. (5) The Stackelberg strategy of the
leader, as given by (7.21), is not even continuous; this, however, does not rule
out the possibility for existence of continuous (and differentiable) Stackelberg
strategies. (6) The strategy given by (7.21) may be viewed as a threat strategy
on part of the leader, since he essentially threatens the follower to make his



cost worse if he does not play the optimal team strategy (7.20b). One natural
question that arises at this point is whether there exists a Stackelberg strategy
for the leader which is structurally more appealing (such as continuous,
differentiable, etc.). In our investigation in this direction, we necessarily have
to consider only the strategies in T1 , since the quantity (7.19) constitutes a
tight lower bound on the cost of the leader. In particular, we now consider only
those strategies in T1 which are linear in the available information, which can
be written as j1{x2,x1) = -X2+p\x2- 3g + 2Xl)' (7-22) where p is a scalar
parameter. To determine the value of p for which (7.22) constitutes a
Stackelberg strategy for the leader, we have to substitute (7.22) into J2,
minimize the resulting expression over j2 € T2 by also utilizing (7.16), and
compare the argument of this minimization problem with the strategy (7.20b).
Such an analysis readily leads to the unique value - _ _I P~ 3 ~/j provided, of
course, that /?  ̂0. Hence, we have the following. Proposition 7.1 Provided
that (3  ̂0. the linear strategy constitutes a Stackelberg strategy for the leader
in the dynamic game described by (7.16), (7.17a) and (7.17b), and the unique
optimal response of the follower is as given by (7.20b). The corresponding
state trajectory is described by (7.20c) and the leader's Stackelberg cost is
equal to the team cost (7.20d). Therefore, with the exception of the singular
case /? = 0, the leader can force the follower to the team strategy (7.20b) by
announcing a linear (continuously differentiable) strategy, which is definitely
more appealing than (7.21) which
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the equilibrium trajectory. For the case /3 = 0, however, a continuously
differentiable Stackelberg strategy does not exist for the leader (see Ba§ar
(1979b), pp. 23-25) for a verification), and he has to employ a
nondifferentiable strategy such as (7.21). Remark 7.7 The linear strategy
presented in Prop. 7.1 and the discontinuous strategies given by (7.21) do not
constitute the entire class of Stackelberg strategies of the leader in the dynamic
game of this subsection; there exist other, nonlinear (continuous and
discontinuous) strategies for the leader which force the follower to the optimal
team strategy (7.20b). Each such strategy can be determined by basically
following the analysis that led to Prop. 7.1 under a different nonlinear
representation of (7.20a) (instead of the linear representation (7.22). □ Remark
7.8 The results of this example can also be visualized graphically for each
fixed x\ and /3. Let us take X\ = 1 and leave /3 as a parameter, in which case



the iso-cost curves of P2 look as depicted in Fig. 7.1,and the (open-loop) team
solution for PI can be written as (from (7.20a)-(7.20d)) u1' = (3/(2 + 3/3), u2'
= 2/(2 + 3/3). Figure 7.1: Graphical illustration of Example 7.1. Since there is
a one-to-one correspondence between x-i and u2, any permissible strategy of
PI can also be written as a function of u2, i.e., u1 = (̂u2). Now, if we can find
a strategy 71* with the property that its graph has only the point (ul ,u2) in
common with the set D = {(u1,u2):./V>«2) < ./VV)},
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choose u2 . Thus 71* constitutes a Stack- elberg strategy for Pi, leading to the
global minimum of his cost function. It easily follows from Fig. 7.1 that, for (3
> 0, there exists a unique linear 71* which satisfies the above-mentioned
requirement; it is the tangent at (u1 ,u2 ) to the corresponding iso-cost curve of
P2. For (3 — 0 this tangent line turns out to be vertical (parallel to the u1-
axis), and hence cannot be described by a linear strategy; however, a
Stackelberg strategy exists in the class of continuous strategies for the leader.
(In Fig. 7.1 we have drawn the tangent lines for (3 = 2 and (3 = 0, and for the
latter case the dashed curve provides a continuous nonlinear Stackelberg
strategy for the leader.) □ Remark 7.9 A common property of the Stackelberg
solutions obtained for the dynamic game described by (7.16), (7.17a) and
(7.17b) and under CLPS information, is that they are also Nash equilibrium
solutions. To see this, we first note the obvious inequality J2(7U,72*)<W,72)
v72er2 for such a Stackelberg equilibrium solution pair. Furthermore, the
inequality Jl{iu,i2*)<Jl{i\i2*) vyer1 also holds, since the Stackelberg solution
is also team-optimal (under J1) in this case. These two inequalities then imply
that every such pair also constitutes a Nash equilibrium solution. We already
know that the dynamic game under consideration admits an uncountable number
of Nash equilibrium solutions (cf. Section 6.3); the above discussion then
shows that, since the leader can announce his strategy ahead of time in a
Stackelberg game, he can choose those particular Nash equilibrium strategies
(and only those) which lead to an equilibrium cost that is equal to the global
minimum of his cost functional. □ 7.4.2 A second example (Example 7.2):
Follower acts twice in the game Example 7.2 The indirect method introduced
in the foregoing subsection for the derivation of the Stackelberg solution of
dynamic games under CLPS information basically involves two steps: (1)
determination of a tight lower bound on the cost function of the leader, which
coincides with the global minimum value of a particular team problem; (2)



adoption of a particular representation of the optimal team strategy of the
leader in this team problem, which forces the follower to minimize (in effect)
the cost function of the team problem while he is in fact minimizing his own
cost function. Even though this general approach is applicable in a much more
general context (i.e., applicable to dynamic games with several stages and
more complex dynamics), the related team problem is not always the one
determined solely hy the cost function of the leader (as in the previous
subsection), in particular if the follower also acts at the last stage
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following scalar dynamic game now exemplifies derivation of the related team
problem in such a situation. As a modified version of the scalar dynamic game
of subsection 7.4.1, consider the one with dynamics x2 = x\ —u\, xz = x2 — ul-
\-u2. (7.23) and cost functionals L1 = (x3)2 + 2(u1)2 + 0(u2)2, /?>0, (7.24a)
L2 = (x3)2 + (u2)2 + (u2)2. (7.24b) The information structure of the problem
is CLPS, and PI (the leader) acting at stage 2 has a single control variable u1,
while P2 (the follower) acting at both stages 1 and 2 has control variables u\
and u2, respectively. Let us introduce the strategy spaces T1 (for PI), T\ (for
P2 at stage 1) and T2, (for P2 at stage 2) in a way compatible with the
governing information structure. Then, to any announced strategy 71 e T1 of the
leader, the follower's optimal reaction at stage 2 will be llW,!1] = — [̂x2-
l1(x2,xi)] which is obtained by minimization of J2 over 7! G T2,. Hence,
regardless of what strategy 71 e T1 the leader announces, and regardless of
what strategy the follower employs at stage 1, his (the follower's) optimal
strategy at stage 2 is a unique linear function of x2 and 71, as given above.
Substituting this structural form into J1 and J2, derived from (7.24a) and
(7.24b), respectively, we obtain the reduced cost functionals J1 = \[x2-
j1(x2,x1)}2+2[11(x2,x1)]2+(3[12(x1)}2, J2 = i[x2-71(x2,x1)]2 + [72(x1)]2,
and therefore the lowest possible cost value the leader can achieve is min min
J1(71,7?) (7.25) which is the quantity that replaces (7.19) for this game. The
original Stackelberg game has thus been converted into one wherein the
follower does not act at the last stage (his only strategy now being f2), and the
related team problem is described by (7.25), whose optimal team solution in
feedback strategies is 71'(x2) = l-x2, (7.26a) 7l2'(x1) = [2/(9/?+ 2)]*! (7.26b)
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trajectory being P/W> + 2)]*i, ) (7.26c) (4/9)4 • J V ' The associated minimum



team cost is J1' = [2/3/(9/3 + 2)](Xl)2 (7.26d) which forms a lower bound on
the leader's cost in this game, and is definitely higher than the quantity min min
min J1(71,7o,7i2). -y'eri 7fer* 7l2er? Now, paralleling the arguments of
subsection 7.4.1, we obtain the following representation of (7.26a), on the
trajectory (7.26c), to be a Stackelberg strategy for the leader, forcing the
follower at the first stage to the team strategy (7.26b):76 where k > — 1 +
(̂96/113). The optimal response of the follower to any such strategy is 7l2*

(x!) = [2/(9/? + 2)]*i, (7.28a) 1f{x2,xl) = --{x2-1u{x2,xl)\ (7.28b) leading to
(7.26d) as the Stackelberg cost of the leader. □ To obtain the counterpart of
Prop. 7.1 for the dynamic game of this subsection, we again start with a
general linear representation of (7.26a), and by following similar arguments
we arrive at the following proposition. Proposition 7.2 Provided that /3  ̂0,
the linear strategy W- _ n _ !_ 16/3-9 /_ 9/3 7 (x2,Xi) = -X2 H — I X2 X\ r v
2, u 9 2-r 18/? ^2 g/? + 2 i constitutes a Stackelberg strategy for the leader in
the dynamic game described by (7.23), (7.24a) and (7.24b), and the unique
optimal response of the follower is given by (7.28a), (7.28b). The
corresponding state trajectory is described by (7.26c), and the leader's
Stackelberg cost is as given by (7.26d). Remark 7.10 It can again be shown
that, for /3 = 0, no continuously differen- tiable Stackelberg solution exists for
the leader; therefore, he has to announce a strategy which is discontinuous in
the derivative, such as (7.27), or the one 76The reader is asked to fill in the
details of this derivation.
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discussed in Remark 7.7. Furthermore, the reader should note that, for the
dynamic game under consideration, there does not exist a Stackelberg solution
which also constitutes a Nash equilibrium solution; i.e., a counterpart of
Remark 7.8 does not apply here. The main reason for this is the fact that the
follower also acts at the last stage of the game. □ 7.4.3 Linear Stackelberg
solution of linear-quadratic dynamic games We now utilize and extend the
indirect methods introduced in subsections 7.4.1 and 7.4.2 to solve for the
Stackelberg solution of two-person linear-quadratic dynamic games within the
class of linear-memory strategies, so as to obtain the counterpart of Props 7.1
and 7.2 in this more general context. The class of dynamic games under
consideration is described by the state dynamics xk+1 = Akxk + B\ulk + B2ku\
(7.29) and cost functional (for PI and P2, respectively) 1 K , V =
oEK+iQw î+ l̂+^N) (730a) Zk=i 1 K l2 = oE(Iw(3wIk+1+','"^^M) (7-30b)



zk=i with Qlk+1 > 0, R\2 > 0, Ql+1 > 0, R2/ > 0, VA; e K = {1,..., K}, dim(x)
= n, dim(uk) = rrii, i = 1,2. The information structure of the problem is CLPS,
under which the closed-loop strategy spaces for Pi (the leader) and P2 (the
follower) are denoted by Tk and r2., respectively, at stage k e K. Furthermore,
let J1 and J2 denote the cost functionals derived from (7.30a) and (7.30b),
respectively, for the normal (strategic) form of the game, under these strategy
spaces. Since B2K does not necessarily vanish in this formulation, the
follower also acts at the last stage of the game, and this fact has to be taken into
account in the derivation of a tight lower bound on the leader's cost functional.
Proceeding as in subsection 7.4.2, we first note that, to any announced strategy
/f-tuple {7  ̂e F£;A; e K} by the leader, there corresponds a "robust" optimal
reaction by the follower at stage K, which is determined by minimizing
J2(71,72) over lie e F2 -̂, with the remaining strategies held fixed. This
quadratic strictly convex minimization problem readily leads to the relation
12k[xk\1k\ = '{I + B2kQ2k+1B2k]-1B2kQ2k+1{Akxk + BWk(Vk)}, (7.31)
where r\K = \xx,Xi,... ,xK}, and ")2k[xk\i}<\ stands for "f2K{r]k)—the
strategy of P2 at stage K—and displays the explicit dependence of the choice
of 7 -̂ on 7 .̂ It should be noted, however, that the structure of this optimal
response of
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choice of 7 :̂ regardless of what 7  ̂and the previously applied strategies are,
7 -̂ depends linearly on x  ̂and ^{^k)- The unique relation (7.31) can therefore
be used in (7.30a) and (7.30b) without any loss of generality, in order to obtain
an equivalent Stackelberg game wherein the follower does not act at the last
stage. The cost functionals of this new dynamic game in extensive form are i1
= o^Wi /̂c+iZtf+i+wWc) K-\ + 0 S (x'k+iQUixk+i + «!'«£ + u2kRlk2u2k),
(7.32a) L2 = (̂x'k+iQ2k+iXk+i+u1kR2kU1k) lK~l + 9 S frfc+iGik+iSJU-i +
«*«* + tifc t̂ii), (7.32b) 2fc=1 where xK+i = AkXk + B^u ,̂ Qk+i = [I-
B2KT\'Q1K+1[I-BjcT\ + T'R^T, Q2k+1 = Q2k+i[I-B2kT], T ± {B2KQ2K+,Bl
+ I)-'B%Ql+l. Let us further introduce the notation 72ef2-,{7,2er  ̂= i,... -̂i},
J\1\i2)^Li\{ul=1l(r}k),k€K-,ul=12k(Vk),k = 0,...,K-l}. Then, a lower bound on
the leader's Stackelberg cost is, clearly, the quantity min min J1(71,72) (7.33) -
y'eri -26f2 which is the minimum cost of a team problem in which both Pi and
P2 strive to minimize the single objective functional J1. This team problem
admits a unique optimal solution within the class of feedback strategies, which
is given in the following lemma whose proof readily follows from Prop. 5.1 by



an appropriate decomposition. Lemma 7.2 In feedback strategies, the joint
optimization (team) problem defined by (7.33) admits a unique solution given
by Ik (xk) = ~Lkxk, k e K, yl\xk) = -L2kxk, keK-{K}
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cost J1 = -x\MiXi, where = [I + SlBl^SlAk, keK, = [Rl2 + S2kB2k]-lS2kAk,
k<K-l, = BKQK+l, = BlkMk+1{I - B2[Rk2 + B2kMk+1B2}-'B2kMk+l), k<K-
l, S2k = B2kMk+1{I-Bl[I + BlkMk+lB\\-lBlMk+l}, k<K-l. M(.) is defined
recursively by MK = QlK + F'kQ^Fk + VKL\, Mk = Qk+F>Mk+lFk + LlkLl +
L2kRk2L2, k<K-l, where FK ± AK-BlKLlK, Fk ± Ak-BlLl-B2L2, k<K-l. The
optimum team trajectory is then described by xk+l = Fkx{, k€K, x\ = xi. (7.34)
In view of the analysis of subsection 7.4.2, we now attempt to find a
representation of the team strategy {7  ̂; k e K} on the optimum team trajectory
(7.34), which provides a Stackelberg strategy for the leader. The following
proposition justifies this indirect approach for the problem under
consideration. Proposition 7.3 Let {fl*; k e K} be a representation of the team
strategy {yk ;k e K} on the optimum team trajectory (7.34), suc  ̂that every
solution of the minimization problem min J2{~il*,l2) 72ef2 is a representation
of {7  ̂; k e K — {K}} on the same team trajectory. Then, {*fk*; k e K}
provides a Stackelberg strategy for the leader. Ll SlK Si
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the statement of Lemma 7.2, that the quantity (7.33) provides a lower bound on
the cost function of the leader, for the dynamic game under consideration. But,
under the hypothesis of Prop. 7.3, this lower bound is tight, and is realized if
the leader announces the strategy {fk*> fcfK} which, thereby, manifests itself
as a Stackelberg strategy for the leader. D To obtain some explicit results, we
now confine our attention to linear one- step memory strategies for the leader
(more precisely, to those representations of {7  ̂; k e K} which are linear in the
current and most recent past values of the state), viz. l̂(xk,Xk-i) = -L\xk +
Pk[xk-Fk-iXk-i\, fceK-{l}, (7.35) where {Pk; k e K - {1}} is a matrix
sequence which is yet to be determined. This matrix sequence is independent
of xk and Xk-\, but it may, in general, depend on the initial state x\ which is
known a priori. Our objective for the remaining portion of this subsection may
now be succinctly stated as (i) determination of conditions under which a
Stackelberg strategy for the leader exists in the structural form (7.35) and also
satisfies the hypothesis of Prop. 7.3, (ii) derivation of the corresponding



strategy of the leader (more precisely, the matrices Pk, k e K — {1})
recursively, whenever those conditions are fulfilled. Toward this end, we
substitute (7.35) into J2(71,7,2)) minimize the resulting functional over -y2 €
T2 and compare the minimizing solutions with {72';fc £ K} and their
representations on the optimum team trajectory. Such an analysis leads to Thm.
7.3 given in the sequel. Preliminary notation for Theorem 7.3 £(.): an (m.2 x
m2)-matrix denned recursively by £* = Qk + -ffeSfe+iFfe + Lk Rk Lk + Lk Lk;
Sk+i = QK+\ Afc: an (mi x n)-matrix denned recursively by (as a function of
{Pk+i,..., Pk}) A* = Bl'P^k+iFk - RfL\ + Bl'Xk+iFk; AK+i = 0. (7.36)
Condition 7.1 For a given x\ € Rn, let there exist at least one matrix sequence
{Pk, Pk-i, ■ ■ ■, P2} that satisfies recursively the vector equation
\B2k'P'k+xKk+iFk + Bl'-£k+lFk - L2k}xk = 0, k + 1 G K (7.37) where A  ̂is
related to {Pk,- ■ ■,-Pk+i} through (7.36), and xk is a known linear function of
x\, as determined through (7.34). Theorem 7.3 Let Condition 7.1 be satisfied
and let {P (̂xi),... ,P2*(a:i)} denote one such sequence. Then, there exists a
Stackelberg solution for the dynamic game described by (7.29)-(7.30b) and
under the CLPS information, which
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{xk,Xk-i,x\) = [Pk(xi) - Ll]xk - P (̂xi)Fk îXk-i k g K - {1} } (7.38a) 7i*(*i) =
~L\xu 7?(xk) = -L2kxk, k£K-{K}, (7.38b) where Lk (i = 1,2; k e K) were
defined in Lemma 7.2. The corresponding Stackelberg costs of the leader and
the follower are given, respectively, by J1* = -x[MiXi, (7.39a) J2* = -xiExXx.
(7.39b) Proof. Substituting uj. = Jk*(-), k e K, as given by (7.38a), into L2
defined by (7.32b), we obtain a functional which is quadratic and strictly
convex in {u2.; teK- {&}}■ Let us denote this functional by L(u2, u|c_i))
which is, in fact, what the follower will minimize in order to determine his
optimal response. Strict convexity of L readily implies that the optimal
response of the follower to the announced strategy /f-tuple (7.38a) of the
leader is unique in open-loop policies, and that every other optimal response
in T2 is a representation of this unique open-loop strategy on the associated
state trajectory. Consequently, in view of Prop. 7.3, verification of the theorem
amounts to showing that the minimum of L(u2,... ,u2K_1) is attained by the
open-loop representation of the feedback strategy (K — l)-tuple (7.38b) on the
state trajectory described by (7.34); in other words, we should verify that the
set of controls ul* = -Llxl t£K-{K} minimizes L(u2,... ,u1K_l). Now, since L is
quadratic and strictly convex, it is both necessary and sufficient that {u2.*} be



a stage-by-stage optimal solution; i.e., the set of inequalities L(n2%{n2*}_*)
<L(n2,{n2*}-*) (i) should be satisfied for all u\ e Rm2 and all A; = 1,... ,K —
1, where {u2*}-k denotes the entire sequence u2*,... ,u2£_l with only u|*
missing. Because of the additive nature of the cost function L, (i) can
equivalently be written as Lk{u2*_,,...,ul*)<Lk-l{u2*_l,...,u2k\l,u2k) (ii) for
all u\ e Rm2 and all k = 1,..., K — 1, where, for fixed k, Lk{u2^_„ ... ,u2k\vu2)
= L*k{u2) = -Wk+iQ2k+iVk+i + ^K^K^k) +2 £(y'i+iQi+M+i + »'jr?n) + 2 E
UT UT + -2<u*' j=k j=k+l (Hi)
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Vk+2 = Fk+1yk+l + Bl+1P^+1[yk+1 - Fkxk], yk+1 = {Ak-B\Ll)x{+Blul, and _
/ -L)yj + PZ{yi-Fj-1yj-1], j>k + l, H ~ I -L14, j = k. It is important to note that,
at the RHS of (ii), Lk is not only a function of u\ but also of xk, which we take
at its equilibrium value x\ because of the RHS of (i) (i.e., the sequence {u2,...
,uk_l) that determines xk is already at equilibrium while treating (ii)). It is for
the same reason that yk, on the last row of (iv), is taken to be equal to xlk.
Now, if the relation in the last line of (iv) is used iteratively in the remaining
relations of (iv), we can express yj, j > k + 2, in terms of yk+i and xk, and if
this is used in (v), /ij, j > k + 1, can be expressed in terms of the same
variables. The resulting expressions are Vj = F(j,k + l)yk+1+K(j,k + l)Bl+1P£
+1\yk+1-Fk4], j>k + 2, Hj = -L]F(j, k + l)yk+1 + [Y(j, k + 1)- L]H(j, k +
l)Bi+1]Pfc*+1 [yk+i-Fkxk], j>k + \, where F(j,k) = Fj .̂..Fk, F(j,j) = I, H(j,k) =
H(j,k + l)Bl+1P};+1+FU,k + l), H(j,j-l) = I, H(j,i)=0, j<i, Y(j,k) =
P*B)_1...P*k+1Bl Y(j,j)=I. Utilizing these expressions, we can next show that
VulL*(u2K*_1,...,ut+1,u2k)\ul=ul.= 0, \/k = l,...,K-l. (vi) Toward this end, we
first obtain VulL* |u2=u2.= [BtP£'+1{Bl'+1H'(K + l,k + l)Q2K+1F(K + l,k) K
+ Y, [Bl'+iH'U, k + l)ZjF(j, k) - Y'(j, k + l)RfL)F{j, k)}} (vii) +Bt'xk+1Fk -
LD4, where Zj = Lj RfL) + Lj L2 + Q2j. (iv)
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manipulations prove that (vii) can equivalently be written as Vu2L* |u2=uj.=
[B2kP*+lAl+1Fk + B2kXk+lFk - L2k]xl where Ak+l satisfies the recursive
equation (7.36) with Pk+i replaced by Pk+l- But, by Condition 7.1 [(7.37)],
the foregoing expression identically vanishes; this proves (vi), and in turn
establishes the desired result that u2.* minimizes L at stage k and is in
equilibrium with {u2*}_k. (Note that, since L is a strictly convex functional,
(vi) is a sufficient condition for minimization.) Since k was an arbitrary



integer, the proof of the main part of the theorem follows. Expression (7.39a)
is readily obtained from Lemma 7.2 under the stipulation that the optimum team
trajectory is realized, since then J1* is identical with J1 . Expression (7.39b),
on the other hand, follows from substitution of the team solution given in
Lemma 7.2 into J2. D Remark 7.11 Condition 7.1, and thereby the Stackelberg
solution presented in Thm. 7.3, depends, in general, on the value of the initial
state a ;̂ that is, the Stackelberg strategy of the leader at stage k is not only a
function of xk and xk-\, but also of x\. This latter dependence may be removed
under a more stringent condition (than Condition 7.1) on the parameters of the
game, in which case the vector equation (7.37) is replaced by the matrix
equation B* P'k+1Ak+1Fk + B2kXk+1Fk -L2k = 0 (HieK). (7.40) Such a
restriction is, in fact, inevitable if we seek a solution to the infinite horizon
problem (i.e., with K —> oo), in which case our attention is solely confined to
stationary controls (see Ba§arand Selbuz (1979b), for an illustrative example).
□ Remark 7.12 The analyses of subsections 7.4.1 and 7.4.2 have already
displayed the validity of the possibility that a linear-quadratic dynamic game
might not admit a Stackelberg solution in linear strategies. Therefore,
depending on the parameters of the dynamic game, Condition 7.1 might not be
fulfilled. In such a case, we have to adopt, instead of (7.35), a parameterized
nonlinear representation of {7  ̂; k e K} as a candidate Stackelberg strategy of
the leader, and then determine those parameter values in view of Prop. 7.3. For
a derivation of such a nonlinear Stackelberg solution, the reader is referred to
Tolwin- ski (1981b). Another important point worth noting is that, for the
linear-quadratic game of this section, and for general parameter values, J\
given in Lemma 7.2 is not always the Stackelberg cost of the leader, i.e., there
may not exist a strategy 71* in f1 (linear or otherwise) under which the
follower is forced to choose a representation of 72 on the optimal team
trajectory. This would be the case if, for example, there exist certain control
variables of the follower, at intermediate stages, which do not affect the state
variable, and thereby cannot be "detected" by the leader. In such a case, the
leader cannot influence the cost function

392 T. BA§AR AND G. J. OLSDER of the follower through these control
variables and hence cannot enforce the team solution. This then necessitates
derivation of a new team cost (which is realizable as the Stackelberg cost of
the leader), by taking into account the robust optimal responses of the follower
in terms of these controls (as we did at the final stage). The resulting



Stackelberg cost will be higher than J1 . Another such case occurs if the leader
can detect (through his state observation) a linear combination of the control
variables of the follower, but does not observe them separately. (This would
be the case if, for example, the dimension of the state is lower than that of the
control vector of the follower.) Here again, we have to determine a new
minimum team cost (different from J1 ) to be realized as the Stackelberg cost
of the leader, by taking into account the freedom allotted to the follower in the
nondetectable (by the leader) region of his control space. We do not pursue this
point any further here, and refer the reader to Tolwinski (1981b) for such a
derivation, and also to Ba§ar (1980a) and Ba§ar (1982) for indirect
derivations of the Stackelberg cost value of the leader in general dynamic
games when the leader has access to closed-loop imperfect state information
(cf. Def. 5.2). See also Problem 5 in Section 7.7. □ 7.4.4 Incentives
(deterministic) The idea of declaring a reward (or punishment) for a decision
maker PI according to his particular choice of action in order to induce a
certain "desired" behavior on the part of another decision maker P2 is known
as an incentive (or in case of the punishment, as a threat). Mathematical
formulation and analysis of such decision problems bear strong connections
with the theory of Stackelberg games presented in the previous subsections,
which is what we will be discussing next, for deterministic scenarios.
Counterparts of these results in the stochastic case will be presented later in
Section 7.5 (particularly, subsection 7.5.3). Following the convention of the
previous subsections, we call, in the above scenario, PI the leader and P2 the
follower. Then, the action outcome desired by the leader is: (ul\u2t) = arg min
V-(v},v?). (7.41) ules\u2es* The incentive problem can now be stated as: Find
a 71 e T1, where T1 is an admissible subclass of all mappings from S2 into
S1, such that argminL2(71(u2),u2) = u2\ (7.42a) u2 71(u2') = ul\ (7.42b) Note
that (7.42a) and (7.42b) require choosing a set of mi scalar functions which
together map S2 into S1 so as to satisfy m\ + m2 equations. If this set of m\
functions has m\ +rri2 or more parameters, then we might in general
accomplish this by choosing the parameters appropriately. Incentive problems
do arise in real life decision making. Think of Pi as a government and of P2 as
a citizen. The income tax which P2 has to pay is a
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income (before taxation) u2. The amount of money that the government
receives is u1 = ku2. It is up to P2 how hard to work and thus how much money



to earn. The incentive here is u1 = 71(u2) = ku2. The government will choose k
so as to achieve certain goals, but it cannot choose its own income, u1,
directly. In reality, the 71-functions will often be nonlinear, but that does not
take away the incentive phenomenon. Example 7.3 Consider L1 = (ul)2 + (u2)2
&n&L2 = (u1-l)2 + (u2-l)2, where the ul are scalars. By inspection, u1 = u2 =
0. Consider the choice u1 = ku2, with k approaching oo if necessary, as a
possible incentive mechanism for PI. The idea is that any choice of u2  ̂0 will
make L2 approach oo if k —» oo and thus force P2 to choose u2 arbitrarily
close to u2 in his own interest. However, by substituting u1 = ku2 into L2, it is
easily shown that the minimizing action is u2 = (k + l)/(k2 + 1) and
consequently u1 = (k2 + k)/(k2 + 1). Thus u2 approaches u2 = 0 and u1
approaches 1 (which is different from u1 ) as k approaches oo and hence
(7.42b) is violated. Consequently "infinite threat" as just described is not
generally feasible. Besides, such a threat may not be credible in practice. Let
us now consider an incentive 71 of the form u1=11(u2) = ult +g(u2,u2t), (7.43)
where g is a function which satisfies g(u2 ,u2 ) =0. With this restriction on g,
equation (7.42b) is automatically satisfied. Let us try the linear function g =
k(u2 — u2 ). Equation (7.42a) reduces to (A; + l)/(fc2 + 1) = 0 and hence k
must be equal to —1. Graphically, the incentive u1 = ku2 = —u2 is a line
through the team solution (u1 ,u2 ) and has only this point in common with the
set of points (u1,^2) defined by L2(ul,u2) < L2(ux ,u2 ). By announcing the 71-
function, Pi ensures that the solution (u1,^2) will lie on the line u1 = —u2 in
the (u^u2) plane, independent of the action of P2. Being rational, P2 will
choose that point on this line which minimizes his cost function; such a choice
is u2 = 0. The relationship of this with the derivation of the Stackelberg
solution discussed in subsection 7.4.1 and particularly with the depiction of
Fig. 7.1 should be clear now. From this graphical interpretation, it should also
be clear that any (nonlinear, continuous or discontinuous) incentive policy u1
— ~fx{u2) which passes through the point characterized by the team solution
and has only this point in common with the set just described, will lead to the
team solution for Pi. If we restrict ourselves to linear incentives, then the
solution is unique in this example. This example exhibits yet another feature.
Note that with k = — 1, L2(ku2,u2) = 2(u2)2 + 2 = LVV) + 2 . In other words,
by this choice of incentive, the objectives of both players are identical (apart
from a constant), thus fulfilling the old adage "if you wish other people to
behave in your own interest, then make them see things your way".
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identical by the choice of an appropriate 71-function will be too strong a
requirement. A weaker form, however, which also leads to the team solution,
is argminL2(71(u2),u2) = argminL^u1'^2), (7.44) u1 u2 where it is assumed
that 71 is of the form as described by (7.43). □ Definition 7.1 The incentive
problem, as defined in this subsection, is (linearly) incentive controllable, if
there exists a (linear) -̂function such that (7.42a) and (7.42b) are satisfied. Of
course, not all problems are incentive controllable. What can Pi achieve in
problems that are not incentive controllable? The method to be employed to
answer this question will be described in the context of an example, given
below. It should then be clear how the method would apply to more elaborate
problems. Example 7.4 Consider L1 = (u1 - 4)2 + (u2 - 4)2 and L2 = (u1)2 +
(u2 - l)2, where the ul are scalars; u1 € S1 = [0,3] and u2 € S2 = [0,6]. The
team solution in this case is: u1 = 3, u2 =4 and L^u1 , u2 ) = 1. This is depicted
in Fig. 7.2, where some contours of L1 have been drawn; here the horizontal
axis stands for u2 (which is the independent variable) and the vertical one
corresponds to u1. The worst possible outcome for P2, even if he minimizes
his cost function with respect to his own decision variable, is min [max
L2(u1,u2)l. This occurs for u2 = l,**1 = 3 (point A in the figure), and L2(3,1) =
9. Whatever choice Pi makes for 71, the cost for P2 will never be higher than
9. If PI chooses u1 = 71(u2) = 3 on the interval [0,6], then the outcome
becomes u2 = ljU1 = 3, (point A), and the costs for Pi and P2 become 10 and
9, respectively. This, however, is not optimal for Pi. He should instead
consider minui L1 subject to L2 < 9. This latter region has been shaded in the
figure. The solution of this minimization problem is u1 = 12/5, u2 = 14/5 (point
B in the figure). Now, any 71-curve, in the rectangle 0 < u1 < 3,0 < u2 < 6,
which has only the points A and B with the shaded region in common, would
lead to a nonunique choice for P2; he might either choose u2 = 1 or u2 = 14/5.
Both choices lead to L2 = 9. The costs for PI are, respectively, 10 and 4 for
these choices. Therefore, Pi will choose a 71 function as just described, with
one exception; it will have a little "dip" in the shaded area near point B, such
that the choice of P2 will be unique again. (A possible choice is: 71(u2) = 3
for 0 < u2 < 14/5 - e, where e > 0 and (̂u2) = 12/5 for 14/5 - e < u2 < 6.) The
outcome will now be a point u1,?*2 near point B, just within the shaded area.
Pi can keep his costs arbitrarily close to 4 (but not equal to 4). □
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Graphical illustration of Example 7.4. Extensions of the foregoing analysis are
possible in different directions, such as the multi-stage problems (as in the
case of the example of subsection 7.4.2) or problems with multiple
hierarchies; see the Notes section 7.7 for selected references that cover these
extensions. Another possibility is the many-followers case which we now
briefly discuss. If there are two or more followers in the decision problem, the
relationship (that is, the solution concept to be adopted) between the followers
must be specified.77 We shall illustrate a few of these, barring the formation of
coalitions between followers. Let PI be the leader, Pi,i = 2,...,M, be the M - 1
followers. An incentive policy (equivalently, incentive mechanism) for the
leader is a mapping 71 : S2 x ■ ■ ■ x Sm —* S1. Suppose that ul ,i = 1,..., M,
is the M-tuple of actions desired by the leader. An incentive mechanism 71 is
said to induce a dominant strategy solution if argmin U{-/X{u2,..., uM), u2,...,
uM) = ul\ u' with arbitrary uj, Vj  ̂i, i = 2,..., M. For an illustration of a three
decision maker problem, let u1 = (u\, u\), and L1 = (u2 + u3)2, V = {u% - I)2 +
u\_x, i = 2,3. Then, the incentive mechanism u\ = jl(u2) = 2u2 will induce u\ =
0 regardless of the value of u3, and similarly u\ = 72(u3) = 2u3 will induce u\
— 0 for all values of u2, and hence the concatenation of 7J and 72 constitutes a
dominant strategy. Such a policy is the most desirable one (for the leader),
since it effectively decouples the followers from each other, and the leader can
control each one's cost function separately. However, such a solution is
generally difficult to realize, since the cost functions of the followers may not
have the required structure. An alternative is the Nash equilibrium concept
(among the followers), Recall the discussion in Section 3.6 in the context of
finite games.
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-,«M).«2,---,«M) = ,̂ "' .1 (7-45) with ui = ui Vj  ̂i, i,j — 2,...,M, i.e., each
follower will behave desirably conditioned on the fact (expectation) that the
others will do the same. A particular subcase of this equilibrium occurs if the
incentive mechanism can be chosen so that under it the cost functions of all
followers become identical. The followers then face a team problem which
has only one "reasonable" solution; see Problem 10 in Section 7.7 for an
illustration of such a situation. The same problem also deals with the case of
two followers facing a zero-sum game after implementation of the correct
incentive mechanism. The saddle-point solution of this zerosum game leads to
the team solution of the leader who thus practices the adage "divide and rule".



7.5 Stochastic Dynamic Games with Deterministic Information Patterns This
section is devoted to a brief discussion on possible extensions of the results of
the previous sections to stochastic dynamic games (cf. Def. 5.4) wherein the
state evolves according to Xk+i = fk(xk, «i. «*) + 9k, k € K, (7.46) where
{9\,-.. ,9k} is a set of statistically independent Gaussian vectors with values in
Rn and with cov (0fe) > 0, k e K. In a general context, the cost functional of Pi,
for the game in extensive form, is again taken to be stage- additive, viz. K
Li(u1,u2) = 53si(xik+1)ui,u|)xik), i = 1,2, (7.47) fe=i and, abiding by our
standard convention, PI is taken to act as the leader and P2 as the follower. In
the discussion to follow, we shall consider three different information
structures; namely, (A) open-loop for both players, (B) open-loop for the
leader and closed-loop perfect state (CLPS) for the follower, (C) CLPS for
both players. In addition to derivation of the (global) Stackelberg solution (cf.
subsection 7.5.1), we shall also discuss derivation of the feedback Stackelberg
solution under the third information pattern listed above (cf. subsection 7.5.2),
and stochastic incentive problems (as the counterpart of the material presented
in subsection 7.4.4). 7.5.1 (Global) Stackelberg solution A. Open-loop
information for both players If the underlying deterministic information
structure is open-loop for both players (in which case the controls depend on
the initial state x\ which is assumed to
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then the Stackelberg solution can be obtained by basically converting the game
into equivalent static normal form and utilizing the first method outlined in
Section 7.2 for the deterministic open-loop Stackelberg solution. Toward this
end, we first recursively substitute (7.46) into (7.47), and take expected values
of Ll over the statistics of the random variables {9\,..., 9k}, to obtain a cost
functional {Jl{ux,u2)) which depends only on the control vectors, u1, u2 (and
also on the initial state vector x\ which is already known by the players). Since
such static games have already been treated in Section 4.5, we do not discuss
them here any further, with the exception of one special case (see the next
paragraph and Prop. 7.4). It should be noted that the Stackelberg solution will,
in general, depend on the statistical moments of the random disturbances in the
state equation—unless the system equation is linear and the cost functionals are
quadratic. For the special case of linear-quadratic dynamic games (i.e., when
ff. in (7.46) is given as in (7.7a), and g\ in (7.47) is structured as in (7.7b), and
under the open-loop information structure, the cost functional Jl{ux,u2) can be



written as K 1 r(u\u2) = ^M^QivVk+i + 4*4 + u{Rl£u{) +?; j ± i,j = 1,2, k=i
where lte+i = Akyk + B\u\ + B\u\ + E[9k]; Vi = *i, and £a is independent of the
controls and X\, and depends only on the covariances of {9i,..., 9K}. This
result is, of course, valid as long as the set {9\,... ,9K} is statistically
independent of X\, which was one of our underlying assumptions at the
beginning. Hence, for the linear-quadratic stochastic game, the stochastic
contribution completely separates out; and, furthermore, if E[9k] = 0 VA; € K,
the open-loop Stackelberg solution matches (completely) with the one given in
Corollary 7.1 for the deterministic problem. This result is now summarized
below in Prop. 7.4. Proposition 7.4 Consider the two-person linear-quadratic
stochastic dynamic game described by (7-46)-(7.47) together with the
structural assumptions (7.7a)- (7.7b), and under the parametric restrictions
Qlk+l > 0, Rlk2 > 0, E[9k\ = 0 (k € K; i = 1,2). It admits a unique open-loop
Stackelberg solution with PI acting as the leader, which is given, under the
condition of invertibility of the matrix appearing in the braces in (7.9c), by
(7.8a)-(7.8b). B. OL information for PI and CLPS information for P2 For the
deterministic Stackelberg game, we have already seen in Section 7.2 that an
additional state information for the follower does not lead to any difference in
the open-loop Stackelberg strategy of the leader, provided, of course, that he
(the leader) still has only open-loop information (cf. Remark 7.1). The only
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CLPS Stackelberg solutions then lies in the optimum response strategy of the
follower, which, in the latter case, is any closed-loop representation of the
open-loop response strategy on the equilibrium trajectory associated with the
OL Stackelberg solution; hence, the optimum strategy of the follower under the
OL-CLPS information pattern is definitely not unique, but it can, nevertheless,
be obtained from the OL Stackelberg solution. For the stochastic Stackelberg
game, however, the issue is more subtle, especially if the state dynamics is not
linear and the cost functional is not quadratic. In general, the OL-OL
Stackelberg solution does not coincide with the OL-CLPS Stackelberg
solution, and the latter has to be obtained independently of the former. The
steps involved in this derivation are as follows: (1) For each fixed {u£ e U\; k
e K}, minimize J2{u\12)=E ^gl(xk+i,u\,u\,Xk) | u\ =fl(xt,e< k), k eK U=i
subject to (7.46) and over the permissible class of strategies, F2. Any solution
72 € T2 of this stochastic control problem satisfies the dynamic programming
equation (see Section 5.6, equation (5.6lb)) (7.48) V(k,x) = min



Eek[gl(fk(xk,ul,ul) + 9k,ul,u2k,xk) +V(k + 1, fk(xk,ul,u2k) + 6k)} +v(k +
i,fk(xkyk,i2°(v2)) + ek)}, where r£ = {xi,e<k}, and Eek denotes the
expectation operation with respect to the statistics of 9k. (2) Now, minimize
the cost functional JV.T20) = E[L\u\u2) | u\ = 7J(*iW = jfirj2), * € K] (7.49)
over the permissible class of strategies, T1, and subject to the constraints
imposed by the dynamic programming equation (7.48) and the state equation
(7.46) with u\ replaced by -y °̂(77 )̂.78 The solution of this optimization
problem constitutes the Stackelberg strategy of the leader in the stochastic
dynamic game under consideration.79 78Note that 7ji0() is, in fact, dependent
on 71, but this dependence cannot be written explicitly (in closed-form), unless
the cost functional of P2 and the state equation have a specific simple structure
(such as quadratic and linear, respectively). 79The underlying assumption here
is that step (i) provides a unique solution {7?0; k € K} for every {u\ € U ;̂ k €
K}.
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linear-quadratic games, these two steps can readily be carried out, to lead to a
unique Stackelberg solution in closed-form. In this case, the leader's
equilibrium strategy, in fact, coincides with its counterpart in the OL- OL game
(presented in Prop. 7.4)—a property that can be verified without actually
going explicitly through the two steps of the foregoing procedure. This result is
given below in Prop. 7.5, whose proof, as provided here, is an indirect one.
Proposition 7.5 Consider the two-person linear-quadratic stochastic
Stackelberg game of Prop. 7.4, but under the OL-CLPS information pattern.
Provided that the condition of matrix invertibility of Prop. 7.4 is satisfied, this
stochastic game admits a unique Stackelberg solution with Pi as the leader,
which is given for k € K by 7iJ*(*i) = -Bl'Klxl (7.50a) ll*{xk, *i) = -
PiSk+1Akxk - P2(sk+1 - Sk+iBlBl'Klxt), (7.50b) where P l̂I + Bts^BlJ-'Bl',
(7.51a) Sk = Q\ + A'kSk+1[I - B2P2Sk+1}Ak; SK+i = Q2K+1, (7.51b) sk =
A'k[I - B2kPiSk+1]'[sk+1 - Sk+iBiBJiKlx*k]; sK+1 = 0, (7.51c) and Kk is
defined by (7.9a), and x\ by (7.10e). Proof. For each fixed control strategy {uk
= (̂x -̂jk € K} of the leader, the dynamic programming equation (7.48) can
explicitly be solved to lead to the unique solution 7f (ifeli,) = -P^Sk+1Akxk -
Pi(sk+1+Sk+1Blkul), k € K, (i) where Pk and Sfc+i are defined by (7.51a) and
(7.51b), respectively, and sk is defined by sk = A'k[I - B2kPk2Sk+l]'[sk+l +
Sk+1Blkulk}; sK+l = 0. (it) (This result follows from Prop. 5.4 by taking
E[6k] = Bkulk.) Now, at step (2) of the derivation, (i) and (ii) above will have



to be used, together with the state equation, as constraints in the minimization
of (7.49) over T1. By recursive substitution of (ii) and the state equation into
(i), we obtain the following equivalent expression for (i), to be utilized as a
constraint in the optimization problem faced by the leader: K k-\ 7f = 53T*(0«i
+ MkXl + Y, Nk(l)9e, (iii) where Tk(i), Mk, Nk(i) are the coefficient matrices
associated with this representation, whose exact expressions will not be
needed in the sequel. Now, (iii)
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quadratic expression in {x^+i, u\, u\; k € K}, it follows that, with u1 = (u\ ,...,
u] )̂', J1(71,720) can be written as J'ij1,-/20) = E[v}'txux + v}'T2Xl + x\Tix1 I
u\ = lUxi)  ̂€ K] + Jm, where T1, T2, T3 are deterministic matrices, and Jm is
independent of u1 and is determined solely by the covariance matrices of
{9k',k € K}—this decomposition being due to the fact that the leader's
information is open-loop and hence his controls are independent of the random
variables {9k)k € K} which were taken to have zero mean. Since the
Stackelberg strategy of the leader is determined as the global minimum of
J1(71,720), it readily follows that it should be independent of the covariance
of {9k', k € K}. Now, if there were no noise in the state equation, the
follower's response (though not unique) would still be expressible in the form
(i), and therefore the leader's Stackelberg strategy would still be determined as
the control that minimizes [u1 Txux + u1 T2X\ +x'1T3x\]. Hence the leader's
Stackelberg strategy in this stochastic game is the same as the one in its
deterministic counterpart—thus leading to (7.50a) (see Corollary 7.1 and
Remark 7.1). The follower's unique optimal response (7.50b) then follows
from (i) by substituting (7.50a) into (ii). Note that this strategy is, in fact, a
particular closed-loop representation of (7.8b) on the open-loop equilibrium
trajectory of the deterministic problem (which is described by (7.10e)). D C.
CLPS information for both players When the leader has access to dynamic
information, derivation of the Stackelberg solution in stochastic dynamic
games meets with insurmountable difficulties.80 First, any direct approach
readily fails at the outset (as in its deterministic counterpart, discussed in
Section 7.4) since the optimal response of the follower to any announced
strategy of the leader (from a general strategy space) cannot be expressed
analytically (in terms of that strategy), even for linear-quadratic games.
Second, the indirect method of Section 7.4, which is developed for
deterministic dynamic games, cannot be extended to stochastic games, since, in



the latter case, every strategy has a unique representation (see Section 5.6) as
opposed to the existence of infinitely many closed-loop representations of a
given strategy in a deterministic system. Consequently, derivation of the
closed-loop Stackelberg solution of stochastic dynamic games remains, today,
as a challenge for the researchers. If, however, we make some structural
assumptions on the possible strategies of the leader—which is tantamount to
seeking sub-optimal solutions—then the problem may become tractable. In
particular, if, under the stipulated structural assumptions, the class of
permissible strategies of the leader can be described by a finite number of
parameters, and if the follower's optimal response can be determined
analytically as a function of these parameters, then the original game
80Consistent with the CLPS information pattern, we are assuming here that the
leader does not have direct access to the follower's control. If this is not the
case, and the leader's information exhibits redundancy, then the problem might
be more tractable. This case will be discussed later in subsection 7.5.3 in the
context of stochastic incentive problems.

HIERARCHICAL (STACKELBERG) EQUILIBRIA 401 may be viewed as a
static one in which the leader selects his strategy from a Euclidean space of
appropriate dimension; such a static Stackelberg game is, in general, solvable
—but more often numerically than analytically. The following example now
illustrates this approach and demonstrates that even for simple stochastic
dynamic games, and under the crudest type of structural assumptions, the
corresponding (sub-optimal) Stackelberg solution cannot be obtained
analytically, but only through some numerical minimization techniques.
Example 7.5 Consider the two-stage scalar stochastic dynamic game described
by the state equations x2 = £1 -u2 + 9X, \ . . x3 = x2-u1+62 } (7'52) and cost
functional L1 = (x3)2+2(u1)2 + (u2)2, L2 = (x3)2 + (u2)2. Here, 8\ and 92 are
taken as independent random variables with mean zero and variances a\ and
a2, respectively. The leader (Pi) acts at stage 2 and has access to both x\ and
x2, while the follower (P2) acts at stage 1 and has only access to X\. If Y € ri
denotes a general strategy of Pi (i = 1,2), the expected (average) cost
functional of P2 can be written as J2(l\l2) = E{[x2-y1(x2,x1) + 92}2 +
[y2(x1)]2} = E{[x2-11(x2,x1)}2 + [12(x1)]2}+a2 which has to be minimized
over 72 € T2, to determine the optimal response of P2 to 71 € r1. Barring the
stochastic aspects, this is similar to the problem treated in subsection 7.4.1,
where the difficulties involved in working with a general 71 have been



delineated. We therefore now restrict our investigation (also in line with the
discussion preceding the example) to a subclass of strategies in T1 which are
affine in x2, that is, to strategies of the form81 71(z2,£i) = ax2 + (3x\, (7.53)
where a and j3 are free parameters which are yet to be determined. They will,
in general, be dependent on x\ which is, though, known a priori by both
players. Under the structural restriction (7.53), J2 admits a unique minimum,
thus leading to the optimal response strategy (for the follower) '̂-V+'iLV1' (7-
54) 81 The apparent linear structure of the second term below is adopted for
the sake of convenience in the analysis to follow; it could also have been taken
as a single function /3.
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parameters a and /3 that characterize the leader's strategy. To determine their
optimal values, we now substitute (7.53)- (7.54) into 71(71,72), together with
the corresponding values of X3 and X2 from (7.52), to obtain the function F
given below, which has to be minimized over a € R, /3 € R for fixed x\: rv as
f[l-a-/?]2 2 [a + 2/3 - a/3]21 2 .. ,2 2. Let us now note that (i) F is jointly
continuous in (a,/3), F(a,/3) > 0 V(a,/3) € R x R, and F(a,fi) —» 00 as |q|, |/3|
—» 00. Therefore, we can restrict our search for a minimum on R to a closed
and bounded subset of R , and consequently there exists (by the Weierstrass
theorem82) at least one pair (a*,/?*) that minimizes F for any given pair
(xi,a{). (ii) The optimum pair (a*,/?*) depends on (xi,ci), but not on CT2, and
it cannot be expressed analytically as a function of (xi,ai). Hence, for each
fixed (x\,(Ti), F(a,/3) has to be minimized numerically, by utilizing one of the
available optimization algorithms (Luenberger, 1973). (iii) With (a*,/?*)
determined as above, the linear-in-a;2 strategy r)x*(x2,X\) = a*(x{)x2 + /3*
(xi)xi is only a sub-optimal Stackelberg strategy for the leader, since he may
possibly achieve a better performance by announcing a strategy outside the
"linear-in-a "̂ class. □ 7.5.2 Feedback Stackelberg solution In this subsection,
we extend the results of Section 7.3 to stochastic dynamic games described by
(7.46)-(7.47), and, in particular, we obtain the counterpart of Thm. 7.2 in the
present context (see Thm. 7.4 below). In this analysis, we do not restrict our
attention at the outset to feedback strategies (as it was done in Section 7.3), but
rather start with general closed-loop strategies ulk = Jk(xt,£ < k), k € K, i =
1,2. The conclusion, however, is that the feedback Stackelberg solution can be
realized only in feedback strategies. To see this, we start (in view of Def.
3.29) at the last stage k = K and solve basically a static Stackelberg game



between Pi and P2, with their strategies denoted by Jk and jK, respectively.
Because of the additive nature of the cost functional of each player, and since
cov (9 k) > 0, 9k is Gaussian and statistically independent of the remaining
random vectors, every Stackelberg solution at this stage will depend only on
xk and not on the past values of the state vector. Proceeding to the next stage k
= K — 1, after substitution of the Stackelberg solution at stage k = K into the
state equation, we conclude, by the same reasoning, that the Stackelberg
strategies at stage k — K — 1 are only functions of xk-i- An inductive
argument (as in the proof of Thm. 6.10) then verifies See Section 5 of
Appendix A.
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property of the feedback Stackelberg strategies, and it also simultaneously
leads to the equations that yield the corresponding solution for the stochastic
dynamic game. Theorem 7.4, below, now provides the complete solution under
the assumption of singleton reaction sets for the follower. Theorem 7.4 Every
feedback Stackelberg solution of a two-person K-stage stochastic infinite
dynamic game described by (7.46)-(7-47) and with the CLPS information
pattern (for both players) comprises only feedback strategies, and is strongly
time consistent. A pair of strategies {-y1* € T1^2* € T2} constitutes a
feedback Stackelberg solution with Pi as the leader if min Gl(jlj2k,xk)
=G1k(j1k*,~f2k*,xk),VxkeRn (keK), 7jer£,7fc2e (̂7fc2) where R\(-) is a
singleton set defined by Rtill) = \PU r2k;G2k(llP2k,xk) = min G2(jlj2,xk) Vxk
€ R" G\{lk,lhxk) =Eek[Gi{fk{xk,~il{xk),il{xk) + 6k),~il(xk),il(xk),xk)], i =
l,2, keK and Gk is recursively defined by Gk(xk+i,Jk(xk),lk(xk),xk) =
Eek+l[Gk+1{fk+i(xk+i,lk*+i(xk+i), -yk*+1(xk+1)) +
ek+1,jl*+1(xk+1),fl*+1{xk+1),xk+1)} +9k(xk+i,lk(xk),Jk(xk),xk); G,lK+1=0, i
= 1,2, Proof. This result follows from a direct application of Def. 3.29 and
Prop. 3.15 (interpreted appropriately for the infinite stochastic dynamic game
under consideration) , by employing the techniques and lines of thought used in
the proof of Thm. 6.10 for the feedback Nash solution. D Remark 7.3 has a
natural counterpart here for the stochastic game; and for the special case of the
linear-quadratic stochastic dynamic game in which E[8k] = 0 Vfc £ K, it may
readily be verified that the feedback Stackelberg solution of Thm. 7.4 is
precisely the one given in Corollary 7.2. 7.5.3 Stochastic incentive problems
We have seen in subsection 7.5.1 that for stochastic dynamic games, and under
CLPS information, it is generally very difficult, if not impossible, to obtain the



global Stackelberg solution—with the indirect method developed in the
deterministic case (cf. Section 7.4) not applicable here because of uniqueness
of strategy representations. What if, however, the leader has also access to the
follower's past control actions, in addition to the state information based on
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this enlarged information structure, a given strategy of the leader will have
multiple representations, thus opening the possibility of enforcement of a team
solution (to the leader's advantage) by selecting an appropriate representation
of the team-optimal strategy (of the leader). To illustrate this line of thought
now, let us revisit Example 7.5, but with the following enlarged information
structure. Example 7.6 Consider the two-stage scalar stochastic dynamic game
of Example 7.5, but with the enlarged information structure that allows Pi to
have access to u2, in addition to X\ and x2. Note that since u2 depends only
onxi, this enlarged information structure carries the same statistical information
as the earlier one for each fixed (pure) policy of the follower; however, as we
will see shortly, the informational redundancy that it generates will bring a
substantial advantage to the leader. In the spirit of the analysis of Example 7.1
for the deterministic case, let us first determine the best performance the leader
would achieve if the follower were cooperating with him (in the minimization
of the leader's expected cost function). The associated team problem is
7^71(7lt,72')== nun min W.T2), where W.T2) = E{[x2 - l\x2,xx) + 92}2 +
2[11(x2,x1)}2 + [72(*i)]2}. Here, the cost shows dependence on u2 = ~t2{x\)
not only directly, but also through x2 as given by (7.52), which has to be taken
into account in the minimization. Furthermore, the strategy spaces T1 and F2
are taken as in Example 7.1, since the additional knowledge of u2 for PI does
not help in further reducing the minimum team cost J1. Now, this team problem
is in fact a standard LQ stochastic control problem of the type covered by
Prop. 5.4, and its solution can readily be obtained as: t lt5 71 (x2,xi) = -x2, 72
(zi) = j^xi (7.55) which is the unique minimizing pair in T1 x F2. It is not,
however, unique in the enlarged strategy space for the leader, as (for example)
the following parameterized strategy also constitutes an optimal solution, along
with 72 given above, for every a € R: 1 5 7* (x2,xi, u2) = -x2 + a{u2 - —a).
(7.56) This in fact characterizes the complete class of linear (in x2,x\,u2)
optimal strategies, but of course there are also nonlinear ones—all leading to
the same (minimum) expected value for the leader. By a slight generalization of
the terminology introduced in Def. 5.11, we will refer to all these "minimum



expected cost
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as representations of 71 under the team-optimal solution (71 * 72 )• This is a
rich family of strategies, among which we seek one with the additional
property that if the follower instead minimizes his own expected cost function,
then the strategy in T2 that achieves this minimum is still j2 . The
corresponding strategy (representation) for the leader would then clearly
constitute a global Stackelberg solution, leading to the best possible
performance for him. Let us now conduct the search in the family of linear
representations (7.56), which leads to the quadratic optimization problem: min
E{[x2 - 1xa{x2,x1,u2) + 92]2 + [u2]2}, 72er2 where x2 = xi -u2 + 9x. Since
X\ is independent of 8\ and 92, which have zero mean, this problem is
equivalent to the following deterministic optimization problem:83 2 5 where
we have written v for u2, to simplify the notation. Now, a simple optimization
shows that for the value of a = 8/27, this optimization problem admits the
unique solution v = (5/14)a;i = 72 (x\), and hence the policy pair l1(x2,x1,v) =
-x2 + — (v - —xx), ~i2{xx) = —xx provides a global Stackelberg solution.
This is in fact the unique such solution in the linear class. □ Stochastic decision
problems of the type above, where the leader is allowed to have access to past
actions of the follower are known as stochastic incentive problems, which are
the stochastic counterparts of those briefly discussed in subsection 7.4.4. In
stochastic incentive problems, the information structure may not always be
nested (for the leader), as in the example above, where the leader has access to
all the information that the follower has access to (plus more). If, for instance,
in Example 7.6 the leader has only access to x2 and u2, then we have a
problem with a nonnested information structure, to which the methodology
presented above does not apply, since the dynamic information for the leader
no longer exhibits redundancy. Discussion of such problems, where the
follower possesses private information not known to the leader, is beyond the
scope of our coverage here; the interested reader can consult with Ho, Luh and
Olsder (1982) and Ba§ar(1984, 1989a)). For stochastic incentive problems
with nested information, however, the methodology used in Example 7.6 can be
83This equivalence holds as far as its optimum solution goes (which is what
we seek), but not for the corresponding minimum values.
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briefly discussed below for a special class of such problems. Consider a two-
person stochastic incentive problem with the cost functions L1 (ul, u2; 9) and
L^u^u2; )̂, for PI (leader) and P2 (follower), respectively, where 9 is some
random vector with a known distribution function. Let y1 = hx(9) be the
measurement of Pi on 9, and y2 = h2(9) be P2's measurement, with the property
that what P2 knows is also known by Pi (but not necessarily vice versa).84 Let
T4 be the set of all measurable policies of the form ul = 7z(j/z), i = 1,2, and f1
be the set of all measurable policies of the form u1 = 71(j/1, u2). Introduce the
pair of policies (71',72t)=arg min Ee{L\1\h\9)W{h2{9)),9)} 7isri,7 sr^
assuming that the underlying team problem admits a minimizing solution. Then,
a representation of the leader's strategy 71 under the pair above is an element
of T1, say 71, with the property j\h1(9),12\h2(9))) = 1ll(h1(9)), a.s.85 (7.57)
The following result now readily follows: Proposition 7.6 For the stochastic
incentive decision problem with nested information as formulated above, the
pair ('y1,!2 ) constitutes a global Stackelberg solution, leading to the best
possible outcome for the leader. Equivalently, if a strategy 71 € T1 exists
satisfying (7.57), the stochastic decision problem is incentive controllable.86
Remark 7.13 For the special class of linear-quadratic-Gaussian (LQG)
problems, where the decision variables (u1, u2) belong to finite dimensional
Euclidean spaces, 9 is a Gaussian random vector, h1 and h2 are linear, and L1
is jointly quadratic in the triple {ux,u2,9) and strictly convex in (ux,u2) for
each 9, the team-optimal policies 71 and 72 exist, are unique and linear in y1
and y2, respectively (see any standard book on stochastic control, such as
(Bertsekas, 1987)). If, furthermore, L2 is also a quadratic function, then except
for some isolated cases one can restrict the search to linear representations of
71 : l1(vW)=l1\v1)+P[«2 - (̂v2)], (7-58) where P is a matrix of appropriate
dimensions. Now, invoking the condition (7.57) one can obtain an equation for
P, whose solution (when used in (7.58)) leads to a linear incentive policy. This
then makes the decision problem linear incentive controllable; for details see
(Ba§ar, 1979d). □ 84In mathematical terms, this requirement can be stated as
the sigma-field generated by yl including the sigma-field generated by y2.
85The equality should hold for almost all values of 9, under its assumed
distribution function. 86The terminology we have used here is the natural
counterpart (in the stochastic case) of the one introduced in Def. 7.1 for
deterministic incentive problems.
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above does not cover (even in the LQG framework) the most general class of
dynamic nested stochastic incentive problems, because the measurements of
the decision makers have been taken to be static—not depending on the past
actions. If the leader's measurement at stage k depends on the past actions of
the follower (u2, i < k), then the approach discussed above can easily be
adjusted to apply to such multi-stage problems too. If, however, the follower
also has access to the leader's past control actions, then because of the
nestedness of the information structure for the leader (which does not allow for
the follower to have access to all measurements of the leader) the associated
dynamic team problem becomes what is called a nonclassical stochastic
control problem, for which no general theory exists. Issues such as learning,
inference, and filtering become of relevance then, whose treatment requires
background in stochastic processes, information theory and control, much
beyond the level of our coverage here. For static stochastic incentive problems
where there is one leader and several followers, with the followers playing
according to the Nash concept, a natural counterpart of (7.45) exists, which is:
&rgmmJi(j\yl;u2,...,uM)n2,...nM)=Y\ 7*er« with y> =jj Vj  ̂i, i, j = 2,..., M.
Since the Nash equilibrium is defined here over strategy spaces, it admits
natural (conceptual) extensions to the multi-stage case, where the informations
of the players (leader as well as the followers) might be intertwined in more
complicated ways. 7.6 Stackelberg Solution of Differential Games In this
section we discuss the continuous-time counterparts of some of the results
presented in the previous sections, and in particular the open-loop and
feedback Stackelberg solutions. 7.6.1 The open-loop information structure As
counterparts of the results of Section 7.2 in the continuous time, we present
here the open-loop Stackelberg solution of deterministic two-person
differential games of prescribed fixed duration (cf. Def. 5.5), when Pi acts as a
leader. The class of games under consideration are described by the state
equation x(t) = f(t,x(t),u1(t),u2(t)); x(0) = x0, (7.59a) and cost functionals
Li(u\u2) = f gi{t,x{t),u1{t),u2{t))&t + qi{x{T));i = \,2, (7.59b) Jo

408 T. BA§AR AND G. J. OLSDER where [0, T] denotes the fixed prescribed
duration of the game, xq is the initial state known by both players, x(t) € Rn
and «*(*) 6 5s C Rmi (i = 1,2), V< € [0, T]. The underlying information
structure is open-loop for both players, so that the controls u1(-) and u2(-)
depend only on the time variable t and the initial state xq. We allow only for
controls (or synonymously, in this case, strategies) that are continuous in the



time variable; and this determines the strategy sets (r1,r2) which are in this
case equivalent to the control function sets {UX,U2). We further assume that /
satisfies the conditions of Thm. 5.1 so that a unique continuously differentiable
trajectory exists as a solution to (7.59a) for every permissible control pair
(u^u2). To determine the set of relations to be satisfied by an open-loop
Stackel- berg solution, we first obtain the optimal reaction of the follower (P2)
to every announced control u1 of the leader by minimizing L2{ux ,u2) over u2
€ u2. Lemma 7.3 In addition to the conditions of Thm. 5.1, let i) f{t,-,ux ,u2) be
continuously differentiable on Rn Vt € [0, T], ii) g2(t, -t ĵU2) and q2{-) be
continuously differentiable on Rn V< € [0, T\. Then, ifu1 € U1 is a fixed
control of Pi, andu2 € U2 denotes a corresponding optimal response of P2,
there exists a function p(-) : [0,T] —> Rn such that the following relations are
satisfied: x = f(t,x(t),u1(t),u2''{t)y, x(0) = xo, u2o(t) = axgjauna
H2{t,p{t),x,u\t),u2), p'(t) = -^H2(t,p(t),x,u\t),u2°(t)); p'(T) = £q2(x(T)), where
H2(t,p,u\u2) = g2(t,x,u1,u2)+p'f(t,x,u1,u2), te[0,T}. If, furthermore, Hi)
H2{t,p,x,ux,-) is continuously differentiable and strictly convex on S2 which is
taken as an open set, the second relation above is replaced by
Vu2H2{t,p,x,u\u2°) = 0. Proof. This result follows directly from Thm. 5.4. D
To proceed further, we now assume that there exists a unique u2° € U2 under
which the set of relations of Lemma 7.3 is satisfied for a given u1 € U1, a
sufficient condition for which is strict convexity of L2(ux, ■) on U2, with x(-)
substituted from (7.59a). Then, to determine his Stackelberg strategy, the
leader will be faced with the optimal control problem: minL^uSu2) (7.61a)
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f(t,x,v},u2);x(0) = x0, (7.61b) p' = -^H2(t,p,xy,u2); p'(T) = -^q2(x(t)), (7.61c)
Vu2H2(t,p,x,u1,u2) = 0. (7.61d) This optimization problem is not of the type
covered by Thm. 5.4 since its differential constraints involve specified
boundary conditions at both ends. The problem, however, is still tractable, and
can be solved by utilizing some other standard results of optimal control
theory, particularly form (Bryson and Ho, 1975, p. 65). Toward this end, we
introduce the "Hamiltonian" /dH2\' H^g'^x^^u^+X'J^x,^^2)-^ -̂ -̂) +VU2#2A3,
(7. 62) where Ai(-) : [0, T] —> Rn is the costate function corresponding to
(7.61b), A2(-) : [0,T] —> Rn is the costate function corresponding to (7.6lc)
and A3(-) : [0, T] —> Rm2 is the Lagrange multiplier function associated with
the equality constraint (7.61d). Under suitable differentiability conditions (to
be made precise in Thm. 7.5 to follow), Ax (•) and A2(-) satisfy the set of



differential equations Aj = -— if1(<,p,Ai,A2,A3,u1,u2); Ai(T) = JV(*(T))-
^2(*(T))A2(T), A'2 = -—if1(<,p,A1,A2,A3,«1,«2); A2(0)=0; and with S1
taken as an open set, the Stackelberg open-loop control of Pi satisfies the
relations Vuitf^O, V„2#2 = 0. These results are now summarized in Thm. 7.5
below. Theorem 7.5 For the class of two-person differential games under
consideration in this subsection, assume, in addition to i), ii) and Hi) of
Lemma 7.3, that iv) f(t, -,ux,u2) is twice continuously differentiable on Rn V<
€ [0, T], v) 92(t> 'jW1,"2) and q2{-) are twice continuously differentiable on
Rn V< € [o,n W 9l(t> ■j"1)1'2) an<l 91(") are twice continuously
differentiable on Rn V< € [0,T],
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continuously differentiable on Rmi vte[o,T], viii) S1 is an open set. Then, if {-
yl*(t,xo) = ul*(t);i = 1,2} provides an open-loop Stackelberg solution with Pi
as the leader, and {x*(t),0 < t < T} denotes the corresponding state trajectory,
there exist continuously differentiable functions p(-), X\(-), A2(-): [0,T] —►
Rn, and a continuous function A3(-): [0,T] —► Rm2, such that the following
relations are satisfied: i*(t) = f{t, x*(t), u' t̂), u2' (<)); x*(0) = x, p'(t) = -|-
fr2(t,p,x*,«1*,«2*); p'(T) = -̂q2(x*(T)), X[(t) = -—H1(t,p,\1,\2,\3,x*,u1\u2"),
X[(T) = ^q\x9iX)) - ^q2(x*(T))X2(T), (7-63) A2(<) = -?-
H1(t,p,\1,\2,\3,x*,u1',ury, A2(0) =0, V„i Hx{t,p, Alt A2) A3, x*, u1" ,u2") = 0,
Vu2H1(t,p,\1,\2,\3,x*,u1',u2') = Vu2H2(t,p,x*,u1',u2')=0, where H2 is defined
in Lemma 7.3, and H1 is defined by (7.62). Proof. Since the optimization
problem faced by the leader is (7.61a)-(7.61d), the theorem follows, in view
of Lemma 7.3, from a standard optimal control result that can, for instance, be
found on p. 65 of the text by Bryson and Ho (1975). D As a specific
application of this theorem, we now consider the special class of linear-
quadratic differential games (cf. Def. 6.5), wherein we also assume R12(-) >
0, Q -̂) > 0, i = 1,2. The Hamiltonians H1 and H2 can be written as H2 = ±
(x'Q2x + u2'r22u2 + u1'r21u1)+P'(Ax + B1u1+B2u2), H1 = ]-(x'Q1x +
u1'r11u1 + u2'r12u2) + X'1(Ax + B1u1+B2u2) -X'2(Q2x + A'p) + X'3(R22u2
+ B2'p) and thus the set of relations (7.62) reduce to (with the arguments
suppressed) x* = Ax* + BV + B2u2*; x*(0)=x0, (7.64a) p = -Q2x*-A'p; p(T) =
Q2fx*(T), (7.64b) Ax = -QV - A'XX + Q2X2; (7.64c) Ai(T) = Q)x*{T)-
Q)\2{T), A2 = .4A2 - B2X3; A2(0) = 0, (7.64d) u1* = -R '̂B^Xi, (7.64e)
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(7.64f) A3 = -R^ '̂x^R12!?2'^2 )̂. (7.64g) Hence, Thm. 7.5 says, for this
special case, that every open-loop Stackelberg solution of the linear-quadratic
differential game is determined by the set (7.64a)- (7.64g). Because of the
specific structure of the problem, we can actually obtain a stronger result,
which is that the linear quadratic differential game admits a unique solution,
and this, in turn, implies that (7.64a)-(7.64g) admits a unique solution set. To
establish this result, let us first observe that87 there exist, for the linear-
quadratic problem, bounded linear operators L\ : U1 —> U1, L\ : U1 - U\
L\:U2 - U2, L22:U2  ̂U2, L\2 : U2 -> U\ L22 : U2 -> U\ ( rl rl \ with L\ > 0, ,/»
A2 > 0 and elements r\ 6 E/1, rj 6 U2, r\ € R, \ ^12 L2 J i = l,2, so that U{u\u2)
= l-{u\L\ul)x + {u\L\2u2)l + (̂u2,L\u2)2 + <«1,r*1)i + («2,r^2 + rj,t = l,2,
where (u,v)i = f u'(t)v(t)dt Jo denotes the inner product of two vectors in Ul
which is assumed to be structured as a complete vector space. Now, by
hypothesis, L2{ux,-) is quadratic and strictly convex on U2, and Ll(-, ■) is
quadratic and strictly convex on U1 x U2, and therefore it follows from Prop.
4.7, together with Remark 4.8 (interpreted in infinite dimensional spaces), that
the linear-quadratic Stackelberg game under consideration admits a unique
solution given by u = —L (Li2L2 L2L2 t2 — Li2L2 r2-\-rx—LX2L2 r2), u2* =
-(L\)-\l&  ̂+ rl), where L — Li + l>\2L2 L2L2 L12 — Li2L2 Ll2 — L12L2
L12 > 0. This solution, written in operator form, should clearly correspond to
the one given by (7.64a)-(7.64g), and this can also be verified directly (see
Simaan and Cruz (1973a)). Finally, let us note that, since the solutions of the
coupled set of differential equations (7.64a)-(7.64d) depend linearly on xq,
and since x*(t) can be recovered 87The analysis to follow is in the same spirit
as the proof of Thm. 6.14, and requires some prior knowledge of functional
analysis. Our treatment here is rather informal and without details; for a more
complete version the reader is referred to Simaan and Cruz (1973a).
Furthermore, for the terminology and notation used here, the reader is referred
to the proof of Thm. 6.14.

412 T. BA§AR AND G. J. OLSDER from x*(s) by linear invertible
transformation for all t, s > 0, the set (7.64a)- (7.64d) can be replaced by a set
of matrix differential equations independent of x0, which are obtained by
letting \\(t) = A.\(t)x*(t), A2(t) = A2(t)x*(t), p(t) = P(t)x*(t), where A\, A2 and
P are the corresponding matrices. This set of coupled matrix differential
equations is P + P(A- B'R '̂B^Aj, - B2R22~lB2'P) + A'P + Q2 = 0; P(T) = Q},
Ax + Ai(A- B1^11-1^1 !̂ - B2R22~1B2'P) + A'A! ( . +Q1-Q2A2 = 0;



A1(T)=Q}-Q2A2(T), U"b&j A2 + A2(A - B1^11-1^1 !̂ - B2R22~lB2'P) -
AA2 +B2R22~1R12B2'P - B2R22~1B2'A1 = 0; A2(0) = 0. The following
theorem now summarizes the result. Theorem 7.6 The two-person linear-
quadratic differential game (cf. Def. 6.5) characterized by the additional
parametric restrictions Rl2{-) > 0, Q% > 0, Qlf > 0, i — 1,2, admits a unique
open-loop Stackelberg solution with Pi acting as the leader, which is given by
>yu{t,x0) = -R ît '̂m^x'it), j2*(t,x0) = -R22~\t)B2\t)P{t)x*{t), where P and A\
are uniquely determined from (7.65), and x*(-) satisfies the differential
equation x*(t) = (A - B1^11"1^1 !̂ - B2R22~lB2'p)x*(t); x*(0) = x0. Proof. It
follows from the preceding discussion. D Remark 7.14 All results of this
subsection (with the exception of uniqueness of follower response strategy) are
valid if the follower is allowed to have access to CLPS information, and the
discussion of Remark 7.1 has a natural counterpart here. □ 7.6.2 The CLPS
information pattern In discrete-time dynamic games (see Sections 7.3, 7.4), the
CLPS information (for the leader) has led to two types of equilibria—the
global Stackelberg and feedback Stackelberg solutions. In the continuous time,
we have direct counterparts of these, which we briefly discuss below. Global
Stackelberg solution For the global Stackelberg solution, a direct approach is
again quite unwieldy, since the optimum response of the follower to an
arbitrary CLPS strategy of
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obtained using standard methods of optimal control— the major difficulty
stemming from the fact that a general control strategy for the leader will also
incorporate memory, and may even be discontinuous. To circumvent this
difficulty two alternatives exist. One alternative is to make some structural
assumption on the permissible strategies of the leader (such as, taking 71 to be
a general CLNM policy, or one that is parameterized in terms of its
dependence on the current and past values of the state), which then would make
it possible to write down a set of necessary (and/or sufficient) conditions for
the follower's reaction function to satisfy. Then, the leader will have to solve a
dynamic optimization problem over an infinite dimensional strategy space
subject to these infinite dimensional dynamic constraints. A theory for such
nonclassical control problems can be found in Papavassilopoulos and Cruz
(1979a), which is also applied there to Stackelberg problems. If, on the other
hand, the strategy set of the leader is parameterized (say, by a finite
dimensional vector), then the leader will have to solve an optimization



problem on the corresponding parameter space, which might be more
feasible88 but definitely sub-optimal. The second alternative approach to the
global Stackelberg solution is the counterpart of the methodology discussed in
Section 7.4, which is to find an equivalent team problem the global solution of
which forms a tight lower bound on the leader's cost, and then to obtain a
particular representation of the team solution (for the leader) on the optimum
team trajectory that achieves this bound. This methodology has been applied in
(Ba§arand Olsder, 1980b) to linear-quadratic differential games, and
conditions have been obtained for a finite dimensional linear representation
(i.e., a linear dynamic compensator) to provide a global Stackelberg solution.
Counterparts of these results when the leader has access to sampled state
information has been presented in (Ba§ar, 1981b); here representation of the
leader's team strategy will have to meet the additional side condition that it can
depend only on the current and past sampled values of the state. Details of
these derivations can be found in the references cited. Feedback Stackelberg
solution For the feedback Stackelberg solution, we have to extend the
definition from discrete to continuous time. Let us recall that in discrete time a
feedback Stackelberg solution is one that retains the Stackelberg property at
every stage— with the leader having only stagewise advantage over the
follower. The continuous-time problem can be viewed as the limit of the
discrete-time game as the number of stages becomes unbounded in a finite
interval, which means that two consecutive decision points get arbitrarily
close to each other. Hence, in a continuous-time dynamic game stagewise
advantage of the leader (on the follower) turns into instantaneous advantage.
Formally, the feedback 88This has been demonstrated by Medanic (1977) for
linear-quadratic games by taking the initial state uniformly distributed on the
unit sphere.
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game can be obtained as the limit of the feedback Stackelberg solutions of a
sequence of discrete-time dynamic games, each one obtained by time-
discretization of the original differential game, with the k + 1st game in the
sequence corresponding to a finer discretization (sampling) than the fcth one.
One possible construction would be to divide the finite interval [0, T] into k
uniform subintervals, and to assume that over the Ith. subinterval [j(l - 1), jt),
where 0 < I < k, the players' policies depend only on the values of state prior
to and including t — (̂£ — 1), and that the leader can enforce his policy on the



follower over each such interval—thus denning the fcth game in the sequence.
If necessary, one can take a subsequence of these games, corresponding to k =
1,2,4,8,..., so that the information set of each time-discretized game is strictly
included in the information set of the next such game. An appropriate
terminology to use for these games is "sampled-state", as the only time-
discretization is in the information set, which comprises the state vector. The
feedback Stackelberg solution of each state-sampled game can be obtained by
again using a dynamic programming-type argument, by solving a sequence of
open-loop Stackelberg games of the type covered in Section 7.2, with the one
on the time interval [j£, j(t+ 1)) having the initial state x (jt)- The Stackelberg
costs associated with this open-loop game (which will be expressed in terms
of x (jt), will constitute the terminal state cost part of the cost functions of the
respective players in the open-loop game denned on the next subinterval (in
retrograde time) [ (̂£ — 1), j£). A complete analysis of the convergence of
these solutions as k —> oo is beyond the scope of our coverage here; but, if a
limit exits, then the limiting solution should involve solutions of a sequence of
open-loop Stackelberg games, each one denned on an infinitesimally small
subinterval, which means that we now have to obtain Stackelberg solutions
based on incremental costs at each time t. If Vl(t,x) denotes the feedback
Stackelberg cost-to-go of Pi at time t, at state x, then the counterpart of the pair
of Nash equilibrium PDEs (6.52) are in this case (for the game described by
(7.59a)-(7.59b)) f dV^^x) ) dt dV2(t,x) dt > = sol < '
dVl^x)f(t,x,u\u2)+g\t,xy,u2) ' ox 9Vgx,X'' f{t,x,u\u2) + g2{t,x,u\u2) V\T,x) =
g\x), t = l,2, (7.66) where "sol" stands for the static Stackelberg solution with
Pi as the leader. By analogy with the discrete-time case, we will call any set of
policies obtained from (7.66) the continuous-time feedback Stackelberg
solution, which is clearly strongly time consistent (by definition). To bring
(7.66) to a more explicit form, let us introduce the instantaneous
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P2 by 2 r2n l dV \ 1 (t,x;u ,—-—) = arg mm 8X u2gS2 dV 2 dx
■f{t,x,v},u2)+g2{t,x,ul,u2) (7.67) Substituting this into the RHS of the first line
of (7.66) and minimizing the resulting expression over «'eS' yields the
instantaneous Stackelberg solution for the leader: - f(t,x,ul ,T2(t,x;ul,——)) 71
(t.x) = arg min ax ax dV2 ' +g2{t,x,u\T2{t,x;u\—)) (7.68a) with the
corresponding one for the follower being dx FlV2 72*(t,x) = r2 ,̂^1*^*),^—).
(7.68b) Using these, (7.66) can equivalently be written as dVHt,x) dVHt,x) t,



,.. . ,.. NN gt ' = gx 'ffax,-,1 {t,xW (t,x)) +gi(t,xn1'(t,x)n2'(t,x)) (7.69) Vl{T,x) =
q\x), t = l,2, which is a pair of coupled PDEs, whose solution yields the
feedback Stackelberg cost-to-go pair. Hence, we have the following.
Proposition 7.7 For the differential game described by (7.59a)-(7.59b), and
under the CLPS information pattern, the pair of policies (7.68a)-(7.68b)
constitutes a feedback Stackelberg solution, where Vl{t,x), satisfying (7.69), is
the corresponding cost-to-go function for Pi (i = 1,2). Since the asymmetry in
the roles of the players in a continuous-time feedback Stackelberg solution is
only incremental, one may be led to the conclusion that the feedback
Stackelberg solution should coincide with (or be very close to) the feedback
Nash solution (cf. Thm. 6.16). This, however, is not necessarily the case as the
feedback Nash solution corresponds to choosing the static sol operator in
(7.66) as Nash equilibrium, whereas in the present case it is the Stackelberg
equilibrium, and the two are not generally the same. To illustrate this point, as
well as the possibility that they may sometimes be equivalent, we consider in
the sequel a class of linear-quadratic games with a coupling term between the
controls of the players: / = Ax + B1u1 + B2u2, (7.70a) g* = (̂x'Qix +
ui'ui~2ui'Rijuj),j î,i,j=l,2; (7.70b) qi = \x'Q)x, Si = Rm\ 7 = 1,2. (7.70c)
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function of the follower is ,■ fdV2\' f = *..■+*■(£-) leading to the following
structure for (7.68a)-(7.68b): 7r(t,x) = -(/ - J?12i?2i - ^2i î2)_1, 32' RnB' dV '̂
+ (B1' + ^B2') ( dV2 dx J \  ̂) \dx = -K^dV^dx)' - K2(dV2/dx)', (7.71a)
~/2'(t,x) = -RaiKi (8V1/dx)' - {B2' + R21K2)(dV2/dx)' = -Ll{dVlldx)' -
L2{dV2/dx)'. (7.71b) The PDEs (7.69) then become dV1 dV1 at dx Ax + Bi
dV1 dx + W^V l/ î + 1 _2 Ki Kl{-8x-)+K2(-dx- m î  ̂\ dx Ki[ )̂+K2 dV2 dt dx
J Ax + Bi T , dV'V (dV2 Ll{-dx-)+L2(-dx- dV2 dx R12 dV dx ,-i i r 2 dV' dx
dV2 dx x'Qlx , (7.72a) '-x'Q2x M?H +L2 + where , , 9Vl\' fdV dx dx R2i Kx dx
dV1 K2 dV- dx dV2 , (7.72b) dx J V dx V\T, x) = {\/2)x'Q)x, i = 1,2, (7.72c)
B1^~{BlKl + B2Ll) B2 = -(B1K2 + B2L2). (7.73) For the feedback Nash
equilibrium solution, however, the relevant set of PDEs is in the same form as
(7.72a)-(7.72c) but with Ki, K2, L\, L2, Bx and B2, respectively, replaced by
the "hat'ted" quantities Ki = (I - RuR^y'B1', K2 = (I- Rl2R2l)~lRl2B2', Li = (I-
R2lRl2)-1R2iB[, L2 = (I- R2lRl2ylB2', S1=B1K1 + B2L1, B2 = B1K2 +
B2L2.
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terms in the cost functions are absent (i.e., Ri2 = 0, R21 = 0), we have the
simple relations K1=K1=B1', K2=K2 = 0, L\ — L\ — 0, L2 = L2 — B which
imply that the two sets of PDEs become identical, thus admitting the same set
of solutions. If the cross terms are not absent, however, the two sets of PDEs
are intrinsically different and admit different sets of solutions. Hence, even in
linear-quadratic games with generalized quadratic cost functionals, the
feedback Stackelberg and Nash solutions may be different. We now conclude
this subsection by reporting a result on the existence and structure of the
feedback Stackelberg solution of the linear-quadratic differential game
described by (7.70a)-(7.70c). Proposition 7.8 If T is sufficiently small and the
matrix inverse in (7.11a) exists, the linear-quadratic differential game
described by (7.70a)-(7.70c), and with PI as the leader, admits a feedback
Stackelberg solution given by ~/v(t,x) = -(K1P1 + K2P2)x, (7.74a) 72*(t,x) = -
(LiPi + L2P2)x, (7.74b) where {Pi(t), P2(t)} are symmetric solutions of the set
of coupled matrix Riccati differential equations A = -PXL - L'Pi - Q1 - (KiPi +
K2P2)'(KiPi + K2P2) +(LiPi + L2P2)'R'12{KXPX + K2P2) (7.75a) +(#iPi +
K '̂RuiLxPx + L2P2); P^T) = Q), P2 = ~P2L-L'P2-Q2~(L1P1 + L2P2)'{LlPl +
L2P2) +(LiPi + L2P2)'R21(KiPi + K2P2) (7.75b) +(K1P1 +
K2P2)'R'21{LXPX + L2P2); P2(T) = Qj, L = A + BXPX+B2P2. (7.75c) Proof
This result follows by substituting V — (\/2)x'PiX into the pair of PDEs
(7.72a)-(7.72b) and observing that (7.75a)-(7.75b) imply satisfaction of
(7.72a)-(7.72b) by such quadratic cost-to-go functions. Existence of a (unique)
solution to (7.75a)-(7.75b) when T is sufficiently small follows from a
standard property of ordinary differential equations with continuous right-hand
sides. D Remark 7.15 Proposition 5.1 has a natural counterpart in the context
of feedback Nash equilibria, simply with K  ̂Li and Bt replaced by their
corresponding "hat'ted" versions introduced earlier. The solution to the
resulting set of Riccati equations will not be the same as the solution to
(7.75a)-(7.75b), unless R2\ = 0, R\2 = 0. For the latter case, these equations
are equivalent to the two-player version of (6.17a) with R12 = R21 = 0. □
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case of two-person zero-sum dynamic games (i.e., with L1 = -L2), Thm. 7.1
coincides with Thm. 6.3, and Corollary 7.1 coincides with Thm. 6.4. 2. Obtain
the open-loop Stackelberg solution of the two-stage dynamic game described
by (7.23), (7.24a) and (7.24b) when (i) Pi is the leader, (ii) P2 is the leader.
For what values of the parameter 0 is the open-loop Stackelberg solution



concurrent? (See Section 4.5 for terminology.) 3. Obtain the feedback
Stackelberg solution of the dynamic game of the previous problem under the
CLPS information pattern when (i) Pi is the leader, (ii) P2 is the leader. 4.
Consider the scalar K-stage dynamic game described by the state equation xk+i
= 0.5XA; + u\- 2u\, xi = 1, and cost functional L1 = £>*)2 + («i)2 + 2(t*)2],
k=i L2 = f>*)2+0.5(«2)2 + 1.5(«J)2]. Obtain the global and feedback
Stackelberg solutions of this dynamic game under CLPS information pattern
when (i) PI is the leader, (ii) P2 is the leader. Compare the realized values of
the cost functions of the players under these different Stackelberg solutions for
the cases when K = 5 and Jf->oo. 5. Consider the two-stage dynamic game
characterized by the two-dimensional state equation x2 = xi-u2, ii = (l, 1)', ^3
= -̂(M)'"1 and cost functional £' = xix3 + («')2 + «2'(  ̂°)»2, Here, u1 is the
scalar control variable of Pi (the leader) who has access to V = (1,1)*2,
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dimensional control vector of P2 (the follower) who has open-loop
information. Show that the global minimum of L1 cannot constitute a tight
lower bound on the leader's Stackelberg cost function and a tight lower bound
can be obtained by first minimizing L2 over u2 € R subject to the constraint 2~
{\,\)u2 = y and then minimizing L1 over u1 € R and y € R, with u2 determined
as above. (For more details on this problem and the method of solution, see
Ba§ar (1980a, 1982).) 6. Consider the scalar dynamic game of subsection
7.4.1 with X\ — 1, 0 = 2, and under the additional restriction -1 < u* < 0, i =
1,2. Show (by graphical display) that the Stackelberg cost of the leader is
higher than the global minimum value of his cost function, and a strategy that
leads to this cost value (which is Jjf = 8/9) is y\ = 1/3. 7. Prove Prop. 7.4 by
carrying out the two steps preceding it in subsection 7.5.1. 8. Consider the
scalar stochastic two-stage dynamic game described by the state equation xk+i
= 0Sxk +u\- 2u\ + 9k, xx = l and cost functional l1 = (*3)2 + £[K)2 + 2(<4)2],
L2 = (*3)2 + 5>5(<4)2 + 0.5(U2.)2], where 8\ and 82 are statistically
independent Gaussian variables with mean zero and equal variance 1. The
underlying information structure is CLPS for both players. Determine the
feedback Stackelberg solution and the linear (global) Stackelberg solution with
PI as the leader. Can the leader improve his performance in the latter case by
employing nonlinear strategies? 9. Obtain the linear (global) Stackelberg
solution of the previous problem when the stochastic terms are correlated so
that E[9\92] = 1 (in other words, there exists a single Gaussian variable 9 with



mean zero and variance 1, so that 9X = 92 = 9). 10. Consider the three-player
incentive problem where PI is the leader and Pi, i = 2,3, are the followers. The
controls are u1 = (u\, ul) for the leader
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The cost functions are L1 = (u\)2 + (ul)2 + (u2)2 + (u3)2; L2 = u\ - 3v}2 + {u2
- I)2 + (u3 - l)2; L3 = u\+ul + (u2 + l)2 + (u3 + l)2. Determine an incentive
mechanism uj = 7,1(u2, u3), i = 1,2, such that the two followers face a team
problem; i.e., after substitution of the incentive policy into the cost functions of
the followers, these cost functions become identical. Moreover, the solution of
this resulting "team" problem of the two followers must lead to the team
solution of the leader, i.e., u\ = u\ = u2 = u3 = 0. Next determine another
incentive mechanism such that the followers face a zero-sum game and such
that the saddle-point solution of this game leads to the team solution of the
leader. 11. Consider the two-person incentive problem with PI the leader and
P2 the follower. The decision variables are scalars and the cost functions are:
L1 = (u1)2 + (u2)2; L2 = (u1 - 6)2 + (u2 + l)2, where 9 is a zero-mean
Gaussian random variable with unit covariance. The value of 9 is known to P2
only, i.e., the information is nonnested. Show that any continuous and
deterministic incentive mechanism 71 will not lead to L1 = 0 (depict the
contours for the possible L2-functions). If, however, the leader applies the
following incentive mechanism in mixed strategies: {0 w.p. 1 for u2 > 0; -Nu2
w.p. 0.5 for u2 < 0; +Nu2 w.p. 0.5 for u2 < 0 , where AT is a constant larger
than 1, show that it indeed leads to achievement of his optimum team cost. 12.
Extend the result of Thm. 7.5 to generalized linear-quadratic differential
games, where / = Ax + BV + B2u2 + c, i 2 gl = -(x>Qix+'£iv>'[Ii>iui+Y>x]),i
= l,2; j=i qi = ^x'Q}x, 5'=Rmi, i = l,2. Here c(-) is a continuous vector-valued
function of dimension n, and the entries of all matrices are continuous in t.
What conditions on the weighting matrices in the cost functions will ensure the
existence and uniqueness of open-loop Stackelberg solution?
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counterpart of Prop. 7.7 for a three-player differential game with CLPS
information pattern (with general state dynamics, and general cost functions),
where PI is the leader, and P2 and P3 are followers who play according to the
feedback Nash equilibrium for every announced strategy of the leader.
Furthermore, the equilibrium solution concept adopted between the two levels



of the hierarchy is the feedback Stackelberg. Under what conditions on the
state dynamics and/or the cost functions would the equilibrium strategies of the
players (obtained under this two- level hierarchy) also constitute a Nash
equilibrium solution for the three- player differential game (without any
decision hierarchy)? 7.8 Notes Sections 7.2 and 7.3. The open-loop
Stackelberg solution concept in infinite dynamic games was first treated in the
continuous time in the works of Chen and Cruz (1972) and Simaan and Cruz
(1973a,b), where the latter has also introduced the feedback Stackelberg
concept in the context of finite and discrete-time infinite dynamic games. Some
other references that discuss the open-loop and feedback Stackelberg solutions
in discrete-time infinite dynamic games are Kydland (1975), Hamalainen
(1976), Ba§ar (1979b) and Cruz (1978), where the latter also discusses
derivation of feedback Stackelberg solution of continuous-time dynamic games
under sampled-data state information. For applications in microeconomics, see
Okuguchi (1976). Section 7.4. Derivation of the global Stackelberg solution in
infinite dynamic games with CLPS information has remained a challenge for a
long time, because of the difficulties explained in this section prior to
subsection 7.4.1 and illustrated in subsection 7.4.1. The indirect approach
presented in this section was first introduced in Ba§arand Selbuz (1979a,b)
and later in Tolwinski (1981b) and Ba§ar (1980a); the specific examples
included in subsections 7.4.1 and 7.4.2 are taken from Ba§ar (1980a, 1982).
This approach was extended later to more general (infinite dimensional
Hilbert and Banach) spaces in (Zheng and Ba§ar , 1982). The analysis of
subsection 7.4.3 follows closely the one of Ba§arand Selbuz (1979a) which
also includes an extension to N(> 2)-person games with one leader and N — I
followers, and with the followers playing according to the Nash equilibrium
solution concept among themselves. Extensions of this approach to other types
of N(> 2)-person dynamic games (with different types of hierarchy in decision
making) can be found in Ba§ar (1981a). Other representative articles devoted
to this topic are Ba§ar( 1981b), Olsder (1977a), Ho, Luh and Olsder (1982)
and Tolwinski (1980, 1981a). Subsection 7.4.4 on incentives contains material
from Ho, Luh and Olsder (1982); see this reference, as well as Ho and Olsder
(1981) and Zheng, Ba§arand Cruz (1984) for results on multi-stage decision
problems, the nonnested case, and problems with multiple hierarchies. The
method presented in Example 7.4 as to what the leader can achieve if his team
solution is beyond reach is due to Tolwinski. The fact that the optimum
incentive mechanism is generally nonunique has opened the possibilities for



further refinement, by choosing the one that is least sensitive to changes in the
values of some parameters defining the game. Some results along this direction
have been presented in (Cansever and Ba§ar. 1983).
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of Ba§ar (1979b) and extends some of the results given there. The difficulties
illustrated by Example 7.5 were first pointed out in Castanon (1976). For a
discussion of the derivation of the Stackelberg solution when players have
access to noisy (but redundant) state information, see Ba§ar (1979a); this is
related to the topic of stochastic incentives as discussed in subsection 7.5.3.
Furthermore, Ba§ar (1979c) discusses the feedback Stackelberg solution in
linear-quadratic stochastic dynamic games with noisy observation. A general
existence theory for stochastic incentive problems, with nested information,
can be found in Bas,ar (1984), which was later extended to problems with
multiple levels of hierarchy in Ba§ar (1989a). Cansever and Ba§ar (1985a,b)
discuss a further refinement of the notion of optimum schemes in stochastic
incentive problems based on insensitivity to system parameters. Section 7.6.
The open-loop Stackelberg solution to two-player differential games was first
studied by Chen and Cruz (1972), and subsequently refined by Simaan and
Cruz (1973a). Wishart and Olsder (1979) have shown (based on necessary
conditions) that the open-loop Stackelberg solution of some simple investment
problems could be discontinuous. Details of the indirect approach discussed in
subsection 7.6.2 for the global Stackelberg solution of differential games with
CLPS information pattern can be found in Ba§arand Olsder (1980b) and
Papavassilopoulos and Cruz (1980). The material on the continuous-time
feedback Stackelberg solution in this subsection is from Ba§arand Haurie
(1984). This reference, besides developing a theory for the feedback
Stackelberg solution in differential games, has also introduced and analyzed a
general framework for differential games where the role of leadership, and the
nature of the solution concept to be adopted by the players change as the game
evolves, with the change being prompted by the past policy choices of the
players, as well as the outcome of a chance mechanism (modeled as a jump
process). An application of the continuous-time feedback Stackelberg solution
in economics can be found in (Ba§ar, Haurie and Ricci, 1985).

Chapter 8 Pursuit-Evasion Games 8.1 Introduction This chapter deals with
two-person deterministic zero-sum differential games with variable terminal



time. We have already discussed zero-sum differential games in Chapter 6, but
as a special case of nonzero-sum games and with fixed terminal time. The
class of problems to be treated in this chapter, however, are of the pursuit-
evasion type for which the duration of the game is not fixed. Actually, it was
through this type of problems (i.e., through the study of pursuit and evasion
between two objects moving according to simple kinematic laws) that the
theory of differential games was started in the early 1950s. Extensions to
nonzero-sum dynamic games, as treated in Chapters 6 and 7, were
subsequently considered in the late 1960s. Section 8.2 discusses the necessary
and sufficient conditions for existence of saddle-point equilibrium strategies.
Sufficiency conditions are provided by a natural two-person extension of the
Hamilton-Jacobi-Bellman equation, which is called the "Isaacs equation", after
Isaacs—the acknowledged father of pursuit- evasion games. A geometric
derivation of the Isaacs equation is given, which utilizes the principle of
dynamic programming, and by means of which the concept of semipermeable
surfaces is introduced; such surfaces play an important role in the remaining
sections of the chapter. Subsequently, necessary conditions are derived, which
form the two-person extension of the Pontryagin minimum principle (cf.
Section 5.5). These conditions are valid not for feedback strategies but for
their open-loop representations, and in order to obtain the feedback strategies
these open-loop solutions have to be synthesised. We also briefly discuss
upper and lower value functions (which are important if the so-called Isaacs
condition does not hold), and their relation with viscosity solutions. In Section
8.3, we treat "capturability", which addresses the question of whether the
pursuer can "catch" the evader or not. The answer to this is completely
determined by the kinematics, initial conditions and the target set; the cost
function does not play any role here. It is in this section that the 423
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cars model are introduced. In Section 8.4, we return to the derivation of
saddle-point strategies for quantitative games. What makes the application of
necessary and sufficient conditions intellectually interesting and challenging is
the presence of a large number of singular surfaces. These surfaces are
manifolds in the state space across which the backward solution process of
dynamic programming fails because of discontinuities in the value function or
in its derivatives. The complexity that arises in the derivation of the solution of
a differential game due to the presence of singular surfaces is best illustrated



by the game of the "lady in the lake," which is the main topic of Section 8.5. In
Section 8.6, a problem in maritime collision avoidance is treated: under what
circumstances can one ship avoid collision with another? The approach taken
is one of worst- case analysis, which quite naturally leads to a differential
game formulation. The solution method, however, is also applicable to other
collision avoidance problems which do not necessarily feature noncooperative
decision making. In Section 8.7 we address the problem of role determination
in a differential game wherein the roles of the players (viz. pursuing or
evading) are not specified at the outset, but rather are determined as functions
of the initial conditions. Role determination is applied to an aeronautical
problem, which involves a dogfight between two airplanes. 8.2 Necessary and
Sufficient Conditions for Saddle-Point Equilibria The systems considered in
this chapter can all be described by x(t) = f(t,x(t),u1(t),u2(t)), x(0) = xo, (8.1)
where x(t) e 5° C Rn, u t̂) e 5* C Rm% i = 1,2. The function / is continuous in
t, u1 and u2, and is continuously differentiate in x. The first player, PI, who
chooses u1, is called the pursuer, which we shall abbreviate as P. The second
player is called the evader and we shall refer to him as E instead of P2. The
final time T of the game is defined by T = inf{t € R+ : (x{t), t) € A}, (8.2)
where A is a closed subset, called the target set, in the product space S° x R+.
The boundary dA of A is assumed to be an n-dimensional manifold, i.e., a
hypersurface, in the product space R+ x Rn, characterized by a scalar function
£(t,x) = 0. This function is assumed to be continuous in t and continuously
differentiate in x, unless stated differently. Since all differential games in this
chapter will be of the zero-sum type, we have a single objective function
L{u\u2) = / g(t,x(t),u1(t),u2(t))dt + q(T,x(T)), (8.3) Jo
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continuously differentiate in x; q is continuous in T and continuously
differentiate in x(T). We define J as the cost function of the game in normal
form, which is determined from L in terms of the strategies jl(t, x(t)) = uz(t), i =
1,2. Only feedback strategies will be considered, and we assume 7z(£,a:) to be
piecewise continuous in t and x. With the permissible strategy spaces denoted
by T1 and T2, let us recall that a strategy pair (71*,72*) is in (saddle-point)
equilibrium if Jtf'n^ Ĵtf'^ Ĵii1,!2*) (8.4) for all 7* € T\ The reason for
considering feedback strategies, and not strategies of a more general class
(such as strategies with memory), lies in the continuous- time counterpart of
Thm. 6.9: as long as a saddle point in feedback strategies exists, it is not



necessary to consider saddle points with respect to other classes of strategies.
Actually, as it will be shown in the sections to follow, "solutions" to various
problems are, in general, first obtained in open-loop strategies, which may
then be synthesized to feedback strategies, provided that they both exist. 8.2.1
The Isaacs equation In Corollary 6.6 a sufficiency condition (in the form of the
solution of a partial differential equation) was obtained for the feedback
saddle-point equilibrium of zero-sum differential games with a fixed final
time. It will now be shown that this result essentially holds true also if the final
time, instead of being fixed, is determined by the terminal constraint (8.2). The
underlying idea here, too, is the principle of optimality; wherever the system is
at any given arbitrary time, from then onwards the pursuer (respectively,
evader), minimizes (respectively, maximizes) the remaining portion of the cost
function under the feedback information structure. The function describing the
minimax (upper) value of the cost function, when started from the position (t,
x), is V(t,x) — min rnaxl / g(s,x(s), f̂1(s,x(s)),'y2(s,x(s)))ds +q(T,x(T))}, (8.5)
which is called the value function. Under the assumption that such a function
exists and is continuously differentiable in x and t, it satisfies the partial
differential equation dV ■—— — mm max dt i ês1 u2es2 r\T7 —/(t, x, u1, u2)
+ g(t, x, u1, u2) ox (8.6) which is known as the Isaacs equation. The lower
(maximin) value function is defined analogously, with (8.5) and (8.6) replaced,
respectively, by Y_(t,x) = max mini / g(s,x(s)),~/1(s,x(s)),~/2(s,x(s))ds t1 72
Ĵt (8.7) +q(T,x(T))}
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g(t,x,u ,u ) (8.8) If the differential game has equal upper and lower values, then
we denote this common value by V, which satisfies (8.(3) or equivalently (8.8),
with the ordering of the min and max operations being irrelevant here.89 For
future reference, let us rewrite this PDE explicitly: dV_ "dt = min max ul
€Slu2eS2 — max min u2es2ulesl dV dx f(t,x,u1,uz) + g(t,x,u ,u ) (8.9) — f(t, x,
u1, u2) + g(t, x, u1, u2) We now give a geometrical derivation of (8.9) in the
case of a variable terminal time (as determined by (8.2)). It is also possible to
extend the derivation given in Thm. 6.16 by allowing the terminal time to be
variable, but we prefer the geometric derivation here, since it provides more
insight into the problem, in particular if there is only a terminal pay-off.
Accordingly, we assume now that g = 0, which in fact leads to no loss of
generality because of the argument of Remark 5.1 (suitably modified to apply
to continuous-time systems). q(U)=c j Figure 8.1: Geometrical derivation of



the Isaacs equation, where c\ > c > C2- The value function V, if it exists, is then
defined by V(t,x) = min max q(T,x(T)) = max min q(T,x(T)), (8.10) when the
initial position is (t,x). One particular saddle-point trajectory is sketched in
Fig. 8.1; it is indicated by curve m and the value corresponding to any point of
m is c. We now make the assumption that for initial points in a certain
neighborhood below m, V(t,x) < c, and similarly for initial points 89If not
explicitly stated otherwise, it will be assumed henceforth that the upper and
lower values are equal, that is, the max and min operations in (8.5) (or (8.7))
commute. Only in the next subsection, where we deal with viscosity solutions,
will these operations not necessarily commute.

PURSUIT-EVASION GAMES 427 above m, V(t,x) > c.90 At point A, on curve
m, P will choose u1 € S1 so as to make the inner product between
(dV/dx,dV/dt)' and (/', 1)' as small as possible, i.e., he tries to make the vector
(/', 1)' point downward towards points corresponding to lowest possible costs.
On the other hand, E wants to choose u2 € S2 in such a way so as to maximize
this inner product, because then the system will move in E's favorite direction,
i.e., towards points corresponding to the highest possible costs. Hence u1* and
u2* are chosen as the arguments of (dV, dV\ . (dV . dV\ . . mm max -—f + -— =
max min —— / + —- . (8'H) u1 «2 \dx dt ) «2 u1 V dx dt ) K ' Since m is an
equilibrium trajectory, the system will move along m if u1* and u2* are
applied, and that results in fdV dV\ min max — /+— = 0, (8.12) «iesi «2gs2
\dxJ dt J K ' which is equivalent to (8.6) if g = 0. If E plays optimally, i.e., he
chooses u2*, then f̂(t,x,u\u2*) + ^>0 (8.13) for all u1 € S1, which implies that
the outcome of the game will be > c, since the system will move into the area
where V > c. However, P can keep the outcome at c by playing u1*, since then
the equality sign will apply in (8.13). Thus, without E's cooperation (i.e.,
without E playing non-optimally), P cannot make the system move from A
towards the area where V < c. Analogously, by interchanging the roles of the
players in this discussion, E cannot make the system move from A in the
"upward" direction if P plays optimally. Only if P plays non-optimally, E will
be able to obtain an outcome higher than c. Because of these features, the n-
dimensional manifold in Rn x R+, comprising all initial positions (t, x) with
the same value, is called semipermeable, provided that 5 = 0. In conclusion, if
the value function V(t,x) is continuously differentiate, then the saddle-point
strategies are determined from (8.9). This equation also provides a sufficiency
condition for saddle-point strategies as stated in the following theorem, the



proof of which is a straightforward two-player extension of Thm. 5.3; compare
it also with Corollary 6.6. Theorem 8.1 // (i) a continuously differentiahle
function V(t,x) exists that satisfies the Isaacs equation (8.9), (ii) V(T, x) =
q(T,x) on the boundary of the target set, defined by £(t,x) = 0, and (Hi) either
wu(t) = 71*(t,x), or u2*(t) = 72* (£,a:), as derived from (8.9), generates
trajectories that terminate infinite time (whatever ^2, respectively 71, is), then
V(t,x) is the value function and the pair (71*,72*) constitutes a saddle point.
90If this assumption does not hold (which is the case of V being constant in an
(n + 1)- dimensional subset of Rn x R+) the derivation to follow can easily be
adjusted.

428 T. BA§AR AND G. J. OLSDER Remark 8.1 The underlying assumption of
interchangeability of the min and max operations in the Isaacs equation is often
referred to as the Isaacs condition. The slightly more general condition min
max [p'f + g] = max min [p'f + g], u1 u2 u2 u1 for all n-vectors p, is sometimes
also referred to as the Isaacs condition. Regardless of which definition is
adopted, the Isaacs condition will hold if both / and g are separable in u1 and
u2, i.e., they can be written as f(t,x,u\u2) = fi(t,x,u1) + f2(t,x,u2), g{t,x,v},u2) =
g1(t,x,u1) + g2(t,x,u2). If the Isaacs condition does not hold, and if only
feedback strategies are allowed, then one has to seek for equilibria in the
general class of mixed strategies defined on feedback strategy spaces. In this
chapter, we will not extend our investigation to mixed strategies, and deal only
with the class of differential games for which the Isaacs condition holds
(almost) everywhere. Note, however, that, even if separability holds, this does
not necessarily mean that the order of the actions of the players is irrelevant,
since the underlying assumption of V being continuously differentiate may not
always be satisfied. In regions where V is not continuously differentiate, the
order in which the players act may be crucial. □ In the derivation of saddle-
point strategies, equation (8.9) cannot directly be used, since V is not known at
the outset. An alternative is to use Thm. 8.2, given below, which provides a set
of necessary conditions for an open-loop representation (or realization) of the
feedback saddle-point solution. In spite of the fact that it does not deal with
feedback solutions directly, the theorem is extremely useful in the computation
(synthesis) of feedback saddle-point solutions. It can be viewed as the variable
terminal-time extension of Thm. 6.13 and the two-player extension of Thm. 5.4.
The proof follows by direct application of Thm. 5.4, which is also valid under
the weaker assumption of / and g being measurable in t (instead of being



continuous in t) (see Berkovitz (1974), p. 52). Theorem 8.2 Given a two-
person zero-sum differential game, described by (8.1)- (8.4), suppose that the
pair {71*,72*} provides a saddle-point solution in feedback strategies, with
x*(t) denoting the corresponding state trajectory. Furthermore, let its open-loop
representation \ul(t) = j%(t,x*(t)),i = 1,2} also provide a saddle-point solution
(in open-loop policies). Then there exists a costate func-
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following relations are satisfied: x*(t) = f(t,x"(t),ul*(t),u2*(t)), x*(0)=x0,
H{t,p,x\v}*,u2) < H(t,p,x*,ul*,u2*) < H(t,p,x*,w1 ,u2*), v ês1, Vu2eS2, p'(t) =
-^H(t,p(t),x*(t),uu(t),u2*(t)), p'(T) = ^q(T,x*(T)) along i(T,x) = 0, > (8.14)
where H{t,p,x,ul,u ) = g(t,x,u1 ,u2) + p1f(t,x,ux,u2) Remark 8.2 Provided that
both open-loop and feedback equilibria exist, conditions of Thm. 8.2 will lead
to the desired feedback saddle-point solution. Even if an open-loop saddle-
point solution does not exist, this method can still be utilized to obtain the
feedback saddle-point solution, and, by and large, this has been the method of
approach adopted in the literature for solving pursuit- evasion games. For an
example of a differential game in which this method is utilized, but an open-
loop (pure) saddle point does not exist, see the "lady in the lake" game treated
in Section 8.5. Also, for certain classes of problems, the value function V(t,x)
is not continuously differentiate, and therefore the sufficiency conditions of
Thm. 8.1 cannot be employed. Sufficiency conditions for certain types of
nonsmooth V(t, x) have been discussed in Bernhard (1977), but they are
beyond the scope of our treatment here. □ In the literature on pursuit-evasion
differential games, it is common practice to write Vx instead of p' (for the
costate vector), and this will also be adopted here. The reader should note,
however, that in this context, Vx is only a function of time (but not of x), just
the way p' is. After synthesis, the partial derivative with respect to x, of the
value function corresponding to the feedback equilibrium solution, coincides
with this function of time, thus justifying the notation. We now illustrate the
procedure outlined above by means of a simple example. As with most other
problems to be considered in this chapter, this example is time-invariant, and
consequently the value function and the saddle- point strategies do not
explicitly depend on t (cf. Remark 5.5). Therefore the -̂dependence has been
dropped from the notation. Example 8.1 Consider the two-dimensional system
described by *2 {2 + V2)u2 -sinu1, = -2 cosu (0 where the initial value of the
state lies in the half plane x  ̂> 0, u2 satisfies the constraint |u2| < 1 and no



restrictions are imposed on u1. The target set is

430 T. BA§AR AND G. J. OLSDER X2 < 0 and the objective functional is L =
xi(T). Note that the game terminates when the xi-axis is reached, and since &2
< —1, it will always terminate. In order to apply Thm. 8.2, we first write the
Hamiltonian H for this pursuit- evasion game as H = VXl { ^2 + V2) u2 - sin
u1} + VX2 {-2 - cos u1}, where VXl(= p\) and VX2(= P2) satisfy, according
to (8.14), VX1 = 0, vX2 = 0. (ii) Since the value function does not explicitly
depend on time, we have V(x\, x2 = 0) = x\, and hence VXx = 1 along the xi-
axis. The final condition for VX2 along the xi-axis cannot be obtained directly;
it will instead be obtained through the relation minui maxu2 H = 0 at t = T.
Carrying out these min-max operations, we get u2 = sgn (VXl) = 1 and hence
"y2*(x) = 1, and the vector (sinu ĉosu1) is parallel to (VXl, VX2). Substitution
of these equilibrium strategies into H leads to 2 + v/2--/(r+^22)-2yi2=0, which
yields VX2 = 1 at t = T. From (ii) it now follows that VXl = 1 and VX2 = 1 for
all t. In this example it is even possible to obtain V explicitly: y(xi,a;2) = x\
+X2- Hence, the feedback saddle-point strategies are constants: 71*(a;) = 7r/4,
72*(x) = 1. The corresponding state trajectories are straight lines, making an
angle of 7r/4 radians with the negative X2-axis (see Fig. 8.2). Figure 8.2:
Vectogram for Example 8.1. Figure 8.2 also helps to visualize the geometric
derivation of the saddle-point strategies. Suppose that the system is at point A
corresponding to the value 6, say. Emanating from point A, the velocity vector
{x\,±2)' has been drawn in terms of the vectors (0, -2)', ((2 + V2)72*, 0)' and
(- sh^1*, - COS71*)', which add up to the RHS of (i). E, the maximizer, would
like to make the angle a (see Fig. 8.2) as large as possible. The best he can do,
irrespective of P's decision, is to choose j2* = +1. If E would play 72  ̂1, i.e.,
72 < 1, the angle a will become smaller, and consequently the outcome will
become smaller than 6.
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have a vector (±i, ±2)' with angle a as small as possible, which leads to his
optimal strategy 71* = 7r/4; for any other 71, the vector (x1,±2)' W1U point
more to the right, and this is exactly what P wants to avoid. All conditions of
Thm. 8.1 are satisfied and therefore the strategies obtained indeed constitute a
saddle-point solution in feedback strategies. □ In addition to the necessary
conditions of Thm. 8.2, we now exemplify some of the intricacies which might
occur with respect to termination. Example 8.2 Consider the one-dimensional



system x = u1 + u2, x(0) = xo > 0, where the controls u1 and u2 are constrained
to— l<u*<0,i = l,2. The target set is the half line x < 0. The cost functional is
L= I (l-x)d*. Jo The costate equation for this problem is and the optimal
{ul*,u2*} satisfy ( -1 ifp>0, f -1 if p < 0, u1* = < undetermined if p = 0, u2* =
< undetermined if p = 0, (i) I 0ifp<0, { 0ifp>0. How do we determine p{T)?
The appropriate condition in (8.14) cannot be used since that condition, which
gives p(T) along the boundary of the target set, requires variations in x within
£(T, x) = 0; but this latter relation only yields x = 0. In its stead, we make use
of the definition of the derivative for p(T) and also make use of the functional
form V(Ax) = Ax — (̂Aa;)2 for sufficiently small (positive) Ax (which is
obtained through some analysis) to arrive at the value p(T) = 1. (See Problem
1 in Section 8.8 for another derivation.) Integration of the costate equation and
substitution into (i) leads to uu = 71*(x) = -1, u2* = 72*(x) =0, for 0 < x < 1.
(ii) For x = lwe have p = 0 and (i) does not determine the equilibrium
strategies. For 7" = 0 (i = 1,2), the system would remain at x = 1 and the game
would not terminate in finite time. To exclude the occurrence of such singular
cases, we have to include an additional restriction in the problem statement,
which forces P to terminate the game in finite time; this can be achieved by
defining L = 00 at T = 00. Then, at state x = 1, the preceding restriction forces
P to choose 71*(x) = —1. Now we can integrate further in retrograde time. For
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and therefore, for x > 1, we obtain from (i): uu =1l*(x) = 0, u2* =72*(x) = -1,
x>l. (iii) Now the question is whether the strategy pair {71*,72*}, denned by
(ii) and (iii), constitutes a saddle point. To this end, Thm. 8.1 will be
consulted. The value function is easily determined to be V(x) = x(2 — x)/2,
and all conditions of Thm. 8.1 hold, except condition (iii). The reason why
condition (iii) does not hold is because, for initial points x > 1, the strategy
pair (71*,72*() = 0} does not lead to termination in finite time, and hence, by
playing 72 = 0, E would be much better off. However, in such a situation, P can
do much better if he is allowed to have an informational advantage in the form
ul=jl(x(t),u2(t)), (iv) i.e., at each instant of time, P is informed of E's current
decision (open-loop value).91 If P chooses his new strategy as -i» _ f —1 if x
< 1 or (x > 1 and u2 > -|),  ̂0 otherwise , the saddle-point equilibrium will be
restored again by means of the pair (71*, j2*), which follows from direct
comparison. Another way of getting out of the "termination dilemma" is to
restrict the class of permissible strategies to "playable pairs", i.e., to pairs for



which termination occurs in finite time (cf. Example 5.1 and Def. 5.7). Such an
assumption excludes for instance the pair {71 = 0, -y2 = 0} from
consideration. □ 8.2.2 Upper and lower values, and viscosity solutions In the
previous subsection it was tacitly assumed (with the exception of (8.6) and
(8.8)) that the Isaacs condition holds. In situations where it does not, one
common approach is to endow one player with an instantaneous informational
advantage over the other player, which we now briefly discuss.92 An
assumption throughout this subsection (only) will be that the final time T is
fixed. With r* taken as the set of all open-loop controls for Pi, let us introduce
a mapping /i2 from T1 to T2 with the property that for each t € [0,T] and u1,!!1
€ F1 the following holds: if u1(t) = u1(t) for almost all r € [0,t], then /x2[u1](r)
= /x2[u1](r) almost everywhere. In more popular terms this says that u2(t) will
depend on the past and current values of ul, but not on its future values. It
should be emphasized that the current value of u1 is part of the information for
P2. The set of all such strategies /x2 for P2 will be denoted by A2. Similarly,
/x1 91This is, of course, possible if E has access to only open-loop
information, and can therefore only pick open-loop policies. If E has access to
feedback information, however, (iv) is not physically realizable and a time
delay has to be incorporated. 92At the outset, this is different from the case of
minimax ((8.5)) or maximin ((8.7)) values where one of the players is assumed
to know not only the current but also the future values of the other player's
controls.
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players reversed. Formally, a mapping /x1 from T2 to T1 will be called a
strategy for Pi provided that for each t £ [0, T] and u2,u2 e T2 the following
holds: If u2(t) = u2(r) for almost all r € [0,t], then /x1[u2](r) = /x1[u2](r)
almost everywhere. Definition 8.1 The value V+ of the zero-sum differential
game described by (8.1) and (8.3), if the maximizer has instantaneous
informational advantage over the minimizer, is defined as V+(t,x)  ̂inf sup If
g(t,x(t),«1(t),^2[u1](t))dt + g(t,x(T))), and the value V~ of the same game, but
now with the minimizer having instantaneous informational advantage over the
maximizer, is defined as V~(t,x)= sup inf [ f g(t,x(t),n1[u2}{t),u2(t))dt +
q(t,x{T))\. Remark 8.3 Clearly, V+(t,x) > V~(t,x). □ Remark 8.4 In the study of
the existence of strategies that achieve the values V+ and V~, the starting point
is to partition the time interval of interest, [0, T], into n subintervals each of
length 6 = T/n. The informational advantage of one player with respect to the



other then concerns the entire subinterval to which the current time belongs.
Thus one can define the so-called upper <5-value and lower 8-value. Under
some regularity conditions, it can be shown that in the limit as n —> oo and
hence 6 —> 0, these values become equal to V+ and V~, respectively. □
Definition 8.2 The upper Hamiltonian and the lower Hamiltonian are,
respectively, H+(x,t,p) = min [max (p'f(t,x,ux,u2) + g(t,x,v},u2))\ and H~(x,t,p)
= max [ min (p' f(t,x,ux,u2) + g(t,x,ul,u2))]. u2€S2 u16S1 Remark 8.5 To be
very explicit, the maximizing u2-value in the definition of H+ will in general
depend on the minimizing u1-value, i.e., u2(ux), whereas in the definition of
H~ it will be exactly the other way around. Note also that H+ > H~ for all
values of their arguments. □ The following theorem now makes the connection
between Defs. 8.1 and 8.2, and also relates them to (8.5) and (8.7). The
precise regularity conditions under which it is valid, as well as its proof can
be found in Barron, Evans and Jensen (1984).
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regularity conditions on the functions f,g and q, the functions V+ and V~ are
uniformly Lipschitz continuous, and hence differentiable almost everywhere,
and they are solutions, respectively, of ^+ + H+ (x,t, ^Pj = 0, V+(T,x) =
g(T,x(T)), dV~ ( dV~\ -  ̂+H-(x,t,—)=0, V-(T,x) = q(T,x(T)), and hence are
equal to V and V_, respectively. One can also define viscosity solutions for
zero-sum differential games. In Chapter 5 the starting point to define viscosity
solutions for optimal control problems was (5.65) (or (5.66)). In zero-sum
differential games the equivalent starting point is (8.6) and (8.8), or their time-
invariant equivalents if V does not directly depend on t. Since (5.65) and (8.6)
are similar PDEs, the theory of viscosity solutions as presented in Section 5.8
remains equally valid for differential games, simply with H replaced by H+ or
H~. The following theorem, proved in Barron, Evans and Jensen (1984), and
in Evans and Souganidis (1984) for problems with fixed terminal time, relates
upper and lower value functions to viscosity solutions. Theorem 8.4 The upper
value function V+ is the viscosity solution of (8.6) and the lower value
function V~ is the viscosity solution of (8.8). 8.3 Capturability Consider the
class of pursuit evasion games formulated in Section 8.2, under the additional
assumption of time-invariance, i.e., /, g and I are independent of t, and q does
not depend on T. The target set A is therefore a tube in Rn x R+, with rays
parallel to the time axis. The projection of A onto the Rn-space is denoted by
A. Before studying the derivation of a saddle-point solution, we must first



address the more fundamental question of whether the target set can be reached
at all. If it cannot be reached, we simply say that the pursuit-evasion game is
not well denned. Accordingly, we deal, in this section, with the following
qualitative pursuit-evasion game. The evader tries to prevent the state from
reaching A, whereas the pursuer seeks the opposite. Once it is known, for sure,
that the target set can be reached, one can return to the original (quantitative)
pursuit-evasion game and investigate existence and derivation of the saddle-
point solution. For the differential game of kind introduced above, we define
an auxiliary cost functional as T _ J -1 if {x(t), t) € A for some t, 0 < t < oo, \
+1 otherwise,
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thus converting it into a differential game of degree. The value function for this
differential game can take only two values, V(x) = —1 and V(x) = +1, where
the former corresponds to initial states that lead to capture, while the latter
corresponds to initial states from where capture cannot be assured.
Consequently, the value function is discontinuous, and therefore the theory of
subsection 8.2.1 is not directly applicable. It can, however, be modified
suitably to fit the present framework, which we now discuss below. Let us first
note that only those points x of dA for which min max v'f(x,ul,u2) = max
mini/'/(a;,u1,u2) <0 (8.15) u1 u2 u2 u1 are candidates for a terminal position of
the game. Here, the n-dimensional vector v is the outward normal of A at a;
(see Fig. 8.3). If strict inequality holds in (8.15), then the state will penetrate
A; furthermore, the points x for which the equality sign holds may only be
grazing or touching points. The set of all points x of dA that satisfy (8.15) is
called the usable part (UP) of dA. Let us suppose that the initial points situated
in the shaded region of Fig. 8.3, and only those, can be steered to the target set
by P, regardless of how E acts, and investigate whether we can determine the
surface S that separates these initial states from the others which do not
necessarily lead to termination. This surface S is sometimes referred to as a
barrier. The points that are common to S and A are called the boundary of the
usable part (BUP), it consists of those points of the UP for which the equality
sign holds in (8.15). Consider a point A on S, at which a tangent hyperplane
relative to S exists. The outward normal at A, indicated by p, is unique, apart
from its magnitude. The surface S is then determined by min max p'f(x,u1,u2)
=0, (8.16) u1 u2 which is only a necessary condition and therefore does not
characterize S completely. This semipermeable surface should in fact have the



property that without P's cooperation, E cannot make the state cross S (from the
shaded area
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and conversely, without E's cooperation, P cannot make the system cross S
(from V — +1 to V = — 1). Hence if a "tangential" penetration of S is
impossible, (8.16) is also sufficient. Points of S at which no tangent
hyperplane exists (such as Bi and E$2 in Fig. 8.3) must be considered
separately. Such points will be considered later, in Sections 8.6 and 8.7, while
discussing intersections of several smooth semipermeable surfaces. To
construct S, we now substitute the saddle-point solution of (8.16), to be
denoted by ul* = j%*(x), i = 1,2, into (8.16) to obtain the identity p'(x)f(x,11*
(x),12*(x))=0. Differentiation with respect to x leads to (also in view of the
relation (d/du1)(p'f)- (d~/l/dx) = 0, which follows from the discussion
included in subsection 5.5.3 right after (5.42)) which is evaluated along S. The
boundary condition for (8.17) is p{T) = i/, (8.18) where v is the outward
normal of A at S. We now introduce various features of the barrier S by means
of the following example, which is known as the "homicidal chauffeur game".
Example 8.3 Consider a pursuer and an evader, both moving in a two-
dimensional plane (with coordinates x\,x-i) according to X\r = vising, ±ic =
v2sin0e, ~\ *2P = WlCOS^p, X2e = V2COs6e, \ (8.19) 9P = u)\ul, 6e=u}2u2, J
where the subscripts p and e stand for pursuer and evader, respectively. The
controls u1 and u2 satisfy the constraints \ul\ < 1, i = 1,2. The scalars v\ and v2
are the constant speeds, and u)\ and W2 are the maximum angular velocities of
P and E, respectively. Since the angular velocities are bounded, three
coordinates (xi, x2 and 8) are needed for each player to describe his position.
For u1 = 0 (respectively, u2 = 0), P (respectively, E) will move in a straight
line in the (xi, X2) plane. The action u = +1 stands for the sharpest possible
turn to the right; u = -1 analogously stands for a left turn. The minimum turn
radius for P is given by R\ =u)\fv\ and for E by R2 — 0^2/^2- For this
differential game, yet to be formulated, it is the relative positions of P and E
that are important (and relevant), and not the absolute positions by means of
which the model (8.19) has been described. Model (8.19) is six- dimensional;
however, by means of the relative coordinates, defined as x\ = (xle -xip)cos0p
- (x2e -x2p)sin0p, X2 = (xie -xip) sin6P + (x2e -x2p) cosdp, } (8.20) 6 = 6e
— 6p,



PURSUIT-EVASION GAMES 437 it can be converted into a three-dimensional
model, as to be shown in the sequel. In this relative coordinate system, (x\, X2)
denotes E's position with respect to P and the origin coincides with P's
position. The a:2-axis is aligned with P's velocity vector, the a; 1-axis is
perpendicular to the a -̂axis (see Fig. 8.4), and the angle 8 is the relative
direction (heading) in which the players move. c K ' h . velocity vector P >v 0
if J veloc / vectf E x1 Figure 8.4: The relative coordinate system. With respect
to the relative coordinates (8.20), model (8.19) can be described as ±\ = —
Uiv}x2 + V2S\n8, 1 ±2 = — v\ + Uiulxi + V2COS0, > (8.21) 8 = U2U2 - Uiu2,
J which is sometimes referred to as the two-cars model. We shall consider a
special version of (8.21), namely the one in which E is allowed to change his
direction instantaneously (i.e., 0J2 = 00). Then E will have complete control
over 8, which we therefore take as E's new control u2. Also, normalizing both
P's speed and minimum turn radius to one, we obtain X\ — ~UlX2 + V2S\riU2,
±2 — —l + UlX\ + V2COSU2, with no bounds imposed on u2, while ul still
satisfies the constraint \ul\ < 1. The two normalizations introduced above
determine the distance scale and time scale, respectively. Figure 8.4 depicts
model (8.22); note that the angle u2 is measured clockwise with respect to the
positive a -̂axis. This convention of measuring u2 has been initiated by Isaacs
(1975), and since then it has been adopted in the literature on pursuit-evasion
games. Note that the coordinate system is affixed to P and moves along with P
through the "real" space. The target set A is defined through the inequality x\ +
x\ < (32, that is, P tries to get within a distance /? of the evader, whereas the
evader tries to avoid this. The game thus formulated is referred to as the
homicidal chauffeur game, in which a chauffeur (P) tries to overrun a
pedestrian (E). The (8.22)
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> 1 = v\, since capture will then never be possible, provided that E plays the
appropriate strategy. Therefore we shall henceforth assume 0 < v2 < 1. The UP
(part of the circle described by x2 + x2 = 02) is determined by those (x 1,0:2) f
°r which the following relation holds (note that at the point (£1,0:2), the vector
(i/\, 1/2)' = (0:1,0:2)' is an outward normal to A): min max {x\(-ulx2 +
v2sinu2) +o:2(-l + uxx\ + v2cosu2)} u1 u2 = -o:2 + v2/3 < 0. Hence only those
0:2 for which 0:2 > v2(3 on the circle x2 + x2 = /32 constitute the UP.
Intuitively this is clear: directly in front of P, E cannot escape; if E is close to
P's side, he can side-step and avoid capture, at least momentarily; if E is



behind P, i.e., 0:2 < 0, there is no possibility for immediate capture. In order to
construct the surface S, we shall start from the end point (0:1 — (3y/(l — v'2),
x2 = v2p), on the capture set. Another branch of S can be obtained if we start
from the other end of the UP, which is (0:1 = —)3y/(l - v%), x2 = v20), but
that one is the mirror image of the first one; i.e., if the first branch is given by
(x\(t),x2(t)), then the second one will be given by (-x\(t),x2(t)). Therefore we
shall carry out the analysis only for the "first" branch. Equation (8.16)
determines S and reads in this case min max {p\(—u1x2 + v2sinu2) +p2(—l +
ulx\ + v2cosu2)} = 0, u1 u2 whereby sinu2, = Pi COSU2*- P2 .1* >ApT + p!)'
yfipf+pfi' = sgn s,with S = PlX2-Xip2. (8.23) The differential equations for p\
and p2 are, from (8.17), Pi = ~ulp2, p2 = ulpx. (8.24) The final condition for
p, as expressed by (8.18), will be normalized to unit magnitude, since only the
direction of the vector p plays a role, i.e., Pi(T) = 01-w|) = cosa; p2(T) = v2 =
sina (8.25) for some appropriate angle a. In order to solve for p(t), we need to
know u1*. At t = T, s = 0 and therefore wx(T) cannot be determined directly.
For an indirect derivation we first perform ds d , s , -  ̂= fa(Pix2 - xiPz) = -Pi-
(8-26)
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= T, which leads to s(t) > 0 for t sufficiently close to T, and therefore u1 = +1
just before termination. The solution to (8.24), together with (8.25) and u1 =
+1, now becomes pl(t) = cos(t-T + a), p2(t) = s\n(t-T + a), (8.27) and the
equations determining the branch of S emanating from x\ = fiy/(l — wf)> X2 =
/3v2 become ±i = -X2 + V2Cos(t-T + a), x\(T) = (3\/{l - vf) x2 = -
l+x\+V2sm(t-T + a), X2(T) = 0V2, which are valid as long as s(t) > 0. The
solution is Xl(t) = (0 + v2(t-T))cos(t-T + a) + l-cos(t-T), x2(t) = (p+v2(t-
T))sm(t-T+a)-sm(t-T), which leaves the circle x\ + x\ = j32 tangentially. What
we have to ensure is that the trajectory (8.28) lies outside A. This is what we
tacitly assumed in Fig. 8.3, but which unfortunately does not always hold true
as we shall shortly see. If we define r = y/(x\ +x\), we require r > 0 at t = T
(note that r = 0 at t = T), and some analysis then leads to the conclusion that
this holds if, and only if, P2 + v\ < 1. (8.29) For parameter values (fi,V2) for
which 01 + v\ > 1, the semipermeable surface S moves inside A and thereby
loses its significance.93 In the latter case the proposed construction (which
was to split up the state space into two parts, V — +1 and V = —1) obviously
fails. In the present example we henceforth assume that (8.29) holds. Let us
now explore the trajectories described by (8.28). The following two



possibilities may be distinguished: (i) Xi(t2) = 0 for some t2 < T and (ii) x\(t)
> 0 for all t < T, i.e., as long as s(t) > 0. These two cases have been sketched in
Fig. 8.5. From (8.28) it follows that the two branches of S intersect (if they do,
the point of intersection will be on the positive X2-axis) if f3<v2Mcsin(v2) +
yJ{l-v%)-l, (8.30) whose verification is left as an exercise to the reader. Case
1 (Fig. 8.5a) For the situation depicted in Fig. 8.5a, let us first assume that E is
initially somewhere within the shaded area. Then he cannot escape from the
area, except 93In fact, it is still a semipermeable surface, but for a different
("dual") game in which E is originally within the set x\ + x\< 01 and tries to
remain there, whereas P tries to make the state cross the circle Xj + x\ = 02.
(8.28)

440 T. BA§AR AND G. J. OLSDER (a) (b) Figure 8.5: Possible
configurations for the barriers. for moving through the UP (= capture),
provided that P plays optimally, which is that P will never let E pass through
the two semipermeable surfaces indicated by Si and S2. If E is initially outside
the shaded area, however, he will never be captured (assuming that he plays
optimally when in the neighborhood of Si or S2). Q Si *1 Figure 8.6: A leaking
corner. If E is initially in the shaded area, the intersection point C requires
closer attention. Toward this end let us assume that the state is initially on Si;
then P should try to force it to move in the direction towards the UP (which
fortunately can be done in this example), and not towards C and pass C
eventually. This latter possibility has been depicted in Fig. 8.6, where P tries
to keep E in the shaded region. Suppose that, in Fig. 8.6, the state is initially at
point Q. In order for P to keep the state within or on the boundary of the shaded
area, and for E to try to escape from it, both players should employ their
strategies according to (8.16). If these strategies cause the state to move in the
direction of C, and eventually pass C, then P cannot keep E within the shaded
area, though he can prevent E from passing either Si or S2. The intersection
point of the two semipermeable surfaces "leaks" and it is therefore called a
leaking corner. As already noted, point C in Fig. 8.5a does not leak. The next
question is: once E is inside the shaded area, can P terminate the
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it be possible for E to maneuver within the shaded area in such a way so that
he can never be forced to pass the UP? Even though such a stalemate situation
may in general be possible, in the present example E can always be captured in



finite time, which, for the time being, is left to the reader to verify; Example
8.5 in Section 8.4 will in fact provide the solution. Case 2 (Fig. 8.5b) We now
turn our attention to the situation depicted in Fig. 8.5b in which case 0 > v2
arcsin(w2) + v/(l - «|) - 1. (8.31) Figure 8.7: The failure of continuation of the
semipermeable surface. In the figure, the semipermeable surfaces have been
drawn up to ti = T—tv — 2a which corresponds to the first switching time of
u1 in retrograde time from t = T. (From (8.26) and (8.27) it follows that s(t) = -
sin(f -T + a) + sin a.) For Kfjwe have to continue with u1* — —1. Carrying
out the corresponding analysis, it follows that the resulting continuation of Si,
designated by Si, would be as sketched in Fig. 8.7. The trajectory leaves point
C in exactly the opposite direction as it arrived, and the semipermeable
surface has a sharp corner (which is also known as a cusp). For the
semipermeable surface Si, P can keep the state on the shaded side of Si, and
the same is true for Si (the reader should note the directions of p(t) in Fig. 8.7).
Clearly, Si and Si together do not constitute a semipermeable surface.
Therefore, Si will be disregarded altogether, and we shall consider only the
semipermeable surface of Fig. 8.5b. It is now claimed that termination is
possible from any initial point. If the state is originally at I, say, (see Fig.
8.5b), E can prevent the state from passing Si; P, on the other hand, can force
the system to move along the dotted line, and therefore termination will occur.
We have to ensure that no little "island" exists anywhere in the (£1,2:2) plane,
surrounded by semipermeable surfaces, and not connected to A, and wherein E
is safe. Such a possibility is easily ruled out in this example, on account of the
initial hypothesis that P's velocity
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always force the state to leave such an island, and therefore such an island
cannot exist to begin with. □ In conclusion, the foregoing example has
displayed various features of the barriers which separate states from where
capture is possible from those from which it is not possible. If in particular
two semipermeable surfaces intersect, then we have to ensure that the
composite surface is also semipermeable, i.e., there should not be a leaking
corner. Furthermore, in the construction discussed above, within the context of
Example 8.3, we have treated only the case where the barrier does not initially
move inside the target set. 8.4 Singular Surfaces An assumption almost always
made at the outset of every pursuit-evasion game is that the state space can be
split up into a number of mutually disjoint regions, the value function being



continuously differentiable in each of them. The behavior and methods of
construction of V{t,x) are well understood in such regions. The boundaries of
these regions are called singular surfaces, or singular lines if they involve one-
dimensional manifolds, and the value function is not continuously
differentiable across them. In this book we in fact adopt a more general
definition of a singular surface. A singular surface is a manifold on which (i)
the equilibrium strategies are not uniquely determined by the necessary
conditions (8.14), or (ii) the value function is not continuously differentiable,
or (iii) the value function is discontinuous. In general, singular surfaces cannot
be obtained by routinely integrating the state and costate equations backward in
time. A special singular surface that manifests itself by backward integration is
the switching surface, or equivalently, a transition surface. In Example 5.2, we
have already encountered a switching line within the context of an optimal
control problem, and its appearance in pursuit-evasion games is quite
analogous. The procedure for locating a switching or transition line is fairly
straightforward, since it readily follows from the state and costate equations. A
singular surface which does not manifest itself by backward integration of state
and costate equations is called a dispersal surface. The following example
now serves to demonstrate what such a surface is and how it can be detected.
Example 8.4 The system is the same as that of Example 8.1: Xi = f2 + V2) u2
— sinu1, ±2 = —2 —cosu1, with |u2| < 1 and with no bounds on u1. The initial
state lies in the positive x  ̂half plane and the game terminates when X2 (t) = 0.
Instead of taking L = x\ (T) as in Example 8.1, we now take L = x2(T). In order
to obtain the solution, we
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The Hamiltonian is H = VXl U2 + V2) u2 -sinu1} + VX2 {-2 -cosu1} , (i)
where VXl = 0, VX2 = 0. Since V is the value function, we obviously have
VXx = 2x\ along the xi-axis. Then, as candidate equilibrium strategies, we
obtain u2 = sgn (VXi) = sgn (xi(T)), (sinu ĉosu1)!! ,̂ )̂, where || stands for
"parallel to". Note that the u1 and u2 in (ii) are candidates for open-loop
strategies and therefore the expression u2(t) — sgn (xi(T)) does not contradict
with causality. Substituting (ii) and VXl = 2x\ into (i) with t = T and setting the
resulting expression equal to zero, we obtain VX2(x(T)) = 2|xi(T)|. The costate
variables VX1 and VX2 are completely determined now. For terminal state
conditions of (x\ > 0,^2 = 0) we find, as candidate equilibrium strategies, 1 ""
2 « = j, « = 1, and in the case of terminal state conditions {x\ < 0, £2 = 0) their



counterparts are U1 = --, U2 = -1. The corresponding state trajectories are
sketched in Fig. 8.8, wherefrom we observe that they intersect. Starting from
an initial position I\, there are two possibilities, but only one of them—the
trajectory going in the "south-east" direction—is optimal. Starting from 72, the
trajectory in the "south-west" direction would be optimal. The separation line
between the south-east (SE) and south-west (SW) directions is obviously the
a -̂axis, since it is on this line where the two values (one corresponding to a
trajectory going SW, the other one to SE) of the cost function match. While
integrating the optimal paths backward in time, we should stop once the X2-
axis is reached, which is called a dispersal line. More precisely, it is a
dispersal line for the evader, since, if the initial condition is on this line, it is E
who chooses one of the two optimal directions along which to proceed; along
both of these directions, the system trajectory leaves the dispersal line and
both lead to the same outcome. □ (ii) Figure 8.8: Intersection of candidate
optimal trajectories.

444 T. BA§AR AND G. J. OLSDER In the foregoing example we have
discovered a dispersal line for the evader. Of course, dispersal lines for the
pursuer also exist. Toward that end, consider the homicidal chauffeur game
introduced in Example 8.3, Suppose that the parameters of the game (/?, v2)
are sucn that termination is always possible and that the cost functional stands
for the time elapsed before capture. If E is far behind P (i.e., if, in Fig. 8.4, the
state is X\ = 0, x2 -C —/?), then P will turn either to the right or to the left as
quickly as possible, so as to have E directly in front of him. Therefore, the half
line (x\ = 0,x2 < ot) for some negative a, is a dispersal line for the pursuer. By
means of the same game we now introduce another type of a singular surface,
viz. the so-called universal line or universal surface. Assume that (8.29) and
(8.31) hold, which means that E can be captured by P, whatever the initial
position is. Suppose that E is situated far in front of P, i.e., x2 S> /?, relatively
close to the X2-axis. Then, the best P can do is to turn towards E, such that, in
the relative (x\, X2) space, E's position moves towards the X2-axis. Once E is
on the X2-axis, the remaining phase of the game is trivial, since it is basically
a chase along a straight line. A line, or more generally a surface, to which
optimal trajectories enter from both sides and then stay on, is called a
universal line (surface). It turns out that, in the case when both (8.29) and
(8.30) hold, the X2-axis is also a universal line, as shown in the following
example. Example 8.5 Consider the homicidal chauffeur game as introduced in



Example 8.3, in which the cost for P is the "time to capture", and where the
parameters (5 and V2 are such that (8.29) and (8.30) hold. In order to construct
candidates for optimal paths by backward integration from the UP, we now
follow the analysis of Example 8.3 rather closely, along with the formulas
(8.23) and (8.24). For the present example, equation (8.6) becomes min max
{ (̂-u1  ̂+ v2sinu2) + VX2(—1 + u1 !̂ + v2cosu2) + l} =0, whereby u1 = sgn
(VXlx2 - Vxix{); (sinu2,cosu2)||(VrTl, VX1), (8.32) where VXl and VX2
satisfy along optimal trajectories. The final conditions for the costate equations
are sinfl(r) cosfl(r) 11 cos0(T)-t;2' 2 cos0(T)-t;2' the derivation of which is
left as an exercise to the reader. (Rewrite the problem in polar coordinates (r,
8), and utilize the boundary condition V$ = 0 at termination.)
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that u1* = +1 near the end. For the right half plane, the terminal conditions are
xi(T) = ,3 sin 0o, x2(T) = 0cos6o, where #o is the parameter determining the
final state, and the solution of the state equation close to termination can be
written as 22 ( t) = 1-cosT+(/3-w2-r)sin(6'o + T), 1 t) = sinT + (/3-
w2T)cos(6'o+T), J (' ' where r is the retrograde time T—t. Equation (8.33)
displays two facts: (i) x2(t) > 0 for t > 0, which means that part of the shaded
region in Fig. 8.5a is not yet filled with (candidate) optimal trajectories, (ii)
for r = (3/v2, the state (xi(r),X2(T)) is independent of the arrival angle 00-
Figure 8.9: The decision points in the homicidal chauffeur game. Figure 8.9
depicts these trajectories. Point A\ in this figure has the coordinates
xi((3/v2),X2(P/v2); it is a so-called decision point, E has various options, all
leading to the same pay-off. Point A2 is the mirror image of A\ with respect to
the X2-axis. In order to fill the gap with optimal paths, we try a singular arc
for which the switching function is identically zero, i.e., VXix2 - VX2X! = 0.
(8.34) For this to be true, its time derivative must also be identically zero,
which yields VXl(-l + v2cosu2)-VX2v2sinu2 = 0. (8.35) For (8.34) and (8.35)
to be true when not both VXl and VX2 are zero, the determinant of the
coefficients must be zero, which results in x\ — V2(x\ cosu2 — a ŝinu ) = 0.

446 T. BA§AR AND G. J. OLSDER Figure 8.10: The a -̂axis is a universal
line. Because of (8.32) and (8.34), x\ cosu - a ŝinu2 h 0, which ultimately
leads to ii =0 as the only candidate for a singular surface. Along this line, the
switching function is VXlX2 and therefore we must have VXl = 0, leading to
{u1* = 0,u2* = 0}. Along the line x\ = 0, both P and E follow the same straight



path in real space. From the singular arc, paths can leave in retrograde time at
any instant, leading to Fig. 8.10, thus filling the whole shaded area in Fig. 8.5b
with optimal trajectories. The line x\ — 0 is a universal line. It should be
noted that both V and dV/dx are continuous across the universal line (see
Problem 2, Section 8.8). □ dispersal line equivocal line transition line XX
universal line focal line switching envelope Figure 8.11: Classification of
singular surfaces. There are also other types of singular surfaces. In Fig. 8.11
we have sketched all hitherto known singular surfaces of co-dimension one
(i.e., these surfaces are manifolds of dimension one less than that of the state
space) and across which V(x) is continuous. It is believed that no other such
singular surface exists, but
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available. The singular surfaces not treated heretofore in this chapter are the
equivocal line, focal line and switching envelope. They will not be treated in
this book; for examples of games where equivocal lines arise, the reader is
referred to Isaacs (1975), Lewin and Olsder (1979) and Lewin (1994); the
focal line appears for instance in the "obstacle tag" example (Breakwell,
1971) and a game with a switching envelope is treated in Breakwell (1973).
Problem 7 in Section 8.8 is also believed to feature a switching envelope in its
solution. In the cases of the equivocal line and the switching envelope, one of
the players has the option of either staying on the singular surface or leaving it;
both possibilities lead to the same outcome. The difference between these two
surfaces is, that in the switching envelope case the trajectories enter (in
forward time) tangentially, whereas in the equivocal line case they do not. An
analogous difference exists between the universal line and the focal line. Some
of the singular surfaces can only be approximated by strategies of the form u1
= 71(x),u2 = j2(x). In the case of the focal line, for instance, one player, say P,
tries to get the state vector off the focal line, but E brings it back to the focal
line. Strategies of the form u1 = 71(x),u2 = 72(x,u1), with an instantaneous
informational advantage to the evader, such as those described in Section 8.2
with respect to upper and lower values, would be able to keep the state
precisely on the focal line. Singular surfaces across which V{x) is
discontinuous are the barrier and the safe contact. We have already
encountered barriers in Example 5.2 in the context of optimal control, and in
Section 8.3 where games of kind were treated. Their appearance in games of
degree will now be delineated within the context of the homicidal chauffeur



game. An example of a safe contact can be found in Chigir (1976). Example
8.6 Consider the homicidal chauffeur game with the cost function defined as
the time-to-go. In Example 8.3 we have described how semipermeable
surfaces, starting from the end points of the UP of the target, could be
constructed. We now treat the case depicted in Fig. 8.5b, i.e., the case when the
parameters V2 and (3 are such that (8.31) holds. If E is initially situated at
point Ci (see Fig. 8.5b), P cannot force him across Si, but instead he can force
him to go around it. Therefore it is plausible—and this can be proven
rigorously (see Merz, 1971), that capture from C  ̂will take considerably more
time than capture from C\. Hence, the value function is discontinuous across Si
which, therefore, is a barrier. □ This concludes the present section on singular
surfaces. In conclusion, the crucial problem in the construction of the value
function is to locate the singular surfaces, but hitherto this problem has not
been solved in a systematic way. On the other hand, once a particular V has
been constructed, which is continuously differentiable in each of a finite
number of mutually disjoint regions of the state space, some conditions (known
as "junction conditions") exist to check whether the V{x) obtained is really the
value function or not. Since these conditions are
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treat them here; but for some discussion on this topic the reader is referred to
Bernhard (1977). 8.5 Solution of a Pursuit-Evasion Game: The Lady in the
Lake In this section we obtain the complete solution of a pursuit-evasion game
called "the lady in the lake" by utilizing the techniques developed in the
previous sections. This game features a dispersal surface for the evader; there
is also a decision point. A lady (E) is swimming in a circular pond with a
maximum constant speed V2- She can change the direction in which she swims
instantaneously. A man (P), who has not mastered swimming., and who wishes
to intercept the lady when she reaches the shore, is on the side of the pond and
can run along the perimeter with maximum speed 1. He, also, can change his
direction instantaneously. Furthermore, it is assumed that both E and P never
get tired. E does not want to stay in the lake forever, though; she wishes
eventually to come out without being caught by the man. (On land, E can run
faster than P.) E's goal is to maximize the pay-off, which is the angular distance
PE viewed from the center of the pond, at the time E reaches the shore (see
Fig. 8.12). P obviously wants to minimize this pay-off. To make the game
nontrivial, it is assumed that v2 < 1. Figure 8.12: The "lady in the lake". Even



though the problem could be cast in a rectangular coordinate system fixed in
space, a description in the relative coordinates 9 and r turns out to be simpler,
where 9 is the angle between P and E (see Fig. 8.12 for the direction) and r is
E's distance from the center of the lake. This coordinate system is called
relative since it is attached to P; it is not fixed in space, and yet it describes the
game completely. The kinematics of the game are t ŝinu2 u1 6 = ——--R> r =
«2COS«2,
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control u1 is restricted by lu1 )̂! < li while E's control u2, which stands for the
angle of E's velocity vector with respect to the radius vector CE (see Fig.
8.12), is not restricted in any way. We now seek for the equilibrium strategies
in feedback form. The cost function is \9{T)\, where T is denned as T = min{i!:
r(t) = R}, and -tt < 6{t) < +n. The Isaacs equation for this problem is mm max
(dV(6,r) o dV(6,r) fv2smu2 v}\) /0 „. {-k^^^ -̂^y-H—r)\=0> (8-36) whence
The differential equations for the costate variables along the optimal
trajectories are d fdV{6,r)\ _ d fdV(9,r)\ __ /dV\ v2sinu2 dt{ 89 ) ~ ' di  ̂dr
)~\de)' r2 ' and the value function at t = T is given by V(6(T),r(T)) = \6(T)\.
The optimal control u1*, taken as the open-loop representation of the feedback
equilibrium strategy,94 can now be written as uu(t) = sgn (dV/d8) = sgn (0(T)).
Since we assumed —n < 0(t) < +7r, this implies that P will move in E's
direction along the smallest angle. Substituting u1* and u2* into (8.36), we
obtain sinu2*(f) =  ̂sgn 6(T). (8.38) r(t) Two observations can be made at this
stage. First, (8.38) is valid as long as r(t) > Rv2; for r(t) < Rv2 the outlined
derivation does not hold. Second, E swims along a straight line in real space,
tangent to a circle of radius Rv2 (see Fig. 8.13a). This result could also have
been obtained geometrically (see Fig. 8.13b). In the relative coordinate
system, E's velocity vr is made up of two components: (i) E's own velocity
vector in real space, v2, and (ii) a vector vi, obtained by rotation around the
center C, opposite to P's direction of motion (recall that P tries to reduce |#
(T)|), and with magnitude r{t)/R. The best policy for E is to make v2 and the
resulting velocity vector vR perpendicular to each other. For any other choice
of u2 (i.e., direction of v2 in Fig. 8.13b), the angle between CE and vr will
become smaller, or, in other words, E will move faster into P's direction,
which is precisely what E tries to avoid. Therefore, E's equilibrium strategy is
to keep the angle between v2 and vr at 7r/2 radians, or equivalently, sinu2* =
Rv2/r(t). 94Note that, although the open-loop representation of the feedback



saddle-point solution (if it exists) may exist, an open-loop saddle-point
solution surely does not exist for this pursuit evasion game. Whether a mixed
open-loop saddle-point equilibrium exists is an altogether different question
which we do not address here.

450 T. BA§AR AND G. J. OLSDER (a) (b) Figure 8.13: E's equilibrium
strategy for the "lady in the lake". This way of constructing E's optimal strategy
fails for r(t) < Rv2 in which case E can achieve a larger angular velocity (with
respect to the center C) than P, and therefore she can always maneuver herself
into the position 8{t) — ir, i.e., to a position diametrically opposite from P.
Note that, in order to maintain 6(t) = 7r, E would have to know P's current
action. If she does not have access to this (which is a more realistic situation),
she can stay arbitrarily close to 9(t) = 7T as she moves outward towards the
circle with radius Rv2- In case E would know P's current action, she can reach
the point (8 = ir, r = RV2) in finite time (see Problem 3 in Section 8.8); if she
does not know P's current action, she can get arbitrarily close to this point,
also in finite time.95 From the position [9 = k, r — RV2), E moves right or left
along the tangent. More precisely, E will first swim outward to a position r >
RV2 which is sufficiently close tor = Rv2- Then P has to make a decision as to
whether to run clockwise or anti-clockwise around the pond (P cannot wait
since, as E moves outward, his pay-off will then become worse). Once E
knows which direction has been chosen by P, she will swim "away" from P,
along the tangent line just described. In the region r{t) > RV2, P's angular
velocity is larger, and therefore he will continue to run in the direction he had
chosen before. The outcome of the game is readily calculated to be \6(T)\ = tv
+ arc cosw2 J (I- v%), (8.39) V2 V which holds true for all initial positions
inside the circle of radius Rv2- The lady can escape from the man if \9(T)\ > 0,
which places a lower bound on E's speed: V2 > 0.21723 From all initial
positions inside the pond, E can always first swim to the center and then abide
by the strategy just described, resulting in the outcome (8.39). From some
initial positions she can do better, namely, the positions in the shaded area in
Fig. 8.14 which is bounded by the pond and 95This would inevitably involve
some delay in the current state information of E and thereby some memory in
her information. Restriction to only feedback strategies would lead to some
subtle measurability questions.
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relative space. the two equilibrium trajectories which, constructed in
retrograde time, end at (r = Rv2,6=i:). Within the shaded area the optimal
strategies are determined by (8.37). The backward construction is only valid
until \9{t)\ = 7r; the line segment (0 = i:, Rv2 < r < R) obviously forms a
dispersal line on which it is P who decides whether to go "to the left" or "to
the right". In the non-shaded area of the pond in Fig. 8.14, the value function is
constant and equals \0(T)\ given by (8.39). Properly speaking, this value can
only be obtained if there is an informational advantage to E as explained
above; see also Problem 9 in Section 8.8. If this is not the case and only
feedback strategies are allowed, only an approximation to this value function
can be obtained. Therefore, in such a case, a saddle point will not exist, but an
e-saddle-point equilibrium will (cf. Section 4.2, specifically Def. 4.2). The
solution obtained for the "lady in the lake" has a very special feature. If E
would accidentally choose a wrong maneuver, she can always return to the
center of the lake and start all over again. The point E0 in the relative
coordinate system (see Fig. 8.14), which plays a special role, is sometimes
referred to as a decision point. 8.6 An Application in Maritime Collision
Avoidance In this section, collision avoidance during a two-ship encounter in
the open sea will be treated as a problem in the theory of differential games.
Given two ships close to each other in the open sea, a critical question to be
addressed is whether a collision can be avoided. If, for instance, we assume
that the helmsman of ship 1 (Pi) has complete information on the state of ship
2, whereas the helmsman of ship 2 (P2) is not aware of the presence of the first
ship, this lack of information on the part of P2 may lead to a hazardous
outcome. It is quite possible that P2 may perform a maneuver leading to a
collision which would not have occurred if P2 had had full knowledge of Pi's
position. Hence, in such a situation, it would be reasonable to undertake a
worst-case analysis, by
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avoid and the other one (P2) tries to cause a collision. One can envisage other
situations, such as the case in which both ships are aware of each other's
position and they both try to prevent a collision, i.e., they cooperate. This case,
although not a differential game in the proper sense, can be solved by similar
techniques. Roughly speaking, the minmax operation in the differential game
case must be replaced by the maxmax operation in the cooperative case. Still
another situation arises when one ship holds course and speed (is "standing



on") because of the "rules of the road", whereas the other ship must evade. The
dynamic system comprises two ships, Pi and P2, maneuvering on a sea surface
which is assumed to be homogeneous, isotopic, unbounded and undisturbed.
The kinematic equations to be used are identical to those of the two-cars model
(see Example 8.3): ±i = -u)\ulX2 + v2sin9,  ̂±2 = -vi + uii^xi + v2cos9, \
(8.40) 9 = u>2«2 - Wiu1. J This simple model may not be (too) unreasonable if
only short duration maneuvers are considered, during which the ships cannot
change their speeds markedly. Each ship is characterized by two parameters:
the maximum angular velocity uii and the constant forward speed vi. The
control of Pi is «', which is the rudder angle, and which is bounded by |u'(t)| <
1. Extensions of this model are possible, such as, for instance, the case of
variable forward speed (the engine setting will then become a control variable
as well), but these would make the analysis to follow much more complicated.
Some other effects (hydrodynamic and inertial) have been ignored in the model
(8.40), such as the u'-dependence of v*. The cost function is described in terms
of the closest point of approach (CPA), the distance corresponding to it is
called the miss distance. The terminal condition is given by the CPA at first
pass, characterized by dr d2r d °̂'d^>0< where r = y/{x\ + x'fy, and the terminal
range r(T) is the cost function. This constitutes a game of degree. In this section
we shall consider, instead, the directly related game of kind, characterized by a
given number rm, the minimum range or minimum miss distance. If r{T) > rm,
no collision takes place, and for r(T) < rm, a collision will take place. In the
three-dimensional state space, the target set is described by the cylinder x\ + x\
= r .̂ The UP, i.e., the set of points on this cylinder at which a collision can take
place, is determined by ^2(^1 sin 9 + X2 cos 9) — v\x2 < 0.
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can be constructed is determined from this relation with the inequality sign
replaced by an equality sign. Substituting x\ = rmsina and x2 = rmcosa, where a
is the bearing, into this equality, we obtain, at the final time, r(T) = sina(T) =
cos a(T) = e(v\ — v2 cos 9 (T))/w, ev2{sm9(T))/w, (8.41) where w = \J{v\ +
v\ - 2viV2Cos#(T)), and e = ±1. For each 9(T) we obtain two values for a(T),
one corresponding to e = +1 and the other one to e = —1. These two values
correspond to a right and left barrier, respectively; P2 can just miss Pi, either
on the right or on the left side. From the final conditions thus obtained, we must
construct equilibrium trajectories backward in time in order to obtain the
barrier which separates the points from where avoidance is possible from the



points from where it is not. The barrier—actually composed of two parts, each
corresponding to a different value of e in (8.41)—is depicted in Fig. 8.15. In
this figure the two parts of the barrier intersect, which indicates that the
enclosed points are guaranteed collision points for P2 (provided that the
intersection of the two parts does not leak). target set Figure 8.15: A schematic
picture of the barrier. We now turn to the actual construction of the barriers.
The optimal u1 and vr are the arguments of the corresponding Isaacs equation,
thus leading to u1* = sgn (x{VX2 - x2VXi - Ve), u2* Furthermore, the costate
variables satisfy sgn (-Ve)- VX1 = -u)iulVX2, VX1(T) = sin a(T); VX2 =
u3\ulVx ,̂ VX2(T) = cos a(T); Ve = v2(VX2sm9-VXlcos9), Ve(T) = 0. (8.42)
(8.43) As long as the arguments of the sgn-relations in (8.42) are nonzero, it is
simple to obtain the solution of (8.40) and (8.43); but, substitution of the final
values
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the arguments of the sgn-relations are zero at t = T. The situation can, however,
be saved by replacing the arguments with their retrograde time derivatives,
which leads to u\T) = e sgn (— -cos0(T)Y u2(T) = -e sgn (— - cos 0(T)Y
where e = ±1. Hence, the equilibrium strategies at the terminal situation are
determined for almost all values of 9{T). For t /̂ î < 1, we can expect a
singular control for P2 if 6(T) = ±arccos(w2/ î) for the last part of the
maneuver. Similarly, iivi/v2 < 1, PI may have a singular control. Figure 8.16:
The trajectories which make up the right barrier, projected in the (x2,0) plane.
Let us proceed with the case V2 < V\ < 1. Closer scrutiny reveals that there are
no equilibrium paths leading to the singular point 9{T) = earccos(v2A>i)> but,
in its stead, a dispersal line ends at this point. The other point, 9(T) = —
earccos(w2/wi), however, is the end point of a singular line (with u2 = 0),
which is a universal line. Integrating backward in time from the final condition,
we first start with the singular control u2 = 0 which may be terminated at any
time (switching time) we desire; and going further backward in time we obtain
a nonsingular u2. In Fig. 8.16, it is shown how the right barrier (e = +1) can be
constructed by determining the optimal trajectories backward in time. In the
figure, the projections of the trajectories on the (x2,0) plane have been drawn.
In order to construct these trajectories, 6(T) can be taken as a parameter, and
for 9{T) = —t arccos(v2/ î) we have another parameter, viz. the time instant at
which the singular control switches to a nonsingular one (there are two
options: u2 = +1 and u2 — -1) in retrograde time. The dispersal line is found



as the intersection of two sets of trajectories obtained through backward
integration, namely that set of trajectories which have 9{T) smaller than
arccos /̂ î),
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9{T) greater than arccos(w2/wi)- The left barrier can be constructed
analogously. If the two barriers intersect over the whole range 0 < 9 < 2-k, and
if the line of intersection does not leak, then the enclosed points are guaranteed
collision points for P2. Also a tacit assumption which makes this whole
construction work is that the two parts which define the dispersal line (for both
the right and left barriers) do indeed intersect. If they do not intersect, then
there would not be a dispersal line; instead, there would be a hole in the
surface that encloses the points we described above. Consequently, this set of
points would not be enclosed anymore, and PI might be able to force escape by
steering the state through this hole. As yet, no sufficiency conditions are known
which ensure enclosure; hence, for each problem one has to verify numerically
that no holes exist. For this reason, the method can be used conveniently only
for systems with state space dimension not greater than three. Figure 8.17:
Intersection of the semipermeable surfaces with the plane 9 = 9q. A possible
and appealing way of constructing the barriers which enclose the points
wherefrom collision is unavoidable, is to consider cuts in the (xi,x2,9) space
for which 9 is a constant, say 9 = 90. For each parameter value 9{T) and also
for the retrograde time parameter when 9(T) = —earccos(w2/ î) one
calculates the equilibrium trajectories until they hit the plane 9 — 9q—this
being performed for both the right and left barriers. For different values of the
parameters, one obtains, in general, different points in the plane 9 — 9o, with
the ultimate picture looking like the one sketched in Fig. 8.17. In this approach
existence of a dispersal line cannot be detected; one simply "by-integrates" it.
The semipermeable surface (line) m in Fig. 8.17 is the result of such a
procedure. However, this is not a serious problem, since what one seeks in the
plane 9 = 9o is a region completely surrounded by semipermeable surfaces; the
connecting corners must not leak. Hence, in a picture like Fig. 8.17, one has to
check whether point A leaks or not. If it does not, then one can disregard the
semipermeable line m. If it leaks, however, then this is an indication that either
the problem is ill-posed (i.e., no enclosed region exists from where collision
can be guaranteed), or there must be other semipermeable surfaces which will
define, together with (parts of) the already existing semipermeable surfaces, a



456 T. BA§AR AND G. J. OLSDER Figure 8.18: Initial points (xi,x2), with 9
= ir/2, for which distance of CPA is new enclosed region. The next figure, Fig.
8.18, taken from Miloh and Sharma (1976), depicts several enclosed areas for
different rm-values. The figure shows the barrier cross-sections at 9 = 7r/2.
The numerical data are as follows: v\ = 1, v2 = 5, u)\ = LJ2 = 1- This means
that the minimum turn radii of PI and P2 are 1 and ,̂ respectively. By
constructing similar pictures for different sets of parameter values (different
speed ratios and different maneuvering capabilities), it is possible to gain
insight into collision sensitivity with respect to these parameters. As a final
remark, collision was denned here as "two ships (considered as points in the
plane) approaching each other closer than a given distance". If ships would
actually collide this way, then they must have the shape of round disks, as
viewed from above. The construction presented can, however, be applied to
more realistic shapes, which is though slightly more complicated; such an
example will be presented in Section 8.7. Problem 5 (Section 8.8) presents yet
another slightly different problem in which the target set is still a round disk,
but it is not centered at the origin. 8.7 Role Determination and an Application
in Aeronautics Heretofore we have considered the class of pursuit-evasion
games wherein the roles of the players are prescribed at the outset of the
problem. These problems are sometimes called one-target games which model
situations such as a missile chasing an airplane. However, in a "dogfight" that
takes place between two planes or ships which are both armed and capable of
destroying their opponents, it may not be apparent at the outset who pursues
whom. Accordingly, we now introduce two-target games, where either player
may be the pursuer or
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configuration, and each target set is determined by the shooting range of the
respective player. Each player's task is to destroy his opponent (i.e., maneuver
the opponent into his target set) and to avoid destruction by his opponent. The
solution method to two-target games comprises essentially two stages: (i)
Given the initial conditions, determine the relative roles of the players; who
pursues whom? It is clear that in a deterministic differential game the roles of
the players are determined completely by the initial state and will not change
during the course of the game—provided that only pure strategies are
permissible and that the players act rationally. (ii) With the roles of the players
determined, what are the optimal, e.g., time- optimal, strategies for the



players? Note that the question of who pursues whom has nothing to do with
the cost function. Here we shall be concerned with the first stage. The state
space consists of three mutually disjoint regions: two regions corresponding to
victory by one or the other player, and the third region corresponding to a
draw, i.e., neither player is capable of destroying his opponent. The states
within the draw region may correspond to different situations. A particular
possibility is a stalemate: both players play certain strategies such that neither
player will be destroyed and, moreover, a deviation from his equilibrium
strategy by one of the players will lead to his own destruction. Another
possibility is that the faster player can escape—tacitly assuming that this
player cannot win the game in finite time. The region Ri of the state space,
which corresponds to victory by PI, may be expected to be bounded by a
surface comprising a part of the surface of Ai, the target set for Pi, together
with a semipermeable surface Si which prevents the state from leaving Ri
provided that PI plays optimally in the neighborhood of Ei. The interior of Rx
does not contain any points of P2's target set A2, and thus, assuming that the
game terminates in finite time (i.e., a stalemate cannot arise), victory for PI is
guaranteed for initial states inside Ri (see Fig. 8.19a). That portion of Ax,
which forms part of the boundary of Ri, is permeable only Figure 8.19:
Regions Ri and R2 corresponding to victory by PI and P2, respectively.
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way we can construct R2—the region corresponding to victory by P2. If Ri and
R2 do not fill up the whole state space, then points belonging to neither Ri nor
R2 belong to R3, the draw region. Such a situation is illustrated schematically
in Fig. 8.19b. Victory by P2 in region R2 is guaranteed if we assume that no
stalemate is possible, so that the target set A2 is reached in finite time. States
belonging to both Si and S2 (such as I in Fig. 8.19b) will terminate on both Ai
and A2, thereby giving rise to "victory" by both players, or, what is essentially
the same, to a simultaneous confrontation. States belonging to S2 and not to Si,
or belonging to Si and not to S2, give rise to near miss situations. We now
present an example of a two-target game which has the additional feature that
the two target sets are nonsmooth. Consider an aerial duel or dogfight, wherein
each combatant wishes to destroy his opponent without himself being
destroyed. In order to keep the analysis at a reasonable level, we take the
dimension of the state space to be three, and assume that the two players move
in a single horizontal plane. Equations of motion within this plane are the same



as those in the ship collision avoidance problem, and they are given by (8.40).
The constraints on the controls are also the same. We assume that Vi > v2 > 0
and 0 < u)\ < u>2, i.e., Pi has the advantage of having a higher speed, whereas
P2 is more maneuverable. Pi has a confrontation range (which is his target set
A,) consisting of a line segment of length ii in the direction of his velocity
vector. If PI crosses the confrontation range of P2, or vice versa, the game
ends. For the analysis to follow, we make the additional assumption 0 < £\ <
£2. We start with the construction of the barrier S which is the composition of
Si and S2 introduced earlier. Each portion of S, whether it leads to
simultaneous confrontation or to near miss, is obtainable by solving a
particular "local" differential game, with a terminal cost function denned only
in the immediate neighborhood of the simultaneous confrontation or near miss.
If we adopt the convention that the local game has a positive (respectively,
negative) value when it ends in favor of P2 (respectively, Pi), the equilibrium
controls are determined from min max (Vxi±i + VX2x2 + Vs6) = 0, u1 u2
which leads to u1* = sgn (x2VXl - x{VXi + Ve), u2* = sgn Ve. The costate
equations are the same as in (8.43), but in this case the terminal conditions are
different as will be seen shortly. In fact, the terminal conditions will be
different for each local game. From (8.44) it follows that, if u1 remains
constant for a duration of at least r units of time before the final time T is
reached, then, apart from an insignificant constant multiplier, assumed
henceforth to be unity, the costates at time r = (8.44)
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VX2(t) - sin(0-wiu1r), (8.45) where 0 is determined by the final conditions.
From (8.44) and (8.43) it further follows that V6(t) = -v2 cos(0 + 0 - wiuV) =
-v2 cos(0(T) + 0 - u2u2t), (8.46) so that, if u2 / 0, Ve(r) = Ve(T) _V2_ UJ2U'
{sin(0(T) + 0 - u2u2t) - sin(0(T) + 0)} By introducing A = x2VXl - X\VX2 +
Ve, we also find A = —ViVXl, so that, if u1 / 0, (8.47) A(t) = A(T) + -
ĵ(VX2(T) - VX2(t)). Since many of the local games will include singular

controls, we now investigate their properties. From (8.44) it follows that a
singular control for P2 is only possible for Ve = 0, which results in Vg = 0.
Equation (8.46) now leads to the conclusion that the only possible singular
control for P2 is u2 = 0. Similarly, it can be shown that the only possible
singular control for PI is u1 = 0. Returning to the actual construction of E, we
shall first deal with simultaneous confrontation and thereafter with the near
miss situations. For each situation, several types may be distinguished, since



simultaneous confrontation and near miss occur in different ways.
Simultaneous confrontation Consider the situation depicted in Fig. 8.20, where
the trajectories of PI and P2 in real space have been sketched, together with the
relative coordinate system at terminal time T. In the figure, Pi turns to the right
as fast as possible, and yT> Figure 8.20: A situation of simultaneous
confrontation.
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state is given as follows: X\(T) = 0, 9(T) = ■k and x2(T) is a variable that
must satisfy 0<x2(T)<mm(i1,i2)- (8.48) The equilibrium strategies are 71*(-)
= +1, 72*(-) = —1. Initial conditions associated with these strategies and
terminal conditions can easily be found by backward integration of the state
equations. The value of the game corresponding to these initial conditions is
neither positive (victory for P2) nor negative (victory for PI) and is therefore
determined as V = 0. It should be clear from Fig. 8.20 that 71* and f2* are
indeed in equilibrium since a deviation from either strategy will lead to a
destruction of the deviating player. This is also confirmed by application of the
necessary conditions. Let us assume for the moment that the terminal values of
the costate variables satisfy the requirements VXl(T)>0, VX2(T) = 0, Ve(T)<0.
(8.49) Then, it follows that 4> = 0 in (8.45), which, together with (8.44) and
(8.47), indeed leads to u1* = +1, u2* = —1. But why should (8.49) be a
requirement? Let us consider the case of VXl(T): a small deviation of P2's
position in the positive Xx-direction in the final situation (keeping x2(T) = 0,
9{T) = n) will be to the advantage of P2, since he will be able to win the game
from the new relative position. Hence, after this deviation, we have V > 0
instead of V = 0, and therefore VX1(T) > 0. A similar argument verifies the
sign of Vo(T). Furthermore, since a change in x2{T) does not change the
outcome of the game (it remains V = 0), we have VXi(T) = 0. Let us now
investigate how this simultaneous confrontation affects the barrier £ in the (x\,
x2,9) space, which separates the initial points where from PI can win from
those corresponding to P2's victory. Since x2{T) is a parameter, subject to the
constraint (8.48), a whole family of equilibrium trajectories exists, all leading
to a simultaneous confrontation of the type described. This family forms a
semipermeable surface in the (x\,x2,9) space. For the actual construction we
shall consider the intersection of this surface with the planes 9 = constant, say
9 = 90. Equations (8.40), (8.43), (8.44) and (8.49) are integrated backwards in
time until 9 = 9$ is reached and for varying x2{T) we obtain different points in



the 9 = 9$ plane, which make up a line segment. In Fig. 8.21, the solution of a
specific example has been sketched, for which the characteristics of the
airplanes are 3 v\ — u)\ — 1, v2 = -, u2 = 3, ii = 2 and i2 = 00. (8.50) In the
figure, 9$ = 7r/3. The line segment which separates the states corresponding to
victory by Pi from those corresponding to P2's victory, according to the
simultaneous confrontation described above, has number 1 attached to it. From
initial positions slightly above this line, Pi will win, and from initial positions
slightly below, P2 will win.
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surfaces with the plane 9 = 7r/3. Different types of simultaneous confrontation
exist, each one corresponding to a different maneuver. These different types
are shown in Fig. 8.22. Type 1 has already been discussed extensively. Type 2
is similar, but now P2 turns right as fast as possible; X2{T) is again the
parameter. Types 3 and 4 are different in the sense that destruction is not
caused by the confrontation range, but instead by collision; the angle 9{T) is
the parameter. Type 3 is a collision with PI turning right and P2 turning left. In
type 4, both turn right. Type 5 calls for an 5-maneuver by PI to get within the
range of P2, who has the longer confrontation range, before P2, who is turning
right, faces directly towards PI, at a distance of X2(T) = l\; the turn angle a of
the final bend of PI is the parameter. Type 6 is an extension of the 5-maneuver
of PI in type 5, in which the final bend with a fixed angle a.\ is preceded by a
straight-line segment (singular arc) whose length functions as a parameter. This
singular arc itself is preceded by a left turn. Type 7 is similar to type 6, the
only difference being that now PI starts with a right turn. In addition to these 7
types, there are 7 other types, indicated by 1', 2',..., 7', obtained from the first 7
types by left-right reflections. For instance, in case 1', PI turns left and P2 turns
right. In all these types, the parameter is subject to certain constraints. We will
not treat detailed analyses of all these types here; they are somewhat technical
and not enlightening for the results to be obtained. The details can be found in
Olsder and Breakwell (1974). Those types which give rise to curves lying in
the 9 = 7r/3 plane have been indicated in Fig. 8.21. A question that comes into
mind now is whether these fourteen different types of simultaneous
confrontation constitute the whole picture. In fact, we do not know for sure
whether there are other types or not. The ones that have
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2 type 3 \-6(T) type 4 type 5 type 6 type 7 Figure 8.22: Different maneuvers,
all leading to simultaneous confrontation. been depicted in Fig. 8.21 have been
obtained using intuitive reasoning, and the analysis indeed showed that they
give rise to semipermeable surfaces. However, together with the
semipermeable surfaces corresponding to near miss situations, for which the
discussions will follow shortly, they separate (and enclose) the states where
from PI can guarantee victory from the other states, i.e., there is no hole in £
(cf. Section 8.6). If, however, another simultaneous confrontation maneuver (or
another yet-unknown near miss maneuver) is discovered, it may lead to either a
larger or a smaller Ri. Near miss Essentially ten different types of near miss
situations have been discovered so far, which are labeled as a, b,..., j in Fig.
8.23, which depicts the corresponding trajectories in real space. Another set of
ten types exists, obtained by interchanging left and right, as in the case of
simultaneous confrontation. We now give a brief rundown of the first ten types.
In type a both players move to the right as fast as possible; P2's trajectory in
relative space looks as sketched in Fig. 8.24, and its characteristic feature is
that it touches the boundary of Pi's confrontation range, but does not cross it—
hence the name "near miss". The parameter can be taken as (̂T), which
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leading to near misses. satisfies the constraint 0 < x2(T) < min ,̂ v2/uj\) and
determines 9(T) through sin#(T) = uj\X2(T)/v2. The terminal conditions for the
costate equations are VXl(T) > 0, VX2(T) = Ve(T) = 0. Type b resembles type
a, the difference being that u2* = — 1. Types c and d have 9(T) = 7r/2 and end
with a singular arc by P2. The length of this arc is the parameter. These two
types only occur if Wi î > v2. For (Jiii < v2, the types c and d do not arise, but
instead we have the types e, /, g and h, for which x2{T) = £\. For types e and h
the parameter is 0(T), for / and g it is the length of the singular arc of P2's
trajectory. Types i and j resemble e and h, respectively, but now Pi is almost
destroyed at the far end of P2's confrontation range. In e and h it is P2 who can
barely escape the far end of Pi's confrontation range. Note that in the figures
corresponding to i and j, the relative coordinate system at t = T has been drawn
with respect to P2 (instead of Pi, as in all other types). In these two latter
types, P2 has a

T. BA§AR AND G. J. OLSDER V Figure 8.24: The trajectory corresponding
to type a in Fig. 8.23, now in relative space. singular arc, the length of which is



the parameter. In Fig. 8.21, we have drawn the line segments corresponding to
the applicable near miss cases for the example with characteristics (8.50),
which are the types a, b, c and d and their mirror images a', b', d', d'. The
crucial question now is whether all the line segments (both simultaneous
confrontation and near miss) enclose a region, together with Ai. It should be
clear from the figure that two such regions exist: an "inner one" and an "outer
one". Closer scrutiny reveals that some corners of the outer region leak, and
the semipermeable surfaces which enclose the inner region constitute the
barrier which separates Ri from R2. To summarize, we have given a complete
characterization of the regions leading to victory for Pi and P2, and have
arrived at the qualitative result that if PI plays optimally along the boundary of
his region of victory (Ri), then P2 is captured within Ri (and likewise with the
roles of Pi and P2 interchanged).96 If he cannot stay within Ri forever, then he
has to leave this region via Ai which leads to termination of the game (with
Pi's victory). 8.8 Problems 1. Instead of the pursuit-evasion game of Example
8.2, consider the equivalent problem described by ii = u'+u2, xi(0)>0, ±2 = 1
—Xi, £2(0) = 0, L = x2(T), where T = min{t : x,(t) = 0}, -1 < u* < 0, i = 1,2.
Obtain the final condition for the costate equation by making use of (8.14), and
show that the result is in complete agreement with the corresponding condition
derived in Example 8.2. 96Note that since £1 = 00, R3 is empty.

PURSUIT-EVASION GAMES 465 2. Calculate the value function V(x) for
Example 8.5, and show that both V and dV/dx are continuous along the
universal surface. 3. Consider the "lady in the lake" with an instantaneous
informational advantage to E, i.e., the strategies are of the form ux{t) =
■y1(x(t)),u2(t) = -f2(x(t), «'(£)). E starts at the center of the pond and spirals
outward as fast as possible, while maintaining 9(t) = ir. Show that the circle r
= Rv2 will be reached in finite time. Figure 8.25: Geometrical derivation of
the saddle-point solution. 4. This problem addresses the derivation of the
equilibrium solution of the "lady in the lake" geometrically, without utilizing
Thm. 8.2. Start from the decision point Eq in Fig. 8.25, and suppose that P
chooses u1 = —1 (i.e., he moves such that the pond is to his left in real space);
the case u1 = +1 can be dealt with analogously. E will then swim in a straight
line to the shore. The question is: in which direction will she swim? Suppose
that she swims in the direction (3 (see Fig. 8.25). (i) Why can 0 be restricted to
\(3\ < tt/2? (ii) Show geometrically that swimming towards E3 is better for E
then to swim to E2, where E3 is only an e-distance away from E2. (Show that



the time needed for P to cover the distance £2 £3 is greater than the time
needed for E to cover the distance E2E3, where E'2 is the projection of E2 on
E0E3.) (iii) Show that swimming towards £4 is the best E can do. (Make use
of the fact that the circle through the points E4, Eq and C lies inside the pond.)
5. Consider the following two-cars model: ±l = (v ĵsinfl-a^u1,

466 T. BA§AR AND G. J. OLSDER ±2 = (\/2/2) cos9 + XiUl - 1, 9 = -u1 +
2V2u2, together with the constraints |ul(£)| < 1, i = 1,2. The target set A is
defined by x2 + (x2 + R)2 - R2 = 0, where R = >/2/8. Pi tries to avoid A,
whereas P2 would like to have the state enter A. (i) Determine the barrier(s)
which separate(s) points from where avoidance is possible from those from
where it is not, and show that each one lies partly inside A. Therefore, the
semipermeable surface determined cannot be the barrier(s) sought. (ii)
Determine the actual barrier, in a way similar to that employed in the
dolichobrachistochrone problem (see Chigir (1976) or the first edition of
Ba§arand Olsder (1982)). Consider the system described by ±i = X2 + 1 +
2sinu2, ±2 = -3u1+2cosu2, with |u'| < 1 and no constraints imposed on u2. The
target set is the half line (xi > 0, X2 = 0). PI wants to steer the system to the
target set as soon as possible, whereas P2 wants to do the opposite. The game
is played in the half plane X2 > 0. (i) Show that a barrier starts at the origin (xi
= 0,a:2 = 0) and ends at X2 = 1. (ii) Show that the continuation of the barrier,
for X2 > 1, is an equivocal line. The differential game addressed in this
problem is the same as that of Problem 6, except that the dynamics are
replaced by Xi = X2 + 1 + u[ + 2sinu2, ±2 = — 3i4 + 2cosu2, where PI
chooses u\ and u\, subject to the constraint (u )̂2 + (u[)2/e < 1, where e is a
small positive number. P2 chooses, as before, u2, without any restrictions. For
e = 0 this problem reduces to Problem 6. It is conjectured that the present more
general version features a switching envelope. Prove or disprove this
conjecture, and also investigate the limiting behavior of the solution when e J.
0. The kinematics of this problem are described by (8.22) with V2 = \- The
only restriction on the controls is |«' (f)| < 1. The target set of Pi is given by Ai
= < (xi,X2) : x2 + x\ < 4 and arctan — < — > I Xi 3 J

PURSUIT-EVASION GAMES 467 and the target set of P2 is given by A2 =
{{xi,x2) : x\ +xl < l} . Pi's objective is to force (xl,x2) into Ai without passing
through A2, whereas P2 wants to have the state enter A2 without passing
through Ai. Show that the region of victory Rj for Pi is as indicated in the



following figure: Check also that the semipermeable curve DE lies completely
outside A2 and that the corner E does not leak. 9. We are given a zero-sum
differential game for which the Isaacs condition does not hold everywhere, but
instead the Isaacs equation admits two different solutions depending on the
order of the min and max operations. Prove that the associated differential
game does not admit a saddle-point solution in feedback strategies, but it
admits a saddle point when one or the other player is given an informational
advantage on the current action of his opponent. Make use of this result in
providing a possible verification for the existence of a saddle point in the
differential game "lady in the lake." 8.9 Notes Section 8.2. The theory of
deterministic pursuit-evasion differential games was single-handedly created
by Isaacs in the early 1950s, which culminated in his book (Isaacs, 1975; first
edn. 1965). Blaquiere and Leitmann, independently of Isaacs, also obtained
Thms. 8.1 and 8.2 (see Blaquiere et al., 1969). Their geometric approach is
essentially the same as that of Isaacs, but it is stated in a mathematically more
precise language. In this chapter, we follow essentially Isaacs' approach.
Starting in the 1960s, many researchers have worked on a rigorous
establishment of the validity of the Isaacs equation. The starting point is often a
time-discretization and a carefully defined information structure. Depending on
this information structure, lower and upper values of the game are defined, and
then appropriate limiting arguments are incorporated, under which these upper
and lower values approach each other; the resulting limiting value, in each
case, is declared to be the value of the game. References in this connection are
Fleming (1961, 1964), Varaiya and Lin (1969), Roxin (1969),

468 T. BA§AR AND G. J. OLSDER Friedman (1971), Elliott and Kalton
(1972), Elliott (1977) and Elliott et al. (1973). The relationship with viscosity
solutions is given in Evans and Souganidis (1984) and in Barron, Evans and
Jensen (1984). These two references contain results for fixed terminal time
problems only; see also Elliott (1987). For results on viscosity solutions for
problems with variable terminal time the reader is referred to Bardi and
Soravia (1991a, b). For extended solution concepts of ordinary differential
equations, in which, for instance, the /-function in the state equation is not
Lipschitz-continuous, the reader is referred to Krasovskii and Subbotin (1988),
which also includes a rigorous definition of strategy, and also to Hajek (1979).
The notions of playability and nontermination aided in the understanding of the
so-called "bang-bang-bang surface" introduced in Isaacs (1969); see also



Ciletti (1970) and Lewin (1976). Section 8.3. The concept of capturability
also originates in Isaacs' works. A mathematically more rigorous approach to
capturability is given in Krasovskii and Subbotin (1988), leading to the so-
called "Theorem of the Alternative". A different approach to capturability has
been developed by Pontryagin (1967) and subsequently by Hajek (1975). In
this set-up the pursuer knows the current action of the evader, which he
"neutralizes" by means of his own control. The left-over power (if any) is used
by the pursuer to steer the system to the target set. The famous "homicidal
chauffeur game" is very versatile in that its solution features many singular
surfaces. We do not provide here the complete solution to this game; it was
partly solved in Isaacs (1975). The complete solution is spread out over Merz
(1971) and Breakwell (1973). The notion of a leaking corner was introduced
in Bernhard (1971). Section 8.4. The transition, dispersal, universal and
equivocal lines were first introduced in Isaacs (1975). The focal line and the
switching envelope appeared for the first time in Merz (1971) and Breakwell
(1973). Introduction of noise in the systems equations tends to "smoothen" the
singular surfaces which will therefore no longer exist as such. The addition of
noise to the system dynamics is the starting point for viscosity solutions; see
Chapter 5. For a "noisification" of the homicidal chauffeur game, see Pachter
and Yavin (1979). Section 8.5. The "lady in the lake" appeared in the Russian
translation of Isaacs' book; see also Breakwell (1977). Another well-known
differential game, which has a safe contact in its solution, is the
dolichobrachistochrone problem, stated and partly solved in Isaacs (1975).
The complete solution was given later in Breakwell (1971) and Chigir (1976).
In the survey article (Ho and Olsder, 1983), a rather exhaustive list of other
known solved or partly solved zero-sum differential games is given, including
such games as "lion and man", "obstacle tag", "conic surveillance evasion" and
the "suicidal pedestrian". References to extensions with "two pursuers and one
evader" or "one pursuer and two evaders" are also given there. A recent book
in the vein of Isaacs is Lewin (1994); it contains new developments and
examples. Section 8.6. The application in maritime ship collision avoidance
follows the works of Sharma (1976), and Vincent and Peng (1973). See also
Merz (1973) and Olsder and Walter (1978).

PURSUIT-EVASION GAMES 469 Section 8.7. Role determination and its
application in aeronautics were first discussed in Olsder and Breakwell
(1974). Similar problems, but with different target sets, have been considered



in Merz (1976). For other aeronautical applications see Peng and Vincent
(1975) and Vincent et al. (1976). Section 8.8. Problem 5 is from Vincent and
Peng (1973). Problem 6 is a special version of a problem considered in Isaacs
(1975), Problem 8 is from Getz and Pachter (1980).
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Appendix A Mathematical Review This appendix provides some background
material on those aspects of real analysis and optimization which are
frequently used in the text; it also serves to introduce the reader to our notation
and terminology. For a more detailed exposition on the topics covered here, a
standard reference is Luenberger (1969). A.l Sets A set 5 is a collection of
elements. If s is a member (element) of S, we write s € S; if s does not belong
to S, we write s £ S. If 5 contains a finite number of elements, it is called a
finite set, otherwise it is called an infinite set. If the number of elements of an
infinite set is countable (i.e., if there is a one-to-one correspondence between
its elements and positive integers), we say that it is a denumerable (countable)
set, otherwise it is a nondenumerable set. A set S with some specific structure
attached to it is called a space, and it is called a linear (vector) space if this
specific structure is of algebraic nature with certain well-known properties
which we assume that the reader is familiar with. If 5 is a vector space, a
subset of S which is also a vector space is called a subspace. An example of a
vector space is the n-dimensional Euclidean space (denoted by Rn) each
element of which is determined by n real numbers. An iSR" can either be
written as a row vector x = (x\,... ,xn), where x\,...,xn are real numbers and
denote the components of x, or as a column vector which is the "transpose" of
(x\,..., xn) (written as x = (xi,..., xn)'). We shall adopt the latter convention in
this text, unless indicated otherwise. Linear independence Given a finite set of
vectors Si,...,sn in a vector space S, we say that this set of vectors is linearly
independent if the equation X^Li aiSi = ® implies a, = 0, i = 1,..., n.
Furthermore, if every element of S can be written as a linear combination of
these vectors, we say that this set of vectors generates S. Now, if S is
generated by such a linearly independent finite set (say, X), it is said to 471

472 T. BA§AR AND G. J. OLSDER be finite dimensional with its unique
"dimension" being equal to the number of elements of X; otherwise, S is
infinite dimensional. A. 2 Normed Linear (Vector) Spaces A normed linear



vector space is a linear (vector) space S which has some additional structure
of topological nature. This structure is induced on 5 by a real-valued function
which maps each element u € S into a real number ||u|| called the norm of u. The
norm satisfies the following three axioms: (1) ||u|| > 0 Vu € S; \\u\\ = 0 if, and
only if, u = 0- (2) ||« + v\\ < \\u\\ + \\v\\ for each u, v € 5- (3) ||a«|| = |a| • ||u|| Va €
R and for each u £ S. Convergent sequences, Cauchy sequence An infinite
sequence of vectors {si, S2, ■ ■ ■, st...} in a normed vector space S is said to
converge to a vector s if, given an arbitrary e > 0, there exists an N, which may
depend on e, such that \\s — Sj|| < e for all i > N. In this case, we write Si —»
s, or limi-  ̂s, = s, and call s the limit point of the sequence {si}. More
generally, a point s is said to be a limit point of an infinite sequence {sj} if the
latter has an infinite subsequence {sik} that converges to s. An infinite
sequence {sj} in a normed vector space is said to be a Cauchy sequence if,
given an e > 0, there exists an N such that \\sn — sm\\ < e for all n, m > N. A
normed vector space S is said to be complete, or a Banach space, if every
Cauchy sequence in S is convergent to an element of S- Open, closed and
compact sets Let S be a normed vector space. Given an s € S and an e > 0, the
set Ne(s) = {x € S : \\x — s\\ < e} is said to be an e-neighborhood of s. A
subset X of S is open if, for every x € X, there exists an e > 0 such that Nc{x)
C X. A subset X of S is closed if its complement in S is open; equivalently, X
is closed if every convergent sequence in X has its limit point in X. Given a set
X c S, the largest subset of X which is open is called the interior of X and
denoted as A subset X of a normed vector space S is said to be compact if
every infinite sequence in X has a convergent subsequence whose limit point is
in X. If X is finite dimensional, compactness is equivalent to being closed and
bounded. Transformations and continuity A mapping / of a vector space S into
a vector space T is called a transformation or a function, and is written
symbolically / : S —> T or y = f(x), for x € S, y € T; / is said to be a functional
if T = R.

APPENDIX A 473 Let / : S —> T, where S and T are normed linear spaces.
The mapping / is said to be continuous at xq € S if, for every e > 0, there exists
a S > 0 such that f(x) € N€(f(xo)) for every a; £ Ng(xo). If / is continuous at
every point of S it is said to be continuous everywhere or, simply, continuous.
A. 3 Matrices An (m x n) matrix A is a rectangular array of numbers, called
elements or entries, arranged in m rows and n columns. The element in the ith
row and jth column of A is denoted by a subscript ij, such as a  ̂or [^4]y, in



which case we write A = {a^}. A matrix is said to be square if it has the same
number of rows and columns; an (n x n) square matrix A is said to be an
identity matrix if an — 1, i = 1,..., n, and atj — 0, i  ̂j, i, j = 1,..., n. An (n x n)
identity matrix will be denoted by In or, simply, by I whenever its dimension is
clear from the context. The transpose of an (m x n) matrix A is the (n x m)
matrix A' with elements a[j — ciji. A square matrix A is symmetric if A — A';
it is nonsingular if there is an (n x n) matrix, called the inverse of A, denoted
by A~l, such that A~1A = I = AA-1. Eigenvalues and quadratic forms If A is a
square matrix, a scalar A and a nonzero vector x satisfying the equation Ax —
Xx are said to be, respectively, an eigenvalue and an eigenvector of A. A
square symmetric matrix A whose eigenvalues are all positive (respectively,
nonnegative) is said to be positive definite (respectively, nonnegative definite
or positive semidefinite). An equivalent definition is as follows. A symmetric
(nxn) matrix A is said to be positive definite (respectively, nonnegative
definite) if x'Ax > 0 (respectively, x'Ax > 0) for all nonzero i£R". The matrix A
is said to be negative definite (respectively, nonpositive definite) if the matrix
(—A) is positive (respectively, nonnegative) definite. We symbolically write
A > 0 (respectively, A > 0) to denote that A is positive (respectively,
nonnegative) definite. A.4 Convex Sets and Functionals A subset C of a vector
space S is said to be convex if for every u, v € C and every a € [0,1], we have
au + (l -a)v € C. A functional / : C —> R defined over a convex subset C of a
vector space S is said to be convex if, for every u, v € C and every scalar a €
[0,1], we have f(au + (1 — a)v) < af(u) + (1 — a)f(v). If this is a strict
inequality for every a € (0,1), then / is said to be strictly convex. The
functional / is said to be concave if (—/) is convex, and strictly concave if
(—/) is strictly convex. A functional / : Rn —> R is said to be differentiate if,
with x — (xi,..., xn)' € Rn, the partial derivatives of / with respect to the
components of x exist, in
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[df(x)/dXl,...,df(x)/dxn]. Vf(x) is called the gradient of / at x and is a row
vector. We shall also use the notation fx(x) or df(x)/dx to denote the same
quantity. If we partition x into two vectors y and z of dimensions n\ and n — ni,
respectively, and are interested only in the partial derivatives of / with respect
to the components of y, then we use the notation Vyf(y, z) or df{y, z)/dy to
denote this partial gradient. Let g : Rn —► Rm be a vector-valued function
whose components are differentiate with respect to the components of x € Rn.



Then, we say that g(x) is differentiate, with the derivative dg(x)/dx being an (m
x n) matrix whose ijth element is dgi(x)/dxj. (Here <jj denotes the ith
component of g.) The gradient Vf(x) being a vector, its derivative (which is the
second derivative of / : Rn —► R) will thus be an (n x n) matrix, assuming
that f(x) is twice continuously differentiate in terms of the components of x.
This matrix, denoted by V2f(x), is symmetric, and is called the Hessian matrix
of / at x. This Hessian matrix is nonnegative definite for all x € Rn if, and only
if, / is convex. Separating hyperplane theorem Given a convex set S, one can
always find a (hyper)plane such that S lies on one side of it. This result, which
should be intuitive in finite-dimensional spaces, also holds in infinite-
dimensional linear vector spaces, and is referred to as support theorem or
separating hyperplane theorem. Toward giving a precise statement for the most
general case, let us first define what a hyperplane is: A hyperplane H in a
linear vector space 5 is a linear variety H (that is, translation of a subspace of
S), with the property that H  ̂S, and if V is any linear variety containing H,
then either V = S or V = H. Then the separating hyperplane theorem says that if
C is a convex set (as a subset of S) with nonempty interior, and x a point in S
and not an interior point of C, there is a closed hyperplane H containing x such
that H lies on one side of C. The point x can of course be chosen as a boundary
point of C. A.5 Optimization of Functional Given a functional / : S —> R,
where 5 is a vector space, and a subset X C S, by the optimization problem
minimize f(x) subject toieX we mean the problem of finding an element x* € X
(called a minimizing element or an optimal solution) such that f(x*) < fix) Vx €
X. If such an x* € X exists, then we use the notation x* = arg minTgx f(x)- This
is sometimes also referred to as a globally minimizing solution, in order
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minimizing solution. An element x° € X is called a locally minimizing solution
if we can find an e > 0 such that fix0) < fix) Vx e Ne(x°) n x, i.e., we compare
f(x°) with values of f(x) in that part of a certain e-neighborhood of x°, which
lies in X. For a given optimization problem, it is not necessary that an optimal
solution exists; an optimal solution will exist if the set of real numbers {f(x) : x
€ X} is bounded below and there exists ani*£X such that inf{f(x) : x € X} =
f(x*), in which case we write /(**)= inf; fix) = mm fix). If such an x* cannot be
found, even though inf{/(x) : x € X} is finite, we simply say that an optimal
solution does not exist; but we declare the quantity inf{/(x) : x € X} or inf fix)
x£X as the optimal value of the optimization problem. If {fix) : x € X} is not



bounded below, i.e., mix^x fix) — —oo, then neither an optimal solution nor
an optimal value exists. An optimization problem which involves maximization
instead of minimization may be converted into a minimization problem by
simply replacing / by —/. Any optimal solution of this minimization problem is
also an optimal solution for the initial maximization problem, and the optimal
value of the latter, denoted supl6X fix), is equal to minus the optimal value of
the former. If a maximizing element x* € X exists, then supT6X fix) = maxTex
fix) = fix*). Existence of optimal solutions In the minimization problem
formulated above, an optimal solution exists if X is a finite set, since then there
is only a finite number of comparisons to make. If X is not finite, however,
existence of an optimal solution is not always guaranteed; it is guaranteed if /
is continuous and X is compact—a result known as the Weierstrass theorem.
For the special case when X is finite dimensional, we should recall that
compactness is equivalent to being closed and bounded. Necessary and
sufficient conditions for optimality Let S = Rn, and / : Rn —» R be a
differentiate function. If X is an open set, a first-order necessary condition for
an optimal solution to satisfy is V/(x*) = 0. If, in addition, / is twice
continuously differentiate on R", a second-order necessary condition is V2fix*)
> 0.
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(x*) > 0} is sufficient for x* € X to be a locally minimizing solution. These
conditions are also sufficient for global optimality if, in addition, X is a
convex set and / is a convex functional on X. These results, by and large, hold
also for the case when S is infinite dimensional, but then one has to replace the
gradient vector and the Hessian matrix by first and second Gateaux (or
Frechet) derivatives, and the positive-definiteness requirement by "strong
positiveness" of an operator. See Luenberger (1969) for these extensions.

Appendix B Some Notions of Probability Theory This appendix briefly
presents some notions of probability theory which are used in the text. For
more complete exposition the reader should consult standard texts on
probability theory, such as Feller (1971), Papoulis (1965), Ash (1972) and
Loeve (1963). In two of the sections of this book (viz. Sections 5.3 and 6.7)
we have used some material on stochastic processes and stochastic differential
equations which is, however, not covered in this appendix; for this, the reader
should consult Wong and Hajek (1985), Gikhman and Skorohod (1972),



Fleming and Rishel (1975), Fleming and Soner (1993) and the references cited
in Section 6.7. B.l Ingredients of Probability Theory Let Q denote a set whose
elements are the outcomes of a random experiment. This random experiment
might be the toss of a coin (in which case Q has only two elements) or
selection of an integer from the set [0, oo) (in which case fl is countably
infinite) or the continuous roulette wheel which corresponds to a nond
enumerable Q. Any subset of Q on which a probability measure can be defined
is known as an event. Specifically, if F denotes the class of all such events
(i.e., subsets of Q), then it has the following properties: (i) n e f. (2) If A € F,
then its complement Ac — {cj € 0 : cj g A} also belongs to F. (The empty set,
0, being the complement of 0, also belongs to F.) (3) If Ai,A2e F, then Ax n A2
and Ax U A2 also belong to F. (4) If Ai,A2,..., Ai,... denote a countable number
of events, the countable intersection n ĵ-Aj and the countable union L>°l1Ai
are also events (i.e., they belong to F). 477

478 T. BA§AR AND G. J. OLSDER The class F, thus defined, is called a
sigma algebra (a-algebra) and a probability measure V is a nonnegative
functional defined on the elements of this a-algebra. The probability measure V
also satisfies the following axioms: (1) For every event ieF,0< V{A) < 1, and
V{Q) = 1. (2) If Ay, A2 € F and Ai n A2 = 0 (i.e., Ax and A2 are disjoint
events), V{AXU A2) =V{AX) +V{A2). (3) Let {Ai} denote a (countably)
infinite sequence in F, with the properties Ai+l C Ai and ngj.A; = 0. Then, the
limit of the sequence of real numbers {V(Ai)} is zero (i.e., lim,—oo V{Ai) —
0). The triple (Q,F,V) defined above is known as a probability space, while
the pair (fi,F) is called a measurable space. If fi = Rn, then its subsets of
interest are the n-dimensional rectangles, and the smallest u-algebra generated
by these rectangles is called the n-dimensional Borel a-algebra and is denoted
Bn. Elements of Bn are Borel sets, and the pair (Rn, Bn) is a Borel
(measurable) space. A probability measure defined on this space is known as a
Borel probability measure. Finite and countable probability spaces If fi is a
finite set (say, fi = {cji,u2,. ■ ■, wn}), we can assign probability weights on
individual elements of ft, instead of on subsets of ft, in which case we write pi
to denote the probability of the single event Wj. We call the n-tuple (PiiP2, • •
• ,Pn) a probability distribution over fi. Clearly, we have the restriction 0 < Pi
< 1 V« = 1,..., n, and furthermore as the elements of Q are all disjoint events,
we have the property YH=i Pi ~ 1- ^ ê same convention applies when fi is a
countable set (i.e., fi = {u;i,u;2.- -- .Wj, ••-}), in which case we simply replace



n by oo. B.2 Random Vectors Let (fii, Fi) and (O2, F2) be two measurable
spaces and / be a function defined from the domain set Qi into the range set ^2-
If for every A € F2 we have f~1(A) = {cj € fii : f(cj) € A} € Fi, then / is said
to be a measurable function, or a measurable transformation from (fii,Fi) into
(^2^2)- If the latter measurable space is a Borel space, then / is said to be a
Borel function, in which case we denote it by x. For the special case when the
Borel space is (Q2, F2) = (R, B), the Borel function x is called a random
variable. For the case when (^2,-^2) = (Rn,Bn), x is known as an n-
dimensional random vector. If there is a probability measure V defined on
(fii,Fi)—which we henceforth write simply as (0,F)—then the random vector x
will induce a probability measure Px on the Borel space (Rn,Bn), so that for
every B £ B" we have VX{B) — V(x~1(B)). Since every element of Bn is an
n-dimensional rectangle, the arguments of Px are in general infinite sets;
however, considering the
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a; (i = 1,..., n) are real numbers, restriction of Px to this class is also a
probability measure whose argument is now a finite set. We denote this
probability measure by Px — Px(ai,a2, ■ • •,««) and call it a probability
distribution function of the random vector x. Note that Px(ai,a2,...,an) = V{{lj
eft:xi(tj)< ai,x2(tj) < a2l- • - ,xn(tj) < a„}), where xt is a random variable
denoting the ith component of x. Whenever n > 1, Px is sometimes also called
the cumulative (joint) probability distribution function. It is a well-established
fact that there is a one-to-one correspondence between Px and Vx and the
subspace on which Px is defined can generate the whole Bn (cf. Loeve, 1963).
Independence Given the probability distribution function of a random vector x
— (xi,..., xn)' the (marginal) distribution function of each random variable xt
can be obtained from PXi(a%) = lim Px(oi,...,on). The random variables 1 1 *
* * 1 71 said to be (statistically) independent if Px(oi,...,on) = PXl(ai)PX2(a2)
■ • ■ Px„(an), for all scalars ai,...,an. Probability density function A measure
defined on subintervals of the real line and which equals the length of the
corresponding subinterval(s) is called a Lebesgue measure. It assigns zero
weight to countable subsets of the real line, and its definition can readily be
extended to n-dimensional rectangles in Rn. Let V be a Borel probability
measure on (Rn, Bn) such that any element of Bn which has a Lebesgue
measure of zero has also a P-measure of zero; then we say that V is absolutely
continuous with respect to the Lebesgue measure. Now, a well-established



result of probability theory says that (cf. Loeve, 1963), if x : (Q,F,P) —>
(Rn,Bn,Vx) is a random vector and if Vx is absolutely continuous with respect
to the Lebesgue measure, there exists a nonnegative Borel function px(-) such
that, for every A € Bn, VX{A)= [ px(Od£. J A Such a function px(-) is called
the probability density function of the random vector x. In terms of the
distribution function Px, the preceding relation can be written as ••• / Px(£i>--
-.£n)d£i---d£n ■oo J — oo for every scalar ai,..., an.

480 T. BA§AR AND G. J. OLSDER B.3 Integrals and Expectation Let x :
(to,F,V) -> (Rn,Bn,Vx) be a random vector and / : (Rn,Bn) -> (R™,Bm) be a
nonnegative Borel function. Then, / can also be considered as a random vector
from (fi,F) into (Rm,Bm), and its average value (expected value) is denned
either by fn f(x(u)) V(du) or by Jpr. f(€)Vx(d£) depending on which
interpretation we adopt. Both of these integrals are well denned and are
uniquely equal in value. If / changes signs, then we take f = f+ — f~ where
both /+ and /~ are nonnegative, and write the expected value of / as E[f{x)\ = f
/+(o?*(do-Irtir(OP*(do = Jnorx(dQ, provided that at least one of the pair E[f+
{x)\ and E[f~(x)] is finite. Since, by definition, Vx(dQ — Vx(£ + d£) —
Vx(£), this integral can further be written as E[f(*)}= fRJ(t)dr*(t) which is a
Lebesgue-Stieltjes integral and which is the convention that we shall adopt.
For the special case when f(x) = x we have E[x}~ f £dVx(Z)=x which is
known as the mean (expected) value of x. The covariance of the n- dimensional
random vector x is defined as E[{x-x){x-x)']= f Jt-x)(Z-x)'drx(0= cov(x) which
is a nonnegative definite matrix of dimension (nxn). Now, if Vx is absolutely
continuous with respect to the Lebesgue measure, E[f] can equivalently be
written, in terms of the corresponding density function px, as If Q consists only
of a finite number of disjoint events wi, W2,..., wn, then the integrals are all
replaced by the single summation n where pi denotes the probability of
occurrence of event Wj. For a countable set fi, we have the counterpart: n
E[f(x(u))] = lim T f(x(ui))Pi. n—*oo *—'

APPENDIX B 481 B.4 Norms and the Cauchy-Schwarz Inequality Given a
random vector x : (fl,F, V) —> (Rn,lBn,Vx), the quantity denned by ||:r|| =
{E[x'x]Y'\ provided that it is finite, is called the (£2) norm of x, and indeed
satisfies all the properties of a norm introduced in the previous appendix. A
random vector with a finite £2-norm is called a second-order random vector.
Note that a second-order random vector has a well-defined covariance. If x



and y are two n-dimensional second-order random vectors denned on the same
probability space, then we have the following useful inequality, known as the
Cauchy-Schwarz inequality: \E[x'y}\<\\x\\\\y\\. The inequality here is an
equality if, and only if, x — Xy, w.p. 1 for some scalar A, or y = 0 w.p. 1.

This page intentionally left blank

Appendix C Fixed Point Theorems In this appendix we give, without proof,
three theorems (on fixed points) which have been used in Chapters 3 and 4 of
the text. Proofs of these theorems are rather lengthy and can be found in the
references cited. Some general references for these as well as other results on
fixed points are (Istratescu, 1981), (Joshi and Bose, 1985), and (Smart, 1974).
Fixed point theorems Theorem C.l (Brouwer fixed point theorem) If S is a
compact and convex subset of Rn and f is a continuous function mapping S into
itself, then there exists at least one x £ S such that f(x) — x. Several proofs
exist for this fixed point theorem, one of the most elementary ones being given
by Kuga (1974). Its original version has appeared in 1910 (Brouwer, 1910). A
generalization of this theorem is the Kakutani fixed point theorem (Kakutani,
1941) given below. Definition C.l (Upper semicontinuity) Let f be a function
defined on a normed linear space X, and associating with each x € X a subset
f{x) of some (other) normed linear space Y. Then, f is said to be upper
semicontinuous (use) at a point xo € X if, for any sequence {xi} converging to
x$ and any sequence {yt € f(xi)} converging to yo, we have yo € /(^o)- The
function f is upper semicontinuous if it is use at each point of X. Theorem C.2
(Kakutani) Let S be a compact and convex subset ofRn, and let f be an upper
semicontinuous function which assigns to each x €5 a closed and convex subset
of S. Then there exists some x € S such that x € f(x). Another generalization of
the Brouwer fixed point theorem is due to Schauder (1930), and involves the
space of real-valued bounded continuous functions on a subset S of Rn, to be
denoted C(S). Here, we will first need the definition of equicontinuity: 483

484 T. BA§AR AND G. J. OLSDER Definition C.2 (Equicontinuity) Let the
space of all real-valued hounded continuous functions on S, denoted C{S), he
endowed with the sup norm. A subset F of C(S) is equicontinuous if for every e
> 0 there exists a 6 > 0 such that \\x -y\\<6 implies \\f(x) - f(y)\\ < e, V/ e F.
Theorem C.3 (Schauder) Let S be a bounded subset of Rn, and let C(S) be the
space of real-valued bounded continuous functions on S, endowed with the sup



norm. Let F C C(S) be nonempty, closed, bounded and convex. Then if the
mapping T : F —> F is continuous and the family T(F) is equicontinuous, T has
a fixed point in F. A proof of this theorem can be found in (Istratescu, 1981)
and (Hutson and Pym, 1980). This is a special case of a more general theorem
(also due to Schauder) which says that "every real-valued continuous function
mapping a convex compact subspace of a Banach space into itself has a fixed
point." The space C(S) denned above is indeed one such space, and
equicontinuity assures that convex compact subsets of C(S) are mapped into
themselves. For interesting discussions on the Brouwer fixed point theorem
and its various extensions, see Franklin (1980).
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