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Preface and acknowledgments

Game theory deals with situations in which your payoff depends not only on

your own choices but also on the choices of others. How are you supposed

to decide what to do, since you cannot control what others will do?

In calculus you learn to maximize and minimize functions, for example to

find the cheapest way to build something. This field of mathematics is called

optimization. Game theory differs from optimization in that in optimization

problems, your payoff depends only on your own choices.

Like the field of optimization, game theory is defined by the problems it

deals with, not by the mathematical techniques that are used to deal with

them. The techniques are whatever works best.

Also, like the field of optimization, the problems of game theory come

from many different areas of study. It is nevertheless helpful to treat game

theory as a single mathematical field, since then techniques developed for

problems in one area, for example evolutionary biology, become available to

another, for example economics.

Game theory has three uses:

(1) Understand the world. For example, game theory helps explain why ani-

mals sometimes fight over territory and sometimes don’t.

(2) Respond to the world. For example, game theory has been used to develop

strategies to win at poker.

(3) Change the world. Often the world is the way it is because people are

responding to the rules of a game. Changing the game can change how

they act. For example, rules on using energy can be designed to encourage

conservation and innovation.

The idea behind the organization of this book is to learn an idea, and then

try to use it in as many interesting ways as possible. Because of this organi-

zation, the most important idea in game theory, the Nash equilibrium, does

not make an appearance until Chapter 3. Two ideas that are more basic—

backward induction for games in extensive form, and elimination of domi-

nated strategies for games in normal form—are treated first.

Traditionally, game theory has been viewed as a way to find rational

answers to dilemmas. However, since the 1970s biologists have applied game

theory to animal behavior, without assuming that animals make rational

analyses. Instead they assume that predominant strategies emerge over time
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as more successful strategies replace less successful ones. This point of view

on game theory is now called evolutionary game theory. Once one thinks of

strategies as changing over time, the mathematical field of differential equa-

tions becomes relevant. Because students do not always have a good back-

ground in differential equations, we have included an introduction to the area

in Chapter 9.

This text grew out of Herb’s book [4], which is a problem-centered introduc-

tion to modeling strategic interaction. Steve began using Herb’s book in 2005

to teach a game theory course in the North Carolina State University Math-

ematics Department. The course was aimed at upper division mathematics

majors and other interested students with some mathematical background

(calculus, including some differential equations). Over the following years

Steve produced a set of class notes to supplement [4], which was superseded

in 2009 by [5]. This text combines material from those two books by Herb and

from his recent book [6] with Steve’s notes, and it adds some new material.

Examples and problems are the heart of the book. There are more examples

in the text than can reasonably be covered in a semester. The instructor can

follow her own taste in what to omit.

We suggest, however, that an instructor cover at least the statements of

most of the general results. The only general sections that Steve usually omits

in his course are on the Folk Theorem, general symmetries of games, and

epistemic game theory (Sections 6.8, 7.4, and 8.2, respectively).

The chapters are arranged so that each uses material from the preceding

ones; thus the chapters should be covered in order. The one exception is

Chapter 6, “More about games in extensive form with complete information":

it cannot be covered before Chapter 5, but later chapters do not depend on

it, so it could be skipped.

The text includes proofs of general results, written in a fairly typical math-

ematical style. Steve usually covers just a few of these in his course, since the

course is open to students with a limited mathematical background. How-

ever, mathematics students who have had previous proof-oriented courses

should be able to handle them.

We thank Seth Ditchik and Peter Dougherty at Princeton University Press, who

provided faith and wise guidance in our quest to produce a truly distinctive

textbook on game theory. We also thank two anonymous referees, whose

insightful comments led to many improvements in the book.

We thank Steve’s wife Nancy Schecter, whose idea it was to expand a set

of class notes into a book, and who was a source of constant encouragement

throughout the writing. We also thank the North Carolina State students in

ten game theory classes since 2005, and Herb’s students around the world,

who contributed in countless ways to our understanding of game theory.
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Chapter 1

Backward induction

This chapter deals with situations in which two or more opponents take

actions one after the other. If you are involved in such a situation, you can try

to think ahead to how your opponent might respond to each of your possible

actions, bearing in mind that he is trying to achieve his own objectives, not

yours. However, we shall see that it may not be helpful to carry this idea too

far.

1.1 Tony’s Accident

When one of us (Steve) was a college student, his friend Tony caused a minor

traffic accident. We’ll let Steve tell the story:

The car of the victim, whom I’ll call Vic, was slightly scraped. Tony didn’t

want to tell his insurance company. The next morning, Tony and I went with

Vic to visit some body shops. The upshot was that the repair would cost $80.

Tony and I had lunch with a bottle of wine, and thought over the situation.

Vic’s car was far from new and had accumulated many scrapes. Repairing the

few that Tony had caused would improve the car’s appearance only a little.

We figured that if Tony sent Vic a check for $80, Vic would probably just

pocket it. Perhaps, we thought, Tony should ask to see a receipt showing that

the repairs had actually been performed before he sent Vic the $80.

A game theorist would represent this situation by the game tree in Fig-

ure 1.1. For definiteness, we’ll assume that the value to Vic of repairing the

damage is $20.

Explanation of the game tree:

(1) Tony goes first. He has a choice of two actions: send Vic a check for $80,

or demand a receipt proving that the work has been done.

(2) If Tony sends a check, the game ends. Tony is out $80; Vic will no doubt

keep the money, so he has gained $80. We represent these payoffs by the

ordered pair (−80,80); the first number is Tony’s payoff, the second is

Vic’s.
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Vic

demand receipt

don’t repair

Tony

send $80

(–80, 80)

(–80, 20) (0, 0)

repair

Figure 1.1. Tony’s Accident. Tony’s payoff is given first.

(3) If Tony demands a receipt, Vic has a choice of two actions: repair the car

and send Tony the receipt, or just forget the whole thing.

(4) If Vic repairs the car and sends Tony the receipt, the game ends. Tony

sends Vic a check for $80, so he is out $80; Vic uses the check to pay for

the repair, so his gain is $20, the value of the repair.

(5) If Vic decides to forget the whole thing, he and Tony each end up with a

gain of 0.

Assuming that we have correctly sized up the situation, we see that if Tony

demands a receipt, Vic will have to decide between two actions, one that gives

him a payoff of $20 and one that gives him a payoff of 0. Vic will presumably

choose to repair the car, which gives him a better payoff. Tony will then be

out $80.

Our conclusion was that Tony was out $80 whatever he did. We did not

like this game.

When the bottle of wine was nearly finished, we thought of a third course

of action that Tony could take: send Vic a check for $40, and tell Vic that he

would send the rest when Vic provided a receipt showing that the work had

actually been done. The game tree now became the one in Figure 1.2.

demand receiptsend $80

Tony

send $40

Vic Vic

(–80, 20) (0, 0) (–80, 20) (–40, 40)

repair don’t repair
repair don’t repair

Figure 1.2. Tony’s Accident: second game tree. Tony’s payoff is given first.
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Most of the new game tree looks like the first one. However:

(1) If Tony takes his new action, sending Vic a check for $40 and asking for

a receipt, Vic will have a choice of two actions: repair the car, or don’t.

(2) If Vic repairs the car, the game ends. Vic will send Tony a receipt, and

Tony will send Vic a second check for $40. Tony will be out $80. Vic will

use both checks to pay for the repair, so he will have a net gain of $20,

the value of the repair.

(3) If Vic does not repair the car, and just pockets the the $40, the game ends.

Tony is out $40, and Vic has gained $40.

Again assuming that we have correctly sized up the situation, we see that

if Tony sends Vic a check for $40 and asks for a receipt, Vic’s best course

of action is to keep the money and not make the repair. Thus Tony is out

only $40.

Tony sent Vic a check for $40, told him he’d send the rest when he saw a

receipt, and never heard from Vic again.

1.2 Games in extensive form with complete information

Tony’s Accident is the kind of situation that is studied in game theory,

because:

(1) It involves more than one individual.

(2) Each individual has several possible actions.

(3) Once each individual has chosen his actions, payoffs to all individuals are

determined.

(4) Each individual is trying to maximize his own payoff.

The key point is that the payoff to an individual depends not only on his own

choices, but also on the choices of others.

We gave two models for Tony’s Accident, which differed in the sets of

actions available to Tony and Vic. Each model was a game in extensive form

with complete information.

A game in extensive form with complete information consists, to begin

with, of the following:

(1) A set P of players. In Figure 1.2, the players are Tony and Vic.

(2) A set N of nodes. In Figure 1.2, the nodes are the little black circles. There

are eight of them in this case.

(3) A set B of actions or moves. In Figure 1.2, the moves are the lines (seven in

this case). Each move connects two nodes, one its start and the other its
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end. In Figure 1.2, the start of a move is the node at the top of the move,

and the end of a move is the node at the bottom of the move.

A root node is a node that is not the end of any move. In Figure 1.2, the top

node is the only root node.

A terminal node is a node that is not the start of any move. In Figure 1.2

there are five terminal nodes.

A path is sequence of moves such that the end node of any move in the

sequence is the start node of the next move in the sequence. A path is com-

plete if it is not part of any longer path. Paths are sometimes called histories,

and complete paths are called complete histories. If a complete path has finite

length, it must start at a root node and end at a terminal node.

A game in extensive form with complete information also has:

(4) A function from the set of nonterminal nodes to the set of players. This

function, called a labeling of the set of nonterminal nodes, tells us which

player chooses a move at that node. In Figure 1.2, there are three nonter-

minal nodes. One is labeled “Tony” and two are labeled “Vic.”

(5) For each player, a payoff function from the set of complete paths into the

real numbers. Usually the players are numbered from 1 to n, and the ith
player’s payoff function is denoted πi.

A game in extensive form with complete information is required to satisfy

the following conditions:

(a) There is exactly one root node.

(b) If c is any node other than the root node, there is exactly one path from

the root node to c.

One way of thinking of (b) is that if you know the node you are at, you

know exactly how you got there.

Here are two consequences of assumption (b):

1. Each node other than the root node is the end of exactly one move.

(Proof: Let c be a node that is not the root node. It is the end of at least one

move, because there is a path from the root node to c. If c were the end of

two moves m1 and m2, then there would be two paths from the root node

to c: one from the root node to the start of m1, followed by m1; the other

from the root node to the start of m2, followed by m2. But this can’t happen

because of assumption (b).)

2. Every complete path, not just those of finite length, starts at the root

node. (If c is any node other than the root node, there is exactly one path

p from the root node to c. If a path that contains c is complete, it must

contain p.)
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A finite horizon game is one in which there is a number K such that every

complete path has length at most K. In Chapters 1 to 5 of this book we only

discuss finite horizon games. An infinite horizon game is one with arbitrarily

long paths. We discuss these games in Chapter 6.

In a finite horizon game, the complete paths are in one-to-one correspon-

dence with the terminal nodes. Therefore, in a finite horizon game we can

define a player’s payoff function by assigning a number to each terminal

node.

In Figure 1.2, Tony is Player 1 and Vic is Player 2. Thus each terminal node

e has associated with it two numbers, Tony’s payoff π1(e) and Vic’s payoff

π2(e). In Figure 1.2 we have labeled each terminal node with the ordered pair

of payoffs (π1(e),π2(e)).
A game in extensive form with complete information is finite if the number

of nodes is finite. (It follows that the number of moves is finite. In fact, the

number of moves in a finite game is always one less than the number of

nodes.) Such a game is necessarily a finite horizon game.

Games in extensive form with complete information are good models of

situations in which players act one after the other, players understand the

situation completely, and nothing depends on chance. In Tony’s Accident it

was important that Tony knew Vic’s payoffs, at least approximately, or he

would not have been able to choose what to do.

1.3 Strategies

In game theory, a player’s strategy is a plan for what action to take in every

situation that the player might encounter. For a game in extensive form

with complete information, the phrase “every situation that the player might

encounter” is interpreted to mean every node that is labeled with his name.

In Figure 1.2, only one node, the root, is labeled “Tony.” Tony has three

possible strategies, corresponding to the three actions he could choose at

the start of the game. We will call Tony’s strategies s1 (send $80), s2 (demand

a receipt before sending anything), and s3 (send $40).

In Figure 1.2, there are two nodes labeled “Vic.” Vic has four possible strate-

gies, which we label t1, . . . , t4:

Vic’s strategy If Tony demands receipt If Tony sends $40

t1 repair repair

t2 repair don’t repair

t3 don’t repair repair

t4 don’t repair don’t repair
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In general, suppose there are k nodes labeled with a player’s name, and

there aren1 possible moves at the first node,n2 possible moves at the second

node, …, and nk possible moves at the kth node. A strategy for that player

consists of a choice of one of his n1 moves at the first node, one of his n2

moves at the second node, …, and one of his nk moves at the kth node. Thus

the number of strategies available to the player is the product n1n2 · · ·nk.
If we know each player’s strategy, then we know the complete path through

the game tree, so we know both players’ payoffs. With some abuse of notation,

we denote the payoffs to Players 1 and 2 when Player 1 uses the strategy si
and Player 2 uses the strategy tj by π1(si, tj) and π2(si, tj). For example,

(π1(s3, t2),π2(s3, t2)) = (−40,40). Of course, in Figure 1.2, this is the pair of

payoffs associated with the terminal node on the corresponding path through

the game tree.

Recall that if you know the node you are at, you know how you got there.

Thus a strategy can be thought of as a plan for how to act after each course

the game might take (that ends at a node where it is your turn to act).

1.4 Backward induction

Game theorists often assume that players are rational. For a game in extensive

form with complete information, rationality is usually considered to imply

the following:

• Suppose a player has a choice that includes two moves m and m′, and

m yields a higher payoff to that player than m′. Then the player will not

choose m′.

Thus, if you assume that your opponent is rational in this sense, you must

assume that whatever you do, your opponent will respond by doing what is

best for him, not what you might want him to do. (Game theory discourages

wishful thinking.) Your opponent’s response will affect your own payoff. You

should therefore take your opponent’s likely response into account in decid-

ing on your own action. This is exactly what Tony did when he decided to

send Vic a check for $40.

The assumption of rationality motivates the following procedure for select-

ing strategies for all players in a finite game in extensive form with com-

plete information. This procedure is called backward induction or pruning

the game tree.

(1) Select a node c such that all the moves available at c have ends that are

terminal. (Since the game is finite, there must be such a node.)
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(2) Suppose Player i is to choose at node c. Among all the moves available to

him at that node, find the move m whose end e gives the greatest payoff

to Player i. In the rest of this chapter, and until Chapter 6, we shall only

deal with situations in which this move is unique.

(3) Assume that at node c, Player iwill choose the movem. Record this choice

as part of Player i’s strategy.

(4) Delete from the game tree all moves that start at c. The node c is now a

terminal node. Assign to it the payoffs that were previously assigned to

the node e.
(5) The game tree now has fewer nodes. If it has just one node, stop. If it has

more than one node, return to step 1.

In step 2 we find the move that Player i presumably will make should the

course of the game arrive at node c. In step 3 we assume that Player i will

in fact make this move, and record this choice as part of Player i’s strategy.

In step 4 we assign to node c the payoffs to all players that result from this

choice, and we “prune the game tree.” This helps us take this choice into

account when finding the moves players should presumably make at earlier

nodes.

In Figure 1.2, there are two nodes for which all available moves have ter-

minal ends: the two where Vic is to choose. At the first of these nodes, Vic’s

best move is repair, which gives payoffs of (−80,20). At the second, Vic’s

best move is don’t repair, which gives payoffs of (−40,40). Thus after two

steps of the backward induction procedure, we have recorded the strategy t2
for Vic, and we arrive at the pruned game tree of Figure 1.3.

demand receipt

Tony

send $80 send $40

(–80, 80) (–80, 20) (–40, 40)

Figure 1.3. Tony’s Accident: pruned game tree.

Now the node labeled “Tony” has all its ends terminal. Tony’s best move

is to send $40, which gives him a payoff of −40. Thus Tony’s strategy is s3.

We delete all moves that start at the node labeled “Tony” and label that node

with the payoffs (−40,40). That is now the only remaining node, so we stop.

Thus the backward induction procedure selects strategy s3 for Tony and

strategy t2 for Vic, and predicts that the game will end with the payoffs

(−40,40). This is how the game ended in reality.

When you are doing problems using backward induction, you may find that

recording parts of strategies and then pruning and redrawing game trees is
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too slow. Here is another way to do problems. First, find the nodes c such

that all moves available at c have ends that are terminal. At each of these

nodes, cross out all moves that do not produce the greatest payoff for the

player who chooses. If we do this for the game pictured in Figure 1.2, we get

Figure 1.4.

send $40

don’t repair

Tony

send $80 demand receipt

(–80, 80)

(–80, 20) (0, 0) (–80, 20) (–40, 40)

Vic Vic

repair
don’t repairrepair

Figure 1.4. Tony’s Accident: start of backward induction.

Now you can back up a step. In Figure 1.4 we now see that Tony’s three

possible moves will produce payoffs to him of −80, −80, and −40. Cross out

the two moves that produce payoffs of −80. We obtain Figure 1.5.

send $40

don’t repair

Tony

send $80 demand   receipt

(–80, 80)

(–80, 20) (0, 0) (–80, 20) (–40, 40)

Vic Vic

repair
don’t repairrepair

Figure 1.5. Tony’s Accident: completion of backward induction.

From Figure 1.5 we can read off each player’s strategy; for example, we can

see what Vic will do at each of the nodes where he chooses, should that node

be reached. We can also see how the game will play out if each player uses

the strategy we have found.

In more complicated examples, of course, this procedure will have to be

continued for more steps.

The backward induction procedure can fail if, at any point, step 2 produces

two moves that give the same highest payoff to the player who is to choose.

Figure 1.6 shows an example where backward induction fails. At the node

where Player 2 chooses, both available moves give him a payoff of 1. Player 2
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1

2
(0, 0)

(–1, 1) (1, 1)

a b

c d

Figure 1.6. Failure of backward induction. As is standard when the
players are numbered 1 and 2, Player 1’s payoff is given first.

is indifferent between these moves. Hence Player 1 does not know which

move Player 2 will choose if Player 1 chooses b. Now Player 1 cannot choose

between his moves a and b, since which is better for him depends on which

choice Player 2 would make if Player 1 chose b.

We return to this issue in Chapter 6.

1.5 Big Monkey and Little Monkey 1

Big Monkey and Little Monkey eat coconuts, which dangle from a branch of

the coconut palm. One of them (at least) must climb the tree and shake down

the fruit. Then both can eat it. The monkey that doesn’t climb will have a

head start eating the fruit.

If Big Monkey climbs the tree, he incurs an energy cost of 2 kilocalories (Kc).

If Little Monkey climbs the tree, he incurs a negligible energy cost (because

he’s so little).

A coconut can supply the monkeys with 10 Kc of energy. It will be divided

between the monkeys as follows:

Big Monkey eats Little Monkey eats

If Big Monkey climbs 6 Kc 4 Kc

If both monkeys climb 7 Kc 3 Kc

If Little Monkey climbs 9 Kc 1 Kc

Let’s assume that Big Monkey must decide what to do first. Payoffs are

net gains in kilocalories. The game tree is shown in Figure 1.7. Backward

induction produces the following strategies:

(1) Little Monkey: If Big Monkey waits, climb. If Big Monkey climbs, wait.

(2) Big Monkey: Wait.

Thus Big Monkey waits. Little Monkey, having no better option at this point,

climbs the tree and shakes down the fruit. He scampers quickly down, but
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to no avail: Big Monkey has gobbled most of the fruit. Big Monkey has a net

gain of 9 Kc, Little Monkey 1 Kc.

Big Monkey

Little Monkey Little Monkey

wait climb

wait climb wait climb

(0, 0) (9, 1) (4, 4) (5, 3)

Figure 1.7. Big Monkey and Little Monkey. Big Monkey’s payoff is given first.

1.6 Threats, promises, commitments

The game of Big Monkey and Little Monkey has the following peculiarity.

Suppose Little Monkey adopts the strategy wait no matter what Big Monkey

does. If Big Monkey is convinced that this is in fact Little Monkey’s strategy,

he sees that his own payoff will be 0 if he waits and 4 if he climbs. His best

option is therefore to climb. The payoffs are 4 Kc to each monkey.

Little Monkey’s strategy of waiting no matter what Big Monkey does is not

“rational” in the sense of the last section, since it involves taking an inferior

action should Big Monkey wait. Nevertheless it produces a better outcome for

Little Monkey than his “rational” strategy.

A commitment by Little Monkey to wait if Big Monkey waits is called a

threat. If in fact Little Monkey waits after Big Monkey waits, Big Monkey’s pay-

off is reduced from 9 to 0. Of course, Little Monkey’s payoff is also reduced,

from 1 to 0. The value of the threat, if it can be made believable, is that it

should induce Big Monkey not to wait, so that the threat will not have to be

carried out.

The ordinary use of the word “threat” includes the idea that the threat,

if carried out, would be bad both for the opponent and for the individual

making the threat. Think, for example, of a parent threatening to punish a

child, or a country threatening to go to war. If an action would be bad for

your opponent and good for you, there is no need to threaten to do it; it is

your normal course.

The difficulty with threats is how to make them believable, since if the time

comes to carry out the threat, the player making the threat will not want to

do it. Some sort of advance commitment is necessary to make the threat

believable. Perhaps Little Monkey should break his own leg and show up on

crutches!
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In this example the threat by Little Monkey works to his advantage. If Little

Monkey can somehow convince Big Monkey that he will wait if Big Monkey

waits, then from Big Monkey’s point of view, the game tree changes to the

one shown in Figure 1.8.

Big Monkey

Little Monkey Little Monkey

wait climb

wait wait climb

(0, 0) (4, 4) (5, 3)

Figure 1.8. Big Monkey and Little Monkey after Little Monkey commits
to wait if Big Monkey waits. Big Monkey’s payoff is given first.

If Big Monkey uses backward induction on the new game tree, he will climb!

Closely related to threats are promises. In the game of Big Monkey and Lit-

tle Monkey, Little Monkey could make a promise at the node after Big Mon-

key climbs. Little Monkey could promise to climb. This would increase Big

Monkey’s payoff at that node from 4 to 5, while decreasing Little Monkey’s

payoff from 4 to 3. Here, however, even if Big Monkey believes Little Mon-

key’s promise, it will not affect his action in the larger game. He will still wait,

getting a payoff of 9.

The ordinary use of the word “promise” includes the idea that it is both

good for the other person and bad for the person making the promise. If an

action is also good for you, then there is no need to promise to do it; it is your

normal course. Like threats, promises usually require some sort of advance

commitment to make them believable.

Let us consider threats and promises more generally. Consider a two-player

game in extensive form with complete informationG. We first consider a node

c such that all moves that start at c have terminal ends. Suppose for simplicity

that Player 1 is to move at node c. Suppose Player 1’s “rational” choice at node

c, the one she would make if she were using backward induction, is a movem
that gives the two players payoffs (π1, π2). Now imagine that Player 1 com-

mits herself to a different movem′ at node c, which gives the two players pay-

offs (π ′1, π
′
2). Ifmwas the unique choice that gave Player 1 her best payoff, we

necessarily have π ′1 < π1, that is, the new move gives Player 1 a lower payoff.

• Ifπ ′2 < π2 (i.e., if the choicem′ reduces Player 2’s payoff as well), Player 1’s

commitment to m′ at node c is a threat.

• If π ′2 > π2 (i.e., if the choice m′ increases Player 2’s payoff), Player 1’s

commitment to m′ at node c is a promise.
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Now consider any node c where, for simplicity, Player 1 is to move. Suppose

Player 1’s “rational” choice at node c, the one she would make if she were

using backward induction, is a move m. Suppose that if we use backward

induction, when we have reduced to a game in which the node c is terminal,

the payoffs to the two players at c are (π1, π2). Now imagine that Player 1

commits herself to a different move m′ at node c. Remove from the game

G all other moves that start at c, and all parts of the tree that are no longer

connected to the root node once these moves are removed. Call the new game

G′. Suppose that if we use backward induction in G′, when we have reduced

to a game in which the node c is terminal, the payoffs to the two players

at c are (π ′1, π
′
2). Under the uniqueness assumption we have been using, we

necessarily have π ′1 < π1:

• If π ′2 < π2, Player 1’s commitment to m′ at node c is a threat.

• If π ′2 > π2, Player 1’s commitment to m′ at node c is a promise.

1.7 Ultimatum Game

Player 1 is given 100 one dollar bills. She must offer some of them (1 to 99)

to Player 2. If Player 2 accepts the offer, she keeps the bills she was offered,

and Player 1 keeps the rest. If Player 2 rejects the offer, neither player gets

to keep anything.

Let’s assume payoffs are dollars gained in the game. Then the game tree is

shown in Figure 1.9.

Player 1

Player 2 Player 2Player 2Player 2

99
98 2

1

a r a r a r a r

(1, 99) (0, 0) (2, 98) (0, 0) (98, 2) (0, 0) (99, 1) (0, 0)

Figure 1.9. Ultimatum Game with dollar payoffs. Player 1 offers a number
of dollars to Player 2, then Player 2 accepts (a) or rejects (r ) the offer.

Backward induction yields:

• Whatever offer Player 1 makes, Player 2 should accept it, since a gain of

even one dollar is better than a gain of nothing.

• Therefore Player 1 should only offer one dollar. That way she gets to keep

99!
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However, many experiments have shown that people do no not actually

play the Ultimatum Game in accord with this analysis; see the Wikipedia page

for this game (http://en.wikipedia.org/wiki/Ultimatum_game). Offers of less

than about $40 are typically rejected.

A strategy by Player 2 to reject small offers is an implied threat (actu-

ally many implied threats, one for each small offer that she would reject).

If Player 1 believes this threat—and experimentation has shown that she

should—then she should make a fairly large offer. As in the game of Big Mon-

key and Little Monkey, a threat to make an “irrational” move, if it is believed,

can result in a higher payoff than a strategy of always making the “rational”

move.

We should also recognize a difficulty in interpreting game theory experi-

ments. The experimenter can set up an experiment with monetary payoffs,

but she cannot ensure that those are the only payoffs that are important to

the experimental subject.

In fact, experiments suggest that many people prefer that resources not

be divided in a grossly unequal manner, which they perceive as unfair; and

that most people are especially concerned when it is they themselves who

get the short end of the stick. Thus Player 2 may, for example, feel unhappy

about accepting an offer x of less than $50, with the amount of unhappiness

equivalent to 4(50−x) dollars (the lower the offer, the greater the unhappi-

ness). Her payoff if she accepts an offer of x dollars is then x if x > 50, and

x − 4(50− x) = 5x − 200 if x � 50. In this case she should accept offers of

greater than $40, reject offers below $40, and be indifferent between accept-

ing and rejecting offers of exactly $40.

Similarly, Player 1 may have payoffs not provided by the experimenter

that lead her to make relatively high offers. She may prefer in general that

resources not be divided in a grossly unequal manner, even at a monetary cost

to herself. Or she may try be the sort of person who does not take advantage

of others and may experience a negative payoff when she does not live up to

her ideals.

The take-home message is that the payoffs assigned to a player must reflect

what is actually important to the player.

We have more to say about the Ultimatum Game in Sections 5.6 and 10.12.

1.8 Rosenthal’s Centipede Game

Like the Ultimatum Game, the Centipede Game is a game theory classic.

Mutt and Jeff start with $2 each. Mutt goes first. On a player’s turn, he has

two possible moves:

http://en.wikipedia.org/wiki/Ultimatum_game
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(1) Cooperate (c): The player does nothing. The game master rewards him

with $1.

(2) Defect (d): The player steals $2 from the other player.

The game ends when either (1) one of the players defects, or (2) both play-

ers have at least $100.

Payoffs are dollars gained in the game. The game tree is shown in Fig-

ure 1.10.

(2, 2)      M

(4, 0)

(3, 2)        J

(1, 4)
(3, 3)      M

(5, 1)
(4, 3)        J

(2, 5)

(99, 98)      J

(97, 100)

(99, 99)      M

(101, 97)
(100, 99)      J

(98, 101)

(4, 4)      M

(100, 100)

c d

c d

c d

c d

c d

c d

c d

Figure 1.10. Rosenthal’s Centipede Game. Mutt’s payoff is given first. The amounts the
players have accumulated when a node is reached are shown to the left of the node.

A backward induction analysis begins at the only node both of whose

moves end in terminal nodes: Jeff’s node at which Mutt has accumulated

$100 and Jeff has accumulated $99. If Jeff cooperates, he receives $1 from

the game master, and the game ends with Jeff having $100. If he defects by

stealing $2 from Mutt, the game ends with Jeff having $101. Assuming Jeff is

“rational,” he will defect. So cross out Jeff’s last c move in Figure 1.10.

Now we back up a step, to Mutt’s last node. We see from the figure that

if Mutt cooperates, he will end up with $98, but if he defects, he gets $101

when the game imediately ends. If Mutt is “rational,” he will defect. So cross

out Mutt’s last c move.
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If we continue the backward induction procedure, we find that it yields the

following strategy for each player: whenever it is your turn, defect.

Hence Mutt steals $2 from Jeff at his first turn, and the game ends with

Mutt having $4 and Jeff having nothing.

This is a disconcerting conclusion. If you were given the opportunity to

play this game, don’t you think you could come away with more than $4?

In fact, in experiments, people typically do not defect on the first move.

For more information, consult the Wikipedia page for this game, http://en

.wikipedia.org/wiki/Centipede_game_(game_theory).

What’s wrong with our analysis? Here are a few possibilities.

1. The players care about aspects of the game other than money. For exam-

ple, a player may feel better about himself if he cooperates. Alternatively, a

player may want to seem cooperative, because this normally brings benefits.

If a player wants to be, or to seem, cooperative, we should take account of

this desire in assigning his payoffs.

2. The players use a rule of thumb instead of analyzing the game. People do

not typically make decisions on the basis of a complicated rational analysis.

Instead they follow rules of thumb, such as be cooperative and don’t steal.

In fact, it may not be rational to make most decisions on the basis of a com-

plicated rational analysis, because (a) the cost in time and effort of doing the

analysis may be greater than the advantage gained, and (b) if the analysis is

complicated enough, you are liable to make a mistake anyway.

3. The players use a strategy that is correct for a different, more common

situation. We do not typically encounter “games” that we know in advance

have exactly or at most n stages, where n is a large number. Instead, we typ-

ically encounter games with an unknown number of stages. If the Centipede

Game had an unknown number of stages, there would be no place to start

a backward induction. In Chapter 6 we will study a class of such games for

which it is rational to cooperate as long as your opponent does. When we

encounter the unusual situation of a game with at most 196 stages, which is

the case with the Centipede Game, perhaps we use a strategy that is correct

for the more common situation of a game with an unknown number of stages.

However, the most interesting possibility is that the logical basis for believ-

ing that rational players will use long backward inductions is suspect. We

address this issue in Section 1.13.

1.9 Continuous games

In the games we have considered so far, when it is a player’s turn to move,

she has only a finite number of choices. In the remainder of this chapter,

we consider some games in which each player may choose an action from

an interval of real numbers. For example, if a firm must choose the price to

http://en.wikipedia.org/wiki/Centipede_game_(game_theory)
http://en.wikipedia.org/wiki/Centipede_game_(game_theory)
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charge for an item, we can imagine that the price could be any nonnegative

real number. This allows us to use the power of calculus to find which price

produces the best payoff to the firm.

More precisely, we consider games with two players, Player 1 and Player 2.

Player 1 goes first. The moves available are all real numbers s in some inter-

val I. Next it is Player 2’s turn. The moves available are all real numbers t
in some interval J. Player 2 observes Player 1’s move s and then chooses her

move t. The game is now over, and payoffsπ1(s, t) andπ2(s, t) are calculated.

Does such a game satisfy the definition that we gave in Section 1.2 of a

game in extensive form with complete information? Yes, it does. In the pre-

vious paragraph, to describe the type of game we want to consider, we only

described the moves, not the nodes. However, the nodes are still there. There

is a root node at which Player 1 must choose her move s. Each move s ends at

a new node, at which Player 2 must choose t. Each move t ends at a terminal

node. The set of all complete paths is the set of all pairs (s, t) with s in I and

t in J. Since we described the game in terms of moves, not nodes, it was eas-

ier to describe the payoff functions as assigning numbers to complete paths,

not as assigning numbers to terminal nodes. That is what we did: π1(s, t) and

π2(s, t) assign numbers to each complete path.

Such a game is not finite, but it is a finite horizon game: the length of the

longest path is 2.

Let us find strategies for Players 1 and 2 using the idea of backward induc-

tion. Backward induction as we described it in Section 1.4 cannot be used,

because the game is not finite.

We begin with the last move, which is Player 2’s. Assuming she is rational,

she will observe Player 1’s move s and then choose t in J to maximize the

function π2(s, t) with s fixed. For fixed s, π2(s, t) is a function of one variable

t. Suppose it takes on its maximum value in J at a unique value of t. This

number t is Player 2’s best response to Player 1’s move s. Normally the best

response t will depend on s, so we write t = b(s). The function t = b(s) gives

a strategy for Player 2; that is, it gives Player 2 a choice of action for every

possible choice s in I that Player 1 might make.

Player 1 should choose s taking into account Player 2’s strategy. If Player 1

assumes that Player 2 is rational and hence will use her best-response strat-

egy, then Player 1 should choose s in I to maximize the function π1(s, b(s)).
This is again a function of one variable.

1.10 Stackelberg’s model of duopoly 1

In a duopoly, a certain good is produced by just two firms, which we

label 1 and 2. In Stackelberg’s model of duopoly (Wikipedia article: http://

http://en.wikipedia.org/wiki/Stackelberg_duopoly
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en.wikipedia.org/wiki/Stackelberg_duopoly), each firm tries to maximize its

own profit by choosing an appropriate level of production. Firm 1 chooses

its level of production first; then Firm 2 observes this choice and chooses its

own level of production. Would you rather run Firm 1 or Firm 2?

Let s be the quantity produced by Firm 1 and let t be the quantity produced

by Firm 2. Then the total quantity of the good produced is q = s + t. The

market price p of the good depends on q: p = φ(q). At this price, everything

produced can be sold.

Suppose Firm 1’s cost to produce the quantity s of the good, which we

denote c1(s), is 4s, and Firm 2’s cost to produce the quantity t of the good,

which we denote c2(t), is 4t. In other words, both Firm 1 and Firm 2 have the

same unit cost of production 4.

1.10.1 First model. We assume that price falls linearly as total produc-

tion of the two firms increases. In particular, we assume

p = 20− 2(s + t). (1.1)

We denote the profits of the two firms by π1 and π2. Now profit is revenue

minus cost, and revenue is price times quantity sold. Since the price depends

on q = s + t, each firm’s profit depends in part on how much is produced by

the other firm. More precisely,

π1(s, t) = ps − c1(s) =
(
20− 2(s + t))s − 4s = (16− 2t)s − 2s2, (1.2)

π2(s, t) = pt − c2(t) =
(
20− 2(s + t))t − 4t = (16− 2s)t − 2t2. (1.3)

We regard the profits as payoffs in a game. The players are Firms 1 and 2.

In this subsection we allow the levels of production s and t to be any real

numbers, even negative numbers and numbers large enough to make the

price negative. This doesn’t make sense economically, but it avoids mathe-

matical complications.

Since Firm 1 chooses s first, we begin our analysis by finding Firm 2’s best

response t = b(s). To do this, we must find where the function π2(s, t), with

s fixed, has its maximum. Sinceπ2(s, t)with s fixed has a graph that is just an

upside-down parabola, we can do this by taking the derivative with respect

to t and setting it equal to 0:

∂π2

∂t
= 16− 2s − 4t = 0.

If we solve this equation for t, we will have Firm 2’s best-response function:

t = b(s) = 4− 1
2s.

http://en.wikipedia.org/wiki/Stackelberg_duopoly
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Finally, we must maximize π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy.

From (1.2), we have

π1(s, b(s)) = π1
(
s,4− 1

2s
) = (16− 2

(
4− 1

2s
))
s − 2s2 = 8s − s2.

Again this function has a graph that is an upside-down parabola, so we can

find where it is maximum by taking the derivative and setting it equal to 0:

d
ds
π1(s, b(s)) = 8− 2s = 0 ⇒ s = 4.

Thus π1(s, b(s)) is maximum at s∗ = 4. Given this choice of production level

for Firm 1, Firm 2 chooses the production level

t∗ = b(s∗) = 4− 1
24 = 2.

The price is

p∗ = 20− 2(s∗ + t∗) = 20− 2(4+ 2) = 8.

From (1.2) and (1.3), the profits are

π1(s∗, t∗) = (16− 2 · 2)4− 2 · 42 = 16,

π2(s∗, t∗) = (16− 2 · 4)2− 2 · 22 = 8.

Firm 1 has twice the level of production and twice the profit of Firm 2. It is

better to run the firm that chooses its production level first.

1.10.2 Second model. As remarked, the model in the previous subsec-

tion has a disconcerting aspect: the levels of production s and t, and the price

p, are all allowed to be negative. We now complicate the model to deal with

this objection.

First, we only allow nonnegative production levels: 0 � s < ∞ and 0 �
t <∞. Second, we assume that if total production rises above 10, the level at

which formula (1.1) for the price gives 0, then the price is 0, not the negative

number given by formula (1.1):

p =
⎧⎨
⎩20− 2(s + t) if s + t < 10,

0 if s + t � 10.

We again ask the question, what will be the production level and profit of

each firm?
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The payoff is again the profit, but the formulas are different:

π1(s, t) = ps − c1(s) =
⎧⎨
⎩
(
20− 2(s + t))s − 4s if 0 � s + t < 10,

−4s if s + t � 10,
(1.4)

π2(s, t) = pt − c2(t) =
⎧⎨
⎩
(
20− 2(s + t))t − 4t if 0 � s + t < 10,

−4t if s + t � 10.
(1.5)

We again begin our analysis by finding Firm 2’s best response t = b(s).
Unit cost of production is 4. If Firm 1 produces so much that all by itself

it drives the price down to 4 or lower, there is no way for Firm 2 to make a

positive profit. In this case Firm 2’s best response is to produce nothing: that

way its profit is 0, which is better than losing money.

Firm 1 by itself drives the price p down to 4 when 20 − 2s = 4, that is,

when its level of production is s = 8. We conclude that if Firm 1’s level of

production s is 8 or higher, Firm 2’s best response is 0.

In contrast, if Firm 1 produces s < 8, it leaves the price above 4 and gives

Firm 2 an opportunity to make a positive profit. In this case Firm 2’s profit is

given by

π2(s, t) =
⎧⎨
⎩
(
20− 2(s + t))t − 4t = (16− 2s)t − 2t2 if 0 � t < 10− s,
−4t if t � 10− s.

See Figure 1.11.

t
4 – (1/2)s 8 – s 10 – s

Figure 1.11. Graph of π2(s, t) for fixed s < 8 in the numerical example.
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From the figure, the function π2(s, t) with s fixed is maximum where

(∂π2/∂t)(s, t) = 0, which occurs at t = 4− 1
2s.

Thus Firm 2’s best-response function is

b(s) =
⎧⎨
⎩4− 1

2s if 0 � s < 8,

0 if s � 8.

We now turn to calculating π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy.

Notice that for 0 � s < 8, we have

s + b(s) = s + 4− 1
2s = 4+ 1

2s < 4+ 1
28 = 8 < 10.

Therefore, for 0 � s < 8, we use the first line of (1.4) to calculate

π1(s, b(s)):

π1(s, b(s)) = π1
(
s,4− 1

2s
) = (16− 2

(
4− 1

2s
))
s − 2s2 = 8s − s2.

Firm 1 will not choose an s � 8, since, as we have seen, that would force

the price down to the cost of production 4 or lower. Therefore we will not

bother to calculate π1(s, b(s)) for s � 8.

The function π1(s, b(s)) on the interval 0 � s � 8 is maximum at s∗ = 4,

where the derivative of 8s − s2 is 0, just as in our first model. The value of

t∗ = b(s∗) is also the same, as are the price and profits.

1.11 Stackelberg’s model of duopoly 2

In this section we give a more general treatment of Stackelberg’s model of

duopoly.

1.11.1 First model. In this subsection we make the following assump-

tions, which generalize those used in Subsection 1.10.1.

(1) Price falls linearly with total production. In other words, there are positive

numbers α and β such that the formula for the price is

p = α− β(s + t).

(2) Each firm has the same unit cost of production c > 0. Thus c1(s) = cs
and c2(t) = ct.

(3) α > c. In other words, the price of the good when very little is produced

is greater than the unit cost of production. If this assumption is violated,

the good will not be produced.

(4) The production levels s and t can be any real numbers.
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Firm 1 chooses its level of production s first. Then Firm 2 observes s and

chooses t. We ask the question, what will be the production level and profit

of each firm?

The payoffs are

π1(s, t) = ps − c1(s) =
(
α− β(s + t))s − cs = (α− βt − c)s − βs2,

π2(s, t) = pt − c2(t) =
(
α− β(s + t))t − ct = (α− βs − c)t − βt2.

We find Firm 2’s best response t = b(s) by finding where the function

π2(s, t), with s fixed, has its maximum. Since π2(s, t) with s fixed has a graph

that is an upside-down parabola, we just take the derivative with respect to

t and set it equal to 0:

∂π2

∂t
= α− βs − c − 2βt = 0.

We solve this equation for t to find Firm 2’s best-response function:

t = b(s) = α− c
2β

− 1
2
s.

Finally, we must maximize π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy. We

have

π1(s, b(s)) = π1

(
s,
α− c

2β
− 1

2
s
)
=
(
α− β

(
α− c

2β
− 1

2
s
)
− c

)
s − βs2

= α− c
2

s − β
2
s2.

Again this function has a graph that is an upside-down parabola, so we can

find where it is maximum by taking the derivative and setting it equal to 0:

d
ds
π1(s, b(s)) = α− c

2
− βs = 0 ⇒ s = α− c

2β
.

Thus π1(s, b(s)) is maximum at s∗ = (α − c)/2β. Given this choice of pro-

duction level for Firm 1, Firm 2 chooses the production level

t∗ = b(s∗) = α− c
4β

.

Since we assumed α > c, the production levels s∗ and t∗ are positive, which

makes sense. The price is

p∗ = α− β(s∗ + t∗) = α− β
(
α− c

2β
+ α− c

4β

)
= 1

4
α+ 3

4
c = c + 1

4
(α− c).
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Since α > c, this price is greater than the cost of production c, which also

makes sense.

The profits are

π1(s∗, t∗) = (α− c)2
8β

, π2(s∗, t∗) = (α− c)2
16β

.

As in our numerical example, Firm 1 has twice the level of production and

twice the profit of Firm 2.

1.11.2 Second model. As in Subsection 1.10.2, we now complicate the

model to prevent the levels of production s and t and the price p from tak-

ing negative values. We replace assumption (1) in Subsection 1.11.1 with the

following:

(1′) Price falls linearly with total production until it reaches 0; for higher total

production, the price remains 0. In other words, there are positive num-

bers α and β such that the formula for the price is

p =
⎧⎨
⎩α− β(s + t) if s + t < α

β ,

0 if s + t � α
β .

Assumptions (2) and (3) remain unchanged. We replace assumption (4) with:

(4′) The production levels s and t must be nonnegative: 0 � s < ∞ and 0 �
t <∞.

We again ask the question, what will be the production level and profit of

each firm?

The payoffs in the general case are

π1(s, t) = ps − c1(s) =
⎧⎨
⎩
(
α− β(s + t))s − cs if 0 � s + t < α

β ,

−cs if s + t � α
β ,

(1.6)

π2(s, t) = pt − c2(t) =
⎧⎨
⎩
(
α− β(s + t))t − ct if 0 � s + t < α

β ,

−ct if s + t � α
β .

(1.7)

As usual we begin our analysis by finding Firm 2’s best response t = b(s).
If Firm 1 produces so much that by itself it drives the price down to the

unit cost of production c or lower, then Firm 2 canot make a positive profit.

In this case Firm 2’s best response is to produce nothing. Firm 1 by itself

drives the price p down to c when α − βs = c, that is, when s = (α − c)/β.

We conclude that if s � (α− c)/β, Firm 2’s best response is 0.
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In contrast, if Firm 1 produces s < (α − c)/β, it leaves the price above c
and gives Firm 2 an opportunity to make a positive profit. In this case Firm

2’s profit is given by

π2(s, t) =
⎧⎨
⎩
(
α− β(s + t))t − ct = (α− βs − c)t − βt2 if 0 � t < α

β − s,
−ct if t � α

β − s.

See Figure 1.12. From the figure, the functionπ2(s, t)with s fixed is maximum

where (∂π2/∂t)(s, t) = 0, which occurs at

t = α− c
2β

− 1
2
s.

Thus Firm 2’s best-response function is:

b(s) =

⎧⎪⎪⎨
⎪⎪⎩
α− c

2β
− 1

2
s if 0 � s < α− c

β
,

0 if s � α− c
β

.

t
1
2

s – s– s
α – c α – c
2β β β

– α

Figure 1.12. Graph of π2(s, t) for fixed s < (α− c)/β.

We now calculate π1(s, b(s)), the payoff that Firm 1 can expect from each

choice s, assuming that Firm 2 uses its best-response strategy. Notice that

for 0 � s < (α− c)/β, we have

s + b(s) = s + α− c
2β

− 1
2
s = α− c

2β
+ 1

2
s <

α− c
2β

+ α− c
2β

= α− c
β

<
α
β
.
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Therefore, for 0 � s < (α − c)/β, we use the first line of formula (1.6) to

calculate π1(s, b(s)):

π1(s, b(s)) = π1

(
s,
α− c

2β
− 1

2
s
)
=
(
α− β

(
s + α− c

2β
− 1

2
s
))

s − cs

= α− c
2

s − β
2
s2.

Firm 1 will not choose an s � (α − c)/β, since, as we have seen, that would

force the price down to c or lower. Therefore we will not bother to calculate

π1(s, b(s)) for s � (α− c)/β.

The function π1(s, b(s)) on the interval 0 � s � (α− c)/β is maximum at

s∗ = (α− c)/2β, where the derivative of 1
2(α− c)s −

1
2βs

2 is 0, just as in our

first model. The value of t∗ = b(s∗) is also the same, as are the price and

profits.

1.12 Backward induction for finite horizon games

Backward induction as defined in Section 1.4 does not apply to any game that

is not finite. However, a variant of backward induction can be used on any

finite horizon game with complete information. It is actually this variant that

we have been using since Section 1.9.

Let us describe this variant of backward induction in general. The idea is

that, in a game that is not finite, we cannot remove nodes one by one, because

we will never finish. Instead we must remove big collections of nodes at each

step.

(1) Let k � 1 be the length of the longest path in the game. (This number

is finite, since we are dealing with a finite horizon game.) Consider the

collection C of all nodes c such that every move that starts at c is the last

move in a path of length k. Each such move has an end that is terminal.

(2) For each node c in C, identify the player i(c) who is to choose at node c.

Among all the moves available to her at that node, find the move m(c)
whose end gives the greatest payoff to Player i(c). We assume that this

move is unique.

(3) Assume that at each node c in C, Player i(c) will choose the move m(c).
Record this choice as part of Player i(c)’s strategy.

(4) Delete from the game tree all moves that start at one of the nodes in C.

The nodes c in C are now terminal nodes. Assign to each node c in C the

payoffs that were previously assigned to the node at the end of the move

m(c).
(5) In the new game tree, the length of the longest path is now k−1. If k−1 = 0,

stop. Otherwise, return to step 1.
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1.13 Critique of backward induction

The basic insight of backward induction is that you should think ahead to how

your opponent, acting in his own interest, is liable to react to what you do, and

act accordingly to maximize your chance of success. This idea clearly makes

sense even in situations that are not as completely defined as the games

we analyze. For example, the mixed martial arts trainer Greg Jackson has

analyzed countless fight videos and used them to make game trees showing

what moves lead to what responses. From these game trees he can figure

out which moves in various situations will increase the likelihood of a win.

As another example, consider the game of chess. Because of the rule that

a draw results when a position is repeated three times, the game tree for

chess is finite. Unfortunately, it has 10123 nodes and hence is far too big for

a computer to analyze. (The number of atoms in the observable universe is

estimated to be around 1080.) Thus computer chess programs cannot use

backward induction from the terminal nodes. Instead they investigate paths

through the game tree from a given position to a given depth and assign

values to the end nodes based on estimates of the probability of winning

from that position. They then use backward induction from those nodes.

Despite successes like these, it is not clear that backward induction is

always a good guide to choosing a move.

Let’s first consider Tony’s Accident. To justify using backward induction

at all, Tony has to assume that Vic will always choose his own best move in

response to Tony’s move. In addition, Tony should know Vic’s payoffs, or at

least he should know the order in which Vic values the different outcomes, so

that he will know which of Vic’s available moves Vic will choose in response

to Tony’s move. If Tony does not know the order in which Vic values the

outcomes, he can still use backward induction based on his belief about Vic’s

order. This is what Tony did. The success of the procedure then depends on

the correctness of Tony’s beliefs about Vic.

In Chapter 6 we consider a game, the Samaritan’s Dilemma, that raises an

additional issue. In that game, Daughter wants to decide how much to save

from her earnings this year toward her college expenses next year. Father will

then observe how much she saves and chip in some of his own earnings. To

figure out how much to give, he will balance his desire to keep his earnings

to spend on himself against his desire to help his daughter. To justify her

use of backward induction in this situation, Daughter has to assume that

she knows Father’s desires well enough to figure out his best response, from

his own point of view, to each of her possible saving levels. She also has to

assume that Father will actually make his best response. Here this second

assumption becomes hard to justify. To justify it, she needs to assume both

that Father is able to figure out his best response, and that he is willing to do
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so. Recall from our discussion of the Centipede Game that it may not even be

rational for Father to use a complicated rational analysis to figure out what

to do.

Finally, let’s consider the Centipede Game. Would a rational player in

the Centipede Game (Section 1.8) really defect at his first opportunity, as

is required by backward induction? We examine this question under the

assumption that the payoffs in the Centipede Game are exactly as given in

Figure 1.10, that both players know these payoffs, and that both players are

rational. The assumption that players know the payoffs and are rational moti-

vates backward induction. The issue now is whether the assumption that

players know the payoffs and are rational requires them to use the moves

recommended by backward induction.

By a rational player, we mean one whose preferences are consistent enough

to be represented by a payoff function; who attempts to discern the facts

about the world; who forms beliefs about the world consistent with the facts

he has discerned; and who acts on the basis of his beliefs to best achieve his

preferred outcomes.

With this “definition” of a rational player in mind, let us consider the first

few steps of backward induction in the Centipede Game.

1. If the node labeled (100,99) in Figure 1.10 is reached, Jeff will see that

if he defects, his payoff is 101, and if he cooperates, his payoff is 100. Since

Jeff is rational, he defects.

2. If the node labeled (99,99) in Figure 1.10 is reached, Mutt will see that

if he defects, his payoff is 101. If he cooperates, the node labeled (100,99) is

reached. If Mutt believes that Jeff is rational, then he sees that Jeff will defect

at that node, leaving Mutt with a payoff of only 98. Since Mutt is rational, he

defects.

3. If the node labeled (99,98) in Figure 1.10 is reached, Jeff will see that

if he defects, his payoff is 100. If he cooperates, the node labeled (99,99)
is reached. If Jeff believes that Mutt believes that Jeff is rational, and if

Jeff believes that Mutt is rational, then Jeff concludes that Mutt will act as

described in step 2. This would leave Jeff with a payoff of 97. Since Jeff is

rational, he defects.

4. You probably see that this is getting complicated fast, but let’s do one

more step. If the node labeled (98,98) (not shown in Figure 1.10) is reached,

Mutt will see that if he defects, his payoff is 100. If he cooperates, the node

labeled (99,98) is reached. If Mutt believes that Jeff believes that Mutt believes

that Jeff is rational, and if Mutt believes that Jeff believes that Mutt is rational,

and if Mutt believes that Jeff is rational, then Mutt concludes that Jeff will act

as described in step 3. This would leave Mutt with a payoff of 97. Since Mutt

is rational, he defects.
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You can see that by the time we get back to the root node in Figure 1.10, at

step 196 in this process, Mutt must hold many complicated beliefs to justify

using backward induction to choose his move! (At the kth step in this process,

the player who chooses must hold k − 1 separate beliefs about the other

player, the most complicated of which requires k−1 uses of word “believes”

to state.) The question is whether a rational player, “who attempts to discern

the facts about the world, who forms beliefs about the world consistent with

the facts he has discerned,” is required to hold such complicated beliefs.

Now suppose that Mutt decides, for whatever reason, to cooperate at his

first turn. Then Jeff can conclude that Mutt did not hold the complicated

beliefs that would induce him to defect at his first turn. If Jeff believes that

at Mutt’s second turn, he will hold the (slightly less complicated) beliefs that

would induce him to defect then, then Jeff should defect at his own first turn.

Clearly, rationality does not require Jeff to believe this. Thus a rational Jeff

may well decide to cooperate at his first turn.

In this way, rational players may well cooperate through many stages of

the Centipede Game. More generally, rationality does not require players to

follow the strategy dictated by a long backward induction.

Backward induction is required by an assumption called Common Know-

ledge of Rationality: the players are rational; each player believes that the

other players are rational; each player believes that the other players believe

that the other players are rational; and so on, for as many steps as are required

by the game under discussion. In any particular situation, this assumption

may hold, but the assumption that players are rational does not by itself

imply Common Knowledge of Rationality.

We shall return to the question of players’ beliefs in Section 8.2.

1.14 Problems

1.14.1 Congress vs. the President. Congress is working on a homeland

security spending bill. Congress wants the bill to include $10 million for each

member’s district for “important projects.” The President wants the bill to

include $100 million to upgrade her airplane, Air Force One, to the latest

model, Air Force One Extreme. The President can sign or veto any bill that

Congress passes.

Congress’s payoffs are 1 if it passes a bill (voters like to see Congress

take action), 2 if the President signs a bill that contains money for important

projects, and−1 if the President signs a bill that contains money for Air Force

One Extreme. Payoffs are added; for example, if the President signs a bill that

contains money for both, Congress’s total payoff is 1+ 2+ (−1) = 2.
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The President’s payoffs are −1 if she signs a bill that contains money for

important projects, and 2 if she signs a bill that contains money for Air Force

One Extreme. Her payoffs are also added.

The game tree in Figure 1.13 illustrates the situation. In the tree, C =
Congress, P = President; n = no bill passed, i = important projects passed,

a = Air Force One Extreme passed, b = both passed; s = President signs the

bill, v = President vetoes the bill. The first payoff is Congress’s, the second

is the President’s.

C

(0, 0)
P P P

(1, 0)(3, –1) (0, 2) (1, 0) (2, 1) (1, 0)

n

i a

b

s s sv v v

Figure 1.13. Congress vs. the President.

(1) Use backward induction to predict what will happen.

(2) Suppose the Constitution were changed so that the President could veto

parts of bills she doesn’t like but still sign the rest. Draw the new tree and

use backward induction to predict what will happen. (The only change

in the game is that if Congress passes a bill containing both important

projects and Air Force One Extreme, the President will have four choices:

sign, veto, sign important projects but veto Air Force One Extreme, sign

Air Force One Extreme but veto important projects.)

1.14.2 Battle of the Chain Stores. Sub Station has the only sub restau-

rant in Town A and the only sub restaurant in Town B. The sub market in

each town yields a profit of $100K per year. Rival Sub Machine is considering

opening a restaurant in Town A in year 1. If it does, the two stores will split

the profit from the sub market there. However, Sub Machine will have to pay

setup costs for its new store. These costs are $25K in a store’s first year.

Sub Station fears that if Sub Machine is able to make a profit in Town A,

it will open a store in Town B the following year. Sub Station is considering

a price war: if Sub Machine opens a store in either town, it will lower prices

in that town, forcing Sub Machine to do the same, to the point where profits

from the sub market in that town drop to 0.
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The game tree in Figure 1.14 is one way to represent the situation. It takes

into account net profits from Towns A and B in years 1 and 2, and it assumes

that if Sub Machine loses money in A, it will not open a store in B.

SM

SS

don’t open store in A

price war in A no price war in A

price war in B no price war in B

open store in A

don’t open store in B open store in B

(0, 400K)

(–25K, 200K)
SM

SS

(50K, 200K)

(75K, 300K)

(100K, 250K)

Figure 1.14. SM is Sub Machine, SS is Sub Station. Sub Machine’s
profits are listed first, Sub Station’s profits are second.

The entry (100K,250K) in the game tree comes about as follows. If there

are no price wars, Sub Machine makes net profits of $25K in Town A in year

1, $50K in Town A in year 2, and $25K in Town B in year 2, for a total of

$100K. Sub Station makes profits of $50K in Town A in year 1, $50K in Town

A in year 2, $100K in Town B in year 1, and $50K in Town B in year 2, for a

total of $250K.

(1) Explain the entry (50K,200K) in the game tree.

(2) Use backward induction to figure out what Sub Machine and Sub Station

should do.

(3) How might Sub Station try to obtain a better outcome by using a threat?

1.14.3 Kidnapping. A criminal kidnaps a child and demands a ransom

r > 0. The value to the parents of the child’s return is v > 0. If the kidnapper

frees the child, he incurs a cost f > 0. If he kills the child, he incurs a cost

k > 0. These costs include the feelings of the kidnapper in each case, the

likelihood of being caught in each case, the severity of punishment in each

case, and whatever else is relevant. We assume v > r . The parents choose
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first whether to pay the ransom or not, then the kidnapper decides whether

to free the child or kill the child. The game tree is shown in Figure 1.15.

Parents

Kidnapper Kidnapper

pay don’t pay

free kill free kill

(v – r, r – f ) (–r, r – k) (v, –f ) (0, k)

Figure 1.15. Kidnapping. The parents’ payoff is given first.

(1) Explain the payoffs.

(2) Suppose k > f . Use backward induction to show that the parents should

not pay the ransom.

(3) Suppose f > k. Use backward induction to show that the parents should

not pay the ransom.

(4) Suppose k > f . Find a threat the kidnapper can make to try to get the

parents to pay the ransom.

(5) Suppose f > k. Find a promise the kidnapper can make to try to get the

parents to pay the ransom.

(6) Suppose f > k, and the parents will incur a guilt cost g if they don’t pay

the ransom and the child is killed. How large must g be to get the parents

to pay the ransom?

1.14.4 The White House Tapes. On March 1, 1974, a grand jury indicted

seven former aides to U.S. President Richard Nixon for attempting to cover

up White House involvement in a burglary of Democratic National Com-

mittee headquarters at the Watergate complex in Washington. On April 18,

the judge in the case, John Sirica, issued a subpoena for tapes of President

Nixon’s conversations with the defendants. The President’s attorney, James

St. Clair, attempted to delay responding to the subpoena. The prosecutor,

Leon Jaworski, then used an unusual procedure to appeal directly to the

Supreme Court and request that the Court order the President to supply the

tapes. The Court heard oral arguments on July 8, and the justices met on

July 9 to decide the case.

One justice, William Rehnquist, withdrew from the case, probably because

he had worked in President Nixon’s Justice Department. Of the remaining

eight justices, six quickly agreed to uphold the prosecutor’s request. Two
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justices, Warren Burger and Harry Blackmun, were reluctant to uphold the

prosecutor’s request, because they thought his direct appeal to the Supreme

Court was improper.

Also on July 9, President Nixon’s attorney said that the President had “not

yet decided” whether he would supply the tapes if the Supreme Court ordered

him to. This statement was probably intended to pressure the Court into

backing down. At minimum, it was probably intended to encourage some

justices to vote against upholding the prosecutor’s request. If the vote was

split, the President could argue that it was not sufficiently definitive for a

matter of this magnitude. Jaworski believed that in the event of a split vote,

the President would “go on television and tell the people that the presidency

should not be impaired by a divided Court.”

We model this situation as a two-player game. Player 1 is Justices Burger

and Blackmun, whom we assume will vote together; we therefore treat them

as one player. Player 2 is President Nixon.

First, Justices Burger and Blackmun decide how to vote. If they vote to

uphold the prosecutor’s request, the result is an 8-0 Supreme Court decision

in favor of the prosecutor. If they vote to reject the prosecutor’s request, the

result is a 6-2 Supreme Court decision in favor of the prosecutor.

After the Supreme Court has rendered its decision, President Nixon decides

whether to comply by supplying the tapes or to defy the decision. President

Nixon’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President defies the decision.

• Second-best outcome (payoff 3): 6-2 decision, President supplies the tapes.

• Third-best outcome (payoff 2): 8-0 decision, President supplies the tapes.

• Worst outcome (payoff 1): 8-0 decision, President defies the decision.

Explanation: The President’s best outcome is a divided decision that he can

defy while claiming the decision is not really definitive. His worst outcome is

an 8-0 decision that he then defies; this would probably result in immediate

impeachment. As for the two intermediate outcomes, the President is better

off with the weaker vote, which should give him some wiggle room.

Justices Burger and Blackmun’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President supplies the tapes.

• Second-best outcome (payoff 3): 8-0 decision, President supplies the tapes.

• Third-best outcome (payoff 2): 8-0 decision, President defies the decision.

• Worst outcome (payoff 1): 6-2 decision, President defies the decision.

Explanation: In their best outcome, Burger and Blackmun get to vote their

honest legal opinion that the prosecutor’s direct appeal to the Court was

wrong, but a Constitutional crisis is averted, because the President complies
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anyway. In their second-best outcome, they vote dishonestly, but they suc-

ceed in averting a major Constitutional crisis. In their third-best outcome,

the crisis occurs, but because of the strong 8-0 vote, it will probably quickly

end. In the worst outcome, the crisis occurs, and because of the weak vote,

it may drag out. In addition, in the last outcome, the President may succeed

in establishing the principle that a 6-2 Court decision need not be followed,

which no member of the Court wants.

(1) Draw a game tree and use backward induction to predict what happened.

(2) Can you think of a plausible way that President Nixon might have gotten

a better outcome?

(What actually happened: the Court ruled 8-0 in favor of the prosecutor on

July 24. On July 30, President Nixon surrendered the tapes. In early August, a

previously unknown tape recorded a few days after the break-in was released.

It documented President Nixon and his aide Robert Haldeman formulating a

plan to block investigations by having the CIA claim to the FBI (falsely) that

national security was involved. On August 9, President Nixon resigned.)

1.14.5 Three Pirates. Three pirates must divide 100 gold doubloons.

The doubloons cannot be cut into pieces. Pirate A is the strongest, followed

by Pirate B, followed by Pirate C. Because of ancient pirate tradition, the coins

are divided in the following manner. First Pirate A proposes a division of the

coins. The three pirates then vote on whether to accept the proposed division.

If the proposal gets a majority vote, it is accepted, and the game is over. If

the proposal fails to get a majority vote, Pirate A is executed.

It is then Pirate B’s turn to propose a division of the coins between the

two remaining pirates. The same rules apply, with one exception: if the vote

is a tie (which can happen this time, because the number of pirates is now

even), Pirate B, being the strongest remaining pirate, gets an additional vote

to break the tie.

Use backward induction to figure out what Pirate A should propose. You

don’t have to draw a game tree if you don’t want to, but you do have to explain

your thinking so that your instructor can follow it.

1.14.6 Grocery Store and Gas Station 1. In a certain town, there are two

stores, a grocery store and a gas station. The grocery store charges p1 dollars

per pound for food, and the gas station charges p2 dollars per gallon for gas.

The grocery store sells q1 pounds of food per week, and the gas station sells

q2 gallons of gas per week. The quantities q1 and q2 are related to the prices
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p1 and p2 as follows:

q1 = 10− 2p1 − p2,

q2 = 10− p1 − 2p2.

Thus, if the price of food or gas rises, less of both is sold.

Let π1 be the revenue of the grocery store and π2 be the revenue of the

gas station. Both depend on the two stores’ choices of p1 and p2:

π1(p1, p2) = q1p1 = (10− 2p1 − p2)p1 = 10p1 − 2p2
1 − p1p2,

π2(p1, p2) = q2p2 = (10− p1 − 2p2)p2 = 10p2 − p1p2 − 2p2
2.

We interpret this as a game with two players, the grocery store (Player 1)

and the gas station (Player 2). The payoff to each player is its revenue.

Allowp1 andp2 to be any real numbers, even negative numbers or numbers

that produce negative values for q1 and q2.

Suppose the grocery store chooses its price p1 first, and then the gas sta-

tion, knowing p1, chooses its price p2.

(1) If the grocery store uses backward induction to choose p1, what price will

it choose?

(2) What will be the corresponding p2, and what will be the revenue of each

store?

Partial answer to help keep you on the right track: p1 = 21
7 .

1.14.7 Grocery Store and Gas Station 2. We now change the problem

a little. First we change the formulas for q1 and q2 to the following more

reasonable formulas, which say that when prices get too high, the quantities

sold become 0, not negative numbers:

q1 =
⎧⎨
⎩10− 2p1 − p2 if 2p1 + p2 < 10,

0 if 2p1 + p2 � 10,

q2 =
⎧⎨
⎩10− p1 − 2p2 if p1 + 2p2 < 10,

0 if p1 + 2p2 � 10.

Next we make some reasonable restrictions on the prices. First we assume

p1 � 0 and p2 � 0.

Now we note that if p1 � 0 and p2 > 5, then q2 becomes 0. The gas station

wouldn’t want this, so we assume

p2 � 5.
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Finally, we note that if p2 � 0 and p1 > 5, then q1 becomes 0. The grocery

store wouldn’t want this, so we assume

p1 � 5.

The formulas for π1 and π2 are now a little different, because the formulas

for q1 and q2 have changed. The payoffs are now only defined for 0 � p1 � 5

and 0 � p2 � 5, and are given by

π1(p1, p2) = q1p1 =
⎧⎨
⎩10p1 − 2p2

1 − p1p2 if 2p1 + p2 < 10,

0 if 2p1 + p2 � 10,

π2(p1, p2) = q2p2 =
⎧⎨
⎩10p2 − p1p2 − 2p2

2 if p1 + 2p2 < 10,

0 if p1 + 2p2 � 10.

We still assume that the grocery store chooses its price p1 first, and then

the gas station, knowing p1, chooses its price p2.

(1) Explain the formulas above for the payoffs.

(2) For a fixed p1 between 0 and 5, graph the function π2(p1, p2), which is

a function of p2 defined for 0 � p2 � 5. Answer: should be partly an

upside-down parabola and partly a horizontal line. Make sure you give a

formula for the point at which the graph changes from one to the other.

(3) By referring to the graph you just drew and using calculus, find the gas

station’s best-response function p2 = b(p1), which should be defined for

0 � p1 � 5. Answer: b(p1) = (10− p1)/4.

(4) You are now ready to find p1 by backward induction. From your formula

for π1 you should be able to see that

π1(p1, b(p1)) =
⎧⎨
⎩
(
10− 2p1 − b(p1)

)
p1 if 2p1 + b(p1) < 10,

0 if 2p1 + b(p1) � 10.

Use the formula for b(p1) from part (3) to show that 2p1 + b(p1) < 10 if

0 � p1 < 42
7 , and 2p1 + b(p1) � 10 if 42

7 � p1 � 5.

(5) Graph the function π1(p1, b(p1)), 0 � p1 � 5. (Again, it is partly an

upside-down parabola and partly a horizontal line.)

(6) By referring to the graph you just drew and using calculus, find where

π1(p1, b(p1)) is maximum.

1.14.8 Tax Rate. Government chooses a tax rate x, 0 < x < 1. Citizens

then choose a level of effort y to devote to making money. The resulting level

of economic activity a, in trillions of dollars, is

a = 4y − 4xy −y2.
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Explanation: The term 4y expresses the idea that economic activity should

be proportional to effort. There are two correction terms. The term −4xy
expresses the idea that when the tax rate is high, much effort goes into avoid-

ing taxes, not into economic activity. The term −y2 expresses the idea that

too much effort is counterproductive.

The government’s payoff is the taxes it collects, computed as tax rate x
times level of economic activity a:

π1(x,y) = xa = x(4y − 4xy −y2).

The citizens’ payoff is the part of economic activity that they keep after taxes:

π2(x,y) = a− xa = (1− x)a = (1− x)(4y − 4xy −y2).

We regard this as a two-player game. Player 1 is the government. Player 2 is

the citizens. Player 1 chooses the tax rate x, then Player 2 observes x and

chooses y . The payoffs are given above.

Use backward induction to find the tax rate x that maximizes the govern-

ment’s payoff.

1.14.9 Continuous Ultimatum Game with Inequality Aversion. Play-

ers 1 and 2 must divide some Good Stuff. Player 1 offers Player 2 a fraction

y , 0 � y � 1, of the Good Stuff. If Player 2 accepts the offer, she gets the

fraction y of Good Stuff, and Player 1 gets the remaining fraction x = 1−y .

If Player 2 rejects the offer, both players get nothing.

In this game, Player 1 has an interval of possible strategies. We can describe

this interval as 0 � x � 1, where x is the fraction Player 1 keeps, or as

0 � y � 1, where y is the fraction Player 1 offers to Player 2. In contrast,

Player 2’s strategy is a plan, for each y that she might be offered, whether to

accept or reject.

The players’ payoffs are partly objective (their fraction of the Good Stuff)

and partly subjective. Both players are inequality averse: they don’t like an

unequal division. However, each player feels that an inequality favoring the

other player is worse than inequality favoring herself. Their payoffs are as

follows:

u1(x,y) = x −
⎧⎨
⎩α1(y − x) if y � x,
β1(x −y) if y < x,

u2(x,y) = y −
⎧⎨
⎩α2(x −y) if x � y,
β2(y − x) if x < y,

with 0 < β1 < α1 and 0 < β2 < α2. Thus Player 1’s payoff is the fraction x
of Good Stuff that she gets, minus a correction for inequality. The correction
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is proportional to the difference between the two allocations. If Player 2 gets

more (y > x), the difference is multiplied by the bigger numberα1; if Player 2

gets less (y < x), the difference is multiplied by the smaller number β1.

Player 2’s payoff function is similar.

If Player 1’s offer is rejected, both players receive 0 payoff.

We assume that Player 2 will accept offers that make her payoff positive

or zero. Player 1 wants to make an offer that (a) Player 2 will accept, and (b)

that leaves Player 1 with the largest possible payoff.

Since y = 1−x and x = 1−y , we simplify the payoff functions as follows:

u1(x) = x −
⎧⎨
⎩α1(1− 2x) if x � 1

2 ,

β1(2x − 1) if x > 1
2 ,

u2(y) = y −
⎧⎨
⎩α2(1− 2y) if y � 1

2 ,

β2(2y − 1) if y > 1
2 .

(1) Graph Player 1’s payoff function on the interval 0 � x � 1 assuming

β1 > 1
2 . The graph consists of two line segments that meet at the point(1

2 ,
1
2

)
. Your graph should clearly indicate the points with x-coordinates

0 and 1.

(2) Explain briefly: If β1 > 1
2 , then Player 1 offers Player 2 half of the Good

Stuff, and Player 2 accepts.

(3) Graph Player 1’s payoff function on the interval 0 � x � 1 assuming

β1 < 1
2 .

(4) Graph Player 2’s payoff function on the interval 0 � y � 1 assuming

β2 < 1. Use your graph to explain the following statement: When β2 � 1,

Player 2 will accept any offer y � y∗ with y∗ = α2/(1+ 2α2).
(5) If β1 < 1

2 and β2 � 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?

(6) If β1 < 1
2 and β2 > 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?
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Eliminating dominated strategies

In this chapter we introduce games in which the players make their choices

simultaneously. The well-known Prisoner’s Dilemma, which models situa-

tions in which cooperation is especially difficult, is a game of this type. We

discuss the simplest idea for dealing with these games, which is not to use a

strategy when another is available that never gives a worse result and some-

times gives a better one. Using this idea, one can understand why the second-

price auction, which is essentially how items are sold on e-Bay, works so well.

In the Prisoner’s Dilemma, however, this idea leads to an uncooperative, sub-

optimal outcome.

2.1 Prisoner’s Dilemma

Two corporate executives are accused of preparing false financial statements.

The prosecutor has enough evidence to send both to jail for one year. How-

ever, if one confesses and tells the prosecutor what he knows, the prosecutor

will be able to send the other to jail for ten years. In exchange for the help,

the prosecutor will let the executive who confesses go free. If both confess,

both will go to jail for six years. The executives are held in separate cells

and cannot communicate. Each must decide individually whether to talk or

refuse.

Since each executive decides what to do without knowing what the other

has decided, it is not natural or helpful to draw a game tree. Nevertheless, we

can still identify the key elements of a game: players, strategies, and payoffs.

The players are the two executives. Each has the same two strategies: talk

or refuse. The payoff to each executive is number of years in jail (preceded by

a minus sign, since we want higher payoffs to be more desirable). The payoff

to each executive depends on the strategy choices of both executives.

In this two-player game, we can indicate how the strategies determine the

payoffs by a matrix:
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Executive 2

refuse talk

Executive 1 refuse (−1,−1) (−10,0)
talk (0,−10) (−6,−6)

The rows of the matrix represent Executive 1’s strategies. The columns

represent Executive 2’s strategies. Each entry of the matrix is an ordered pair

of numbers that gives the payoffs to the two players if the corresponding

strategies are used. Executive 1’s payoff is given first.

Notice the following:

(1) If Executive 2 refuses to talk, Executive 1 gets a better payoff by talking

than by refusing. (Look at the two ordered pairs in the first column of the

matrix, and compare their first entries: 0 is better than −1.)

(2) If Executive 2 talks, Executive 1 still gets a better payoff by talking than

by refusing. (Look at the two ordered pairs in the second column of the

matrix, and compare their first entries: −6 is better than −10.)

Thus, no matter what Executive 2 does, Executive 1 gets a better payoff by

talking than by refusing. Executive 1’s strategy of talking strictly dominates

his strategy of refusing: it gives a better payoff to Executive 1 no matter what

Executive 2 does.

Of course, Executive 2’s situation is identical: his strategy of talking gives

him a better payoff no matter what Executive 1 does. (In each row of the

matrix, compare the second entries in the two ordered pairs. The one in the

second column is better.)

Thus we expect both executives to talk. Unfortunately for them, the result

is that they both go to jail for 6 years. Had they both refused to talk, they

would have gone to jail for only one year.

Prosecutors like playing this game. Defendants don’t like it much. Hence

there have been attempts over the years by defendants’ attorneys and friends

to change the game.

For example, if the Mafia were involved, it might have told the two exec-

utives in advance: “If you talk, something bad could happen to your child.”

Suppose each executive believes this warning and considers something bad

happening to his child to be equivalent to six years in prison. The payoffs in

the game are changed as follows:

Executive 2

refuse talk

Executive 1 refuse (−1,−1) (−10,−6)
talk (−6,−10) (−12,−12)
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Now, for both executives, the strategy of refusing to talk strictly dominates

the strategy of talking. Thus we expect both executives to refuse to talk, so

both go to jail for only one year. The Mafia’s threat sounds cruel. In this

instance, however, it helped the two executives achieve a better outcome for

themselves than they could achieve on their own.

Prosecutors don’t like the second version of the game. One mechanism

they have of returning to the first version is to offer “witness protection”

to prisoners who talk. In a witness protection program, the witness and his

family are given new identities in a new town. If the prisoner believes that the

Mafia is thereby prevented from carrying out its threat, the payoffs return to

something close to those of the original game.

Another way to change the game of Prisoner’s Dilemma is by additional

rewards. For example, the Mafia might work hard to create a culture in which

prisoners who don’t talk are honored by their friends, and their families are

taken care of. If the two executives buy into this system and consider the

rewards of not talking to be worth five years in prison, the payoffs become

the following:

Executive 2

refuse talk

Executive 1 refuse (4,4) (−5,0)
talk (0,−5) (−6,−6)

Once again refusing to talk strictly dominates talking.

The punishments or rewards that can change the dominant strategy in the

Prisoner’s Dilemma from talk to refuse can be completely internal. A prisoner

may simply feel badly about himself if he selfishly betrays his fellow prisoner,

or may feel good about himself if he doesn’t. If these feelings are important,

we have to take them into account when we assign his payoffs.

The Prisoner’s Dilemma is the best-known and most studied model in

game theory. It models many common situations in which cooperation is

advantageous but difficult to achieve. We illustrate this point in Sections 2.4

and 2.5, where we discuss the Israeli-Palestian conflict and the problem of

global warming. You may also want to look at the Wikipedia page on the

Prisoner’s Dilemma (http://en.wikipedia.org/wiki/Prisoners_dilemma).

2.2 Games in normal form

A game in normal form consists of:

(1) A finite set P of players. We will usually take P = {1, . . . , n}.
(2) For each player i, a set Si of available strategies.

http://en.wikipedia.org/wiki/Prisoners_dilemma
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Let S = S1 × · · · × Sn. An element of S is an n-tuple (s1, . . . , sn), where each

si is a strategy chosen from the set Si. Such an n-tuple (s1, . . . , sn) is called a

strategy profile. It represents a choice of strategy by each of the n players.

(3) For each player i, a payoff function πi : S → R.

In the Prisoner’s Dilemma,

P = {1,2}, S1 = {refuse,talk}, S2 = {refuse,talk},

and S is a set of four ordered pairs, namely, (refuse,refuse), (refuse,talk),
(talk,refuse), and (talk,talk). As to the payoff functions, we have, for example,

π1(refuse,talk) = −10 and π2(refuse,talk) = 0.

If there are two players, Player 1 has m strategies, and Player 2 has n
strategies, then a game in normal form can be represented by an m × n,

matrix as in the previous section. Each row of the matrix corresponds to a

strategy of Player 1, and each column to a strategy of Player 2. Each entry in

the matrix corresponds to a strategy profile (i.e., a choice of strategy by each

player). The entry is the ordered pair of payoffs associated to the strategy

profile.

2.3 Dominated strategies

For a game in normal form, let si and s′i be two of Player i’s strategies.

• We say that si strictly dominates s′i if, for every choice of strategies by

the other players, the payoff to Player i from using si is greater than the

payoff to Player i from using s′i .
• We say that si weakly dominates s′i if, for every choice of strategies by the

other players, the payoff to Player i from using si is at least as great as

the payoff to Player i from using s′i ; and, for some choice of strategies by

the other players, the payoff to Player i from using si is greater than the

payoff to Player i from using s′i .

To illustrate these definitions, consider a two-player game in normal form

in which Player 1 has two strategies a and b; Player 2 has four strategies c,

d, e, and f ; and the payoff matrix is the following:

Player 2

c d e f
Player 1 a (1,2) (−1,2) (2,4) (−1,3)

b (4,1) (1,1) (3,1) (0,2)
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Player 1’s strategy b strictly dominates her strategy a, because it gives her

a better payoff no matter what strategy Player 2 uses: 4 > 1, 1 > −1, 3 > 2,

and 0 > −1. Similarly, Player 2’s strategy f strictly dominates both c and d,

because 3 > 2 and 2 > 1. Player 2’s strategy e weakly dominates both c and

d: in both cases, it gives Player 2 a better payoff when Player 1 uses a, and the

same payoff when Player 1 uses b. However, Player 2’s strategy d does not

weakly dominate c, since there is no case in which it gives Player 2 a better

payoff. Similarly, c does not weakly dominate d. Player 2’s strategy f does

not weakly dominate e, since there is a case in which f gives a worse payoff

than e (when Player 1 uses a). Similarly, Player 2’s strategy e does not weakly

dominate f .

If a strategy si strictly dominates another strategy s′i , then si also weakly

dominates s′i . If si does not weakly dominate s′i , then si also does not strictly

dominate s′i .
As mentioned in Section 1.4, game theorists often assume that players are

rational. For a game in normal form, rationality is often taken to imply the

following:

• Suppose one of Player i’s strategies si weakly dominates another of her

strategies s′i . Then Player i will not use the strategy s′i .

This is the assumption we used to analyze the Prisoner’s Dilemma. Actually,

in that case, we only needed to eliminate strictly dominated strategies.

A prisoner’s dilemma occurs when (i) each player has a strategy that strictly

dominates all her other strategies, but (ii) each player has another strategy

such that, if all players were to use this alternative, all players would receive

higher payoffs than those they receive when they all use their dominant

strategies.

2.4 Israelis and Palestinians

Henry Kissinger was National Security Advisor and later Secretary of State

during the administrations of Richard Nixon and Gerald Ford. Previously he

was a professor of international relations at Harvard. In his view, the most

important contribution of the game theory point of view in international rela-

tions was that it forced you to make an explicit model of the situation you

wanted to understand.

Let’s look at the Israeli-Palestinian conflict with this opinion of Kissinger’s

in mind. In a war between Israel and the neighboring Arab countries in 1967,

the Israeli army occupied both Gaza and the West Bank, as well as other terri-

tories. The West Bank especially was seen by many Israelis as being a natural

part of the state of Israel for both religious reasons (the Jewish heartland in
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Biblical times was in what is now the West Bank) and military reasons. Consid-

erable Jewish settlement took place in the West Bank, and to a lesser extent

in Gaza, after 1968, with the goal of retaining at least part of these territories

in an eventual resolution of the conflict.

In 2000, negotiations between Israeli Prime Minister Ehud Barak and Pales-

tinian leader Yasser Arafat, with the mediation of U.S. President Bill Clin-

ton, perhaps came close to resolving the conflict. Barak offered to remove

most of the Israeli settlements and allow establishment of a Palestinian state.

Arafat rejected the offer. The level of conflict between the two sides increased

greatly. In 2005, the Israelis abandoned their settlements in Gaza and ended

their occupation of that region.

During the first decade of the twenty-first century, discussion of this con-

flict often focused on two issues: control of the West Bank and terrorism.

Most proposals for resolving the conflict envisioned a trade-off in which the

Israelis would end their occupation of the West Bank and the Palestinians

would stop terrorism, the means by which they carried on their conflict with

Israel.

In a simple model of the conflict, the Israelis had two possible strategies:

end the occupation or continue to occupy the West Bank. The Palestinians

also had two possible strategies: end terrorism or continue terrorism. What

were the payoffs?

The Israelis certainly valued both keeping the West Bank and an end to

Palestinian terrorism. The Palestinians certainly valued ending the Israeli

occupation of the West Bank. We will assume that the Palestinians also val-

ued retaining their freedom to continue terrorism. The reason is that for the

Palestinians, giving up terrorism essentially meant giving up hope of regain-

ing the pre-1967 territory of Israel, which was the home of many Palestinians,

and which many Palestinians feel is rightfully their territory.

Let’s consider two ways to assign payoffs that are consistent with this

assumption.

1. At the time of the negotiations between Barak and Arafat, Barak appar-

ently considered an end to terrorism to be of greater value than continued

occupation of the West Bank, since he was willing to give up the latter in

exchange for the former. Therefore we will assign the Israelis 2 points if ter-

rorism ends, and −1 point if they end the occupation of the West Bank.

Arafat apparently considered retaining the freedom to engage in terrorism

to be of greater value than ending the Israeli occupation of the West Bank,

since he was not willing to give up the former to achieve the latter. Therefore,

we assign the Palestinians −2 points if they end terrorism, and 1 point if the

Israelis end their occupation of the West Bank. We get the following game in

normal form:
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Palestinians

end terrorism continue terrorism

Israelis end occupation (1,−1) (−1,1)
continue occupation (2,−2) (0,0)

The payoff matrix shows that for the Israelis, continuing the occupation

strictly dominates ending it, and for the Palestinians, continuing terrorism

strictly dominates ending it. These strategies yield the actual outcome of the

negotiations.

This game is not a prisoner’s dilemma. In a prisoner’s dilemma, each player

has a dominant strategy, but the use of the dominated strategies by each

player would result in a higher payoff to both. Here, if each player uses his

dominated strategy, the Israeli outcome improves, but the Palestinian out-

come is worse.

2. The previous assignment of payoffs was appropriate for Israeli “moder-

ates” and Palestinian “radicals.” We will now assign payoffs on the assump-

tion that both sides are “moderate.” The Israeli payoffs are unchanged. The

Palestinians are now assumed to value ending the occupation of the West

Bank above keeping the freedom to engage in terrorism. We therefore assign

the Palestinians −1 point if they end terrorism, and 2 points if the Israelis

end their occupation of the West Bank. We get the following game in normal

form:

Palestinians

end terrorism continue terrorism

Israelis end occupation (1,1) (−1,2)
continue occupation (2,−1) (0,0)

For the Israelis, continuing the occupation still strictly dominates ending it,

and for the Palestinians, continuing terrorism still strictly dominates ending

it. This indicates that even “moderate” governments on both sides would have

difficulty resolving the conflict.

The game is now a prisoner’s dilemma: if both sides use their dominated

strategies, there will be a better outcome for both, namely, an end to both

the Israeli occupation of the West Bank and to Palestinian terrorism. As in

the original Prisoner’s Dilemma, this outcome is not easy to achieve. Also as

in the original Prisoner’s Dilemma, one solution is for an outside player to

change the payoffs by supplying punishments or rewards, as the Mafia could

there. In the context of the Israeli-Palestinian conflict, the most plausible such

outside player is the United States.

Of course, once one considers whether the United States wants to become

involved, one has a three-player game. If one considers subgroups within
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the Israelis and Palestinians (for example, Israeli extremists, or the radical

Palestinian group Hamas), the game becomes even more complicated.

The Israeli-Palestinian situation illustrates the dilemma of cooperation.

Both the Israelis and the Palestinians are asked to help the other at a cost

to themselves. To generalize this situation, let us suppose that Player 1 can

confer a benefit b > 0 on Player 2 at a cost of a > 0 to herself. Similarly,

Player 2 can confer a benefit d > 0 on Player 1 at a cost of c > 0 to herself.

We get the following game in normal form:

Player 2

help don’t help

Player 1 help (d− a,b − c) (−a,b)
don’t help (d,−c) (0,0)

For both players, don’t help strictly dominates help. However, if d > a and

b > c (i.e., if for both players, the benefit from getting help is greater than

the cost of helping), then we have a prisoner’s dilemma: if both players help,

both will be better off.

2.5 Global Warming

Ten countries are considering fighting global warming. Each country must

choose to spend an amount xi to reduce its carbon emissions, where 0 �
xi � 1. The total benefits produced by these expenditures equal twice the

total expenditures: 2(x1+· · ·+x10). Each country receives 1
10 of the benefits.

This game has ten players, the ten countries. The set of strategies available

to country i is just the closed interval 0 � xi � 1. A strategy profile is there-

fore a 10-tuple (x1, . . . , x10), where 0 � xi � 1 for each i. The ith country’s

payoff function is its benefits minus its expenditures:

πi(x1, . . . , x10) = 1
10 · 2(x1 + · · · + x10)− xi = 1

5(x1 + · · · + x10)− xi.

We will show that for each country, the strategy xi = 0 (spend nothing to

fight global warming) strictly dominates all its other strategies.

We just show this for country 1, since the argument for any other country

is the same. Let x1 > 0 be a different strategy for country 1. Let x2, . . . , xn be

any strategies for the other countries. Then

π1(0, x2, . . . , x10)−π1(x1, x2, . . . , x10)

= (1
5(0+ x2 + · · · + x10)− 0

)− (1
5(x1 + x2 + · · · + x10)− x1

)
= −1

5x1 + x1 = 4
5x1 > 0.
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Thus we expect each country to spend nothing to fight global warming, and

each country to get a payoff of 0.

If all countries could somehow agree to spend 1 each to fight global warm-

ing, each country’s payoff would be 1
5(1+ · · · + 1)− 1 = 2− 1 = 1, and each

country would be better off. In fact, each country would receive benefits of 2

in return for expenditures of 1, an excellent deal.

Nevertheless, each country would be constantly tempted to cheat. A reduc-

tion in country i’s expenditures by yi dollars reduces total benefits to all

countries by 2yi dollars, but only reduces benefits to country i by 1
5yi dol-

lars.

This example suggests that the problem of global warming is a type of

prisoner’s dilemma.

Of course, one can try to change the game by changing the payoffs with

punishments or rewards. For example, one might try to raise the environ-

mental consciousness of people around the world by a publicity campaign.

Then perhaps governments that fight global warming would get the approval

of their own people and the approval of others around the world, which they

might see as a reward. In addition, governmental leaders might get subjective

rewards by doing what they feel is the right thing.

Games such as the one described in this section are called public goods

games. In a public goods game, when a player cooperates, she adds more to

the total payoffs of all players than her cost of cooperating, but her cost of

cooperating is greater than her individual share of the payoffs. Public goods

games are one type of social dilemma. In a social dilemma, all players gain

when all cooperate, but each has an incentive to defect, which will give her a

gain at the expense of the others.

2.6 Hagar’s Battles

There are ten villages with values a1 < a2 < · · · < a10. There are two players.

Player 1 has n1 soldiers, and Player 2 has n2 soldiers, with 0 < n1 < 10 and

0 < n2 < 10. Each player independently decides which villages to send his

soldiers to. A player is not allowed to send more than one soldier to a village.

A player wins a village if he sends a soldier there but his opponent does

not.

A player’s score is the sum of the values of the villages he wins, minus

the sum of the values of the villages his opponent wins. Each player wants to

maximize his score (not just beat his opponent).

Where should you send your soldiers?

Since each player decides where to send his soldiers without knowledge of

the other player’s decision, we model this game as a game in normal form. To
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do that, we must describe precisely the players, the strategies, and the payoff

functions.

• Players. There are two.

• Strategies. The villages are numbered from 1 to 10. A strategy for Player

i is just a set of ni numbers between 1 and 10. The numbers represent

the ni different villages to which he sends his soldiers. Thus if Si is the

set of all of Player i’s strategies, an element si of Si is simply a set of ni
numbers between 1 and 10.

• Payoff functions. A player’s payoff in this game is his score as previously

defined.

A neat way to analyze this game is to find a nice formula for the payoff

function. Let’s look at an example. Suppose n1 = n2 = 3, s1 = {6,8,10}, and

s2 = {7,9,10}. Player 1 wins villages 6 and 8, and Player 2 wins villages 7

and 9. Thus Player 1’s payoff is (a6+a8)− (a7+a9), and Player 2’s payoff is

(a7 + a9)− (a6 + a8). Since a6 < a7 and a8 < a9, Player 2’s score is higher.

We could also calculate Player i’s payoff by adding the values of all the

villages to which he sends his soldiers and subtracting the values of all the

villages to which his opponent sends his soldiers. Then we would have

• Player 1’s payoff = (a6+a8+a10)−(a7+a9+a10) = (a6+a8)−(a7+a9).
• Player 2’s payoff = (a7+a9+a10)−(a6+a8+a10) = (a7+a9)−(a6+a8).

Clearly this method of calculating payoffs always works. Thus we have the

following formulas for the payoff functions:

π1(s1, s2) =
∑
j∈s1

aj −
∑
j∈s2

aj,

π2(s1, s2) =
∑
j∈s2

aj −
∑
j∈s1

aj.

We claim that for each player, the strategy of sending his ni soldiers to the

ni villages of highest values strictly dominates all his other strategies.

We will just show that for Player 1, the strategy of sending his n1 soldiers

to the n1 villages of highest values strictly dominates all his other strategies.

The argument for Player 2 is the same.

Let s1 be the set of then1 highest numbers between 1 and 10. (For example,

if n1 = 3, s1 = {8,9,10}). Let s′1 be a different strategy for Player 1 (i.e., a

different set of n1 numbers between 1 and 10). Let s2 be any strategy for

Player 2 (i.e., any set of n2 numbers between 1 and 10). We must show that

π1(s1, s2) > π1(s′1, s2),

or, equivalently, that π1(s1, s2)−π1(s′1, s2) > 0.
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We have

π1(s1, s2) =
∑
j∈s1

aj −
∑
j∈s2

aj,

π1(s′1, s2) =
∑
j∈s′1

aj −
∑
j∈s2

aj.

Therefore

π1(s1, s2)−π1(s′1, s2) =
∑
j∈s1

aj −
∑
j∈s′1

aj.

This is clearly positive: the sum of the n1 biggest numbers between 1 and 10

is greater than the sum of some other n1 numbers between 1 and 10.

2.7 Second-price auctions

An item is to be sold at auction. Each bidder submits a sealed bid. All the bids

are opened. The object is sold to the highest bidder, but the price is the bid

of the second-highest bidder. (If two or more bidders submit equal highest

bids, that is the price, and one of those bidders is chosen by chance to buy

the object. However, we ignore this possibility in our analysis.)

If you are a bidder at such an auction, how much should you bid?

Clearly the outcome of the auction depends not only on what you do, but

also on what the other bidders do. Thus we can think of the auction as a

game. Since the bidders bid independently, without knowledge of the other

bids, we try to model this auction as a game in normal form. We must describe

precisely the players, the strategies, and the payoff functions.

• Players. Suppose there are n bidders.

• Strategies. The ith player’s strategy is simply her bid, which we denote bi.
At this point we must decide whether to allow just integer bids, arbitrary

real number bids, or something else. Let’s try allowing the bids bi to be

any nonnegative real number. The ith player’s set of available bids is then

Si = [0,∞). As in the Global Warming game of Section 2.5, each set Si is

an interval.

• Payoff functions. A reasonable idea is that the payoff to player i is 0 unless

she wins the auction, in which case the payoff to Player i is the value of

the object to Player iminus the price she has to pay for it. Thus the payoff

to Player i depends on

— the value of the object to Player i, which we denote vi;

— the bid of Player i, bi; and

— the highest bid of the other players, which we denote hi = max{bj :

j ≠ i}.
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The formula is

πi(b1, . . . , bn) =
⎧⎨
⎩0 if bi < hi,

vi − hi if hi < bi.

(Recall that we are ignoring the possibility that two bidders submit equal

highest bids; i.e., we ignore the possibility that bi = hi.)

We claim that for Player i, the strategy vi weakly dominates every other

strategy. In other words, you should bid exactly what the object is worth to

you. (This is the great thing about second-price auctions.)

To show this, we just show that for Player 1, the strategy v1 weakly domi-

nates every other strategy. The argument for any other player is the same.

Let b1 ≠ v1 be another possible bid by Player 1. We must show two things:

(1) If b2, . . . , bn are any bids by the other players, then

π1(v1, b2, . . . , bn) � π1(b1, b2, . . . , bn).

(2) There are some bids b2, . . . , bn by the other players such that

π1(v1, b2, . . . , bn) > π1(b1, b2, . . . , bn).

To show (1) and (2), let h1 = max(b2, . . . , bn). As already mentioned, we

do not want to consider the possibility that the top two bids are equal, so

we assume v1 ≠ h1 and b1 ≠ h1. When Player 1 bids v1, the outcome of the

auction depends on whether v1 < h1 or h1 < v1; similarly, when Player 1

bids b1, the outcome of the auction depends on whether b1 < h1 or h1 < b1.

This gives four possibilities to look at. We show them in a table:

Relation of Relation of
v1 to h1 b1 to h1 π1(v1, b2, . . . , bn) π1(b1, b2, . . . , bn)
v1 < h1 b1 < h1 0 0

v1 < h1 h1 < b1 0 v1 − h1 < 0

h1 < v1 b1 < h1 v1 − h1 > 0 0

h1 < v1 h1 < b1 v1 − h1 > 0 v1 − h1 > 0

In every case, π1(v1, b2, . . . , bn) � π1(b1, b2, . . . , bn). This shows (1).

To show (2) we must consider separately the cases b1 < v1 and b1 > v1.

If b1 < v1, the third line of the table shows that whenever b1 < h1 < v1,

π1(v1, b2, . . . , bn) > π1(b1, b2, . . . , bn). In words, you should not make a

bid b1 below your value v1 for the object, because if the highest of the

other bids is between b1 and v1, bidding v1 will win the auction and get
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a positive payoff, whereas bidding b1 would lose the auction and get a

zero payoff.

On the other hand, if b1 > v1, the second line of the table shows that

whenever v1 < h1 < b1, π1(v1, b2, . . . , bn) > π1(b1, b2, . . . , bn). In words,

you should not make a bid b1 above your value v1 for the object, because if

the highest of the other bids is between v1 and b1, bidding v1 will lose the

auction and get a zero payoff, whereas bidding b1 would win the auction and

get a negative payoff.

There is a Wikipedia page about second-price auctions: http://en.wikipedia

.org/wiki/Sealed_second-price_auction.

2.8 Iterated elimination of dominated strategies

With games in extensive form, the assumption of rationality led to the

idea of not choosing a move if one that yielded a higher payoff was avail-

able. This notion inspired the idea of repeatedly eliminating such moves,

thereby repeatedly simplifying the game, a procedure we called backward

induction.

With games in normal form, the assumption of rationality leads to the idea

of not using a dominated strategy. If we remove a dominated strategy from

a game in normal form, we obtain a game in normal form with one less strat-

egy. If the smaller game has a dominated strategy, it can then be removed.

This procedure, known as iterated elimination of dominated strategies, can be

repeated until no dominated strategies remain. The result is a smaller game

to analyze.

If the smaller game includes only one strategy s∗i for Player i, s∗i is called

a dominant strategy for Player i. If the smaller game includes only one strat-

egy s∗i for every player, the strategy profile (s∗1 , . . . , s∗n) is called a dominant

strategy equilibrium.

Iterated elimination of strictly dominated strategies produces the same

reduced game in whatever order it is done. However, we shall see that iterated

elimination of weakly dominated strategies can produce different reduced

games when done in different orders.

2.9 The Battle of the Bismarck Sea

The following description of the Battle of the Bismarck Sea is drastically sim-

plified. For a fuller story, see the Wikipedia page (http://en.wikipedia.org/

wiki/Battle_of_the_Bismarck_Sea).

In 1943, during the Second World War, the Japanese General Imamura

wanted to reinforce a base on the island of New Guinea. The supply convoy

http://en.wikipedia.org/wiki/Sealed_second-price_auction
http://en.wikipedia.org/wiki/Sealed_second-price_auction
http://en.wikipedia.org/wiki/Battle_of_the_Bismarck_Sea
http://en.wikipedia.org/wiki/Battle_of_the_Bismarck_Sea
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could take either a rainy northern route or a sunny southern route. The U.S.

General Kenney knew the day the convoy would sail and wanted to bomb

it. He only had enough reconnaissance aircraft to search one route per day.

The northern route was too rainy for bombing one day in three, although

it could still be searched by the reconnaissance aircraft. Sailing time was

three days.

General Imamura, who was aware that Kenney knew when the convoy

would sail, had to decide which route to take. General Kenney had to decide

which route to search on that day.

The payoff to General Kenney is the number of days his forces are able to

bomb the convoy. The payoff to General Imamura is minus this number. The

payoff matrix is

Imamura

sail north sail south

Kenney search north
(
11

3 ,−11
3

) (
11

2 ,−11
2

)
search south (1,−1) (2,−2)

The matrix can be explained as follows:

• If the Americans search the correct route, they will on average spend a

day finding the Japanese and will have two days to bomb. However, if the

route is the northern one, it will rain one-third of the time, leaving 11
3

days to bomb.

• If the Americans search the wrong route, at the end of the first day,

they will not have found the Japanese and will know they searched the

wrong route. On day 2 they will search the other route, and on average

find the Japanese after 1
2 day. (There is less territory to search, since the

Japanese have made a day’s progress at the end of the first day.) The

Americans will have 11
2 days to bomb. However, if the Japanese took

the northern route, it will rain one-third of the time, leaving one day

to bomb.

Neither of General Kenney’s strategies dominates the other. For General

Imamura, however, sailing north strictly dominates sailing south. We there-

fore eliminate Imamura’s strategy sail south. The resulting game has two

strategies for Kenney but only one for Imamura. In this smaller game, Ken-

ney’s strategy search north strictly dominates search south. We therefore

eliminate search south. What remains is sail north for Imamura, and search

north for Kenney. This is in fact what happened.
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2.10 Normal form of a game in extensive form with complete
information

Recall that for a game in extensive form, a player’s strategy is a plan for

what action to take in every situation that the player might encounter. We

can convert a game in extensive form to one in normal form by simply listing

the possible strategies for each of the n players and then associating to each

strategy profile the resulting payoffs.

For example, consider the game of Big Monkey and Little Monkey described

in Section 1.5. Big Monkey has two strategies, wait (w) and climb (c). Little

Monkey has four strategies:

• ww: if Big Monkey waits, wait; if Big monkey climbs, wait.

• wc: if Big Monkey waits, wait; if Big monkey climbs, climb.

• cw: if Big Monkey waits, climb; if Big monkey climbs, wait.

• cc: if Big Monkey waits, climb; if Big monkey climbs, climb.

The normal form of this game has the following payoff matrix:

Little Monkey

ww wc cw cc
Big Monkey w (0,0) (0,0) (9,1) (9,1)

c (4,4) (5,3) (4,4) (5,3)

2.11 Big Monkey and Little Monkey 2

The matrix in the previous section is bigger than most of those we have looked

at previously (2×4 instead of 2×2). To find dominated strategies for Player 1

in such a game, it is helpful to remember:

(1) Player 1’s strategy s1 strictly dominates his strategy s′1 if and only if, when

you compare the ordered pairs in the s1 row to those in the s′1 row, the

first entry of each pair in the s1 row is greater than the first entry of the

corresponding pair in the s′1 row (i.e., the pair in the same column).

(2) Player 1’s strategy s1 weakly dominates his strategy s′1 if and only if, when

you compare the ordered pairs in the s1 row to those in the s′1 row, the

first entry of each pair in the s1 row is greater than or equal to the first

entry of the corresponding pair in the s′1 row (i.e., the pair in the same

column); and for at least one ordered pair in the s1 row, the first entry is

greater than the first entry of the corresponding pair in the s′1 row.

In our matrix, neither of Player 1’s strategies strictly or weakly dominates the

other: 4 > 0 and 5 > 0, but 9 > 4 and 9 > 5.

To find dominated strategies for Player 2:
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(1) Player 2’s strategy s2 strictly dominates his strategy s′2 if and only if, when

you compare the ordered pairs in the s2 column to those in the s′2 column,

the second entry of each pair in the s2 column is greater than the second

entry of the corresponding pair in the s′2 column (i.e., the pair in the same

row).

(2) Player 2’s strategy s2 weakly dominates his strategy s′2 if and only if, when

you compare the ordered pairs in the s2 column to those in the s′2 column,

the second entry of each pair in the s2 column is greater than or equal to

the second entry of the corresponding pair in the s′2 column (i.e., the pair

in the same row); and for at least one ordered pair in the s2 column, the

second entry is greater than the second entry of the corresponding pair

in the s′2 column.

In our matrix, ww weakly dominates wc (0 = 0 and 4 > 3); cw weakly

dominates ww (1 > 0 and 4 = 4); cw strictly dominates wc (1 > 0 and

4 > 3); cc weakly dominateswc (1 > 0 and 3 = 3); and cw weakly dominates

cc (1 = 1 and 4 > 3). However, when we compare ww and cc, we see that

neither strictly or weakly dominates the other.

In the game of Big Monkey and Little Monkey with Big Monkey going

first, iterated elimination of weakly dominated strategies produces different

reduced games when done in different orders.

Here is one way of doing iterated elimination of weakly dominated strate-

gies in the game:

(1) Eliminate Little Monkey’s strategy ww, because it is weakly dominated

by cw; and eliminate Little Monkey’s strategy wc, because it is weakly

dominated by cc.

(2) Eliminate Little Monkey’s strategy cc, because it is weakly dominated by

cw.

(3) Eliminate Big Monkey’s strategy c, because in the reduced 2 × 1 game it

is dominated by w.

(4) What remains is the 1× 1 game in which Big Monkey’s strategy is w and

Little Monkey’s strategy is cw. Thus each is a dominant strategy, and

(w, cw) is a dominant strategy equilibrium.

These are the strategies we found for Big Monkey and Little Monkey by back-

ward induction.

However, here is another way of doing iterated elimination of weakly dom-

inated strategies in this game:

(1) As before, begin by eliminating Little Monkey’s strategy ww, because it

is weakly dominated by cw; and then eliminate Little Monkey’s strategy

wc, because it is weakly dominated by cc.
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(2) Eliminate Big Monkey’s strategy c, because in the reduced 2 × 2 game it

is dominated by w.

(3) We are left with a 2 × 1 game in which no more strategies can be elim-

inated. The remaining strategy profiles are (w, cw) (found before) and

(w, cc). This way of doing iterated elimination shows that w is a domi-

nant strategy for Big Monkey, but it does not show that cw is a dominant

strategy for Player 2.

2.12 Backward induction and iterated elimination of
dominated strategies

For a game in extensive form, each way of going through the backward induc-

tion procedure is equivalent to a corresponding way of performing iterated

elimination of weakly dominated strategies in the normal form of the same

game.

We now show that in the game of Big Monkey and Little Monkey with Big

Monkey going first, one way of doing backward induction corresponds to

the first way of doing iterated elimination of weakly dominated strategies

described in the previous section.

(1) Suppose you begin backward induction by noting that if Big Monkey waits,

Little Monkey should climb, and reduce the game tree accordingly. In iter-

ated elimination of weakly dominated strategies, this corresponds to elim-

inating Little Monkey’s strategy ww, because it is weakly dominated by

cw (cw gives Little Monkey a better payoff than ww when Big Monkey

climbs, and gives the same payoff when Big Monkey waits); and then elim-

inating Little Monkey’s strategywc, because it is weakly dominated by cc.

The payoff matrix of the reduced game has two rows and just two columns

(cw and cc).

(2) The second step in backward induction is to note that if Big Monkey

climbs, Little Monkey should wait, and reduce the game tree accordingly.

In iterated elimination of weakly dominated strategies, this corresponds

to eliminating Little Monkey’s strategy cc in the 2× 2 game, because it is

weakly dominated by cw. The payoff matrix of the reduced game has two

rows and just the cw column.

(3) The last step in backward induction is to use the reduced game tree to

decide that Big Monkey should wait. In iterated elimination of weakly dom-

inated strategies, this corresponds to eliminating Big Monkey’s strategy

c, because, in the reduced game with only the cw column, it is dominated

by w.
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We now describe the correspondence between backward induction and

iterated elimination of weakly dominated strategies for games in extensive

form with two players. The general situation just requires more notation.

Consider a game in extensive form with two players:

• Player 1 moves at nodes ci, 1 � i � p. At each node ci she has available a

set Mi of moves.

• Player 2 moves at nodes dj , 1 � j � q. At each node dj she has available

a set Nj of moves.

• A strategy for Player 1 is a choice at each of her nodes of one of the moves

available at that node. Thus Player 1’s strategy set is M = M1 × · · · ×Mp,

and a strategy for Player 1 is an ordered p-tuple (m1, . . . ,mp) with each

mi ∈ Mi.
• Similarly, Player 2’s strategy set is N = N1 × · · · × Nq. A strategy for

Player 2 is an ordered q-tuple (n1, . . . , nq) with each nj ∈ Nj .
• The normal form of the game associates to each pair (m,n) ∈ M × N

payoffs π1(m,n) and π2(m,n). To determine these payoffs, the game in

extensive form is played with the strategiesm andn. It ends in a uniquely

defined terminal node, whose payoffs are then used.

We consider a backward induction in the extensive form of the game.

Assume the players’ nodes are numbered so that in the backward induction,

each player’s nodes are reached in the order last to first.

1. For definiteness, suppose the first node treated in the backward induc-

tion is Player 1’s node cp. Each move in Mp ends in a terminal vertex. Letm∗
p

be the move in Mp that gives the greatest payoff to Player 1. We assume m∗
p

is unique.

Backward induction records the fact that at node cp, Player 1 will choose

m∗
p , deletes from the game tree all moves that start at cp, and assigns

to the now-terminal node cp the payoffs previously assigned to the end

of m∗
p .

The corresponding step in iterated elimination of weakly dominated

strategies is to remove all of Player 1’s strategies (m1, . . . ,mp−1,mp) with

mp ≠ m∗
p . The reason is that each such strategy is weakly dominated by

(m1, . . . ,mp−1,m∗
p). Against any strategy of Player 2, the latter gives a better

payoff if play reaches node cp, and the same payoff if it does not.

2. Assume now that backward induction has reached Player 1’s nodes

ck+1, . . . , cp and Player 2’s nodes dl+1, . . . , dq. For definiteness, suppose the

next node treated is Player 1’s node ck. At this point in the backward

induction, each move in Mk ends in a terminal vertex. Let m∗
k be the

move in Mk that gives the greatest payoff to Player 1. We assume m∗
k is

unique.
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Backward induction records the fact that at node ck, Player 1 will choose

m∗
k , deletes from the game tree all moves that start at ck, and assigns to the

now-terminal node ck the payoffs previously assigned to the end of m∗
k .

At the corresponding step in iterated elimination of weakly dominated

strategies, the remaining strategies of Player 1 are those of the form (m1, . . . ,
mk,m∗

k+1, . . . ,m
∗
p), and the remaining strategies of Player 2 are those of the

form (n1, . . . , nl,n∗l+1, . . . , n
∗
q ). We now remove all of Player 1’s strategies

(m1, . . . ,mk−1,mk,m∗
k+1, . . . ,m

∗
p) with mk ≠ m∗

k . The reason is that each

such strategy is weakly dominated by (m1, . . . ,mk−1,m∗
k ,m

∗
k+1, . . . ,m

∗
p).

Against any of Player 2’s remaining strategies, the latter gives a better payoff

if play reaches node ck, and the same payoff if it does not.

3. Backward induction or iterated elimination of weakly dominated strate-

gies eventually produces the unique strategies (m∗
1 , . . . ,m∗

p) for Player 1 and

(n∗1 , . . . , n∗q ) for Player 2.

2.13 Critique of elimination of dominated strategies

We saw with the Ultimatum Game in Section 1.7 that long backward induc-

tions can lead to strange conclusions, and we explained in Section 1.13 that

rational players need not follow the recommendation of a long backward

induction. Iterating elimination of dominated strategies many times is sub-

ject to the same remarks: it can lead to strange conclusions, and rational

players need not follow where it leads.

In addition, we have seen that iterated elimination of weakly dominated

strategies can lead to different reduced games when done in different orders.

We will encounter another issue with iterated elimination of weakly domi-

nated strategies in the following chapter (see Section 3.6).

2.14 Problems

2.14.1 The Tragedy of the Commons. There are n herders who share

a common pasture. The pasture can support mn cattle without degrading.

The ith herder has a choice of two strategies:

• The responsible strategy: graze m cattle.

• The irresponsible strategy: graze m+ 1 cattle.

Each cow that is grazed brings a profit p > 0 to its herder. However, each

herder who grazes m + 1 cattle imposes a cost c > 0 on the community of

herders because of the degradation of the pasture. The cost is shared equally

by the n herders.
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Assume c/n < p < c. Thus the cost to the community of grazing an extra

cow is greater than the profit from the cow, but each herder’s share of the

cost is less than the profit.

(1) Show that for each herder, grazingm+1 cattle strictly dominates grazing

m cattle.

(2) Which of the following gives a higher payoff to each herder? (i) Every

herder grazes m + 1 cattle. (ii) Every herder grazes m cattle. Give the

payoffs in each case.

2.14.2 Another Auction. A Ming vase is sold at auction. The auction

works like this. Every bidder raises her hand. The auctioneer than calls out 1

dollar. Every bidder who is not willing to pay this price lowers her hand. If no

hands remain up, the auction is over, and the vase is not sold to anyone. If

exactly one buyer still has her hand up, the vase is sold to her for 1 dollar. If

more than one buyer still has her hand up, the auctioneer calls out 2 dollars.

The auction continues in this manner. Once a bidder lowers her hand, she

cannot raise it again. All the bidders decide simultaneously whether to lower

their hands.

Notice that the auction ends when either (i) the auctioneer calls out k dol-

lars and all hands are lowered but one, or (ii) the auctioneer calls out k dollars

and all hands are lowered. In the first case, the vase is sold to the remaining

bidder for k dollars. In the second case, the vase is not sold to anyone.

There are n bidders, n � 2. The value of the vase to Bidder i is vi dollars;

vi is a nonnegative integer (0, 1, 2, …). The payoff to Bidder i is 0 if Bidder i
does not win the vase, and is vi minus the price if Bidder i does win the vase.

A strategy for Bidder i is simply the highest bid she is willing to make,

which we assume is a nonnegative integer.

(1) Suppose Bidder i’s strategy is bi, and the highest bid any other bidder is

willing to make is hi. Explain the following sentence: Bidder i’s payoff πi
is determined by the two numbers bi and hi, and

πi(bi, hi) =
⎧⎨
⎩0 if bi � hi,

vi − (hi + 1) if hi < bi.

(2) Show that Bidder i’s strategies vi − 1 and vi weakly dominate all her

other strategies bi with bi < vi − 1. To show this, pick a strategy bi <
vi−1 for Bidder i. Let hi be the highest bid any other bidder is willing to

make. Compare πi(vi − 1, hi) and πi(vi, hi) to πi(bi, hi). You will have

to consider separately the three cases hi < bi, bi � hi < vi − 1, and

vi − 1 � hi.
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(3) Show that Bidder i’s strategies vi−1 and vi weakly dominate all her other

strategies bi with bi > vi. To show this, pick a strategy bi > vi for Bidder

i. Let hi be the highest bid any other bidder is willing to make. Compare

πi(vi − 1, hi) and πi(vi, hi) to πi(bi, hi). You will have to consider sepa-

rately the four cases hi < vi − 1, hi = vi − 1, vi � hi < bi, and bi � hi.
(4) We conclude that Bidder i’s strategies vi − 1 and vi weakly dominate all

other strategies of Bidder i. Does either of Bidder i’s strategies vi−1 and

vi weakly dominate the other? Explain.

2.14.3 Practice on iterated elimination of dominated strategies. Use

iterated elimination of dominated strategies to reduce the following games

to smaller games in which iterated elimination of dominated strategies can

no longer be used. State the order in which you eliminate strategies, and, for

each strategy that you eliminate, state which remaining strategy dominates

it. If you find a dominant strategy equilibrium, state what it is. (You eliminate

rows by comparing first entries in the two rows, and you eliminate columns

by comparing second entries in the two columns.)

(1) In this problem, use iterated elimination of strictly dominated strategies:

t1 t2 t3
s1 (73,25) (57,42) (66,32)
s2 (80,26) (35,12) (32,54)
s3 (28,27) (63,31) (54,29)

(2) In this problem, use iterated elimination of weakly dominated strategies:

t1 t2 t3 t4 t5
s1 (63,1) (28,20) (−2,0) (−2,45) (−3,19)
s2 (32,3) (2,0) (2,5) (33,0) (2,3)
s3 (54,−2) (95,4) (0,2) (4,−1) (0,4)
s4 (1,33) (−3,43) (−1,39) (1,−12) (1,17)
s5 (54,0) (1,−13) (−1,88) (−2,−57) (−3,−1)

2.14.4 War between Two Cities. Cities A and I are at war. They are

connected by a network of roads, each of which takes one day to travel; see

Figure 2.1. City I sends out an army with many siege guns and four days’

worth of supplies, and at the same time city A sends out a lightly armed

force to stop city I’s army. If city I’s army arrives at city A after four days, it

will use its siege guns to destroy city A’s walls and win the war.
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Figure 2.1. Cities and roads.

Each night for three nights, city I’s army arrives at a road junction where

it spends the night. If city A’s force manages to arrive at the same junction

on the same night, it will be able to attack city I’s sleeping army and win the

war.

Each country’s strategy is a sequence of three road junctions where its

army arrives on three successive nights. City I’s army must stay at b or d on

the third night. We will assume that city A’s army must move every day.

(1) List city I’s strategies. (There are six.)

(2) Explain why each strategy of city A that includes a visit to A is weakly

dominated by a strategy that never visits A. (Hint: the strategy bAd is

weakly dominated by the strategy bed: they do equally well on the first

and third nights, but the second strategy will sometimes win on the sec-

ond night, while the first strategy never will.)

(3) Explain why each strategy of cityA that includes a visit to f or h is weakly

dominated by a strategy that never visits f or h.

(4) List the remaining strategies for city A after these weakly dominated

strategies have been eliminated. (There are six.)

(5) Let city I be Player 1 and let city A be Player 2. Construct a 6 × 6 pay-

off matrix that represents this game when each player is limited to its

remaining six strategies. Use payoffs 1 to the winner and −1 to the loser.

(6) By eliminating weakly dominated strategies, reduce your game to a 2× 4

one.

2.14.5 Football. On a play in a football game, the offense has two strate-

gies, run and pass. The defense has three strategies, counter run, counter

pass, and blitz. Payoff to the offense is yards gained; payoff to the defense
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is minus this number. Statistics indicate that the payoffs are given by the

following matrix:

Defense

counter run counter pass blitz

Offense run (3,−3) (6,−6) (15,−15)
pass (10,−10) (7,−7) (9,−9)

Use iterated elimination of strictly dominated strategies to find a dominant

strategy equilibrium.

2.14.6 The Traveler’s Dilemma. Two salesmen make identical trips in

their cars. They both cross five bridges. Some of the bridges have one dollar

tolls. Their boss knows that two of the bridges have one dollar tolls, but he

doesn’t know whether the others have one dollar tolls or are free. He asks

each salesman to separately report his bridge expenses, which will be an

integer between 2 and 5. As an incentive to report accurately, the boss makes

the following rule. If both salesmen report the same amount, both will be

reimbursed that amount. However, if they report different amounts, the boss

will assume the lower amount is correct. He will reimburse the salesman who

reported the lower amount that amount plus a $2 reward for honesty, and he

will reimburse the other salesman that amount minus a $2 penalty for trying

to cheat. The payoffs are therefore given by the following table:

Salesman 2

2 3 4 5

2 (2,2) (4,0) (4,0) (4,0)
Salesman 1 3 (0,4) (3,3) (5,1) (5,1)

4 (0,4) (1,5) (4,4) (6,2)
5 (0,4) (1,5) (2,6) (5,5)

Use iterated elimination of weakly dominated strategies to find a dominant

strategy equilibrium.

2.14.7 Trying to Be Below Average. n players each independently

choose an integer between 0 and 100. Let k denote the average of the chosen

numbers. The player whose chosen number is closest to 2
3k wins a prize. If

several players are closest to the chosen number, they share the prize equally.

(1) Explain the following statement: for each player, the choice 67 weakly

dominates all choices greater than 67. Hint: what is the greatest 2
3k can

possibly be?
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(2) Eliminate all choices greater than 67 for all players. Justify the following

statement: in the reduced game, for each player the choice 45 weakly

dominates all choices greater than 45.

(3) Proceeding in this manner, reduce the game to one in which each player

has just two strategies, 0 and 1. Can the game be reduced further?
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Nash equilibria

In this chapter we continue to look at games in normal form. We define the

Nash equilibrium, which is a strategy profile at which no player, acting alone,

can make a change that improves his outcome. Remarkably, this concept

in its modern generality only dates back to around 1950, when John Nash

developed it during his graduate work in mathematics at Princeton University.

The earliest version of the Nash equilibrium occurs in Cournot’s 1838 work

on duopoly, which we discuss in Section 3.11. Nash equilbria are strategy

profiles at which a game can get stuck. They may be good outcomes for all,

some, or none of the players.

3.1 Big Monkey and Little Monkey 3 and the definition of Nash
equilibria

Many games in normal form cannot be analyzed by elimination of domi-

nated strategies. For example, in the encounter between Big Monkey and Lit-

tle Monkey (see Section 1.5), suppose Big Monkey and Little Monkey decide

simultaneously whether to wait or climb. Then we get the following payoff

matrix:

Little Monkey

wait climb

Big Monkey wait (0,0) (9,1)
climb (4,4) (5,3)

There are no dominated strategies.

Consider a game in normal form with n players, strategy sets S1, . . . , Sn,

and payoff functions π1, . . . , πn. A Nash equilibrium is a strategy profile (s∗1 ,
. . . , s∗n) with the following property: if any single player changes his strategy,

his own payoff will not increase.
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In other words, (s∗1 , . . . , s∗n) is a Nash equilibrium provided

• For every s1 ∈ S1, π1(s∗1 , s
∗
2 , . . . , s∗n) � π1(s1, s∗2 , . . . , s∗n).

• For every s2 ∈ S2, π2(s∗1 , s
∗
2 , s

∗
3 , . . . , s∗n) � π2(s∗1 , s2, s

∗
3 , . . . , s∗n).

...

• For every sn ∈ Sn, πn(s∗1 , . . . , s
∗
n−1, s∗n) � πn(s∗1 , . . . , s

∗
n−1, sn).

A strict Nash equilibrium is a strategy profile (s∗1 , . . . , s∗n)with the property:

if any single player changes his strategy, his own payoff will decrease.

In other words, (s∗1 , . . . , s∗n) is a strict Nash equilibrium provided

• For every s1 ≠ s∗1 in S1, π1(s∗1 , s
∗
2 , . . . , s∗n) > π1(s1, s∗2 , . . . , s∗n).

• For every s2 ≠ s∗2 in S2, π2(s∗1 , s
∗
2 , s

∗
3 , . . . , s∗n) > π2(s∗1 , s2, s

∗
3 , . . . , s∗n).

...

• For every sn ≠ s∗n in Sn, πn(s∗1 , . . . , s
∗
n−1, s∗n) > πn(s

∗
1 , . . . , s

∗
n−1, sn).

In the game of Big Monkey and Little Monkey described above, there are

two strict Nash equilibria:

• The strategy profile (wait, climb) is a strict Nash equilibrium. It produces

the payoffs (9,1). If Big Monkey changes to climb, his payoff decreases

from 9 to 5. If Little Monkey changes to wait, his payoff decreases from 1

to 0.

• The strategy profile (climb, wait) is also a strict Nash equilibrium. It

produces the payoffs (4,4). If Big Monkey changes to wait, his payoff

decreases from 4 to 0. If Little Monkey changes to climb, his payoff

decreases from 4 to 3.

Big Monkey prefers the first of these Nash equilibria, Little Monkey the sec-

ond.

Note that in this game, the strategy profiles (wait, wait) and (climb, climb)

are not Nash equilibria. In fact, for these strategy profiles, either monkey

could improve his payoff by changing his strategy.

Game theorists often use the following notation when discussing Nash

equilibria. Let s = (s1, . . . , sn) denote a strategy profile. Suppose in s we

replace the ith player’s strategy si by another of his strategies, say, s′i . The

resulting strategy profile is then denoted (s′i , s−i).
In this notation, a strategy profile s∗ = (s∗1 , . . . , s∗n) is a Nash equilibrium if,

for each i = 1, . . . , n,πi(s∗) � πi(si, s∗−i) for every si ∈ Si. The strategy profile

s∗ is a strict Nash equilibrium if, for each i = 1, . . . , n, πi(s∗) > πi(si, s∗−i)
for every si ≠ s∗i in Si.
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The notion of Nash equilibrium is the most important idea in game theory.

We consider three ways of finding Nash equilibria:

• Inspection (Sections 3.2–3.5).

• Iterated elimination of dominated strategies (Sections 3.6–3.7).

• Using best response (Sections 3.8–3.11).

3.2 Finding Nash equilibria by inspection: Important examples

One way to find Nash equilibria is by inspection of all strategy profiles to see

which, if any, meet the definition. This is how we found the Nash equilibria

in the game of Big Monkey and Little Monkey in the previous section. Here

are four important examples.

3.2.1 Prisoner’s Dilemma. Recall the Prisoner’s Dilemma from Sec-

tion 2.1:

Executive 2

refuse talk

Executive 1 refuse (−1,−1) (−10,0)
talk (0,−10) (−6,−6)

Let’s inspect all four strategy profiles:

• The strategy profile (refuse, refuse) is not a Nash equilibrium. If either

executive alone changes his strategy to talk, his payoff increases from −1

to 0.

• The strategy profile (refuse, talk) is not a Nash equilibrium. If Executive 1

changes his strategy to talk, his payoff increases from −10 to −6.

• The strategy profile (talk, refuse) is not a Nash equilibrium. If Executive 2

changes his strategy to talk, his payoff increases from −10 to −6.

• The strategy profile (talk, talk) is a strict Nash equilibrium. If either exec-

utive alone changes his strategy to refuse, his payoff falls from −6 to

−10.

The Prisoner’s Dilemma illustrates an important fact about Nash equilibria:

they are not necessarily good for the players! Instead they are strategy profiles

where a game can get stuck, for better or worse.

3.2.2 Stag Hunt. Two hunters on horseback are pursuing a stag. If both

work together, they will succeed. However, the hunters notice that they are

passing some hares. If either hunter leaves the pursuit of the stag to pursue

a hare, he will succeed, but the stag will escape.
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Let’s model this situation as a two-player game in which the players decide

their moves simultaneously. The players are the hunters. The possible strate-

gies for each are pursue the stag and pursue a hare. Let’s suppose that the

payoff for catching a hare is 1 to the hunter who caught it, and the payoff for

catching the stag is 2 to each hunter. The payoff matrix is

Hunter 2

stag hare

Hunter 1 stag (2,2) (0,1)
hare (1,0) (1,1)

There are no dominated strategies. If we inspect all four strategy profiles, we

find that there are two strict Nash equilibria, (stag, stag) and (hare, hare). Both

hunters prefer (stag, stag) to (hare, hare).

Like the Prisoner’s Dilemma, Stag Hunt represents a type of cooperation

dilemma that is common in human affairs. Without cooperating, each hunter

can decide individually to pursue a hare, thus guaranteeing himself a payoff

of 1. If both players do this, we have a noncooperative Nash equilibrium. A

better Nash equilibrium exists in which both players cooperate to pursue the

stag. However, if the players are in the noncooperative equilibrium, it may be

difficult to get to the cooperative equilibrium. The reason is that if one player

on his own switches to the strategy of pursuing the stag, his payoff becomes

worse.

Stag Hunt differs from the Prisoner’s Dilemma in that, if both players man-

age to cooperate by pursuing the stag together, they have arrived at a Nash

equilibrium, which means that neither will be tempted to cheat.

The problem of how to deal with a depressed economy resembles a Stag

Hunt game. In a depressed economy, companies don’t hire workers because

they lack customers, and they lack customers because other companies don’t

hire workers. This is a low-payoff equilibrium. A better equilibrium is one in

which lots of companies hire lots of workers, who are then needed because

the other companies’ workers become customers. However, it is not easy to

get from the first equilibrium to the second. The first companies to hire more

workers will find that the new workers are not needed and depress profits.

The solution to this problem proposed by John Maynard Keynes in the

1930s is that in a depressed economy, the government should spend more,

for example, on infrastructure projects. The additional spending will cause

some companies to hire more workers, who will become customers for other

companies, which will in turn hire more workers. Once the economy has been

jolted into the high-payoff equilibrium, it can maintain itself there.
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Stag Hunt problems, while difficult to solve, are easier to solve than Pris-

oner’s Dilemmas. Thus the problem of a depressed economy should be easier

to solve than the problem of global warming; compare Section 2.5.

The Wikipedia page for Stag Hunt is http://en.wikipedia.org/wiki/Stag_

hunt. Games like Stag Hunt, in which there are several Nash equilibria, one of

which is best for all players, are sometimes called pure coordination games.

The players should somehow coordinate their actions so that they are in the

best of the Nash equilibria. For more information, see the Wikipedia page

http://en.wikipedia.org/wiki/Coordination_game.

3.2.3 Chicken. The game of Chicken was (supposedly) played by Ameri-

can teenagers in the 1950s. A variant of the game (not the version we describe)

is shown in the James Dean movie “Rebel without a Cause.” In Chicken, two

teenagers drive their cars toward each other at high speed. Each has two

strategies: drive straight or swerve. The payoffs are as follows:

Teenager 2

straight swerve

Teenager 1 straight (−2,−2) (1,−1)
swerve (−1,1) (0,0)

If one teen drives straight and one swerves, the one who drives straight gains

in reputation, and the other loses face. However, if both drive straight, there is

a crash, and both are injured. There are two Nash equilibria: (straight, swerve)

and (swerve, straight). Each gives a payoff of 1 to one player and −1 to the

other. Thus each player prefers the equilibrium that gives the payoff 1 to

himself.

The version of Big Monkey and Little Monkey discussed in Section 3.1 is a

Chicken-type game.

One way to win Chicken-type games is to cultivate a reputation for being

crazy, and hence willing to pursue the drive straight strategy even though it

may lead to disaster. For a scary example of how President Richard Nixon and

his National Security Advisor Henry Kissinger used this idea during negotia-

tions to end the Vietnam War, see http://www.wired.com/politics/security/

magazine/16-03/ff_nuclearwar.

3.2.4 Battle of the Sexes. Alice and Bob want to meet this evening.

There are two events they could meet at: a Justin Bieber concert and a pro

wrestling match. Unfortunately, their cell phones are dead. Alice prefers the

concert, and Bob prefers the wrestling match. However, they both prefer

meeting to missing each other. The payoffs are given in the following table.

http://www.wired.com/politics/security/magazine/16-03/ff_nuclearwar
http://www.wired.com/politics/security/magazine/16-03/ff_nuclearwar
http://en.wikipedia.org/wiki/Stag_hunt
http://en.wikipedia.org/wiki/Stag_hunt
http://en.wikipedia.org/wiki/Coordination_game
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Bob

concert wrestling

Alice concert (2,1) (0,0)
wrestling (0,0) (1,2)

As in Chicken, there are two Nash equilibria, one preferred by one player, one

by the other. Here, however, the players are trying to cooperate rather than

compete. If you were Alice, which event would you go to?

3.3 Water Pollution 1

Three firms use water from a lake. When a firm returns the water to the lake,

it can purify it or fail to purify it (and thereby pollute the lake). The cost of

purifying the used water before returning it to the lake is 1. If two or more

firms fail to purify the water before returning it to the lake, all three firms

incur a cost of 3 to treat the water before they can use it.

The payoffs are therefore as follows:

• If all three firms purify: −1 to each firm.

• If two firms purify and one pollutes: −1 to each firm that purifies, 0 to

the polluter.

• If one firm purifies and two pollute: −4 to the firm that purifies, −3 to

each polluter.

• If all three firms pollute: −3 to each firm.

We inspect these possibilities to see whether any are Nash equilibria:

• Suppose all three firms purify. If one switches to polluting, its payoff

increases from −1 to 0. This is not a Nash equilibrium.

• Suppose two firms purify and one pollutes. If a purifier switches to pol-

luting, its payoff decreases from −1 to −3. If the polluter switches to

purifying, its payoff decreases from 0 to −1. Thus there are three Nash

equilibria in which two firms purify and one pollutes.

• Suppose one firm purifies and two pollute. If the purifier switches to pol-

luting, its payoff increases from −4 to −3. This is not a Nash equilibrium.

• Suppose all three firms pollute. If one switches to purifying, its payoff

decreases from −3 to −4. This is a Nash equilibrium.

We see here an example of the free rider problem (Wikipedia page:

http://en.wikipedia.org/wiki/Free_rider_problem). Each firm wants to be the

one that gets the advantage of the other firms’ efforts without making any

effort itself.

http://en.wikipedia.org/wiki/Free_rider_problem
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The free rider problem arises in negotiating treaties to deal with climate

change. For example, the United States objected to the 1997 Kyoto protocol,

because it did not require action by developing countries, such as China and

India (Wikipedia page: http://en.wikipedia.org/wiki/Kyoto_treaty).

The free rider problem also arose in connection with the Troubled Asset

Relief Program (TARP), under which the U.S. Treasury invested several hun-

dred billion dollars in U.S. banks during the financial crisis of late 2008 and

early 2009. (Wikipedia page: http://en.wikipedia.org/wiki/Troubled_Asset_

Relief_Program.) Some banks wanted to pay back this investment very

quickly. What could be wrong with this?

• The banks had made many loans to people and corporations who

appeared unable to repay them. If too many of these loans were not repaid,

the banks would be rendered bankrupt.

• The banks therefore needed to conserve what cash they had, so they were

unwilling to make new loans.

• If the banks were unwilling to lend, the economy would slow, making it

even less likely that that the problem loans would be repaid.

• The government therefore invested in (injected capital into) the banks.

The banks now had more money, so they would, the government hoped,

lend more. Then the economy would pick up, some of the problem loans

would be repaid, and the banks would be okay.

• Unfortunately for the banks, the government’s investment was accompa-

nied by annoying requirements, such as limitations on executive pay.

• If a few banks were allowed to repay the government’s investment, they

could avoid the annoying requirements, but still benefit from the eco-

nomic boost and loan repayments due to other banks’ increased lending.

The banks that repaid the government would become free riders.

3.4 Arguing over Marbles

Two children begin to argue about some marbles with a value of 1. If one

child gives up arguing first, the other child gets the marbles. If both children

give up arguing at the same time, they split the marbles.

The payoff to each child is the value of the marbles she gets, minus the

length of time in hours that the argument lasts.

After one hour, it will be time for dinner. If the argument has not ended

before then, it ends then, and the children split the marbles.

We will treat this situation as a two-player game. Before the game begins,

each child decides independently how long she is willing to argue, in hours.

We will allow this choice to be any real number between 0 and 1. Thus the

http://en.wikipedia.org/wiki/Kyoto_treaty
http://en.wikipedia.org/wiki/Troubled_Asset_Relief_Program
http://en.wikipedia.org/wiki/Troubled_Asset_Relief_Program
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first child’s strategy is a real number s, 0 � s � 1, and the second child’s

strategy is a real number t, 0 � t � 1.

The payoffs are:

• If s < t, the argument ends after s hours, and the second child gets the

marbles, so π1(s, t) = −s and π2(s, t) = 1− s.
• If s > t, the argument ends after t hours and the first child gets the

marbles, so π1(s, t) = 1− t and π2(s, t) = −t.
• If s = t, the argument ends after s hours and the children split the mar-

bles, so π1(s, t) = 1
2 − s and π2(s, t) = 1

2 − s.

We will find the Nash equilibria by inspecting all strategy profiles (s, t),
0 � s � 1, 0 � t � 1.

We first inspect strategy profiles (s, t) with s < t.
1. Suppose 0 < s < t � 1. Player 2’s payoff is 1 − s, and Player 1’s is −s.

Player 1 could improve her payoff by reducing s. None of these profiles (s, t)
is a Nash equilibrium.

2. Suppose s = 0 and 0 < t < 1. Player 2’s payoff is 1, and Player 1’s

payoff is 0. Player 1 could improve her payoff by changing to a number s′

with t < s′ � 1. Player 1 would then win the argument, so her payoff would

increase to 1 − t, which is greater than 0. (This also works in the previous

case, provided t < 1.) None of these profiles (0, t) is a Nash equilibrium.

3. The only remaining possibility with s < t is s = 0 and t = 1. Player 2’s

payoff is 1, and Player 1’s payoff is 0. Neither player can improve her payoff

by changing her strategy. This is a Nash equilibrium.

Thus the only Nash equilibrium with s < t is (s, t) = (0,1). Similarly, the

only Nash equilibrium with s > t is (s, t) = (1,0).
Next we inspect strategy profiles (s, t) with s = t.
1. Suppose s = t < 1. Both players get the payoff 1

2−s. Player 1, for example,

could improve her payoff by changing to a number s′ with s < s′ � 1. Player 1

would then win the argument, so her payoff would increase from 1
2−s to 1−s.

None of these profiles is a Nash equilibrium.

2. Suppose s = t = 1. Both players get the payoff −1
2 . Either player could

improve her payoff by changing to 0, thus losing the argument and getting a

payoff of 0. Therefore (s, t) = (1,1) is not a Nash equilibrium.

We conclude that the only Nash equilibria are (0,1) and (1,0). The first

is better for Player 2, the second for Player 1. This game is reminiscent of

Chicken. If one player is willing to argue for the entire hour, the other player

can do no better than to give up and let her have all the marbles.

Arguing over Marbles is a variant of the well-known game War of Attrition.

In War of Attrition, the two players are interpreted as contestants competing

for a resource of value 1; the numbers s and t represent the resources that the
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contestants are willing to commit to the competition. See the Wikipedia page

http://en.wikipedia.org/wiki/War_of_attrition_(game) for more information.

3.5 Tobacco Market

At a certain warehouse, the price of tobacco per pound in dollars, p, is related

to the supply of tobacco in pounds, q, by the formula

p = 10− q
100,000

. (3.1)

Thus the more tobacco that farmers bring to the warehouse, the lower the

price becomes. However, a price support program ensures that the price never

falls below $.25 per pound. In other words, if the supply is so high that the

price would be below $.25 per pound, the price is set at p = .25, and a

government agency purchases whatever cannot be sold at that price.

One day three farmers are the only ones bringing their tobacco to this

warehouse. Each has harvested 600,000 pounds and can bring as much of

his harvest as he wants. Whatever is not brought must be discarded.

There are three players, the farmers. Farmer i’s strategy is simply the

amount of tobacco he brings to the warehouse, and hence is a number qi,
0 � qi � 600,000. The payoff to Farmer i is πi(q1, q2, q3) = pqi, where

p =

⎧⎪⎨
⎪⎩

10− q1 + q2 + q3

100,000
if q1 + q2 + q3 � 975,000,

.25 if q1 + q2 + q3 > 975,000.

(The importance of 975,000 is that if q = 975,000, then (3.1) gives p = .25.)

We find the Nash equilibria by inspecting all strategy profiles (q1, q2, q3),
0 � qi � 600,000.

1. Suppose some qi = 0. Then Farmer i’s payoff is 0, which he could

increase by bringing some of his tobacco to market. This is not a Nash equi-

librium.

2. Suppose q1 + q2 + q3 � 975,000. The price is then $.25, and will stay

the same if any farmer brings more of his tobacco to market. Thus if any qi
is less than 600,000, that farmer could increase his own payoff by bringing

more of his tobacco to market. Hence the only possible Nash equilibrium

with q1 +q2 +q3 � 975,000 is (600,000, 600,000, 600,000). It really is one: if

any farmer alone brings less to market, the price will not rise, so his payoff

will certainly decrease. The payoff to each farmer at this Nash equilibrium is

πi = .25× 600,000 = 150,000.

3. Suppose q1 + q2 + q3 < 975,000 and 0 < qi < 600,000 for all i. In this

region the payoff functions πi are given by

πi(q1, q2, q3) =
(

10− q1 + q2 + q3

100,000

)
qi.

http://en.wikipedia.org/wiki/War_of_attrition_(game)
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Suppose (q1, q2, q3) is a Nash equilibrium in this region. Let us consider first

Farmer 1. The maximum value of π1(q1, q2, q3), with q2 and q3 fixed at their

Nash equilibrium values, must occur at the Nash equilibrium. Since q1 is not

an endpoint of the interval 0 � q1 � 600,000, we must have ∂π1/∂q1 = 0 at

the Nash equilibrium. By considering Farmers 2 and 3, we get the additional

equations ∂π2/∂q2 = 0 and ∂π3/∂q3 = 0. This is a system of three equa-

tions in the three unknowns (q1, q2, q3). If you solve it, you will find the only

possible Nash equilibrium in the region under consideration.

Our system of equations is

10− q1 + q2 + q3

100,000
− q1

100,000
= 0,

10− q1 + q2 + q3

100,000
− q2

100,000
= 0,

10− q1 + q2 + q3

100,000
− q3

100,000
= 0.

It is a linear system. You can solve it with a calculator, or you can write it in

a standard form and use row operations to reduce it to row-echelon form.

Here is another way. The three equations imply that q1 = q2 = q3. (You can

see this by solving the ith equation for qi/100,000. You get the same answer

for each i.) Then the first equation implies that

10− 3q1

100,000
− q1

100,000
= 0,

so q1 = 250,000. Hence the only possible Nash equilibrium in this region is

(250,000, 250,000, 250,000).

To check whether this really is a Nash equilibrium, let us consider Farmer 1.

(The others are similar). For (q2, q3) = (250,000,250,000), Farmer 1’s payoff

function is

π1(q1,250,000,250,000)

=

⎧⎪⎨
⎪⎩
(

10− q1 + 500,000
100,000

)
q1 if 0 � q1 � 475,000,

.25q1 if 475,000 < q1 � 600,000.

The quadratic function
(
10− (q1 + 500,000)/100,000

)
q1, 0 � q1 � 475,000,

is maximum at the point we have found, q1 = 250,000, where π1 = 2.50 ×
250,000 = 625,000. Moreover, for 475,000 < q1 � 600,000, π1 = .25q1 is

at most 150,000. Therefore Farmer 1 cannot improve his payoff by changing

q1. The same is true for Farmers 2 and 3, so (250,000, 250,000, 250,000) is

indeed a Nash equilibrium.
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4. There is one case we have not yet considered: q1 + q2 + q3 < 975,000,

0 < qi < 600,000 for two i, and qi = 600,000 for one i. It turns out that there

are no Nash equilibria in this case. The analysis is left as homework.

In conclusion, there are two Nash equilibria, (600,000, 600,000, 600,000)

and (250,000, 250,000, 250,000). The second is preferred to the first by all

three farmers. Therefore Tobacco Market is a pure coordination game, like

Stag Hunt (Subsection 3.2.2). If the farmers can agree among themselves to

each bring 250,000 pounds of tobacco to market and discard 350,000 pounds,

none will have an incentive to cheat. However, the tobacco buyers would

prefer that they each bring 600,000 pounds to market. If all farmers do that,

none can improve his own payoff be bringing less. Thus, as with Stag Hunt, if

the farmers are in the equilibrium in which they each bring all their tobacco

to market, it may be difficult for them to get to the other equilibrium.

3.6 Finding Nash equilibria by iterated elimination of
dominated strategies

The relation between iterated elimination of dominated strategies, which we

discussed in Chapter 2, and Nash equilibria is summarized in the following

theorems.

Theorem 3.1. Suppose we do iterated elimination of weakly dominated

strategies on a game G in normal form. Let H be the reduced game that

results. Then:

(1) Each Nash equilibrium of H is also a Nash equilibrium of G.

(2) In particular, if H has only one strategy s∗i for each player, then the strat-

egy profile (s∗1 , . . . , s∗n) is a Nash equilibrium of G.

The last conclusion of Theorem 3.1 just says that every dominant strategy

equilibrium is a Nash equilibrium.

For iterated elimination of strictly dominated strategies, one can say more.

Theorem 3.2. Suppose we do iterated elimination of strictly dominated

strategies on a game G in normal form. Then:

(1) Any order yields the same reduced game H.

(2) Each strategy that is eliminated is not part of any Nash equilibrium of G.

(3) Each Nash equilibrium of H is also a Nash equilibrium of G.

(4) If H has only one strategy s∗i for each player, then (s∗1 , . . . , s∗n) is a strict

Nash equilibrium. Moreover, there are no other Nash equilibria.

Theorem 3.2 justifies using iterated elimination of strictly dominated strate-

gies to reduce the size of the game to be analyzed. It says in part that we do

not miss any Nash equilibria by doing the reduction.
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In contrast, we certainly can miss Nash equilibria by using iterated elimi-

nation of weakly dominated strategies to reduce the size of the game. This

is the second problem with iterated elimination of weakly dominated strate-

gies that we have identified; the first was that the resulting smaller game can

depend on the order in which the elimination is done.

We shall prove statements (2), (3), and (4) of Theorem 3.2, and we indicate

how our proof of statement (3) of Theorem 3.2 can be modified to give a proof

of statement (1) of Theorem 3.1. Of course, statement (2) of Theorem 3.1

follows from statement (1) of Theorem 3.1.

Proof. We consider iterated elimination of strictly dominated strategies on a

game G in normal form.

To prove statement (2) of Theorem 3.2, we prove by induction the state-

ment: the kth strategy that is eliminated is not part of any Nash equilibrium.

k = 1: Let si, a strategy of Player i, be the first strategy that is eliminated. It

was eliminated because the ith player has a strategy ti that strictly dominates

it. Suppose si is part of a strategy profile. Replacing si by ti, and leaving all

other players’ strategies the same, increases the payoff to Player i. Therefore

this strategy profile is not a Nash equilibrium.

Assume the statement is true for k = 1, . . . , l. Let si, a strategy of Player i,
be the (l+ 1)st strategy that is eliminated. It was eliminated because the ith
player has a strategy ti that strictly dominates it, assuming no player uses

any previously eliminated strategy. Suppose si is part of a strategy profile.

If any of the previously eliminated strategies is used in this strategy profile,

then by assumption it is not a Nash equilibrium. If none of the previously

eliminated strategies is used, then replacing si by ti, and leaving all other

players’ strategies the same increases the payoff to Player i. Therefore this

strategy profile is not a Nash equilibrium.

This completes the proof of statement (2) of Theorem 3.2.

To prove statement (3) of Theorem 3.2, let (s∗1 , s
∗
2 , . . . , s∗n) be a Nash equi-

librium of H, and let S1 be Player 1’s strategy set for G. We must show that

for every s1 ≠ s∗1 in S1,

π1(s∗1 , s
∗
2 , . . . , s

∗
n) � π1(s1, s∗2 , . . . , s

∗
n). (3.2)

(Of course, we must also prove an analogous statement for the other players,

but the argument would be the same.)

If s1 is a strategy of Player 1 that remains in the reduced game H, then of

course (3.2) follows from the fact that (s∗1 , s
∗
2 , . . . , s∗n) is a Nash equilibrium

of H. To complete the proof, we show that if s1 is any strategy of Player 1

that was eliminated in the course of iterated elimination of strictly dominated
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strategies, then

π1(s∗1 , s
∗
2 , . . . , s

∗
n) > π1(s1, s∗2 , . . . , s

∗
n). (3.3)

Note the strict inequality.

In fact, we prove by reverse induction the statement: if s1 is the kth strategy

of Player 1 to be eliminated, then (3.3) holds.

Let s1 be the last strategy of Player 1 to be eliminated. It was elimi-

nated because one of the remaining strategy of Player 1 (say, t1), when

used against any remaining strategies s2, . . . , sn of the other players, satis-

fied π1(t1, s2, . . . , sn) > π1(s1, s2, . . . , sn). In particular, since s∗2 , . . . , s∗n were

among the remaining strategies, we get

π1(t1, s∗2 , . . . , s
∗
n) > π1(s1, s∗2 , . . . , s

∗
n). (3.4)

Since (s∗1 , s
∗
2 , . . . , s∗n) is a Nash equilibrium of H, and t1 is a strategy available

to Player 1 in H (it was never eliminated),

π1(s∗1 , s
∗
2 , . . . , s

∗
n) � π1(t1, s∗2 , . . . , s

∗
n). (3.5)

Combining (3.5) and (3.4), we get (3.3).

Assume the statement is true for all k � �. Let s1 be the (�−1)st strategy of

Player 1 to be eliminated. It was eliminated because one of the other remain-

ing strategies of Player 1 (say, t1), when used against any remaining strategies

s2, . . . , sn of the other players, satisfied π1(t1, s2, . . . , sn) > π1(s1, s2, . . . , sn).
In particular, since s∗2 , . . . , s∗n were among the remaining strategies, we get

(3.4). If t1, is never eliminated, then it is still available to Player 1 in H, so

we have (3.5). Combining (3.5) and (3.4), we again get (3.3). If t1 is one of

the strategies of Player 1 that is eliminated after s1, then, by the induction

hypothesis,

π1(s∗1 , s
∗
2 , . . . , s

∗
n) > π1(t1, s∗2 , . . . , s

∗
n). (3.6)

Combining (3.6) and (3.4), we get (3.3).

This completes the proof of statement (3) of Theorem 3.2.

To prove statement (4) of Theorem 3.2, we must show that if H has only

one strategy s∗i for each player, then for every s1 ≠ s∗1 in S1,

π1(s∗1 , s
∗
2 , . . . , s

∗
n) > π1(s1, s∗2 , . . . , s

∗
n). (3.7)

In this case, every s1 ≠ s∗1 in S1 is eliminated in the course of iterated elimi-

nation of strictly dominated strategies, so the proof we gave of statement (3)

actually yields the conclusion.

The proof of statement (1) of Theorem 3.1 is essentially the same as the

proof of statement (3) of Theorem 3.2, except that no inequalities are strict.
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3.7 Big Monkey and Little Monkey 4: Threats, promises, and
commitments revisited

Let us consider again the game of Big Monkey and Little Monkey (Section 1.5)

with Big Monkey going first. The normal form of this game, which was given

in Section 2.10, is repeated here:

Little Monkey

ww wc cw cc
Big Monkey w (0,0) (0,0) (9,1) (9,1)

c (4,4) (5,3) (4,4) (5,3)

We have seen two ways of doing iterated elimination of weakly dominated

strategies for this game.

One, which corresponds to a way of doing backward induction in the exten-

sive form of the game, led to the 1×1 reduced game consisting of the strategy

profile (w, cw). This strategy profile is therefore a dominant strategy equilib-

rium, and hence a Nash equilibrium. However, since it was found by iterated

elimination of weakly dominated strategies, it is not guaranteed to be the

only Nash equilibrium.

The second way we did iterated elimination of weakly dominated strategies

led to a 2×1 reduced game. Both remaining strategy profiles (w, cw) (found

before) and (w, cc) are Nash equilibria.

One can check that (c,ww) is also a Nash equilibrium. It cannot be found

by doing iterated elimination of weakly dominated strategies.

Both Nash equilibria (w, cc) and (c,ww) use strategies that were elimi-

nated in one way of doing iterated elimination of weakly dominated strate-

gies, but they are strategies that we have seen before in Section 1.6. In the

Nash equilibrium (c,ww), Little Monkey’s strategy ww includes the threat

that if Big Monkey waits, he will wait also. In the Nash equilibrium (w, cc), Lit-

tle Monkey’s strategy cc includes the promise to climb if Big Monkey climbs.

You may recall that the threat changed the outcome of the game, but the

promise did not.

Why do we find Nash equilibria when we look at the normal form of the

game that we did not find using backward induction?

The reason is that when looking at the normal form of the game, we assume

that Big Monkey and Little Monkey choose their strategies once and for all at

the start of the game. The fact that Little Monkey’s strategy might include a

move that, should the time comes to make it, would not be profitable, is not

relevant.

Consider again the strategy profile (c,ww), in which Little Monkey makes

the threat to wait if Big Monkey waits. A little thought reveals that this is
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certainly a Nash equilibrium. If Little Monkey commits himself in advance to

waiting no matter what, then Big Monkey can do no better than to climb. On

the other hand, if Big Monkey climbs, Little Monkey can do no better than to

wait, which he will indeed do if he adopts the strategy ww.

This analysis is relevant provided Little Monkey can really commit himself

in advance to using the strategy ww, so that the normal form of the game

becomes appropriate.

3.8 Finding Nash equilibria using best response

Consider a game in normal form with n players, strategy sets S1, . . . , Sn,

and payoff functions π1, . . . , πn. Let s2, . . . , sn be fixed strategies for players

2,…,n. Suppose s∗1 is a strategy for Player 1 with the property that

π1(s∗1 , s2, . . . , sn) � π1(s1, s2, . . . , sn) for all s1 ∈ S1. (3.8)

Then s∗1 is a best response of Player 1 to the strategy choices s2, . . . , sn of

the other players. Of course, Player 1 may have more than one such best

response.

For each choice s2, . . . , sn of strategies by the other players, let B1(s2,
. . . , sn) denote the set of best responses by Player 1. In other words,

s∗1 ∈ B1(s2, . . . , sn) if and only if π1(s∗1 , s2, . . . , sn) � π1(s1, s2, . . . , sn)

for all s1 ∈ S1.

The mapping that associates to each (s2, . . . , sn) ∈ S2×· · ·× Sn the corre-

sponding set B1(s2, . . . , sn), a subset of S1, is called Player 1’s best response

correspondence. If each set B1(s2, . . . , sn) consists of a single strategy, we have

Player 1’s best response function b1(s2, . . . , sn).
Best response correspondences for the other players are defined analo-

gously.

At a Nash equilibrium, each player’s strategy is a best response to the other

players’ strategies. In other words, the strategy profile (s∗1 , . . . , s∗n) is a Nash

equilibrium if and only if

• s∗1 ∈ B1(s∗2 , . . . , s∗n).
• s∗2 ∈ B2(s∗1 , s

∗
3 . . . , s∗n).

...

• s∗n ∈ Bn(s∗1 , . . . , s∗n−1).

This property of Nash equilibria can be used to find them. Just graph all

players’ best response correspondences in one copy of strategy profile space

and find where they intersect! Alternatively, describe each best response cor-

respondence by an equation, and solve the equations simultaneously.
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3.9 Big Monkey and Little Monkey 5

Once again we consider the game of Big Monkey and Little Monkey (Sec-

tions 1.5 and 2.10) with Big Monkey going first. The normal form of this

game with both players’ best response correspondences graphed is shown

here:

Little Monkey

ww wc cw cc
Big Monkey w (0,0) (0,0) (9 , 1 ) (9 , 1 )

c (4 , 4 ) (5 ,3) (4, 4 ) (5,3)

The explanation of the boxes is as follows:

• Big Monkey’s best response correspondence is actually a function:

— If Little Monkey does ww, do c.

— If Little Monkey does wc, do c.

— If Little Monkey does cw, do w.

— If Little Monkey does cc, do w.

This correspondence is indicated in the payoff matrix by drawing a box

around the associated payoffs to Big Monkey. In other words, in each of

the four columns of the matrix, we draw a box around the highest first

entry, which is Big Monkey’s highest payoff.

• Little Monkey’s best response correspondence is not a function:

— If Big Monkey does w, do cw or cc.

— If Big Monkey does c, do ww or cw.

This correspondence is indicated in the payoff matrix by drawing a box

around the associated payoffs to Little Monkey. In other words, in each

of the two rows of the matrix, we draw a box around the highest second

entry, which is Little Monkey’s highest payoff.

Notice that three ordered pairs have both payoffs boxed. These ordered

pairs correspond to intersections of the graphs of the two players’ best

response correspondences, and hence to Nash equilibria.

For a two-player game in normal form where each player has only a finite

number of strategies, graphing the best response correspondences as we did

in this example is the best way to find Nash equilibria.
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Table 3.1. Payoff matrices for the Water Pollution game

Firm 3 purifies

Firm 2
purify pollute

Firm 1 purify (−1,−1,−1) (−1,0,−1)
pollute (0,−1,−1) (−3,−3,−4)

Firm 3 pollutes

Firm 2
purify pollute

Firm 1 purify (−1,−1,0) (−4,−3,−3)
pollute (−3,−4,−3) (−3,−3,−3)

3.10 Water Pollution 2

The payoffs in the Water Pollution game (Section 3.3) can be represented by

two 2 × 2 matrices of ordered triples as shown in Table 3.1. Each ordered

triple represents payoffs to Firms 1, 2, and 3.

These two matrices should be thought of as stacked one above the other.

We then indicate

• Player 1’s best response to each choice of strategies by the other players

by boxing the highest first entry in each column;

• Player 2’s best response to each choice of strategies by the other players

by boxing the highest second entry in each row; and

• Player 3’s best response to each choice of strategies by the other players

by boxing the highest third entry in each “stack.”

The result is shown in Table 3.2. The Nash equilibria correspond to ordered

triples with all three entries boxed. As before, we have found four Nash equi-

libria. In three of them, two firms purify and one pollutes. In the fourth, all

firms pollute.

3.11 Cournot’s model of duopoly

Cournot’s model of duopoly (Wikipedia article: http://en.wikipedia.org/wiki/

Cournot_duopoly) is the same as Stackelberg’s (see Section 1.11), except that

that the players choose their production levels simultaneously. This is a game

in normal form with two players, strategy sets 0 � s <∞ and 0 � t <∞, and

http://en.wikipedia.org/wiki/Cournot_duopoly
http://en.wikipedia.org/wiki/Cournot_duopoly
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Table 3.2. Payoff matrices in the Water Pollution game—best response

Firm 3 purifies

Firm 2
purify pollute

Firm 1 purify (−1,−1,−1) (−1 , 0 , −1 )
pollute (0 , −1 , −1 ) (−3,−3,−4)

Firm 3 pollutes

Firm 2
purify pollute

Firm 1 purify (−1 , −1 , 0 ) (−4,−3,−3)
pollute (−3,−4,−3) (−3 , −3 , −3 )

payoff functions

π1(s, t) = ps − c1(s) =
⎧⎨
⎩
(
α− β(s + t))s − cs if s + t < α

β ,

−cs if s + t � α
β ,

π2(s, t) = pt − c2(t) =
⎧⎨
⎩
(
α− β(s + t))t − ct if s + t < α

β ,

−ct if s + t � α
β .

To calculate Player 2’s best response function, we must maximize π2(s, t),
s fixed, on the interval 0 � t < ∞. This was done in Section 1.11; the answer

is

t = b2(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α− c

2β
− 1

2
s if s <

α− c
β

,

0 if s � α− c
β

.

From the symmetry of the problem, Player 1’s best response function is

s = b1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α− c

2β
− 1

2
t if t <

α− c
β

,

0 if t � α− c
β

.

See Figure 3.1. Notice that to make the figure analogous to the payoff matrix

in Section 3.9, which can be interpreted as the graph of a best response corre-

spondence, we have made the s-axis, which represents Player 1’s strategies,

the vertical axis.

There is a Nash equilibrium where the two best response curves intersect.

From the figure, we see that to find this point, we must solve simultaneously
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t

s

t = b2(s)

s = b1(t)

a – c

β

a – c

β

a – c

2β

a – c

2β

Figure 3.1. Best response functions in Cournot’s model of duopoly.

the two equations

t = α− c
2β

− 1
2
s, s = α− c

2β
− 1

2
t.

We find that s = t = (α− c)/3β.

3.12 Problems

3.12.1 Price Competition 1. Bernie and Mannie sell tablet computers.

Both have unit costs of 100. They compete on price: the low-price seller gets

all the customers. If they charge the same price, they split the customers.

Explain why the only Nash equilibrium is for both to charge 100, splitting

the market but making no profit. Suggestion: First set up the game by giving

players, strategies, and payoffs. The players are Bernie and Mannie. Bernie’s

strategy is his price x and Mannie’s strategy is his price y . Let’s allow x and

y to be any nonnegative real numbers. Let the the number of customers be

m > 0. Each player’s payoff is his profit, which is his fraction of the cus-

tomers timesm times profit per customer. Which strategy profiles (x,y) are

Nash equilibria? For example, if 100 < x < y , is (x,y) a Nash equilibrium?

(Answer: no. Bernie gets all the customers and makes a profit of x− 100 > 0

on every tablet sold. Mannie gets nothing. Bernie could improve his payoff

by increasing his price but keeping it less than y , or Mannie could improve

his payoff by decreasing his price to a number between 100 and x.) Try to

consider all possibilities in an organized way.
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3.12.2 Price Competition 2. Same problem as the previous one, except

we add one more strategy for each player: charge 200, but advertise that if

the tablet is available cheaper at the other store, the customer can have it for

free. Show that now there are exactly two Nash equilibria: the previous one,

and a new one in which both players use the new strategy.

3.12.3 Two Stores on Main Street. Pleasantville has one street, Main

Street. The residents of the town are uniformly distributed along Main Street

between one end and the other.

Two companies are considering opening stores on Main Street. Each store

must choose a location along the street between one end (0) and the other

end (1). Each store will attract the fraction of the population that is closer

to it than to the other store. If both stores locate at the same point (this is

allowed), each will attract half the population. The payoff to each company

is the fraction of the population that it attracts.

Assume that the two companies choose their locations simultaneously.

The first company’s strategy set is the set of real numbers x between 0 and

1, and the second company’s strategy set is the set of real numbersy between

0 and 1. If x = y , each company’s payoff is 1
2 . If x < y , company 1’s payoff

is 1
2(x + y), and company 2’s payoff is 1− 1

2(x + y). If x > y , company 1’s

payoff is 1− 1
2(x +y), and company 2’s payoff is 1

2(x +y).
Show that there is exactly one Nash equilibrium, x = y = 1

2 .

Suggestion to help you get started: If x < y , then company 1 can improve

its payoff by changing to a new strategy x′ that is between x and y .

3.12.4 Three Stores on Main Street. Same problem as the previous one,

but now there are three companies. Each attracts the fraction of the popula-

tion that is closest to it. If two stores occupy the same location, they split the

fraction of the population that is closer to them than to the other store. If all

three stores occupy the same location, each attracts a third of the population.

Show that there is no Nash equilibrium.

3.12.5 The Spoils of War. Two countries each have one unit of wealth.

Each chooses a fraction of its wealth to devote to fighting the other. The

country that devotes a larger fraction of its wealth to fighting wins the fight.

Its payoff is the remaining wealth of both countries. The losing country’s

payoff is zero. If both countries devote the same fraction of their wealth to

fighting, the result is a tie. In this case, each country’s payoff is its remaining

wealth.

We consider this situation as a two-player game. The first country’s strat-

egy is a real number s, 0 � s � 1, that represents the fraction of its wealth it
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will devote to fighting. Similarly, the second country’s strategy is a real num-

ber t, 0 � t � 1, that represents the fraction of its wealth it will devote to

fighting. We assume the two countries choose their strategies simultaneously.

The payoffs are

• If s < t, π1(s, t) = 0 and π2(s, t) = 2− (s + t).
• If s > t, π1(s, t) = 2− (s + t) and π2(s, t) = 0.

• If s = t, π1(s, t) = 1− s and π2(s, t) = 1− t. Of course, 1− s = 1− t.

(1) Find all Nash equilibria with s < t. You may need to consider separately

the case t = 1.

(2) Find all Nash equilibria with s = t.

On both parts, for each strategy profile (s, t), you should explain why it is

or is not a Nash equilibrium.

3.12.6 Tit for Tat 1. There are two toy stores in town, Al’s and Bob’s. If

both charge high prices, both make $5K per week. If both charge low prices,

both make $3K per week. If one charges high prices and one charges low

prices, the one that charges high prices makes nothing, and the one that

charges low prices makes $6K per week.

At the start of each week, both stores independently set their prices for

the week.

Consider three possible strategies for each store:

• h: Always charge high prices.

• l: Always charge low prices.

• t: Tit for tat. Charge high prices the first week. The next week, do whatever

the other store did the previous week.

The following matrix shows the payoffs if each store follows its strategy for

two weeks:

Bob

h l t
h (10,10) (0,12) (10,10)

Al l (12,0) (6,6) (9,3)

t (10,10) (3,9) (10,10)

(1) Suppose the t strategy were not available to either player. Explain why

the remaining 2× 2 game would be a prisoner’s dilemma.

(2) Explain the (9,3) payoffs in the second row of the matrix.

(3) Which of Al’s strategies are strictly dominated?

(4) Which of Al’s strategies are weakly dominated?
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(5) Try to use iterated elimination of weakly dominated strategies to find a

Nash equilibrium. How far do you get?

(6) Use best response to find all Nash equilibria.

3.12.7 Battle of the Sexes with Money Burning. When there are several

Nash equilibria, only one of which can be found using iterated elimination of

weakly dominated strategies, is that Nash equilibrium in some sense the most

reasonable one? Here is an example to think about. Consider the Battle of the

Sexes game in Subsection 3.2.4, but change the payoff when Alice and Bob go

to the same event to 3 for the one who prefers that event:

Bob

concert wrestling

Alice concert (3,1) (0,0)
wrestling (0,0) (1,3)

Now suppose that Alice has the option of burning some money before she

leaves for the evening. If Alice does this, Bob will know, because of the smoke

in the sky. If Alice burns some money, her payoff is reduced by 1 no matter

what happens afterward.

Alice now has four strategies:

• bc: Burn money, then go to the concert.

• bw: Burn money, then go to the wrestling match.

• dc: Don’t burn money, then go to the concert.

• dw: Don’t burn money, then go to the wrestling match.

Bob also has four strategies: cc, cw, wc, and ww. The first letter indicates

where Bob will go if he’s sees the smoke; the second shows where he will go

if he does not.

The payoff matrix is

Bob

cc cw wc ww
bc (2,1) (2,1) (−1,0) (−1,0)

Alice bw (−1,0) (−1,0) (0,3) (0,3)
dc (3,1) (0,0) (3,1) (0,0)
dw (0,0) (1,3) (0,0) (1,3)

(1) Use iterated elimination of weakly dominated strategies to find a Nash

equilibrium.

(2) Use best response to find all Nash equilibria. (There are four.)
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In this game, iterated elimination of weakly dominated strategies leads to

Alice not burning money, then both go to the concert. Thus Alice gets her

preferred outcome just by having available the option to burn some money,

which is a ridiculous thing to do, and in fact she does not do it.

3.12.8 Should You Compromise? Which is better, to insist on doing

what you want, or to compromise? Here is a simple model. Two friends, Play-

ers 1 and 2, must choose among activities a1, a2, and a3. Player 1 prefers

a1, is neutral about a2, and dislikes a3. Player 2 is the reverse. Each player

independently chooses an activity and gets a payoff of v > 0 if she picks the

activity she prefers, 0 if she picks activity a2, and −v if she picks the activ-

ity she dislikes. In addition, each player incurs a cost c > 0 if both players

choose the same activity. However, if a player is the only one to choose her

activity, she incurs a higher cost rc, with r > 1. The factor r includes both

the greater financial cost that often obtains when you do something alone,

and the subjective cost of not having your friend with you.

The payoff matrix is therefore

Player 2

a1 a2 a3

a1 (v − c,−v − c) (v − rc,−rc) (v − rc, v − rc)
Player 1 a2 (−rc,−v − rc) (−c,−c) (−rc, v − rc)

a3 (−v − rc,−v − rc) (−v − rc,−rc) (−v − c, v − c)

(1) Suppose (r − 1)c < v . Find the Nash equilibria.

(2) Suppose 1
2(r − 1)c < v < (r − 1)c. Find the Nash equilibria. (There are

two. Which is best for each player?)

(3) Suppose v < 1
2(r − 1)c. Find the Nash equilibria. (There are three. For

each player, which is best and which is second best?)

(4) Interpret the results.

3.12.9 The Twin Daughters. A mother has twin daughters whose birth-

day is approaching. She tells each to ask for a whole number of dollars

between one and 100 (inclusive). If the total is 101 or less, each will get what

she asks for. If the total exceeds 101, the daughters get nothing. Show that

this game has exactly 100 Nash equilibria.

3.12.10 Avoiding Voters’ Wrath. The three members of a city council

are voting on whether to give themselves a raise. The raise passes if at least

two members vote for it. The value of the raise to each member is v > 0, but

each member who votes for it incurs a cost c, 0 < c < v , in voter resentment.
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The members of the city council are Alice, Bob, and Carol. Alice votes first;

then Bob, knowing Alice’s vote, votes; then Carol, knowing Alice’s and Bob’s

votes, votes.

(1) Draw the game tree. (There are eight terminal vertices.)

(2) Use backward induction to find a Nash equilibrium.

(3) Show that there is another Nash equilibrium in which Carol’s strategy is to

vote no, whatever Alice and Bob do. Suggestion: There are too many strate-

gies for you to use the normal form of the game: Alice has two strategies,

Bob has four, and Carol has sixteen. Instead, assume that Carol uses the

suggested strategy. Draw a 2×4 matrix that shows the payoffs to Alice and

Bob from each of their possible strategy choices, assuming that Carol uses

the suggested strategy. Find strategies for Alice and Bob that make a Nash

equilibrium for them, assuming that Carol uses the suggested strategy.

Once you’ve found these strategies, argue that Carol also cannot improve

her own payoff by changing to one of her other strategies.

3.12.11 Grocery Store and Gas Station 2. Consider the first version of

Grocery Store and Gas Station, Problem 1.14.6. Suppose the Grocery Store

and the Gas Station choose their prices simultaneously. Find the Nash equi-

librium.

3.12.12 Pollution, Health, and International Relations. Countries 1

and 2 both have coal-fired power plants, which pollute the air. If Country i
burns xi units of coal per year, its national income will increase by 3xi billion

dollars per year. One-fourth of the pollution produced in Country i crosses

the border to the other country. Thus the pollution level in Country 1 will be

p1 = 3
4x1 + 1

4x2, and the pollution level in Country 2 will be p2 = 1
4x1 + 3

4x2.

Annual health costs to Country i of a pollution level pi are p2
i billion dollars.

Hence if Countries 1 and 2 burn x1 and x2 units of coal per year, respectively,

their net gains to national income, in billions of dollars, are respectively,

π1(x1, x2) = 3x1 −
(3

4x1 + 1
4x2

)2,

π2(x1, x2) = 3x2 −
(1

4x1 + 3
4x2

)2.

We regard this as a two-player game. The countries choose x1 and x2; the

payoffs are π1 and π2.

(1) Suppose the two countries simultaneously choose the quantities of coal

to burn. Find the Nash equilibrium.

(2) Suppose Country 1 chooses x1 first, then Country 2 observes x1 and

chooses x2. Use backward induction to find Country 1’s best choice.
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3.12.13 Tobacco Market, continued. For the Tobacco Market example

of Section 3.5, show that there are no Nash equilibria in which q1+q2+q3 <
975,000, exactly one qi equals 600,000, and the other qis are strictly between

0 and 600,000. Suggestion: Suppose it is q1 that equals 600,000. Show that

(∂π1/∂q1)(600,000, q2, q3) < 0. This means that Farmer 1 can increase his

payoff by reducing the quantity he brings a little.

3.12.14 Braess’s Paradox. When a road network is crowded and travel

times are slow, is it possible that adding another road to the network will

make travel times even slower?

Consider the road network in Figure 3.2. Four thousand drivers want to go

from S (start) to F (finish). Road e has not been built, so they can follow route

ab or route cd. Roads b and c are modern, fast roads but roundabout. Travel

time on each is 45 minutes at any reasonable traffic level. Roads a and d are

short but easily overcrowded. If m drivers choose road a, travel time on it is
m

100 minutes. Thus if all 4,000 drivers were to choose road a, travel time on

it would be 40 minutes. Road d is the same.

S F

c t = 45

e

t = 0

d

a

t = n/100

t = m/100

b t = 45

Figure 3.2. Roads and travel times from S to F .

We regard this situation as a game with 4,000 players, the drivers. The

players simultaneously choose whether to follow route ab or route cd. If m
drivers choose ab and n choose cd, the firstm have travel time m

100 +45, and

the second n have travel time n
100 + 45. Of course, m+n = 4000. The payoff

to each driver is minus her travel time. (Thus shorter travel times give higher

payoffs.)

(1) Explain: there is a Nash equilibrium if 2000 drivers choose each route; if

different numbers of drivers choose each route, it is not a Nash equilib-

rium. Notice that total travel time for each driver at a Nash equilibrium is
2000
100 + 45 = 65 minutes.
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(2) Suppose road e is built as a modern road with travel time 0 at any rea-

sonable traffic level. (This is for simplicity. Any travel time under 5 min-

utes gives a similar result.) Now two more routes are available: aed and

ceb. Explain: the only Nash equilibrium is for every driver to choose aed.

Unfortunately, total travel time for each driver is now 80 minutes.

For more on Braess’s Paradox, see the Wikipedia page http://en.wikipedia

.org/wiki/Braess’s_paradox.

3.12.15 Sacred Places. Adam Smith compared established religions to

monopolies, and religious freedom to competitive free enterprise. However,

a third form of religious organization has occasionally existed in human his-

tory, in which religious power was vested in sacred places outside the domain

of any ruler. Examples include the Oracle of Delphi during the period of inde-

pendent Greek city-states, and the shrine at Shiloh at the time of the Book of

Judges, when the tribes of Israel were independent. How do we explain the

power of an entity such as the Oracle at Delphi, which the rulers of Greek

city-states called on to resolve the most difficult disputes? Its decisions were

respected even though it had no power to enforce them.

To model this situation, let us assume that there are N � 2 independent

rulers of small domains, each with a sacred site in his capital city, and M � 1

independent sacred sites outside the domain of any ruler. Each ruler can pub-

licly choose a sacred site at which to worship (his own, another ruler’s, or an

independent site), and exert efforts to get his citizens to share his allegiance.

Alternatively, a ruler may choose not to publicly select a sacred site and to

let his citizens do whatever they want.

Payoffs and costs are as follows:

• Each ruler who publicly chooses a sacred site and exerts efforts to get his

citizens to do the same incurs a cost of C > 0.

• Each ruler who chooses the site in his own capital receives a payoff of

I > 0 (I stands for “inside”).

• Each ruler who chooses a site outside his own capital receives a payoff of

O > 0 (O stands for “outside”).

• Each ruler who chooses a site outside his own capital pays a “tax” t > 0.

(This could represent, for example, gifts to the local temple, or spending

by the visiting ruler.) If the site he chooses is in another ruler’s capital,

this tax is income to the other ruler.

• Each ruler receives a payoff in prestige that depends on the popularity of

the site he chooses. The prestige he receives equals a number l > 0 times

the number of outside rulers who worship at that site.

http://en.wikipedia.org/wiki/Braess%E2%80%99s_paradox
http://en.wikipedia.org/wiki/Braess%E2%80%99s_paradox
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Therefore:

• If a ruler chooses the site in his own city, as do n other rulers, his payoff

is I − C + tn+ ln.

• If n other rulers choose the site in a ruler’s city, but that ruler chooses

a site elsewhere and is one of a total of m outside rulers to choose that

site, the ruler’s payoff is tn+O − C − t + lm.

We assume that I > O−t+l; that is, it is better to be the only ruler choosing

the site in your own city than to be the only outside ruler choosing another

site.

(1) Show that it is a Nash equilibrium for every ruler to choose the site in his

own city.

(2) Show that if N is sufficiently large, it is a Nash equilibrium for every ruler

to choose the site in one ruler’s city. (To show this, consider, the possi-

bility that an outside ruler switches to his own city. His payoff changes

from O−C− t+ l(N−1) to I−C . Is this an improvement? You could also

consider the possibility that an outside ruler switches to another city, and

the possibility that the inside ruler switches to another city, but these are

worse than the previous possibility, so you can ignore them.) A similar

argument shows that if N is sufficiently large, it is a Nash equilibrium for

every ruler to choose one independent site.

(3) Show that if C is large enough, it is a Nash equilibrium for every ruler to

let his citizens do as they please.

(4) Suppose N is even. Is it a Nash equilibrium for half the rulers to choose

one independent site and half to choose another? Explain.



Chapter 4

Games in extensive form with incomplete
information

In this chapter we return to games in extensive form, the subject of Chapter 1,

but this time the players’ knowledge of the game is incomplete. This may

be because there are events in the game that cannot be predicted, such as

the deal of a card or the outcome of a battle. Or it may be because there

is an important fact that a player does not know. The notion of probability

comes into play. We have waited until now to discuss these games because

they cannot always be treated by backward induction. It may be necessary to

convert the game into normal form and analyze that.

4.1 Utility functions and lotteries

In this section we introduce an idea needed in this chapter, the expected value

of a lottery. We will illustrate lotteries in the next section by considering why

people buy insurance. The explanation is related to utility functions and their

commonly assumed properties, so we discuss utility functions first.

4.1.1 Utility functions. A salary increase from $20,000 to $30,000 and

a salary increase from $220,000 to $230,000 are not equivalent in their effect

on your happiness. This is true even if you don’t have to pay taxes!

Let s be your salary and u(s) the utility of your salary to you. Two com-

monly assumed properties of u(s) are:

(1) u′(s) > 0 for all s (strictly increasing utility function). In other words,

more is better! If you have a strictly increasing utility function, either of

those salary jumps will make you happier.

(2) u′′(s) < 0 (strictly concave utility function). In other words, u′(s)
decreases as s increases. If your utility function is strictly concave in

addition to being strictly increasing, the first salary jump, from $20,000

to $30,000, will increase your happiness more than the second one, from

$220,000 to $230,000.
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4.1.2 Lotteries. A lottery hasnpossibleoutcomes.Theoutcomedepends

on chance. The ith outcome occurs with probability pi and yields a payoff xi,
which is a real number. We have all pi � 0 and p1+· · ·+pn = 1. The expected

value of the lottery is

E[x] = p1x1 + · · · + pnxn.

If the recipient of the payoff has a utility function u(x), its expected value is

E[u(x)] = p1u(x1)+ · · · + pnu(xn).

The expected utility principle states that the lottery with the higher expected

utility is preferred. For some discussion of the conditions under which

this principle is true, see the Wikipedia page http://en.wikipedia.org/wiki/

Expected_utility_hypothesis.

4.2 Buying Fire Insurance

This example is a decision problem, not a game.

You have a warehouse worth $1.2 million. The probability of fire in any

given year is 5%. Fire insurance costs $100,000 per year. Should you buy it?

To answer the question, we compare the two lotteries shown in Figure 4.1.

Without fire insurance the expected payoff is

E[x] = .05×−1.2M+ .95× 0 = −60K.

With fire insurance the expected payoff is

E[x] = .05×−100K+ .95×−100K = −100K.

Don’t buy the insurance.

p = .05 p = .95 p = .05 p = .95

without insurance with insurance

fire no fire fire no fire

–1.2M 0 –100K –100K

Figure 4.1. Should you buy the insurance?

However, people typically have concave utility functions, as we saw in Sec-

tion 4.1. Suppose your utility function is u(x) = ln(1.3M + x). (This func-

tion is just lnx shifted 1.3M to the left, so it is continuous on the interval

http://en.wikipedia.org/wiki/Expected_utility_hypothesis
http://en.wikipedia.org/wiki/Expected_utility_hypothesis
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−1.3M < x <∞.) Now, without fire insurance the expected utility payoff is

E[u(x)] = .05 ln(.1M)+ .95 ln(1.3M) = 13.95.

With fire insurance, the expected utility payoff is

E[u(x)] = .05 ln(1.2M)+ .95 ln(1.2M) = 14.00.

Buy the insurance.

With a strictly increasing, strictly concave utility function, as your gain

increases, your utility rises more and more slowly. By the same token, as

your gain decreases, or your loss increases, your utility falls more and more

quickly! In other words, big gains are good, but big losses are terrible. This is

a reason that people buy insurance against the possibility of big losses.

4.3 Games in extensive form with incomplete information

To treat games in which players have incomplete information, we add two

ingredients to our allowed models of games in extensive form:

• Certain nodes may be assigned not to a player but to Nature. Nature’s

moves are chosen by chance. Therefore, if c is a node assigned to Nature,

each move that starts at c will be assigned a probability 0 � p � 1, and

these probabilities will sum to 1.

• The nodes assigned to a player may be partitioned into information sets. If

several of a player’s nodes are in the same information set, then the player

does not know which of these nodes represents the true state of the game.

The sets of available moves at the different nodes of an information set

must be identical.

Each path in the game tree is assigned a probability: probability 1 if the path

does not include any of Nature’s moves, and the product of the probabilities

of Nature’s moves along the path if it does.

A player’s strategy is required to assign the same move to every node of

an information set.

A strategy profile σ determines a collection of complete paths C(σ)
through the game tree. The collection C(σ)may include more than one com-

plete path. To determine the expected payoff to a player of a strategy profile,

one sums the payoffs of the complete paths in the collection C(σ), each mul-

tiplied by the probability of the path.

A node assigned to Nature may represent a random event, such as the deal

of a card, or it may represent a point at which a player does not know what

the situation is but can assign probabilities to the different possibilities. In
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either case, one player may have information about Nature’s moves that other

players lack. For example, in a card game, Nature decides the hand you are

dealt. You know it, but other players do not.

Backward induction often does not work in games in extensive form with

incomplete information. The difficulty comes when you must decide on a

move at an information set that includes more than one node. Usually the

payoffs for the available moves depend on which node you are truly at, but

you don’t know that.

If the only nodes that precede the information set in question are Nature’s,

then you can calculate the probability that you are at each node and use

expected value to make a choice. In our treatment of the Cuban Missile Crisis

in Section 4.6, we encounter information sets of this type. In contrast, if,

preceding the information set in question, there are nodes at which other

players made a choice, then you do not know the probability that you are

at each node. Games with information sets of this type can be treated by

converting them to games in normal form. The game Buying a Used Car in

the next section is an example.

4.4 Buying a Used Car

A customer is interested in a used car. She asks the salesman if it is worth

the price. The salesman wants to sell the car. He also wants a reputation for

telling the truth. How does the salesman respond? And should the customer

believe his response?

We assume that for cars of the type being sold, the probability the car is

worth the price (i.e., is a good car) is p, so the probability it is not worth the

price (i.e., is a bad car) is 1− p. When we complete our analysis we will con-

sider whether the customer or salesman needs to know these probabilities.

However, the salesman knows whether this particular car is good or bad. The

customer does not.

The payoffs are:

• The salesman gets 2 points if he sells the car and 1 point if he tells the

truth.

• The customer gets 1 point if she correctly figures out whether the car is

good or bad.

We model this situation as a game in extensive form with incomplete infor-

mation. Nature moves first and decides whether the car is good or bad. Then

the salesman tells the customer whether it is good or bad. Then the customer

decides whether it is good or bad, and on that basis decides whether to buy
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C CCC

g

gggg

g

b bb

b

b

b g

b

(3, 1) (1, 1)(3, 0)(0, 1)(2, 0)(0, 0)(2, 1)(1, 0)

probability = p probability = 1 – p

Figure 4.2. Buying a used car. The salesman’s payoffs are given first.

it. See Figure 4.2. Notice that the customer’s moves are divided into two infor-

mation sets, reflecting the fact that when the salesman says the car is good

or bad, the customer does not know whether that is true.

This game is an example of a game in extensive form with incomplete

information in which backward induction cannot be used. For example, what

should the customer do if the salesman says the car is good? The correspond-

ing information set contains two nodes: at one of them, the car is actually

good, but at the other it is bad. The customer’s best move depends on which

is the case, but she doesn’t know which is the case. More importantly, she

doesn’t know the probabilities, because there are nodes preceding the nodes

in this information set at which the salesman made a choice of what to say. If

the salesperson speaks randomly, then when he says the car is good, it really

is good with probability p. However, there is no reason to believe that the

salesman speaks randomly.

We therefore analyze this game by converting it to a game in normal form.

The salesman has four strategies:

• gg: If the car is good, say it is good; if the car is bad, say it is good. (Always

say the car is good.)

• gb: If the car is good, say it is good; if the car is bad, say it is bad. (Always

tell the truth.)

• bg: If the car is good, say it is bad; if the car is bad, say it is good. (Always

lie.)

• bb: If the car is good, say it is bad; if the car is bad, say it is bad. (Always

say the car is bad.)

The customer must make the same move at two nodes that are in the same

information set. Thus she only has four strategies:

• gg: If the salesman says the car is good, believe it is good; if the salesman

says the car is bad, believe it is good. (Always believe the car is good.)
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• gb: If the salesman says the car is good, believe it is good; if the salesman

says the car is bad, believe it is bad. (Always believe the salesman.)

• bg: If the salesman says the car is good, believe it is bad; if the salesman

says the car is bad, believe it is good. (Never believe the salesman.)

• bb: If the salesman says the car is good, believe it is bad; if the salesman

says the car is bad, believe it is bad. (Always believe the car is bad.)

Consider the salesman to be Player 1 and the customer to be Player 2.

In this game, each strategy profile is associated with two paths through the

game tree. For example, consider the strategy profile (gg, bg): the salesman

always says the car is good; and the customer never believes the salesman.

This profile is associated with the two paths ggb and bgb:

• ggb: Nature decides the car is good, the salesman says the car is good,

the customer does not believe him and decides it is bad (and hence does

not buy the car): Payoffs: 1 to the salesman for telling the truth, 0 to the

customer for miscalculating.

• bgb: Nature decides the car is bad, the salesman says the car is good,

the customer does not believe him and decides it is bad (and hence

does not buy the car): Payoffs: 0 to the salesman (he lied and still

didn’t sell the car), 1 to the customer (for correctly deciding the car was

bad).

The first path through the tree is assigned probability p (the probability of

a good car), the second is assigned probability 1 − p (the probability of a

bad car). Thus the ordered pair of payoffs assigned to the strategy profile

(gg, bg) is p(1,0)+ (1− p)(0,1) = (p,1− p).
In this game, a good way to derive the payoff matrix is to separately write

down the payoff matrix when Nature chooses a good car and when Nature

chooses a bad car. The payoff matrix for the game is then p times the first

matrix plus 1− p times the second.

If the car is good, the payoffs are

Customer

gg gb bg bb
gg (3,1) (3,1) (1,0) (1,0)

Salesman gb (3,1) (3,1) (1,0) (1,0)
bg (2,1) (0,0) (2,1) (0,0)
bb (2,1) (0,0) (2,1) (0,0)
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If the car is bad, the payoffs are

Customer

gg gb bg bb
gg (2,0) (2,0) (0,1) (0,1)

Salesman gb (3,0) (1,1) (3,0) (1,1)
bg (2,0) (2,0) (0,1) (0,1)
bb (3,0) (1,1) (3,0) (1,1)

The payoff matrix for the game is p times the first matrix plus 1 − p times

the second:

Customer

gg gb bg bb
gg (2+ p,p) (2+ p,p) (p,1− p) (p,1− p)

Salesman gb (3, p) (1+ 2p,1) (3− 2p,0) (1,1− p)
bg (2, p) (2− 2p,0) (2p,1) (0,1− p)
bb (3− p,p) (1− p,1− p) (3− p,p) (1− p,1− p)

Let us assume p > 1
2 , so the car is usually good. We look for Nash equi-

libria using best response, so we draw a box around the highest first entry

in each column and the highest second entry in each row (see Section 3.9).

The assumption p > 1
2 is needed to find the Customer’s best response to the

Salesman’s strategies gg and bb.

Customer

gg gb bg bb
gg (2+ p, p ) (2+ p , p ) (p,1− p) (p,1− p)

Salesman gb (3 , p) (1+ 2p, 1 ) (3− 2p,0) (1 ,1− p)
bg (2, p) (2− 2p,0) (2p, 1 ) (0,1− p)
bb (3− p, p ) (1− p,1− p) (3− p , p ) (1− p,1− p)

There are two Nash equilibria, (gg,gb) and (bb, bg). At the first equilibrium,

the salesman always says the car is good, and the customer always believes

the salesman. At the second, the salesman always says the car is bad, and

the customer always assumes the salesman is lying. The two Nash equilibria

give the same payoff to the customer, but the first gives a better payoff to the

salesman.

Now that we have completed the analysis, we see that to find the Nash

equilibrium of the game, the salesman and customer only need to know that

p > 1
2 ; they do not need any more detailed knowledge.
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4.5 The Travails of Boss Gorilla 1

Boss Gorilla is boss of a Gorilla Band. Other gorillas are out there who might

challenge him. When a visiting gorilla appears, it can do one of two things:

• Challenge Boss Gorilla.

• Leave.

If a visiting gorilla challenges Boss Gorilla, Boss Gorilla has two choices:

• Acquiesce. In this case the visiting gorilla joins the Gorilla Band and

becomes co-boss with Boss Gorilla.

• Fight.

There are two types of visiting gorillas: Tough and Weak. The Tough ones will

win a fight with Boss Gorilla. The Weak ones will lose.

Boss Gorilla believes that the probability that a visiting gorilla is Tough is

p, with 0 < p < 1. The probability that he is Weak is 1− p. A visiting gorilla

knows which type he is, but Boss Gorilla does not.

We view this as a game with three players: Player 1, Tough Gorilla (T );

Player 2, Weak Gorilla (W ); and Player 3, Boss Gorilla (B). Figure 4.3 illustrates

the situation and gives the payoffs.

N

T W

c cl l

f fa a

B B

Visiting Gorilla Tough
probability p

Visiting Gorilla Weak
probability 1 – p

(6, 0)(6, 0)

(–1, 5) (3, 3) (5, –1) (3, 3)

Figure 4.3. T is Tough Visiting Gorilla,W is Weak Visiting Gorilla, and B is Boss Gorilla.
Boss Gorilla’s payoffs are given first, the visiting gorilla’s payoffs are given second. If
a visiting gorilla leaves, payoffs are 0 to him and 6 to Boss Gorilla. This is the value
of being boss of the Gorilla Band. Therefore, if a visiting gorilla challenges and Boss
Gorilla acquiesces, payoffs are 3 to each. If the gorillas fight, payoffs are −1 to the
loser (for injuries sustained) and 5 to the winner (6 for getting to be boss of the Gorilla
Band, minus 1 for injuries sustained). The dashed line connects nodes in the same
information set: if a visiting gorilla challenges, Boss Gorilla does not know whether the
visitor is Tough or Weak.

This game is similar to Buying a Used Car in that backward induction can-

not be used. If the visiting gorilla challenges, Boss Gorilla does not know
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whether the visitor is Tough or Weak, or even what the probabilities are,

since choices were made previously. Hence we should convert to a game in

normal form. Tough Gorilla has two strategies: challenge (c) or leave (l). Weak

Gorilla has the same two strategies. Boss Gorilla has two strategies: fight if

challenged (f ) or acquiesce if challenged (a).

Although this game is most naturally conceived as one with three players,

it can be successfully analyzed by viewing it as a game with two players,

Visiting Gorilla and Boss Gorilla. In this way of looking at the game, Nature

first decides the type of Visiting Gorilla, Tough or Weak, and then a two-

player game is played between Visiting Gorilla and Boss Gorilla. The game

tree for this two-player game is exactly that shown in Figure 4.3, except that

the nodes labeled T (Tough Gorilla) and W (Weak Gorilla) should both be

labeled V (Visiting Gorilla). Visiting Gorilla is assumed to know his own type,

so he can use different strategies in the two cases.

Thus, when the two-player game is converted to normal form, Visiting

Gorilla has four strategies:

• cc: always challenge.

• cl: challenge if Tough, leave if Weak.

• lc: leave if Tough, challenge if Weak.

• ll: always leave.

Boss Gorilla, however, does not know the type of Visiting Gorilla, so he just

has two strategies: fight if challenged (f ) or acquiesce if challenged (a).

Best responses in the three-player game are related to best responses in

the two-player game. For example, if Boss Gorilla uses the strategy fight if

challenged, in the three player-game the best response of Tough Gorilla is to

challenge (c) and the best response of Weak Gorilla is to leave (l). Therefore

in the two-player game the best response of Visiting Gorilla is the strategy cl.
Similarly, suppose in the three-player game, Tough Gorilla uses c and Vis-

iting Gorilla uses l. Boss Gorilla’s best response will also be his his best

response to the strategy cl in the two-player game.

It follows that Nash equilibria of the two-player game correspond to Nash

equilibria of the three-player game, so the simpler two-player game can be

analyzed instead.

The payoff matrix for the two-player game can be calculated like that in

Buying a Used Car (Section 4.4). If Visiting Gorilla is Tough, the payoffs are

Visiting Gorilla

cc cl lc ll
Boss Gorilla f (−1,5) (−1,5) (6,0) (6,0)

a (3,3) (3,3) (6,0) (6,0)
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If Visiting Gorilla is Weak, the payoffs are

Visiting Gorilla

cc cl lc ll
Boss f (5,−1) (6,0) (5,−1) (6,0)
Gorilla a (3,3) (6,0) (3,3) (6,0)

The payoff matrix for the two-player game is p times the first matrix plus

1− p times the second:

Visiting Gorilla

cc cl lc ll
Boss f (5− 6p,6p − 1) (6− 7p,5p) (5+ p,p − 1) (6,0)
Gorilla a (3,3) (6− 3p,3p) (3+ 3p,3− 3p) (6,0)

Boss Gorilla’s best responses to cl, lc, and ll are the same for any p with

0 < p < 1. Visiting Gorilla’s best responses to f and a are also the same for

any p with 0 < p < 1. These best responses are indicated in the following

table.

Visiting Gorilla

cc cl lc ll
Boss f (5− 6p,6p − 1) (6− 7p, 5p ) (5+ p ,p − 1) (6 ,0)
Gorilla a (3, 3 ) (6− 3p ,3p) (3+ 3p,3− 3p) (6 ,0)

However, Boss Gorilla’s best response to cc depends on the value of p:

we have 3 > 5 − 6p if and only if 6p > 2; that is, p > 1
3 . Hence for p > 1

3 ,

Boss Gorilla’s best response to cc is a, so the two-player game has the Nash

equilibrium (a, cc).
In the corresponding Nash equilibrium of the three-player game, both vis-

iting gorillas challenge, and Boss Gorilla acquiesces. In other words, when the

probability of a Tough Visiting Gorilla is high enough (p > 1
3 ), Boss Gorilla

cannot risk fighting; Weak Visiting Gorilla takes advantage of the situation

by always challenging.

We treat the case p < 1
3 in the next chapter (Problem 5.12.2).

We could have made the analysis a little easier by noticing early that

Tough Visiting Gorilla should always challenge; challenge gives Tough Vis-

iting Gorilla a payoff of at least 3, whereas leave gives Tough Visiting Gorilla

a payoff of 0. Thus we could eliminate from the beginning Visiting Gorilla’s

two strategies lc and ll, which use leave when Visiting Gorilla is Tough. We

would only have to deal with 2× 2 matrices instead of 2× 4 matrices.

Another way to explain why Visiting Gorilla’s two strategies lc and ll can

be eliminated is that each is strictly dominated: cc strictly dominates lc, and
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cl strictly dominates ll. You can easily check this from the payoff matrix

above, but it is more enlightening to realize the relation between the fact

that these strategies are dominated and the fact that Tough Visiting Gorilla

should always challenge.

Let’s work out in detail why cc strictly dominates lc, using the fact that

Tough Visiting Gorilla should always challenge:

• cc uses c and lc uses l when Visiting Gorilla is Strong, so in this case

cc gives a better payoff to Visiting Gorilla than lc against either of Boss

Gorilla’s strategies. Against f , for example, cc gives 5 and lc gives 0.

• cc and lc both use the same choice c when Visiting Gorilla is Weak, so in

this case cc and lc give Visiting Gorilla the same payoff against either of

Boss Gorilla’s strategies. Against f , for example, both give −1.

• Against one of Boss Gorilla’s strategies, the total payoff to Visiting Gorilla

from cc or lc is a weighted average of his payoffs when Strong and Weak.

Since cc gives a better payoff than lc when Visiting Gorilla is Strong and

the same payoff when Visiting Gorilla is Weak, the weighted average payoff

from ccmust be greater than the weighted average payoff from lc. Against

f , for example, Visiting Gorilla’s weighted average payoff from cc is p·5+
(1−p)·(−1), and his weighted average payoff from lc isp·0+(1−p)·(−1).
Since 5 > 0 and 0 < p < 1, the first is greater.

We conclude that Visiting Gorilla’s strategy cc strictly dominates his strategy

lc.

A similar argument explains why cl strictly dominates ll.
In Section 4.6 we encounter another situation in which a player is unsure

of the type of another player but has beliefs about the probabilities. Again we

model this situation by assuming a move by Nature that determines the type

of the opponent, and we will assume that whatever the type, the opponent

wants to maximize it’s own payoffs.

4.6 Cuban Missile Crisis

You may want to compare our account of the Cuban Missile Crisis to the

Wikipedia article http://en.wikipedia.org/wiki/Cuban_missile_crisis.

In late summer of 1962, the Soviet Union began to place about 40 nuclear-

armed medium- and intermediate-range ballistic missiles in Cuba. These mis-

siles could target most of the eastern United States. The missile sites were

guarded by surface-to-air missiles. There were also bombers.

A U.S. spy plane discovered the missiles on October 14, 1962. In the view of

the U.S. government, the missiles posed several dangers: (1) they were a direct

military threat to the United States, and could perhaps be used to compel U.S.

http://en.wikipedia.org/wiki/Cuban_missile_crisis
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withdrawal from contested territories, such as Berlin; (2) they promised to

deter any possible U.S. attack against Cuba; and (3) their successful placement

in Cuba would be seen by the world as a Soviet victory and a U.S. defeat.

President John F. Kennedy and his associates at first considered an air

strike against the missiles sites. Military leaders argued for a massive air

strike against airfields and other targets as well. The civilian leaders decided

these ideas were too risky and settled on a naval blockade.

The blockade went into effect October 24. Several apparently civilian

freighters were allowed through with minimal inspection. Other questionable

Soviet ships were heading toward Cuba, however, and the president and his

associates feared that a confrontation with them could get out of hand. The

Soviet premier, Nikita Khrushchev, indicated he might be willing to remove

the missiles from Cuba if the United States removed its own missiles from

Turkey. The United States had been planning to remove these missiles any-

way and to substitute missiles on nuclear submarines but did not want to

appear to be giving in to pressure or to make the Turks feel that the United

States would not protect them.

On October 26 the United States discovered that the Soviets had also

installed tactical nuclear weapons in Cuba that could be used against invad-

ing troops. On October 27 a U.S. spy plane was shot down over Cuba, and

Cuban antiaircraft defenses fired on other U.S. aircraft. The U.S. Air Force

commander, General Curtis Lemay, sent U.S. nuclear-armed bombers toward

the Soviet Union, past their normal turnaround points.

On October 28 the crisis suddenly ended. Khrushchev announced that

the missiles and other nuclear weapons in Cuba would be dismantled and

brought home. Negotiations over the next month resulted in the withdrawal

of the Soviet bombers as well, and, in a semisecret agreement, the removal

of U.S. missiles from Turkey.

Today more is known about Soviet intentions in the crisis than was known

to the U.S. government at the time. On the Soviet side, as on the U.S. side, there

was considerable division over what to do. Apparently Khrushchev made the

decision on his own to install missiles in Cuba; some of his advisors thought

it reckless. He thought Kennedy would accept the missiles as a fait accom-

pli, and he planned to issue an ultimatum to resolve the Berlin issue, using

the missiles as a threat. The Soviet Presidium apparently decided as early as

October 22 that it would back down rather than allow the crisis to lead to war.

Two years later it removed Khrushchev from power. One if its main charges

against him was the disastrous Cuban adventure.

On both sides it was not certain that decisions taken by leaders would

be carried out as they intended. On the U.S. side, civilian leaders proposed

methods of carrying out the blockade, but the U.S. Navy mostly followed its
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standard procedures. General LeMay, the inspiration for General Jack D. Rip-

per in the 1963 movie Dr. Strangelove, acted on his own in sending bombers

toward the Soviet Union. He regarded the end of the crisis as a U.S. defeat:

“We lost! We ought to just go in there today and knock ’em off.” On the Soviet

side, the decision to shoot down a U.S. spy plane on October 27 was taken by

the deputy to the Soviet general in charge while the general was away from

his desk. The Cubans’ decision to fire on U.S. aircraft was taken by the Cuban

president Fidel Castro over objections from the Soviet ambassador.

We consider several models of the Cuban Missile Crisis, beginning at the

point where the missiles were discovered. A very simple model captures the

essence of what happened: the United States can either accept the missiles or

threaten war to remove them; if war is threatened, the Soviets can either defy

the United States, which would lead to war, or can back down and remove the

missiles. Backward induction should tell us what the two parties will do.

U.S.

defy back down

accept

Soviets

threaten

(–2, 2)

(1, –2)(–10, –10)

Figure 4.4. A simple model of the Cuban Missile Crisis.
Payoffs to the United States are given first.

If the United States accepts the Soviet missiles in Cuba, we take the pay-

offs to be −2 to the United States and 2 to the Soviets. If the United States

threatens war and the Soviets back down, we take the payoffs to be 1 to the

United States and−2 to the Soviets. If the United States threatens war and the

Soviets do not back down, we take the payoffs to be −10 to both the United

States and the Soviets. See Figure 4.4.

We conclude that if the United States threatens war, the Soviets will back

down. Using backward induction, the United States decides to threaten war

rather than accept the Soviet missiles. The Soviets then back down rather

than go to war.

This is in fact what happened. However, the Soviets could do this analysis,

too, so why did they place the missiles in Cuba to begin with?

The payoffs in Figure 4.4 assume a rather reasonable Soviet leadership. If

the Soviet leadership regarded backing down in the face of a U.S. threat as

totally unacceptable, and was less fearful of nuclear war, we get a situation

like that in Figure 4.5.
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U.S.

defy back down

accept

Soviets

threaten

(–2, 2)

(1, –8)(–10, –6)

Figure 4.5. Cuban Missile Crisis with hardline Soviets.
Payoffs to the United States are given first.

In this case, if the United States threatens war, the Soviets will not back

down. Using backward induction, the United States will decide to accept the

missiles.

In fact the U.S. government was not sure whether the Soviets would turn

out to be reasonable or hardline. The evidence was conflicting; for example,

an accommodating letter from Khrushchev on October 24 was followed by

the shooting down of a U.S. plane on October 26. In addition, the United

States understood in general terms that the Soviet leaders were divided. Fig-

ure 4.6 shows the situation if the United States is unsure whether the Soviet

leadership is reasonable, as in Figure 4.4, or hardline, as in Figure 4.5.

Nature

U.S. U.S.
threaten

defydefy

acceptthreatenaccept

Soviets soft
probability = 1 – p

Soviets hard-line
probability = p

Soviets Soviets
back down back down (–2, 2)(–2, 2)

(1, –2)(–10, –10)(1, –8)(–10, –6)

Figure 4.6. Cuban Missile Crisis with unknown Soviet leadership.
Payoffs to the United States are given first.

In the first move of the game, Nature decides, with certain probabilities,

whether the Soviets are hardline or reasonable. The Soviets know which they

are, but the United States does not. Therefore, when the United States makes

its move, which is the first move in the game by a player, both its nodes are

in the same information set; this is indicated by a dashed line in Figure 4.6.

The United States must make the same move (threaten war or accept the

missiles) at both of these nodes. However, if the United States threatens war,

the Soviets, knowing who they are, will reply differently in the two cases.
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This game differs from Buying a Used Car and Travails of Boss Gorilla

in that the nodes toward the bottom of the tree are not in information sets

containing more than one node. We can therefore at least start to analyze it by

backward induction. In fact, the one information set that contains more than

one move is preceded only by a move of Nature’s. This kind of information

set allows backward induction taking into account the probabilities.

We must look first at the two nodes where the Soviets move, following a U.S.

threat of war. (These are the only nodes that are followed only by terminal

vertices.) If the Soviets are hardline, they will choose to defy, with payoffs

(−10,−6). If the Soviets are reasonable, they will choose to back down, with

payoffs (1,−2).
Proceeding by backward induction, we look next at the two nodes where

the United States moves, which are in the same information set. In this case,

the probability that we are at each node in the information set is clear, so we

can describe the payoffs of our choices using expected value.

If the United States threatens war, the payoffs are

p(−10,−6)+ (1− p)(1,−2) = (1− 11p,−2− 4p).

If the United States accepts the Soviet missiles, the payoffs are

p(−2,2)+ (1− p)(−2,2) = (−2,2).

The United States will threaten war provided 1− 11p > −2, that is, provided

p < 3
11 . If p > 3

11 , then the United States will accept the missiles.

President Kennedy apparently considered the probability of an unreason-

able Soviet leadership to be somewhere between 1
3 and 1

2 . Even 1
3 is greater

than 3
11 . Now the question is different from the one we posed after our first

model: why didn’t the United States accept the missiles?

In fact, the United States did not exactly threaten the Soviets with war if

they did not remove their missiles. Instead it took actions, including a naval

blockade, increased overflights of Cuba, and other military preparations, that

increased the chance of war, even if war was not the U.S. intention. Both sides

recognized that commanders on the scene might take actions the leadership

did not intend, and events might spiral out of control. As we have seen, in

the course of the crisis, dangerous decisions were in fact taken that leaders

had trouble interpreting and bringing under control.

Brinkmanship (Wikipedia article: http://en.wikipedia.org/wiki/Brinkman

ship) typically refers to the creation of a probabilistic danger to win a better

outcome. On the one hand, it requires a great enough probability of disaster

to persuade a reasonable opponent to concede rather than face the possi-

bility that the dangerous situation will get out of hand. On the other hand,

http://en.wikipedia.org/wiki/Brinkmanship
http://en.wikipedia.org/wiki/Brinkmanship
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it requires a low probability of the nightmare outcome: the dangerous situ-

ation gets out of hand, and the opponent turns out to be a hardliner who

will not back down. The term dates to the 1950s. It is generally believed that

the United States successfully practiced brinkmanship in the Cuban Missile

Crisis. Figure 4.7 is a brinkmanship model of the Cuban Missile Crisis.

Nature

U.S. U.S.

create danger

defydefy

acceptcreate dangeraccept

Soviets soft
probability = 1 – p

Soviets hard-line
probability = p

war
probability = 1 –  q

Soviets Soviets
back down back down

(–2, 2)(–2, 2)

(1, –8)

(–2, 2)

(1, –2)

(–10, –10)(–2, 2)(–10, –6)

no war
probability = qwar

probability = 1 –  q
no war

probability = q

Nature Nature

Figure 4.7. Cuban Missile Crisis with brinkmanship.
Payoffs to the United States are given first.

The change from Figure 4.6 is that, instead of threatening war, the United

States now creates a dangerous situation by its military moves. The Soviets

can defy or back down. If they defy, Nature decides whether there is war (with

probability q) or no war (with probability 1 − q). If there is war, the payoffs

are what they were in Figure 4.6 if the Soviets defied the U.S. threat. If there

is no war, then the missiles remain; we take the payoffs to be the same as

those when the United States accepts the Soviet missiles to begin with.

The game in Figure 4.7 can be analyzed by backward induction. Nature’s

last move results in the following expected payoffs if the Soviets defy the

United States:

• If Soviets are hardline: q(−10,−6)+ (1− q)(−2,2) = (−2− 8q,2− 8q).
• If Soviets are reasonable: q(−10,−10)+(1−q)(−2,2) = (−2−8q,2−12q).

Backing up one step, we find

• If the Soviets are hardline and the United States creates a dangerous situ-

ation, the Soviets will defy if 2− 8q > −8. Since this inequality is true for

all q between 0 and 1, the Soviets will certainly defy.

• If the Soviets are reasonable and the United States creates a dangerous

situation, the Soviets will defy if 2− 12q > −2, that is, if q < 1
3 . If q > 1

3 ,

the Soviets will back down.



104 • Chapter 4

Now we back up one more step and ask whether the United States should

create a dangerous situation or accept the Soviet missiles. If the United

States accepts the Soviet missiles, the payoffs are of course p(−2,2) + (1 −
p)(−2,2) = (−2,2). If the United States creates a dangerous situation, the

payoffs depend on the probability of war q associated with the situation that

the United States creates. The payoffs are

• If q < 1
3 : p(−2− 8q,2− 8q)+ (1− p)(−2− 8q,2− 12q) = (−2− 8q,2−

12q + 4pq).
• If q > 1

3 : p(−2−8q,2−8q)+(1−p)(1,−2) = (1−3p−8pq,−2+4p−8pq).

Let’s consider both cases.

• The payoff to the United States from creating a dangerous situation with

q < 1
3 is −2 − 8q. The United States is better off simply accepting with

missiles, which yields a payoff of −2. The probability of war is too low

to induce even reasonable Soviets to back down. Making such a threat

increases the danger to the United States without any offsetting benefit.

• The payoff to the United States from creating a dangerous situation with

q > 1
3 is 1 − 3p − 8pq. The United States benefits from creating such a

situation if 1− 3p − 8pq > −2, that is, if

q <
3(1− p)

8p
.

Therefore, if 1
3 < 3(1− p)/8p, the United States can benefit by creating a

dangerous situation in which the probability of war q is any number between
1
3 and 3(1− p)/8p.

Figure 4.8 helps in interpreting this result. If 0 < p < 3
11 , any q between 1

3

and 1 gives the United States a better result than accepting the missiles. Of

course, we already knew that for p in this range, a simple threat of war (equiv-

alent to q = 1) would give the United States a better result than accepting the

missiles. More interesting is the interval 3
11 < p <

9
17 , which includes the U.S.

government’s guess as to the true value of p. For each p in this interval there

is a corresponding interval 1
3 < q < 3(1− p)/8p that gives the United States

a better result than accepting the missiles.

4.7 Problems

4.7.1 Survivor Strategy. This problem is related to Section 4.2: you are

asked to figure out which of two courses of action has the higher expected

payoff.

At the end of season 1 of the television show Survivor, there were three

contestants left on the island: Rudy, Kelly, and Rich. They were engaged in
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q

p

1

13/11 9/17

1/3

q = 3(1 – p)/8p

Figure 4.8. Where brinkmanship is helpful.

an “immunity challenge,” in this case a stamina contest. Each contestant had

to stand on an awkward support with one hand on a central pole. If the con-

testant’s hand lost contact with the pole, even for an instant, the contestant

was out. Once two contestants were out, the third contestant was the winner

of the immunity challenge.

The winner of the immunity challenge would then choose one of the other

two contestants to kick off the island.

Once there were only two contestants remaining on the island, a jury con-

sisting of seven contestants who had recently been voted off the island would

decide which of the two was the winner. The winner would get $1 million.

We pick up the story when the immunity contest has been going for 11
2

hours. Rudy, Kelly, and Rich are still touching the pole. Rich has been thinking

about the following considerations (as he later explained to the camera):

• Rich and Kelly are strong young people. Rudy is much older. In addition,

Kelly has become known for her stamina. Rich estimates that the proba-

bility of each winning the contest is Rich .45, Kelly .50, and Rudy .05. Rich

further estimates that if he is the first contestant to lose touch with the

pole, Kelly’s probability of winning would be .9, and Rudy’s would be .1.

• Rudy is much more popular with the jury than either Rich or Kelly. Rich

figures that if Rudy is one of the last two contestants on the island, the

jury is certain to pick Rudy as the winner.

• Rich and Kelly are equally popular with the jurors. However, if Rich or

Kelly wins the immunity contest and kicks the popular Rudy off the island,

some jurors might be made unhappy. Rich estimates that if he and Kelly

are the last contestants on the island, but he has kicked off Rudy, there is

a .4 chance the jury would pick him and a .6 chance it would pick Kelly. In
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contrast, if he and Kelly are the last contestants on the island, and Kelly

has kicked off Rudy, there is a .6 chance the jury would pick him and a .4

chance it would pick Kelly.

Rich is thinking about stepping away from the pole, thereby losing the immu-

nity contest on purpose. Should he do it?

Make sure your instructor can follow your reasoning.

Figure 4.9 illustrates the situation.

Figure 4.9. Survivor strategy.

(If you want to know what actually happened, you can certainly find the

episode to watch!)

4.7.2 How to Control Crime. This problem treats games in normal form

like those in Chapter 3. However, the payoffs are expected payoffs, as intro-

duced in this chapter.

In a town with no crime, a resident is considering committing a crime. If

he does, the police will devote all their resources to investigating it. If the

criminal is not caught, the crime will produce a benefit b to the criminal.

If he is caught, he will suffer a punishment with value f . The probability

of being caught is .1. Thus the criminal’s expected gain from the crime is

.9b − .1f , whereas his expected gain from not committing the crime is 0. If

f > 9b, the resident will not commit the crime. In other words, if punishment

is sufficiently high (f > 9b), then current police resources (which make the

probability of getting caught .1) are sufficient to deter crime.

(1) Now suppose two residents, Al and Bob, are considering committing

crimes that if successful will produce a benefit b to the criminal. If both

Al and Bob commit crimes, the police will only be able to devote half their

resources to investigating each crime. Thus each criminal will have a prob-

ability .05 of being caught. If Al and Bob decide simultaneously whether
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to commit a crime, we have a two-player game in normal form. Each player

has two strategies: c (crime) and n (no crime). The payoff matrix is

Bob

c n
Al c (.95b − .05f , .95b − .05f) (.9b − .1f ,0)

n (0, .9b − .1f) (0,0)

Use best response to show that if 9b < f < 19b, there are two Nash

equilibria: (c, c) (high crime) and (n,n) (low crime).

Thus if f = 10b, for example, current police resources may not deter

crime. The game is of Stag Hunt type (Subsection 3.2.2). There is a low

crime equilibrium, in which no one commits a crime, because the police

could devote all their resources to catching the criminal. However, there

is also a high crime equilibrium, in which crime pays, because police

resources are not adequate to deal with a high level of crime.

(2) Again suppose two residents, Al and Bob, are considering committing

crimes that if successful will produce a benefit b to the criminal. The

police call in both Al and Bob and tell them: “We know you are both con-

sidering crimes. If one of you commits a crime, we will investigate it.

However, if both of you commit a crime, we will only investigate Al’s.”

The payoff matrix is now

Bob

c n
Al c (.9b − .1f , b) (.9b − .1f ,0)

n (0, .9b − .1f) (0,0)

Explain the payoffs to the strategy profile (c, c). Then use best response

to show that if f > 9b, no crimes are committed. Thus if f = 10b, for

example, this policing strategy deters crime without any increase in police

resources, whereas the strategy of investigating all crimes equally may

not.

For examples of how this strategy has been put into effect, see [10].

(3) Now suppose m residents are considering committing crimes that if suc-

cessful will produce a benefit b to the criminal. If a criminal is caught, he

will suffer a punishment with value f . The policing level is r , 0 < r < 1.

This means that if k residents commit crimes, each will be caught with

probability r
k . We view this situation as anm-player game in normal form.

Each player has two strategies, c (crime) and n (no crime). The payoff to

each player who chooses n is 0. If k > 0 players choose c, the payoff to
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each is
(
1− r

k
)
b− r

kf . Assume that b/(b+f) < r < mb/(b+f). Show: the

only strategy profiles that are Nash equilibria are (n, . . . , n) and (c, . . . , c).

4.7.3 The Travails of Boss Gorilla 2. This problem deals with a variant

of the situation described in Section 4.5. Before he became boss of the Gorilla

Band, Boss Gorilla had many encounters with other gorillas. Because of those

encounters, it is well known that a certain fraction p of other gorillas can beat

Boss Gorilla in a fight. The remaining fraction 1 − p of gorillas will lose to

Boss Gorilla in a fight. However, when a Visiting Gorilla appears, neither the

Visiting Gorilla nor Boss Gorilla knows into which category the visitor falls.

We view this situation as a game with two players: Player 1, Boss Gorilla

(B), and Player 2, Visiting Gorilla (V ). Figure 4.10 shows the gorillas’ possible

moves and the payoffs, which come from Section 4.5. Now, however, there

are two information sets, since neither gorilla knows whether Visiting Gorilla

can beat Boss Gorilla; they only know the probability p.

N

V V

c cl l

f fa a

B B

Visiting Gorilla would win
probability = p

Visiting Gorilla would lose
probability = 1– p

(6, 0)

(–1, 5) (3, 3) (5, –1) (3, 3)

(6, 0)

Figure 4.10. The Travails of Boss Gorilla with two information sets.
Boss Gorilla (B) is Player 1, Visiting Gorilla (V ) is Player 2. N = Nature.

Because of the information sets, Visiting Gorilla has just two strategies:

challenge (c) or leave (l). Boss Gorilla also has just two strategies: fight if

challenged (f ) or acquiesce if challenged (a). In normal form, the game is

represented by a 2× 2 payoff matrix.

(1) Find the payoff matrix for the game. One way to do this is to find sepa-

rately the payoff matrix when Visiting Gorilla would win and the payoff

matrix when Visiting Gorilla would lose. Multiply the first matrix by p,

multiply the second by 1− p, and add.

(2) Use best response to find Nash equilibria in three cases: (a) 0 < p < 1
6 , (b)

1
6 < p <

1
3 , and (c) 1

3 < p < 1.
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4.7.4 Expert Opinion. We often face the following problem. Something

of ours does not work properly (e.g., car, computer, body). We take it to an

Expert (e.g., mechanic, computer repair person, doctor). The problem may be

major or minor. The Expert studies the problem and diagnoses it as major

or minor. We then must decide whether to follow the Expert’s advice and do

the repair:

• Expert’s payoffs

— Bill for major repair: M .

— Bill for minor repair: m.

— Boost to reputation from making correct diagnosis: B.

• Customer’s payoffs

— Value of getting major problem fixed: V .

— Value of getting minor problem fixed: v .

— Bill for major repair: −M .

— Bill for minor repair: −m.

Half the time the problem is minor, and half the time it is major; everyone

knows this.

If the problem is major, only a major repair will fix it. If the problem is

minor, either a minor repair or a major repair will fix it.

We assume

V > M > v >m > 0 and B > m. (4.1)

The game tree in Figure 4.11 illustrates the situation.

N
major problem

probability = 1/2

E E

major minor

repair no

C CC C

minor problem

probability = 1/2

major minor

repair no repair no repair no

(M + B, V – M) (B, 0) (m,  –m) (0, 0) (0, 0)(M, v – M) (m + B, v – m) (B, 0)

Figure 4.11. N = Nature, E = Expert, C = Customer. The Expert diagnoses a major or
a minor problem; then the Customer decides whether to do the repair or not. The first
payoff is to the Expert, the second is to the Customer.
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The Customer has four strategies:

• rr : If Expert says problem is major, repair; if Expert says problem is

minor, repair.

• rn: If Expert says problem is major, repair; if Expert says problem is

minor, do not repair.

• nr : If Expert says problem is major, do not repair; if Expert says problem

is minor, repair.

• nn: If Expert says problem is major, do not repair; if Expert says problem

is minor, do not repair.

(1) Explain why the Expert should always diagnose a major problem as major.

(What is the smallest payoff she gets by diagnosing a major problem as

major, and what is the largest payoff she gets by diagnosing a major prob-

lem as minor?)

(2) Because of part (1), we assume the Expert always diagnoses a major prob-

lem as major. Therefore the Expert only has only two strategies that we

need to consider:

• d (dishonest): diagnose every problem as major.

• h (honest): if the problem is major, diagnose it as major; if the prob-

lem is minor, diagnose it as minor.

To put this game in normal form, complete the following 2 × 4 payoff

matrix, showing expected payoffs to both Expert and Customer:

Customer

rr rn nr nn
Expert d

h

(3) In addition to (4.1), assume B > M . Show that in this case the Expert’s

strategy h strictly dominates her strategy d. Find the unique Nash equi-

librium.

(4) In addition to (4.1) assumeM >m+B and V +v > 2M . Use best response

to find Nash equilibria.

4.7.5 The Value of College. This game has three players: very intelli-

gent young people (V ), less intelligent young people (L), and employers (E).

The young people have two options: go to college (c) or not (n). When a young

person applies for a job, an employer has two options: offer a high salary (h)
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or offer a low salary (l). A very intelligent young person will only accept a

high salary. A less intelligent young person will accept either salary.

• The Employer’s payoffs are

— Pay high salary: −8.

— Pay low salary: −3.

— Hire very intelligent young person: 12.

— Hire less intelligent young person: 6.

• The very intelligent young person’s payoffs are

— Go to college: −1. (It teaches nothing important and is expensive, but

it’s easy.)

— Get offered high salary: 8. (She takes the job and gets paid.)

— Get offered low salary: 6. (The very intelligent young person will

reject the offer and start her own business.)

• The less intelligent young person’s payoffs are

— Go to college:−5. (It teaches nothing important and is expensive, and

it’s really hard.)

— Get offered high salary: 8.

— Get offered low salary: 3. (The less intelligent young person will

accept either offer and get paid.)

Half of young people are very intelligent, half are less intelligent; the

employer knows this. When a young person applies for a job, the employer

does not know how intelligent she is, only whether she has gone to college.

The game tree in Figure 4.12 illustrates the situation.

The young people each have two strategies: go to college (c) or not (n). An

employer has four strategies:

• hh: Offer a high salary to all job applicants.

• hl: Offer a high salary to an applicant who has been to college, offer a low

salary to an applicant who has not been to college.

• lh: Offer a low salary to an applicant who has been to college, offer a high

salary to an applicant who has not been to college.

• ll: Offer a low salary to all job applicants.

Analogously to what was done in Section 4.5, we analyze this game by

viewing it as a two-player game in which the players are the young person

and the employer. Nature first decides the type of the young person, very

intelligent or less intelligent, and then a game is played between the young

person and the employer. The game tree for the two-player game is the one
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N

probability = 1/2

V L

c cn n

h l

E EE E

h l h l h l

Young person is V

probability = 1/2

Young person is L

(7, 4) (5, 0) (8, 4) (6, 0) (3, –2) (–2, 3) (8, –2) (3, 3)

Figure 4.12. N = Nature, V = very intelligent young person, L = less intelligent young
person, E = employer, c = college, n = no college, h = offer high salary, l = offer low
salary. The first payoff is to the young person, and the second is to the employer.

shown in Figure 4.12, except that the nodes labeled V and L should both be

labeled Y (young person). The young person is assumed to know her own

type, so she can use different strategies in the two cases.

When the two-player game is converted to normal form, the employer still

has the four strategies given above, but the young person now also has four

strategies:

• cc: Always go to college.

• cn: Go to college if very intelligent, do not go to college if less intelligent.

• nc: Do not go to college if very intelligent, go to college if less intelligent.

• nn: Never go to college.

(1) Explain briefly why a less intelligent person should not go to college. More

precisely, explain briefly why the young person’s strategy cnweakly dom-

inates her strategy cc, and the young person’s strategy nn weakly dom-

inates her strategy nc. (What is the best payoff a less intelligent young

person can get by going to college, and what is the worst payoff she gets

by not going to college?)

(2) Eliminate the young person’s weakly dominated strategies cc and nc.

Complete the following 2× 4 payoff matrix for payoffs in the two-player

game:

E
hh hl lh ll

Y cn
nn
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(3) Use best response to find Nash equilibria. (There are two Nash equilibria.

If you look at the corresponding Nash equilibria of the three-player

game, you will see that they are equally good for the less intelligent

young people, but one is better for both very intelligent young people

and employers.)
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Mixed strategy Nash equilibria

Even simple games can fail to have Nash equilibria in the sense we have so far

discussed. Sometimes it is best to mix your actions unpredictably. For exam-

ple, a tennis player wants to serve sometimes to her opponent’s forehand

and sometimes to her backhand in a random manner that her opponent can’t

predict. But what fraction of her serves should go to each? This depends on

the skills of both players.

5.1 Mixed strategy Nash equilibria

In tennis, the player serving can serve to her opponent’s backhand or fore-

hand. The player receiving the serve can anticipate a serve to her backhand

or a serve to her forehand.

For a certain pair of tennis players, the probability that the serve is returned

is given by the following table:

Receiver anticipates
serve to

backhand forehand

Server serves to backhand .6 .2
forehand .3 .9

We regard this as a game in normal form. The payoff to the receiver is the

fraction of serves she returns; the payoff to the server is the fraction of serves

that are not returned. Thus the payoff matrix is

Receiver anticipates
serve to

backhand forehand

Server serves to backhand (.4, .6) (.8, .2)
forehand (.7, .3) (.1, .9)
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You can check using best response that there are no Nash equilibria in the

sense we have discussed.

It is easy to understand why this game has no equilibria. If I plan to serve to

your forehand, your best response is to anticipate a serve to your forehand.

But if you anticipate a serve to your forehand, my best response is to serve

to your backhand. But if I plan serve to your backhand, your best response is

to anticipate a serve to your backhand. But if you anticipate a serve to your

backhand, my best response is to serve to your forehand. We are back where

we started from, without having found an equilibrium!

Does game theory have any suggestions for these players? Yes: the sug-

gestion to the server is to mix her serves randomly, and the suggestion to

the receiver is to mix her expectations randomly. What fraction of the time

should the server serve to the forehand, and what fraction of the time should

the receiver anticipate a serve to her forehand? To answer this question we

must develop the idea of a mixed strategy.

Consider a game in normal form with players 1, . . . , n and corresponding

strategy sets S1, . . . , Sn, all finite. Suppose that for each i, Player i’s strategy

set consists of ki strategies, which we denote si1, . . . , siki . A mixed strategy

σi for Player i consists of using strategy si1 with probability pi1, strategy

si2 with probability pi2,…, strategy siki with probability piki . Of course, each

pij � 0, and
∑ki
j=1 pij = 1. Formally, σi =

∑ki
j=1 pijsij .

If pij > 0, we say that the pure strategy sij is active in the mixed strategy

σi.
A mixed strategy σi is called pure if only one pure strategy is active (i.e.,

if one pij is 1 and all the rest are 0). We can denote by sij the pure strat-

egy of Player i that uses sij with probability 1 and her other strategies with

probability 0. Until this chapter we have only discussed pure strategies.

We try whenever possible to avoid double subscripting. Thus we often

denote a strategy of Player i by si, and the associated probability by psi .
This requires summing over all si ∈ Si instead of summing from j = 1 to ki.
Thus a mixed strategy of Player i is written

σi =
∑

all si∈Si
psisi. (5.1)

If each player chooses a mixed strategy, we get a mixed strategy profile

(σ1, . . . , σn).
Recall that if each player chooses a pure strategy, we get a pure strat-

egy profile (s1, . . . , sn). Recall that associated with each pure strategy pro-

file (s1, . . . , sn) is a payoff to each player; the payoff to Player i is denoted

πi(s1, . . . , sn).
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Suppose that

• Player 1’s mixed strategy σ1 uses her strategy s1 with probability ps1 ,

• Player 2’s mixed strategy σ2 uses her strategy s2 with probability ps2 ,
...

• Player n’s mixed strategy σn uses her strategy sn with probability psn .

We assume that the players independently choose pure strategies to use.

Then, if the players use the mixed strategy profile (σ1, . . . , σn), the probability

that the pure strategy profile (s1, . . . , sn) occurs is the product ps1ps2 · · ·psn .

Thus the expected payoff to Player i is

πi(σ1, . . . , σn) =
∑

all (s1,...,sn)
ps1ps2 · · ·psnπi(s1, . . . , sn). (5.2)

Let σ denote the mixed strategy profile (σ1, . . . , σn). Suppose in σ we

replace the ith player’s mixed strategy σi by another of her mixed strate-

gies, say, τi. We denote the resulting mixed strategy profile by (τi, σ−i). This

notation is analogous to that introduced in Section 3.1.

If Player 1 uses a pure strategy s1, (5.2) yields for Player 1’s payoff

π1(s1, σ2 . . . , σn) =
∑

all (s2,...,sn)
ps2 · · ·psnπ1(s1, . . . , sn). (5.3)

Equation (5.2) for Player 1’s payoff now can be rewritten as

π1(σ1, . . . , σn) =
∑

all s1∈S1

ps1
∑

all (s2,...,sn)
ps2 · · ·psnπ1(s1, . . . , sn). (5.4)

Using (5.3), equation (5.4) can be written

π1(σ1, . . . , σn) =
∑

all s1∈S1

ps1π1(s1, σ2 . . . , σn) =
∑

all s1∈S1

ps1π1(s1, σ−1). (5.5)

More generally, for Player i,

πi(σ1, . . . , σn) =
∑

all si∈Si
psiπi(si, σ−i). (5.6)

In words, the payoff to Player i from using strategy σi against the other play-

ers’ mixed strategies is just a weighted average of her payoffs from using

her pure strategies against their mixed strategies, where the weights are the

probabilities in her strategy σi.
A mixed strategy profile (σ∗1 , . . . , σ∗n ) is a mixed strategy Nash equilibrium

if no single player can improve her own payoff by changing her strategy:
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• For every mixed strategy σ1 of Player 1,

π1(σ∗1 , σ
∗
2 , . . . , σ

∗
n ) � π1(σ1, σ∗2 , . . . , σ

∗
n ).

• For every mixed strategy σ2 of Player 2,

π2(σ∗1 , σ
∗
2 , σ

∗
3 , . . . , σ

∗
n ) � π2(σ∗1 , σ2, σ∗3 , . . . , σ

∗
n ).

...

• For every mixed strategy σn of Player n,

πn(σ∗1 , . . . , σ
∗
n−1, σ

∗
n ) � πn(σ∗1 , . . . , σ

∗
n−1, σn).

More compactly, a mixed strategy profile σ∗ = (σ∗1 , . . . , σ∗n ) is a Nash

equilibrium if, for each i = 1, . . . , n, πi(σ∗) � πi(σi, σ∗−i) for every mixed

strategy σi of Player i.

Theorem 5.1. Nash’s Existence Theorem. If, in an n-player game in normal

form, each player’s strategy set is finite, then the game has at least one mixed

strategy Nash equilibrium.

John Nash was awarded the Nobel Prize in Economics in 1994 largely for

discovering this theorem. We shall not give the proof, which uses mathemat-

ical ideas beyond the scope of this course.

The definition of a mixed strategy Nash equilibrium implicitly assumes that

the lottery with the higher expected utility is preferred. Therefore it should

only be used in situations where the expected utility principle (Section 4.1)

can reasonably be expected to hold.

The next result gives a characterization of Nash equilibria that is very use-

ful in finding them.

Theorem 5.2. Fundamental Theorem of Nash Equilibria. The mixed strategy

profile σ = (σ1, . . . , σn) is a mixed strategy Nash equilibrium if and only if

the following two conditions are satisfied for every i = 1, . . . , n.

(1) If the strategies si and s′i are both active in σi, then πi(si, σ−i) =
πi(s′i , σ−i).

(2) If the strategy si is active in σi and the strategy s′i is not active in σi, then

πi(si, σ−i) � πi(s′i , σ−i).

This theorem just says that mixed strategy Nash equilibria are character-

ized by the following property: each player’s active strategies are all best

responses to the profile of the other players’ mixed strategies, where “best

response” means best response among pure strategies.
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Proof. First, suppose σ = (σ1, . . . , σn) is a mixed strategy Nash equilibrium

with σi given by (5.1). We will show that conditions (1) and (2) hold.

Suppose that in Player i’s strategy σi, her pure strategies si and s′i are both

active, with probabilities psi > 0 and ps′i > 0, respectively. Could it be that

πi(si, σ−i) < πi(s′i , σ−i)? Look at (5.6). If this were the case, then Player i
could switch to a new strategy τi that differs from σi only in that the pure

strategy si is not used at all, but the pure strategy s′i is used with probability

psi + ps′i . This would increase Player i’s payoff, so σ = (σ1, . . . , σn) would

not be a mixed strategy Nash equilibrium. Similarly, it is not possible that

πi(si, σ−i) > πi(s′i , σ−i). Hence condition (1) must hold.

Now suppose that in Player i’s strategy σi, si is active, with probabiliy

psi > 0, and s′i is not active. Could it be that πi(si, σ−i) < πi(s′i , σ−i)? If this

were the case, then Player i could switch to a new strategy τi that differs from

σi only in that the pure strategy si is not used at all, but the pure strategy s′i
is used with probability psi . From (5.6), this would increase Player i’s payoff,

so σ = (σ1, . . . , σn) would not be a mixed strategy Nash equilibrium. Hence

(2) must also hold.

To prove the converse, suppose σ = (σ1, . . . , σn) is a mixed strategy pro-

file, with σi given by (5.1), that satisfies conditions (1) and (2). We will show

that σ is a mixed strategy Nash equilibrium.

Since conditions (1) and (2) hold, for Player i there is a number K such that

πi(si, σ−i) = K for each of Player i’s active stratigies si, and πi(si, σ−i) � K
for each of Player i’s inactive stratigies si. Let S∗i denote the set of Player i’s
active strategies. We first note that πi(σ1, . . . , σn) = K, because

πi(σ1, . . . , σn) =
∑

all si∈Si
psiπi(si, σ−i) =

∑
si∈S∗i

psiπi(si, σ−i) =
∑
si∈S∗i

psiK = K.

(5.7)

The first equality follows from (5.6). The second equality holds because only

the psi with si ∈ S∗i are nonzero. The last equality holds because
∑
si∈S∗i psi =

1.

Let τi be any other strategy for Player i,

τi =
∑

all si∈Si
qsisi, all qsi � 0,

∑
qsi = 1.

Then from (5.6),

πi(τi, σ−i) =
∑

all si∈Si
qsiπi(si, σ−i).

Since each πi(si, σ−i) � K, each qsi � 0, and
∑
qsi = 1, this sum is at most K.

Therefore it is at most πi(σ1, . . . , σn) = K. Thus Player i cannot improve her

payoff by switching to τi. It follows that (σ1, . . . , σn) is a Nash equilibrium.
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In the remainder of this section we give some easy consequences of the

Fundamental Theorem of Nash Equilibria and its proof, and we comment on

the relationship between mixed strategy Nash equilibria and iterated elimi-

nation of dominated strategies.

The calculation (5.7) is so important that we record it, and a generalization,

as the following theorem.

Theorem 5.3. Let σ = (σ1, . . . , σn) be a mixed strategy Nash equilibrium

with σi given by (5.1). Let S∗i = {si : psi > 0} be the set of Player i’s active

strategies. For si ∈ S∗i , let πi(si, σ−i) = K. (According to the Fundamental

Theorem, all the payoffs πi(si, σ−i) with si ∈ S∗i are equal.) Then

(1) πi(σ) = K.

(2) More generally, let τi be any combination of Player i’s active strategies,

that is, τi =
∑
si∈S∗i qsisi with all qsi � 0 and

∑
qsi = 1. Then πi(τi, σ−i) =

K.

Proof. We already noticed conclusion (1) during the proof of the previous

theorem. To prove the more general result (2), we calculate

πi(τi, σ−i) =
∑

all si∈Si
qsiπi(si, σ−i) =

∑
si∈S∗i

qsiπi(si, σ−i) =
∑
si∈S∗i

qsiK = K.

The first equality follows from (5.6). The second equality holds because only

the qsi with si ∈ S∗i are nonzero. The last equality holds because
∑
qsi = 1.

At a mixed strategy Nash equilibrium (σ1, . . . , σn), σi is a best response

to the profile of the other players’ mixed strategies. Theorem 5.3 says that

all of Player i’s active strategies are also best responses to the profile of

the other players’ mixed strategies, and in fact any combination of Player i’s
active strategies is a best response to the profile of the other players’ mixed

strategies.

Theorem 5.4. If s∗ = (s∗1 , . . . , s∗n) is a profile of pure strategies, then s∗ is a

mixed strategy Nash equilibrium if and only if s∗ is a Nash equilibrium in the

sense of Section 3.1.

Proof. Suppose s∗ = (s∗1 , . . . , s∗n) is a profile of pure strategies that is a mixed

strategy Nash equilibrium. Consider Player i and one of her strategies si other

than s∗i . Since si is not active, the second part of the Fundamental Theorem

says that πi(s∗i , s
∗
−i) � πi(si, s∗−i), so s∗ is a Nash equilibrium in the sense of

Section 3.1.

On the other hand, suppose s∗ = (s∗1 , . . . , s∗n) is a profile of pure strategies

that is a Nash equilibrium in the sense of Section 3.1. Then condition (1) of

the Fundamental Theorem is automatically satisfied, since each player has
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only one active strategy. Condition (2) is an immediate consequence of the

definition of Nash equilibrium in Section 3.1. Since both conditions hold, s∗

is a mixed strategy Nash equilibrium.

A mixed strategy profile σ∗ = (σ∗1 , . . . , σ∗n ) is a strict mixed strategy Nash

equilibrium if, for each i = 1, . . . , n, πi(σ∗) > πi(σi, σ∗−i) for every mixed

strategy σi ≠ σ∗i of Player i.
The following result is a consequence of the previous two theorems.

Theorem 5.5. σ∗ = (σ∗1 , . . . , σ∗n ) is a strict mixed strategy Nash equilibrium

if and only if (i) each σ∗i is a pure strategy, and (ii) σ∗ is a strict Nash equi-

librium in the sense of Section 3.1.

For most two-player games, at each Nash equilibrium, both players use

the same number of active pure strategies. Thus in two-player games, one

can begin by looking for Nash equilibria in which each player uses one active

pure strategy, then Nash equilibria in which each player uses two active pure

strategies, and so forth. In most two-player games, this procedure not only

finds all mixed strategy Nash equilibria; it also yields as a by-product a proof

that there are no Nash equilibria in which the two players use different num-

bers of active pure strategies.

Finally, we comment on the relationship between mixed strategy Nash equi-

libria and iterated elimination of dominated strategies. Suppose that, as in

Section 3.6, we do iterated elimination of weakly dominated pure strategies

on a game G in normal form. Let H be the reduced game that results. Then

each mixed strategy Nash equilibrium ofH is also a mixed strategy Nash equi-

librium of G. If we do iterated elimination of strictly dominated pure strate-

gies, then each strategy that is eliminated is not part of any mixed strategy

Nash equilibrium of G.

5.2 Tennis

Recall the game of tennis described in Section 5.1, with the payoff matrix

Receiver anticipates
serve to

backhand forehand

Server serves to backhand (.4, .6) (.8, .2)
forehand (.7, .3) (.1, .9)

We shall use the Fundamental Theorem of Nash Equilibria, Theorem 5.2,

to find all mixed strategy Nash equilibria in this game.
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Suppose the receiver uses her two strategies with probabilities p and 1−p,

and the server uses her strategies with probabilities q and 1−q. It is helpful

to write these probabilities next to the payoff matrix as follows:

Receiver anticipates
serve to

q 1− q
backhand forehand

Server serves to p backhand (.4, .6) (.8, .2)
1− p forehand (.7, .3) (.1, .9)

We shall look for a mixed strategy Nash equilibria (pb + (1− p)f , qb + (1−
q)f).

In accordance with the advice in the previous section, we shall first look

for equilibria in which both players use one active pure strategy, then look

for equilibria in which both players use two active pure strategies.

1. Suppose both players use one active pure strategy. Then we would have

a pure strategy Nash equilibrium. We find these using best response. You

checked in Section 5.1 that there aren’t any.

2. Suppose both players use two active pure strategies. Then 0 < p < 1 and

0 < q < 1. Since both of Player 2’s pure strategies b and f are active, accord-

ing to the Fundamental Theorem, each gives the same payoff to Player 2

against Player 1’s mixed strategy pb + (1− p)f :

π2
(
pb + (1− p)f , b) = π2

(
pb + (1− p)f , f ),

or

.6p + .3(1− p) = .2p + .9(1− p).

Solving this equation for p, we find that p = .6.

Similarly, since both of Player 1’s pure strategies b and f are active, each

gives the same payoff to Player 1 against Player 2’s mixed strategy qb+ (1−
q)f :

π1
(
b, qb + (1− q)f ) = π1

(
f , qb + (1− q)f ),

or

.4q + .8(1− q) = .7q + .1(1− q).

Solving this equation for q, we find that q = .7.

We conclude that (.6b + .4f , .7b + .3f) satisfies the equality criterion for

a mixed strategy Nash equilibrium. Since there are no unused pure strate-

gies, there is no inequality criterion to check. Therefore we have found a
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mixed strategy Nash equilibrium in which both players have two active pure

strategies.

Note that in the course of finding this Nash equilibrium, we actually did

more:

(1) We showed that if both of Player 2’s pure strategies are active at a Nash

equilibrium, then Player 1’s strategy must be .6b + .4f . Hence there are

no Nash equilibria in which Player 2 uses two pure strategies but Player 1

uses only one pure strategy.

(2) Similarly, we showed that if both of Player 1’s pure strategies are active

at a Nash equilibrium, then Player 2’s strategy must be .7b + .3f . Hence

there are no Nash equilibria in which Player 1 uses two pure strategies

but Player 2 uses only one pure strategy.

This is an example of how, in the course of finding mixed strategy Nash

equilibria for a two-player game in which both players use the same number

of pure strategies, one usually shows as a by-product that there are no Nash

equilibria in which the two players use different numbers of pure strategies.

5.3 Other ways to find mixed strategy Nash equilibria

Here are two ways to find mixed strategy Nash equilibria in the previous

problem without using the Fundamental Theorem. Both may be useful in

other problems.

5.3.1 Differentiating the payoff functions. In the tennis problem, there

are two payoff functions, π1 and π2. Since Player 1’s strategy is determined

by the choice of p and Player 2’s by the choice of q, we may regard π1 and π2

as functions of (p, q) with 0 � p � 1 and 0 � q � 1. From the payoff matrix,

we have

π1(p, q) = .4pq + .8p(1− q)+ .7(1− p)q + .1(1− p)(1− q),
π2(p, q) = .6pq + .2p(1− q)+ .3(1− p)q + .9(1− p)(1− q).

Suppose (p, q) is a mixed strategy Nash equilibrium with 0 < p < 1 and

0 < q < 1. Then the definition of mixed strategy Nash equilibrium implies

that
∂π1

∂p
(p, q) = 0 and

∂π2

∂q
(p, q) = 0.

Therefore

∂π1

∂p
(p, q) = .4q + .8(1− q)− .7q − .1(1− q) = .7− q = 0,

∂π2

∂q
(p, q) = .6p − .2p + .3(1− p)− .9(1− p) = −.6+ p = 0.

We see that (p, q) = (.6, .7).
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5.3.2 Best-response correspondences. From the calculation of partial

derivatives above, we have

∂π1

∂p
(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+ if q < .7,

0 if q = .7,
− if q > .7,

∂π2

∂q
(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− if p < .6,

0 if p = .6,
+ if p > .6.

These partial derivatives tell us each player’s best response to all strategies

of her opponent. For Player 1:

• If Player 2 chooses q with 0 � q < .7, Player 1 observes that her own

payoff is an increasing function of p. Hence her best response is p = 1.

• If Player 2 chooses q = .7, Player 1 observes that her own payoff will be

the same whatever p she chooses. Hence she can choose any p between

0 and 1.

• If Player 2 chooses q with .7 < q � 1, Player 1 observes that her own

payoff is a decreasing function of p. Hence her best response is p = 0.

Player 1’s best-response correspondence B1(q) is graphed in Figure 5.1, along

with Player 2’s best-response correspondence B2(p). Note that B1(.7) is the

set 0 � p � 1 and B2(.6) is the set 0 � q � 1. Points of intersection of the

two graphs are Nash equilibria. In this case, the only point of intersection of

the two graphs is (p, q) = (.6, .7).

q

p

1

1

.6

.7

Figure 5.1. Graphs of best-response correspondences in the game of tennis.
The only point in the intersection of the two graphs is (p, q) = (.6, .7).

5.4 One-card Two-round Poker

We now play a simplified version of poker with a deck of two cards, one high

(H) and one low (L). There are two players. Play proceeds as follows:
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(1) Each player puts $2 into the pot.

(2) Player 1 is dealt one card, chosen by chance. He looks at it. He either bets

$2 or he folds. If he folds, Player 2 gets the pot. If he bets:

(3) Player 2 either bets $2 or he folds. If he folds, Player 1 gets the pot. If he

bets:

(4) Player 1 either bets $2 or he folds. If he folds, Player 2 gets the pot. If he

bets:

(5) Player 2 either bets $2 or he folds. If he folds, Player 1 gets the pot. If he

bets, Player 1 shows his card. If it is H, Player 1 wins the pot. If it is L,

Player 2 wins the pot.

The game tree is shown in Figure 5.2.

N

11

11

2

2

2

2

b

b

b

b

b

b

b

b

f f

f

f

f

f

f

f

2 2

6 4 4

H L
p = 1/2 p = 1/2

–6

–4 –4

Figure 5.2. One-card two-round poker. Nodes in the same information set are linked
by a dashed line. Only payoffs to Player 1 are shown; payoffs to Player 2 are opposite
(the negative of Player 1’s payoffs).

Player 2 has three pure strategies:

• bb: the first time Player 1 bets, respond by betting; the second time

Player 1 bets, respond by betting.

• bf : the first time Player 1 bets, respond by betting; the second time

Player 1 bets, respond by folding.

• f : the first time Player 1 bets, respond by folding.

(Actually, f is not a strategy in the sense that we have defined the term, since

it does not specify what Player 2 will do after Player 1 bets for a second time.

We have not specified this choice because, if Player 2 correctly does what he

intends and folds after one bet by Player 1, the question of what to do after
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a second bet by Player 1 will not arise. Thus this choice does not affect the

payoffs that we calculate.)

To describe Player 1’s pure strategies, we first note that if Player 1 is dealt

the high card, he has three options:

• bb: bet; if Player 2 responds by betting, bet again.

• bf : bet; if Player 2 responds by betting, fold.

• f : fold.

If Player 1 is dealt the low card, he has the same three options. Thus Player 1

has nine pure strategies: choose one option to use if dealt the high card, and

one to option to use if dealt the low card.

The payoff matrix for this game is 9× 3. If we draw it, we will quickly see

that six of Player 1’s pure strategies are weakly dominated: every strategy of

Player 1 that does not use the option bb when dealt the high card is weakly

dominated by the corresponding strategy that does use this option. This is

obviously correct: if Player 1 is dealt the high card, he will certainly gain

a positive payoff if he continues to bet, and will certainly suffer a negative

payoff if he ever folds.

We therefore eliminate six of Player 1’s strategies and obtain a reduced 3×3

game. In the reduced game, we denote Player 1’s strategies by bb, bf , and f .

The notation represents the option Player 1 uses if dealt the low card; if dealt

the high card, he uses the option bb. By Theorem 3.1, any Nash equilibria of

the reduced game are also Nash equilibria of the full game.

If the card dealt is high, the payoffs are

Player 2

bb bf f
bb (6,−6) (4,−4) (2,−2)

Player 1 bf (6,−6) (4,−4) (2,−2)
f (6,−6) (4,−4) (2,−2)

If the card dealt is low, the payoffs are

Player 2

bb bf f
bb (−6,6) (4,−4) (2,−2)

Player 1 bf (−4,4) (−4,4) (2,−2)
f (−2,2) (−2,2) (−2,2)

The payoff matrix for the game is 1
2 times the first matrix plus 1

2 times the

second:
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Player 2

bb bf f
bb (0,0) (4,−4) (2,−2)

Player 1 bf (1,−1) (0,0) (2,−2)
f (2,−2) (1,−1) (0,0)

We shall look for a mixed strategy Nash equilibrium (σ1, σ2), with σ1 =
p1bb + p2bf + p3f and σ2 = q1bb + q2bf + q3f :

Player 2

q1 q2 q3

bb bf f
p1 bb (0,0) (4,−4) (2,−2)

Player 1 p2 bf (1,−1) (0,0) (2,−2)
p3 f (2,−2) (1,−1) (0,0)

We should consider three possibilities:

(1) Both players use a pure strategy.

(2) Both players use exactly two active pure strategies.

(3) Both players use exactly three active pure strategies.

One easily deals with the first case using best response: there are no pure

strategy Nash equilibria. The second case divides into nine subcases, since

each player has three ways to choose his two active strategies. For now we

ignore these possibilities; we will return to them in the Section 5.5.

In the third case, we assume that all pi and qi are positive. Since all qi are

positive, each of Player 2’s pure strategies gives the same payoff to Player 2

against Player 1’s mixed strategy σ1. These three payoffs are:

π2(σ1, bb) = p1(0)+ p2(−1)+ p3(−2),

π2(σ1, bf ) = p1(−4)+ p2(0)+ p3(−1),

π2(σ1, f ) = p1(−2)+ p2(−2)+ p3(0).

The fact that these three quantities must be equal yields two indepen-

dent equations. For example, one can use π2(σ1, bb) = π2(σ1, f ) and

π2(σ1, bf ) = π2(σ1, f ):

p1(0)+ p2(−1)+ p3(−2) = p1(−2)+ p2(−2)+ p3(0),

p1(−4)+ p2(0)+ p3(−1) = p1(−2)+ p2(−2)+ p3(0).

Simplifying, we have

2p1 + p2 − 2p3 = 0,

−2p1 + 2p2 − p3 = 0.
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A third equation is given by

p1 + p2 + p3 = 1.

These three equations in the three unknowns (p1, p2, p3) can be solved to

yield the solution

(p1, p2, p3) =
(1

5 ,
2
5 ,

2
5

)
.

Had any pi failed to lie strictly between 0 and 1, we would discard the possi-

bility that there is a Nash equilibrium in which both players use three active

pure strategies.

(One way to use the third equation is to use it to substitute p3 = 1−p1−p2

in the first two equations. This is analogous to how we solved the tennis

problem.)

Similarly, since all pi are positive, each of Player 1’s three pure strategies

gives the same payoff to Player 1 against Player 2’s mixed strategy σ2. This

observation leads to three equations in the three unknowns (q1, q2, q3), which

can be solved to yield

(q1, q2, q3) =
( 8

15 ,
2
15 ,

1
3

)
.

When you find a Nash equilbrium of a game in extensive form in which

players move several times, it is useful to translate it into plans for the play

of the game. In this case, the mixed strategy Nash equilibrium we have found

yields the following plans:

• Player 1: if dealt the high card, bet at every opportunity. If dealt the low

card:

— Bet with probability 3
5 , fold with probability 2

5 .

— If you get to bet a second time, bet with probability 1
3 , fold with

probability 2
3 .

• Player 2:

— If Player 1 bets, bet with probability 2
3 , fold with probability 1

3 .

— If you get to bet a second time, bet with probability 4
5 , fold with

probability 1
5 .

Player 1’s strategy includes a lot of bluffing (betting when he has the low

card)! Because Player 1 bluffs so much, it is rational for Player 2 to bet a lot,

even though he has no idea what the situation is.

Note that in searching for Nash equilibria in which both players use all

three of their pure strategies, we in fact showed:

(1) If all three of Player 2’s pure strategies are active at a Nash equilibrium,

then Player 1’s strategy must be (p1, p2, p3) =
(1

5 ,
2
5 ,

2
5

)
. Hence there are
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no Nash equilibria in which Player 1 uses only one or two pure strategies

and Player 2 uses three pure strategies.

(2) If all three of Player 1’s pure strategies are active at a Nash equilibrium,

then Player 2’s strategy must be (q1, q2, q3) =
( 8

15 ,
2
15 ,

1
3

)
. Hence there are

no Nash equilibria in which Player 1 uses three pure strategies but Player 2

uses only one or two pure strategies.

If the two players use these strategies, the expected payoff to each player

is given by (5.2). For example, the expected payoff to Player 1 is

π1(σ1, σ2) = p1q1 · 0+ p1q2 · 4+ p1q3 · 2+ p2q1 · 1

+ p2q2 · 0+ p2q3 · 2+ p3q1 · 2+ p3q2 · 1+ p3q3 · 0.

Substituting the values of the pi and qj that we have calculated, we find that

the expected payoff to Player 1 is 6
5 . Alternatively, since (σ1, σ2) is a Nash

equilibrium, by Theorem 5.3, the expected payoff to Player 1 is also given by

any of the equal quantities π1(bb,σ2), π1(bf ,σ2), or π1(f ,σ2), so we could

calculate one of these instead. For example,π1(bb,σ2) = q1·0+q2·4+q3·2 =
2
15 · 4+ 1

3 · 2 = 6
5 .

Since the payoffs to the two players must add up to 0, the expected payoff

to Player 2 is −6
5 . In particular, we have found an arguably better strategy for

Player 2 than always folding, which you might have suspected would be his

best strategy. If Player 2 always folds and Player 1 uses his best response,

which is to always bet, then Player 2’s payoff is −2.

Tom Ferguson is a mathematician at UCLA, where he teaches game theory.

His online game theory text is available at http://www.math.ucla.edu/˜tom/

Game_Theory/Contents.html, and his home page is http://www.math.ucla

.edu/˜tom. On his home page you will find some articles applying game

theory to poker that he wrote with his son, Chris Ferguson. Chris is a cham-

pion poker player, having won over $7 million. His Wikipedia page is http://en

.wikipedia.org/wiki/Chris_Ferguson. A 2009 New Yorker article about Chris

Ferguson, poker, and game theory is available at http://www.newyorker.com/

reporting/2009/03/30/090330fa_fact_wilkinson.

5.5 Two-player zero-sum games

One-card Two-round Poker is an example of a two-player zero-sum game.

“Zero-sum” means that the two players’ payoffs always add up to 0; if one

player does better, the other must do worse. The Nash equilibria of two-player

zero-sum games have several useful properties.

To explore these properties, we first define, for any two-player game in

normal form, maximin strategies, maximin payoffs, and maximin equilibria.

http://www.math.ucla.edu/%CB%9Ctom/Game_Theory/Contents.html
http://www.math.ucla.edu/%CB%9Ctom/Game_Theory/Contents.html
http://www.newyorker.com/reporting/2009/03/30/090330fa_fact_wilkinson
http://www.newyorker.com/reporting/2009/03/30/090330fa_fact_wilkinson
http://en.wikipedia.org/wiki/Chris_Ferguson
http://en.wikipedia.org/wiki/Chris_Ferguson
http://www.math.ucla.edu/%CB%9Ctom
http://www.math.ucla.edu/%CB%9Ctom
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If Player 1 uses strategy σ1, her minimum possible payoff is

m1(σ1) = min
σ2
π1(σ1, σ2).

A maximin strategy for Player 1, denoted σ †
1 , is a strategy that makes this

minimum possible payoff as high as possible. Player 1’s minimum possible

payoff when she uses the strategy σ †
1 is her maximin payoff m†

1, given by

m†
1 =m1(σ

†
1 ) = max

σ1
m1(σ1) = max

σ1
min
σ2
π1(σ1, σ2).

By using the strategy σ †
1 , Player 1 guarantees herself a payoff of at least m†

1,

no matter what Player 2 does. This is the highest payoff that Player 1 can

guarantee herself.

Similarly, if Player 2 uses strategy σ2, her minimum possible payoff is

m2(σ2) = min
σ1
π2(σ1, σ2).

A maximin strategy for Player 2, denoted σ †
2 , is a strategy that makes this

minimum possible payoff as high as possible. Player 2’s minimum possible

payoff when she uses the strategy σ †
2 is her maximin payoff m†

2, given by

m†
2 =m2(σ

†
2 ) = max

σ2
m2(σ2) = max

σ2
min
σ1
π2(σ1, σ2).

By using the strategy σ †
2 , Player 2 guarantees herself a payoff of at least m†

2,

no matter what Player 1 does. This is the highest payoff that Player 2 can

guarantee herself.

A strategy profile (σ †
1 , σ

†
2 ), in which both players use maximin strategies,

is called a maximin equilibrium. Each player’s payoff is at least her maximin

payoff m†
i .

For example, consider the Battle of Sexes in Subsection 3.2.4. Let

σ1 = p · concert+ (1−p) ·wrestling, σ2 = q · concert+ (1−q) ·wrestling.

We shall represent a strategy profile by (p, q) instead of (σ1, σ2). Then

π1(p, q) = 2 · pq + 1 · (1− p)(1− q), ∂π1

∂q
= 2 · p − 1 · (1− p) = −1+ 3p.

Therefore

∂π1

∂q
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− if 0 � p < 1

3 ,

0 if p = 1
3 ,

+ if 1
3 < p � 1.
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Hence

m1(p) = min
0�q�1

π1(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π1(p,1) if 0 � p < 1

3 ,

any π1(p, q) if p = 1
3 ,

π1(p,0) if 1
3 < p � 1.

Therefore Player 1’s minimium possible payoff when she uses the strategy p
is

m1(p) = min
0�q�1

π1(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2p if 0 � p < 1
3 ,

2
3 if p = 1

3 ,

1− p if 1
3 < p � 1.

If we graph m1(p), we see that it is maximum at p = 1
3 , and π1

(1
3 , q

) = 2
3

for any q. Therefore Player 1’s maximin strategy is p† = 1
3 , and her maximin

payoff is m†
1 = 2

3 .

A similar calculation shows that Player 2’s maximin strategy is q† = 2
3 ,

and her maximin payoff is m†
2 = 2

3 . Therefore (p†, q†) = (1
3 ,

2
3

)
is a maximin

equilibrium. It is not, however, a Nash equilibrium; the Nash equilibria are

(0,0), (1,1), and
(2

3 ,
1
3

)
.

The situation for a two-player zero-sum game is much nicer.

Theorem 5.6. For a two-player zero-sum game:

(1) A strategy profile is a Nash equilibrium if and only if it is a maximin

equilibrium.

(2) At any Nash equilibrium, both players get their maximin payoffs.

(3) Let m†
i denote Player i’s maximin payoff. Then m†

1 +m†
2 = 0.

Proof. To prove conclusion (1) of the theorem, first assume (σ∗1 , σ
∗
2 ) is a

Nash equilibrium. We will show that (σ∗1 , σ
∗
2 ) is also a maximin equilibrium.

Let σ ′1 be any strategy of Player 1, and let σ ′2 be a corresponding strategy of

Player 2 that gives Player 1 her lowest possible payoff when she uses σ ′1. In

other words, suppose

m1(σ ′1) = π1(σ ′1, σ
′
2) � π1(σ ′1, σ2) for all σ2. (5.8)

Then

m1(σ ′1) = π1(σ ′1, σ
′
2) � π1(σ ′1, σ

∗
2 ) � π1(σ∗1 , σ

∗
2 ). (5.9)

The first inequality holds because of (5.8). The second holds because (σ∗1 , σ
∗
2 )

is a Nash equilibrium.

Now m†
1 is the maximum of the numbers m1(σ ′1), so (5.9) implies that

m†
1 � π1(σ∗1 , σ

∗
2 ). We will show that π1(σ∗1 , σ

∗
2 ) is itself Player 1’s low-

est possible payoff when she uses the strategy σ∗1 . Thus σ∗1 is a maximin
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strategy for Player 1, and π1(σ∗1 , σ
∗
2 ) = m†

1. Similarly, σ∗2 is a maximin

strategy for Player 2, and π2(σ∗1 , σ
∗
2 ) = m†

2. Thus (σ∗1 , σ
∗
2 ) is a max-

imin equilibrium; in addition, we have conclusion (2) of the theorem. Since

π1(σ∗1 , σ
∗
2 )+π2(σ∗1 , σ

∗
2 ) = 0, it follows that m†

1 +m†
2 = 0, which is conclu-

sion (3) of the theorem.

Note that we showed conclusion (3) of the theorem under the assumption

that a Nash equilibrium exists. However, this is always true by Nash’s Exis-

tence Theorem (Theorem 5.1).

To prove that π1(σ∗1 , σ
∗
2 ) is Player 1’s lowest possible payoff when she

uses the strategy σ∗1 , we note that

π2(σ∗1 , σ
∗
2 ) � π2(σ∗1 , σ2) for all σ2, (5.10)

because (σ∗1 , σ
∗
2 ) is a Nash equilibrium. But then, for any σ2,

π1(σ∗1 , σ
∗
2 ) = −π2(σ∗1 , σ

∗
2 ) � −π2(σ∗1 , σ2) = π1(σ∗1 , σ2).

The two equalities hold because the game is zero-sum, and the inequality

follows from (5.10).

To complete the proof of conclusion (1) of Theorem 5.6, let (σ †
1 , σ

†
2 ) be a

maximin equilibrium. To show that (σ †
1 , σ

†
2 ) is also a Nash equilibrium, let

σ1 and σ2 be arbitrary strategies for Players 1 and 2, respectively. We must

show that π1(σ1, σ
†
2 ) � π1(σ

†
1 , σ

†
2 ) and π2(σ

†
1 , σ2) � π2(σ

†
1 , σ

†
2 ). We shall

show the first inequality; the second is similar. Since σ †
2 is Player 2’s maximin

strategy,

m†
2 =m2(σ

†
2 ) � π2(σ1, σ

†
2 ). (5.11)

Therefore

π1(σ1, σ
†
2 ) = −π2(σ1, σ

†
2 ) � −m†

2 =m†
1 =m1(σ

†
1 ) � π1(σ

†
1 , σ

†
2 ).

The first equality holds because we have a zero-sum game; the second

because of conclusion (3) of the theorem, which has already been proved;

and the third by the definition ofm†
1. The first inequality follows from (5.11).

The second holds by the definition of m1(σ
†
1 ).

Theorem 5.6 implies that all Nash equilibria of a two-player zero-sum game

are obtained by pairing any maximin strategy of Player 1 with any maximin

strategy of Player 2. In particular, Player 1’s strategy from one Nash equilib-

rium may be paired with Player 2’s strategy from a second Nash equilibrium

to yield a third Nash equilibrium. All three Nash equilibria, along with any

others, will give the same payoff to Player 1, and the same opposite payoff to

Player 2.
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In many problems, Theorem 5.6 can be used to rule out the existence of

other Nash equilibria once you have found one. In One-card Two-round Poker,

for example, we found a Nash equilibrium in which both players had three

active pure strategies. We saw that our calculations to find this Nash equilib-

rium ruled out the existence of Nash equilibria in which Player 1 used one or

two pure strategies and Player 2 used three pure strategies.

Now suppose there were a Nash equilibria in which Player 1 used one or two

pure strategies and Player 2 used one or two pure strategies. Then we could

pair Player 1’s strategy from this Nash equilibrium with Player 3’s strategy

from the Nash equilibrium we found, thus obtaining a Nash equilibrium in

which Player 1 used one or two pure strategies and Player 2 used three pure

strategies. However, we just saw that there is no such Nash equilibrium.

We conclude that the Nash equilibrium we found for One-card Two-round

Poker is the only one there is.

You may recall that when we were working on One-card Two-round Poker,

we did not investigate the nine types of possible Nash equilibria in which

each player used exactly two pure strategies. We now know that there are no

Nash equilibria of these types.

The same ideas work more generally for two-player constant-sum games,

in which the two players’ payoffs always add up to the same constant. In

Tennis, for example, they always add up to 1.

5.6 The Ultimatum Minigame

This section deals with a simplified version of the Ultimatum Game of Sec-

tion 1.7.

There are two players, Alice and Bob. The game organizer gives Alice $4.

She can make Bob a fair offer of $2 or an unfair offer of $1. If Bob accepts

Alice’s offer, the $4 is divided accordingly between the two players. If Bob

rejects the offer, the $4 goes back to the game organizer.

We shall assume that if Alice makes the fair offer, Bob will always accept

it. Then the game tree is given by Figure 5.3.

Backward induction predicts that Alice will make an unfair offer, and Bob

will accept it. This correspond to the prediction of backward induction in the

Ultimatum Game.

Alice has two strategies: make a fair offer (f ) or make an unfair offer (u).

Bob also has two strategies: accept an unfair offer (a) or reject an unfair offer

(r ). Whichever strategy Bob adopts, he will accept a fair offer. The normal

form of the game is given by the following matrix:
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Alice

Bob
(2, 2)

accept reject

(3, 1) (0, 0)

unfair offerfair offer

Figure 5.3. Ultimatum Minigame. Alice is Player 1, Bob is Player 2.

Bob

a r
Alice f (2,2) (2,2)

u (3,1) (0,0)

There are two pure strategy Nash equilibria: (u,a), a strict Nash equilib-

rium in which Alice makes an unfair offer and Bob accepts it; and (f , r), a

Nash equilibrium that is not strict in which Alice makes a fair offer because

Bob threatens to reject an unfair offer.

The second Nash equilibrium is not strict because, if Alice uses f , Bob’s

strategy a gives him the same payoff as his strategy r . In this situation we

should look for Nash equilibria in which Alice uses one strategy f but Bob

uses both strategies a and r .

Let’s look at this Nash equilibrium (f , r) from the point of view of the Fun-

damental Theorem of Nash Equilibria (Theorem 5.2). The inactive strategies

are Alice’s strategy u and Bob’s strategy a. In this case the Fundamental The-

orem says that to have a Nash equilibrium, the following inequalities must

hold:

π1(f , r) � π1(u, r) and π2(f , r) � π2(f , a).

Both inequalities are true, but the second is actually an equality.

Advice to remember when looking for mixed strategy Nash equilibria:

Suppose a strategy profile σ∗ satisfies the equality conditions for a Nash

equilibrium, but for one or more inactive strategies s′i , the corresponding

inequality condition is actually an equality. Then there may be Nash equilibria

in which, in addition to the strategies that are active in σ∗, one or more of

the strategies s′i is active. Even in a two-player game, these Nash equilibria

may be ones in which the players use different numbers of active strategies.

Following this advice, we examine strategy profiles (f , qa+ (1−q)r) with

0 < q < 1. For such a strategy profile to be a Nash equilibrium, each of
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Bob’s pure strategies a and r should give Bob the same payoff against Alice’s

strategy f . Of course this is true: each gives Bob a payoff of 2. Thus every

strategy profile of the form
(
f , qa + (1 − q)r) with 0 < q < 1 satisfies the

equality conditions for a Nash equilibrium.

Finally we check the inequality condition: Alice’s strategy f should give

her at least as good a payoff against Bob’s mixed strategy as does her unused

strategy u, so we must have π1
(
f , qa + (1 − q)r) � π1

(
u,qa + (1 − q)r).

This inequality yields

2q + 2(1− q) � 3q or q � 2
3 .

Thus, to induce Alice to make a fair offer, Bob does not have to threaten to

definitely reject an unfair offer. It is enough to threaten to reject an unfair

offer with probability 1− q � 1
3 .

5.7 Colonel Blotto vs. the People’s Militia

There are two valuable towns. Col. Blotto has four regiments. The People’s

Militia has three regiments. Each decides how many regiments to send to each

town.

If Col. Blotto sends m regiments to a town and the People’s Militia sends

n, Col. Blotto’s payoff for that town is

1+n if m > n,

0 if m = n,

−(1+m) if m < n.

Col. Blotto’s total payoff is the sum of his payoffs for each town. The People’s

Militia’s payoff is the opposite of Col. Blotto’s.

We consider this to be a game in normal form. Col. Blotto (Player 1) has five

strategies, which we denote 40, 31, 22, 13, and 04. Strategy 40 is to send four

regiments to town 1 and none to town 2, and so forth for the other strategies.

Similarly, the People’s Militia (Player 2) has four strategies, which we denote

30, 21, 12, and 03.

We shall look for a mixed strategy Nash equilibrium (σ1, σ2), with σ1 =
p140 + p231 + p322 + p413 + p504 and σ2 = q130 + q221 + q312 + q403

(Table 5.1).

We should consider the following possibilities:

(1) Both players use a pure strategy.

(2) Both players use exactly two active strategies.

(3) Both players use exactly three active strategies.

(4) Both players use exactly four active strategies.
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Table 5.1. Payoffs for Col. Blotto vs. the People’s Militia

People’s Militia
q1 q2 q3 q4

30 21 12 03
p1 40 (4,−4) (2,−2) (1,−1) (0,0)
p2 31 (1,−1) (3,−3) (0,0) (−1,1)

Col. Blotto p3 22 (−2,2) (2,−2) (2,−2) (−2,2)
p4 13 (−1,1) (0,0) (3,−3) (1,−1)
p5 04 (0,0) (1,−1) (2,−2) (4,−4)

In addition, we will look briefly at the following possibility:

(5) Both players use all their active strategies (five for Col. Blotto, four for the

People’s Militia).

5.7.1 Possibility 1. If both players use a pure strategy, we have a pure

strategy Nash equilibrium. You can check using best response that there are

none.

5.7.2 Possibility 2. We will not look at any possibilities in which both

players use exactly two active strategies.

5.7.3 Possibility 3. Suppose both players use exactly three active strate-

gies. There are 40 ways this can happen. (Col. Blotto has 10 ways to choose

3 of his 5 strategies; the People’s Militia has 4 ways to choose 3 of their 4

strategies; 10× 4 = 40.) We consider just two of these choices.

Choice 1. Suppose Col. Blotto uses only his 40, 31, and 22 strategies, and

the People’s Militia uses only its 30, 21, and 12 strategies. Thus we look for a

Nash equilibrium (σ1, σ2), σ1 = p140+p231+p322, σ2 = q130+q221+q312.

Each of the People’s Militia’s pure strategies 30, 21, and 12 must yield the

same payoff to the People’s Militia against Col. Blotto’s mixed strategy σ1.

These three payoffs are

π2(σ1,30) = −4p1 − p2 + 2p3,

π2(σ1,21) = −2p1 − 3p2 − 2p3,

π2(σ1,12) = −p1 − 2p3.

We obtain three equations in three unknowns by using

π2(σ1,30) = π2(σ1,21) and π2(σ1,30) = π2(σ1,12),
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together with p1 + p2 + p3 = 1:

−2p1 + 2p2 + 4p3 = 0,

−3p1 − p2 + 4p3 = 0,

p1 + p2 + p3 = 1.

The solution is (p1, p2, p3) =
(3

4 ,−
1
4 ,

1
2

)
. Since p2 is not strictly between 0

and 1, there is no Nash equilibrium of the desired type.

Choice 2. Suppose Col. Blotto uses only his 40, 22, and 04 strategies, and

the People’s Militia uses only its 30, 21, and 12 strategies. Thus we look for a

Nash equilibrium (σ1, σ2), σ1 = p140+p322+p504, σ2 = q130+q221+q312.

Each of the People’s Militia’s pure strategies 30, 21, and 12 must yield the

same payoff to the People’s Militia against Col. Blotto’s mixed strategy σ1.

These three payoffs are

π2(σ1,30) = −4p1 + 2p3,

π2(σ1,21) = −2p1 − 2p3 − p5,

π2(σ1,12) = −p1 − 2p3 − 2p5.

We obtain three equations in three unknowns by using

π2(σ1,30) = π2(σ1,12) and π2(σ1,21) = π2(σ1,12),

together with p1 + p3 + p5 = 1:

−3p1 + 4p3 + 2p5 = 0,

−p1 + p5 = 0,

p1 + p3 + p5 = 1.

The solution is (p1, p3, p5) =
(4

9 ,
1
9 ,

4
9

)
.

Each of Col. Blotto’s pure strategies 40, 22, and 04 must yield the same

payoff to Col. Blotto against the People’s Militia’s mixed strategy σ2. These

three payoffs are

π1(40, σ2) = 4q1 + 2q2 + q3,

π1(22, σ2) = −2q1 + 2q2 + 2q3,

π1(04, σ2) = q2 + 2q3.

We obtain three equations in three unknowns by using

π1(40, σ2) = π1(04, σ2) and π1(22, σ2) = π1(04, σ2),
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together with q1 + q2 + q3 = 1:

4q1 + q2 − q3 = 0,

−2q1 + q2 = 0,

q1 + q2 + q3 = 1.

The solution is (q1, q2, q3) =
(1

9 ,
2
9 ,

2
3

)
.

These calculations rule out the existence of Nash equilibria in which the

People’s Militia’s active strategies are 30, 21, and 12, and Col. Blotto’s active

strategies are one or two of his strategies 40, 22, and 04. They also rule out

the existence of Nash equilibria in which Col. Blotto’s active strategies are 40,

22, and 04, and the People’s Militia’s active strategies are one or two of their

strategies 30, 21, and 12.

We have seen that (σ1, σ2) with σ1 = 4
940 + 1

922 + 4
904 and σ2 = 1

930 +
2
921 + 2

312 satisfies the equality conditions for a Nash equilibrium. We now

check the inequality conditions.

For Col. Blotto:

π1(40, σ2) = π1(22, σ2) = π1(04, σ2) = 14
9 ,

π1(31, σ2) = 1
9(1)+

2
9(3)+

2
3(0) =

7
9 ,

π1(13, σ2) = 1
9(−1)+ 2

9(0)+
2
3(3) =

17
9

For the People’s Militia:

π2(σ1,30) = π2(σ1,21) = π2(σ1,12) = −14
9 ,

π2(σ1,03) = −14
9

Since π1(13, σ2) > 14
9 , the inequality conditions are not satisfied; (σ1, σ2)

is not a Nash equilibrium.

Notice, however, that π2(σ1,03) = −14
9 , that is, Player 2’s strategy 03 does

just as well against σ1 as the strategies that are active in σ2. As discussed in

Section 5.6, when this happens, it is possible that there is a mixed strategy Nash

equilibrium in which the two players use different numbers of active strategies.

In this case, we must check the possibility that there is a Nash equilibrium

in which Col. Blotto’s active strategies are 40, 22, and 04, and the People’s

Militia’s strategies include 03 in addition to 30, 21, and 12.

Addendum to Choice 2. Thus we suppose Col. Blotto’s active strategies are

40, 22, and 04, and all of the People’s Militia’s strategies are active. In other

words, we look for a Nash equilibrium σ = (σ1, σ2), σ1 = p140+p322+p504,

σ2 = q130+ q221+ q312+ q403.

Each of the People’s Militia’s pure strategies must yield the same payoff

to the People’s Militia against Col. Blotto’s mixed strategy σ1. We obtain four
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equations in three unknowns by using π2(σ1,30) = π2(σ1,03), π2(σ1,21) =
π2(σ1,03), and π2(σ1,12) = π2(σ1,03), together with p1 + p3 + p5 = 1.

Usually, if there are more equations than unknowns, there are no solutions.

In this case, however, there is a solution: (p1, p3, p5) =
(4

9 ,
1
9 ,

4
9

)
; that is, the

same solution we had before allowing the People’s Militia to use its strategy

03. A little thought indicates that this is what will always happen.

Each of Col. Blotto’s pure strategies 40, 22, and 04 must yield the same

payoff to Col. Blotto against the People’s Militia’s mixed strategy σ2. These

three payoffs are

π1(40, σ2) = 4q1 + 2q2 + q3,

π1(22, σ2) = −2q1 + 2q2 + 2q3 − 2q4,

π1(04, σ2) = q2 + 2q3 + 4q4.

We obtain three equations in four unknowns by usingπ1(40, σ2) = π1(04, σ2)
and π1(22, σ2) = π1(04, σ2), together with q1 + q2 + q3 + q4 = 1:

4q1 + q2 − q3 − 4q4 = 0,

−2q1 + q2 − 6q4 = 0,

q1 + q2 + q3 + q4 = 1.

As usually happens with fewer equations than unknowns, there are many

solutions. One way to list them all is as follows:

q1 = 1
9 − q4, q2 = 2

9 + 4q4, q3 = 2
3 − 4q4, q4 arbitrary.

To keep all the qis strictly between 0 and 1, we must restrict q4 to the interval

0 < q4 < 1
9 .

Thus, if σ1 = 4
940+ 1

922+ 4
904 and

σ2 =
(1

9 − q4
)
30+ (2

9 + 4q4
)
21+ (2

3 − 4q4
)
12+ q403, 0 < q4 < 1

9 ,

then (σ1, σ2) satisfies the equality conditions for a Nash equilibrium. We now

consider the inequality conditions when 0 < q4 < 1
9 , so that all of the Peo-

ple’s Militia’s strategies are active. Then for the People’s Militia, there is no

inequality constraint to check. For Col. Blotto:

π1(40, σ2) = π1(22, σ2) = π1(04, σ2) = 14
9 ,

π1(31, σ2) =
(1

9 − q4
)
(1)+ (2

9 + 4q4
)
(3)+ (2

3 − 4q4
)
(0)+ q4(−1)

= 10q4 + 7
9 ,

π1(13, σ2) =
(1

9 − q4
)
(−1)+ (2

9 + 4q4
)
(0)+ (2

3 − 4q4
)
(3)+ q4(1)

= −10q4 + 17
9 .
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To satisfy the inequality constraints for a Nash equilibrium, we need

10q4 + 7
9 � 14

9 and − 10q4 + 17
9 � 14

9 .

These inequality conditions are satisfied for 1
30 � q4 � 7

90 .

We have thus found a one-parameter family of Nash equilibria (σ1, σ2):
σ1 = 4

940+ 1
922+ 4

904 and

σ2 =
(1

9 − q4
)
30+ (2

9 + 4q4
)
21+ (2

3 − 4q4
)
12+ q403, 1

30 � q4 � 7
90 ,

The most attractive of these Nash equilibria occurs for q4 at the midpoint

of its allowed interval of values: (q1, q2, q3, q4) =
( 1

18 ,
4
9 ,

4
9 ,

1
18

)
. At this Nash

equilibrium, the People’s Militia uses its 30 and 03 strategies equally, and

also uses its 21 and 12 strategies equally.

We shall discuss this “symmetric” Nash equilibrium further in Section 7.4.

5.7.4 Possibility 4. We will not look at any possibilities in which both

players use four active strategies.

5.7.5 Possibility 5. Suppose Col. Blotto uses all five of his pure strate-

gies. Then at a Nash equilibrium, each of Col. Blotto’s five pure strategies

gives the same payoff to him against the People’s Militia’s mixed strategy σ2.

Therefore we have the following system of 5 equations in the 4 unknowns

q1, q2, q3, q4:

π1(40, σ2) = π1(04, σ2),

π1(31, σ2) = π1(04, σ2),

π1(22, σ2) = π1(04, σ2),

π1(13, σ2) = π1(04, σ2),

q1 + q2 + q3 + q4 = 1.

Typically, when there are more equations than unknowns, there is no solu-

tion. One can check that that is the case here.

The game we have discussed is one of a class called Colonel Blotto games.

They differ in the number of towns and in the number of regiments available

to Col. Blotto and his opponent. There is a Wikipedia page devoted to these

games: http://en.wikipedia.org/wiki/Colonel_Blotto. There you will learn that

it has been argued that U.S. presidential campaigns should be thought of as

Colonel Blotto games, in which the candidates must allocate their resources

among the different states.

http://en.wikipedia.org/wiki/Colonel_Blotto
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5.8 Water Pollution 3

In the game of Water Pollution (Section 3.3), we have already considered pure

strategy Nash equilibria. Now we consider mixed strategy Nash equilibria in

which all three players use completely mixed strategies. Let g and b denote

the strategies purify and pollute, respectively. Then we search for a mixed

strategy Nash equilibrium (σ1, σ2, σ3) = (xg+ (1−x)b,yg+ (1−y)b, zg+
(1 − z)b). Since the numbers x, y , and z determine the player’s strategies,

we shall think of the payoff functions πi as functions of (x,y, z). Table 5.2

helps keep track of the notation.

Table 5.2. Payoff matrices for Water Pollution game

Firm 3 z g

Firm 2
y 1−y
g b

Firm 1 x g (−1,−1,−1) (−1,0,−1)
1− x b (0,−1,−1) (−3,−3,−4)

Firm 3 1− z b
Firm 2
y 1−y
g b

Firm 1 x g (−1,−1,0) (−4,−3,−3)
1− x b (−3,−4,−3) (−3,−3,−3)

The criteria for a mixed strategy Nash equilibrium in which all three players

have two active strategies (i.e., 0 < x < 1, 0 < y < 1, 0 < z < 1) are:

π1(1, y, z) = π1(0, y, z),

π2(x,1, z) = π2(x,0, z),

π3(x,y,1) = π3(x,y,0).

The first equation, for example, says that if Players 2 and 3 use the mixed

strategies yg + (1−y)b and zg + (1− z)b, respectively, then the payoff to

Player 1 if he uses g must equal the payoff to him if he uses b.

The first equation, written out, is

−yz − (1−y)z −y(1− z)− 4(1−y)(1− z)
= 0yz − 3(1−y)z − 3y(1− z)− 3(1−y)(1− z),
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which simplifies to

1− 3y − 3z + 6yz = 0. (5.12)

The other two equations, after simplification, are

1− 3x − 3z + 6xz = 0 and 1− 3x − 3y + 6xy = 0. (5.13)

A straightforward way to solve this system of three equations in the

unknowns x, y , and z is to begin by solving the last two equations for z
in terms of x and for y in terms of x. We obtain

z = 1− 3x
3− 6x

, y = 1− 3x
3− 6x

. (5.14)

Therefore z = y . Similarly, if we solve the first equation for y in terms of z
and the second for x in terms of z, we find that y = x. Hence x = y = z. Now

we set z = y in the first equation, which yields 6y2−6y+1 = 0. The quadratic

formula then gives y = 1
2±

1
6

√
3. We have therefore found two mixed strategy

Nash equilibria: x = y = z = 1
2 +

1
6

√
3 and x = y = z = 1

2 −
1
6

√
3.

5.9 Equivalent games

Assigning payoffs in games is a tricky business. Are there some aspects of

the process that we can safely ignore?

When you do backward induction on a game in extensive form with com-

plete information, or when you eliminate dominated strategies or look for

pure strategy Nash equilibria in a game in normal form, all you need to do is

compare one payoff of Player i to another payoff of the same player. There-

fore any reassignment of Player i’s payoffs that preserves their order will not

affect the outcome of the analysis.

The situation is different when you work with a game in extensive form

with incomplete information, or when you look for mixed strategy Nash equi-

libria in a game in normal form. Suppose Player i’s payoffs in the different

situations are v1, . . . , vk. The safe reassignments of payoffs are affine linear :

choose numbers a > 0 and b, and replace each vj by avj + b. You may use

a different a and b for each player.

We will not give a proof of this, but it is intuitively obvious. Suppose, for

example, that Player i’s payoffs are in dollars, and we replace each vi by

100vi+200. This can be interpreted as calculating Player i’s payoffs in cents

instead of dollars, and giving Player i two dollars each time she plays the

game, independent of how she does. Neither of these changes should affect

Player i’s choice of strategies in the game.
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Example. The payoff matrix for a prisoner’s dilemma with two players and

two strategies takes the form

Player 2

c d
Player 1 c (r1, r2) (s1, t2)

d (t1, s2) (p1, p2)

with si < pi < ri < ti for each i. This is a standard notation. The strate-

gies are cooperate (c) and defect (d). The letter s stands for sucker’s payoff,

p for punishment (the lousy payoff when both players defect), t for temp-

tation, and r for reward (the good payoff when both cooperate). Note that

d strictly dominates c for both players, but the strategy profile (c, c) yields

better payoffs to both than the strategy profile (d,d).
Let us try to replace Player 1’s payoffs v by new payoffs av + b so that r1

becomes 1 and p1 becomes 0. Thus we want to choose a and b so that

ar1 + b = 1,

ap1 + b = 0.

We find that a = 1/(r1 − p1) and b = −p1/(r1 − p1). Similarly, we replace

Player 2’s payoffs v by new payoffs av + b with a = 1/(r2 − p2) and b =
−p2/(r2 − p2). We obtain the new payoff matrix

Player 2

c d
Player 1 c (1,1) (e1, f2)

d (f1, e2) (0,0)

with

ei = si − pi
ri − pi

< 0 and fi = ti − pi
ri − pi

> 1.

You might find the second payoff matrix easier to think about than the first.

Also, if one were interested in doing a complete analysis of these games, the

second payoff matrix would be preferable to the first, because it has four

parameters instead of eight.

5.10 Software for computing Nash equilibria

When the game is large, computing Nash equilibria can become too difficult,

or at least too tedious, to do by hand.

To find a Nash equilibrium, according to the Fundamental Theorem of Nash

Equilibria, one must do the following:
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(1) Determine which strategies will be active.

(2) Find a solution to a set of equations with all variables nonnegative.

(3) If not all strategies are active, check some further inequalities.

There are two nice features of this problem: in step 2, the inequalities are

linear (pij � 0); and step 3, since a solution to the equalities has already been

found, is just arithmetic.

For an n-player game, the equations in step 2 are polynomial of degree

n−1. For example, in the three-player game Water Pollution, we found second-

degree polynomials in Section 5.8.

The easiest case is therefore two-player games, which give rise to linear

equations. In fact, for two-player games, there are alternate approaches to

computing Nash equilibria that do not directly use the Fudamental Theo-

rem. For a two-player zero-sum game, the problem of finding a Nash equilib-

rium can be converted into a linear programming problem, for which many

solution methods are known. For general two-player games, one can use the

Lemke-Howson algorithm, which is related to the simplex algorithm of linear

programming.

For n-player games, one first uses a heuristic (an experience-based algo-

rithm that is not guaranteed to work) to choose a likely set of active strategies.

Then one can use computer algebra or a numerical method to find solutions

to the resulting system of polynomial equations and linear equalities. Finally,

one checks whether the inequalities in the Fundamental Theorem are satis-

fied.

The free software Gambit, available at http://www.gambit-project.org,

incorporates a variety of methods for computing Nash equilibria numerically.

Gambit can also be used to eliminate dominated strategies in normal-form

games, and to perform backward induction in extensive-form games.

5.11 Critique of Nash equilibrium

Let’s consider the game of Tennis (Section 5.2). Suppose you must serve once,

and you know that your opponent is using her mixed strategy from the Nash

equilibrium: she expects a serve to her backhand 70% of the time, and a serve

to her forehand 30% of the time. Should you use your own mixed strategy

from the Nash equilibrium, namely, serve with probability 60% to her fore-

hand and with probability 40% to her backhand? The answer is that it doesn’t

matter: according to Theorem 5.3, either of your pure strategies, or any mix-

ture of them, gives you the same expected payoff.

But what if you must serve many times, as is actually the case in a game

of tennis? If you do not respond to her 70-30 expectations with the corre-

sponding 60-40 strategy, then her 70-30 strategy is not her best response to

http://www.gambit-project.org
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your strategy. If she realizes what you are doing, she can change strategies

and improve her payoff.

More generally, if the two players are not in a Nash equilibrium, one player

might eventually realize that she can improve her own payoff by changing

her strategy. If the new strategy profile is not a Nash equilibrium, again one

of the players might eventually realize that she can improve her payoff by

changing her strategy. Thus one would not expect the players to stay with

a pair of strategies that is not a Nash equilibrium. However, these repeated

adjustments need not lead the players toward a Nash equilibrium. In the game

of Tennis, if one player does not use her Nash equilibrium mixed strategy,

the other player’s best response is always a pure strategy. Thus if the players

repeatedly adjust to each other using best responses, they will never arrive at

a Nash equilibrium. In Chapter 10 we look at a different adjustment process

that makes small adjustments. However, it does not necessarily need to result

in a Nash equilibrium either.

One view is that rational analysis of a game by the players will lead them

to play a Nash equilibrium. Another view is that when a game is played many

times, trial and error leads to a Nash equilibrium without the necessity for

rational analysis. At present there do not exist either theoretical arguments

or experimental results to fully justify either view, although there is some

evidence that professional athletes do use mixed strategies close to the Nash

equilibrium ones in situations like that of Tennis.

We have seen that game theory provides models of interaction that can

be used to understand and deal with recreational games; ordinary human

interactions; animal behavior; and issues of politics, economics, business,

and war. This list is not exhaustive. The role played by the Nash equilibrium

may well depend on the context in which it arises.

5.12 Problems

5.12.1 Courtship among Birds. In many bird species, males are faith-

ful or philanderers, females are coy or loose. Coy females insist on a long

courtship before copulating, while loose females do not. Faithful males toler-

ate a long courtship and help rear their young, while philanderers do not wait

and do not help. Suppose v is the value of having offspring to either a male

or a female, 2r > 0 is the total cost of rearing offspring, andw > 0 is the cost

of prolonged courtship to both male and female. We assume v > r +w. This

means that a long courtship followed by sharing the costs of raising offspring

is worthwhile to both male and female birds. The normal form of this game

is:
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Female

coy loose

Male faithful (v − r −w,v − r −w) (v − r , v − r)
philanderer (0,0) (v, v − 2r)

(1) If v > 2r , find a pure strategy Nash equilibrium.

(2) If v < 2r , show that there is no pure strategy Nash equilibrium, and find

a mixed strategy Nash equilibrium.

5.12.2 The Travails of Boss Gorilla 3. In Section 4.5, where Boss Gorilla

had to deal with a Visiting Gorilla whose unknown type was Tough or Weak,

we found a pure strategy Nash equilibrium under the assumption that Visit-

ing Gorilla was Tough with probability p > 1
3 . Now suppose that p < 1

3 . To be

specific, suppose that p = 1
6 . Then the payoff matrix for the two-player game

in Section 4.5, with Visiting Gorilla’s strictly dominated strategies lc and ll
removed, is:

Visiting Gorilla

cc cl
Boss Gorilla f (4,0)

(
45

6 ,
5
6

)
a (3,3)

(
51

2 ,
1
2

)
(1) Use best response to show that there is no pure strategy Nash equilibrium.

(2) Find a mixed strategy Nash equilibrium.

(3) Interpret your answer to part (2): in the Nash equilibrium, what should

each gorilla (Boss, Tough, and Weak) do?

5.12.3 War and Peace. Two players each have one unit of Good Stuff.

They each have two strategies, remain peaceful (p) or attack (a). If both

remain peaceful, each gets to consume his own stuff. If one attacks and the

other remains peaceful, the attacker takes the other’s stuff. If both attack,

both incur a loss of � > 0. The normal form of this game is:

Player 2

p a
Player 1 p (1,1) (0,2)

a (2,0) (−�,−�)

(1) Use best response to find the pure strategy Nash equilibria. (There are

two.)

(2) Find a mixed strategy Nash equilibrium in which neither player uses a

pure strategy.
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(3) Show that for the mixed strategy Nash equilibrium, the payoff to each

player increases when the loss from conflict � increases. Interpret this

result.

5.12.4 Rock-Paper-Scissors 1. In the well-known game of Rock-Paper-

Scissors, two players simultaneously form an outstretched hand into one of

three shapes: rock (closed fist), paper (open hand), or scissors (a fist with

index and middle finger stuck out). Paper beats rock, scissors beats paper,

and rock beats scissors. If we assign a payoff of 1 to the winner, −1 to the

loser, and 0 to both players in case of a tie, we get the following payoff matrix:

Player 2

r p s
r (0,0) (−1,1) (1,−1)

Player 1 p (1,−1) (0,0) (−1,1)
s (−1,1) (1,−1) (0,0)

(1) Use best response to show that there are no pure strategy Nash equilibria.

(2) Find a mixed strategy Nash equilibrium in which both players use all three

of their pure strategies.

(3) Show that in the mixed strategy Nash equilibria found in part (2), the

expected payoff to each player is 0.

(4) Use Theorem 5.6 to explain why the Nash equilibrium found in part (2)

is the only Nash equilibrium of Rock-Paper-Scissors. (Take a look at how

Theorem 5.6 was used at the end of Section 5.5 to rule out additional Nash

equilibria in the game of One-card Two-round Poker.)

For more information about Rock-Paper-Scissors, see the Wikipedia article

http://en.wikipedia.org/wiki/Rock-paper-scissors.

5.12.5 Product Development. Two companies are racing to be first to

develop a product. Company 1 can invest 0, 1, 2, 3, or 4 million dollars in this

effort. Company 2, which is a little bigger, can invest 0, 1, 2, 3, 4, or 5 million

dollars. If one company invests more, it will win the race and gain 10 million

dollars by being first to market. If the companies invest the same amount,

there is no gain to either. Total payoff to each company is the amount it did

not invest, which it retains, plus 10 million if it is first to market. The normal

form of this game is:

http://en.wikipedia.org/wiki/Rock-paper-scissors
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0 1 2 3 4 5

0 (4,5) (4,14) (4,13) (4,12) (4,11) (4,10)
1 (13,5) (3,4) (3,13) (3,12) (3,11) (3,10)
2 (12,5) (12,4) (2,3) (2,12) (2,11) (2,10)
3 (11,5) (11,4) (11,3) (1,2) (1,11) (1,10)
4 (10,5) (10,4) (10,3) (10,2) (0,1) (0,10)

(1) Show that after eliminating weakly dominated strategies, each player has

three remaining strategies.

(2) Show that the reduced 3× 3 game has no pure strategy Nash equilibria.

(3) Find a mixed strategy Nash equilibrium of the reduced game in which

each company uses all three of its remaining strategies.

(4) Show that in this mixed strategy Nash equilibria, the expected payoffs are

4 to company 1 and 10 to company 2.

5.12.6 Tit for Tat 2. Consider Al’s and Bob’s toy stores, as described in

Problem 3.12.6. Recall that each had three strategies:

• h: Always charge high prices.

• l: Always charge low prices.

• t: Tit for tat. Charge high prices the first week. The next week, do whatever

the other store did the previous week.

The matrix of payoffs if each store follows its strategy for two weeks is:

Bob

h l t
h (10,10) (0,12) (10,10)

Al l (12,0) (6,6) (9,3)

t (10,10) (3,9) (10,10)

We shall look for a mixed strategy Nash equilibrium (σ , τ) in which each

store uses a combination of its strategies h and t: σ = ph + (1 − p)t, τ =
qh+ (1− q)t, 0 < p < 1, 0 < q < 1.

(1) The equality conditions for a Nash equilibrium of this type are π1(h, τ) =
π1(t, τ) and π2(σ ,h) = π2(σ , t). Show that these equations place no

restriction at all on (p, q). Hence every strategy profile (σ , τ) defined

above satisfies the equality conditions for a Nash equiibrium.

(2) Now we consider the inequality condition for Player 1. Let τ = qh+ (1−
q)t, 0 < q < 1. We haveπ1(h, τ) = π1(t, τ) = 10. Therefore the inequality

condition is π1(l, τ) � 10. Find the restriction that this places on q.
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5.12.7 Smallville Bar. The town of Smallville has three residents. At

night, each has two choices: watch TV (t) or walk to the bar (b). The energy

cost of watching TV is 0, and the utility is also 0. The energy cost of walking to

the bar is 1; the utility is 0 if no one else is at the bar, 2 if one other resident

is at the bar, and 1 if both other residents are at the bar. (The residents

of Smallville are sociable, but not too sociable.) The payoffs are shown in

Table 5.3.

Table 5.3. Payoff matrices for Smallville Bar game

Resident 3 uses strategy t

Resident 2
t b

Resident 1 t (0,0,0) (0,−1,0)
b (−1,0,0) (1,1,0)

Resident 3 uses strategy b

Resident 2
t b

Resident 1 t (0,0,−1) (0,1,1)
b (1,0,1) (0,0,0)

(1) Use best response to find the pure strategy Nash equilibria.

(2) Suppose Resident 1 uses the mixed strategy xt + (1 − x)b, Resident 2

uses the mixed strategy yt + (1 − y)b, and Resident 3 uses the mixed

strategy zt + (1− z)b. As in Section 5.8, add the letters x, 1− x, and so

forth to the matrices above in the appropriate places to help keep track

of the notation.

(3) Find a Nash equilibrium in which no resident uses a pure strategy.

(Answer: (x,y, z) = (2
3 ,

2
3 ,

2
3

)
.)

(4) Find the expected payoff of Resident 1 at the Nash equilibrium. (It is 0.)

If the residents use the Nash equilibrium strategies of part (4), then their

expected utility is the same as the utility of watching TV, even though they

go to the bar two-thirds of the time.

This problem is loosely based on a game theory classic, the El Farol Bar

problem (http://en.wikipedia.org/wiki/El_Farol_Bar_problem). The El Farol

Bar is a real bar in Santa Fe, New Mexico.

http://en.wikipedia.org/wiki/El_Farol_Bar_problem
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5.12.8 Morning or Evening? Three firms (Firms 1, 2, and 3) can adver-

tise on TV in either the morning (m) or the evening (e). If more than one firm

advertises at the same time, their profits are 0. If exactly one firm advertises

in the morning, its profit is 1. If exactly one firm advertises in the evening,

its profit is 2.

(1) Each firm has two strategies, m and e. Give the payoffs to each triple of

pure strategies. You should organize your answer by giving two 2 × 2

matrices; see Section 3.10.

(2) Use best response to find the pure strategy Nash equilibria. (Answer: Every

triple of pure strategies except (m,m,m) and (e, e, e).)
(3) Suppose Firm 1 uses the mixed strategy xm + (1 − x)e, Firm 2 uses the

mixed strategy ym+ (1−y)e, and Firm 3 uses the mixed strategy zm+
(1− z)e. Show that the payoff functions are

π1(x,y, z) = 2(1− x)yz + x(1−y)(1− z),
π2(x,y, z) = 2(1−y)xz +y(1− x)(1− z),
π3(x,y, z) = 2(1− z)xy + z(1− x)(1−y).

(4) Suppose one player uses the pure strategym and one uses the pure strat-

egy e. Show that any mix of strategies by the third player yields a Nash

equilibrium. (For example, for any z with 0 � z � 1, (m, e, zm+ (1−z)e)
is a Nash equilibrium.)

(5) Show that there is no Nash equilibrium in which exactly one firm uses a

pure strategy. (It is enough to show that there is no Nash equilibrium in

which Firm 1 uses the pure strategy m or e, and Firms 2 and 3 use mixed

strategies with 0 < y < 1 and 0 < z < 1.)

(6) Find a Nash equilibrium in which no firm uses a pure strategy.

5.12.9 Water Pollution 4. In the game of Water Pollution (Section 5.8),

find a Nash equilibrium (σ1, σ2, g) in which

• Firm 1 uses the mixed strategy σ1 = xg + (1− x)b with 0 < x < 1.

• Firm 2 uses the mixed strategy σ2 = yg + (1−y)b with 0 < y < 1.

• Firm 3 uses the pure strategy g.

Suggestion: As usual you can use the Fundamental Theorem of Nash Equilib-

ria. Applied to Firm 1 or Firm 2, the Fundamental Theorem gives an equation

(an equality). Applied to Firm 3 it gives an inequality to check after you find

x and y .

5.12.10 Guess the Number. Bob (Player 1) picks a number from 1 to 3.

Alice (Player 2) tries to guess the number. Bob responds truthfully by saying
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“high,” “low,” or “correct.” The game continues until Alice guesses correctly.

Bob wins from Alice a number of dollars equal to the number of guesses that

Alice took.

The game is determined by the first two rounds. Player 1 (Bob) has three

strategies: pick 1, pick 2, pick 3. Player 2 (Alice) has five reasonable strategies:

• 12: Guess 1. If told it is low, guess 2.

• 13: Guess 1. If told it is low, guess 3.

• 2: Guess 2. If told it is high, guess 1. If told it is low, guess 3.

• 31: Guess 3. If told it is high, guess 1.

• 32: Guess 3. If told it is high, guess 2.

(1) Construct the payoff matrix. You should get the following answer:

12 13 2 31 32

1 (1,−1) (1,−1) (2,−2) (2,−2) (3,−3)
2 (2,−2) (3,−3) (1,−1) (3,−3) (2,−2)
3 (3,−3) (2,−2) (2,−2) (1,−1) (1,−1)

(2) Use best response to find the pure strategy Nash equilibria. (There are

none.)

(3) To look for mixed strategy Nash equilibria, letσ1 = (p1, p2, p3) be a mixed

strategy for Player 1, and let σ2 = (q1, q2, q3, q4, q5) be a mixed strategy

for Player 2. Find a Nash equilibrium in which all Player 1’s strategies are

active, and only Player 2’s second, third, and fourth strategies are active.

(4) Determine whether there is a Nash equilibrium in which all Player 1’s

strategies are active, and only Player 2’s first, third, and fifth strategies

are active.



Chapter 6

More about games in extensive form with
complete information

In this chapter we investigate some further aspects of games in extensive

form with complete information.

First, we saw in Section 3.9 that when one converts a game in extensive

form to normal form, new Nash equilibria can appear that do not correspond

to the Nash equilibrium one finds by backward induction. The latter is spe-

cial in that it gives a strategy one can sensibly use at any point in the game

tree. In this chapter we give a name—subgame perfect Nash equilibria—and

definition to these special Nash equilibria of a game in extensive form. The

definition is general enough that it will help us deal with such games as the

one in Figure 1.6, where the backward induction procedure we have used so

far fails.

Second, we look at some infinite horizon games. Since infinite horizon

games potentially last forever, they cannot be fully analyzed by backward

induction. The notion of a subgame perfect Nash equilibrium will help us

investigate these games.

Especially important are repeated games in which a prisoner’s dilemma

occurs over and over. In this context one can see why it might be advanta-

geous to use the strictly dominated, cooperative strategy, if it induces coop-

eration from one’s opponent in the future.

Infinite horizon games have more practical applications than one might

think. For example, a game that is repeated an unknown number of times

can often be thought of as an infinite horizon game.

Finally, we discuss two striking examples of games in extensive form with

complete information, the Samaritan’s Dilemma (Section 6.10) and the Rotten

Kid Theorem (Section 6.11), that come from the work of Nobel Prize-winning

economists. These two games were too complicated to include in Chapter 1,

but in essence they are just applications of backward induction.
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6.1 Subgame perfect Nash equilibria

Consider a game G in extensive form. A node c′ is called a successor of a

node c if there is a path in the game tree that starts at c and ends at c′.
Let h be a node that is not terminal and has no other nodes in its informa-

tion set. Assume:

• If a node c is a successor of h, then every node in the information set of

c is also a successor of h.

In this situation it makes sense to talk about the subgame H of G whose root

is h. H consists of the node h and all its successors, connected by the same

moves that connected them in G, and partitioned into the same information

sets as in G. The players and the payoffs at the terminal vertices are also the

same as in G.

If G is a game with complete information, then any nonterminal node of G
is the root of a subgame of G.

Recall from Section 1.2 that in a game in extensive form, each node is at

the end of a unique path from the root node. This is usually interpreted to

mean that players remember the past. Thus you should think of a subgame

as including the memory of what happened before the subgame began.

Let si be one of Player i’s strategies in the game G. Recall that si is just

a plan for what move to make at every node labeled i in the game G. So of

course si includes a plan for what move to make at every node labeled i in

the subgame H. Thus si contains within it a strategy that Player i can use in

the subgame H. We call this strategy the restriction of si to the subgame H,

and label it siH .

Suppose the game G has n players, and (s1, . . . , sn) is a Nash equilibrium

for G. It is called a subgame perfect Nash equilibrium if, for every subgame

H of G, (s1H, . . . , snH) is a Nash equilibrium for H.

6.2 Big Monkey and Little Monkey 6

Recall the game of Big Monkey and Little Monkey from Section 1.5, with Big

Monkey going first (Figure 6.1).

Recall that Big Monkey has two possible strategies in this game, and Little

Monkey has four. When we find the payoffs for each choice of strategies, we

get a game in normal form:

Little Monkey

ww wc cw cc
Big Monkey w (0,0) (0,0) (9,1) (9,1)

c (4,4) (5,3) (4,4) (5,3)
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Big Monkey

Little Monkey Little Monkey

wait climb

wait climb wait climb

(0, 0) (9, 1) (4, 4) (5, 3)

Figure 6.1. Big Monkey and Little Monkey.

We have seen (see Section 3.9) that there are three Nash equilibria in this

game: (w, cw), (c,ww), and (w, cc). The equilibrium (w, cw), which is the

one found by backward induction, is subgame perfect. The other two are not.

The equilibrium (c,ww) is not subgame perfect because, in the subgame

that begins after Big Monkey waits, Little Monkey would wait. By switching

to climb, Little Monkey would achieve a better payoff. Little Monkey’s plan to

wait if Big Monkey waits is what we called in Section 1.6 a threat : it would

hurt Big Monkey, at the cost of hurting Little Monkey

The equilibrium (w, cc) is not subgame perfect because, in the subgame

that begins after Big Monkey climbs, Little Monkey would climb. By switching

to wait, Little Monkey would achieve a better payoff. Little Monkey’s plan

to climb if Big Monkey climbs is what we called in Section 1.6 a promise: it

would help Big Monkey, at the cost of hurting Little Monkey. As we saw there,

in this particular game, the promise does not affect Big Monkey’s behavior.

Little Monkey is promising that if Big Monkey climbs, he will get a payoff of

5, rather than the payoff of 4 he would normally expect. Big Monkey ignores

this promise because by waiting, he gets an even bigger payoff, namely, 9.

6.3 Subgame perfect equilibria and backward induction

When we find strategies in finite extensive-form games by backward induc-

tion, we are finding subgame perfect Nash equilibria. In fact, when we use

backward induction, we are essentially considering every subgame in the

entire game.

Strategies in a subgame perfect Nash equilibrium make sense no matter

where in the game tree you use them. In contrast, at a Nash equilibrium that

is not subgame perfect, at least one of the players is using a strategy that

at some node tells her to make a move that would not be in her interest to

make. For example, at a Nash equilibrium where a player is using a strategy

that includes a threat, if the relevant node were reached, the strategy would
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tell the player to make a move that would hurt her. The success of such a

strategy depends on this node not being reached!

There are some finite games in extensive form for which backward induc-

tion does not work. Recall the game in Figure 6.2, which we discussed in

Section 1.4.

1

2
(0, 0)

(–1, 1) (1, 1)

a b

c d

Figure 6.2. Failure of backward induction.

The problem with this game is that at the node where Player 2 chooses,

both available moves give her a payoff of 1. Hence Player 1 does not know

which move Player 2 will choose if that node is reached. However, Player 1

certainly wants to know which move Player 2 will choose before she decides

between a and b!

In this game Player 1’s strategy set is S1 = {a,b}, and Player 2’s strategy

set is S2 = {c,d}. In normal form, the game is just

Player 2

c d
Player 1 a (0,0) (0,0)

b (−1,1) (1,1)

This game has two Nash equilibria, (a, c) and (b,d). Both are subgame per-

fect.

There is a way to find all subgame perfect Nash equilibria in any finite

game in extensive form with perfect information by a variant of backward

induction. Do backward induction as usual. If at any point a player has several

best choices, record each of them as a possible choice at that point, and

separately continue the backward induction using each of them. Ultimately

you will find all subgame perfect Nash equilibria.

For example, in the game we are presently considering, we begin the back-

ward induction at the node where Player 2 is to choose, since it is the only

node all of whose successors are terminal. Player 2 has two best choices,

c and d. Continuing the backward induction using c, we find that Player 1

chooses a. Continuing the backward induction using d, we find that Player 1
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chooses b. Thus the two strategy profiles we find are (a, c) and (b,d). Both

are subgame perfect Nash equilibria.

For a finite game in extensive form with complete information, this more

general backward induction procedure never fails. Therefore every finite

game in extensive form with complete information has at least one subgame

perfect Nash equilibrium.

For a two-player zero-sum finite game in extensive form with complete

information we know more (recall Section 5.5): any Nash equilibrium, and

hence any subgame perfect Nash equilibrium, yields the same payoffs to the

two players; and Player 1’s strategy from one subgame perfect Nash equilib-

rium, played against Player 2’s strategy from another subgame perfect Nash

equilibrium, also yields those payoffs. Such strategies are “best” for the two

players. This applies, for example, to chess: because of the rule that a game is

a draw if a position is repeated three times, chess is a finite game. The game

tree has about 10123 nodes. Since the tree is so large, best strategies for white

(Player 1) and black (Player 2) are not known. In particular, it is not known

whether the best strategies yield a win for white, a win for black, or a draw.

The notion of subgame perfect Nash equilibrium is especially valuable for

infinite horizon games, for which backward induction cannot be used directly.

These games are liable to have many Nash equilibria. Looking for the ones that

are subgame perfect is a way of zeroing in on the (perhaps) most plausible

ones. Sections 6.4–6.8 treat examples of infinite horizon games.

6.4 Duels and Truels

6.4.1 Duels. Two politicians, Newt and George, are competing for their

party’s presidential nomination. They take turns attacking each other. George

is more skilled and better financed. Each time he attacks Newt, he has an 80%

chance of knocking Newt out of the race. In contrast, each time Newt attacks

George, he has a 50% chance of knocking George out of the race. The attacks

continue until one candidate is driven from the race. If Newt attacks first,

what is the probability that Newt is the survivor?

This problem is an example of a duel. It has several characteristics:

(1) The players take turns attacking.

(2) The duel could theoretically go on forever, if every attack fails to drive

the opponent from the race.

In other duels, the players might attack simultaneously, so that a round could

result in both players being driven from the race; this cannot happen when

the players take turns. There are also duels that are not allowed to go on
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forever; it could be known in advance that the duel will end after a certain

number of rounds if both candidates survive that long.

Duels are not games. The players have no need to choose strategies. How-

ever, we treat this duel much like a game. We will represent it by a tree dia-

gram (see Figure 6.3). The terminal vertices are those where a player has just

been eliminated. At the terminal vertices, we assign a payoff of 1 to the sur-

viving candidate and 0 to the other candidate. We want to determine each

candidate’s expected payoff, which is just the probability the he is the ulti-

mate survivor.

N

attack

(1, 0)
G

Nature

prob = 1/2prob = 1/2

(0,1)

succeed

prob = 1/5

Nature

attack

attack

N

succeed fail

fail

prob = 4/5

Figure 6.3. Tree diagram for the Duel. Player 1 is Newt (N), Player 2 is George (G).

Let π1 denote Newt’s expected payoff. If neither candidate is eliminated in

the first two rounds, it will again be Newt’s turn to attack. Since the situation

will then be the same as it was at the start, Newt’s expected payoff at that

point will again be π1. This leads to the formula

π1 = 1
2 × 1+ 1

2 ×
(4

5 × 0+ 1
5 ×π1

)
.

Solving this equation for π1 yields π1 = 5
9 .

Thus Newt is the survivor 5
9 of the time. Half the time he eliminates George

with his first attack, and even if he fails, there is a chance he could eliminate

George later.

6.4.2 Truels. A truel is like a duel except there are three contestants.

Each time a contestant attacks, if he still has two surviving opponents, he

must decide which opponent to attack. There are several types of truels:
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(1) The contestants can take turns attacking or can attack simultaneously.

(2) The truel can be allowed to continue forever, or it can be required to end

after a certain number of rounds.

(3) When it is a contestant’s turn to attack and both opponents remain, he

may be required to attack an opponent, or he may be allowed to choose

not to attack at all.

A truel in which the contestants take turns ends when there is only one sur-

viving contestant. A truel in which the contestants attack simultaneously also

ends if all three contestants are eliminated.

Unlike a duel, a truel is a game, since the players have several available

strategies to choose from. As with a duel, when two contestants have been

eliminated, we assign a payoff of 1 to the surviving contestant and 0 to the

others. Payoffs also must be assigned to the case in which the game continues

forever. The payoffs that make sense in this case depend on the context.

6.4.3 Analysis of a truel. Three politicians, Newt, George, and Ron, are

competing for their party’s presidential nomination. They take turns attack-

ing each other. When it is a candidate’s turn to attack, if both opponents

remain in the race, he chooses one to attack, or he can choose to attack nei-

ther. If only one opponent remains in the race, the candidate attacks him.

When Newt attacks a candidate, he has a 50% chance of knocking him out of

the race. When George attacks a candidate, he has an 80% chance of knock-

ing him out of the race. Ron, however, is a legendary supercandidate. When

Ron attacks someone, Ron is sure to knock him out of the race. The attacks

continue until only one candidate is left. If Newt attacks first, George second,

and Ron third, what are each candidate’s chances of winning?

We denote the initial state of the game byNGR. This means that it is Newt’s

turn; he will be followed by George, then Ron (if they are still in the race).

Because of the candidates’ order, the other possible states of the game with

three players left are GRN and RNG. There are six possible two-candidate

states (NG, NR, GN , GR, RN , and RG), and of course three possible one-

candidate states, which correspond to terminal vertices in the game tree.

However, in drawing game trees, we regard the two-person states as terminal,

since for each two-person state, we can calculate the expected payoff of each

player. We did this for the two-person state NG when we analyzed the duel

between Newt and George. Here are the expected payoffs for all two-person

states; Players 1, 2, and 3 are Newt, George, and Ron, respectively:

(π1, π2, π3)(NG) =
(5

9 ,
4
9 ,0

)
, (π1, π2, π3)(NR) =

(1
2 ,0,

1
2

)
,

(π1, π2, π3)(GN) =
(1

9 ,
8
9 ,0

)
, (π1, π2, π3)(GR) =

(
0, 4

5 ,
1
5

)
,

(π1, π2, π3)(RN) = (0,0,1), (π1, π2, π3)(RG) = (0,0,1).
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The payoffs for GN are calculated like those for NG. The payoffs for two-

person states involving Ron are easier to compute, since if he gets a turn he

will certainly eliminate his remaining opponent.

A player’s strategy is a plan for what to do each time he encounters the

one three-person state where it is his turn to attack. For example, Newt needs

a plan for each time the state NGR (“his” state) is encountered. A priori his

planned move could depend on all players’ previous moves. However, we

shall assume that each player plans the same move for every time his state

is encountered. For example, if Newt plans to attack Ron on his initial turn,

and if the state NGR is arrived at later in the game, Newt will attack Ron

then too. It is reasonable to expect that there will be a subgame perfect Nash

equilibrium with strategies of this type.

NGR

GRNNature

RN GRNGRN GN

Nature

GRN

RNGNature Nature

NGRGR NR

attack G attack  R don’t attack

attack R attack  N don’t attack

attack N attack  G don’t attack

succeed
fail

succeed fail

succeed fail succeed fail

prob = 1/2
prob = 1/2

prob= 1/2 prob = 1/2

(0, 0, 1) (1/9, 8/9, 1)

NG RNGRNG RG

RNG

prob = 4/5 prob= 1/5 prob = 4/5 prob = 1/5

(5/9, 4/9, 0) (0, 0, 1)

(0, 4/5, 1/5) (1/2, 0, 1/2)

Figure 6.4. Partial game trees for the Truel. Notation is explained in the text.

Thus each player has only three strategies. For example, Newt can attack

George (G), attack Ron(R), or not attack (∅) whenever the state NGR is

encountered.
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Figure 6.4 shows partial game trees starting at the three-person states.

From these trees we see:

• In the situation NGR, Newt’s strategy R dominates his strategy G.

• In the situation GRN , George’s strategy R dominates his strategy N .

• In the situation RNG, Ron’s strategy G dominates his strategy N .

In other words, if you are going to attack an opponent, you should attack

the stronger one. The reason is obvious: if you leave only the weaker of your

opponents, you have a better chance of surviving. We therefore eliminate one

strategy for each candidate, leaving two for each.

Now we can regard this game as one in normal form with three candidates

and two strategies each. The payoffs are shown in Table 6.1. The strategy

profile (∅,∅,∅) results in all candidates surviving forever; we need to assign

payoffs to this case. In this problem, the most reasonable payoffs to assign

seem to be
(1

3 ,
1
3 ,

1
3

)
, since if no candidate is ever eliminated, each presumably

has probability 1
3 of winning the nomination.

Table 6.1. Payoff matrices for the Truel

Player 3 (Ron) attacks George

Player 2 (George)
R ∅

Player 1 (Newt) R
( 59

180 ,
112
180 ,

1
20

) (11
36 ,

4
9 ,

1
4

)
∅ ( 49

90 ,
16
45 ,

1
10

) ( 1
2 ,0,

1
2

)

Player 3 (Ron) does not attack

Player 2 (George)
R ∅

Player 1 (Newt) R (25
81 ,

56
81 ,0) (1

9 ,
8
9 ,0)

∅ ( 5
9 ,

4
9 ,0) ( 1

3 ,
1
3 ,

1
3)

The table also shows best responses. There is one pure strategy Nash equi-

librium. Newt, who starts the game, does not attack. The other two players

each plan to attack their stronger opponent, who is not Newt. By thus lying

low, Newt gets by far the best outcome of any player: with probability greater

than half, he will be the lone survivor.

Some of the payoffs are easy to check. For example, if the strategy profile is

(R,∅, G), Newt begins by attacking Ron. With probability 1
2 , Newt eliminates
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Ron. The situation is now GN , which results in the payoffs
(1

9 ,
8
9 ,0

)
. On the

other hand, with probability 1
2 , Newt fails eliminate Ron. The situation is now

GRN . Since George use the strategy ∅, he does not attack, and the situation

becomes RNG. Since Ron uses the strategy G, he eliminates George, and the

situation becomes NR. The payoffs from NR are (1
2 ,0,

1
2). Therefore

(π1, π2, π3)(R,∅, G) = 1
2

(1
9 ,

8
9 ,0

)+ 1
2

(1
2 ,0,

1
2

) = (11
36 ,

4
9 ,

1
4

)
.

Other payoffs can be checked by solving an equation. For example, if the

strategy profile is (R,R,∅), Newt agains begins by attacking Ron. With prob-

ability 1
2 , Newt eliminates Ron, leading to the payoffs

(1
9 ,

8
9 ,0

)
as before. With

probability 1
2 , Newt fails eliminate Ron, leading to the situation GRN . Since

George now uses the strategy R, he attacks Ron. With probability 4
5 he elim-

inates Ron, leading to the situation NG. This leads to the payoffs
(5

9 ,
4
9 ,0

)
.

With probability 1
5 , George fails to eliminate Ron. The situation becomesRNG.

Since Ron uses the strategy∅, he does not attack, and the situation becomes

NGR: we are back where we started. Therefore

(π1, π2, π3)(R,R,∅) = 1
2

(1
9 ,

8
9 ,0

)+ 1
2

(4
5

(5
9 ,

4
9 ,0

)+ 1
5(π1, π2, π3)

)
.

The solution of this equation is (π1, π2, π3) =
(25

81 ,
56
81 ,0

)
.

We remark that we have found a Nash equilibrium under the assumption

that each player is only allowed to use one of the three strategies we have

described. Further analysis would be required to show that the strategy pro-

file we have found remains a Nash equilibrium when other strategies are

allowed and to show that it is subgame perfect.

6.5 The Rubinstein bargaining model

One dollar is to be split between two players. Player 1 goes first and offers to

keep a fraction x1 of the available money (one dollar). Of course, 0 � x1 � 1,

and Player 2 would get the fraction 1−x1 of the available money. If Player 2

accepts this proposal, the game is over, and the payoffs are x1 to Player 1

and 1− x1 to Player 2.

If Player 2 rejects the proposal, the money shrinks to δ dollars, 0 < δ < 1,

and it becomes Player 2’s turn to make an offer.

Player 2 offers a fraction y1 of the available money (now δ dollars) to

Player 1. Of course, 0 � y1 � 1, and Player 2 would get the fraction 1−y1 of

the available money. If Player 1 accepts this proposal, the game is over, and

the payoffs are y1δ to Player 1 and (1−y1)δ to Player 2.

If Player 1 rejects the proposal, the money shrinks to δ2, and it becomes

Player 1’s turn to make an offer.
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Player 1 offers to keep a fraction x2 of the available money (now δ2 dollars)

and give the fraction 1−x2 to Player 2. …Well, you probably get the idea. See

Figure 6.5.

The payoff to each player is the money she gets. If no proposal is ever

accepted, the payoff to each player is 0.

This game models a situation in which it is in everyone’s interest to reach

an agreement quickly. Think, for example, of labor negotiations during a

strike: as the strike goes on, the workers lose pay, and the company loses

production. However, you probably don’t want to reach a quick agreement

by offering everything to your opponent!

2

1 Round 0, amount = 1

Round 1, amount = δ

Round 2, amount = δ2

Round 3, amount = δ3

1

1

2

2

2

offers 1 – x1

offers 1 – x2

offers y1

offers y2

a r

a r

a r

(x1, 1 – x1)

(y1δ, (1 – y1)δ)

(x2δ2, (1 – x2)δ2)

Figure 6.5. The Rubinstein bargaining model.

The numbering of the rounds of the game is shown in Figure 6.5.

A strategy for Player 1 consists of a plan for each round. For the even

rounds, she must plan what offer to make. For the odd rounds, she must plan

which offers to accept and which to reject. Of course, her plan can depend

on what has happened up to that point.

Player 2’s strategies are similar. For the even rounds, she must plan which

offers to accept and which to reject. For the odd rounds, she must plan what

offer to make.

Notice that at the start of any even round, Player 1 faces exactly the same

situation that she faced at the start of the game, except that the available

money is less. Similarly, at the start of any odd round, Player 2 faces exactly

the same situation that she faced at the start of round 1, except that the

available money is less.
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We make two simplifying assumptions:

(1) Suppose a player has a choice between accepting an offer (thus termi-

nating the game) and rejecting the offer (thus extending the game), and

suppose the payoff the player expects from extending the game equals the

offer she was just made. Then she will accept the offer, thus terminating

the game.

(2) There is a subgame perfect Nash equilibrium with the following property:

if it yields a payoff of x to Player 1, then in the subgame that starts at

round 2, it yields a payoff of xδ2 to Player 1.

With these assumptions, in the subgame perfect equilibrium of assumption

(2), if the game were to go to Round 2, the payoffs would be (xδ2, (1−x)δ2).
So the game tree gets pruned to the one shown in Figure 6.6.

2

1 Round 0, amount = 1

Round 1, amount = δ

Round 2, amount = δ2

1

2

offers 1 – x1

offers y1

a r

a r

(x1, 1 – x1)

(y1δ, (1 – y1)δ) (xδ2, 1 – xδ2)

Figure 6.6. Pruned Rubinstein bargaining model.

Let us continue to investigate the subgame perfect equilibrium of assump-

tion (2). Since it is subgame perfect, we should reason backward on the pruned

game tree to find the players’ remaining moves.

At round 1, Player 2 must make an offer. If she offers a fraction y∗1 of the

available amount δ chosen so that y∗1 δ = xδ2, Player 1 will be indifferent

between accepting the offer and rejecting it. According to assumption 1, she

will accept it. Player 2 will get to keep δ−y∗1 δ. If Player 2 offered more than

y∗1 , Player 1 would accept, but Player 2 would get less than δ−y∗1 δ. If Player 2

offered less than y∗1 , Player 1 would not accept, and Player 2 would end up

with δ2 − xδ2. This is less than δ−y∗1 δ:

δ2 − xδ2 = δ2 −y∗1 δ < δ−y∗1 δ.

Thus Player 2’s best move is to offer the fraction y∗1 of the available amount

δ chosen so thaty∗1 δ = xδ2, that is,y∗1 = xδ. Since this is her best move, it is
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the move she makes at round 1 in our subgame perfect equilibrium. Player 1

accepts the offer.

At round 0, Player 1 must make an offer. If she offers a fraction 1− x∗1 of

the available amount 1 chosen so that 1 − x∗1 = (1 − y∗1 )δ, Player 2 will be

indifferent between accepting the offer and rejecting it. According to assump-

tion (1), she will accept it. Player one gets to keep x∗1 . Reasoning as before,

we see that if Player 1 offers more or less than 1−x∗1 , she ends up with less

than x∗1 . Thus Player 1’s best move is to offer the fraction 1 − x∗1 , Player 2

accepts, and Player 1’s payoff is x∗1 .

From assumption (2), we conclude that x∗1 = x.

From the equations 1− x = 1− x∗1 = (1−y∗1 )δ and y∗1 = xδ, we obtain

1− x = (1−y∗1 )δ = (1− xδ)δ = δ− xδ2,

so 1− δ = x − xδ2, and so

x = 1− δ
1− δ2

= 1
1+ δ. (6.1)

This is Player1’s payoff. Player 2’s payoff is

1− x = δ
1+ δ. (6.2)

Player 1’s payoff is higher. For δ close to 1 (i.e., when the money they are

bargaining about does not shrink very fast), both payoffs are close to 1
2 .

6.6 Discount factor and repeated games

In Rubinstein’s bargaining model, payoffs in the future are lower, because the

amount of money to be divided decreases over time. However, there are good

reasons to regard payoffs in the future as less valuable than payoffs today,

even if they are not lower. One reason is that the future is always uncertain.

A proverb says that a bird in the hand is worth two in the bush. Certainly

a bird in the hand is worth more than one in the bush! A second reason is

that money earns interest. If you can earn 4% annual interest, for example, a

payoff of $100 today is surely worth more than a payoff of $100 in a year.

If you had $100 today, you could invest it and have $104 in a year. That is

why, if you win a big prize in a state lottery, you are offered either a certain

amount now, or a larger amount over a period of years. A third reason is

psychological. For most of us, the present is simply more important than the

future. People differ, of course, in the relative importance they assign to the

future.
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In this section, we introduce the notion of discount factor, which formal-

izes the idea that payoffs in the future as less valuable than payoffs today.

We then use the notion of discount factor to define repeated games, which

will occupy us in the next two sections.

6.6.1 Discount factor. Suppose your boss proposes to you a salary of s
dollars this year and t dollars next year. The utility to you of s dollars in the

year you earn it is u(s); recall the notion of a utility function introduced in

Subsection 4.1.1. The total utility to you today of your boss’s offer is U(s, t) =
u(s) + δu(t), where δ is a discount factor that is strictly between 0 and 1.

The value of δ can reflect the uncertainty of the future, the interest rate you

could earn, or the importance you attach to the future relative to the present.

Which would you prefer, a salary of s this year and s next year, or a salary

of s−a this year and s+a next year? Assume 0 < a < s, and, as we discussed

in Subsection 4.1.1, assume u′ > 0 (more is better) and u′′ < 0 (the rate of

increase of your utility decreases as your salary increases). Then

U(s, s)−U(s − a, s + a) = u(s)+ δu(s)− (u(s − a)+ δu(s + a))
= u(s)−u(s − a)− δ(u(s + a)−u(s))
=
∫ s
s−a

u′(t)dt − δ
∫ s+a
s

u′(t)dt > 0.

Hence you prefer s each year.

Do you see why the last line is positive? Part of the reason is that u′(s)
decreases as s increases, so

∫ s
s−a u′(t)dt >

∫ s+a
s u′(t)dt.

6.6.2 Definition of a repeated game. Let G be a game in normal

form with players 1, . . . , n, strategy sets S1, . . . , Sn, and payoff functions

πi(s1, . . . , sn).
We define a repeated game R with stage game G and discount factor δ,

0 < δ < 1, as follows. The stage game G is played at times k = 0,1,2, . . . , with

only pure strategies allowed. A strategy for Player i is just a way of choosing

which of his pure strategies si to use at each time k. His choice of which

strategy to use at time k can depend on all the strategies used by all the

players at times before k.

There will be a payoff to Player i from the stage game at each time k =
0,1,2, . . . . His payoff in the repeated game R is just

his payoff at time 0+δ×his payoff at time 1+δ2×his payoff at time 2+· · · .

In other words, payoffs at time 1 are discounted by a factor δ, payoffs at time

2 by the factor δ2, and so forth.
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A subgame of R is defined by taking the repeated game that starts at some

time k. You should think of a subgame as including the memory of the strate-

gies used by all players in the stage games at earlier times.

6.7 The Wine Merchant and the Connoisseur

A Wine Merchant sells good wine at $5 a bottle. The cost of this wine to the

Wine Merchant is $4, so he makes $1 profit on each bottle he sells. Instead

of doing this, the Wine Merchant could try to sell terrible wine at $4 a bottle.

He can acquire terrible wine for essentially nothing.

Bernard is a regular customer and a wine connoisseur. He values the good

wine at $6 a bottle, so when he buys it for $5, he feels he is ahead by $1. If

he ever tasted the terrible wine, he would value it at 0.

Bernard can either pay for his wine or steal it. If he steals the good wine,

the Wine Merchant will complain to everyone, which will result in a loss of

reputation to Bernard worth $2. If Bernard steals the terrible wine, the Wine

Merchant will not bother to complain.

We think of this situation as a two-player game in which the Wine Merchant

has two strategies, sell good wine or sell bad wine. Bernard also has two

strategies, pay for his wine or steal it.

Assuming Bernard wants one bottle of wine, we have the following game

in normal form:

Bernard

pay steal

Wine Merchant sell good (1,1) (−4,4)
sell bad (4,−4) (0,0)

The payoffs are explained as follows:

• (1,1): The Wine Merchant makes $1 profit when he sells good wine,

Bernard gets a wine worth $6 for $5.

• (−4,4): The Wine Merchant loses a bottle of wine that cost him $4,

Bernard gets a wine worth $6 at the cost of a $2 blow to his reputation.

• (4,−4): The Wine Merchant makes $4 profit when he sells bad wine,

Bernard has paid $4 for wine that is worth nothing to him.

• (0,0): The Wine Merchant loses a bottle of wine that cost him nothing,

Bernard gets a wine worth nothing.

The Wine Merchant has a strictly dominant strategy: sell bad wine. Bernard

also has a strictly dominant strategy: steal the wine. If both players use their

nasty dominant strategies, each gets a payoff of 0. In contrast, if both players
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use their nice, dominated strategies (The Wine Merchant sells good wine,

Bernard pays for it), both get a payoff of 1. This game is a prisoner’s dilemma.

To make this game easier to discuss, let’s call each player’s nice strategy

c for “cooperate,” and let’s call each player’s nasty strategy d for “defect.”

Now we have the following payoff matrix:

Bernard

c d
Wine merchant c (1,1) (−4,4)

d (4,−4) (0,0)

Both players have the same strategy set, namely, {c,d}.
We will take this game to be the stage game in a repeated game R. Recall

that a player’s strategy in a repeated game is a way of choosing which of his

strategies to use at each time k. The choice can depend on what all players

have done at times before k.

We consider the trigger strategy in this repeated game, which we denote

σ and which is defined as follows. Start by using c. Continue to use c as long

as your opponent uses c. If your opponent ever uses d, use d at your next

turn, and continue to use d forever.

In other words, the Wine Merchant starts by selling good wine, but if his

customer steals it, he decides to minimize his losses by selling terrible wine

in the future. Bernard starts by buying from the Wine Merchant, but if the

Wine Merchant cheats him, he says to himself, “I’m not going to pay that

cheater any more!”

Theorem 6.1. If δ � 3
4 , then (σ ,σ) is a Nash equilibrium.

Proof. If both players use σ , then both cooperate in every round. Therefore

both receive a payoff of 1 in every round. Taking into account the discount

factor δ, we have

π1(σ ,σ) = π2(σ ,σ) = 1+ δ+ δ2 + · · · = 1
1− δ.

Here we have used the formula for the sum of an infinite geometric series:

r + rδ+ rδ2 + · · · = r
1− δ provided |δ| < 1.

Suppose Bernard switches to a different strategy σ ′. (Because of the sym-

metry of the game, the argument would be exactly the same for the Wine

Merchant.)

Case 1. Bernard still ends up cooperating in every round. Then the Wine

Merchant, who is still using σ , will also cooperate in every round. The payoffs

are unchanged.
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Case 2. Bernard first defects in round k. Then the Wine Merchant will coop-

erate through round k, will defect in round k+1, and will defect in every round

after that. Does using σ ′ improve Bernard’s payoff?

The payoffs from the strategy profiles (σ ,σ) and (σ ,σ ′) are the same

through round k − 1, so let’s just compare their payoffs to Bernard from

round k on.

With (σ ,σ), Bernard’s payoff from round k on is

δk + δk+1 + · · · = δk

1− δ.

With (σ ,σ ′), Bernard’s payoff in round k is 4: the payoff from stealing good

wine. From round k + 1 on, unfortunately, the Wine Merchant will defect

(sell bad wine) in every round. Bernard’s best response to this is to steal it,

giving him a payoff of 0. Therefore, taking into account the discount factor,

Bernard’s payoff from round k on is at most

4δk + 0(δk+1 + δk+2 + · · · ) = 4δk.

From round k on, Bernard’s payoff from (σ ,σ) is greater than or equal to his

payoff from (σ ,σ ′) provided

δk

1− δ � 4δk or δ � 3
4
.

Some people consider this way of analyzing repeated games to be game

theory’s most important contribution. It is said to show that cooperative

behavior can establish itself in a society without the need for an external

enforcer. In particular, it shows that cooperating in a prisoner’s dilemma, as

long as the other player does, can be rational when the game is to be repeated

indefinitely. The lower bound for δ can be interpreted as meaning that that

this conclusion holds when the players value the future highly enough.

Instead of using a discount factor, one can think of δ as the probability

that the game will be repeated, given that it has just been played. The math-

ematics is exactly the same. The interpretation now is that if the probability

of the game’s being repeated is high enough, then it can be rational to use

the cooperative strategy in a prisoner’s dilemma.

Is (σ ,σ) a subgame perfect Nash equilibrium? To answer this question,

we must be sure we understand what σ tells us to do in every conceivable

situation, including those in which σ has not been used correctly up to that

point. For example, suppose your opponents defects, so you begin defecting,

but in round j you make a mistake and accidentally cooperate. Should you go
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back to defecting in round j+1, or should you check whether your opponent

perhaps cooperated in round j, and base your decision on that? We have not

defined σ carefully enough to answer this question.

Let’s redefine the trigger strategy σ as follows. Start by using c. In round

j, if both you and your opponent have used c in all previous rounds, use c.

Otherwise, use d.

You should be able to convince yourself that with this precise definition,

(σ ,σ) is a subgame perfect Nash equilibrium. Remember that a subgame is

defined by starting the game at some time, with the memory of all that has

happened previously. For any such subgame, you should convince yourself

that if your opponent is using the trigger strategy σ as we have just redefined

it, you can do no better than to use σ yourself.

6.8 The Folk Theorem

Are there other Nash equilibria in the repeated game of Wine Merchant and

Connoisseur? The so-called Folk Theorem of Repeated Games says that there

are many. (In mathematics, a “folk theorem” is a theorem that lots of people

seem to know, but no one knows who first proved it.)

6.8.1 Payoff vectors. For a game in normal form with n players, let

σ = (σ1, . . . , σn) be a mixed strategy profile. The payoff vector associated

with σ is the n-tuple of numbers (π1(σ), . . . , πn(σ)). An n-tuple of numbers

(v1, . . . , vn) is a possible payoff vector for the game if it is the payoff vector

associated with some strategy profile σ .

For example, consider a two-player game in normal form in which each

player has two strategies:

Player 2

t1 t2
Player 1 s1 (a, b) (c, d)

s2 (e, f ) (g,h)

If Player 1 uses the strategy σ1 = ps1+ (1−p)s2 with 0 � p � 1, and Player 2

uses the strategy σ2 = qt1 + (1− q)t2 with 0 � q � 1, then the payoff vector

associated with the strategy profile (σ1, σ2) is

pq(a,b)+ p(1− q)(c, d)+ (1− p)q(e, f )+ (1− p)(1− q)(g,h). (6.3)

The set of all possible payoff vectors for the game can be thought of as a set

of points in the plane. This set of points can be drawn as follows:
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(1) Draw the line segment from (a, b) to (c, d). Think of it as parametrized

by q, 0 � q � 1, as follows: r(q) = q(a, b)+ (1− q)(c, d).
(2) Draw the line segment from (e, f ) to (g,h). Think of it as parametrized

by q, 0 � q � 1, as follows: s(q) = q(e, f )+ (1− q)(g,h).
(3) For each q, draw the line segment from r(q) to s(q). This set of points is

parameterized by p, 0 � p � 1, as follows:

pr(q)+ (1− p)s(q) = p(q(a, b)+ (1− q)(c, d))
+ (1− p)(q(e, f )+ (1− q)(g,h)).

Compare (6.3).

(4) The union of all the lines you have drawn is the set of all possible payoff

vectors for the game.

Figure 6.7 shows an example.

π2

π1

(a,b)

(c,d) (g,h)

(e, f )

Figure 6.7. A set of possible payoff vectors. Typical line segments from r(q)
to s(q) are dashed, and the set of all possible payoff vectors is gray.

6.8.2 Minimax payoffs. For a two-player game in normal form, Player

1’s minimax payoff is the lowest payoff she ever gets when she makes her best

response to one of Player 2’s pure strategies. Player 1’s minimax payoff is the

lowest that Player 2 can force Player 1 to accept when using pure strategies.

Player 2’s minimax payoff is defined analogously

To state the definition of minimax payoff symbolically, let si denote one of

Player 1’s pure strategies, and let tj denote one of Player 2’s pure strategies.

Then Player 1’s minimax payoff is mintj maxsi π1(si, tj). Player 2’s minimax

payoff is minsi maxtj π2(si, tj).
For example, in the game of Wine Merchant and Connoisseur (Section 6.7),

if Bernard uses c, the Wine Merchant’s best response is d, which gives him a

payoff of 4. If Bernard uses d, the Wine Merchant’s best response is again d,

which gives him a payoff of 0. The minimum of 4 and 0 is 0, so the Wine Mer-

chant’s minimax payoff is 0. Bernard can force the Wine Merchant to accept a



170 • Chapter 6

payoff of 0 by using d, but he cannot force the Wine Merchant to accept any

lower payoff. This fact was used in Bernard’s trigger strategy to encourage

the Wine Merchant to use c. If the Wine Merchant used d instead, Bernard

would retaliate by using d, which would force the Wine Merchant to accept a

payoff of 0. Since 0 is the Wine Merchant’s minimax payoff, this is the worst

punishment that Bernard can inflict.

6.8.3 The Folk Theorem. One version of the Folk Theorem says the

following.

Theorem 6.2. The Folk Theorem. Let G be a two-player game in normal form,

let m1 be Player 1’s minimax payoff in G, and let m2 be Player 2’s minimax

payoff in G. Let R be the repeated game with stage game G and discount

factor δ. Then:

(1) At a Nash equilibrium of R, Player 1’s payoff in every round is at leastm1,

and Player 2’s payoff in every round is at least m2.

(2) Let (v1, v2) be a possible payoff vector for G with v1 >m1 and v2 >m2.

Then there is a Nash equilibrium of R in which the average payoff vector

is (v1, v2), provided the discount factor δ is large enough.

The average payoff vector is defined by taking the average payoff vector

for the first k rounds, and then taking the limit as k→∞.

To show conclusion (1), we will just consider Player 1’s payoff. Suppose

we have arrived at round k of the repeated game. Player 2’s strategy requires

him to look at the history so far and choose a certain pure strategy tj to use

in round k. But then Player 1 can use the following strategy for round k: look

at the history so far and choose the best response to tj . This will give Player 1

a payoff of at least m1 in round j.
We will not show (2) in general; we will only consider the case in which

Players 1 and 2 each have two pure strategies. Let σ1 and σ2 be the strategies

in G such that π1(σ1, σ2) = v1 and π2(σ1, σ2) = v2. Of course there are

numbers p and q between 0 and 1 such that σ1 = ps1 + (1− p)s2 and σ2 =
qt1 + (1− q)t2.

We only consider the case in which p and q are rational. We write these

fractions as p = k
m and q = �

n with k, �, m, and n integers.

We first describe a strategy σ̃2 for Player 2 in the repeated game:

• First q ·mn rounds: use t1. Note that q ·mn = �
n ·mn = �m, which is

an integer, as it should be.

• Next (1− q) ·mn =mn− �m rounds: use t2.

We have described Player 2’s strategy for the first mn rounds. He does the

same thing for the next mn rounds, and in fact forever.
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We now describe a strategy σ̃1 for Player 1 in the repeated game:

• First p · q ·mn rounds: use s1. Note that p · q ·mn = k
m · �n ·mn = k�,

which is an integer, as it should be.

• Next (1− p) · q ·mn = �m− k� rounds: use s2.

• Next p · (1−q) ·mn rounds: use s1. Note that p · (1−q) ·mn = kn−k�,

which is an integer, as it should be.

• Next (1− p) · (1− q) ·mn =mn− kn− �m+ k� rounds: use s2.

We have described Player 1’s strategy for the first mn rounds. He does the

same thing for the next mn rounds, and in fact forever.

Player 1’s total payoff for the first mn rounds is

pqmnπ1(s1, t1)+ (1− p)qmnπ1(s2, t1)+ p(1− q)mnπ1(s1, t2)

+ (1− p)(1− q)mnπ1(s2, t2).

To get Player 1’s average payoff for the first mn rounds, divide by mn:

pqπ1(s1, t1)+ (1− p)qπ1(s2, t1)

+ p(1− q)π1(s1, t2)+ (1− p)(1− q)π1(s2, t2)

= π1
(
ps1 + (1− p)s2, qt1 + (1− q)t2

)
= π1(σ1, σ2)

= v1.

Similarly, Player 2’s average payoff for the firstmn rounds isπ2(σ1, σ2) = v2,

so the average payoff vector over the first mn rounds is (v1, v2). This plus

the repetitive character of σ̃1 and σ̃2 imply that the average payoff vector for

the repeated game from the strategy profile (σ̃1, σ̃2) is also (v1, v2).
Now we define trigger strategies for Players 1 and 2 in the repeated game.

Player 1: Start by using σ̃1. If Player 2 ever deviates from his strategy σ̃2, use

the strategy si to which Player 2’s best response gives him payoff m2 < v2,

and continue to use it forever. Player 2: Start by using σ̃2. If Player 1 ever

deviates from his strategy σ̃1, use the strategy tj to which Player 1’s best

response gives him payoffm1 < v1, and continue to use it forever. The profile

of these strategies is the desired Nash equilibrium of the repeated game for

sufficiently large δ. (Without a sufficiently large discount factor, Player 1, for

example, could at some stage use his best response to Player 2’s action at that

stage, instead of using the action prescribed by his strategy σ̃1. This would

give him a better payoff at that stage; with a small enough discount factor,

he would also have a better payoff in the repeated game.)

Is the profile of these trigger strategies subgame perfect? Only if si and

tj are best responses to each other. If they are, then if we get to the point
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where both players are using these strategies to punish the other, neither will

be able to improve himself by changing on his own. This is what happens in

prisoner’s dilemma games, such as Wine Merchant and Connoisseur.

6.8.4 Wine Merchant and Connoisseur. For the game of Wine Merchant

and Connoisseur, Figure 6.8 shows the possible payoff vectors (v1, v2) with

v1 > 0 and v2 > 0 (since 0 is the minimax payoff for both players). According

to the Folk Theorem, for any (v1, v2) in this set, there is a Nash equilibrium

of the repeated game that gives payoffs (v1, v2) in every round, provided the

discount factor δ is large enough.

(0,0)

(4,–4)

(–4,4)

(1,1)

v2

v1

Figure 6.8. Possible payoff vectors for the game of Wine Merchant and Connoisseur
(light gray). Those with v1 > 0 and v2 > 0 are in dark gray.

6.9 Maximum value of a function

Sections 6.10 and 6.11 discuss uses of backward induction by two Nobel

prize-winning economists. To prepare for these examples, in this section we

review some facts about the maximum value of a function.

Suppose f is a continuous function on an intervala � x � b. From calculus

we know:

(1) f attains a maximum value somewhere on the interval.

(2) The maximum value of f occurs at a point where f ′ = 0, or at a point

where f ′ does not exist, or at an endpoint of the interval.

(3) If f ′(a) > 0, the maximum does not occur at a.

(4) If f ′(b) < 0, the maximum does not occur at b.

Suppose that f ′′ < 0 everywhere in the interval a � x � b. Then we know

a few additional things:
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(1) f attains its maximum value at unique point c in [a, b].
(2) Suppose f ′(x0) > 0 at some point x0 < b. Then x0 < c. See Figure 6.9.

(3) Suppose f ′(x1) < 0 at some point x1 > a. Then c < x1.

bc aa c = bx0x0

Figure 6.9. Two functions on [a, b] with negative second derivative everywhere and
positive first derivative at a point x0 < b. Such functions always attain their maximum
at a point c to the right of x0.

6.10 The Samaritan’s Dilemma

There is someone you want to help should she need it. However, you are

worried that the very fact that you are willing to help may lead her to do less

for herself than she otherwise would. This is the Samaritan’s Dilemma.

The Samaritan’s Dilemma is an example of moral hazard. Moral hazard is

“the prospect that a party insulated from risk may behave differently from the

way it would behave if it were fully exposed to the risk.” There is a Wikipedia

article on moral hazard: http://en.wikipedia.org/wiki/Moral_hazard.

Here is an example of the Samaritan’s Dilemma analyzed by James

Buchanan (Nobel Prize in Economics, 1986; Wikipedia article http://en.wiki

pedia.org/wiki/James_M._Buchanan).

A young woman plans to go to college next year. This year she is working

and saving for college. If she needs additional help, her father will give her

some of the money he earns this year.

Notation and assumptions regarding income and savings are as follows:

(1) Father’s income this year is z > 0, which is known. Of this he will give

0 � t � z to his daughter next year.

(2) Daughter’s income this year is y > 0, which is also known. Of this she

saves 0 � s � y to spend on college next year.

(3) Daughter chooses the amount s of her income to save for college. Father

then observes s and chooses the amount t to give to his daughter.

The important point is (3): after Daughter is done saving, Father will choose

an amount to give to her. Thus Daughter, who goes first in this game, can use

http://en.wikipedia.org/wiki/Moral_hazard
http://en.wikipedia.org/wiki/James_M._Buchanan
http://en.wikipedia.org/wiki/James_M._Buchanan
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backward induction to figure out how much to save. In other words, she can

take into account that different savings levels will result in different levels of

support from Father.

The Utility functions (see Subsection 4.1.1) are

(1) Daughter’s utility function π1(s, t), which is her payoff in this game, is

the sum of

(a) her first-year utility v1, a function of the amount she has to spend in

the first year, which is y − s; and

(b) her second-year utility v2, a function of the amount she has to spend

in the second year, which is s+ t. Second-year utility is multiplied by

a discount factor δ > 0.

Thus we have

π1(s, t) = v1(y − s)+ δv2(s + t).

(2) Father’s utility function π2(s, t), which is his payoff in this game, is the

sum of

(a) his personal utility u, a function of the amount he has to spend in

the first year, which is z − t; and

(b) his daughter’s utility π1, multiplied by a “coefficient of altruism”

α > 0.

Thus we have

π2(s, t) = u(z − t)+απ1(s, t) = u(z − t)+α
(
v1(y − s)+ δv2(s + t)

)
.

Notice that a component of Father’s utility is Daughter’s utility. The Samari-

tan’s Dilemma arises when the welfare of someone else is important to us.

We assume (recall Subsection 4.1.1)

(A1) The functions v1, v2, and u have positive first derivatives and negative

second derivatives.

Let’s first gather some facts that we will use in our analysis.

(1) Formulas we will need for partial derivatives. They are calculated using

the chain rule of first-semester calculus:

∂π1

∂s
(s, t) = −v′1(y − s)+ δv′2(s + t),

∂π2

∂t
(s, t) = −u′(z − t)+αδv′2(s + t).



More about games in extensive form with complete information • 175

(2) Formulas we will need for second partial derivatives:

∂2π1

∂s2
(s, t) = v′′1 (y − s)+ δv′′2 (s + t),

∂2π2

∂s∂t
(s, t) = αδv′′2 (s + t),

∂2π2

∂t2
(s, t) = u′′(z − t)+αδv′′2 (s + t).

All three of these are negative everywhere.

To find a savings level for Daughter using backward induction, we must

first figure out, for each possible savings level s of Daughter, the contribution

t that Father will make. To do this, we maximize Father’s utility π2(s, t) with

s fixed and 0 � t � z (recall that z is Father’s income). Let’s keep things from

getting too complicated by arranging that for s fixed, π2(s, t) will attain its

maximum at some t strictly between 0 and z. In other words, no matter how

much Daughter saves, Father will give her some of his income but not all.

This is guaranteed to happen if (∂π2/∂t)(s,0) > 0 and (∂π2/∂t)(s, z) < 0.

The first condition prevents Father from giving Daughter nothing. The second

prevents him from giving Daughter everything.

For 0 � s � y , we have

∂π2

∂t
(s,0) = −u′(z)+αδv′2(s) � −u′(z)+αδv′2(y)

and
∂π2

∂t
(s, z) = −u′(0)+αδv′2(s + z) � −u′(0)+αδv′2(z).

We therefore make two more assumptions:

(A2) αδv′2(y) > u′(z). This assumption is reasonable. We expect Daughter’s

income y to be much less than Father’s income z. Since, as discussed

in Subsection 4.1.1, each dollar of added income is less important when

income is higher, we expect v′2(y) to be much greater than u′(z). If the

product αδ is not too small (meaning that Father cares quite a bit about

Daughter, and Daughter cares quite a bit about the future), we get our

assumption.

(A3) u′(0) > αδv′2(z). This assumption is reasonable because u′(0) should be

large and v′2(z) should be small.

With these assumptions, we have

∂π2

∂t
(s,0) > 0 and

∂π2

∂t
(s, z) < 0 for all 0 � s � y .

Since ∂2π2/∂t2 is always negative, from Section 6.9, there is a single value of

t where π2(s, t), s fixed, attains its maximum value; moreover, 0 < t < z, so
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(∂π2/∂t)(s, t) = 0 at this value of t. We denote this value of t by t = b(s). This

is Father’s best-response strategy, the amount Father will give to Daughter if

the amount Daughter saves is s.
Daughter now chooses her saving level s = s∗ to maximize the function

π1(s, b(s)), which we shall denote V(s):

V(s) = π1(s, b(s)) = v1(y − s)+ δv2(s + b(s)).

Father then contributes t∗ = b(s∗).
Here is the punchline: suppose it turns out that 0 < s∗ < y ; that is, Daugh-

ter saves some of her income but not all. (This is the usual case.) Then, had

Father simply committed himself in advance to providing t∗ in support to

his daughter no matter how much she saved, Daughter would have chosen a

savings rate s� greater than s∗. Both Daughter and Father would have ended

up with higher utility.

To see this, note that we have

∂π1

∂s
(s∗, t∗) = −v′1(y − s∗)+ δv′2(s∗ + t∗). (6.4)

Suppose that we can show that this expression is positive. Then, since

(∂2π1/∂s2)(s, t∗) is always negative, we have that π1(s, t∗) is maximum at a

value s = s� greater than s∗. (See Section 6.9.)

We of course have π1(s�, t∗) > π1(s∗, t∗), so Daughter’s utility is higher.

Since Daugher’s utility is higher, we see from the formula for π2 that

π2(s�, t∗) > π2(s∗, t∗), so Father’s utility is also higher.

However, it is not obvious that (6.4) is positive. To see that it is, we proceed

as follows.

Step 1. To maximize V(s), we calculate

V ′(s) = −v′1(y − s)+ δv′2(s + b(s))(1+ b′(s)).

Step 2. If V(s) is maximum at s = s∗ with 0 < s∗ < y , we must have

V ′(s∗) = 0, that is,

0 = −v′1(y − s∗)+ δv′2(s∗ + t∗)(1+ b′(s∗)). (6.5)

Step 3. Subtracting (6.5) from (6.4), we obtain

∂π1

∂s
(s∗, t∗) = −δv′2(s∗ + t∗)b′(s∗). (6.6)

Step 4. We expect that b′(s) < 0; this simply says that if Daughter saves

more, Father will contribute less. To check this, note that

∂π2

∂t
(s, b(s)) = 0 for all s.
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Differentiating both sides of this equation with respect to s, we get

∂2π2

∂s∂t
(s, b(s))+ ∂

2π2

∂t2
(s, b(s))b′(s) = 0.

Since ∂2π2/∂s∂t and ∂2π2/∂t2 are always negative, we must have b′(s) < 0.

Step 5. From (6.6), since v′2 is always positive and b′(s) is always negative,

we see that (∂π1/∂s)(s∗, t∗) is positive.

This problem has implications for government social policy. It suggests

that social programs be made available to everyone rather than on an if-

needed basis.

Let’s look more closely at this conclusion.

When Father promises Daughter a certain fixed amount of help, one can

imagine two possible effects: (i) now that she knows she will get this help,

Daughter will save less; (ii) now that more saving will not result in less con-

tribution from Father (remember, b′(s) < 0), Daughter will save more. All we

have shown is that if the promised contribution is t∗, it is actually (ii) that will

occur. Too great a promised contribution might result in (i) instead.

In addition, our conclusion required that the coefficient of altruism α not

be too small. That makes sense for a father and daughter. Whether it is correct

for rich people (who do most of the paying for social programs) and poor

people (who get most of the benefits) is less certain.

6.11 The Rotten Kid Theorem

A rotten son manages a family business. The amount of effort the son puts

into the business affects both his income and his mother’s. The son, being

rotten, cares only about his own income, not his mother’s. To make matters

worse, Mother dearly loves her son. If the son’s income is low, Mother will give

part of her own income to her son so that he will not suffer. In this situation,

can the son be expected to do what is best for the family?

We shall give the analysis of Gary Becker (Nobel Prize in Economics, 1992;

Wikipedia article http://en.wikipedia.org/wiki/Gary_Becker).

We denote the son’s annual income byy and the mother’s by z. The amount

of effort that the son devotes to the family business is denoted by a. His

choice of a will affect both his income and his mother’s, so we regard both

y and z as functions of a: y = y(a) and z = z(a).
After Mother observes a, and hence observes her own income z(a) and

her son’s income y(a), she chooses an amount t, 0 � t � z(a), to give to her

son.

The mother and son have personal utility functions u and v , respectively

(see Subsection 4.1.1). Each is a function of the amount they have to spend.

http://en.wikipedia.org/wiki/Gary_Becker
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The son chooses his effort a to maximize his own utility v , without regard

for his mother’s utility u. Mother, however, chooses the amount t to transfer

to her son to maximize u(z − t) + αv(y + t), where α is her coefficient of

altruism. Thus the payoff functions for this game are

π1(a, t) = v(y(a)+ t),
π2(a, t) = u(z(a)− t)+αv(y(a)+ t).

Since the son chooses first, he can use backward induction to decide how

much effort to put into the family business. In other words, he can take into

account that even if he doesn’t put in much effort, and so doesn’t produce

much income for either himself or his mother, his mother will help him out.

We make the following assumptions:

• As in Subsection 4.1.1, the functions u and v have positive first deriva-

tives and negative second derivatives.

• The son’s level of effort is chosen from an interval I = [a1, a2].
• For all a in I, αv′(y(a)) > u′(z(a)). This assumption expresses two

ideas: (a) Mother dearly loves her son, so α is not small; and (b) no matter

how little or how much the son works, Mother’s income z(a) is much

larger than son’s income y(a). (Recall that the derivative of a utility

function gets smaller as the income gets larger.) This makes sense if the

income generated by the family business is small compared to Mother’s

overall income

• For all a in I, u′(0) > αv′(y(a)+ z(a)). This assumption is reasonable,

because u′(0) should be large and v′(y(a)+ z(a)) should be small.

• Let T(a) = y(a) + z(a) denote total family income. Then T ′(a) = 0 at

a unique point a�, a1 < a� < a2, and T(a) attains its maximum value

at this point. This assumption expresses the idea that if the son works

too hard, he will do more harm than good. As they say in the software

industry, if you stay at work too late, you’re just adding bugs.

To find the son’s level of effort using backward induction, we must first

maximize π2(a, t) with a fixed and 0 � t � z(a). We calculate

∂π2

∂t
(a, t) = −u′(z(a)− t)+αv′(y(a)+ t),

∂π2

∂t
(a,0) = −u′(z(a))+αv′(y(a)) > 0,

∂π2

∂t
(a, z(a)) = −u′(0)+αv′(y(a)+ z(a)) < 0,

∂2π2

∂t2
(a, t) = u′′(z(a)− t)+αv′′(y(a)+ t) < 0.
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Then there is a single value of t where π2(a, t), a fixed, attains its maximum;

moreover, 0 < t < z(a), so (∂π2/∂t)(a, t) = 0. (See Section 6.9.) We denote

this value of t by t = b(a). This is Mother’s strategy, the amount Mother will

give to her son if his level of effort in the family business is a.

The son now chooses his level of effort a = a∗ to maximize the function

π1(a, b(a)), which we shall denote V(a):

V(a) = π1(a, b(a)) = v(y(a)+ b(a)).

Mother then contributes t∗ = b(a∗).
So what? Here is Becker’s point.

Suppose a1 < a∗ < a2 (the usual case). Then V ′(a∗) = 0, that is,

v′
(
y(a∗)+ b(a∗))(y ′(a∗)+ b′(a∗)) = 0.

Since v′ is positive everywhere, we have

y ′(a∗)+ b′(a∗) = 0. (6.7)

Now (∂π2/∂t)(a, t) = 0 when t = b(a), so −u′(z(a) − b(a)) + αv′(y(a) +
b(a)

) = 0 for all a. Differentiating this equation with respect to a, we find

that, for all a,

−u′′(z(a)− b(a))(z′(a)− b′(a))+αv′′(y(a)+ b(a))(y ′(a)+ b′(a)) = 0.

In particular, for a = a∗,

−u′′(z(a∗)− b(a∗))(z′(a∗)− b′(a∗))
+αv′′(y(a∗)+ b(a∗))(y ′(a∗)+ b′(a∗)) = 0.

This equation and (6.7) imply that

z′(a∗)− b′(a∗) = 0.

Adding this equation to (6.7), we obtain

y ′(a∗)+ z′(a∗) = 0.

Therefore T ′(a∗) = 0. But then, by our last assumption, a∗ = a�, the level of

effort that maximizes total family income.

Thus, if the son had not been rotten, and instead had been trying to max-

imize total family income y(a)+ z(a), he would have chosen the same level

of effort a∗.



180 • Chapter 6

6.12 Problems

6.12.1 Another Debate. Redo the problem analyzed in Subsection 6.4.3

with the assumption that Newt eliminates the candidate he attacks 20% of

the time, George eliminates the candidate he attacks 30% of the time, and

Ron always eliminates the candidate he attacks. Find a pure strategy Nash

equilibrium, and give each candidate’s probability of survival at the Nash

equilibrium

6.12.2 A Truel with Simultaneous Attacks. In the problem analyzed in

Subsection 6.4.3, suppose that the candidates attack simultaneously instead

of taking turns. The game now has just eight states: NGR (all candidates still

competing);NG,NR, andGN (two candidates left);N ,G, andR (one candidate

left); and O (no candidates left). The last four states correspond to terminal

vertices. The payoffs when no candidate is left are (0,0,0).
We assume that in each two-person state, each remaining candidate attacks

the other. In the three-person state, each candidate has three strategies:

attack one of the other candidates, or attack neither.

(1) Calculate the expected payoffs in each two-person state. After you have

done this, you can regard the two-person states as terminal.

(2) Calculate the expected payoffs from the strategy profile (∅, R,G) (Newt

lies low).

(3) Calculate the expected payoffs from the strategy profile (R,R,G) (the

weaker candidates gang up on the strongest).

6.12.3 Huey, Dewey, and Louie Split a Dollar. Huey (Player 1), Dewey

(Player 2), and Louie (Player 3) have a dollar to split.

Round 0: Huey goes first and offers to split the dollar into fractions a1 for

himself, b1 for Dewey, and c1 for Louie, with a1 + b1 + c1 = 1. If Dewey and

Louie both accept, the game is over. If at least one rejects the offer, the dollar

shrinks to δ, 0 < δ < 1, and it is Dewey’s turn to offer.

Round 1: Dewey (Player 2) offers to split the remaining money into fractions

d1 for Huey, e1 for himself, and f1 for Louie, with d1 + e1 + f1 = 1. If Huey

and Louie both accept, the game is over. If at least one rejects the offer, the

remaining money shrinks to δ2, and it is Louie’s turn to offer.

Round 2: Louie (Player 3) offers to split the remaining money into fractions

g1 for Huey, h1 for Dewey, and k1 for himself, with g1 +h1 + k1 = 1. If Huey

and Dewey both accept, the game is over. If at least one rejects the offer, the

remaining money shrinks to δ3, and it is Huey’s turn to offer.
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Round 3: Huey (Player 1) offers to split the remaining money into fractions

a2 for himself, b2 for Dewey, and c2 for Louie, with a2+b2+c2 = 1. If Dewey

and Louie both accept, the game is over. If at least one rejects the offer, the

remaining money shrinks to δ4, and it is Dewey’s turn to offer.

And so forth.

A schematic game tree is shown in Figure 6.10.

1

2,3

2

1,3

3

1,2

1

2,3

2

offer fractions (a1,b1,c1)

offer fractions (a2,b2,c2)

offer fractions (d2,e2,f2)
(δ3a2δ3,b2,δ3c2)

offer fractions (d1,e1,f1)

offer fractions (g1,h1,k1)
(δd1,δe1,δf1)

(δ2g1,δ2h1,δ2k1)

(a1,b1,c1)

Round 0  Amount = 1

Round 1  Amount = δ

Round 2  Amount = δ2

Round 3 Amount = δ3

Round 4 Amount = δ4

accept at least one rejects

accept at least one rejects

accept at least one rejects

accept at least one rejects

Figure 6.10. Huey, Dewey, and Louie split a dollar.

We make two simplifying assumptions:

• Suppose a player has a choice between accepting an offer and rejecting

the offer, and suppose the offer equals the payoff the player expects from

rejecting the offer. Then he will accept the offer.

• There is a subgame perfect Nash equilibrium with the following property:

if it yields payoffs of x to Player 1, y to Player 2, and z to Player 3, then

in the subgame that starts at round 3, it yields payoffs δ3x to Player 1,

δ3y to Player 2, and δ3z to Player 3.
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Because of the second assumption, we can prune the game tree to that

shown in Figure 6.11.

1

2,3

2

1,3

3

1,2

1

offer fractions (a1, b1, c1)

offer fractions (d1, e1, f1)

offer fractions (g1, h1, k1)
(δd1, δe1, δf1)

(δ2g1, δ2h1, δ2k1) (δ3x, δ3y, δ3z)

(a1, b1, c1)

Round 0  Amount = 1

Round 1  Amount = δ

Round 2  Amount = δ2

accept at least one rejects

accept at least one rejects

accept at least one rejects

Figure 6.11. Pruned game tree.

(1) Explain why g1 = δx and h1 = δy .

(2) Explain why d1 = δg1 and f1 = δk1.

(3) Explain why b1 = δe1 and c1 = δf1.

(4) Explain why b1 = y and c1 = z.

(5) Parts (3) and (4) yield the two equations y = δe1 and z = δf1. Parts (1)

and (2) yield four more equations. We also have the three equations

x +y + z = 1, d1 + e1 + f1 = 1, g1 + h1 + k1 = 1.

In total we have nine equations in the nine unknownsx,y , z, d1, e1, f1, g1,

h1, and k1. Check that the following is a solution of these nine equations.

(Actually, it’s the only solution.)

x = e1 = k1 = 1
1+ δ+ δ2

,

y = f1 = g1 = δ
1+ δ+ δ2

,

z = d1 = h1 = δ2

1+ δ+ δ2
.
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6.12.4 Iran and Iraq. There are two oil-producing countries, Iran and

Iraq. Both can operate at either of two production levels: low (2 million barrels

per day) or high (4 million barrels per day). Depending on their decisions, total

output will be 4, 6, or 8 million barrels per day. The price per barrel in the

three cases will be $100, $60, or $40, respectively. Cost of production is $8

per barrel for Iran and $16 per barrel for Iraq. The following matrix shows

profit per day in millions of dollars:

Iraq

low high

Iran low (184,168) (104,176)
high (208,88) (128,96)

(1) Explain the numbers in the matrix.

(2) Find a discount factor δ0 such that for δ � δ0, it is a Nash equilibrium for

both countries to use the following trigger strategy. Start by producing at

the low level. If the other country produces at the high level even once,

produce at the high level forever.

Remark: You will find a discount factor δ1 such that for δ � δ1, Iran cannot

improve its payoff; and a second discount factor δ2 such that for δ � δ2,

Iraq cannot improve its payoff. That means that for δ � max(δ1, δ2), neither

country can improve its payoff.

6.12.5 Should You Contribute? This problem is related to the Global

Warming Game (Section 2.5). A group of ten students plays the following

game. Each student is given one dollar. Each student then simultaneously

puts a portion of her dollar into a pot. The game organizer counts the total

amount in the pot, multiplies by five, and splits this amount equally among

the ten students.

The ith student’s strategy is a real number xi, 0 � xi � 1, which repre-

sents the amount that student chooses to put in the pot. A strategy profile is

therefore a 10-tuple (x1, x2, . . . , x10) with 0 � xi � 1 for each i.

(1) Find the ith player’s payoff function πi(x1, x2, . . . , x10). (The answer is

πi(x1, x2, . . . , x10) = 1− xi + 1
2(x1 + x2 + · · · + x10);

you should explain this.)

(2) Show that each player has a strategy that strictly dominates all his other

strategies: whatever the other players do, contribute nothing. (For exam-

ple, consider Player 1. Given any choices (x2, . . . , x10) by the other players,

Player 1 maximizes her payoff by choosing x1 = 0.) Therefore the only

Nash equilibrium is (0,0, . . . ,0), at which each player’s payoff is 1.
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(3) Suppose the game is repeated every day. Consider the following strategy

σx , where 0 < x � 1: “I will contribute x dollars on day 0. If every other

player contributes at least x dollars on day k, I will contribute x dollars

on day k+ 1. If any player contributes less than x dollars on day k, I will

contribute nothing on every subsequent day.” Show that if δ � 1
9 , then

it is a Nash equilibrium for every player to use the strategy σx with the

same x. (In other words, (σx,σx, . . . , σx) is a Nash equilibrium.)

6.12.6 Tit for Tat 3. We saw tit for tat in a game repeated twice in Prob-

lem 3.12.6. In the infinitely repeated game of Wine Merchant and Connois-

seur, or in any prisoner’s dilemma, tit for tat is the following strategy. Start

by using c. Thereafter do whatever your opponent did in the previous round.

Suppose that in Wine Merchant and Connoisseur, both players use tit for

tat. We will find the payoffs and check whether various alternative strategies

by one of the players improve his payoff.

(1) “If both players use tit for tat, their payoffs are the same as when both

players use the trigger strategy of Section 6.7.” Explain.

(2) Suppose Player 2 uses tit for tat, but Player 1 uses the following variant:

“Start by using d. Thereafter do whatever your opponent did in the pre-

vious round.” Find δ0 such that for δ � δ0, Player 1 does not improve his

payoff by using this variant.

(3) Suppose Player 2 uses tit for tat, but Player 1 uses d in every round. Find

δ0 such that for δ � δ0, Player 1 does not improve his payoff by using

this strategy.

(4) The previous two parts of this problem suggest that for δ sufficiently

large, it is a Nash equilibrium of the repeated game for both players to use

tit for tat. This is true, but we shall not complete the argument. Instead,

show the following: it is not a subgame perfect Nash equilibrium of the

repeated game for both players to use tit for tat. Suggestion: Suppose in

period 0, Player 1 uses d and Player 2 uses c. Consider the subgame that

begins with period 1, with the memory of what happened in period 0. What

happens if both players use tit for tat in the subgame? What happens if

Player 1 uses tit for tat in the subgame, but Player 2 “forgives” Player 1

by using c in round 1 and tit for tat thereafter? Find δ0 such that for

δ > δ0, the second outcome gives Player 2 a better result than the first in

the subgame.

Tit for tat has the drawback that, if one player defects, even by accident

or for reasons beyond his control, the players become trapped in a cycle of

repeated defections, as in part 2 of this problem. Israeli-Palestinian relations

(Section 2.4) have been plagued by such cycles of repeated revenge-taking.
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An alternative to tit for tat is “forgiving tit for tat,” which is tit for tat except

that, with some probability, a player responds to a defection by forgiving it

and cooperating. Part 4 of this problem shows how forgiving tit for tat can

be advantageous.

For more information on tit for tat, see the Wikipedia page http://en.wiki

pedia.org/wiki/Tit_for_tat.

http://en.wikipedia.org/wiki/Tit_for_tat
http://en.wikipedia.org/wiki/Tit_for_tat
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Symmetries of games

In some games, players or strategies are interchangeable in some way. Nash

discussed such games in the same paper [11] in which he proved his theorem

on existence of Nash equlibria (Theorem 5.1). Nash showed that among the

Nash equilibria of such games are some particularly simple ones. Finding

such Nash equilibria can be much easier than finding all Nash equilibria.

In this chapter we mainly discuss games in which all players are inter-

changeable. In the last section we discuss some other situations.

7.1 Interchangeable players

We have seen several examples of games in normal form in which the players

are interchangeable:

• Prisoner’s Dilemma

• Stag Hunt

• Chicken

• Battle of the Sexes

• Water Pollution

• Tobacco Market

• Cournot Duopoly

For each of these games except Chicken and Battle of the Sexes, we found

at least one pure strategy Nash equilibrium in which every player used the

same strategy.

Recall from Subsection 3.2.3 the payoffs in Chicken:

Teenager 2

straight swerve

Teenager 1 straight (−2,−2) (1,−1)
swerve (−1,1) (0,0)
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There are two Nash equilibria: (straight, swerve) and (swerve, straight). In both

of these Nash equilibria, of course, the players use different strategies.

Let’s look for a mixed strategy equilibrium

(p straight+ (1− p) swerve, q straight+ (1− q) swerve),

with 0 < p < 1 and 0 < q < 1. From the Fundamental Theorem (Theorem 5.2),

p(−2)+ (1− p)(1) = p(−1)+ (1− p)(0),
q(−2)+ (1− q)(1) = q(−1)+ (1− q)(0).

The two equations are the same; this is a consequence of the symmetry of

the game. The solution is (p, q) = (1
2 ,

1
2

)
. Thus there is a mixed strategy Nash

equilibrium in which both players use the same mixed strategy.

Problem 5.12.4 (Rock-Paper-Scissors) has interchangeable players and no

pure strategy Nash equilibrium. It has a unique mixed strategy Nash equi-

librium in which both players use the same mixed strategy (one-third rock,

one-third paper, one-third scissors).

If you did Problem 5.12.8, you saw an example with three interchangeable

players in which every pure strategy profile was a Nash equilibrium except the

profiles in which all players used the same strategy. There again you found a

mixed strategy Nash equilibrium in which every player used the same mixed

strategy.

A game in normal form in which the players are interchangeable is called

symmetric. In such a game, all players, of course, have the same strategy set.

To give a formal definition of a symmetric game, we begin by discussing

permutations.

A permutation of the set {1,2, . . . , n} is just a function α from this set to

itself that is a bijection. Given such a function α, it can be used to define a

reordering of any sequence of length n by the following formula:

α · (x1, x2, . . . , xn) = (xα−1(1), xα−1(2), . . . , xα−1(n)).

Note that as is common in mathematics, we identify a sequence of n objects

with the ordered n-tuple of those objects.

For example, suppose α is the permutation of the set {1,2,3,4} given by

α(1) = 2, α(2) = 3, α(3) = 1, α(4) = 4.

The inverse is given by

α−1(1) = 3, α−1(2) = 1, α−1(3) = 2, α−1(4) = 4.
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The reordering of sequences defined by α is

α · (x1, x2, x3, x4) = (xα−1(1), xα−1(2), xα−1(3), xα−1(4)) = (x3, x1, x2, x4).

In other words, x1 moves to location 2, x2 moves to location 3, x3 moves to

location 1, and x4 stays in location 4. Thus, when the permutation α is used

to reorder a sequence, the meaning of α(i) = j is: move the object in location

i to location j.
Here is the result of applying α to various sequences of letters:

α · (a, b, c, d) = (c, a, b,d),
α · (a,a, b, c) = (b,a,a, c),
α · (a,a,a, b) = (a,a,a, b).

Note that if the first three entries are equal, α fixes the sequence (i.e., takes

the sequence to itself).

Now consider a game with n players, each of whom has the same strat-

egy set S. A mixed strategy profile (σ1, . . . , σn) leads to a payoff vector

(π1, . . . , πn). Given a permutation of the set {1,2, . . . , n}, use it to reorder

the sequence of strategies in the strategy profile. We obtain a new strategy

profile, which leads to a new payoff vector. The game is called symmetric if,

for every possible reordering of every strategy profile, the new payoff vector

is obtained from the previous payoff vector by the same reordering. More for-

mally, the game is symmetric if for every strategy profile (σ1, . . . , σn), with

associated payoff vector (π1, . . . , πn), and every permutation α of {1, . . . , n},
the payoff vector associated with α · (σ1, . . . , σn) is just α · (π1, . . . , πn).

To check that a game satisfies this definition, it is enough to check that

for every reordering of every pure strategy profile, the new payoff vector is

obtained from the previous payoff vector by the same reordering. If this is

true for all pure strategy profiles, it is also true for all mixed strategy profiles.

As an example, consider the game of Chicken. The strategy profile (straight,

swerve) gives the payoff vector (1,−1). Now switch the two strategies, which

gives (swerve, straight). The payoff vector is (−1,1). This vector if obtained by

switching the entries in (1,−1). This works for every pure strategy profile, so

Chicken is a symmetric game. (There are only two ways to reorder a sequence

of two objects: (i) don’t do anything, and (ii) switch the objects.)

For a two-player game, the definition of symmetric reduces to the follow-

ing. Let S denote the set of (pure) strategies available to either player. Then

we require

• For all s and t in S, π1(s, t) = π2(t, s).
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In other words, if one player uses s and the other uses t, the player who uses

s gets a certain payoff. It doesn’t matter whether he is Player 1 or Player 2.

The following result was proved by Nash in [11].

Theorem 7.1. In a symmetric game in which the (pure) strategy set is finite,

there is a mixed-strategy Nash equilibrium in which every player uses the

same mixed strategy.

Note that such a strategy profile is fixed by every reordering.

One can take advantage of this theorem by looking for such Nash equilibria

instead of more general equilibria.

We note one other fact about symmetric games.

• Suppose a symmetric game has a strategy profile that is a Nash equilib-

rium, but it is not the case that all players use the same mixed strategy.

Then other Nash equilibria can be found by reordering the strategies in

the strategy profile.

We have seen this phenomenon in the games of Chicken and Water Pollution,

and in Problems 5.12.7 and 5.12.8.

7.2 Reporting a Crime

In 1964 a young woman named Kitty Genovese was murdered outside her

home in Queens, New York. According to a New York Times article writ-

ten two weeks later, 38 of her neighbors witnessed the murder, but none of

them called the police. While the accuracy of the article has since been ques-

tioned (http://en.wikipedia.org/wiki/Kitty_genovese), at the time it horrified

the country.

Here is a model that has been proposed for such events. A crime is observed

by n people. Each wants the police to be informed but prefers that someone

else make the call. Suppose that each person receives a payoff of v as long

as at least one person calls the police; if no one calls the police, each person

receives a payoff of 0. Each person who calls the police incurs a cost of b. We

assume 0 < b < v .

We view this as a game with n players. Each has two strategies: call the

police (c) or don’t call the police (d). The total payoffs are:

• If at least one person calls the police: v to each person who does not call,

v − b to each person who calls.

• If no one calls the police: 0 to everyone.

You can easily check that there are exactly n pure strategy Nash equilibria.

In each of them, exactly one of the n people calls the police.

http://en.wikipedia.org/wiki/Kitty_genovese
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Motivated by Theorem 7.1, we shall look for a mixed strategy Nash equi-

librium (σ , . . . , σ) in which all players use the same strictly mixed strategy

σ = (1− p)c + pd, 0 < p < 1.

Let’s consider Player 1. By the Fundamental Theorem, each of her pure

strategies gives her the same expected payoff when Players 2 through n use

their mixed strategies:

π1(c,σ , . . . , σ) = π1(d,σ , . . . , σ).

Now π1(c,σ , . . . , σ) = v−b, since the payoff to a player who calls is v−b
no matter what the other players do. In contrast,

π1(d,σ , . . . , σ) =
⎧⎨
⎩0 if no one else calls,

v if at least one other person calls.

The probability that no one else calls is pn−1, so the probability that at least

one other person calls is 1− pn−1. Therefore

π1(d,σ , . . . , σ) = 0 · pn−1 + v · (1− pn−1) = v(1− pn−1).

Hence

v − b = v(1− pn−1),

so

p =
(
b
v

)1/(n−1)
.

Since 0 < b
v < 1, p is a number between 0 and 1.

What does this formula mean? Notice first that as n→∞, p → 1, so 1−p →
0. Thus, as the size of the group increases, each individual’s probability of

calling the police declines toward 0. However, it is more important to look at

the probability that at least one person calls the police. This probability is

1− pn = 1−
(
b
v

)n/(n−1)
.

As n increases, n/(n−1) = 1+1/(n−1) decreases toward 1, so (b/v)n/(n−1)

increases toward b
v , and so 1 − (b/v)n/(n−1) decreases toward 1 − b

v . Thus,

as the size of the group increases, the probability that the police are called

decreases.

For a large group, the probability that the police are called is approximately

1− b
v . Anything that increases b (the perceived cost of calling the police) or

decreases v (the value to people of seeing that the police get called) will

decrease the likelihood that the police are called.
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7.3 Sex Ratio 1

Most organisms that employ sexual reproduction come in two types: male

and female. In many species, the percentages of male and female offspring

that survive to actually reproduce are very different. Nevertheless, in most

species, approximately half of all births are male and half are female. What

is the reason for this? This puzzle goes back to Darwin.

One can find an answer by focusing on the number of grandchildren of

each female. Suppose a cohort of males and females is about to reproduce.

We think of this as a game in which the players are the females, a female’s

strategy is her fraction of male offspring, and a female’s payoff is her number

of grandchildren.

7.3.1 Many many females. There are lots of players! For a first pass at

analyzing this situation, imagine that one female has a fraction u of male

offspring, 0 � u � 1, and the females as a group have a fraction v of male

offspring, 0 � v � 1. We imagine the group is so large that what our one

female does has no appreciable effect on v . For each v we will calculate our

female’s best response set B(v). Motivated by the notion of Nash equilibrium,

we ask: for what values of v does the set B(v) include v?

The notation is as follows:

• σm = fraction of males that survive to reproduce.

• σf = fraction of females that survive to reproduce.

• c = number of offspring per female.

• r = number of offspring per male.

• y = number of females.

Then we have:

Female 1 All females

Sons uc vcy
Daughters (1−u)c (1− v)cy
Surviving sons σmuc σmvcy
Surviving daughters σf (1−u)c σf (1− v)cy

Let f(u,v) denote the number of grandchildren of Female 1. Then we have

f(u,v) = surviving sons · offspring per son

+ surviving daughters · offspring per daughter

= σmuc · r + σf (1−u)c · c.
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The values of σm, σf , c, and y are given, but r is not. We can calculate r as

follows. For the population as a whole,

surviving sons · offspring per son

= surviving daughters · offspring per daughter,

that is,

σmvcy · r = σf (1− v)cy · c.

Therefore r = (σf (1−v)/σmv)c. Substituting this value into our formula

for f(u,v), we obtain

f(u,v) = σmuc
σf (1− v)
σmv

c + σf (1−u)c2

= σfc2
(

1+u1− 2v
v

)
, 0 � u � 1, 0 < v � 1.

Notice

∂f
∂u
(u,v) = σfc2 1− 2v

v
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+ if 0 < v < 1

2 ,

0 if v = 1
2 ,

− if v > 1
2 ,

Therefore Female 1’s best response to v is u = 1 if 0 < v < 1
2 ; any u if v = 1

2 ;

and u = 0 if v > 1
2 . Only in the case v = 1

2 does Female 1’s best response

include v .

For Darwin’s views on sex ratios, see http://www.ucl.ac.uk/˜ucbhdjm/

courses/b242/Sex/D71SexRatio.html. For further discussion of sex ratios,

see the Wikipedia page http://en.wikipedia.org/wiki/Fisher’s_principle.

7.3.2 Not so many females. Suppose there are n females. Female i’s
strategy is a number ui, 0 � ui � 1, that represents the fraction of male

offspring she has. Her payoff is her number of grandchildren. Motivated by

our work in the previous subsection, we now derive a formula for the payoff.

We continue to use the notation:

• σm = fraction of males that survive to reproduce.

• σf = fraction of females that survive to reproduce.

• c = number of offspring per female.

• r = number of offspring per male.

Let

v = 1
n
(u1 + · · · +un).

http://www.ucl.ac.uk/%CB%9Cucbhdjm/courses/b242/Sex/D71SexRatio.html
http://www.ucl.ac.uk/%CB%9Cucbhdjm/courses/b242/Sex/D71SexRatio.html
http://en.wikipedia.org/wiki/Fisher%E2%80%99s_principle
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Then we have:

Female i All females

Sons uic vcn
Daughters (1−ui)c (1− v)cn
Surviving sons σmuic σmvcn
Surviving daughters σf (1−ui)c σf (1− v)cn

The formula for r is unchanged. We therefore have

πi(u1, . . . , un) = σfc2
(

1+ui1− 2v
v

)
.

We will look for a Nash equilibrium at which 0 < ui < 1 for every i. Then

for every i, we must have (∂πi/∂ui)(u1, . . . , un) = 0, that is,

0 = ∂πi
∂ui

= σfc2
(

1 · 1− 2v
v

+ui ddv
(

1− 2v
v

)
∂v
∂ui

)

= σfc2
(

1− 2v
v

−ui 1
v2

1
n

)
= σfc2nv − 2nv2 −ui

nv2
.

Hence, for every i, ui = nv − 2nv2. Therefore all ui are equal; denote their

common value by u. Then v = u, so

0 = nu− 2nu2 −u
nu2

= n− 2nu− 1
nu

.

Therefore

u = n− 1
2n

= 1
2
− 1

2n
.

For n large, u is very close to 1
2 .

This game is symmetric, and in the Nash equilibrium we have found, every

player uses the same strategy. Could we have assumed from the beginning

that, because of Theorem 7.1, there must be a Nash equilibrium in which all

the ui are equal? No; Theorem 7.1 does not apply. This is not a game with a

finite pure strategy set. Instead, the ith player has an interval 0 � ui � 1 of

pure strategies.

7.4 Other symmetries of games

Nash actually proved a result about symmetries of games that is more general

than Theorem 7.1. In this section we describe two more situations to which

Nash’s general result applies.
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7.4.1 More about permutations. We begin by studying permutations a

little more. Here are some important facts about permutations:

(1) Since a permutation is just a function from the set {1,2, . . . , n} to itself,

two permutations of {1,2, . . . , n} can be composed. The result is a new

permutation of {1,2, . . . , n}. In other words, the permutation α followed

by the permutation β gives the permutation β ◦α.

(2) The inverse of a permutation α of {1,2, . . . , n} is another permutation

α−1 of {1,2, . . . , n} that undoes it. We have α−1 ◦α = α ◦α−1 = ι, where

ι denotes the identity pemutation: ι(i) = i for every i.

The collection of all permutations of {1,2, . . . , n} is called Sn, the symmetric

group of order n. A subgroup of Sn is a nonempty subset H of Sn that is

closed under composition and taking inverses:

(1) if α ∈H and β ∈H , then β ◦α ∈H ;

(2) if α ∈H , then α−1 ∈H .

Since α−1 ◦α = ι, ι is in every subgroup of Sn.

The smallest subgroup of Sn is the subgroup consisting of just ι. Other

subgroups of Sn can have as few as two elements. For example, let α be the

permutation of {1,2, . . . , n} given by

α(1) = n, α(2) = n− 1, . . . , α(n− 1) = 2, α(n) = 1.

Then α is its own inverse. Therefore the set H = {ι, α} is a subgroup of Sn.

7.4.2 Symmetries of the players. Let G be an n-player game in normal

form. The players are denoted 1,2, . . . , n, so the set {1,2, . . . , n} is just the

set of players. We do not require that all players have the same strategy set,

but there may be subsets of the players with the same strategy set. More

precisely, we assume that the players can be divided into k types; all players

of the same type have the same strategy set. In Section 7.1 we considered the

case where there was just one type.

We say that a permutation α of the set {1,2, . . . , n} of players respects the

types in the game G if for every i = 1, . . . , n, α(i) is a player of the same type

as Player i. The subset of Sn consisting permutations that respect the types

in G is a subgroup of Sn that we denote SG.

As in Section 7.1, we use permutations of {1,2, . . . , n} to reorder mixed

strategy profiles (σ1, . . . , σn). However, the only permutations of {1,2, . . . , n}
that it makes sense to use are those in SG. For example, ifα is the permutation

of {1,2, . . . , n} with α(1) = 2, α(2) = 1, and α(i) = i for i > 2, then

α · (σ1, σ2, σ3, . . . , σn) = (σ2, σ1, σ3, . . . , σn).
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This makes sense if σ1 is a mixed strategy of Player 2 and σ2 is a mixed

strategy of Player 1. This is true when Players 1 and 2 are of the same type,

which is true when α ∈ SG.

Let H be a subgroup of SG. Suppose that when we use any permutation

in H to reorder any mixed strategy profile (σ1, . . . , σn), the payoff vector

for the new strategy profile is obtained by applying the same permutation to

reorder the payoff vector for the old strategy profile. Then we say that the

game is invariant under the symmetry group H of its players.

Theorem 7.2. Suppose a game is invariant under a symmetry group H of

its players. Then it has a Nash equilibrium (s∗1 , . . . , s∗n) that is fixed by every

permutation inH . In other words, if we use any permutation inH to reorder

(s∗1 , . . . , s∗n), the result is again (s∗1 , . . . , s∗n).

For example, suppose a game has seven players who come in two types.

Players 1 through 4 are of the first type, and Players 5 through 7 are of the

second type. Within a type, the players are interchangeable. Let’s translate

this informal description into the language of symmetry groups. SG is the

subgroup of S7 consisting of permutations of {1, . . . ,7} that can be described

as a permutation of {1,2,3,4} followed by a permutation of {5,6,7}. When

we say that players of each type are interchangeable, we mean that the game is

invariant under the full symmetry group SG of its players. Then Theorem 7.2

implies that it has a Nash equilibrium that is fixed by every permutation in

SG. The only strategy profiles that are fixed by every permutation in SG are

those for which the first four players all use the same strategy, and the last

three players all use the same strategy. Therefore there is a Nash equilibrium

of this type.

7.4.3 Symmetries of the strategies. In this subsection we discuss per-

muting individual players’ strategies without permuting the players. We con-

sider an n-player game in normal form in which the ith player has a strategy

set Si with ki pure strategies: Si = {si1, si2, . . . siki}. We let � denote the (long)

sequence of strategies in S1 followed by strategies in S2 followed by …fol-

lowed by strategies in Sn; in the sequence �, the strategies in Si are written

in the order si1, si2, . . . siki . Then � is a sequence of k = k1 + k2 + · · · + kn
strategies. Let H be a subgroup of Sk consisting of permutations of the set

{1,2, . . . , k} that can be expressed as a permutation of the first k1 numbers

followed by a permutation of the next k2 numbers followed by …followed by

a permutation of of the last kn numbers. If α ∈ H and we use α to reorder

the sequence �, then α will move each strategy of Player i to the location of

another strategy of Player i.
Each such permutationα can be used to define a function α̃ from the set of

pure strategy profiles S1×S2×· · ·×Sn to itself as follows. Let (s1, s2, . . . , sn)
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be a profile of pure strategies. Suppose that when α is used to reorder the

sequence �, α takes s1 to the location of another strategy s′1 in S1, s2 to the

location of another strategy s′2 in S2, . . . , sn to the location of another strategy

s′n in Sn. Then

α̃(s1, s2, . . . , sn) = (s′1, s′2, . . . , s′n).
In fact α also induces a mapping of mixed strategy profiles, which we will

still call α̃. For example, suppose that when α is used to reorder the sequence

�, α puts s11 in the s13 location, and puts s12 in the s14 location. Consider a

mixed strategy profile (σ1, . . . , σn) with σ1 = p1s11 + p2s12. Then

α̃(σ1, . . . , σn) = (σ ′1, . . . , σ ′n) where σ ′1 = p1s13 + p2s14.

Suppose that every permutation α in H induces a mapping α̃ of pure

strategy profiles such that each pure strategy profile (s1, s2, . . . , sn) has the

same payoff vector as α̃(s1, s2, . . . , sn). Then we say that the game is invariant

under the symmetry group H of its strategies. In this case it is also true

that every mixed strategy profile (σ1, . . . , σn) has the same payoff vector as

α̃(σ1, . . . , σn).

Theorem 7.3. Suppose a game is invariant under a symmetry groupH of its

strategies. Then it has a mixed strategy Nash equilibrium (σ∗1 , . . . , σ∗n ) that

is fixed by every permutation inH . In other words, for any permutation α in

H , α̃(σ∗1 , . . . , σ∗n ) = (σ∗1 , . . . , σ∗n ).
In examples, this theorem implies that a game has a Nash equilibrium in

which certain probabilities are equal.

7.4.4 Colonel Blotto revisited. To see what Theorem 7.3 means, con-

sider the game of Colonel Blotto vs. the People’s Militia from Section 5.7. The

payoff matrix is reproduced in Table 7.1.

Table 7.1.

People’s Militia
30 21 12 03

40 (4,−4) (2,−2) (1,−1) (0,0)
31 (1,−1) (3,−3) (0,0) (−1,1)

Col. Blotto 22 (−2,2) (2,−2) (2,−2) (−2,2)
13 (−1,1) (0,0) (3,−3) (1,−1)
04 (0,0) (1,−1) (2,−2) (4,−4)

You can see a symmetry in this payoff matrix: if you flip the matrix of payoff

vectors across a horizontal line through the middle, then flip again across a
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vertical line though the middle, the matrix of payoff vectors is unchanged. In

other words, if we “reverse” both players’ strategies, the payoffs don’t change.

To express this symmetry in Nash’s language, let � denote the sequence

of strategies in Col. Blotto’s strategy set S1 = {40,31,22,13,04}, followed by

strategies in the People’s Militia’s strategy set S2 = {30,21,12,03}, written

in that order:

� = (40,31,22,13,04; 30,21,12,03).

The semicolon is there just to divide the two players’ strategies. Now consider

the permutation α of the set {1, . . . ,9} that reverses the numbers 1, . . . ,5 and

reverses the numbers 6, . . . ,9:

α(1) = 5, α(2) = 4, α(3) = 3,

α(4) = 2, α(5) = 1, α(6) = 9,

α(7) = 8, α(8) = 7, α(9) = 6.

α is its own inverse, so H = {ι, α} is a subgroup of S9. Moreover, when α is

used to reorder the sequence �, α takes each strategy in S1 to the location of

another strategy in S1, and takes each strategy in S2 to the location of another

strategy in S2. In fact,

α·� = α·(40,31,22,13,04; 30,21,12,03) = (04,13,22,31,40; 03,12,21,30).

This shows the position to which α takes each strategy. We use it to define

a function α̃ from S1 × S2 to itself. For example, to calculate α̃(40,12), we

note that α takes 40 to the original position of 04 and takes 12 to the original

position of 21; therefore α̃(40,12) = (04,21).
To check that this game is invariant under the symmetry group H of its

strategies, we must check that the payoff vectors associated to (40,12) and

α̃(40,12) = (04,21) are the same. You can easily check that this is correct.

Of course, we must also check 19 similar equations.

The checks all work because of the visual symmetry in the payoff matrix

that we noted earlier. One way to express this is to write the payoff matrix

with the strategies written as shown in Table 7.2. The checks we have to do

amount to checking that this payoff matrix is identical to the first. You can

see that they are.

Since our game is invariant under the symmetry group H = {i,α} of its

strategies, Theorem 7.3 says that it has a mixed strategy Nash equilibrium

(σ1, σ2) = (p140+ p231+ p322+ p413+ p504, q130+ q221+ q312+ q403)
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Table 7.2.

People’s Militia
03 12 21 30

04 (4,−4) (2,−2) (1,−1) (0,0)
13 (1,−1) (3,−3) (0,0) (−1,1)

Col. Blotto 22 (−2,2) (2,−2) (2,−2) (−2,2)
31 (−1,1) (0,0) (3,−3) (1,−1)
40 (0,0) (1,−1) (2,−2) (4,−4)

that is fixed by the extension of α̃ to mixed strategy profiles. Now

α̃(σ1, σ2)

= α̃(p140+ p231+ p322+ p413+ p504, q130+ q221+ q312+ q403)

= (p104+ p213+ p322+ p431+ p540, q103+ q212+ q321+ q430).

For (σ1, σ2) to be fixed by α̃, we must have p1 = p5, p2 = p4, q1 = q4, and

q2 = q3. Thus Theorem 7.3 tells us that there is a Nash equilibrium of the

form

(σ1, σ2) = (a40+ b31+ c22+ b13+ a04, d30+ e21+ e12+ d03). (7.1)

We found such a Nash equilibrium in Section 5.7 after considerable work:

a = 4
9 , b = 0, c = 1

9 , d = 1
18 , e = 4

9 .

You could find this Nash equilibrium more easily by assuming there is one

of the form (7.1) with all strategies active except Col. Blotto’s 31 and 13, so

that b = 0. Write down the usual equations. Many will be redundant and can

be dropped. You should wind up with just two equations to determine a and

c, and two to determine d and e. There is still an inequality check to do at

the end (actually two, but one is redundant).

7.5 Problems

7.5.1 The Princeton Bar. This problem is based on a scene in the movie

A Beautiful Mind about the life of John Nash. n men walk into a bar. In the

bar is one extremely attractive woman and many attractive women. Each man

has two possible pure strategies:

• s: Approach one of the attractive women. (The safe strategy.)

• r : Approach the extremely attractive woman. (The risky strategy.)
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The payoffs are:

• a > 0 to each man who uses strategy s. (There are many attractive women

in the bar; the strategy of approaching one of them will succeed.)

• If there is a unique man who uses strategy r , his payoff is b > a. If more

than one man uses strategy r , they all have payoff 0. (The extremely attrac-

tive woman doesn’t enjoy being pestered and leaves.)

(1) Find all pure strategy Nash equilibria of this n-player game.

(2) Find a mixed strategy Nash equilibrium in which all n men use the same

mixed strategy ps + (1− p)r .

(3) In the Nash equilibrium of part (2), for large n, what is the approximate

probability that at least one man approaches the extremely attractive

woman?

By the way, the movie A Beautiful Mind wrongly implies that it is a Nash

equilibrium for none of the men to approach the extremely attractive woman.

7.5.2 The Sneaky Cat 1. A cat is considering sneaking up on a bird. The

cat has two strategies: hightail it out of there and look for something else to

eat (h), or sneak up on the bird (s).
The bird has two strategies: trust that the cat will not try to sneak up on

it (t), or watch out for the cat (w). If the cat stalks the bird and the bird does

not watch out, the cat will get the bird.

Let 1 be the value to the cat of eating the bird and the cost to the bird of

being eaten. Let r be the cost to the cat of stalking the bird, and let c be the

cost to the bird of watching out for the cat. We get the following payoffs:

Bird

t w
Cat h (0,0) (0,−c)

s (1− r ,−1) (−r ,−c)

We assume 0 < r < 1 and c > 0. Notice that 0 is the bird’s best payoff.

(1) Show that if c > 1, (s, t) is a Nash equilibrium.

(2) Show that if 0 < c < 1, there are no pure strategy Nash equilibria.

(3) For 0 < c < 1, find a mixed strategy Nash equilibrium.

7.5.3 The Sneaky Cat 2. Now suppose there is one cat and a flock of n
birds. The cat still has the strategies h and s. Each bird has the strategies t
and w. The payoffs in this (n+ 1)-player game are as follows:
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• Cat uses h: 0 to the cat, 0 to each bird that uses t, −c to each bird that

uses w.

• Cat uses s, all birds use t: 1− r to the cat (the cat gets a bird if no birds

watch out, but the other birds fly off), − 1
n to each bird (each bird has

probability 1
n of being the unlucky one).

• Cat uses s, at least one bird uses w: −r to the cat (if at least one bird is

watching out, all birds fly off, and the cat goes hungry), 0 to each bird that

uses t, −c to each bird that uses w.

(1) Assume 0 < c < 1
n . Show that there are no pure strategy Nash equilibria.

(Consider the following cases: (i) cat uses h, all birds use t; (ii) cat uses h,

at least one bird uses w; (iii) cat uses s, all birds use t; (iv) cat uses s, at

least one bird uses w.)

(2) Assume 1
nr

(n−1)/n < c < 1
n . Find a Nash equilibrium in which the cat

uses s, and all birds use the same mixed strategy τ = qt + (1 − q)w,

0 < q < 1. (For (s, τ, τ, . . . , τ) to be a Nash equilibrium, we need:

(i) if bird 1, for example, uses instead one of the pure strategies t
or w, his expected payoff is the same; (ii) if the cat uses instead the

pure strategy h, his payoff does not go up. Use (i) to find q, then

check (ii).)

(3) For 0 < c < 1
nr

(n−1)/n, find a Nash equilibrium in which the cat uses a

mixed strategy σ = ph+ (1− p)s, 0 < p < 1, and all birds use the same

mixed strategy τ = qt + (1− q)w, 0 < q < 1.

The fact that there is a Nash equilibrium in which all birds use the same

strategy is a consequence of Theorem 7.2.

7.5.4 Colonel Blotto continued. Use the method proposed in the last

paragraph of Subsection 7.4.4 to find the symmetric Nash equilibrium of the

Colonel Blotto game.

7.5.5 Rock-Paper-Scissors 2. In the Nash equilibrium of Rock-Paper-

Scissors (Problem 5.12.4), each player uses each strategy with probability one-

third. In this problem we will use Nash’s ideas about symmetries of strategies

(Subsection 7.4.3) to explain this fact. We will follow the approach of Subsec-

tion 7.4.4 to Colonel Blotto vs. the People’s Militia.

In Rock-Paper-Scissors, let � denote the sequence of strategies in Player 1’s

strategy set S1 = {r ,p, s}, followed by strategies in Player 2’s strategy set

S2 = {r ,p, s}, written in that order: � = (r , p, s; r ,p, s). The semicolon is just

there to divide the two players’ strategies. Now consider the permutation α
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of the set {1,2,3,4,5,6} given by

α(1) =2, α(2) =3, α(3) =1,

α(4) =5, α(5) =6, α(6) =4.

(1) Calculate α2 = α ◦α.

(2) Show that α2 is the inverse of α.

Therefore H = {ι, α,α2} is a subgroup of S6. We can think of α as a

permutation of {1,2,3} (the positions of Player 1’s strategies in �) followed

by a permutation of {4,5,6} (the positions of Player 2’s strategies in �) , and

of course we can think of α2 the same way.

We have

α · � = α · (r , p, s; r ,p, s) = (s, r , p; s, r , p),

α2 · � = α · (α · �) = α · (s, r , p; s, r , p) = (p, s, r ;p, s, r).

These formulas show the position to which α and α2 take each strategy. We

use them to define functions α̃ and α̃2 from S1 × S2 to itself. For example, to

calculate α̃(r , s), we note that α takes the first r to the original position of

the first p, and takes the second s to the original position of the second r ;

therefore α̃(r , s) = (p, r).

(3) Calculate α̃ of all other pure strategy profiles. (There are nine pure strat-

egy profiles in all.)

To check that this game is invariant under the symmetry group H of its

strategies, we must check, for example, that the payoff vectors associated

to (r , s) and α̃(r , s) = (p, r) are the same. Using the payoff matrix of Prob-

lem 5.12.4, you can easily check that this is correct: both are (1,−1). There

are eight similar equations that must be checked for α̃.

(4) Here is a quick way to check all nine equations for α̃. Look at the payoff

matrix in Problem 5.12.4. Rewrite the payoff matix with the strategies in

the new order given by α · � (i.e., list the strategies in the order s, r , p for

both players. Check that the new payoff matrix is the same as the old).

One could do a similar check for α̃2; we won’t do it. Actually, the fact that

the nine equations for α̃2 hold is a consequence of the fact that the nine

equations for α̃ hold. Do you see why?

Thus Rock-Paper-Scissors is invariant under the symmetry group H =
{ι, α,α2} of its strategies. Then Theorem 7.3 says that it has a mixed strategy

Nash equilibrium

(σ1, σ2) = (p1r + p2p + p3s, q1r + q2p + q3s)
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that is fixed by the extension of α̃ to mixed strategy profiles. Now

α̃(σ1, σ2) = α̃(p1r + p2p + p3s, q1r + q2p + q3s)

= (p1p + p2s + p3r , q1p + q2s + q3r).

(5) Show that the only strategy profile (σ1, σ2) that is fixed by α̃ has p1 =
p2 = p3 = q1 = q2 = q3 = 1

3 .

(6) Theorem 7.3 implies that this strategy profile must be a Nash equilibrium;

no further checks need be done. Explain.
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Alternatives to the Nash equilibrium

In this chapter we consider three points of view that lead to alternatives to

the Nash equilibrium. The notion of a correlated equilibrium relies on social

rules to direct players to appropriate actions. Epistemic game theory formal-

izes how players’ beliefs about one another lead them to actions. Finally,

the notion of evolutionary stability was introduced by biologists to describe

strategy profiles in populations that resist invasion by organisms using other

strategies. The invaders may come from elsewhere, or they may arise within

the population by mutation.

8.1 Correlated equilibrium

Two drivers arrive at an intersection, Driver 1 from the south and Driver 2

from the east. Each has two strategies: go and stop. If one goes and one stops,

we will take the payoffs to be−1 to the driver who stops for time lost waiting,

and 0 to the driver who goes, since he does not lose any time. If both stop,

we take the expected payoff to each to be −2; one will eventually go first. If

both go, there is the possibility of a serious accident; we take the expected

payoff to each to be −4. We obtain the following payoff matrix:

Driver 2

go stop

Driver 1 go (−4,−4) (0,−1)
stop (−1,0) (−2,−2)

This game is a variant of Chicken: the best response to the other player’s

strategy is the opposite strategy. There are two pure-strategy Nash equilibria,

(go, stop) and (stop, go). The first is better for Player 1, the second is better

for Player 2.

In practice, this problem is solved by a traffic light or a driving rule. A traffic

light signals green to one driver and red to the other, telling each which to do.
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A driving rule says, for example, that the driver on the right has the right-of-

way. If this is the rule, Driver 2 goes. Either rule has the following property:

if the other driver follows the rule, you get your best payoff by also following

the rule.

To generalize this example, we consider a game in normal form with public

signals. This is a game in normal form with n players and, in addition, a set

of public signals ωk. Each public signal ωk occurs with probability αk; each

αk is positive, and the sum of the αks is 1. Each player observes the signalωk

and chooses one of his mixed strategies in response. Thus the jth player has

a response function from the set of signals to his set of mixed strategies. We

denote the strategy chosen by the jth player in response to the signal ωk by

σj(ωk). An ordered n-tuple of response functions is said to be a correlated

equilibrium if for each signal ωk, the strategy profile (σ1(ωk), . . . , σn(ωk))
is a Nash equilibrium.

Traffic lights and driving rules are both covered by this framework. The

traffic light has two signals: ω1, which is green north-south and red east-

west, andω2, which is red north-south and green east-west. For the correlated

equilibrium that obtains in practice, Driver 1 chooses go in response to ω1

and stop in response toω2; Driver 2 chooses the opposite. With the traffic rule

described above, there is just one signal, namely, the rule. Driver 1 chooses

stop in response, and Driver 2 chooses go.

Another game that has a nice solution when public signals are added is Bat-

tle of the Sexes (Subsection 3.2.4). For example, suppose Alice and Bob have

an agreement that weekdays are for concerts and weekends are for wrestling.

Then the day of the week serves as a public signal that allows them to coor-

dinate their behavior.

In general, some players may be unable to distinguish among some signals.

If, for example, Player 1 is unable to distinguish between signals ω1 and ω2,

then his response function is required to assign the same response to both

signals. Instead of requiring that the players’ responses to each signal form

a Nash equilibrium, we require that each player’s response to each signal

be a best response to his best estimate of the other players’ responses. We

denote Player i’s best estimate of Player j’s response when the signal is ωk

by τij(ωk). Of course, if Player i is unable to distinguish between the signals

ωk and ωk′ , we must have τij(ωk) = τij(ωk′) for every j.
A collection of signals that Player i is unable to distinguish is called

an information set of Player i. For example, suppose that Player 1 has an

information set consisting of signals ω1 and ω2. If signal ω1 is sent, then

Player 1 does not know whether signal ω1 or signal ω2 was sent, so he does

not know whether the other players have observed signal ω1 or signal ω2.

From Player 1’s point of view, another Player j has observed signal ω1 with
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probability α1/(α1+α2) and signal ω2 with probability α2/(α1+α2). Thus,

from Player 1’s point of view, Player j will use the mixed strategy σj(ω1)with

probability α1/(α1 + α2), and σj(ω2) with probability α2/(α1 + α2). Thus

Player 1’s best estimate of Player j’s response when the signal is ω1 is

τ1j(ω1) = τ1j(ω2) = α1

α1 +α2
σj(ω1)+ α2

α1 +α2
σj(ω2).

In a correlated equilibrium with signal ω1, Player 1’s strategy σ1(ω1) is

required to be a best response to (τ12(ω1), . . . , τ1n(ω1)), and analogously

for the other players.

Response functions to signals are sometimes thought of as social norms.

In a correlated equilibrium, if the other players follow the social norm, the

best you can do is also to follow it.

A difficulty with the Nash equilibrium is deciding what strategy to use when

there are several equally plausible Nash equilibria. Public signals and corre-

lated equilibria are a solution to this problem. Of course, another solution

is mixed strategies. However, correlated equilibria are often much better for

both players. In the Driver Game, for example, if the traffic light gives each

signal with probability 1
2 , then the expected payoff to each player from the

given correlated equilibrium is −1
2 . In contrast, in the mixed-strategy Nash

equilibrium, each player goes with probability 2
5 and stops with probability

3
5 . The expected payoff to each player is −8

5 .

8.2 Epistemic game theory

Epistemic game theory is the branch of game theory that emphasizes the

beliefs that players have about their opponents. For a two-player game, one

way to formalize players’ beliefs and their consequences is as follows.

Consider a two-player game in normal form, in which Player 1’s strategy

set is S = {s1, . . . , sn} and Player 2’s strategy set is T = {t1, . . . , tm}. A belief

of Player 1 about Player 2 is a finite list of mixed strategies τj that Player 2

might play, together with an assignment of probabilities qj > 0 to each τj
on the list. Similarly, a belief of Player 2 about Player 1 is a finite list of

mixed strategies σi that Player 1 might play, together with an assignment of

probabilities pi > 0 to each σi on the list. Given the players’ beliefs, each

player chooses a mixed strategy that maximizes his own expected payoff

given his own beliefs. Thus Player 1 selects a mixed strategy σ∗ such that∑
qjπ1(σ∗, τj) �

∑
qjπ1(σ , τj) for all mixed strategies σ of Player 1,

and Player 2 selects a mixed strategy τ∗ such that∑
piπ2(σi, τ∗) �

∑
piπ2(σi, τ) for all mixed strategies τ of Player 2.
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Equivalently, Player 1 chooses a best response σ∗ to the mixed strategy∑
qjτj of Player 2, and Player 2 chooses a best response to the mixed strategy∑
piσi of Player 1. The payoffs are then those that result from the strategy

profile (σ∗, τ∗).
For example, consider Rosenthal’s Centipede Game from Section 1.8. A

strategy for Player 1 (Mutt) is a plan, for each node that is labeled with his

name, whether to cooperate or defect should that node be reached. For deter-

mining payoffs, the only relevant fact about Mutt’s strategy is the first node at

which he plans to defect. Thus we shall let si denote the strategy, first defect

at Mutt’s ith node, where i = 1, . . . ,98. Similarly, for Player 2 (Jeff), we shall

let tj denote the strategy, first defect at Jeff’s jth node, where j = 1, . . . ,98.

As discussed in Section 1.13, in Rosenthal’s Centipede Game, each player’s

belief about the other is related to how many steps of backward induction

he expects the other to do. Suppose, for example, that each player expects

the other to cooperate for 95 turns before defecting, that is, Player 1 believes

Player 2 will use his strategy t96 with probability 1, and Player 2 believes

Player 1 will use his strategy s96 with probability 1. The best response to t96

is s96, and the best response to s96 is t95. Thus the strategy profile that is

played is (s96, t95). Player 1’s belief turns out to be wrong and Player 2’s to be

right. The game ends when Jeff defects on his 95th turn (Mutt was planning

to defect on his next turn but doesn’t get to). The payoffs are 95 to Mutt and

98 to Jeff.

For another example, consider the Traveler’s Dilemma (Problem 2.14.6).

Let si = ti = report expenses of i + 1 dollars, i = 1, 2, 3, 4. Suppose each

salesman expects the other to report expenses of $3 with probability .4 and

$4 with probability .6. Then Salesman 1 must choose his mixed strategy σ =∑
pisi to maximize the expression

π1(σ , .4t2 + .6t3) = π1(p1s1 + p2s2 + p3s3 + p4s4, .4t2 + .6t3)
= p1(.4 · 4+ .6 · 4)+ p2(.4 · 3+ .6 · 5)

+ p3(.4 · 1+ .6 · 4)+ p4(.4 · 1+ .6 · 2)

= 4p1 + 4.2p2 + 2.8p3 + 2p4

subject to the constraintspi � 0 and
∑
pi = 1. Because of the constraints, this

expression is maximum when p2 = 1 and the other pi = 0. Thus Salesman 1

uses his strategy s2 (i.e., he reports expenses of $3). Salesman 2 does the

same. Payoffs are $3 to each salesman.

8.3 Evolutionary stability

Evolutionary game theory focuses on populations that repeatedly play games,

rather than on individuals.



Alternatives to the Nash equilibrium • 207

We consider a symmetric two-player game G in normal form in which the

strategy set S is finite: S = {s1, . . . , sn}. We recall that symmetry means

π2(si, sj) = π1(sj, si).

In an evolutionary game there is a population of many individuals who play

the game G with one another. An individual uses a mixed strategy τ =∑qisi
with (of course) all qi � 0 and

∑
qi = 1. We say that the individual is of type

τ . If τ is a pure strategy, say, τ = si, we say that the individual is of type i.
The population taken as a whole uses strategy s1 with probability p1, . . . ,

strategy sn with probability pn; all pi � 0 and
∑
pi = 1. We say that the state

of the population is σ and write σ =∑pisi.
If an individual of type i plays this game against a random individual from

a population of type σ , her expected payoff is just the expected payoff to an

individual who uses the pure strategy si against another individual using the

mixed strategy σ :

π1(si, σ) =
n∑
j=1

π1(si, sj)pj.

If an individual of type τ plays this game against a random individual from

a population of type σ , her expected payoff is just the expected payoff to an

individual who uses the mixed strategy τ against another individual using

the mixed strategy σ :

π1(τ,σ) =
n∑
i=1

qiπ1(si, σ) =
n∑

i, j=1

qiπ1(si, sj)pj. (8.1)

Let σ1 and σ2 be population states, σ1 =
∑
p1isi, σ2 =

∑
p2isi, and let

0 < ε < 1. Then we can define a new population state

(1− ε)σ1 + εσ2 =
∑(

(1− ε)p1i + εp2i
)
si.

If τ is a mixed strategy, one can easily show from (8.1) that

π1(τ, (1− ε)σ1 + εσ2) = (1− ε)π1(τ,σ1)+ επ1(τ,σ2). (8.2)

Suppose, in a population with state σ , we replace a fraction ε of the pop-

ulation, 0 < ε < 1, with individuals of type τ . The new population state is

(1− ε)σ + ετ .

We say that a population state σ is evolutionarily stable if for each τ ≠ σ
there is a number ε0 > 0 such that if 0 < ε < ε0 then

π1
(
σ, (1− ε)σ + ετ) > π1

(
τ, (1− ε)σ + ετ). (8.3)
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This definition says that if a population of type σ is invaded by a small num-

ber of individuals of any other type τ , or if individuals of another type τ join

the population because of a mutation, then individuals of type σ will have

a better expected payoff against a random member of the mixed population

than will individuals of type τ . Thus the invaders or mutants should die out.

Theorem 8.1. A population state σ is evolutionarily stable if and only if for

all τ ≠ σ ,

(1) π1(σ ,σ) � π1(τ,σ).
(2) If π1(τ,σ) = π1(σ ,σ), then π1(σ , τ) > π1(τ, τ).

The first condition says that (σ ,σ) is a mixed strategy Nash equilibrium

of the symmetric two-player game that is played in the evolutionary game.

Therefore σ is a best response to σ . The second condition says that if τ is

another best response to σ , then σ is a better response to τ than τ is to

itself.

Proof. Assume σ is evolutionarily stable. Let τ ≠ σ . Then for all sufficiently

small ε > 0, (8.3) holds. Therefore, for all sufficiently small ε > 0,

(1− ε)π1(σ ,σ)+ επ1(σ , τ) > (1− ε)π1(τ,σ)+ επ1(τ, τ). (8.4)

Letting ε → 0, we obtain condition (1). If π1(τ,σ) = π1(σ ,σ), (8.4) becomes

επ1(σ , τ) > επ1(τ, τ).

Dividing by ε, we obtain condition (2).

To prove the converse, assume that for all τ ≠ σ , conditions (1) and (2)

are true. Consider a particular τ different from σ . Since conditions (1) holds,

there are two possibilities.

(i) π1(σ ,σ) > π1(τ,σ). Then it is easy to see that for small ε > 0, (8.4) is

true.

(ii) π1(σ ,σ) = π1(τ,σ). Then (2) implies that π1(σ , τ) > π1(τ, τ). But then

(8.4) holds for 0 < ε < 1.

Combining (i) and (ii), we see that σ is evolutionarily stable.

One consequence of Theorem 8.1 is the following theorem.

Theorem 8.2. If (σ ,σ) is a strict Nash equilibrium of a symmetric two-player

game, then σ is an evolutionarily stable state of the corresponding evolution-

ary game.
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The reason is that for any Nash equilibrium, condition (1) holds; and for

a strict Nash equilibrium, condition (2) is irrelevant. Of course, strict Nash

equilibria use only pure strategies, so such populations consist entirely of

individuals of one pure type i.
Another consequence of Theorem 8.1 is the following.

Theorem 8.3. If σ is an evolutionarily stable state in which all pure strategies

are active, then for all τ ≠ σ , (τ, τ) is not a Nash equilibrium of the symmetric

two-player game. Hence there are no other evolutionarily stable states.

Proof. According to Theorem 5.3, for such a σ we have that for all i,
π1(si, σ) = π1(σ ,σ). Let τ =∑qisi. Then

π1(τ,σ) =
n∑
i=1

qiπ1(si, σ) =
n∑

1=1

qiπ1(σ ,σ) = π1(σ ,σ).

Therefore, since σ is evolutionarily stable, Theorem 8.1 (2) implies that for

τ ≠ σ , π1(σ , τ) > π1(τ, τ). Therefore (τ, τ) is not a Nash equilibrium of the

symmetric two-player game.

The same argument shows that the following result also holds.

Theorem 8.4. Let σ =∑pisi be an evolutionarily stable state, and let I = {i :

pi > 0}. Let τ ≠ σ , τ =∑qisi, be a population state for which the the set of i
values such that qi > 0 is a subset of I. Then (τ, τ) is not a Nash equilibrium

of the symmetric two-player game. Hence there are no other evolutionarily

stable states in which the set of active strategies is a subset of the set of

active strategies in σ .

8.4 Evolutionary stability with two pure strategies

Consider an evolutionary game based on a symmetric two-player game in

normal form with just two pure strategies. The payoff matrix must have the

form

Player 2

s1 s2

Player 1 s1 (a,a) (b, c)
s2 (c, b) (d,d)

Theorem 8.5. Suppose a ≠ c and b ≠ d. There are four cases.

(1) a > c and d < b: strategy s1 strictly dominates strategy s2. There is one

Nash equilibrium, (s1, s1). It is symmetric and strict, so the population

state s1 is evolutionarily stable.
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(2) a < c and d > b: strategy s2 strictly dominates strategy s1. There is one

Nash equilibrium, (s2, s2). It is symmetric and strict, so the population

state s2 is evolutionarily stable.

To describe the other two cases, let

p = d− b
(a− c)+ (d− b), so 1− p = a− c

(a− c)+ (d− b). (8.5)

(3) a > c and d > b: each strategy is the best response to itself. There are

three Nash equilibria: (s1, s1), (s2, s2), and (σ ,σ) with σ = ps1 + (1 −
p)s2 and p given by (8.5). The first two are symmetric and strict, so the

population states s1 and s2 are evolutionarily stable. The population state

σ is not evolutionarily stable.

(4) a < c and d < b: each strategy is the best response to the other strategy.

There are three Nash equilibria: (s1, s2), (s2, s1), and (σ ,σ)withσ = ps1+
(1−p)s2 and p given by (8.5). Only the last is symmetric. The population

state σ is evolutionarily stable.

Case (3) includes Stag Hunt. Case (4) includes Chicken.

Proof. YoucanfindthepurestrategyNashequilibriabycirclingbest responses.

To find mixed strategy Nash equilibria (σ , τ) with σ = ps1 + (1 − p)s2,

τ = qs1 + (1− q)s2, we first add the probabilities to the payoff matrix:

Player 2

q 1− q
s1 s2

Player 1 p s1 (a,a) (b, c)
1− p s1 (c, b) (d,d)

At least one player has two active strategies; suppose it is Player 2. Then if

Player 2 uses either pure strategy s1 or pure strategy s2, she gets the same

expected payoff when Player 1 uses σ . Therefore

pa+ (1− p)b = pc + (1− p)d, so d− b = ((a− c)+ (d− b))p.
Since d−b ≠ 0 by assumption, we must have (a−c)+(d−b) ≠ 0 to solve for

p. Then p is given by (8.5). In cases (1) and (2), this value of p is not between

(0) and (1), so it cannot be used. However, in cases (3) and (4) 0 < p < 1, so

both of Player 1’s strategies are active. Then we can calculate q the same way.

We find that q = p.

Now that we have a symmetric Nash equilibrium (σ ,σ) in cases (3) and

(4), we check whether the corresponding population state σ is evolutionarily
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stable. Since (σ ,σ) is a Nash equilibrium, σ satisfies condition (1) of The-

orem 8.1. Since both pure strategies are active in σ , by Theorem 5.3, every

τ satisfies π1(τ,σ) = π1(σ ,σ), so condition (2) must be checked for every

τ ≠ σ . For τ = qs1 + (1− q)s2, we calculate

π1(σ , τ)−π1(τ, τ) = paq + pb(1− q)+ (1− p)cq + (1− p)d(1− q)
− (qaq + qb(1− q)+ (1− q)cq + (1− q)d(1− q))

= (p − q)(aq + b(1− q)− cq − d(1− q))
= (p − q)(b − d+ ((a− c)+ (d− b))q)
= (p − q)((a− c)+ (d− b))( b − d

(a− c)+ (d− b) + q
)

= −(p − q)((a− c)+ (d− b))( d− b
(a− c)+ (d− b) − q

)

= −(p − q)2((a− c)+ (d− b)).
If τ ≠ σ , then q ≠ p, so (p − q)2 > 0. Thus we see that in case (3) (in which

a− c and d− b are both positive), π1(σ , τ)−π1(τ, τ) < 0 for all τ ≠ σ , so

σ is not evolutionarily stable; and in case (4) (in which a − c and d − b are

both negative), π1(σ , τ) − π1(τ, τ) > 0 for all τ ≠ σ , so σ is evolutionarily

stable.

In case (3), the population state σ is the opposite of evolutionarily stable:

if τ is any invading population type, σ does worse against τ than τ does

against itself.

8.4.1 Stag Hunt. Consider an evolutionary game based on Stag Hunt

(Subsection 3.2.2). The payoff matrix is reproduced below.

Hunter 2

stag hare

Hunter 1 stag (2,2) (0,1)
hare (1,0) (1,1)

In Theorem 8.5, we are in case (3). There are two symmetric pure-strategy

strict Nash equilibria, (stag, stag) and (hare, hare). Both pure populations, all

stag hunters and all hare hunters, are evolutionarily stable. There is also a

symmetric mixed-strategy Nash equilibrium in which each player uses the

strategy stag half the time and the strategy hare half the time. However, the

corresponding population state is not evolutionarily stable.
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8.4.2 Stag Hunt variation. Suppose in the game of Stag Hunt, a hunter

who hunts the stag without help from the other hunter has a 1
4 chance of

catching it. (Previously we assumed he had no chance of catching it.) Then

the payoff matrix becomes

Hunter 2

stag hare

Hunter 1 stag (2,2) (1,1)
hare (1,1) (1,1)

The corresponding evolutionary game is not covered by Theorem 8.5, because

d = b = 1. There are two symmetric pure-strategy Nash equilibria, (stag, stag)

and (hare, hare). However, only (stag, stag) is a strict Nash equilibrium. Indeed,

the strategy hare is now weakly dominated by the strategy stag. There are no

mixed strategy Nash equilibria.

By Theorem 8.2, the pure population consisting of all stag hunters is evo-

lutionarily stable.

What about the pure population consisting of all hare hunters? Since

π1(s, h) = π1(h,h) = 1, when we check condition (2) of Theorem 8.1, among

the strategies τ that must be checked is the pure strategy, hunt stags. How-

ever, π1(h, s) = 1 and π1(s, s) = 2; that is, if some stag hunters invade the

population of hare hunters, they do better against themselves than the hare

hunters do against them. Thus a pure population of hare hunters is not evo-

lutionarily stable.

8.4.3 Hawks and Doves. Consider a population of animals that fights

over food, territory, or mates. We consider two possible strategies:

• Hawk (h): fight until either you are injured or your opponent retreats.

• Dove (d): display hostility, but if your opponent won’t retreat, you retreat.

Let

• v = value of what you are fighting over.

• w = cost of injury.

• t = cost of protracted display.

We assume v , w, and t are all positive, and v < w. The payoff matrix is

Animal 2

h d
Animal 1 h

(v−w
2 , v−w2

)
(v,0)

d (0, v)
(v

2 − t,
v
2 − t

)
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In Theorem 8.5, we are in case (4). Thus there are no symmetric pure-

strategy Nash equilibria, and there is a mixed-strategy Nash equilibrium

(σ ,σ), σ = ph + (1 − p)d; you can check that p = (v + 2t)/(w + 2t). The

population state σ is evolutionarily stable.

The payoff to Animal 1 at the Nash equilibrium is can be computed by

calculating π1(d,σ):

π1(d,σ) = p · 0+ (1− p)
(
v
2
− t
)
=
(

1− v + 2t
w + 2t

)(
v
2
− t
)
.

From this expression we see that for fixed v and t, as w (the cost of injury)

increases, the expected payoff increases. The reason is that as w increases,

p (the probability that the Hawk strategy is used) decreases. When w is only

a little bigger than v , p is close to 1, so the Hawk strategy is used a lot, and

injuries frequently occur. Injuries occur less often at the Nash equilibrium

when the expected result of fighting is very costly injuries.

For other ways that have evolved to minimize fighting among animals, see

Problem 8.6.4 and Section 10.11.

For more information about Hawks and Doves, see the Wikipedia page

http://en.wikipedia.org/wiki/Hawk-dove_game.

8.5 Sex Ratio 2

Recall the sex ratio pseudogame analyzed in Subsection 7.3.1. There was no

actual game. There was, however, a situation very close to that considered

in this chapter. The female population as a whole produces a fraction v of

male offspring and a fraction 1−v of female offspring. The number v can be

regarded as the population state. An individual female produces a fraction

u of male offspring and a fraction 1−u of female offspring. The number u
can be regarded as the type of an individual. The payoff to this individual

π1(u,v) is her number of grandchildren. We derived the formula

π1(u,v) = σfc2
(

1+u1− 2v
v

)
.

In this situation, our analog of a Nash equilibrium was the pair
(1

2 ,
1
2

)
, in the

sense that if the population state was 1
2 (i.e., females as a whole have 1

2 male

offspring), an individual could do no better than by choosing also to have 1
2

male offspring.

Is this population state evolutionarily stable? We saw that for any individ-

ual type u, we have

π1
(
u, 1

2

) = π1
(1

2 ,
1
2

) = σfc2.

http://en.wikipedia.org/wiki/Hawk-dove_game
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Thus we must check condition (2) of Theorem 8.1 for every u ≠ 1
2 . We have

π1(1
2 , u)−π1(u,u) = σfc2

(
1+ 1

2
1− 2u
u

)
− σfc2

(
1+u1− 2u

u

)

= σfc2(1
2 −u

)1− 2u
u

= 2σfc2

u
(1

2 −u
)2.

Since this is positive for u ≠ 1
2 , the population state 1

2 is evolutionarily stable.

8.6 Problems

8.6.1 Two Fishermen. In a certain fishing village, two fishermen own

nets that are put out in the evening. The two share the catch equally regard-

less of whether they help put out the nets. The value of the expected catch is

v , and the cost to each fisherman of putting out the nets if they do it together

is c2. However, if one fisherman puts out the nets by himself, his cost is c1,

and the cost to the other fisherman is 0. Assume that v2 > c1 > c2. The normal

form of this game is shown in the following payoff matrix:

Fisherman 2

help don’t help

Fisherman 1 help
(v

2 − c2, v2 − c2
) (v

2 − c1, v2
)

don’t help
(v

2 ,
v
2 − c1

)
(0,0)

(1) Use best response to find pure-strategy Nash equilibria.

(2) Use Theorem 8.5 to find the mixed strategy Nash equilibrium and the

evolutionarily stable state of the corresponding evolutionary game.

8.6.2 Lions and Impalas 1. Two lions see a big impala and a little impala

in the distance. Each lion independently chooses which impala to chase. The

lions will kill whichever impala they chase, but if they choose the same impala,

they will have to share it. The value of the big impala is 4, the value of the

little impala is 2. The payoff matrix is then

lion 2

big little

lion 1 big (2, 2) (4, 2)

little (2, 4) (1, 1)

Theorem 8.5 does not apply, because a = c.

(1) Are there any strictly dominated or weakly dominated strategies?

(2) Find the pure strategy Nash equilibria.

(3) Check whether any pure strategy symmetric Nash equilibria that you

found in part (2) correspond to evolutionarily stable states.
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8.6.3 Stag Hunt with Easily Spooked Hares 1. Two hunters working

together can kill a stag, which is worth 8. One hunter alone cannot kill a stag.

One hunter alone can kill four hares, which are each worth 1. However, if two

hunters go after the hares, the hares will run away, and each hunter will only

kill one hare.

If two hunters are hunting together, each has two possible strategies, hunt

a stag (s) or or hunt the hares (h). The payoffs are as follows:

Hunter 2

s h
Hunter 1 s (4,4) (0,4)

h (4,0) (1,1)

Theorem 8.5 does not apply, because a = c.

(1) Use best response to find the pure strategy Nash equilibria.

(2) Which of the pure strategy Nash equilibria correspond to an evolutionarily

stable state?

8.6.4 Hawks, Doves, and Protecters. In the game of Hawks and Doves

(Section 8.4.3), let’s add a new strategy, Protecters: when you meet another

animal, if he was there first, use the Dove strategy, but if you were there first,

use the Hawk strategy.

In this problem, assume v , w, and t are all positive.

(1) Explain why the following payoff matrix is plausible:

Animal 2

h d p
h

(v−w
2 , v−w2

)
(v,0)

(3v−w
4 , v−w4

)
Animal 1 d (0, v)

(v
2 − t,

v
2 − t

) (v
4 −

t
2 ,

3v
4 − t

2

)
p

(v−w
4 , 3v−w

4

) (3v
4 − t

2 ,
v
4 −

t
2

) (v
2 ,

v
2

)

(2) Show that if v < w, then p is an evolutionarily stable state of the cor-

responding evolutionary game. (This state is in fact often observed in

nature. For example, birds typically build their own nests and are willing

to defend them. However, no fighting occurs, because birds do not try to

take other birds’ nests.)

(3) Show that if v = w, then (p,p) is a Nash equilibrium, but p is not an

evolutionarily stable state.
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8.6.5 A correlated equilibrium in the game of Hawks and Doves. Con-

sider the game of Hawks and Doves in Section 8.4.3 with v < w. When two

animals meet, they both observe which of them arrived first. This is a pub-

lic signal. The animal that arrives first uses h, and the other animal uses d.

Explain why this is a correlated equilibrium. Assuming each animal arrives

first half the time, show that the expected payoff to each animal in the cor-

related equilibrium is greater than the expected payoff to each animal in the

mixed-strategy Nash equilibrium. (This is a traditional explanation of why

societies have property rights.)
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Differential equations

In Chapter 10 we investigate how strategies in evolutionary games change

over time, with more successful strategies displacing less successful ones.

Our study will use differential equations, the branch of mathematics that deals

with quantities that change continuously in time. This chapter introduces the

point of view and tools of differential equations that will be needed.

9.1 Differential equations and scientific laws

Suppose x(t) = (x1(t), . . . , xn(t)) is a moving point in R
n. At time t, its

velocity vector is ẋ(t) = (ẋ1(t), . . . , ẋn(t)). (Note that we use a dot to indicate

derivative with respect to t.) The velocity vector is usually drawn with its tail

at the point x(t).
For example, suppose x(t) = (cos t, sin t), a moving point in R

2. The point

x(t) runs around the circle of radius 1, centered at the origin. We have ẋ(t) =
(− sin t, cos t). Therefore x(0) = (1,0), ẋ(0) = (0,1), x

(π
2

) = (0,1), and

ẋ
(π

2

) = (−1,0). These facts are illustrated in Figure 9.1.

x2

x1

t = π/2

t = 0
1

Figure 9.1.

Often a scientific law tells us: if you know x, a point that represents the

state of the system, at some time, then you know ẋ, how x is changing, at
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that time. In other words, the velocity vector ẋ is a function of the state x,

that is, ẋ = f(x) or

ẋ1 = f1(x1, . . . , xn), (9.1)

...

ẋn = fn(x1, . . . , xn). (9.2)

An equation of the form ẋ = f(x) is a first order autonomous ordinary dif-

ferential equation:

• first order: there are only first derivatives, not higher derivatives;

• autonomous: the derivative only depends on the state of the system x,

not on the time t; and

• ordinary: there are only ordinary derivatives, not partial derivatives.

When a differential equation ẋ = f(x) on R
n with n > 1 is written in the

form (9.1)–(9.2), it is sometimes called a system of differential equations.

To use the scientific law or differential equation to make a prediction of

what will happen (i.e., to predict x(t)), we need to solve an initial value prob-

lem:

ẋ = f(x), x(t0) = x0.

In other words, given the differential equation ẋ = f(x) and the state of

the system at time t0, x(t0) = x0, we need to find a function x(t) such that

x(t0) = x0 and, at every time t, ẋ(t) = f(x(t)).
For example, the system

ẋ1 = −x2, (9.3)

ẋ2 = x1, (9.4)

with the initial condition (x1(0), x2(0)) = (1,0), has the solution (x1(t),
x2(t)) = (cos t, sin t). To check that this is indeed a solution of the system,

just substitute ẋ1(t) and ẋ2(t) into the left side, and substitute x1(t) and

x2(t) into the right side:

− sin t = − sin t,

cos t = cos t.

To check that (x1(0), x2(0)) = (1,0), just notice that cos 0 = 1 and sin 0 = 0.

The following theorem gathers some fundamental facts about differential

equations.

Theorem 9.1. Let U be an open set in R
n, let f : U → R

n be a continuously

differentiable function, and let x0 ∈ U . Then:
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(1) The initial value problem

ẋ = f(x), x(t0) = x0,

has a unique solution.

(2) If x(t) stays bounded and stays away from the boundary of U as t
increases (respectively decreases), then x(t) is defined for t0 � t < ∞
(respectively −∞ < t � t0).

When we consider differential equations ẋ = f(x), we always assume that

f is continuously differentiable, so that this theorem applies.

The set U on which the differential equation is defined is called phase

space.

A point x0 at which f(x0) = 0 is an equilibrium of ẋ = f(x). If x0 is an

equilibrium of ẋ = f(x), then the unique solution of the initial value problem

ẋ = f(x), x(t0) = x0,

is x(t) = x0 for −∞ < t < ∞. To prove this, just check that the formula for

x(t) gives a solution of the initial value problem, and recall that solutions

are unique.

9.2 The phase line

Example. A population increases with growth rate 5% per year. The rate of

change of the population is the growth rate times the population. Therefore,

if x = population and t = time in years, then ẋ = .05x. The solution with

x(0) = x0 is x = x0e.05t . Notice that

• All solutions approach 0 as t → −∞.

• The solution with x(0) = 0 is x(t) = 0 for −∞ < t <∞.

In general, the solution of ẋ = rx, r a constant, with x(0) = x0, is x =
x0ert . If r > 0, all solutions approach 0 as t → −∞. If r < 0, all solutions

approach 0 as t →∞.

One way to see this geometrically is by drawing the phase line, which is

the x-axis with dots where equilibria are located and arrows to show where

solutions are increasing and decreasing. See Figure 9.2. Where ẋ > 0, x(t) is

increasing; where ẋ < 0, x(t) is decreasing (shown by the arrows).

Example. A population x has growth rate r
(
1 − x

c
)
; r and c are positive

constants. (This time growth rate is expressed as a number rather than as a

percentage.) Notice that the growth rate is positive for 0 < x < c and negative

for x > c. The number c is the carrying capacity of the environment. The
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x

x = rx

x

.

x = rx.

x
.

x
.

r < 0 r > 0

Figure 9.2. Phase lines for ẋ = rx. The graph of ẋ = rx
helps when drawing the phase line.

x

x.
.

c

x = rx(1 – x/c)

Figure 9.3. Phase line for ẋ = rx(1− x
c
)
. The graph of ẋ = rx(1− x

c
)

helps when drawing the phase line.

rate of change of the population is the growth rate times the population, so

ẋ = rx(1− x
c
)
. The phase line is shown in Figure 9.3.

The region x > 0 is called the basin of attraction of the equilibrium x = c:

if a solution starts in that region, it approaches the equilibrium x = c as

t →∞.

9.3 Vector fields

Geometrically, the differential equation ẋ = f(x), with x ∈ R
n and f a func-

tion from an open set U in R
n to R

n, defines a vector field on U . The vector

f(x) at the point x is drawn with its tail at x.

If you sketch a few vectors for the system (9.3)–(9.4), you will quickly see

that solutions should wind around the origin in the counterclockwise direc-

tion. The solution (x1(t), x2(t)) = (cos t, sin t) that we found does exactly

that. We next give a more complicated example.
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Example. Let x be the population of a prey species and y the population

of a predator species. We assume that the growth rate of x is a−by and the

growth rate of y is −c+ex, where a, b, c, and e are positive constants. These

formulas are reasonable: the growth rate of the prey is positive when there

are no predators, and is lower when there are more predators; the growth

rate of the predators is negative when there are no prey, and is higher when

there are more prey. The resulting system is

ẋ = x(a− by), (9.5)

ẏ = y(−c + ex). (9.6)

To sketch the vector field, we first find the nullclines, which are the curves

where ẋ = 0 or ẏ = 0:

• ẋ = 0 if x = 0 or y = a
b (two lines).

• ẏ = 0 if y = 0 or x = c
e (two lines).

Where an ẋ = 0 nullcline meets a ẏ = 0 nullcline, there is an equilibrium.

The equilibria divide the nullclines into open curves. On each such curve:

• For an ẋ = 0 nullcline, the vectors are vertical. Check a point to see

whether the vectors point up or down.

• For a ẏ = 0 nullcline, the vectors are horizontal. Check a point to see

whether the vectors point right or left.

The nullclines divide the plane into open regions on which ẋ and ẏ do not

change sign. The signs of ẋ and ẏ in a region can be determined by checking

one point in the region. These signs determine whether the vectors in that

region point northeast, northwest, southwest, or southeast.

x

y

a/b

c/e

Figure 9.4. Nullclines, equilibria, and vector field for (9.5)–(9.6).

The vector field for the system (9.5)–(9.6) is shown in Figure 9.4. Only the

first quadrant (x � 0, y � 0) is physically relevant. The populations are in

equilibrium at (x,y) = (0,0) (not very interesting) and (x,y) = ( c
e ,
a
b
)
. In
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the open first quadrant (x > 0, y > 0), solutions appear to go around the

equilibrium
( c
e ,
a
b
)

in the counterclockwise direction, but it is impossible to

tell from the picture whether they spiral in, spiral out, or rejoin themselves

to form time-periodic solutions.

9.4 Functions and differential equations

Consider the differential equation ẋ = f(x) on R
n. Let x(t) be a solution.

Let V : R
n → R be a continuously differentiable function. Then V(x(t)) gives

the value of V along the solution as a function of t. According to the chain

rule, the rate of change of V is

V̇ = ∂V
∂x1

(x(t)) ẋ1(t)+ · · · + ∂V
∂xn

(x(t)) ẋn(t) = ∇V(x(t)) · ẋ(t),

where

∇V(x) =
(
∂V
∂x1

(x), . . . ,
∂V
∂xn

(x)
)

is the gradient of V at the point x, and · represents dot product.

This formula has many uses.

9.4.1 Invariant curves and surfaces. Suppose that V = c implies V̇ =
0. Then any solution x(t) with V = c at some time t0 has V(x(t)) = c for

all time. (This conclusion is true provided ∇V ≠ 0 on the set V = c; this

technical requirement normally holds, and we will ignore it.) In other words,

the set V = c is invariant : if you start on it, you stay on it. In two dimensions,

a set of the form V(x1, x2) = c is a curve. In three dimensions, a set of the

form V(x1, x2, x3) = c is a surface.

For example, in the predator-prey system (9.5)–(9.6), note that if x = 0,

then ẋ = 0. This implies that the line x = 0 (the y-axis) is invariant. In other

words, if the prey population starts at 0, it stays at 0. Note that in this case

the predator population decays to 0, since there is nothing for the predators

to eat.

In the predator-prey system note also that if y = 0, then ẏ = 0, so the line

y = 0 is invariant. In other words, if the predator population starts at 0, it

stays at 0. In this case the prey population increases without bound.

9.4.2 First integrals. Suppose V̇ = 0 everywhere. Then all sets V =
constant are invariant. In this case V is called a first integral of the differential

equation.

For a differential equation on R
2 such as the predator-prey system (9.5)–

(9.6), one can try to find a first integral by the following procedure: Divide
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the equation for ẏ by the equation for ẋ, yielding an equation of the form

dy/dx = g(x,y). Try to solve this differential equation to obtain a general

solution of the form V(x,y) = c. Then the function V is a first integral.

Let’s try this for (9.5)–(9.6). Dividing (9.6) by (9.5), we obtain

dy
dx

= y(−c + ex)
x(a− by) .

This system can be solved by separation of variables. Some algebra yields

a− by
y

dy = −c + ex
x

dx or

(
a
y
− b

)
dy =

(
− c
x
+ e
)
dx.

We integrate both sides and add an arbitrary constant k to one side. In the

open first quadrant, where x and y are positive, we obtain

a lny − by + k = −c lnx + ex or ex − c lnx + by − a lny = k.

Hence the function V(x,y) = ex − c lnx + by − a lny is a first integral for

(9.5)–(9.6) in the open first quadrant.

Note that Vx = e − c
x and Vy = b − a

y . The function V has a critical point

where Vx = 0 and Vy = 0. This occurs at (x,y) = ( ce , ab ), which, we recall, is

an equilibrium of (9.5)–(9.6). Actually, V has a local minimum at that point.

We can check this by checking that VxxVyy − V2
xy > 0 and Vxx > 0 at that

point:

Vxx = c
x2
, Vyy = a

y2
, Vxy = 0 so VxxVyy − V2

xy =
ac
x2y2

.

Therefore at any point in the first quadrant (in particular the point in ques-

tion), VxxVyy − V2
xy > 0 and Vxx > 0.

Since V has a local minimum at
( c
e ,
a
b
)
, level curves of V near that point

are closed. (The same conclusion would hold if V had a local maximum there,

but it would not hold at a saddle point.) The level curves of V are invariant

under (9.5)–(9.6). Thus in Figure 9.4, near the equilibrium
( c
e ,
a
b
)
, solutions go

around the equilibrium counterclockwise, ending exactly where they started,

then go around again: they are time periodic.

Actually, all solutions in the open first quadrant rejoin themselves, but we

will not show this.

An orbit of a differential equation is the curve in phase space that is traced

out by a solution. A phase portrait of ẋ = f(x) is a sketch of phase space

that shows all unusual orbits and examples of typical orbits, together with

arrows on the orbits that indicate the direction of movement.

The phase lines of Figures 9.2 and 9.3 are phase portraits. The phase line

of Figure 9.3 has exactly five orbits: (−∞,0), {0}, (0, c), {c}, and (c,∞). In

one dimension the number of orbits is typically finite, so all can be shown.
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The phase portrait of the predator-prey system (9.5)–(9.6) is shown in Fig-

ure 9.5. When the dimension is greater than one, the number of orbits is

infinite, so not all can be shown. The unusual orbits are the equilibria and

orbits on the x- and y-axes; these are all shown. (In this phase portrait, the

orbits on the x- and y-axes are unusual in that they approach an equilib-

rium in one direction.) In each quadrant, only examples of typical orbits are

shown. We have seen that in the open first quadrant, all orbits surround the

equilibrium. Just two are shown.

x

a/b

c/e

y

Figure 9.5. Phase portrait of the predator-prey system (9.5)–(9.6).
Nullclines that are not orbits are dashed. Compare Figure 9.4.

9.4.3 Stability and Lyapunov functions. An equilibrium x0 of ẋ =
f(x) is stable if solutions that start near x0 stay near x0 in future time.

More precisely, x0 is stable if for each ε > 0 there exists δ > 0 such that if

‖x1 − x0‖ < δ, then the solution x(t) with x(0) = x1 satisfies

‖x(t)− x0‖ < ε for all t � 0. (9.7)

An equilibrium x0 of ẋ = f(x) is asymptotically stable if solutions that

start near x0 stay near x0 in future time, and in addition approach x0 as

t →∞. More precisely,x0 is asymptotically stable if for each ε > 0 there exists

δ > 0 such that if ‖x1 − x0‖ < δ, then (i) the solution x(t) with x(0) = x1

satisfies (9.7), and (ii) x(t) approaches x0 as t →∞.

Asymptotically stable equilibria are states that one expects to observe per-

sisting in the natural world. If some perturbation takes the state of the system

a small distance away from an asymptotically stable equilibrium, the state

returns to the equilibrium.
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In Figure 9.3, the equilibrium c is asymptotically stable (and hence stable).

The equilibrium 0 is not stable (and hence not asymptotically stable). In Fig-

ure 9.5, the equilibrium
( c
e ,
a
b
)

is stable but not asymptotically stable. The

equilibrium (0,0) is not stable (and hence not asymptotically stable).

Theorem 9.2. Lyapunov’s Theorem. Let x0 be an equilibrium of ẋ = f(x), U
an open set in R

n that contains x0, and V : U → R a continuously differen-

tiable function such that V(x0) = 0 and V(x) > 0 for x ≠ x0.

(1) If V̇ � 0 for all x, then x0 is stable.

(2) If V̇ < 0 for all x ≠ x0, then x0 is asymptotically stable.

The function V is called a Lyapunov function in the first case, and a strict

Lyapunov function in the second case.

We remark that at the point x0, V̇ is always 0.

Example. For constants a and r , consider the system

ẋ = −rx − ay,
ẏ = ax − ry.

There is an equilibrium at the origin. Let V(x,y) = x2 + y2. The function

V(x,y) satisfies V(0,0) = 0 and V(x,y) > 0 for (x,y) ≠ (0,0). We calculate

V̇ = ∂V
∂x
ẋ + ∂V

∂y
ẏ = 2x(−rx − ay)+ 2y(ax − ry) = −2r(x2 +y2).

By Theorem 9.2, the origin is stable if r = 0 and is asymptotically stable if

r > 0. In the case r = 0, V is actually a first integral.

9.5 Linear differential equations

A linear differential equation is a system of the form

ẋ1 = a11x1 + a12x2 + · · · + a1nxn, (9.8)

ẋ2 = a21x1 + a22x2 + · · · + a2nxn, (9.9)

...

ẋn = an1x1 + an2x2 + · · · + annxn, (9.10)

with all the aijs constants.

Let

x =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎠ , ẋ =

⎛
⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

...

ẋn

⎞
⎟⎟⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎞
⎟⎟⎟⎟⎟⎠ .
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Then the system (9.8)–(9.10) can be written as the single matrix differential

equation ẋ = Ax (matrix product).

In the case n = 1, (9.8)–(9.10) reduces to ẋ = ax, with x ∈ R and a a

constant. The solution with x(0) = x0 is x = x0eat .
With this example in mind, it is reasonable to ask whether the matrix dif-

ferential equation ẋ = Ax has any solutions of the form x = x0eλt . (Here x
and x0 are in R

n, λ is a constant, and x0 should be a nonzero vector to get

an interesting result.) To answer this question, we substitute x = x0eλt into

both sides of ẋ = Ax and obtain

λeλtx0 = Aeλtx0 or λx0 = Ax0 or (A− λI)x0 = 0.

Here I is the n×n identity matrix.

I =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ ,

which has the property Ix = x for any x ∈ R
n.

The equation (A−λI)x0 = 0 has solutions other than x0 = 0 if and only if

the determinant of the matrix A− λI is 0, that is, det(A− λI) = 0. The num-

bers λ such that det(A− λI) = 0 are called eigenvalues of A. Corresponding

vectors x0 such that (A− λI)x0 = 0 are called eigenvectors. Eigenvalues and

eigenvectors may be complex. The equation det(A− λI) = 0 turns out to be

a polynomial equation of degree n in λ (the characteristic equation of A), so

there are exactly n eigenvalues, counting multiplicity.

Example. Consider the linear system

ẋ = y, (9.11)

ẏ = x. (9.12)

Written as a matrix equation, it is

(
ẋ
ẏ

)
=
(

0 1

1 0

)(
x
y

)
.

The characteristic equation is

det

((
0 1

1 0

)
− λ

(
1 0

0 1

))
= det

(
−λ 1

1 −λ

)
= λ2 − 1 = 0.

Therefore the eigenvalues are λ = ±1.
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To find eigenvectors for the eigenvalue λ = −1, we look for solutions to

the equation
(
A− (−1)I

)
x0 = 0, with A = ( 0 1

1 0

)
:

((
0 1

1 0

)
− (−1)

(
1 0

0 1

))(
x
y

)
=
(

0

0

)
or

(
1 1

1 1

)(
x
y

)
=
(

0

0

)
.

The solutions of this equation are all multiples of the vector
(−1

1

)
. These are

the eigenvectors for the eigenvalue −1. If x(0) = x0 is a nonzero multiple of(
1
−1

)
, then x(t) = e−tx0, so x(t) is a positive multiple of x0 for all t, x(t)→ 0

as t →∞, and ‖x(t)‖ → ∞ as t → −∞.

Similarly, for the eigenvalue λ = 1, the eigenvectors are all multiples of the

vector
(

1
1

)
. If x(0) = x0 is a nonzero multiple of

(
1
1

)
, then x(t) = etx0, so

x(t) is a positive multiple of x0 for all t, x(t)→ 0 as t → −∞, and ‖x(t)‖ → ∞
as t →∞.

Using this information, the phase portrait of the linear system (9.11)–(9.12)

can be sketched; see Figure 9.6. The line y = −x consists of eigenvectors for

the eigenvalue −1; on it the direction of movement is toward the origin. The

line y = x consists of eigenvectors for the eigenvalue 1; on it the direction of

movement is away from the origin. Other initial conditions can be regarded

as a linear combination of
(−1

1

)
and

(
1
1

)
. As t increases, the component in the(−1

1

)
direction decreases, while the component in the

(
1
1

)
direction increases.

x

y

Figure 9.6. Phase portrait of the linear system (9.11)–(9.12).

Of course, the phase portrait of (9.11)–(9.12) could also be sketched by

first sketching nullclines. Alternatively, it could be sketched by finding a first

integral, for example, x2 −y2.

The linear differential equation ẋ = Ax is called hyperbolic if all eigenval-

ues of A have nonzero real part. There are three cases:

• All eigenvalues have negative real part: all solutions approach the origin

as t →∞. The origin is asymptotically stable.
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• All eigenvalues have positive real part: all solutions approach the origin

as t → −∞. The origin is asymptotically stable for ẋ = −Ax.

• Counting multiplicity, k eigenvalues have negative real part and n − k
eigenvalues have positive real part. Then there are subspaces Es of dimen-

sion k and Eu of dimension n− k such that:

— a solution x(t) of ẋ = Ax approaches the origin as t →∞ if and only

if x(0) ∈ Es ;
— a solution x(t) of ẋ = Ax approaches the origin as t → −∞ if and

only if x(0) ∈ Eu.

Es and Eu are called the stable subspace and the unstable subspace, respec-

tively, of ẋ = Ax.

We will not discuss nonhyperbolic cases in detail, but we make two com-

ments. If an eigenvalue is 0, there are other equilibria besides the origin (at

least a line of equilibria). If a pair of eigenvalues is pure imaginary, there are

closed orbits (at least a plane of closed orbits). For example, the eigenvalues

of the linear system (9.3)–(9.4) are ±i. All its orbits are closed.

9.6 Linearization

Suppose ẋ = f(x) has an equilibrium at x0. To study solutions near x0, we

make the substitution x = x0 + y . Then small y corresponds to x near x0.

We obtain ẏ = f(x0 +y). By Taylor’s Theorem

ẏ = f(x0)+Df(x0)y + · · · = Df(x0)y + · · ·

because x0 is an equilibrium. HereDf(x0) is the n×nmatrix whose ij-entry

is ∂fi/∂xj evaluated at the point x0.

The linearization of the differential equation ẋ = f(x) at the equilibrium

x0 is the linear differential equation ẏ = Df(x0)y . We can determine the

phase portrait of ẏ = Df(x0)y by finding eigenvalues and eigenvectors.

The equilibrium x0 of ẋ = f(x) is called hyperbolic if the linear differential

equation ẏ = Df(x0)y is hyperbolic.

Theorem 9.3. Linearization Theorem. If x0 is a hyperbolic equilibrium of

ẋ = f(x), then the phase portrait of ẋ = f(x) near x0 looks just like the

phase portrait of ẏ = Df(x0)y near the origin.

The meaning of this theorem is as follows:

• If all eigenvalues of Df(x0) have negative real part, then x0 is an asymp-

totically stable equilibrium of ẋ = f(x). The equilibrium x0 is called an

attractor.
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• If all eigenvalues of Df(x0) have positive real part, then x0 is an asymp-

totically stable equilibrium of ẋ = −f(x). In other words, for ẋ = f(x), all

solutions that start near x0 stay near x0 in backward time, and approach

x0 as t → −∞. The equilibrium x0 is called a repeller.

• If Df(x0) has k eigenvalues with negative real part and n−k eigenvalues

with positive real part (0 < k < n), then there are “surfaces”Ws of dimen-

sion k and Wu of dimension n− k through x0 such that the following is

true. If x(t) is a solution of ẋ = f(x) that starts near x0, then

— x(t) stays near x0 in forward time and approaches x0 as t → ∞ if

and only if x(0) ∈ Ws ;

— x(t) stays near x0 in backward time and approaches x0 as t → −∞
if and only if x(0) ∈ Wu.

The equilibrium x0 is called a saddle. The “surfaces” Ws and Wu are

called the stable manifold and the unstable manifold of x0, respectively.

(A manifold is a generalization of a surface. A one-dimensional mani-

fold is a curve, and a two-dimensional manifold is a surface.) Ws and Wu

are tangent at x0 to the stable and unstable subspaces, respectively, of

ẏ = Df(x0)y , translated to x0.

Like the existence of a first integral, this theorem is often helpful in drawing

phase portraits.

Example. In the predator-prey system (9.5)–(9.6), let us add the assumption

that if the prey population exceeds an environmental carrying capacity, its

growth rate will become negative. A reasonable model that incorporates this

assumption is

ẋ = x(a− by − δx), (9.13)

ẏ = y(−c + ex), (9.14)

with a, b, c, e, and δ positive constants.

Nullclines, equilibria, and the vector field are shown shown in Figure 9.7

(first quadrant only) under the assumption ae− cδ > 0.

As in Figure 9.4, we cannot tell whether solutions that wind around the

equilibrium in the interior of the first quadrant spiral in, spiral out, or close

up. It is also possible that the solutions don’t spiral at all; they could approach

the equilibrium directly from a little north of west or a little south of east.

The phase portrait near the equilibrium
(a
δ ,0

)
is also unclear.

To examine the equilibria more closely, we use linearization. First, rewrite

(9.5)–(9.6) a little:

ẋ = f1(x,y) = ax − bxy − δx2,

ẏ = f2(x,y) = −cy + exy,
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x

y

a/b

c/e a/δ

Figure 9.7. Nullclines (axes and dashed lines), equilibria (dots), and vector
field of (9.13)–(9.14) in the first quadrant, assuming ae− cδ > 0.

Now calculate ⎛
⎜⎜⎜⎝
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

⎞
⎟⎟⎟⎠ =

(
a− by − 2δx −bx

ey −c + ex

)
(9.15)

There are three equilibria, namely,

(0,0),
(
a
δ
,0
)
, and

(
c
e
,
ae− cδ
be

)
.

At these three equilibria, the matrix (9.15) is, respectively,

(
a 0

0 −c

)
,

⎛
⎜⎜⎝−a −ab

δ
0

ae− cδ
δ

⎞
⎟⎟⎠ , and

⎛
⎜⎜⎝ −cδ

e
−bc
e

ae− cδ
b

0

⎞
⎟⎟⎠

Therefore:

• At (0,0) the eigenvalues are a > 0 and −c < 0. This equilibrium is a

saddle.

• At (a/δ,0) the eigenvalues are −a < 0 and (ae− cδ)/δ > 0. This equilib-

rium is also a saddle.

• At (c/e, (ae− cδ)/be) the eigenvalues turn out to be

−cδ
2e
±
(
c2δ2

4e2
− c(ae− cδ)

e

)1/2

.

Both have negative real part, so this equilibrium is an attractor. For small

δ both eigenvalues are complex.
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x

y

a/b

c/e a/δ

Figure 9.8. A possible phase portrait of (9.13)–(9.14),
with small δ, in the first quadrant.

A phase portrait for small δ that is consistent with all our information

is shown in Figure 9.8. However, more complicated phase portraits are also

consistent with our information. For example, there could be a single closed

orbit that surrounds the interior equilibrium. Inside the closed orbit, solu-

tions would spiral toward the equilbrium; outside the closed orbit, solutions

might spiral toward the closed orbit itself.
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Evolutionary dynamics

In this chapter we look at how strategies might change over time. As in our

study of evolutionary stability (Sections 8.3–8.4), the context is population

biology, but the ideas also apply to social dynamics.

10.1 Replicator system

As in Sections 8.3–8.4, we consider an evolutionary game based on a symmet-

ric two-player game in normal form with finite strategy set S = {s1, . . . , sn}.
There is a population that uses strategy s1 with probability p1,…,strategy

sn with probability pn; all pi � 0 and
∑
pi = 1. The population state is

σ =∑pisi.
When an individual of type i plays the game against a randomly chosen

individual from a population with state σ , her expected payoff is π1(si, σ).
When two randomly chosen individuals from a population with state σ play

the game, the expected payoff to the first is π1(σ ,σ).
In this chapter we explicitly regard the population state σ as changing with

time. Thus we write σ(t) =∑pi(t)si.
It is reasonable to expect that if π1(si, σ) > π1(σ ,σ), then individuals

using strategy i will in general have an above-average number of offspring.

Thus pi(t) should increase. However, ifπ1(si, σ) < π1(σ ,σ), we expect pi(t)
to decrease.

In fact, it is reasonable to suppose that the growth rate of pi is propor-

tional to π1(si, σ) − π1(σ ,σ). For simplicity we assume that the constants

of proportionality are all equal to 1.

With these assumptions we obtain the replicator system:

ṗi =
(
π1(si, σ)−π1(σ ,σ)

)
pi, i = 1, . . . , n. (10.1)

The replicator system can also be used in social situations in which success-

ful strategies spread, because they are seen to be successful and hence are

adopted by others. In this case, it is reasonable to expect that if π1(si, σ) >
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π1(σ ,σ), then strategy i, because it is seen to be more successful than aver-

age, will be adopted by more members of the society, so pi will increase. If

we suppose that the growth rate of pi is proportional to π1(si, σ)−π1(σ ,σ)
and that the constants of proportionality are all equal to 1, we again get the

replicator system.

The replicator system is a differential equation on R
n. The physically rel-

evant subset of R
n is the simplex

Σ =
{
(p1, . . . , pn) : all pi � 0 and

∑
pi = 1

}
.

Σ can be decomposed as follows. For each nonempty subset I of {1, . . . , n},
let

ΣI =
{
(p1, . . . , pn) : pi > 0 if i ∈ I, pi = 0 if i ∉ I, and

∑
pi = 1

}
.

Then Σ is the disjoint union of the ΣI , where I ranges over all nonempty

subsets of {1, . . . , n}. The ΣI are called the strata of Σ. See Figure 10.1.

p3

p2

p1

Σ{3}

Σ{1} Σ{1,2}

Σ{1,2,3}

Σ{1,3}

Σ{2,3}

Σ{2}

Figure 10.1. The simplex Σ with n = 3 and its decomposition into strata.

Let |I| denote the size of the set I. The dimension of the stratum ΣI is

|I| − 1. For example, Σ{1,...,n}, the interior of Σ, has dimension n− 1, and for

each i ∈ {1, . . . , n}, Σ{i} is a point (which has dimension 0).

Theorem 10.1. The replicator system has the following properties:

(1) If pi = 0, then ṗi = 0.

(2) Let S(p1, . . . , pn) =
∑
pi. If S = 1, then Ṡ = 0.

(3) Each stratum ΣI is invariant.

(4) Each stratum Σ{i} is an equilibrium.
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Proof. Property (1) follows immediately from (10.1).

To show property (2), just note that if
∑
pi = 1, then

Ṡ =
∑
ṗi =

∑(
π1(si, σ)−π1(σ ,σ)

)
pi

=
∑
piπ1(si, σ)−

∑
piπ1(σ ,σ)

= π1(σ ,σ)−π1(σ ,σ)

= 0.

To prove property (3), let

AI =
{
(p1, . . . , pn) : pi = 0 if i ∉ I and

∑
pi = 1

}
.

We have ΣI ⊂ AI , and from properties (1) and (2), AI is invariant. Let p(t)
be a solution of the replicator system with p(0) ∈ ΣI . Then p(t) stays in AI .
Thus the only way p(t) can leave ΣI is if some pi(t), i ∈ I, becomes 0. If

this happens, p(t) enters AJ , where J is some proper subset of I. Since AJ is

invariant, this is impossible.

To prove property (4), just note that each Σ{i} is a single point and is invari-

ant, so it must be an equilibrium.

For a subset I of {1, . . . , n}, let GI be the reduced game derived from G
by eliminating, for both players, all strategies si except those with i ∈ I.
The closure of the stratum ΣI , denoted cl(ΣI), is just ΣI together with all its

boundary points. Equivalently, it is the union of ΣI and all ΣJ with J ⊂ I. An

important fact is that the restriction of the replicator system to cl(ΣI) is just

the replicator system for the evolutionary game based on the reduced game

GI . We will see this in examples.

Let

D =
⎧⎨
⎩(p1, . . . , pn−1) : pi � 0 for i = 1, . . . , n− 1, and

n−1∑
i=1

pi � 1

⎫⎬
⎭ .

Then

Σ =
⎧⎨
⎩(p1, . . . , pn) : (p1, . . . , pn−1) ∈ D and pn = 1−

n−1∑
i=1

pi

⎫⎬
⎭ .

Instead of studying the replicator system on Σ, one can instead take the space

to beD and use only the firstn−1 equations of the replicator system. In these

equations, one must of course let pn = 1−∑n−1
i=1 pi.

For n = 2, the set D is simply the line segment 0 � p1 � 1. The endpoints

p1 = 0 and p1 = 1 are always equilibria. Since p1 = 1 is an equilibrium, ṗ1

always has 1− p1 as a factor.
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Forn = 3, the setD is the triangle {(p1, p2) : p1 � 0, p2 � 0, and p1+p2 �
1}. The vertices (0,0), (1,0), and (0,1) are equilibria, and the lines p1 = 0,

p2 = 0, and p1 + p2 = 1 are invariant. Since the line p1 + p2 = 1 is invariant,

we must have ṗ1 + ṗ2 = 0 whenever p1 + p2 = 1.

Notice that D is divided into strata that correspond to those of Σ.

10.2 Microsoft vs. Apple

In the early days of personal computing, people faced a dilemma. You could

buy a computer running Microsoft Windows, or one running the Apple oper-

ating system. Either was reasonably satisfactory, although Apple’s was bet-

ter. However, neither type of computer dealt well with files produced by the

other. Thus if your coworker used Windows and you used Apple, not much

got accomplished.

We model this situation as a symmetric two-player game in normal form.

The strategies are buy Microsoft (m) or buy Apple (a). The payoffs are given

by the following matrix:

Player 2

m a
Player 1 m (1,1) (0,0)

a (0,0) (2,2)

We are in case (3) of Theorem 8.5, a game like Stag Hunt. There are two

pure-strategy strict Nash equilibria, (m,m) and (a,a). Both m and a are

evolutionarily stable states. There is also a symmetric mixed strategy Nash

equilibrium (σ∗, σ∗) with σ∗ = 2
3m+ 1

3a.

The Nash equilibria (m,m) and (a,a) are easy to understand intuitively.

Clearly if your coworker is using Microsoft, you should use it too. Since, for

each player, Microsoft is the best response to Microsoft, (m,m) is a Nash

equilibrium. The same reasoning applies to (a,a).
The mixed strategy Nash equilibrium is harder to understand. One feels

that it does not correspond to any behavior one would ever observe. Even if

for some reason people picked computers randomly, why would they choose

the worse computer with higher probability?

To resolve this mystery, we imagine a large population of people who ran-

domly encounter each other and play this two-player game. People observe

which strategy, buy Microsoft or buy Apple, is on average producing higher

payoffs. They will tend to use the strategy that they observe produces the

higher payoff.
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Let a state of the population be σ = p1m + p2a, and let p = (p1, p2). It

is consistent with our understanding of the situation to assume that p(t)
evolves by the replicator system. We have

π1(m,σ) = p1, π1(a,σ) = 2p2,

π1(σ ,σ) = p1π1(m,σ)+ p2π1(a,σ) = p2
1 + 2p2

2,

so the replicator system is

ṗ1 =
(
π1(m,σ)−π1(σ ,σ)

)
p1 =

(
p1 − (p2

1 + 2p2
2)
)
p1,

ṗ2 =
(
π1(a,σ)−π1(σ ,σ)

)
p2 =

(
2p2 − (p2

1 + 2p2
2)
)
p2.

Instead of drawing the phase portrait on the simplex Σ = {(p1, p2) : p1 �
0, p2 � 0, and p1 + p2 = 1}, we will, as explained in the Section 10.1, draw

the phase portrait on D = {p1 : 0 � p1 � 1}. Thus we only need the first

equation, in which we substitute p2 = 1− p1:

ṗ1 =
(
p1 −

(
p2

1 + 2(1− p1)2
))
p1

= (1− p1)
(
p1 − 2(1− p1)

)
p1

= (1− p1)(3p1 − 2)p1.

Note that we simplified the equation for ṗ1 by factoring out 1− p1 from the

expression p1−
(
p2

1 +2(1−p1)2
)
. This may seem pretty clever. However, we

knew in advance, as mentioned in the previous section, that there had to be

an equilibrium at p = 1, so 1−p1 had to be a factor. To perform the factoring,

we just needed to notice that p1 − p2
1 = (1 − p1)p1. This idea will be useful

at other points in this chapter.

0 12/3
p1

Figure 10.2. Graph of ṗ1 = (1− p1)(3p1 − 2)p1 and phase portrait.

The phase portrait on the interval 0 � p1 � 1 is shown in Figure 10.2. We

see that there are attracting equilibria at p1 = 0 (everyone uses Apple) and

p1 = 1 (everyone uses Microsoft), as expected. The equilibrium at p1 = 2
3

is unstable. It separates the basin of attraction of p1 = 0 from the basin of

attraction of p1 = 1. The location of this equilibrium now makes intuitive

sense: the basin of attraction of p1 = 0, in which everyone uses the better
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computer Apple, is larger than the basin of attraction of p1 = 1, in which

everyone uses the worse computer Microsoft. Nevertheless, if initially more

than 2
3 of the population uses Microsoft, eventually everyone uses Microsoft,

even though it is worse.

10.3 Evolutionary dynamics with two pure strategies

In this Section we generalize our work on Microsoft vs. Apple. As in Sec-

tion 8.4, consider an evolutionary game based on a symmetric two-player

game in normal form with just two pure strategies. The payoff matrix has

the form

Player 2

s1 s2

Player 1 s1 (a,a) (b, c)
s2 (c, b) (d,d)

A population state is σ = p1s1 + p2s2. We have

π1(s1, σ) = p1a+ p2b, π1(s2, σ) = p1c + p2d,

π1(σ ,σ) = p1π1(s1, σ)+ p2π1(s2, σ) = p2
1a+ p1p2(b + c)+ p2

2d.

Therefore the replicator system is

ṗ1 =
(
π1(s1, σ)−π1(σ ,σ)

)
p1

=
(
p1a+ p2b −

(
p2

1a+ p1p2(b + c)+ p2
2d
))
p1,

ṗ2 =
(
π1(s2, σ)−π1(σ ,σ)

)
p2

=
(
p1c + p2d−

(
p2

1a+ p1p2(b + c)+ p2
2d
))
p2.

As explained in Section 10.1, and as with Microsoft vs. Apple, we only need

the first equation, in which we substitute p2 = 1− p1:

ṗ1 =
(
p1a+ (1− p1)b −

(
p2

1a+ p1(1− p1)(b + c)+ (1− p1)2d
))
p1

= p1(1− p1)
(
p1a+ b − p1(b + c)− (1− p1)d

)
= p1(1− p1)

(
b − d+ ((a− c)+ (d− b))p1

)
= p1(1− p1)

((
(a− c)+ (d− b))p1 − (d− b)

)

In the second line of the calculation, we moved the p1 that was at the right

to the left, and we factored out 1− p1. To accomplish the factoring, we first
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grouped p1a and −p2
1a. The other terms already had 1−p1 as a factor. This

is analogous to what we did in the Microsoft vs. Apple example (Section 10.2).

There are equilibria at p1 = 0, p1 = 1, and

p1 = p∗1 =
d− b

(a− c)+ (d− b),

provided the latter is between 0 and 1. The first two factors in our final equa-

tion for ṗ1 are positive between 0 and 1, so the sign of ṗ1 there depends

on the third factor. The phase portraits are shown in Figure 10.3. Compare

Theorem 8.5. In all cases the asymptotically stable equilibria correspond to

evolutionarily stable population states.

0 10 1

0 10 1
p1

p1
p1

p1

p1

(1) a > c and d < b

(3) a > c and d > b

(2) a < c and d > b

(3) a < c and d < b

* p1
*

Figure 10.3. Dynamics of the replicator equation ṗ1 = p1(1−p1)
((
(a−c)+(d−b))p1−

(d−b)). In cases (1) and (2), there is a strictly dominant strategy; the population evolves
toward everyone using it. Case (3) includes Stag Hunt and Microsoft vs. Apple. Case (4)
includes Chicken.

10.4 Hawks and Doves revisited

We consider again the game of Hawks and Doves from Subsection 8.4.3. The

payoff matrix is:

Animal 2

h d

Animal 1 h
(v−w

2 , v−w2

)
(v,0)

d (0, v)
(v

2 − t,
v
2 − t

)

Recall that there are no symmetric pure-strategy Nash equilibria, and that

if p∗1 = (v + 2t)/(w + 2t) and σ∗ = p∗1 h + (1 − p∗1 )d, then (σ∗, σ∗) is a

symmetric mixed-strategy Nash equilibrium.



Evolutionary dynamics • 239

Now think of σ = p1h+p2d as a population state of an evolutionary game.

We recall that σ∗ is an evolutionarily stable state. We have

π1 (h,σ) = p1
v −w

2
+ p2v, π1 (d,σ) = p2

(
v
2
− t
)
,

π1(σ ,σ) = p1π1 (h,σ)+ p2π1 (d,σ) = p2
1
v −w

2
+ p1p2v + p2

2

(
v
2
− t
)
.

Hence the replicator system is

ṗ1 = (π1 (h,σ)−π1(σ ,σ))p1

=
(
p1
v −w

2
+ p2v −

(
p2

1
v −w

2
+ p1p2v + p2

2

(
v
2
− t
)))

p1,

ṗ2 = (π1 (d,σ)−π1(σ ,σ))p2

=
(
p2

(
v
2
− t
)
−
(
p2

1
v −w

2
+ p1p2v + p2

2

(
v
2
− t
)))

p2.

Again we only need the first equation, in which we substitute p2 = 1− p1:

ṗ1 =
(
p1
v −w

2
+ (1− p1)v

−
(
p2

1
v −w

2
+ p1(1− p1)v + (1− p1)2

(
v
2
− t
)))

p1

= (1− p1)
(
p1
v −w

2
+ (1− p1)v − (1− p1)

(
v
2
− t
))
p1

= (1− p1)
(
v
2
+ t − p1

(
w
2
+ t
))
p1

= 1
2(1− p1)

(
v + 2t − p1 (w + 2t)

)
p1.

The phase portrait on the interval 0 � p1 � 1 is shown in Figure 10.4. In this

case, if the population is initially anything other than p1 = 0 or p1 = 1, the

population tends toward the state σ∗.

0 1(v + 2t)/(w + 2t)
p1

Figure 10.4. Graph of ṗ1 = 1
2 (1− p1)(v + 2t − p1(w + 2t))p1 and phase portrait.

Alternatively, we could get this phase portrait by observing that we are in

case (4) of Figure 10.3.
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10.5 Side-blotched Lizards

The side-blotched lizard, which lives in the deserts of western North America,

has three types of males:

• Orange-throats are aggressive, keep large harems of females, and defend

large territories.

• Blue-throats are also aggressive, keep just one female, and defend small

territories.

• Yellow-stripes are sneaky. They do not keep females or defend a terri-

tory. Instead they sneak into other males’ territories and mate with their

females.

Field reports indicate that populations of side-blotched lizards cycle: mostly

orange-throats one generation, mostly yellow-stripes the next, mostly blue-

throats the next, then back to mostly orange-throats. (For more information

on side-blotched lizards, see the Wikipedia article http://en.wikipedia.org/

wiki/Side-blotched_lizard.)

Let’s consider a competition between two different types of male side-

blotched lizards:

• Orange-throats vs. yellow-stripes. The orange-throats are unable to defend

their large territories against the sneaky yellow-stripes. The yellow-stripes

have the advantage.

• Yellow-stripes vs. blue-throats. The blue-throats are able to defend their

small territories against the yellow-stripes. The blue-throats have the

advantage.

• Blue-throats vs. orange-throats. Neither type of male bothers the other.

The orange-throats, with their larger harems, produce more offspring.

This simple analysis shows why the population should cycle.

To do an analysis based on the replicator equation, consider a game in

which the players are two male side-blotched lizards. Each has three possible

strategies: orange-throat (O), yellow-stripe (Y ), and blue-throat (B). The pay-

offs are 0 if both use the same strategies; otherwise, we assign a payoff of 1

or −1, respectively, to the lizard that does or does not have the advantage

according to our analysis. The payoff matrix is therefore

Lizard 2

O Y B
O (0,0) (−1,1) (1,−1)

Lizard 1 Y (1,−1) (0,0) (−1,1)
B (−1,1) (1,−1) (0,0)

http://en.wikipedia.org/wiki/Side-blotched_lizard
http://en.wikipedia.org/wiki/Side-blotched_lizard
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This game is symmetric. It is just Rock-Paper-Scissors (see Problem 5.12.4)

in disguise. Thus it has no pure-strategy Nash equilibria and just one mixed

strategy Nash equilibrium (σ∗, σ∗) with σ∗ = 1
3O +

1
3Y +

1
3B. However, this

Nash equilibrium is not an evolutionarily stable state of the corresponding

evolutionary game.

Let’s calculate the replicator system of the evolutionary game. Let σ =
p1O + p2Y + p3B. Then

π1(O,σ) = −p2 + p3, π1(Y ,σ) = p1 − p3, π1(B,σ) = −p1 + p2.

Therefore

π1(σ ,σ) = p1π1(O,σ)+ p2π1(Y ,σ)+ p3π1(B,σ)

= p1(−p2 + p3)+ p2(p1 − p3)+ p3(−p1 + p2) = 0.

Hence the replicator system is

ṗ1 = (π1(O,σ)−π1(σ ,σ))p1 = (−p2 + p3)p1,

ṗ2 = (π1(Y ,σ)−π1(σ ,σ))p2 = (p1 − p3)p2,

ṗ3 = (π1(B,σ)−π1(σ ,σ))p1 = (−p1 + p2)p3.

We only need the first and second equations, in which we substitute p3 =
1− (p1 + p2):

ṗ1 = (1− p1 − 2p2)p1, (10.2)

ṗ2 = (−1+ 2p1 + p2)p2. (10.3)

The simplex Σ in R
3 corresponds to the region

D = {(p1, p2) : p1 � 0, p2 � 0, p1 + p2 � 1}

in R
2.

Let’s analyze the system (10.2)–(10.3) on D.

1. Invariance of the boundary of D. This is just a check on our work. Note

that if p1 = 0 then ṗ1 = 0; if p2 = 0 then ṗ2 = 0; and if p1 + p2 = 1 then

ṗ1 + ṗ2 = (1− p1)p1 − 2p2p1 + (−1+ p2)p2 + 2p1p2

= (1− p1)p1 + (−1+ p2)p2

= p2p1 − p1p2

= 0.

2. To find all equilibria of the replicator system, we solve simultaneously

the pair of equations

ṗ1 = (1− p1 − 2p2)p1 = 0, ṗ2 = (−1+ 2p1 + p2)p2 = 0.

We find that the equilibria are (p1, p2) = (0,0), (0,1), (1,0), and
(1

3 ,
1
3

)
.
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3. Nullclines: We have ṗ1 = 0 on the lines 1−p1−2p2 = 0 and p1 = 0, and

we have ṗ2 = 0 on the lines −1+ 2p1 + p2 = 0 and p2 = 0. See Figure 10.5.

p2

p1

–1 + 2p1 + p2 = 0

1 – p1 – p2 = 0

Figure 10.5. Vector field for the system (10.2)–(10.3) on D.

4. From the figure it appears that solutions circle around the equilibrium(1
3 ,

1
3

)
. We cannot, however, tell from the figure if solutions spiral toward the

equilibrium, spiral away from the equilibrium, or form closed curves. It is

also possible that solutions approach the equilibrium directly from a little

north of west or a little south of east.

The vector field on each side of the triangle in Figure 10.5 represents the

replicator equation for a reduced game in which one strategy has been elim-

inated. For example, on the left side of the triangle, p1 = 0, so strategy 1 is

missing. The payoff matrix for the reduced game is the one given earlier in

this section, with the first row and first column crossed out. The remaining

2 × 2 matrix falls into case (2) of Figure 10.3: strategy B strictly dominates

strategy Y . On the left side of the triangle, (p1, p2) approaches (0,0). When

p1 = p2 = 0, p3 = 1, that is, the population is all blue-throats.

5. We can try to get more information by linearizing the system (10.2)–

(10.3) at the equilibrium
(1

3 ,
1
3

)
. The linearization of (10.2)–(10.3) has the

matrix (
1− 2p1 − 2p2 −2p1

2p2 −1+ 2p1 + 2p2

)
.

At (p1, p2) =
(1

3 ,
1
3

)
, the matrix is

⎛
⎝−1

3 −2
3

2
3

1
3

⎞
⎠ .

The characteristic equation is λ2+ 1
3 = 0, so the eigenvalues are ±i/√3. Since

they are pure imaginary, the equilibrium is not hyperbolic. Thus linearization

does not help. We still don’t know what the solutions do.



Evolutionary dynamics • 243

6. Fortunately, the system (10.2)–(10.3) has the first integral V(p1, p2) =
lnp1 + lnp2 + ln(1− p1 − p2). Check:

V̇ = ṗ1

p1
+ ṗ2

p2
+ −ṗ1 − ṗ2

1− p1 − p2
= ṗ1

p1
+ ṗ2

p2
− ṗ1 + ṗ2

1− p1 − p2

= (1− p1 − 2p2)p1

p1
+ (−1+ 2p1 + p2)p2

p2
− (1− p1)p1 + (−1+ p2)p2

1− p1 − p2

= (1− p1 − 2p2)+ (−1+ 2p1 + p2)− (1− p1 − p2)(p1 − p2)
1− p1 − p2

= (1− p1 − 2p2)+ (−1+ 2p1 + p2)− (p1 − p2)

= 0.

One can check using the second derivative test that V has a local maxi-

mum at its critical point
(1

3 ,
1
3

)
. Therefore level curves of V(p1, p2) surround

this point. In other words, solutions near the equilibrium
(1

3 ,
1
3

)
form closed

curves around it. In fact all solutions in the interior of D form closed curves

around this point.

We conclude that we expect the populations of the different types of side-

blotched lizards to oscillate.

Suppose a solution of (10.2)–(10.3) returns to its initial value after time T ,

that is, the solution has period T . The average of pi along the solution is just
1
T

∫ T
0 pi(t)dt. It turns out that on any solution, the average values of p1 and

p2 are just their values at the interior equilibrium, namely, 1
3 and 1

3 . We can

show this by the following calculation.

Rewrite (10.2)–(10.3) as

ṗ1

p1
= 1− p1 − 2p2, (10.4)

ṗ2

p2
= −1+ 2p1 + p2. (10.5)

Along a solution, both sides of these equations are functions of t. Integrate

both sides of both equations from t = 0 to t = T :

lnp1(T)− lnp1(0) = T −
∫ T

0
p1(t) dt − 2

∫ T
0
p2(t) dt, (10.6)

lnp2(T)− lnp2(0) = −T + 2
∫ T

0
p1(t) dt +

∫ T
0
p2(t) dt. (10.7)

However, T is the period of the solution, so lnp1(T) − lnp1(0) = 0, and

lnp2(T)− lnp2(0) = 0. Now it is a matter of simple algebra to show that

1
T

∫ T
0
p1(t)dt = 1

T

∫ T
0
p2(t)dt = 1

3
.
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10.6 Equilibria of the replicator system

In this section we derive some general facts about equilibria of the replicator

system.

Theorem 10.2. Let p ∈ Σ, and let σ be the corresponding population state.

Then p is an equilibrium of the replicator system if and only if (σ ,σ) satisfies

condition (1) of the Fundamental Theorem of Nash Equilibria (Theorem 5.2).

In other words, if p ∈ ΣI for some nonempty subset I of {1, . . . , n}, then

p is an equilibrium of the replicator system if and only if all π1(si, σ) with

i ∈ I are equal.

For example, if only one strategy is active at σ (i.e., one pi = 1 and the

others are 0), then p is automatically an equilibrium of the replicator system.

Of course, we already noted this in property (4) Theorem 10.1.

Note that if all pi > 0, then condition (2) of Theorem 5.2 for a Nash equi-

librium is irrelevant. Hence, if all pi > 0, then p is an equilibrium of the

replicator system if and only if (σ ,σ) is a Nash equilibrium of the game.

Proof. Let ΣI be the stratum of Σ to which p belongs.

Suppose p is an equilibrium of the replicator system. If i ∈ I, then pi > 0,

so we see from (10.1) that π1(si, σ) = π1(σ ,σ). Hence all π1(si, σ) with i ∈ I
are equal. Thus p satisfies condition (1) of the Fundamental Theorem of Nash

Equilibria.

On the other hand, suppose p satisfies condition (1) of the Fundamental

Theorem of Nash Equilibria. Thus π1(si, σ) = K for all i such that pi > 0,

that is, for all i ∈ I. We have

π1(σ ,σ) =
n∑
i=1

piπ1(si, σ) =
∑
i∈I
piπ1(si, σ) =

∑
i∈I
piK = K.

Hence if pi > 0, then π1(si, σ) = π1(σ ,σ). Now we see from (10.1) that p
is an equilibrium of the replicator system.

Theorem 10.3. Let p∗ ∈ ΣI be an equilibrium of the replicator system, and

let σ∗ be the corresponding population state. Suppose (σ∗, σ∗) does not

satisfy condition (2) of Theorem 5.2; that is, suppose there is an i ∉ I such

that π1(si, σ∗) > π1(σ∗, σ∗). Let J be a subset of {1, . . . , n} that includes

both i and I. Then no solution p(t) of the replicator system that lies in ΣJ
approaches p∗ as t →∞.

Proof. By assumption,π1(si, σ∗)−π1(σ∗, σ∗) > 0. Hence if,σ is close toσ∗,

that is, if the corresponding point p is close to the point p∗, then π1(si, σ)−
π1(σ ,σ) > 0. Therefore, if p is close to p∗ and p ∈ ΣJ , so pi > 0, then

ṗi = pi
(
π1(si, σ)−π1(σ ,σ)

)
pi is positive. Hence any solution p(t) that lies
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in ΣJ and comes close to p∗ has pi(t) positive and increasing when it is near

p∗. Since p∗i = 0, clearly p(t) does not approach p∗ as t increases.

The proof of Theorem 10.3 has a nice interpretation. It says that if we

introduce into the population σ∗ a small number of animals using strategy

i, which does better against σ∗ than σ∗ does against itself, then the use of

strategy i in the population will increase.

Theorem 10.4. Let p∗ ∈ Σ. Suppose the corresponding population state σ∗

is evolutionarily stable. Then p∗ is an asymptotically stable equilibrium of

the replicator system.

At the end of Section 10.3, we noticed this result for most evolutionary

games with two strategies.

The general proof uses the following fact, which is a consequence of the

convexity of the function lnx.

Lemma 10.5. Assume

• xi > 0 for i = 1, . . . , n.

• pi > 0 for i = 1, . . . , n.

• ∑pi = 1.

Then ln
(∑
pixi

)
>
∑
pi lnxi unless x1 = · · · = xn.

Given this fact, we shall prove Theorem 10.4 for the case in which all

p∗i > 0. Define a function W with domain Σ{1,...,n} by W
(
p1, . . . , pn

) =∑
p∗i ln(pi/p∗i ). Then W

(
p∗
) = 0. For p ≠ p∗,

W
(
p
) =∑p∗i ln

pi
p∗i

< ln

(∑
p∗i

pi
p∗i

)
= ln

(∑
pi
)
= ln 1 = 0.

The inequality is a consequence of Lemma 10.5; since
∑
pi =

∑
p∗i = 1, the

only way all the quotients pi/p∗i can be equal is if they are all 1.

Let V = −W . Then V
(
p∗
) = 0, and, for p ≠ p∗, V

(
p
)
> 0. We can write

V
(
p
) = −∑p∗i ( lnpi − lnp∗i

)
. Then for p ≠ p∗,

V̇ = −
∑
p∗i

1
pi
ṗi = −

∑ p∗i
pi

(
π1(si, σ)−π1(σ ,σ)

)
pi

= −
∑
p∗i
(
π1(si, σ)−π1(σ ,σ)

)
= −

∑
p∗i π1(si, σ)+

∑
p∗i π1(σ ,σ)

= −π1
(
σ∗, σ

)+π1(σ ,σ) < 0.

The last inequality follows from the assumption that σ∗ is an evolutionar-

ily stable state with all p∗i > 0. In this case, for all σ ≠ σ∗, π1 (σ∗, σ) >
π1(σ ,σ).

Therefore V is a strict Lyapunov function, so p∗ is asymptotically stable.
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10.7 Cooperators, Defectors, and Tit-for-Tatters

As far as we know, human beings have always lived in groups and cooperated

in hunting and other activities. Cooperation is also observed in other species.

Can evolutionary game theory help explain this behaviour?

Let’s consider the symmetric version of the cooperation dilemma dis-

cussed at the end of Section 2.4. Each player can help the other, conferring a

benefit b > 0 on the other player at a cost a > 0 to herself. We assume b > a.

The players have two strategies: cooperate by helping (c), or defect by not

helping (d). The payoff matrix is

Player 2

c d
Player 1 c (b − a,b − a) (−a,b)

d (b,−a) (0,0)

Defect is the strictly dominant strategy for both players. However, since b >
a, the game is a prisoner’s dilemma: if both cooperate, both are better off

than if both defect.

If we form the replicator equation for the corresponding evolutionary game

as in Section 10.3, we will see that the cooperators die out, and only defectors

are left. (We are in case 2 of Figure 10.3.) Thus the benefits of cooperation

alone are not sufficient to explain why it exists.

Now let us imagine that when two random players from a population meet,

they play the game twice, using one of three strategies:

• c: always cooperate.

• d: always defect.

• t: tit for tat: cooperate the first time; the second time, do what the other

player did the first time.

The payoff matrix for the twice-repeated game (compare Problem 3.12.6) is

Player 2

c d t
c (2b − 2a,2b − 2a) (−2a,2b) (2b − 2a,2b − 2a)

Player 1 d (2b,−2a) (0,0) (b,−a)
t (2b − 2a,2b − 2a) (−a,b) (2b − 2a,2b − 2a)

We assume b > 2a. Then 2b − 2a > b, so this game has, in addition to the

pure-strategy Nash equilibrium (d,d), the the pure-strategy Nash equilibrium

(t, t). Both are symmetric.

To simplify our study of the replicator system, we shall only consider the

case b = 3 and a = 1. The payoff matrix for the twice-repeated game becomes
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Player 2

c d t
c (4,4) (−2,6) (4,4)

Player 1 d (6,−2) (0,0) (3,−1)
t (4,4) (−1,3) (4,4)

This game has the symmetric Nash equilibria (d,d),
(1

2d+
1
2t,

1
2d+

1
2t
)
, and

(p1c + p3t, p1c + p3t) with p1 + p3 = 1 and 0 � p1 < 1
3 . The last family of

Nash equilibria is related to the Nash equilibria found in Problem 5.12.6 with

different payoffs; p1 = 0 gives the Nash equilibrium (t, t) that we saw above.

The replicator system, using only p1 and p2, turns out to be

ṗ1 = −2(p1 + p2)p1p2, (10.8)

ṗ2 =
(
−1+ 3p1 + 3p2 − 2p1p2 − 2p2

2

)
p2. (10.9)

You will be asked to check this in Problem 10.13.5. We study this system on

the region

D = {(p1, p2) : p1 � 0, p2 � 0, p1 + p2 � 1}.

1. Invariance of the boundary of D. If p1 = 0 then ṗ1 = 0, and if p2 = 0

then ṗ2 = 0. As a check on our work, we should also check that if p1+p2 = 1,

then ṗ1 + ṗ2 = 0. However, in this problem it is useful to find all numbers c
such that if p1 + p2 = c then ṗ1 + ṗ2 = 0. If p1 + p2 = c, then

ṗ1 + ṗ2 = −2(p1 + p2)p1p2 +
(− 1+ 3(p1 + p2)− 2(p1 + p2)p2

)
p2

= (−2cp1 − 1+ 3c − 2cp2)p2

= (−2c2 + 3c − 1)p2

= −(2c − 1)(c − 1)p2.

This expression is identically 0 if c = 1
2 or c = 1.

2. To find the equilibria we solve simultaneously the equations ṗ1 = 0 and

ṗ2 = 0. We find that the equililbria are (0,1),
(
0, 1

2

)
, and the line segment

consisting of points (p1,0) with 0 � p1 � 1.

3. Nullclines. We have ṗ1 = 0 on the lines p1 = 0, p2 = 0, and p1 +p2 = 0.

We can ignore the last, since it meets D only at the origin. We have ṗ2 = 0

on the line p2 = 0, and on a curve that we will not study in detail. Note that

ṗ1 < 0 everywhere in the interior of D.

4. Linearization shows that (0,1) is an attractor and
(
0, 1

2

)
is a saddle.

The equilibria on the line segment (p1,0), 0 � p1 � 1, all have at least one

eigenvalue equal to 0. The other eigenvalue is 3p1 − 1, so it is negative for

0 � p1 < 1
3 , 0 for p1 = 1

3 , and positive for 1
3 < p � 1.
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1

1

p2

p11
3

1
2

Figure 10.6. Phase portrait of the system (10.8)–(10.9).

Because of the line segment of nonhyperbolic equilibria, the phase portrait

cannot be completely drawn by the methods we have learned. It is shown in

Figure 10.7.

Note that the invariant line p1 + p2 = 1
2 , which we found in step 1, is

the stable manifold of the saddle
(
0, 1

2

)
. Population states above this line

are in the basin of attraction of the equilibrium (0,1), which represents a

population of all defectors. These population states have p1 + p2 > 1
2 , so

p3 = 1 − p2 − p2 < 1
2 . In other words, if initially tit-for-tatters comprise

less than half the population, the strategies c (cooperate) and t (tit for tat)

eventually die out, and only defectors remain.

Initial conditions below the line p1 +p2 = 1
2 , which represent populations

that are predominantly tit-for-tatters, lead to one of the equilibria (p1,0)
with 0 � p1 < 1

3 . The corresponding population states are p1c + (1 − p1)t
with 0 � p1 < 1

3 . In these population states, the strategy d (defect) has died

out, and only tit-for-tatters and a smaller number of cooperators remain.

Apparently a large number of tit-for-tatters is required to eliminate defectors

and prevent them from re-entering the population. Some members of the

population can turn the other cheek should someone try to take advantage

of them, but not too many! The tit-for-tatters use the strategy, do unto others

as they just did unto you.

Let us compare these results to our previous theoretical work. First we

discuss the reduced games that are played on the boundary of D. On the line

p1 + p2 = 1, we have p3 = 0, so the reduced game has no tit-for-tatters. For

this reduced game, defect is the dominant strategy, so solutions tend toward

all defectors. On the line p1 = 0, cooperators are absent, and we have the

reduced game obtained by eliminating the first row and first column of the

3×3 payoff matrix. This reduced game is of Stag Hunt type. Therefore, on the

line p1 = 0, a repelling equilibrium separates the basins of attraction of two

attracting equilibria. Finally, on the line p2 = 0, defectors are absent, and we
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have the reduced game obtained by eliminating the second row and second

column of the 3 × 3 payoff matrix. In the resulting 2 × 2 payoff matrix, all

payoffs are equal, so all strategy profiles are Nash equilibria of the reduced

game. This explains the line segment of equilibria of the replicator system.

Finally, we discuss evolutionary stability. The Nash equilibria of the full

game correspond to the population states d, 1
2d +

1
2t, and p1c + (1 − p1)t,

0 � p1 � 1
3 . The strategy profile (d,d) is a strict Nash equilibrium, so the

population state d is evolutionarily stable by Theorem 8.2, and hence the cor-

responding equilibrium (0,1) in D is asymptotically stable by Theorem 10.4.

The population state 1
2d+

1
2t corresponds to the equilibrium

(
0, 1

2

)
, which is

not evolutionarily stable, because it separates equilibria of a reduced game

of Stag Hunt type. None of the population states p1c+ (1−p1)t, 0 < p1 � 1
3 ,

can be evolutionarily stable. The reason is that they all have the same active

strategies; however, according to Theorem 8.4, if one were evolutionarily sta-

ble, there could be no other symmetric Nash equilibria with the same active

strategies. Finally, the pure population state t is not evolutionarily stable,

since it can be invaded by cooperators. Thus the only evolutionarily stable

population state is d, and it corresponds to the only asymptotically stable

equilibrium. However, the set of equilibria (p1,0), 0 � p1 < 1
3 , enjoys a kind

of asymptotic stability: for each point in the set, if an initial condition is close

enough to that point, then the solution approaches the set.

10.8 Dominated strategies and the replicator system

In this section we prove two results relating iterated elimination of dominated

strategies to the replicator system. Since the games we consider have two

players and are symmetric, when we eliminate a strategy, we eliminate it for

both players.

Theorem 10.6. In a two-player symmetric game, suppose strategy si is strictly

dominated by strategy sj . Let I be a subset of {1, . . . , n} that contains both i
and j, and let p(t) be a solution of the replicator system in the stratum ΣI of

Σ. Then pi(t)→ 0 as t →∞.

Proof. Since strategy si is strictly dominated by strategy sj , we have that for

every pure strategy sk, π1(si, sk) < π1(sj, sk). Then for any population state

σ =∑pksk, we have

π1(si, σ) = π1

(
si,
∑
pksk

)
=
∑
pkπ1(si, sk)

<
∑
pkπ1(sj, sk) = π1

(
sj,
∑
pksk

)
= π1(sj, σ).

Therefore, for each p ∈ Σ, if σ is the corresponding population state, then

π1(si, σ)−π1(sj, σ) < 0.
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Now π1(si, σ) − π1(sj, σ) depends continuously on p, and Σ is a com-

pact set (closed and bounded). Therefore there is a number ε > 0 such that

π1(si, σ)−π1(sj, σ) � −ε for every p ∈ Σ.

Let p(t) be a solution of the replicator system in ΣI . Then pi(t) > 0 and

pj(t) > 0 for all t. Therefore we can define the function V(t) = lnpi(t) −
lnpj(t). We have

V̇ = 1
pi
ṗi − 1

pj
ṗj

= 1
pi
(π1(si, σ)−π1(σ ,σ))pi − 1

pj

(
π1(sj, σ)−π1(σ ,σ)

)
pj

= π1(si, σ)−π1(sj, σ) � −ε.

Then for t > 0,

V(t)− V (0) =
∫ t

0
V̇ dt �

∫ t
0
−εdt = −εt.

Therefore V(t)→ −∞ as t →∞.

But 0 < pj(t) < 1, so lnpj(t) < 0, and so − lnpj(t) > 0. Since V(t) =
lnpi(t) − lnpj(t) approaches −∞ and − lnpj(t) is positive, it must be that

lnpi(t) approaches −∞. But then pi(t) approaches 0.

We note that Theorem 10.6 does not hold when one strategy weakly dom-

inates another. For example, in the game of Cooperators, Defectors, and Tit-

for-Tatters in the Section 10.7, tit for tat weakly dominates cooperate, but

solutions in the interior of the simplex do not necessarily lead to cooperate

dying out.

Theorem 10.7. In a two-player symmetric game, suppose that when we do

iterated elimination of strictly dominated strategies, the strategy sk is elimi-

nated at some point. Let p(t) be a solution of the replicator system in Σ{1,...,n}.
Then pk(t)→ 0 as t →∞.

Proof. We just give the proof for the case in which only one strategy is elimi-

nated before sk. Let that strategy be si, eliminated because it is strictly domi-

nated by a strategy sj . Then sk is strictly dominated by some strategy sl once

si is eliminated. This means that π1(sk, sm) < π1(sl, sm) for every m other

than i.
Let Σ̃ denote the subset of Σ on which pi = 0. Then for every p ∈ Σ̃,

π1(sk, σ) < π1(sl, σ). Since Σ̃ is compact, there is a number ε > 0 such that

π1(sk, σ)−π1(sl, σ) � −ε for all p ∈ Σ̃.

By continuity, there is a number δ > 0 such that if p ∈ Σ and 0 � pi < δ,

then π1(sk, σ)−π1(sl, σ) � − ε
2 .
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Let p(t) be a solution of the replicator system in Σ{1,...,n}. By the Theo-

rem 10.6, pi(t)→ 0 as t → ∞. Therefore, for t greater than or equal to some

t0, 0 < pi(t) < δ. Let V(t) = lnpk(t)− lnpl(t). Then for t � t0,

V̇ = 1
pk
ṗk − 1

pl
ṗl = 1

pk
(π1(sk, σ)−π1(σ ,σ))pk

− 1
pl
(π1(sl, σ)−π1(σ ,σ))pl

= π1(sk, σ)−π1(sl, σ) � −ε
2
.

Therefore, for t > t0,

V(t)− V(t0) =
∫ t
t0
V̇ dt �

∫ t
t0
−ε

2
dt = −ε

2
t.

Therefore V(t)→ −∞ as t →∞.

As in the proof of the previous theorem, we can conclude that pk(t) → 0

as t →∞.

10.9 Asymmetric evolutionary games

Consider an asymmetric two-player game G in normal form. Player 1 has

the finite strategy set S = {s1, . . . , sn}. Player 2 has the finite strategy set

T = {t1, . . . , tm}. If Player 1 uses the pure strategy si and Player 2 uses the

pure strategy tj , the payoff to Player 1 is π1(si, tj), and the payoff to Player 2

is π2(si, tj).
Suppose there are two populations, one consisting of individuals like

Player 1, the other consisting of individuals like Player 2. When an individual

from the first population encounters an individual from the second popula-

tion, they play the game G.

Taken as a whole, the first population uses strategy s1 with probability

p1,…,strategy sn with probability pn; all pi � 0 and
∑
pi = 1. Let σ =∑pisi

be the state of the first population. Similarly, taken as a whole, the second

population uses strategy t1 with probability q1,…,strategy tm with probability

qm; all qj � 0 and
∑
qj = 1. Let τ = ∑

qjtj be the state of the second

population.

When an individual of type i from the first population plays the game

against a randomly chosen individual from the second population, whose

state is τ , her expected payoff is that of an individual using strategy si against

one using the mixed strategy τ , namely,

π1(si, τ) =
m∑
j=1

qjπ1(si, tj).
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Similarly, when an individual of type j from the second population plays the

game against a randomly chosen individual from the first population, whose

state is σ , her expected payoff is

π2(σ , tj) =
n∑
i=1

piπ2(si, tj).

When two randomly chosen individuals from the two populations play the

game, the expected payoff to the first is

π1(σ , τ) =
n∑
i=1

piπ1(si, τ) =
n∑
i=1

m∑
j=1

piqjπ1(si, tj).

Similarly, the expected payoff to the second is

π2(σ , τ) =
m∑
j=1

qjπ2(σ , tj) =
m∑
j=1

n∑
i=1

qjpiπ2(si, tj) =
n∑
i=1

m∑
j=1

piqjπ2(si, tj).

We combine the two population states σ and τ into a total population state

(σ , τ), and regard (σ , τ) as changing with time. Reasoning as in Section 10.1,

we obtain the replicator system:

ṗi =
(
π1(si, τ)−π1(σ , τ)

)
pi, i = 1, . . . , n; (10.10)

q̇j =
(
π2(σ , tj)−π2(σ , τ)

)
qj, j = 1, . . . ,m. (10.11)

Let

Σn =
{
(p1, . . . , pn) : all pi � 0 and

∑
pi = 1

}
,

Σm =
{
(q1, . . . , qm) : all qj � 0 and

∑
qj = 1

}
.

The system (10.10)–(10.11) should be considered on Σn × Σm.

Let

Dn−1 =
⎧⎨
⎩(p1, . . . , pn−1) : pi � 0 for i = 1, . . . , n− 1, and

n−1∑
i=1

pi � 1

⎫⎬
⎭ ,

Dm−1 =
⎧⎨
⎩(q1, . . . , qm−1) : qj � 0 for j = 1, . . . ,m− 1, and

m−1∑
j=1

qj � 1

⎫⎬
⎭ .

Instead of studying an asymmetric replicator system on Σn × Σm, one can

instead take the space to be Dn−1×Dm−1, and use only the differential equa-

tions for ṗ1, . . . , ṗn−1 and q̇1, . . . , q̇m−1. In these equations, one must of course

let pn = 1−∑n−1
i=1 pi and qm = 1−∑m−1

j=1 qj .
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A total population state (σ∗, τ∗) is a Nash equilibrium provided

π1(σ∗, τ∗) � π1(σ , τ∗) for all σ,

π2(σ∗, τ∗) � π2(σ∗, τ) for all τ.

However, the notion of evolutionarily stable state for symmetric games does

not have an analog for asymmetric games, since individuals from the same

population cannot play the game against each other.

Many results about the replicator system for symmetric games also hold

for the replicator system for asymmetric games:

(1) A population state (σ , τ) is an equilibrium of the replicator system if and

only if it satisfies the equality conditions for a Nash equilibrium.

(2) A point on the boundary of Σn×Σm that satisfies the equality conditions

for a Nash equilibrium, but does not satisfy one of the inequality con-

ditions, attracts no solution in which the strategy corresponding to the

unsatisfied inequality condition is present.

(3) If a strategy is eliminated in the course of iterated elimination of strictly

dominated strategies, then for any solution in the interior of Σn×Σm, that

strategy dies out.

An important difference, however, is that for asymmetric replicator systems,

it is known that equilibria in the interior of Σn×Σm are never asymptotically

stable [8].

10.10 Big Monkey and Little Monkey 7

As in Section 3.1, suppose Big Monkey and Little Monkey decide simultane-

ously whether to wait or climb. We have a game in normal form with the fol-

lowing payoff matrix, repeated from Section 3.1, except that we have changed

the order of climb and wait:

Little Monkey

q1 q2

climb wait

Big Monkey p1 climb (5,3) (4,4)
p2 wait (9,1) (0,0)

We now imagine a population of Big Monkeys and a population of Little Mon-

keys. Let s1 = t1 = climb, s2 = t2 = wait, σ = p1s1 +p2s2, τ = q1t1 + q2t2, so

p2 = 1−p1 and q2 = 1− q1. The monkeys randomly encounter a monkey of

the other type and play the game.
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We could write differential equations for ṗ1, ṗ2, q̇1, and q̇2, but we only

need those for ṗ1 and q̇1, so we will omit the other two. Using p2 = 1 − p1

and q2 = 1− q1, we obtain

ṗ1 =
(
π1(s1, τ)−π1(σ , τ)

)
p1

=
((

5q1 + 4(1− q1)
)− (5p1q1 + 4p1(1− q1)+ 9(1− p1)q1

))
p1

= p1(1− p1)
(
5q1 + 4(1− q1)− 9q1

) = p1(1− p1)(4− 8q1),

q̇1 =
(
π2(σ , t1)−π2(σ , τ)

)
q1

=
((

3p1 + 1(1− p1)
)− (3p1q1 + 4p1(1− q1)+ 1(1− p1)q1

))
q1

= q1(1− q1)
(
3p1 + (1− p1)− 4p1

) = q1(1− q1)(1− 2p1).

We consider this system on

D1 ×D1 = {(p1, q1) : 0 � p1 � 1 and 0 � q1 � 1}.

See Figure 10.7

1. Invariance of the boundary of D1×D1. This is just a check on our work.

Note that if p1 = 0 or p1 = 1, then ṗ1 = 0; and if q1 = 0 or q1 = 1, then

q̇1 = 0.

2. To find all equilibria of the replicator system, we solve simultaneously

the pair of equations ṗ1 = 0 and q̇1 = 0. We find that the equilibria are

(p1, q1) = (0,0), (0,1), (1,0), (1,1), and
(1

2 ,
1
2

)
.

3. Nullclines: We have ṗ1 = 0 on the lines p1 = 0, p1 = 1, and q1 = 1
2 ; and

we have q̇1 = 0 on the lines q1 = 0, q1 = 1, and p1 = 1
2 . See Figure 10.7.

q1

11/2

1

1/2

p1

Figure 10.7. Vector field for the evolving monkeys.

4. It appears that the corner equilibria are attractors or repellers and the

interior equilibrium is a saddle. This is correct and can be checked by lin-

earization. The phase portrait is given in Figure 10.8.

The stable manifold of the saddle separates the basin of attraction of the

point (0,1), where Big Monkey waits and Little Monkey climbs, from the basin

of attraction of the point (1,0), where Big Monkey climbs and Little Monkey
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q1

p11

1

Figure 10.8. Phase portrait for the evolving monkeys.

waits. Thus we expect to observe the population in one or the other of these

pure states, but we can’t guess which without knowing where the population

started.

Each side of the square represents a reduced game in which one of the

monkeys has chosen a definite strategy. The other monkey’s strategy evolves

toward its best response.

10.11 Hawks and Doves with Unequal Value

Two animal species dispute a food source, but the source is more valuable to

Species 2 than to Species 1. When an animal from Species 1 meets an animal

from Species 2 near the food source, each has the two possible strategies

Hawk and Dove from the game of Hawks and Doves in Subsection 8.4.3. The

payoffs are given by the following matrix:

Species 2

h d
Species1 h

(v1−w
2 , v2−w

2

)
(v1,0)

d (0, v2)
(v1

2 ,
v2
2

)
In this matrix , vi is the value of the food source to an animal of Species i.
The cost of injury w is assumed to be the same for both species. We assume

v1 < v2 < w. For simplicity we have taken the cost of protracted display t to

be 0.

There are two pure strategy Nash equilibria, (h,d) and (d,h), and a mixed

strategy Nash equilibrium

(
v2

w
h+

(
1− v2

w

)
d,
v1

w
h+

(
1− v1

w

)
d
)
.

We now imagine populations of Species 1 and Species 2. Let σ = p1h1 +
p2d, τ = q1h + q2d, so p2 = 1 − p1 and q2 = 1 − q1. Animals of Species 1
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randomly encounter animals of Species 2 near the food source and play the

game.

As in Section 10.10, we set p2 = 1−p1 and q2 = 1−q1, and only write the

differential equations for p1 and p2:

ṗ1 =
(
π1(h, τ)−π1(σ , τ)

)
p1

=
(
v1 −w

2
q1 + v1(1− q1)

−
(
v1 −w

2
p1q1 + v1p1(1− q1)+ v1

2
(1− p1)(1− q1)

))
p1

= p1(1− p1)
(
v1

2
− w

2
q1

)
,

q̇1 =
(
π2(σ ,h)−π2(σ , τ)

)
q1

=
(
v2 −w

2
p1 + v2(1− p1)

−
(
v2 −w

2
p1q1 + v2(1− p1)q1 + v2

2
(1− p1)(1− q1)

))
q1

= q1(1− q1)
(
v2

2
− w

2
p1

)
.

We consider this system on

D1 ×D1 = {(p1, q1) : 0 � p1 � 1 and 0 � q1 � 1}.
The nullclines and the vector field on the nullclines are as in Figure 10.7,

except that two nullclines are p1 = v2
w and q1 = v1

w instead of p1 = 1
2 and

q1 = 1
2 . The phase portrait is shown in Figure 10.9 under the assumptions

that v1
w is close to 0 and v2

w is close to 1. We see that the basin of attraction

of the equilibrium (0,1) is much larger than the basin of attraction of the

equilibrium (1,0). At the first equilibrium, Species 2, which places more value

on the resource than does Species 1, is willing to fight for it, but Species 1 is

not. The second equilibrium is the reverse.

10.12 The Ultimatum Minigame revisited

In the Ultimatum Minigame of Section 5.6, we now imagine a population

of Alices (the offerers) and a population of Bobs (the responders). Let σ =
p1f + p2u, τ = q1a + q2r , so p2 = 1 − p1 and q2 = 1 − q1. The Bobs and

Alices randomly encounter each other and play the Ultimatum Minigame. The

differential equations for ṗ1 and q̇1, after simplification and factoring, are

ṗ1 = p1(1− p1)(2− 3q1),

q̇1 = q1(1− q1)(1− p1).

You should check this result.
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q1

1

1

p1
v2/w

v1/w

Figure 10.9. Phase portrait for Hawks and Doves with Unequal Value.

The equilibria in D1 × D1 = {(p1, q1) : 0 � p1 � 1 and 0 � q1 � 1} are

(0,0), (0,1), and the line segment p1 = 1, 0 � q1 � 1. Those that correspond

to Nash equilibria of the game are (0,1) and the smaller line segment p1 = 1,

0 � q1 � 2
3 . Linearization shows that (0,0) is a repeller; (0,1) is an attractor;

and points on the line segment p1 = 1, 0 � q1 � 1 have one zero eigenvalue

and one negative eigenvalue if 0 � q1 < 2
3 , two zero eigenvalues if q1 = 2

3 ,

and one zero eigenvalue and one positive eigenvalue if 2
3 < q1 � 1.

As in Section 10.7, because of the nonhyperbolic equilibria, the phase por-

trait cannot be completely drawn by the methods we have learned. It is given

in Figure 10.10.

2/3

q1

p1

Figure 10.10. Phase portrait for the Ultimatum Minigame. The line q1 = 2
3 is a nullcline

on which ṗ1 = 0; q̇1 is positive everywhere in the interior of the square D1 ×D1.

From the phase portrait we see that most initial population states are in the

basin of attraction of the equilibrium (0,1), which corresponds to the Nash

equilibrium of the game in which Alice makes an unfair offer and Bob accepts

it. Recall that this is the equilibrium we expect from backward induction.

Nevertheless, a sizeable set of initial conditions lead to an equilibrium (1, q1)
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with 0 � q1 � 2
3 . These are Nash equilibria in which Bob threatens to reject

unfair offers with probability 1− q1 � 1
3 . Alice, believing the threat, makes a

fair offer. For the threat to be believable, it must be that unfair offers really

do get rejected much of the time.

We conclude that it is possible for the dynamic of evolution to lead to a

situation in which unfair offers are rejected with high probability and hence

are not made. As mentioned in Section 5.6, experiments with the Ultimatum

Game indicate that this is in fact the case.

Notice, however, that the initial conditions that lead to an equilibrium in

which unfair offers are not made all have p1 > q1; that is, from the start,

the fraction of Alices making fair offers is greater than the fraction of Bobs

willing to accept unfair offers. You should also notice that nothing holds

the population at a specific equilibrium in the set of equilibria (1, q1) with

0 � q1 � 2
3 . If some random fluctuation takes the population state off this set

(i.e., if some Alices try the strategy u), the population state can return to a

different equilibrium on the set. Thus the population state can drift along the

line of equilibria. Should q1 drift above 2
3 , and some Alices start to use the

strategy u, the solution will go toward the stable equilibrium (0,1). For this

reason, this model is generally not considered to fully explain how fairness

establishes itself in populations.

Somewhat similar comments apply to the model of evolution of coopera-

tion in Section 10.7.

10.13 Problems

10.13.1 Lions and Impalas 2. This problem is a continuation of Prob-

lem 8.6.2.

(1) Denote a population state by σ = p1b + p2l. Find the replicator system

for this game. Answer:

ṗ1 =
(
2p1 + 4p2 −

(
p1(2p1 + 4p2)+ p2(2p1 + p2)

))
p1,

ṗ2 =
(
2p1 + p2 −

(
p1(2p1 + 4p2)+ p2(2p1 + p2)

))
p2.

(2) Use p2 = 1−p1 to reduce this system of two differential equations to one

differential equation in the variable p1 only. Answer:

ṗ1 = 3p1(1− p1)2.

(3) Sketch the phase portrait on the interval 0 � p1 � 1, and describe in

words what happens. (Figure 10.3 does not help, because a = c.)
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10.13.2 Stag Hunt with Easily Spooked Hares 2. This problem is a con-

tinuation of Problem 8.6.3.

(1) Derive the replicator system and reduce it to a single differential equation.

(2) Find all equilibria of your differential equation.

(3) Draw the phase portrait of your differential equation. (Figure 10.3 does

not help because a = c.) What does the phase portrait tell you about stag

hunting and hare hunting in this problem?

10.13.3 Pure coordination games. Microsoft vs. Apple (Section 10.2) is

a pure coordination game. We saw that the basin of attraction of the bet-

ter attracting equilibrium is larger than the basin of attraction of the worse

attracting equilibrium. Is this always true?

To explore this question, in Section 10.3 assume a > c and d > b, so that

we have a pure coordination game. The phase portrait is given by part (3)

of Figure 10.3. The equilibrium p1 = 0 corresponds to the pure population

state s2, and the equilibrium p1 = 1 corresponds to the pure population state

s1. Assume a > d, so that the equilibrium p1 = 1 gives the players a higher

payoff than the equilibrium p1 = 0.

(1) Explain the following: p∗1 <
1
2 if and only if a− c > d− b.

(2) Explain in words under what circumstances the equilibrium p1 = 1 has a

larger basin of attraction than the equilibrium p1 = 0.

10.13.4 Generalized Rock-Paper-Scissors. Consider a generalization

of Rock-Paper-Scissors in which two players who use the same strategy

receive a payoff α rather than 0. The payoff matrix is then

Player 2

R P S
R (α,α) (−1,1) (1,−1)

Player 1 P (1,−1) (α,α) (−1,1)
S (−1,1) (1,−1) (α,α)

We assume that −1 < α < 1 and α ≠ 0.

(1) Show that there are no pure strategy Nash equilibria.

(2) There is one mixed strategy Nash equilibrium, p1 = p2 = p3 = 1
3 . (You

don’t have to check this.)
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(3) Find the replicator system for this game. Answer:

ṗ1 =
(
αp1 − p2 + p3 −α(p2

1 + p2
2 + p2

3)
)
p1,

ṗ2 =
(
p1 +αp2 − p3 −α(p2

1 + p2
2 + p2

3)
)
p2,

ṗ3 =
(− p1 + p2 +αp3 −α(p2

1 + p2
2 + p2

3)
)
p3.

(4) Use p3 = 1−p1−p2 to reduce this system of three differential equations

to two differential equation in the variables p1 and p2 only. Answer:

ṗ1 =
(
1+ (α− 1)p1 − 2p2 −α

(
p2

1 + p2
2 + (1− p1 − p2)2

))
p1,

ṗ2 =
(
− 1+ 2p1 + (α+ 1)p2 −α

(
p2

1 + p2
2 + (1− p1 − p2)2

))
p2.

(5) In the region p1 � 0, p2 � 0, p1 + p2 � 1, the only equilibria are the

corners and
(1

3 ,
1
3

)
. The phase portrait on the boundary of the triangle is

the same as in Figure 10.5. To get some idea of the phase portrait in the

interior of the triangle, calculate the eigenvalues of the linearization at(1
3 ,

1
3

)
. Answer: (α± i√3)/3. What does this tell you?

10.13.5 Cooperators, Defectors, and Tit-for-Tatters. This problem is

about Section 10.7.

(1) Derive the replicator system (10.8)–(10.9).

(2) Use linearization to find the eigenvalues of the equilibria on the line seg-

ment (p1,0), 0 � p1 � 1.

10.13.6 Honesty and Trust Come and Go. Consider an asymmetric

evolutionary game with populations of sellers and buyers. Sellers can be hon-

est (H) or dishonest (D). Buyers can carefully inspect the merchandise (I) or

can trust that it is as represented (T ). The payoffs are given by the following

matrix:

Buyer

I T
Seller H (2,3) (3,4)

D (1,2) (4,1)

Notice that the best response to an honest seller is to trust her (avoiding the

time and trouble of inspecting), while the best response to dishonest seller is

to inspect; and the best response to an inspecting buyer is be honest, while

the best response to a trusting buyer is to be dishonest. Thus there are no

pure-strategy Nash equilibria. There is a mixed-strategy Nash equilibrium in

which each player uses each strategy half the time.
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(1) Find the replicator system using only the variables p1 and q1. Answer:

ṗ1 = p1(1− p1)(2q1 − 1), q̇1 = q1(1− q1)(1− 2p1).
(2) In the square {(p1, q1) : 0 � p1 � 1, 0 � q1 � 1}, draw the nullclines, the

equilibria, and the vector field on the nullclines.

(3) From you picture, it should appear that the corner equilibria are all sad-

dles; you don’t need to check this. It should also appear that solutions

spiral around the equilibrium
(1

2 ,
1
2

)
in the clockwise direction. Calculate

the eigenvalues of the linearization at the equilibrium
(1

2 ,
1
2

)
.

(4) You should find that the eigenvalues at the equilibrium
(1

2 ,
1
2

)
are pure

imaginary. Thus Theorem 9.3 does not help us. Use the method of Sub-

section 9.4.2 to find a first integral. One answer: V(p1, q1) = (p1−p2
1)(q1−

q2
1).

(5) Show that V has a local maximum at
(1

2 ,
1
2

)
. Therefore, as in Subsec-

tion 9.4.2, near the equilibrium, solutions go around the equilibrium and

rejoin themselves: they are time periodic. (Actually, all solutions in the

interior of the square do this.)

According to this problem, trust and honesty cycle: if sellers are generally

honest, buyers start to trust, so sellers become dishonest, so buyers start to

inspect, so sellers again become honest, and the cycle repeats. Similar cycles

occur in the relationship between government regulators (which are like the

buyers) and businesses (which are like the sellers).

10.13.7 Cooperators, Defectors, and Punishers. Does punishing defec-

tors encourage cooperation? Sections 10.7 and 10.12 both address this ques-

tion. Here is another simple model that uses an asymmetric game.

Alice can help Bob, conferring a benefit b on Bob at a cost a to herself. If

Alice does not help, Bob can punish her, causing a loss l to Alice at a cost

e to himself. Alice has two strategies: cooperate by helping (c) or defect by

not helping (d). Bob also has two strategies: punish Alice if she defects (p),

or don’t bother punishing her if she defects (n). The payoff matrix is

Bob

p n
Alice c (−a,b) (−a,b)

d (−l,−e) (0,0)

We shall assume 0 < a < l and 0 < e < b.

(1) Use iterative elimination of weakly dominated strategies to find a domi-

nated strategy equilibrium.

(2) Find a second pure strategy Nash equilibrium.
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(3) Find the replicator system using only the variables p1 and q1. Answer:

ṗ1 = p1(1− p1)(lq1 − a), q̇1 = −e(1− p)q(1− q).
(4) Use the nullclines and linearization to draw the phase portrait. Answer:

like Figure 10.10 turned upside down, with the horizontal nullcline at

q1 = a
l . Note that one of our assumptions implies that 0 < a

l < 1.

10.13.8 Reputation. In this problem we explore how the previous

model of Cooperators, Defectors, and Punishers changes if Bob’s reputation

influences Alice.

First suppose Alice is a cooperator. If she knows that Bob is a punisher, her

action is not affected: she still prefers to cooperate. However, if she knows

that Bob is a nonpunisher, we assume that she will prefer to defect. We sup-

pose that when Bob is a nonpunisher, Alice realizes it with probability μ (Bob’s

reputation precedes him) and defects.

Next suppose Alice is a defector. If she knows that Bob is a nonpunisher,

her action is not affected: she still prefers to defect. However, if she knows

that Bob is a punisher, we assume that she will prefer to cooperate. We sup-

pose that when Bob is a punisher, Alice realizes it with probability ν and

cooperates.

The payoff matrix is now

Bob

p n
Alice c (−a,b) (−a(1− μ), b(1− μ))

d (−l(1− ν)− aν,−e(1− ν)+ bν) (0,0)

As in the previous problem, we assume 0 < a < l and 0 < e < b.

(1) Find the replicator system using only the variables p1 and q1. Answer:

ṗ1 = p1(1− p1)
((
l− aμ + (a− l)ν)q1 − a(1− μ)

)
,

q̇1 =
(
− e+ (b + e)ν + (e+ bμ + (b − e)ν)p1

)
q1(1− q1).

(2) For ν = 0 (punishers have no reputation), the replicator system becomes

ṗ1 = p1(1− p1)
(
(l− aμ)q1 − a(1− μ)

)
,

q̇1 =
(− e+ (e+ bμ)p1

)
q1(1− q1).

Use the nullclines and linearization to draw the phase portrait. Answer:

like Figure 10.8 flipped across a vertical line, with the horizontal nullcline

at q1 = (a− aμ)/(l− aμ) and the vertical nullcline at p1 = e/(e+ bμ).
(3) In the phase portrait you just drew, what are the stable equilibria? As μ

increases from 0 to 1, which basin of attraction grows and which shrinks?
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10.13.9 Asymmetric evolutionary games with two strategies. In this

problem we look at the general asymmetric evolutionary game with two

strategies. The payoff matrix is

Player 2

t1 t2
Player 1 s1 (α11, β11) (α12, β12)

s2 (α21, β21) (α22, β22)

(1) Show that if we replace α11 and α21 by α11+k and α21+k, the replicator

system is unchanged. Why does this make intuitive sense? The same is

true if we add a constant to α12 and α22, or to β11 and β12, or to β21 and

β22.

(2) Because of the previous problem, we can assume that α11 = β11 = α22 =
β22 = 0. We write the new payoff matrix as

Player 2

t1 t2
Player 1 s1 (0,0) (a, b)

s2 (c, d) (0,0)

Show that the replicator system, using only the variables p1 and q1, is

ṗ1 = p1(1− p1)
(
a− (a+ c)q1

)
,

q̇1 =
(
d− (b + d)p1

)
q1(1− q1).

(3) Assume that 0 < a/(a + c) < 1 and 0 < d/(b + d) < 1. Then there is an

interior equilibrium at (p∗1 , q
∗
1 ) = (d/(b + d),a/(a+ c)). Show that the

linearized replicator system at (p∗1 , q
∗
1 ) has the matrix

⎛
⎝ 0 −(a+ c)p∗1 (1− p∗1 )
−(b + d)q∗1 (1− q∗1 ) 0

⎞
⎠ .

Thus the characteristic equation is

λ2 − (a+ c)(b + d)p∗1 (1− p∗1 )q∗1 (1− q∗1 ) = 0.

Since 0 < p∗1 < 1 and 0 < q∗1 < 1, the eigenvalues have opposite sign if

(a+ c)(b+d) > 0 and are pure imaginary if (a+ c)(b+d) < 0. We have

seen examples of both cases.

(4) In the second case, use the method of Subsection 9.4.2 to find a first

integral. One answer:

V(p1, q1) = a lnq1 + c ln(1− q1)− d lnp1 − b ln(1− p1).
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(5) Show that V has a local extremum at (p∗1 , q
∗
1 ) by showing that Vp1p1Vq1q1−

V2
p1q1

> 0 at (p∗1 , q
∗
1 ). This implies that that near (p∗1 , q

∗
1 ) the orbits of the

replicator system are closed, so the solutions are time periodic. In fact all

solutions in the interior of the rectangle 0 � p1 � 1, 0 � q1 � 1 are time

periodic, but we will not show this.

Notice that when (a+c)(b+d) ≠ 0, interior equilibria (p∗1 , q
∗
1 ) are never

asymptotically stable. This is a case of a more general fact: for any asym-

metric game, interior equilibria are never asymptotically stable [8].

(6) Show that on any periodic solution, the average of p1(t) is p∗1 , and the

average of q1(t) is q∗1 . (See the end of Section 10.5.)
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Sources for examples and problems

Chapter 1

Section 1.5. [4], sec. 1.2.

Section 1.8. [4], sec. 2.18. For other versions, see the Wikipedia page devoted

to this game, http://en.wikipedia.org/wiki/Centipede_game.

Section 1.13. For backward induction in mixed martial arts, see [13].

Problem 1.14.3. [5], sec. 4.7.

Problem 1.14.4. [2], sec. 6.2.

Problem 1.14.5. [14].

Chapter 2

Section 2.6. [5], sec. 4.9.

Section 2.7. The notation in this problem comes from [5], sec. 4.6.

Section 2.9. [7].

Problem 2.14.2. [5], sec. 4.6.

Problem 2.14.3 (1). [5], sec. 4.3.

Problem 2.14.4. [5], sec. 4.10.

Problem 2.14.5. [5], sec. 4.15.

Problem 2.14.6. [6], sec. 4.11.

Problem 2.14.7. [6], sec. 4.10.

Chapter 3

Section 3.3. [5], sec. 6.5.

Section 3.5. [5], sec. 5.4.

Problem 3.12.1. [5], sec. 5.1.

Problem 3.12.2. [5], sec. 5.1.

Problem 3.12.3. [5], sec. 5.2 (a).

Problem 3.12.4. [5], sec. 5.2 (b).

http://en.wikipedia.org/wiki/Centipede_game
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Problem 3.12.7. [6], sec. 4.5.

Problem 3.12.9. [5], sec. 5.15 (a).

Problem 3.12.10. [5], sec. 4.12.

Problem 3.12.14. http://en.wikipedia.org/wiki/Braess’s_paradox.

Problem 3.12.15. [9].

Chapter 4

Section 4.2. [4], sec. 3.18.

Section 4.4. [5], sec. 3.21.

Section 4.6. [3], chapter 14.

Problem 4.7.1. [3], sec. 3.7.

Chapter 5

Section 5.1. [5], sec. 6.4.

Section 5.4. [5], sec. 6.21.

Section 5.6. [1], p. 48.

Section 5.7. [5], sec. 6.29.

Problem 5.12.1. [5], sec. 6.10.

Problem 5.12.3. [5], sec. 6.14.

Problem 5.12.5. [5], sec. 6.3.

Problem 5.12.8. [5], sec.6.7.

Problem 5.12.10. [5], sec. 6.30.

Chapter 6

Section 6.5. [5], sec. 5.10.

Section 6.10. This example is a simplification of the version in [5], sec. 5.16.

Section 6.11. The setup for this example is from [5], sec. 5.13.

Problem 6.12.3. [5], sec. 5.14.

Problem 6.12.4. [5], sec. 9.4.

Chapter 7

Section 7.2. [12], sec. 4.8.

Section 7.3. [5], sec. 6.26.

Problems 7.5.2–7.5.3. [5], secs. 6.35 to 6.37.

http://en.wikipedia.org/wiki/Braess%E2%80%99s_paradox
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Chapter 8

Section 8.4.3. [5], sec. 3.10.

Section 8.5. [5], sec. 6.26.

Problem 8.6.1. [5], sec. 10.9.

Problem 8.6.2. [5], sec. 6.2.

Problem 8.6.4. [5], sec. 6.41.

Chapter 10

Section 10.5. [5], secs. 6.25 and 12.14.

Problem 10.13.1. [5], sec. 6.2.

Problem 10.13.4. [5], sec. 12.13.

Problem 10.13.6. [5], sec 12.19.

Problems 10.13.7–10.13.8. [15].
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