

The Game Designer’s Playbook

The Game Designer’s
Playbook

An Introduction to Game Interaction
Design

Samantha Stahlke
Pejman Mirza-Babaei

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© Samantha Stahlke and Pejman Mirza-Babaei 2022

The moral rights of the authors have been asserted

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2022937904

ISBN 978–0–19–884591–1

DOI: 10.1093/oso/9780198845911.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Cover image: Samantha Stahlke

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

For our families
(Yes, that means you too, Svetlana)

Foreword

When someone first explained tome that “UX” design in game development
was shorthand for “User eXperience” design, my instinctive reply was, “So,
you mean game design?”

I don’t remember clearly how the exchange went after that. Probably they
shook their head, cleared their throat, and fidgeted, politely working around
my awkward naivete to explain the subtle distinctions we normally point
to in methodology and purpose. Upon reflection, I believe what they should
have said was, “Yes, in the sameway that when I say biology, I also am talking
about science.”

I am a game designer, but in a smaller team, that often means I also
contribute to the game and studio in many other ways. Writer, business de-
veloper, product manager, level designer, system designer, producer, quality
assurance, localization coordinator, casting director, and of course UX de-
signer. I write “of course” because there are very few methods of achieving
good game design without (consciously or unconsciously) executing good
UX and interaction design.

Understanding the user experience is the fundamental requirement for
understanding how and why a game works—mechanically, aesthetically,
emotionally, artistically. Some designers shuffle towards creating their de-
sired experience more instinctively, with pure trial and error, embracing
‘iteration’ without considering how analysis might save them time and ef-
fort. But the best designers I know employ a vast vocabulary with a wide array
of tools, all striving to somehow peer through the plastics and metals of the
physical artifacts, strip away the clouding of vaguely-worded feedback, and
clearly perceive the player’s true experience. They see not only the player’s
mental state, but the dynamic shifts it undergoes while playing, and all the
many intricate variables that contribute to those transformations.

In the early days of Kitfox, while we were still part of Execution Labs, I
was introduced to Pejman, as the UX Research Director who offered insights
and support to all of the teams there. More recently, Samantha and Pejman
were able to provide research resources to analyze how players responded
to Boyfriend Dungeon’s characters, increasing our confidence in writing and

vi

Foreword

character design. The game undoubtedly owes some portion of its success to
their team.

When I heard they were writing this book, I knew I’d want to read it as
soon as possible. I wish I had been able to take advantage of the lessons and
best practices described in this book for my entire career, but I’m glad I can
start now! I’m envious of all the young designers who can tuck this into their
toolbox immediately and have that much more to work with as they begin
their craft.

To the designer holding this book in your hand right now, I wish that it
brings you courage and good fortune. The user experience is often a hydra
of a problem, with every curiosity replaced by two more in its exploration. I
believe this book can help all of us game designers decide which questions
are worth asking, and benefit more from the knowledge they expose. They
say there is no such thing as a finished piece of art, only that which has
been abandoned. . . but equally, perhaps there is no such thing as a complete
understanding of user experience, only those questions we are brave enough
to ask.

Be brave.
Good luck.
Tanya X. Short

vii

Preface and Acknowledgments

We decided to write this book for many different reasons. A desire to share
what we’ve learned about game interaction design with aspiring designers
around theworld.Wanting to create an educational resource that could reach
beyond our own students. A frustrationwith the dearth of textbooks contain-
ing puns and edgy takes on the gaming industry that no one asked for. Most
importantly, we decided to write this book to share our passion for games and
what makes them tick with a diverse audience. No matter whether you’re a
student of design, a curious gamer, or a professional on the hunt for puns and
edgy takes, we hope this book can provide you with some useful knowledge,
helpful examples, and inspiration for your own work.

If you’re wondering why we decided to write this book, the long ver-
sion of that story includes an ill-fated midterm exam, a few oddball research
projects, and several bowls of ramen. The short version of that story is that
the “we” in question, Samantha and Pejman, have been working together
since 2015 in both academic and commercial work. After co-authoring sev-
eral articles together and collaborating in a few teaching endeavours, Pejman
suggested that they write a book about game interaction design. Samantha
agreed with this idea, because she has poor impulse control. And, after a
few years of writing, interviews, writing, editing, writing, compositing, and
writing, you’re about to (hopefully) delight in the result of that collaboration.

Creating this book has been both a challenging and rewarding journey.
Whenwe set out to write it, we knew that it would be difficult to pull together
a volume that managed to capture our combined advice on game interaction
design while also teaching and working on our research. What we didn’t an-
ticipate was that most of our writing would end up taking place during the
pandemic lockdowns, which made the effort overwhelming at times. Luck-
ily, we are fortunate to have the most wonderful, understanding friends and
family that anyone could hope to imagine. There are many people who have
supported us through this journey, and this book would not have happened
without their support.

We would like to thank Dan Taber, our Commissioning Editor at Oxford
University Press, and his team, particularly John Smallman, Katherine Ward
and Charles Bath, for guiding and encouraging us from the initial discussion
we had about this book all the way to final release.

viii

Preface and Acknowledgments

Throughout the book we highlight design examples and screenshots from
various commercial games. We would like to thank the many developers and
publishers who responded to our inquiries about including material from
their games—as well as in some cases providing confirmation on features or
design decisions mentioned in our writing.

The book also features interviews with experts from the game industry
and academia; some of them are mentors, advisors, and friends of the
authors. We would like to thank them for their support and contributions
to this work: Jason Avent, Kris Alexander, Osama Dorias, Jason Della
Rocca, David Galindo, Ario Jafarzadeh, Mark Laframboise, Regan Mandryk,
Graham McAllister, Romana Ramzan, Steven Smith, and Cherry Thompson.
We would like to especially thank Tanya X. Short for writing the foreword
of the book.

We would also like to thank our colleagues at Ontario Tech University
for their support. We especially want to thank our students in the game de-
velopment and interactive media program and our amazing team at UXR
Lab for inspiring us every day. Special thanks also go to Ame Gilham for
helping us with the indexing. And in a rare moment of practicality, we
should mention that everything discussed in this book represents our own
views and opinions, and not necessarily those of our current or past affiliated
organizations.

We both wish to thank our family and friends for their love, care, and
encouragement. Samantha thanks Svetlana for constantly putting up with
her antics and not telling anyone where they hid the jewels back in ‘69, and
Emilian for teaching her a level of friendship expressible only in mixtapes
and comics about Russian spiders. She also thanks Helen (and Mu & Ivy),
Atiya (no u), Josh, and Owen for being amazing friends and excellent mem-
bers of the travelling percussion band she has yet to tell them about. Pejman
thanks his family, particularly his parents, Edina, and Rùm for their constant
support, love, and shared fondness for Victoria sponge.

Lastly, we thank you, the reader, for picking this up to read—we hope you
enjoy it!

- Samantha & Pejman
gamedesignplaybook.com

ix

https://gamedesignplaybook.com

Contents

1 Caveman Arcade 1

1.1 What’s in a game? 2
1.2 A (Relatively) brief history of game interaction 6
1.3 How to use this book 13

2 The Parlance of Play 17

2.1 Making humans and computers play nicely 18
2.2 What successful game interaction design looks like 22
2.3 The field of game interaction design 26
2.4 How can we define successful game interaction design? 33
2.5 What to expect from the rest of this book 36
Expert Profile: David Galindo—Food for thought 38

3 The Long Con 42

3.1 Baby steps 43
3.2 A masterclass in learning 62
Expert Profile: Romana Ramzan—Player champion 66

4 Say What you Mean 70

4.1 Communication and the senses 71
4.2 Continuous communication and HUD design 89
4.3 Responsive communication 99
4.4 Brief thoughts on creative direction 106
Expert Profile: Cherry Thompson—Accessibility by design 110

5 Control Freaks 115

5.1 I can’t find the “any” key 117
5.2 Rules of thumbstick 125
5.3 Virtual input and two-way interfaces 143
Expert Profile: Jason Avent—Changing Tides 152

x

Contents

6 The Play’s the Thing 156

6.1 What’s in a feeling? 158
6.2 Act I: Narrative and characters 159
6.3 Act II: Player agency 170

Expert Profile: Osama Dorias—Something for everyone 186

7 Rejecting your Reality 190

7.1 Designing for VR 192
7.2 What we don’t want VR to give us 195
7.3 Putting the “real” in reality 201

Expert Profile: Mark Laframboise & Steven Smith—
Partners in Play 216

8 The Audience is Listening 220

8.1 The ratings war 222
8.2 Come on down 232

Expert Profile: Kris Alexander—Learn to play, play to learn 239

9 Rise of the Machines 244

9.1 The toaster is sentient now 245
9.2 AI that plays with you 248
9.3 AI that works for you 265

Expert Profile: Regan Mandryk—The science of fun 276

10 Making the Thing 280

10.1 Chasing the lightbulb 283
10.2 Follow the rulebook 289
10.3 Re-writing the rulebook 295
Expert Profile: Ario Jafarzadeh—Steps from perfection 302

11 Test your Patience 306

11.1 Spend your questions wisely 308
11.2 A crash course in testing 310
11.3 The melting pot of methods 321
Expert Profile: Graham McAllister—Having a clear vision 327

12 What Comes Next? 331

12.1 Pocket supercomputers strapped to your face 333
12.2 Buy low, sell high 338

xi

Contents

12.3 Game changers 341
Expert Profile: Jason Della Rocca—Optimizing for success 348

Glossary 352

List of Acronyms 357

Ludography 359

Subject Index 368

Game Index 370

xii

1

Caveman Arcade

Leave any group of humans unattended for any significant amount of time,
and you will return to find that they have done something. If for a few
minutes, perhaps you return to a number of smaller groups exchanging
pleasantries amongst themselves. If for a few hours, perhaps you return to
a group of newfound friends tossing around a ball of some sort, wonder-
ing why you’ve left them there with seemingly no instruction. If for a few
thousand years, perhaps you will return to find that they have invented the
internet.

That’s the peculiar thing about humans—even when our basic needs are
met, or rather especially when our basic needs are met—we opt to do some-
thing instead of nothing. Both individually and collectively, our curiosity
and desire for stimulation constantly nag at us to do something. Idle hands
rarely stay that way for long. Fingers drum subconsciously in anticipation of
our next action. Then, they reach for something, maybe a pen, a musical in-
strument, a paintbrush, or a computer. Even trying to do absolutely nothing
is an act in itself, a meditation that allows us to reflect on ourselves or seek
some form of spiritual fulfillment.

Maybe it is this constant desire for something that has resulted in the rich
library of recreational activities humans have come to enjoy. When we are
safe, rested, andwell-fed, wewatchmovies, listen tomusic, travel, read, write,
draw, exercise, and talk with friends. And, of course, we play games. Natu-
rally, our work here explores video games in particular, though the act of
play is far from exclusive to digital games. Someone who has never picked
up a controller in their life will almost certainly have played a board game,
engaged in sport, or pretended to go on an adventure as a child.

Even the act of tossing crumpled paper into a wastebasket can be trans-
formed into a friendly competition, as boredom and imagination unite to
transform an office into a basketball court. Probing the underlying reasons

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0001

The Game Designer’s Playbook

for what makes the act of play specifically so compelling, and what benefit
games might have to human development, is an interesting challenge.

One theory could be that games allow us to practice vital skills in a safe
environment. Perhaps tossing the paper into the wastebasket evokes some
primal state where the accuracy of a projectile could be the difference be-
tween having food for the night or starving. However, this is not a book
about evolutionary biology, anthropology, or ballistics. The question of why
humans invented games, or first came to enjoy them, is a fascinating one to
be sure, but it is not our primary focus. Instead, here we examine the ques-
tion of what makes games fun today, and how different design choices can
make a game more or less enjoyable. As a matter of course, we hope to create
more fun and engaging experiences; in essence, we strive to build a better
wastebasket.

1.1 What’s in a game?

So ingrained in our culture is the notion of games and play that most people
have an intuitive sense of what makes up a game. Formally speaking, games
are often defined as a structured form of play comprising rules, which dictate
the actions available to players and how they are performed; boundaries,
which delineate the “game space” from the real world; and outcomes, which
result from playing the game. Consider table tennis: as an oversimplification,
the rules of the game specify that players can hit the ball with their paddles,
and a player scores if their opponent fails to return a volley before the ball
hits the ground. Spatial boundaries define the game as occurring within the
vicinity of the table. The outcome of a match is such that the player with the
most points is declared the victor.

Attempting to define games with this level of rigor leads to somematter of
debate in terms of what should be labelled as a game, as opposed to a “toy,”
or simply “play.” Does a lack of definite rules mean that children playing a
“game” of pretend aren’t really playing a game at all? Is a game like The Sims
no longer considered a game per se, since no final outcome or objective is
prescribed to players?

While there is certainly a place for this sort of debate, here we assume a
more colloquial definition of the term. Indeed, the principles described in
this book can be applied in the design of anything that might be called a
game, whether digital or otherwise. For our purposes, we can loosely define
a game as any interactive experience where participation is a goal in itself.

There are two key points in this understanding of what defines a game. The
first is interactivity, which distinguishes games from other non-interactive

2

Caveman Arcade

Figure 1.1 Many digital games blur the line between “game-like” and “toy-like” play.
Left: in The Sims games, players have full customization over their Sims’ virtual lives.
Where one player might create a living room, another might opt for the objectively
superior bear shrine. Right: a perfectly normal day in Garry’s Mod.

Credit: The Sims 3 was developed by Maxis and published by Electronic Arts. Garry’s Mod was
developed by Facepunch Studios and published by Valve.

entertainment media, such as books, movies, or television. Games are
inherently participatory experiences; during play, players’ actions affect
the course of a game in some way. In turn, the resulting changes affect
which actions are available to players, and their strategy in performing those
actions.

The second defining quality of games is the notion of the experience itself
motivating engagement. Though the completion of a game often promises
some reward in the form of a satisfying conclusion to a story, a feeling of
mastery, or plain old bragging rights, players do not play solely for the privi-
lege of viewing an ending screen. Instead, the goal of engaging with a game is
experiencing all it has to offer. This creates a particular delineation between
games and productivity software; replaying a favourite game is hardly un-
usual, but rewriting the same paper in a word processor is a special kind of
torture reserved only for the most extreme of masochists.

Obviously, this understanding of games is quite broad, easily encompass-
ing examples like The Sims or imaginary “games” that might otherwise be
subject to lexical controversy. Moving forward, this understanding is suffi-
cient for comprehending and applying the design principles discussed. For
those less familiar with the subject material who wish to learn more about
the formal study of games as systems, youmay refer to the readings suggested
at the end of this chapter.

Regardless of structural specifics, interaction lies at the core of every game.
Games provide players with opportunities for interaction; they give players
something to do. Likewise, interaction shapes the course of a game. Such
changes might be as straightforward as incrementing a player’s score, or
as complex as requiring characters to adapt to the death of a simulated

3

The Game Designer’s Playbook

companion. Interaction can take many forms, have any number of conse-
quences, involve multiple players at a time, and evoke a potent cocktail of
delight, surprise, and frustration.

The nature of player interaction can vary wildly depending on the game
in question. In sport, interaction is literal, physical, and immediate. A soccer
player, for instance, has the objective of guiding the ball across the field to
score. To achieve this goal, they kick the ball toward the opposing team’s net.
Interactions in sports are “designed” to the extent that they are restricted by
the rules of a given game, but are most influenced by the characteristics of
human motion and the physical objects with which they are played.

In board games, player interaction retains a physical component, but
is in many cases symbolic of some imagined scenario. In Monopoly, play-
ers exchange play money symbolizing multi-million-dollar real estate deals,
moving tokens on a two-dimensional board representing New York City.
Here, there is more room for “designing” what player actions mean in the
context of the game state. Since interaction is metaphorical to a degree, an
arguably greater deal of creative freedom exists. Physical interactions can be
used to represent imaginary or impossible scenarios.

Digital games offer an even greater level of abstraction between the phys-
ical actions taken by players and their meaning in the context of a game.
With a game’s world having few or no tethers to the physical reality of the
player, the possibility space of interaction design for digital games is enor-
mous. When controlling a virtual character, a single button press can be used
to trigger an acrobatic motion, a response in conversation, or the firing of a
weapon.

Naturally, this spectrum of interactions from the literal to the abstract is
far from absolute. Games played in the physical world often have in-game
consequences divorced from reality: despite the imagined stakes, real-life
dismemberment is thankfully not required to enjoy a round of laser tag. Like-
wise, some digital games design their interactions to have varying degrees of
analogy between players’ physical movements and in-game actions.

A purely abstracted model of interaction may reduce every possible ac-
tion to a button press on a keyboard or game controller. By contrast, games
played using a peripheral such as the Microsoft Kinect (may it rest in peace)
can map the motions of a player onto their character exactly. Still others
adopt a hybrid approach, for instance, requiring players to physically swing
a controller as a proxy for their character’s sword while mapping locomotion
to a series of button presses.

The importance of good design in these interactions is practically self-
evident; over the course of a session, players may execute hundreds or
thousands of individual actions shaping their experience. Common actions,
such as moving a character, might be repeated hundreds of times on their

4

Caveman Arcade

Figure 1.2 Games are often described as occurring within the “Magic Circle,” a con-
cept delineating the game space from reality. Thus, the very same action occurring
inside the magic circle has a very different meaning when performed outside the
magic circle. Inside the magic circle of bowling, throwing a bowling ball at things
to knock them over is how you score points. Outside the magic circle, the very same
action just means you’re a “bad houseguest” and “should have returned the key when
we kicked you out last October, Jerry.”

own. It is thus vital that these actions are satisfying and enjoyable to sustain
player engagement.

Within the first few minutes of a game, players will often perform many
key interactions for the first time, solidifying their initial impressions of
the experience. The first time a player fires their weapon in a shooter, for
instance, they can immediately gain a feel for the game’s physics, aiming
difficulty, and realism in gunplay. A sufficiently well-designed interaction
can keep players coming back to pull the trigger again and again, even af-
ter hundreds of hours of play. Conversely, a slight imperfection in the look
or feel of this action might make players grow disenchanted or outright
frustrated with a game’s combat after a few hours.

5

The Game Designer’s Playbook

The sheer variation possible in crafting a library of player actions conveys
the complexity and nuance of game interaction design. The task of creating
and refining these actions poses a number of challenging questions. How
can we design interactions which contribute to player satisfaction and en-
joyment while simultaneously blending with the greater game experience, so
as not to be intrusive? To what degree should each action have a noticeable
impact on the game’s world, and what degree of permanence should these
impacts have? How can we effectively communicate the consequences of
players’ actions without overwhelming them, or giving an impression of con-
descension? How can we isolate what makes a given interaction “fun,” when
the definition of “fun” in itself is so nebulous and elusive?

It is the job of an interaction designer to answer these questions, along
with the dozens more that arise with any design task, and deliver a satis-
fying experience. This requires an intimate understanding of player needs,
preferences, and motivations, as well as foundational knowledge built from
existing designs. A good starting point, therefore, is to assess how games, and
the way we play them, has evolved throughout the course of history.

1.2 A (relatively) brief history of game interaction

Five thousand years ago, as ancient civilizations blossomed in northern
Africa and the Middle East, people invented and played games. In our first
few millennia as a society, early humans began practicing agriculture, eco-
nomics, and law, while simultaneously exploring the arts and creating the
first known games. These games ranged in strategic complexity, and varied
in their cultural or religious significance. For many of these games, only
fragmented artifacts survive; the exact rules long since faded or changed
throughout the generations to become a distant cousin of their past selves.
Nonetheless, from what does remain, we can glimpse at the origins of what
would eventually become the rich landscape of games we know today.

Some of the earliest artifacts related to games are small tokens unearthed
at burial sites in southern Turkey dating back to the third millennium BCE.
Carved from stone to resemble creatures, projectiles, and pyramids, the to-
kens are thought to have functioned as game pieces, similar to other objects
found throughout Mesopotamia from the same period. However, little is
known about their exact meaning, with no records existing to describe the
games that might have been played with these pieces.

More substantial remnants exist for games played in Sumeria and Egypt
around the same time. Arguably the most notable of these creations is the
Royal Game of Ur. Also known as the Game of Twenty Squares, the Royal
Game featured race-to-the-end gameplay, with boards dating back to the

6

Caveman Arcade

twentieth century BCE found throughout the Middle East and the Mediter-
ranean. Another game originating in this era is Senet, an Egyptian creation
thought to have been symbolically tied to the afterlife.

Figure 1.3 Board games invented in antiquity, clockwise from top left: Senet, an Egyp-
tian game thought to represent a journey through the afterlife; The Royal Game Of
Ur, rumoured to have been connected to personal fortune-telling; Pachisi, ancestor to
Sorry! and more blatantly Parcheesi; Go, perhaps the game with the longest-standing
ruleset.
Credit: Image of Senet by the Metropolitan Museum of Art (CC0). Image of The Royal Game of
UR by BabelStone at the British Museum (CC0). Image of Go cropped from a photo by Goban1
(public domain). Image of Pachisi by Daniel Schwen at the Children’s Museum of Indianapolis
(CC BY-SA 4.0). All original images obtained via Wikimedia Commons.

Despite the fact that many ancient rulesets are assumed to be lost for-
ever, we can already see commonalities in design between these games and
their modern counterparts. Carved tokens marched along boards crafted
from wood and stone. Marked tetrahedra or sticks were tossed to determine
players’ allocated movements across a game board, injecting chance and
serving as a primitive form of dice.

Though separated by thousands of years, the Game of Twenty Squares is not
so different from a contemporary race-to-the-end game like Sorry!. Stripped
to their most essential description, both involve rolling dice to move tokens
across a game board. Of course, it should be noted that Sorry! is more or

7

The Game Designer’s Playbook

less identical to the game Pachisi, played in India for centuries before its re-
imagining and popularization in the West. Regardless, it is telling that the
basic components and interactions associated with board games thousands
of years ago still exist in successful games today.

These commonalities are not to suggest that there exists some magical
set of interactions, outside of which there is no room for innovation. Hun-
dreds of new board games are released each year which push the boundaries
of tabletop design, promote social play, and rethink classic interaction
paradigms. Take the idea of a game board, for example. In its most basic
form, a game board is a static surface used to track the location of tokens.
But why should a board limit itself to a fixed configuration? Why should it
serve as a backdrop, rather than an active part of play?

Modern game design explores the answers to such questions, often sub-
verting convention by putting a twist on classic mechanics and modes of
play. The static game board is rethought in titles like TerraformingMars, which
allows players to change the board’s contents during play to simulate shift-
ing the geography of an alien world. In Carcassonne, players build the board
from individual tiles as the game progresses, creating different layouts with
each playthrough. Both of these games, along with dozens of others, present
refreshing iterations on the notion of board-based designs. It is a fascinating
lesson in the nature of human creativity that the precursors of such ideas
can be traced back to antiquity with relative ease.

In addition to board games, sport also played a role in the recreation and
tradition of ancient cultures. Perhaps themost famous example is the ancient
Olympic Games, which began in Greece around the eighth century BCE as
part of a religious festival. Athletes competed in several events which remain
popular in some form to this day, including footraces, boxing, javelin, and
an early version of mixed martial arts known as pankration.

Many team sports are also older than one might think, with roots lead-
ing back centuries. Consider football (soccer), for instance, whose earliest
recorded ancestor is a game played in China over two thousand years ago.
Similar games were played in Japan, Greece, and Rome, all before a stan-
dard ruleset was codified in England in the mid-nineteenth century. Safe for
modernization of the equipment used and formalization of rules, there is
surprisingly little which separates the ancient Chinese game of tsu-shu from
the football we know today.

Likewise, many of the board and card games invented hundreds of years
ago are strikingly similar to their contemporary iterations. Go, frequently
cited as the oldest game played according to its original rules, is thought to
have first appeared as early as four thousand years ago. Chess was invented
around the seventh century CE, spreading from India and Persia throughout

8

Caveman Arcade

Asia and Europe. The first playing cards, printed around the 1300s, mirrored
the earlier invention of playing tiles or dominoes in China before the turn
of the first millennium. In the centuries that followed, cards would be used
to create hundreds of games, many of which are still played today, such as
Patience (or Solitaire) in the late 1700s, Poker in the 1830s, and Rummy in
the 1890s.

Before the invention of computers, all game interaction was necessarily
physical and mostly literal in nature. Though creators and players alike were
always free to experiment with fanciful themes, games were still limited by
the physical objects they were played with, and the capability of their human
operators. Rule complexity was restricted by what human players could be
expected to memorize or reference while maintaining reasonable gameplay
pace.

Within these confines, a great deal of variety still exists. Simplicity can
certainly prove itself a virtue in terms of widespread appeal and longevity.
Snakes and Ladders can hardly be said to have much depth, and yet it is a ver-
itable mainstay of family board game collections, particularly due to its easy
learnability for young children. At the other end of the spectrum, Dungeons
and Dragons has spawned entire volumes dedicated to explaining lore and
the rules of play, with individual game campaigns lasting hours or days.

The realm of game design was always a diverse one, long before the digital
age. Human imagination is, for all intents and purposes, practically un-
bounded, and games have always been free to take advantage of this fact.
That said, certain experiences that we now take for granted as a part of digi-
tal games are impractical or impossible to achieve otherwise. A physics-based
puzzle would require the fabrication and assembly of all required compo-
nents. Large-scale first-person combat would necessitate hiring a troupe of
trained actors, or else coordinating a group of colleagues for a friendly neigh-
bourhood siege—hardly fodder suitable for a Wednesday night on the couch
after a long day at work. Nomatter the level of creativity, confining ourselves
entirely to real-world interactions imposes inherent limitations on what can
be achieved in authoring a particular experience.

These limitations were shattered remarkably quickly as humans began us-
ing computers to make games in the mid-twentieth century. The first patent
for an electronic game of sorts, called the Cathode-Ray Tube Amusement De-
vice, was issued in 1948, and described a system where players would adjust
the path of an electrode beam to hit manually placed targets. Little is known
about how functional the initial prototype or prototypes were, as the de-
vice never reached the market. It is debatable whether the invention even
qualifies as a video game by modern standards, since it involved no real
computation, rather serving as a user-controlled display of sorts.

9

The Game Designer’s Playbook

Computer games more or less as we know them today date back to the
1950s, created largely as academic curiosities. The first is often credited
as Noughts and Crosses (OXO), a version of tic-tac-toe created by then-PhD
student Alexander Douglas at Cambridge University in 1952. A more well-
known example is William Higinbotham’s 1958 game Tennis for Two. Played
on an oscilloscope, Tennis for Two was a one-of-a-kind attraction for visitors
to New York’s Brookhaven National Laboratory; this was long before video
games entered the realm of mass production. Four years later, in 1962, a
group of programmers at MIT developed Spacewar!, a two-player dogfight set
in outer space.

Figure 1.4 Early digital games, from left: Spacewar! on a PDP-1 computer at the Com-
puter History Museum in California; An arcade cabinet running Pac-Man; Legendary
Donkey Kong player Steve Wiebe participating in the Kong Off 3 tournament in 2013.

Credit: Image of Spacewar cropped from a photo by Joi Ito (CC BY 2.0). Image of Pac-Man by Peter
Handke (CC0). Image of Steve Wiebe by Datagod (CC BY-SA 4.0). All original images obtained
via Wikimedia Commons.

It would take another decade after Spacewar’s creation before video games
hit the mainstream in the early seventies. From this point onward, the story
becomes far more intriguing for game aficionados, replete with all manner
of exotic hardware, interpersonal drama, and economic crisis. Here, we will
focus on how the evolution of interaction modes and user experience (UX)
design brought us to the present day. For those eager to learn more of the
vaudeville aspects of game history, some additional readings exploring the
subject are provided at the end of this chapter.

No discussion on the history of games would be complete without men-
tion of Pong, Atari’s 1973 creation that kickstarted the arcade age, eventually
bringing about classics like Pac-Man, Galaga, Space Invaders, Donkey Kong, Dig
Dug, Frogger, and hundreds of others. Arcade cabinets would serve as an intro-
duction to digital games for countless thousands throughout the seventies
and eighties. At the time, this marked a massive leap in design and player
understanding; games no longer had to physically play out on tabletops,

10

Caveman Arcade

fields, or rinks. Instead, they could live in virtual space, creating a system
comprising user, game, and machine.

This new mode of gameplay necessarily introduced a layer of abstraction,
requiring an input device of some sort for players to communicate their in-
tended action. Interaction was now metaphorical in some way; rather than
physically moving tokens around, a button press would serve as a proxy for
firing the weapon on a spaceship. These early devices needed to be simple
and easy to learn above all else; with the popularization of home PCs still a
decade away, most people had little or no prior experience operating a com-
puter. Early arcade cabinets used dials, switches, and buttons to facilitate
user input—interaction paradigms which were already established thanks to
devices such as radios and television remotes.

Obviously, such designs were due at least in part due to the novelty of
video games and computers in general; the notion of a gamepad was com-
pletely alien at the time. Most importantly, though, designers needed to take
advantage of what people already knew. The first Pong cabinets didn’t feature
two analog sticks, as a modern audience might expect, but rather a pair of di-
als. It would be a long journey from these early controls to the sophisticated
gaming-specific peripherals that would emerge decades later.

Both technological limitations and economic motivations shaped the ex-
perience design of arcade games. The limited computing power available
imposed constraints on the complexity of game mechanics and graphics,
and the scope of game content. Commercially, turnover needed to be incen-
tivized; one player snagging a few hours of game time on a single quarter
was hardly profitable. Both of these pressures favoured shorter play sessions,
where a relatively small amount of content could be packed in to boost
excitement, and revenue could be maximized.

Consequently, arcade titles could give explicit time limits, or more com-
monly, dole out a fixed number of lives and let difficulty curves naturally kick
players out of the game as their skills faltered. There was a finality associated
with the game over screen, at least, until another coin was offered up, with
save states out of the question on public machines. And yet, the bragging
rights that came with high scores, and the tantalizing possibility of making
it just a bit further next time, kept players coming back again and again.
Echoes of this thinking still live on in the “one more try” microtransactions
found in modern free-to-play puzzle games.

Game experience design would evolve substantially over the next sev-
eral years, as the advent of home consoles and computers changed how video
games were consumed. Instead of making small purchases to spend a short
amount of time playing, game copies could be purchased outright. This no-
tion, coupled with the larger scope made possible by increased computing
power, led to longer experiences that could be enjoyed over hours, days,

11

The Game Designer’s Playbook

or weeks. Home computers also made the craft of game development more
accessible, leading to a flood of new industry talent and a veritable explosion
in design creativity.

Looking back, many of these early efforts would have been criticized ex-
tensively by contemporary standards, technological limitations aside. The
transition from coin-operated games to home titlesmarked a substantial shift
in design thinking. Some aspects of the arcadementality didn’t translate well
to at-home games, and some of the experiences created for home consoles
were unlike anything attempted before. People craved more depth and di-
versity than mere high scores could provide; they wanted games to build
fantastical worlds, tell stories, and let them play with friends.

Hardware design also had its ups and downs throughout this period; imag-
ine holding a Nintendo 64 controller and thinking it to be the state of the
art, with its three grips and clunky alternate holding positions. Following the
turn of the millennium, rapidly increasing computing power allowed games
to become increasingly complex and realistic, allowing game interactions to
become more sophisticated in kind.

Forty years ago, watching a few enormous pixels teleport across the screen
at the nudge of a clunky joystick was amarvellous delight. Today, we demand
immediate responsiveness and fluid motion, often accompanied by lav-
ish animation and rendering that approaches photorealism. With so many
computational shackles removed, designers can tweak the timing of every
footfall, injecting feedback and personality into every interaction. This free-
dom has allowed games to become the polished, thoughtful, and satisfying
experiences beloved by players everywhere.

Twenty-first-century computing didn’t just change the way games looked
and felt, but redefined the role games play in our everyday lives. Smart-
phones and other mobile devices have rendered games ubiquitous, playable
anywhere and anytime. Streaming has brought video games on par with
traditional sports in terms of viewership. Virtual reality, after years of specu-
lation and sci-fi fodder, has finally established a footing as a platform in its
own right. Each of these avenues provides us with more ways to play games,
and more opportunities for designers to create innovative and engaging
experiences.

The meteoric rise of video games to become arguably the most perva-
sive form of entertainment prompts a rather obvious question—why? What
makes games so very contagious?

Entire volumes could be written (and in fact have been) on player moti-
vation and the psychology of games alone. Throughout this book, we will
explore how individual design choices can contribute to a game’s appeal,
but for a start, consider the many mental, physical, emotional, and social

12

Caveman Arcade

opportunities that a game experience has to offer. Games can move us to
laughter, tears, joy, and frustration. They challenge us, in tests of both wit
and reflexes, and drive us to reach mastery. Games carry the promise of es-
capism, telling stories that lift us from the humdrums of reality into a world
of our own making. We can use games as tools to tell stories, spread aware-
ness, or share ideas. They allow us to connect with the people we love, and
make new friends along the way. Perhaps it is a combination of all these
factors that makes games so compelling.

Perhaps our infatuation with games is simply a product of that inter-
minable human appetite for purpose, the desire to do something.

1.3 How to use this book

If you’ve read the whole chapter up to this point, you already have an idea
of what we’ll be discussing in the rest of the book. For those of you joining
us from the cover, or finding this volume open and abandoned in a coffee
shop, this is a book about interaction design for video games. More precisely,
it is a book about learning to think like an interaction designer, following
a user-centric ethos. You will learn how to critically analyze your own de-
signs and those of others, and how to view those designs from the player’s
perspective. This book will also provide a brief introduction to the study of
human-computer interaction, and how to apply general design standards to
the task of crafting game interactions.

If you are already a practicing game designer, this volume will help refine
your knowledge of interaction design, as well as providing practical examples
and designer perspectives for your reference. If you work in another area of
game development, the knowledge presented here will help you to commu-
nicate more effectively with your design team. If you’re a student, this book
will provide you with a comprehensive overview of game interaction design
and give you an early start in applying a user-centred approach. Lastly, if
you’re reading this out of pure interest, or a passion for gaming in general,
hopefully this book will help you better understand the inner workings of
game design, and perhaps inspire you to create something of your own.

This work focuses heavily on the practical application of interaction de-
sign. Each chapter will focus on dissecting the design of commercial games,
practical exercises, and interviews with experts working in the games indus-
try and games research. Every topic will explore both positive and negative
examples taken from existing games, noting what can be learned from suc-
cessful designs, and how those less successful could be improved to better
serve players’ needs. Additional materials are suggested at the end of each

13

The Game Designer’s Playbook

chapter to further develop your knowledge. You will also find exercises
throughout which allow you to practise the concepts introduced, and serve
as a starting point for your own work.

Each chapter is written to function on its own, with no particular back-
ground from prior chapters necessary for understanding. However, if you are
relatively new to game design, we suggest beginning with Chapter 2 to es-
tablish some of the terms and ideas used throughout the rest of the book.
Chapter 2 will also provide a detailed look at what sort of content you can
expect from the sections that follow.

Regardless of where you begin your journey with the remainder of this
book, remember that our goal is the same throughout; to create something
memorable and magical for our players.

Good luck, and have fun!

Further reading

GameDesignWorkshop by Tracy Fullerton (4th ed., CRC Press). ISBN: 978-1138098770.
A systems-oriented overview of game design with lots of useful exercises.

Game Development Essentials: An Introduction by Jeannie Novak (3rd ed., Nelson
Education). ISBN: 978-1133708797.
A general volume on game development with a focus on industry examples and
profiles.

Blood, Sweat, and Pixels by Jason Schreier (Harper). ISBN: 978-0062651235.
Behind-the-scenes drama, agony, and inspiration from the game development
industry.

The Ultimate History of Video Games by Steven Kent (Three Rivers Press).
ISBN:978-0761536437.
An older, but comprehensive overview of how we got here.

Sources on the history of games

Brown, W. Norman (1964) The Indian Games of Pachisi, Chaupar, and Chausar. In
Penn Museum’s Expedition Magazine (Spring 1964), pp. 32–35.

Computer History Museum (n.d.) Timeline of Computer History: Graphics & Games.
Accessed online at www.computerhistory.org/timeline/graphics-games/.

Finkel, Irving L. (2007) On the Rules for the Royal Game of Ur. In Ancient Board Games
in Perspective. British Museum Press. ISBN: 9780714111537.

Goldsmith, T.T., et al. (1948) Patent for Cathode-Ray Tube Amusement Device. US Patent
No. 2455992.

14

http://www.computerhistory.org/timeline/graphics-games/

Caveman Arcade

International Olympic Committee (n.d.) Welcome to the Ancient Olympic Games.
Accessed online at www.olympic.org/ancient-olympic-games.

Murray, H.J.R. (1913) A History of Chess. Oxford University Press. 2015 reprint ISBN:
9781632202932.

Parlett, David Sidney. (1990) The Oxford Guide to Card Games. Oxford University Press.
ISBN: 9780192141651.

Piccione, Peter A. (1980) In Search of the Meaning of Senet. In Archaeology (33),
pp. 55–58.

Sağlamtimur, Haluk and Massimino, Martina G.M. Wealth Sacrifice and Legitimacy:
The Case of the Early Bronze Age Başur Höyük Cemetery. In Proceedings of the 10th
International Congress on the Archaeology of the Ancient Near East, pp. 329–342.

Stewart, Mark. (1998) Soccer: A History of the World’s Most Popular Game. F. Watts.
ISBN: 9780531114568.

(Continued)

Exercises

Digital devolution

Take a digital game of your choosing and re-imagine it as a board game. You can use
any game you like, but as a starting point we advise choosing something simple, such
as a classic arcade game like Asteroids or Pac-Man. Try to answer the followingquestions
at minimum:

• How many players is the game designed for?

• What is the objective of the game?

• How does one turn play out?

• Can you describe a full ruleset?

• What do the board and any pieces/cards/and so on look like?

To express your design, use writing, sketches, and some simple physical pieces if you
have supplies handy.

Fusion cuisine

Take two games, either board or digital, that you’re very familiar with (e.g., have played
for several hours), and envision what they’d look like if combined into a single game.
Create a one-page mockup illustrating the spirit of the final game in writing, sketches,
edited screenshots, and so on. Here are some questions to get you started:

• What is the name of your abominable hybrid?

• What mechanics does it borrow from each game?

• What is the overall storyline?

• How will the game look?

15

http://www.olympic.org/ancient-olympic-games

The Game Designer’s Playbook

(Continued)

• What does a “slice” of gameplay look like in a couple of sentences?

• How does the game set itself apart from each of its inspirations?

• What are some new ideas that emerge in bringing the two games together
(e.g., mechanics, characters, and so on)?

If you’re feeling incredibly ambitious, you can try your hand at prototyping a rough
version of your game physically (if your fusion is a board game) or prototyping a couple
of key interactions in a free game engine like Unity (if your fusion is a digital game).

16

2

The Parlance of Play

If you were awake at any point between 1995 and 2005, you probably
heard the word interactive tossed around left and right as one of the era’s
most pervasive buzzwords. Much like the phrases big data, machine learning,
and pumpkin spice defined the 2010s as a technocratic vision of AI-powered
autumn-scented everything, the word interactive conjures up an image of dig-
ital acceleration in the late 90s, when computers landed in everymiddle-class
home and the nascent internet was busy rediscovering music piracy.

Pristine rows of jewel CD cases lined the shelves of every electronics de-
partment as the direct-to-consumer software business took off, promising
the latest interactive experience that could help you write a book, edit photos,
teach your child math, do your taxes, or simply have a terrifying cartoon
dog tell you how to use your computer.1 The word interactive is not limited
to computers lexicographically, but if I asked you to think of something in-
teractive, you’d probably imagine an app or a computing device. But why is
that?

At an incredibly basic level, computers are tools. Our experience with tools
is defined by how we use them, and computers are somewhat unique in this
regard because they are capable of using us back. They can communicate
with us, and dynamically respond to our actions. You can use pen and paper
to write, or you can use a computer. If you use a computer, you can take
advantage of things like spelling and grammar suggestions, word prediction,
and so on: it reacts to what you have done. This is not possible with pas-
sive tools like pen and paper, at least, not without the assistance of potent
psychedelics.

We can define this distinguishing characteristic more formally by specify-
ing that there is two-way communication between humans and computers.
We communicate with computers by using input devices, such as typing

1 Some may prefer us to forget about Microsoft Bob entirely, but that will never happen.

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0002

The Game Designer’s Playbook

on a keyboard. They communicate with us via output devices, such as dis-
playing words on a screen. This two-way communication does not occur
with something like pen and paper. This is where we return to our beloved
action-oriented terminology; we act on passive tools, whereas we interact
with computers.

2.1 Making humans and computers play nicely

Different sources from different fields have a colourful spectrum of defini-
tions for the words interaction, interactive, and interactivity. Debating these
definitions here would be a remarkable waste of time, and so we will establish
our own quick addition to this rainbow before moving on. An interaction is a
reciprocal exchange of information between entities. Typing on a keyboard
and seeing letters appear on screen is an interaction. Talking to someone is
an interaction. Poking a rock with a stick is not an interaction, unless the
rock has something to say in response. Something is interactive if it can be
interacted with. A smartphone is interactive. A person is also interactive. A
rock is not. Interactivity refers to interaction between things. We can speak of
interactivity among people, interactivity between people and computers, or
interactivity among computers. Sadly, we cannot speak of interactivity be-
tween rocks and sticks, which may explain their poor attitudes toward the
study of human-computer interaction.

Figure 2.1 On the left, an interaction between a human and a computer. On the
right, a sad and lonely human looking for a friend. Little do they realize that the real
friendship was the stick they found along the way.

If you’re reading this book, it’s almost certain that you’ve already had sev-
eral dozen interactions with technology today. In fact, feel free to take a quick
glance at your phone and check Twitter, Instagram, Tik Tok, or whatever

18

The Parlance of Play

other social media phenomenon is currently at the forefront of your personal
zeitgeist. We’ll still be here when you get back. After all, since this book is
not interactive in itself, it lacks the means to lose its patience with you.

The interactions we have with computers are rich and diverse—even those
we have come to take for granted. Through mice, keyboards, and touch-
screens, you can beckon forth any tidbit of information you desire from the
entire body of human knowledge. You can receivemessages from friends, dis-
miss messages from colleagues, check the weather, shop for umbrellas, learn
how to make lasagne, read a novel, write a novel, order takeout, ogle the
missteps of a public figure, admire the world’s largest cat, play games, design
games, and be reminded to call your mother (it’s really the least you can do).
The possibilities that such interactions afford us are objectively ridiculous in
scope; it’s no surprise that these devices have become indispensable on such
a short timescale.

Even discounting our use of smartphones and personal computers, we
still have countless interactions with digital products in our daily lives. We
browse for movies on our televisions, set timers on our ovens, let our ther-
mostats decide when they can save power, tell the lights to turn on when
we get home, and pop little pods into our coffeemakers, relying on them to
know the rest.

Our experience with different interactions can be as wildly different as the
interactions themselves. We might have a pleasant time using our phone
to play a casual game, or a miserable time trying to figure out the secret
sequence of buttons that puts a universal remote in pairing mode. An in-
dividual’s perception of the quality of an interaction will vary depending
on their needs, preferences, and prior experience. What may be a minor in-
convenience to one person may be immensely frustrating for another. What
might be obvious to an experienced user may be inscrutably confusing to a
novice. Different people experience the same interaction differently.

Interactions do not simply spring out of nowhere for us to criticize. They
are designed, with varying amounts of thoughtfulness and success, to help
us accomplish tasks, entertain us, and delight us. Interaction design encom-
passes everything from outlining an app’s user workflow to laying out the
buttons on a coffeemaker. Interaction design is in software, and in hard-
ware. It’s choosing fonts and colours, creating icons, and making widgets.
It’s research, prototyping, implementation, and testing. Interaction design is
about understanding users’ needs, identifying what they need or want to do,
and creating the best possible experience for them to do so.

We must also recognize that the immediate effect of an interaction is
merely one aspect of its significance. Multiple interactions can support a
larger goal for the end user. Further, the design of these interactions can
have an impact beyond individual users, serving a broader purpose.

19

The Game Designer’s Playbook

Let’s examine how the impact of an interaction can extend beyond its
short-term consequences with a quick example. Imagine a navigation app
that uses data about traffic flows and local construction to minimize driving
time as opposed to route length. One interaction you have in using the app
might be searching for your workplace on the map. This might immediately
provide you with an estimation of travel time, and the option to plan a route.
In conjunction with other interactions, this can support the larger goal of
saving time on your morning commute. At a macro scale, the app might aim
to help reduce emissions by shrinking the amount of time vehicles spend on
the road.

Interaction designers need to consider each level of impact in their work.
Good interaction design follows a multilayered approach: it considers how
an interaction can immediately satisfy a user, how that interaction supports
the user’s overall goal, and how it can help fulfill the broader purpose of the
experience they are creating.

We’re not here to talk about navigation apps or coffeemakers,
though—we’re here to talk about games. Everything we’ve just discussed ap-
plies just as much to games as it does to smart appliances, word processors,
social media sites, or any other interactive product.

This may not be obvious at first. Games and productivity applications, af-
ter all, offer vastly different experiences. Though the interactions contained
therein will vary accordingly, the core philosophy of interaction design in
games is still the same. Just as in other applications, interaction design in
games is about creating a satisfying user experience. The multilayered ap-
proach discussed previously also applies to games, and can be employed to
help create a more cohesive experience.

At first glance, it may be difficult to see how a single game interaction
has any long-term impact. The act of play is having fun in the moment,
fleeting, and can be aimless. Some games do not even provide players with
any explicit direction or goals, having no win condition. How can we view
the impact of interactions in such games as multilayered?

Consider the sandbox gameMinecraft. ThoughMinecraft does have an end-
ing of a sort, it never pushes players toward any specific goal. Aside from
basic survival mechanics, players need not accomplish anything in particu-
lar to play, as is standard in the sandbox genre. And yet, we can still view the
interactions in Minecraft through the lens of multilayered design.

Take a single interaction from the game’s core gathering and crafting me-
chanics, mining diamonds. This provides multiple immediate delights for
the player—the excitement of seeing a rare resource, the satisfaction as the
block is slowly chipped away, the plucky sound effects that play as it is
mined successfully. However, the consequences of this interaction also sup-
port players’ larger goals. Though no explicit goals are given to the player,

20

The Parlance of Play

Minecraft creates an environment where players define their own goals, such
as building a mansion or having a full suit of expensive armour. Interactions
to acquire resources support these goals by giving the player more materi-
als to build and craft with. Taken together, this interactive loop of resource
acquisition, crafting, and consumption supports the game’s larger purpose:
immersing players in a world that serves both as an escapist fantasy and a
creative outlet.

Figure 2.2 “Layers” of interaction in Minecraft: resource collection (top left), crafting
basic tools (top right), and building a base (bottom). In this case, the base is a jungle
hideaway used by one of the authors when she’s not busy griefing her friends in the
server.
Credit: Minecraft was developed and published by Mojang Studios.

It is important to note that many games have purposes beyond enter-
tainment. Researchers and creators alike have explored the use of specially
designed games for education, therapeutic purposes, physical rehabilitation,
and professional training, among other applications. Such endeavours are
commonly referred to as “serious games.”

Having broader goals beyond creating a fun experience is far from unique
to serious games, however. Many commercial games explore serious sub-
jects, aim to educate players in some way, or seek to have some form of
social benefit. This is especially true in recent years, as designers have sought
to tackle issues like war, mental wellness, and grief in nuanced ways. Men-
tal health in particular has been explored by a number of games that help
to destigmatize individuals’ struggles and provide an empathetic experience
for players. Celeste, Night in the Woods, and Hellblade: Senua’s Sacrifice, for

21

The Game Designer’s Playbook

instance, all feature main characters dealing with mental wellness issues,
providing sensitive, informed representation. Designing games that aim to
provide something more than entertainment gives interaction designers the
additional challenge of figuring out how to support these broader impacts
even in moment-to-moment gameplay.

Understanding how better interaction design can help enhance both im-
mediate player enjoyment and a game’s intended overall impact is the focus
of this book. Together, we will examine how a game’s individual interactions
come together to create a fulfilling user experience. Our discourse will in-
volve examples primarily drawn from commercial games in the consumer
entertainment space. However, the design principles discussed apply not
only to commercial entertainment games, but serious games, gamified ap-
plications, and games for social change. Each chapter explores a different
area of applied interaction design in games, aiming to provide a complete
overview of how thoughtful interaction design can be employed to create
better game experiences. If you’d like an overview of what is explored in
each chapter, you can find a brief outline in Section 2.5.

Before we dive into the specifics of game interaction terminology and how
interaction design is practiced in the industry, let’s look at how successful
interaction design manifests in popular games.

2.2 What successful game interaction design looks like

You’re clung to the side of a cliff, squinting through the downpour of a trop-
ical storm. The weather had changed in an instant, and what you thought
would be a routine expedition has quickly become a perilous journey into
the unknown. As lightning crashes behind you, you take one final des-
perate leap, grabbing onto the top ledge and hauling yourself to safety.
You look around, awestruck by the beauty of the jungle sprawling out
around you. Without glancing at your map, you have no idea where you
are, but you do know that you’ll remember this feeling of discovery for a
long time.

Gameplay in The Legend of Zelda: Breath of the Wild is packed with mo-
ments like this. Though prior games in the series had typically given players
carte blanche to roam most of their landscapes freely, BotW was the first
Zelda game to feature a sprawling world that was open by design. Boss fights
can be completed in any order, and artificial boundaries are never thrown
at the player to say: “We’re not ready for you to come here yet.” Nintendo
aimed to create an experience for players to feel immersed in a fantasy world
where they have absolute freedom.

22

The Parlance of Play

This is achieved brilliantly through the game’s world design, but that feel-
ing of freedom also owes a great deal of its success to how its core navigation
mechanics are implemented. Navigating in BotW isn’t just about holding
forward to run; in going from one place to another, players have a litany
of tools at their disposal and actually interact with the environment dur-
ing travel. Players can run, climb, glide from high ground, surf downhill
atop a shield they’re carrying, ride a horse, or conjure pillars of ice to cross
dangerous waters. Climbing especially proves itself an indispensable part
of the game’s discovery-driven feel. With rare exception, players can climb
any vertical surface. Cliffs, trees, buildings—where a sheer ten-metre verti-
cal wall would say “this is the level boundary” in most any other title, in
BotW it beckons “if you can make it up here, you’re bound to find some-
thing amazing.” With each leap up a cliffside, players reinforce their agency
and anticipate the sight of some new landscape, delivering on the absolute
freedom that Breath of the Wild seeks to achieve.

Figure 2.3 A diverse set of landscapes in Breath of the Wild supported by an equally
diverse navigation toolkit. Besides running around, the player can use a paraglider to
fly (left images) or climb to reach a vista atop a tower (top right) or cliff (bottom right).

Credit: The Legend of Zelda: Breath of the Wild was developed and published by Nintendo.

Plenty of games don’t aspire to grant players total freedom; sometimes,
they aim to emulate a carefully crafted film where the player is cast in the
lead role. The Uncharted series is famous for creating such experiences, where
players are taken on a veritable thrill ride as action hero Nathan Drake. De-
signing the flow of interactions to fit a tightly linear, scripted path is critical;

23

The Game Designer’s Playbook

players must be guided to take the same basic path with the correct timing,
but still feel a sense of control over what happens. Naughty Dog achieves this
in the Uncharted games by pushing the player in the right direction without
relying on the invisible walls, obnoxious quest prompts, and “follow this
path exactly” UI (user interface) that have become frustratingly ubiquitous in
modern action-adventure titles. Players are guided by topography, the place-
ment of objects in individual areas, colour cues in the environment, dialogue
from characters, and dynamic obstacles thrown at them in a believably coin-
cidental but entirely deliberate manner. Even though players know they are
being led from setpiece to setpiece, the organic feeling of each decision they
make to run, shoot, climb, and drive their way forward preserves the magic
of the experience.

Both the Uncharted and Legend of Zelda games are what you might refer
to as “traditional” in terms of their form factor and expected player habits.
Both are usually played on relatively roomy screens, and players have ac-
cess to peripherals like headsets and gamepads. Players generally play for
an hour or more at a stretch, and may return to the game once or twice a day
at most.

The same cannot be said ofmobile games, at least, not typically.Most users
will be playing on a small screen, without audio, for a few minutes at a time.
Without access to more complex input methods, mobile games need to rely
on touch input, necessitating simple controls. In a saturated market with so
much competing for our limited attention during short periods, games try
to keep the player coming back over and over, creating a routine. Successful
games in this space reflect these considerations in their interaction design.
Angry Birds, one of the first breakthrough hits in themobilemarketplace, gave
players a series of short, snappy levels where everything they needed to know
was visible at once. Controls were as simple as they could get, with players
swiping across the screen to slingshot their avian ammunition into action.
Though such an interaction may have been a lacklustre click-and-drag for a
PC game, as a gestural control, it is incredibly satisfying to execute. Action is
immediate and provides a torrent of enjoyable feedback to players through
visual and sound effects, score pop-ups, and character animations.

Many games in the mobile space use an onslaught of feedback for every
interaction to give players an accelerated sense of reward. Candy Crush, the
first massive hit in a long string of Bejeweled clones (naturally, Bejeweled itself
was a clone of Shariki), uses this strategy to the extreme. Every move, every
use of a power-up, and every completed level is met with a saccharine com-
bination of joyous sound effects, harp riffs, animated text, bursting particle
effects, flashing lights, and congratulations. Of course, Candy Crush employs
this sort of spectacle alongside prompts to spend real money in-game that
are hardly subtle, and a tightly controlled reward schedule for repeated play.

24

The Parlance of Play

This creates an experience which is objectively shallow and manipulative
more than anything else, and yet players keep returning. Here, we will treat
games like Candy Crush with care, as examples to be learned from, but not
emulated. Quality interaction design isn’t just about ensuring success, it’s
about respecting the needs and boundaries of our players.

Figure 2.4 In Candy Crush, players are bombarded with constant affirmations that
their every swipe is a gift from the heavens. It’s an undeniably engaging feast for
the eyes (and ears), but ignoring all that hindbrain stimulation, it’s also a ploy to
keep players coming back and eventually shelling out some cash. Getting confetti for
completing the guided tutorial on your first try feels a bit like winning the Nobel for
changing a lightbulb without getting mustard on your shirt.

Credit: Candy Crush was developed and published by King.

Ethical commentary aside, recent design trends and shifts in the mar-
ketplace have also created opportunities for innovation. Twenty years ago,
touchscreens were mostly a promising oddity. Today, most people cart one
around in their pocket, and the clunky stylus-driven games of old have been
replaced with slick, fluid experiences. But mobile gaming is just one avenue
that’s helped to diversify the nature of game interaction; other advances,
such as the still-emerging space of virtual reality and the rapidly growing
world of esports, are also changing the ways we play.

Many innovative games have been released for VR in the past few years,
though none have quite matched the fanfare of Valve’s latest entry in the
Half-Life franchise. Half-Life: Alyx earns well-deserved praise from fans and
critics alike for its atmospheric level design, combat, story, and soundtrack.

25

The Game Designer’s Playbook

Perhaps the most important reason Alyx shines as a VR title, however, is
the sheer attention to detail in making each interaction feel as natural
and satisfying as possible. Playing Alyx doesn’t feel like playing a first-
person shooter that’s been ported to VR. Interactions that are impossible
to execute in high fidelity with a gamepad are fully realized with gestural
controls.

The act of looting, typically relegated to button presses out of neces-
sity, is replaced with physically rifling through desk drawers and plucking
grenades off the toolbelts of dead foes. Players are given the sensation of
having telekinetic powers with the gravity gloves, a piece of in-game tech
that allows objects to be hooked in and grabbed from afar. Gunplay is most
often up-close and personal, having players scramble to grab a new mag-
azine and reload their weapon manually without relying on a character’s
animation to do it for them. The game switches flawlessly from adventure,
to first-person shooter, to survival horror and back again. It manages to
do this without skipping a beat or feeling disjointed because its experience
minimizes the barrier between real-life action and in-game interaction so
effectively.

Games like Alyx show us that good interaction design doesn’t just mean
incrementally improving on convention to deliver solid experiences. Good
interaction design can mean respecting players’ expectations while simulta-
neously surprising them with innovations that expand our understanding of
what games can accomplish.

2.3 The field of game interaction design

Many areas of game development are tricky to describe academically. They
are multidisciplinary, needing to reconcile subtle differences in terms and
methods from the domains that inform them. Like the game industry itself,
they are constantly changing. Pieces of knowledge can rapidly evolve signif-
icantly or become completely obsolete. Interaction design may be one of the
most fickle of them all, with trends flaring up and dying out in what seems
like an instant.

Irrespective of its mercurial nature, however, a broad discussion of the
field is still helpful. Reflecting on the research domains that have contributed
to interaction design helps to explain the reasoning behind generally ac-
cepted ideas. Keeping an eye on progress in these domains can also help to
identify developments that will eventually gain traction in game interaction
design.

Naturally, as a child born of many different fields, game interaction de-
sign has inherited a great deal of terminology, alongside inventing some
of its own. Understanding this language establishes common ground for
26

The Parlance of Play

communication between professionals, and breaking down examples to
analyze them in an abstract way. So, how do we speak (formally) about game
interaction?

2.3.1 The language of game interaction design

We have already established the abstract definition of interaction as a recip-
rocal exchange of information between entities. In other words, one entity
communicates with another, and the other communicates back based on the
information received. In games, one entity is the player, and the other is the
game. The idea of mutual information exchange applies to two or more en-
tities, rather than two alone; in a multiplayer game, many players and the
game itself will all participate in the communication of information.

Everythingwe do in games is an interaction.We communicate with a game
by using some input device like a controller or mouse and keyboard, and the
game communicates the result through some output device, like a screen
or speaker. We issue the command of “run” by pushing forward on the left
analog stick, and the game shows us our character running forward. We issue
the command of “eat” by clicking on food in our inventory, and the game
plays a crunching sound effect. Sometimes, these interactions bleed into the
real world. If we issue the command of “invite player,” we’re reaching out to
another human. If we issue the command of “buy premium currency,” we’re
making a huge mistake and should probably require a password to prevent
late-night impulse purchases.

By abstracting the concepts of “action” and “effect,” we can create a com-
mon model for all game interactions. Since we are ultimately creating an
experience for players, we will centre our viewpoint around the player’s
perspective. We will call this breakdown the player interaction model. The
player interaction model describes the steps involved in an interaction from
beginning to end:

1. Game communicates information about state to player. Before
deciding what to do, players need to know what is going on in a
game. This means the game must communicate about things like the
surrounding environment, available resources, and so on.

Example: Displaying the player’s current health on-screen using heart
icons.

2. Player decides what to do. Based on the information available, the
player decides what they want to do. Depending on the game, this
might mean running, jumping, swimming, flying, shooting, crafting,
building, talking, cooking, or vandalizing another player’s territory.

Example: Noticing you are low on health and deciding to drink a
potion.

27

The Game Designer’s Playbook

3. Player communicates desired action to game. The player communi-
cates their intent to the game via the input device used (e.g., mouse
and keyboard).

Example: Clicking a health potion in your inventory.

4. Game reacts to action. Based on the player’s input, the game updates
internally to reflect changes in its state as a result. This might mean
things like changing the position of objects in the world or updating
resource values.

Example: Increasing the player’s health.

5. Game communicates result of action to player. Feedback needs to
be provided on the effects of their actions for players to know how
the game’s state has changed as a result. This might include sound
effects, animations, particle effects, controller vibration, voice clips, or
simply updating the heads-up display (HUD), among any other forms
of feedback the game can provide.

Example: Playing a sound effect and updating the display of the
player’s current health.

You will notice from this breakdown that it forms a cycle quite neatly.
The consequences of one interaction change the game’s state, the com-
munication of which to the player is updated accordingly. Based on this
new information, players decide what to do next, creating a cycle of com-
munication between player and game as the player takes one action after
another.

You may also notice that steps 2 and 4 do not involve direct communica-
tion. These steps are where the player decides what to do (reacts to informa-
tion from the game) and the game updates itself (reacts to information from
the player). Interaction design focuses on refining the communication that
happens in steps 1, 3, and 5 to provide a better experience for players. Each of
these steps relies on reaching across the boundary between player and game.
Bridging the gap between a player’s brain and a game application is accom-
plished through the devices we havementioned, like controllers and screens,
and often supported by virtual elements, like menus and HUDs. We can refer
to these points of contact as interfaces: things that facilitate the interaction
between player and game.

Formally speaking, you may hear of four basic types of interaction. These
four categories are not mutually exclusive, rather being used to help describe
the combination of qualities that define different interactions. We will not
use these terms extensively in this book, but it is helpful to understand them,
and they can be useful in helping to identify the types of actions that players
need to take in games at a high level.

28

The Parlance of Play

Figure 2.5 The cycle of game interaction. The game communicates with players
through visuals, sound and other forms of output. Players communicate with the
game by providing input through peripherals, gestures, or some other means of con-
trol. This back-and-forth surrounds every interaction players have with a game. In the
previous case, the player notices they’re low on health and decide to heal—and if they
arrive at a point where they’re low on health again, the cycle repeats itself.

Instructing is the act of giving a command to a system. In a game, this
might be something like hitting the reload button, selecting a weapon
from a menu, or typing an action in a text adventure.

Conversing is engaging in a dialogue. In games, this might mean talk-
ing to other players over voice chat, or asking a non-player character
(NPC) about the local area.

Manipulating is interacting with virtual objects. This type of interac-
tion has always existed in games (e.g., opening doors, pushing crates).
Input methods like touchscreens and VR controllers have helped to cre-
ate more high-fidelity representations of these interactions in games
(e.g., by allowing you to reach out and grab a door handle instead of
pressing a button to open it).

29

The Game Designer’s Playbook

Exploring is movement through a virtual environment. Many games,
particularly shooters, action-adventure games, role-playing games
(RPGs), platformers, and other games with a first- or third-person per-
spective, are heavily reliant on this type of interaction for the player to
move through a game’s world.

Figure 2.6 Four types of interaction. Instruction is giving an explicit command, such
as hitting a button to purchase something from an in-game merchant. Conversing is
engaging in dialogue, such as receiving a tip on the local goblin invasion from your
friendly neighbourhood butterfly lion elf. Manipulation is interaction with virtual
objects, such as laboriously creating a stack of tropical fruits. Exploration is moving
through a virtual environment, whether the depths of the ocean, the outer reaches of
space, or a forest filled with dragons.

Likemany concepts in game interaction design, this terminology is borrowed
from the broader domain of interaction design, itself a descendant of sorts
to human-computer interaction. In fact, game interaction design borrows a
great deal more from other domains than you might first imagine.

30

The Parlance of Play

2.3.2 Fields related to game interaction design

As a hugely multi-disciplinary industry, game development has stolen the
lunch money of many different fields during its rapid growth. Game in-
teraction design is no exception, existing at the intersection of software
engineering, understanding human behaviour, and the study of game sys-
tems. Here you will find a brief description of some of the fields that have
contributed heavily to the space of game interaction design. If you’re curi-
ous to know more about any of these areas, you might want to browse some
recent research, or leaf through an introductory textbook, to get an even
better footing with the groundwork for interaction design. If you’re feeling
particularly thorough, go ahead and obtain a doctorate in one or more of the
following subjects before continuing this book.

Game design in general describes the design of all manner of game
systems, from core mechanics, to story and mission structures, to AI
behaviours, to cinematics, and everything in between. Level design is
often included under the terminological umbrella of game design as
well, though “game designer” and “level designer” are typically separate
jobs at all but the smallest of studios. If you like, you can think of game
interaction design as a subset of game design. We’re not so picky about
definitions in this book, and we promise not to tell.

Human-computer interaction (HCI) is a field that aims to understand
our relationship with computers. HCI is a broad domain that encom-
passes everything from evolving new design methods, to developing
new hardware, to observing how people use technology in their every-
day lives. The body of knowledge that has emerged from the study of
HCI has a substantial influence on game interaction design. The concept
of user-centred design (UCD), for instance, which demands a focus on
user needs and attitudes throughout the design process, is essentially a
prerequisite for good game interaction design. More information about
UCD is provided in Chapter 10.

User experience research centres on evaluating the effectiveness of in-
teractive systems. Of particular interest is games user research (GUR),
which focuses on understanding user experience (UX) in games. As with
any design discipline, evaluation is an essential part of game interaction
design. Interaction designers should have at least a basic understanding
of GUR methods as a result. The overview of evaluation methods given
in Chapter 11 can serve as a starting point for those unfamiliar with
the field.

31

The Game Designer’s Playbook

Ludology is an overly fancy Latin-inspired portmanteau referring to
the study of games, particularly viewing games as formal systems. Ul-
timately, every interaction we design is a pathway for players to alter
the state of a game system. As an interaction designer, you will need to
have a solid understanding of how a game’s subsystems relate to one
another to create meaningful context for presenting interactions to the
player and providing feedback.

Cognition, psychology, and social science help us understand how
people think, behave, and interact with one another. Communication
is an essential part of any interaction, whether between two players or
players and the game itself. Research in human cognition and psychol-
ogy can help us to design interactions that will elicit the perceptual and
emotional responses we want our players to experience. Understanding
social interactions and cultural norms also help us in knowing what
players expect from successful communication.

Like every other part of game development, game interaction design also
shares a relationship by association with computer science. Typically, in-
teraction design specialists will be fairly removed from the technical pro-
gramming aspects of a development pipeline. The exact skillset you need to
practice interaction design in the industry may vary depending on the needs
of your studio and the role you are asked to assume, bringing us to the next
topic at hand.

2.3.3 Who does this sort of thing in game development?

While the title of “Game Interaction Designer” does exist in the industry, you
will rarely find such specialized titles outside of very large studios with sev-
eral hundred employees. The more common specialist role associated with
interaction design is that of the UX designer, a job that overlaps heavily with
interaction design while having a focusmore on the gestalt of the game expe-
rience. UX designers are commonly found at medium-to-large development
studios, especially those with a player-centric design ethos. Plenty of UX pro-
fessionals would argue that a dedicated UX designer is necessary on any team
with half a dozen people or more. With the tight budgets and timelines of
game development, this is often not the case in reality.

For smaller studios and independent developers without UX designers,
interaction design is usually rolled into the responsibilities of game design-
ers. This can be a natural fit for smaller projects, as a designer can sketch
out plans for how players will interact with a game’s systems during the
conceptualization and refinement of those systems.

32

The Parlance of Play

Even if interaction design is not an explicit component of your role at a
studio, it may still relate heavily to the work that you do. If UI programming
is part of your job, you will probably work closely with interaction designers,
or be asked to take on some design responsibility yourself at a smaller studio.
2D artists and graphic designers will often be tasked with creating elements
of a game’s graphical user interface, and may be granted significant influ-
ence over a game’s interface design. Animators and sound designers play
a substantial role in shaping the feedback that game interactions provide.
A solid understanding of how this feedback will affect player decision-
making and convey the correct tone is essential in such work. Lastly,
programmers responsible for implementation need to understand exactly
how the interactions they create should proceed and why, helping to prevent
small technical changes from unintentionally muddying design intent.

In a perfect world, anyone who works in game development should have
a solid understanding of game interaction design, seeing as how it permeates
most every aspect of a player’s experience. Of course, this statement smacks
of a self-centred specialist fanaticism in much the same fashion as “everyone
is a UX designer” or “management needs to know engine programming.”
And yet, such dogmas are more idealist than self-centred; everyone on a
development team really does contribute in some way to UX, and manage-
ment really should understand the technical details of development to some
degree. The point here is that, though dedicated interaction design is cer-
tainly a specialist role, the field of interaction design is useful to understand
regardless of your job title.

2.4 How can we define successful game interaction
design?

Good interaction design begets a good game experience, as we have al-
ready explored at a high level. But beyond appreciating specific instances of
well-crafted interactions, how can we create a universal assessment of game
interaction quality?

Quality, like fun, can be a frustratingly nebulous concept in game devel-
opment. Some comparisons have obvious conclusions; players will prefer
a game with responsive controls over one with input lag, and view the
former as being of higher quality. More subjective questions lead to more
divided responses, though. Some players will enjoy visual novels with heavy
narrative content and cutscenes interwoven through exploration, while oth-
ers will lean on the skip button and resent the lack of “real gameplay.” Some
players will love the flurry of a fast-paced online shooter, while others will
stay away to play something they find less stressful.

33

The Game Designer’s Playbook

A skilled designer will keep the characteristics and preferences of their tar-
get audience in mind throughout the development process—an ethos aptly
referred to as user-centred design. We can apply this user-centric approach to
give a much clearer definition of “success” with respect to game interaction
design. Given that we know who our target players are, we can consider five
questions about any given interaction from the player’s perspective:

1. “Would I want to do this?” The initial appeal of an interaction de-
termines whether players will be inclined to try a new experience in
the first place. Here, it is essential that the designer knows the prefer-
ences of their target player, and appeals to past positive experiences
where possible. A sequel in a franchise, for instance, should use famil-
iar elements to bring back returning players, while incorporating some
changes or additions to keep things exciting and create new fans.

2. “Do I know how to do this?” Players need to understand the steps
taken to complete a specific in-game action, whether intuitively or
through explicit instruction. If they cannot understand what needs to
be done, they will frustratedly search for the information elsewhere, or
quite possibly give up entirely. Consider an enemy vulnerable only to
fire; cues in its design (e.g., resembling wood or ice) or in-game hints
can help players understand what to do. Without such information
available, relying on the player to “just know” may result in frustra-
tion as they swing a sword repeatedly to no avail and eventually give
up.

3. “Can I do this?” This question asks about an interaction’s usability.
Burying a needed command in six layers of menus, having unjustifi-
ably complex control mappings, and failing to provide any feedback
on whether an action was successful are all excellent ways to ensure
that nobody will ever be able to enjoy your game. Understandable in-
terfaces, thoroughly tested control schemes, and abundant feedback
will all improve the usability of the interactions they support.

4. “Is it fun to do this?” Fun is that other nebulous concept we men-
tioned earlier. Like the initial appeal of an interaction, whether some-
thing is perceived as fun depends a great deal on user preference. It is
generally impossible, or at least wildly unreliable, to attempt evaluat-
ing this question as a self-proclaimed design expert. More so than any
other characteristic, fun requires real players to validate.

5. “Would I want to do this again?” Even if the answer to each prior
question is resoundingly positive, this last point can prove the swift
death of any interactive experience.Whatmight be fun at first canwear
out its welcome, a party game played once and left to collect virtual
dust on its digital shelf. Retention and replay value are both dependent
on creating interactions that not only hook players in, but create long-
term appeal.

34

The Parlance of Play

Figure 2.7 Top: you generally want to avoid giving users a negative experience on
purpose, unless of course you’re employing a bit of tactful punishment to make some-
thing like a boss fight more rewarding in the end. Bottom: using pleasant feedback
can help to make an interaction more satisfying.

If players can say yes to each of these questions, then our design is success-
ful. This concept bears resemblance to many such models in HCI and game
design, often referred to as layers or levels of experience design.

For readers familiar with HCI, this discourse has no doubt brought upon
flashbacks of diagrams featuring pyramids, nested circles, or a gaggle of ar-
rows, and no apology on our part can fix the cacophony of geometry rattling
around inside your head. But whether this is the first time you’ve seen a
breakdown of user experience, or you’ve already seen a dozen different ones
this week, the takeaway is the same. The number of layers, the terminol-
ogy, and the nightmarish shapes used to contain them are irrelevant. What
matters is that successful interaction design means fulfilling the needs of
your players from the moment they see your game to the end of their first
playthrough and beyond.

35

The Game Designer’s Playbook

2.5 What to expect from the rest of this book

Becoming a game designer is like becoming a surgeon, albeit with signifi-
cantly fewer lives and significantly more unnecessary meetings hanging in
the balance. Learning the theory is all well and good, but if you ever want
to get anything done, eventually you have to start cutting things open. This
is a book about dissecting games to see how they work, and how we might
mess about with the bits inside to improve them.

Each chapter is loosely centred on one of these bits, like narrative or feed-
back. We’ll examine how different games tackle the aspects at hand, and
derive general advice based on how existing titles succeed, fail, or fall some-
where in between. If you’re looking for a leisurely read, then feel free tomove
through the chapters in order, or pick whichever strikes your fancy and go
for it first. If you’re currently six hours from release and desperately trying to
fix your UI before your Steam listing goes live, fear not—each chapter func-
tions as a standalone read (and you, hypothetical developer, are probably
looking for Chapter 4).

If you’re not sure where you’d like to start, here’s a few vignettes to give
you a feel for what each chapter is all about.

At the insistence of that one friend you have, you finally break out your
gamepad to try your hand at Dark Souls 3. The game sticks a sword in your
hand, slaps some instructions down on the ground in front of your character,
and pushes you in front of a giant knight-turned-demon-turned-dragon. Af-
ter being obliterated continuously for the better part of an hour, you question
your sanity, your will to live, and your friendship. Aren’t tutorials supposed
to be easy?

Our first experiences with games, particularly in learning how to play and
overcome the challenges thrown at us, are explored in Chapter 3.

Sometimes, the way a game looks and feels can draw us in before we’ve
even scratched the surface of what it has to offer. One of the best examples
of this phenomenon is playing Ori and the Blind Forest for the first time. The
visual design and soundtrack of the game are both stunning, but what really
makes the experience so satisfying is its feedback. With every step, leap, and
glide, your character Ori is a spectacle of fluid animation and cheerful foley.
Even when you’ve failed a challenging gauntlet of platforms are watching
Ori wink out of existence, you can’t help but admire the resultant explosion
of light, sparks, and sound. Chapter 4 is all about designing satisfying and
informative feedback that keeps players coming back for more.

Back in the early 2000s, schoolchildren everywhere became briefly ob-
sessed with QWOP, a browser game that had you frantically bashing your
keyboard in a fruitless attempt to make your character run by controlling, of
all things, the muscle groups in their legs. The developer of QWOP moved on
to create Getting Over It With Bennett Foddy, an equally sadistic game where
36

The Parlance of Play

players control a character stuck in a cauldron whose only means of locomo-
tion relies on swinging a sledgehammer. Both games are frustrating, neither
obeys any established convention, and yet they’re nonetheless incredibly
compelling. How a game’s controls can be designed to meet, or pleasantly
subvert, our expectations, is the focus of Chapter 5.

Even if we discount challenge, or the usual definition of “fun,” games still
have a wealth of experience to offer. Like literature and film, gaming is a
medium for storytelling, rife with opportunities to make us laugh, cry, and
reflect on our own lives. The Last of Us is a game about the apocalypse, and
the rise of the undead. But at its core, it is a story of grief, acceptance, love,
and an exploration of what it means to be a parent. In the first few minutes
of the game, the protagonist, Joel, holds his daughter as she dies. Eventu-
ally, circumstance brings him together with Ellie, a young orphan whom
he grows to love. As you watch Joel and Ellie effectively become father and
daughter, it can be difficult to understand how such powerful emotional mo-
ments spring from a game that could have just been about shooting zombies.
Chapter 6 looks at how games can design impactful narratives that leave a
lasting impression on players.

The remaining chapters that form the middle part of this book focus on
relatively recent developments in game design. The promise of virtual reality,
glimmering in system-selling, innovative titles like Beat Saber, is the focus of
Chapter 7. If you remember the spectacle that was several thousand people
trying to control a Pokémon game on Twitch via text chat, you’ll enjoy exam-
ining the interactive potential of livestreaming with us in Chapter 8. Lastly,
Chapter 9 looks at how artificial intelligence is shaping our experiences by
giving us more thoughtful in-game companions, manipulating us to spend
our money, and even doing some of the creative work for us (remember No
Man’s Sky?).

If all this talk of the games that are already out there is making you yearn
to create something yourself, then you may want to start with Chapters 10
and 11, which discuss prototyping and evaluation respectively. Finally,
Chapter 12 speculates about the future of game interaction design. If you
are curious to see our design guidelines for developing games for the
Smell-O-Vision (yes, it’s finally coming), you may find this chapter espe-
cially interesting. Alternatively, for our mid-twenty-first century readers, you
might want to pause and laugh at our vision of the future before burning this
book for warmth.

As you embark on your journey to probe the depths of interaction design,
and perhaps one day create a game yourself, always keep the player’s per-
spective in mind. Game interaction design is both science and art; it is about
respecting the laws that govern our perception and behaviour, while creating
something that surprises and delights us.

37

The Game Designer’s Playbook

Expert Profile: David Galindo—Food for thought

Founder, game designer, and lead programmer at Vertigo Gaming Inc.

Many of us spend our lives chasing a dream, whether it’s something we’ve always
known, or something we’ve just discovered. For David Galindo, that dream has always
been making games. He started out working on hobby projects in junior high, hoping
to eventually turn his passion into a career. If games didn’t work out, he liked the idea
of becoming a journalist, leading to an undergraduate degree in communications and
a gig as a movie reviewer for IGN.

Before making the leap to work on games full-time, one of David’s other jobs
was serving as the lone barista at a bustling hospital coffee shop. “Customer service
changes you,” he says with a chuckle, “because you have to deal with people.” In
dealing with all sorts of people in all sorts of moods, he says ideas for gameplay dy-
namics began to emerge—dynamics he brought to life in the game that proved to be
his breakout hit.

Cook, Serve, Delicious! is a restaurant sim, catered to challenge-hungry players look-
ing for an occasionally punishing test of their reflexes. It was David’s biggest game
to date, but with a budget just shy of $10k, he describes development as “scrappy,”
pulling together what he could to fund the game’s art andmusic. He programmed the
game himself, despite having no formal training: “I’m a very rudimentary coder, but
I can code enough to get my ideas going [. . .] If it works, it works.” And CSD worked
more than well enough; after a late 2012 release bolstered by some signal boosts from
Giant Bomb and Steam Greenlight, it sold tens of thousands of copies.

David hoped to break even, but the game’s performance had returned his original
budget a fewdozen times over, leaving himwith awindfall to fund future projects. One
was a city-builder, ultimately shelved when David realized that he’d need to act fast if
he wanted to make a sequel to CSD while the original game was still popular. He’d go
on to create two such sequels, the first of which came out in 2017. Working on CSD 2,
David says that all that cash helped immensely in terms of things like art, but as an
independent designer, “having a big budget doesn’t really do a lot for me gameplay-
wise.” In finding a way to move the series forward, he figured the second game might
make the first one obsolete. But with a more arcade-style arc, CSD 2 stood alone as
its own experience. Unfortunately, not all fans of the first game liked this change, and
David had to deal with a small but vicious crowd of review-bombers amidst mostly
glowing praise.

Eventually the reception of CSD 2 evened out to near-universal positivity, particularly
after continued efforts to update the game. But the experience of dealingwith hate had
stung, and David describes work on the third game as “coming from a place of anger”
at first. That anger quickly turned into a much more productive drive to simply focus
onwhat hewanted, something he saysmade development a lotmore fun.While David
is cautious about the applicability of such free-spirited design in general, it certainly
worked for CSD 3, which became a wildly hectic and widely loved game featuring food
trucks run amok in a futuristic apocalypse.

Having capped off the trilogy, David says one of the most surprising things
in retrospect is the diversity of players he managed to attract, ultimately help-
ing CSD to become more inclusive. Despite initially targeting hardcore players,

38

The Parlance of Play

(Continued)

he received interest from casual players hoping for a more toned-down experience,
leading to “chill” modes. He also fielded requests for accessibility features, such as
adding toggles for screen-shake, and siren sound effects, which caused anxiety in some
players. In terms of accessibility and challenge, David thinks that CSD 3 is “pretty close
to achieving that ideal balance,” a goal which has helped to inform his design philos-
ophy: “It’s planning for the power user, and also the user that just wants to chill and
have fun.”

After the runaway success of the CSD games, David says he’s ready to move forward
and experiment with new ideas. Having made it as an indie, he describes success as
“both exciting and scary at the same time.” Getting attention means making money,
but bigger budgetsmean bigger risks, andmore playersmeansmore people to please.

When we sat down with David—and his adorable cat, Pretzel—he was working on
two new projects, one of which is top secret as of this writing. The other is ChefSquad,
a new twist on the restaurant genre designed for streamers to play with their viewers.
He’s releasing ChefSquad for free, as less of a business move and more an exploration
of livestreaming’s interactive potential: “We’re just doing it because we’re having fun.”
The game itself is a large-scale co-op experience, where a host streamer “hires” a
group of viewers as helping hands in a virtual kitchen. While he originally envisioned
ChefSquad as a Gordon Ramsay-esque barrage of barking orders, David’s since shifted
gears to make the game feel like more of a team effort, promoting a sense of commu-
nity between the host and their viewers. He describes the game as experimental: “It’s
not set up to be ‘fun’ [. . .] This game is so dependent on the streamer’s personality
and their engagement with the audience.”

David’s propensity to experiment with new gameplay dynamics reflects on his ap-
proach to design, which is best described as playful. He loves to surprise people,
whetherworking in little half-jokes that leave the punchlines up to the player, or setting
a match to conventional expectations like he did with CSD 3. Grinning, he mimics an
unsuspecting player—“I thought I was playing a cooking game, not a robot apocalypse
game!”—and his joyful response, “Ha, gotcha!!”

When thinking about the phrase interaction design specifically, David has a fresh
interpretation focused on interactions not only between game andplayer, but between
the people surrounding a game. This doesn’t just include players, but also content
creators like streamers, and the entire online audience consuming content related to
that game. Successful game design, he says, is about capturing the interest of all those
people: “You want to engage the audience. And you’re always asking yourself how to
do that. That’s what game design is all about. How to keep the audience engaged for
as long as possible. And keep them entertained, and having fun, and doing something
that they’ve never quite seen before.” Today, David says achieving that goal is more
difficult than ever, thanks to rising standards of quality and an increasingly packed
marketplace. “It’s the easiest it’s ever been to make a game,” he says, “but it’s the
hardest to succeed at it.”

Given his status as the celebrity chef of gaming, we simply had to discuss food
with David as well, both in games and in general. When we asked him about his
favourite food, he struggled to settle on one dish, having had many memorable ex-
periences trying new foods for the first time with friends. After meeting up with the
Zach behind Zachtronics—developer of games like SpaceChem and Opus Magnum—at
PAX, Zach insisted he try a popular Japanese street food. Failing to find a restaurant in
town that served it, Zach invited David over to his house for a home-cooked version

39

The Game Designer’s Playbook

(Continued)

of okonomiyaki, a dish that eventually worked its way into the CSD games. David has
similar stories of meeting up with other familiar names, like streamers Northernlion
and Kate LovelyMomo, who introduced him to many of the Korean foods that made it
into the series.

David says he’s learned a lot about the foodswe eat in his experience, carefully work-
ing to respect the history and cultural meaning of the dishes represented in his games.
As you can imagine, this effort involves a lot of background research and community
outreach, in the interest of accuracy and avoiding offensive content. David recalls a
few instances of his discoveries, from renaming ingredients to omit historical slurs, to
carefully checking for any religious significance that might affect how a dish should be
represented. With food playing such a central role in the human experience, crafting
games centred around the subject is a great deal more nuanced and complex than one
might think at first. David feels that the space of cooking in games is still very much
unexplored, and although he’s done with CSD, he assures us that his next project will
still involve cooking in some way.

“But to answer your question,” he says, returning to the point that sparked our chat,
“Pizza!”

Further reading

Interaction Design: Beyond Human-Computer Interaction by Jennifer Preece, Helen
Sharp, and Yvonne Rogers (4th ed., Wiley). ISBN: 978-1119020752.
A thorough introduction to the field of interaction design in general, and a great
resource for design methods and exercises.

The Human-Computer Interaction Handbook edited by Andrew Sears and Julie A. Jacko
(3rd ed., CRC Press). ISBN: 978-0429103971.
A book featuring many diverse applications of HCI. Of particular interest are
Chapters 31 Why We Play and User-Centred Design in Games.

Exercises

Decomposing interaction

Take two games you have played in the same genre (e.g., RPG) and pick an interac-
tion common to both games (e.g., casting a spell). For each game, break down that
interaction based on the model discussed in Section 2.3 (game state communication,
decision, input, reaction, feedback). Write a couple of sentences and/or draw sketches
for each step.

After breaking down each interaction, write out a point-form list explaining differ-
ences between how each game implements the interaction. Reflect on what works

40

The Parlance of Play

(or what doesn’t) for each game, and be sure to identify any areas where one game’s
implementation improves on a similar design element from the other.

Everyone’s a critic

Take a game you adore, and pick out one of your favourite singular interactions. Can’t
get enough of hand-clicked cookies in Cookie Clicker? Now’s your chance to express
your love.

Answer each of the questions posed in Section 2.4, trying to highlight what makes
that interaction really shine. Now, do the same thing for an interaction you can’t
stand in a game you absolutely hate. Compare your answers for both interactions.
What makes your opinion of them so different? How could the negative interaction be
improved to become more engaging?

Marvelous mundanity

Pick an action from the real world—preferably a fairly routine one—and think about
how you would transform it into a game interaction that is fun and engaging. What
would the context for this interaction be? What mechanics would it support? Write
some notes and sketches to illustrate how the interaction would play out over the five
stages of the model discussed in Section 2.3.

41

3

The Long Con

As designers, we want our games to be successful. You’ll hear many different
definitions of success in the games industry, depending on whom you ask.
As a first impulse, you might assume revenue to be the most reliable met-
ric. Indeed, the livelihood of a professional game designer is dependent on
sales. The purchase decision marks a turning point where potential players be-
come players, making the leap from being interested in a game to financially
invested in one. In a market where players cannot possibly be expected to
open their wallets for each of the thousands of games on offer, we fixate on
convincing players that our games are worth their money.

And yet, money is far from the only way to measure a game’s success.
Two games with equal revenues are not necessarily equally beloved. A player
might drop an expensive game from their repertoire after just a few hours,
but spend the equivalent of days on end with a cheaper title if it offers a
more compelling experience. Ultimately, players are often more judicious
with their time rather than their money; time, after all, is almost uncon-
testably the more valuable resource. The decision to buy is merely the first
step in a player’s journey with a game; high sales do not guarantee critical
success, user satisfaction, or a secure future for the studio responsible.

In the long run, sustained success is far more desirable than achieving a
single flash-in-the-pan hit. To ensure longevity, a developer needs to pro-
duce a series of games that have a lasting impact on players, or else a single
title capable of holding onto players long after its release—look no further
than Minecraft for an example taken to the extreme. Maybe, then, our efforts
should not be focused solely on convincing players that our games are wor-
thy of their hard-earned cash. Instead, we should ask how the experiences we
create can convince players that our games are worthy of their time. But how
can we keep players invested from beginning to end, and perhaps beyond
even that?

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0003

The Long Con

A critical realization is that players’ needs can shift drastically as they
progress through a game. Over time, players evolve from requiring instruc-
tion and assistance, to freedom, challenge, and sufficient engagement for
long-term replayability. If we can understand and account for these chang-
ing needs accordingly, then we can provide experiences capable of calling
players back time and time again.

3.1 Baby steps

Upon first taking the plunge with a new title, players have very little knowl-
edge, if any, of how it works. A game’s introductory phase is thus responsible
for teaching players the basics and providing a hook to sustain continued
interest, a combined effort often referred to as onboarding. Early on, novelty
can serve as a key factor in capturing player attention, as new mechanics
and content are continuously introduced. With these additions comes the
necessary process of player learning, and the potential pitfall of a game be-
coming overwhelming if it introduces new demands too quickly or with too
little instruction. Conversely, a “hand-holding” approach may seem conde-
scending, or bore players whose skill quickly exceeds the challenge offered
by a game.

During the first phases of a game, the novelty of seeing a game’s mechan-
ics, world, and characters for the first time can help keep players engaged.
After they come to grasp the basics, a game can no longer depend on this
initial novelty to preserve engagement. From this point forward, new con-
tent can be introduced sparingly to ensure players will still have something
to discover. However, without a limitless budget, it is impossible to continu-
ously surprise players to keep their attention. Ultimately, the pattern of basic
interactions players will repeat over and over—the core game loop—must be
compelling enough to sustain player interest. Setting players up to under-
stand and enjoy this core loop is something that needs to happen during
onboarding.

The act of shepherding players on their journey to learn a game’s me-
chanics poses several challenges. What do players need to learn, and when?
How much instruction is too much? How can we convey information to the
player? How do we keep things interesting while preventing confusion or
frustration? And most importantly, how do we make sure that we leave a
great first impression in the first place?

This is an intimidating gauntlet of challenges to be sure, and yet all can be
addressed by accounting for characteristics of a game’s target audience and
basic interaction design principles. With these factors in mind, let's use this

43

The Game Designer’s Playbook

chapter to discuss our first task in designing a complete experience—helping
players learn what to do.

3.1.1 What do players need to learn, and when?

The idea of a tutorial is simple; it is the part of a game intended to teach you
how to play. As a designer, you might view your goal here as making players
aware of what they can do, and telling them how to do it.

The most obvious way to accomplish this is to create an “information
dump”: list out instructions for everything players can do before the game
starts. Such an approach is reminiscent of reading the rulebook before setting
up a new board game. You are told what actions are available and how to
perform them, and then proceed to start playing. If you have ever played a
platformer where every one of the controls was written out for you at the
start with no context, then you’ve seen this approach in action.

There are several problems with this method. Let’s list off just a few:

• Reading a list of actions is neither interactive nor particularly engaging.

• Presenting everything at once can and will overwhelm players with
information, and they will likely forget some instructions.

• Some information may be irrelevant until much later in the game,
leading to confused and potentially impatient players.

• Players are robbed of the chance to discover things for themselves.

Thankfully, this type of instruction is not exceptionally common in mod-
ern commercial titles, though it can still prove a tempting pitfall for novice
designers. After all, why not just get the tutorial over with so players can
get to the “real” game, with its carefully crafted challenges dependent on a
pre-existing knowledge of the mechanics?

The problemwith thismentality is that it fails to acknowledge the learning
process as a fundamental part of the player experience. Our initial assess-
ment of our goals is incomplete. We still need to make players aware of what
they can do, and how they can do it. But we need to convey information
effectively, so that players aren’t overwhelmed or confused. Arguably more
importantly, we need to make learning engaging and rewarding. This will
make information stick by keeping players interested and reinforcing what
they’ve learned. It will also ensure that a player’s first impressions of our game
will be something other than flashbacks to the monotony of an ill-delivered
high school arithmetic class.

Sadly, the concept of an information dump isn’t the only pitfall we
will encounter on our search for a satisfying learning experience. Taking a

44

The Long Con

“finished” game and tacking on half an hour of unskippable tutorial prompts
is not good design. Forcing players to read a manual and then throwing
them into the fire is not good design. There is an unmistakable pattern in
poor tutorial design, and that is the disconnect between tutorial and game.
To make learning a rewarding journey for players, our first step is to stop
thinking of “the tutorial” as some separate entity. Instead, we should view
player learning as a continuous process, and focus on making sure that each
lesson we teach is engaging and fits within the broader context of the game.

There is no blueprint for accomplishing this flawlessly—creating the “per-
fect tutorial,” if you like—but there are a few critical pieces of advice which
will take us from a poorly crafted learning experience to an effective and
engaging one.

1. Make learning part of the game.

Humans, by and large, love to learn new things. Presentation makes all the
difference, though, which is why you’ll find plenty of people enthusiastic
to watch Planet Earth and equally unenthusiastic to relive particularly drab
memories of their schooling. This effect doesn’t just apply to content which
is overtly educational; it applies to any situation where one must absorb
new information. An epic fantasy novel is much more engaging to read
when it pursues worldbuilding through action, as opposed to 40 pages of
expository dialogue and an extensive glossary. A science fiction movie is
more entertaining to watch when we learn about its technology by watch-
ing characters interact with it, rather than spending 10 minutes listening
to an academic explanation. Learning is made more enjoyable by being
skillfully blended within the context of the complete experience which it
supports.

This axiom is true of games, as well. Players pick up a game to play it, and
if the initial learning curve doesn’t feel like part of the experience they were
hoping to get, you risk losing them—even if the rest of the game delivers that
experience perfectly. Packing a boring tutorial onto an otherwise fantastic
game is like welding a rusty tricycle to a Maserati; it detracts from the entire
package. Ideally, learning should be integrated into players’ experience to the
extent that this disconnect disappears entirely. Finessing this integration has
been, for the most part, an area of continuous improvement in game design
over the past several years.

In the first Assassin’s Creed, players are given a tutorial sequence after
an introductory cutscene. During the cutscene, the characters use the word
“tutorial” liberally, making it rather obvious that the next few minutes of
gameplay will focus on memorizing keybinds before users move on. The tu-
torial sequence itself takes place in a foggy void, as opposed to the richly
detailed environments of the main game. Characters contained therein are

45

The Game Designer’s Playbook

faceless, while a disembodied voice instructs players on how tomove around,
fight, and use their special abilities.

This tutorial isn’t terrible; it’s paced relatively well, gives players a chance
to try things out as they are introduced, and equips players with the knowl-
edge they need to get started in the rest of the game. However, it does feel
quite disconnected from the rest of the experience, and not just in terms of
environment. Players have little freedom during this sequence, especially in
comparison with the rest of the game. The game’s narrative is temporarily
on hold, save for a small amount of exposition about its technology. These
disconnects cause somewhat of a delay in the ability of new players to fully
immerse themselves, and on a second full playthrough, make the sequence
feel unnecessary in the greater context of the game.

Assassin’s Creed II, on the other hand, integrates its tutorial into the game
much more smoothly. Basic interactions are taught during a scripted se-
quence that kicks off the game’s narrative. Players are told to watch as
another character handles a few enemies, but are free to jump into the fight
themselves. A few control bindings are taught inventively, and somewhat
humorously, by having the player temporarily take control of their ancestor
as an infant. Once the player gains control of their ancestor as an adult, sig-
nifying the beginning of the game’s main arc, they learn how to combine
moves in combat, loot enemies, and interact with friendly characters. These
interactions don’t occur in a foggy void, either. Instead, the player’s character
gets into a fight with some rich kids, as a friendly character shouts encour-
agement. The player learns looting to grab some coin off their unconscious
rivals and pay a doctor for medical services.

Figure 3.1 In the original Assassin’s Creed, players learn controls in a void while other
characters explicitly refer to the sequence as a “tutorial program” (left). In Assassin’s
Creed II, learning is more grounded in the game’s world, as players are instructed on
fight combos whilst wailing on a group of rich kids (right).

Credit: Assassin’s Creed I and II were developed and published by Ubisoft Entertainment.

46

The Long Con

While it’s still relatively obvious to the player that they’re learning some-
thing, that learning occurs much more organically. Learning happens in the
game’s world, with character and story development unfurling alongside.
And as a boon to new and returning players alike, there’s a decent amount
of freedom in this initial sequence, or at least a great deal more than its
equivalent in the first instalment. This makes the learning process feel less
contrived, more enjoyable, and more engaging in the greater context of the
game.

In general, we can do a few things to make learning feel like a more cohe-
sive part of the game experience. Learning should occur in the game’s world,
not outside of it. In games with a significant story component, players should
learn about aspects of that story, such as characters, plot, and worldbuilding,
as they learn to play. Give players some freedom, and never arbitrarily restrict
actions that haven’t been taught; limitations should have an in-game reason,
such as lack of equipment. Remember that a player’s attention can be mer-
cilessly fickle. Your game needs to be a cohesive, engaging experience from
beginning to end.

2. Do, show, tell.

Just as there are different ways to teach in a classroom, there are different
ways to teach in a game. In school, you were probably given information in
lots of different ways: reading, listening, looking at diagrams, and interactive
exercises. In games, we can identify threemainways of teaching players. Each
of these methods can be used regardless of the information we’re trying to
convey, whether it’s a control binding, a character’s personality, information
about enemy behaviourbehavior, or something else entirely.

First, we can tell players that information in writing or through a voice
clip. This is a very straightforward method of instruction which leaves little
ambiguity, though it can feel a bit heavy-handed if relied on as the sole chan-
nel for everything the player is expected to learn. This method is often useful
as a backup reference for the player, or a source of additional non-vital infor-
mation, such as an in-game encyclopedia. An example is Subnautica’s PDA,
which provides the player with written and voice entries detailing the game’s
lore and the behaviour of its denizens.

We also show players information by guiding them to witness an event
in the game’s world. This is an excellent way to give players knowledge of
enemy behaviour, environmental hazards, and so on, while still feeling nat-
ural. Watching something transpire in the game’s world and learning from
it creates a moment of discovery. Even for communicating a very basic piece
of information, this method can be very effective. Consider the opening se-
quence of BioShock, when players first enter the underwater city of Rapture.
As part of the introduction, players watch from the (relative) safety of the

47

The Game Designer’s Playbook

bathysphere as a Splicer enemy first calls out to and then kills a man stranded
in the area. From this experience, players learn to view cries for help as po-
tentially suspicious, and gain knowledge of the behaviour and movement
patterns of this enemy type. Viewing this atmospheric vignette is far more
engaging than if the player had simply received a radio transmission telling
them to watch out for humanoid silhouettes shuffling around.

Figure 3.2 In BioShock, players often learn something about enemies by witnessing
their behaviour from a safe place before being thrust into their presence.

Credit: BioShock was developed by Irrational Games/Ghost Story Games and published by 2K
Games.

Our last option is to create an opportunity where players need to do some-
thing that they will learn from as a result. This is the approach which is
most directly engaging for players. If we can minimize the degree to which
we explicitly prompt players to take the desired action, we can create the
impression that the player has discovered something completely on their
own. However, we also run the risk of players getting stuck, depending on
what we expect them to do, and the cues provided to guide them in the
right direction. Sandbox games and games with survival elements commonly
give players to discover many interactions on their own. In Don’t Starve, for
example, little explicit information is provided as to what players need to
do to survive. Players discover things such as the impacts of climate and the
effects of different in-game foods for themselves.

Strictly speaking, it may be better to think of the three categories as inac-
tive (tell), active (show), and interactive (do), though these terms are farmore
easily confused. It is also important to note that different methods can and
should be used in combination. A good rule of thumb is that, for anything
you tell or show players, you should also have them do something which re-
inforces their knowledge immediately or soon after. Many games blend the
tell and do approaches in the initial learning phase to follow up a clearly
written or spoken instruction with an interactive demonstration that the
player has learned the required skill. From the cantankerous drill sergeant in

48

The Long Con

Figure 3.3 InDon’t Starve, players are put into a trial by fire, learning the consequences
of their actions through experimentation. Left: if the player’s sanity falls low enough,
shadowy apparitions appear and hint at their threatening nature, later revealed as they
gain physical form and attack the player. Right: if left unchecked, several different
factors can lead to an untimely demise.

Credit: Don’t Starve was developed and published by Klei Entertainment.

Call of Duty: Warzone to the titular character in Cooking Mama, this “do as I
say” method of instruction is effective and quick, if often a little inelegant.

3. Get the pacing right.

There are few games that draw as many comparisons as the Souls (or “Souls-
borne”) franchise, yielding an obnoxious number of claims that some game
or other is “the Dark Souls” of its genre. The temptation is typically triggered
by difficulty; the Souls games have gained well-deserved notoriety as some
of the most punishingly hard titles in the mainstream. However, Dark Souls
isn’t just a difficult game to play; it’s also a difficult game to learn.

In Dark Souls 3, the first thing you do is create a character. There’s a lot
of complexity here for new players to take in at once, with little in-game
advice or hints. But let’s set this aside and chalk it up to something players
can research on their own. The game’s first area, the Cemetery of Ash, serves
as a tutorial for the basic actions players have available, primarily relating to
combat. There are 16 prompts before the game’s first boss fight, informing
the player of 20 different actions, the vast majority of which correspond
to unique control combinations. Most of these prompts come a few metres
apart on the ground, and so players will read most of them in just a few
minutes.

Apart from practicing these moves of their own accord, the game throws
twenty or so grunt-type enemies at the player before they arrive at the first
boss arena. It should be noted that none of these enemies require the player
to successfully executemost of the actions taught, other than the basic attack
(with blocking and dodging almost necessary). It should also be noted that
only about a dozen of these encounters occur along the main path most

49

The Game Designer’s Playbook

Figure 3.4 In Dark Souls 3, players are faced with dozens of control prompts in quick
succession (top) before being quickly confronted with a boss (bottom), with scant
opportunities for practice that don’t involve meeting the business end of a massive
spear.

Credit: Dark Souls 3 was developed by FromSoftware and published by Bandai Namco.

players will take. And then there’s a boss fight. The challenge of this fight
doesn’t just come from its difficulty. It comes from the fact that new players
are trying to remember the fifteen or so different combat control bindings
that they had to read during the ten minutes prior. The first major fight
in Dark Souls isn’t just a challenge of dexterity and timing. It’s practically
a vocabulary quiz of control combinations.

For a contrasting approach, let’s turn to a game which is objectively the
Dark Souls of platformers and has gained a reputation for challenge in its own
rite: Hollow Knight. Though the former is a 3D action RPG and the latter a
2D metroidvania1 platformer, both feature boss fights as a core part of their

1 A metroidvania, so named after the Metroid and Castlevania series, is a subgenre of action-
adventure, typically featuring a large open world which is initially heavily restricted in terms of
player access. Different parts of the world “open up” as players gain new abilities that allow them
to explore or overcome obstacles in new ways.

50

The Long Con

experience and both have a reputation for being difficult. Unlike its more
notorious companion, however, Hollow Knight is far less difficult to learn.

The player is dropped into Hallownest, the game’s world, with relatively
little fanfare. While controls can be read from the pause menu, the game
assumes that players will discover the basic actions available for themselves.
With only threemeaningful actions at the start (run, jump, attack), all bound
to single inputs, this isn’tmuch of a stretch. The player is given a few environ-
mental obstacles, a few enemies, and then reads about how to heal. For the
next several minutes of gameplay, these are the only actions available, apart
from talking to NPCs. Most new players will have defeated several dozen
small enemies before arriving at the first boss.

By this point, the game has given ample opportunities to practice move-
ment and combat along the initial area’s critical path. The result is that the
first major fight is a challenge of execution rather than memory. During
Dark Souls’ first boss fight, you might find yourself asking, “How do I exe-
cute a special two-handed attack again?” Hollow Knight, on the other hand,
doesn’t leave the player wondering which single button corresponds to the
single attack available for the first boss. The informational complexity of
Hollow Knight ramps up much more gradually, despite still creating a signif-
icant challenge for players.

Figure 3.5 Hollow Knight offers an introduction with a relatively gentle pace for new
players, while giving players who know what they’re doing an opportunity to jump
ahead with relative ease. Early areas give plenty of low-risk opportunities to get used
to its platforming controls (left) and introduce comparatively docile enemies (right).

Credit: Hollow Knight was developed and published by Team Cherry.

In speaking of challenge, you’ll often hear the term “difficulty curve”: a
description of how challenge grows and changes during a game. A smooth
difficulty curve is one that gradually becomes harder over time, increasing
challenge to match player skill. A steep difficulty curve accelerates quickly,
requiring players to practice before moving on or else fail repeatedly on
their road to mastery. Drawing out such a curve is an excellent exercise to
understand how challenge evolves over time in different titles.

51

The Game Designer’s Playbook

We can use this same tool to understand the pace of instruction in a game.
Put another way, we can visualize a “complexity curve” tracking how much
new information is delivered to players over a given section of gameplay. This
helps us to understand how much we are asking players to take in, process,
and remember over time, watching out for any spikes that might cause an
undesirable hiccup in understanding or memory.

In these terms, Hollow Knight has a very gradual complexity curve leading
up to the first boss fight, whereas the same curve in Dark Souls 3 is nearly
vertical. Dark Souls 3 hits the player with significantly more information in a
significantly shorter amount of time, creating a much higher cognitive load
for the first boss fight.

This isn’t to say that the tutorial in Dark Souls 3 is terrible—though it
certainly is less accessible to unfamiliar players than that in Hollow Knight.
That first boss in Dark Souls does force the player to learn, albeit in a far
from forgiving way. The point here is that the flow of information can be
smoothed out without sacrificing difficulty. And for returning players, de-
spite its more gradual complexity ramp, the opening of Hollow Knight is far
from sluggish.While it’s not as quick to reach the first boss asDark Souls, play-
ers familiar with the game can still arrive at the fight quickly and progress at
their own pace. In this way, Hollow Knight affords players a bit more freedom
as well.

But what can we take away here as general advice for pacing our delivery
of information to the player?

First, mechanics should be introduced as they are needed, rather than
all at once. The benefit of such an approach is twofold; firstly, it prevents
players from forgetting knowledge introduced far in advance of its appli-
cation. Second, it allows for new content to be introduced throughout the
game, helping to extend a game’s novelty factor and facilitate moments of
additional player discovery.

Nintendo mastered this style of delivery long ago with the Mario games,
famously introducing a new idea such as a power-up or environmental gim-
mick at the beginning of an area and continuously building on its use.
The indie darling Celeste demonstrates this pattern near flawlessly, intro-
ducing one or two new environmental gimmicks in each main chapter
and recombining them to create successively more difficult challenges
without overwhelming the player with new things to remember. By the
end of the game, players need to know how to interact with and take
advantage of a myriad of different obstacles, but the pace of their intro-
duction makes players’ learning of those obstacles a much less frustrating
journey.

Another important thing to note is that pacing should consider the prior
experience of your target audience. If you can correctly assume that your

52

The Long Con

Figure 3.6 In Celeste’s first chapter, a moving platform mechanic is introduced (top
left). Toward the end of the chapter, that mechanic is used in increasingly complex
ways, such as requiring the player to time jumps off the platform to gain a boost in
momentum (top right). Later in the game, this mechanic is reintroduced and com-
bined with other elements to create an even greater challenge as the player navigates
vast gaps with hazards awaiting at any false move (bottom).

Credit: Celeste was developed and published by Extremely OK Games.

players have extensive experience in the genre, or with previous titles in a
series, pacing can be increased. If you are targeting novice players or young
children, pacing should be slowed. Matching pacing to your target audience
is always a good decision. An even better one, however, is to give players
some flexibility in how they will experience this initial learning phase. Pro-
vide a chance for less familiar players to move forward at their own pace,
while letting stronger players surge ahead.

4. Give players enough instruction (but not too much).

A concept strongly tied to the pacing of learning is the level of instruc-
tion given. Just as pacing can vary between inaccessibly fast and painfully
slow, level of instruction can vary between confusingly absent and mind-
bendingly excessive. Suppose that we want to teach the player how to jump,
by pressing the A button on their gamepad. We might provide no explicit
instruction, and assume that the player will figure this out for themselves
based on experience, or some clue in the environment. We might provide a
low level of instruction, with an on-screen icon of the A button accompanied

53

The Game Designer’s Playbook

by the text “jump.” We might provide a high level of instruction, having a
character read out dialogue about the importance of jumping and working
in half a dozen phrases akin to “Remember, if you’re ever feeling low, you can
press A to reach new heights!”

The risk associated with providing a greater level of explicit instruction
is the perception of unnecessary hand-holding, a particular risk for players
with a degree of prior skill. In some games, a high level of instruction, at least
initially, is warranted. In the first few research missions of the chemistry-
themed puzzler SpaceChem, the player is given written instructions for every
action they should take. This includes things like placing nodes on an on-
screen contraption, and controlling the speed of the game’s simulation.
Given that the mechanics and terminology used in SpaceChem are quite
niche, this walkthrough is appropriate for new players. Flexible pacing and
the freedom for experimentation helps to prevent this level of instruction
from feeling restrictive.

Figure 3.7 In SpaceChem, players are given manual-style instructions before a new
mechanic is introduced, and then given an in-game assignment which requires them
to demonstrate a basic understanding of that mechanic.

Credit: SpaceChem was developed and published by Zachtronics.

A high level of instruction is not always as justified, or welcome by play-
ers, however. Critics and players alike voiced complaints that the tutorial
in The Legend of Zelda: Skyward Sword suffered from excessive instruction.
The game’s introductory section has a habit of explaining even the sim-
plest mechanics over an agonizing series of dialogue boxes. One sequence
has an NPC lamenting their lack of skill in picking up barrels, prompt-
ing the player to pick up a nearby barrel themselves. This triggers another
dialogue sequence filled to the brim with control prompts. The act of car-
rying a barrel is turned into a miniature mission where the player is made
to slowly amble into the next room before sitting through more dialogue

54

The Long Con

praising their immense skill at having pressed two buttons over the past three
minutes.

You might call this “death by instruction,” where instructions are
stretched out and repeated for even simple actions. Simple lessons don’t de-
mand that players are repeatedly hit over the head with instruction before
being allowed to proceed. Unfortunately, this misstep is often accompanied
by sluggish pacing, and the resulting combination of slowness and verbosity
is a union most unholy.

Simply toning down the level of instruction can be an appropriate rem-
edy for this issue. This is often a question of stepping back and asking
what instructions are strictly necessary for players to learn the intended
information.

For some games, the answer may be none at all. Sandbox titles like
Minecraft and Terraria often have little in the way of explicit instruction, leav-
ing players to discovermany things about the world andwhat they can do on
their own. As discussed previously, relying on players to “do” things them-
selves creates brilliant moments of discovery, at the risk of unintentionally
creating gaps in player knowledge. Just as too much instruction can cause
frustration, too little can cause confusion.

As a general takeaway, there are a couple of rules we can use to determine
what level of instruction is appropriate. Very young players might struggle
with complex instructions, and require a more gradual introduction of con-
tent. Inexperienced players will generally need more instruction, while more
experienced players may find that too many instructions make a game slow
and uninteresting. Casual players with only a few moments to devote at a
time might be prone to forgetting what they’ve learned between sessions,
whereas more serious players can consume and reinforce more knowledge in
a single sitting.

For interactions which are common in similar games and display suffi-
cient external consistency, the overall need for instruction is lowered. For
interactions introduced later in a game, assuming a fair degree of internal
consistency, then the level of instruction required for “new” additions can
be reduced as a game progresses. Such advice might seem rather obvious,
and yet, when a game’s level of instruction fails to meet the needs of a given
player, disaster can ensue.

There’s an infamous anecdote from the annual trade fair Gamescom of a
journalist struggling to play the first few minutes of Cuphead, an arcade-style
action platformer. Our journalist gets stuck at the point where the game
expects him to perform a mid-air dash after jumping to reach a high plat-
form. There are two prompts on screen at once explaining how to jump,
and how to dash. After a few failed attempts to reach the higher platform it
becomes clear that he doesn’t understand that the moves are to be used in

55

The Game Designer’s Playbook

combination, attempting to reach the platform by jumping alone. Finally,
after nearly two full, painful minutes, and well over a dozen attempts, he
finally performs the moves successfully in combination.

Figure 3.8 The tutorial that launched a thousand angry commenters. The trick,
though it’s not so tricky, is to execute a dash around the apex of the player’s jump.
Unfortunately, if you’re not very experienced with platformers, this might take a few
tries. Or, if you’re an unlucky games journalist, the most painful few minutes of your
professional career.

Credit: Cuphead was developed and published by Studio MDHR.

Many things have been said about this incident, many of them unfor-
givably cruel to the journalist in question. Of the actual discussion, some
claim that the game’s instructions are more than adequate, and that ad-
ditional prompts would be excessive and annoying. Others claim that the
design of the tutorial was lacking (and indeed, Cuphead’s developer did make
some slight adjustments to the section in question before its eventual re-
lease). Some responses also noted that Cuphead’s tutorial needs to be taken
in the context of its target audience: veterans of the genre with the necessary
knowledge to overcome any ambiguities. Each of these points is justified to
a degree, particularly the point about the experience of the target audience.

Regardless of where you stand on Cupheadgate, though, finessing level of
instruction isn’t always a black-and-white question of removing or adding
instructions. Contextual instructions can be used to prevent a tutorial from
feeling condescending to skilled players, while lending a helping hand to
players if they are struggling. These additional instructions, layered on top
of what a game will offer no matter what, may be triggered by different

56

The Long Con

conditions, such as players taking a certain amount of time to complete an
expected action, or failing repeatedly at a particular task.

Many games provide this sort of help, delivered through prompts that ap-
pear after a certain time or an AI companion that waits until a player seems
“stuck” before giving some piece of advice. In the action-adventure game Un-
dertale, some boss fights introduce new combat mechanics following a brief
initial description. If players repeatedly take damage, failing to use the new
mechanic properly, the boss character will give them additional hints. Play-
ers that catch on quickly won’t need to sit through unnecessary instruction,
and players that would otherwise become frustrated have access to additional
information.

Figure 3.9 In Undertale, fearsome knight and renowned fish lady Undyne gives the
player some not-so-subtle hints about how her battle will work: use directional inputs
to face her attacks with your shield.

Credit: Undertale was developed and published by Toby Fox.

Contextual hints are also used inCivilization V, to give players, particularly
those whomay not have completed the game’s optional tutorial, prompts for
the actions available. On starting a new game, if players fail to “found a city”
on their first turn for more than 20 seconds or so, a hint pops up informing
players how to start their first city and where in the user interface this ac-
tion is located. Along with this hint, the player is given options to learn
more, or ask not to be given this reminder again. Experienced players will
likely never see this hint in the first place, and novice players are given the
freedom to learn additional related information if they choose. Just as with

57

The Game Designer’s Playbook

pacing, adding flexibility to the level of instruction players receive where pos-
sible is an excellent strategy to keep a game’s introduction accessible without
alienating skilled players as a consequence.

5. Minimize punishment during learning.

Picture this: you’re learning to play a new action game. You’re familiar
enough with the genre, but still getting used to the controls, and you’re
learning more with every fight. The game throws a few waves of enemies
at you, some aerial combat, and even a boss fight. You’re about 30 minutes
in when an enemy finally gets the better of you, and your character dies. And
then the game takes you back to the very beginning, for another half hour of
learning those same ropes again before you’re granted the privilege of saving
your progress.

This could sound all too familiar if you’ve played Nier: Automata. Even in
the famously difficult Dark Souls 3, that first tutorial boss we talked about
earlier is mercifully quick to return to when players inevitably succumb on
their first few (dozen) tries. Fortunately, Nier does have difficulty settings, so
it’s not impossible for players to reduce their chances of repeatedly losing 30
minutes of their time, at least temporarily. Unfortunately, players’ objections
to this type of design in general are often met with a resounding chorus of
something along the likes of “this isn’t a game for babies” by more skilled
players.

Apart from its obvious toxicity, this kind of gatekeeping often shouts over
a less-than-ideal design choice. Regardless of how difficult a game is intended
to be, there should be some semblance of a safe environment present for
learning to take place. This doesn’t necessarily mean that players shouldn’t
be allowed to fail—but they should be able to quickly return to whatever
bested them, at least at first.

Undertale cheekily riffs on the idea of a safe learning environment, while
still successfully providing one. Players’ first experience takes place in the
Ruins area, where they speak “to Toriel” for help, Toriel being anNPC guiding
the player through their first steps. She quite literally holds the player’s hand
for the first stretch of the game, with sarcastically tense music playing the
moment she steps off-screen for the player to navigate for themselves.

It is possible for the player’s character to die in combat during their ini-
tial journey, but location-based save points are placed to prevent losing too
much time in the process. Toriel’s almost comically motherlike demeanour
sets up the game’s first boss—herself—brilliantly. As the player takes dam-
age, Toriel worsens her aim on purpose to avoid hurting them. While it is
technically possible for the player’s character to die during this fight, this
change makes the first boss fight a safe environment for learning in itself,
while also developing Toriel’s character and helping to establish some of the

58

The Long Con

Figure 3.10 Handholding in tutorials is usually undesirable, unless it’s literal and
adorable.
Credit: Undertale was developed and published by Toby Fox.

game’s quirky charm. This doesn’t come at the expense of eventual difficulty,
either; some of the later boss fights carry all the punch one would hope for
from Undertale’s bullet hell inspirations.

Just as with instructional pacing, punishment during learning is often
conflated with a game’s challenge in general. Calling a game intentionally
difficult and imploring players to “get good,” however, is no excuse for fail-
ing to provide players with a reasonable opportunity to learn the ropes and
get good in the first place.

6. Don’t force players through anything repetitive or unnecessary.

There is little more vexatious than being forced through unnecessary instruc-
tion while playing a game. The longer the period of instruction, the more
frustrating it becomes, and this frustration is only magnified on replay. In
other words, nobody wants to sit through a boring, unskippable tutorial,
especially if the information is something players already know.

A classic unfortunate example in this regard is the Pokémon series, nearly
every mainline entry of which bears a lengthy tutorial section at the start.
The player’s experience is effectively on rails for the duration, while taking in
heavily instructional dialogue and scripted battle sequences interrupted by
heavily instructional dialogue. The game also limits access to many abilities
that returning players are already familiar with, slowly making them avail-
able after players have read through (you guessed it) heavily instructional
dialogue.

For first-time players and especially children—who form a substantial
part of the series’ target audience—there is nothing wrong with this format.
Although it leans extensively on the “tell” method of instruction, it is inte-
grated with the story and flows naturally into the main arc of gameplay. The
tutorial is slow by design, to avoid overwhelming and eventually alienating
new players, who are often young children.

59

The Game Designer’s Playbook

The problem here is that in this crusade for simplicity, Game Freak have
created one of the most notoriously tedious gameplay experiences for re-
turning players. For anyone replaying a Pokémon game, or moving on from
another game in the series, the game’s tutorial is agonizingly slow. After an
extended montage of sighing and button mashing to shave seconds off the
display of dialogue, players breathe a sigh of relief upon finally being allowed
to play the game “for real.”

Despite all the charm of its world and the appeal of its core mechanics,
close to the first half hour of every Pokémon game is instruction unnecessary
for a substantial portion of its players. Luckily, the latest entry in the series to
date, Pokémon Sword and Shield, has taken steps in the right direction, auto-
matically skipping the tutorial for catching Pokémon if the player takes the
initiative to catch one for themselves sufficiently early on.

Simply giving players the option to skip through instructional content
or access it as a separate experience can be an acceptable, even favourable,
solution. This is certainly not a new idea; the original Half-Life offers players
the option to select the training room when starting a fresh game, skipping
explicit instruction for controls and the like otherwise.

The “optional, but separate” teaching approach is often suitable for games
that have a great deal of interplay between resources and gameplay systems.
Certainly, this optional but separate content should be something substan-
tially more interactive than reading through a manual. For new players,
a guided experience to learn these interactions while introducing content
gradually is great. However, it’s not something that should be repeated ad
nauseum with every playthrough or scenario. It is relatively common to see
this approach taken successfully in games that have significant strategic or
management elements. For instance, the strategic roguelike FTL: Faster than
Light and management simulation Planet Zoo both have dedicated tutorial
missions intended for single-use play, or to refresh player memory.

Figure 3.11 The opening missions of Planet Zoo provide an introduction to map
navigation, taking care of animals, and building exhibits.

Credit: Planet Zoo was developed and published by Frontier.

60

The Long Con

Only playing through a game’s introduction once, or being able to bypass
it altogether, however, is not the only way to prevent boring players with
repetitive content. Furthermore, in many cases, such a design may be unde-
sirable for exacerbating that gap between “tutorial” and “game.” In a heavily
story-based game or RPG, for instance, you may want to create a parallel be-
tween the player’s learning and the learning or growth of their character
in-universe. By necessity, then, this initial phase becomes an “unskippable”
part of any future playthroughs.

Pacing and enjoyment of such a sequence then becomes critical, espe-
cially for games where replayability is especially important. Consider the
Elder Scrolls series, open-world action RPGs where restarting with a new char-
acter to explore different playstyles is commonplace. The fifth entry in the
series, Skyrim, packs about half an hour of heavily scripted introductory con-
tent, featuring a lengthy unskippable cutscene followed up by a laundry list
of instructions delivered during a forced linear journey through the game’s
first area.

Figure 3.12 You might finally be awake, but the nightmare has only just begun.

Credit: The Elder Scrolls V: Skyrim was developed by Bethesda Game Studios and published by
Bethesda Softworks.

Much like the case of Pokémon, though paced quite slowly, there is nothing
overly frustrating about this introduction as a first exposure to the game.
However, in an open-world game that emphasizes freedom, and one that
practically begs for multiple playthroughs at that, it is nothing short of a
slog for returning players, and does a poor job of conveying the freedom it
promises to new players. It is hardly surprising that one of the most popular

61

The Game Designer’s Playbook

community-made modifications (mods) for Skyrim, called Life Another Life,2

is designed to replace Bethesda’s lengthy intro with a shorter one more akin
to previous games in the series, such as Morrowind.

That is not to say that pulling off a lengthy, but still rewarding, intro-
duction is impossible. Another modern open-world adventure with RPG
elements does just that—Nintendo’s The Legend of Zelda: Breath of the Wild.
BotW starts players off in the Great Plateau, a tutorial area within the larger
kingdom of Hyrule, after a brief introduction to its controls. Players are gen-
tly guided to a character that will inform them of their early objectives, and
upon completion, the main story begins and the rest of Hyrule is opened to
them.

The crucial difference here is that Breath of the Wild’s introductory expe-
rience is far from linear. The Great Plateau is a microcosm of the entirety of
Hyrule, mirroring its open-world gameplay on a smaller scale. New players
will find themselves subtly guided through geography and carefully placed
resources to complete tasks and learn about the world in a relatively gentle
way at their own pace. Returning players can complete the requisite tasks
in any way and any order they wish, with the ability to explore freely as op-
posed to being forced onto the same linear path they’ve already experienced.
With a more relaxed design that promotes player freedom without creating
a dangerous or confusing environment for new players, Breath of the Wild
accomplishes a broadly appealing and effective in-game introduction.

3.2 A masterclass in learning

The very best games are those which excel in all aspects of their design.
A game may be lauded for its art direction, but fall flat on account of lack-
lustre gameplay. Engaging gameplay may be tainted by a clumsily written
story, or ruined by an inscrutable user interface. Few titles can fully deliver
on every dimension of the game experience. When a game does manage to
accomplish this, it becomes not only beloved by its players, but rightfully
revered by designers.

Portal 2 is just that: a game that does everything well, flawless to many
and respected by all. But its success isn’t just down to innovative game-
play, clever writing, and stunning creative direction. It’s also because Portal 2
teaches players to become masters of its mechanics without even realizing
it. The opening sequence of the game is brilliant, giving an introduction
gentle enough for complete newbies and engaging enough to appease series
veterans on their fourth playthrough.

2 According to the community site Nexus Mods, Live Another Life has over 5.7 million total
downloads as of May 2022.

62

The Long Con

The game starts with little fanfare, as you awaken from stasis in the
Aperture Science facility. A wry robotic narrator quickly instructs you in basic
movement before putting you back to sleep.When you open your eyes again,
uncountable years have passed, and a friendly robotic companion breaks you
out of stasis with the intention of helping you escape. To do this, you’ll need
to explore the facility andwork your way through its “test chambers,” a series
of physics-based puzzles. Thus begins our main story and our main gameplay
loop of solving puzzles to move through Aperture’s labs.

The first test chambers are heavily geared towards learning basic puzzle
mechanics, such as moving objects and interacting with the environment.
Most importantly, they teach you how to understand, operate, and manipu-
late portals, the central element of the game’s puzzles. At any one time, two
portals can exist in a level: one orange, and one blue. Anything that enters
one portal exits through another. First, you’re introduced to this with two
portals that are fixed in place, walking through one and exiting through the
other. Then, you can press buttons that change the position of one of the
portals, leaving the other fixed in place. You then find a portal gun capable
of freely placing blue portals, while orange portals remain fixed in prede-
termined positions. Finally, you find the dual-portal gun, allowing you to
freely place portals of both colours for the remainder of the game. All of
this is packaged into half a dozen puzzles, or around the first 30 minutes of
gameplay.

Let’s examine how this opening sequence, and subsequent learning
throughout Portal 2, fits within the guidelines for player learning we’ve
established.

Make learning part of the game. Portal 2 teaches its mechanics in-
side its test chambers, making learning part of the core puzzle-solving
experience. Chambers that introduce new material aren’t disconnected
from those that serve as regular challenges, nor are they presented any
differently. Players learn during what feels like regular gameplay. Any
explicit instructions are delivered to you by characters in the game, not
disembodied prompts on the screen. This is true not just of the open-
ing sequence, but whenever a new puzzlemechanic is introduced. These
qualities make it difficult to draw a line between “tutorial” and “game-
play.” You could say that the entire game is a tutorial of sorts. You could
also say that Portal 2 has no tutorial at all.

Do, show, tell. Players learn the very basics of movement and early ex-
ploration with the “tell/do” combination. Characters give instructions,
and players immediately follow them. However, this method is quickly
eschewed in favour of a heavily interactive approachwhich pushes play-
ers to discover things for themselves. Clever environmental design is

63

The Game Designer’s Playbook

Figure 3.13 The opening sequence in Portal 2, as well as its initial puzzles, serve as a
seamless in-world tutorial. Players awaken in a serene chamber for instruction on basic
controls (top left) before quite literally dropping into the ruined laboratory (top right).
The very first puzzles have players control the opening of portals in fixed positions
(bottom left) before finding a gun that they can use to place a blue portal (bottom
right). (After a short spell longer, players find a gun that can place both portals at
will.)

Credit: Portal 2 was developed and published by Valve.

used to show you something that practically begs for experimentation,
and you learn something new as a result. When you pick up the single-
portal gun for instance, you are in an alcove surrounded by “portal-able”
white walls. Even firing the gun randomly, you will quickly learn that
you can open portals on these surfaces, while being unable to do so on
others. Successfully opening and stepping through a portal will allow
you to progress further. You’re given an obvious opportunity to exper-
iment, and a simple task to move forward, all without being told what
to do. Most all new mechanics are introduced in this manner.

Get the pacing right. New information during the opening sequence
is delivered without any sort of time pressure, giving new players time
to absorb it. Depending on their skill level, though, more experienced
players can run through more quickly, preventing it from becom-
ing tedious. The game’s pacing truly shines as it progresses, however.
Complexity increases in tandem with the difficulty of its puzzles: new
mechanics are introduced only after players have demonstrated some
mastery of those they already know, right as they are needed to progress

64

The Long Con

further through the game. These new mechanics are peppered contin-
uously throughout the game, making sure you always have some new
mechanic to play with. Over the course of a dozen or so hours total after
seeing their first portal, you’ll be introduced to turrets, laser redirection
cubes, bridges made of light, trampoline-like platforms, paint you can
use to alter the environment, and more.

Give players enough instruction (but not too much). Players learn
most mechanics through experimentation, guided by careful environ-
ment design. When they do receive instruction, it’s interwoven with
dialogue which is otherwise amusing or relevant to the story. At certain
points, characters will offer additional ormore explicit instructions after
some time has passed. This gives new players a bit of extra help with-
out making more skilled players feel as if the game is drowning them in
instruction.

Minimize punishment during learning. It is impossible for the
player’s character to die in Portal 2 until about halfway through the
first chapter, after they have already picked up the single-portal gun.
The first hazard introduced is a pool of acid, a static part of the environ-
ment that is easily avoided. If players do succumb, they’ll reload to lose
less than 30 seconds of progress, as the game autosaves at the beginning
of each new test chamber. Players can also freely save the game at any
point, a choice that works well in a puzzler that encourages players to
experiment.

Don’t force players through anything repetitive or unnecessary.
This is where the game’s charm helps to make it an instant and easily
replayable classic. Even if you know exactly what’s coming, if you like
Portal 2, you’ll like replaying its opening sequence. The writing, story
progression, and environmental design throughout are top-notch, and
frankly worth experiencing for the dialogue alone. What’s more, after
the first time it is completed, players can skip to any chapter in the
game, providing additional flexibility should they wish to return to the
experience.

Perhaps the greatest thing about Portal 2’s “tutorials” is that they don’t com-
promise on anything the game has to offer. Its immersive world, engaging
gameplay, snappy dialogue, and rich artistic direction are all on full display
during even the most basic of lessons. Learning in Portal 2 isn’t really a tu-
torial at all. It’s a collection of immaculately timed opportunities for player
discovery that form an indispensable part of the game’s experience. Portal
should serve to remind us that there is no trade-off between fun and efficacy
when it comes to learning: as designers, we can have our cake, and eat it,
too.

65

The Game Designer’s Playbook

3.2.1 Final thoughts

First impressions are powerful, in life and in games. A player’s first 20minutes
with your game will likely decide whether they return for several hours more,
leave it to be forgotten in their catalogue, or uninstalled entirely. Stripping
away the flash and spectacle of visual effects and catchy intro music, this
first 20 minutes is focused on one thing: teaching players what your game
is all about. Players need to learn how to play, but also how a game’s world
works, how its characters interact, and so on. Critically, they also learn what
to expect from the rest of their time with the game. This is why slipshod
tutorials are so damaging; players will assume that the remainder of their
experience will reflect their first few minutes whether you intend them to or
not.

Recognizing the importance of the onboarding phase and player learning
is an important first step in designing a successful initial experience. Keeping
inmind the key factors that will shape this experience—integration, commu-
nication method, pacing, instruction level, error forgiveness, repetition—is
the next. In sculpting the initial experience of your own game, you should
revisit games that left a particularly notable (or notably bland) first impres-
sion on you personally, and consider studying some of the titles referenced
in this chapter.

The big-picture takeaway is this: a player’s first interactions with your
game need to reflect the highest quality on offer throughout the entire game
experience. The vital learning that occurs during this stage needs to be not
only effective, but engaging. After all, players are there to play—you need to
let them.

Expert Profile: Romana Ramzan—Player champion

Producer at No Code Studio

Romana Ramzan has always loved games. But she didn’t see a path for herself in the
subject until her fourth year of university, when she found out that games research
was an option for her undergraduate thesis. A year of game research and Romana was
hooked, proceeding to earn a PhD in games for health a few years later.

During her PhD, she taught at her university and worked as a freelance UX re-
searcher with a consulting firm. After graduation, she entered the industry as a “Player
Champion”—a title she fondly describes in connection with her focus on understand-
ing user behaviour—at Scottish developer Denki. A little over a year later, with the
2-hour commute from her native Glasgow conflicting with her desire to start a fam-
ily, Romana left Denki to settle down as a university lecturer. Eventually, the industry
would call her back, and today she works as a producer at No Code, the studio behind
the BAFTA-winning sci-fi thriller game Observation.

66

The Long Con

(Continued)

The thing that brought Romana back to the industry is what excites her most about
her work: its fast-paced, iterative nature. “I was bored with stability,” she says of her
decision to return to the industry, describing it as offering more opportunities to keep
upwith the day-to-day reality of game development. One of her favourite things about
her role is solving problems: “It’s those unexpected challenges that pop up. And you
need to do some investigation, and find a solution, and learn something that makes
other people’s jobs easier.” Those other people are a big part of what she does, espe-
cially as a producer, and Romana says that for her, picking a job is just as much about
the people as it is about the work.

This people-centric attitude extends to her view of interaction design, which she
describes as a recipe that’s “65% UI design and 35% user research.” That user research
element is key, she argues, to the vital task of understanding your players: “If you
don’t have that understanding of who you’re making [your game] for, then how do
you come up with the design itself?”

Having worked on UX both in and out of games in her time as a freelancer, Romana
says that many challenges are common to the design of games, productivity apps,
and websites. The foremost such challenge is a tendency for developers to assume
that users will behave in the same way as them, or exhibit the same preferences. She
mentions an example of a kids’ nutrition website she’d been involved with evaluating,
which ran into a number of usability issues as a result of failing to include younger
potential users early in the design process. Romana mentions that historically, one
of the biggest problems related to understanding users in games is designing an ef-
fective “onboarding” experience that introduces players to the experience they can
expect from a game. This obstacle, and others like it, is compounded by a lack of
firm, standardized game design approaches; of course, true standardization in this
respect is both impossible and undesirable given the subjectivity and creative freedom
of designing games.

In the face of all this subjectivity, Romana says that the best designers are those who
are eager to learn, driven to constantly improve, and can stay open to feedback. A good
designer needs to “adapt, to be able to take things on board and learn. But also have a
broad understanding of the bigger picture, and not just making the assumption that
‘Because it’s something I like, everyone else is going to like it as well.’” Occasionally,
though, she says designers need to know when to go with their instincts and push
forward on something important to them. This is where the qualities of leadership and
communication enter the equation. Romana talks about the importance of making
sure that the entire team feels heard and involved in the design process, emphasizing
that design decisions need to be given as explanations instead of commands: “If you
can explain why you’re doing it, it means that the team as a whole buys in to what’s
being done.” For her, becoming a successful designer is about having people skills on
both sides of the screen: understanding and respecting your players as well as your
team.

Outside her main career, Romana is heavily invested in bringing promising new
developers into the fold, reflecting on her days as an educator and her involvement
in organizing game jams. For many people, though, seeing a path into games can
be difficult. One obstacle is the perception of games as childish or a waste of time,

67

The Game Designer’s Playbook

(Continued)

incentivizing parents to discourage their kids from pursuing a job in the industry. Ro-
mana says this perception can be exacerbated by longstanding family attitudes or
cultural factors, noting that growing up as a girl in Pakistan, she observed a social
favouring of two “stereotypical career paths,” doctor and engineer. She chuckles in
recounting how she described her university studies to her grandmother, joking that
she felt “redeemed” after earning a PhD, even if some family members didn’t really
understand the subject of her work.

Another barrier for aspiring designers is a lack of representation. Romana has always
loved playing games, but growing up, games didn’t offer relatable rolemodels for her.
She describes an inability to find “a character who embodies my experiences.” While
this dearth of representation didn’t deter Romana from studying games, she points
out that it’s a gross oversight on the part of the industry. Speaking about underrepre-
sentation, particularly of women andMuslims, she asks, “Why are we neglecting such
a large group of people?” She notes that addressing this neglect presents creative op-
portunity, asking what a gamemight look like if it starred the “opposite” of Lara Croft,
the beloved upper-class, pistol-wielding girl next door. Romana says that shifting our
thinking in this respect is essential to foster a more inclusive climate: “If we’re going to
encourage change in the industry, we need to show it with the kind of products we’re
putting out as well.”

Between social attitudes about gaming and a lack of representation, Romana fears
that passionate, talented individuals might get left behind: “There must be so many
people out there who don’t realize that this is something you can do.” She’s optimistic
about this changing for the better, though, noting that diverse voices are becoming
more prominent in games and the stories that they tell. Romana says this is espe-
cially true for indie developers, while the slower machine of AAA development is still
largely focused on turning out instalments of established franchises. Simultaneously,
increased efforts toward accessibility and internationalization are helping to lower bar-
riers to entry for players of all backgrounds. Romana hopes that in her work, she can
help to “make the industry a better and welcoming place for others,” for instance, by
encouraging people from underrepresented groups to participate in the game jams
she helps to organize. “If you have a voice,” she says, “then you have to use it.”

During her second stint in the industry, Romana says that one of the most educa-
tional experiences she’s had is parenthood. She rhymes off a striking list of similarities
between being a developer and being a parent: impostor syndrome, the need to “wear
many hats,” managing different personalities, being organized, and of course, “miti-
gating risks where possible.” She’s currently entertaining the notion of giving a GDC
talk about her experience, noting that “moving forward from tantrums” is a key skill for
both parents and developers to learn. In the meantime, she sees every new project as
an opportunity: “Every time you make a game, the next time you make one, you think
surely it’s going to be easier [. . .] And lo and behold, it’s not, because the landscape
is continually shifting, and progressing, and changing.” For Romana, that change is a
central part of the fast-paced industry she’s grown to love, and she’s eager to embrace
whatever challenges come next, and the people that come with them.

68

The Long Con

Further reading

Design and Development of Training Games, edited by Talib S. Hussain and Susan
L. Coleman (Cambridge University Press). ISBN: 978-1107280137.
While this book is oriented specifically towards games for learning, it communicates
a great deal about learning in games.

Flow: The Psychology of Optimal Experience by Mihaly Csikszentmihalyi (Harper). ISBN:
978-0061339202.
The seminal volume on the flow state, often precipitated in games as an ideal bal-
ance between game challenge and player skill. More of a general psychology interest
volume, but an important concept in game design, especially for keeping players en-
chanted with their experience. Of particular interest is Chapter 4 (The Conditions of
Flow).

Exercises

Returning student

Pick a gamewith a tutorial you think could be improved; if you’re at a loss for examples,
feel free to dig into some of the flawed tutorials we’ve explored so far. For each of the
six rules outlined in this chapter, jot down a couple of notes on whether the tutorial
follows or deviates from that rule. Use this as a starting point to reimagine an improved
version of the tutorial, writing down notes and sketches on how you would change it.

Reflect on your improved version of the tutorial and revisit each of the six rules.
Are there any that your new design still deviates from? Can you justify this, or further
improve your design?

Super Mario school

If you’ve never played a Mario game, now is the time to borrow a copy from a friend
to get the gist of it, lest you be out of the loop in approximately 20% of all theoretical
game design examples.

Assuming you have some familiarity, come up with an idea for a new powerup for a
2D Super Mario game that alters Mario’s movement in some way (it’s okay if your idea
turns out similar to one of the very many powerups that already exist). The powerup
doesn’t have to directly change the way that Mario runs around; it could also be some
kind of environmental puzzle-solving tool.

Come up with a short tutorial level aimed at teaching players how to use your new
powerup. Try to minimize any explicit instructions given and teach the player through
scenarios that hint at what they could try to do. Sketch out your level on graph paper,
and try to include at least 2 - 3 small challenges that will help players learn and test
their knowledge of your power-up. You can also sketch your level digitally, or mock it
up in Super Mario Maker.

After you’re done designing your level, try to walk through it, noting down what
players would be thinking/learning along the way. Try to look at the bigger picture and
see if your tutorial level teaches players everything youwant them to know. Should you
add anything? Condense anything? How could your tutorial be even more engaging?

69

4

Say What you Mean

At its core, interaction is communication. Interaction is fueled by the ex-
change of information. When this exchange succeeds, it blends into the
background of the larger experience it supports. When it breaks down, it
becomes the subject of intense frustration. Failures in communication are
universally recognized as a common curse, birthing the likes of schoolyard
rounds of broken telephone and the phrase “lost in translation”. Panaceas for
our communication woes form some of the more optimistic threads of
science fiction, from Douglas Adams’ Babel fish to the TARDIS transla-
tion matrix in Doctor Who. The communication of information is a subject
inextricable from every interactionwe experience. Game interaction is no ex-
ception, and as we have already discussed, two-way communication between
game and player is what drives the cycle of player action and game reaction.

There aremanyways to categorize the ways that games communicate with
us. One is by placement; that is to say, whether a piece of information is given
to us inside the game’s world (e.g., a character shouting) or outside it (e.g.,
an icon on the HUD). Another is by type, such as whether the information
in question is a number or a description. We might even categorize by im-
portance, depending on how essential different pieces of information are for
players to know. No matter which delineation we choose, it’s important to
note that such attempts at categorization are rarely mutually exclusive. For
instance, if we separate communication based on placement, how do we cat-
egorize a very much player-controlled menu that’s visible on a TV very much
in a game’s world?

For the purposes of organizing this chapter, we’ll be loosely separating
communication based on when and how it occurs. First, there is information
about a game’s state that is conveyed continuously (typically outside a game’s
world). An example is an always-visible UI element showing players how
much health they have left. We refer to this type of communication as con-
tinuous communication. Second, there is communication that occurs in direct

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0004

Say What you Mean

response to player action or significant in-game events (often inside a game’s
world). An example is a red flash on-screen triggered the moment a player
takes damage. We refer to this as responsive communication. It is important
to note that the same element can serve up both continuous and respon-
sive communication—when that always-on health bar updates in response
to damage, it’s communicating responsively.

If you recall the core model of game interaction discussed in Chapter 2, we
can think of continuous and responsive communication as the first and last
steps of that model. First, players obtain information about a game’s state
via continuous communication. Then, they decide what to do and act on
that decision by providing input. The game processes this input, and finally,
provides responsive communication that helps players to inform their next
decision. Each and every transfer of information from game to player can
influence a player’s actions, and the experience they have.

In designing our means of communicating information to players, sev-
eral questions must be answered. What do we need to tell players? How
will we represent information? What do we need to do to grab players’
attention? How can we make communication accessible? How can we pre-
serve utility while making things beautiful? This chapter will explore these
questions, examining how we can design both continuous and responsive
communication effectively.

Our first order of business is understanding the tools we have at our dis-
posal for communicating with players; in other words, how people process
information.

4.1 Communication and the senses

Sometime around your first year of primary school, about the time you were
learning to share your safety scissors and avoid eating crayons more than
once or twice a week, youwere probably taught that humans have five senses.
Like so many other lessons from our early years, this is a lie told to make
things a bit simpler, and ostensibly give teachers more time to confiscate art
supplies before they could be consumed.

The truth is that, depending on your definition of “sense,” the list of
human senses is somewhere between seven and well over a dozen entries
long. On top of the standard quintet of sight, hearing, touch, taste, and
smell, we might list balance, temperature, pain, and awareness of needs like
hunger and thirst, to name a few. These channels all serve the same core
purpose—transmitting information.

In theory, any of the senses could be co-opted to communicate informa-
tion during gameplay. And as tempting as it may be to have players lick

71

The Game Designer’s Playbook

an electrode and taste their current stamina percentage, some channels are
best left untouched, at least for now. Here we’ll be sticking to how we can
represent information within the reasonable and ethical bounds of modern
technology.

4.1.1 Keeping an eye on things

Humans are often described as visual creatures. When we record informa-
tion, we usually do it visually. We write things down, type them up, and
draw sketches. Sight is just easy. Typical human vision has a ridiculously
high bandwidth for transmitting information. It allows us to jump between
concepts quickly, and rapidly identify sudden changes. Vision is, for better
or worse, the king of representing information.

In games and elsewhere, there are several visual cues and channels that
can be used to communicate information to the player.

Figure 4.1 Something as simple as stylizing text for a “game over” can say a lot about
your game, such as A) “We’re very boring people,” B) “Dying is just a part of living,
man,” C) “Written and directed by Quentin Tarantino,” or D) “It’s 1986.”

Text. Text isn’t just for labels and subtitles; if used well, it can provide
snappy feedback that players understand at-a-glance. Obviously, reading
paragraphs in such situations is untenable, so you’ll have to be prudent with
your choice of words. Think of the stylish K.O. at the end of a Street Fighter
match, or the flashy, colour-coded words of praise (or insult) that pop up
after each note in the Dance Dance Revolution games.

Shape and iconography. Shape creates meaning in a game from a
combination of existing game conventions, real-life parallels, and its own

72

Say What you Mean

Figure 4.2 Icons play off our cultural and real-world associations to convey or imply
meaning at a glance without relying on language, such as “health” (left column),
“stamina” (middle column), or “magic” (right column).

in-universe elements. The shape of characters and objects can provide sim-
ple, quick indicators of intent; usually, round is friendly (think Mario) and
pointy is mean (think Bowser). Probably the most recognizable and ubiqui-
tous use of shape in games is to encode information using icons in a game’s
HUD. Icons might function as labels (like a bullet next to an ammo counter),
creating less clutter and taking up less space than text while also eliminating
the need for a translator. Icons can also serve double duty, simultaneously
telling you what they represent and its current state, like the heart icons
forming the health bar in the Legend of Zelda games. Furthermore, repeating
a symbol can help to build associations in a player’s mind—such as embla-
zoning health pickups with the same icon used to represent health in the
HUD.

Size. Just as in the real world, size implies power in a game’s world. The
giant tower in the distance is probably significant, and the boss you’re fight-
ing right now is probably on the order of a dozen or more times the size of
your character. Something about the stone creatures in Shadow of the Colossus

73

The Game Designer’s Playbook

Figure 4.3 The three size-based gut reactions encoded into the instincts of every living
thing.

just wouldn’t feel right if their sizes were on par with frogs instead of build-
ings. Like shape, size is also used to encode information in a game’s UI, often
by masking away an element to represent a proportional amount (such as a
refilling health bar or a pie-wheel timer showing an ability cooldown).

Figure 4.4 Assuming you have unimpaired colour vision, can you guess what each
of these status bars would probably represent? Which is stamina? Which is mana?
Which is health? While not a bulletproof assumption, given these three colours, the
mapping that first comes to mind is probably red for health, green for stamina, and
blue for mana.

Colour. Many of our existing associations with colour can quickly convey
information; for instance, red might mean warning, heat, or something re-
lated to health depending on the context. As we’ll see shortly, using colour
on its own is a generally terrible idea for accessibility reasons, but is helpful
as a supplementary cue. Another way that colour can be used effectively is
within a game’s world, used to create contrast that doesn’t rely on players’

74

Say What you Mean

ability to identify a particular hue. For example, the Portal series uses white
walls to help guide players through exploratory sections of the game. White
walls contrast otherwise dark environments, while letting players know that
the portal gun may be used to reach them.

Figure 4.5 Motion can convey information, particularly intent. An enemy might vi-
brate in anticipation of bursting into flames, or squish down before springing back up
to take a mighty bite out of you.

Motion. Quick motion can quickly grab players’ attention, alerting them
to sudden changes. Screen-shaking and particle effects can be used to cre-
ate spectacle for a calamitous event or supernatural ability. Intense motion
should generally be used sparingly to avoid overwhelming players or creating
a false sense of importance, but motion doesn’t always have to be extreme
to be effective. Relatively subtle animations can be used to telegraph enemy

75

The Game Designer’s Playbook

attacks, and slight motion in a game’s UI can be used to tell players how
quickly something like an energy meter is depleting or refilling.

4.1.2 In one ear and also the other

Hearing is quite distinct from vision in the fact that we are incapable of easily
turning it off. You can close your eyes, but it’s far more difficult to close your
ears, as anyone with young children can attest. Perhaps this is why hearing
can feel so primal. Noticing a flicker of motion in your peripheral vision
may well be unsettling, but it doesn’t compare to a sudden and unexplained
bump in the night. This isn’t a book about evolutionary biology, so we’ll
disregard the obvious survival reasons behind this. Suffice it to say, though
humans may be visual creatures, we are also creatures profoundly impacted
by sound.

Just as there are different ways to communicate information visually, there
are also different ways to communicate information with sound in games.

Speech. As the audio analog of text, speech can be used not only for
conversation and voiceover, but also for feedback. A pat on the back from
Wheatley in Portal 2, or a slap in the face from GLaDOS, can provide an
immersive, amusing, and rewarding bit of feedback for players. An impor-
tant thing to remember here is that voice lines can quickly feel repetitive
if overused. The voice of the exosuit in No Man’s Sky, for instance, feels
repetitive when it triggers an identical voice line multiple times per minute
in harsh environments. In general, you should exercise caution if using a
limited collection of voice lines to provide frequent feedback, and give play-
ers the option to adjust or disable vocal feedback while providing alternate
means of conveying the same information.

Sound effects. A sound effect occurs in response to some event or change,
whether in a game’s world or its internal state. The bell of a town crier can
lend a game’s world a greater sense of life. A delightful riff can reward you
for picking up that latest breadcrumb on your collectibles list. Spatial audio,
which uses stereo sound to tell playerswhere a sound is coming from, can pro-
vide important guidance or warnings in-game. So varied are the applications
of sound effects that their design is an entire volume on its own. Many game
sound effects become iconic, as blips or jingles that instantly communicate
the intendedmessage while being pleasant or amusing. The alert sound from
Metal Gear Solid, jump tone from the original Super Mario Bros., health station
foley from Half-Life, and treasure jingle from The Legend of Zelda; if you’ve
heard them once, you’ll never forget them, and each conveys its intent with
style.

Music. Sound effects are typically concrete in their source and timing; the
effect is prompted by some event in the game or its world, and is (usually)

76

Say What you Mean

Figure 4.6 Audio is an important cue for anything that happens outside a player’s field
of view. Unless the local goblin invasion has invested in some serious stealth training
and pricey slippers, you probably want to give the nearby mobs a bit of auditory flair.

easy to trace and interpret if designed well. Music is far more abstract: out-
side of rhythm games, there is rarely a simple 1:1 relationship between the
features of a game’s music and its events. Instead, the character created by
melody, instrumentation, tempo, and key communicate the feeling of the
current situation. Frantic, pounding music implies dire combat. A somber,
minimal melody in a minor key communicates a character’s loss, or a feel-
ing of desolation. Changes in music communicate changes in state, quickly
putting the player on alert or at ease and helping to shape their mindset. The
Pokémon games, for instance, shift to a more desperate track during battle if
the player Pokémon’s hit points are critically low. Another example is the
use of unique tracks during boss battles in games like Undertale, which can
put players in a focused state while creating a memorable tone for each fight.

Ambience. You might think of ambience as a subcategory of sound ef-
fects, not necessarily traceable to any given event or change, but nonetheless
adding character to a game’s world. Chirping birds can create the feeling of a
serene meadow without having to animate all manner of sparrows and jays.
Whistling wind and faraway creaking can help to fill in the atmosphere of a

77

The Game Designer’s Playbook

dark environment. Though you generally won’t be using ambient sounds to
convey strategic information to players, they can still be extremely effective
in communicating the nature of an environment and, like music, help to
build the right mindset for players as a result.

4.1.3 The other, spookier senses

Although sight and hearing are certainly the easiest senses to appeal to in
terms of available hardware and information bandwidth, we are not limited
to these channels alone to convey information in games. While taste and
smell are sadly (or perhaps fortunately) out of reach for the time being, it
is possible to tap into a couple of our other senses to accentuate existing
audiovisual feedback.

Haptics. Communicating information through touch in games is re-
ferred to as haptic feedback. This is commonly implemented via the rumble
motors present in most gamepads, and used as a secondary cue to cue ex-
citement or danger. A massive gateway shaking open during a cutscene,
a character taking sustained damage, or a natural disaster are all common
triggers to feel such feedback in action. While some more exotic periph-
erals for touch feedback do exist, such as bulky haptic vests or fancy VR
gloves with little force-feedback triggers in the fingers, controller vibra-
tion comprises a majority of the haptic feedback that most players will
experience.

Your typical gamepad rumble doesn’t communicate much beyond “some-
thing’s happening right now!”With specific hardware devices, the communi-
cation can be much more nuanced, and help to make interactions feel more
grounded in reality. The NintendoWii’s controller, for instance, can use force
feedback to make something like swinging a tennis racket in Wii Sports feel
much weightier. Though they have since shifted somewhat from the focus
on motion control, Nintendo’s Switch console experiments with richer hap-
tic feedback with HD Rumble. A criminally underused feature, HD Rumble
relies on actuators that can move weights inside a controller on a precise
linear path, as opposed to the rough cyclical motion of standard controller
vibration. The effect of this feature in games like 1-2-Switch is the ability to
roughly approximate things like resistance and weight through the feel of
the controller in the player’s hand.

VR development is another area where haptic feedback has become in-
creasingly relevant. Since many games in VR rely on mapping their controls
to realistic motion—reloading a gun in Pavlov VR, swinging a crowbar in
Boneworks—haptic feedback can help lend in-game objects a sense of weight
and force. Subtle controller vibration in Beat Saber helps the imaginary
swords you’re holding feel powerful, giving a sense of resistance as your blade
bites into each virtual block.
78

Say What you Mean

Balance and motion. We are fortunate to possess a rather sophisticated
ability referred to as the vestibular sense, granting awareness of the body’s
balance, orientation, and movement. To the delight of young children ev-
erywhere, this ability is easily fooled with the likes of a blindfold, swivel
chair, or cruel friend who reneges on their promise not to spin the play-
ground carousel too fast. This ability is also easily fooled by holding a screen
in front of someone’s face and displaying a moving first-person camera while
they remain stationary. If we see motion, we expect to feel motion, and vice
versa.

Seeing immersive motion without the appropriate physical sensation of-
ten leads to nausea and headaches, especially in VR. Assuming you don’t
enjoy seeing your name printed above the word defendant in block letters,
deliberately throwing off players’ sense of balance as a proxy for some sort
of extreme controller rumble is a horrific idea. Nonetheless, it is possible to
actively communicate character movement to players through the vestibu-
lar system without risking motion sickness from a general audience. Doing
so requires special hardware; arcade racing games, very expensive flight sim-
ulators, and gimmicky seated virtual rollercoasters all accomplish this with
seats that can shift or tilt on demand.

Proprioception. Proprioception is from the Latin meaning “to grasp one-
self,” and refers to our awareness of position, and the position of our limbs
relative to our body. Unless you intend to visit your players individually and
move their hands and feet for them during play, this is not a sense that
can be directly used for communication. In conjunction with other senses,
however, it can help to convey spatial information in-game. Imagine, for in-
stance, a pitch-black environment in VR. Players feel for walls with handheld
controllers, receiving haptic feedback if they hit something. In combination
with awareness of the position of their own hands, players can quite literally
feel out their surroundings.

4.1.4 Putting it all together

It should be clear by this point that we are spoiled for choice in terms of our
communication options. The channels we choose to convey informationwill
be heavily dependent on what that information is and its importance. Usu-
ally, there are multiple viable solutions to communicate any given piece of
information, with creative freedom playing a significant role and no singu-
lar ideal solution existing. Nonetheless, we can apply some general rules of
thumb based on what we are trying to communicate.

Data science prescribes standard categories for classifying information
based on its type: qualitative, or descriptive, and quantitative, or numerical,
with further specifiers for different sorts of numeric data. We don’t require

79

The Game Designer’s Playbook

this level of rigour for our purposes, so we’ll stick with simpler terminology
in the interest of being a bit more specific to games. At a very high level,
we can identify three basic types of information you might convey to play-
ers: quantities (e.g., remaining hit points or ammunition), descriptions (e.g.,
what an item does, whether a character is hostile), and locations (e.g., where
your next objective is). For each data type, we can establish some general
guidelines in how it may be represented to players. Here, we’ll be focusing
primarily on audiovisual cues; without highly specialized hardware, other
sensory channels should be viewed as secondary supports in representing
information.

Quantities: “you have this much left.” Communicating a player’s re-
maining mana in Morse code via controller rumble is generally a recipe for
frustration. If you want players to have a relatively accurate idea of any num-
ber, it must include some sort of visual representation. If an estimation of the
value is sufficient during gameplay, then you can opt to use a proportional
display, like a meter that fills or depletes as the value changes. Many games
use these types of displays to represent character health; everything from the
Elder Scrolls games to Street Fighter. It is important to note that the size of such
a display will affect the granularity of a player’s estimate; a very large meter
will allow for more precise estimates than a very small one.1

If you want players to know the exact value you wish to communicate,
then you should usually provide actual numbers on-screen. The role-playing
subgenre of Japanese role-playing game (JRPG)s, which can demand play-
ers have a precise understanding of their damage output, often uses such
displays in combat. Xenoblade Chronicles, for instance, displays a floating
number on-screen corresponding to the damage of each attack as it is ex-
ecuted. If the value you want players to know exactly has a relatively small
range or possible number of values, you can avoid an explicit numeric dis-
play by using a clearly divided visual display. An example is icon-based
health bars, such as that used in Hollow Knight, which can tell players ex-
actly how much health they have left without needing to show players an
actual number.

Descriptions: “this thing is evil.” Depending on what you are trying
to describe, any of the channels described throughout this section might
be appropriate. For descriptions that require substantial detail, such as the

1 This is for two reasons. First, there is something called the “just noticeable difference,” a quirk
of human perception defining the smallest possible change that we will notice and something
data visualization designers always need to consider. Between two displays of different sizes used
to represent the same value, the same change in value will appear larger on the larger display,
and is thus more likely to exceed the visual “just noticeable difference.” Second, a smaller display
will have lower resolution and thus less ability to even display small changes in the first place
due to necessary rounding in its pixel size.

80

Say What you Mean

Figure 4.7 Four different ways to represent a player’s health total. Quantities might
be represented using written numerals, discrete gauges (like filled or unfilled icons),
or a continuous gauge (such as a health bar).

function of an item, some form of text should usually be included. Simpler
descriptions, such as the type of an item in the player’s inventory, might
be easily conveyed through iconography. In general, icons are preferable to
text if their designs are easily interpretable (and additional information can
always be given in a separate, more detailed view).

This label-maker approach, while certainly functional, is not always the
most engaging way to communicate information. Simple descriptions like
“this character is hostile” or “this area is safe” are often best communicated in
subtler ways, such as changes in music or cues in environmental and charac-
ter design. Sometimes, the more direct approach of explicitly tagging things
is necessary to avoid confusion—imagine if enemy characters in Overwatch
looked identical to teammates except for facial expressions. However, if a
more creative approach is feasible, it can create memorable moments. Sud-
denly hearing combat music in Skyrim and seeing an angry mob of vampires
turning the corner ahead is far more engaging than noticing red icons on a
minimap.

Locations: “it’s over there.” As you might expect, the answer to this
question is usually “just show them.” Icons on a compass or minimap are
certainly the most straightforward way to communicate the location of
something in any game where players navigate a virtual space. Spatial au-
dio, however, can also be incredibly effective, and can be used when giving
players an explicit map location would be inappropriate (e.g., the location
of a nearby enemy revealed by the sound of their footsteps). Audio can also

81

The Game Designer’s Playbook

Figure 4.8 If you wanted to communicate the quality of “friendly” in association with
a character, you might A) use iconography, B) use colour, C) contrast that character
with a less friendly-looking fellow through shape, or D) play happy music in their
presence.

be used in situations where players are meant to discover a location with the
assistance of something like in-game radar.

Another distinction we can make is that each of these data types can be
involved in either continuous or responsive communication. For instance,
a player’s remaining health might constantly be displayed on screen, but
sudden changes in that value (taking damage or healing) will carry additional
responsive feedback, such as animations and sound effects.

A key distinction between continuous and responsive communication
is that continuous communication serves as a reference for players, while
responsive communication serves as an alert. This means that, in general,
continuous communication should be unobtrusive, avoiding things like ex-
cessive visual motion or loud audio effects. Responsive communication, on
the other hand, should grab players’ attention, using things like motion,
sudden visual change, sound effects, and haptic feedback.

82

Say What you Mean

Returning to our previous example, the health bar in a game’s HUD is
a form of continuous communication. It should be easily visible for refer-
ence, but shouldn’t distract players by flashing or animating when nothing
of interest is happening. If health is critically low, an additional unobtrusive
effect could be used, such as a dimming effect at the edges of their character’s
vision.

If players suddenly take a large amount of damage, that change should
be communicated responsively to alert players to the change. This might
mean showing an animation of their character staggering accompanied by a
bloody particle effect, a flash on their health bar, a sound clip of the character
shouting, or a short burst of controller rumble.

Figure 4.9 Locations might be represented or highlighted via A) minimap, B) faux
radar, C) a HUD compass, or D) UI elements overdrawn in a game’s world.

83

The Game Designer’s Playbook

Another thing that affects howmuch attention we should try to grab with
our communication is the importance of the information in question. Keep
in mind that the type and intensity of the channels you use to represent
information will affect the noticeability of that information. For instance, a
sudden sound effect is more noticeable than static text, and a very large icon
will be more noticeable than a very small one. Using intense sensory cues
for something trivial can both annoy players and reduce their sensitivity to
communications for information that is genuinely important. Conversely,
if communication never really grabs players’ attention, then critical events
can easily be missed. We’ll explore these pitfalls together a bit later. For now,
you should understand that more important information should be more
noticeable, and less important information less so.

4.1.5 Sometimes the right choice is—everything!

Redundant encoding is a data visualization concept which refers to the use of
more than one channel to represent the same piece of information. As an
example, icons in a chart might use both shape and colour to represent their
type, rather than just one or the other. Though the term redundant encoding is
currently specific to data visualization and niche in its usage, it’s a nice way
to describe an otherwise nameless phenomenon which is, for good reason,
incredibly common in games.

In The Long Dark, a survival game set in the brutal Canadian wilderness,
players need to be acutely aware of their character’s current status. One im-
portant factor is their character’s need for warmth, which is strongly tied to
the world’s current temperature and weather conditions. This information
needs to be communicated continuously, as it is a constant factor in players’
decision-making. Players are warned about dangerous temperatures through
several different communication channels. Iconography on the game’s HUD
displays their character’s current tolerance and the rate at which it is de-
pleting. Visual effects in the game’s world, such as their character’s breath
fog, snow, blowing tree branches, and colour grading all change in accor-
dance with weather conditions, and consequently, temperature. The breath
fog effect, for instance, becomes more opaque, and thus more obvious, as the
temperature drops. Sound effects, such as the wind blowing, their charac-
ter’s teeth chattering, and breathing patterns provide further reinforcement.
Lastly, the player’s character will also remark on the temperature of their
surroundings and how quickly they need to find shelter. The use of so many
different channels helps to ensure that if players miss any one cue, they will
still be cognizant of the information since it is conveyed in other ways. Addi-
tionally, the use of many different cues helps to reinforce the information’s
importance.

84

Say What you Mean

Figure 4.10 In The Long Dark, players have constant access to information about their
exposure to the elements no matter where they look. Weather conveys the harshness
of conditions visually, while a HUD gauge displays how quickly player warmth is
depleting. An in-game menu additionally provides the current temperature and wind
chill.
Credit: The Long Dark is the property of Hinterland Studio Inc.

Redundant encoding can also help to make sure players don’t miss out on
key feedback if their attention is split between different tasks. In the hectic
cooking simulator Cook, Serve, Delicious and its sequels, players’ attention is
constantly shifting focus from one dish to the next. In the resulting pan-
demonium, it is important for players to be aware of whether they have
prepared orders properly as they move to the next task. Feedback is provided

Figure 4.11 The Cook, Serve, Delicious games offer multiple cues to let players know
whether they’ve thrilled or disappointed virtual diners. Amidst an interface that lets
users track all current orders (left), each individual order ticket provides visual feed-
back for a perfectly executed order (top right) or one they’ve fumbled (bottom right).
This is accompanied by appropriately cheerful or grumbly sound effects, as well as a
combo indicator tracking the number of perfect orders completed in a row.

Credit: Cook, Serve, Delicious! 2!! was developed and published by Vertigo Gaming Inc.

85

The Game Designer’s Playbook

for individual tasks with both an animated visual effect that uses colour and
stylized emoticons to display quality, and a sound effect indicating customer
satisfaction or frustration.

You should always communicate important information in multiple
ways, to underscore its value and make sure that players won’t acciden-
tally miss out on that information. Obviously, it is also important to
note that not everything should be communicated through six different
modes of representation at once, lest you leave your players in a hopeless
state of overload. Nonetheless, using multiple channels is a great way to
make communication more satisfying and less likely to fall through the
cracks.

4.1.6 A word on accessibility

If we did indeed have only one word to address game accessibility, that word
would be “important.”2 About 15% of American adults report some difficul-
ties with their hearing. If you're born with XY chromosomes, there's about a
one in twelve chance you'll have some form of colour vision deficiency (the
odds are much lower otherwise). It is estimated that nearly one third of the
global population has some form of visual impairment.

What this means is that assuming all your players will have the hearing
of a well-rested bat and perfect visual acuity is, ironically, incredibly short-
sighted. There are any number of conditions that can affect someone’s ability
to play and enjoy a game. Since our current discussion revolves around com-
municating information to players, here we’ll focus on sensory impairments
which can interfere with how a player will perceive a game’s output.

Various degrees of hearing impairment might mean that players can’t dis-
cern between similar sound effects, have trouble locating spatial sounds, or
be unable to hear any sounds clearly at all. This can be particularly trouble-
some for in-game speech, especially if that speech is conveying instructions
or vital story information, which is why subtitles should always be available
as an option.

Visual impairment can affect players’ ability to read on-screen text, dis-
criminate between various icons, or see contrast between different objects.
HUD scaling can help to alleviate this for more minor impairments, with
different picture settings such as high-contrast options serving as additional
mitigators.

2 Here’s a few sources, current as of this writing, that might help to underscore just how many
people are affected by, for example, sensory impairment:

https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://ghr.nlm.nih.gov/condition/color-vision-deficiency#statistics
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

86

https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://ghr.nlm.nih.gov/condition/color-vision-deficiency#statistics
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

Say What you Mean

Due to their high incidence, colour vision impairments, particularly red-
green colourblindness, should be something close to the forefront of your
mind in communicating with players. Though colour alone is a remarkably
effective cue for those with normal colour vision,3 it might be useless to
someone with a colour vision deficiency, depending on the colours chosen.

Figure 4.12 Discord uses a red-green colour scheme for publicly visible user status in
combination with shape cues to better accommodate colour vision impairments.

Credit: Discord is the property of Discord Inc.

Perhaps the easiest way to instantly make your game more accessible is to
never use green and red as indicator colours. In addition to risking associ-
ations with garish Christmas décor, red and green pose problems for those
with the most common forms of colour vision impairments. For example,
the radar screen in Galaxy on Fire 2 uses green dots for allies, red for hostiles,
and yellow for neutral. No other definite indicators are provided, other than
who is shooting at whom. While this scheme is instantly understandable
and easy to use for someone with normal colour vision, for the nearly 5% or
so of people with some form of impairment, the icons may become nearly
indistinguishable. Simple settings like a “colourblind mode” using blue and
orange, or adding icon shape as an additional cue, can provide a quick, cheap
way to reduce such issues.

3 In visualization terms, colour supports “popout”—the instant recognition of an object which
differs from its surroundings by its visual attributes. To someone with normal colour vision, a red
dot amongst a sea of green dots will “jump out,” making it easy to identify, for example, an
enemy on radar. For someone with a colour vision impairment, this effect may be entirely absent
depending on the combination of colours used.

87

The Game Designer’s Playbook

Figure 4.13 Left: Three different icon schemes as seen by someone with unimpeded
colour vision (left), deuteranomaly (a form of “red-green colourblindness”; middle),
and monochromacy (“total colourblindness”; right). Selective use of colours (e.g.,
orange and blue as opposed to red and green) can better support users with more
common forms of colour vision deficiency. If you want to preserve the green/red
“good/bad” association for users with normal colour vision, you should ideally in-
clude the option to switch to a different colour scheme. Including another cue, such
as shape, can provide more universal accessibility—and probably makes your scheme
more understandable in general.

All these points provide further credence to the concept of redun-
dant encoding. A player with severe hearing loss will enjoy your game
all the same if no important information is conveyed with sound alone.
A player with visual impairments will have a much more enjoyable and
usable experience if rich sound design is there to support cues that
otherwise rely on sharp sight. Such examples also reinforce the value
of giving players options; if you can, include options for large font,
high contrast, enabling additional sound effects or verbal feedback, and
so on.

In the case of exceptionally severe impairments, it may not be easy or
possible with what resources you have available to make your games com-
pletely accessible to players who are deaf or legally blind. Nonetheless, there
is a lot for us to learn from games that do accomplish near-universal ac-
cessibility. The Last of Us 2 is a paragon of accessibility, packing dozens
of options to assist players in reducing any interface-induced frustration.

88

Say What you Mean

A high-contrast mode, which turns the environment grey, outlines im-
portant objects, and uses a colourblind-friendly blue and red palette to
highlight allies and enemies, makes the game playable for those with low
vision. Touchpad gestures can be mapped to various text-to-speech options
reading out things like the player character’s health and whether they are
crouching.

Even if resource limitations mean that you simply can’t afford to de-
velop every accessibility option you would like, you should at the very least
avoid earlymistakes that sacrifice accessibility, like red-green colour schemes.
Wherever possible, you should also include options for players to customize
how they will receive information. Individual players are ultimately differ-
ent people with different needs; a one-size-fits-all solution is rarely the best
one.

4.2 Continuous communication and HUD design

There is a wealth of information that we can communicate to players at any
given time. Health, ammunition, stamina, the nutritional value of a packet of
virtual crackers, countless other possibilities, and any combination thereof.
We have already examined how we can represent these individual bits of in-
formation in isolation. But how canwe create a cohesive way to continuously
communicate everything that players need to know?

Players will have constant access to information in two main ways. First,
they can see and hear things in the game’s world through their point of
view (via a character or otherwise). Second, you can selectively feed infor-
mation to players through a virtual interface you design—in other words, an
HUD and in-game menus. Depending on the game and the situational con-
text, players’ informational needs will change, and our designs must adapt
accordingly.

Since players will spend a good deal of their time staring at the HUD,
its contents can have a significant impact on players’ moment-to-moment
experience. Toomuch information can create visual clutter and spoil a game’s
aesthetic—did Doom Eternal make a mistake in the neon-coloured additions
it made to the old Doom (2016) HUD, or did it succeed in making players
more informed? Missing information can cause player frustration—should
buffs and debuffs be displayed in Skyrim’s HUD, or stay buried in a separate
menu for the sake of immersion?

The answer to these questions isn’t always obvious or straightforward, and
individual preferences can mean that certain decisions will leave some play-
ers unsatisfied. Perhaps, therefore, the most critical step in creating these
designs is the simplest—selecting which information to communicate in the
first place.

89

The Game Designer’s Playbook

Figure 4.14 In “vanilla” Skyrim, various effects such as cloaking spells and potions
have varying durations—but players can’t explicitly tell how long they have until
buffs or debuffs wear off just by looking at the HUD (left). The SkyUI mod adds a
number of indicators for different buffs which indicate their function and display
remaining duration (right).

Credit: The Elder Scrolls V: Skyrim was developed by Bethesda Game Studios and published by
Bethesda Softworks. SkyUI was a mod developed and maintained by an independent team, with
core members snakster and Mardoxx with art by psychosteve.

4.2.1 What do they know, and when do they know it?

When video game design first established itself, games themselves were re-
markably uncomplicated by modern standards. By necessity, classic arcade
games like Pac-Man and Donkey Kong needed to create fun through sim-
plicity. Technical limitations meant that games couldn’t have save states,
complicated physics, or large-scale levels.

As a result of this simplicity, communicating information in classic arcade
games is a generally straightforward endeavour. The entire level is displayed
on screen at once, so the positions of any obstacles, enemies, and collectables
are always known to the player. Most games had only a few other values to
track that players could conceivably care about. After sticking the current
score up in the corner and tacking on a little counter for remaining lives,
there wasn’t really anything else to worry about.

Skip forward a few decades and the task of communicating information to
the player can be a farmuddier process.While some games still find the fun in
simplicity, the likes ofmassivelymultiplayer titles, management simulations,
and in-depth strategy games take the opposite approach. Shaking loose the
technical limitations of yore didn’t just allow us to make games that look
far prettier; it also permitted us to expand the complexity of the systems we
design.

90

Say What you Mean

Let’s take the massively multiplayer online (MMO) shooter genre as an
example, enumerating just some of the information that we could com-
municate to players. Health, armour, ammunition for the current weapon,
ammunition/charges for other weapons and tactical equipment, which
weapons are available, score of each player or faction, time remaining in
the match, geography of the surrounding area, which players have recently
been killed and by whom, health of teammates, position of teammates,
health of enemies, position of enemies, position of level objectives, progress
on level objectives, experience points, achievement progress, active buffs
and debuffs, ability recharge times, and of course, the seven-day weather
forecast.

This list is a chore to read, let alone try to keep track of while desperately
trying to evade the gunfire of a trigger-happy twelve-year-old hurling hurtful
insinuations regarding the promiscuity of your close relatives. But how can
we possibly go about deciding what needs to be communicated, and what
should be ignored? As a player, you want to know everything that you need
to make good tactical decisions. As a designer, it is your job to make sure
that players can access everything they need to know, while paring down
the gargantuanmountain of information thatmight be displayed at any time
into something manageable.

Fortunately, we have multiple options at our disposal for the availability
of information. We can identify five different cases for when players have
access to certain information:

1. Always-off: Players are never given this information. An example is
the contents of an enemy’s hand in the online card game Hearthstone.

2. Always-on: This information is constantly available and actively com-
municated to players. An example is the onscreen display of damage
percentage in the Super Smash Bros. games.

3. Contextual: This information is typically silent, but automatically
communicated to the player in certain situations. An example is the
health bar in Skyrim, which is only shown when the player has taken
damage.

4. On-request: This information is given to players only when they re-
quest it (e.g., by accessing a separate screen or talking to a character).
An example is the inventory screen in Starbound, or indeed almost any
other game with an inventory system.

5. Customizable: Players can choose whether (and/or how) informa-
tion will be made available to them. Examples include games that
allow players the option to disable their HUD or play in some form
of “cinematic mode,” such as The Witcher 3.

91

The Game Designer’s Playbook

Figure 4.15 Five options for controlling when players will have access to information,
such as an enemy health bar.

Depending on the game, a mix of these choices for different pieces of infor-
mation is often appropriate. These options are also not mutually exclusive;
for instance, some information which is displayed contextually might also
be available on request in a separate screen.

Unfortunately, there is no game-agnostic way for us to neatly choose
among these options based on the type of a piece of information. While
that descriptive seven-day weather forecast from our earlier diatribe might
be completely useless in a shooter, it could be essential information in a city-
building sim. Even something as basic as character health might not warrant
the same treatment in different games. In a fighting game, any health meter

92

Say What you Mean

is typically always-on. In an adventure game with limited combat, health
might only be displayed during a confrontation.

Instead of relying on arbitrary categories like health and weather, we
should approach the problem of what to communicate by examining the
context and importance of information, rather than its type. Understanding
an information’s importance can also help us determine the best way to
represent it, as discussed in the previous section.

For any given piece of information, we can select an appropriate option
(always-on, always-off, contextual, on request, customizable) by answering
the following five questions:

1. Should players be able to know this information? This question is
about balancing what makes sense in the context of a game’s world
with what information needs to be available for a game to work as
intended.4 Anything a player’s character could reasonably know on
their own (e.g., own health, ammunition, money and so on) or with
in-game equipment or abilities (e.g., position of enemies via radar) is
information the player could conceivably have available.
Information that a character wouldn’t necessarily know, such as the ex-
act map coordinates of a previously unvisited location, might still be
something that players are able to know for the sake of reducing con-
fusion and frustration. Other times, this kind of information needs to
remain unknown in the interest of fairness (e.g., enemies’ remaining
ammunition). If the player does not control a character, similar logic
can be applied; if information would be fair to have without “break-
ing” the game’s intent, then it is a candidate for communicating to the
player.

Sometimes, information must be earned by the player before it be-
comes available. For instance, players must place friendly units to lift
the fog of war and view an enemy’s terrain in StarCraft. In this case, the
information might be eventually available to the player, but its reveal
is conditional in some way.

If the answer to this question is a definitive no, then the information
should never be explicitly communicated to the player (always-off). If
the answer is yes, sometimes, or maybe, then the remaining questions
will help to determine the best option for when the information should
be available.

4 A related, but tangential concept is the idea of perfect versus imperfect information, a concept
which applies to any rivalry between players or players and AI opponents. If you are new to
these terms and would prefer to avoid a few hours reading about economic theory, here’s a quick
rundown: In a perfect information game, all parties have access to the same information (e.g.,
chess, where both players can see the entire board). In an imperfect information game, some
information is hidden at least some of the time (e.g., poker, where you can only see your own
cards).

93

The Game Designer’s Playbook

2. When do players need or want this information? Certain pieces of
information are always needed, and should thus be always-on by de-
fault. Examples could include things like score or time remaining in an
arcade-style game, or current ranking in a racing game. Even in games
with minimal or no persistent HUD, multiple pieces of information
are typically always-on—for one, everything visible through the player
camera.

Players might need to know something in certain situations to
decide on their next move. For instance, in combat, knowing their
character’s current health is necessary to select an appropriate fighting
strategy and decidewhen to heal. In gameswhere combat is infrequent,
the ever-looming health bar might prove to be no more than a visual
nuisance. In such circumstances, contextual availability should typi-
cally become the default option: make the information available only
when needed.

For something that playersmaywant to know from time to time, but
is not strictly necessary, information should be available on request. An
example would be something like progress in completing collections of
items; players will likely wish to check in occasionally, but filling their
HUD with a clutter of always-on lists would be nightmarish. Another
option in these scenarios is to contextually display information when
it changes, for instance, a small notification informing players they
have completed a collection upon retrieving the last item.

If players would not conceivably ever find information valuable in
some way, whether for utility, interest, amusement, or otherwise, then
it should be always-off.

3. How important is this information to the player? If you are on the
fence after answering the previous two questions, considering the im-
portance of the information at hand can help make the decision. More
important information should be more readily available—for instance,
a critically important value, like total cash in a management simula-
tion, might be always-on, even if it is not always strictly necessary for
player decision-making. Less important information may be kept at
bay to avoid overwhelming the player with clutter.

4. Can this information be conveyed outside of the HUD? In World of
Warcraft, players can install custom addons to strip down its HUD, or
more commonly, stack additional information on top of it. As anyone
who has witnessed one of these abominations can attest, the adage of
“less is more” certainly applies to HUD design. At the very least, the
default HUD you offer up to players should minimize the amount of
information being bombarded at them. Remember that the HUD is
not the only channel for continuously communicating with players;
players will also constantly take in information from a game’s world.
In other words, if you can reasonably convey something through what

94

Say What you Mean

players will see in the world rather than on the HUD, you should. Con-
sider hiding that minimap by default and putting up street signs; let
players feel a little bit more like they’re peering into a game’s world
and not staring at a screen.

5. Should we give players control over the availability of this in-
formation? The answer to this question is almost always yes from a
design standpoint. Practically speaking, it is often treated as no due
to the increased work resulting from things like customizable HUD
configurations and ever-expanding options menus. While this deci-
sion is understandable, the best design possible will give players a great
deal of agency in this regard. Some players might like to minimize
what they view as intrusions on an immersive experience, disabling
HUD features entirely. Others might like to have as much information
always-on as possible, accounting for every detail they can before mak-
ing a strategic decision. As a designer, the best decision you can make
is to respect these differences whenever possible: select the appropriate
default based on the previous questions, but give players the option to
decide what suits their own preferences.

Answering these questions is a relatively simple and straightforward pro-
cess, and yet, things like HUD design even in well-received titles can be
the subject of contention. A quick search for “HUD clutter in Battlefield”
(or the appropriately relevant multiplayer shooter at the time of your read-
ing) will yield innumerable threads on Reddit (or the appropriately quirky
public forum at the time of your reading) arguing over whether minimaps
and achievement ribbons are immersion-breaking. Such debates often make
salient points about the merit of options like UI scaling before inevitably
breaking down into chaos and vague threats to send various undesirable
materials through the postal service.

Trying to appease everyone with some magical set of default options in
such cases should be treated as an impossible task. The answer in many
of these cases is to invest the extra effort in customization options, giving
players control over the availability of information.

Finally, the answer in some cases might be to forego the inclusion of a
HUD at all, optional or otherwise. Sometimes, everything that players ab-
solutely need to know is shown through their surroundings. Most games
might have some critical value that players need to keep tabs on—health,
money, time—but for those that don’t, communication can occur through
their character and the environment. Indie darling Limbo strips down the
player’s experience to something resembling a black-and-white film, with
no HUD in sight. Granted, its gameplay makes this choice relatively obvi-
ous, with no lives or hit points to keep track of. Even so, navigational aids
could conceivably have been added. In the case of Limbo, a game whose core
atmosphere is one of feeling lost and alone, such additions would have served
to detract from the experience.

95

The Game Designer’s Playbook

4.2.2 Layout, icons, fonts, colours, and all that other jazz

The visual choices you make in presenting a HUD can impact its usability
and its aesthetic appeal. We’ll have a look at what makes an interface “beau-
tiful” or “ugly” at the end of this chapter. Beyond what we have already
discussed in terms of choices for representing information, there are other
factors which contribute to the visual gestalt of a HUD and its usability.

There are a great many individual factors that we could identify, but per-
haps the best way to quickly grasp the essentials is to review some general
design principles.

If you’ve ever spent more than five minutes in the company of a UX spe-
cialist, you’ve probably heard the name Don Norman, likely accompanied
by fervent pointing at the nearest teapot, coffee mug, or poorly designed
door handle. Don Norman is an accomplished design researcher, perhaps
best known for his book about the design of everyday things, controversially
titled The Design of Everyday Things. The original edition establishes six de-
sign principles, going on to form the first six lectures of every undergraduate
class on human-computer interaction created since its publication. Two are
of special interest to HUD design: visibility and consistency.5

Visibility. If you expect players to process information, that information
needs to be readily visible (or audible, in the case of audio cues). Having
elements that are too small, lack contrast, or are grouped too closely together
can all make a HUD harder to interpret.

One visual choice that can significantly impact visibility is typographic
design. Text readability is severely affected by font selection, size, and spac-
ing. If you’re one of the people that stopped to read every in-game book
in The Elder Scrolls IV: Oblivion, firstly, congratulations on your degree in En-
glish literature. Secondly, we’re sorry that you had to stare at all that crowded
text written in a script font that becomes virtually unreadable after the first
few words. Except for titles, it’s generally a good idea to avoid using overly
stylized fonts, no matter how much they “fit” with the theme of your game.

Subtitles are an area where typographic choices are extremely important,
especially for players that have difficulty hearing dialogue or trouble with
a character’s accent. Life Is Strange handles subtitles well, choosing a lightly
stylized font that is comfortable to read at its default size, and packing op-
tions to adjust scaling and toggle a text background to improve visibility.

5 We’ll encounter the other four principles in due time. Feedback, the notion that a system
should communicate the consequences of user action, is essentially the concept of responsive
communication. The other three principles areMapping (the relationship between the position of
controls and their function), Constraints (restrictions on the actions a user is allowed to perform),
and Affordances (appealing to a user’s existing conceptions of how an object should be interacted
with based on its design). These three principles will be addressed in Chapter 5, in discussing the
design of game controls.

96

Say What you Mean

Figure 4.16 Visibility means that information is easy to perceive. Let’s say you want
players to be able to spot their comrades for easy coordination and avoiding friendly
fire. Rendering another player as a normal character might provide poor visibility in
certain conditions (top left). Adding a simple label adds some form of visual distinc-
tion (top right). Adding an outline and more contrasting label improves visibility
(bottom left). Many games will opt for an outline on teammates which is visible
through world geometry to further boost visibility (bottom right).

Such settings don’t just improve the game’s quality-of-life; they also make it
more accessible.

In discussing HUD visibility, positioning is another important factor to ac-
knowledge. HUD elements should never obscure a player’s view of the game.
Aside from a central reticle or aim indicator if necessary, HUD components
should be pushed away from central vision. Existing in the periphery means
that these elements will usually be outside of a player’s focus: in view, but
with far less detail perceptible than through central vision. As a result, they
should be easy to interpret at-a-glance as players look away from the action,
and positioned in such a way that players know exactly where they need to
look for a certain bit of information. Take Minecraft’s relatively simple HUD
as an example. Everything is accessible at quick downwards glance along the
bottom centre of the player’s view. The player character’s status (health and
hunger) is displayed at the top of the HUD group, making it easy to monitor

97

The Game Designer’s Playbook

Figure 4.17 Given the four health displays at left as examples players may have been
exposed to in the past, A) is a design which is externally consistent. Using a bar shape,
the “HP” label, and red colour, it’s obvious what this gauge is meant to represent. If
B) is meant to represent health, it has poor external consistency; the blue colour and
swirl shape doesn’t exactly scream “health bar”6. This isn’t to say it’s a bad design,
but depending on context, you might want to be careful in making sure players know
what it represents.

both at a glance. The player’s armour indicator is grouped with their health
bar, since armour will affect how much damage they take in combat. Below
the needs bar is an experience bar that fills as resources are mined and en-
emies are killed, and finally, a hotbar of currently equipped items is shown
for reference. This grouping makes it easy for players to quickly find and
interpret different pieces of information.

Consistency. There are two different types of consistency: external and
internal. External consistency is the idea of obeying conventions established
by other games. An example is the ubiquitous red health bar common in role-
playing games. From the Zelda games to Divinity: Original Sin and (nearly)
every RPG in between, if you see a red bar without context, you assume it
serves as a health indicator. A game with a blue health bar and a red magic

6 One thing that does scream “health bar” is the eponymous red cross, which you may notice
is conspicuously absent from this diagram. There’s a very good reason for that: the symbol is
protected by the Geneva Convention, and is not to be used outside of very specific and very
serious contexts. This is something we discovered during writing, necessitating changes to the
initial version of this diagram and joining the likes of Stardew Valley in removing the red cross
symbol by way of update. But based on the number of games that depict it in some way to
represent healing, a shocking number of developers are technically in violation of the Geneva
Convention.

98

Say What you Mean

bar would be externally inconsistent: violating the expectations players have
based on past experience and taking a lot of time to get used to.

This isn’t to say that going against the grain is always a bad idea; the
relatively unique and convention-defying HUD of Dead Space has drawn ad-
miration from players and critics alike. We’ll talk about Dead Space’s HUD
and others like it towards the end of the chapter. For now, it’s sufficient to
note that straying from convention can be a good thing, if it is done for good
reason and executed well.

Internal consistency is, as you might expect, whether a game adheres to
its own established conventions. Mismatches in internal consistency are al-
most universally bad, unless done intentionally for comedic effect. There’s a
reason the Elder Scrolls games, and in particular Skyrim, always seem to crop
up in discussions nitpicking UI design; despite their immense popularity,
they are terribly flawed in some respects. Look at Skyrim’s character status
bars, for health, stamina, and magic. Each bar appears only if it is not full;
this is good internal consistency. However, while the stamina andmagic bars
deplete from the left-hand side, the health bar depletes from both sides to-
wards the centre. In addition to making it more difficult to accurately assess
the player’s current health, this creates inconsistency between the different
indicators for no good reason.

Good internal consistency can make it easier for players to navigate a
game’s HUD and use it effectively in different contexts. In Team Fortress 2,
players can take on the role of several characters, each of which has different
weapons and abilities. As a result of these differences, the HUD needs to dis-
play different information depending on the character chosen by the player.
Shared elements, such as health and killstreaks, are displayed identically be-
tween different character HUDs. Differing elements, such as recharge timers
for special abilities, are grouped consistently depending on their function.
Buffs that provide some temporary bonus are always shown in the bottom
left; recharge meters for unique weapons are always shown in the bottom
right. This consistency allows for players to switch between characters more
easily, without having to acclimate to many different layouts.

4.3 Responsive communication

In Stardew Valley, one of your in-game tasks is to gather specific items and
complete in-game collections of crops, minerals, fish, and so on. Upon har-
vesting that last precious turnip and depositing it in the appropriate box,
you’ll be met with dancing forest sprites, cheerful music, and a bouncing
little gift box containing your reward.

99

The Game Designer’s Playbook

Unfortunately, stowing away root vegetables in real life carries no such
fanfare, which is merely one of the things that makes reality a crushing
disappointment in comparison to video games.

In our lives, we find ourselves waiting for feedback on what we’ve done.
An email from the boss letting us know that we’re off the hook after that last
meeting. A review from a customer who didn’t turn out to be all that upset
about the extra olives on their sandwich. A note from our mother informing
us that we, once again, neglected to buy the apricot preserves, because the
strawberry just doesn’t work with the new raisin toast, and don’t we have
any respect for the pantry in this house?

Sometimes, we’ll receive contradictory opinions on what we’ve done.
Sometimes, the assessment we’ve been waiting on never arrives. We balance
enough precarious uncertainty to make Damocles himself blush, all exacer-
bated by the ever-entangling web of modern communication channels.

Games, or at least well-designed games, let us escape this hellscape of
unresolved tension through carefully crafted feedback, or in other words,
responsive communication. When we do poorly, we can know of our failure
immediately, and get some encouragement or advice if applicable. When we
do well, we can receive a clear indicator of our success. This helps us keep
track of our performance, helps us decide what to do next, and can even be
rewarding.

4.3.1 A quick primer on feedback

Feedback is another one of Norman’s design principles, applicable to the
whole of software and systems design. It’s a simple idea: any time a user takes
an action, the system needs to provide an indication of its consequences. If
you hit a button to print a document, you’d hope that some system dialog
would pop up informing you whether your printer will eventually decide
to do something about it. Failing this, you’ll be relying on the printer itself
for feedback, left alone to interpret the demonic beeping and flashing lights
of a machine obviously designed by denizens of the underworld. This is, of
course, a fate far worse than death, and the only evidence anyone should
need or want to justify the importance of system feedback.

Another important part of responsive communication is informing the
user of relevant events, like the lonely message notification from that one
person you know that still uses Skype. There are a lot of different terms for
these different flavours of communication, but for our discussion, we’ll just
use “feedback” as shorthand for any kind of responsive communication in
games.

Just as in the previous examples discussed, games need to provide feedback
on a player’s actions, as well as any events that affect them or their character.

100

Say What you Mean

If you hit a button to fire a weapon, the game needs to provide feedback on
that action.Maybe there’s amuzzle flash accompanied by sound effects if you
fire successfully. Maybe there’s a clicking sound and a voice line if you’re out
of ammo. Maybe there’s a grinding noise and a curse word or two if your gun
is jammed. Even if you as the player don’t do anything, events that affect you
also require feedback, such as a notification that a teammate’s character has
died.

4.3.2 Creating effective feedback

In the first-person shooterValorant, one of the side effects of being shot is that
your character will be temporarily slowed down. The magnitude of the slow-
down effect is such that it is hard to miss; however, when standing still, the
remaining feedback for taking damage is lacking. A faint red indicator near
the centre of the screen shows the direction of any fire taken, but its visibility
is reduced by a fade-in effect and often poor contrast with the game’s envi-
ronment. The player’s character can grunt after a significant hit, but audio
feedback for taking a hit is otherwise absent. The only other indication of
damage is for players to check their health on the HUD, which is shown as
a number only and relatively subtly animates its text colour when critically
low.

The outcome of this design is that it’s entirely possible for a player’s char-
acter to take a great deal of damage, or even die, without the player noticing.
This is especially problematic for new players accustomed to games that use
muchmore obvious damage indicators. It’s worth noting that, as of this writ-
ing,Valorant has received several patches, some of which aim to address these
issues and make damage feedback easier to spot.

Another game that makes hit feedback more obvious while avoiding
overzealous screen-shake effects is Valve’s zombie-themed FPS Left 4 Dead 2.
Like Valorant, L4D2 uses directional indicators to alert the player of dam-
age sources. However, the use of a more saturated colour against the much
darker environmental design of L4D2 improves contrast a great deal. Addi-
tionally, the markers appear instantly when the player takes damage, rather
than fading in, and are located closer to the player’s crosshair, making them
easier to spot. A translucent red overlay quickly flashes in and out whenever
a hit is taken, ensuring the player will notice damage no matter where they
are looking without obscuring their view. It’s also worth noting that contin-
uous feedback on health also makes it easy to understand character status
at-a-glance, with a health bar on the HUD that changes colour as it lowers
in addition to a numeric display.

Of course, much of the damage in L4D2 comes from enemies close to
the player, so hits from the front are easily recognizable from the animated

101

The Game Designer’s Playbook

Figure 4.18 In Left 4 Dead 2, the player is met with obvious damage indicators includ-
ing sound effects and splashes of colour (left). This also includes an on-screenmessage
when they are incapacitated and require assistance from a teammate (right).

Credit: Left 4 Dead 2 was developed and published by Valve.

zombie snapping its lifeless jaws an arm’s length from your character’s face.
Nonetheless, during what can become easily hectic fights with lots of ene-
mies in all directions, all that feedback helps you to pick out when you’ve
actually taken damage. What’s more, characters automatically trigger de-
scriptive voice lines during combat to plead with teammates for help and
warn of the danger posed by specific enemies.

Naturally, feedback for different events and actions requires different con-
siderations. Nonetheless, we can establish a few general rules of thumb for
what makes feedback effective, learning from the previous examples and
others like them. In general, feedback should be:

1. Immediate. Feedback needs to happen as soon as possible for players
to understand what’s going on around them, prevent frustration, and
inform future decisions. Imagine trying to execute a difficult button
combo in a fighting game like Marvel vs. Capcom and having to wait
several seconds to see whether you were successful. Instead, feedback
on the success of an action, event, or otherwise should be immediate;
if players don’t see or hear anything, they will naturally assume that
nothing has happened.

2. Distinct. Different actions or events should map to different cues that
are easily distinguishable to avoid confusion. Think of the variety of
visual and sound effects used in games that feature magic systems to
highlight different spells. In the JRPG Bravely Default, for instance,
casting different types of damage, healing, and support spells are ac-
companied by unique sounds, visual flair, and bursts of colour. This
makes it easier for players to keep track of what’s going on without
having to constantly second-guess their actions or pay more attention
to text indicators.

102

Say What you Mean

3. Easy to interpret. Unsurprisingly, feedback should be clear, lest play-
ers be left scratching their heads, or worse, resorting to searching for
something on an abandoned wiki forum. This is also where our friend
consistency comes back into play. The same type of action or event
should trigger the same type of feedback to remain internally consis-
tent. Existing conventions should be noted to maintain good external
consistency as well; for instance, a red halo at the edges of player vi-
sion says, “you’re taking damage,” not “you’ve just earned in-game
currency.”

4. Appropriately attention-grabbing. If the previous point relates most
to consistency, then this one relates most to visibility. If players are
likely to miss out on feedback, it will become a source of frustrated
confusion—as we have already noted. Conversely, obtrusive feedback
can annoy players, or create something akin to sensory overload if
taken to the extreme. Creating the ideal middle ground is challenging,
but can help make sure that feedback is both effective and satisfying.
Striking the right balance between these extremes is so difficult, in fact,
that it warrants some discussion of its own.

Figure 4.19 Feedback in Galaxy on Fire 2 when killing an enemy ship is immediate
(audio and visuals trigger when the ship’s health reaches zero), distinct (very different
to the effects corresponding to normal weapon firing), easy to interpret (recognizable
as destruction) and attention-grabbing (sound effects are appropriately loud, and an
explosion triggers a flash of light within a certain radius).

Credit: Galaxy on Fire 2 was developed and published by Deep Silver Fishlabs.

4.3.3 Packing a punch (or holding one back)

When you successfully strike a monster with your sword, the feedback can
be as simple as a number floating out of the enemy accompanied by a
ding to their health bar, and you’ll understand exactly what’s happened.
It’s probably not an experience that will stick in your head, though, and it’s

103

The Game Designer’s Playbook

likely you’ll be thinking in terms of numbers rather than reveling vicariously
in the bloodlust.

Now imagine that when you strike that same enemy, something different
happens. The blade makes contact. A gurgling sound effect rings out as it
tears through demon flesh. The monster’s body shrinks away, springing back
after the hit. Instead of a number floating out, a spray of blood flies from
the wound, coating the ground and splashing onto your character’s boots.
As the creature roars in protest, your character stumbles, your view shaking
from the sheer power of its battle cry. Your sword takes on a crimson hue as
you land hit after hit, blood pooling on the ground. As you walk away from
the monster’s corpse, its blood sloshes at your feet, reminding you of your
victory.

There’s a word for this sort of exaggerated feedback, and that word is juice,
popularized in a 2012 GDC talk and the subject of many video essays and
blogposts since. Adding rich feedback that exaggerates a game’s intended
tone—or “juicing up” its interactions—canmake players feel more immersed
and rewarded for their actions.

Juice is a tactic that has been applied in some form or another since the
inception of digital game design. The act of “juicing up” interactions has be-
come even more relevant in the past decade or so; one of the things most
drastically affected by advances in technology is audiovisual effects. The feed-
back on a jump in the original Super Mario Bros. or a gunshot in Commandos is
still certainly satisfying. However, modern games can make the same types
of interactions far more engaging in terms of feedback. In the indie plat-
former Super Meat Boy, for example, the titular meat boy leaves a literal trail
of juice wherever he goes, his elastic body responding to every moment and
landing with a satisfying flop whenever he touches the ground. In the top-
down shooter Hotline Miami, every fight yields an appropriately gory spray
of blood across the level, accompanied by some appropriately 1980s flashing
text indicating points earned for the kill.

To an extent, every effect you add can make an interaction feel more sat-
isfying, within reason. That last caveat is an important one, too; overdoing
something like screen-shake can make your game feel less like a juicy ex-
perience and more like a targeted attack on players with epilepsy. The line
between too little and too much feedback isn’t always clear, though, and
sometimes that line can shift depending on the context.

Overwatch, a multiplayer shooter with a diverse roster of playable charac-
ters, is a game with incredibly satisfying feedback. Each character’s unique
abilities, particularly their “ultimate” ability, carries a maelstrom of particles,
rays of light, sound effects, and animation. Even regular combat is filled with
splashes of light and colour, generally making the game a feast for the eyes.
However, being a competitive game that can pack lots of players in close

104

Say What you Mean

quarters, sometimes these effects can be overbearing. When six players are
all visible on screen, all triggering different abilities in a relatively confined
area, Overwatch suffers from undeniable visual clutter. It can be difficult to
tell what’s going on, and even more challenging to try and aim at a character
silhouetted between five different bursts of particles and auras of coloured
light. With the amount of action on screen during typical play, Overwatch
could benefit from an across-the-board reduction on the intensity of visual
effects—or at least some contextual trigger that tones down particle counts
and brightness in crowded areas.

Like everything else, the level of attention-grabbing that feedback de-
mands should correlate somewhat with its importance. Making a big deal
out of something players find unimportant can detract from more memo-
rable moments, or even become frustrating. The initial release of No Man’s
Sky, for instance, stole control from players for earning so-called milestone
achievements, taking ten seconds to pan out, display some cinematic bars,
award the achievement, and play some heroic music before focusing back
in on the player. The issue here was that the milestones include things like
covering a certain amount of in-game units on foot (first at zero, then five
thousand, then ten, then twenty. . .), something players would accomplish

Figure 4.20 Forager offers a great deal of “juice” including particle effects, cheerful fo-
ley, and succulent bits of visual flair on collecting resources, leveling up, or unlocking
items (top). This can become overwhelming when the player has sufficiently powerful
gear (bottom), but the game’s settings offer options to tone things down if players so
choose.
Credit: Forager was developed by Hopfrog and published by Humble Games.

105

The Game Designer’s Playbook

quickly with no significant challenge. Every single achievement carried this
sequence, which felt akin to being given an Oscar for brushing your teeth.
Fortunately, after players complaining of the constant interruption to their
gameplay for seemingly no reason, the fanfare was made optional in a later
update.

When feedback is done just right, the result is something that feels punchy
and satisfying, pulling you further into the game’s core experience. The indie
idle-action-adventure hybrid Forager captures the notion of “juice” with its
every interaction. Buttons are elastic, springing like soft rubber at every hover
and press. Every interaction in game sparkles with particles, cheerful foley,
and (optional) screen-shake where warranted. Though the visual spectacle
can verge on cluttered at times, options to disable certain effects can help
tailor the game’s appearance to players less fond of its bouncy animations.
And as a game with no competitive elements, sitting back to watch your
drones take out a wave of enemies in a flash of light and sound is nothing
short of glorious; all that juice makes the game all themore satisfying to play.

4.4 Brief thoughts on creative direction

In Persona 5, navigating menus feels more like leafing through a bombastic
manga comic. Text varies in size, colour, and even font, with letters from five
or more different typefaces appearing in a single word. Labels and buttons
can appear at skewed angles, animating in and out of a stark black and white
themewith attention-grabbing red highlights. Compared to traditional game
typography, it can be difficult to read. And it’s absolutely beautiful.

The thing about Persona 5’s menu and HUD design is that it fits excep-
tionally well with the tone and narrative themes of the game. Our edgy,
quite literally heart-stealing protagonists are set in a world that might be de-
scribed as punk, or vibrant angst. Their comic action-hero RPG battles are
supported by an appropriately comic action-hero UI and bold feedback. And
sure, some of the text can be tricky to read at first glance, but the aggres-
sive styling is used sparingly. Titles and top-level menu items are given the
full ransom note-esque treatment, while larger blocks of text such as charac-
ter dialogue and lists of items are rendered in a clean, easily readable font.
Those top-level items are more symbolic than anything else; iconic and rec-
ognizable, the fact they’re made of text at all serves as just a reference. In a
way, parts of the Persona 5 UI are meant to be felt, not read. Games in the
JRPG genre are infamous for packing a plethora of menus to wade through.
Persona 5 embraces its interface, using it as an opportunity to create great
art instead of treating menus as a boring layer atop its gameplay. It turns a
purely functional perception of HUDs and menus on its head, and the result
is something wonderful.
106

Say What you Mean

Examples like Persona demonstrate the subtle compromises between form
and functionality that can have a striking effect: bending rules like visibility
and consistency just enough to make something distinctively alluring with-
out sacrificing its usability. Steadfast rules like text readability and obeying
the conventions of other games aren’t always so clear-cut, providing room
for experimentation in the interest of creativity.

Art style, and more broadly a game’s creative direction, is another one of
those pesky subjective things that players with equally valid arguments can
love or hate. Some people see photorealism as the pinnacle of good game
art, while others prefer minimalist pixel work. Regardless of individual pref-
erence, what is generally considered “good” game art and creative direction
is a matter of not only artistic skill, but cohesion.

The most artistically appealing games are generally those that lean into
their own themes, creating a visual style and soundscape that support the
tone of gameplay and narrative elements. Take Okami, for instance, a game
almost universally praised for its creative direction. Okami’s story is adapted
from Japanese mythology, and its core gameplay mechanics allow players
to change the world around them by painting over it with special brush-
strokes. Fittingly, the game’s art style is one that mimics watercolour, with
thick, dark accents and outlines and dreamy washes of pastel colour form-
ing its tranquil landscapes. Its music uses traditional Japanese instruments
and styles, supporting the game’s visuals and its mythical narrative elements,
while mixing in sound effects that call back to gameplay, such as the sound
of ticking clocks ringing out during a battle with mechanical demons.

Figure 4.21 Okami’s Japanese watercolour style (left) is connected deeply to its narra-
tive, which frequently references art and the use of a “celestial brush” to manipulate
the world. Aspects of its environmental design often tie into the story as well. For
instance, the player encounters a village filled with windmills (right) on their quest to
restore a divine wind and extinguish a monster bearing the destructive power of fire.

Credit: Okami is a trademark of Capcom Co., Ltd.

Another gamewith astounding creative cohesion isOri and the Blind Forest,
with its lusciously painted backdrops, ethereal music, and fluid character

107

The Game Designer’s Playbook

animations. The central theme in Ori is one of optimism amidst strife—
returning happiness and light to a depleted world, holding out hope for a
lost loved one, and seeing a glimmer of promise and love even in your en-
emies. An appropriately rich atmosphere emphasizing the harmony of light
and darkness is established early, and maintained throughout. Even the tit-
ular character reflects this ideal; Ori is a brilliant speck of light in the game’s
world, embodying the spark of optimism and hope that underpins its story.

It’s clear that cohesion, in combination with skill and polish, creates an
appealing aesthetic. As one would expect, dissonance in this regard can
thus spark a negative reaction. Unless a creative disconnect is in service to
some other goal, such as parody or a thematic crisis of identity, it should be
avoided. If you’re skeptical of this notion, try pasting the hearts-and-flowers
UI style of a dating sim likeHatoful Boyfriend onto League of Legendswith com-
plete seriousness, set it all against the music from Candy Crush, and enjoy
sitting in the smoking ruins of your reputation.

A far less severe example is the perceived aesthetic disconnect of the de-
fault UI in Doom Eternal, particularly in terms of HUD design. The Doom
series has brought us nearly three decades of visceral gameplay and gritty
demon-slaying. Alongside that grit came an equally gritty aesthetic, with
levels full of fire, brimstone, and everything in between. This brings us to
the mild controversy of Doom Eternal, which ships with a HUD featuring
neon greens, oranges, pinks, and purples that feels a bit less demonic and
a bit more disco. This certainly achieves the goal of visibility, but its juxta-
position with the game’s overall aesthetic is jarring, generating exactly the
sort of complaints you’d expect from long-time fans of the series. Luckily,
the game includes a plethora of options to customize both the contents and
colours of its interface, though one is left wondering why 80s Kaleidoscope
seems to have been chosen as the default palette. Cohesion can be the key
to building a successful atmosphere; discrepancy can risk eroding it away.

4.4.1 Authenticity and the value of in-world information

In Dead Space, your health isn’t displayed as a bar overlaid on the screen. It’s
displayed physically on your character’s armour, as a meter running along
his spine. Menus like the inventory and upgrade screens are shown as holo-
graphic projections originating from and visible in the game’s world. In
addition to the novelty of holograms and fancy armour, this creates a special
kind of immersion. Anything you can see is visible to your character or other
inhabitants of the game’s world. You have no special prescient knowledge as
the player; you yourself feel more a member of its world than an outsider.

This type of interface design is referred to as diegetic, tracing its origins
from the Greek word for narration. An element is diegetic if it originates in

108

Say What you Mean

a game’s world (i.e., could be perceived by its characters) and non-diegetic
otherwise. Mario’s characteristic wail as he fails into lava is a diegetic sound.
The musical riff that plays when he reaches the end of a level is not.

Games that embed their interface in an entirely diegetic fashion like Dead
Space are relatively rare. Indeed, it can be incredibly difficult to create an
appealing, thematically appropriate, and effective interface without relying
on common tropes like the overlay minimap. A more common approach
mixes both diegetic and non-diegetic elements to create something that feels
more immersive compared to a wholly non-diegetic interface without having
to work in anything that might come off as forced.

The spaceflight and combat sim Elite Dangerous executes this blend rather
stylishly, with your spaceship’s holographic cockpit screens serving as a HUD
angled to mimic a pilot’s point-of-view. Menu interfaces like the mission
board and ship customization are displayed more traditionally, accommo-
dating the wealth of information and different items players need to sift
through without sacrificing any screen-space to accommodate the gimmick
of a screen or projector in-world.

Other examples of blending diegesis with “traditional” interface elements
and sound effects can be found peppered quite liberally throughout recent
releases. In Subnautica, the basic HUD is shown as a non-diegetic overlay, but
the game’s inventory screen, along with several other menus, is shown on a
PDA that the player’s character pulls from their belongings. A similar setup
is used in the Fallout series via the Pip-Boy, a device worn by the character
that the player can view to accomplish things like inventory management.
While music is typically non-diegetic in games, originating from some invisi-
ble background source, the Pip-Boy can also be used as a radio. Should players

Figure 4.22 In Elite: Dangerous, the HUD functions as a (diegetic) holographic overlay
in the player’s cockpit, an in-world projection that feels believable and looks beautiful.

Credit: Elite: Dangerous was developed and published by Frontier.

109

The Game Designer’s Playbook

choose to tune in, they’ll be getting a diegetic soundtrack—and there’s a spe-
cial sort of feeling that comes from knowing your character is hearing the
exact same thing that you are.

Diegetic elements can help to make a game’s communication feel more
natural, though they are by nomeans necessary to its efficacy or its creativity.
Dead Space has rightfully earned a great deal of praise for its entirely diegetic,
innovative interface design, but the entirely non-diegetic comic-book HUD
of Persona 5 is equally enjoyable for completely different reasons.

Regardless of how you choose to go about communicating information
to players, and irrespective of the creative style that communication follows,
remember that it is inseparable from a game’s core experience. An interface
isn’t just a layer on top of a game; it is a fundamental part of that game. In-
teraction is about communication, and that communication is inextricably
linked to the enjoyable, functional, beautiful, memorable experiences that
games can be.

Expert Profile: Cherry Thompson—Accessibility by design

Accessibility Project Manager at Ubisoft Montréal

Ask someone to define “accessibility,” and they’ll probably say something about ac-
commodating the needs of individuals outside the norm. Ask them about accessibility
in games, and you’ll be flooded with visions of settings menus, high-contrast icons,
and switchable colour schemes. After all, accessibility means adding on plenty of
disability-friendly features, right?

For Cherry Thompson, accessibility in games is far more nuanced. While many see
accessibility as a layer on top of a game, Cherry sees it as an integral part of the design
process. They note that defining accessibility in games is challenging, but describe it
as “understanding that satisfaction, that experience, the fun [. . .] and understanding
it for more people.” And Cherry isn’t just speaking in general; they’re speaking from
experience as a player with disabilities.

Before joining the games industry, Cherryworked as a freelance artist and creative in
film, photography, and comics. But when their physical disability progressed as a result
of a genetic condition, Cherry grewmore interested in accessibility. They directed that
interest to games after realizing howpowerful games can be for rehabilitation and pain
management. After working as a subject matter expert and consultant on the likes of
Horizon Zero Dawn and Dreams, Cherry eventually settled at Ubisoft Montréal, joining
a budding centralized accessibility team.

Cherry views their role as contributing to a long-overdue shift in howwe treat game
accessibility. As Cherry describes it, the typical view of accessibility is “a back door into
a building,” or “a ramp around the side of the building”—something that gets added
on. For games, this mentality conjures up an options menu and little else. Accessi-
bility becomes the job of a consultant, or perhaps a UI designer, and can become
an afterthought for the rest of the team. Looking at this separation, Cherry asks why
accessibility isn’t approached like other aspects of game design.

We all agree that games should be fun. The thought of needing a “fun consultant”
to remind your game director of this seems ludicrous. And yet, thoughwe all agree that
games should be inclusive, accessibility consultants are still very much needed. Cherry

110

Say What you Mean

(Continued)

wants to see accessibility become more ubiquitous in design—after all, it’s about un-
derstanding fun for more players—and cites a few reasons why this hasn’t happened
yet. In education, the relegation of accessibility to the occasional UX design lecture
leads to a lack of knowledge and critical thinking on the subject. Common percep-
tions of disability also introduce problems. As Cherry puts it, “We think of disability as
other, or different [. . .] but it’s really not. It is part of the human experience.” They note
that anyone can face barriers to their enjoyment in a game, regardless of whether they
identify as “disabled.” It’s critical, therefore, that accessibility becomes more central in
our design thinking.

The question becomes, how can we build a more holistic view of inclusion through-
out development, or as Cherry puts it, “accessibility by design”? Historically, they
describe the biggest challenge as “buy-in”: the need to convince developers that ac-
cessibility is important, or more cynically, worth the investment. Luckily, the industry
today needs little more convincing, and accessibility has gained a great deal of respect
and resources. But Cherry emphasizes that today, the new challenges that have arisen
are far more difficult to contend with.

First comes the task of dismantling misconceptions, not just in how we think about
disability, but in learning to thinkmore critically aboutwidely accepted designs. Cherry
offers UI as an example, noting a wave of flashy cursor-driven menus in mid-2010s
console games, seemingly inspired by the runaway success of Destiny. While visually
appealing and quick to navigate for most players, the precision of gamepad-controlled
cursors introduces barriers for players with motor impairments. Meanwhile, the par-
allax (relative motion) of menu elements that has become popular for its visual flair
induces motion sickness in some players. Cherry notes that Destiny-type menus, like
many other design patterns, aren’t inherently bad; they simply illustrate that no design
should ever be accepted without question.

Evenmore challenging are half-truths, where designers recognize barriers, butmake
incorrect assumptions about addressing them. If players express that part of a game
is impossible for them due to disability, the first solution that comes to mind might be
a difficulty setting. But, as Cherry puts it, the notion of an “easy mode” carries a bit
of stigma, and the idea that players with disabilities just aren’t looking for a challenge
is condescending at best. Instead, designers need to be more inquisitive about what
players are experiencing, and what types of challenges can include different players.
The trouble with typical accessibility solutions, Cherry says, is that “No one really stops
to think, is this the best way to do it? Is it the right way to do it? Can we do this in a
way that’s more flexible for players, or more customizable?”

The road to better game accessibility is also replete with procedural challenges. Pro-
duction and culture shifts are necessary to accomplish that “accessibility by design”
that Cherry hopes to achieve. All of these challenges demand substantial investment of
time and resources, but to Cherry, themost crucial problem that remains is far simpler,
and more human.

Cherry underscores that designers need to recognize that games aren’t just systems,
but human systems: “You have to [design] with empathy.” But many people confuse
empathy, the ability to understand the emotions of another and view things from their
perspective, with sympathy—feeling pity for those who are suffering. And true empa-
thy, as Cherry puts it, is “a two-way street.” Before we can understand players and
make our games inclusive to them, we need to understand and accept ourselves, and
the people we work with.

111

The Game Designer’s Playbook

(Continued)

To achieve this understanding, Cherry notes that creating an open and honest atmo-
sphere is critical. They share stories of how openness can help disarm communication
in the intense collaboration between teammembers. Through open discussion of their
experiences, like how a stroke in 2013 changed the way they interact with games and
theworld, Cherry encourages an honest environment free of stigma.With this honesty
comes a critical degree of introspection, which designers need to recognize as neces-
sary and potentially painful emotional labour: “You’re hearing about people having
very difficult lives because of the things we [designers] have done [. . .] That can weigh
heavily on someone, when they realize they’ve excluded someone.”

Successful designers need to deal with realizations like this and use them to improve.
While many attribute good design to technical skill, Cherry sees emotional intelligence
as the most important trait. Grinning, they describe their younger self, like many eager
young creatives, as “a bull in a china shop.” A deep understanding of people comes
with experience, which Cherry uses to guide their design thinking: “You have to [de-
sign] remembering that these are people [. . .] Having had firsthand experience of being
excluded allows me to remember that.”

As for what they hope to accomplish in the future, Cherry says they’re shooting for
one where their current job doesn’t exist—a world where every creative has developed
an innate understanding of accessibility. As they exclaim with a chuckle, “I just want
peace!”. Hopefully, that’s a future that we can all work to achieve: one where games
are more inclusive, more satisfying, and more fun for more people.

Further reading

Visualization Analysis & Design by Tamara Munzner (A.K. Peters, CRC Press). ISBN:
978-1466508910.

A thorough volume on the creation of information visualizations, with insights ap-
plicable to visual communication in general. Chapters 5 (Marks and Channels), 6
(Rules of Thumb) and 10 (Map Color and Other Channels) are especially relevant to
the types of visual representations you might develop for game feedback.

Game Sound by Karen Collins (MIT Press). ISBN: 978-0262033787.

One of the more comprehensive volumes on sound in games. The first few chapters
focus on history; sound designerswill find themost value in Chapters 5 (GameAudio
Today), 6 (Synergy in Game Audio), 7 (Gameplay, Genre, and the Functions of Game
Audio) and 8 (Compositional Approaches to Dynamic Game Music).

The Design of Everyday Things by Don Norman (2013 ed., Basic Books). ISBN:
978-0465050659.

One of the most famous books on design, and for good reason. After learning
many of the concepts presented for the first time, you’ll never look at the things
you interact with in the same way.

A Primer in Game Theory by Robert Gibbons (Pearson). ISBN: 978-0745011592.

An older work that gives an overview of information in games. If you found the
division of perfect and imperfect information games to be interesting, check this
one out.

112

Say What you Mean

Juice it or Lose it, talk by Martin Jonasson and Petri Purho (GDC, 2012).

A short and sweet discussion of how feedback enriches player experience; must-
watch material for pretty much anyone in game design.

(Continued)

Exercises

Port-A-Game: HUD edition

Pick a game you have played on any platform. Think about how you’d port that game
to a different platform (e.g., PC to mobile, mobile to console and so on). Focusing on
feedback, and particularly HUD design, what adjustments would you make to better
accommodate players on the new platform?

Make some sketches or edit screenshots to re-design the game’s HUD for your hypo-
thetical port. Include notes on how you’d adapt other forms of feedback in the game
as well. Here are some thoughts to get you started:

• Remember that screen size and viewing distance can make a big difference.

• Usersmight expect different “standards” in things like icons tomatch other games
on the platform (e.g., flat UI design in mobile games).

• Players on mobile might be playing with sound off, while PC/console players
might benefit from more complex audio design or spatial audio cues.

• You don’t have to confine yourself to replicating bits of the experience; you can
also try to improve on it!

Diegenesis

Take any gamewith a non-diegetic HUD and think about how you could turn elements
of that display (or the entire thing) into a diegetic interface. Make a sketch illustrating
your idea. Reflect on whether you think the game benefits from having diegetic HUD
elements or if they’re unnecessary, and why.

Prototyping juice

Using a game engine like Unity or Unreal, set up a very basic interaction, such as col-
lecting a pickup. Experiment with adding various levels of “juice” to that interaction
using assets you find online or make yourself. Some of the things you might consider
adding are particle effects, sounds, animation, post-processing effects, and so on.

As you layer on more effects, try to play around with how noticeable each one is.
How much juice is too much? How can you make a routine interaction feel special
without going overboard?

Fantasy sense draft

Using things like taste, smell, and touch in our games might be science fiction for now,
but it’s still an interesting design prospect. Take a game you enjoy and imagine how

113

The Game Designer’s Playbook

(Continued)

you might add feedback for one of these “non-traditional” senses. Why do you think
this type of feedback would complement the game you have chosen?What would you
use it to communicate? Come up with one or two specific scenarios where you’d use
this sense to communicate with players, and explain how that communication would
fit in with the existing game.

114

5

Control Freaks

The year is 2007. In the previous December, Nintendo had unleashed theWii
onto a ravenous holiday market. Gleaming white boxes adorned entertain-
ment centres across the world, illuminating their surroundings with a soft
bluish glow. Parents and children alike gleefully swung their arms about,
discovering the glorious potential of motion controls amidst a flurry of ath-
letic minigames. Families reconnected over nights spent bowling and boxing
by way of the Wiimote and Nunchuk controllers’ onboard accelerometers.

And then an overenthusiastic Wii tennis player lost their grip on the
Wiimote, flinging it at their television and immediately destroying the
screen.

As it turns out, use of the included wrist strap was hardly an unneces-
sary precaution. Whether the first incident truly sprung from a game of
Wii tennis or some other unfortunate mishap, reports of Wiimote-induced
destruction began to spread. Screens smashed. Wrist straps snapped. Light
fixtures were accidentally punched and shattered. People unwittingly beat
one another on an aggressive backhand, leading to a few lacerations and
a black eye. Supposedly in one occurrence, a shoddy wrist strap broke and
launched the previously attached Wiimote out the window of a twelfth-floor
apartment. The apparent danger was real enough to merit the launch of
wiihaveaproblem.com, a site exclusively dedicated to chronicling Wii-related
property damage and injuries.

While wiihaveaproblem is now long defunct, it is still accessible by way
of web archives. Undoubtedly many of the anecdotes contained therein
are embellished, if not fabricated entirely, though there were some very
real class-action lawsuits lobbed at Nintendo on account of those shoddy
wrist straps. Nothing overly substantial came of those lawsuits, as Nin-
tendo had already launched a voluntary recall, issuing thicker straps on new
units and offering the newer straps as replacements for existing customers.

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0005

The Game Designer’s Playbook

Nonetheless, the damage had been done, so to speak, and thicker wrist straps
didn’t entirely halt the destruction of those pricey flatscreens.

Figure 5.1 A) Intended use of the Wii remote. B) Artist’s rendering of typical Wii
remote usage.

2007 may have been a terrible year for televisions, but it served as a
breakthrough for mobile devices. In January, Apple revealed the first iPhone,
sparking the evolution of communication tools from colourful boxes riddled
with buttons to nondescript black rectangles more featureless than the ex-
istential void itself. Perhaps the most remarkable thing about the iPhone
was that it didn’t rely on any sudden technological breakthrough. Touch-
screens, cell phones, mobile internet, and portable music players all predated
the iPhone by well over a decade. It was the combination of these tech-
nologies, and the design of that combination, that set the mobile market
ablaze.

Along with the explosion of social media and endless data-tracking apps
that followed, thismoment alsomore or lessmarked the birth ofmodernmo-
bile gaming. Smartphones provided not only a new form factor for games,
redefining the meaning of “portable” gaming, but also birthed a slew of new
ways to interact with games. With no physical buttons, mobile controls rely
on touchscreen schemes that vary from dead-simple tapping and swiping to
intricate arrays of virtual buttons and joysticks, occasionally complimented
by gyro movement. From the breakout hit Angry Birds to later titans like
Candy Crush and Clash of Clans, efforts in mobile gaming proved to be not
only innovative, but incredibly lucrative.

Apart from their memorable launches and commercial success, the Wii
and the iPhone have another thing in common. Both devices revolutionized
the way we experience games, having lasting effects on the field of game
116

Control Freaks

design. Though the type of motion controls popularized by the Wii were
somewhat of a gimmick and far from standard, their echoes live on in the
gesturally focused controllers typically used in VR systems. Themagnitude of
the iPhone’s impact, on the other hand, is hardly arguable. As of this writing,
the mobile gaming space is still experiencing meteoric growth, with no sign
of slowing down.

Much of this innovation is down to the devices that sparked them, and
the development challenges that arose as a result. The devices we use to
play digital games shape the means of our interaction. Whether that inter-
action occurs through joysticks, buttons, or the movement of our bodies,
its conceptualization and refinement plays a substantial role in a game’s
design.

Just as we used the terms “continuous” and “responsive” to describe the
ways that games communicate with us, we can also identify two major cate-
gories delineating the ways that we communicate with games. The first is
direct input: the immediate mapping of a player’s actions in the physical
world to an action in the game world. In other words, you press a button,
and something happens. Many of the actions available to a player are com-
monly defined in this way; character locomotion happens as a direct result
of moving an analog stick, gunfire erupts from your weapon at the press of
a button. Not all input is given directly, however; a virtual interface may
serve as an intermediate between physical input and in-game action. Instead
of directly resulting in action, player input manipulates a virtual interface
which then causes some in-game effect. For instance, managing a character’s
inventory might be supported through a virtual interface where the mouse
can be used to move icons representing carried items. We refer to the use of
such interfaces as virtual input.

In the previous chapter, we explored how the design of feedback defines
the way that games communicate with their players. Here, we will examine
how the design of control schemes and interactive interfaces dictates the way
that players can communicate with games. When coupled with feedback, a
game’s input schema forms the other half of interaction between player and
game, fundamentally affecting the game experience.

5.1 I can’t find the “any” key

Wehave already explored half of Norman’s design principles—visibility, con-
sistency, and feedback—in discussing how games communicate with players.
The remaining three principles are of special interest to designing both di-
rect and virtual means of player input. Before we investigate how these
designs can succeed (or fail), we will briefly examine these principles and
their meaning in game interaction.

117

The Game Designer’s Playbook

Figure 5.2 If you’ve got a set of elemental spells to map controls for, it probably makes
sense to group those controls together (as in A) so that players can easily access related
functions in close physical proximity. Mapping them all over the place (as in B) will
be less intuitive in the vast majority of circumstances.

Mapping. In general, mapping is the relationship between the position
of controls and their function. The media buttons on a remote often flow
from left to right according to their relationship with time; rewind is to the
left, fast forward is to the right, and pause resides in the middle. A light
switch is most sensibly located in the same room as the fixture it controls.
Unfortunately, one of the unspoken rules of modern architecture dictates
that each building shall have at least one panel of inscrutable switches for
which all sense of logical consequence has been abandoned. This is why
those two switches placed oddly to the left and right of your refrigerator
control a light in your garage and a lamp in the basement of the Louvre,
respectively. The frustration ensuing from the existence of such artifacts is
perhaps the best argument for the importance of mapping as a consideration
in the design of any interactive system.

In games, mapping describes the layout of physical or virtual controls.
While the physical location of buttons on a given controller is constant,
different games can assign the function of those buttons differently, resulting
in a different mapping. Virtual controls, on the other hand, grant designers
total control over both location and function.

The mapping of game controls has a significant effect on the user expe-
rience of a game’s input system. Awkwardly positioned key-bindings may
lead to discomfort; imagine having to rapidly dance your hands over to the
numpad every time you need to reload in a first-person shooter. In contrast,
a well-designed control mapping will take advantage of ergonomics, leading
to controls that feel natural and avoid the hellish metacarpal gymnastics of
a lesser design.

118

Control Freaks

Another important note to consider in mapping a game’s controls is that,
just as with our light switches, the relationship between position and func-
tion should be logical. The simplest implication of this is that controls with
similar function should be grouped together. A design which exemplifies this
idea is the “hotbar,” which allows players to assign frequently used abilities
or items to a set of controls which are grouped together (such as a row of
virtual buttons or the numeric keys on a keyboard). Hotbars are a common
pattern in several genres, used for everything from organizing spells in the
online multiplayer RPG World of Warcraft to arranging frequently used tools
in the farming simulator-turned-adventure sandbox Stardew Valley.

Figure 5.3 To a human, a handle on a porcelain mug “affords” grabbing. Based on
design, we know that we can pick up the mug. To a cat, the use of porcelain, like
many other materials, affords wanton destruction.

Affordances. Well-designed things usually give you a clue about how to
use them based on aspects of their design, such as shape. The presence of

119

The Game Designer’s Playbook

a horizontal bar on a door signals that it can be pushed open; we say that
the bar affords a push interaction. The bar itself is an affordance—a clue as
to how the object should be used. While a bar affords pushing, a handle
affords pulling. When done well, affordances help to minimize error and
make things easier to use. When omitted or used incorrectly, affordances
help to create comedy in shopping malls and train stations, typically by way
of locking people into angry wrestling matches with “push” doors that they
tried to pull open.

In games, the concept of affordances usually means mimicking the design
of real-world objects to hint at the function of virtual ones. Affordances are
also present in the design of gaming peripherals; the triggers on a gamepad
or many handheld VR controllers mimic the trigger of a firearm. Having
a “shoot” action bound to another button simply wouldn’t make as much
sense, or be nearly as satisfying. This thinking also applies to the design of
virtual interfaces; buttons must signal that they can be pressed in some way
(e.g., borders, shading, colour), lest they be mistaken for plain text.

Proper use of affordances can help to guide players while minimizing
explicit instruction. The presence of a lever, switch, or wheel in an envi-
ronment, for example, hints at some machinery that can be interacted with.
In virtual reality or any game with gestural controls, the design of such ob-
jects can tell players how to interact with them. A lever must be grabbed and
pulled, a switch flicked or pressed, and a wheel turned.

Using affordances to convey information was often heavily relied on in
classic point-and-click adventure games, which peaked in popularity and in-
famy around the 1990s. Finding a key in the world usually meant that you
should look for a locked door or lockbox. Many adventure games from this
period became infamous for the obscurity of the assumptions they relied on.
Many puzzles beget a solution that went something like “get matches, melt
child’s ice cream, child drops toy and runs away crying, grab toy, use to taunt
guard dog, steal dog’s bone, use bone to distract dragon.” One particularly
notorious puzzle in King’s Quest V required that players collect a custard pie
to defeat a Yeti in the style of the Three Stooges. As of this writing, the King’s
Quest puzzle and others like it are still the subject of journalistic fodder in
the gaming community. Let this be a lesson on the use of affordances in gen-
eral; a simple assumption like “handles afford pulling” can be a great way to
minimize obtrusive instruction. In exploiting an assumption based on a rarer
occurrence or cultural reference, you are asking players to make a larger log-
ical leap. As players need to make larger leaps, the risk of misunderstanding
grows; arguing that “pie affords throwing at sasquatches” is simply a bridge
too far.

Constraints. In using a piece of software, or playing a game, not all ac-
tions are always available. You can’t copy text to your clipboard if nothing

120

Control Freaks

Figure 5.4 The same actionmight be allowed or disallowed depending on certain con-
texts. For instance, on precarious platforms, many games will add invisible collision
boxes to keep players from falling to their doom, unless the threat of actually falling
to said doom is an intended part of the challenge.

is selected; you can’t make your character jump if they’re already in the air.
Constraints impose contextual limitations on the input that can be accepted
at any time.

There are several reasons why you might want to impose such limitations
on players from time to time. Constraints can help to prevent player error; if
the player is walking their character along a narrow beam, you might make
it impossible for them to accidentally move left or right and fall off. During
a tutorial, you might successively “unlock” different inputs as players learn
one action after another (though as discussed in Chapter 3, this mentality
can lead to poor first-time user experience if applied improperly). Constraints
like the previous jumping example also serve to enforce a game’s rules by
disallowing actions if they would be logically impossible in-game at the time
input was made.

Another application of constraints in games is to guide a player’s expe-
rience according to a narrative or predetermined sequence of events. Some
games impose relatively few, if any, of these constraints on players. Many
games which heavily feature survival or sandbox elements, such as Minecraft

121

The Game Designer’s Playbook

and the RollerCoaster Tycoon series, fall into this category. Others, particularly
those featuring strong narrative elements, will periodically rob most or all
control from players to keep their experience “on rails” during cutscenes.
While many cutscenes in the Uncharted and Tomb Raider series incorporate
limited interactivity via quick-time events, other input, such as moving the
player’s character directly, is disallowed. These limitations can allow narra-
tives to adhere to strict timelines and cinematography that is completely
under the designer’s control.

5.1.1 Consistency, comfort, and customization

As with so many other things, good player input can be effectively summa-
rized in a quippy alliteration evangelizing three facets of successful designs:
consistency, comfort, and customization. Executing just one of these aspects
well does not promise the praise of game critics, but falling flat on any of
them does all but guarantee that you will incur the wrath of your players.

Consistency, a design principle we previously discussed in relation to feed-
back, is also of paramount importance in the design of controls. External
consistency—that is, consistency between different games—prevents conflict
between your design and players’ existing expectations based on their prior
experience. Good external consistency generally adheres to the accepted
conventions of a genre or platform, whereas poor external consistency vio-
lates these conventions without suitable reason. As a basic example, consider
controls for player movement in a first-person shooter. On a gamepad, FPS
games typically map character locomotion to the left analog stick, and cam-
era movement or aiming to the right analog stick. Using this mapping as
a default setting represents good external consistency. Arbitrarily switching
the binding of the two so that movement is controlled with the right ana-
log stick and aiming with the left would violate established conventions for
no good reason. Being different for the sake of being different is a recipe for
terrible external consistency, and will only lead to player confusion.

While external consistency will help to make sure that the onboarding
process is as painless as possible for new players, internal consistency—
consistency within a game—is equally important. Imagine a kart-racing game
with a variety of vehicles to choose from. While you’d naturally expect the
handling of different vehicles to vary, changing the control scheme of differ-
ent karts would likely serve little purpose other than irritation. One kartmaps
acceleration to forward on the analog stick used for steering (good luck turn-
ing at full speed). Another maps acceleration to the opposing analog stick,
throttle-style. Yet another maps it to holding a button, while a particularly
exotic variant uses one of the gamepad’s rear triggers. Performing the same
fundamental action in different waysmakes a system internally inconsistent,

122

Control Freaks

with no real justification for the disparity. Just as with external consistency,
poor internal consistency breeds frustration and little else.

The second entry in our triumvirate of good control design is comfort.
Executing inputs should feel comfortable, both in terms of physical han-
dling and how these inputs feel in-game. The latter point is largely a matter
of technical fidelity; controls should be responsive, and never evoke the
word “mushy.” On the design side, tweaking things like the acceleration of
a character’s movement can help to ensure snappy and responsive controls.

Comfort in physical handling is obviously related to hardware design,
though it is also dependent on how our input mappings are designed. For
instance, on most standard controllers, the directional buttons (or “d-pad”),
are located on the left side of the controller, next to the left analog stick.
An input scheme that requires simultaneous use of the d-pad and left analog
stick is uncomfortable because it necessitates that players stretch over the
right side of the controller with their right hand to reach the d-pad, while
their left thumb is occupied by the analog stick. An alternative that uses the
d-pad and the right analog stick, or simply both analog sticks at once, would
be preferable.

While an uncomfortable action lasting a few seconds probably won’tmake
players toss a game for good, we must remember that players might be expe-
riencing our games, and by extension, our controls, for hours at a time.What
seems like a passable, occasional awkwardness may quickly grow untenable,
especially for players who are particularly vulnerable to physical discomfort
(e.g., players with arthritis or carpal tunnel syndrome).

Our last concern is customization, an element which can, perhaps un-
surprisingly, compensate for shortcomings in consistency and comfort. All
commands for direct input should be customizable wherever possible; for in-
stance, any action requiring a button press should give players the option to
remap that action to any button that is available. There is no exception to
this rule; while selecting a good set of default controls is an important deci-
sion, controls should simply be customizable without question. It is possible
that such settings may be rendered unfeasible by the constraints of a particu-
lar platform, or a lack of development time. However, customizable controls
can make or break an experience for players based on their prior experiences,
preferences, or accessibility concerns. A player who has had one of their fin-
gers amputated, for example, may simply be unable to play comfortably with
a “default” control scheme. Customization will be the factor that determines
whether a game is inclusive to their needs, or excludes them from being able
to enjoy the experience.

Where players perceive a game to be externally inconsistent based on
some mismatch in prior experience—think of the flipped layout of XYAB
buttons between Xbox and Nintendo controllers—customization can allow

123

The Game Designer’s Playbook

them to make a game reflect their expectations. When a player finds default
control bindings uncomfortable, perhaps because they have smaller hands,
customization can eliminate physical discomfort during play. Customization
is not a panacea for every flaw in a game’s input design, but it makes all the
difference in a game’s ability to suit the needs and preferences of different
players. For this reason, it is arguably the most critical of the three qualities
discussed here.

5.1.2 Input modes, or a vision for peripherals

Just as there are many different sensory channels that games can leverage
in communicating with players, there are several different means through
which players can communicate their intent to a game. Before we dive in
to examine the specifics of designing both direct and virtual input in more
detail, let’s take a moment to briefly review the communication methods at
our disposal.

“Traditional” input. Here, the word “traditional” refers to input meth-
ods that have been established in digital games for the past several decades.
This includes the button- and stick-based input you’ll find on gamepads and
arcade cabinets, in addition to more exotic peripherals like racing wheels
for controlling virtual vehicles, or the specialty joysticks favoured by play-
ers fond of spaceflight sims. For PC games, this classification also includes
mouse and keyboard controls. The primary advantage of designing for this
category is that most devices have long-established conventions (e.g., on a
keyboard, WASD to move a character), helping to ensure a basis for external
consistency. However, some interactions can feel lacklustre when mapped to
a button press (as opposed to a gesture), such as the player’s character picking
up objects.

Touch input. Touch input is the only form of input available for most
games played on smartphones and tablets, though it is not relegated ex-
clusively to mobile platforms. Consoles and handheld platforms like the
Nintendo Switch often feature touchscreens. In PC games, trackpads can pro-
vide some limited support for touch gestures, and pen tablets typically used
for digital art also find a niche use in games like Osu!.

Touch input can be a blessing for games that rely heavily on menu inter-
action (e.g., inventory management), making it easier for players to quickly
select and manipulate interface elements without having cursor movement
as an intermediate step. The fluidity afforded to certainmotions—such as the
classic slingshot fire in Angry Birds—can help to make input feel more natu-
ral. However, touch input is also prone to points of frustration, such as faulty
gesture recognition or poor palm rejection leading to erroneous inputs. Fur-
thermore, on small screens, touch input can be frustrating for players with
larger hands trying to manipulate miniscule UI elements.
124

Control Freaks

Motion-based input. This category includes both accelerometer-based
motion controls, such as tilting a smartphone or swinging a Wii remote,
and recognizing player movement directly through a camera, such as the
now-defunct Kinect or VR hand tracking on the Oculus Quest platform. We
also define this category as including haptic input, such as grip strength on a
VR controller. Historically, motion controls are notorious for sparking some-
what of a divide in the gaming community, acquiring a reputation for their
often-gimmicky design.

Poorly implemented motion controls can be a source of immense frustra-
tion; look no further than the few motion-control shrine puzzles in Breath
of the Wild for an example. Nonetheless, motion controls have become in-
dispensable for one platform in particular: virtual reality. Well-done motion
controls have the advantage of unparalleled realism; in-game actions can
be mapped directly to their real-world counterparts. Looting an enemy with
a button press in Borderlands is surely gratifying, but the interaction qual-
ity can’t be compared with the ability to pluck ammunition directly off an
opponent’s corpse in a VR title like Half-Life: Alyx.

Other forms of input. The three categories discussed previously com-
prise the majority of game input, though other forms of novel input do
exist. Physiological sensors for things like heart rate and skin conductance
(i.e., sweat) can be used as a form of input, though they have not seen
widespread use in commercial games. Specialty hardware, such as eye-
trackers and headsets that provide indicators of brain activity, have seen
niche applications, especially related to the goal of improving accessibility.

Another input method distinct from the previous categories is voice con-
trol, which is surprisingly underused given the ubiquity of microphones and
their usage for team communication in multiplayer games. Though rare, the
use of voice control is not unprecedented. The ghost-hunting game Phasmo-
phobia, for instance, has players call out commands to communicate with
paranormal spirits.

Although this category of input is not commonly employed, it does pro-
vide interesting design opportunities. Novel forms of input can be a point of
interest for players, though in designing such games, a lack of familiarity or
widespread access to needed hardware can prove troublesome. At any rate,
game development is hardly constrained to the buttons and joysticks that
once defined the entirety of the options available.

5.2 Rules of thumbstick

Direct input is just that; input which translates directly to in-game action,
without the need for interaction with some intermediary virtual element

125

The Game Designer’s Playbook

like an on-screen button. What makes a good direct input system varies, to
an extent, based on its intended application. While there are many ways to
distinguish applications of direct control, perhaps the most straightforward
method of doing so is to ask what the player is controlling.

Figure 5.5 Three different perspectives of controlling a human character in defeating
the local goblin invasion: first-person (top left), third-person (top right); “omniscient”
control of a troupe (bottom).

Games where you control a character. Irrespective of mechanical diver-
sity, most games, particularly in the realm of PC and console titles, have
you moving a character (or vehicle) of some sort. To be clear, though, our
definition of character here is quite loosely a “thing” that the player controls,
whether human, animal, vehicle, robot, baked good, or otherwise. Shooters,
action-adventure games, platformers, racing games, and RPGs are practically
dependent on the concept of character control, with rare exception. A well-
designed character controller goes a long way towards pleasing players; the
Mario series practically founded a franchise on satisfying controls. Legacy en-
tries like Super Mario 64 hold up surprisingly well. Super Mario Galaxy, a game
which is practically a relic at 15 years old as of this writing, is still a paragon
of good design, in large part due to its smooth and snappy controls. On the
other hand, shoddy controls may not manage to put players off entirely,
but can riddle a game’s reception with words like “sluggish,” “floaty,” and
“unpredictable.”

Controlling a character comes down to designing for a few key inputs:
character locomotion, camera movement, and actions performed by the

126

Control Freaks

character (like shooting, opening doors, and talking to NPCs). We can fur-
ther subdivide character controllers into three main variations: first-person,
third-person, and controllers for unconventional character locomotion.

First-person character controllers. In a first-person game, the player
views the game world through the eyes of that character. This includes
games like Counter-Strike, Doom, and Portal—and, of course, any first-person
shooter you can think of. First-person control schemes link character move-
ment with cameramovement: in context, moving the camerameansmoving
your character’s head. This makes mapping locomotion rather straightfor-
ward; deciding what “forward” means is a no-brainer when your character is
constantly facing the direction you’re looking.

Seeing the world through your character’s eyes means that you might not
be seeing very much of them, apart from a pair of hands floating around the
lower third of the screen. In a way, this is a sort of blessing; in a single-player
title, this shaves off precious time otherwise spent on full-body animations.
Hand movement and sound effects can make something like taking damage
or rifling through cupboards feel realistic without necessitating a suite of
complex animations.

Sharing a pair of eyes with a virtual character comes with its share of
unique design challenges, though. Things like mouse acceleration, y-axis in-
version, and field-of-view (FOV) can make an experience annoying or even
nauseating if set improperly. Default values for these attributes inherently
encode assumptions about the player and their gaming setup. For instance,
a small FOV is generally more comfortable for longer-distance viewing (e.g.,
on a TV), whereas for players sat closer to the screen, this same narrow view
might induce feelings of claustrophobia.

Consequently, supporting customization in this respect is practically non-
negotiable, and yet some first-person games, particularly on consoles, have
historically excluded the ability to change field-of-view or related settings.
The Far Cry series, as of Far Cry 5, has yet to include FOV sliders on console, a
subject of much consternation in online forums. There are obvious technical
reasonswhy these settings are trickier to support on console than PC; reduced
hardware capability means that the extra rendering overhead incurred with
high FOV would require other graphical sacrifices. Developers can argue all
day that this is an unfavourable compromise, or requires toomany additional
options to support. From a UX perspective, though, spending six months to
make a game’s settings more inclusive is far preferable to investing in next-
gen raytraced HDR reflections for physically based puddles in a game about
shooting zombies.

Unburdened by the need for secondary camera controls, the mapping
between player intent and game action in first-person games is, in a way,
less complicated. At the same time, this can leave a razor-thin margin for

127

The Game Designer’s Playbook

Figure 5.6 Two screenshots of the player’s view standing in the exact same place in
Deep Rock Galactic with an FOV setting of 80 degrees (left) and 120 degrees (right). An
increased FOV has an effect similar to “zooming out.” An FOV that feels too high or
too low for the viewing distance and screen size can make players feel uncomfortable,
so providing settings to control it is advisable in all first-person games.

Credit: Deep Rock Galactic was developed by Ghost Ship Games and published by Coffee Stain
Games.

errors in timing; the frustration of input delay or jittery movement is made
worse when it affects a player’s entire view. Mirror’s Edge, and the subsequent
Catalyst, are first-person parkour games whose core appeal is essentially “con-
trols that will never irritate you.” Faith, the game’s protagonist, runs, climbs,
and vaults through the game’s environment effortlessly. Snappy controls
mean that players always feel in control, and yet the game manages to seam-
lessly blend in tweaks that help to sell the feeling of locomotion, such as
a subtle downwards tilt applied to the camera over the course of a long
fall. In marrying quick responses to player intent with tricks like this that
help to boost realism, first-person controllers can provide an immersive and
satisfying locomotion experience.

Third-person character controllers. Third-person titles position the cam-
era such that players can see their character’s body, ranging from over-
the-shoulder views to situations in which the character’s entire body is
visible. Third-person controls are the norm in several genres, such as plat-
forming and action-adventure, and can be seen in games like the Witcher
series and mainline Mario games. It should also be noted that many games,
such as the Elder Scrolls series, allow for players to switch between first- and
third-person view.

Unlike first-person games, third-person games decouple character and
camera movement. Camera movement may be mapped to its own input,
such as the right stick on a character controller, or left to be handled automat-
ically. Automatic camera controls are often preferable in 2D and 2.5D games,
where the character can simply be kept centred in view, or else the camera
can be fixed to look at one “room” or section of a level until the charac-
ter ventures off-screen. In full 3D, most games rightfully opt to allow players

128

Control Freaks

freedom over camera movement. Fully automatic cameras in such games can
wrest away the oft-needed ability to line up one’s view, for example, before
a particularly delicate platforming manoeuvre.

Another challenge introduced in separating the player’s view from that of
their character is what it means to move “forward;” when the player nudges
the left stick upwards, does the charactermove forwards relative to the game’s
camera, or in the direction the character’s model is currently facing? The lat-
ter option, referred to as tank controls for its similarity to the steering of actual
tanks, was not altogether uncommon in older games. Early installments of
the Tomb Raider and Resident Evil games, for example, featured tank controls.
However, this approach can feel clunky, especially when quick movement is
required, since turning instantly is either impossible or relegated to a separate
series of button presses.

Tank controls ultimately failed the test of time in many games that used
them, with a pattern of locomotion relative to the camera taking over in
modern titles. One of the reasons Super Mario 64 has aged so well is that
its controls are shockingly modern in this regard. Although the camera suf-
fers its share of collision issues and questionable pre-ordained animations,
movement occurring relative to a player-controlled viewpoint in 3D was
practically revolutionary at the time.

Another feature differentiating first- and third-person controllers is that a
third-person perspective typically puts a character’s entire body, or at least
most of it, in the player’s view. As a result, animation on the player character
is brought to the forefront. Fluid animation makes characters feel more alive
and at home in their respective worlds, from the graceful tumbles of Ori inOri
and the Blind Forest to the heavy weapon arts of the Souls games. At the same
time, animation introduces several questions related to timing. Ultimately,
watching an animation is waiting for something to happen, and character
animation invariably produces a slight delay in the journey from input to
results.

While this hardly poses significant issues in general, waiting for lengthy
animations in the name of realism can be frustrating. In the initial release of
Red Dead Redemption 2, whenever players search the body of a fallen enemy,
their character stoops down to rifle around. This bit of added realism comes
at the expense of padding out an otherwise unremarkable interaction to a
grating extent. The lengthy loot animation was ultimately patched out in
favour of a quicker, albeit more generic, grabbing motion, allowing players
to get on their way faster.

The input delay incurred by third-person character animations isn’t just
a question of eating up precious moments in between bursts of action. Even
a second or so of delay on something like a jump can make precision move-
ments downright infuriating to perform. In the very first Prince of Persia

129

The Game Designer’s Playbook

game, for instance, elegant sprite animations meant that lining up a jump
required timing one’s button presses to be abnormally early. The prince leapt
gracefully, to be sure, but the difference between that graceful leap and an
unbecoming death was an undoubtable sense of lag that took a fair amount
of getting used to. Contrast this with the controls in a beloved 3D platformer
like Super Mario Galaxy, where Mario’s anticipatory crouch occupies just a
few frames betwixt the player’s button press and his becoming airborne. By
allowing players to see their character, and opening up the possibility for
well-timed animations, third-person controllers can provide a boost to the
main character’s sense of personality and charm.

“Unconventional” character controllers. While the first- and third-
person categories do cover all relevant possibilities for character control—
perhaps excepting edge cases where a camera resides pinned to a character’s
ankle—it is worth placing “unconventional” controls into their own cate-
gory. Most character controllers follow from established patterns; players
control a humanoid or vehicle of some sort, or perhaps a horse their character
is riding. However, this is not always the case, and the task of sensibly han-
dling locomotion is further complicated by the relative dearth of examples
for controlling snakes (Snake Pass), cephalopods (Octodad), fleshy eldritch
abominations (Carrion, Inside), vaguely spherical clods of lawn furniture
(Katamari Damacy), and baked goods (I Am Bread).

Even with a humanoid character, the scheme for directly controlling a
character may be so far removed from a typical first- or third-person con-
troller that its design cannot be exceptionally well-informed by conventional
examples. In What Remains of Edith Finch, for instance, players control many
different characters. Though each of the characters players control is human,
the controls used in each case are unique and frequently depart from what
one would expect. Whereas a standard character controller might concern it-
self only with locomotion and combat, playing as different members of the
Finch family comprises managing momentum on a swing, turning through
a flipbook, and beheading salmon in one world whilst piloting an imaginary
boat in another.

Designing effective character controllers in these unconventional sit-
uations is challenging for a few different reasons stemming from their
lack of precedents. First, players’ learning of controls cannot be supported
as strongly by prior experience in other games. Furthermore, without an
abundance of conventions to use as potential templates, development will
become more costly as increased efforts in prototyping and testing are war-
ranted. Lastly, it is harder to find examples which can be worked from in
tweaking the subtleties of how a character’s controls should feel.

If working towards a more common archetype for character control, it is
typically possible to find several near-perfect analogs for the system you wish

130

Control Freaks

Figure 5.7 Non-traditional locomotion. In Carrion, players click to move, while the
amorphous mass of sticky bits they control contorts to squeeze through openings and
lets out tendrils to move around. Players have to consider the path their character will
cover as they embark on a quasi-slither through the environment.

Credit: Carrion was developed by Phobia Game Studios and published by Devolver Digital.

to design. If you’re developing an action-adventure game in a fantasy setting,
you might look to any of the entries in the Witcher, Elder Scrolls, or Legend
of Zelda franchises, for instance. On the other hand, if you’re developing a
game where players control a sentient ocean capable of dividing itself and
leaping between planets, finding successful examples which map one-to-one
with your design is no longer feasible.

Without dozens of relevant examples to work from, designing a success-
ful input paradigm within this category is a matter of some creative thinking
and falling back to more general axioms. In games like What Remains of Edith
Finch, where players are successfully introduced to one or many exotic con-
trol schemes, a few considerations can help make players’ transition into the
unknown feel a bit more natural. A lack of previous experience means that
initial difficulty curves should be further softened. Each new control scheme
also warrants its own tutorialization period; preferably in-world and with
minimal instruction (see Chapter 3). Additionally, though a given scheme
may be unconventional, this does not mean that it should disregard conven-
tion entirely. If players are controlling a robot in third-person view with all
manner of buttons mapped to different parts of its body, the player’s cam-
era can still have its motion mapped to the right analog stick (or mouse),
reducing the amount of new information that has to be learned. Above all,

131

The Game Designer’s Playbook

naturally, special attention should be paid to early-stage testing of such con-
trol schemes to validate their usability before too much effort is invested in
refining a particular design as the final iteration.

Games where you don’t control a character. Despite the endless stream
of gun-wielding figures in a state of perpetual ennui adorning the covers of
AAA games, direct character control is far from universal in games. Strategy,
simulation/management, and puzzle games often eschew character control
entirely in favour of an omniscient perspective giving players purview over
a military fleet, construction sandbox, or mysterious set of geometric ob-
jects. It should be noted that the boundary between games with and without
character control, like so many other aspects of game design, can be rather
fuzzy. After all, strategy games typically allow players to issue commands to
their troops—a sort of authoritative character control—so perhaps a better
term for this classification would be “Omniscient games,” or the cheekier
“Infinite-person games.”

Many titles in this category rely mostly on virtual input, discussed in
Section 5.3. In these cases, direct input is sometimes used as only an alias
or shortcut to accomplish something achievable through a virtual interface.
For instance, in The Sims series, on-screen buttons provide a means to change
the game’s current timescale, with numeric keyboard shortcuts assigned to
provide an alternative form of control.

The abundance of virtual input in games like The Sims or Civilization arises
from both practical necessity and usability concerns. What these games have
in common with each other is the large possibility space which exists in nor-
mal play. Stepping back, consider a game that features direct input heavily in
moment-to-moment gameplay, such as a first-person shooter along the lines
of Rainbow Six Siege. While there are certainly a great deal of strategic deci-
sions to be made during play, the basic interactions available at any moment
boil down to a fairly small set: move, aim, shoot, crouch, cycle weapons,
and so forth. It is the aggregation of many small decisions and adjustments
over time that creates complexity; when to move, how far to move, which
direction to face, when to reload

Contrast this with The Sims, where the player is issuing commands to a
household of virtual people that can range from “eat that pizza” to “paint
this photograph of the neighbours’ toilet rolls I just forced you to take.” At
a moment’s notice, players might flip to an entirely different set of interac-
tions allowing them to customize their digital family’s house, expanding the
possibility space even further. Part of the complexity in a game like The Sims
is the sheer number of actions available to players at any given time.

Relying entirely on direct input for something like interior decorating or
raising a small army of toilet roll painters presents an obvious practical con-
cern: there aren’t enough keys, buttons, sticks, or combinations thereof to

132

Control Freaks

Figure 5.8 You try coming up with a sensible keyboard shortcut for “Make organic
Brain Freeze à la mode” when you’ve got dozens of other foods to handle on top of
interactions with sinks, couches, televisions, and bear shrines.

Credit: The Sims 3 was developed by Maxis and published by Electronic Arts.

encode every desired action. From a UX perspective, even if such a task were
possible, it would be ludicrous to expect players to memorize an arcane and
untenably large system of control mappings. In something like a grand strat-
egy game, relying entirely on direct input is most likely either impossible, a
bad idea, or both. For these situations, direct input is best left as a shortcut for
players’ most frequent actions (like the timescale manipulation mentioned
earlier), rather than providing a mapping for every possible in-game action.

General lessons. Regardless of game context, a few key questions guide
the design process of any control scheme. First, you must determine which
actions players will have direct control over. For instance, most modern
shooters employ player-controlled reloading, while the concept of reload-
ing is abstracted completely in the classic arena shooter Unreal Tournament.
Paring down the inputs available will typically increase the perceived pace
of a game, at the expense of realism and mechanical complexity—which can
be a good thing, to an extent.

After deciding that an action will be under the purview of player con-
trol, you must also decide on the granularity of its representation. In the
case of reloading, most shooters (think Battlefield or Call of Duty) use a very
coarse representation, reducing the action to a single button press. In VR
shooters, a more detailed representation is often favoured. Pavlov VR and
Half-Life: Alyx both require players to perform actions like ejecting spent

133

The Game Designer’s Playbook

magazines, grabbing a new clip, and handling individual shotgun shells to
reload different weapons.

Increasingly fine representation of player input is a double-edged sword
of sorts. Consider the case of character locomotion, typically controlled with
an analog stick. This is a coarse definition to be sure; complete physical
agility reduced to a single input. In a sense, you might call this unrealistic.
And yet, a game that divided this singular input, asking players to perform
painstakingly synchronized button presses mapped to a character’s muscle
contractions, would be maddening. Naturally, such a game does exist, it’s
called QWOP, and as anyone with access to a school computer lab around a
decade ago can tell you, it is in fact maddening. Overly fine representation
often begets cumbersome or needlessly obtuse controls. At the same time,
such representations can also be part of the fun, whether by means of in-
tentional frustration (QWOP) or by creating a satisfying sequence of actions
that is ultimately immersive and rewarding (reloading in VR).

Figure 5.9 This game ruined keyboards, recess, the Olympics, and the gradient tool
for everybody. And it’s beautiful.

Credit: QWOP was developed and published by Bennett Foddy.

By this point, for any given action, you’ll have a list of how many inputs
you’ll need to represent it. A “coarse reload” might only need one input,
whereas a “fine reload” might need something like four (eject, grab ammo,
insert ammo, chamber a round). Your next step is perhaps the most critical:
deciding on a control mapping for each (direct input) and/or designing a

134

Control Freaks

virtual interface element (virtual input). Up until now, our discussion has
been scheme-agnostic; the decision of whether an action should be player-
controlled, and the fidelity to which it is represented, is necessary for both
direct and virtual input methods. Deciding how players act is where the dis-
tinction emerges, giving rise to the obvious question of which method is
most appropriate.

A few moments ago, we contemplated the absurdity of selecting a direct
mapping for every possible action in a game like The Sims. Following this
logic, we can extract a rule of thumb for when direct versus virtual mappings
are suitable for a given action. As illustrative examples, we’ll consider both
a game where you control a specific character (The Witcher 3) and a game
where you do not (Planet Coaster).

Direct input has a limited number of reasonable mapping possibilities, but
is quick to access. Thus, it is best to identify a manageably sized set of actions
that players will perform regularly, and represent those actions directly. In
The Witcher, an action RPG, these are actions such as moving, fighting, and
using the currently active rune (magic ability). In Planet Coaster, a sandbox
theme park simulation, this includes basic controls like camera movement
and pausing/unpausing the flow of time.

Virtual input, on the other hand, offers a near-limitless possibility space
on account of things like nested menus, but usually incurs some additional
time to navigate and select actions. Virtual input can be awkward for fre-
quent actions (imagine needing to use an on-screen control panel to walk
around), but ideal for infrequent actions or those with too many options for
an effective direct representation. In The Witcher, inventory management
and selecting a rune are examples of interactions that use virtual input. Sim-
ilarly, the number of construction andmanagement options in Planet Coaster
means that things like managing rides and selecting building materials are
left to virtual interfaces.

Figure 5.10 Left: simple, frequent actions like swinging a weapon are best served by di-
rect mapping. Right: more complicated actions, like inventorymanagement, typically
require the creation of a virtual interface.

Credit: The Witcher 3 was developed and published by CD Projekt Red.

135

The Game Designer’s Playbook

Settling on a suitable direct mapping or virtual interface design is largely a
question of respecting the advice discussed earlier, such as prioritizing player
comfort and providing customization wherever possible. The design princi-
ples of mapping, affordances, and constraints further play into this decision,
though perhaps the most crucial consideration is for consistency, discussed
at length in Section 5.2.1.

Before moving on to discuss how convention can dictate our designs for
better or worse, there is one final stage to acknowledge in the process of
control design. Even after every action has been selected, broken into its
constituent parts, and mapped, our work is far from over. While these qual-
ities define how an interaction works on paper, they neglect to specify how
it feels. Depending on the game context, all sorts of factors can contribute
to this feeling: how quickly a character accelerates into a run, the sensitivity
of a camera pan, whether the input triggers any “juicy” feedback and after
how long, the rules for cancelling or overriding an action in progress with a
different input.

All of these factors require design thinking, and careful attention in
playtesting. Handing off a list of labelled buttons to a programmer will not
give you much success, unless said programmer is also a skilled designer be-
ing paid for their time to flesh out how those controls will end up feeling.
We would also be remiss to ignore the importance of technical quality in this
regard; while this is a book about game design, input is a place where poor
implementation and bugs can leave an irreparable dent in user experience.
Well-done controls often blend into the background, but buggy controls
practically scream at players when encountered—nothing will ruin your day
quite like witnessing physics itself take a vacation as your spatula acceler-
ates uncontrollably to flip a much-needed steak onto the floor in Cooking
Simulator.

Tragically soiled cuisine aside, the journey discussed here is something you
will embark on time and again in designing player input. Having an idea of
the complete process, let us return to that most essential factor guiding our
decisions: consistency.

5.2.1 The role of conventions and consistency

Take a seat in front of any popular game developed within the last ten years.
Skip the intro, don’t check the menu, just give your friend a shove aside
and lay your hands on their keyboard (or controller). Chances are, assum-
ing you’ve played a game at any point within those last ten years, you’ll
figure out more than half the keybindings on your first try. If you’re staring
at a crosshair, you know what to do. WASD to move, mouselook to aim, left
click to shoot, right click to aim down sights, R to reload, left shift to sprint,

136

Control Freaks

left control to crouch. Without missing a beat, you’ll be blasting away at
everything in sight, and you’ll have wrecked your friend’s save file in no
time. There’s a simple reason for this ingrained knowledge, this instinctual,
delicate hover as the left hand gracefully prepares its assault on the far end
of the keyboard. That reason, simply put, is convention.

Convention, as we call it, is essentially an alias for external consistency,
our old friend describing the persistence of meaning between distinct en-
tities. This is contrasted with internal consistency, or the persistence of
meaning within something. Internal consistency, to a large degree, is obvi-
ous. If you’re responsible for setting an expectation, you’re responsible for
maintaining that expectation. Respecting external consistency is a littlemore
nuanced. Why, after all, should you follow someone else’s rules? Your game
is your business, and game design is a place for innovation. If someone else
sets an expectation, maintaining that expectation is not your problem.

Except,maintaining that expectation is your problem, because you cannot
and should not be designing your game in a vacuum, as much as you might
prefer the quiet and calm of doing so. Most importantly, one of the more
useful and simultaneously annoying things about people who play games is
that they bring the summation of their past experiences with them wherever
they go. Helpfully, this knowledge helps minimize the need for instruction.
Less helpfully, it also represents habits born from all the suboptimal design
decisions in ghosts of games past. There is a time and place to break away
from these conventions to be sure, but before we address the more problem-
atic aspects of blindly following “the rules,” let’s take amoment to appreciate
the value of convention in general.

Legend has it that the proper invention, or at least popularization, of
WASD can be traced to aQuake tournament in the late nineties,1 where cham-
pion Dennis Fong favoured the scheme over other alternatives lobbied at the
time (ASDX, EDSF, and some more exotic combinations involving mouse
buttons). While Fong’s skill would almost certainly still have shone through
with different keybindings, his performance provides some evidence for a
simple conjecture: you’ll play better with WASD than other movement con-
trols. WASD is appropriately lain out for the resting position of the hand, it
keeps modifier keys within easy reach, and assuming you’re also working a
mouse, it keeps the hands at a comfortable distance apart. In short, the con-
vention of WASD didn’t just happen, it emerged with solid justification from
a period of experimentation.

This sort of rationale is something you can point to for many design con-
ventions. Game development can be an excruciating process, withmost titles

1 Source: PC Gamer, accessible as of this writing at https://www.pcgamer.com/how-wasd-
became-the-standard-pc-control-scheme/

137

https://www.pcgamer.com/how-wasd-became-the-standard-pc-control-scheme/
https://www.pcgamer.com/how-wasd-became-the-standard-pc-control-scheme/

The Game Designer’s Playbook

falling into the “labour of love” category. Design decisions are (usually) not
made lightly, and when those decisions are repeated to become convention,
it is (usually) because they contribute to a positive player experience. By
and large, design conventions represent the agreed-upon best discovered and
available solution to a given question: WASD to move, click to shoot.

Even if we can’t give a convention the benefit of the doubt in terms of
representing an objectively good decision, we may still have good reason
in obeying them. Imagine a world where ASDX had become the standard
controls for keyboard-based character movement. Objectively, for most peo-
ple, this is likely a bit less comfortable than WASD, requiring them to
crane their middle finger backwards to reach X, rather than relaxing it for-
wards to reach W. In this hellish reality, though, sticking with ASDX would
likely provide more value than breaking convention to ship your game with
WASD.

By their very nature, conventions will be embedded in the experience of
your players. Following conventions means that you can count on players
to learn faster. It means that you can capitalize on muscle memory, creating
harder challenges for players with the knowledge they will have practised
the skills that your game demands before even starting it for the first time.
In a world where ASDX is king, WASD will introduce a bit of confusion,
wobbling, and a tendency to hover over an ever-so-slightly wrong part of
the keyboard, at least temporarily. Lastly, even in cases where a solution is
objectively better, as the stubborn creatures that we are, humans will tend to
prefer what they’re used to, particularly if potential improvement is relatively
minimal. Most people would be aghast if you switched their office keyboard
fromQWERTY toDvorak, leaving only a sticky note that says, “it’s a bit faster,
trust me.” Likewise, without a very good reason, you’re often best to avoid
making players grumpy by deviating from expected keybindings.

Another useful source of conventions, albeit with the caveat of needing
to go outside and experience things, is the real world. Making a game exter-
nally consistent with non-game contexts can help to make interactions feel
more natural, and make the learning process easier for less game-savvy play-
ers. Our favourite property destruction device from earlier in the chapter,
the Wii, showcased this type of thing masterfully. Nintendo’s Wii Sports and
other games of its ilk were accessible and easy to pick up because they stepped
beyond gaming conventions to capitalize on the real-world analogs of vari-
ous interactions. With the barest amount of in-game context, the Wiimote
itself became an affordance. You hold it and “do a thing” as you would in the
real world. In golf, you swing; in boxing, you punch; in archery, you draw
back and release; in swordsmanship, you slice. This type of thinking rested
in the background for a bit before being brought back to life in VR, where

138

Control Freaks

the conventions of PC gaming and the real world blend to create a satisfying
mélange of immersion and smooth interaction.

Happily pasting a rulebook together from established conventions and fol-
lowing it to the letter is far from a golden path, though. Flamed-out attempts
to use the arrow keys as a standard for movement because they have direc-
tions painted on them tend to be a bit irritating to return and visit. Some
design trends, like slipshod attempts to disguise a slot machine that gives
out confetti instead of money as a fun surprise in the form of lootboxes, are
just plain harmful. Where the argument against convention gets interesting,
though, is in some of the subtler issues that can arise.

Bias is a problem everywhere; disappointingly, game control design is no
exception. Standard keybindings are only standard in the sense that they’re
the result of experimentation to find the best possible compromise. That is,
the best possible compromise for able-bodied, right-handed players. There’s
nothing wrong with the fact that these conventions exist; having rules of
thumb to support a positive player experience is a good thing. But, having
picked up this book, as someone with a far above average interest in the field
of game design, could you confidently list any conventions for left-handed
or one-handed controls off the top of your head?

A relative lack of convention to support players falling outside of the able-
bodied, right-handed categorization is one of the things that damages the
accessibility of games in general. This isn’t just a burden that falls on game de-
signers, either. Unfortunately, hardware alternatives for the non-able-bodied
and/or left-handed swaths of the world are frustratingly uncommon, perhaps
surprisingly, given that a full ten percent of the population is left-handed.
Nonetheless, the absence of convention is not an excuse for complacency.
Take the time to develop an optional one-handed set of keybindings that
players can start with. Ask yourself if handedness would make a significant
difference (if you’re using gestural controls, the answer is probably yes), and
provide a reasonable set of defaults for both right- and left-handed players.
Help contribute to establishing conventions where the cruelty of ignorance
has failed to do so.

Another tricky element of working with conventions is that those con-
ventions can be at odds with one another, like the Xbox versus Nintendo
button layouts discussed earlier. In the realm of mobile games, for instance,
what players expect for the case of something like piloting a vehicle can
easily differ based on past experiences. Some may be firmly in the camp of
accelerometer-driven controls, othersmay expect a virtual joystick on screen,
while still others might prefer some sort of auto-drive with swipes to steer.
This is another area where customization can help to remedy any discon-
nects. Even without explicit customization, giving players multiple options
out of the gate can prevent confusion and ensure a smoother experience. In

139

The Game Designer’s Playbook

Plants Vs. Zombies 2, for instance, players can collect items by either tapping
on them individually (as you might expect coming from a PC), or continu-
ously swiping across them (faster, and not altogether uncommon in flashy
mobile games with lots of shiny things to pick up).

Irrespective of potential pitfalls, sticking to convention as a template for
control design is often worth it for the benefits it provides (quick learning,
muscle memory, the comfort of familiarity). Maintaining awareness of flaws
such as inherently encoded biases and potential conflicts means that they
can be mitigated with strategies like providing players with sufficient alter-
native options. That said, breaking convention in the interest of creating
something interesting or pleasant to interact with, so long as you can vali-
date the pleasantness of that interaction in playtesting. Where would we be
without the Octodads of this world, or the latest oddball Nintendo hardware
to challenge our notion of what controlling a game “should” feel like?

A break in convention, whether by necessity or experimentation, is fre-
quently the innovation needed to bring about a better standard as the new
normal. Let’s return to the example of reloading in VR; a straight port of the
desktop “shooter experience” would map reloading to an unremarkable but-
ton press (look no further than the VR version of Fallout 4). With the relative
ease of gestural controls on the platform, though, there’s no good reason
why this unremarkable button press should hold onto its status as the de
facto reloading solution. Fumbling for a new magazine with your hands and
jamming it into your weapon while under fire adds a dimension of realism,
and most importantly, it’s fun. Reloading a gun in Boneworks after tossing
a new clip into the air is a lot more engaging than tapping a button in
Fallout 4 VR. That spark of enjoyment doesn’t come from obeying a con-
vention; it comes from recognizing that rules are made to be tested and
sometimes broken.

Having made it this far, you may have settled on an immaculate control
scheme, begging yet another new question—what if you need to take that
control scheme somewhere else?

5.2.2 Some notes on porting

Porting is the act of taking software (in our case, games) between platforms.
The verb port in this sense comes from the Latin for “to carry;” hence, port-
ing is carrying a game from one platform to another. Colloquially, the term
port is generally used when a game is adapted for a system it was not orig-
inally designed for at some point after its release. Thus, if a game launches
simultaneously on PC and consoles, different builds are usually referred to as
“versions” of the game for each platform. If that same game is later adapted
to a different platform, the build for that new platform is referred to as a

140

Control Freaks

port, though the term port and version are often used interchangeably in
this case.

Today, porting a game as an indie developer can be as simple as shift-
ing around your HUD, remapping your controls, and hitting “build” with a
different target platform selected. But before the widespread use of engines
like Unity and Unreal that could readily deploy to PC, Mac, mobile, and
console, porting was a far more daunting endeavour. Porting a game often
meant re-creating it in a completely new development environment, trans-
lating scripts into different programming languages and gutting references
to the original platform’s API (application-programmer interface). Often, part
or all of this work would be outsourced to other development studios. Mis-
managed communication might muddy a game’s creative vision, leading to
(re)design missteps. Today, for developers using in-house tech, such as the
proprietary engines commonly used in AAA development, creating a port
can still demand this kind of collaboration and massive technical overhaul.

Creating a successful port might seem like a task which comes down to
good programming, rather than good game design. The notion of a good ex-
perience is hardly platform-specific. Ergo,making sure that a good experience
stays good is really a matter of not ruining its performance or introducing
bugs. And indeed, technical issues have been responsible for the critical death
knells of several ports, at least on launch day.

The PC version of Batman: Arkham Knight was initially locked at 30 frames
per second, making it feel choppy; while standard on consoles, PC games
typically aim for 60 FPS with an “unlocked” framerate allowing users to push
faster rendering on superior hardware. Likewise, the PC version of Mortal
Kombat X suffered similar issues with framerate inconsistencies, and a port
of the first Dark Souls was locked at a resolution of 720p, leaving owners of
1080p screens unhappy. Three beloved games, becoming three reviled ports
out of shoddy optimization and technical shortcuts.

The reality, though, is that while technical issues can certainly break a
game on their own, technical fidelity does not guarantee a good experience.
A new platform doesn’t just mean a new developer API. It means different
peripherals, different screen sizes, different viewing distances, and different
contexts of play. Sitting in a quiet space several feet from your television
with a gamepad is vastly different to standing on a crowded subway car,
staring at a phone screen a few inches in front of your face. Successfully
adapting your core experience is a matter of suitably redesigning the things
that support it. Control schemes need to be adapted to different periph-
erals; UI elements might need to be rescaled, simplified, or enhanced to
suit different screens. Porting a game isn’t just moving a game’s code be-
tween platforms; it’s moving a game’s experience from one context of play to
another.

141

The Game Designer’s Playbook

Resident Evil 4, one of the most critically acclaimed horror games ever re-
leased, has been ported about a dozen times since its original launch on the
GameCube in 2005. Some of these ports are heralded as improving on the
original experience, while others, particularly the first PC port, see regular
use on listicles chronicling the worst ports of all time. This makes RE4 a per-
fect case study in illustrating how the same experience can succeed or fail as
a result of critical design decisions on different platforms.

That first PC port of RE4 in 2007 suffered from technical and especially
graphical issues to be sure, but several of the biggest complaints stem from
the handling of keyboard and mouse support. RE4 is a third-person shooter,
and yet using themouse to aimwas not natively supported, requiring users to
patch in support via community-mademods. Keyboard control defaults were
an unruly mess violating most every convention established in the space of
PC shooters, mapping weapon switches to the Shift keys of all things. Al-
though customized keybindings were supported, those customized bindings
were not reflected in onscreen quick-time event (QTE) prompts, effectively
turning such events into a bizarre game of Simon.

The fundamental issue with ports like this iteration of RE4 is that they
seem to disregard the new context of play; while it is fine to recommend
that players use a gamepad, the reality is that PC players might not have
a gamepad. More likely, they may have a strong preference for mouse and
keyboard controls, especially in a shooter. Thismeans that any PC game needs
to offer a sensible option for mouse and keyboard players. Creating such
an option isn’t just a matter of mapping each button from a gamepad one-
to-one on a keyboard. It demands that the process of designing controls must
be revisited, paying particular attention to established conventions in the
new context of play. Had this been the case for RE4, we might have expected
controls which respected the expectations set by behemoth PC shooters like
Half-Life.

While some ports are hailed as the worst versions of the game, one is often
touted as the best, surpassing the original and creating a uniquely memo-
rable experience. That version is the Wii port, also released in 2007. While
the later Xbox One and PS4 iterations of the game brought increased graphi-
cal fidelity, the Wii edition boasted something special: motion controls that
players actually liked. Aiming the Wiimote meant aiming your weapon, a
natural mapping that was fun to interact with. A thrust of your knife was
achieved through swinging the Wiimote. Taken together, and given the
game’s focus on zombie-crushing combat, these simple interactions made
for a shockingly enjoyable experience in a game whose same-year PC release
didn’t even support standard mouse aim.

In comparing these two ports, the difference is obvious: where RE4 on
PC seemingly ignored its new play context, the Wii port embraced it. Gyro

142

Control Freaks

aim and swing was a uniquely Wii-focused design decision. Had the Wii port
been treated with the same design ethos as the PC version, one might expect
aimingmapped onto the D-pad of theWiimote, andmelee combat as just an-
other button press. Using point and swing as proxies for aiming and combat
were already established on the Wii; thus, this decision both respected plat-
form conventions and leveraged the console’s distinctive features to improve
the experience.

These trends of adhering to player expectations and exploring new op-
portunities to iterate on an experience are something that can be seen in
several ports regarded as successful. Ports that fail to innovate are just fine;
described with words like “serviceable” and “straightforward.” Those that do
everything well and pause to try something new, on the other hand, aremore
often remembered in less lukewarm terms. The Switch port of Alien: Isolation,
for instance, like the Wii version of RE4, capitalized on a couple of Nintendo
gimmicks to support gyro aim and HD rumble for improved haptic feedback.
A mobile port and remaster of Sonic the Hedgehog in 2013 embraced virtual
joysticks while adding in mechanics from more modern Sonic games to the
delight of fans.

From these examples, it becomes clear that successfully porting a game
hinges on both technical concerns and design decisions. Besides a few
common-sense technical recommendations—don’t lock framerate or reso-
lution, provide appropriate graphical settings, make sure you have enough
budget to optimize—what separates a great port from a terrible one can come
down to its design. A different context of play means different hardware, dif-
ferent conventions, and different player needs, demanding consideration for
a port to become serviceable at all. Beyond achieving mediocrity, though,
ports shouldn’t be treated as just moving an experience from one place
to another. Instead, they are an opportunity to refine a design, pushing it
further, and ultimately creating something to delight new and returning
players alike.

5.3 Virtual input and two-way interfaces

So far, we’ve focused primarily on direct input, where in-game consequences
are a direct result of the player acting in the real world (e.g., pressing a phys-
ical button, making a gesture). Virtual input adds a layer of abstraction to
this concept, with in-game consequences resulting from the player acting
on some virtual element. In this case, there is an intermediary betwixt action
in the real world and action in the game world. You might call this indirect
input in a sense, whereby a player’s physical action only directly influences
a virtual element which eventually leads to the desired action. For instance,

143

The Game Designer’s Playbook

the player presses on their left mouse button, depressing an on-screen button
which then purchases a piece of gear for their character. This intermediary—a
button, slider, quickwheel, et cetera—is an interactive, two-way interface.

In Chapter 2, we first introduced the concept of interfaces, facilitators of
information exchange between players and games. Our primary focus until
nowhas been on one-way interfaces for both game-to-player communication
(Chapter 4) and player-to-game communication (by way of direct input).
Interfaces supporting virtual input are somewhat unique in that they support
both forms of communication simultaneously. Virtual input elements don’t
just let players do something; they frequently tell the player something as
well. That big red button bearing the image of an electrified skull doesn’t
just let you press it; its very qualities of bigness, redness, and skull-ness give
you a hint as to what might happen when you do.

As mentioned in the previous section, virtual input is ideal for situations
with a significant possibility space which renders direct input infeasible.
It also works well in cases where conveying additional information to the
player is preferable. For instance, if a player is to select frommultiple weapons
with mouse and keyboard, an obvious solution might be a direct binding for
each through the number keys. This is a perfectly fine solution, particularly if
shortcuts are customizable. However, the eponymous “weapon wheel” seen
in games like Grand Theft Auto V provides a virtual alternative that not only
gives gamepad users a comfier experience, but lets players view their arsenal
while making a choice. This can be especially helpful when players are still
learning which weapon is which in a new loadout, or have yet to settle on
the hotkeys they prefer.

Virtual input sees many different applications, spanning the gamut from
options menus, to HUD widgets, to sprawling shop interfaces, and the com-
plex construction tools of city-builders like Cities: Skylines. Just as with HUD
elements, we could define a few different categories for virtual input based on
when elements are made available. For our purposes, though, it’s easiest to
simplify this distinction and talk about the degree to which virtual elements
are embedded into gameplay.

Loose integration. Loosely integrated virtual input is that which is
divorced from moment-to-moment gameplay. Most game menus fit this
definition, serving as a vehicle for players to choose a game mode, save their
progress, or configure game settings. A more loosely integrated interface is
one which provides functionality that does not directly impact what the
player is doing in game. Typically, accessing these interfaces interrupts the
flow of gameplay in some way.

Tight integration. When a virtual input interface does have a more im-
mediate impact on gameplay, it is usually more tightly integrated: it “lives”
close to gameplay, and it is less disruptive to access during gameplay. For

144

Control Freaks

instance, an always-on weapon hotbar is more tightly integrated than an in-
ventory management screen, which is in turn more tightly integrated than
an options menu. Interfaces which are more strongly integrated will typi-
cally have elements or imagery which are highly specific to gameplay, and
may necessitate tutorialization depending on their complexity.

Irrespective of how strongly a virtual input interface asserts itself as part
of gameplay, it is important to remember that all interfaces still affect player
experience. Regardless of whether players are accessing something once or
it becomes a part of regular gameplay, interactive interfaces need to support
interaction which is both usable and enjoyable.

5.3.1 Finding pleasure in button-pushing

Just like HUD elements and sound effects, we can ascribe the qual-
ity of diegesis to elements of virtual input. Recall that, if something is
diegetic, it originates in a game world and is something characters in
that world would be able to perceive and/or interact with. Anything
which exists outside the context of a game’s world is said to be non-
diegetic. For instance, the tech tree in Civilization is a non-diegetic interface,
while buttons and switches in the cockpit of Microsoft Flight Simulator
form a diegetic interface. Diegesis of virtual input elements can also be
achieved by “disguising” them as in-world devices, like a character’s smart-
phone. Examples include the PDA in Subnautica, or the Pip-Boy in the
Fallout series.

The decision of whether to make an element of feedback diegetic is almost
entirely aesthetic, as we examined previously. The same cannot be said of the
choice for virtual input elements; here, there is an argument to be made that
diegesis is sometimes necessary for an interaction to feel authentic. In games
where a tightly integrated virtual interface is necessary to support gameplay,
making those interfaces diegetic serves to boost immersion. Certain inter-
actions might not make as much sense, or feel just plain unsatisfying, if
achieved indirectly by interacting with non-diegetic interfaces.

In the bomb defusal simulator and guaranteed party livener Keep Talking
and Nobody Explodes, players defuse a bomb by interacting with a variety of
minigame-like panels on its surface. These panels feature “tactile” elements
like buttons and keypads, all of which are physically present in the virtual
world. This is tightly integrated virtual input at its best, with every button
press and snipped wire contributing to a very real sense of urgency.

Another example featuring diegetic and tightly integrated virtual input is
The Witness, a game with hundreds of puzzles based around drawing lines
on panels placed throughout the world. Often, these puzzles play heavily
into the game’s environment, with players inspecting the surrounding areas

145

The Game Designer’s Playbook

Figure 5.11 Diegetic virtual interfaces. In Keep Talking and Nobody Explodes (left), tac-
tile design makes wires and buttons supremely satisfying to interact with. In The
Witness (right), in-world puzzles have a more minimal interface, but their placement
in the world makes interactions feel rich and rewarding.

Credit: Keep Talking and Nobody Explodes was developed and published by Steel Crate Games.
The Witness was developed and published by Thekla.

to look for clues. The game’s core experience would be tarnished if those
physical panels were replaced with prompts saying “Press E to enter puzzle
mode” before being confronted with a minigame overlay.

In general, tightly integrated virtual interfaces are likely to benefit from
diegesis if it can make sense for those elements, particularly if players are
taking on the perspective of a character in the game’s world. When a player
controls a character, their intent guides that character’s action. If the player
spends a good chunk of time acting through interfaces that their charac-
ter could not reasonably see or manipulate, it is harder to believe that the
player’s character is accomplishing anything. It is harder, though obviously
not impossible, to maintain that sense of being one’s character. Incorporat-
ing diegesis into the design of virtual input is one way to help prevent this
from occurring.

Whether or not virtual input is diegetic, though, its design is plagued by
a few common challenges; chief among them is handling complexity.

5.3.2 Tricky waters

Navigation can be a perilous thing, in both maritime journeys and game in-
terfaces. If you’re looking to substantiate this claim, look no further than
your nearest sea captain, or anyone who’s ever found themselves in the
personal slice of pocket-management Hell that is virtually any survival craft-
ing game. Wading through the menagerie of bobby pins, reclaimed wood,
hamster food, and inexplicably immaculate greatswords that video game
characters have been known to carry is a daunting task. Between inventory
management, perk trees, and sim control panels filled to the brim with every
camera operation known to humanity, virtual interfaces can easily become
almost unsustainably complex.

146

Control Freaks

There is arguably no better case for the potential pitfalls of such com-
plexity than the humble crafting menu, a bastion of sandbox games and a
favourite addition to shooters that have no business implementing a craft-
ing system. Crafting menus usually serve as an added layer of customization,
giving players strategic choice in how they use their resources. They can also
help promote a sense of accomplishment; finding flint and sticks to make
a spear can be much more rewarding than looting one from an enemy or
buying it in a shop. The nature of crafting systems, though, is that they pro-
vide players with a great deal of options, all of which are usually managed
through some virtual interface.

If the options given to players via crafting are managed inelegantly, they
can make navigating a game’s crafting menus somewhat of a nightmare, or
at least an exercise in memorization. Take the crafting system in Don’t Starve,
which bins craftable items into categories represented as icons on-screen.
Clicking each category brings up a sub-menu showing the items in that cat-
egory, only displaying a few items at a time. While some helpful cues are
provided to improve navigation, such as highlighting items the player has
the resources to craft, finding what you want to make can be frustrating.
Categories are treated as mutually exclusive, although many items arguably
belong to more than one—armour is classed a “Fight” item, but not a “Dress”
(clothing) item. Compounded with the lack of a “view all” tab or a search
function, it’s easy to spend an unnecessary amount of time looking for an
item’s icon, even if you’ve been playing for a while.

The challenge here is to distill a lot of information into a more easily nav-
igable format. Minecraft, a game largely responsible for the crafting system
craze, does a pretty good job of this. The in-game recipe book provides a grid
view of craftable items, browsable by category, which players can filter to
only display items they currently have the resources to craft. Additionally, it
can be searched by recipe name, letting you quickly find exactly what you’re
looking for. For players that havememorized different crafting recipes, you’re
still free to click and drag resources around manually, enjoying the tangible
feel of arranging your sticks and stones into the shape of various tools. This
design gives players plenty of options, while search and filtering abilities help
to manage complexity and minimize frustration.

From these examples and others like them, we can derive a few key rules
of thumb to guide the design of virtual input interfaces, whether expansive
crafting menus, tiny HUD widgets, or otherwise, for optimal usability:

1. Element visibility. When feasible, all the elements of a given virtual
interface should be visible; this reduces the cognitive demand of mem-
orization. For instance, a weapon wheel is preferable to a scrolling list
with only a few elements visible at a time. In situations where not all

147

The Game Designer’s Playbook

Figure 5.12 Two hats, two categories: a miner’s hat in Don’t Starve falls into the “light-
ing” category but not the “apparel” category, while the warm beefalo hat falls into
the “apparel” category, but not “survival.”

Credit: Don’t Starve was developed and published by Klei Entertainment.

possibilities can be reasonably displayed at once, like the crafting menus
previously mentioned, two practices should be employed. First, com-
plexity should be organized as much as possible, with clear ways to
navigate. Both Don’t Starve and Minecraft separate items by category via
tabs/icons, a welcome quality which is absent from crafting menus in
many other games, like the PC version of Terraria. Second, you should
display as many elements as you comfortably can at once, without
overloading the player. Both Minecraft and Terraria offer grid views in
crafting to help players view multiple options simultaneously, while
Don’t Starve’s shorter list view is lacking in this regard.

2. Searchability. Interfaces where everything is visible at once are easily
searchable from a quick visual scan, assuming reasonable element den-
sity. For more complex interfaces, where players must navigate to see
every option, some functionality should be added to help players quickly
find what they came for. Ideally, this should include a full text-based
search like the crafting recipe book in Minecraft. However, to better sup-
port gamepad players and quicker searches, filters and sort functions are
also useful. For instance, the shop interfaces in games like Planet Coaster

148

Control Freaks

often allow players to filter items by their visual theme. The Skyrim mod
SkyUI offers multiple options for sorting inventory items, allowing play-
ers to accomplish tasks like quickly selling off their heaviest equipment.
In this respect, game designers can learn from UI design outside games.
While you (probably) don’t want your game to look like the next entry
in Adobe’s endless slew of subscription services, things like the customiz-
able toolbars in Photoshop might be something you could learn from in
designing a control panel for a construction-heavy sandbox.

3. Frequency vs. integration. The more frequently a player will need to
perform a particular action, the more tightly integrated its virtual inputs
should be. Remember that we say an interface is more tightly integrated
when it exists “closer” to normal gameplay, and is thus quicker to access.
Actions that need to be performed all the time need to be accessed all the
time, so if the interfaces supporting these actions are not integrated well
enough into gameplay, players will be made to waste their time—which
is generally not something they’ll be happy about.

4. Shortcuts. Following similar logic, shortcuts via direct input or very
tightly integrated virtual input should be provided for players’ most
frequent actions. This can include something as simple as hotkeys,
or buttons pinned on the HUD for quick access. In situations where
different players might have a completely different set of frequent ac-
tions, customizable hotkeys are practically a must, like the configurable
“hotbars” for quick access to tools or items in Minecraft and Stardew
Valley.

5. Follow the rules of good communication. Remember that virtual
inputs both allow players to communicate their intent while also pro-
viding some information about their function. Thus, their design should
respect the tenets of good feedback discussed in Chapter 4; elements
should be sized appropriately, things like icons or text should be clearly
interpretable, and you should be careful to respect any association that
might be made because of how something is presented. In other words,
the big red skull button should probably do some damage, and the lit-
tle green button bearing a question mark should probably not launch
a nuclear warhead in the player’s direction. Lastly, a virtual input ele-
ment should look interactive; between two things on-screen, if one is
clickable and one is not, there should be a clear differentiator between
the two; consider putting borders around icons to show that they are
clickable, for example. In all likelihood, players frustratedly tapping on
something because they’re not sure if it’s a button or not is an experience
you’d rather not create.

149

The Game Designer’s Playbook

5.3.3 The form of functionality

If you’ve been around long enough to remember what software looked like
before 2010, then you’re probably well acquainted with the concept of skeuo-
morphism, even if the word itself feels like a type of genetic disorder found
only in alien mushrooms. Skeuomorphism is the concept of making the
digital representation of something resemble its real-world counterpart as
much as possible. If you’ve heard the term before, hearing it almost undoubt-
edly conjures up images of calculator apps, virtual synthesizer instruments,
and Steve Jobs.

The reason Steve Jobs tends to come up in any discussion of skeuomor-
phism is that Apple used to be especially infatuated with it; the original
iteration of iOS is a classic example illustrating the concept. Its original app
icons, and consequently App Store icons in general, practically dripped with
the stuff. Everything high resolution, packed to the brim with subtle vari-
ations in colour and texture that mimicked physical objects. The original
Newsstand icon boasted a subtle wood grain; Passbook displayed colourful
tickets in a fabric sleeve, and Instagram was an old-timey camera graphic
packing an ultra-realistic lens and viewfinder.

Skeuomorphism is also associated with the notion of so-called jelly but-
tons and the like; while interactive jello is not quite so common in the real
world, overt highlights and gradients make things look distinctly pressable—
“I am a physical button, please push me.” In this way, skeuomorphism can
directly support affordances; an element which looks 3D suggests that it can
be pressed. Today, this look has largely been eschewed in favour of a much
flatter style often associated with the material design popularized by Google.
Instagram ditched its old-timey polaroid sprite for aminimalist white outline
atop some abstract neon fever dream. Apple capitulated as well, swearing off
all but the subtlest gradients and drop shadows.

Flat design is also the norm in plenty of games, from the minimalist
weapon wheel of Doom (2016), to the crafting menu in The Last of Us, to
most new mobile games. Skeuomorphic trends haven’t completely died out
in game UI design, though; even a game like Civilization VI, released well into
the 2010s, retains jellylike buttons begging to be pressed.

The emulation or exaggeration of physical qualities, passé as it may be in
graphic design circles, can still serve a purpose in games. This is particularly
true for diegetic elements. Returning to a couple of the examples mentioned
earlier, The Witness uses relatively flat design for its puzzle panels, but in-
teractive modules on the bombs in Keep Talking and Nobody Explodes are
meant to resemble their real counterparts, down to analog radio displays.
Were the modules in KTANE little touchscreens with flat-shaded buttons and
minimal diagrams of perfectly straight wires, the game’s aesthetic would be

150

Control Freaks

ruined. Styling virtual input isn’t just a matter of following design trends;
it’s also about maintaining cohesion with the rest of a game’s art and provid-
ing players the necessary cues (affordances) to recognize and use that input
effectively.

Designing virtual input interfaces is often about creating a clear and sim-
ple way for players to accomplish something, with a focus on functionality.
However, thinking outside of these limits can help to create a positive, mem-
orable experience. Take the example of a game’s mainmenu. Most menus are
effectively little more than a few buttons overlain on a screenshot, with vary-
ing degrees of minimalism. Whether you’re playing World of Warcraft, Dark
Souls, or Candy Crush, you probably see this sort of menu constantly. Another
popular design is the “dashboard” style found in multiplayer games, particu-
larly shooters like Rainbow Six Siege and Call of Duty: Warzone. Like a slightly
less disturbing version of the Windows 8 Start menu, these interfaces typi-
cally serve double duty in providing players options and advertising various
game modes or seasonal content.

There’s nothing wrong with this kind of design. Like many of the ports
we mentioned earlier, you might describe it as “serviceable.” Or “adequate.”
But a game’s menu is still a space where some creative innovation can occur,
providing players with a bit of delight before they even get started playing.
Brütal Legend is a game often referenced purely on the basis of its menu de-
sign, which used a combination of real video clips and “standard” graphic
design to visualize its menu as living on a vinyl album. Some games mash up
direct and virtual input for their menus, like Psychonauts, which has you con-
trolling a character running around on a three-dimensional brain to select
different options. More simply, integrating little easter eggs can give players
a treat for idly playing around with interactive elements, like the alien that
pops out to say hello if you knock on one of the “E”s in the Stardew Valley
menu.

Functionality is, of course, king in the design of any interface. To achieve
real enjoyment, something first has to be usable, whether that something is
a HUD, a control scheme, or a menu. However, just because something is
chiefly functional, does not mean that it cannot be playful. As in designing
game mechanics, art, or music, sculpting the way in which players interact
with our games provides us with an opportunity to create an even better
experience.

151

The Game Designer’s Playbook

Expert Profile: Jason Avent—Changing Tides

Studio Head at TT Games

In his 25 years of experience, Jason Avent has seen one constant in the games industry:
ironically, or perhaps fittingly, its continual propensity for change. Jason chatted with
us about this change, chronicling the evolution of game design, monetization, and
player expectations over the past two decades. In that time, his career has seen a lot
of change as well.

Jason set out into the workforce in the late nineties, with a degree in civil engineer-
ing, but the games industry quickly caught his eye. Following up on a connection
through a friend, Jason got a gig as a level designer for XCOM: Terror from the Deep.
Shortly thereafter, he briefly returned to engineering, but the games industry would
soon win him back for good.

In the years since, Jason has worked at all manner of studios and publishers, not to
mention starting his own. After a stint at Electronic Arts, Jason eventually landed at
Disney’s Black Rock Studio as a game director for big-budget console titles. Although
Jason loved his work, he describes the mentality of console development at the time
as “insular,” with an instinct to dismiss other platforms like mobile or VR. But when
Black Rock closed its doors in 2011, Jason looked past that dogma and founded Boss
Alien, a studio focused on mobile development.

Looking back, there was no shortage of clues ten years ago to suggest that mobile
gaming might be the next big thing. But Jason says his biggest motivator was the
rapidly growing popularity of the iPhone, which was serving to unify an ecosystem
previously split between several different operating systems. With iOS emerging as
the market leader, Boss Alien set its sights on creating a game to take the new platform
by storm, and so started work on CSR Racing.

From the beginning, CSR was designed around the newly established free-to-play
(F2P) model, intending to land in as many pockets as possible. Jason says that respect-
ing players who choose to stay free is crucial; without any spending, the game would
take a bit longer, but wouldn’t dangle a competitive advantage behind a paywall. Of
course, the hope was that players would eventually convert if they enjoyed the game
for long enough.

Early versions of CSR started with a core that was all about the racing. Players loved
the gameplay, but retention—according to Jason, themost importantmetric of all—was
lacking. So, the team created a campaign featuring races against tiers of increasingly
difficult AI enemies and bosses. Reactionary design was key as Boss Alien figured out
what CSR should look like to attract and keep as many players as possible; as Jason puts
it, mobile games were a blank canvas, with little precedent for the F2P features that
have become ubiquitous today. CSRwasn’t just a game; it was a service. Consequently,
changes weren’t just about the theory of design, but about “responding to player
needs as they come up.”

In the months following its initial launch, the team made several other additions.
Asynchronous multiplayer was one of the first, giving players a chance to race against
the recorded “ghosts” of others. Another major addition was a season system, giving
players a new set of objectives every few weeks to try and unlock cars before they hit
the in-game shop. Without realizing it at the time, the Boss Alien team was helping
to pioneer the now-commonplace mobile trend of limited-time events. Each new ad-
dition gave players something to strive for, and a path to get there. Fittingly, Jason

152

Control Freaks

eloquently describes his view of interaction design as “laying out a trail of motives
for players to follow, and tools suitable for players to meet the needs those motives
create.”

For Jason and his team, this design strategy paid off, and CSR Racing became a smash
hit, raking in a cool $12 million a month shortly after its launch in 2012. Boss Alien was
swiftly acquired by British developer NaturalMotion, which was in turn acquired by
Zynga for over half a billion dollars two years later.

As the mobile industry took off, the games that drove it were constantly changing.
Outside the microcosm of CSR, Jason described Finnish giant Supercell’s line of hits
as emblematic of these changes. Hay Day, the studio’s first major release, effectively
ported the “social singleplayer” of games like Farmville to mobile. Next came Clash of
Clans, which added asynchronous multiplayer into the mix, and Boom Beach, which
largely served as an iteration on the Clash formula. With Clash Royale, that multiplayer
became synchronous, with fire-and-forget interactions that minimized the impact of
lag. By 2018, Supercell had released Brawl Stars, which took things a step further with
full-on shooter action in real time.

The stories of Boss Alien, Supercell, and even the industry at large are those of rapid
change. If Supercell had pushed for Hay Day 2 instead of Clash of Clans, they might
have become long forgotten. Were it not for CSR’s many additions, it may not have
landed among the top ten iPhone games of 2012. And were it not for his foresight to
change gears toward mobile, Jason would never have started Boss Alien in the first
place.

So, what’s the cause of all this change? Jason attributes some of it to technology,
but sees people as the driving force. Innovations in hardware only shape the market
because of howpeople respond to those innovations. Jason notes that “as [players] live
with a device for longer, [they] become more and more sophisticated.” In this sense,
“sophistication” means the ability to handle, and the expectation of, engaging with
more complex interactions.

Designing these interactions effectively is a matter of understanding players, and
the market in which they participate. Jason notes that looking at what other designers
are doing and improving upon it is key. But the ultimate determining factor for him
is the player. To Jason, a good interaction designer is one who is curious, to find out
what players think, and resilient, to use feedback no matter how ego-bruising it may
be. Jason views the concept of profit with a simple and user-friendly ethos: “If it satisfies
the player, it will satisfy the company.” All that change, then, isn’t really driven, but
more so guided by designers, under the direction of players.

What’s next for Jason, or the mobile industry at large, is anyone’s guess. After Natu-
ralMotion’s acquisition by Zynga, Jason stayed on for a while before leaving to help
fund indie developers. Eventually, he was approached by Warner Brothers to lead
another studio. Today, he’s working with that studio on Lego Star Wars Battles, a
multiplayer tower defence game for iOS and Android.

When Jason spoke to us, he looked toward the future of mobile games with a sort of
curious optimism, while his Darth Vader portrait looked on in the background. He sees
the future of the mobile industry as focused on creating richer experiences, looking to
experiment with what’s been left unexplored on the platform. No matter what that
looks like, we can be sure that the constant flow of change isn’t stopping anytime
soon, and it’s something designers will need to welcome. As Jason puts it, “You have
to embrace change, or you’ll miss out on the biggest opportunities.”

153

The Game Designer’s Playbook

Further reading

Interaction Design for 3D User Interfaces by Francisco R. Ortega, Fatemeh Abyarjoo,
Armando Barreto, Naphtali Rishe, andMalek Adjouadi (A.K. Peters, CRC Press). ISBN:
978–1482216943.
A review of interfaces for input and output, with both games and more general
applications in mind. Contains some interesting history and hardware details for
the devices we’ve come to know and love.

Level Up: The Guide to Great Video Game Design by Scott Rogers (2nd ed., Wiley). ISBN:
978-1118877166.
A great book on game design in general, though Chapters 5 through 7 (Character,
Camera, and Controls) are particularly relevant to the discussion at hand.

Exercises

Port-a-Game: Controls edition

Pick a game you’ve played and imagine porting that game to a newplatform. Come up
with a new control scheme to support players on that new platform. Write/draw out
your new control scheme, keeping in mind what we’ve talked about in this chapter.
Here are some thoughts to get you started:

• Remember that actions don’t have to be mapped 1:1—a button press on one
platform doesn’t necessarily have to be a button press on another.

• Keep player comfort in mind, and keep some hardware at hand if you have it to
think about hand positioning and so on.

• Put some thought into whether your new controls can be not only functional, but
incorporate some kind of fun movement.

If you completed the “Port-a-Game” exercise in Chapter 4, feel free to extend on
what you’ve already done.

Prototyping input

Using a game engine like Unity or Unreal, set up a basic interaction (e.g., jumping)—if
you completed the “Prototyping Juice” exercise in Chapter 4, you can use that same
interaction as a basis.

Experiment with setting up lots of different control bindings for your action using
whatever peripherals you have available. Don’t confine yourself to directional input
and button presses; think about how youmight use different ideas. What about mouse
movement? What about analog stick “gestures,” like the semicircle input combos you
might find in a fighting game?

Compare how different control mappings feel. Think about comfort, novelty, and
player expectations. Which controls work well, andwhich don’t? In your own projects,
don’t be afraid to play around with different input designs while prototyping, instead
of settling on an existing convention without modification or question.

154

Control Freaks

Virtual interface mockup

Think about a favourite place that you visit (e.g., restaurant, park and so on) and imag-
ine a simulation game where you build, manage, and expand on that place. Design a
rough mockup of a virtual interface for managing day-to-day operations and monitor
your progress. Here are some questions to get you started:

• What, if any, camera controls will you need?

• How will you control/display the flow of time?

• How will you lay out an interface for building or buying new things?

• How will players access different bits of information about their progress?

• Will you opt for a design that mimics other software, real-life elements, or both?

155

6

The Play’s the Thing

It was a dark and stormy night. A young man dashed across the street, denim
work overalls clinging to his body from the downpour. The torrent had only
just started; when he’d left home ten minutes ago, the night had been far
more welcoming. Shivering, the man retrieved a keyring from his left pocket,
glancing up at the sign above.Castle Furniture—Where your home is your Castle.

The door emitted a familiar chime as he stepped inside, rattling as it closed
against the hostile wind.

“Lou?” the man called out.
A gruff foreman, likewise, clad in overalls, emerged from behind a stack

of crates. “Mario? What are you doing here? Your shift’s not till six.”
“The boss emailed me, he said they found her here. She must’ve tried to

follow me to work.” Mario held up a leash and smiled weakly. “I still can’t
believe she snuck through the fence.”

“Oh yeah, I think I remember hearing about that. I’ll check the loading
dock; you check the show floor.” Lou jogged off to the back of the store.

“Here, girl!” Mario said softly. “I brought your leash. Maybe we can go for
a walk together next time?” He pulled a small bag of treats out of his overalls,
holding one out as a promise. “Here, Princess! Come here, please. I’m sorry
about the fence!”

Hearing a rustle from the loading dock, Mario turned to see Lou gesturing
from the back. “She’s not here, buddy. I just checked in chat; boss sent the
address for this location by mistake.”

“You mean they found her at the store on Park?” he replied, confused.
“Yeah. I’m sorry Mario, but your Princess is in another Castle.”

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0006

The Play’s the Thing

Stories are powerful things. Great novels canmake us laugh or cry. Great films
can surprise us, or prompt us to reflect on ourselves. Mediocre textbooks can
make us groan with the realization that we’ve wasted precious minutes of
our lives to set up poorly conceived satire.

The stories that games tell us are also powerful. Just as we might bemoan
the death of a favourite television character, we can also grieve the loss of
a treasured virtual companion. The lore of a mythical world can be just as
complex in a game as in a Hollywood fantasy epic. The allure of a good story
is far from platform-specific, and a good character can charm their audience
irrespective of the screen or page they call home. No matter the medium, a
meaningful and well-told story will always be something that humans can
appreciate.

Game stories are especially curious, by the very nature of gaming as an
interactive medium. For thousands of years, stories were told to us. The only
way to experience a story firsthand was to live through its events your-
self. Movies and television let us relay stories more viscerally, though the
audience remains a passive observer. Games break down this barrier be-
twixt audience and story even further. We, as players, participate in the
story that a game creates. If we do nothing, the story cannot move forward.
Our actions, our decisions, and our failures may affect how the story plays
out, with varying degrees of subtlety. With enough freedom, the story be-
comes our own. Through our interaction with a game, our stories can be
told by us.

In crafting a story, we might start from a singular idea for an interesting
scene or journey and look to literary structures like themonomyth.Wemight
pick out elements common to any story—plot, characters, setting, premise,
themes—and pin down any that our initial idea might be missing. Maybe
we’ll start jotting out a storyboard, or just sit at our keyboards and write
until the keys seem to melt together.

This isn’t a book about creative writing, though, and this chapter will fo-
cus less on the process of crafting a good story and more so on how games
can make the most of their interactivity to tell stories in a compelling and
immersive way. Not every game requires a narrative to succeed, but every
game designer needs to understand the connections between narrative and
gameplay. Storytelling is part of game design. Even games without a “real”
story will leave players creating stories out of their own trials, successes, and
failures. For those games that do employ a traditional narrative, the charac-
ters and world that live within can have a lasting impact on the players that
come to know them.

157

The Game Designer’s Playbook

6.1 What’s in a feeling?

There is no precise universal definition for emotion, and it is meaningless
to dwell on this lack of absolute certainty. One way to describe emotion is
as a biological state, involving both physiological and psychological compo-
nents. Our emotions manifest physically, as an alteration of brain chemistry
and expressions like smiling, posture, and fidgeting. Our emotions also man-
ifest psychologically, shaping our outlook on life and our attitude towards
others. A change in emotion can affect us profoundly. Critically, these
changes are largely dependent on outside factors; while our neurological
state is internal, it is influenced by everything we sense and experience.

Games evoke emotion by making us experience things in a visceral way.
On top of their interactive nature, games deliver many sensory and experien-
tial components at once. Games can combine the rich audiovisual content
of film with the intoxicating competitiveness of sport, or the experience of
reading a story with listening to a moving piece of music. Occurrences dur-
ing play can feel consequential enough to warrant a substantial emotional
response, even if they are of no importance in the physical world.

Players can have emotional reactions to gameplay resulting from in-game
occurrences (e.g., the death of a favourite character) or external factors (e.g.,
personal satisfaction after finally beating a difficult boss fight). Although
these reactions can certainly overlap, if you are particularly interested in
one category over the other, Section 6.2 is more focused on narrative, while
Section 6.3 centres on player action.

Regardless of what prompts players to feel something, our goal is to shape
that emotional response in a way that benefits experience. There are a lot
of different approaches we might take, many of which would depend on a
specific design context. You may want to push a given response to be more
of a positive or negative feeling. You may want to intensify a reaction, or
maybe even reduce it. But since we’re in the business of engagement and
not disengagement, we’ll focus on the former—understanding how we can
create moments that resonate with players and stick with them even after
the adrenaline of gameplay has faded.

Ultimately, this comes down to a question of emotional investment.
Getting players interested in what’s happening inside a game, and more im-
portantly, keeping that interest alive. Making players’ actions feel valuable in
the moment, and following through on the consequences of those actions.
Beyond telling them they’ve won, or handing over some shiny achievement,
how do we make players feel?

158

The Play’s the Thing

6.2 Act I: Narrative and characters

The question of what role story should have in games can be a divisive
one. Some argue that gameplay is the undisputed king of experience, and
that stories always come second. At the extreme end of this argument is
someone who’s never missed the opportunity to skip a cutscene, and throws
around the phrase “walking simulator” as if environmental storytelling is a
bad thing. On the opposing side, you have those players that will sit in rapt
attention whenever a character opens their mouth, stopping to pick up every
journal littered throughout a game’s world. These types of players might be
so attached to narrative that they’ll find little satisfaction in a game without
any explicit story to tell.

Both sides are correct in their assertions. Some players will never find
the slow burn of exploration in a game like Firewatch to be all that fun or
compelling, while others appreciate the chance to drink in a story without
stopping to shoot up a room full of baddies along the way. For those players
that much prefer the shooting of baddies over hearing about their backsto-
ries, a game like Hotline Miami pushes story to the back burner, handing the
spotlight over to fast action with less narrative significance. In the middle,
games like BioShock or The Witcher balance plenty of that fast action with
telling a complex story.

In any case, the important thing is that any story elements need to con-
tribute positively to the player’s experience. Our earlier question isn’t about
how prominent a game’s story should be. Instead, it’s about the role stories
have in supporting the game experience. The answer is simple: a game’s story
should be satisfying for the players that consume it.

How successful a game is at creating and delivering a good story depends
on several different things. Coming from a perspective of other storytelling
media, the common thread and obvious answer here is writing quality. Our
enjoyment of media can come down to the mettle of its writing. An intrigu-
ing premise can be ruined by a shoddy script, and even the simplest of stories
can come alive with interesting turns and great dialogue. What we read (or
watch) is defined by its writing.

Except players don’t experience a game by reading or watching it. They
experience a game by playing it. Something that is fun to read, or watch
isn’t necessarily fun to play. Likewise, something that might be incredi-
bly compelling to play might not make for a particularly riveting film—
perhaps explaining the endless tide of what can charitably be described
as aggressively mediocre “video game movies” in the early 2000s. While
books and film have only the language of the senses available to com-
municate, games have the language of interaction. This fundamentally

159

The Game Designer’s Playbook

changes both how we experience narrative in games, and how we design
those narratives in the first place.

6.2.1 The story and the game

As a player, you are an active participant in a game. You are interacting, you
are doing something, and every part of a game’s experience needs to integrate
with that act of doing. A game might have compelling gameplay. That same
game might have a beautiful soundtrack. But if the two were treated as en-
tirely separate, the experience would be ruined. It would be ridiculous if you
had to stop playing for fiveminutes whenever you wanted to listen to a song,
and then return to your gameplay in total silence.

Following this argument, the idea of cutscenes as the de facto standard
for delivering narrative content in games starts to feel somewhat misguided.
This isn’t to say that cutscenes are terrible; in the right circumstances, they
can be fantastic. The problem is that our default understanding of delivering
story in games is a tennis match between cutscenes and gameplay. Title after
title, particularly in the AAA space, players arrive with the expectation of
alternating between 30 minutes of shooting at alien zombie police terrorists
and five minutes of watching the protagonist on the phone with their wife.
And a lot of the time, that’s exactly what they get.

The trick to circumventing these expectations, and hopefully creating
better stories in the process, is to avoid seeing “the story” as some magi-
cally separate entity from “the game.” Back in Chapter 3, we talked about
the importance of treating learning as part of gameplay. This same holis-
tic attitude applies to narrative as well. A game’s story isn’t just a layer on
top of gameplay; it’s something that needs to bleed through in a player’s
moment-to-moment experience.

Before exploring how this idea can benefit a game’s narrative, we should
examine what happens when a game’s story is treated as a separate layer. The
most obvious consequence of this treatment is the near-inevitable spawning
of conflict between story and gameplay. This conflict can arise in several
ways, some of which are more detrimental than others, and we will explore
a few different examples throughout this chapter. One of the simplest in-
stances of this discrepancy is when characters are shown to do things in
cutscenes that substantially over- or under-state their abilities when com-
pared to their role in regular gameplay. Such choices might be made in
service to a particularly cool-looking action sequence, or to move the plot
forward without the interference of gameplay rules.

Depending on the extent and consequences of the conflict in question,
this can range from amusing to irritating. The titular character of Bayonetta

160

The Play’s the Thing

heavily favours the game’s default starting weapons in cutscenes even against
powerful enemies, but this is hardly enough to destroy a player’s suspension
of disbelief. Although the default guns can’t be used as effectively as later-
game weapons during play, this disconnect is a relatively minor sacrifice for
the sake of pleasant choreography.

Contrivances designed to move a plot forward during a cutscene can be
much more frustrating, where the player is robbed of their interaction in
a situation that would be substantially different if occurring during game-
play. In Uncharted 2, player-controlled Drake is shown to hide behind a wall
and watch while the story’s villain stoops to drink mythical invincibility-
granting resin. A few moments later, the villain calls out to Drake, who steps
out from cover and starts shooting at his newly near-immortal foe. Naturally,
if this exact sequence happened during gameplay, players could have taken
the opportunity to shoot before their adversary gained superpowers.

Given its niche popularity as a buzzword, we would be remiss to exclude
the phrase “ludonarrative dissonance” from our discussion. Initially coined
in response to a perceived conflict in Bioshock, the term is used to describe
a conflict between narrative and gameplay. As the argument goes, BioShock’s
gameplay encourages you to be selfish by “harvesting” mutated young chil-
dren to gain resources, while story elements require you to help another
character in moving the plot forward. The argument here is flawed, though.
Valuable gameplay rewards are still given for the less selfish choice of saving
the children, and the assistance you provide to another character is pre-
sented as a mutually beneficial transaction. These factors make the situation
far more nuanced than “story protagonist good, game protagonist bad.” On
top of this, in a game where players can perceive harvesting child mutants
as a viable option at all, that sense of internal conflict contributes to a more
intense emotional experience. The situation here isn’t one where story and
gameplay disagree, it’s one where story and gameplay together contribute to
something intentionally unsettling.

Despite the phrase’s dubious origins, ludonarrative dissonance is still a
helpful catch-all term for cases where story and gameplay fail to be at peace
with one another. One of the most irritating consequences of disconnect-
ing story and gameplay, though, is a far more obvious problem requiring
no identification of inconsistencies in logic or ideology. To put it simply,
cutscenes really can be boring sometimes.

In games where action is the priority, overly long or frequent cutscenes
can feel like interruptions, rather than intermissions. For all the fascinating
mythos explored in Okami, the game’s cutscenes tend to drag on, exacer-
bated by written dialogue that often moves forward at a fixed, excruciatingly
slow pace. Even in smaller indie titles, relying on the formula of sticking
narrative dialogue exchanges at arbitrary gameplay milestones can damage

161

The Game Designer’s Playbook

otherwise enjoyable experiences. The arcade-style fun of Super Motherload, a
game about mining on Mars, is interrupted far too frequently in parts for
mostly useless exposition sequences with little relevance to its otherwise sat-
isfying gameplay. Leaning on auto-triggered cutscenes and written dialogue
sequences will typically prompt players to lean on the skip button in return.

The idea of making cutscenes unskippable has gained well-deserved no-
toriety for completely robbing players of control to sit through expository
dialogue punctuated by the occasional explosion. The real horror of unskip-
pable cutscenes, whether the 20-minute opening sequence of Far Cry 4 or the
cutscenes in Destiny’s story missions, is when they are always unskippable,
even on replaying the game. In the most always beneficial vein of giving
players options, the decision to make non-interactive content strictly and
permanently mandatory is almost never a good idea.

If it is best to refrain from relying entirely on the cutscene formula to tell
our stories, the question becomes: What are we supposed to do?

6.2.2 The story is the game

One of the oldest adages in creative writing is “show, don’t tell.” This says
that conveying information through demonstration is more engaging than
conveying it through description. Describing someone as “an angry person”
is an adequate way to label them with a character trait, but it isn’t particu-
larly engaging. Showing that person’s anger, by having them snap at others
or become violent, is both more effective characterization and more inter-
esting to read about. In the jump from books to movies, we gain the ability
for our audience to see things directly, instead of imagining what characters
and places look like. In film, the axiom of “show, don’t tell” is applied more
literally; heavy voiceovers and expository dialogue are usually inferior to vi-
sual sequences that show characters’ interactions with each other and the
world around them.

In the jump from films to games, we gain an even more distinct
advantage—the ability for our audience to do things firsthand from a charac-
ter’s perspective through their gameplay. In terms of engagement, this form
of storytelling is hard to beat. Demonstration via showing an event is certainly
more effective than just telling the audience about it, but neither can come
close to the engagement resulting from participation in that event yourself
by doing. We previously talked about the idea of doing, showing, and telling
regarding game instruction in Chapter 3, though it is even more pertinent
here. In games, we might push that old aphorism forward a step, and instead
say “do, don’t show.”

To understand why this is the case, let’s consider an event that is especially
impactful: a character’s death. If we are only ever told about a character’s

162

The Play’s the Thing

death, we might not feel much attachment. Oftentimes, protagonists with
a tragic backstory involving deceased family members will merely recount
their perishing as a sort of exposition. Lara Croft’s father being presumed
deceased is a source of uncertainty and angst for her character, but as a player
of the Tomb Raider series, you don’t particularly ache for his loss.

Even for a character of significant importance to a game’s lore, hear-
ing about their death second-hand can serve to minimize its impact. In
Skyrim, you hear about the death of the former high king Torygg from his
widow, among other anecdotal accounts. In the context of the narrative, this
event is monumentally important, literally igniting a civil war. In practice,
though, hearing about Torygg’s death isn’t particularly engaging, and quite
forgettable in comparison to the deaths you’ll witness (or cause) firsthand.

Figure 6.1 A much more engaging example of character demise in Skyrim is told
through Frostflow Lighthouse, an in-game location where the player finds the remains
of its residents and slowly uncovers the heart-wrenching nature of their deaths.

Credit: The Elder Scrolls V: Skyrim was developed by Bethesda Games and published by Bethesda
Softworks.

Watching a character die instead of just hearing about it is one way to
help raise emotional stakes and memorability. In The Last of Us, players are
introduced to the protagonist Joel and his daughter Sarah in the opening
moments of gameplay. In a cutscene shortly thereafter, Sarah is killed by
gunfire and dies in Joel’s arms. Although Joel’s story still would have been
tragic had we only been told about Sarah’s death after the fact, seeing and
hearing it happen helps to make this event more memorable, and thus more
effective in characterizing Joel as a bereft father.

Directly watching a character die, and the immediate reactions and in-
teractions of other characters surrounding that individual, make their death
more impactful. This tactic can create remarkablymemorablemoments, such
as the death of Eli Vance, father to the player character’s NPC companion
Alyx at the end of Half-Life 2: Episode Two. Both the timing of this scene—
after we’ve gotten to know Eli—and our ability to see the events firsthand

163

The Game Designer’s Playbook

make it far more powerful than if Alyx had been an orphan from the start
and simply recounted her father’s passing.1

Players can become further engaged in a character’s death if given the
opportunity to take a more active role in the key events surrounding their
demise. In the third act of outer-space action ARPG Mass Effect 2, referred
to as the “Suicide Mission,” several of the player’s NPC companions can die
because of poor strategic decisions. This includes both in-the-moment deci-
sions, like who the player selects to accompany them into final battle, and
previous choices, such as whether the player upgraded their ship’s defen-
sive capacity. Your actions as a player directly determine the fate of these
characters; if one of your teammates dies, you bear part of the responsi-
bility through your actions. While the environment of a game allows for
a “redo” to potentially change outcomes like this, the player’s direct in-
volvement helps to make those outcomes more powerful, particularly on a
first run.

Direct player involvement can also intensify the experience of witnessing
an inevitable death. In What Remains of Edith Finch, player interaction is es-
sential in understanding how each character of the Finch family succumbs to
their eventual fate. Even though there’s nothing players can do to save these
characters, experiencing their death firsthand leads to moments that aren’t
easily forgotten. Certain vignettes—like seeing through the eyes a toddler
who drowns in the bath surrounded by toys, or controlling the maladap-
tive daydreams of a character as they transform his work into suicide—are
particularly powerful.

The takeaway here is that deeper levels of interaction produce greater emo-
tional investment. This is not to say that a written account of an event
will always be inferior to a visual or interactive one; merely that in gen-
eral, more interaction means a richer experience of a given event or piece
of information.

This notion is far from exclusive to the example of character death; all
storytelling can benefit from richer integration with what players are do-
ing when they play a game. Narrative content shouldn’t be relegated to the
occasional expository dialogue exchange, and perhaps a few cassette tapes
bearing suspiciously documentary-like soundbites. A game’s story should
come through in its environment, in its characters, and in its mechanics.

Environmental storytelling, the practice of communicating lore or the
past events of a game’s world through its contents, can be a compelling way
for players to experience story through actively exploring their surround-
ings. The Portal series, particularly Portal 2, frequently conveys lore tidbits

1 Naturally, its timing at the end of the game is also necessary to support the timeline-bending
shenanigans in the follow up Half-Life: Alyx over a decade later.

164

The Play’s the Thing

or larger narrative messages through the environment. Murals throughout
the facility explored by the player hint at its mysterious background, and in-
troduce them to the desperation of Douglas Rattman, a former employee
whom the player never meets in person. In the mid-game of Portal 2, a
series of physics puzzles is punctuated by long exploration segments filled
with decades-old, recorded exchanges between characters, conveying years
of history (and comedic character development) while giving the player awe-
inspiring industrial environments to explore. Abandoned places are used as
an opportunity for the player to peek into the past undisturbed; this type of
environmental storytelling is a common and effective tactic seen in every-
thing from Subnautica’s vacant underwater bases to abandoned lighthouses
and animal dens in Skyrim.

Figure 6.2 Visual design choices in Portal 2 that connect to its story. Left: a mu-
ral depicting the events of the first Portal, now overgrown with ivy, that players
can see when they first acquire the dual portal gun. Right: after crazed AI Wheat-
ley takes command of the facility, his incompetence and frivolity shine through in
the “frankenturret” walking cubes he creates to serve as proxies for the player in their
absence.
Credit: Portal 2 was developed and published by Valve.

A game’s mechanics can also communicate story details and reinforce nar-
rative themes. Celeste, for instance, is an indie platformer about climbing a
mountain. Just below the surface, it’s an exploration of learning to cope with
anxiety and depression. The environmental and mechanical gimmicks used
in each chapter of the game reflect the events of the story. As the character
faces a tumult of motivation and self-doubt, for example, the player experi-
ences a shifting windmechanic that can serve to literally push them forwards
or hold them back. Celeste communicates a great deal through its mechanics
and environments, without constantly relying onwritten dialogue to explain
its themes or what the protagonist is experiencing internally.

When a game can integrate its narrative seamlessly with a player’s interac-
tion, the result can feel almost unsettlingly satisfying. One game that builds
its core on the idea that “the story is the game” is The Stanley Parable. It opens

165

The Game Designer’s Playbook

on a voiceover, much like any other opening cutscene. The narrator describes
a character—evidently the player’s point-of-view character—and outlines his
actions. Except players are in control of the character, and perfectly capable
of defying what the narrator says. As they choose to defy, obey, or refuse to
act, the narration changes in response to players’ interactions. The result is
that, on your first experience with The Stanley Parable, you’ll end up with a
parable quite different to many other players. While such an absurd degree
of narrative freedom isn’t appropriate for every game, the delightful experi-
ence of participating in rather than simply perceiving a story is something that
all game narratives can strive to achieve.

6.2.3 Creating likeable characters

One of the more appealing quirks of humans is our tendency to person-
ify things other than people and animals. Maybe you’ve nicknamed your
favourite houseplant. Maybe you’ve drawn a smiling face on a sticky note
to keep you company at your desk. Maybe someone in your household
affectionately refers to the family car as Lily, because “that’s just her name.”

Perhaps it is this ability to so easily empathize with anything that makes
us so fond of a good story. If we can personify things unprompted, when
we are introduced to a character and learn about their experience, it is easy
for us to become attached. Even though characters in books, films, or games
aren’t real, we can still care about what happens to them. In constructing a
narrative, it is our hope as storytellers that our audience will care about the
characters we bring to life. Tomake our imaginary folk relatable, likeable, and
memorable requires good characterization: the process of developing a char-
acter’s personality through their past and present actions. Before addressing
what constitutes effective characterization, though, let’s take a moment to
understand how character design can fail.

Examining flawed characterization in games is trickier than it first ap-
pears. While it is easy to rhyme off a dozen or more characters that players
love, it is hard to identify game characters who are disliked without ex-
ception. For every player that dislikes a villain being evil for evil’s sake,
you can usually find someone who’s won over by the cool factor. Plenty
of players despise Kai Leng from Mass Effect 3 for his shallow motivations
and cutscene power creep, but some players love to hate the arrogance
of a brutal space ninja. There are some characters who are shunned more
unanimously—Navi from The Legend of Zelda: Ocarina of Time springs to
mind, the notoriously shrill tutorial fairy constantly imploring the player
to “Listen!”. However, Navi demonstrates less a failure of characterization

166

The Play’s the Thing

andmore a severe misjudgement of howmuch instruction players need (and
perhaps the direction of voice actors).

Figure 6.3 If you were around in the nineties, you can hear this picture.
Credit: Link and Navi are characters owned by Nintendo.

The reason it is so difficult to name characters who are famous for be-
ing badly developed is that poor characterization doesn’t cause infamy,
but instead the far worse fate of forgettability. Mention the Metal Gear
Solid series and you’ll likely be met with cries of “SNAAAAAKE”—referring
to the protagonist—even from people who’ve never played the game. Ask
someone to name the main character from any single player Call of Duty
campaign and you’ll probably be met with a blank stare.2 There is literally
a cardboard box in Metal Gear Solid with more personality and name recog-
nition than many characters falling under the gritty action hero archetype.
A common thread that we can identify about many unremarkable charac-
ters is one-dimensional design that eschews depth in favour of adhering to
a formula.

2 They can probably guess exactly what that character looks like, though: a tall thirtysomething
white guy with stubble is a safe bet.

167

The Game Designer’s Playbook

To issue a blanket condemnation of archetypal character design would
be misguided at best. Even our most beloved heroes and companions
tend to rely at least partially on amalgamating well-known tropes. Snake
(Metal Gear Solid), Gordon Freeman (Half-Life), and Nathan Drake (Uncharted)
all fall into that same gritty action hero bin. And yet, these characters are so
memorable that they’ve become just as recognizable, if not more so, than
the games that spawned them. So, what saves a character from the fate of
forgettability and pushes them into the public consciousness?

A well-developed character is a memorable one; good characterization,
then, is about creating strong memories. The challenge with games in com-
parison to other media is that our relationships with characters are much
more personal. A clever NPC has to work extra hard to win the title of lov-
able quipster when the player, not just their character, is on the receiving end.
And while a comic book superhero might win us over by saving the world,
it’s tough for a game’s protagonist to skate by on their skill and heroics alone
when we’ve been controlling them the whole time. The medium closest to
games in terms of how we interact with characters is, arguably, reality. To ef-
fectively develop our characters, we should take some inspiration from how
we create memories with real people.

Our relationships are built on moments.3 Mostly insignificant ones, in
fact. Watching someone walk away from an explosion is cool, but it doesn’t
make you like them, or really remember them as a person. Your best friend
might have won the Nobel Prize, but it’s not what made them your best
friend. The thing that made them your best friend is all the little things, all
thememories you’vemade together. It’s sitting at work together debating the
merits of the new breakroom couch. It’s singing terrible karaoke at a party.
It’s watching them stir honey into macaroni and playfully berating them for
their understanding of what constitutes “food.”

Creating truly great characters in games is about orchestrating these
little moments. In Undertale, an indie phenomenon beloved for its charac-
ters, characterization is typically independent of heroics, despite its loosely
fantasy-inspired setting. Take Sans the skeleton, a character so beloved that
he made it into Nintendo’s Super Smash Brothers: Ultimate. Sans is eventually
revealed to be powerful, sure, but snags players’ hearts by telling them in-
cessantly groanworthy jokes, sharing his love for family, and spotting the
player for a plate of fries.

Even the most serious and thoughtful characterization doesn’t require
sophisticated backstories or painstakingly crafted lore. The Last of Us is

3 There is no definitive and simple way to sum up how us complicated beasts get to know one
another. But you opened this book for some guidance on a topic that frequently veers off the cliff
of subjectivity, and that’s exactly what you’re going to get.

168

The Play’s the Thing

famed for its relationship between Joel and Ellie, the girl he effectively
adopts years after the death of his biological daughter. Their relationship
emerges from a collection of small moments that become meaningful. Car
rides, arguments, caring for wounds, admiring an abandoned city together—
these characters develop through interactions, not big events. In creating
likeable andmemorable characters for us to interact with, it’s the little things
that count.

6.2.4 Stale stories and wobbly writing

Games have accrued somewhat of a reputation for bad writing, though that
reputation often feels like it’s far more popular among people that haven’t
played very many games. Sometimes this reputation is deserved, and often-
times it’s not. Games are certainly not uniquely remarkable as a medium for
having some badly written apples. For every Anna Karenina, there’s a Twilight.
Cinema gave us The Godfather, but it also gave us The Room (and The Godfather
III, for that matter). Likewise, for every dull FPS whose idea of story is a char-
acter shouting “And that’s how it’s done!”, we get a game like BioShock that
toys with our ideas of free will and self-interest.

The real issue with most poorly written game stories, like most poorly
written characters, is that they are thoroughly unexceptional. A story that’s
so-bad-it’s-good is preferable to some repetitive pablum that’s hardly discern-
able from its predecessors. Part of the reason game stories are often seen as
subpar is that many, if not most, games neglect or completely ignore story
until after other parts of the game have been significantly developed.4 In
Uncharted 3, action set pieces were chosen before the story beats that sup-
ported them. This technique can still yield an engaging experience, built on
interactive moments instead of some grandmythos. However, this treatment
can easily make story feel like a less valuable shellac on top of gameplay.

Mirror’s Edge didn’t bring on a writer until over six months into its just
over two-year development cycle, and the separation between “game” and
“story” is painfully obvious at times. Gameplay is filled with plenty of intense
moments and bits of environmental storytelling, but the cutscenes and dia-
logue conceived to glue everything together feels like a distracting veneer. It
leans on tropes, with voice lines ripped straight from the movie adaptation
of a dystopian young adult novel. This certainly doesn’t spoil the game, but
it does make you yearn for something more.

4 If you’re curious to know more, here are a couple of articles (links current as of this writing)
on the examples discussed for Uncharted 3 and Mirror’s Edge:
(Mirror’s Edge) https://web.archive.org/web/20131103152620/http://www.newsarama.com/
1896-looking-at-the-mirror-s-edge-with-rhianna-pratchett.html
(Uncharted) https://www.cnn.com/2011/10/30/tech/gaming-gadgets/uncharted-3/index.html

169

https://web.archive.org/web/20131103152620/http://www.newsarama.com/1896-looking-at-the-mirror-s-edge-with-rhianna-pratchett.html
https://web.archive.org/web/20131103152620/http://www.newsarama.com/1896-looking-at-the-mirror-s-edge-with-rhianna-pratchett.html
https://www.cnn.com/2011/10/30/tech/gaming-gadgets/uncharted-3/index.html

The Game Designer’s Playbook

Other annoyances in writing can bring down the overall quality of a
game’s narrative. Plot holes and logical inconsistencies aren’t the tragedy
that some online critics make them out to be, but such errors can certainly
diminish how a story hangs together. At the end of Fallout 3, for instance,
the player character is asked to sacrifice themselves by entering a highly ra-
dioactive control room. The player can also ask one of their companions to
complete the task for them. Human companions will, sensibly, refuse this
request. However, the players’ other companions, who are either immune
or incredibly resistant to radiation, will also refuse, even going so far as to
insult the player for asking. This contrivance is frustrating, implying that
loyal companions immune to the danger would happily stand by and let
the player’s character die rather than step in unharmed, even when asked.
Fortunately, this decision was reversed in an add-on for the game, allowing
hardier companions to willingly step in without berating the player.

Dialogue is another area where writing can succeed (or fail miserably) in
making a story and its characters more memorable. Lines that feel canned,
like Faith’s constant reiteration of something resembling a melodramatic
“She’s my sister!” inMirror’s Edge, typically don’t domuch for a story. Conver-
sations can be remarkable because of their banality, shaping the humanity
of the characters that share them. There is little in Half-Life: Alyx that es-
tablishes the plucky Russell as a caring mentor more effectively than his
in-depth description of a club sandwich to the player’s character as she asks
for something to alleviate the terror of navigating a building infested with
hostiles. Good dialogue serves to complement the events of a story and de-
velop the characters that deliver it, not push forward an offscreen plot or
provide some constant verbalization of a character’s motivations.

This sort of general writing advice—conceptualize early, avoid tropes,
write interesting dialogue, avoid lazy plot holes—is certainly relevant to
the construction of game stories. But, as with everything else in games,
the core of our narrative experience comes down to our interactions as a
player.

6.3 Act II: Player agency

Imagine that you’re at work right now. You’re stuck in a meeting, listening
to your boss drone on about half-margin eased inventory scaling, whatever
that means. And there’s nothing you can do about it, except stare longingly
out the window and envy the pigeons for their inability to participate in this
meeting.

Most everyone either has or had a job they hated, and a large part of that
frustration stems from a lack of freedom. You’re not doing what you’d like

170

The Play’s the Thing

Figure 6.4 Artist’s rendering of a club sandwich as described by Russell in Half-Life:
Alyx.

to be doing, and you don’t really have a choice. You’re dealing with rude
customers, or stuck pushing papers you’d rather not push, and you can’t
just wheel the boss out of the room and order pizza for your equally fed-up
comrades.

One of the many appeals of gaming is the ability to feel in control of your
actions. Regardless of where you’re stuck in real life, in games you are the
dragon slayer. You can vanquish the goblin invasion. You can architect the
city of your dreams. You can order that pizza.

This feeling of control is referred to as agency in the social sciences. For-
mally, agency is the ability of an individual, or agent, to act freely and
independently in their environment. Less formally, agency means that you

171

The Game Designer’s Playbook

can decide what you want to do, and then do that thing. Essentially, agency
combines the free will to make choices, and the power to act on those
choices. Games grant us a sense of agency in terms of gameplay pretty much
effortlessly. As players, we choose when and where we want to run, shoot,
move stuff around, and so on—we are in complete control of how we use
the mechanics available to us. To grant players agency, games need to fulfill
two basic requirements:

1. Players feel like they can make decisions. This relates to the free will
part of agency, and means that players can make meaningful choices
about what to do. For instance, in gameplay, players might be able to
pick which weapons they’d like to use against a particular boss. In the
context of story, players might be able to choose whether they’d like
to obey or disobey the wishes of a certain character. The feeling of free
choice can be compromised if players do not feel like multiple viable
alternatives are available for a given situation. For instance, players’
sense of agency will diminish if routinely faced with ultimatums, or pi-
geonholed into decisions that present one reasonable option amongst
others which are clearly ineffective.

2. Players feel like their decisions have consequences. This relates to
the power component of agency. After a choice has been made, play-
ers should feel that their decision was important, and that their actions
had a tangible effect on the situation at hand. Fulfilling this require-
ment will make players feel like their actions matter, and provide at
least the illusion that someone who acted differently would have a dif-
ferent experience with the game. In gameplay, this might be as simple
as different weapons having different efficacy based on how players use
them and what they are used against. In a story context, the choice
to obey a character might result in their loyalty, while the choice to
disobey might eventually turn them into an enemy.

While having agency in moment-to-moment gameplay is practically a
given, ensuring player agency in the context of a game’s narrative is more
complicated. Technologically, we are limited in our ability to simulate cause
and effect in things like social situations. Artistically, we may have pre-set
story beats or set pieces that we want players to experience regardless of how
they play. These factors constrain our ability to give players truly free choices,
and to follow through on the consequences of those choices in a realistic
manner.

The question of agency is further complicated by the fact that it may not
be appropriate for players to have agency at every moment in every game.
In something like an RPG or strategy game, a strong and constant sense of
agency might be a core part of the desired experience. In tightly scripted

172

The Play’s the Thing

linear stories, though, you’ll likely need to force players into certain deci-
sions or actions to hit the desired dramatic moments. Much of the time, you
might be interested in how to maximize a player’s perception of their agency,
while working within constraints that severely limit your ability to provide
decision points that influence the course of the game.

Throughout this section, we will explore how agency can be nurtured in
a game’s narrative and gameplay, balancing player freedom with a designer’s
creative vision.

6.3.1 Finding yourself

A player’s journey through a game belongs not only to them, but to their
character, should they control one. As the player works through any series
of decisions during play, they exert their will through their character. To pre-
serve immersion and lend these decisions an increased sense of importance
and meaning, players need to be able to relate to, or at least have a deep
understanding of, their character. This brings about a challenging design
question—how do we develop a compelling protagonist, when their actions
will ultimately be controlled by someone else?

There are two primary approaches to this task, varying in the degree to
which a protagonist’s personality, backstory, and motivations are developed.
Naturally, not every solution lies neatly in one category or the other, though
most games will comfortably rest on one end of the scale created between
the two.

Blank slate (silent) protagonists. The goal of this approach is to create a
character who is inherently relatable through a lack of definite features, giv-
ing players a “blank slate” on which to project their own motivations and
personality. A true blank slate protagonist would have absolutely no charac-
terization. Their physical appearance and backstory would be unknown, with
their motivation coming externally from some instruction, or simply from
the player’s will. Most games with blank slate characters won’t go to quite
these lengths, though. The real defining quality of a blank slate protagonist
is simply their silence.

Silent protagonists don’t speak; at least, not in a way that players can un-
derstand. Even in a game with a significant narrative context, this choice can
work without disrupting the story. One of themost famed silent protagonists
resides in a universe with one of the most deep and convoluted collections of
lore: Link from The Legend of Zelda. Like many other silent protagonists, we
can also see Link as proof that “silent” doesn’t have to mean bland or devoid
of personality. In everything from cutscenes to combat animations, Link is
given an affable charm that showcases his bravery, wonder, and a touch of
clumsiness. While these traits make Link likeable and fun to control, they

173

The Game Designer’s Playbook

are generic enough to preserve a player’s ability to easily see themselves as
Link.

Figure 6.5 Despite never saying a word (unless sighs and yelps count as “words”), Link
has plenty of personality. Whether playfully emoting during a shield surf, or cheering
in delight at his latest culinary creation, Link exudes childish optimism throughout
gameplay.

Credit: The Legend of Zelda: Breath of the Wild was developed and published by Nintendo.

Aside from the occasional yes/no choice, which is never voice acted, these
protagonists observe a complete vow of silence. In games where a total lack of
dialogue is inappropriate, other characters may remark on the player char-
acter’s reluctance to speak, or act as if the protagonist has communicated
without acknowledging anything other than a general sentiment. Another
common choice is to provide some companion characters which speak for
the protagonist in a sense, commenting on the situation and interacting with
the player’s character (and by extension, the player themselves). Link had
Midna in Twilight Princess, Chell has GLaDOS (and later Wheatley) in the
Portal series, and Gordon Freeman had Alyx Vance in the Half-Life 2 era. In
a game where the main character is primarily a vessel for players to inhabit,
companions can help to provide some extra personality and opportunities
for dialogue.

Characterized protagonists. At the other end of the spectrum is a main
character whose personality, backstory, and motivations are fully developed.
Characterized protagonists aren’t afraid to speak, and often have existing re-
lationships with characters the player is meeting for the first time. Together,
this collective comprises some of the most recognizable and beloved charac-
ters in gaming—Geralt of Rivia (TheWitcher), Lara Croft (Tomb Raider), Kratos
(God of War), Cloud Strife (Final Fantasy), the aforementioned Snake (Metal
Gear Solid), and Nathan Drake (Uncharted), and the list goes on.

The wrinkle with characterized protagonists is that someone who is com-
pelling and interesting as a charactermight not be enjoyable as a protagonist.
Nomatter what traits or intricate backstory you ascribe a protagonist, players
will still try to see themselves in that character. Crucially, their motivations

174

The Play’s the Thing

need to reasonably align with the motivations of their character. If the pro-
tagonist acts for the sake of hitting a particular narrative beat, their choice
needs to be one the player would reasonably make. Otherwise, players may
become frustrated, feeling that the character they control is no longer in
their control and thus becoming deprived of their agency. This can happen
relatively easily when a protagonist is strongly characterized. In LA Noire,
for instance, protagonist Cole Phelps chooses to have an affair despite being
otherwise portrayed as incredibly straitlaced. While this twist of his charac-
ter is objectively interesting, a lack of sufficient motivation on the part of
the player to support this decision, coupled with an obvious potential for
disaster, creates frustration.

This is not to say that characterized protagonists can’t have strong person-
alities or flaws; most well-loved protagonists possess both. Take Geralt in the
Witcher franchise; he is often gruff or rude with inhabitants of the world, and
reluctant to take on the burden of slaying a monster unless there’s some coin
in it for him. This demeanour is justified, though, and probably shared by the
player, since Geralt is often treated as a monster himself by villagers ready to
hurl slurs about his genetic abnormalities. A characterized protagonist may
come with their own baggage, but they still serve as the player’s surrogate in
a game’s world. If your protagonist is prepared to make a decision, you need
to be prepared to justify it in the player’s eyes.

A note on character customization and dialogue options. Providing
players options in the identity or appearance and narrative choices of their
character can be used to support individual expression, both for blank slate
and characterized protagonists. Typically, more extensive choices are present
for blank slate characters, such as character creation and interaction with
NPCs in role-playing games. In either case, these options can be a valu-
able way for players to identify more strongly with the characters they
control. Some form of character creator can prevent blank slate characters
from feeling bland, or allow players to recreate themselves if they so choose.
Customization options for characterized protagonists—even something as
simple as choosing a new haircut or piece of armour—can help players to see
themselves in an otherwise predetermined character.

Neither a blank slate or characterized approach is a guaranteed success
(or failure) in creating a compelling narrative that preserves player agency.
Blank slate protagonists are generally easier for a wide variety of players to
easily and immediately see themselves in their character, while characterized
protagonists are generally easier to work into a linear narrative where strong
relationships are needed with other characters. Typically, either choice can
work to create a good experience. The fact that Geralt can talk doesn’t make
The Witcher any less compelling as a fantasy experience than The Legend

175

The Game Designer’s Playbook

of Zelda. Likewise, Link’s silence doesn’t make the Zelda games boring by
comparison. The choice of a characterized protagonist simply means that
more of the story in The Witcher can explore Geralt’s relationship with other
characters, while the Zelda games are focused on developing lore for the
kingdom of Hyrule more than Link himself.

One thing that can completely make or break the choice to character-
ize a protagonist is the desired degree of player freedom. In games where
the “do anything” mantra is paramount, a blank slate protagonist is usually
the correct choice. Minecraft just wouldn’t be the same if you had a spouse,
three kids, and a designer-imposed fear of birds to worry about. When play-
ers are afforded a huge amount of customization and choice in a game’s
world, a heavy-handed backstory can detract from the overall experience. In
Fallout 4, an open-world game selling itself on the concept of “go anywhere,
do anything,” your custom character is voiced, widowed, and saddled with a
missing child in the opening sequence of the game. This creates an inherent
disconnect between themotivation of the player to play in a post-apocalyptic
sandbox, and the motivation of their character to find their son. This choice
becomes an especially perplexing thing to force on player-created characters
when a substantial portion of the game’s target audience are young, unwed,
and childless.

The lesson here is relatively simple: don’t hedge your bets. You can create
a characterized protagonist who might be quite different to your audience
on first look, give them compelling motivations, and create an interesting
story. You can let players create their own character and set them loose in
an open world where they can save the world or wreak havoc and ignore the
chaos around them. Alternatively, you can create something in between. But
mashing up a voiced protagonist with a world that begs players to ignore
the main storyline practically forces them to detach from their character’s
motivations entirely, losing a bit of immersion in the process.

6.3.2 Choose your own adventure

Once players are comfortable with who (or what) they are, they will con-
stantly be making decisions that shape their path through a game. As we
addressed in the introduction of this section, gameplay decisions are a given
for players to exert their will over a game. Choices which impact a set narra-
tive are a different beast entirely. Presenting these decisions effectively and
dealing with their consequences is both a design and technical challenge. In
the absence of a feasible way to simulate complete narrative freedom, how
do we effectively present players with choices?

176

The Play’s the Thing

One approach is to trick players into thinking they have a choice when
none exists. In theory, this provides all the emotional weight of a real deci-
sion, without the need to account for divergent consequences. Ridiculous as
it may seem, situations that create this illusory choice, at least temporarily,
can be an effective way to leave players with lingering questions (at least on
a first playthrough), or an uncomfortable realization of inevitability.

In Portal, the player reaches a point where they are asked to incinerate their
companion cube, a box bearing a small heart icon, beforemoving on. Having
been “accompanied” by the companion cube for part of their gameplay, and
suspiciously reassured that the cube is not sentient, most players will not
want to incinerate their boxy friend. Many may try for a few minutes to find
a way around the task, or to trick the system.5 In reality, there is no choice to
be made, and the cube must be destroyed. Coming to this realization creates
dread and grief for players that take the time to explore other options, while
players that obey without question might feel a twinge of guilt wondering if
they acted too hastily. Killing your faithful companion isn’t a real choice, but
its presentation as a voluntary, player-controlled action makes the moment
far more powerful.

This moment of overestimating one’s free will is not always handled so
deftly. We need only to reach back a few paragraphs and drag Fallout 4 back
into the spotlight for such an example. For a game in a franchise whose earlier
entries would often let you outright kill main characters, sacrificing swaths
of story in the name of good roleplay, many of the narrative “choices” you’ll
encounter in Fallout 4 are laughable. Choosing between dialogue options is
typically an anti-choice which controls how the protagonist will phrase a
response, rather than what the substance of that response actually is. This
amounts to little more than window dressing, birthing memes in the com-
munity of the player’s dialogue options in response to yes/no questions often
boiling down to “Yes” or “Yes (but sarcastic).”

The design thinking here does make sense in a way; only so many differ-
ent conversations can be reasonably voice acted. Moreover, if players decline
a request or shoot an important character in the face, they’ll be missing out
on some precious quest or another. However, this is an ethos that prioritizes
quantity over quality, and feels like a slap in the face to player agency. If a
player could reasonably decide to do something that would deprive them of
some extra content, let them. Feeling the power to do something like kill off
an NPC is usually worth losing out on that later side-quest—in addition to
creating the potential for substantially different experiences on subsequent

5 So loved is the companion cube, in fact, that the internet is filled with guides to save the
cube via glitches or respawn it via console commands.

177

The Game Designer’s Playbook

playthroughs. In situations where players don’t have this freedom, it’s usu-
ally better to be upfront about the inevitability of something. A thinly veiled
anti-choice won’t fool players for long, and can be far more irritating than
no choice at all.

The task at hand then evolves into a question of how to handle “real”
decisions that do impact the course of a game’s story. Simply put, branching
narratives are hard.

Life is Strange is a game about actions, consequences, and exploring the
power of choice. The game’s gimmick is a time-travelling power granted to
protagonist Max, who can rewind time around her and make decisions with
the power of hindsight. While the game’s narrative has its fair share of con-
trivances, it does amore than serviceable job ofmaking choices feel impactful
for a first-time player. The main story arc of the game is fixed, which dimin-
ishes substantial feelings of consequence on later playthroughs. However,
the player is constantly presented with choices that affect their interactions
at a micro scale; other characters’ immediate emotional reactions and treat-
ment of the player reflect their decisions appropriately. These reactions are
believably different between different choices as well, a vital boon when
players can rewind time and explore other avenues at a moment’s notice.

While the main plot beats of Life is Strange are fixed to preserve the
integrity of the intended story experience (and keep development scope fea-
sible), several impactful events can vary depending on the player’s choices.
For instance, Max’s classmate Kate Marsh attempts to take her own life in the
game’s second chapter. With her time travelling powers suspended, it’s up to
the player to counsel Kate by recalling important things about her character.
Whether Kate chooses to jump or step down from the ledge she’s perched on
will depend on their exchange, in addition to her previous interactions with
the player. Kate’s survival or death is echoed in later chapters of the game,
giving the player a strong sense of meaningful consequence without creating
a technically infeasible degree of branching in the storyline.

Another game following the strategy of mostly fixed plot points with sev-
eral smaller decisions of immediate consequence is Undertale. Undertale leans
even further into the idea of a branched narrative by having threemain paths
for the player: one which results from killing all monsters/characters they en-
counter, one which is predicated on complete mercy, and one which falls in
between. The game reflects which path the player is on in a few ways; for in-
stance, minor NPCs can disappear from around the world if enoughmonsters
are killed. Characters may act in fear of the player, with dialogue shifting if
they cross the line into violence. Consequences are both immediate (such
as hearing the dying cries of a murdered monster) and contribute to larger
shifts in the overall gameplay (taking the player from one main path to an-
other). The fallout from player action feels even more important given how

178

The Play’s the Thing

Figure 6.6 Before encountering her on a rooftop the player can interact with Kate and
learn more about her character by spending time with her in her room (left). Later,
the player can recall this information to help remind Kate that she is loved (right).

Credit: Life Is Strange was developed by Dontnod and published by Square Enix.

effectively the game forces players to love its well-developed characters, from
quirky reptile scientist Alphys to nap-addicted Sans the skeleton.

From these examples, we can derive some general advice for handling
choices with narrative consequences. Sticking to a relatively simple overall
story structure can help to keep complexity under control. Tomake decisions
feel impactful under this constraint, immediate reactions to player action
from other characters can help provide emotional weight. Lastly, the qual-
ity of a given interaction should be prioritized over the apparent abundance
of choice. Being able to say yes to something four different ways a thousand
times is worthless next to the ability to save the life of a treasured companion
just once.

6.3.3 Do the right thing

It is a crisp autumn morning, and you’ve just stopped for a coffee before
work. With only a few minutes left until your shift starts, you’re second from
the register, staring at the back of a very expensive flannel shirt. The shirt’s
owner is occupied interrogating the poor barista on the exact caloric content
of each beverage on offer. His cell phone rings, and he answers it, turning
away from the barista but maintaining his position in queue. The barista
whispers out the first half of an “excuse me” before Flannel Shirt angrily
shushes them and returns to his call. You notice a rubbish bin a few me-
tres away, and quietly contemplate suplexing him, fedora and all, into the
garbage where he belongs.

There are several things stopping you from giving Flannel Man his
comeuppance: the threat of retribution, the rule of law, the thought of dis-
appointing your mother, and hopefully a sense that it would be wrong to
throw someone in a trash can, no matter their impoliteness. Though ethics

179

The Game Designer’s Playbook

vary between individuals, there is a widespread understanding of basic right
and wrong in modern society.

Video games are a different story entirely, and the only thing stopping
you from shoving an NPC into a trash can is often, well, nothing. Part of the
appeal of games like the Grand Theft Auto series is the ability to run around
shooting people in the face willy-nilly before stealing their cars and run-
ning them off a cliff into a big pile. In Skyrim, the player’s iconic “fus ro
dah” dragon shout can launch enemies into the air, but its real value is in
conscripting unwitting city guards into the Tamriel space program. Anyone
who’s played The Sims has forced their Sims to light fireworks indoors, and
anyone who claims not to have done this is lying.

The truth is that acting like a complete monster can be fun, and provide
a harmless outlet for expressing the rage incurred at coffee shops across the
globe. Nonetheless, it is often preferable to enforce some basic sense of right
and wrong in games, and not just to keep our inner beasts in check. Moral
or legal consequence helps to make a virtual world and its inhabitants feel
more alive. In games with heavy roleplaying elements, a sense of allegiance
to the moral code of a particular group or society can be an important part
of immersion.

Serious players will often choose their behaviour based on their personal
understanding of right and wrong, or an understanding of their character’s
ethics. Nonetheless, reflecting some sense of morality in a game’s writing or
mechanics can help to reinforce this idea, improve realism, and make less
serious players think twice about their actions. Since the days of alignment
charts in Dungeons and Dragons, morality systems have helped govern player
choice in games. Sometimes, these systems sit at the forefront of gameplay,
while others rest just below the surface.

Explicit morality systems. Many games, particularly AAA games with
the effervescent label of “role-playing elements,” employ some form of ex-
plicit morality or reputation system. Sci-fi games seem to be especially fond
of the notion, as if every game with a spaceship needs to have a litany of
alien races with independent legal systems in binary opposition with one
another. These systems permeate the subgenre, from the Paragon system in
Mass Effect, to Reputation in Elite: Dangerous and theGalaxy on Fire series, and
even faction friendship values in Spore. You can scarcely kick a rock through
the vacuum of space in such games without consulting your reputation me-
ter to check if you’ve accidentally declared war on the Rocklover Empire of
Andromeda-6.

These mechanics are far from limited to the interactive spiritual successors
of Star Trek, though. Karma is a word used to describe the explicit moral-
ity systems in both the Fallout and InFamous games (though not all entries
in each series use the mechanic or treat it in the same way). InFamous 2

180

The Play’s the Thing

Figure 6.7 In Galaxy on Fire 2, a reputation meter accessible via an in-game menu
lets players know where they stand with the game’s four major factions. In addition
to affecting the behaviour of AI ships, faction loyalty changes mission payouts and
affects the appearance of certain NPCs.

Credit: Galaxy on Fire 2 was developed and published by Deep Silver Fishlabs.

gives you choices in whether you’d like to fight or support crime with your
character’s superpowers, unlocking additional hero or villain-themed pow-
ers according to your place on the karma spectrum. Similarly, in Fallout 3,
terrible karma will get you liked by big bad villains and hunted down by
the goody-goody police. Naturally, excellent karma will get you liked by the
good happy nice guys and hunted down by the having-a-bad-day police. Ter-
minology aside, this is not an exaggeration of how binary these systems tend
to be.

Thus, a pervasive problem emerges with explicit morality systems in gen-
eral; they tend to feel like cheap dichotomies. These systems can be fun
mechanically, of course. Shooting up a cargo freighter in Galaxy on Fire to
get in good with the aliens that have cheaper space liquor is an enjoyable
thing to do. However, these systems rarely exhibit political, ethical, or nar-
rative nuance. Explicit morality systems tend to offer choices that reduce to
hilarious extremes in keeping with their binary nature: Would you like to
extinguish the fire in the village, or throw kittens into it? And for situations
where any semblance of moral ambiguity is preserved, players can always
consult the karma meter to double-check how many good boy points their
last dialogue choice was worth. The act of reading a number or a fancy little
icon replaces the much more interesting potential of reflecting on your own
actions, or experiencing a little doubt.

181

The Game Designer’s Playbook

Implicit morality systems. Getting players to actually think about what
they’ve done for more than a few microseconds—perish the thought!—can
be as simple as foregoing a reputation meter. Internally, that same value
can tick away, still an oversimplification, but an easy way to track players’
actions and shape the behaviour of NPCs accordingly. Without the crutch
of an icon to peek at, players will be forced to take their decisions more
seriously, perhaps left wondering as to whether they’ve done the right thing
in the eyes of different characters. An example of such an implicit system is
Undertale’s handling of player mercy, determining whether they’re on a good
or evil path. The world changes around you depending on your actions, and
characters act differently, but there’s no magic number telling you whether
you’re good or bad.6 This keeps youmore immersed in the real consequences
of your actions, instead of babysitting a UI counter.

BioShock also uses an implicit system to track the player’s treatment of Lit-
tle Sisters strewn throughout the world. The number of sisters killed or saved
affects which ending the player receives, but there’s no karma bar letting you
know how far you’ve dipped into the bad guy side of things. What’s more,
other characters don’t agree on the right choice; the game makes a point of
providing an argument for killing the sisters that goes beyond “you’ll get
more stuff.” Indeed, the more stomach-turning option does net the player
more immediate reward. Somewhat unfortunately, the game not-so-subtly
gives away that rewards will balance out if the player does the “right” thing
instead. Without this detail, the situation becomes more interesting: a player
planning to do the “right” thing might be turned by selfishness and come
to feel guilt, while a player that turns down that initial reward might be left
wondering if the clean conscience was worth it.

Sometimes, games present a moral choice without any implication of last-
ing consequences or definite rewards. In FTL: Faster than Light, the player can
be confronted with a fellow ship in distress, and asked to spare some nominal
amount of resources to help. They might receive a reward for their efforts, or
nothing at all—and for first-time players, there is typically no indication of
reward when such choices are presented. This makes these choices far more
ideologically interesting than if they were presented as transactional. Once
players get used to the outcome of different events, some uncertainty helps
to preserve interest from a gameplay standpoint.

6 One of the brilliant things about Undertale, at least on a first-time playthrough, is that there
is in fact a magic number telling you whether you’re good or bad. However, you’re not told that’s
what it is—it masquerades as a regular old RPG experience bar, with EXP earned from killing
monsters—until you face the reality of your actions later in the game. If the cutemonsters weren’t
enough to push you towards pacifism, you’ll learn that EXP stands for “Execution Points,” and
if you’ve accrued any significant amount, the game will proceed to give you a really bad time.

182

The Play’s the Thing

Figure 6.8 In FTL: Faster than Light, dilemmas are presented to the player text-
adventure style. Special options can be offered based on the player’s past choices,
such as how many resources they’ve preserved or their crew composition.

Credit: FTL: Faster than Light was developed and published by Subset Games.

From this, we can learn that a heavy-handed approach is an easy but
largely uninteresting option if you’re planning to enforce some form of
player morality. While explicit reputation meters have their place in spicing
up the gameplay of intergalactic trading and interacting with roving NPC
gangs, encouraging a little bit of grey will usually make choices feel more
engaging.

6.3.4 The player is the star

No matter the grand plans you have for a story, or a certain key event, you
must always remember that you are designing for a player, not an observer.
Wherever possible, players need to be an active participant in important
events, as we discussed earlier. A more active (and interactive) role for the
player serves both to bolster engagement and make their actions feel more
meaningful, thus contributing positively to player agency.

A simple way to promote this mentality is to avoid yanking control away
from the player wherever possible. In No More Heroes, every single boss fight
is ended with a cutscene. That cutscene shows the player’s character finishing
off the boss, accompanied by some dramatic back-and-forth dialogue. This
effectively removes the power of the killing blow from the player, swooping
in at the climax of every fight to make the player a passive observer in the

183

The Game Designer’s Playbook

most critical moment. This is inherently dissatisfying; what’s to say these di-
alogue snippets couldn’t be played during battle? Any cutscene beats difficult
to orchestrate in gameplay could be left for the aftermath, perhaps showing
their foe’s dying breath after the player is able to deliver a finishing move
themselves.

Relegating the “real” final moments of a battle to a cutscene is a frus-
tratingly common pattern, though more preferable alternatives exist. One
common solution is to insert quick-time events into a boss’ death cutscene,
giving the player some interaction while watching a more tightly scripted se-
quence. An example is the player’s fight against eight-headedmenace Orochi
in Okami, where killing moves are dependent on their ability to quickly
execute a few precise inputs.

An even more effective approach is to employ a strict interpretation of
“do, don’t show,” making sure the player has full control in the most critical
moment. In the final boss battle of Kingdom Hearts II, for instance, big bad
Xemnas is ultimately killed by the player. A cutscene after the main fight
shows a bit of combat, returning to gameplay for the player to execute the
killing move themselves before playing a final cutscene showing Xemnas
evaporating into the ether. This does a better job of preserving tension and
giving players a sense of accomplishment, while preserving the insertion of
some flashy animation and VFX via cutscenes.

Figure 6.9 In Okami, the player controls a wolf goddess, though her most fearsome
rivals are sometimes defeated with the help of the lazy, brave, and sometimes-pesky
human warrior Susano (pictured swooping in to assist you in battle).

Credit: Okami is a trademark of Capcom Co., Ltd.

In this specific instance, we can say that players should be granted the
agency to land the final blow against a boss during gameplay. More generally,
the player needs to have an active role in important events; they need to be
the star of their own experience.

A straightforward way to accomplish this in structuring a game’s plot beats
and narrative events is to understand the unique challenges of game writing

184

The Play’s the Thing

from the outset. A game story is unlike any other story in that it happens to
its audience, not in front of them. In writing a game, you shouldn’t just be
writing what happens in terms of plot. You should also be writing what the
player experiences, with careful considerations for the consequences of their
actions and what they will personally witness in a game’s world.

Consequently, the player’s experience needs to react to their actions. For
every guard that you can intimidate after becoming a guild leader in Skyrim,
you can find anNPC from that guild whowill talk to you like a petulant child.
And if you complete the quest where you literally assassinate the sitting
emperor, you’ll be shocked by how little impact your actions have. Aside
from a few new voice snippets among townsfolk, the death of a world leader
has virtually no impact outside of ticking a box in your quest journal. When
a game’s world or story doesn’t react appropriately to a player, their agency is
compromised. A player’s sense of meaning, accomplishment, and immersion
is strongly tied to how well their role in a game’s world is realized.

As a final note, it should be reiterated that not all stories players will experi-
ence are written by developers. The term emergent gameplay is used to describe
play which isn’t explicitly planned by designers, and rather “emerges” from
a player’s interactions and experimentation with game systems. We can also
speak of emergent stories in this regard. In strategy games like Civilization,
narratives can emerge from a player’s interactions with AI.7 Gameswith sand-
box elements or physics-based combat systems like Just Cause, Grand Theft
Auto V, and Metal Gear Solid V: The Phantom Pain can create zany scenar-
ios through player experimentation. For all the months spent on beautifully
realized cutscenes, a player’s favourite story might be one that comes from
their own gameplay. That final action sequence you’ve so carefully crafted
can pale in comparison to “that time I rode a cow, attached explosives to a
hot air balloon, and almost killed myself.”

This point brings us back to an insight we’ve reached time and again in
the preceding pages. Players don’t watch a story alongside a game, they live
a story through a game. Whether orchestrated by designers, created through
gameplay, or something in between, some of our dearest gaming memories
can come from the stories we experience.

7 One of the most widespread and memorable occurrences of this is “Nuclear Gandhi”—
referring to Mahatma Gandhi’s AI abruptly transforming from peace lover into nuke-happy
supervillain. (While originally thought to be a bug, designer Sid Meier has since claimed that
this was an intentional decision, presumably to provide a hilarious surprise in the stories players
would create for themselves.)

185

The Game Designer’s Playbook

Expert Profile: Osama Dorias—Something for everyone

Lead game designer at WB Games Montréal

Any game developer who’s been at it for a while will have at least a few solid stories
about their specialty. Osama Dorias isn’t just any game developer, though, and when
we sat down to chat with him, he treated us to a preview of the dozens of stories he’s
collected over the years.

Osama started his professional life as an agent in the shipping industry, and while
he liked the people, the paperwork quickly lost its lustre. And after constant travel-
ling made him miss one milestone too many, he decided to do something a bit more
local. He took odd jobs in graphic design and tech support, all the while learning how
to make games in Flash in his spare time. Not long after becoming a freelancer, he
watched a friend break into the games industry full-time, and decided to try out the
same path. Portfolio in hand, Osama says he applied for a hundred or more positions,
and got a single callback, from mobile developer Gameloft.

At his interview, it became clear what Gameloft was looking for. One line on his CV
in particular had piqued their interest: mention of a poker hobby with friends. Osama
recounts the dialogue like something out of a sitcom: “So they’re like ‘Hey, we need a
poker expert.’ I’m not a poker expert, [but] I’m like ‘I’m a poker expert!’” Pleased with
his enthusiasm, the interviewer informed Osama that he’d be asked back for a poker
knowledge test two days later. The next 48 hours whirled by in a montage of panic
and excitement, buying up rulebooks and learning everything he could. If nothing
else, Osama had demonstrated that he could pull off one hell of a bluff.

The day of the test came around, and Osama put forth his best effort. Achieving a
perfect score, that effort surpassed the other candidates, and he got the job. On that
first gig, everything was new, and he was learning on the fly. Despite doing quality
work in everything from menu to AI design, Osama recalls a severe case of impostor
syndrome. Three years and many projects later, he still felt guilty about fibbing during
the interview, and invited his boss out for lunch to confess that he was never a poker
expert.With a chuckle, Osamawas reassured that nobody thought hewas, or expected
him to be. His boss said that what the studio really wanted was a quick learner who’d
be useful on lots of projects, not just poker—and in Osama, they had found exactly
that.

In the years he spent at Gameloft, Osama worked on lots of games for lots of plat-
forms, including smartphones, the Nintendo DS, and the Wii. He says that he liked
to “jump franchises” at the end of a project whenever he got the chance, to chal-
lenge himself and learn something new. Osama carried a similar attitude about his
disciplinary focus, working in many different specialties including UI, gameplay, nar-
rative, mission, and cinematics design. A decade after the poker interview, he’s now a
lead designer at WB Games, but describes himself as “a junior designer in 12 different
fields.”

Osama’s varied interests and diverse expertise reflect his view of game design as a
multifaceted domain. “Game design is not one discipline. It’s like 20 disciplines layered
on top of each other that are interconnected in very interestingways.We are architects,
and psychologists [. . .] We’re worldbuilders, and storytellers. Game design means ev-
erything and nothing at the same time.” Laughing, he mentions the caveat that game
designers are “not necessarily really good at all of these things,” but that diversity of
interests strengthens the field, nonetheless.

186

The Play’s the Thing

(Continued)

When talking about interaction design, Osama says the first thing that comes to
mind is the actions a player takes in a game’s world through their character. He says
that a good designer in this regard is “someone who can put themselves in the player’s
shoes,” espousing empathy as a critical trait. He looks for this quality in new recruits,
presenting them relatively simple scenarios with many possible resolutions and look-
ing at whether would-be designers can think from a player’s perspective. Creating
good user experience, Osama says, is about designing a whole collection of satisfying
interactions and feedback, which depends in turn on understanding players’ needs
and priorities.

On the subject of UX, Osama describes how game design as a whole has improved.
In earlier days, he says that UX was “a thing that happened in between art and de-
sign, and it wasn’t very clearly defined.” He recalls artists and programmers he worked
with who integrated user-centric thinking before the industry collectively realized its
importance, noting that “people are more than just the role they have on paper.” To-
day, he’s noticed roles becoming more specialized and diverse, allowing the diverse
subdisciplines of game design to earn the recognition they deserve. He notes that si-
multaneously, playtesting has gained a more solid footing, instead of stagnating in its
early status as “a thing you did when it was too late to make any real changes to the
game.”

Unfortunately, not everything he’s witnessed during his time in the games industry
has been positive. Recently, he was asked to participate in a panel of industry veterans,
noting that he hardly thinks of himself as a “veteran” after 12 years. But the reality of the
games industry is one of high turnover, withmany developers burning out entirely and
switching careers after just a few years. Osama says empathy, that critical trait of a good
designer, is something that’s all-too often lacking in positions of higher management.

Games take a lot of time and skill to make, and finding highly skilled developers
(or poker experts) is hard. The worst consequence emerging from these challenges is
crunch, a word that will give any developer a pained expression. For the uninitiated,
“crunch” describes a period of often mandatory, and often unpaid, overtime imposed
on developers, often during the final stretches of a project. Osama describes the phe-
nomenon as vicious and cyclic: “A lot of the studios crunch because they have a hard
time hiring talent. So, they’re trying to squeeze the most out of the talent that they
have. But by squeezing their talent, they’re losing them. So they have to repeat the
cycle, endlessly.”

The burden of fixing crunch, he says, can’t be forced on its victims, particularly new
employees and students entering the workforce: “If you’re in a position where you’re
choosing between jobs, or even able to speak up within a job, that’s a privilege. And
a lot of the time, students don’t have that privilege. It’s rare that they do.” Instead, he
says, “the responsibility lies on people like me.” In addition to making sure that his
own team has a healthy working environment, he says that the security of his senior-
ity allows him to publicly advocate for industry-wide improvements with less fear of
being cast out. Besides crunch, Osama says that inclusion is another thing the indus-
try needs to work on, with affirmative action as an important, if imperfect, first step
towards moving past the problems we see today. He views his advocacy on these is-
sues as an important step, noting that “the way to fight systemic things is to educate
people.” Taking action will benefit the industry in many ways; ultimately, Osama says
that “happier people will make better games.”

187

The Game Designer’s Playbook

(Continued)

In his current role, Osama says he’s shifted recently to learningmore about manage-
ment and communication than game design, on a path to becoming the best leader
that he can be. Since his days of post-interview cramming, Osama has come a long
way, but he’s always looking for new challenges, and seems to have cemented him-
self as a generalist. For him, the beauty of game design is that there’s always more to
discover: “I love learning new things. This is my favourite thing.”

Further reading

Slay the Dragon: Writing Great Video Games by Robert Denton Bryant and Keith Giglio
(Michael Wiese). ISBN: 978-1615932290.

A good introductory volume on game writing and understanding what sets the
structure of interactive narratives apart from regular storytelling.

The Gamer’s Brain by Celia Hodent (CRC Press). ISBN: 978-1498775502.

An examination of the psychology of playing games, and consequently that of de-
signing good games. Contains fascinating connections between cognitive science
and user experience.

Video Games and the Mind edited by Bernard Perron and Felix Schröter (McFarland).
ISBN: 978-0786499090.

A collection of essays on the emotional impact of games. (You might find a familiar
name in the list of contributing authors.)

Authors’ Note: Although hardly a formal resource, the site tvtropes.org catalogues
a number of narrative archetypes throughout film, TV, literature, and games. It’s an
interesting rabbit hole to fall into, from which you’ll always emerge with an ever-
so-slightly more complete understanding of what makes stories tick in popular
media.

Exercises

Anti-Hero complex

Take a game whose story you are familiar with and reimagine it if the player played as
the game’s current antagonist (i.e., the antagonist becomes the protagonist). Write out
the game’s main story beats from the perspective of your new protagonist. Jot down
some notes on how the game might change to accommodate this new perspective.
Here are some questions to get you started:

• How does your new protagonist become aware of their nemesis (the former
hero)?

• Will you stay true to the game’s original ending, or re-write it so that your new
player character comes out on top in the end?

188

The Play’s the Thing

• Does the original protagonist play a significant role, or are they merely a side
character in your new hero’s journey?

To inform your ideas, try and pick out bits from the original game that characterize the
(former) villain in a relatable or understandable light. If there are lots of details missing,
try to fill in the gaps and imagine whatmotivates your character to act the way they do.

Paperback memories

Write out a short choose-your-own adventure story with at least four distinct decision
points. You can outline your story by hand, or use a prototyping tool like Twine to
help you. Try and find a way to make some different decisions eventually reconnect to
one or two main plotlines—think about how you’d control scope if this narrative was
to be used in a game. Insert notes on how you might use subtle cues to reflect past
decisions, even if main story beats stay the same.

189

7

Rejecting your Reality

Virtual reality is an experience radically different from any other gaming
platform. The jump from arcade cabinets to home devices was certainly
something, but it pales in comparison to leaping from any other screen to
one that’s right in front of your face. VR is the ultimate first-person perspec-
tive. Slip on a virtual reality headset and you don’t just have a window into a
game’s world; you become a part of it. Nothing can really compare to it—as
much as the manufacturers of overpriced bits of cardboard for “smartphone
VR” may want you to think otherwise.

Your first time in virtual reality isn’t something you’re likely to forget.
Maybe you were at a crowded trade show, wondering if the 30-minute line
to try the first Vive headset was really worth it. You watched one stranger af-
ter another bounce out of the booth grinning and gesturing to their friends.
Eventually you found yourself at the front of the queue, and pondered for a
moment whether you wanted the uniquely eclectic blend of sweat inside of
that headset coming anywhere near your face. But, with the scent of alcohol
wipes strong in the air, and yet another grinning patron emerging from the
demo, your apprehensions lifted. And as soon as the visor descended, block-
ing out all the lights and chatter of the show floor, you knew something
amazing was about to happen.

The displays in front of your eyes blinked on to reveal your virtual sur-
roundings. Maybe it was a relatively simple space in an early demo of Tilt
Brush, prompting you to create some 3D art. Maybe it was a game like Beat
Saber that had you flailing around and out of breath in the first two min-
utes, giving the alcohol wipes a run for their money. Maybe it was a custom
demo of a rollercoaster ride, a submarine journey, a forest clearing, or the far
reaches of outer space.

At any rate, that first brush with a world outside our own is something
that sticks with you. Barring any negative side effects (we’ll get to that), it’s
something you’ll want to do again. VR can wrap any of a hundred different

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0007

Rejecting your Reality

worlds around you. To interact with that world is an experience of play which
is engaging and immersive like no other. From the second that display comes
to life in front of your eyes, you’ll be treasuring every moment.

The cool factor of VR is undeniable. Its promise is seductive, offering a
piece of the technological utopia that science fiction has promised us for the
past century. And yet, if the current state of virtual reality lived up to this
promise in every sense, adoption rates would be far higher.

At the time of this writing, just shy of 2% of users on Steam, the largest
digital distribution platform for PC, own a virtual reality headset.1 VR hasn’t
quite taken off in the mainstream, and understandably so. Headsets are still
expensive, with even budget options running about the same price as a con-
sole. Those low buy-in rates combined with comparatively few dedicated
multiplayer titles mean there’s little peer pressure to take the plunge. Setup
is a nuisance, with every headset having some compromise or another in the
form of cumbersome wires, bulky tracking stations, or lesser screen quality.
Most importantly, with a few notable exceptions, the VR release schedule
isn’t packed to the gunnels with over-marketed and over-hyped upcoming
titles like those driving the console exclusive wars or the race to upgrade
one’s graphics card.

These compromises along with other factors contribute to a number of
design challenges endemic to VR. A lack of widespread adoption means
that regular VR use is still new to the vast majority of users. Much of the
background knowledge and intuition built up from a lifetime of gamepads
and keyboards doesn’t necessarily apply in VR, which can make onboard-
ing difficult. This is compounded by constantly evolving and wildly diverse
hardware, demanding accommodation for different controller variants (or in
some cases, relying on a user’s hands alone). Design standards for VR are still
being established, and with a relative dearth of existing titles in comparison
to other markets, developers have less of a chance to learn from the successes
and failures of others.

Some additional problems arise from the very nature of VR. A lack of
proper force feedback limits our ability to make interactions feel natural, re-
lying on tricks to accomplish something like making an object feel heavy.
Making users feel comfortable can be tough, with many susceptible to a
phenomenon similar to motion sickness. While design choices can help to
mitigate or even prevent this effect depending on the user, these choices are
not always obvious from the outset. Even for users that eventually gain their
“VR legs,” it’s easy to become disoriented with respect to the real world. The
internet is replete with videos showing exactly what happens when some

1 Source: Steam’s official hardware survey, accessible as of this writing at https://store.
steampowered.com/hwsurvey/

191

https://store.steampowered.com/hwsurvey/
https://store.steampowered.com/hwsurvey/

The Game Designer’s Playbook

headset-clad rube forgets where they are and full-on headbutts a credenza
(or their roommate).

Balancing the enticing possibilities of this platform with the complica-
tions it poses is the challenge of designing for virtual reality. VR isn’t just a
generational leap; it represents a fundamental change in the way we think
about understanding game interaction.

7.1 Designing for VR

The use of the term “virtual reality” has shifted somewhat over the years, and
has further contextual nuances to boot. Here, we use a colloquial interpreta-
tion of the term, referring to the wearable headsets2 available to consumers.
The defining feature of VR is placing the user in a digital space, where they
can look and move around by physically moving their head and typically
their body. In pure virtual reality, the real world is made to be unseen and
unheard, only keeping track of boundaries to prevent accident and injury
while moving around.

A cousin of virtual reality is augmented reality (AR), which refers to the
superposition of digital elements on a view of the real world. Most AR ap-
plications run on smartphones, using the device’s camera to provide a live
feed on which additional graphics are overlain. An example is 2016’s cultural
behemoth Pokémon Go, which let users chase down and capture cuddly and
not-so-cuddly creatures in their own neighbourhoods.

Yet another term related to VR is mixed reality (MR), which has a frus-
tratingly muddy interpretation lying somewhere in between virtual and
augmented reality. Usually, this means wearing a headset like you might for
VR, but seeing something akin to AR instead of a fully digital world.Mixed re-
ality demands amore advanced form of AR, which can appropriately respond
to changes in the physical world and the interactions of the user. In a mixed
reality application, you might transform your area rug into an ocean, able to
push around physical odds and ends which turn into digital battleships. As
appealing as this proposition is, mixed reality isn’t yet widely available, and
presents technological and economic challenges even beyond those of VR.

To put it bluntly, augmented reality isn’t all that interesting when held
up next to virtual or mixed reality, and mixed reality isn’t here just yet. VR,
on the other hand, is both quite interesting and already here, though it has
resided perpetually in its status as “the next big thing” for the last ten years.

2 As of this writing, popular commercial examples include the PlayStation VR, Oculus Rift,
HTC Vive, and Valve Index headsets.

192

Rejecting your Reality

Our discussion here will focus on VR as a result, though many insights re-
garding naturalistic interaction and immersion in Section 7.2 apply to its
exotic siblings as well.

7.1.1 What VR gives us

A typical VR headset uses a combination ofmicroelectronic sensors including
gyroscopes, magnetometers, and accelerometers to determine the orienta-
tion of a user’s head. In theory, an accelerometer alone can also allow for
positional tracking. In practice, the data from an accelerometer is too noisy
to provide any acceptable level of accuracy in this regard, so it is combined
with the use of cameras on a headset’s exterior to track user position. This can
be done with optical recognition of surroundings like walls and furniture, or
more commonly, measuring the time discrepancy in receiving synchronized
flashes of infrared light emitted from stationary beacons. Similar systems
are used to track the position and orientation of the handheld controllers
featured by most commercial headsets.

In a PC or console game, the game’s “camera” renders to the user’s screen.
The camera is positioned either automatically (e.g., fixed top-view), by the
user (e.g., rotated around their character with an analog stick), or with a com-
bination of both user input and automated adjustments. In VR, the game
camera is posed based on the known position and orientation of the user’s
head. The view from this camera is rendered on two displays, one for each
eye. Strictly speaking, each eye usually has a separate camera, with a slightly
different view providing stereoscopic vision. Just as in the real world, stereo-
scopic vision allows users to perceive fine differences in depth based on the
position of elements in the virtual world relative to each eye.3

Of course, what we have described here is a high-level summary of what
the “average” modern VR headset does. Some headsets differ in their appli-
cation of these features, but regardless of implementation, VR gives us some
interesting things to keep in mind and play with in designing interactions.
Both in terms of how we communicate with games and how games com-
municate with us, VR is a unique beast in comparison to traditional digital
gaming.

Visual immersion. Inside virtual reality, the real world effectively disap-
pears. VR headsets block out light to prevent bleed-through from ruining
visual quality, serving also to minimize distraction. This serves to force im-
mersion, sticking the gameworld an inch from the player’s eyes with nothing

3 Unfortunately, if like one of the authors you are partially sighted or blind in one eye, VR will
not magically fix your depth perception, and you can continue to enjoy misjudging basketball
shots and incoming projectiles in the virtual world as you do in reality.

193

The Game Designer’s Playbook

else in sight. If given the chance, players can appreciate much smaller details
in their environment, holding an object up to their face or crouching in a
corner to examine some curiosity on the ground. The act of looking around
in VR is much more engaging than manipulating a camera with a mouse or
analog stick, breathing new life into gameplay that involves searching your
environment, aiming a weapon, or other tasks involving visual perception
and hand-eye coordination.

Spatial audio. On other platforms, players might use all sorts of solutions
for audio. In a game where spatial audio is particularly important, you can
probably persuade users to put on a headset. In general, though, console and
PC players might be using any number of external speaker configurations.
Mobile players will frequently have their devices muted entirely, unless they
decide to become everyone’s least favourite person on the train that day.

In VR, on the other hand, it’s a safe bet that players have speakers jammed
right up against their ears. Several headsets come with inbuilt speakers, and
most all offer an onboard jack for users to plug in their own headphones. Pro-
vided that users want sound, with the rare exception of showing something
off to friends, they’ll be wearing their audio instead of piping it somewhere
else. This further reduces the impact of external stimuli, blotting out noise
from the real world. It also pretty well guarantees that you can use precise
spatial audio cues to provide players with richer feedback, without worry that
a large portion of your user base will lose out as a result of their speaker setup.

Gesture-driven controls.All popular commercial headsets offer someway
of tracking the player’s hands, typically by way of handheld controllers.
Some controllers, like those that ship with the Valve Index, provide even
finer information on the position of a user’s fingers, allowing you to point or
make a fist in the digital world. Even basic hand position tracking offers the
possibility of replacing what would otherwise be a button press with gestural
controls. This can make interaction more natural, intuitive, and fun.

Potential for full-body movement. The combination of head and hand
positions, in combination with some old-hat development tricks like inverse
kinematics, is already enough to approximate a user’s full-body pose. Addi-
tional position trackers, though not widely popular, can provide further pose
information, such as sensors that can strap onto your feet. Regardless of how
precisely we can estimate the fine details of a user’s position, even basic in-
formation provides us with some interesting opportunities. For instance, a
headset’s distance to the ground in comparison with a user’s height gives us
jumping and crouching—combined with hand position, this is everything
we need to get users dancing, dodging obstacles, or taking cover in a shooter.

The crux of all of this is that we as designers need to take advantage of
these features to succeed. This isn’t as simple as slapping a new coat of paint
on a successful game, mapping the camera to the headset, and calling it a

194

Rejecting your Reality

day. As much fun as Skyrim is in all its many iterations between PC, console,
and PalmPilot, its VR port is mediocre in capitalizing on things like gestu-
ral control. Compare this to one of the many successful games designed for
VR first (or exclusively), like the physics-based madness of Boneworks, and it
is obvious that good VR design is about far more than adjusting to a new
paradigm of camera movement. A memorable experience in virtual reality
is one that thoughtfully integrates the unique features it offers—and plans
ahead to compensate for its shortcomings.

7.2 What we don’t want VR to give us

The feelings you want your game to evoke depend on your design intent.
Maybe you’re looking to make players laugh, give them suspense, or strike
fear into their hearts. Irrespective of your design intent, it’s probably safe
to say you would prefer that your game doesn’t evoke headache, dizziness,
sweating, and nausea.

Unfortunately, these symptoms are a relatively common complaint
among new VR users, and can persist for many people even after having
a fair bit of experience. Termed “simulation sickness” or even “VR sickness,”
this unpleasant ailment is something akin to motion sickness.4 There are a
few different theories as to what causes VR sickness, but the prevailing expla-
nation is that it results from a mismatch between the vestibular system and
other sensory stimuli. In other words, your vision says “motion,” but your
inner ear says, “you can’t fool me, we’re standing still, and now it’s time to
vomit.” More precisely, your vision (and/or hearing) indicate an acceleration
of some sort, but that acceleration doesn’t match with yourmovement in the
real world. For instance, you push forward on an analog stick to move in VR,
and your viewpoint starts to move forward, but you stay standing still. Other
factors can exacerbate the effect of VR sickness as well; mild symptoms can
become worse after an extended period in a headset which is typically heavy
and quite warm.

We have three options in addressing VR sickness. First, we could tell play-
ers that VR isn’t for them, or to only play games that don’t make them
sick. Second, we could assume that anyone susceptible will play clutching
their Dramamine, and self-moderate to prevent serious discomfort. Lastly,

4 While still a relatively nascent area of research, some estimate the incidence of VR
sickness to be quite high; in this article (link current as of this writing), kinesiologist
Thomas Stoffregen estimates that 40–70% of players experience motion sickness after spending
15 minutes in VR: https://insidescience.org/news/cybersickness-why-people-experience-motion-
sickness-during-virtual-reality

195

https://insidescience.org/news/cybersickness-why-people-experience-motion-sickness-during-virtual-reality
https://insidescience.org/news/cybersickness-why-people-experience-motion-sickness-during-virtual-reality

The Game Designer’s Playbook

we could do our jobs and find ways to make our games more accessible by
eliminating or providing options to reduce factors associated with sickness.

Since this is a book about game design and not a web forum, we’ll opt
for the third approach. Although designing for VR is still a relatively new
challenge, there are already a few things we can do to drastically limit the
likelihood that players will become sick, and reduce the severity of symptoms
experienced.

Performance. Low refresh rates and high latency can potentially induce
VR sickness, or make it much worse. Most commercial headsets offer a fairly
high refresh rate, though the current standard of 90 Hz is likely to increase as
technology improves. To reduce the chance of sickness, games should keep
upwith the headset they’re played on,maintaining a stable framerate (i.e., 90
frames per second for a 90 Hz display). This already exceeds the performance
target of most console or PC games, which typically aim for 30 or 60 FPS on
average hardware. However, the demands don’t stop there—assuming you’re
going for the stereoscopic effect, you’ll need to render separately to each eye,
hitting the equivalent of 180 FPS.

Even on very high-end hardware, meeting these requirements is hard for
a graphically complex experience. While performance is a technical prob-
lem and not a design one, you might find yourself in a position where you’ll
be choosing between visual fidelity and a higher or more stable framerate.
With incredibly rare exception, for a VR game, that choice should favour per-
formance. Quality assurance (QA) testing should also focus on identifying
potential framerate drops or latency spikes, which can be significant annoy-
ances on any platform. In VR, these issues can quickly induce nausea, and
are thus of vital importance to identify.

Locomotion systems. In a designated “standing VR” experience, players
can be largely stationary while they play. In a strictly “room-scale” game,
the game world is only as large as the physical space players have available
to move around in the real world. In any other game, the game world will be
larger than the player’s physical play-space, and players will have to be able
tomove around somehow. This presents a conundrum: how dowe let players
move around virtually in a way that mismatches their physical movement
without inducing VR sickness?

A naïve implementation of player locomotion in VR is a straight port of
standard first-person movement. You hold forward on an analog stick, and
your avatar moves in the direction the camera (i.e., your head) is facing. To
spin around, you can spin around in the real world, thus re-orienting the
headset you’re wearing. Alternatively, you can use another analog stick to
turn smoothly without spinning around yourself. The problem with this ap-
proach is that it can easily and rapidly make players feel sick, by creating
those sensory mismatches we discussed earlier. When your avatar starts to

196

Rejecting your Reality

Figure 7.1 Four options for moving from point 1 to point 2 in VR. A) Walking forward
in the physical space mapped to walking forward in the virtual world. B) Using a
controller to point at location 2 before triggering a teleport. C) Moving an analog
stick to move smoothly forward in the virtual world. D) Triggering an automatic fade
out of the player’s view in location 1 and fade in of their view in location 2.

move forward, you visually perceive a change in speed from stationary to
moving; it looks like you’re accelerating, but you’re not physically moving.
Turning around using the analog stick presents the same problem: you vi-
sually perceive angular acceleration, but your orientation hasn’t physically
changed.

There are a couple of things that we can do to improve on “standard” loco-
motion in VR. Players should also have the option to move in the direction
their hands are pointing instead of the direction they’re currently looking.
Though it may sound strange at first, this allows players to look around while
walking, using their body to control the direction of movement rather than
their head. This is a more accurate reflection of locomotion in the real world,

197

The Game Designer’s Playbook

and prevents subtle unintended changes in direction if players are locked
to moving in the direction they’re currently looking. Additionally, if your
head is turned relative to your body, moving in the direction you’re looking
creates a feeling of strafing, which will feel less natural for most players in
comparison to moving in the direction their hands (and feet) are pointing.

Another improvement is the implementation of “snap” turning. While
many players may prefer to physically spin themselves around, repeated
turning can become a nuisance when dealing with the tether cable that most
VR headsets still require. Snap turning lets players rotate their viewpoint in-
stantaneously by some increment (e.g., 45 degrees), all but eliminating the
perception of angular acceleration while allowing players to turn around
quickly in the virtual world with a few flicks of an analog stick. With
support for snap turning and controller/hands-relative movement, smooth
locomotion can become a viable option for players who would otherwise be-
come sick. One last thing you can consider is applying a light blinder-type
effect to the periphery of the player viewport during smooth movement—
effectively reducing field-of-view—which some academic work has suggested
may further reduce discomfort.

Even with these changes, smooth locomotion can still be sickening for
some players. The best option for accessibility here is to offer an optional
teleportation-based mode. Teleportation systems allow players to point at
a desired location, typically within a certain radius of their current spot,
and press a button or flick their analog stick to instantly arrive at their des-
tination. This removes the sensory mismatch created by smooth forward
movement, thus reducing the likelihood of serious VR sickness.

Teleportation is, at least currently, the ideal locomotion solution for peo-
ple especially prone to VR sickness. It can also provide a bridge for players
who are new to VR to gain some experience and acclimate over time before
eventually moving to a smooth locomotion system. However, implementing
teleportation can require a bit of extra thinking on the part of designers. The
ability to teleport a few metres away at a moment’s notice can provide an
unintended gameplay advantage. For example, in a shooter, a player could
teleport behind cover or away from a grenade. When faced with an envi-
ronmental puzzle requiring players to build some sort of ladder or bridge,
teleportation might allow them to skip it. These problems are not unsolv-
able; for instance, if players are required to solve a puzzle, you could simply
remove the ability to teleport beyond that point until they complete it.

Any gameplay advantage which is trickier to account for, like teleporting
behind cover, is typically worth it for improved accessibility. The question
here becomes “Can I really let a few players get away with cheesing the

198

Rejecting your Reality

mechanics for improved accessibility?” The answer is yes. Preserving brag-
ging rights for achievements over the ability of certain people to play your
game is ridiculous. Even with that cover issue we mentioned earlier, Valve’s
VR shooter Half-Life: Alyx offers a slew of movement options, including tele-
portation. Teleportation doesn’t lock you out of earning any achievements,
either—in a single-player game, having a slight “competitive edge” doesn’t
impact anyone else’s experience.

Alyx’s contemporary physics-based cousin Boneworks doesn’t offer a tele-
port option, with the official word from the developer being that it would
“make much of the game physically impossible.”5 This is disappointing;
while teleportation can certainly break some puzzles dependent on climb-
ing or similar, providing players with accessibility concerns a way to enjoy
the game at all should take priority over preserving the “purity” of the ex-
perience. The only argument here is that additional options incur a resource
cost developers can’t realistically afford—which is certainly valid. However,
given the prevalence of players prone to VR sickness, investing in the option
is likely worth it for the majority of projects.

In a multiplayer game, allowing this compromise can be trickier. Com-
petitive shooter Pavlov VR no longer offers a teleport option, which would
provide a distinct advantage over players using smooth locomotion. How-
ever, in such scenarios it would be beneficial to offer a game mode which
enables teleportation for accessibility, giving all players the advantage up
front.

Camera design. Another source of sensory mismatch comes from how a
game handles its camera. On any other platform, you wouldn’t think twice
about doing something like taking control of the camera for a cutscene. In
VR, yanking control of a player’s viewpoint away from them, especially unan-
nounced, is a recipe for disaster. If you need to “move” the player, you should
prompt players to move themselves, either with explicit instruction or by
providing a point of interest at the desired location with sound or visual ef-
fects. Alternatively, you can move some of the action to them, for instance,
by having a character walk over.

Should neither of these options work for your desired experience, consider
moving things around the player, providing some stationary references to
prevent them from perceiving their avatar as accelerating through the world.
For a complete scene change, you should never “cut” unannounced, as a
jarring change in viewpoint which isn’t controlled by the player (e.g., via
snap turn or teleport) can be uncomfortable. Instead, prefer a fade to a neutral
colour like grey or black before fading back to a new location or viewpoint.

5 Official developer account response to a player question on the Steam forums: https://
steamcommunity.com/app/823500/discussions/3/1660069015247587262/

199

https://steamcommunity.com/app/823500/discussions/3/1660069015247587262/
https://steamcommunity.com/app/823500/discussions/3/1660069015247587262/

The Game Designer’s Playbook

If you’re wondering how to mimic something like a dramatic landscape
panning shot without making players sick, the answer is that you can’t,
really, at least not universally. Fading to the interior of a vehicle alreadymov-
ing slowly might work, reducing the perception of acceleration. But, when
architecting cinematic sequences in VR, try to ask yourself if you can repli-
cate the purpose of a given shot or scene without trying to visually imitate
it. The point of a dramatic landscape pan is to let players take in the beauty
of an area, provide a sense of scale, and maybe a moment of relaxation. All
of these things can be accomplished by placing the player on a hill and let-
ting them look around for themselves, while greatly reducing the risk of VR
sickness.

Other commonplace camera manipulations can also cause problems in
VR. In non-VR first-person games, a degree of head bob is often added to the
camera to give the impression of a character walking or running. This effect
can be quite nice if you’re sitting in front of a screen, but can easily cause
queasiness in VR, since the motion is added on top of the player’s actual head
movements. Another thing that should be avoided is zooming the camera;
giving players an object they can manipulate like a rifle scope or binocu-
lars is usually just fine, but zooming their entire field of view, especially
unannounced, is unadvisable.

The last thing to be careful of here are visual effects and post-processing
like screen-shake, motion blur, varying chromatic aberration, and flickering
lights. Any effects which are traditionally used to create a sense of motion
or disorientation on other platforms—like using screen shake to emphasize
a nearby explosion in Battlefield V—simply work too well in VR. These effects
can be suitable for someone who is not susceptible to VR sickness, and/or
has a lot of experience. However, if you’re planning to include any form of
post-processing which induces a sense of motion or flickering, you should
opt to disable these effects by default and present first-time players with a
prompt to enable them if confident in their “VR legs.”

Play habits. VR sickness usually isn’t all or nothing; some players may
feel sick immediately, but many will be able to play comfortably for short
periods, while still others can play for hours without ill effect. Anecdotally,
players often report building up a tolerance, being able to play comfortably
for longer after having more experience in VR. Nonetheless, you should not
assume that all players will be able to comfortably play for long stretches.

There are several ways to design around this. For both single- and multi-
player titles, you can design play to occur in bite-sized chunks, which players
can choose to experience one at a time or back-to-back if their tolerance
is higher. In Beat Saber’s campaign, for instance, like other rhythm games,
players can experience the game one song at a time. Longer-form games can
compensate for this with save systems, by allowing players to save at any

200

Rejecting your Reality

time (e.g., Half-Life: Alyx) or providing a checkpoint system which creates
natural stopping points (e.g., added in an update for Boneworks). The ability
to pause for a quick break to take a drink of water or cool off is also vital;
while infeasible in general for multiplayer, providing the option for hosts of
a friendly game to pause the action for less experienced players is a welcome
design choice.

You might also consider an optional, timed prompt reminding players to
drink water, rest their eyes, and take a break. For those prone to VR sickness,
a customizable reminder can help them to regulate their play sessions and
pause before unpleasant symptoms set in. You can also recommend some
tips for players new to VR about their physical play-space, such as setting
up a cooling fan if they have one, which can help to alleviate nausea and
counteract the heat given off by a VR headset.

Regardless of whether players experience some form of VR sickness, these
considerations can also help to alleviate the universal concerns of fatigue
and repetitive physical stress. Many VR titles require players to stand, walk
around, and make heavy use of gestural controls (for good reason). How-
ever, this can be strenuous, particularly if you’re used to the more traditional
paradigm of sitting down and not moving around much during a game.
Sufficient playtesting to make sure that the gestural interactions demanded
by regular play are not too taxing, and giving players the opportunity to
tackle a game in short bursts can help make your game a more comfortable
experience for all players.

7.3 Putting the “real” in reality

VR gives us plenty of compelling features out of the gate: a true first-person
perspective, support for gestural controls, and near-perfect sensory immer-
sion. Almost any experience in VR will be cool for at least a few minutes to
a first-time user. To make a more captivating creation with some longevity,
though, we cannot rely on the novelty of the platform alone. A VR headset
by its very nature promotes total immersion, but making players feel fully
present in a game’s world ismore complicated than just wearing that headset.
Gestural controls are always a fun gimmick, but making an interaction feel
satisfying is more complicated than taking a problem and throwing motion
sensors at it.

Certainly, what we have discussed in the preceding chapters in terms of
feedback and control design still applies in VR. However, interaction design
in VR demands additional considerations for the unique opportunities it
offers, particularly in terms of control design. In creating entirely new ex-
periences for VR or adapting our existing ideas, three main factors can help

201

The Game Designer’s Playbook

to shape our understanding of how players should interact with the digital
world: intuition, tangibility, and the novelty factor.

Intuition. It is three o’clock in the morning, and your smoke alarm’s bat-
tery is low. Naturally, to let you know, it is kind enough to start screaming
at you. You startle awake, run downstairs, wrest it from the ceiling, and get
a new battery ready. But now is the time you’ve been dreading. You need to
slide the panel off the battery compartment. First you have to find the panel,
which is tricky enough as the entire thing looks like a smaller and more
impenetrable version of the Pentagon. After you find the panel, you can’t
remember how it slides off, because it exhibits eight degrees of lateral sym-
metry and there are no markings anywhere on the damned thing except for
a tiny picture of fire. You try sliding it in each of the cardinal directions five
times with varying amounts of force before cursing and chucking the thing
across the room, at which point the panel pops off and your bleary-eyed
spouse peers in to inquire about the racket.

Intuition is our ability to understand something without or having to
spend time reasoning about it. Something is intuitive if we can use it with-
out getting instructions or having to think about it very much. Most things
aspire to be intuitive. A save button bearing the image of a floppy disk (to
those of you born after the turn of the millennium, a “floppy disk” is that
thing on the save icon) is intuitive. The panel on your smoke alarm is not.

The design principle of affordance, discussed in Chapter 5, is essentially an
ethos of capitalizing on intuition. Affordances tell us how to use something
without explicit instruction. The evolution of affordances in design from
physical products to video games is interesting. In the real world, the design
of a cup’s handle suggests how it should be held based on your experience
and the shape of your hands. This is an affordance. In a digital game, we can
describe “perceived” affordances based on experience specific to themedium:
the presence of a cup on a table suggests that you can probably liberate that
cup into your inventory by pressing a button. Here’s the catch—in VR, we
can (and should) return to physical affordances in many cases. If you see a
cup on a table, your first instinct won’t be to press a button. Assuming it’s
within arm’s reach, you’ll reach out for the handle and try to grab it instead.
In a world where you look around by moving your head instead of a mouse,
the intuitive choice is to pick things up by moving and grabbing with your
hands instead of pressing a button.

Looting is a good example of how perceived affordances on other plat-
forms have evolved into physical affordances in VR. On any other platform,
if you see a dead enemy or stack of items, the expected interaction is that
you will walk over and press a button to collect supplies, perhaps with an
intermediate menu to select what you’ll take. Borderlands, Destiny, Red Dead
Redemption, Fallout,Dishonored—pretty much every game that you can touch

202

Rejecting your Reality

with some action subgenre has some form of “Press X to loot.” In VR, the
paradigm is different. If you find an ammo crate in Boneworks, you walk over
and pick it up instead of pointing and pressing a button. In Half-Life: Alyx,
you can pluck grenades and weapon clips off of your dead adversaries. On
top of being incredibly satisfying, this choice is alsomore intuitive. In design-
ing interactions for VR, we can’t blindly follow the conventions established
for other digital games; we need to consider the conventions of the physical
world.

Figure 7.2 In Boneworks, grabbing any object—prop, loot, or otherwise—is a matter
of physically grabbing it, not just pointing and pressing a button.

Credit: Boneworks was developed and published by Stress Level Zero.

Gestural interactionmakes this type of design “easy” to an extent for basic
interactions. If something can be reasonably mapped to its analog in the
real world, then it should be. This serves to lower the cognitive demand of
onboarding by relying on the real-world experiences common to all players,
reducing the need for tutorial prompts and giving players fewer key bindings
to memorize. Moreover, most VR controllers have just a few buttons, so this
thinking will help you to save those buttons for actions that are less intuitive
to map gesturally, like toggling menus.

Mimicking less obvious nuances of real-world interaction can further
boost intuitiveness while providing players with a satisfying sense of atten-
tion to detail. Aiming a weapon by moving your hand and shooting by
using a controller’s trigger is intuitive. Taking this a step further to mimic
some context-specific behaviour of real guns—or things players might have
seen in action movies—juices up those interactions further. In Pavlov VR,
for example, players can mount a virtual stock on their weapon to (pretend)
brace it against their shoulder, stabilizing their reticle and reducing the im-
pact of shaky hands. Some guns are also made for two-handed play, with
aim stabilization if both hands are positioned properly. Another example
is the favoured reload technique for shotguns in either Pavlov or Alyx: after

203

The Game Designer’s Playbook

inserting new rounds, you can flick your wrist backwards to secure the barrel,
gunslinger-style.

Tangibility.One of themany reasons why it is fun to throw rocks at things
is because rocks are heavy, which makes them feel satisfying to pick up and
launch like the big strong person that you are. Unfortunately, no matter
how heavy a rock, gun, frying pan, or captive sea slug should be, in VR,
everything is exactly as heavy as the controller you’re holding. At least for
now, VR is still a little too V for its own good. High-fidelity force feedback
is one thing currently out of reach alongside comfortable omnidirectional
treadmills and affordable full-body tracking with decent precision. Despair
not, though, for there are a few design tricks we can employ to make interac-
tions feel weighty, even with only basic VR controllers (or a player’s hands) at
our disposal.

Our first course of action is to seek out the one bit of force feedback that
we do have: haptics. Applying a bit of vibration at the right time andwith the
right intensity curve can give players an effective impression of resistance.
This is commonly used to simulate recoil in VR shooters like Onward and
Robo Recall. Though the intensity of controller vibration doesn’t measure up
to a real weapon, it’s certainly better than nothing. Haptics can also shine in
other contexts; in Beat Saber, for instance, whenever the player’s sword slices
through a block, a vibration curve matching the speed of the virtual blade is
applied, giving a pretty convincing impression of resistance lending weight
to player’s rhythmic strokes.

Other tricks rely purely on our design prowess to give the impression of
force feedback without any real ability to do so. A commonly employed strat-
egy tomake objects seemheavy is to limit the speed at which a player’s virtual
hands can move while holding a heavy object. This might seem like an ob-
jectively bad idea; having your virtual hands lagging behind your real hands
is surely frustrating. Furthermore, as a mismatch between proprioception
(bodily awareness) and vision, you might have concerns about wooziness.
Unfortunately, there is little evidence that we could find as of this writing to
thoroughly validate or debunk virtual hand latency as a contributor to VR
sickness. However, since it doesn’t involve latency in head movement (and
thus viewpoint) or imply full-body acceleration, you’re probably safe from
sensory mismatch-induced sickness in this case. This leaves the question of
frustration: how can what amounts to deliberate input lag possibly be a good
idea?

If we step back to consider how weight is applied to interactions in the
real world and other games, it starts to become clear why this might be a
workable solution. If your character is dragging away a body in Dishonored,
you move more slowly; it would be immersion-breaking if you could haul
away a human at full sprint. If Link is using a heavier weapon in Breath of

204

Rejecting your Reality

the Wild, it takes him longer to swing. Slowing things down on purpose is
sometimes exactly what you need to do to meet player expectations. In the
real world, if you’re lifting something heavy, it’s going to take you longer to
raise your arms than if you weren’t holding anything at all. And since we’re
unable to physically force players to move more slowly, mimicking this with
their virtual hands is one of the only options we’ve got.

In practice, this technique works pretty well. Boneworks employs this lib-
erally to give its physics-based world more weight with props and weapons.
Unburdened, the player’s hands in VR map exactly to their real-world posi-
tion. When trying to move something heavy, they’ll be artificially limited,
lagging behind if players try and move quickly in reality. The effect of this as
you play can work surprisingly well to change player behaviour. If something
looks heavy, based on both your real-world expectations and the knowledge
that the game will limit you, you’ll instinctively start to move more slowly
when picking it up. Instead of flinging your hands around and sighing in
frustration at lag, you’ll feel a sense of weight, even though the controllers
in your hand haven’t changed. This tactic carries through in swinging melee
weapons, giving them a satisfying physics-y punch when biting into ene-
mies. The ability to pick up a heavy crowbar, perceive its weight through
virtual fakery, and crack someone over the head with it is terrifically visceral.

One last thing we can do is rely on other forms of feedback to help things
feel more tangible. In Keep Talking and Nobody Explodes, the bombs players
are made to defuse feel like wonderfully complicated fidget toys. Irrespective
of other tricks, visual and sound design helps bring players’ interactions with
the bomb to life. A tangle of gnarled wires lets you cut them with satisfying
little snips, while every big red button delivers through on the promise of a
tactile click. In combination with other tricks, regular old feedback does a lot
for us in this regard; the weightiness of that crowbar in Boneworks is further
emphasized through the satisfying thunk you hear when flinging it around.

Novelty. Your first time in VR is especially entertaining for the same rea-
son that first learning the word “defenestrate” is amusing—it’s novel, and
rather odd in comparison to your usual experience in game-playing or word-
hearing.6 Preserving that novelty can be a challenge, though it ultimately
comes down to applying the same sort of innovative thinking you’d strive
for in any game’s design to the unique features offered by VR.

To understand this strategy, it’s best to consider the implications of the op-
posite. Taking a page out of Chapter 5, we’ll take a look at an unimaginative
port, the design space where innovation goes to die. We’ve already alluded
to some disappointment with the VR version of Skyrim, and a complete lack

6 If this happens to be your first literary encounter with defenestration, it is the act of throwing
someone out of a window.

205

The Game Designer’s Playbook

of novelty is one reason the game can’t hold itself up as a system seller à la
Beat Saber or Alyx. Take switching or putting away weapons, a simple inter-
action fundamental to the combat loop. In Boneworks, you can put away a
melee weapon by letting it go over your hip (or shoulder), and you can re-
trieve it by grabbing on your person where it was stashed. Alyx uses a radial
menu activated with touchpad and a flick of the wrist to switch between the
available weapons and tools, while grenades and ammunition are stashed on
the player’s body. Skyrim VR makes you pause the game and scroll through a
menu to switch weapons, while sheathing is mapped to a button press. This
is a direct mapping of what you’d expect from a console game (albeit even
worse from the lack of quick-select), failing to have any semblance of the
novelty that can make VR interactions particularly fun and engaging.

Figure 7.3 In Half-Life: Alyx, players can interact with pretty much anything that
isn’t bolted down. But instead of just walking up to things and grabbing them, Alyx’s
“grabbity gloves,” known to foremost experts as Russells, can be used to fling objects
around. With the smallest bit of practice, players can wing objects across the room
into their waiting grasp with ease.

Credit: Half-Life: Alyx was developed and published by Valve.

Those system-selling games we mentioned take a more innovative and
platform-considerate design approach to heart. An excellent example of this
thinking is the so-called “gravity gloves” in Alyx. Like any shooter, play-
ing Alyx requires you to be on the lookout for resources strewn about the
game’s world, like ammunition, health boosters, and explosives. Except in-
stead of relying on boring button presses or even walking over and picking
things up, Valve has a far more engaging solution for most of the looting
you’ll be doing. In Alyx, you can point at something, depress the trigger, and
flick your wrist backwards to beckon it in a graceful arc into your waiting
hands. Naturally, this only works for objects light enough to pick up, and
you actually have to catch the thing when it sails into your arms.

206

Rejecting your Reality

The gravity glove interaction is expertly designed for a few reasons. First,
it’s easy to learn, taking advantage of the pre-existing standard of laser-like
point-to-aim that most VR games use for in-game menus. Second, it helps
prevent fatigue andmotion sickness by reducing the need for players to phys-
ically move around in the game’s world. You can accomplish a lot (if you so
choose) by standing in place and flicking things around with your wrist. It’s
also largely optional, so any players who find the repetitive wrist motion un-
comfortable are free to move about and loot as normal. The best thing about
this interaction, though, is its novelty. At the time of release, it wasn’t quite
like anything else in VR, and gave the player a fun way to grab things that
called back thematically to the gravity gun of earlier Half-Life games. After a
long play-session, you might find yourself pointing at things in reality and
flicking your wrist, like some telekinetic embodiment of the Tetris effect.

Novelty doesn’t have to depend entirely on VR-exclusive features like
hand tracking, though. Ghost-hunting fun in Phasmophobia is compounded
by inventive interactions like using voice input to have players call out
questions to troubled spirits. This doesn’t require VR to work, though
it does leverage the fact that the majority of VR headsets have inbuilt
microphones—meaning players won’t be rifling around for a mic like they
might in a console or PC game. Like any other underused form of interac-
tion, this provides a bit of a pleasant surprise which lends the experience
some flair.

7.3.1 Amping up immersion

Having addressed considerations for one side of the game interaction
equation, our next step is to examine the other, looking at how a VR game
can communicate effectively with players. Here, we’re not just concerned
with functionality; what we’ve already discussed in regard to the sensory rep-
resentation of information still applies. More specific to VR is how a game
communicates its intended atmosphere, and contributes to players’ sense of
presence and immersion. With the right approach, VR experiences are ex-
ceptional at making you feel acutely focused on both the present moment
and of your place in a game’s world.

Combined with the right level of challenge, this sublime sense of presence
is a recipe for the enigmatic state of flow, a term coined by renowned psychol-
ogist and bearer of objectively awesome surname Mihaly Csikszentmihalyi.
Flow describes the phenomenon of total absorption in the task at hand. In
games, this is achieved when the challenge offered by a game matches per-
fectly with a player’s skill level, and the player is able to focus completely
on play. The ideal flow state is sometimes described as trancelike or “zen.”

207

The Game Designer’s Playbook

Players have a sort of intense serenity as they nimbly work through obsta-
cles that demand enough attention to inspire total focus without resulting
in anxiety. In the reduced-distraction, increased-presence environment of
virtual reality, achieving flow is a truly magical thing to experience.

Figure 7.4 The flow state occurs when the challenge offered by a game is in bal-
ance with the player’s level of skill. If the player’s skill is high and challenge is low,
a game can become boring. If challenge outpaces a player’s skill, a game can become
frustrating.

Our conversation then pivots to how we can boost immersion, making
our worlds seem as real as possible, and presence, ensuring players feel their
place in those worlds. While a great deal of artistry is involved with such an
undertaking, there are a few general tactics we can identify in service to this
goal.

Consider limited-scale design. Having a larger-than-life world as you
might find in a title like Jet Island, or the incomprehensibly massive land-
scapes of No Man’s Sky (playable in VR), can be breathtaking. Due to their
size, these worlds necessitate a locomotion system on top of players’ phys-
ical movement. Using an analog stick to walk around or teleporting from
place to place is a perfectly fine experience, but being able to move around

208

Rejecting your Reality

in the real world is even better. To map players’ physical movement to their
virtual movement 1:1, we need to design for a virtual space no larger than
the physical space we can reasonably expect, usually a couple of metres on
edge.

Figure 7.5 Three different paradigms for experiencing VR with varying levels of
freedom to move in the real world.

This might sound incredibly restrictive at first, but “room-scale” (playable
with a small area of free space) and “standing” (playable with only head and
slight armmovements) VR experiences can some of themost memorable and
engaging. As is often the case, constraints can serve to enhance rather than
diminish creativity.

Superhot is a game adapted remarkably well to VR, playable in a standing
or room-scale context. Its gimmick of time only moving forward when the
player moves physically feels especially powerful in VR, but level design is
what really makes it work. Locales are varied, with each short segment giv-
ing the player an interesting vantage point to fight from before teleporting
them “forward” in the setting of a loosely structured story. Plenty of cover
and interactable objects are given within arms’ reach, and enemies are al-
ways moving toward you. This brings the action to you, providing ample
opportunities to engage and defendwithout needing amassive space to roam
around.

Games designed from the ground up with room-scale or stationary play in
mind often have a unique feel. With traditional locomotion removed, a core
component of the “typical” play experience is lost, bringing the focus onto
things usually overshadowed by the promise of open worlds and fast action.
I Expect You to Die is a game for seated VR, with environments about the size

209

The Game Designer’s Playbook

of a small room that let players manipulate objects out of reach in a similar
manner to the gravity gloves from Half-Life: Alyx. Part escape room and part
Bond movie, I Expect You To Die is a game that zeroes in on puzzle-solving
and quick thinking, giving all the mental thrill of espionage with none of
the running away. Inventive environments, like the interior of a car trapped
aboard a plane or a submarine about to implode, create a tense and intricate
puzzle without making players feel limited by the space available.

Even if constant motion is needed to support play, a game (or part of
it) can be kept at a smaller scale to keep players feeling anchored. Beat Saber
keeps its onslaught of slashable blocks constantlymoving towards the player,
while a stationary stage reassures that they are standing still, helping to re-
duce feelings of motion sickness. Even in a large-scale game like Subnautica,
piloting a vehicle can be used as a surrogate to prevent a sense that the phys-
ical space around you doesn’t match with the virtual one you’re inhabiting.
Players can explore the ocean depths while their small room full of air is
canonically grounded in the context of piloting a submarine like the room-
sized Seamoth in-game. Naturally, if you’re going to take this approach, VR
sickness will become a pressing concern.

Figure 7.6 To preserve themotion essential inmany rhythm games, Beat Saber has ele-
ments of the environment move toward the player, rather than the other way around.
Letting players stand still while props move toward them helps to avoid motion sick-
ness. Larger elements of the backdrop stay stationary, or move as lights around a
stage—never giving the player the impression that they are moving through space.

Credit: Beat Saber was developed and published by Beat Games.

210

Rejecting your Reality

Sense of scale. The ability to look around and perceive depth in VRmeans
that players can more easily appreciate drastic changes in scale. Small ob-
jects can be inspected more closely, with subtle details easier to appreciate.
They can also exude adorability, like the player-guided mouse in Moss or
the toy dog in Valve’s VR demo playground The Lab. Conversely, massive
landmarks can leave players awestruck, suspending their sense of the lim-
ited space around them. In Boneworks, players explore a museum with huge,
open exhibits where every glimpse over a railing makes you want to stop and
admire the space. Over the course of Half-Life: Alyx, players move toward a
massive “superweapon” contained in a neighbourhood-sized structure sus-
pended over a city. In outdoor segments, the weapon looms ever-closer
overhead, instilling a sense of dread and removing any awareness of a ceiling
or restrictive space.

Figure 7.7 In Moss, the player is placed into spaces that emphasize a sense of scale,
making even a seated VR experience feel like it’s taking place in a grand world. A
grand cathedral (left) and woodland grove (right) use clever scaling and arrangement
of props and visual effects to emphasize their perceived size.

Credit: Moss was developed and published by Polyarc Games.

These moments make worlds feel more real, and larger than life, but they
aren’t limited to worlds that let you roam around. With a bit of care, room-
scale and standing experiences can also create this effect, helping players to
shed the restrictions of their physical environment. In Moss, for example,
segments in between gameplay are set in a church complete with vaulted
ceilings and golden dust drifting through the air. Although players find
themselves seated in front of a book with nowhere to go, the scale of their
surroundings makes the game feel more open. During play, you focus on a
level laid out in miniature for your mouse companion to navigate. Looking

211

The Game Designer’s Playbook

to the distance, you can observe a sprawling forest which opens the virtual
space further. This extreme contrast in scales serves both as a point of inter-
est and as a way to make players feel freer even when confined to a seated
experience.

Bodily presence. Seeing your own hands (and potentially arms) in VR
can be a tricky task involving lots of smoothing and inverse kinematics, but
it’s generally worth the technical effort. Some games render other objects
in place of your hands to show you their position in a game’s world, as in
Moss (orbs of light), Tabletop Simulator (models of your handheld controllers),
or Beat Saber (unsurprisingly, lightsabers). Other games, like Pavlov and Half-
Life: Alyx show an actual pair of hands, while still others including Boneworks
and Blade + Sorcery attempt to render hands and arms.

The decision here is tricky; hands incur a larger expense to support
animation of things like grabbing, but help increase the sense of pres-
ence in a game’s world. In general, hands are preferable to include, since
their orientation can be deduced almost exactly based on controller po-
sition and standard grip. For controllers with individual finger tracking,
support for this feature will help to further ground players in the world.
Whether to include arms is a different quandary entirely. Without elbow
trackers, arm position is a best guess of sorts, which while mostly accu-
rate, may occasionally break player immersion by misjudging orientation.
Other parts of the player’s body, like their feet, are generally unadvisable to
render without full-body tracking, since seeing your VR feet move while
you stand still serves little purpose other than to break you out of your
character.

One area where full-body estimation is often necessary is multiplayer
experiences, whether full-body tracking data is available or not. In some
contexts, this estimation might be mostly for show. In VR Chat, a casual
social app, seeing other players’ avatars walk around and animate creates a
more dynamic atmosphere, and the opportunity for self-expression via cus-
tom animations. A similar impetus drives the VR avatars used for streaming
or recording gameplay in titles like Beat Saber or Pistol Whip, where see-
ing a players’ movements in context instead of mirroring their first-person
perspective can make for a more engaging show.

In other contexts, the positioning of a player’s avatar can be far more
important. In a multiplayer shooter like Pavlov or Onward, incorrectly es-
timating a player’s pose or arm position can be the difference between
getting shot and staying unseen. In VR, taking cover is a matter of phys-
ically crouching and dodging, an interaction which is intuitive, engaging,
and feels natural. In such an experience, investing in good pose estimation
is critical, lest players complain of ill-formed character models that let a leg
or arm jut out of cover and put them at an undeserved disadvantage.

212

Rejecting your Reality

Adapting feedback to VR. On other platforms, the typical always-on
method of communication is the heads-up display, pasted in “screen space”
as a constant overlay of helpful information. In VR, the usual approach of
pinning bits of information to the edges of the screen is undesirable. While
it’s perfectly fine for players to glance at the corner of a screen at arm’s length,
when that screen is barely an inch in front of your face, focusing on an
extreme corner can be uncomfortable. Furthermore, at least as of this writ-
ing, visual quality in the periphery of headset displays is often degraded in
comparison with a player’s central vision.

The most common way to adapt any “screen space” interface to VR is
to display it in “room space” or “player space,” fixed in position relative to
where a player is standing or the centre of their physical space. Thus, play-
ers can move their head to look at or away from the interface, rather than
relying on only moving their eyes, which can cause frequent and uncomfort-
able straining if elements are positioned improperly. Elements should still
be drawn on top of gameplay to create the effect of an overlay, but with-
out the uncomfortable sensation of having a barrage of text and icons taped
to the extreme edges of player vision. Alternatively, elements can be fixed
in a comfortable position without straying too far from a player’s central
view. Examples include the pause menu in Beat Saber, which presents an aim-
and-fire menu just in front of the player, or the HUD in Pistol Whip, which
lays out health and level progress just below their resting eye level. Pistol
Whip takes the additional step of displaying an ammo counter on the back
of the player’s gun, allowing them to make the critical decision of when to
reload without having to even glance away from the action.

Figure 7.8 In Pistol Whip, HUD elements are overlain on the player’s view, allowing
them to keep track of things like their armour and ammunition (shown on the back
of the player’s gun).

Credit: Pistol Whip was developed and published by Cloudhead Games.

213

The Game Designer’s Playbook

This is also an area where our old friend diegesis returns to shine, as em-
bedding that always-on information in-world is both a comfortable andmore
immersive way to communicate in VR. Minimizing the presence of overlays
and menus helps an experience to feel more realistic, in addition to reducing
visual clutter and helping to avert eye strain. Alyx, like Pistol Whip, needs to
keep track of health and ammunition, but accomplishes the task by way of
in-game LCD panels on players’ gloves and weapons. This ensures that in-
formation is comfortable to access and easy to see—residing right in front of
a player’s face, in a manner of speaking. Its presence as an in-world element
also makes the game feel more immersive; you’re not babysitting a character
with information they don’t have, and tilting your gun to see the number
of bullets left in the clip is just a fun interaction. This type of thinking can
also benefit utilities, as the performance tool FPSVR opts for a widget that
pops up when players turn the inside of their wrist upwards, like a sort of
utilitarian holographic sci-fi watch display.

Wonder, horror and everything else. This is where the artistry part comes
in. All the opportunities that VR offers—total sensory immersion, presence,
sense of scale, a supreme feeling of freedom—can greatly amplify our emo-
tional response to games. That is, assuming we achieve competent control
design, comfortable feedback, and a locomotion system that doesn’t send
players running for anti-emetics.

VR excels especially in supporting horror games that play to our fear of
the unknown. If you have a fear of the dark, your character’s flashlight going
out is always a tense moment. But when that failure blacks out your entire
field of vision instead of just your computer screen, the terror is magnified.
Likewise, a sudden noise behind you is even scarier when you can literally
glance over your shoulder to peer at its source. Horror games like Dreadhalls
and Phasmophobia are incredibly effective at instilling fear as a result.

Another uneasy sensation magnified in VR is the fear of being hunted.
In the mid-game of Half-Life: Alyx, one segment has players trapped with a
blind mutant bent on destroying anything that makes noise. Hearing the
beast lumber around keeps tensions high, while any misstep or sound in the
player’s immediate vicinity instantly makes your heart rate skyrocket. This
is paired with a fantastic bit of intuitive and novel interaction design, where
players need to physically cover their mouths to keep their character from
coughing in response to airborne spores.

Outside of the horror niche, perhaps the most notable emotional impact
of VR is its potential to be awe-inspiring. Subnautica VR gives players a sense
of thalassophobia, and of being hunted by its many leviathan sea monsters,
but its predominant tone is one of wonder. Wonder at the scale of the ocean,
at the beauty of its mostly peaceful denizens, and at what the player has yet

214

Rejecting your Reality

to discover. Just as the unknown can make us afraid, it can also give us an
unending and desperate curiosity which is incredibly rewarding to satisfy.

Figure 7.9 It’s terrifying enough having this come at you on a regular screen.
Credit: Subnautica was developed and published by Unknown Worlds.

VR gives us the chance to explore that which is beyond our physical reach,
in a way that is more engaging than any medium other than reality itself.
Learning about the solar system in a documentary or museum is fascinating,
but standing in the middle of outer space, even in a relatively simple demo
like The Lab, is nothing short of bewitching. A game like Elite Dangerous,
which sees you piloting a ship through an incomprehensibly vast galaxy,
is an even more remarkable experience. Virtual reality isn’t just a tool to
make our experiences of play more engaging; it’s one that lets us create entire
worlds within our own.

Let us not get swept away completely by our optimism, though. VR still
has its problems, and most systems are priced out of non-enthusiast budgets.
Technology has been in the process of catching up since VR first tried to steal
the spotlight ten years ago, and in many ways it still is. VR development is
exciting, and interesting, but fails to capture anything close to the market
share of PC, console, and mobile games. It isn’t a given that our current era
is the one in which VR will find its footing, or whether it will fall in and out
of favour as a niche until affordable and portable solutions break through.

In spite of its drawbacks, the promise of virtual reality is still ever so allur-
ing. The platform may be imperfect and incomplete for the time being, but
the challenges it presents should serve to embolden our creativity as game
designers. Great VR experiences already exist, pushing the boundaries of in-
teraction to the delight of spellbound players. If that spark of interest can
stay alive, so long as market forces don’t choose to abandon the platform be-
fore it can finally find its footing, more of these experiences will come—it’s
simply a matter of time.

215

The Game Designer’s Playbook

Expert Profile: Mark Laframboise & Steven Smith—Partners in Play

Founders of Lightning Rod Games

If you’ve ever looked for a job in game development, you’ve probably noticed that
most every posting, regardless of role, demands something along the lines of “strong
teamwork, leadership, and communication skills.” And while these qualities are es-
sential in any capacity, if you’re looking to start your own studio, you’ve got to have
them—particularly teamwork—in spades. Friendships can keep a team going, or some-
times tear it apart. In the case of Mark Laframboise and Steven Smith, it was friendship
that created their studio in the first place.

The duo met in university, both studying computer science as a path into game
development. For Mark, the early years of the program had been enjoyable, while a
disinterest in later years led him to switch majors and finish his degree in psychology.
Steven’s experience was starkly opposed, having struggled early on with little pro-
gramming experience. By the end of his time at university, he’d found a new passion,
and thrived in his final year.

During their studies, the pair had discussed the idea of starting a studio together, but
graduation shifted their plans. Steven went to art school for a brief period to explore a
different side of development and earn some extra credentials, while Mark considered
a graduate degree in interactive technology. Disenchanted with the idea of studying
games instead of building his own, Mark quit academics in favour of working for a
few different studios as a designer and associate producer, before landing at Disney
Interactive in California. Steven, meanwhile, had forays in app development, game
engine development, bartending, and contract work before ending up at Electronic
Arts (EA) working on FIFA and later on motion capture technology. After a time, Steven
andMark had settled into their industry roles. But neither had forgotten their dream of
starting an independent studio, and both were growing restless. Deciding that it was
now or never, they gave notice to their respective employers, and moved back home
to start Lightning Rod Games.

The road to this point had been challenging, to say the least. Steven had chosen
Canadian studio Silicon Knights over EA for his co-op placement in university. On top
of witnessing some early turmoil that would later lead to the studio’s legal battle with
industry giant Epic Games—a battle it wouldn’t walk away from—it was a decision that
hardly ingratiated him to EA when he applied a few years later. Meanwhile, Mark’s
move to California had made his long-term relationship a long-distance relationship,
putting a strain on both him and his partner. This experience would inspire the studio’s
first commercial release A Fold Apart, a narrative puzzle game where players fold a
world made of paper to literally bring two characters closer together. With this project,
the studio solidified their identity as creative, family-friendly, and full of heart.

When we sat downwith Mark and Steven, it became clear why the twowork so well
together. Mark presents as affable and outgoing, which Steven complements with a
more reserved, reflective tone. Mark is a writer, preferring to explain and understand
in words, while Steven is a visual thinker. When one has trouble explaining something
to the team, the other is ready to translate, drawing from their years of experience
working together.

Their favourite aspects of development, much like their personalities, seem to be
in symbiotic opposition with one another. Steven is fascinated with how tools shape
the game development process: “The tools that you have at your disposal help you

216

Rejecting your Reality

(Continued)

structure thoughts, and how you’re going to approach a program.” This fascination
translates into a love for building tools, perhaps matched only by Mark’s enjoyment of
exploring how those tools can shine in the studio’s games.While Steven is fascinated by
the creation of underlying systems, Mark prefers prototyping, describing his favourite
aspect of the development process as “having that high-level design idea and being
able to write it in code really quickly. And not having to worry about coming up with
[systems or tools].”

For all their complementary qualities, Steven and Mark always seem to come to-
gether when it matters, and both share a view of interaction design centred around
shaping players’ actions. Mark describes interaction as a loop of input and feedback,
with the role of a designer being to tweak that loop and serve as an interpreter of player
input. “Taking literal inputs is probably almost always bad [. . .] I think the best feel-
ing games are the ones where you take what the player is literally telling you and then
give themwhat they’re actually expecting. And that gap is the core of good interaction
design.” He offers up the example of 2018’s God of War, which includes a generous
buffer in terms of combat accuracy to avoid punishing players whose precise inputs
wouldn’t yield a satisfying result.

Steven shares a similar view, adding that he thinks of it as setting up a space for
players to act, have experiences, and express themselves. He sees the challenge of
design as shaping the way players understand what they can, or should, do, “ideally
[. . .] without thinking too hard about it.”

In talking about the evolution of game design over the past several years, Mark in-
sists that the pillars ofwhatmake a game feel good, like strong feedback and responsive
input, haven’t changed. But the field of design as a whole has gained more poten-
tial, and thus more complexity, from the introduction of new technologies. Steven,
meanwhile, points out that as more games live on and sustain player communities for
many years, we can observe the evolution of a game’s design within its own lifetime,
as it pivots from prioritizing learnability for new players, to quality-of-life for existing
fans. Mark worries that in some cases, positive design changes are artificially held back
by market forces. He argues that the dominance of free-to-play models, for example,
has stifled creativity in the mobile space, rarely allowing titles with an upfront cost
and no microtransactions to succeed. He sees haptics as the next interesting area of
technological development in games, pointing to devices like the PlayStation 5 and
Nintendo Switch as experimenting with more sophisticated touch feedback in their
controllers. Irrespective of what comes next, though, both are eager to explore the
frontier together with their growing team.

When we asked them about any growing pains their studio has experienced, a mo-
ment of silence preceded Mark’s answer, which quickly trailed off into a sheepish grin:
“Money . . .?” With a chuckle, the two underlined the challenges of funding for any
indie studio in a crowded marketplace, particularly early on when direct sales aren’t
an option. Now that they’ve released a title and are thinking towards their next, new
hires are also a challenge. With less than half a dozen team members, just one person
can completely change both work and social dynamics for the entire studio. But in
spite of these challenges, the pair says that running their own indie studio, which also
happens to be fully remote, is a great experience.

As their team continues to grow, Steven and Mark say that administration and lead-
ership are becoming more important. This is another area where their friendship has

217

The Game Designer’s Playbook

(Continued)

helped them to succeed. “You need candor,” Steven emphasizes, recounting instances
where he and Mark have navigated challenging situations with a level of honesty that
might be considered brutal outside of a close friendship. With the studio getting big-
ger, the two have transitioned from developers to leaders, now viewing the success
of their employees as an instrumental part of their own work. Through their comple-
mentary working styles, honesty, and friendship, Mark and Steven have developed a
common leadership style: one where their team succeeds, and so do they.

Further reading

The VR Book: Human-Centred Design for Virtual Reality by Jason Jerald (ACM, Morgan
and Claypool). ISBN: 978-1970001129.
A fantastic overview of designing VR experiences, including an in-depth look at
player perception in Part II and VR design patterns in Part IV.

Virtual Reality by Steven M. LaValle (In Press, Cambridge University Press, available
freely online as of writing).
If you’re curious about the technology behind virtual reality, this book takes a
wonderfully deep dive into that technology.

Designing to Minimize Simulation Sickness in VR Games, talk by Ben Lewis-Evans (GDC
Europe 2015).
A succinct overview of design strategies for minimizing ill effects in players. If you’re
looking to develop a VR game and would prefer not to make half of your players
clutch at their bellies, this comes highly recommended.

Exercises

Claustroludia

Think of a VR game concept where the player never has to move their body in the
game’s world (only head and hands). In other words, room-scale VR, but with no
teleporting between different spaces. The entire game should take place in a single
room/with the player in a single position. Here are some prompts to get you thinking:

• What about a very small escape room?

• What about a game that explores small physical oddities, like wooden puzzle
boxes?

• What about a game that plays with a job, like working at a desk or restaurant
counter?

• What if the player were a giant presiding over a miniature world?

218

Rejecting your Reality

Think about how players would interact with your game, paying special attention to
how head and arm movements would keep players engaged in a limited space.

Generation leap

Pick your favorite franchise and imagine a new installment in VR. How would the
game’s mechanics need to change to support VR controls and movement? Do you
think that moving to VR would be a good or bad thing for the franchise, and why?

Motion mapping

Imagine you’re designing a fighting game for virtual reality, with the headset/control
combination of your choosing. You want to integrate the types of intricate combos
you might see in other games like Street Fighter. How would you adapt complicated
control inputs, like mixing partial analog stick circles, directions, and button presses,
in VR? What perspective would the player have? Keep comfort in mind, and try to use
gestural controls as much as you can. Can you think of a system that would consider
combinations of gestures, or specific timing of those gestures, to capture the spirit of
arcade-style fighting games in VR?

219

8

The Audience is Listening

On March 1, 2014, the unthinkable happened. A crowd of around one hun-
dred thousand people controlling a single game of Pokémon Red defeated the
game’s final gauntlet of battles, and crowned their character champion.

Twitch Plays Pokémon, or (TPP), started out as a social and technical ex-
periment. The idea of TPP was simple; a Pokémon game would be broadcast
online, except instead of being controlled by a streamer, it would receive all
input via chat commands from the audience. On February 12, it launched to
humble viewership via the online streaming service Twitch. In the days that
followed, that crowd grew to thousands, and then tens of thousands.

The stream’s opening hours were relatively tame. Since any valid chat in-
put was fed directly to the game as a button press, factors like varying viewer
latency meant that chance had a substantial influence, even with a unified
goal to progress. As the viewer count grew, so too did the chaos governing
the stream. With more inputs coming in than the game could process, many
were effectively lost. In any given frame, the input which “stuck” was effec-
tively random. Besides latency, another element had taken over, causing the
pandemonium to spiral out of control: the human factor.

Unsurprisingly, not all ten thousand viewers maintained that unified vi-
sion of progress. Plenty of participants valued the chaos of the stream over
anything else, doing things like spamming the “start” input to bring up a
menu and interrupt gameplay, or suggesting inputs in the exact opposite
direction the player should be walking. To mitigate this, a new feature was
added allowing viewers to continuously vote on which input system they
wanted to use. The new “democracy” systemwould poll chat commands over
a short period and input the most-requested command, while the “anarchy”
system would represent the existing anything-goes model.

In the ensuing days, the stream snapped back and forth between anarchy
and democracy. The change had caused a (mostly) playful rift among partic-
ipants, sparking debate over which alternative represented the true spirit of

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0008

The Audience is Listening

TPP. This quickly became embedded in what was already an intricate mythos
being woven by the community1.

For a game which was already 18 years old at the time, and a play
mechanism only allowing nine commands—one for each valid button plus
“democracy” and “anarchy”—the lore of TPP was pathologically intricate.
Fans chronicled the events of the stream, spinning narrative interpreta-
tions of key events (like “Bloody Sunday,” where a dozen Pokémon were
accidentally released) and creating an in-universe religion.

The so-called Church of Helix established a pantheon with a nautilus
Pokémon at its helm, dubbed Lord Helix by the community. Alongside Lord
Helix were “Bird Jesus” (a bird) and “Battery Jesus” (also a bird), together
representing anarchy as the purest embodiment of TPP. The forces of Helix
were opposed by the “False Prophet,” a Pokémon that players had acciden-
tally evolved with a fire stone instead of following the unofficial plan to use
a water stone. Canonically, this event was interpreted as the progenitor to a
number of misfortunes, including Bloody Sunday.

TPP’s new religion drove the lore machine going forward. Fans generated
elaborate written accounts of gameplay events contextualized in the Helix
belief system. Ornate artworks were created. Old School Runescape even in-
cluded a reference to the stream as part of a 2017 update, adding the flavour
text “Praise Helix!” to a fossil creature.

As the Twitch hivemind persisted onward, TPP soon found itself nearing
the end of the game. Before victory could be declared, participants had to
clear the Elite Four, a final set of Pokémon battles against the game’s most
powerful AI opponents. With a team of six Pokémon, including Lord Helix
himself, the stream set off to meet their final challenge. After twenty-one
failures, participants finally managed to secure a win in the last battle, with
Battery Jesus dealing the final blow. Twitch chat had won—fittingly, their
victory had come in anarchy mode.

Twitch Plays Pokémonwas the epitome of lightning in a bottle, sure, but it
also represented a growing interest in the streamingmedium and highlighted
its interactive potential. TPP was one of several factors, alongside esports and
the rise of popular streamers, that helped cement Twitch’s status as the de
facto site for game streaming.

The streaming behemoth that Twitch would become can trace its lineage
back to Justin.tv, a website founded in 2007. The site hosted an always-on
livestream broadcasting the everyday life of one of its cofounders, attracting
a host of curious viewers, pranksters, and media attention. By 2008, the site
had expanded, giving users the ability to host their own streams in a number

1 For the curious, a fanmade wiki can be used to peruse this lore, accessible as of this writing
at https://helixpedia.fandom.com/wiki/TPPedia_Wiki

221

https://helixpedia.fandom.com/wiki/TPPedia_Wiki

The Game Designer’s Playbook

of categories. Three years later, the site’s gaming category was spun off into
its own website: Twitch.tv.

Figure 8.1 It started out with a keypress, how did it end up like this?

After a period ofmeteoric growth over the last decade, Twitch sits at almost
two million concurrent viewers on average as of this writing. Other services
like YouTube and Facebook Gaming have since made a push to compete with
Twitch through their own live content. Naturally, short-lived competitors
have sprung up as well, using a wall of corporatemoney and little else to push
themselves straight into obscurity, acquisition, or closure, like Microsoft’s
Mixer platform. At least for now, Twitch maintains its status as the cultural
locus of streamed gaming content.

Within the ecosystem of services like Twitch, there is a constant competi-
tion to secure viewers in the onslaught of eyes searching for game content.
Content creators strive to be the best at playing, providing commentary, en-
gaging with viewers, or creating humour and interesting situations. But this
contest isn’t just for the people who are streaming games; it’s for the devel-
opers of those games. In the streaming economy, the success of a game is
dependent on the experience it creates for both players and an audience of
potentially millions.

8.1 The ratings war

The race to attract all of those eyeballs starts with an understanding of why
people watch gaming streams in the first place. As a designer, you might

222

The Audience is Listening

already have a solid understanding of several reasons contributing to the
appeal of playing games. Among others, you could list escapism, curiosity,
achievement-hunting, social interaction, dominating other players, and the
vague, ever-elusive “just for fun.”

Some of these factors still certainly apply in the motivation to watch
gaming content. For escapism, watching another player’s journey through a
fantasy world can help to psychologically transport you away from the hum-
drum tribulations of reality. But this sense of fantasy would arguably bemuch
stronger if you experienced that fantasy firsthand as a player. And, surely the
vicarious accomplishment of watching someone else earn an achievement
pales in comparison to the pride you’d feel in earning that achievement your-
self. In a way, the question becomes, why would anyone watch games when
they could choose to play games instead?

Answering this question requires that we pin down viewer motivations.
To do so, we have a few options. We can seek out research that examines
audience statistics, surveys, and interviews specific to game streaming. We
can learn from our existing knowledge of why people engage with similar
content like sports, or “Let’s Play” videos, the prerecorded ancestor of game
streaming. Of course, we can also draw on our own experiences, breaking
down the factors that might compel us to make stream spectatorship our
activity of choice in the moment.

One of our most useful tools here is to examine what type of content is
most popular within the space, identifying commonalities that can help us
verify and expand on the reasons that people watch. Services like Twitch cate-
gorize streams based on content, letting us understandwhich games draw the
most viewers. Over the past several years, you can pretty reliably summarize
the top ten games on Twitch as follows:

• A few multiplayer shooters

• A couple of MOBAs (multiplayer online battle arenas)

• An MMO (massively multiplayer online game)

• A sandbox game or two

• Flash-in-the-pan viewership of a highly anticipated new release

Recently, the battle royale, a subgenre featuring the free-for-all competition
of a large group of players, has worked its way onto this list as well. Battle
royale modes have been worked into all manner of games, though the typical
entry will see something like a hundred players competing to be the last one
standing in some flavour of a multiplayer shooter with survival elements.

As of this writing, the regulars on Twitch’s top games are League of Legends
(a MOBA), World of Warcraft (an MMO), Fortnite (a battle royale shooter),
Counter Strike: Global Offensive (a multiplayer shooter), DotA 2 (another

223

The Game Designer’s Playbook

MOBA), and Minecraft (a sandbox game). Maybe the most remarkable thing
about these games is their longevity. Aside from Fortnite (2017), these games
are practically senior citizens by software standards. DotA 2 (2013), CS:GO
(2012), and Minecraft (2011) are a decade old at this point. League of Legends
(2009) recently celebrated a tenth anniversary, and World of Warcraft (2004)
would be old enough to drive if it were a person, an objectively terrifying
notion.2

The vibrant communities who support these games, driving their devel-
opers to provide regular updates years after release, provide the viewership to
sustain their continued domination on platforms like Twitch. In combina-
tion with our existing knowledge of why people play games and the appeal
of things like watching sports, we can look to these games and others like
them in understanding a few different motivations key to the appeal of game
spectatorship.

Diversion and escapism. Just like playing games, watching gameplay can
provide a welcome escape from everyday obligations. A high-stakes compet-
itive match presents a tense conflict, while a casual stream of a single-player
game can allow viewers to experience a fascinating world and story along-
side the stream’s host. Simply put, watching someone else play a game can
be fun, interesting, and relaxing.

Watching a game instead of playing yourself can have several advantages
in this regard; in several ways, streamed content is easier to consume. You
can’t play games while working at a computer or folding laundry (not effec-
tively, at least), but watching a stream can provide a welcome background to
your work. Streams in general demand less attention than a movie or tele-
vision show, meaning that they can be an effective diversion, like music,
without distracting too much from the task at hand.

To pile on the convenience aspect, the vast majority of streaming game
content is free to access, while many of the games streamed are not free to
play yourself. Streamed content has a low barrier to entry in many ways. In
addition to lacking financial cost, it also eliminates the skill barrier associ-
ated with enjoying a game’s content. If you like the idea of something like
intense competition, speedrunning, or a certain extremely difficult game,
streaming can let you engage with this type of content without running into
gatekeeping or offering up the immense investment of time and effort re-
quired to participate yourself. Spectating can preserve much of the appeal
and fun factor of playing yourself while removing the pressure of playing
well.

2 Readers in the know will note that Leeroy Jenkins could have secured a learner’s permit by
now as well. Lord Helix help us all.

224

The Audience is Listening

Vicarious competition and accomplishment. Watching games offers
some of the same draw as watching sports or other athletic competitions.
If you play sports, you might enjoy watching sports to admire the strategy
and skill of players at a highly competitive level. A big part of the appeal
might also be cheering for an individual or team that you associate with.
Just as you might tune in to the World Cup or the Olympics to cheer for
your country or a favourite athlete, you might enjoy watching a stream to
cheer for a favourite StarCraft player.

Of those five games wementioned earlier as regulars in Twitch’s top games
list, all except Minecraft are primarily competitive multiplayer (and Minecraft
supports player-versus-player combat). All five see regular tournaments orga-
nized, with some more or less official than others. DotA 2, League of Legends,
and Fortnite have especially sizeable tournament scenes, streams for which
draw millions of viewers.

Figure 8.2 A stadium of spectators at The International DotA 2 tournament in 2019.

Credit: Image by Yrrah2 (CC BY-SA 4.0) via Wikimedia Commons.

Part of why the vicarious competition and victory of gaming streams can
be so intense is down to the at-times ludicrous stakes involved. In 2019,
DotA 2’s annual tournament The International saw a total prize pool of a cool
$34 million, with the top team of six players taking home over $15 million.
Watching a favourite team or player work their way to the top spot in a
tournament makes for an intense viewing experience. Irrespective of stakes,
any competitive match can provide the excitement of tension and a sense of
camaraderie in shared victory or defeat.

Another thing thatmakes competitive games watchable—or perhapsmore
importantly, re-watchable—is unpredictability. Injecting strategy and com-
petition into a game creates uncertainty. Without any uncertainty, watching

225

The Game Designer’s Playbook

the same game over and over again can easily become boring. In a compet-
itive environment, though, the course of a match and its ultimate outcome
are subject to all sorts of variation. Even though the content of the game itself
hasn’t changed, your experience watching one match compared to the next
might be vastly different. Which characters will players pick, how will they
play them, will the other team be able to anticipate “our” strategy? These
types of questions help to keep viewers watching, and explain part of why
competitive multiplayer games tend to dominate streaming platforms.

Social interaction. One of the reasons you might pick up a game is be-
cause your friends are playing it. Likewise, one of the reasons you might
watch a stream is because your friends are watching it, and you’d like to
preserve the illusion that you’re a sociable extrovert and not a recluse who
spends 90% of their leisure hours swaddled in a blanket eating popcorn in
front of re-runs of Law and Order.

Though Law and Order marathons have very few drawbacks, one disad-
vantage is the inability to interact with other be-swaddled and be-popcorned
viewers around the world if you so choose. Game streams, on the other hand,
do allow for real-time audience communication. Depending on the platform,
viewers can chat with each other or even send messages directly to content
creators. In this way, streams can provide a casual, low-pressure way to inter-
act with some like-minded folk. Though the chat amongst larger audiences
can easily descend into chaos (see Twitch Plays Pokémon), a smaller group
can have a meaningful side conversation while enjoying the show.

Even disregarding situations with active participation in something like
chat, streamed content can provide a sort of second-hand fulfillment to social
needs. The term parasocial relationship is used to describe the phenomenon
of an audience feeling social bonds with performers, even when that bond is
completely one-sided. In other words, you might come to think of a favorite
streamer as something like a friend, even if you’ve never talked to them.3

This effect explains why the most popular content on Twitch, at least for
the time being, isn’t a game at all, but the “Just Chatting” category, a catch-
all for streamers broadcasting conversations with their audience or other
“everyday” content. Outside this category, a streamer’s personality and inter-
actions with their audience are a vital part of game-related content. Things
like quality commentary and jokes can make a stream far more interesting,
and on smaller streams, players might engage directly with their audience by
responding to chat messages or taking requests for games.

3 For the most part, this kind of attachment is healthy and normal, so long as you recognize
yourself as a member of the crowd. However, this type of thing can lead to unhealthy and ob-
sessive behaviours, and it is important to remember that a performer’s engagement with their
audience is not the same thing as a personal relationship. This is not the focus of our discussion,
but it should be noted nonetheless.

226

The Audience is Listening

Some social appeal can also come through in gameplay. In competitive
games, players’ interactions with each other can create interesting social dy-
namics. This is especially true in games where deception, cooperation, and
communication style play a large role in gameplay, as in the breakout stream-
ing hit Among Us. Outside of multiplayer interactions, a sandbox game like
Minecraft lets streamers express parts of their personality through their cre-
ations, and how they choose to experiment with the game’s mechanics. In
addition to supporting social engagement with content creators, much like
competition, this contributes to the re-watchability of a game by injecting
uncertainty.

Curiosity and learning. While entertaining, streams can offer value to
viewers beyond being a playful diversion. Just by virtue of watching skilled
players in a game with strategic or competitive elements, viewers can take
away knowledge to benefit their next play session. Some streamers might
offer commentary specifically aimed at educating interested viewers or giving
advice on how to improve their own playing. Watching streamed play can
serve as an education of sorts in areas like competitive play or speedrunning
strategies.

Even more simply, viewers might tune in to a stream to learn the basics
about a particular game. This might be motivated by a desire to find out
more about a game before making a purchase decision. If you don’t have
time to play a game or can’t afford it, watching a stream of that game might
be the next best thing. And when a game first comes out, especially a hotly
anticipated one, viewers might flock to streams of that game just to see what
all the hype is about—helping to explain why games like Cyberpunk 2077 and
No Man’s Sky tend to briefly crack Twitch’s top ten shortly after release.

8.1.1 Making a game watchable

With an improved understanding of what compels people to watch streamed
content, we can identify design choices that promote a game’s watchability.
We can observe these characteristics in existing games popular for streaming,
examining how they are leveraged to create content which is easier or more
interesting to consume.

It would be inaccurate to suggest that a game having all the qualities ex-
plored in this section is guaranteed to become a smash hit in the streaming
community. Certainly, it would also be wrong to imply that a game without
any of these elements cannot become a streaming hit. However, all of the
current regulars to the top ten games on Twitch and Facebook Gaming, at
least as of this writing, do possess at least one of the characteristics listed be-
low. Although not a magic formula by any means, we can broadly describe

227

The Game Designer’s Playbook

a few design decisions that take advantage of the reasons viewers choose to
watch in the first place:

Support episodic content. The role of streaming as a convenient diver-
sion means that viewers should be able to tune in for variable lengths of
time, with the ability to jump in or out relatively quickly. When you first
join a stream, you’d hope to get up to speed relatively quickly. Conversely, if
you’re in a hurry or have an unknown amount of time to watch, you don’t
want to feel like you’ll be missing out if you can only watch for a short time.

These qualities are supported by the format of many popular games, par-
ticularly multiplayer titles. Relatively short match lengths create digestible
segments of content for viewers to enjoy, even if their time is limited.
Stats aggregator League of Graphs puts the average match time of streaming
favourite League of Legends at around 25 minutes, depending on competitive
rank. An average match of its MOBA cousin DotA 2 takes around 35 minutes,
according to tracker Datdota. Unfortunately, while most games don’t make
statistics available regarding match length, anecdotally and based on tour-
nament play, similar figures emerge for other popular titles. Fortnite’s solo
battle royale matches last about 20 minutes, while competitive Overwatch
games usually come in just shy of 30 minutes.

Figure 8.3 Full of recognizable characters and colourful chaos, an average Over-
watch match is around 20–30 minutes of near-constant action that’s pretty easily
understandable even to an inexperienced player.

Credit: Overwatch was developed and published by Blizzard Entertainment.

The sweet spot seems to be an average of around half an hour—perhaps it
is no coincidence that this is about the length of a sitcom episode. Though
match lengths can obviously vary, this type of range gives viewers the ability
to sit down for a quick watch and appreciate a complete experience. Matches
that are too short offer less potential for strategic depth and interesting con-
flict; matches that are too long lose out on the convenience factor and may
seem to drag on. Of course, designing for this range isn’t just good for watcha-
bility; it can also support a better player experience overall. Having relatively
quick rounds makes it easier for players to fit games into their schedule,

228

The Audience is Listening

resulting in a more reasonable time commitment (at least for casual play).
Additionally, shorter match times mean that any negative experiences with
other players are over more quickly, and can lessen the sting of loss to reduce
the chances of toxic behaviour.

One final thing to note here is that certain features might detract from
howwell a game adapts to being sliced into digestible chunks. In multiplayer
titles, the ability of an opposing player or team to stall can kill the flow be-
tween games. A long match of Hearthstone can be compelling to watch, but
if the match is elongated by a player running out the clock on every turn, it
becomes frustrating. In single-player games, things like cutscenes and long
slow-paced sequences can make for a streaming experience more akin to a
period drama film than a sitcom. While this may have some niche appeal,
or a flash of popularity after a sufficiently anticipated release, it’s not likely
to support mass streaming appeal in the long term.

Competition and strategic depth. The majority of games dominating
streamed play, and indeed most multiplayer games, favour competition over
cooperation.We could probably say something poetic about the human con-
dition here, like “mankind is a society born in fire, and our ever-restless watch
prefers to gaze upon conflict even in times of peace”. We will refrain from
doing that, however, as it would sound incredibly pretentious. Besides, there
are plenty of other reasons why competition is appealing to watch, some of
which we already dissected in our discussion of viewer motivation. Competi-
tive games create unpredictability and tension, making them interesting and
exciting to watch.

This isn’t to say that cooperative play isn’t interesting. Indeed, cooper-
ation might be an important part of this dynamic in a team competition
like League of Legends or Overwatch. However, purely cooperative play is by
necessity a PvE (players-versus-environment) conflict, with any adversary
provided by the game. Predefined challenges eventually run out, and proce-
durally generated levels or AI-driven foes aren’t yet quite at the level where
they can match the intrigue of human opponents on a massive scale.

The most popular streamed titles involve competition with lots of
people—unpredictable, complicated, messy people—keeping viewers on the
edge of their seat with the idea that anything could happen. While pure co-
operation doesn’t seem to be a winning formula for streaming popularity,
at least for the time being, pure competition does. Battle royale games with
solo modes distill large-scale competition into “everyone for themselves”,
and the popularity of titles like Fortnite and Warzone among spectators speak
to the success of the format in playing to our bloodthirsty viewing desires.

Strategic depth is another factor to consider. Tic-tac-toe is a competitive
multiplayer game, but its small possibility space means that the optimal
strategy is easy to understand, games are too short to feel meaningful, and

229

The Game Designer’s Playbook

are almost immediately boring to watch. Chess, on the other hand, offers
a larger possibility space allowing for intricate strategies and a more cap-
tivating spectator experience. Likewise, a game like Warzone’s battle royale
mode is more interesting to watch than a round of Agar.io, although both
are one-versus-many competitions.

In addition tomaking content feel less predictable, strategic depth also ap-
peals to a viewer’s curiosity and desire to learn. Part of the appeal of watching
chess matches (if you’re into that) is the potential to learn how to become a
better player fromwatching themasters. Of course, this also applies to digital
games. The existence of or possibility to develop complex strategies creates
implicit learning opportunities for the audience, as well as giving creators the
possibility of hosting informational content, like tips for improving play.

Together, these aspects might help to explain why some competitive
games experience such brief stints in popularity. For instance, Fall Guys: Ulti-
mate Knockout drewmassive crowds in themonth of its release, hitting almost
200,000 average concurrent viewers on Twitch, before regularly falling to less
than 10,000 just twomonths later.4 Fall Guys is amusing to watch, but has rel-
atively little strategic depth. Compare this with a game like League of Legends,
which has hovered at or above 100,000 viewers or so almost ten years after
its release, displaying a slight increase in viewership over time. Competition
in a game like League has more longevity because of its depth, continually
presenting interesting conflicts even for players intimately familiar with the
game.

Figure 8.4 Like Overwatch, League of Legends offers plenty of fast-paced eye candy for
viewers. Once you know what’s going on, there’s also a good deal of strategic depth
to be appreciated in terms of team composition and strategic play.

Credit: League of Legends was developed and published by Riot Games.

Provide opportunities for self-expression through play. Games with
sandbox elements, base-building, map creation, and similar features can
help satisfy players’ creative inclinations. They also serve as another

4 Viewership statistics mentioned here are taken from TwitchTracker, accessible as of this
writing at https://twitchtracker.com/

230

https://twitchtracker.com/

The Audience is Listening

way to expand a game’s possibility space, keeping viewers on the hook
for a potentially unique experience. Most notably, they give content cre-
ators the opportunity to inject personality into their gameplay, which can
make a stream feel more personal and engaging. As a consistent stream-
ing favourite, Minecraft allows players to build impressive creations with a
touch of personal flair. Less creation-oriented sandbox elements, like flexi-
ble physics-based combat systems, can hit similar notes with viewers. Grand
Theft Auto V, another streaming favourite, has plenty of opportunities for
zany police chases and over-the-top situations that create humour and
suspense in situations of players’ own making.

Like competition, creative or sandbox elements boost the variation view-
ers can expect to see from a single game. Additionally, just as strategic depth
can appeal to viewer curiosity and an interest in learning, so too can features
focused on creativity. Games like Minecraft, which offer a virtually unlimited
toybox for players to build with, allow content creators to share experiences
that can give inspiration on top of their entertainment value. This might
also give viewers an inclination to play for themselves; if you feel that your
experience will be distinctly different from what you’ve just watched, then
the promise of firsthand play becomes more interesting.

Provide opportunities for interesting social dynamics. In service to the
social motivations underlying our desire to spectate, mechanics that pro-
mote social interaction can make for a more interesting viewing experience.
So-calledMafia-style games, which pit a small team of villains against a larger
group unaware of their identity, create opportunities for players to lie, team
up, and potentially watch a web of lies crumble around them. Such scenar-
ios have contributed to the runaway popularity of Among Us, a game where
almost all strategic depth comes from communication rather than gameplay
skill. Other titles like the Jackbox Party Pack series present a host of situations
involving humour, contests of wit, and deception, among other varied social
dynamics.

Giving players more chances to interact through gameplay or communi-
cation as part of their design can help audiences to connect with creators as
well. Heavily social games like Among Us are natural candidates for celebrity
streamers to collaborate and draw in fans for special events. In 2020, sev-
eral celebrity Among Us games saw viewership in the hundreds of thousands,
including high-profile politicians, streamers, and YouTube personalities. A
similar appeal can apply to games with an active tournament scene, where
viewers can watch their favourite players compete and interact with one
another.

All of the qualities discussed here predate streaming by a longshot; in fact,
some of the most popular games on live platforms, like League of Legends

231

The Game Designer’s Playbook

and World of Warcraft, released before the popularization of game streaming.
This makes sense; there is a significant degree of overlap in the appeal
between playing and watching games, just as there is between participating
and watching any other activity suited to an individual’s interests. However,
while many of the design decisions to make a game more watchable are old
hat at this point, streaming presents an entirely new frontier in design which
has yet to be fully explored.

Players interact with games, and spectators watch. But with a captive au-
dience of tens, hundreds, thousands, or more, can those spectators become
active participants themselves?

8.2 Come on down

In the mid-to-late twentieth century, game shows experienced a surge in
popularity. While old favourites like Jeopardy! and Wheel of Fortune still set
screens abuzz in the homes of suburban grandparents and people with inter-
net data caps, their cultural relevance pales in comparison to that enjoyed
a few decades ago. From Match Game and Password to Who Wants to be a
Millionaire, game shows captivated millions across the globe. If you’re of a
certain age, you might have fond memories of tuning in to enjoy the antics
of comedians featured on Hollywood Squares, or watching a favourite quiz
show with your family every week.

Part of the appeal of game shows is that the contestants are everyday peo-
ple, either fans who signed up for a chance to participate and win big, or
members of a studio audience beckoned onstage. If you’re watching a game
show, you’re thinking “that could be me,” perhaps trying to play along and
wonder if you might be able to do better in your own five minutes of fame as
a participant. In some ways, reality television took over in scratching a sim-
ilar itch, showcasing the lives of ordinary people—or at least, people who
were groomed to be as melodramatically “ordinary” as possible on camera.
But all our ogling at the dramatized and sanitized lives of reality stars has
lost that participatory spirit that came along with game shows, urging you
to play along at home.

Memories of that excitement may owe most of their power to nostalgia at
this point, but game streaming offers us a glimmer of that same feeling with
its interactive potential. Like sports, competitive streams urge us to cheer
along. Like game shows, they can also make us want to play the game we’re
watching. However, unlike game shows, we are no longer bound by the limi-
tations of traditional broadcasting media. In practice, we can let viewers take
part in the action, thanks to real-time communication and APIs offered by
services like Twitch.

232

The Audience is Listening

Why audiences might be motivated to participate in such interactions
blend the reasons people have for playing games with those for watching
games. After watching a stream for a while, you might feel more comfortable
trying your hand at playing whatever’s on offer, reducing any barriers to en-
try in terms of knowledge or skill. Even in a small group, being selected as a
participant gives you a few minutes of celebrity, stealing the spotlight for a
brief period to impress others with your skills or laugh along with them. In
a larger group, being acknowledged by a well-known creator can be a satisfy-
ing brush with fame. Lastly, the always-on nature of streaming means that
you can always find a community to interact and potentially play with even
if your friends are offline, providing much more personal interactions than
faceless strangers found through multiplayer matchmaking.

Games that take advantage of these motivators and provide some form
of interaction are sometimes a little gimmicky, as you’d expect in any new
design area. As of this writing, some titles feel like early Wii games a little too
trigger-happy on motion controls, or the first cavalcade of iPod Touch apps
released after game developers discovered the accelerometer. Starting some-
time around 2015, several games boasted some form of Twitch integration
or another, and we seem to be entering the middle of a first generation of
forays into the realm of interactive streaming.

No matter how this particular design avenue ends up shaking out, it
does present some interesting opportunities. More in-depth viewer inter-
actions may prove themselves capable of drawing a larger audience, and
transforming that audience into something more.

8.2.1 Turning viewers into players (or something in between)

There are several different ways to facilitate audience interaction with live
game content. Such interactions might be as trivial as highlighting com-
mentary from the crowd, or as dramatic as lifting lucky viewers out of the
audience to play for a match.

While some of the features we will discuss aren’t specific to livestreaming
interactions,many of them are. At first, youmight wonder how these features
could possibly be worth it unless streamers are your one and only target; why
invest so much time and effort to enhance the play experience of the select
few players who will host streams?

The obvious answer here is that it is not only the play experience of those
few content creators that will benefit—it’s also their entire audience. For
viewers that choose to engage with any interactive mechanics, their experi-
ence will become more memorable, and you may convert a few extra players
out of it. Even for viewers that don’t want to join in, the addition of audience
interaction injects uncertainty. Throwing viewer participation into the mix

233

The Game Designer’s Playbook

canmake for amore interesting show, even if you don’t plan on participating
yourself.

Another important thing to consider is that these features don’t exclu-
sively supportmassive crowds; you don’t have to bank on drawing thousands
of viewers to create an improved experience. The Jackbox Party Pack series is
practically built for playing via stream (or video call), and despite only having
a few hundred concurrent Twitch viewers on average, Jackbox reports an esti-
mated active player base of over 100 million. Design thinking that supports
livestream interaction supports any context where a group of interested peo-
ple all have their own devices—in the smartphone era, this is known as any
group of interested people. Thus, even if you’re not planning to become the
next runaway Twitch sensation, thinking of an “audience” can inject some
social interaction into almost any experience.

Let’s take a look at some of these features, starting with the most basic and
stepping forward in order of increasing engagement.

Platform features. Services like Twitch and YouTube offer basic features
like text chat among viewers. Other game-agnostic interactions include mak-
ing monetary donations to highlight a message on stream, or paying for a
“subscription” to a favourite content creator. These features provide audi-
ence members with an easy way to interact with one another, and show
support for the content they enjoy. Since you’ll be getting this basic level
of interaction “for free” with any streaming service, you may want to con-
sider how you might use them as a jumping-off point for more complicated
interactions.

Without any additional development investment, something like a do-
nation system can already add in a layer of interaction. Though more of
a testament to event planning than game design, speedrunning collective
Games Done Quick, or (GDQ), hosts regular livestreamed speedrunning
marathons of various games to raise money for charity organizations. GDQ
events boast a slew of donation “mechanics,” where viewers can vote with
their wallets to make decisions like naming a character or selecting a special
trick for speedrunners to pull off. Certain choices have practically become
landmarks of the annual events, like whether to kill or save the animals in a
speedrun Super Metroid (a choice which generated almost $300,000 alone in
donations during GDQ’s 2019 winter event).

Outside of special events, though, basic interactions like text chat can fac-
tor into your game’s design. Development-wise, this is just amatter of finding
the right tools, like Twitch’s Extensions API or suitable chatbots compatible
with the platforms you plan to support. Such tools let you transform things
like chat messages into commands, which you might use to support some of
the more engaging features discussed below.

234

The Audience is Listening

Betting or affiliation. Give any group of people a deck of cards, dice, a
couple of horses, or literally any spinning object, and they’ll find a way to
gamble. Livestreaming is no exception, and so long as you’re not asking peo-
ple to buy in with real money, betting mechanics can be a fun and perfectly
legal way to increase audience engagement.5

SaltyBet, a site founded in 2013, is built around wagering on the outcomes
of different competitive events, such as fighting game tournaments. Outside
tournament play, users can bet on the outcomes ofMugen, a 2D fighting game
engine supporting extensive customization, played by AI bots. Although the
site’s currency has no real value, hundreds of viewers tune in concurrently
even outside of tournament season to try their luck at predicting the outcome
of AI matches. This is similar to the current status of Twitch Plays Pokémon,
though its popularity has diminished immensely since the original run.More
than five years later, the channel has evolved to primarily support betting on
Pokémon battles via chat commands, though crowd-controlled game runs
are still hosted from time to time.

Some games also support viewer bets more directly. Viewers can place bets
on how the player they’re watching will die in Clone Drone in the Danger Zone,
earning virtual currency which can be used to participate in other interactive
mechanics. This helps to keep viewers invested even when theymight not be
interacting directly, as the outcome of a round incurs some personal stakes—
even if those stakes are fairly low.

A similar tactic to wagers is directly affiliating audience members with
competitors in some way. Marbles on Stream, for example, is a marble rac-
ing game which assigns individual viewers to their own marbles, effectively
turning them into players of a sort. Although the outcomes of races are de-
termined by physics simulation, the promise of momentary glory for a win
can help make a viewing experience more memorable.

Influencing game content. This is where our use of the term “interac-
tion” becomes much less of a stretch—where the will of the viewer has a
tangible impact on gameplay. How viewers achieve this impact, and the
degree to which it affects a game, can vary substantially. This might be as
simple as collectively voting on something like which map to choose for a
round of play (Marbles on Stream) or individually having the power to spawn
in items or enemies (Clone Drone in the Danger Zone). Typically, this is ac-
complished through chat commands, a tactic which is certainly not unique

5 Before you say anything, yes, some games already have you effectively betting with real
money via microtransactions. The loophole seems to be that as long as you can’t turn your
winnings back into real money, it’s legal in most places. Given the state of microtransaction
regulations, you can probably get away with this. But these types of tactics are psychologically
and financially predatory, and they’re not good game design. So please do not use them, lest this
book burst into flames while you hold it.

235

The Game Designer’s Playbook

to games; musicians, for instance, often use chatbots to take song requests
from their audience.

Several games have integrated viewer choice mechanics of some sort.
Clustertruck, a platforming game that sees players sprint along the tops of
cargo trucks, supports audience voting on special events, like exploding
trucks, low gravity, and inverting player controls. Dead Cells, a metroidva-
nia platformer, has Twitch integration to support voting for areas, character
upgrades, and bosses. Some games lean more into the idea as a selling point
of the complete experience, like Party Hard, a game about breaking up incon-
siderately loud social gatherings. In Party Hard, viewers can invite crowds of
NPCs, summon law enforcement, and otherwise wreak havoc with players’
missions of mass desocialization.

A natural challenge that arises with this type of design is that, if a game
is dependent on audience interaction, it may have trouble reaching the pop-
ularity needed to sustain a sizeable audience. Choice Chamber is a game built
around viewer votes, and while its moment in the spotlight was brief, it
took the concept of audience polling to an interesting extreme. Nearly every
choice is reduced to an audience vote in the action platformer, from which
weapon players will receive to which direction bosses will aim their attacks.

While a perfectly fun game to play and watch, Choice Chamber never
took off outside of a few short-lived streams by notable content creators.
Assessing why it wasn’t a larger hit is pure speculation, but one reason could
be that the game’s content outside of audience interaction was fairly run-
of-the-mill.Choice Chamber’s votingmechanics were a fun gimmick, but they
lacked the social depth of a Jackbox game among friends. Meanwhile, single-
player Choice Chamber didn’t have the same draw as something like Dead
Cells, whose voting mechanics were merely a bonus to an otherwise solid
and distinctive experience.

From this, we can learn that shallower “viewer mechanics” implemented
through something like polls or text commands, are challenging to hold up
as the core of a game. Instead, they should be treated as a supplement to a
game which is enjoyable without them, as an enhancement to a complete
experience, rather than a building block.

Viewer-created content. Any game that supports user-created content is
a natural fit for streamers to interact with their audience, by playing with
content their viewers create. This might include mapmaking, character cre-
ation, or active support for mods, all of which are a boon to player creativity
in general.

As a designer, assuming you’re investing the effort in user creation tools
in the first place, helping to support the stream-friendliness of that content
is relatively trivial. Providing users with a quick way to share their creations
that doesn’t involve searching for usernames and level titles is a good start.

236

The Audience is Listening

Ultimate Chicken Horse and Super Mario Maker, games built on player-created
platforming levels, both offer a code system as a way for users to easily share
levels. A short alphanumeric code can be copied and shared anywhere, and is
an easy way to place an audience level request into the chat of a livestream.

One thing to keep in mind here is that a user-created content system
should come with some means for players to preview and censor content
if need be. This is important in any context, but particularly if you antici-
pate that a player might be happening upon some content for the first time
in front of a large crowd. You should provide a way for players to preview
content, for instance, in a browser, game client, or window panel that can
be easily obscured by a stream’s host. This can both reduce the chance of an
unfortunate encounter with malicious or offensive content, as well as deter
users from creating ill-intended content in the first place by making it less
likely that such content will be seen.

Viewer play-along. The most in-depth form of interaction an audience
can have with a livestream is to become players themselves. In its most
basic form, this can be accomplished through text commands, as in the
original Twitch Plays Pokémon. Some smaller projects have experimented
with similar mechanics, like tile-based battle royale Stream Animals, though
platform-specific interactions through something like Twitch chat can lack a
sense of satisfaction. The original run of TPP was fascinating in part because
of its novelty; the chaos was unprecedented, and it was in a sense an ex-
periment in what interactive streaming could accomplish. Novelty can only
go so far, though, and whether games built entirely around chat commands
will establish a sizeable and stable niche remains to be seen. To an extent,
these sorts of implementations blur the line between what constitutes as
“influencing” a game versus “playing” it.

More direct participation has seen a good degree of success, particularly
in the genre carved out by Jackbox titles and their ilk. Games like Quiplash
and Drawful, in addition to sites like Skribbl.io outside of the Jackbox um-
brella, work immensely well for local multi-device games or remote play.
These games work by having one player host a party game (which they own),
while a small group of others join in via web browser or a (typically free) mo-
bile app. In Quiplash, for example, players are given fill-in-the-blank prompts
to answer. At the end of a round, players vote on the funniest answers for
different prompts, and the player able to best delight their friends’ sense of
humour wins.

While fun as a local experience in their own right, these gameswork excep-
tionally well on livestreams, where audience members can join in first-come
first-serve or queue up for a chance to play on larger streams. Naturally,
this sort of social interaction demands a way to moderate content in the
same fashion as map creation, even more so if drawing or text is involved.

237

The Game Designer’s Playbook

Figure 8.5 ChefSquad is an example of a game designed for livestreaming “first,” with
viewer participation a necessary part of the experience. As a co-op restaurant sim, the
game lets viewers, among other things, vote onmenu items, vie for streamer attention
to get “hired” for the next challenge, and help prep ingredients via chat commands.

Credit: ChefSquad was developed and published by Vertigo Gaming Inc.

Sadly, the censoring features in most Jackbox games aren’t subject to a de-
lay, meaning that strict moderation is impossible without vetting players
beforehand.

Perhaps the culmination of audience-stream interaction in the last
few years isHQ Trivia, the livestream-game show hybrid over which everyone

238

The Audience is Listening

seemingly lost their collective minds in 2017. Boasting a staggering two mil-
lion concurrent players6 and a Time Magazine “App of the year” nod in its
heyday,HQTriviawas a live quiz show streamed through amobile app, which
all viewers could play along with. Enough right answers could win you real
money, and for a while the app seemed to recapture the game show craze
of years past. Though it still technically exists as of this writing,HQ Trivia has
since lost the majority of its funding and suspended operations entirely be-
fore revival through an acquisition. It remains to be seen whether HQ Trivia,
or another app like it, will make a permanent position for itself in the stream-
ing space. Nonetheless, this level of interaction is more akin to betting of a
sort than playing, being somewhat impersonal.

In theory, the richer experience of viewer play-along can be accomplished
for any multiplayer game with a suitable invite system. Jackbox and Among
Us provide codes for easy join-up that hosts can share with a selection of
their viewers. Human: Fall Flat, a physics-based puzzler and fairly successful
capturer of eyeballs on Twitch, allows players to generate an easily shareable
invite link.

Whilemaking the leap from viewer to player isn’t necessarily for everyone,
the possibilities offered by interacting with livestreams further diversity the
experiences games can offer. It remains to be seen whether these types of
interactions will be a short-lived gimmick that never really takes off or the
future of online content creation, but at any rate, streaming is certainly here
to stay. In making our games more watchable, or perhaps even playable by
those that lend their time to spectate, our designs can adapt to improve the
experience of people immersed in this new medium.

(Continued)

Expert Profile: Kris Alexander—Learn to play, play to learn

Assistant Professor at Toronto Metropolitan University & esports competitor

Kris Alexander’s fascination with games began when he was 14, just after getting his
first job. His parents, two Grenadians-turned-Canadians, had three kids, and money
was tight. The family rule was simple: do anything you want, as long as you can pay
for it. Kris wanted to play games, play the piano, and go to school, and so he did. Often
working two or three jobs at a time, Kris lived at home until he was almost 30, helping
to pay down the mortgage and support his siblings while earning several degrees. At
the same time, he became a globally ranked player in both Street Fighter 3: Third Strike
and the digital card game Lightseekers. He also trained in classical piano, earning an
undergraduate degree in sound engineering and a Master’s in media production.

For his PhD, Kris studied the role of games and interactivity in education, firmly
in line with his current role as a professor at Toronto Metropolitan University (TMU).

6 Source: TechCrunch, accessible as of this writing at https://techcrunch.com/2018/08/14/hq-
trivia-apple-tv/

239

https://techcrunch.com/2018/08/14/hq-trivia-apple-tv/
https://techcrunch.com/2018/08/14/hq-trivia-apple-tv/

The Game Designer’s Playbook

(Continued)

Following from his doctoral work, Kris strives to apply game design to the courses
he develops, and his interactions with students. “I would love to consider myself as a
game designer who is an educator,” he says, arguing that the task of guiding players
is not so different from that of guiding students.

Kris argues that interactivity in itself is a mode of learning, much in the same way as
text, audio, or video.Much of hiswork is focused on offering students different learning
opportunities to suit individual needs. This isn’t an entirely academic exercise, either:
it’s rooted in his own experiences studying at university. Kris says he struggled to fo-
cus on assigned readings in school, until he created his own audiobooks of sorts using
text-to-speech software and his own hip-hop mixes as background music. Afterwards,
Kris says his grades shot up, sparking an interest inmultimodal approaches to learning.
It’s something he’s since applied in several settings, including teaching his daughter to
read by showing her what she says in real time via speech recognition.

In the classroom, Kris’ teaching focuses on multimedia and rich interaction, where
the playful influence of game design is prominently on display. Some of his classes are
delivered via Twitch, with chat integration allowing students to throw their questions
on the big screen. He’s created video content summaries delivered by a virtual avatar—a
bear given life by his impression of an English accent—to help knock down the barrier of
postsecondary professionalism. He’s even gone so far as to colour-match his wardrobe
with weekly slides and syllabus headings, one of the many “Easter eggs” he likes to
include in classes for students to find. Kris sees his actions as part of a larger effort
reaching beyond his own class: “It’s not for me. It’s about bringing awareness to the
world about the things outside of video game playing that can benefit society.”

The potential of games in education, Kris says, is immensely underdeveloped.
He offers up history class as an example of unrealized potential, where games like
the Assassin’s Creed series have undergone significant consultation with historians as
part of development. Why not ask students to explore virtual worlds and pick out
landmarks, artworks, and events to compare with historical truths, thus fostering an
interest in history and developing critical media literacy? Kris becomes animated at the
prospect of embracing games more fully in education, explaining that a large part of
his motivation is to create the classroom he wished he had in his youth: “That could
fix school!”

Outside teaching, Kris runs a research lab at TMU called The Conduit, focused on
educational applications of game design and the development of infrastructure for
esports at postsecondary institutions. That second point is a big part of his current role,
comprising everything fromwork with networking hardware to setting up scholarship
opportunities. “We focus on everything outside the playing,” he chuckles, noting the
behind-the-scenes work necessary to set up a proper league.

But Kris says labour isn’t the only, or even themost challenging, obstacle on the path
to creating professional opportunities for students in esports. He says that his first crack
at pitching esports to a university almost a decade ago was met with a resounding
and outright dismissive rejection, though general attitudes have improved in the past
few years. Since that first rejection, he’s started two such programs at different schools,
including one in his current post at TMU.

Although games have been mainstream entertainment for some time, Kris says
their legitimization in education is still lacking. Many educators have some degree of

240

The Audience is Listening

skepticism as to the value of games, which Kris attributes partially to a generational
gulf between students and teachers who may have grown up without exposure to
the medium. But that gulf is closing quickly, as new educators come into the field
and older professionals get acquainted with games. “What excites me the most is that
people are finally starting to listen,” Kris says, a sign of change to come.

Change is also overdue in the industry, he says, noting that using games for ed-
ucation depends on developer buy-in. He draws infallible parallels between game
design and teaching, insisting that any game designer claiming not to be a teacher
of sorts is mistaken. Speaking of both games and classroom development, he de-
scribes the task of design as “trying to carefully craft something that somebody can
interact with, stay motivated with, engage with, and most importantly transfer learn-
ing from.” Developers, Kris says, don’t always realize the full potential of the things
they create, or for that matter, themselves: “They think that they’re making fun ex-
periences for entertainment. That’s true, but also, they represent the teachers of the
future.”

This framing of game design as a form of education and vice versa fits nicely with
Kris’ understanding of game interaction itself, which he describes as “a bidirectional
engagement between player and [designer].” “For me,” he says, “good interaction de-
sign comes fromunderstanding your outcomes as they relate to the audience.” He says
this is true whether those interactions are being designed for a game, a classroom, or
any other experience with some semblance of an intended takeaway for participants.
To Kris, gaining that ability to understand outcomes in relation to your players (or stu-
dents) is a matter of learning to analyze why you enjoy certain experiences, and break
down the reasons why different groups might enjoy others.

While advances in technology and design havemade interactionmore complicated,
Kris says that all interaction design is still firmly centred around engaging our ba-
sic senses. That engagement might be something exotic—here, Kris invokes Smell-
O-Vision—or as simple as listening to the description of a new foe in a game
of Dungeons and Dragons—he excitedly recounts his recent first experience with
the game over an online call. At any rate, Kris says that the success of a design
is less about technological sophistication, and more about understanding peo-
ple, giving them a sense of presence and importance in worlds both virtual and
real.

For all his time spent in education, Kris says one of the most useful things he learned
came from Street Fighter. He cites the parry mechanic, by which a skilled player can
anticipate and quite literally walk into an attack, as a life lesson of sorts, particularly
in dealing with negativity. “That is how I look at almost every interaction. How can
I pre-emptively assume that this person doesn’t like video games, and walk into it?”
He says he wants to fight stereotypes, grinning as he recounts placing as a top Street
Fighter player globally despite picking one of the “worst” characters, an experience
he likens to being a person of colour in academia. As an advocate for the importance
of games in and outside the classroom, Kris is pushing for change in more ways than
one. Above all, he’s working towards a world where games can help us learn to lead
better lives.

241

The Game Designer’s Playbook

Further reading

This is Esports by Paul Chaloner (Bloomsbury Sport). ISBN: 978-1472977762.
An introduction to the world of esports from a general interest perspective. If you’re
a fan of the space or looking for more insight as to their general appeal, this is a good
place to start.

Watch Me Play: Twitch and the Rise of Game Live Streaming by T.L. Taylor (Princeton
University Press). ISBN: 978-0691165967.
An overview of how game streaming came to be, and has grown: a great primer if
you’re especially intrigued by the idea of designing for streaming. It’s also available
online for free, courtesy of the author.

The Fall of the Fourth Wall, open-access research article by Samantha Stahlke, James
Robb, and Pejman Mirza-Babaei (IGI Global).
We were collaborators on this article a couple of years prior to writing this book,
looking at the design (and evaluation) of interactive game streaming experiences.

Sources on Twitch Plays Pokémon

The bizarre, mind-numbing, mesmerizing beauty of “Twitch Plays Pokémon” by Andrew
Cunningham (Ars Technica). https://arstechnica.com/gaming/2014/02/the-bizarre-
mind-numbing-mesmerizing-beauty-of-twitch-plays-pokemon/.

Twitch Plays Pokemon conquers Elite Four, beating game after 390 hours by Nick Statt
(CNET). : https://www.cnet.com/news/twitch-plays-pokemon-conquers-elite-four-
beating-game-after-390-hours/.

Generation 1 Timeline, community-maintained resource on TPPedia Wiki. https://
helixpedia.fandom.com/wiki/Generation_1_Timeline.

Exercises

Port-a-Game: Twitch edition

Reimagine a favourite game to be made with the intent of being turned into a crowd-
driven title in the fashion of Twitch Plays Pokémon. How will the game work? How will
its mechanics be any different—for example, how will you replace or tweak sections
requiring precise timing?

What commands will you offer to your crowd of players, and how will they input
those commands?Will you use a chat system, or design your own virtualweb interface?

Field research

Pick a game-playing stream on a platform like Twitch and watch it live—you want a
stream with a chat lively enough to have a steady flow of conversation, but not so
many participants that you can’t follow any of what’s being said. Keep an eye on the

242

https://arstechnica.com/gaming/2014/02/the-bizarre-mind-numbing-mesmerizing-beauty-of-twitch-plays-pokemon/
https://arstechnica.com/gaming/2014/02/the-bizarre-mind-numbing-mesmerizing-beauty-of-twitch-plays-pokemon/
https://www.cnet.com/news/twitch-plays-pokemon-conquers-elite-four-beating-game-after-390-hours/
https://www.cnet.com/news/twitch-plays-pokemon-conquers-elite-four-beating-game-after-390-hours/
https://helixpedia.fandom.com/wiki/Generation_1_Timeline
https://helixpedia.fandom.com/wiki/Generation_1_Timeline

The Audience is Listening

proportion ofmessages which are directly related to the game (e.g., suggestions about
strategy/what the player should do) versus general chatter.

Take notes on the game-related messages that people are sending; what are peo-
ple interested in when watching this game/streamer? Pick another stream of the same
game if you have time and repeat the process. Can you see any patterns?

Based on your observations in the field, what features would you add to the game to
support audience interaction? What does the audience’s discussion suggest in terms
of what they would find interesting?

243

9

Rise of the Machines

The Grand Theft Auto (GTA) series is famous for being a crime sandbox of
sorts, where players are free to wreak havoc on its virtual inhabitants. For
any GTA V fan, a normal day in Los Santos consists of starting fires, beating
up random people on the street, robbing banks, and of course, stealing cars.

For all the controversy historically surrounding the GTA games’ violent
roots, there is more on offer than pure wanton destruction. Beneath the ve-
neer of hardened criminals and high-stakes gang missions lie living cities
filled with toys for players to experiment with. In many ways, the franchise
lives up to the open world promise of “go anywhere, do anything.” Theoreti-
cally, players can spend their time bowling, window-shopping for new shoes,
or stealing a vacant emergency vehicle and pretending to be a firefighter all
day.

As you can imagine, this deal of freedom results in a fair number of
unusual scenarios making for memorable stories. It also results in a no-
table amount of internet fodder in the form of videos chronicling players’
most oddball half-baked heist attempts, ludicrous ways of getting themselves
killed, and other various popcorn moments.

One GTA V video from 20151 chronicles the seemingly mundane interac-
tion of a verbal confrontationwith anNPC. The player walks up to aman and
greets him. The man responds in kind, and the player offers up a taunt in re-
turn. Enraged, the man throws down his cigarette and the situation quickly
descends into an exchange of profanities. “You are dead meat!”, the man
shouts, advancing on the player with his green polo shirt and soul patch
growing ever more menacing. At this point, the player resorts to their last
logical option and draws a gun. Mid-animation, the man immediately re-
turns to a resting pose with a deadpan expression, and says in a calm tone,
“I want to apologize.”

1 Since links for videos tend to vanish rather easily, if you’d like to find this clip for yourself,
the search term you’ll want to use is “GTA I want to apologize”.

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0009

Rise of the Machines

On top of being one of the best ways to spend fifteen seconds of your life,
this video is notable for its role in the landscape of fine gaming-focused inter-
net humour. While an admittedly minor blip on a relative scale, it spawned
an entire community with over 40,000members as of this writing on content
aggregation site Reddit. The subreddit r/iwanttoapologize catalogues amus-
ing game AI behaviours, mostly consisting of bugs and questionable design
decisions. Its selection of clips is an exemplary way to kill a few hours, par-
ticularly if you’re fond of watching people float away in invisible vehicles or
scream at nothing.

In games, our artificial companions and adversaries in games can be a
source of humour, to be sure. But for every chuckle-worthy glitch, there’s a
heart-stoppingmoment when you know you’ve been bested by a difficult en-
emy, or a heartwarming one watching a couple of virtual dogs play together.
Sometimes, you’ll wonder how a developer thought that two distinct voice
lines would be enough for an NPC you run into every fifteen minutes. Other
times, you’ll remark at its apparent cleverness, or find that it blends into the
background as part of the virtual world you inhabit. But before we can tackle
the challenge of designing good AI for our games, let’s take a moment to pin
down what it is in the first place.

9.1 The toaster is sentient now

AI, or artificial intelligence, is a catch-all term for computers exhibiting traits
associated with human intelligence. There is no universal definition for AI,
though we’ll offer one of the more understandable options here: artificial
intelligence is the ability of a computer to acquire and apply knowledge or
skills to solve problems. The problems we’re concerned with can be anything
from classifying images, to controlling a robot, to writing a symphony—the
idea being that a perfect “artificial general intelligence” could handle any
problem that a human can.

There are a number of terms you’ll hear thrown around in regard to the
field of AI, and while you don’t need to be an expert in any of them to
understand or use this chapter, we’ll explain a few in the interest of de-
mystification. The first is symbolic or classical AI, referring to techniques
which explicitly embed human knowledge. In other words, you outline the
problem-solving process in code, defining rules for a system to follow along
the way. A simple example might be something like a routine for playing
tic-tac-toe, which first examines whether the program can win on its current
turn before moving on to assess the best possible move. In stark contrast to
classical AI is machine learning (ML), which describes algorithms that solve
problems without being explicitly programmed for a specific task.

245

The Game Designer’s Playbook

ML seems like an impossibility the first time you hear of it. Even after
you’ve worked with it for a while, machine learning is still magic, and frankly
evenmore of a headache. There aremany different types ofmachine learning
algorithms, the vast majority of which work in more or less the same way.
You have a problem, and a massive set of already-solved examples. You use
these examples to “train” an ML algorithm, and then apply that algorithm
to solve new examples for you.

Consider the task of data classification; maybe you want to assess whether
a player in an online game is at risk for toxic behaviour based on their game-
play statistics like win/loss rate, playing time per day, and so on. You take
a collection of player records, for which you’ve manually flagged any users
with a history of harassment. You feed these records, sans flags, into the algo-
rithm of your choosing, like a random forest classifier.2 At first, your classifier
won’t be any good at guessing whether an individual player was labelled as a
troublemaker. By peeking at the labels, the algorithm will tweak the logic it
uses to separate players into the “safe” and “trouble” bins—in the case of the
algorithm we mentioned, this could be something like swapping out which
gameplay statistics it focuses on. After this “training” phase, you can give the
algorithm the gameplay records for new players, and it will estimate whether
those players are likely to give you grief.

A subset of machine learning is deep learning, used in reference to a spe-
cific family of algorithms known as neural networks. Neural networks were
conceived as a loose approximation of biological brain matter, consisting
of artificial neurons or “perceptrons” that output values based on incoming
connections from input data or other perceptrons. Each perceptron can have
its own logic for how it manipulates the values of those incoming connec-
tions. Essentially, each incoming value is multiplied by some number which
can be tweaked to change what the perceptron’s output will be. Stack a bunch
of these together and you have a neural network, the likes of which have been
applied to everything from reading brain scans to generating photographs of
imaginary humans.

Perhaps unsurprisingly, the nature of AI has given it an air of mystery and
power in popular culture. Even when home computers weren’t yet achiev-
able, AI had already cemented itself in the public consciousness—from the
android in Metropolis (1927) to the infamously maniacal HAL 9000 in 2001:
A Space Odyssey (1968). In the current media landscape, AI often fulfills the

2 This isn’t necessary by any means for understanding this chapter, but if you’re curious: a
random forest is an “ensemble” of decision trees. A decision tree, in turn, essentially generates
a flowchart through which a particular record is fed to determine its classification. In the case
discussed, such a tree might have a nodes which effectively ask questions like “Is the player’s win
rate below 30%?” or “Has the player ever reported another player’s behaviour?”. A random forest
is like a council of decision trees, considering the output of many individual models to make a
more informed decision.

246

Rise of the Machines

Figure 9.1 A classical task for machine learning is image classification. First, training
data is labelled by a human (top). Then, the system is repeatedly tasked with classify-
ing images. Based on its errors and successes, at first tantamount to random guessing,
values in the system are tweaked to improve performance over time through train-
ing (middle). After training, the system can be shown previously unseen images and
classify them, hopefully accurately (bottom).

role of the foreboding big bad that will ultimately lead to ruin, temporarily
snatching the crown of world destroyer from zombies, aliens, alien zombies,
or zombie aliens.3

Impending doom aside, AI also holds the promise of the future. Its poten-
tial to create a dystopia is largely outpaced by all the wondrous possibilities

3 An important distinction to note here is that an alien zombie is a human who becomes a
zombie after infection by an alien, while a zombie alien is an alien who is also a zombie.

247

The Game Designer’s Playbook

it offers. Maybe AI will cure cancer. Maybe AI will help us solve the cli-
mate crisis. Maybe AI will get us out of the solar system. And if you still
have a cable subscription or don’t have an adblocker installed, I’m sure you
know that AI can help you fix your online reputation, improve your credit
score, and pick the jeans cut that works for you (maybe). These days, AI is all
the rage, and corporate-speak is especially infatuated with machine learning
buzzwords. If you’re looking for venture capital or a script deal, throw the
phrase deep learning into the mix and maybe AI will make you an overnight
millionaire.

Fortunately for us, AI in games doesn’t have to be so grand. Something as
simple as a routine for an NPC that tosses a stone at you when you’re not
looking and then whistles innocently when you turn around can give players
a moment of delight. A few if statements that make a character passive if
ignored and hostile if shot at can be perfectly serviceable, with no fancy ML
or complex rulesets required. Great game AI is just as much design as it is
technology, if not more so.

The history of AI in the context of games is an interesting and storied one.
Both board and digital games have been used as a testbed for improving AI
techniques for decades, while simple AI has in turn proven itself a staple of
video games. Today, game technology is advancing forward with the help
of AI, by way of things like increasingly marvellous procedural generation
and AI-driven development tools. We aim to design good AI for players to
interact with, and in a far more sophisticated form, AI can help us produce
good designs.

When you think of the phrase “game AI,” though, you’re probably not
thinking of a super-intelligent development assistant that can help you de-
sign better platforming levels. You’re probably thinking of the guy in the
polo shirt from Grand Theft Auto. And so that’s where we’ll start.

9.2 AI that plays with you

Game-playing AI has existed for decades at this point, while the idea of game-
playing AI has intrigued people for centuries. In the late 1700s, Hungarian
inventor Wolfgang von Kempelen created a machine he claimed to be an
automaton capable of playing chess. The machine, which included a me-
chanical human model, was dubbed The Turk. And indeed, Kempelen’s Turk
could beat most human players, a fantastic achievement for the time.

Of course, this achievement owed itself to a hoax, as The Turk’s cabinet
concealed more than just machinery. A human operator sat inside, con-
trolling the “player” via mechanical linkages and observing the board via

248

Rise of the Machines

magnets attracted to the rigged pieces used for the game. A few other chess
automatons created in the decades that followed used similar tricks, but
suspicion didn’t stop them from captivating their audiences.

When computers came along, playing games became a natural demon-
stration of their ability, with the goal of besting humans in games of strategy
serving as objectives for early AI development. Chess was a longstanding
problem, from the first true automatons built to attempt the game in the
early twentieth century to the grandmaster programs of today. Perhaps the
most famous milestone along the way was the victory of IBM’s Deep Blue
over Garry Kasparov in 1997, the first time a computer defeated a human
world champion under standard tournament rules. It would be the first time
of many, as the last time a human reportedly won out in such a match was
back in 2005.

Figure 9.2 A wood engraving print of the original Turk. Many of the mechanisms
visible to the audience (e.g., the left cabinet) were largely for show.

Credit: Image from a book by Karl Gottlieb von Windisch (public domain), via Wikimedia
Commons.

Since the conquering of chess, other games have found themselves as fod-
der for AI developers, including both board and digital games. In DotA 2,
AI team OpenAI Five recently defeated OG, human two-time world champi-
ons, marking the first victory of an AI over world champions in any esport.
And in the realm of board games, the late 2010s saw Google’s DeepMind
team racked up wins against world champion Go players with the AlphaGo
AI. Since then, subsequent projects building on AlphaGo have improved on
and generalized its performance to other games, including chess and classic
arcade games.

Creating a state-of-the-art competitive AI player is a challenge that de-
mands remarkable technical effort and computational resources. From a

249

The Game Designer’s Playbook

game design perspective, though, we aren’t usually concerned with creat-
ing the most skilled AI. Instead, any AI that players interact with should be
aimed at enhancing their experience as much as possible. Or rather, as much
as reasonably possible given the programming time and performance bud-
get available. This might mean trying to create a skilled challenger for the
player, but the AI that you encounter in games isn’t always an adversary,
and it’s almost never trying to call itself the next Deep Blue.

Player-facing AI has a myriad of different manifestations, which we could
split up in all sorts of ways from complexity, to behaviour, to the type of en-
tity being controlled. In the interest of keeping our design thinking centred
squarely on the player, we’ll make our distinction based on the role that AI
serves relative to players.

Figure 9.3 Three types of AI characters in BioShock Infinite: The player’s companion,
Elizabeth (left); an enemy (middle), and a group of ambivalent NPCs (right).

Credit: BioShock Infinite was developed by Irrational Games/Ghost Story Games and published
by 2K Games.

First, we can speak of supportive AI, which assists the player in some way
through direct interaction. The most straightforward example of supportive
AI is a friendly companion character, such as Elizabeth in BioShock Infinite or
Alyx in the Half-Life 2 games. Another example of supportive AI might be a
character that delivers contextual hints, such as the protagonists of the Trine
games, who remark on potential puzzle-solving strategies if players stay in
one place for too long.

At the other end of the spectrum is opposing AI, which works against the
player. This includes enemy AI ranging in complexity from goons in a turn-
based RPG like Final Fantasy, to the practice AI opponents in a multiplayer
game like Overwatch, to the intricate bosses in a game like Sekiro or Dark
Souls. This is probably the first category that comes to mind when thinking

250

Rise of the Machines

of “game AI,” since once of the core functions of AI in many games is to
provide the tension and challenge of conflict in the absence of other human
players.

Lastly, we can bin other AI controllers into the classification of indepen-
dent AI, which doesn’t have any strong “feelings” about the player one way
or another. This includes most drone-like NPC behaviour in a building or
management game like Zoo Tycoon or Planet Coaster, or the more complex
behaviour of agents in a god game like The Sims series. Independent AI
might also serve a sort of decorative function, making a world feel more
alive—think of city crowds or herds of animals in an open-world game.

Obviously, these categories are far frommutually exclusive. Some AImight
rest in a permanent state of overlap between them (you might think of a
shopkeeper character as resting between independence and support), while
others can shift depending on context (an independent city guard might
become supportive if you do them a favour, and turn into an adversary if you
assault them). Nonetheless, when designing an AI that interacts with players,
the intended purpose of those interactions should be at the forefront of your
thinking.

9.2.1 What makes a good friend (or foe)

Irrespective of whether a given AI agent should be helping out, setting things
on fire, or justminding its own business, our core goal is the same: to improve
the player experience in some way. The assistance of a supportive AI should
be seen as helpful, the opposition of an adversarial AI should prove a fair
challenge, and any independent AI should be interesting or at least under-
standable depending on its application. If these objectives are met, players
are more likely to perceive the AI in a positive light—on the flip side, players
are unlikely to enjoy interacting with a “helper” AI that gets in the way, an
enemy that seems to cheat, or an independent AI that’s just plain boring.

We can identify several desirable traits in helping any AI that players
encounter to improve their experience and perception of said AI as a result:

Believability. Making sure that an AI’s behaviour seems feasible is an im-
portant part of maintaining suspension of disbelief. Players understand that
their treasured companions and vicious enemies are little more than several
if statements wearing a trench coat, but you want to preserve the illusion
that those trench coats are thinking beings. This is true no matter an AI’s
intended purpose. When support AI makes sensible decisions, it’s easier for
players to form bonds with the characters that assist them. For opposing AI,
a believable level of skill helps keep combat scenarios feeling fair. And for
independent AI, believable actions are critical to player understanding when
that AI supports gameplay, such as customers in a management sim.

251

The Game Designer’s Playbook

It might seem like Skyrim is our favourite game to rag on at this point; in its
decade-long lifetime, the game has given us all many wonderful experiences,
but there’s no denying that it is rife with opportunities for improvement to
learn from. One such opportunity is its AI design, which can damage im-
mersion in places. In combat, for instance, most enemies lack any apparent
memory or strategic depth. A bandit can be struck from the shadows and re-
spond, “Is someone there?” with an arrow visibly sticking out of their head.
After a brief aggro period and walking ten metres from their post to look
for the source of said arrow, they’ll happily return to standing against their
favourite wall, arrow and all, and start singing a sea chanty.

Bandits are far from the only victims of questionable AI design choices in
the world of Skyrim. During vampire raids on villages, unarmoured NPCs are
keen to draw their iron daggers, run into the action, and die immediately.
In combat, any companions you’ve partied up tend to run in front of you,
blocking your shots with their own health bar. The shopkeeper you speak
with afterwards might have the same voice actor as six of the goons you just
killed. And in the middle of an important moment—attending a funeral,
climbing a mountain, getting a beatdown from a dragon—the courier will
run up to you and hand over a letter, probably informing you of inheritance
from an NPC that just got themselves killed. While amusing, moments like
this make AI feel less human (or elven, or whatever the nature of the being

Figure 9.4 The courier does not frolic. He does not eat. He does not sleep. He does
not dream. He only hunts his next target, letter satchel in hand.

Credit: The Elder Scrolls V: Skyrim was developed by Bethesda Games and published by Bethesda
Softworks.

252

Rise of the Machines

simulated). Skyrim being Skyrim, it’s hard to tell if certain moments are in-
tentional design decisions, oversights, or glitches, but they detract from the
intended experience at any rate.

Believability doesn’t imply total realism, of course. Something like hav-
ing wounded enemies eventually calm down can help players recover from
hastymistakes and preserve their ability to complete a combat sequence with
their desired playstyle. That said, arrow-in-the-face sea chanties thirty sec-
onds after getting shot cross the line a bit. Stretching the limits in other
cases can improve experience, though. Generally beloved AI companion Eliz-
abeth from BioShock Infinite will toss the player needed items like health and
weapons in the nick of time based on their current status. These items don’t
have to exist in the world beforehand, and Elizabeth will teleport behind
the scenes to a location where she can easily aim at the player. But these
supernatural enhancements to her ability impact the experience positively,
because they contribute to the ultimately believable experience of a smart
companion helping you out with something you need. Since Elizabeth’s nav-
igation during combat prioritizes finding cover and staying out of the player’s
way, it’s easier to believe she has time to rummage around and find things
while you’re occupied blowing away enemies. Plus, this logic minimizes the
chance she’ll run into your line of fire, unlike some other companions we
could mention.

The last thing to note here is that part of believability is often imperfec-
tion. Not nonstop wall-headbutting stupidity, but flaws that make behaviour
more relatable, interesting, and fair. A simple example is enemy aim or other
combat abilities. In theory, enemies can play perfectly; their reaction time is
limited to one iteration of a game’s update loop, they can aim right at the
player, and they can act immediately. But playing against such an opponent
would feel unfair. As a baseline, enemies should have some inaccuracy in
their aiming. Every pull of the trigger shouldn’t be a guaranteed headshot.
And for melee attacks or boss rushes, actions should be telegraphed before
they happen, lest players accuse an AI of being “cheap.”

Adjusting an AI to become more or less skilled in this regard is a good way
to provide players with diverse levels of challenge. Difficulty sliders which
operate by reducing ammo drops and turning enemies into bullet sponges
fall into a category of game design best described as “It’s Fine, I Guess.” As-
suming you have the development time, adjusting aspects of AI behaviour,
such as an enemy’s probability of seeking cover, or the quality of their
aim, can prove a much more interesting and believable way of moderating
difficulty.

Context-appropriate complexity. Our use of the term complexity here
boils down to variation in behaviour. More complexity might mean access to
a larger library of combat strategies, more diverse or detailed animations, or

253

The Game Designer’s Playbook

just a few extra voice lines. No matter the function of a particular character,
more complexity makes an AI more interesting to interact with, ignoring any
poor implementation or bad decisions made within those extra behaviours.
Having many different behaviours can make companions seem more help-
ful, opponents feel more devious, and regular denizens of the world more
interesting to observe.

Of course, since your design time and performance targets impose restric-
tions here, you will need to be judicious in deciding how ornate your AI
should be. At the extreme end of simplicity are the crowds of hundreds you’ll
see in amanagement sim, like so-called “peeps” in the RollerCoaster Tycoon se-
ries. Any individual peep has a basic set of needs that determine their current
target (e.g., a hungry peep will seek a concession stand), and the pathfinding
to get there. That’s pretty much it in terms of individuality; in the player’s
typical view, they’re a crowd of coloured blobs that dispense money. Simple
behaviours work here because most of the player’s time will be spent working
on building rather than following individual peeps like some sort of nature
documentarian.

Contrast this with a case where players get closer to AI, and behaviour
needs to be more complex. If you’re running around a city in first-person,
you’ll expect pedestrians to sidestep out of your way, and if there’s any hint
of RPG mechanics, you’ll probably want to be able to talk to everyone there.
Unfortunately, having a huge crowd of detailed NPCs in one place can still
be quite computationally expensive at this writing. This is why you’ll tend to
see open-world cities with hundreds of NPCs in their pre-rendered E3 trail-
ers, and maybe two dozen characters in the same place at release (if you’re
lucky). Quality over quantity in this regard can help to keep things feeling
alive; consider the city-dwellers in Watch Dogs: Legion, which each have their
own defined occupation, relationships, and daily schedules. Having the kind
of characters that you could follow around like some sort of nature docu-
mentarian can keep things feeling alive in the absence of real-world levels of
crowding.

Naturally, the AI that players interact with most deeply and frequently
should be the most complex. First-person combat engagements are a great
example, and there are few games that achieved such landmark progress in
this regard (and in general game AI) as Monolith’s F.E.A.R. Monolith pio-
neered a novel variation of game AI known as goal-oriented action planning
(GOAP), giving designers and programmers alike more freedom in customiz-
ing AI behaviours. In a nutshell, GOAP applies a pathfinding algorithm to
behaviour. Instead of only using pathfinding to find a route through the
world to a geographical destination, the AI in F.E.A.R. uses pathfinding to
identify a “route” composed of actions to reach a particular goal. For instance,
if an AI is trying to kill the player, but is out of ammunition, they’ll need to

254

Rise of the Machines

use a melee attack. But first, they’ll have to move closer to the player to
hit them. GOAP will produce a sequence of actions for the AI to execute in
service to its goal: first, move to the player, and then, smack them.

The result of applying GOAP in F.E.A.R., along with some other clever
tricks we’ll discuss later, is a set of AI behaviours which seem incredibly
complex and believable. Different characters have different sets of actions
and goals available to them, resulting in diverse behaviour. A stealthy en-
emy might wait in the shadows and strike the player if they’re not careful
about positioning. Someone toting an assault rifle will dive behind cover,
and if the player gets in a lucky shot, the AI will blind fire to try and keep
them at bay. This kind of variation in behaviour makes encounters with the
AI far more engaging.

Predictability (sometimes). If you’re trying to make a character as be-
lievable as possible—particularly a human—you might be tempted to make
them unpredictable, since us humans tend to have all the reliability of a 1977
Lada with the doors taped on. But while the occasional loose cannon is fun
to interact with, it’s often best if players have a clear idea of what an AI’s
behaviour is likely to be during gameplay. For support characters, this will
give players someone they can count on. For opponents, predictability can
be important to maintaining fairness. And for independent AI, predictability
can help players manage their plans (e.g., knowing when a shopkeeper will
be around).

Predictability can be an important progenitor of an enjoyable experience,
particularly in certain contexts. Part of the fun in stealth games, for instance,
comes from learning the patterns of enemy behaviour and taking advantage
of those patterns to avert detection or take out enemies unseen. A game like
Dishonored wouldn’t be able to deliver on the desired experience if enemies
moved around randomly; predicting behaviour is necessary to careful plan-
ning on the part of the player. This isn’t to say that behaviours have to be
boring or simplistic, either. AI characters might have multiple behavioural
options for certain scenarios which players are expected to learn and an-
ticipate as well, introducing more complexity into the process of strategic
planning.

Another situation dependent on judicious predictability is boss fights. In
any game that features prominent boss fights, from the likes of Dark Souls or
Sekiro to Cuphead, Hollow Knight, or even Terraria, learnable attack patterns
are a must for players to achieve a satisfying loop of trial, learning, and fail-
ure on their eventual road to success. Consider something like the bosses in
Hollow Knight; although a grand diversity of fights are on offer, each one in-
cludes the factor of predictability in full force. The agile fighter Hornet, for
instance, will rear up for each of her lightning-fast directional attacks, giving
the player time to reposition or dodge appropriately. Over time, players will

255

The Game Designer’s Playbook

see each of her attacks, and these attacks will be repeated time and again,
allowing players to improve in dealing with them. In experiences like these,
predictability of AI behaviours is instrumental in players’ journey towards
mastery.

Figure 9.5 A boss “telgraphing” an attack in Cuphead. The windup for an attack shows
the character leaning back and breathing in (left) before spitting a projectile at the
player (right).

Credit: Cuphead was developed and published by Studio MDHR.

Interactive. It seems like a given that AI should interact with the player,
but this interaction is of little value if players don’t perceive it to be mean-
ingful. An AI character should react to the players’ actions, and remember
those actions, at least for a while. Unless you’re writing a controller for a
goldfish, you generally want to avoid the situation where any AI close to the
player snaps between behaviours with a total disregard for what the player is
doing. Our aforementioned friend Elizabeth from BioShock Infinite manages
to avoid the goldfish problem with a few clever tricks, such as maintaining
a shaken-up demeanour after a combat encounter instead of snapping back
to her pre-fight state of relative tranquility.

Remembering players’ actions is also of narrative importance, as we dis-
cussed in Chapter 6. The operation of a dialogue tree might not be the first
thing to come to mind when you think of game AI. But characters that the
player interacts with purely through speech can benefit greatly from carefully
crafted reactions to different events that the player experiences. In the rogue-
likeHades, for example, NPCs that the player encounters will remark on what
they’ve heard of the player’s latest exploits in specific detail—specifically re-
ferring to areas they’ve explored recently, rival characters they’ve interacted
with, or how they last died. This does a great job of maintaining the illusion
that these characters are far more than a set of text boxes, as opposed to a
more traditional strategy of barking the same voice lines with little change
in response to what the player is actually doing.

Beyond their relationships with the player, AI agents should also inter-
act with each other. Having enemies that never talk to each other and

256

Rise of the Machines

relentlessly gang up on the player one by one without regard for tactics is
uninteresting. Establishing some form of social relationship, strategy, or ba-
sic communication makes their behaviour more dynamic and interesting. In
theMetal Gear Solid games, enemies can radio one another for backup. Rather
than being pure window dressing, it’s possible for the player to prevent this
by destroying radios or communication equipment, giving the impression
that characters actually interact with each other. This can come through
in (relatively) small touches as well, like the fact that given sufficient time
to play out, characters in Hitman will bring out a body bag for a deceased
comrade instead of standing next to their corpse as if nothing happened.

Figure 9.6 Upon returning to the House of Hades, the player’s resting spot in between
runs, a friendly character will remark on the player’s death (above). In this case, he
explicitly references the Wretched Thugs, a type of enemy responsible for the player’s
last death (below). Most of the many characters the player interacts with will reg-
ularly reference the goings-on of recent playthroughs, lending them a great deal of
believability.

Credit: Hades was developed and published by Supergiant Games.

Creative. Successful AI design is also about injecting personality into a
character’s actions. In creating game AI, we aren’t confined to replicating

257

The Game Designer’s Playbook

the same sort of generic soldier AI for every ally and enemy that players will
encounter. One way to do this is by toying with an AI’s motivations; even
subtle changes can make a game feel more alive. For instance, the ghosts in
Pac-Man each have unique “personalities” resulting in behaviour that keeps
players on their toes, and if you pay attention closely enough, might even
yield some admiration of their quirks. One ghost rushes the player down,
another tries to predict where the player will be, one has an affinity for the
first ghost, and the final ghost doesn’t particularly care what’s going on at
all. This prevents boredom by avoiding a scenario where four of the same AI
would eventually just follow the player in a line of some sort, while staying
within the strict technological confines of its time.

Figure 9.7 Many of the enemies in Deep Rock Galactic are classed as different types
of “glyphids”, spiderlike creatures with varying abilities and levels of threat. Distinct
designs and behaviours help make the landscape of enemies feel incredibly diverse.
Clockwise from top left: a regular glyphid “grunt”; an armoured glyphid “guard”; the
dangerously explosive glyphid “detonator”; the pesky but relatively benign glyphid
“swarmer”.
Credit: Deep Rock Galactic was developed by Ghost Ship Games and published by Coffee Stain
Games.

Another thing to experiment with is what an AI character is able to per-
ceive, instead of relying exclusively on logic which boils down to “if the
player is in front of the AI, they can be seen.” Playing with something a bit
more complex can lead to more interesting strategies, and is particularly ef-
fective in a horror context. The loveable abomination Jeff fromHalf-Life: Alyx
is blind and responds only to sound, while the less loveable abomination of

258

Rise of the Machines

the Witch in Left 4 Dead is hypersensitive to light but ignores passing gunfire
entirely.

How different characters perform the same type of action, such as moving
or attacking, can help bring their design alive as well. A charming example of
these behavioural variations can be seen in Deep Rock Galactic. The legion of
bugs (“glyphids”) inDRGwill quickly win you over, in spite of their relentless
attempts to kill you. Regular glyphids will advance on the player, screech-
ing and rearing up to attack. Smaller enemies will launch themselves, while
larger armoured enemies will cheekily bring up their plated front legs to block
the player from shooting in close proximity. And should you unlock the abil-
ity to tame an enemy for yourself, they’ll have some added behaviours that
could bring a smile even to the arachnophobes among us. They’ll patiently
plod along next to you, and that screeching animation is repurposed into a
purr of sorts as the player pets them.

This type of attention to detail can help to make sure that a player’s rela-
tionship with AI, whether friendly or hostile, is a positive contributor to their
experience. But when it comes to emulating the qualities we have discussed
here in practise, we can accomplish a shocking amount with fakery.

9.2.2 Smoke and mirrors

Under the time and performance constraints of game development, we find
ourselves quite frequently in a position where our AI leans heavily on the
“artificial” part and not so much the “intelligence” bit. To make behaviours
seem more complex than they are, or to make sure players appreciate the
full extent of what’s there, can take a bit of doing. Our design strategy here
can involve some trickery to make things work; the basis of our AI should re-
flect the characteristics we’ve already discussed, but we can accentuate those
characteristics further without too much technical investment.

One thing that we can do is to provide extra communication to the player
about what an AI is doing. There are a few reasons why it is beneficial to do
this. Understanding an AI’s behavioural patterns or plan can support game-
play decisions. For instance, knowing where your guests are planning to go
in Zoo Tycoon can help you figure out better park layouts by observing their
navigation. In something like an FPS, occasionally having away to glean your
enemy’s next move feels like a special strategic opportunity. Gameplay value
aside, communication can also help players appreciate behavioural details.

The aforementioned AI characters in Watch Dogs: Legion have an impres-
sive level of detail in their daily routine, given that there’s quite literally
millions of characters with procedurally generated occupations and relation-
ships. Without following these characters around for hours on end, though,
players might not appreciate the care put into constructing these behaviours.
In the absence of unachievably realistic moment-to-moment interactions,

259

The Game Designer’s Playbook

Figure 9.8 In Zoo Tycoon 2, players can click on animals (or human guests) and see
what they’re doing—or planning to do.

Credit: Zoo Tycoon 2 was developed by Blue Fang Studios and published by Microsoft Game
Studios.

players could easily assume that the groups of characters they run across
are mindless crowds until the player triggers some mission involving them.
Ubisoft’s inclusion of a profiler gadget, which players can use to reveal a
character’s schedule, serves as an explicit communication of character be-
haviour. If players don’t appreciate this detail immediately, in using that
schedule as a later reference to track down a character, they’ll realize that
characters follow their routines to the letter. This might prompt players to
follow around other characters, or profile them just to learn about their daily
lives. Here, communication helps ensure that players notice the efforts put
into AI behaviours.

Communication can also be used to create a powerful illusion that a
game’s AI is more complicated than in actuality. Remember that impressive
AI from F.E.A.R. that we examined earlier? On top of its individual planning
tech, the game also has a system to coordinate the behaviour of multiple en-
emies in a given combat encounter. To communicate actions to the player,
dialogue barks are used. But instead of just drawing players’ attention to
thoughtful details, these lines also make characters seem smarter and more
260

Rise of the Machines

capable than they are. For instance, the last surviving enemy in an encounter
will call for reinforcements—even though no mechanism for reinforcements
exists. However, when players run into the next (already planned) group of
enemies, the implication is that these are the reinforcements called in by the
last goon. Another tactic employed by the developers is to fake a social dy-
namic by having one enemy issue a verbal order which others will follow.
But in reality, no such system exists; instead, after the group’s behaviour is al-
ready determined, voice lines are selected to act as if that behaviour resulted
from a leader giving orders.

Apart from communicating behaviour, things like voice lines can help im-
prove the believability of AI by lending a character some personality. Calling
back to the shanties that bandits sing in Skyrim, and ignoring the dubious
timing of such shanties among the mortally injured, giving your enemies
life outside killing everything in sight makes them feel far more believable as
people. This tactic doesn’t just apply to human characters, either. In Breath of
the Wild, for example, groups of bokoblins (for non-Hylian readers, basically
goblins) can be seen snoozing together or dancing around their campfires
before the player parachutes in and turns their cocktail party into a Die Hard
sequel.

Adding in these sorts of touches—flavour animations, varying voice lines,
and so on—usually won’t demand much additional technical work, assum-
ing you have a decent system for managing assets and so much as a basic
state machine for AI. Of course, they quickly add up to a great deal of
creative labour, so depending on the resources you have available, high-
fidelity goblin dance loops might be out of scope. If you can spare the time
though, adding some flourish onto AI characters can definitely bolster their
believability and a player’s interest.

Relatively simple technical tricks to make an entire world feel more alive
can also be helpful here. If you’ve got any kind of biotic environment, ham-
mering home the fact that things live there will make it feel more dynamic.
If you can show those living things going about their business, players will
appreciate it. And to do that, you don’t necessarily have to invest in proper
AI for all of them. Faraway creatures might even be relegated to particles,
as is the case with Subnautica’s schools of fish. The player will encounter
individual fish with independent behaviours while swimming around, but
faraway groups are effectively a smokescreen, with a particle effect providing
the illusion of many far-off fish populating the seas.4

A rite of passage for game programmers is the “boids” behaviour, which
uses a model of basic forces to simulate a large group of entities, like a
flock of birds, without advanced independent controllers. Similar, more

4 The developer, Unknown Worlds, has confirmed this on Steam: https://steamcommunity.
com/app/264710/discussions/0/617336568078226610/

261

https://steamcommunity.com/app/264710/discussions/0/617336568078226610/
https://steamcommunity.com/app/264710/discussions/0/617336568078226610/

The Game Designer’s Playbook

Figure 9.9 In A Plague Tale: Innocence, characters are frequently swarmed by mobs of
rats, which display convincing horde behaviour in spite of some trickery behind the
scenes.
Credit: A Plague Tale: Innocence was developed by Asobo and published by Focus Home
Interactive.

sophisticated logic was used in A Plague Tale: Innocence to simulate its hordes
of rats without breaking the game’s performance budget.5 The player might
see up to five thousand rats on screen at once. Of that five thousand, four
hundred animate individually, while rats further from the player share a syn-
chronized animation to reduce overhead, and those even further back don’t
play an animation at all. Giving each rat intricate individual behaviours was
out of the question for performance reasons, and so as much as possible is
abstracted to a herd level. For example, pathfinding produces a map of routes
that the rats use, rather than having each rat individually plan their way to
a given target. By tactically reducing the technical complexity of individ-
ual behaviour, games can achieve greater AI density without sacrificing the
overall illusion of a dynamic world.

9.2.3 Player-centric AI

After focusing on the design of AI entities themselves, we should step back
and re-evaluate our core goal: creating a good experience for the player. Hav-
ing believable and enjoyable individuals or worlds to interact with is great,
but in some situations, it might not be enough. Individual behaviours alone

5 As described in an interview with the game’s programmer here: https://www.
rockpapershotgun.com/how-a-plague-tale-innocences-rat-hordes-were-made

262

https://www.rockpapershotgun.com/how-a-plague-tale-innocences-rat-hordes-were-made
https://www.rockpapershotgun.com/how-a-plague-tale-innocences-rat-hordes-were-made

Rise of the Machines

can’t necessarily accomplish certain things, like orchestrating a satisfying
combat encounter with many enemies. We’ve danced around this already
by mentioning things like the squad coordination system in F.E.A.R. and the
simulation of horde behaviours. In many situations, we may need additional
machinations behind the scenes to shape AI in a way that suits the player.
While a great deal of the development effort needed becomes a technical
challenge, the details of which are beyond the scope of this writing, this is
an important area for designers to exercise their skills as well.

One suchmachination is the idea of dynamic difficulty adjustment (DDA),
which shapes the challenge of a game to suit a player’s current performance.
The goal of DDA is to create an experience which is hard enough to pre-
serve a sense of tension, while not being so difficult as to inspire defeatism.
DDA is a form of AI in itself, in that it “solves the problem” of players
having a boring or frustrating experience based on a set of rules specified
by developers. DDA isn’t an overwhelmingly common feature, but differ-
ent forms have seen a fair amount of use over the years. An early example
is Crash Bandicoot 2, where developer Naughty Dog incorporated tricks to
make a player’s experience a bit easier if they failed a section, like slowing
down a fast-moving obstacle for an individual player if it repeatedly caused
their demise.6

Many forms of DDA rely on adjusting AI opponents to become better or
worse depending on a player’s performance. In Metal Gear Solid V, the “re-
venge” system works to counter any tactics favoured by the player, forcing
players to diversify their strategy or become better at exercising the strategy
of their choice. For example, if the player typically relies on headshots to kill
enemies, more enemies will don helmets to prevent being picked off from a
distance. In this form, dynamic adjustment can helpmake sure that a player’s
play experience won’t become stagnant by reducing the potential of certain
strategies to become overpowered with practice.

Perhaps most infamous example of dynamic difficulty for AI is the so-
called rubber banding employed in the Mario Kart series (among other
racing games). Though Nintendo is notorious for keeping mum on accu-
sations of cheating AI from frustrated players, a patent filed around the
release of Mario Kart: Double Dash for a “racing game” with a dynamic place-
targeting system to make games “more thrilling” pretty much speaks for
itself.7

Indeed, the AI in Mario Kart does cheat in a sense; not every kart is
trying to win. Instead, a couple of rival karts target high-place positions,

6 As described by the developers here: https://all-things-andy-gavin.com/2011/02/07/making-
crash-bandicoot-part-6/

7 US patent 7278913, if you’re curious.

263

https://all-things-andy-gavin.com/2011/02/07/making-crash-bandicoot-part-6/
https://all-things-andy-gavin.com/2011/02/07/making-crash-bandicoot-part-6/

The Game Designer’s Playbook

Figure 9.10 Gaining ground in Mario Kart can be tricky enough thanks to the track
geometry of maps like Rainbow Road (left). Once you do gain that ground, the blasted
AI immediately gets a blue shell, and immediately uses that blue shell to ruin your
day (right). (The blue shell is an item which automatically homes in on and slams
down on the kart in first place.)

Credit: Mario Kart 8 was developed and published by Nintendo.

while the rest of the pack intentionally stays behind. If the player is do-
ing poorly, those rival karts can decelerate a little bit, while they’ll up
their driving game if the player is doing well. The goal here is to create
an experience where players won’t feel like it’s impossible to win, while
keeping them perpetually fighting to stay in the lead once they have it.
Anecdotally, you’ll notice other behaviours that seem to support this goal,
like your AI opponents conveniently having a blue shell on hand (an
item which seeks out and pummels the leader) as soon as you snag first
place.

As you can see in virtually any online discussion of Mario Kart’s AI, this
type of behaviour can frustrate players, so you’ll need to design around it
carefully. Consider hiding any obvious evidence of AI skill fluctuations (like
suddenly accelerating or decelerating right in front of the player in a racing
game), for instance. But for all its potential pains, cursing at the AI in Mario
Kart is a treasured pastime at this point, and its sense of unending rivalry is
one thing that helps keep the game interesting.

Instead of focusing solely on moderating challenge, a sophisticated ap-
proach to shaping a player’s experience with AI might attempt to moderate
emotion. This is exactly the goal of the AI “director” in the Left 4 Dead games,
Valve’s co-op zombie-survival series from the first decade of the millennium.
The director is a system governing how and where events like zombie en-
counters occur; not precisely DDA, but sharing some of its goals. Typical
DDA will use gameplay metrics to understand how players are doing; things
like how much time they take to clear a challenge, the cause of their last
failure, and so on. According to Gabe Newell, Valve’s president, the metrics
used by L4D’s AI director are more diverse, including whether players are

264

Rise of the Machines

sticking together or splitting up, and how quickly their mouse cursors are
moving.8 This serves to capture information about how players are feeling,
giving the AI director the power to push players to their breaking point with
tense encounters before finally letting up when they’ve been stressed out for
a while.

Left 4 Dead’s director systemhelps to create satisfying pacing, but is equally
important in avoiding unsatisfying pacing. Without responding to players’
behaviour, a single level of “difficulty” or pure random generation could cre-
ate runs that feel boring, or too intense for players to truly enjoy. A tailored
system allows for an experience that suits individual groups of players, set-
ting zombie AI loose on them or pulling back accordingly. This can lead to
some fantastically tense experiences that still feel fair.9

Imagine you’re on a team of survivors in L4D and encounter an enemy
like the Witch, whose light sensitivity and bemoaned cries can be terrifying
to deal with. If you lose your cool, split up, and look around erratically, the
AI director will associate that with the Witch spawned by the game, and can
give your team a brief break after you get past her to regroup. Knowing that
particular enemy is a source of stress for the team, the director can re-use this
information later—avoiding spawning one in if your resources are low and
you’re coming off the back of a tough encounter, or throwing her right at
you if your team has been doing well for a while.

If speaking of things like DDA or an AI “director” makes it sound like AI
can function as a developer more than a non-human player in some cases, it’s
because that in a sense, it can.

9.3 AI that works for you

We’vept now crossed into a new domain of game AI, the one where most
direct interaction occurs on the development side. Our goal is the same: we’re
still trying to create a better experience for our players. But the way we use
AI to achieve this objective doesn’t have to rely on agents in a game’s world.
Using AI in games isn’t just about the AI that interacts with players directly;
it’s also about parts of the development and design process.

As we shall see, many of the boons offered by AI in this respect are to
shave off development time, reduceworkload onhumans, and of course, save
money. This isn’t a trivial task by anymeans—you can’t toss a neural network

8 Gabe Newell himself wrote an article for Edge magazine on the subject, archived here:
https://web.archive.org/web/20130403031720/http://www.edge-online.com/features/gabe-
newell-writes-edge/

9 Interested readers might enjoy having a look at the interview Kotaku conducted with Valve’s
Mike Booth on the subject: https://www.kotaku.com.au/2018/11/mike-booth-the-architect-of-
left-4-deads-ai-director-explains-why-its-so-bloody-good/

265

https://web.archive.org/web/20130403031720/http://www.edge-online.com/features/gabe-newell-writes-edge/
https://web.archive.org/web/20130403031720/http://www.edge-online.com/features/gabe-newell-writes-edge/
https://www.kotaku.com.au/2018/11/mike-booth-the-architect-of-left-4-deads-ai-director-explains-why-its-so-bloody-good/
https://www.kotaku.com.au/2018/11/mike-booth-the-architect-of-left-4-deads-ai-director-explains-why-its-so-bloody-good/

The Game Designer’s Playbook

at Unity and order it tomake Far Cry 24 (at least, not yet). Game development
relies on highly skilled and specialized work, and developing any degree of
automation to a suitable level of quality is challenging. Fortunately, we’ve
reached a point where AI can assist us in multiple points of the development
journey, and its contributions have already proven themselves invaluable.

9.3.1 Creation without a creator

One of the oldest and most widespread ways that AI is applied in the game
development process is via procedural generation (AKA procedural content
generation, or PCG). PCG is a general term which essentially describes the
creation of content by a computer instead of a human. A typical PCG work-
flow uses handcrafted assets as input with a ruleset defining how they should
be recombined. Some randomness is injected, and the output is a previously
unseen combination of said handcrafted elements, within the constraints
laid out by the ruleset. PCG in games pretty much universally falls under the
category of rule-based AI. Though machine learning could be applied, ML
systems can take more time to create, produce fuzzier results, and it’s much
harder to manually tweak their output in a specific way.

Since we’re clearly in danger of veering into algorithmic gibberish here,
let’s explore what this means with an example. Chances are that you’ve al-
ready experienced a great deal of procedural generation—probably mostly in
terms of level and world design. Take Minecraft, for example, whose worlds
are created from millions of individual blocks. Each type of block is created
manually, with a texture, name, and crafting recipes defined by designers.
Based on a set of rules—rarer ores spawn deeper, water needs containment,
and so on—these blocks are used to generate a map without having to
manually place them. With an initial random number used to “seed” the
algorithm, thus affecting any random-number generation within, it’s virtu-
ally impossible for two worlds to be alike (unless they have the same seed
number).

Generating levels and worlds is the most common application of PCG in
the wild. Lots of games bank on entirely procedurally generated worlds, like
No Man’s Sky, Terraria, Minecraft, Astroneer, Spelunky, and Spore. Other games
use amix ofmanually and procedurally created levels; while the farm and vil-
lage in Stardew Valley are handcrafted, the caverns of the mines are randomly
generated. Procedural level generation can vary wildly in its complexity. At
a very basic level, you might have handcrafted geometry or “rooms” that are
combined together and filled with random items. A common tactic for creat-
ing simple random terrain is to generate random greyscale noise,10 and then

10 If this piques your interest, looking at Perlin noise is a good place to start.

266

Rise of the Machines

Figure 9.11 Procedurally generated areas in Stardew Valley (top left), Terraria (top
right), and Minecraft (bottom.)

Credit: Stardew Valley was developed and published by ConcernedApe. Terraria was developed
and published by Re-Logic. Minecraft was developed and published by Mojang Studios.

convert that noise to a heightmap, yielding random mountains, plains, and
valleys. At a more advanced level, you might have a multi-pass algorithm
that first generates terrain, then carves out caves, adds and “settles” water,
places structures, and so on.

The applications of procedural generation hardly end with creating en-
vironments. You might apply PCG to create the things that live in those
environments, as in the procedurally generated creatures of No Man’s Sky. In
Spore, handcrafted creatures are animated procedurally, so that players can
stick any number of legs on the vaguely suggestive abominations they create
and watch them waddle around with some semblance of realism. Another
common application is generating encounters for players; Valve’s AI director
in Left 4 Dead is described as creating “procedural narrative” by shaping the
events that players encounter on their journey through cities overrun with
zombies. In a similar vein, Bethesda’s “radiant” quest system in Skyrim and
Fallout 4 generates missions for players to keep them occupied after dozens
of hours playing the same character. The possibilities don’t end here, either.
PCG can be applied to anything; obviously, the trick is figuring out an al-
gorithm which isn’t too resource-intensive to create and produces results of
acceptable quality.

In theory, procedural generation can support any game, though in-
your-face PCG is more common in some genres than others. You usually

267

The Game Designer’s Playbook

won’t find an entirely procedurally generated world in a game with a strictly
linear narrative, or in-depth puzzle mechanics. The state of the art in PCG
can produce some beautiful and engaging things, but it’s not always easy to
integrate with other elements of your design.

There are a few genres that are naturally suited to procedural generation,
particularly in terms of level and encounter design. PCG is a common sight
in games with survival elements, like Minecraft and Don’t Starve. In Minecraft,
with a focus on exploration, knowing that you’ll have a brand-new world to
explore whenever you start a new game is a great feeling. Given its building
mechanics, starting with a random map can help players feel that their cre-
ations are extra special, and anything they stumble upon is uniquely theirs.
In Don’t Starve, players are expected to die many times, especially when
they’re just getting the hang of things. Since they’ll be repeating the same
loop mechanically, having a new world to explore helps keep things fresh.

This theme of repeating the same sort of relatively short game loop is
also common in the roguelike genre, where players set out on some (per-
ilous) journey where death means a restart from the very beginning. A single
successful run in most roguelike games is usually around an hour or less,
meaning that early on you might only be playing for a few minutes per
round before dying. Procedural generation is one tool that we have to help
overcome any potential boredom here, by giving players something they’ve
never seen before for each new run. Many roguelikes use some form of PCG
as a result. Noita generates a new set of caverns each time the player embarks
on their journey to the darkness below, while The Binding of Isaac: Rebirth has
new enemies and itemswaiting in its labyrinthian rooms after each restart. In
FTL: Faster Than Light, the player’s trip across the stars is filled with random
encounters, generating a story of sorts alongside a fresh bunch of enemies to
keep each run interesting.

This isn’t to say that full-on procedural generation is strictly necessary for
a good roguelike or survival game. Take Subnautica, a survival game with a
slow burn where players can restore a save after death and experience a lin-
ear narrative. Given its environmental storytelling in particular, PCG just
doesn’t make sense for Subnautica, and were it employed, the game would be
entirely different. That said, in games that do feature permadeath, some form
of randomness is practically a necessity in supporting an experience players
want to have over and over again. To havemore control over the final experi-
ence, the degree to which handcrafted content plays a role can be increased.
Consider the roguelike Hades, where individual rooms are handcrafted, but
sequenced and populated randomly to provide variation through the dozens
or hundreds of runs needed to fully complete the game.

The advantages of PCG are substantial. From a player experience stand-
point, generated content lends variation to help support longevity in a game

268

Rise of the Machines

like Minecraft, or make a repetitive gameplay loop more engaging. With
enough diversity, procedural generation can become a game’s selling point,
as in the billions of planets beckoning players to explore them in No Man’s
Sky. But perhaps the biggest practical advantage of procedural generation is
that it can save time, particularly if it’s easier for your team to put extra hours
into programming rather than art or level design. If you’re on a small team,
employing PCG might let you create far larger worlds, more diverse encoun-
ters, and more for players to discover than you otherwise could. In the right
hands, procedural generation can take an experience to the next level.

For all its promise, though, AI-generated content is not the procedural
panacea for all our design woes. Getting any generation algorithm just right
takes a lot of technical labour, and there might be some wrinkles in the out-
put that you’ll need to learn to design around. Consider world generation, for
instance. Complex procedural terrain complete with structures and the like
tends to generate “impossibilities” depending on your planned navigation
mechanics and your definition of impossible. Caves won’t always connect
nicely to the surface, buildings might spawn atop sheer cliffs. Eliminating
specific cases like this can be difficult, time-consuming, and ultimately jeop-
ardize some of the more interesting things the algorithm can generate. Many
games that have entirely PCG worlds give you a way to manipulate terrain
as a result, like the ability to destroy and place blocks in Minecraft.

The biggest design trap with procedural generation, though, is that it’s of-
ten easy for generated content to feel lacklustre in comparison to that which
is handcrafted. In the early days of No Man’s Sky, for instance, many play-
ers complained of discovering planets that felt repetitive and barren, devoid
of the variation they’d come to expect from press materials. After several
updates injecting additional diversity into the mix through new biomes
and structures (and new gameplay mechanics), the game’s reputation for
engaging exploration in the long term has since improved.

Potentially boring content isn’t exclusive to procedurally generated levels,
either. The quest generation system we mentioned in Skyrim and Fallout 4 is
notorious for its shallowness, owing to what seems like a dearth of interest-
ing “templates” for the game to fill in. Many of these procedural assignments
amount to some variation of “go here, grab thing or kill thing, and come
back.” No matter how often Fallout’s Preston Garvey insists that a settle-
ment is in desperate need of your assistance, eventually you’ll want to tell
him where he can stick those bottlecaps he’s offering for yet another gopher
mission.

With enough depth, procedural generation can form an engaging core
that goes far beyond fetch quests and randomly placing a few rocks. Dwarf
Fortress is a game built on procedural generation, not unlike Minecraft or
Terraria. What makes Dwarf Fortress special, though, and a near-instant cult

269

The Game Designer’s Playbook

Figure 9.12 Landscapes in No Man’s Sky (above) and Subnautica (below). While the
vistas in both games are beautiful, procedural generation can lead to “samey” or
empty-feeling landscapes (top right). Having control over every element of a land-
scape, given enough development time, can ensure players never have a dull view. (It
needs to be noted that No Man’s Sky, particularly with recent updates as of this writ-
ing, has improved greatly upon the diversity of landscapes generated since its initial
release; getting the balance of procedural generation right takes time.)

Credit: No Man’s Sky was developed and published by Hello Games. Subnautica was developed
and published by Unknown Worlds.

classic, is how far it takes the concept of the procedural world. The game
doesn’t just generate terrain, it generates races of creatures, civilizations, and
an entire history before setting players loose. Just as youmight stumble upon
a beautiful terracotta landscape in Minecraft, you might stumble into the
colourful history of a legendary monarch in Dwarf Fortress, exploring their
family tree and realizing that their descendants occupy your world to the
present day. This type of thought and attention to detail can make gener-
ated content feel special, even if the only human touch in its creation was
in programming. Ultimately, PCG is a tool that supports and extends our
creativity, rather than replacing it.

9.3.2 Work smarter (and probably harder)

Experimentation with AI has given us many other tools to assist in nearly
every part of the game development process. The solutions created are im-
perfect, and those of us who work in the industry don’t have to harbour fears

270

Rise of the Machines

of being made redundant by them. At least, not as of this writing, though it
would be foolish to assert that we’re never in danger of the great automation
chopping block. In this section, we’ll explore a few ways that AI is already be-
ing used in different parts of the development pipeline, and some techniques
that might see more widespread use as they improve.

Art. Art is one of those things that reasonably skeptical but still close-
minded critics have historically claimed to be “above” computers. Computers
can’t create great art. A computer can’t write a symphony.11 Yet, we’ve already
discussed examples of procedurally generated art assets and animations; per-
haps not what those same critics would refer to as “great art,” but impressive
and helpful nonetheless.

A future application of AI in game art might be the use of generative adver-
sarial networks (GANs). GANs are a flavour of machine learning designed to
create, rather than classify or interpret, based on existing examples. Though
not yet adopted in game development, in theory, GANs can be used to gen-
erate pretty much anything with enough legwork in tweaking architecture
and training. In 2017, graphics tech giant NVIDIA famously demoed a GAN
that generated photos of nonexistent humans based on a dataset of celebrity
faces. The issue with trying to use a GAN for something like texturing assets,
at least for now, is the amount of training data required; by the time you
had enough textures in your desired style to train with, you’d have more
than enough for a whole franchise of titles.

Some other emerging tools that could aid in creative production are
AI-driven upscaling and style transfer. Upscaling is the process of increasing
the resolution of an image; if done naively, it results in blurriness, blockiness,
and other general unpleasantness that comes from blowing up a thumbnail
to the size of a billboard. AI upscaling increases image size while intelligently
trying to fill in the details, and could be a valuable tool in something like re-
mastering a game where the only source materials available are in the much
lower resolutions of the old days. Style transfer, as youmight have guessed, is
the transfer of an aesthetic from one thing to another. Tools like DeepArt.io
and EbSynth let users transfer the visual style of a painting to a photo or
video respectively, and might one day find use in creating or processing a
game’s visuals.

Programming. Automated analysis and code generation are a part of any
modern programming workflow, but to call them AI would be a stretch—to
grossly oversimplify and anger any programmers reading, these tools typ-
ically chalk up to word-matching and very fancy copy-paste. Though one

11 For any readers interested in composing music for games, we would be remiss not to point
out that this is already a challenge being tackled by AI. A couple of examples: OpenAI’s Jukebox
project, which among other things generates audio of existing artists covering existing songs that
they’ve never actually sung; and Taryn Southern’s album I AM AI, which was coproduced by AI.

271

The Game Designer’s Playbook

thing AI is helping us with is identifying potential bugs before they can be
introduced. In 2019, Ubisoft and Mozilla announced a collaboration to im-
prove Ubisoft’s Clever-Commit tool. Clever-Commit is a systemwhich employs
machine learning to predict whether a programmer’s suggested changes to
code will introduce bugs, based on past samples of code known to be stable or
problematic. In the event that code is flagged as suspicious, the tool presents
the developer with an example of the edits used to fix a similar piece of code
from the past, giving a basis for the work to be improved.

AI is also helping us indirectly by helping to reduce the need for optimiza-
tion to achieve increasingly high framerates at increasingly high resolutions.
Basically, the higher your resolution, the more pixels your graphics processor
has to figure out, and the slower things get. Given that we’re clearly on track
to all have adopted 16K Ultra-Ultra-Ultra HD monitors at 480 Hz within the
next decade if Samsung gets their way, this is every developer’s nightmare.
Deep learning super sampling (DLSS) is a technology that allows games to
render at a low resolution before being upscaled to a higher resolution via
machine learning. In other words, push fewer pixels initially, and then have
your game upscaled to glorious high resolution by the van Gogh edition of
Skynet. While this is more of a consumer-facing technology, assuming that
DLSS continues to improve, it may eventuallymean that developers can push
graphics much farther under the assumption they’ll have a helping hand to
reach the resolutions that players expect.

Testing. Armed with their GAN-generated textures and bug-free code en-
gineered to render at 32 × 18 pixels thanks to DLSS, the developers of the
future will still need to test their creations. Today, this is another area where
AI is already helping us to become more efficient and effective. Since game
testing has historically been the work of (paid) humans playing in real time,
the prospect of an (unpaid) AI that can find issues for us is quite attractive.

In the area of quality assurance (QA), which aims to uncover bugs and
other technical issues, AI testing can help root out crashes or unintended
behaviour by rapidly executing many different paths through a game. Larger
developers have already created in-house tools which use AI agents to this
end; at GDC in 2016, mobile studio King shared an AI-driven tool created
to help test Candy Crush.12 Among other things, one of the features touted
was the ability to identify sequences of actions resulting in a crash, or areas
where the game’s performance started to lag behind.

QA is distinct from playtesting, which is targeted at identifying issues re-
lated to user experience, like fun and usability (more on this distinction and
testing processes in Chapter 11). Though generally a more complex prob-
lem for AI to handle—asking a computer “when does it crash?” is much

12 You can watch the talk here, if you're curious: https://www.gdcvault.com/play/1023858/
How-King-Uses-AI-in

272

https://www.gdcvault.com/play/1023858/How-King-Uses-AI-in
https://www.gdcvault.com/play/1023858/How-King-Uses-AI-in

Rise of the Machines

easier than “how do you feel?”—this is something that developers are already
starting to attempt.

Another goal of King’s AI suite is to help designers estimate the degree
of difficulty offered by different levels, helping to shape suitable challenge
curves. Rovio, the studio behind Angry Birds, has also used AI to estimate the
pass rate of its levels, giving designers a basis to tweak difficulty.13 They’ve
also announced plans to make their tool self-correcting, making level design
adjustments on its own to later pass down for approval. Mobile studios aren’t
alone in these endeavours, either; Ubisoft employed ML agents to test its
combat system in For Honor,14 while Valve used automated testing to help ap-
proximate the intensity of encounter sequences generated by its AI director
in Left 4 Dead.15

Community Management. At launch, a developer’s job isn’t done; at
least, it’s not done unless they shut down their servers eight months after
release because of “poor retention” in an objectively unfinished game that
received all of one update (whose sole purpose was to add a few microtrans-
actions). If you’ve got any sort of player community, it’s your job to keep
relations running smoothly. Among other things, this includes identifying
cheaters and moderating player communications to remove harassment and
offensive material. Automated systems have a long history here, like simple
string-matching to identify and censor slurs before they can be broadcast.
More advanced tools like Valve’s anti-cheat detection function in a similar
way to antivirus software, identifying the signatures of any software cheats
installed by unscrupulous players.

This is another area where AI, by way of ML and natural language process-
ing and machine learning, seems naturally suited to assist our efforts. These
solutions certainly aren’t something that should be relied on exclusively;
having a feature for players to manually report harassment, for example, is
always a must. But AI can help us to be more efficient, and manage com-
munities beyond the scope we might otherwise reasonably handle. League of
Legends developer Riot, for instance, previously shared a few details of an in-
ternal system that uses machine learning to validate user reports pertaining
to abuse and catalogue them alongside chat evidence before automatically
issuing bans.16 While this type of technology is certainly promising, anyone

13 As discussed in a post on Wired here: https://www.wired.com/brandlab/2019/06/ai-makes-
angry-birds-even-more-engaging/

14 As noted in this GDC talk: https://www.gdcvault.com/play/1026281/ML-Tutorial-Day-
Smart-Bots

15 As discussed in Gabe Newell’s Edge article, see Note 8.
16 Though some of the original information is no longer available on (unarchived versions

of) Twitter or Reddit, you can see some of the context in this IGN snippet: https://www.ign.
com/articles/2014/07/21/riot-games-dishing-out-strict-punishment-to-toxic-league-of-legends-
players

273

https://www.wired.com/brandlab/2019/06/ai-makes-angry-birds-even-more-engaging/
https://www.wired.com/brandlab/2019/06/ai-makes-angry-birds-even-more-engaging/
https://www.gdcvault.com/play/1026281/ML-Tutorial-Day-Smart-Bots
https://www.gdcvault.com/play/1026281/ML-Tutorial-Day-Smart-Bots
https://www.ign.com/articles/2014/07/21/riot-games-dishing-out-strict-punishment-to-toxic-league-of-legends-players
https://www.ign.com/articles/2014/07/21/riot-games-dishing-out-strict-punishment-to-toxic-league-of-legends-players
https://www.ign.com/articles/2014/07/21/riot-games-dishing-out-strict-punishment-to-toxic-league-of-legends-players

The Game Designer’s Playbook

familiar with the League community will attest to the fact that Riot’s tool has
far from managed to eliminate toxicity in the game’s player base since its
initial use in 2014.

Research. Though not the focus of this book, formal research in the study
of games and player behaviour is certainly a contributor to the field as a
whole. In games research, the promise of AI help is mostly concerned with
augmenting human analysis, making it possible for analysts to crunch oth-
erwise impossibly large datasets. ML, for example, has been used to extract
typologies of players—classification into groups based on play behaviours and
motivations—from the gameplay data of thousands of players. Academi-
cally, it’s also been employed to try and predict player retention given data
after-the-fact, a technique that would obviously prove itself indispensable in
numerous commercial contexts as well.

An important topic in AI research, far from unique to game development,
is making sure that these tools we create aren’t causing any unanticipated
harm. Certain facial recognition algorithms have been found to work more
effectively for specific races, while automatic resumé scanners have been ac-
cused of replicating both gender and racial biases. Google has faced a number
of controversies relating to its AI efforts, including allegations that its hate
speech detection is racially biased. These types of issues ultimately aren’t the
“fault” of AI itself; ultimately, we’re the ones writing rule-based systems, and
providing the data for ML systems to learn. The uglier tendencies of human-
ity to discriminate and exhibit bias can thus become reflected in the tools
we create, risking a perpetuation of systemic problems into the next stage of
our technological development.

It might be easy to dismiss these concerns as something for other fields
to worry about. Racial discrimination in an automated tool used by law en-
forcement is terrifying, but is unlikely to pose a problem in using machine
learning to make prettier textures. Except tools that us game developers
might use for something like banning players on the basis of chat inter-
actions run the risk of exhibiting those same biases. And if we’re training
content-generation systems based on content from a very homogenous
group of human creators, we risk perpetuating the lack of diverse voices
that is already an uncomfortable problem in the games industry. We might
have other types of bias potentially unique to gaming to consider as well. If
we use an AI tool to tweak our level designs based on predicted “average”
behaviour, we could accidentally introduce a bias against players with acces-
sibility concerns. Is it acceptable to speed up our process at the risk of making
our games less inclusive? Obviously not—but it’s something we can’t pretend
is impossible.

Design. To return to a less concerning contemplation, one might wonder
if we can put all of these tools together and create games from the ground

274

Rise of the Machines

up with AI. The largest puzzle piece missing from our current discussion is
a game’s design: ruleset, mechanics, controls, and all the ideas about what
assets and code need to happen to create the intended experience. And while
a massive integration of everything we’ve discussed here glued together with
an AI creative director hasn’t happened (yet), AI-powered game design is
something that people are already pursuing.

Ludi, a system for generating board games, produces its creations via a
description language containing definitions for atomic pieces of a game’s
design, like win states and individual rules around player movement. With
some human assistance to convert its generated rulesets into readable lan-
guage, a board, and pieces, Ludi can effectively author boardgames. Although
this might sound like purely a research conversation, two of its games have
been published, credited to Ludi itself and creator Cameron Browne. Conse-
quently, you can play “Yavalath” and “Pentalath,” two games that wouldn’t
exist were it not for the AI17 that came up with them.

Digital game development isn’t safe from the rise of the machines, either.
The AI system ANGELINA made waves a few years ago for its ability to gener-
ate a variety of game demos including platformers, 3D third-person games,
and even a few inspired by politics. Angelina is one of the closest things to
date of an end-to-end system, picking out assets for its creations from search
engines and selecting from rulesets with predefined code implementations.

Thankfully, Angelina isn’t coming for our design credentials any time
soon, though she might eventually. The games Angelina generates look like
terrible asset flips; while impressive and probably enough to get on a digital
storefront in today’s oversaturated marketplace, they’re not exactly winning
game of the year any time soon.

But while creating entire games is out of reach for now, AI continues
to be an important part of game development, as it has in the past. Even
though a lot of what we admire in our artificially intelligent companions
and adversaries amounts to design trickery, they are still part of what makes
our experience worthwhile as players. And in other manifestations, AI is
encroaching on our work as developers.

Irrespective of whether AI will be able to keep up with human players
or developers in any reasonable timeframe, it’s certainly not vanishing from
the development landscape any time soon. Our goal, as it always has been, is
creating a better player experience. And AI is becoming better at contributing
to that goal, both in fueling the characters that we play with and supporting
the creativity that drives what we set out to make next.

17 For readers familiar with the area, Ludi is more specifically an evolutionary computation
system—basically an algorithm that repeatedly creates things, evaluates them in some way, and
recombines the best ones to create the next “generation” of results.

275

The Game Designer’s Playbook

Expert Profile: Regan Mandryk—The science of fun

Professor at University of Saskatchewan

If you think about jobs that let you work with games for a living, you’ll probably
start an internal list of industry development positions: designer, programmer, artist,
producer, QA tester, and so forth. But if you’re looking to dedicate your life to the bet-
terment of play, the industry isn’t your only option. Especially over the last couple of
decades, a vibrant community surrounding games has emerged in academia, where
the science of gaming forms the subject of research.

ReganMandryk is amember of that community, and as one of Canada’s first research
chairs focused on digital games, she’s helping it grow stronger every day. When we sat
down to chat with Regan, she talked about how working in academia has shaped her
perspective of design, challenges in both development and research, and how she
thinks games can improve our lives.

Despite her prominence in games research, Regan didn’t start out studying games.
She describes her journey as a “winding path,” having completed her undergradu-
ate degree in mathematics and physics before finishing a Master’s in kinesiology. It
was when she started her PhD that games entered the equation, as she put her pre-
vious experiences together to create mathematical models of game experience using
players’ physiological data (e.g., heart rate). From that point forward, games became
Regan’s focus, and have stayed that way for the past 20 years.

Although the research community around games is a thriving one, Regan says she
still feels the need to help “legitimize” games research, which was often viewed his-
torically with less importance than it deserves. She notes that decades prior, the status
of games as a leisure activity diminished their research appeal in comparison to things
like how people use computers in business. But with games and play being a univer-
sal part of the human experience, understanding our relationship with them is a very
valuable course of study.

When we asked Regan what excited her most about working in games research, she
paused, leaving us for a few moments under the silent, merciless stare of her prairie
dog plushie. “You said there were going to be no hard questions!” she protested with
a laugh, struggling to pick from the myriad of things central to her passion. A lifelong
lover of learning and creating new knowledge, she settles on the still-understudied
nature of games as particularly intriguing: “We don’t understand [games] at all [. . .]
We’re still breaking ground as a research community, but on something that’s not
niche at all. It’s something that’s really core to people’s lives.” Regan mentions several
questions that have yet to be answered, such as why we choose to play certain games,
how games affect our relationship with others, how they can serve as tools to manage
stress, and why we play games in the first place.

Of course, understanding games in general depends on understanding how we in-
teract with them, which is where interaction design comes in. Regan mentions that
coming up with a satisfying definition here is tricky, breaking it down with the clinical
precision of a lifelong researcher. She describes interaction in this context as, fun-
damentally, how people work with computers (or games on a computer). From a
research standpoint, this is still something we’re working to understand, serving as
the catalyst for the entire field of HCI: “We know a lot about how people work. And we
know a lot about how computers work. But we’re still trying to figure out how people
work with computers, and how people work with each other over computers.”

276

Rise of the Machines

(Continued)

The second half of that equation, the “design” part, is equally hard to pin down,
but Regan describes it as a combination of invention and discovery. First, a designer in-
ventssomething, whether a physical device, interaction, or otherwise. Then, they work
to discover how that invention can benefit people, and how it can be improved. Putting
the pieces together, Regan characterizes interaction design in games as determining
how players execute in-game actions, the tools given to players (e.g., hardware, UI),
and how players can interact with one another (e.g., chat, emotes).

This definition of interaction design is an all-encompassing one, with decisions des-
tined to shape every moment of a player’s experience. Throughout her years working
with games, Regan says she’s seen substantial shifts in how these experiences are de-
signed, which she attributes to an overall increase in complexity and the widespread
availability of development tools. She describes the growth of engines like Unity and
Unreal as a “double-edged sword,” providing a strong technical foundation for devel-
opment while imposing some quiet constraints on design: “We limit ourselves to what
the tools could do, instead of our vision of what could be done.”

Regardless of how you create games, Regan says that thinking about players is
central to good design: “You need to understand how people work.” From an edu-
cation standpoint, she advises that those with an interest in game design, especially
an academic one, should work on establishing their knowledge in human-computer
interaction. She describes games as a specific case of HCI, emphasizing that a general
background in the broader field strengthens one’s personal understanding of games.

Regan notes that HCI is just one of many disciplines that help to inform game design
and research, saying that one of the most challenging aspects of working in games is
their interdisciplinary nature. She offers one of her current research areas, applying
games in the area of mental health, as an example. “To make a contribution,” she
says, “you need to understand games, you need to understand mental health, you
need to understand treatment, [and] you need to understand [research methods].”
Regan notes knowledge transfer and communication among a research team as key
challenges, in much the same vein as facilitating communication between different
development specializations such as art, animation, and programming.

In addition to games for promoting and improving mental wellness issues, Regan
works on several different projects in her capacity as a professor and research chair.
She describes general work in games user research as a standby in her research port-
folio, centering around developing new methods to further our understanding of
player experience. Some of her work, for example, has explored our physical reactions
to gameplay, following from her PhD at the intersection of games and kinesiology.
Another recent focus of her research is exploring how games can promote social con-
nectedness, help us form new relationships, and combat loneliness—somethingwhich
has become especially relevant in light of pandemic restrictions over the past couple
of years.

After two decades working in games research, Regan says she’s eager to diversify
her knowledge further, equipping herself to explore the applications of games in other
fields, like treating anxiety and depression. Finding the time to do this can be challeng-
ing, she says, with in-depth literature reviews playing less of a central role in her work
as a senior researcher in comparison to her time as a graduate student. Nonetheless,
she finds these exercises essential to pushing herself forward, as it becomes harder
over time to find new surprises without exploring beyond your expertise: “To be able

277

The Game Designer’s Playbook

(Continued)

to go deep into something and really engage with it is a privilege.” Indeed, the deep
connection that researchers form with their work is something special, and for Regan,
there is little more rewarding than understanding the science of fun and games.

Further reading

Artificial Intelligence and Games by Georgios N. Yannakakis and Julian Togelius
(Springer). ISBN: 978-3319635187.

A great introduction to applications of AI in games, providing a high-level overview
of many different techniques and some of their design implications.

Procedural Generation in Game Design edited by Tanya X. Short and Tarn Adams
(A.K. Press, CRC Press). ISBN: 978-1498799195.

Authored mostly by indie developers, this book contains a wealth of concepts and
techniques related to procedural generation.

Three States and a Plan: The AI of F.E.A.R., paper by Jeff Orkin (available freely online via
MIT).

A short but technical description of goal-oriented action planning as implemented
in F.E.A.R. This is a great resource for programmers and systems designers to be sure,
but also a fascinating glimpse into the trickery behind good AI suitable for any game
designer.

Hands-On Machine Learning by Aurélien Géron (O’Reilly). ISBN: 978-1491962299.

A practical and very technical introduction tomachine learning techniques. If you’re
fascinated by machine learning and want to learn more about how it works, this is a
great volume to work with. If you’re a programmer, it has a set of companion exam-
ples in Python that will have you up and running with live examples in shockingly
little time.

Sources on the history of AI

Campbell, Murray et al. (2002) Deep Blue. In Artificial Intelligence 134(1–2),
pp. 57–83.

Schaffer, Simon. (1999) Enlightened Automata. In The Sciences in Enlightened Europe
(eds. William Clark, Jan Golinksi, Simon Schaffer). University of Chicago Press. ISBN:
9780226109404.

278

Rise of the Machines

Exercises

Atlas rules

Imagine a game where players will be constantly moving through a number of small
levels (e.g., a dungeon crawler, roguelike, or platformer with lots of little “rooms”).
Pretend that you will be planning to procedurally generate levels for your game. Write
out a complete list of rules for how the levels should be constructed, without drawing
anything.

Once you have your complete ruleset, sketch out a level following that ruleset. Now
try and “break” your design—without violating the rules, see if you can create some-
thing that doesn’t fit in with what you’d actually want. Note that this is the type of
thing you’ll have to deal with if you end up going for procedural generation: coming
up with rules and tweaks will be an iterative process!

Think about how you might use this type of exercise for designing objects, levels, or
other bits of content in general. Even if you’re not using procedural generation, could
a written ruleset help you to keep your designs consistent?

Build-a-brain

Pick a gamewith distinct “flavours” of AI—think of different zombie types in Left 4 Dead
or the four ghosts of Pac-Man. Come up with an idea for a new AI to add to this cast of
companions or foes, in a way that would complement the game’s existing AI (and the
player). Focus on behaviour, rather than appearance or lore (though you can come up
with a visual design and backstory if that helps you imagine what the character would
be like).

Draw a simple behaviour tree illustrating a slice of your character’s behaviour. If you
haven’t heard of a behaviour tree, a bit of online research will quickly get you ac-
quainted. In simple terms, a behaviour tree is basically a flowchart with conditions that
will tell an AI character what to do at any given time based on things like environment,
what the player is doing, and the passage of time.

279

10

Making the Thing

Starting a project is hard, but with the right idea, finishing one is easy. Every
game starts with an idea, and the procedural crux of game development is
coming up with a fun idea. Most creators are best advised to work alone in
this endeavour. It might take weeks for an idea to land that seems worthwhile
to you, and when it finally does, you should always stick with the first one
that you like. Avoid changing any aspect of that first idea; if it’s what ignited
your inspiration, you should hold onto the experience exactly as you initially
envisioned it.

From that idea, flesh out your game’s design in full. Describe every me-
chanic, write out your control scheme, and sketch out the details in every
last level. Consider each decision carefully, but avoid going back to make
any changes; it’s a waste of time to waffle on what your design intuition tells
you. Only after your design is fully fleshed out should you start to build the
game, so that you don’t find yourself in a situation where you’re unsure of
what to do next. With a fully completed design in your back pocket, devel-
opment time will be much shorter. After your game is completed, make sure
to bug-test for at least a few weeks as a precaution—but feel free to cut this
short if your planned release date doesn’t allow for it.
The process described here isn’t a guaranteed recipe for critical acclaim, but
assuming that your initial idea is fun, it will guarantee you net positive re-
ception. It also proves something else: game development is simpler than
its reputation would have you think. Your process revolves around that first
idea; this is why, even at large studios, no job is more coveted or valuable
than the role of “idea guy.”

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0010

Making the Thing

This story, as you can undoubtedly tell, is an abject lie from start to finish.
The only truth to it is that the process described certainly won’t guarantee
critical acclaim. In fact, short of setting your office space aflame, it’s pretty
much the worst workflow you could adopt. And if you have good insurance,
arson might be a better business plan in the long run.1

To set things straight, let’s start with correcting (almost) everything wrong
with the garden path we’ve just described. First, finishing a project is far
harder than starting one, and a “fun” idea on its own is barely worth the
cocktail napkin on which it’s written. Anyone who self-describes as an “idea
person” is usually insufferable. If you’re applying this label to yourself, stop
it, buckle down and learn, and start calling yourself a designer in training.

That initial ideation process should be collaborative and iterative, like ev-
ery other aspect of game development. This means that any part of your idea,
your design, or your build should pretty well never be set in stone. Exploring
alternatives, testing as early as possible, and cutting out swaths of what you
thought you were going to do in favour of something better are things that
can and should happen.

Simply put, game development (or at least good game development) is far
from simple. In the wild, gamedev is messy. Most of the things you come
up with—new characters, feature tweaks, or the entire core of your game—
will start as random ideas. To make those ideas work, we need a process that
helps us transform all of our random ideas into satisfying interactions, solid
features, and ultimately better games.

There are a number of development processes that we could explore here,
including the truly terrible one suggested at the start. The nature of the pro-
cess you come upwith will depend on your values as a studio. If you prioritize
a strict hierarchy, your development might look like this:

1. Come up with a list of ideas for your current goal.

2. Ask your top management which one they like.

3. Hack in whichever idea was the manager’s favourite.

4. Repeat with everything that’s left until you’re ready to ship.

If you prioritize making as much money as possible in as little time as
possible, you might do this instead:

1 Disclaimer: do not actually do this. If you enjoy fire, the authors suggest a backyard fire
pit with sufficient safety measures, an extinguisher nearby, and the number of your local fire
department handy. Make s’mores, not war.

281

The Game Designer’s Playbook

1. Look at top-grossing games on the app store.

2. Pick the simplest game in the top 25 apps.

3. Copy it exactly.

4. Re-skin the game with a theme centred around food, anime, dragons, or
interior decorating.

Obviously, neither of these processes are advisable. The first is a totalitarian
regime, and the second is a get-rich-quick scheme of dubious legality. Just
like in real life, either option is a developmental disaster waiting to happen.
Unfortunately, these types of workflows do exist, and judging by the cur-
rent state of the mobile market, there are an alarming number of success
stories emerging from approach number two. Nonetheless, for every studio
that creates the next runaway match-3 success, you can probably find a hun-
dred similar games gathering dust on the fourth page of search results. And in
your heart of hearts, do you really want to be responsible for Sugar Smack 4:
Gingerbread Dragon Adventure Casino?

At any rate, your actual development workflow should, unsurprisingly,
prioritize creating a good experience. This isn’t to say that respect for your
creative management and the almighty dollar should be defenestrated, but
they shouldn’t drive your every decision. A better approach to game devel-
opment is iterative, collaborative, informed by other games without verging
on plagiarism, and includes player voices. After stitching a few early ideas
together, Frankenstein-style, you’ll be constantly building on a prototype, at
times making additions or cuts (mostly cuts) to the design plans developed
along the way. At the end, you’ll have a finished product that’s been through
round after round of polish and testing, and one that’s much stronger
for it.

Our focus throughout this chapter is exploring how we arrive at these
kinds of processes, the methods you can employ to support their different
components, and eventually, how you can develop one of your own. But
there is one more truth to that first story that we need to address first: every
game starts with an idea.

METHOD: Personas. A persona is a detailed description of a hypothetical person
representing your target market. Usually, you’ll create a couple of different personas
reflecting the diversity in experience, play habits, and likes or dislikes of your game’s
intended audience. The personas you create might be very specific, or a bit more
general—though a few barebones sentences won’t be enough detail for you to re-
ally start understanding who your players are. Some items you might want to include
with a persona are things like name, age, occupation, place of residence, cultural
background, favourite games/genres, skill level, platforms they own, and time spent
playing games in a typical week.

282

Making the Thing

Figure 10.1 If this were a development wiki, we’d go into detail about Carlos’ gaming
habits, daily routine, and favourite entry in the Metroid series.

Bear in mind that your personas might evolve throughout development, and it’s
very beneficial to interview real people from your target audience if you can.

10.1 Chasing the lightbulb

Before development starts, you need to have at least a very rough idea of your
core experience—or a few different ideas to play with until you find one that
sticks. But coming up with ideas is something you’ll need to do throughout
development, as you refine that core experience into a working game. And
when problems arise, as they always do, coming up with creative solutions
to those problems will have you back at the drawing board as well.

Sometimes, the best ideas will be the product of chaos. You can
spend hours in front of a blank document with only a few bullet points to
show for it at the end of the day, and then get struck by something bril-
liant while you’re in the shower. You might find yourself springing out of
bed just as you’re about to fall asleep, ready to scribble out a few words on a
whiteboard that will guide your next four weeks of work.

Despite what self-proclaimed “idea people” might tell you, though, this
isn’t the only way to hit on a winner. And these types of oddly timed epipha-
nies usually emerge after you’ve put in several solid hours of intentional
thinking and concept work on your own or with a team. Chalking this up
to coincidence is objectively foolish, though mystics might argue that wait-
ing for a breakthrough to emerge from the ether without any prior work is a
legitimate strategy.

If you’re hoping for a more refined ideation process than clutching some
amethysts to your chest and crossing your fingers, then you’ve come to the

283

The Game Designer’s Playbook

right place. There are a lot of different tactics you can employ here, and none
of those that we describe are mutually exclusive. Quite the opposite, in fact:
in a perfect world, you’d probably use them all.

This isn’t to say that this list is exhaustive, or that each and every one of
these techniques will be equally useful for every project. Nonetheless, each
can serve as both a source of ideas, and far more valuably, a means to refine
them into something that will contribute positively to the experience you
create.

Meet with your team. Coming up with ideas on your own is fine, but if
you can rope in a couple of trusted colleagues, the conversation that emerges
will probably be more useful than the one you’d be having inside your own
head. Bouncing ideas off of colleagues is a great way to come up with an
initial spark or solve a problem you’re facing. Especially for indie studios,
this can be a good way to select and refine the rough idea defining the core
of your experience. If your studio only has half a dozen people, making sure
that all of them can be passionate about the game you’remaking is practically
a must. And in this respect, it’s perfectly okay to ask yourselves what type of
game you’d like to play—though you shouldn’t rule out creating something
for a completely different type of player by any means (more on that later).

There are several “structures,” as it were, that you can try to facilitate a
team brainstorming session. Plain old conversation is just fine, despite the
insistence of internet gurus that unlocking the secrets to their Holistic Agile
Ideation Framework is definitely worth the asking price of $59.99 a head to
sit in a virtual seminar. If you’d like to try something a little flashier, you
can adopt a strategy to guide your conversation. The so-called “blue sky”
method encourages putting out ideas regardless of their technical feasibil-
ity. The thinking here is that any intriguing ideas will eventually be “pulled
down to earth”; in the context of game development, bits of a ridiculously
ambitious idea might be distilled into a more manageable form. If you’d like
to know more about blue sky, we recommend finding an experienced col-
league instead of relying on a search engine, lest you become buried in a sea
of cloyingly inspirational infographics. At any rate, another aid to your struc-
ture will be the tools you use to keep track of ideas—no need for anything
fancy here, as a cloud text document, whiteboard, or flurry of sticky notes
are all acceptable.

Collaborative brainstorming is relatively easy to orchestrate successfully,
assuming you take a couple of necessary steps to make sure that your sessions
fall in the five percent of meetings around the globe that actually accom-
plish something. First, avoid dragging an unwieldly number of people to an
ideation session. Sticking twenty people around a table and having them
raise their hands to talk will achieve little beyond script material for an awk-
ward sitcom. If you want to include more than four or five participants, split

284

Making the Thing

yourself into smaller groups so that everyone has a better shot at being an
active voice. Reconvene after you’ve had a chance to speak in your groups,
and try to avoid long sessions with one person summarizing what’s already
been discussed.

Other key measures to take here are honesty and equality. If you’ve in-
vited someone to a brainstorming session, it should be assumed that their
opinions mean just as much as those of anyone else. Enforcing a strict hi-
erarchy here is a good way to alienate your employees, and turn everyone
into sycophants for the highest-paid person in the room. This brings us to
honesty, the most critical thing to enforce. There are a number of quotations
from motivational speakers and entrepreneurs alluding to some variation of
“there’s no such thing as a bad idea,” usually with some caveat about bad
execution. Thankfully, most people have clued in on the fact that this is a
blatant lie. There are plenty of bad ideas, such as an idle game about filling
out tax returns, a combat system built around quick-time events, or using a
two-party system as a basis of government. Bad ideas might be able to even-
tually turn into decent products with enough finessing, and you might pick
something interesting out of a bad idea to inject into a good one. But the
truth remains that some ideas are best left to decay in the memories of those
subjected to them.

The point here is that your team should feel like they can say that an idea is
terrible without hurting anyone’s feelings or jeopardizing their future. Being
a cynic in a brainstorming meeting shouldn’t put you in danger of hushed
whispers about your incapability of being a “team player,” as long as you’re
not attacking your colleagues along the way. The best team discussion, and
really the only one of value, is an honest one. Most first ideas are outright
lousy, or at the very least wildly underdeveloped, and honest reflection is the
only way to eventually land on something great.

Look at (and play) other games. One of the best ways to come up with
a shortlist of ideas for a new game is to peer at what’s already out there. If
you have absolutely no idea what to make, return to your favourites, play
the games your friends have been nagging you to try, and check out some
of the latest indie darlings and hyper-anticipated AAA titles. If you have a
vague idea of the type of game you’d like to make, pick out some games in
the adjacent space and play those. Identify some moments of play, narrative,
or bits of interaction that you find intriguing or satisfying, and note them
down as inspiration. Try combining two or three moments from different
games in your head, and imagine the type of game that union would birth.

One strategy you can use to assist in divining an initial idea, or fleshing out
bits of your experience after the fact, is to create a mood board. Traditionally
used in fields like interior design, a classic mood board is a collage of images
and bits of text meant to inspire. Amood board for game developmentmight

285

The Game Designer’s Playbook

include screenshots, concept art, dialogue snippets, music clips, mechanic
descriptions, and gameplay videos from games that inspire you. This can be
particularly useful in shaping a game’s aesthetics and atmosphere, though
it can also serve to collect lots of intel on interactions via descriptions and
video to help shape your design.

More formally, looking at other games is the basis for competitive analysis,
a technique we’ll explore later in the chapter. In short, competitive analysis
involves looking at how other games accomplish some goal or another, learn-
ing from their successes and failings to create a solution that works for you.

Examine your experience. There’s a good reason behind that series of
expressions related to the imitation of art and life by one or the other.
Many of the most powerful creative works relate to the lived experience
of their creators in some way. Looking back on your life and seeing what
stories you—or your team, families, and friends—have to tell can provide
a wealth of inspiration, particularly if the subject of your brainstorming

METHOD: User stories. In general, user stories are short snippets describing the
ideal version of a feature from a user’s perspective. A soul-crushingly boring example
is the save menu in a word processor: “I want to save different versions of my work, so
I can use the save menu to make a new copy of my document.” Archetypal user stories
are often in the form of an “I want” statement followed by an explanation, packaging
together a need the user has with the feature that fulfills that need.

In games, we can speak of player stories, quick descriptions of gameplay or features
from a player’s perspective. This doesn’t mean that you should start every player story
with “As a player, I want . . .”—the structure can be helpful if you’re not sure where
to begin, but should you write out dozens of player stories like this, the effect will
be dangerously similar to ingesting a bottle of horse tranquilizers. Instead, focus on
writing out (or gathering clips and images) of cool moments you want to create. If
you wanted to create a fun system for the type of emergent gameplay in Metal Gear
Solid V, you probably wouldn’t start with “As a player, I want to have lots of options in
combat, so I can select from ten different types of hollow-point bullets.” Instead, think
about an interesting moment: “What if you could confuse an enemy by deploying a
ridiculous number of decoy balloons all at the same time?”2

It’s also worth noting that depending on your specialization, you might con-
sider user stories from the perspective of your teammates; for example, if you’re
programming a level layout tool, think about how your level designer likes to work.

2 Readers in the know will be familiar with the exploration of this scenario in-game by a certain
connoisseur of the arts known as Dunkey.

happens to be narrative. Drawing on your own experience or that of a loved
one (with appropriate permission, of course) gives you greater insight as to
what a story about that kind of experience should look like. Consequently,
the way you represent bits of your own life, whether mechanically, narra-
tively, or otherwise, will feel more real.

286

Making the Thing

This approach is particularly relevant if you’re keen to make a game with
themes like introspection, familial relationships, social identity, or basically,
anything related to understanding oneself as an individual. Take Celeste, for
instance, which explores a character’s journey in learning to cope with de-
pression and accept the “darker” parts of herself. Designer and writer Maddy
Thorson has shared that she was heavily inspired by her own struggles with
anxiety and depression, leading tomany of the thematic and story directions
taken by the game.3 The result is a story which feels potent and personal,
enhancing its emotional impact.

Examine themes or topics of interest. If you have no idea where to begin,
looking at a real-life concept can be a great jumping-off point. History, poli-
tics, art, science, mythology, rock collecting—virtually nothing is off limits,
and anything could form the core of a game, should it strike your creative
fancy. If you already have a core idea, exploring relevant subject material
can help you flesh out the details of your world, mechanics, art style, and so
forth.

If you’re planning to make something like a game for change aimed at
promoting awareness or perspective on a social topic, looking at history
and politics are obvious choices here. However, this type of brainstorming
is far from limited to the games for change category. Take Papers, Please,
a game about immigration. If you squint, you might think you’re looking
at a somber animation about living in the USSR circa 1970. But despite
openly being inspired by the conflict between East and West Germany in
the mid-twentieth century, developer Lucas Pope has stated that the game
isn’t intended to deliver any sort of political message. Instead, the histori-
cal and political elements of the game serve the primary purpose of getting
players more interested, with any critical thinking they inspire as a side
benefit.4

Consider your target players. In theory, you can pick a target audience
before you have a core idea, and then pick an idea based on that audience.
If you have literally no conception of the experience you want to create,
this decision will probably be motivated by money, and the idea you come
up with as a result will probably lack passion. Kicking off your development
with a question like “What experience will yield the highest 1-week retention
for heavy smartphone users between the ages of 45 and 54?” isn’t exactly the
stuff of dreams.

With some existing idea of what you want to accomplish, though, this
tactic can be the most effective out of any we’ve discussed thus far. If you’re

3 Maddy has discussed the themes behind Celeste in many different forums, but one particu-
larly candid discussion can be found on the development team’s AMA (“ask me anything”) on
the r/NintendoSwitch subreddit.

4 As discussed in an interview with The Verge: https://www.theverge.com/2013/5/14/4329676/
papers-please-a-game-about-an-immigration-inspector

287

https://www.theverge.com/2013/5/14/4329676/papers-please-a-game-about-an-immigration-inspector
https://www.theverge.com/2013/5/14/4329676/papers-please-a-game-about-an-immigration-inspector

The Game Designer’s Playbook

making a serious game of some sort, like a training simulation or educational
game, reaching out to your target audience to understand their needs early
on is a must. And no matter what you’re making, so long as you have an idea
of your core experience, reaching out to find out what your players like and
dislike about other games, and what their ideal experience looks like, will
help inform your design.

We should underscore the idea here that all of these tactics can be rele-
vant throughout development, not just at the ideation stage. Interviewing
players, looking to the real world for inspiration, or hammering out some
ideas with your team are just as viable for developing individual features or
improvements later in the production cycle. With that in mind, let’s have a
look at what the rest of that production cycle is like.

Figure 10.2 Soviet propaganda (left) versus Papers, Please (right). The game’s visual
styling, in addition to its soundtrack, evoke an atmosphere of totalitarian oppression
mixed with unbridled patriotism that is somehow aesthetically appealing.

Credit: Top propaganda image is cropped from a 1920s poster by Gustavs Klucis (public domain)
via Wikimedia Commons. Bottom propaganda image was a 1940s poster by El Lissitzky (public
domain) via Wikimedia Commons. Papers, Please was developed by Lucas Pope and published
by 3909 Games.

288

Making the Thing

10.2 Follow the rulebook

Game production has evolved quite a lot since the first commercial games
were created half a century ago. This evolution owes itself in part to tech-
nological advancements, such as cloud computing and the widespread
availability of distributed version control.5 Arguably, a much stronger driv-
ing force behind this shift is a change in thinking about how people work.
Understanding the human creative process, and how ideas can transform
themselves organically over time, has helped to shift the conventions of the
industry as a whole.

We won’t outline every major production structure here, instead boiling
down most approaches into two major descriptors corresponding to more
established and modern thinking respectively.

Waterfall development (the old school). If there were one word to de-
scribe waterfall development, that word would be rigidity. The idea here is
that development flows from one phase to another one-way, thus the aquatic
nomenclature. In its purest form, waterfall development means that there’s
no overlap between these stages, and certainly no hopping back and forth.
Waterfall is linear, it’s easy to understand, and it aims to wrap up the pro-
cess of development with a neatly tied bow, if one made from exceptionally
boring twine.

Now is as good a time as any to formally introduce those stages of devel-
opment we’ve been alluding to, since you’ll hear them discussed as part of
virtually any production cycle:

First is the Concept stage, during which you flesh out the initial idea for
a game’s experience. This includes tasks like brainstorming, creating
concept art, and rough storyboarding.

Next is Pre-production, where you work out the finer details of your game’s
design. This includes design documentation, sketching, and lots of
heated discussion with your creative director.

This is followed by Production, the part where you actuallymake the game.
Programming, art, sound, and the like live in this phase.

After the game is virtually complete, you enter Post-Production, focused
on things like testing and fixing bugs, ramping up marketing, and last-
minute polish.

Following post-production, your studio rides off into the sunset of Release
and Post-Launch, which is less of a sunset and more of an onslaught

5 In general, version control is a way of tracking the history of changes made to a collection
of files, such as a game’s codebase or assets. Distributed version control gives everyone on a team
access to the full history of said collection locally on their computer. As you can imagine, this is
quite helpful for inspecting the history of a file, or rolling it back to its previous state in a panic at
three in the morning after you’ve accidentally broken your prototype. An example of distributed
version control is Git. 289

The Game Designer’s Playbook

of responding to critical feedback, providing updates, and handling
community management.

Different sources might divide up these phases differently, and we should
note that what’s described here is vastly oversimplified. In some cases, it’s
quite misleading in implying what does (or does not) occur in all of those
stages leading up to release when following a more modern approach—as we
shall see momentarily.

METHOD: Sketches and storyboarding. The utility of sketching is obvious—it’s a
quick idea to get your ideas on the page (or screen) without spending too much time
agonizing over details. Sketches are also useful as a means to share your ideas with
teammates; if you’ve got a picture of something in your head, trying to convey that
in words alone is frustrating. There’s not much to explain about process here, apart
from taking a moment to address storyboarding. You probably associate storyboard-
ing with, well, stories—sketching out major plot points for something like a movie or
cutscene in sequence. And while storyboarding is useful for narrative in game devel-
opment, it doesn’t stop there. You can also “storyboard” interactions; if you want to
sketch out the flow of interactions for something like fighting a boss or buying new
gear, quick sketches of what the player sees at each step can be immensely helpful.

Figure 10.3 A storyboard illustrating the appropriate reaction to an individual playing
music through speakers in a public space.

290

Making the Thing

A linear progression between these phases as described would be what
you’d expect to see in a “true” waterfall approach to game development.
Other characteristics of such a development philosophy typically include a
focus on enforcing a strict management hierarchy, and attempting to de-
termine specific timelines long in advance. The result is a development
workflow guided by orders from the top, usually with little room for indi-
vidual voices. A waterfall dogma is also inherently resistant to change, with
design activities mostly sequestered to the early stages and testing near the
end. When followed to the letter, waterfall development is inflexible, with
any substantial design changes practically required to occur in the late stages
of development once testing becomes a priority.

If you’re thinking that all of this sounds a little too close to the hypo-
thetical example given at the beginning of this chapter, you’re right. Indeed,
more forward-thinking game development has largely moved beyond the
stoic linearity and aged mindset of a strict waterfall approach.

Figure 10.4 A waterfall development process.

Agile development (the new school). If waterfall development em-
bodies rigidity, then agile development’s core value is flexibility. The under-
lying motivation of agile game development is to respect the highly iterative
and collaborative nature of the creative process. It’s hard to give an accu-
rate procedural summary here, simply because “agile development” is itself a
very general term. Boasting a litany of non-mutually exclusive subdisciplines
with names like scrum, kanban, and lean, so much as uttering the word agile
in certain company will subject you to hours of quasi-motivational speech
about ‘adopting a value-added people-first teamplay optimization that fits
with your company culture.’

As you might have suspected by this point, one of the only drawbacks
of agile development is having to listen to people talking about it, so we’ll

291

The Game Designer’s Playbook

try to keep this brief. For our purposes, it’s not exceptionally valuable to
dwell on all of the subtle distinctions between different agile methods and
management tools with esoteric names like planning poker—go read a project
management book if you’re looking for that. Instead, here’s a quick look at
a sprint, the fundamental unit of an agile development timeline:

First, you spend a short while in the planning phase, understanding the
problem you’re currently working on, what you hope to accomplish,
and what you intend to do in service to that goal.

Next, most of your time is spent in implementation, where you aim to
prototype a complete solution to your problem, and refine it as much
as time reasonably allows.

After implementation, you test your solution to understand its efficacy
and identify potential issues.

Following this, you review and reflect on what you’ve accomplished, not-
ing areas for improvement and any insights about your project’s future
development.

The trick here is that each sprint lasts somewhere on the order of a week
to a month; a full development cycle comprises dozens of sprints, instead
of focusing on just a few linear stages. This isn’t to say that those produc-
tion phases we mentioned earlier are absent from an agile-focused approach.
It simply means that each of those stages have a heavy focus on itera-
tion, and there is often a far less defined boundary between them. Testing
is no longer exclusive to post-production, and emphasized throughout de-
velopment once any prototypes are available. Barebones prototypes will be
developed in pre-production or even at the concept phase, as experiments
in feeling out little bits of the desired experience. Essentially, each stage is
broken down into more manageable goals (e.g., “Get an initial version of the
HUD working”) which are tackled in sprints.

There are many different sprint flavours of a sort, each with varying riffs
on the basic stages of a sprint. The Google Sprint, for example, proposed in
the early 2010s, is a five-day (!) process for solving a problem. “Problem”
here will depend on context, but you can think of a suitable game develop-
ment “problem” as figuring out a way to implement a relatively small feature
(maybe something like adding the initial version of a new movement abil-
ity for your main character). One day of the sprint is dedicated to each of
mapping out the problem, sketching out potential alternatives, developing
an implementation plan, prototyping, and testing. Though such a timeline
might be a little too compressed for most game development tasks, industry
examples like this can certainly inform the approach you take.

292

Making the Thing

Figure 10.5 Iterative design, AKA the honest revelation that nothing anyone ever
creates is remotely acceptable the first time around.

Regardless of which sprint playbook you use for a basis, the core philoso-
phy remains the same: small units of work, highly focused, and completed
quickly by a small group of teammates with relevant experience.

METHOD: Competitive evaluation. Looking at other games can be a huge source
of inspiration, giving you ideas for core features, or how to address a particular prob-
lem. In your initial ideation, look at games that evoke a similar mood or target the same
type of player. If you’re making a punishingly difficult game with a dark atmosphere,
youmight look atDark Souls or Sekiro.Conversely, you’re probably not going to bother
with Animal Crossing—though sometimes ideas can come from the strangest places.

Similarly, competitive analysis can help you figure out how to implement a certain
feature (e.g., a collectible system for a platformer) or solve a problem (e.g., how to port
controls for a mobile version). One thing to note here is that you shouldn’t limit your-
self to games that do something well; dissecting failures is also invaluable in figuring
out what design choices you should avoid.

Another aspect of agile methodology is a focus on smaller teams that
work together, rather than individual work strictly directed by management.

293

The Game Designer’s Playbook

Different individuals or small groups might have slightly different goals dur-
ing a sprint—for instance, while a programmer, designer, and graphic artist
work are working on refining the HUD, a team with a composer, animator,
and 3D artist might be working on a rough cut of the teaser trailer. Usually,
each teamwill have a leader to help steer the ship, as it were, but there’smuch
more room in agile development for individual voices to make a difference.

As you can imagine, this line of thinking is also less structured than water-
fall development in terms of timing. Most proponents of agile won’t argue
for pre-planning the exact order and timing of every sprint at the outset of
development; instead, you’ll aim to have a fairly precise idea of the next
sprint, an understanding of what the next few sprints should look like, and
at best a coarse estimate for the total length of the project. Items might be
added to or removed from the “backlog” of sprint goals as a project wears
on, allowing new problems to be addressed or scope to shrink as necessary.

The rationale behind all of this, and its relevance to game interaction
design, is that agile development is naturally suited to address all of that
messiness we introduced at the beginning of this chapter. Creative work is
iterative, as we come up with better ideas while working on our existing ones
or solving problems. It’s also highly collaborative, as designers and artists
thrive on each other for inspiration and feedback. These two qualities are at
the core of agile development.

On top of all of this, another huge benefit of the agile way of thinking
is that it provides a clean way to chop the production cycle into manage-
able bits. Macroscopically, the entire development process is long, slow,
complicated, and ludicrously dauting. The notion of a sprint gives us a rea-
sonably simple way to divide this objectively terrifying process into much
more understandable and achievable chunks of work.

Agile development is quite fashionable in the tech industry, at least for
the time being. In game development, you’re usually much more likely to
see something that screams agile at a smaller studio, as opposed to a larger
one. This isn’t to say that all AAA developers stick to their guns with the
old ways of waterfall, but you won’t usually see the same kind of small,
highly efficient and collaborative groups working in sprints on a team of
hundreds.

User-centred design (a new wing for the new school). Every designer’s
greatest fear, aside from bad kerning, is handing their product to a user and
hearing the words “I don’t want this.” User-centred design (UCD) is about
preventing that moment from happening, by including users in the pro-
cess of design and development. UCD approaches chiefly aim to augment
and modify existing processes, rather than attempting to outright supplant
them. It doesn’t really replace either waterfall or agile development, though

294

Making the Thing

it certainly tends to fit more naturally in the workflow of the latter. In this
sense, UCD is less of a singular method and more of a philosophy.

In game development, UCD means bringing in representatives of your
target audience as early as possible, to make sure your creation meets with
their expectations, needs, and desires. At a very high level, user-centred game
development will first aim to understand who your target players are, gather
requirements from those players, prototype whatever you’re working on, and
evaluate it with—you guessed it—players from your target audience. Bits and
pieces of these steps integrate seamlessly with the stages of iterative agile
development. Understanding your players and their needs becomes part of
the planning phase. Prototyping is already a part of implementation. Andwhen
the time comes to test and review, getting feedback from players, as opposed
to other employees, gives you a more accurate picture of how a given feature
will be received.

Realistically, especially if you’re an independent developer, you won’t
have the money or the time to orchestrate bringing players in for every sin-
gle sprint. Following a UCD approach, then, you should try and work in real
players whenever you can—bring in a focus group to test out your core con-
cepts at the early stages of your project. Interview players in pre-production
to see what they love or hate about games similar to yours. And when things
really get rolling with your main build, recruit external playtesters who rep-
resent your target market instead of relying on in-house QA and designer
intuition alone.

All of this being said, you might think you’re best advised to print out a
copy of the agile manifesto, watch a few speeches from tech leads, pick out
a well-renowned set of guidelines for user-centred design with agile project
management, and follow it to a tee.

And you’d be completely wrong.

10.3 Re-writing the rulebook

It should be obvious by now that a good development plan will be flexi-
ble, embracing the volatility of the creative process rather than fighting back
against it. You’ll be aiming to manage that volatility by introducing a struc-
ture that capitalizes on the natural affinity to iterate and evolve as a project
goes on. But beyond this, the exact nature of what you adopt is up to you.
We’ve just finished singing the praises of agile development, but this doesn’t
mean that you have to pick up and memorize the nearest book on scrum
(please keep holding this one instead).

295

The Game Designer’s Playbook

METHOD: Living design documents. Design documentation is a necessity for
keeping track of your decisions, setting a course for the future, and communicating
with your team. The stuffier variants of design documents serve as a centralized refer-
ence for a large team and something to show to publishers, tens of pagesmutable only
by a studio’s creative heads. Ofmuch greater interest to an agile workflow is some form
of “living” documentation, accessible and editable by all (with appropriate consulta-
tion for any changes). For a small studio, this can be something as simple as a cloud
storage folder with some documents, preferably with synchronous collaboration so
that everyone can add in bits during a meeting. For larger enterprises and more so-
phisticated efforts, you might consider setting up something like an online wiki for
easier navigation of the complicated relationships between different aspects of your
design.

Our official advice here is to avoid getting too caught up in formal
methodology, especially if you’re a small team. Picking out some variation
of agile development that seems like it would work well for your team is a
great starting point. Learn some exotic jargon unique to the variant you’ve
selected, get your team on board for a daily stand-upmeeting where you look
at pictures of puppies, and try it. Plan out a couple of sprints, work for a few
weeks, and then take a step back. Is your current process keeping everyone
on track and focused? Have you made as much progress as you’d hoped to
make in the timeframe? Andmost importantly, is your team happy with how
things are going?

If the answer to any of these questions is no, then talk to your team, figure
out what is and isn’t working, and change your process as necessary. When
something goes wrong, look first to your process, rather than jumping to
blame something on a team member. If your programmers don’t like stop-
ping to talk about their last line of code five times a day, then re-evaluate
whatever meeting-happy version of agile you’ve adopted and make more
time for independent work. Remember that not everyone in the studio has
to follow the exact same process, either. Continually having five meetings
a day is almost certainly unsustainable for programmers. But assuming the
meetings aren’t all two hours long, it’s not so ridiculous for a small group of
designers at the start of a project.

The only definite rule to keep in mind here is that you should be figuring
out what works from experience, and going with that. If you’re looking for
a starting point, or some ideas to improve whatever you’re already doing,
we’ll outline our vision for agile game development here.Where appropriate,
we’ve noted the methods that support each part of the process. You can find
explanations of these methods scattered throughout this chapter.

If wewere a flashy business book given away at weekend corporate retreats,
we’d come up with an equally flashy name for the process we suggest, like
Thunder, The Labrador Method, or Vortex. But, since we’re a humble design

296

Making the Thing

book that just wants to be on your desk for a while, we’ll go with something
innocuous with the sole intent of not saying “process” eighteen times in the
next two pages.

10.3.1 Say hello to the Stumble framework

As every student, hobbyist, and professional developer knows, game devel-
opment is one long stumble in a dark basement, stubbing your toe on some
unseen piece of furniture every single day. Consequently, Stumble describes a
process that you’ll follow at a macro scale for your whole game up to launch.
It’s also something you’ll follow on a micro scale for each new feature. In
other words, it outlines both the course of development and the layout of a
single sprint.

You’ll notice that there’s no indication of timelines here, and that’s by de-
sign. Some agile methods do specify a timeline—like Google’s five-day sprint
cycle—but so complicated is the beast of game development that it would
be foolish of us to suggest you need to spend exactly three days on design,
six days on programming, and so on. As an estimate, our official suggestion
for the length of a Stumble sprint is two weeks, at least to start with. Divide
up work into items that take a week or so of labour to implement or cre-
ate, leaving a few days for the other steps and in case you’ve underestimated
the amount of work needed. When you’re starting out, try and keep your
team synchronized in this regard; have everyone starting a new sprint every
two weeks. Push around work items as needed if anything needs to be added
or fixed, but keep everyone on the same timeline, at least for a while. Af-
ter you’ve had a little while to see what’s working for you, mix things up as
needed. You might need to stagger sprints for different kinds of work; maybe
your programmers would prefer a longer go of 3 weeks, while your artists
could do with cutting the work and time for each sprint down to a weeks’
worth for more rapid iteration.

METHOD: Paper prototyping. Creating paper prototypes is all the rage in mobile
application design, or at least it was until the likes of interactive GUI mockup tools
like Figma and Adobe XD came into being. Honestly, in digital game development
you probably won’t find yourself using any sort of physical prototypes very often.
Occasionally, you might find it beneficial to collect a few things from your desk and
move them around to help visualize something—especially if you’re a programmer
trying to figure out a camera issue. But the real area of game design where paper
prototyping shines is in creating board games. While not the focus of this book by any
means, creating a tangible prototype for any game that will be played physically is a
must.

297

The Game Designer’s Playbook

(Continued)

METHOD: Digital prototyping. This is the most important tool in your little box
of methods as a video game developer. The only real way to see if a design decision
works is to test it in the form you expect players will experience your game, and that
means creating digital prototypes.

There are a few terms to be familiar with here. First, there’s fidelity, describing how
closely a prototype matches a finished game. A low-fidelity prototype uses premade
or placeholder assets, probably plays pretty roughly, and only aims to capture a coarse
idea of how something will feel. A high-fidelity prototype looks and feels more like the
finished game/feature, and amid-fidelity prototype is somewhere in between. Another
term you’ll hear in describing prototypes is verticality. A vertical prototype has a small
scope, but lots of depth. For instance, if you’re making a platformer, a “vertical slice”
might be a level that’s only a couple of minutes long, but has all of your intended
movement mechanics, enemies, and so on implemented and working. A horizontal
prototype, by contrast, covers a lot of different features, but with limited functionality
and depth. An example might be a mockup of your full menu system, but most of the
buttons (e.g., graphics settings) don’t actually do anything yet.

Figure 10.6 An early greybox of a city for a 3D isometric game. Using basic shapes
allows for quick iteration on layout and content.

One last term specific to level design prototyping or scene layout is whiteboxing,
which refers to roughing out the layout of a digital scene. In its purest form, whitebox-
ing uses untextured primitives (literally white boxes, spheres, cylinders and so on) to
indicate the placement of things like walls, buildings, and so on. Practically speaking,
literal whiteboxing might not always be your first step if you already have some assets
to work with. Instead, you could set down some of your existing models as part of
the process to better understand the scale you’re working with, and which props you
still need to request from your art department (fittingly, this embodiment is typically
referred to as greyboxing).

298

Making the Thing

On the whole, your priority during any development cycle should be working to-
wards a vertical slice of your game as soon as possible, so that you can see if your
core experience plays as you’ve hoped it would. Whenever you make the decision to
add or tweak something, aim to prototype that functionality as soon as possible. This
means that, even if you’re making your own game engine from the ground up, you
should have a tool that you can use to prototype early in development or as a backup
if you’re waiting on any key technical features. Download a free commercial game en-
gine (popular ones as of writing include Unity, Unreal, Game Maker, and Godot, for
starters) and get to work. Prototyping is the only way to see if something is going to
work in a finished game—so you always need to be ready to do it.

With timelines out of the way, let’s get to it and look at each step you’ll
take with Stumble:

Stage 0: The initial idea. We’ve labelled this as the zeroth stage since
it can occur at any time before you start working, and often in the middle
of working on something else. At the macro scale, your initial idea for a
new game might spring up while you’re working on another project, or you
might sit down with your studio and brainstorm before taking up resources
to start working right away. At themicro scale, the initial idea for a work item
might come up early in development (e.g., “We need to prototype the HUD
eventually”) or while you’re working on something else (e.g., “I was working
on the HUD and realized just how atrocious our tutorial is”).

At any rate, if you’re strapped for ideas, try out some of the brainstorming
techniques we discussed earlier in the chapter—get your sticky notes ready,
organize a blue-sky session with your team, and take a peek at some recent
games.

In the interest of keeping things consistent, let’s introduce a running
example here, representing the work for a single sprint. Let’s say that you’re
making a platformer, something akin to Super Mario Galaxy. Your work item—
the initial idea behind this sprint—is to create an initial version of a hub
world, a 3D space where players can choose which levels to try and spend
their time in between playing individual levels.

Stage 1: Understanding your goals. This stage is where you dig into what
you’re trying to achieve when you’re finished with whatever you’re work-
ing on. If you’re a designer, how will you shape the player’s experience? If
you’re a programmer, how expandable should your solution be for future
additions? If you’re an artist, what will you be contributing to the game’s
intended atmosphere?

A large part of this is understanding who the intended beneficiary of your
work is. Usually, this means understanding your target player, but not al-
ways. A programmer, for example, might be working on an interface for your
team’s designers. An artist might be creating a rigged model for further use

299

The Game Designer’s Playbook

by an animator. At any rate, here you should endeavour to understand their
needs—consult your player persona, talk to any team members that will use
your work, and scribble down a couple of quick user stories.

Returning to our hubworld example, your goals can emerge based on the
hubworld’s intended function in player experience, and the type of play-
ers that you’re targeting. Assuming you’re aiming for the Super Mario Galaxy
crowd and not the Dark Souls one, one of your goals might be creating a wel-
coming and friendly atmosphere. From a functional standpoint, you might
have objectives like making it clear how far the player has progressed in un-
locking different level. By digging in a bit more, you might stop to think
about how sometimes, players will be returning to the hubworld after an
arduous challenge. To support their downtime afterwards, one of your goals
could be giving players a few fun things to interact with while catching their
breath.

Stage 2: Come up with alternatives. Here, you’ll come up with a few
very rough ideas of how you might approach what you’re working on based
on the requirements gathered in the previous stage. If you’re a designer or
an artist, you might sketch out some ideas digitally or on paper. If you’re a
programmer, you could write out a few high-level approaches and different
solutions to research before moving on. Your focus will be on identifying and
selecting different design choices based on what you’re trying to achieve.
Competitive analysis is a fantastic tool at this stage to pick out ideas to try
(or avoid) from games that have similar features. You might also create some
extremely low-fidelity prototypes at this stage (we’re talking five minutes’
worth of work), depending on what you’re working on. By the end of this
stage, you should usually select just one alternative to proceed with—note
that sometimes, it might be necessary to takemultiple ideas to prototype and
evaluate before settling on one to develop fully.

For our hubworld case, a brief competitive analysis would be well-advised.
Take some screenshots of how other games handle centralized areas, and
don’t limit yourself to games exactly aligned with your intended creation.
Look at the 3D Super Mario games, but see if you can learn anything from the
basic level selection screens in 2D platformers, or quasi-“hub” areas in other
games, like the City of Tears in Hollow Knight. Make a few sketches, or very
quick 3D mockups if that’s more your style. Before moving forward, select
the one that you like best, keeping in mind how each idea supports the goals
established in Stage 1.

Stage 3: Planning. Make some notes in your living design documenta-
tion to convey your intent and your ideas for what the finished product
of your work should look like. If you’ve been sketching, create a more de-
tailed sketch. If you’ve been working on a low-fidelity prototype, refine that
a little bit to better reflect what you hope to end up with. Figuring out

300

Making the Thing

how you’re going to proceed is important, but don’t spend too much time
planning—change is all but inevitable as you work.

In our hubworld example, you’d want to create a more detailed layout
sketch, perhaps a top-down view that you could import into a level editor
as an image plane for reference. As a precursor to the next stage, you could
start creating the hubworld in your game’s level editor, using whiteboxing
to mock up the hubworld layout with basic 3D shapes.

Stage 4: Implementation. This is likely going to be the longest part of a
sprint. If you’re a programmer, this is where you butt heads with your en-
gine’s API and iterate to fix all sorts of bugs. If you’re an artist, this is where
you sit downwith a source of caffeine and/or sugar of your choosing and pre-
pare to give yourself hand cramps. Implementation isn’t always the longest
phase though; for an important gameplay tweak you might spend a week
arguing about design only to program the solution in a couple of hours.

At any rate, this is where you make the thing, which might vary wildly
in fidelity from the first iteration of something to a few polished tweaks on
an already established part of your game. Prototyping techniques are your
friend here, and remember that within this stage, you’ll likely iterate on a
small scale. If you feel like a small change is warranted, you don’t always
have to wait for testing to make that change, though you might want to
consult with the rest of your team.

Here, our hubworld level would be fleshed out in the game’s level editor.
Since this is just an initial version, you’d be focused on getting the layout
just right. Some assets might be left as placeholders, and you won’t finish all
of the fancy lighting, effects, and scripting present in the finished product.
But, as you work, make sure that what you’re creating is in service to the
goals set at the beginning of the process. By the end of this stage, aim to
have something that you could test, or something ready to insert into the
current testable build of your game, to support the evaluation and reflection
that should occur at the end of a given sprint or development iteration.

Stage 5: Testing. The testing stage caps off your work, validating (or in-
validating) the design decisions you’ve made. More importantly, feedback
from testing serves as a basis to determine your future work. Regular testing
can and should be a part of your process throughout development—and that
includes the time where you’ve just barely scraped together an initial idea or
a vertical slice of your game.

Game evaluation is an entire field of research on its own, though, and
at the very least it warrants a chapter’s worth of material to explore the
motivations and methods that it entails. And so, with our carefully crafted
prototypes in hand, let’s march on to the next chapter and see how those
prototypes fare in the wild.

301

The Game Designer’s Playbook

Expert Profile: Ario Jafarzadeh—Steps from perfection

Head of Design for Player Experience at Roblox

With two decades of UX work under his belt, Ario Jafarzadeh has worked at the likes of
Google, Amazon, and King. When we spoke with him, Ario was in the midst of a stint
at Postmates X—now spun off as Uber’s Serve Robotics—and he’s since moved on to
become a design head at gaming behemoth Roblox.

Throughout a whirlwind of projects in web design, games, and robotics, Ario says
the thing that excites himmost is a simple constant: “Creating something that actually
improves and delights people’s lives. Full stop.” He’s hardly joking about that full stop;
Ario brings a refreshing brevity to discussing the general subject of design. He summa-
rizes his understanding with “design is how it works,” a favourite quote from the late
Steve Jobs. Interaction design is where Ario says that details of the “how” come into
play, referencing everything from the appearance of pixels at the edge of a button, to
the specification of active areas where users can click or otherwise interact.

When Ario talks about interaction design, he focuses on how a product can best
support and respond to actions taken by users in the physical world. He describes the
case of games as a specialization of this core idea, further subdividing game interaction
into functional and gameplay components. Functional game interaction, he says, is a
combination of necessities outside of gameplay, like menus and inventory screens.
Ario describes these elements as comparatively dry, likening bits of the design pro-
cess to creating a website. However, he notes that the design of functional elements
in games is still far more playful, and less constrained, than in a purely productivity-
oriented setting. Things like colour, typography, and layout are more flexible, so long
as basic principles of usability are still respected. He mentions the use of quickwheels
for weapon selection in games likeHorizon Zero Dawn as an example. At themost basic
level, a quickwheel accomplishes the same thing as a dropdownmenu—but the quick-
wheel is more playful, more satisfying, and given that directional input is available,
much more efficient.

Setting pure function-oriented design aside, gameplay is where Ario says that
“interaction design becomes everything.” Worlds away from productivity-focused ap-
plications, he remains laser-focused on user action, saying that players’ perceived link
between controls and in-game action can make or break their experience. To preserve
immersion and promote the elusive state of flow, Ario says that games need to ensure
that coupling between cause (user input) and effect (gameplay) is as tight as possible.
Any perceptible lag or repeated violation of player expectation in the consequences of
their inputs can shatter a player’s sense of being in a game’s world, he notes. Although
gameplay itself might chronicle an impossible fantasy, that fantasy is firmly tethered
to reality by a player’s ability to exert control within it.

For Ario, creating a good experience for players is a matter of iteration, both in suc-
cessive prototypes of an original idea, and in building on the “prior art” of past games.
He argues that, especially today, very fewgames offer completely newmechanics, with
most innovation occurring as iteration rather than invention. “If you’ve played Halo,
then it’s probably going to be very similar to playing Doom,” he says. He doesn’t view
this phenomenon as stagnation in game design, but rather a sort of maturation. Each
new entry in a particular genre can introduce new delights and minimize pain points,
ultimately creating a better experience, even if little changes in regard to core game-
play. Ario is careful to note that past work should never be accepted unquestioningly,
providing plenty of room to challenge the status quo: “You’re going to inherit the

302

Making the Thing

(Continued)

paradigms established for the genre, but that doesn’t mean that you’re completely at
the mercy of that.”

Moving our designs forward, along with the paradigms they reflect, is a matter of
devising positive change, which in turn depends on an understanding of UX. Ario says
that in his experience, UX is well-established outside of games, but has only become
properly stylish in the games industry over the past five years or so. It’s not that UX
design was ignored in the past—as Ario puts it, “you don’t have to have ‘UX’ in your
job title per se to care about the user experience of your game.” Butwith the realization
of its importance, jobs focused on UX have sprung up to make the likes of interaction
design and user testing far more sophisticated in the industry as a whole.

Despite these changes, Ario says that the basic fundamentals of good UX design are
the same: iterate as much as you can, and test as early as possible. The challenge, he
says, is knowing which methods and tools to pick, and when to use them. There’s a
vast difference between sending out a survey to a few hundred users and sitting down
with someone in a cafeteria to perform a quick field test, and whether you select one
or the other will depend on factors related to the nature of your product, its stage in
development, and the resources at your disposal.

Another challenge of UX design is that the goalposts are constantly in flux; that is
to say, intended user behaviour and reactions can vary wildly between different prod-
ucts. Ario offers up Gmail and Candy Crush as two projects he’s worked on which are
diametrically opposed in this respect. He describes checking email in itself as a stres-
sor, with the goal of Gmail being to minimize clutter and get users in and out of an
inherently unpleasant task as quickly as possible. Meanwhile, the act of play serves as
a de-stressor and a form of escapism, and so the intent of Candy Crush is to keep users
enrapt in casual fun for as long as possible. On the basis of time spent in-app, the two
projects are in complete opposition to what constitutes a positive user experience.

Regardless of whether you’re trying to keep users in as long as possible, brusquely
escort them out of a stressful task, or achieve any other metric, Ario says that one
method of constant critical importance is prototyping, along with user validation.
Speaking of testing, Ario says “the more the better, and the earlier the better.” He
pithily advocates for this necessity with a favourite quote from a long-forgotten source:
“Every design is wrong. You just don’t know how wrong it is.”6 Each cycle in an iter-
ative process is crucial to correct mistakes and push experiences one step closer to
perfection—even if a truly perfect experience is unattainable.

In the spirit of promoting a healthy design process, Ario has a few pieces of wisdom
for designers, especially new recruits. With a chuckle and apologizing for his infor-
mality, he says that designers need to realize they have “permission to suck,” arguing
that early prototypes need to be put out there for feedback as early as possible. “Be-
ing rough is the job. You need to put those ugly things out there in order to get to
something that’s beautiful.” Ensuring you’ll get to something beautiful in the end, he
says, is a matter of making sure that you care. He’s been reading Radical Candor, a
book about management, and picks out the notion of “giving a damn” as one of the
most important things any designer can do. Again, he apologizes for his language,

6 Apparently the long-forgotten source of this quote doesn’t have the best SEO, as we couldn’t find
the original either after a round of sleuthing. If you happen to know, please send us a letter.

303

The Game Designer’s Playbook

(Continued)

which we assure him is in keeping with the intended PG-13 MPAA rating for this book.
He eloquently rephrases the sentiment in terms of game design, noting the effect of
passion on creativity: “When you care [. . .] your whole world becomes an inspiration
canvas for what you’re going to do in the game.” In the end, he says, picking some-
thing you’re passionate about is one of the most important choices you can make as
a designer.

Further reading

Introduction to Game Design, Prototyping, and Development by Jeremy Gibson Bond
(Addison-Wesley). ISBN: 978-0321933164.
A heavily practical primer on creating games using Unity and C#. If you’re looking
to take that first leap into making something but you’re not exactly sure where to
start, this book is a good candidate.

Sprint by Jake Knapp, John Zeratsky, and Braden Kowitz (Simon & Schuster).
ISBN: 978-1501121746.

A best-seller on the ideology of quick problem-solving through iteration. One of the
snappier options for learning about the likes of agile strategies more in depth.

Exercises

Junior cartographer

Pick a game you like that involves some sort of navigation in a virtual world. Using the
engine of your choice, or a map editor if the game has one, create a new area for that
game. Don’t be meticulous in your details, or even focus on using assets that resemble
the game; instead, create a whitebox of the level which uses primitive assets to block
out the general features of your area. If you want, you can start from a rough sketch
before moving on to make a 3D (or 2D) prototype in your chosen tool.

Move through your prototype and try to identify issues with spacing, visibility,
and the placement of any important features. Do you think you’ve inadvertently cre-
ated any “dead” zones where players won’t be compelled to go? What have you
learned about your personal workflow in creating a virtual world? What would you
do differently next time?

Discount classics

Select a simple arcade game like Space Invaders or Pong—it can be anything you like as
long as it’s something very simple.

Using the engine of your choice, try and re-create the game as faithfully as you can.
Find assets on the internet, or re-make them yourself. Try and keep to a short timeline

304

Making the Thing

and a small scope. What was the hardest part of the game to re-create? What was the
easiest?

After you’ve completed the exercise, think about how you might create a more
modern version of that classic game—adding layers of progression and “juicing up”
feedback, for example.

Put yourself out there

The best exercise we can recommend for this chapter is to participate in a Game Jam!
A game jam is an event where participants have a limited amount of time (anywhere
from a day to a month, depending on the jam) to create a game prototype. Look up
an event near you, or participate in a large annual event like the Global Game Jam.
Game jams are typically very low-stakes, and focused on pushing you to explore your
creativity, rather than compete for some prize. They can be a great way to experiment
with fun design ideas, test and develop your skills, and meet new people to work with.

305

11

Test your Patience

Every game developer’s third-greatest fear is public ridicule of their game.
This horror of universal hostility is supplanted only by the thought of having
your game crash at E3, and, of course, big bitey spiders. You certainly want
your creation to be remembered, but not for being lambasted by critics and
reviled by users.

On any list of terrible games, including one’s own memory if you’re of a
certain age, you’ll likely encounter the likes of Superman 64, Sonic 06, and
E.T. the Extra-Terrestrial. Each is notorious for its own reasons, and all were
critically chastised. Superman 64 was chided especially for its poor and un-
responsive controls. The ambitious Sonic 06 had a myriad of charges levied
against it, including unacceptable technical quality, bad writing, and lacklus-
tre level design. Meanwhile, E.T.’s unfinished state and unattractive graphics
led to a quick slowing in sales and a quick uptick in returns following its
release.

The ultimate fate of E.T. is one of the most spectacular failures in video
game history. For years, an urban legend speculated that unsold copies were
disposed of in a mass burial by Atari—a legend that turned out to be true
when the site was excavated in 2013 as part of a documentary project1. The
dig recovered several hundred cartridges of nearly a million estimated to
have been buried, including copies of E.T. But the developers of E.T. certainly
didn’t intend for their creation to end up sunsetting in landfills instead of
players’ treasured collections. So, how does a multimillion-dollar project fail
so remarkably, and how can a much smaller effort ever have any hope of
circumventing this fate?

Failures at this scale usually depend on a number of missteps, not just
one. In E.T.’s case, licensing negotiations yielded a high price for intellectual
property and a massively reduced development timeline, giving less than six

1 That documentary is Atari: Game Over, and it reflects on the bemusing details of the complete
E.T. affair.

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0011

Test your Patience

weeks for production from start to finish with only one programmer2. This
should already be setting off alarm bells; we’ve just spent an entire chapter
talking about managing your creative process, with an ideal pretty much
antithetical to that undertaken by Atari. And while the conversation thus far
can certainly help you avoid plunging your studio into a legacy on par with
E.T., it’s far from guaranteed. Yourmost effective tool in this regard is that last
step of the iterative design cycle we’ve been so ham-handedly sidestepping
in anticipation of this chapter: evaluation.

Evaluation is critical because it helps you to understand how successful
your design is in its current state, and how it can be improved, both for
immediate and long-term play. Short-term appeal is a question of initial im-
pressions; is a game intriguing, and does it avoid any annoyances that would
repel new players? This early appeal can help drive sales close to release, and
positive reception from critics. And if you can validate a long-lasting desire
to play, you can anticipate a player community with longevity and growth
potential, driving future revenue and giving you the resources to work on
updates or your next title.

Depending on how new you are to game development, when you think
of the phrase “game testing”, you’re probably picturing something along
the lines of quality assurance, or QA. QA testing is about finding bugs in
your game’s implementation: things like broken collision boxes, crashes,
collectibles you can’t actually collect, and so on. Larger studios all have ded-
icated personnel for QA testing, while smaller studios might work with a QA
service providers or have a few members who test for bugs part-time or hire
contractors.

Distinct from QA testing is playtesting, which aims to identify issues with
player experience. Cheekily, you might refer to this as finding bugs in your
design, instead of your code. Issues uncovered by playtesting could include
things like an unlikeablemain character, hard-to-navigatemenus, or a poorly
received spike in difficulty. Critically, playtesting needs to be done with par-
ticipants that represent a game’s target audience. Not other game developers,
definitely not your employees, and preferably not their mothers. Tuning
player experience necessitates that you have the right players to tune with,
and trying to playtest with members of the development team is a recipe for
disaster. The biggest issue here is that your team knows too much; on top of
reducing impartiality, you can’t hope to uncover something like a confusing
puzzle when the “player” designed it themselves.

There is an entire field of research which revolves around playtesting,
called games user research (GUR). Obviously, GUR is more complicated

2 You can read an interview with that programmer, Howard Scott Warshaw, on this and other
tales here: http://www.digitpress.com/library/interviews/interview_howard_scott_warshaw.html

307

http://www.digitpress.com/library/interviews/interview_howard_scott_warshaw.html

The Game Designer’s Playbook

than evaluation alone; it’s also about understanding player psychology, how
games affect us, how we can push the boundaries of game design, and so on.
But, if you had to sum up GUR in one word, that word would probably be
“playtesting.” And even if you have no intent on diving into the research
world, you can learn a great deal about playtesting from peering into the
realms of GUR, something which we’ll be doing throughout this chapter.

As you can tell, our focus here will be on playtesting, rather than QA. This
isn’t to trivialize the importance of QA by any means, or to imply that QA
testers should be ignored if they have suggestions about your design. Quite
the opposite, in fact; a professional QA tester will have amassed a great deal
of first-hand experience with the impact of different design decisions. To
grossly oversimplify things, though, QA finds programmer problems, while
playtesting finds designer problems. Since this is a book about design, we’ll
be concerning ourselves with the latter.

Running playtests well is a tricky business, and a peek behind the curtain
will quickly reveal that it is every bit as ugly and complicated as any other
part of game development. It’s not as simple as sitting someone down, hand-
ing them a controller, and asking them if they like your game; although, you
will usually find yourself building on some flavour of that scenario as a ba-
sis. But playtesting itself is an endeavour steeped in design know-how, even
before you bring in your first participants.

11.1 Spend your questions wisely

In playtesting, we have lots of different methods at our disposal: observation,
interviews, focus groups, and questionnaires to name a few. Diving into eval-
uation isn’t just a matter of picking a few of these methods out of a hat and
hopping in, though. Imagine sparing no expense to bring in a hundred play-
ers, spend a few hours with each, and prepare the most deluxe of slides to
present your results—only to find out that you’ve blown your entire testing
budget six months into development, and not even managed to investigate
the things your team actually cared about.

To be successful and provide some semblance of return on investment,
any evaluation needs to consider a number of factors. First, what resources
do you have at your disposal? You’ll need a dedicated place for playtest par-
ticipants to play, so either set aside some space, budget for some additional
rent, or be prepared to set up a framework for remote testing. Estimate how
many hours you’ll have available for supervising tests and data analysis, mak-
ing sure to account for any staff that work double-duty in evaluation and
some other specialty. Don’t forget about the expenses associated with par-
ticipants themselves, either. If you don’t have a recruit list or community to
pull volunteers, be prepared to shell out money and time to find testers from
308

Test your Patience

your target market. And bear in mind that you’ll need to compensate those
testers for their time, as well; honorariums often run at or above minimum
wage on top of any local travel expenses.

Another thing to consider is your game’s current state of development. If
you’ve just cobbled together your very first prototype, your evaluation strat-
egy is going to look much different than it will when you reach a working
beta a few months out from release. As we’ll discuss later on, certain test
structures are better suited to different phases of production.

Resource availability and project status can help you determine the scope
and structure of your evaluation. However, they will somewhat guide the
specifics of that evaluation, like which parts of your game participants will
interact with and the questions you ask them. This brings us to our all-
important final consideration, which will guide both higher-level method
choices and those low-level specifics: understanding what you actually want
to know.

Fundamentally, game evaluation is about asking questions. Our motiva-
tion for evaluation is to assess the experience we’ve created; in other words,
we want to ask, “Is this game any good?.” Playtesting is merely the sophisti-
cated wrapper around the process of answering that question, in the course
of which we’ll identify any obstacles between the product we have and an
affirmative response.

Of course, the question “Is this game any good?” is far too unspecific to
be practically useful. Learning to identify a good basis for an evaluation,
and distill that basis into a set of helpful research questions, is a skill unto
itself. Any given playtest should be motivated by a strong core research
question, often accompanied by a small collection of related, more specific
inquiries. For instance, your core research question might be something like
“How do the controls feel?,” strengthened by guide questions like “Do players
have a strong preference between our keyboard versus gamepad control options?”
Sometimes, you might have a couple of core research questions which are
strongly related, such as combining “How do players like the art style?” and
“How compelling is the soundtrack?” into an evaluation focused on aesthetics.

Taking the time to formulate research questions will help keep you fo-
cused both in running your evaluation (e.g., knowing what to watch out for
in participants’ gameplay) and your analysis after the fact (e.g., which issues
will be most relevant to the immediate needs of your team). If these points
haven’t yet sold you on the importance of research questions, perhaps the
inevitability of calamity in their absence will. If you jump in without any
particular goal in mind, you might find yourself coming back to a team des-
perate to know whether the prototype tutorial is effective—only to present
them with a list of complaints about graphics that aren’t even close to fi-
nalized. Coming up with research questions doesn’t just make an evaluation

309

The Game Designer’s Playbook

“more science-y”; it also provides a vital opportunity to communicate with
your team andmake sure that the next phase of testing will meet their needs.

Before we move on, we should address a fundamental divide in the types
of questions that game evaluations can investigate. Here, we can speak of
two major categories: usability questions, and opinion questions.

Our first group of inquiries, usability questions, are concerned with objec-
tive issues. Examples of usability questions include “Do players understand the
tutorial?” and “Can players use the shop interface effectively?” These questions
aren’t dependent on players’ individual preferences or tastes; something like
a button that’s difficult to see is a problem that needs little explanation to
justify fixing. There’s a bit of an asterisk here, though. Just because usabil-
ity problems are objectively problems doesn’t mean that their solutions are
always clear-cut. If players struggle with a game’s tutorial, for instance, the
solution is rarely as simple as “add more instructions.” Nonetheless, most
usability problems can be identified effectively with a relatively small group
of playtesters. If three participants out of half a dozen have trouble reading
your menus, it almost certainly can’t hurt to re-examine your text choices to
promote better visibility.

The at-times more contentious category is that of opinion questions,
which target subjective matters. Examples of opinion questions could be “Is
our main character likeable?” or “Do players find the art style beautiful?” The
problem with these types of questions, important as they are, is that it is
difficult to answer them effectively with a small group of people. Opinion
questions are, unsurprisingly, largely dependent on players’ opinions. While
you might be able to read over a character’s dialogue and come to the objec-
tive conclusion that they’re a bit rude, real players might find a bit of gruff
discourtesy charming, especially if they can relate to the character in other
ways. And if you reach that same three out of six threshold for players hating
that character, it’s risky to assume that half of all players will dislike them.
Plus, it’s a safe bet that your development team—probably more than six
people—all like the character, and will be resistant to such large changes on
the basis of what could be a fluke.

With our research questions in hand, then, and keeping in mind any
caveats they present, let’s move on to examine that magical box of methods
we keep referencing: how do we actually test a game?

11.2 A crash course in testing

Before we rattle off a list of procedures to poke at the psyches of players,
let’s take a moment to first clarify a few terms and purge any remaining
excessive alliteration from our systems. In describing methods to evaluate

310

Test your Patience

games, you’ll hear of quite a few distinctions made to help distinguish what
each method can accomplish, and how to select a suite of methods that
complement one another.

First is the difference between “expert evaluation” and “playtesting”
methods. The former category is designed to support evaluation without
bringing in players. An example of an expert method is heuristic evalua-
tion, where a professional will examine a game according to a set of general
rules for things like accessibility, usability, and style. Another popular tech-
nique is the cognitive walkthrough. For this, you select a number of tasks
(e.g., equipping a weapon, buying something from a shop, etc.) and work
through individual steps while attempting to emulate a player’s perspective
in understanding what to do, and how to do it. Expert evaluation can be an
effective way to quickly (and often cheaply) identify problems, particularly
with usability. That being said, you shouldn’t rely entirely on tactics that
don’t involve real players in the evaluation process, and so our focus will
remain largely on methods for playtesting.

There are a few other divisions commonly used in describing evaluation
methods, all of which are conveniently binary and straightforward. One is
the question of whether a method provides qualitative or quantitative data.
Qualitative data is descriptive, while quantitative data is numeric. For in-
stance, an interview transcript is qualitative data, while the amount of time
taken to complete a level is quantitative data. It should be noted that some
methods can produce both types of data; for example, in observing game-
play, you might note a participant’s reactions to their gameplay (qualitative)
in addition to the number of times their character was killed (quantitative).

Another characteristic of any given method is its objectivity. Objective
methods reveal facts: things like what weapon a player chose, how far they
progressed in their first five minutes of play, or something more exotic like
a player’s heart rate. Subjective methods, on the other hand, rely on data
from players about how they feel: things like why they liked or disliked a
game, or how they perceived their own level of skill. Objective techniques
produce reliable data, which can lack context: you can be certain of how long
it took players to learn a particular skill, but the exact cause of any difficulties
observed might be unclear. Subjective methods are all about context: players
can tell you why they took longer to do something, expressing confusion
or maybe surprising you with the conclusion that they just wanted to try a
few things before moving on. The problem with subjective tactics, though,
is that they rely on self-reporting. In discussing their experience, participants
might exhibit bias, forget things, filter out bits of information that would
make them sound unskilled, or try to be complimentary at the expense of
honesty. It’s your job as an evaluator to try and overcome these hurdles, but

311

The Game Designer’s Playbook

Figure 11.1 Different games user research methods classified according to subjec-
tivity and whether they are quantitative or qualitative. Note that this diagram is
meant to separate methods into quadrants, rather than serve as a graph—placement
along the dividing lines is not meant to imply relative “levels” of quantitativeness or
subjectivity.

the inherent wrinkles of subjective evaluationmake them impossible to erase
completely.

Our last distinction is that of sampling versus continuous methods. Con-
tinuous techniques collect data throughout a player’s experience. Attaching a
heart rate monitor to a player or constantly recording gameplay information
are examples of continuous data collection. Sampling methods, by contrast,
capture a “snapshot” of information at a certain point in time. An example
is stopping to interview players at the end of their play session.

We should note here that each pair of method characteristics discussed
forms is less of a dichotomy and more of a spectrum. While the distinc-
tion between qualitative and quantitative data is binary, any given method
might provide both types of data, as we discussed previously. The question
of objectivity also has a tinge of greyness to it; timing a player is certainly ob-
jective, and asking players which character they’d most like to have a drink

312

Test your Patience

with is certainly subjective. Asking players to rate the difficulty of levels,
though, while subjective, is arguably “more objective” than the hypotheti-
cal bar crawl question. And lastly, the interval at which data is sampled can
make it more or less continuous. Asking players to think aloud while they
play will produce samples of data far closer together than a single interview at
the end of play, but not nearly so close together as the measurements taken
by something like a heart monitor.

The reason we have bothered to introduce these terms is not so that you
can flip open a volume on games user research without needing to look
up every other word, though it is a fringe benefit. Instead, these distinc-
tions are important to understand since they can help you create a more
balanced evaluation. In general, you’ll want to pick a set of methods that,
taken together, cover both ends of each scale. For instance, if you’re eval-
uating difficulty, you’ll probably want to collect quantitative data on how
often players die and how long they take to complete each challenge. But
without qualitative data expressing when and how players failed, your team
will have little indication of where any tweaks should be made. This holds
true for our other categories as well; objective data without subjective data
lacks context, while subjective data without objective data lacks credibility.
Relying on continuous data alone excludesmethods like interviews, while an
approach reliant entirely on sampling wouldmean that the likes of gameplay
recordings would be left out.

Keeping these things in mind, let’s go over the methods we’ve already
alluded to in more detail, looking at how you’ll practice each one as part
of your game evaluation skillset. We can view these methods as helping to
support two main inquiries: understanding what players do, and how they
feel.

What do players do? Playtesting is about understanding users’ be-
haviours, the reasons underlying those behaviours, and their reactions to
gameplay. The first half of this equation concerns player action, and so hav-
ing a record of that action is vital. This is where perhaps the oldest technique
in the book comes in: observation.

Observation is exactly as it sounds, watching what players do in-game.
This is an objective, near-continuous method (limited by observer error)
which can provide both qualitative and quantitative data. During a live
playtesting session, you can sit in a position where you have some view of
their screen. Here you should be careful not to give participants the feeling
that you’re breathing down their neck, so position yourself carefully. Ideally,
you should broadcast the player’s screen to another device (budget permit-
ting) where you can watch from another room or at a comfortable distance.
Should you be unable to find local participants, or if you don’t have access

313

The Game Designer’s Playbook

to a playtesting space, screensharing software still makes live observation
possible for remote playtesting.

Regardless of how you watch participants play, you need to have a record
of play to consult later. There’s no excuse not to record gameplay videos;
plenty of free (and open-source!) software exists for screen capture. Combine
this with enough storage space, or a free video compression tool and an old
USB stick you’ve had since high school, and you’ve got a library of participant
gameplay videos for reference later. For a bit of extra setup effort, you can
record player input and facial expressions as well. If you’ve got a webcam,
and one of the many free utilities for visualizing input, you can simply tack
these on beside gameplay in a good screen capture tool.

Even with a beautifully itemized library of gameplay recordings, the most
important part of observation is to be vigilant and take notes. Don’t tell your-
self that you can just re-watch the recording later, or let your mind wander
during the test. This will make it harder for you to recall the full context of
gameplay, and removes your ability to effectively follow up on key moments
with participants right after they play. Make notes on anything that surprises
you, any reactions which seem strong from the player, any spots they seem
to struggle with, and so on. It can also be helpful to have a timer nearby (e.g.,
on your phone), synchronized with the gameplay recording, so that you can
note down timestamps to easily parse the recording later.

In observation, as with any other method, it’s vital that you’re mindful
of your research question(s), keeping an extra watchful eye for anything re-
lated to the focus of the test. Let’s say you’re working with the following
research question: “Is the tutorial effective?” Some things youmight watch out
for might be expressions of confusion from the player, making lots of mis-
takes when they learn a new mechanic, or seeming frequently bored. Noting
these events as they occur would be qualitative data. You might also record
some quantitative data here; for instance, how long players take to complete
each segment of the tutorial.

Direct observation isn’t the only way to record player action; you can
also collect data directly from your game. Game metrics (AKA telemetry) is
a technique whereby hooks in your game’s code relay specified information
to a log file of some sort for later review. Just like observation, telemetry is
an objective, continuous method capable of collecting both qualitative and
quantitative information. Assuming you have the resources to integrate an
existing telemetry tool or implement one yourself, this can be a great way
to keep track of events, especially when observation is infeasible. Metrics are
less susceptible to error (with the exception of bugs), and work for things
that might be hard to track manually (e.g., every time the player character
takes damage).

314

Test your Patience

You can certainly implement some form of metrics for small-scale eval-
uation if you like. Where the tactic really shines, though, is in larger scale
remote evaluations, allowing you to collect data from many players without
having to beg them for screen recordings or comb through hours of footage.
Telemetry data can be as specific or as general as you need or have time to
implement (and analyze). Even very high-level data can be valuable in this
respect; competitive online multiplayer games can be balanced around met-
rics as simple as who won a given match. In Overwatch, for instance, the win
rate of different characters can provide a starting point for balance decisions.3

If a character has a very high win rate across all levels of skill, this provides
a red flag of sorts to indicate that the character should be investigated for
being possibly overpowered.

Returning to the research questionwe introduced earlier, if youwere to use
telemetry to probe tutorial effectiveness, youmight focus on collecting infor-
mation related to player learning. Keep a gameplay timer in the background,
and spit out the timestamp when players complete the tutorial. Remember
from Chapter 3 that you probably shouldn’t let players die during a tutorial
(though you should always give them feedback when they make a mistake).
Internally, though, log any events where players would have otherwise died
or taken damage, and the thing that damaged them. If testing at scale (e.g.,
during a beta), this would also be a good opportunity to check engagement
and retention. Do players complete the tutorial in a single sitting, or are they
quitting and relaunching the game a few times? Do they keep playing after-
wards? For how long? Answering questions like these “in thewild” could help
you to better understand the efficacy of your tutorial for not only learning,
but getting players interested in your game.

How do players feel? The second half of our “playtesting equation” looks
at player thinking and emotion. Therefore, we also need a suite of methods
tailored to understanding how players think and feel. We have many ways of
doing this, some which involve exotic things like heart rate monitors, facial
expression recognition, and sensors tomeasuremuscle tension and sweating.
These provide objective measures pointing to players’ physiological state,
from which we can infer things like stress level. However, such tactics re-
quire specialized equipment and analysis techniques far beyond the scope of
a basic design evaluation. This is where self-reporting (subjective) techniques
come in, letting players express what’s going on inside their heads.

One such tactic is the think-aloudmethod, where players are asked to speak
their thoughts as they play. This can include both the reasons for what

3 Overwatch developers have alluded to this process in forum posts responding to player
concerns, such as that found here: https://us.forums.blizzard.com/en/overwatch/t/please-nerf-
power-creep-instead-of-nerfing-defensesupport/443903/114

315

https://us.forums.blizzard.com/en/overwatch/t/please-nerf-power-creep-instead-of-nerfing-defensesupport/443903/114
https://us.forums.blizzard.com/en/overwatch/t/please-nerf-power-creep-instead-of-nerfing-defensesupport/443903/114

The Game Designer’s Playbook

they’re doing, and their reactions to in-game content. Keep in mind that
some players will be more naturally talkative than others, and don’t expect
every participant to naturally talk constantly while trying to concentrate
on play. Again, pay special attention to anything related to your research
question; if you’re looking at tutorial efficacy, “I don’t know what I’m do-
ing” is much more relevant than “That bird looks nice.” Think-aloud is like
the subjective counterpart to observation, in a sense—a continuous way to
obtain qualitative data on players’ experience.

Another self-reporting method is the questionnaire, a quiz-like set of ques-
tions especially useful in getting players’ initial impressions. Questions can
take any form you like: multiple choice, multiple selection, or written an-
swers. Keep in mind, though, that any attempts to use quantitative rating
scales will provide a coarse indication of player favour at best. Don’t be
tempted to try something like finding a statistically significant difference
in players’ average rating of different features on a scale of 1 to 10. Differ-
ent players will have a different understanding of what each rating means to
them—to some people, 5/10 is average (it’s in the middle), while to others
it’s almost a failing grade (it’s 50percent). Moreover, arguing that a scale of
opinion would be perfectly linear for mathematical reasons is beyond ridicu-
lous. This isn’t to say that getting players to distill their opinion into a rating
of some sort is always a terrible idea. But, if you’re going tomake the attempt,
take any numeric conversions with a grain of salt and pay more attention to
the proportion of players that put their chips on the upper or lower end of
the scale. Consider a simple scale with bold options like “I love it,” “I don’t
care,” and “I hate it,” gently forcing players to pick a less muddy expression
of their opinion.

Questionnaires aren’t unique to live playtesting; they can also be useful
in-game. Many games have a bug report system, but you can also include a
system for general feedback in the form of a short questionnaire. Subnautica,
for instance, uses a form with a small text box and short emoticon-based
rating scale. Deep Rock Galactic gives players a link to an online survey asking
a few questions about their experience alongside an opportunity for free-
form feedback.

It’s important to note here that questionnaires can also induce some-
thing called “survey fatigue.” Simply put, questionnaires can get boring
quickly. Reading about questionnaires can also get boring quickly, as we’re
sure you’ve noticed by now. The lesson here is to keep your questionnaires
short and sweet. If you need more detail—and for a live playtest, you always
will—that’s where our next tactic comes in.

Interviews are, with little debate, the single most useful method at your dis-
posal in understanding players’ experience. They’re also one of the simplest;
just sit down with players and talk to them about their experience. Some
evaluators prefer to stick to a rigidly structured set of questions, while others
316

Test your Patience

Figure 11.2 Screenshot of a game questionnaire created with Google Forms using
Likert scales to assess player agreement with a variety of statements judging a game’s
quality.

will opt for a free-form discussion. Our suggestion is to rest somewhere in
between. Have a set of questions prepared and ask them, but let discussion
evolve naturally, and follow up on anything of note you observed during that
player’s gameplay. Make sure to take notes, and preferably record sessions if
you can.

There are a few different “flavours” of interviews, so to speak. Players can
be interviewed individually, or as a group (e.g., after a multiplayer playtest).
It’s worth noting here that there’s a difference between a group interview and
a focus group. Generally speaking, a group interview refers to a setting where
an evaluator asks questions answered by everyone in the group, whereas a
focus group is more of an observed discussion where the group talks about
their impressions of something with little interference.

In terms of timing, you can plan for one long interview at the end of a
playtest session, or have a few smaller ones each time players pass key points
in a longer gameplay session. One interesting variant on this theme is the

317

The Game Designer’s Playbook

skill-check interview, where you ask players to explain something about the
game to check their knowledge. Should you be curious about tutorial ef-
fectiveness or general usability, skill-check interviews are a fantastic way to
gauge players’ understanding and retention of information.

For both interviews and questionnaires, it’s important that you can come
up with good questions to ask participants. As you might expect, these ques-
tions should be related to the focus of your test. In our tutorial-focused
example, a question like “How easy or difficult was it to learn to play?” is much
more relevant than “How about that boss music, huh?” Of course, relevance
isn’t the only problem with that second question. Its wording, and likely
intonation if delivered verbally, implies that the boss music was great, and
participants may be swayed to play up their opinions as a result.

This is an example of a so-called leading question, which “leads” someone
to a particular answer based on aspects of its delivery. To avoid this trap,
make sure to use neutral language and temper your verbal delivery as much
as possible. Asking “Did you think the game was great, or what?” in an excited
tone sets players up for a particular response, while “How did you feel about
this game?” delivered in a polite neutral tone will make an honest reply easier.

Another pitfall in question design is a loaded question, which prevents play-
ers from giving a fully truthful response based on its wording or the options
offered. An example might be a multiple-choice question like “Which gun
was your favourite?” in a game where players might have exclusively used a
sword to play. Such questions are usually more of a concern for question-
naires, which might not give participants the opportunity to clarify that
a question doesn’t connect with their experience.

One last thing to avoid is the inclusion of any jargon which could make a
question difficult to read or understand. Don’t use complicated game-specific
terms; if you’re talking to a first-time player and want to know how they felt
using your machine gun, avoid asking “How was your experience using the G50
20mm MK-37 turret bay autocannon?” and favour something like “How was
your experience with the machine gun?”

In general, good questions are understandable and open up opportunities
for further discussion. As the starting point for any interview, make sure to
ask a few basic questions about participants’ overall experience. This will help
them transition from gameplay to discussion, and capture initial impres-
sions. Our recommendation, particularly for novice evaluators, is to consider
using a basic triumvirate of questions as intromaterial: “What, if anything, did
you like about this game?,” “What, if anything, did you dislike about this game?,”
and “What, if anything, would you change about this game?”

318

Test your Patience

11.2.1 A primer on playtest proctoring

When the time comes to sit players down for a session, there’s a few ba-
sic procedural things you should keep in mind. Your top priority needs to
be treating players well. Make sure that players are aware of what you’ll be
asking them to do, and about how long they can expect the test to take.
Standard practice for commercial playtests will involve asking participants to
sign a confidentiality form, and to provide consent for any data collection. If
you’re hoping to record something like webcam footage, it’s probably a good
idea to screen for participants that are open to this before you recruit them.

During the session, make sure that players are comfortable. Tell them that
you’re evaluating the game, not them—you don’t want participants to feel on
edge thinking that you’re judging their every move. Ask players to be honest,
and try to keep a comfortable distance when observing their gameplay. Don’t
visibly react to their gameplay, and avoid giving hints or stepping in unless
you need to push the test along for scheduling reasons.

When asking players questions, don’t be adversarial, and don’t act like
the game is precious to you (as difficult as that may be). Participants will
be less likely to be honest if they’re worried about getting into an argument
or hurting your feelings, so try to stay as neutral as possible. Remember, if
everyone hates your game, the time to burst into tears is after they leave the
interview room.

Apart from how you handle your players, you’ll also want to double-check
that your setup works well with the methods you’ve chosen. If you’re plan-
ning on having an interview or asking players to think aloud, having an easy
way to record audio is beneficial. If you’re holding an evaluation remotely,
make sure to test your software for video calling, recording, or remote play
with your teammates beforehand. Always make sure to have a dry run of
your test before the time comes to bring in real players, unless you’re keen
to throw out valuable data when something inevitably goes wrong.

After the test, if you love spreadsheets, this is where the real fun begins.
The subject of data analysis is volumes unto itself, some of which you’ll find
recommended at the end of this chapter. Diving into something like statisti-
cal analysis is beyond the scope of our discussion. But even without knowing
what it means to violate the assumption of sphericity or run a paired sample
t-test, you can still provide your teamwith valuable feedback. In fact, outside
of academic research, themost useful insights will usually come from consid-
erate organization of qualitative snippets rather than extravagant statistical
tests.

A good starting point for your analysis is to write out a categorized, point-
form list of noteworthy gameplay events and feedback. Keep a tally for
each point corresponding to the number of participants that said or did
something. Howmany people struggled at the same level? Howmany people

319

The Game Designer’s Playbook

mentioned the same things when asked about their dislikes? For each item,
try to assign a severity based on your own judgement and participants’ reac-
tions. A low-severity issue might be something like a participant expressing a
dislike for the character who taught them about the controls. A high-severity
issue might be watching a participant shout obscenities and describe a boss
fight as “total bull that will never disgrace one of my screens ever again if
I can help it” before quitting the game.

Taking severity and frequency together, you can assign priorities to each
issue that you find. A priority system will help your team to figure out which
issues should be tackled first. You can also do this for positive points; if lots
of players really loved something, it’s worth noting to prevent a well-liked
feature from eventually getting cut.

In terms of suggesting solutions, you can try and link issues together to
see if they stem from a common root cause. Avoid making lots of inferences
in doing so; focus on what players said and did. If lots of players struggled
to learn your controls, and many suggested slowing down the pace of in-
struction in interviews, then slowing down the pace of instruction is a good
starting point. On the other hand, ignoring what your players said because
you’ve got a hunch that you just need to rebind a couple of keys isn’t such a
great idea.

Relying on inference too much can lead to incorrect conclusions. You
shouldn’t ignore your instincts by any means; if you’re reviewing gameplay
footage and notice that players consistently miss the same jump in a plat-
forming level, nudging the gap to be a bit smaller is a good bet. However,
something like assuming that players dislike a game because they routinely
fail can be dangerous. Imagine applying this logic to a roguelike game, where
repetitive failure and character death is core to someone’s progression as a
player. Easing up on difficulty to make failure less likely would ruin the expe-
rience. This is part of why paying attention to self-reporting is so important;
make sure to always consider the context players have provided surrounding
their reaction to a particular event.

On the subject of erroneous conclusions, make sure that you’re not falling
into the traps that have claimed the credibility of countless junior analysts.
Don’t get caught up in small differences; a difference of 0.1 between the av-
erages of two 10-point rating scales probably doesn’t mean anything. Don’t
assume that the experiences of one player will apply universally to all; the
term “outlier” exists for a reason. By that same token, don’t blind yourself
to the problems of the few, either: sometimes rare occurrences can point to
something like an accessibility problem.

Your biggest enemy in an effective analysis, though, is yourself. It will be
difficult to ignore your own biases in reviewing player data, but you have to

320

Test your Patience

try. Confirmation bias is probably the largest hurdle here: the tendency to ac-
cept information which conforms with an existing view. If you’ve convinced
yourself that a certain level is too difficult, you might latch on to the one
player that struggled with it—even if twenty others breezed through with-
out issue. Your best strategy here is to make sure that you’re always backing
up any conclusions you’ve made directly with the data, and that those justi-
fications don’t look ridiculous in context. Bumping your “favourite” issue to
top priority while the issues encountered by dozens more players languish
below isn't going to get you anywhere useful, and it certainly won't make
your reports very convincing.

After you’ve crunched all the interview responses, gameplay recordings,
and observation notes together, put a feedback list together comprising any
issues or notable positive comments. The level of detail here, and the priority
needed to make the cut for team discussion, will depend on the time and
patience you have available. At this point, your job is done. Or at least, it’s
done for the next couple of days, before the iterative design cycle starts anew
and you’ll need to be ready for the next round of testing.

11.3 The melting pot of methods

The diversity in data collection techniques we have discussed is mirrored in
the combination of those techniques. There are many different approaches
to structuring a game evaluation, several of which we’ll run down here for
your reference.

As a reminder, nomatter your approach, there will be a few steps common
to every evaluation. First, you’ll need to pick a basic research question or two
with your team. You’ll design your evaluation, perhaps following one of the
structures we will now discuss. Based on the methods you’ll be using, set
aside the requisite amount of time, space, and any tools you’ll need before
reaching out to participants. You can recruit for playtests via social media, or
among existingmembers of your game’s community. If you’re desperate, you
can dip into a pool of gaming-interested acquaintances, but treat this as an
absolutely final resort, and stay away from anyone with game development
experience (they know too much).

After you’ve gotten everything ready, and with your trusty notepad in
hand, you’ll be ready to learn about your game. What you’ll aim to learn
will be dependent on that all-important research question, supported by the
test structure that best suits your needs.

First-time user experience (FTUE) evaluation. Just as it says on the
tin, an FTUE test aims to figure out if the initial experience you’ve crafted
for players is effective. In this context, “effective” means that players will

321

The Game Designer’s Playbook

learn how to play, work through the first challenges they’re given, and gain
themotivation to keep playing after that. You can run an effective FTUE eval-
uation with a relatively small group of people; half a dozen participants from
your target audience should give you a good idea of whether you’re on the
right track.

Typical methods used in an FTUE test are observation and interviews,
which can be complemented by think-aloud and questionnaires. It is espe-
cially important that you recruit participants who haven’t seen the game
before, or you’d be forsaking the FTU part and just conducting an E test,
which isn’t nearly as flashy. You should also try and keep gameplay short;
depending on how lengthy your game’s openingmoments are, “short”might
mean anywhere from 15 minutes to an hour. If you have no explicit intro
material, or that material is very short, just let players play for a time on the
shorter end of that scale. If your explicit intromaterial is longer than an hour,
you’ll probably want to seriously reconsider your design, but go ahead and
test as much of it as you can (being sure to watch out for player boredom).

If your FTUE session is on the longer side, you might want to consider
stopping midway for a skill-check interview asking players to explain what
they’ve learned about the game so far. After gameplay, interview players on
their experience. Ask the basic trio of interview questions as a starting point
(like/dislike/change). To validate player learning, you can ask participants
to quickly explain what they had to do in the game and why. Any spots
of confusion or omission should be noted as concepts that could be better
communicated by the game. If this isn’t your first run of FTUE tests, focus
on any features that have been added or changed—and don’t double-dip for
participants from previous rounds.

As we learned in Chapter 3, the first few minutes (or hours) of a game are
instrumental in getting players to enjoy their time with your game. Figuring
out whether those opening few minutes are successful is critical, and one of
the reasons to shoot for having a vertical slice of your early experience as
soon as possible. Once you have this in hand, an FTUE evaluation should be
the next thing on your roadmap.

Usability evaluation. As far as test structures go, this is the most
straightforward. The goal of a usability test is to evaluate the functional
efficacy of your interaction design. More simply, it’s to find issues with the
practical experience of playing your game. Do players have trouble under-
standing what to do? Are the controls awkward to use? Is your feedback
sufficiently clear? A usability test is less about figuring out whether people
enjoy your game, and more about whether they can play it without having
problems.

322

Test your Patience

Like an FTUE evaluation, the most common methods employed in a
usability test are observation, think-aloud, and interviews. An additional sim-
ilarity is that usability evaluations can be very effective even when only a
handful of participants are available. The target of usability evaluation comes
down to interaction, and so the things you’ll be most commonly focused on
will include the subjects of Chapters 4 and 5, feedback and control design.

The enjoyment-oriented counterpart of a usability evaluation is a user
experience (UX) evaluation, and you can structure such a test quite simi-
larly. You’ll be asking different questions, focused on things like engagement
rather than various iterations of “Did you feel like you could do X effectively?”
And in case you’re wondering, yes, you can evaluate a bit of both in the same
test. If you’re an indie with a budget, asking questions about both usability
and UX in a single playtest is probably a good idea, since practically speak-
ing you likely won’t have the funds or the connections to funnel through
a dozen players a week all throughout development. Keep in mind, though,
that the more subjective nature of UX-oriented questions might mean you’ll
need more participants to find a clear answer to certain questions, as we
discussed earlier.

Rapid iterative testing and evaluation (RITE). The testing and evaluation
bit may be a little redundant, but switching out “evaluation” for “analysis”
would have left us with RITA, which sounds too much like the name of a ma-
niacal AI here to usurp humanity. RITE is a testing structure which embraces
iteration to the extreme, with the goal of continuous design improvement.
Designers are involved in the testing process, with each iteration lasting only
a couple of days. At the start of a cycle, areas of interest related to recent
changes are highlighted. A playtest is conducted with a few players over the
course of a day or so, and feedback is discussed with the design team to make
small changes. After changes are made, the cycle starts again.

Methodologically speaking, RITE playtests are basically usability tests, just
on an accelerated timescale. Only a few participants are recruited for practi-
cal reasons, and practically speaking, youmight be recycling players between
different cycles. This isn’t always a bad thing—bringing someone back after
changes have been made to see if there’s a subjective improvement is valu-
able. Just be sure to also bring in fresh eyes, or else risk putting out a game
that’s perfect for long-time playtesters Rick and Diane, but hated by everyone
else.

While it’s great during periods where rapid change is possible, RITE isn’t
right at every point in development. If you’re in a long series of sprints
focused on polish, RITE probably won’t be very helpful, nor will it do you

323

The Game Designer’s Playbook

any favours when you’re in the middle of cobbling together your first verti-
cal slice. But for something like early gameplay balancing, RITE can be the
perfect way to test out your changes as soon as they’re ready.

Figure 11.3 Iterative testing, and the last circle diagram in this book. We promise.

A/B testing. In an A/B test, you need to have multiple alternatives of
something between which you’re trying to establish preference: a control
scheme, a HUD, a different player companion, et cetera. Should you have
more than two variants of said thing, you can feel free to use the term A/B/C
test or similar, but beware that professional researchers will make fun of you
for it. You can think of this sort of test like sitting in a room while a psy-
chiatrist shows you two inkblots. Except this time, you’re the psychiatrist.
And instead of saying “The one on the left is my parents fighting,” your
participants will say something like “Using the gamepad felt really awkward.”

The methods used in an A/B test typically resemble a usability test broken
into chunks for different conditions. Let’s say you have two different control
schemes proposed for gamepad, and you want to select one as the default to
shipwith the game. Each participant will play the game twice, oncewith your
“A” controls, and once with your “B” controls. Each time they play, you’ll
ask them briefly about their experience with the controls, and at the very

324

Test your Patience

end of the session, you’ll ask them to compare. Based on how participants
react to each of the control schemes alone, and in comparing the two, you’ll
assess which one is more effective.

There’s a couple of important things to note here. First, you can test with
two separate groups of people, one for the “A” option and one for the “B.”4

However, especially for a subtle difference, you will probably generally want
to opt for a larger group of players to experience both. Themore critical point
to make is that you need to account for so-called ordering effects: the order in
which participants play each condition might affect their experience! After
having played once, players will know more about the game, and so might
have an easier time with the second condition than they otherwise would.
They might also be fatigued later on in the test, or growing bored. To stop
this from having an effect on the results of the evaluation, you should coun-
terbalance the order that people will play each of your conditions. Half of
your participants should play with A first, while the other half play with B
first—this will help eliminate any effects of learning and fatigue from fuzzing
your results.5

Concept testing. If you’ve been thumbing through the first few test de-
signs bemoaning your lack of a working prototype, then this is the solution
for you. Concept testing is made for the early stages of a new idea or a feature
development, when you’ve got nothing but a few sketches, story descrip-
tions, and some wood carving your producer made in their garage. The goal
of a concept test is to validate whether potential players are interested in the
idea of something: different mechanics, characters, art style candidates, and
so on.

The methods employed in a concept test are typically surveys (question-
naires disseminated online to a large group of people) and focus groups.
You’ll embed a few items of interest in a questionnaire, or haul that wood
carving into a boardroom with one-way glass and set loose a dozen members
of the precious 18–34 demographic to talk about it for an hour. Depending
on your definition of interesting, you might find it interesting to know that
concept testing often overlaps with the soul of A/B testing. That is to say,
the focus of a concept test might be to explore alternatives in something like
art style or soundtrack, presenting participants with lots of options to gauge
overall interest in each.

Expert evaluation. Playtesting is the most effective way to figure out
if your game actually works, but it’s also expensive, time-consuming, and
not infallible. Expert evaluation certainly isn’t infallible either, but it can be

4 Academically, this approach would be called a between-subjects evaluation, as opposed to a
within-subjects one.

5 Should you have more than two conditions, look up a Latin Square generator. You’ll thank
us later. Probably.

325

The Game Designer’s Playbook

a quick way to find opportunities for improvement, and it can also prove
to be relatively cheap—particularly if you’ve got the right sort of expert on
your team. An expert evaluation will involve some of those expert meth-
ods we discussed earlier, like heuristic evaluation or cognitive walkthroughs.
An example case where expert evaluation would be especially useful might
be before scheduling a usability test with actual players. If you can iden-
tify a few easy-fix issues from expert analysis, those issues won’t crowd out
subtler details that your usability test will then be able to uncover. For
instance, before running a usability test targeting your UI, an expert evalua-
tor could prepare a series of cognitive walkthroughs comprising UI-centric
tasks like reorganizing the player’s inventory or navigating the options
menu.

Long-term and large-scale approaches. Should you want to evaluate
your game in the longer term, you might consider something like a di-
ary study, where participants walk away with a copy of your game, play it
for hours on their own time, write down their experiences with the game
(like in a diary) and ideally report back for interviews. This can be great for
the course of a few days or weeks, but in the much longer term (i.e., during a
closed or public beta, or after release) you’ll want to turn to the likes of game
analytics and surveys. If you’ve ever clicked past a disclaimer along the lines
of “anonymous data collection for the purposes of product improvement,”
then you’ve already had experience supplying your own gameplay metrics
for evaluation. Or you’ve been feeding training data to some sort of foreign
intelligence organization.

An excellent application of long-term evaluation driven by gamemetrics is
balancing gameplay in a multiplayer title like Overwatch or League of Legends.
With every match played, you can have information on which characters are
more likely to be on a winning or losing team, or which maps seem to grant
certain teams or characters an advantage. You can use this information as
a starting point for where balancing tweaks are warranted, or even dig into
questions like whether players of a higher competitive rating have certain
unexpected gameplay preferences. Pursuing this type of long-term evalua-
tion and improvement can help a game maintain a vibrant community long
after its release.

Even if executed perfectly, the evaluation approaches we’ve described here
won’t guarantee that your game is a smash hit. They won’t guarantee finan-
cial success, or universal critical acclaim. Game development, like most other
businesses, is too dependent on luck and a certain je ne sais quoi for any such
guarantees to be made. However, testing can guarantee one thing which is
utterly invaluable, and that is to make your game better than it otherwise
would be. And with our goal as designers being to make a great experience
for our players, we can’t ask for a better promise.

326

Test your Patience

(Continued)

Expert Profile: Graham McAllister—Having a clear vision

Creator of TeamSync

Game development is a field with many sides to it: design, art, programming, anima-
tion, and writing, among others. GrahamMcAllister has spent his time in games firmly
on the science side, with the goal of understanding what makes great (or terrible)
game experiences. In 2012, after almost ten years of experience as a computer science
lecturer, he founded Player Research, a company offering playtesting services to the
video game industry. Five years later, the company expanded with a new lab in Mon-
tréal, shortly after acquisition by industry conglomerate Keywords Studios. Graham
had made a name for himself, captaining a prominent and rapidly growing user re-
search firm. It might be a bit of a shock, then, to learn that Graham thinks user research
isn’t working particularly well.

When we sat down with Graham, he pointed out an embarrassing conundrum in
the industry. If user research aims to find design flaws and assess the player experi-
ence before a game’s release (it does), and large studios have healthy budgets for it
(they do), then why do we see so many big-budget games flop with critics and audi-
ences at release? (He offers EA’s Anthem as the most memorable recent example.) It’s
not as if user research is a new field; it may not be as established as many bastions
of science, but studios have been investing in playtesting and UX experts for decades
now. And yet, games like Anthem send the clear message that something in the game
development process is lacking. Looking at the state of modern user research, Graham
says that “it’s not the most effective way of making a game [better].”

In his time at Player Research, Graham noticed a pattern: user research often came
too late in development. By the time usability and UX testing rolled around, the only
feasible changeswere relatively small ones, butmany games suffered frommuch larger
problems in their core design. To help studios get design feedback earlier in develop-
ment, Graham started offering heuristic reviews, a method which relies on principles
of design and human psychology rather than actual players as the source of input.
However, even that comes too late for many studios, so Player Research added con-
cept testing and competitor analysis services which can be done very early in the
development process.

By speaking with many studios of all sizes, budgets, and experience levels, Gra-
ham soon found himself troubled by a new problem that seemingly no amount of
UX research could fix. An alarming number of developers struggled to describe their
creative vision. When asking big-picture questions like “What game are you making?”
and “Who is it for?,” he found that different team members would give wildly differ-
ent answers. Often, those answers would rely on ambiguous words like “engaging,”
“deep,” and “exciting,” leading to each member of the team interpreting these terms
differently. The problem however, is that each team member is often not aware that
their interpretation is different from their teammates, resulting in the game being
pulled in different directions. Graham says that such unstructured, messy descriptions
ultimately lead to unstructured, messy products.

Without a clear creative vision, Graham says good user research is impossible. He
says that too many user research discussions focus on improving testing methods,
instead of looking at how the design process and user research are linked in the first
place: “If you don’t know what your game is about, you certainly don’t know how to
measure [user experience]. You don’t know if you’re on track.” So even though user

327

The Game Designer’s Playbook

(Continued)

researchmight not beworking, Grahamdoesn’t see user research itself as the problem.
“The problem is with the team, in particular, how the team works together to define
and then deliver their creative vision.”

Being a fieldwith so verymany sides, game development is a notoriouslymessy pro-
cess. We dream of clean, systems-oriented, user-centric design. But creating a game is
more like trying to build a castle in the middle of a forest fire; it’s chaotic, beautiful in
its own way, and at least a little tragic. And without a clear picture of what that castle
(or game) should look like, having the most talented team in the world can’t save a
project without clear direction. That’s where his new framework, TeamSync, comes in.
With TeamSync, Graham wants to “bring the science into the team,” applying analyti-
cal methods from organizational psychology and user research to development teams
rather than players. The objective, broadly speaking, is to ensure the whole team is
aligned in the same direction, and ultimately deliver a better game.

To understand this design re-think, we should start with how Graham sees inter-
action design. He visualizes a game as a pyramid of sorts with user experience at
the top. Interaction design is a stone in the layer just below, which Graham initially
describes as synonymous with ‘controls’. He notes that things like audiovisual feed-
back are tightly coupled to our experience of game interaction. Many of the most
satisfying interactions–he mentions axe-throwing in God of War and web-slinging in
Spider-Man–depend on much more than button presses to delight players.

This thinking is at the heart of Graham’s philosophy, and the framework he’s devel-
oping with TeamSync. He mentions that the definition of interaction design typically
refers to the feedback loop between the player and the system, while TeamSync
considers interaction design at the team level. In other words, his aim is to tackle
‘team interaction design’ to enable precise communication and more effective in-
teractions within a team. In our discussion, we talked about common development
problems ranging from feature creep to running out of time for all but the small-
est changes suggested by user researchers. Graham’s side of the discussion usually
involved gesturing with a few colourful and top-secret papers from his work on
TeamSync, tracing those issues back to the evident progenitor of many design evils.
He eloquently pinned one setback after another on the absence of a clear creative vi-
sion, painting himself as an optometrist of sorts for the games industry. Take feature
creep for example, where a game’s design becomes bloated with things destined for
later deletion or disappointment: “If it doesn’t fit into the vision, maybe it doesn’t
matter [. . .] why are you spending time designing something that maybe isn’t that
important?”

Whenwe spoke to him, Grahamwas still busy getting the framework together for his
new venture. As for anyone looking to remodel their design process in the meantime,
he advises making sure the team checks even their most basic assumptions from the
outset. Above all else however, ensure everyone on the team shares a clear vision of
the game. If you can do this, the teamwill enjoy a smoother development journey and
your players will experience a better game.

328

Test your Patience

Further reading

Games User Research edited by Anders Drachen, Pejman Mirza-Babaei, and Lennart
E. Nacke (Oxford University Press). ISBN: 978-0198794843.

A comprehensive book on the methods and ideology of games user research, with
a focus on developing a good process for commercially oriented work.

Game User Experience Evaluation edited by Regina Bernhaupt (Springer).

ISBN: 978-3319362939.

Another overview of GURmethods which is arguably more academic in nature. The
last part of the book contains some domain-specific applications which are useful
for specific projects, like co-locatedmultiplayer, exercise games, and novel controller
design.

Discovering Statistics using IBM SPSS by Andy Field (4th ed., Sage). ISBN:
978-9351500827.

Despite the name, you won’t have to use SPSS to get a good deal out of this book.
The first couple of chapters are a great rundown of basic data analysis and statistics,
while the rest of the book explains more sophisticated techniques which may prove
useful if you’re especially interested in dealing with large-scale quantitative data (if
you’re a telemetry buff).

How to be a Games User Researcher by Steve Bromley. ISBN: 979-8556962040

A highly accessible book on how games development works and where research
can fit in. The book also offers great tips for people interested to start a career in
user research.

(Continued)

Exercises

Become the expert

Try your hand at an expert evaluation using a set of heuristics, criteria which act as rules
of thumb for good game design. Look up an existing set of heuristics, such as the PLAY
heuristics first presented at the CHI conference in 2004. Read through the heuristics to
familiarize yourself with them.

Pick a game you haven’t played before, and play it for an hour or two. Take notes
as you play, paying attention to what works and what doesn’t. If anything jumps out
as related to one of the heuristics you’ve selected, make sure to take a note of that as
well.

After playing, compare your notes to the set of heuristics and see if you can relate
them to those heuristics. Which ones does the game violate, if any? Which does it do
well? Write out a list of any issues you have identified and estimate their priority based
on how often they occur and how severely they impact the player’s experience.

329

The Game Designer’s Playbook

(Continued)

Guerrilla playtesting

Recruit a (willing) friend and have them act as a playtesting participant for you. Pick
an existing commercial game, and run a FTUE-type test with your friend. Take this
opportunity to play around with a “proper” playtesting setup. Create a comfortable
area for your friend to play, set up software to record their gameplay, take notes while
they play, and have questions ready to interview them.

Afterwards, create a list of issues and suggestions to improve the experience based
on watching your friend play (remember that in reality, you will very rarely jump to
absolutes based on data from one person). Discuss your findings with your friend. If
you were the game’s developer, what would your next steps be?

330

12

What Comes Next?

In the summer of 1964, millions flocked to New York City for the World’s
Fair, a celebration of human culture and technology. Dripping with post-war
optimism, the fair showcased developments in transportation, computing,
and communications. Epcot-style pavilions housed Florida flamingos, art on
loan from the Vatican, and of course, “The World’s Largest Cheese,” courtesy
of Wisconsin. Among all its exhibitions, one of many memorable moments
at the fair was a demonstration staged in May by Bell Aerosystems: the Rocket
Belt Man.

Rocket Belt Man was, as you might expect, a man with a rocket belt. The
rocket belt in this case consisted of three fuel tanks and two nozzles to di-
rect outflow downwards and away from the user. In other words, it was a jet
pack. To a crowd of live onlookers, and thousands more on television, the
16-second flight was a promise of the future. Bell had worked on their pro-
totype for military use, but the rocket belt wasn’t just a military experiment.
Culturally, demonstrations like this were glimpses into the chrome-plated,
white-walled utopia of the coming decades, where parcels would arrive via
flying car and your daily commute would involve a jetpack of your own.

It’s been 60 years since the height of space age futurism, and we’re still
waiting on those jetpacks. Missing out on personal rocket belts is disappoint-
ing, but hardly surprising. Putting aside a near-endless list of impracticalities,
jetpacks-for-all was merely one of many overly imaginative predictions that
never came to be. Back to the Future envisioned hoverboards in the 2010s,
and we ended up with hands-free electric scooters that grant their owners a
classy frat boy sensibility on the way to pay six dollars for coffee.

Plenty of projections of the opposite sort also proved fruitless, as every new
technology in the past 5,000 years has been shunned by naysaying contem-
poraries as a temporary curiosity. Electric light, radio, film, automobiles, and
television were all decried as fads by frightened men in spectacles clutch-
ing their copies of Gutenberg’s Bible (presumably convinced that it might

The Game Designer's Playbook. Samantha Stahlke and Pejman Mirza-Babaei, Oxford University Press.
© Samantha Stahlke and Pejman Mirza-Babaei (2022). DOI: 10.1093/oso/9780198845911.003.0012

The Game Designer’s Playbook

disappear at any moment, as the printing press was surely a fad). It’s strange
that such fellows seemed less vocal on the subject of Pet Rocks and table-
sized Jello salads filled with ham and olives, but you can hardly blame them
for assuming those would stick around.

Some visions of the future were closer to what we ended up with, often
coming from science fiction. “Communicators” in Star Trek weren’t all that
far from the flip phones dominating the turn of the millennium. The Jetsons
presented a shockingly cogent interpretation of smart home technology for
a cartoon, albeit boasting far more emotionally intelligent cleaning robots
than the ones we have today.

In gaming, the predictions encoded by industry in their designs over the
past decades have varied similarly in quality. Of the consoles that touted
themselves as the new standard in hardware design, some weren’t that far
off the mark. Sony’s original Dualshock controller in 1997 introduced the
“two sticks, four buttons, and a directional pad” formula that’s persisted for
the last quarter of a century. Some designs that tried to leap further into the
future by experimentation, like the Wii with motion controls, were wildly
successful. Others turned out to be expensive mistakes, like the Virtual Boy,
Nintendo’s fever dream tabletop VR headset, or Sega’s Activator, an erratic
attempt at full-body motion control.

Assertions and hopes about the future made by players, corporations, and
the media have likewise fallen evenly across the gradient between realism
and ridicule. For all the fearmongering fromwriters that had never picked up
a controller in their lives, video games never did manage to rot the brains of
children or raise a generation of gun-toting gremlins hellbent on destruction.
Meanwhile, market whisperers who claimed mobile games would eventually
generate massive revenues turned out to be right. Those who hopped on
the toys-to-life bandwagon popularized by franchises like Skylanders mostly
accomplished little more than filling the ocean with plastic, with the possi-
ble exception of Nintendo’s Amiibo, which also filled players’ homes with
plastic.

What we can extract from all of this is that attempting to predict the
future with any degree of reliability is a useless effort. There’s a reason hind-
sight serves as the basis for so many of our lamentations; try as we might,
humans are not soothsayers, irrespective of expertise. Our collective ability
to see into the future is just about as effective as a blindfolded capuchin
playing darts—figure about random chance; sometimes slightly better, and
sometimes slightly worse.

You’re probably wondering where we’re going with this discussion, which
insofar has perhaps been a bit on the cynical side for a final chapter. The
more optimistic note is this: for all the pitfalls in spinning a vision of the
future, we try anyways, because it’s fun. Everyone wants to pretend they’re

332

What Comes Next?

Nostradamus, at least a little bit, and speculation breeds innovation. As such,
this chapter will explore how technology, games, and the industry have
changed in recent years, and what these changes might say about the future
of game interaction.

For our purposes, we’ll lean on the conservative side of things to try and
facilitate a realistic examination of the design trends that exist today. Should
you return to this book years from now, feel free to marvel in how our tem-
pered wisdom has remained relevant, or laugh hysterically at our failure to
even mention the rise of virtual anime esports players to the seat of interna-
tional government. Hopefully a few of those darts we throw will land, and if
not, hopefully they’ll still provide some food for thought on how your own
designs might evolve in the coming years.

Like sands through the tiny plastic hourglass that comes with Boggle, these
are the plays of our lives.

12.1 Pocket supercomputers strapped to your face

Advances in the technology behind games help shape what we see, hear, and
do while playing. Looking back on what seemed like relatively gradual shifts
at the time, the past five decades have been a period of radical, accelerated
change. That change brought us from arcade cabinets to consumer electron-
ics, which became wildlymore powerful and diverse as the years rolled on. As
the devices that powered games evolved, so too have the ways in which we
interact with them. Dials gave way to joysticks and buttons, and eventually
touchscreens, gestures, and motion. Games became longer, more complex,
more compelling imitations of the fantasy worlds. Equally important to all
that improving technologies could give was what they could remove, erasing
limitations of the past and letting our designs achieve something closer to
the perfection of imagination.

Of the more recent shifts in game technology, the mobile revolution is
arguably the most pervasive. Since Angry Birds and their ilk first slingshot-
ted onto the scene, smartphone games have become the de facto face of the
games industry, whether we like it or not.1 Mobile games make more money
than either console or PC gaming, with smartphone and tablet releases ac-
counting for nearly half of the industry’s total revenue. By the time this book
hits a shelf or agonizingly bright screen near you, that figure will probably
have become “just over half,” if not substantially more.

From a general design standpoint, the biggest change here is obvious—
extreme portability. Somewhat ironically, the emergence of accessible pocket

1 We don’t. Can’t the Virtual Boy at least have this?

333

The Game Designer’s Playbook

computers seems to have effectively killed the handheld gaming industry,
suffocating once-popular devices like the Playstation Vita and Nintendo
3DS. Unless you were willing to haul a CRT on the subway, handheld con-
soles used to be the only option for gaming on the go. When smartphones
came along, it was only a matter of time before consumers’ limited money
and pocket real estate would have to settle for the device that could do
everything, even if it didn’t feel quite as special.

Phones and tablets aren’t the only surviving way to play games in a
portable form factor, of course. Gaming laptops are a niche purchase for
plenty of techie professionals and hobbyists that value the ability to play
PC games while on the couch. And in their usual fashion, Nintendo’s latest-
generation device flouts the traditional set-top box design of Microsoft
and Sony’s offerings with the Switch, a hybrid that works as a console or
handheld.

Figure 12.1 Hardware has come a long way since the days of the Commodore
64 (top left) and Nintendo Entertainment System (top right). Modern hardware
demonstrates years of design experience in refining ergonomics and embracing new
technology. The Xbox One controller (bottom left) is one embodiment of years of de-
sign finesse, while the Oculus Rift (bottom right) is one entry in the still-fresh frontier
of virtual reality.

Credit: Image of the Commodore 64 cropped from original by Federigo Federighi (CC BY-SA 4.0).
Image of NES controller by Denis Apel (CC BY-SA 3.0). Image of Xbox controller by Luzankia
(CC BY-SA 4.0). Image of Oculus Rift cropped from original by Evan-Amos (public domain). All
original images obtained via Wikimedia Commons.

334

What Comes Next?

For game interaction designers, these changes bring about some inter-
esting challenges and opportunities in shifting away from the paradigm of
playing games on biggish screens in quietish rooms. Designing for mobile
means designing for a host of screens, many of which are small, and figuring
out how to map a set of complicated interactions to a touchscreen without
relying on dozens of infuriatingly small buttons. Peripherals for smartphone
gaming haven’t really taken off, outside of a very niche audience, and you
probably won’t ever be able to count on your player base carting around a
wireless controller for Fruit Ninja: 2035.

Play habits are another progenitor of considerations for interaction design
here. The nature of mobile communication and the development ecosystem
it has created has served to mutate our relationship with technology and
whittle humanity’s collective attention span to a very self-absorbed tooth-
pick. Notifications used to be utilitarian, letting us quickly scan for a missed
call from family or an important work email. Once app developers realized
they could hijack notifications to create a false sense of urgency, we were
cursed with a constant barrage of popups baiting us into opening a social
media app on some flimsy assurance that we’re missing critical updates to a
friend-of-a-friend’s brunch diary. Games are no exception, with the likes of
login bonuses and promises of limited-time exclusives cluttering up the top
quarter of the screen until you’re pressured into boosting someone’s daily
active user count.

Luckily, this doesn’t mean you have to toss your daily bonus-based de-
sign effort on the trash fire of instant gratification. Varied play habits give us
the chance to create experiences that veer away from tradition. Before mo-
bile games, we were more or less locked into designing games often played
for hours at a stretch. A return to the arcade-style ethos of short play ses-
sions with high skill ceilings is a perfect fit for play on mobile devices.
When thinking about how players interact with such creations, can we con-
sider their surroundings and activity? Might we see more phenomena like
Pokémon Go, which encourage real-world exploration (Outdoors? In the
sunlight? Perish the thought!) as a core part of gameplay?

On the wilder side of things, we might speculate that the future of mobile
devices will eventually lead to an established market in wearables. Should
they ever be able to spread to the general public from the wrists of upper-
middle class tech enthusiasts, we might see something along the lines of a
second Tamagotchi craze. And as all of the devices we use veer ever-closer
to a set of black rectangles differentiated only by size, perhaps we’ll see a
rebellion from hardware designers making some visible effort to innovate
in their form factors. With a few exotic foldable screens starting to hit the
enthusiast circuit already, maybe we can expect to eventually see the revival
of specialized handhelds for gaming as part of a design renaissance.

335

The Game Designer’s Playbook

Another development common to all of our devices is the widespread
availability of ludicrously high-speed internet. This has allowed for the mass
proliferation of online multiplayer games; while such modes were once a
treat, these days it can feel like one too many shooters put all of their efforts
into online play without much in the way of a single-player experience. So
long as advertising is honest, this isn’t such a terrible thing, creating more
diversity in the type of play you can expect from titles that focus more on
an individual or group experience.

For designers, this also means that we can probably expect the impor-
tance of remote player-to-player communication to keep growing. Designing
systems for players to interact with one another is often equally critical as cre-
ating those for players to interact with the game itself. Text chat and emotes
don’t cut it anymore; things like interactive maps and sleek, context-aware
ping communications are practically standard. For these types of features,
the game serves only as a mediator, and your design skills must adapt to the
unpredictable humans at each end of the interaction.

The age of always-on internet has brought other changes as well; always-
online games, or “games as services,” have practically become the default
for AAA releases. Consequently, developers can more easily provide players
with new content and updates, constantly responding to player needs and
keeping communities thriving for longer. On the flip side, the tantalizing
notion of easy patches means a temptation to release products that aren’t
quite ready. And to justify continued development, continued revenue may
take the form of predatory microtransactions. Striking a balance between the
positive and more concerning aspects of games as services, for the present
moment, seems to be something developers are still trying to figure out.

As a partner to the online service model of individual games, we’re also
seeing a rise in early attempts at cloud gaming subscriptions. In a few words,
you might think of this as “Netflix for games.” In a few more, cloud gaming
means using your device as nothing more than a relay station; it communi-
cates your inputs to a server which actually runs the game, and then receives
video (and sound, and sometimes a signal for controller rumble) to play back
at you.

From a practical design standpoint, this presents similar challenges as the
rise of mobile devices. If an experience originally designed for PC and con-
sole makes the leap to cloud gaming, it needs to adapt to a wider variety of
devices and play contexts. You can recommend a traditional setup all you
like, but if you really want to be inclusive to the crowd you’ve expanded
into, things like UI scaling and visual cues to replace spatial audio feedback
will be necessary considerations. Depending on how far this trend swings,
we might eventually see cloud gaming become the standard. Hopefully we’ll

336

What Comes Next?

never see a dystopian hellscape where nobody actually owns a real computer
or copies of the games they play, but it is an unfortunate possibility.

Speaking of dystopian hellscapes, we might also speculate about a fu-
ture where virtual reality has supplanted real reality, à la The Matrix or
Ready Player One. More realistically, we could suggest that a steadily growing
library of VR titles and improving hardware will finally allow the market to
reach critical mass. VR devices may one day become as commonplace as con-
soles are today. If this happens, we might see versions of today’s wacky VR
peripherals become standard: things like omnidirectional treadmills, haptic
gloves, full-body trackers, and next-generation Duck Hunt-style gun attach-
ments for controllers. With this future might come something more exotic,
like the use of brain-computer interfaces for more streamlined output, or
a long-anticipated breakthrough in true holograms breathing new life into
mixed reality. Should any of this come to pass, the challenges we face will
be a continuation of those we explored in Chapter 7—adapting to new
control methods, working with gestural input, taking advantage of player
immersion, and avoiding unpleasant side effects like VR sickness.

Supporting all of these advances are continued innovations in game and
engine programming. Physically-based rendering techniques bring increased
realism to how we deal with materials from metal to blood and everything
in between. Raytracing simulates the behaviour of actual light as it bounces
through an environment, instead of approximating it with the fakery we’ve
come to know and love. There’s still plenty of fakery at work today to let
us grab a taste of raytracing on consumer hardware. But when we can push
more pixels, and crank up the detail of assets created by artists, raytracing
might effectively make visual realism a completely solved problem in the
next couple of decades.

Figure 12.2 Minecraft as seen by us lowly peasants of the everyday gaming world (left)
and those with raytracing-capable GPUs (right.).

Credit: Minecraft was developed and published by Mojang Studios.

337

The Game Designer’s Playbook

Moving on from here, the sensory boundaries between playing a game
and watching (or living) an action movie will narrow further. As we dazzle
players with our visuals, our designs must grow to take advantage of their
potential. In a future where players will never be able to make out another
polygon or catch a pixelated shadow, things like feedback design and repre-
senting unrealistic action in a way that feels tangible will become even more
important.

12.2 Buy low, sell high

As our technology has evolved, so too has the games market transformed
into something barely resembling its former self. Long after the hobby of
playing games broke into themainstream, the craft of making games was still
reserved for a select few in the industry. Aspiring developers lacked access to
the wealth of tools on offer today, and education in programming was far
from standard in elementary or secondary schools. Even if you managed to
learn and create something on your own time, when it came to distribution,
you were out of luck, unless you could manage to get an audience with a
publisher.

All of this changedwhen digital distribution stumbled onto the scene with
PC services including Steam and GOG.com, and their console counterparts
like the Xbox Games Store. Of the major players in the PC market, Steam
is the eldest, and for the time being, most widely known. From humble ori-
gins as an update service for Valve’s games in 2003, Steam branched out to
negotiate distribution for third parties in the coming years, eventually gain-
ing traction with large publishers. By the onset of the next decade, Steam
cemented itself as a premier digital storefront, boasting tens of millions of
users.

The advent of digital distribution accelerated the process of democratizing
game publishing. Indie developers no longer had to throw an executable up
on their website and hope for the best. Better distribution and more widely
available tools meant that anyone could develop a game, and just maybe
manage to get it on a digital storefront. One of the first breakthroughs in this
respect was Braid, often credited as the first “big” indie game of the modern
era. Released in 2009, Braid is old, though not so old in the greater scheme
of things. Alongside its name, you’ll hear other indie darlings of the period,
like Limbo (2010), Super Meat Boy (2010) and Fez (2012).

Since the first shots fired in the indie revolution, game distribution was
quickly democratized thanks to programs like Steam Greenlight and Xbox
Live Indie Games. From here, the market exploded in diversity, as small
developers could hoist their creations onto commercial storefronts with

338

What Comes Next?

Figure 12.3 Two breakthrough video games from the first wave of indies’ rise to
visibility and mass market appeal: Fez (left) and Limbo (right).

Credit: Fez was developed by Polytron and published by Trapdoor. Limbo was developed and
published by Playdead.

relatively little expense. As restrictions relaxed across the board, the market-
place grew more saturated. Today, we might say that anyone can fuel their
passion into a game and make it available for all to see. More pragmatically,
we might say that digital stores everywhere are flooded with asset flips and
poorly conceived clones that slowly choke the life from more earnest efforts
unlucky enough to miss out on the fickle luck of getting noticed on social
media. All of this coincides with the industry’s continued growth, having
recently broken $100 billion annually and projected to keep expanding in
the years to come.

Our question then becomes how we can possibly carve out a space for
ourselves in the crowded ocean of the games industry. Fortunately, all of
this growth has been supported by some changes in marketing friendly to
developers of all sizes. The more traditional means of throwing large sums
of money at advertising in the form of television spots, massive online cam-
paigns, and creator sponsorships are still in full force, but they’re no longer
the only options available. Gaming has its own version of influencer market-
ing in the form of content creators like streamers and independent reviewers.
Get enough social media traction to have your case heard by a popular per-
sonality, and they just might stick your game in front of an audience of
millions.

There is, of course, a great deal of luck involved in the success of such
efforts, though if you can juice up your design with things to make it more
of a sensory treat (Chapter 4) or something naturally suited to streaming
(Chapter 8), you’ll have a better shot. As market saturation increases and
media dissemination moves further online, these tactics will become even
more important. Your skills in designing interactions that are satisfying and
watchable won’t just contribute to a good player experience; they’ll become
ever-more instrumental in getting noticed in the first place.

339

The Game Designer’s Playbook

Along with this transformation in marketing has come once-unthinkable
shifts in how and when games make their money. Releasing a game be-
fore it was finished would have once been a commercial death knell; now,
early access is a way for developers to fund further development through
sales (or take the money and run). Meanwhile, spending your money on a
game before it’s been released remains a standard practice in the form of pre-
orders, the ridiculousness of which is somehow mitigated in the public eye
by dangling a few cosmetic exclusives alongside calls for pre-release sales. The
culture of incentivizing pre-orders, early access, and constant online market-
ing has created a tendency for voracious anticipation of new releases. But
just as hype can turn release into a celebration (Mass Effect 2, Overwatch, The
Witcher 3, Half-Life: Alyx), it can also create catastrophe around games that
fail to impress at release (Anthem, No Man’s Sky2, Fallout 76, Cyberpunk 2077)
or underwhelming murmurs around games that weren’t quite what players
expected (Death Stranding3).

With what feels like a growing number of hype trains gone wrong with
every passing year, players have gained a bit of understandable skepticism
around things like early access and pre-orders. It’s easy for such strategies to
seem like schemes focused onmakingmoney instead of games—and perhaps
none has become more scrutinized than the implementation of microtrans-
actions. First becoming commonplace in classic virtual worlds like Habbo
Hotel (2001) and Second Life (2003), these small purchases took off in con-
cert with the mobile market, as games like Clash of Clans (2012) adopted a
“free-to-play” (F2P) model.

Many F2P games are, of course, free games in the same way that a card-
board box with wheels is a car. You can technically make your way to work in
one, but if you want to have any sort of enjoyable experience, you’re going
to have to shell out a lot more money to have one. The F2P model quickly
spread out of the mobile ecosystem with the likes of Hearthstone (2014), a
virtual trading card game which practically forces players to shell out four
times as much on cards as they’d willingly spend on a complete experi-
ence out of the box. Live-service games like Fortnite (2017), also adopted
a microtransaction-focused F2P economy. Meanwhile, games with an up-
front price have integrated microtransactions for things like cosmetics as
a way to generate additional revenue. In theory, this can be an effective

2 While it certainly suffered around launch, the team behind No Man’s Sky in particular should
be commended for the updates and support they have provided since, turning the game into
something which is deservedly and almost universally loved.

3 It might not be everyone’s cup of tea, but this mixed reception shouldn’t be taken as a nega-
tive judgement of Death Stranding itself; if anything, it speaks more to the problems surrounding
hype in the gaming community as a whole.

340

What Comes Next?

way to fund continued development. In practice, though, it’s often a quick
slide into so-called dark design patterns: decisions that intentionally make
players’ experience worse to bait them into spending money. Fear of miss-
ing out on seasonal cosmetics tempts players to buy up randomized unlocks.
Some games have the audacity to artificially limit the pace of progression
while offering paid “time-savers” to speed things up, as in Assassin’s Creed:
Odyssey (2018), a game which already carries a full price tag up front.

With all of these changes, there’s nothing much that we can say from
a design perspective except to tread carefully. Should you have any sort of
creative control over the projects you work on, bear in mind that a shift in
business models doesn’t necessitate a complete abandonment of ethics. If
you’re a burgeoning designer, remember that your priority is creating satis-
fying interactions, and not promising players that they’ll finally have a great
experience for just a few more dollars on top of what they’ve already spent.

On the speculation side of things, we can summarize the recent changes
highlighted here in three words: expansion, saturation, and discontent.
Putting these factors together, wemightmake comparisons to economic bub-
bles of the past, or more ambitiously say something about the former Soviet
Union. On the latter point, we probably won’t be seeing the ghost of Boris
Yeltsin making any appearances at GDC. In regard to the former, though,
the games market has seen some spectacular volatility in the past.

1983 marked the start of a massive industry recession that went on for
2 years, sparked by a market flooded with rivaling consoles and rushed prod-
ucts. Today, the industry is far more established, and product quality is
incomparable to what it was 40 years ago. Nonetheless, as hype trains derail,
app stores reach saturation points, and a growing number of distributors bat-
tle for exclusives, we might be on the verge of large-scale shifts. Whether this
will take the form of a crash, further changes in market share, or a change in
the landscape of corporate ownership remains to be seen. Some of the most
substantial changes in what players actually end up with, though, have re-
sulted not from an evolving marketplace, but from the ethos of game design
itself.

12.3 Game changers

The way we think about and design games has come to reflect an expanded
understanding of the role they serve in our lives. Video games started out
as diversions, technical curiosities that let us experiment with play in a new
way. But as technology improved and designs grew more complex, games
begun to serve other purposes as well. Games started to showcase impressive

341

The Game Designer’s Playbook

digital art and music, often alongside stories that were far too deep to be
called diversions anymore. A new question arose: were video games a form
of art in themselves?

Answering this question without diving into pedantry is relatively
straightforward. If art is an expression of human creativitymeant to be appre-
ciated by its audience, then of course video games are art. Whether based on
their beauty, intellectual curiosity, or ability to evoke emotion, video games
meet this definition.

And yet, the classification of games as an art form was the subject of a
rather contentious debate, the echoes of which are still bandying about to-
day. By the early 2010s, fears that video games were some sort of propaganda
designed to turn us all into violent criminals had grown passé. Around this
time, the art debate popped into the public eye, as if all that negative energy
about games eventually had to be redirected. Some of these debates were
marked with an unsettling sort of elitism, as if games were too popular, too
commonly accessible and accepted by the middle class to possibly be consid-
ered on the pedestal of the arts. Others were focused on frustratingly myopic
semantics, insisting that some technicality or another in the encyclopedia
definitions of “art” and “play” could make the two mutually exclusive.

Most of the anti-art argumentation, though, came back to some embodi-
ment of the idea that games aren’t a form of art because their primary purpose
is to provide entertainment as a product. One could hold up several examples
here of games that aren’t really intended to be artistic; ignoring the technical
skill on display from artists and animators, is Call of Duty artistic? Is Fortnite
artistic? Following this logic, any art form which has been sufficiently com-
mercialized should be disqualified. But in the absence of a pitchfork-bearing
mob decrying the classification of films as art on the basis of Sharknado’s
existence, perhaps we can accept that games are no less a form of art than
anything else in our hyper-commodified present day.

Coinciding with the death throes of this debate and the uptick in indie
releases is a growing library of games that could be described as more tra-
ditionally artistic. Cuphead, for example, features painstakingly hand-drawn
animation and live-recorded original jazz music, paying homage to cartoons
of the early twentieth century. Gris explores a story about grieving a loved
one, set against massive beautifully illustrated backdrops reflecting its narra-
tive themes. This War of Mine tells an unstructured story about the horrors
of war from the perspective of ordinary civilians. And some games, like
The Witness with its layered puzzles and crumbling statues showing differ-
ent poses from different perspectives, encode abstract messages about the
nature of games and play.

Games like this usually still strive to be fun and engaging—certainly the
examples above do—but whatmakes them remarkable is less the core of their

342

What Comes Next?

interaction, and more so what surrounds and motivates that interaction. As
the art of game development matures, one way to push the medium forward
is to embrace this focus, paying even more attention to the factors envelop-
ing the act of play. In other words, as a designer, youmight come to focus less
on the functionality of “doing” and “communicating” in game interaction.
Instead, think about how players perceive and think about a game’s world,
and what emotional response or artistic appreciation you hope to derive. In
the coming years, innovation in game design will be, in part, a question of
artistry.

Of course, this isn’t to say that games have reached the apex ofmechanical
design. Promising opportunities can be found in pushing the limits of those
more functional aspects of game interaction. One way this is already being
explored is in games that experiment with real-world impossibilities that play
with the laws of physics. Portal is a notable early example, centred around
themechanic of placing portals: effectively, wormholes that allow for instant
transportation between two places.

Since Portal, we’ve seen Antichamber and Manifold Garden, two games that
play with the idea of non-Euclidean geometry to create environments for
players that have impossible connections and infinite spatial loops. More re-
cently, Superliminal built its puzzles around forced perspective, where players
can move objects around and change their physical size based on their ap-
parent size on-screen. Messing around with physics isn’t just interesting, it
can grab players’ attention: a large part of the appeal of aforementioned indie
phenomenon Braid was its core mechanic, which allowed players to reverse
the flow of time.

Figure 12.4 Antichamber uses amimic of non-Euclidean geometry to create spaces that
connect in impossible ways and change when viewed from different perspectives or
in different conditions.
Credit: Antichamber was developed and published by Demruth.

On top of broadening our understanding of artistic potential andmechan-
ical possibility, time has also revealed the ability of games to contribute to
society in different ways. Games can be used for education, training, therapy,

343

The Game Designer’s Playbook

and exercise. This revelation in the diversity of purposes that games can serve
has been complemented by a welcome change in who’s playing games, or at
least a change in our awareness of the people who play games. The cultural
ideal of gaming was once maddeningly confined to the image of a tech en-
thusiast, locked in a basement away from any shred of daylight, surrounded
by bags of cheese puffs in the immaculate blue glow of a screen. Today, we
understand that this exclusionary view is inaccurate (and a bit harmful), as
the real faces of gaming are far more diverse. Children, seniors, students,
professionals, and caretakers—from all walks and at all stages of life, people
enjoy playing games. The needs of different individuals will be reflected in
their preferences, but the act of gaming itself is far from exclusive.

Certain types of games can cater to the needs and better the lives of
individuals from different groups. The edutainment craze of the 90s has
resurfaced in the form of mobile games targeting school-aged children, like
Khan Academy Kids and Prodigy Math Game. Meanwhile, games promoting
at-home exercise, like Wii Fit and Wii Sports, are designed with accessibil-
ity for gamers with less experience (like many older adults and seniors) in
mind. As demographics continue to shift in the coming years, designers
may have interesting questions to address. Will the idea of most children
as “novices” become outdated as technical literacy becomes an increasing
part of childhood at home and in school? How will the entertainment and
technology needs of those who grew up playing games in the eighties and
nineties change, if at all, as they become seniors in another few decades?

Related to the idea of games as tools for education or staying active is the
notion that they can promote positive social change. While games, or per-
haps more accurately “playful applications,” developed solely to this end do
exist, they are often birthed from academia and deployed in specific con-
texts. We probably can’t drop any names here that readers would be sure to
recognize, though you will find some literature related to such projects in
the reading recommendations following this chapter.

More widely known are commercial titles which explore important sub-
jects, aiming to promote awareness or often a deeper understanding and
empathy in players. Mental illness has been seriously explored in titles like
Celeste and Hellblade: Senua’s Sacrifice. Hellblade is particularly notable for its
development team’s efforts to produce a grounded portrayal of the protag-
onist’s psychosis by connecting with academics, non-profit organizations,
and individuals with mental illnesses. In a similar fashion to user-centred
design approaches, such tactics can help games that deal with serious issues
to ensure that their messages are more informed, effective, and emotionally
powerful.

In addition to challenging our conception of important issues, games can
also challenge our definition of the word “game” itself. We’re no longer at

344

What Comes Next?

the point where new genres are being invented from the ground up every
couple of years, but we still routinely see the emergence of new paradigms
that reimagine some aspect of game interaction.

Improved technology that let us tell audiovisual stories more easily saw
the rise of visual novels and “walking simulators,” where gameplay might
be pared down to basic navigation and dialogue in favour of focusing
on character and world development. A strange hybridization of point-
and-click adventuremysteries with true crime-esque drama brought us games
like Her Story. In these interactive explorations of story fragments, your ulti-
mate goal is not to eventually catch some big bad or embark on a thrilling
chase, but to unravel a series of events that’s already played out for your own
understanding.

For any designer, especially one new to the industry, the wealth of games
brought by the last few decades can seem overwhelming. Suffocated by
market saturation, it might feel like most things have already been done at
this point. Survival sandbox games march one after another trying to fill the
shoes of Minecraft. Expectations have been subverted in every genre, to the
point where subversion is the expectation. An FPS where you don’t shoot
anyone (Portal), an RPG where you don’t kill anyone (Undertale), a grand
adventure squashed into 60 seconds (Minit).

And yet, for every “what if” that games have already answered, games can
still surprise us. Plenty of unanswered questions remain for us to explore.
Failing that, there’s no law that says a game needs to tread totally unexplored
ground to surprise and delight its players. Not every game needs to incorpo-
rate some physical impossibility or genre-twisting innovation to be seen as
good design, leave its mark on the art of games, or most importantly, give
players a good experience. In the end, the recent explosion of diversity in
design is less overwhelming and more a reminder of the freedom we have to
create something, no matter how strange or specific, that brings players joy.

12.3.1 . . . So what comes next?

Throughout this book, we’ve looked at many different aspects of game in-
teraction. Our basic interaction model comprises five steps: game-to-player
communication, player decision, player-to-game communication, action,
and result. Information about the result of each action feeds into the infor-
mation players can use to make their next decision, creating a cycle. Moving
forward, we might think about how each of these stages could be affected by
the changes we see in technology, industry, and game design.

The boundaries across which games communicate with us are shrinking;
feedback can be far more realistic, and up close, than it once could. Experi-
encing a game through a head-mounted display and headset feels distinctly

345

The Game Designer’s Playbook

more personal than doing so via distant television screen and speakers.
Likewise, the physical and psychological gaps we need to cross in commu-
nicating with games are narrowing. Instead of mapping actions through
hardware intermediaries like joysticks, the mapping of action to action via
gestural controls is becoming more widespread. Taken to the technolog-
ical extreme, we might see proof-of-concept in the next few decades for
rich brain-computer interaction (BCI) in games. As of this writing, at least
one major commercial effort4 exists in researching scalable BCI produc-
tion, alongside many academic endeavours aimed at medical interventions.
Whether this work will eventually save lives, or let us finally play games
undetected during performance reviews at work, remains to be seen.

Having covered communication, we only have control over two of the re-
maining parts of the interaction process. Outside of the power of suggestion,
we can’t directly meddle with player decision-making, at least, not without
someMK-Ultra tech to complement our BCI chips, should they ever get here.
This leaves us with action and result, the stages most relevant to changes in
game design itself. As game design diversifies into new subgenres, intentions
of purpose, and target demographics, the possibility space of the actions and
consequences we design for will continue to grow. This isn’t to say that in-
dividual games will grow more complicated by necessity, but rather that we
will see more nuance distinguishing between similar types of action in differ-
ent contexts. For instance, we can already see far more diversity in the feel of
gunplay between shooters today as opposed to their arcade counterparts of
old. We can expect this type of diversity to persist and grow across all types
of game interaction.

With some basic understanding of how game interaction might change in
the coming years, let’s take a moment to envision how this might manifest
in the games we create and play.

In Chapter 3, we talked about the challenge of captivating players early
on and keeping them invested for hundreds of hours of play. As the market
grows more saturated, players become wise to our tricks, and the age of social
media threatens to shrink attention spans, how will we adapt? Some games
may further erase the traditional tutorial, throwing players into the fire as
quickly as possible to get them engaged in the action. Some games might
try to go in the opposite direction, creating a series of hand-holds with well-
timed rushes of dopamine to emulate the onboarding experience of many
mobile titles. And to achieve longevity, we may see more games embracing
an early access model whereby they can grow a community and keep players

4 Should you be reading this before society collapses into a lawless wasteland and you still
have internet access, that effort is Neuralink, and it’s championed by exactly who you think it
would be.

346

What Comes Next?

interested by offering a steady stream of updates as development continues
after initial release.

What we see, hear, and otherwise sense in games may also change radi-
cally in the coming years. In Chapter 4, we discussed game feedback, focusing
primarily on audiovisual communication. As technology improves, we may
see more communication in the form of haptics. Particularly for VR interac-
tions, “high definition” haptics could be valuable to let us mimic things like
the weight, shape, and texture of virtual objects with a little sensory trick-
ery. Maybe one day there will be appeals made to our other senses as well;
personally, we’re still holding on hope for that resurgence of Smell-O-Vision,
probably courtesy of Nintendo.

On the other side of interaction, the way we control games will also
continue to evolve. Motion controls ten years ago were fun, but often felt
gimmicky. Modern incarnations have becomemore sophisticated, while pre-
serving that spark of naturalistic novelty they’ve always had. With better
sensors and image processing, we’ll probably see much finer gestural con-
trols become established in the next couple of decades, particularly for VR.
Or at least, we can hope so, lest the idea of practicing virtual sorcery through
the intricate pantomime of martial arts remain nothing more than a dream.

One of the things that all of this communication lets us accomplish is to
tell stories to our players. Technical limitations once hampered how rich and
complex these stories could be, assuming we still wanted room for graphics
and mechanics. For a while at least, many game narratives could be boiled
down to three words without losing out on anything really integral to the
plot: “save the princess,” “kill that guy,” “make number bigger.” There’s
nothing inherently wrong with this, and certainly even many games today
are worthwhile experiences without much in the way of story holding them
together. But since we now have the room and resources to weave more sub-
tle narrative threads, game writing is starting to catch up. And with a market
established for games that tell stories with real emotional impact, we can ex-
pect to see more diverse voices and more serious topics represented moving
forward. If you’ve been waiting on wanting to be heard, you’re in the perfect
era to work your own personal story into the games you create.

The technological developments we explored in the latter half of this vol-
ume, relating to virtual reality, streaming, and artificial intelligence, might
also give us some clues about the future. Any attempts to characterize these
trends as fads might prove just as humorous as the critics of automobiles
and televisions a century ago. Maybe one day we’ll see true plug-yourself-in
VR, and if we’re lucky, maybe it won’t precipitate the total collapse of so-
ciety. If streaming continues its rise as a new normal of media distribution,
content creation might become a far more mainstream hobby, leading to
a democratization of entertainment unlike any we’ve seen before. And as

347

The Game Designer’s Playbook

AI develops increasingly realistic behaviours to complement our increasingly
realistic graphics alongside everything else, we’ll come even closer to that
tantalizing promise of one day making games indistinguishable from reality.
Or, maybe these trends will simply stabilize or sputter out, remaining as fond
memories of our current cultural landscape and nothing more.

That’s the tricky thing about predicting the future—it’s always so much
easier after you’re already there. But, on our journey to explore the nature
of play and our relationship with games, hopefully you’ll take away some
knowledge that will help make that future just a little bit more enjoyable.
We might not be able to say for sure where we’re going. But no matter where
we end up, it’s going to be somewhere fun.

(Continued)

Expert Profile: Jason Della Rocca—Optimizing for success

Industry consultant and co-founder of Execution Labs

In the 1990s, a young Jason Della Rocca walked into an accounting firm for the first
day of his university internship. Later that day, he quit, walked out, and swore off
accounting forever.

The decisions we make can change the course of a day, or the course of our entire
lives. In Jason’s case, his decision led to switching majors from accounting to business
computing. Once graduated, he worked in the emerging space of 3D graphics hard-
ware. On his first day at Silicon Graphics, a colleague brought in a pre-release version
of the Nintendo 64, and Jason knew he was on the right track.

After some time working in hardware, and briefly in networking middleware, Jason
became an executive of the International Game Developers Association (IGDA), even-
tually taking the top seat. During his tenure, he worked on building bridges between
the industry and academia for research and talent recruitment, simultaneously serving
on several committees related to games research. In 2009, Jason stepped down from
his directorship at the IGDA. A few years later, he worked with co-founder Keith Katz
to start Execution Labs, an early-stage investor and accelerator for independent game
developers.

These days, Jason still works closely with indies, as an industry consultant helping
developers to improve their businessmettle and connectwith publishers and investors.
On top of that, he’s become an ambassador of sorts for the games industry itself,
workingwith governments around theworld tomake recommendations on economic
policy and ecosystem development. Jason says his work in this respect is greatly influ-
enced by his hands-on time with studios, advocating for the support of incubators,
seed funds, and mentorship opportunities.

Perhaps the best way to describe Jason’s role in the industry is as a champion of
success, both at the small scale of independent studios and in the much larger world
of government policy. Fittingly, much of our discussion with Jason centred around the
concept of success. But Jason recognizes that concept as inherently and frustratingly
elusive: “The question of success cannot really be answered, because success is very
subjective, or very contextual.”

He goes on to explain that themetrics for success can be strikingly different between
investors and development teams. In his time at Execution Labs, Jason watched (and

348

What Comes Next?

(Continued)

helped) several indie studios reach varying levels of commercial success. He mentions
Montréal developer Kitfox Studios as an example of an “unbelievable success” emerg-
ing from the group, having become a self-sustaining studio with a creative portfolio of
games and supportive company culture. But Jason notes that the success of studios like
Kitfox usually isn’t enough to keep an investment firm going. Investment is a numbers
game, and a risky one at that, dependent on finding the occasional runaway smash-hit.
Luckily, it seems that Jason’s role hasn’t made him cynical in this regard, valuing the
kind of modest, sustainable success that can keep small development teams going.

Irrespective of how you define success, Jason says that studios can, often unwit-
tingly, stack the odds before development even starts. At the idea stage, just a bit of
competitive analysis can indicate whether something will be commercially viable. Ja-
sonmentions a studio he interactedwith set on developing a couch co-op party game,
noting that a five-minute search on SteamSpy5 would show almost no player interest
in the category. He says that getting developers to do this pre-emptive research, and
accept its results, is challenging: “It’s hard to stop a developer and say, when you’ve
got a great idea, stop. Go on Steam, go on SteamSpy, do a bit of homework, look up
the numbers. Because you’re taking a bit of the soul, or the passion, away from it.”

Another point of failure Jason has observed in his work with indies is an aversion to
what he calls “optimizing for success.” He notes that smaller studios often try, sensi-
bly, to align their production with what they can reasonably finish on a small budget
and tight timeline. But sometimes, this mentality leads developers away from pursuing
ideas that could boost their game’s commercial viability. He’s witnessed this firsthand,
watching studios struggle to scale up even with investor backing, crumbling under
the pressure of increased scope or a shifting design plan. Jason suggests that, almost
counterintuitively, it is better to spend more time researching and imagining what
could succeed early in the development process, and work backwards from there.

At least to a degree, avoiding catastrophe is a matter of creativity just as much as
business acumen. Jason emphasizes that early development choices are pivotal, per-
haps in the same sense as quitting an internship or pushing past coworkers to glimpse
a Nintendo 64: “The most important marketing decision you will ever make is your
game design.”

While Jason points out that he’s not a game designer, he notes that part of his role
as a mentor relies on “investigating games” and helping developers to get their prod-
ucts into shape before approaching potential partners, like publishers, investors, or
platforms. His view of game design, particularly interaction design, is a holistic one:
“You’re thinking about the interface between the game and the player. And you are
being very deliberate and thoughtful [about] what that is, how it works, what it looks
like.” He sees game interaction as “more than just pushing buttons,” noting that much
broader concepts like social and cultural factors shape the way we play.

Jason also remarks on how much the field of game design has changed over the
last two decades. “In the early days, there was very little language of design,” he says,
jokingly referring to the game designers of yore as “Cavemen and women just sort of
banging sticks and trying to discover fire.” With the formalization of design—he gives
the MDA (mechanics, dynamics, aesthetics) framework as an early example—came

5 SteamSpy (https://steamspy.com) hosts analytics, such as player counts, for the Steam distribution
platform.

349

https://steamspy.com

The Game Designer’s Playbook

(Continued)

an improved ability to critique game experiences and create new ones. Alongside a
more organized understanding of design, Jason says the introduction of HCI tactics
like user research, and the advent of analytics to help developers understand player
behaviour, have helped the field to mature. He recalls an issue of Wired from 2007 de-
scribing the “Science of Play” at Microsoft atop a bespoke Master Chief on the cover as
one of many moments that helped shift the field away from purely gut-driven design.

One of the most substantial changes Jason sees in game design is a shift towards
thinking about our players more than ourselves when creating games. He says that the
most important quality in a designer is empathy, noting that too many developers still
“create from within” exclusively thinking of their own wants, and need to “realize it’s
not about them.” A successful designer, Jason says, needs to ask questions like “What
do [I] want the player to feel? What kind of experience do [I] want them to have? What
game [. . .] do I need to build to elicit that response?”

Deep introspection aside, for anyone who’s looking to make the killer marketing
decision that is their game’s design, Jason says that one of the best things you can
do is to step away from the screen once in a while. “Experience life. Consume other
media and content and works of art, and be inspired by other things.” He notes that
legendary game designers like Will Wright and Shigeru Miyamoto often cite sources
like gardening for their best ideas, and says with a chuckle that developers should “put
down the controller and read a book” to find inspiration outside games.

When the time comes to follow through on that inspiration, Jason says you should
ask one question above all else: “What do we need to do to have a game that suc-
ceeds?” Think of your players, think of the experience you want for them, and work to
achieve success—whatever that means to you.

Further reading

What’s Next in Game Design? Keynote delivered by Will Wright (GDC, 2006).

Now over a decade old, the speculation of legendary simulation game design pi-
oneer Will Wright still holds up, and is perhaps more interesting with the power of
hindsight.

Future Gaming: Creative Interventions in Video Game Culture by Paolo Ruffino
(Goldsmiths Press). ISBN: 978-1906897550.

A critical look at the study of games in general and the representation of games
in popular culture. A sort of counterweight to unbridled optimism and the games
media.

Improving literacy in rural India: Cellphone games in an after-school program, conference
paper by Matthew Kam et al. (ICTD, 2009, IEEE). DOI: 10.1109/ICTD.2009.5426712.

An interesting instance of a game for social development, and one of those
academic development examples promised earlier in the chapter.

350

What Comes Next?

Exercises

Think the change you want to see in the world

Pick a social issue that you care about. Brainstorm different ideas for games that would
spread awareness, educate players, or motivate them to donate their time or resources
to a cause. Try to think about how you could communicate your message in a mean-
ingful way through interaction, instead of just hitting players over the head with text
or voiceover calling them to action.

Look for any other games related to the issue you chose. Are any of them similar to
your ideas? Do any of them surprise you? Try playing one. Do you think it’s effective in
getting its message across? How would you improve on it?

Possible impossible

Using the engine of your choice, prototype an “impossible”mechanicwhich playswith
the rules of physics, time, causality, or nature in the real world—think portals, going
back in time, and so on. Your prototype doesn’t have to look nice or even work that
well; just get something together that gets your idea across. How could you create
puzzles using this mechanic? How do you think you’d develop this mechanic over the
course of an entire game to give players an interesting and distinct experience?

No infringement intended

One of the best ways to learn game development, and come up with new ideas—
at least in our humble opinion—is the creation of mods. Many games support mods
officially; for instance, on Steam, games with Workshop content will often have a suite
of tools to help you get started in creating your own custom content. Naturally, many
gameswhich do not officially supportmodification in anyway still have activemodding
communities. While we cannot really endorse some of the things that go on to make
mod development possible in these cases, at least one of the authors will confess to
having employed such tactics for personal learning purposes.

Regardless of how you go about creating amod, though, this really is one of the best
things you can do to sharpen your design and development skills. Working within the
universe of an existing game provides just enough constraints to keep your creativity
on track, while the undoubted hiccups you’ll face along the way in technical feasibility
provide surprising design challenges.

351

Glossary

Action genre. A genre of games distinguished by its focus on physical challenges,
such as the timing of precise inputs. Examples of sub-genres include shooters,
platformers, fighting games, and racing games.

Affordance. The implication of function through design. For example, a protruding
handle on a door suggests that it can be opened by pulling on the handle. One of
Norman’s six design principles.

Agile development. A software development ideology that prioritizes flexibility. Char-
acteristics of agile development include frequent communication and working to
accomplish relatively small milestones in quick succession, contributing to a larger
whole. Contrast with waterfall development.

Artificial intelligence. A broad category of algorithms that allow computers to function
autonomously in completing certain tasks. One general definition is the ability of
computer systems to acquire and apply knowledge to solve problems.

Consistency. The adherence to conventions established within a design (internal con-
sistency) or by other designs or the real world (external consistency). For example,
using a red heart to symbolize health in a game is externally consistent with many
other games. One of Norman’s six design principles.

Constraints. Restrictions imposed on the actions of a user (player) with the intention
of preventing error or enhancing user experience. For instance, a gamemay restrict
players from damaging their teammates to avoid accidental friendly fire (whether
this is a good decision depends on the specific experience). One of Norman’s six
design principles.

Continuous communication. Giving information to the player about the game state on
an ongoing basis. Relevant information might include things like health, ammu-
nition, time of day, and so on. A common example is a heads-up display. Contrast
with responsive communication.

Core mechanic. The main interaction around which a game’s design is built. For in-
stance, the core mechanic of Super Mario Bros. is platforming. The core mechanic
in Call of Duty is gunplay (shooting).

Direct input. The immediate translation of real-world physical action into in-game
action. For example, pushing forward on an analog stick to move one’s character
forward in a game’s world. Contrast with virtual input.

Feedback. Information given by a system in response to user action, with the intent
of communicating a change in the state of the system or the consequences of that
action. For instance, hearing a sound to indicate that your character has fired their
gun. One of Norman’s six design principles. Also see responsive communication.

352

Glossary

First-person. A category of games characterized by the player viewpoint matching
their character’s viewpoint; players see “through their character’s eyes.”

First-person shooter. A shooter game (i.e., generally focused on gunplay and combat)
with a first-person perspective.

First-time user experience. A term used to describe a user’s initial experience and per-
ceptions of a piece of software, such as a game. Includes things like learning how
a game works, and a player’s decision as to whether they would like to continue
playing. Also see onboarding.

Flow. A state of total psychological absorption in the task at hand, characterized by
a trance-like state. Caused by a balance in the challenge offered by a task and the
skill of the individual performing it. Often associated with peak performance in
playing a game.

Free-to-play. A monetization model where a game is free to initially download or
play, but encourages the user to make purchases that “enhance” their experience.
Many F2P games incentivize repeated purchases, rather than one-time unlocks
(e.g., premium currency that can be used to buy expendable items).

Games user research. A field concerned with the evaluation of games, aimed at under-
standing the reasons for player behaviour and how players react to the games they
interact with.

Heads-up display. An overlay present on a player’s view of a game. A HUD might
include things like a health bar, ammo counter, and minimap of the surrounding
area. The function of a HUD is to convey information that players will find useful
(see continuous communication).

Human-computer interaction. A field concerned with understanding the relationship
between humans and computer technology. HCI is an all-encompassing domain
comprising the evaluation of existing technology, the development of new exper-
imental technologies, understanding how computers can improve our lives, and
so on.

Interaction. Two-way communication between two entities. For instance, two people
can interact by talking to one another. A person can interact with a computer (or
game) by performing an action and receiving feedback on the results of that action.
For instance, pressing a button on a controller and seeing your character cast a spell
is an example of a game interaction.

Interface. A boundary across which two entities can interact, or more simply, some-
thing that facilitates interaction. For example, a menu with clickable buttons is an
interface.

Iterative design (or testing). A development methodology characterized by cycles of
ideation, prototyping (or testing), and review. No matter whether applied to de-
sign, testing, or some other aspect of the development process, the focus is on
continual improvement. Iterative approaches typically seek to frequently validate
new changes, and improve on previous work.

Machine learning. The ability of a computer to learn to perform a task without being
explicitly programmed to do so. An example is a neural network that learns to
classify previously unseen images based on training with examples labelled by a
human.

353

Glossary

Magic circle. A theoretical concept describing the “space” of a game outside of real-
ity. This space may be more or less detached from reality based on the rules of
the game. Boundaries delineating the magic circle from reality may be physical
(e.g., the borders of a basketball court) or intangible (e.g., the understanding that
only voluntary participants are included in a game of tag).

Mapping. The relationship between controls and their function. This is most often
expressed in terms of spatial relationship (e.g., similar functions should be grouped
together in space). It can also be expressed in terms of form (e.g., if an analog stick is
available, it is better suited to multidirectional movement than a ring of buttons).
One of Norman’s six design principles.

Mechanic. An action that players can take in a game, or a word used to describe a
set of related actions. For instance, the gunplay in a shooter could be described as
“shooting mechanics.”

Massively multiplayer online game. Any game that relies on a large online playerbase
to facilitate multiplayer interaction. The delineation between an MMO and an
“online multiplayer game” can be muddy, especially today. Colloquially, the
very large number of players and tendency to play with strangers is what distin-
guishes an MMO (e.g., Super Smash Bros. is not commonly referred to as an MMO,
but League of Legends is). Sometimes used as shorthand for MMORPG (massively
multiplayer online role-playing game).

Onboarding. The process of getting players “on board” to play a game, usually in
reference to teaching players about mechanics and showing players what a game
has to offer to encourage continued play. Also see first-time user experience.

Platformer. A subgenre of action games distinguished by a focus on platforming
(e.g., navigation challenges involving jumping between ledges and “platforms”).
Examples include the Super Mario series, Banjo-Kazooie, and Hollow Knight.

Port. A version of a game developed for a platform other than its original release
platform(s). Often, development work is done by a studio not involved with the
original game. Colloquially, the words “port” and “version” are sometimes used
interchangeably.

Procedural generation. The use of algorithms to generate game content, such as levels,
items, or even assets. An example is the world map in Minecraft.

Responsive communication. Giving information to the player in response to their ac-
tion, typically immediately. Relevant information might include the success or
failure and consequences of their action. A common example is sound effects and
animation after striking an enemy. Contrast with continuous communication.

Role-playing game. A genre of games distinguished by a focus on immersing oneself
in the role of one’s character. Often characterized by complex systems of char-
acter skills allowing for a wide array of specializations, allowing players to build
a character (and narrative) specific to them. A classic example is Dungeons and
Dragons.

Sandbox game. A genre of games distinguished by the freedom of the player to exper-
iment within a set of systems, often with very loosely defined rules and optional
or no-win conditions. Examples include games like The Sims and Tycoon series,
Minecraft, and Garry’s Mod.

354

Glossary

Simulation game. A genre of games distinguished by imitation of activities from the
real world (though fantasy settings can also be used). Colloquially, a defining factor
is often a focus on activities that might otherwise be thought of as mundane. For
instance, a shooter simulates gun combat, but most shooters are not classified as
simulation games. A management game that simulates organizing finances and
producing goods for a business is classified as a simulation game, however.

Third-person. A category of games characterized by a player viewpoint that allows the
player to see their character. Often in 3D games, the game’s camera (player view) is
positioned just behind their character, though top-down and side-scrolling views
are common.

Tutorial. Part of a game meant to teach the player about the rules or mechanics. Tuto-
rials may be very explicit (e.g., requiring the player to read instructions) or implicit
(e.g., setting up a scenario which hints at a solution that also serves as a learning
experience).

Usability. A term used to describe how well a piece of software, such as a game, fa-
cilitates effective user interaction. More specifically, usability often covers these
goals: effective to use, efficient to use, safe to use, having good utility, easy to
learn, and easy to remember how to use. Generally speaking, good usability means
that players will understand what they need to do, and be able to perform the ac-
tions necessary to accomplish their goals. Bad usability means that players may
have difficulty understanding what is being asked of them, or have undue troubles
executing the needed actions. Balancing usability in games can be especially chal-
lenging, since difficulty in execution is often intended (e.g., a boss fight). Can be
loosely thought of as the objective counterpart to user experience.

User experience. An all-encompassing term describing the quality of a user’s interac-
tions with something (e.g., a player’s interactions with a game). User experience
includes desirable aspects like enjoyable, satisfying, motivating, exciting, engag-
ing, rewarding, and the ability to express oneself. In game design, a good user
experience is paramount in whether a game can be said to be “good.” However,
it can be difficult to measure and validate, due to things like variation between
individual players and the specific intent of designers. Can be loosely thought of
as the subjective counterpart to usability.

User interface. Broadly speaking, any interface (including a physical device like a key-
board) between humans and computers is a user interface. Colloquially in games,
the term UI usually refers to virtual interfaces that allow players to communicate
with a game (or vice versa). For example, parts of a game’s UI include its HUD and
menus.

Virtual input. The translation of interactionwith virtual elements (e.g., on-screen but-
tons) into in-game action. Use of a physical device (e.g., mouse, controller) serves
to facilitate interaction with virtual elements, which act as an intermediary be-
tween physical action and in-game action. For instance, manipulating icons with
a mouse to rearrange a character’s inventory. Contrast with direct input.

Virtual reality. A platform for experiencing games characterized by sensory immer-
sion, most commonly facilitated through a head-mounted display (headset) which
places screens directly in front of the user’s eyes.

355

Glossary

Visibility. The perceptual obviousness of an element. Good visibility is key to ensuring
that information can be quickly and easily understood. For instance, white text on
a black background has good visibility, while dark grey text on a black background
has poor visibility. One of Norman’s six design principles.

Waterfall development. A software development ideology characterized by linear pro-
gression through a series of stages from conceptualization to final release. Strict
waterfall approaches are very rigid, and can have difficulty embracing iterative
approaches. Contrast with agile development.

356

List of Acronyms

AI Artificial intelligence

API Application-programmer interface

AR Augmented reality

ARPG Action role-playing game

BCI Brain-computer interaction

CHI Conference for Human-Computer Interaction

DDA Dynamic difficulty adjustment

FOV Field-of-view

F2P Free-to-play

FPS Frames per second

FPS First-person shooter

FTUE First-time user experience

GDC Game Developers Conference

GOAP Goal-oriented action planning

GUI Graphical user interface

GUR Games user research

HCI Human-computer interaction

HUD Heads-up display

IGDA International Game Developers Association

JRPG Japanese role-playing game

ML Machine learning

MMO Massively multiplayer online (game)

MOBA Multiplayer online battle arena

MR Mixed reality

NPC(s) Non-player character(s)

PCG Procedural content generation

PvE Player versus environment

QA Quality assurance

RITE Rapid iterative testing and evaluation

357

List of Acronyms

RPG Role-playing game

UCD User-centred design

UI User interface

UX User experience

VR Virtual reality

358

Ludography

1-2 Switch. (2017) Nintendo. Switch.

Agar.io. (2015) Matheus Valadares (pub. Miniclip). Browser.

Alien: Isolation. (2019, Switch ver.) Creative Assembly (orig.), Feral Interactive
(port) (pub. Sega). Switch.

Among Us. (2018) InnerSloth. PC/Mobile.

Angry Birds. (series, first game 2009). Rovio Entertainment. Mobile.

Animal Crossing. (series, first game 2001). Nintendo. Console.

Anthem. (2019) BioWare (pub. Electronic Arts). PC/console.

Antichamber. (2013) Demruth. PC.

Assassin’s Creed. (2008) Ubisoft Montréal (pub. Ubisoft). PC/console.

Assassin’s Creed II. (2009) Ubisoft Montréal (pub. Ubisoft). PC/console.

Assassin’s Creed: Odyssey. (2018) Ubisoft Quebec (pub. Ubisoft). PC/console.

Astroneer. (2019) System Era Softworks. PC/console.

Batman: Arkham Knight (PC). (2015, PC ver.) Rocksteady Studios (pub. Warner
Bros.). PC.

Battlefield V. (2018) EA DICE (pub. Electronic Arts). PC/console.

Bayonetta. (2009) PlatinumGames (pub. Sega). Console.

Beat Saber. (2019) Beat Games. PC/console (VR).

Bejeweled. (2001) PopCap Games. Browser.

BioShock. (2007) 2K Boston, 2K Australia (pub. 2K Games). PC/console.

Bioshock Infinite. (2013) Irrational Games (pub. 2K Games). PC/console.

Blade + Sorcery. (2018) WarpFrog. PC (VR).

Boggle. (board game, 1972) Parker Brothers.

Boneworks. (2019) Stress Level Zero. PC (VR).

Boom Beach. (2014) Supercell. Mobile.

Borderlands. (2009) Gearbox Software (pub. 2K Games). PC/console.

Braid. (2008) Number None. PC/console.

Bravely Default. (2012) Silicon Studio (pub. Square Enix, Nintendo). Handheld.

Brawl Stars. (2017) Supercell. Mobile.

Brütal Legend. (2010) Double Fine Productions (pub. Electronic Arts). PC/console.

359

Ludography

Call of Duty. (series, first game 2003) Infinity Ward et al. (pub. Activision). PC.

Call of Duty: Warzone. (2020) Infinity Ward, Raven Software (pub. Activision). PC.

Candy Crush. (2012) King. Mobile.

Carcassonne. (board game, 2000) Hans im Glück.

Carrion. (2020) Phobia Game Studio (pub. Devolver Digital). PC.

Celeste. (2018) Matt Makes Games. PC/console.

ChefSquad. (2021) Vertigo Gaming. PC.

Choice Chamber. (2015) Studio Bean. PC.

Cities: Skylines. (2015) Colossal Order (pub. Paradox Interactive). PC.

Civilization. (series, first game 1991) Sid Meier et al. (pub. MicroProse et al.). PC.

Civilization V. (2010) Firaxis Games (pub. 2K Games). PC.

Clash of Clans. (2012) Supercell. Mobile.

Clash Royale. (2016) Supercell. Mobile.

Clone Drone in the Danger Zone. (2017) Doborog Games. PC.

Clustertruck. (2016) Landfall Games (pub. tinyBuild). PC.

Commandos: Behind Enemy Lines. (1998) Pyro Studios (pub. Eidos Interactive). PC.

Cook, Serve, Delicious!. (2012) Vertigo Gaming. PC/mobile.

Cook, Serve, Delicious! 2!!. (2017) Vertigo Gaming. PC/console.

Cook, Serve, Delicious! 3?!. (2020) Vertigo Gaming. PC/console.

Cookie Clicker. (2013) Orteil. Browser.

Cooking Mama. (series, first game 2006) Cooking Mama Ltd. (pub. Taito et al.).
Handheld/console.

Cooking Simulator. (2019) Big Cheese Studio (pub. PlayWay S.A.). PC.

Counter-Strike. (2000) Valve. PC/console.

Counter-Strike: Global Offensive. (2012) Valve, Hidden Path Entertainment (pub.
Valve). PC/console.

Crash Bandicoot 2. (1997) Naughty Dog (pub. Sony). Console.

CSR Racing. (2012) Boss Alien (pub. NaturalMotion). Mobile.

Cuphead. (2017) Studio MDHR. PC/console.

Cyberpunk 2077. (2020) CD Projekt Red. PC/console.

Dark Souls 3. (2016) FromSoftware (pub. Bandai Namco Entertainment).
PC/console.

Dead Cells. (2018) Motion Twin. PC/console.

Dead Space. (2008) EA Redwood Shores (pub. Electronic Arts). PC/console.

Death Stranding. (2019) Kojima Productions (Sony). Console.

Deep Rock Galactic. (2020) Ghost Ship Games (pub. Coffee Stain Publishing).
PC/console.

Destiny. (2014) Bungie (pub. Activision). Console.

360

Ludography

Dig Dug. (1982) Namco. Arcade.

Dishonored. (2012) Arkane Studios (pub. Bethesda Softworks). PC/console.

Divinity: Original Sin. (2014) Larian Studios. PC.

Don’t Starve. (2012) Klei Entertainment. PC/console/Mobile.

Donkey Kong. (1981) Nintendo. Arcade.

Doom. (series, first game 1993) id Software et al. (pub. id Software et al.).
PC/console.

Doom. (2016) id Software (pub. Bethesda Softworks). PC/console.

Doom Eternal. (2020) id Software (pub. Bethesda Softworks). PC/console.

DotA 2. (2013) Valve. PC.

Drawful. (2014) Jackbox. PC.

Dreadhalls. (2017) White Door Games. PC.

Dreams. (2020) Media Molecule (pub. Sony). Console.

Duck Hunt. (1984) Nintendo. Console.

Dungeons and Dragons. (tabletop game, 1974) Tactical Studies Rules, Inc.

Dwarf Fortress. (2006) Bay 12 Games. PC.

The Elder Scrolls. (series, first game 1994). Bethesda Softworks et al. PC/console.

The Elder Scrolls III: Morrowind. (2002) Bethesda Game Studios (pub. Bethesda
Softworks). PC/console.

The Elder Scrolls IV: Oblivion. (2006) Bethesda Game Studios (pub. Bethesda
Softworks, 2K Games). PC/console.

The Elder Scrolls V: Skyrim. (2011) Bethesda Game Studios (pub. Bethesda Soft-
works). PC/console.

The Elder Scrolls V: Skyrim VR. (2017) Bethesda Game Studios (pub. Bethesda
Softworks). PC/console (VR).

Elite Dangerous. (2014) Frontier Developments. PC/console.

E.T. the Extra-Terrestrial. (1982) Atari. Console.

Fall Guys: Ultimate Knockout. (2020) Mediatonic (pub. Devolver Digital).
PC/console.

Fallout. (series, first game 1997) Interplay Entertainment et al. PC/console.

Fallout 3. (2008) Bethesda Game Studios (pub. Bethesda Softworks). PC/console.

Fallout 4. (2015) Bethesda Game Studios (pub. Bethesda Softworks). PC/console.

Fallout 4 VR. (2017) Bethesda Game Studios (pub. Bethesda Softworks). PC (VR).

Fallout 76. (2018) Bethesda Game Studios (pub. Bethesda Softworks). PC/console.

Far Cry. (series, first game 2004) Crytek et al. (pub. Ubisoft). PC/console.

Far Cry 4. (2014) Ubisoft Montréal (pub. Ubisoft). PC/console.

Far Cry 5. (2018) Ubisoft Montréal, Ubisoft Toronto (pub. Ubisoft). PC/console.

Farmville. (2009) Zynga. Web.

361

Ludography

F.E.A.R. (2005) Monolith Productions et al. (pub. Vivendi Games). PC/console.

Fez. (2012) Polytron Corporation (pub. Trapdoor). PC/console.

Final Fantasy. (series, first game 1987) Square Enix (formerly Square). Con-
sole/handheld.

Firewatch. (2016) Campo Santo (pub. Panic). PC/console.

For Honor. (2017) Ubisoft Montréal (pub. Ubisoft). PC/console.

Forager. (2019) Hopfrog (pub. Humble Games). PC/console.

Fortnite. (2017) Epic Games (pub. Epic Games, Warner Bros.). PC/console/mobile.

Frogger. (1981) Konami, Sega. Arcade.

Fruit Ninja. (2010) Halfbrick. Mobile.

FTL: Faster Than Light. (2012) Subset Games. PC.

Galaga. (1981) Namco. Arcade.

Galaxy on Fire. (series, first game 2009) Deep Silver Fishlabs. Mobile/PC.

Galaxy on Fire 2. (2010) Deep Silver Fishlabs. Mobile/PC.

Garry’s Mod. (2006) Facepunch Studios (pub. Valve). PC.

Getting Over It With Bennett Foddy. (2017) Bennett Foddy. PC/mobile.

God of War. (series, first game 2005) Santa Monica Studio et al. (pub. Sony et al.).
Console.

God of War. (2018) Santa Monica Studio (pub. Sony). Console.

Grand Theft Auto. (series, first game 1997) Rockstar North et al. (pub. Rockstar
Games). PC/console.

Grand Theft Auto V. (2013) Rockstar North (pub. Rockstar Games). PC/console.

Gris. (2019) Nomada Studio (pub. Devolver Digital). PC/console.

Habbo Hotel. (2000) Sulake Corporation. Browser.

Hades. (2020) Supergiant Games. PC.

Half-Life. (series, first game 1998) Valve. PC/console.

Half-Life. (1998) Valve. PC/console.

Half-Life 2: Episode Two. (2007) Valve. PC/console.

Half-Life: Alyx. (2020) Valve. PC (VR).

Halo. (series, first game 2001) Bungie et al. (pub. Xbox Game Studios). Console.

Hatoful Boyfriend. (2014) Mediatonic (pub. Devolver Digital). PC.

Hay Day. (2012) Supercell. Mobile.

Hearthstone. (2014) Blizzard Entertainment. PC/mobile.

Hellblade: Senua’s Sacrifice. (2017) Ninja Theory. PC/console.

Hollow Knight. (2017) Team Cherry. PC/console.

Horizon Zero Dawn. (2017) Guerilla Games (pub. Sony). Console.

Hotline Miami. (2012) Dennaton games (pub. Devolver Digital). PC.

HQ Trivia. (2017) Intermedia Labs. Mobile.

362

Ludography

Human: Fall Flat. (2016) No Brakes Games (pub. Curve Digital). PC/console.

I Am Bread. (2015) Bossa Studios. PC/console.

I Expect You to Die. (2016) Schell Games. PC/console (VR).

InFamous. (series, first game 2009) Sucker Punch Productions (pub. Sony). Console.

Inside. (2016) Playdead. PC.

The Jackbox Party Pack. (series, first game 2014) Jackbox Games. PC.

Jet Island. (2018) Master Indie. PC (VR).

Just Cause. (2006) Avalanche Studios (pub. Eidos Interactive). PC/console.

Katamari Damacy. (2004) Namco. Console.

Keep Talking and Nobody Explodes. (2015) Steel Crate Games. PC/console.

Khan Academy Kids. (2018) Khan Academy. Mobile.

King’s Quest V. (1990) Sierra Entertainment. PC.

Kingdom Hearts II. (2005) Square Enix. Console.

LA Noire. (2011) Team Bondi (pub. Rockstar Games). Console/PC.

League of Legends. (2009) Riot Games. PC.

Left 4 Dead. (2008) Valve South (formerly Turtle Rock Studios) (pub. Valve). PC.

Left 4 Dead 2. (2009) Valve. PC.

LEGO Star Wars Battles. (2020) Playdemic (pub. TT Games). Mobile.

Life Is Strange. (2015) Dontnod Entertainment (Square Enix). PC.

Lightseekers. (2019) PlayFusion. PC/Mobile.

Limbo. (2010) Playdead. PC/console.

Manifold Garden. (2019) William Chyr Studio. PC/mobile.

Marbles on Stream. (2018) Pixel by Pixel Studios. PC.

Mario Kart. (series, first game 1992) Nintendo. Console.

Mario Kart: Double Dash. (2003) Nintendo. Console.

Mario Kart 8. (2014) Nintendo. Console.

Marvel vs. Capcom. (series, first game 1996) Capcom et al. Console/PC.

Mass Effect 2. (2010) BioWare (pub. Electronic Arts). PC/console.

Mass Effect 3. (2012) BioWare (pub. Electronic Arts). PC/console.

Metal Gear. (series, first game 1987) Bluepoint Games et al. (pub. Konami).
Console/PC.

Metal Gear Solid V: The Phantom Pain. (2015) Kojima Productions (pub. Konami).
Console/PC.

Microsoft Flight Simulator. (2020) Asobo Studio (pub. Xbox Game Studios).
PC/console.

Minecraft. (2011) Mojang (pub. Mojang, Microsoft, Sony). PC/console/mobile.

Minit. (2018) Jan Willem Nijman et al. (pub. Devolver Digital). PC/console.

Mirror’s Edge. (2008) DICE (pub. Electronic Arts). PC/console.

363

Ludography

Mirror’s Edge: Catalyst. (2016) EA DICE (pub. Electronic Arts). PC/console.

Monopoly. (board game, 1935) Parker Brothers.

Mortal Kombat X. (2015, PC ver.) NetherRealm Studios (orig.), High Voltage
Software (port) (pub. Warner Bros.). PC.

Moss. (2018) Polyarc. PC/console (VR).

Mugen. (1999) Elecbyte. PC.

Nier: Automata. (2017) PlatinumGames (pub. Square Enix). Console/PC.

Night in the Woods. (2017) Infinite Fall (pub. Finji). PC/console.

No Man’s Sky. (2016) Hello Games. PC/console.

No More Heroes. (2007) Grasshopper Manufacture (pub. Ubisoft et al.). Console.

Noita. (2020) Nolla Games. PC.

Noughts and Crosses (OXO). (1952) A.S. Douglas. EDSAC.

Observation. (2019) No Code (pub. Devolver Digital). PC.

Octodad: Dadliest Catch. (2014) Young Horses. PC/console.

Okami. (2006) Clover Studio (pub. Capcom). Console.

Okami HD. (2017, PC port) Capcom and HexaDrive (pub. Capcom). PC.

Old School Runescape. (2013) Jagex. PC.

Onward. (2016) Downpour Interactive (pub. Coatsink). PC (VR).

Opus Magnum. (2017) Zachtronics. PC.

Ori and the Blind Forest. (2015) Moon Studios (pub. Microsoft Studios). PC/console.

Osu! (2007) Dean “Peppy” Herbert. PC.

Overwatch. (2016) Blizzard Entertainment. PC/console.

Pac-Man. (1980) Namco. Arcade.

Papers, Please. (2013) Lucas Pope (pub. 3909). PC.

Parcheesi. (board game, 1874) Selchow & Righter.

Party Hard. (2015) Pinokl Games (pub. tinyBuild). PC/console.

Pavlov VR. (2017) Vankrupt Games. PC (VR).

Pentalath. (board game, 2007) Cyberite Ltd.

Persona 5. (2016) P-Studio (pub. Atlus et al.). Console.

Phasmophobia. (2020) Kinetic Games. PC.

Pistol Whip. (2019) Cloudhead Games. PC (VR).

A Plague Tale: Innocence. (2019) Asobo Studio (pub. Focus Home Interactive).
PC/console.

Planet Coaster. (2016) Frontier Developments. PC.

Planet Zoo. (2019) Frontier Developments. PC.

Plants vs. Zombies 2. (2013) PopCap Games (pub. Electronic Arts). Mobile.

Pokémon. (series, first game 1996) Game Freak (pub. Nintendo and The Pokémon
Company). Handheld/console.

364

Ludography

Pokémon Go. (2017) Niantic et al. Mobile.

Pokémon Red. (1998) Game Freak (pub. Nintendo). Handheld.

Pokémon Sword and Shield. (2019) Game Freak (pub. Nintendo and The Pokémon
Company). Console.

Pong. (1972) Atari. Arcade.

Portal. (2007) Valve. PC/console.

Portal 2. (2011) Valve. PC/console.

Prodigy Math Game. (2020) SMARTeacher Inc. Mobile.

Psychonauts. (2005) Double Fine Productions (pub. Majesco Entertainment).
PC/console.

Quake. (1996) id Software (pub. GT Interactive). PC.

Quiplash. (2015) Jackbox Games. PC/console/browser.

QWOP. (2008) Bennett Foddy. Browser.

Rainbow Six Siege. (2015) Ubisoft Montréal (pub. Ubisoft). PC/console.

Resident Evil. (series, first game 1996) Capcom. Console.

Resident Evil 4. (2005) Capcom. Console.

Resident Evil 4. (PC ver., 2007) Sourcenext (pub. Ubisoft). PC.

Resident Evil 4: Wii Edition. (Wii ver., 2007) Capcom. Console.

Red Dead Redemption 2. (2018) Rockstar Games. PC/console.

Robo Recall. (2017) Epic Games. PC (VR).

RollerCoaster Tycoon. (series, first game 1999) Chris Sawyer Productions et al. (pub.
Hasbro et al.) PC/console.

Second Life. (2003) Linden Lab. PC.

Sekiro: Shadows Die Twice. (2019) FromSoftware (pub. Activision). Console/PC.

Shariki. (1994) Augene Alemzhin. PC.

Simon. (board game, 1978) Ralph H. Baer and Howard J. Morrison.

Skribbl.io. (2017) Ticedev. Browser.

Snake Pass. (2017) Sumo Digital. PC/console.

Sonic. (series, first game 1991) Sega. Console.

Sonic the Hedgehog (“Sonic ’06”). (2006) Sonic Team (pub. Sega). Console.

Sonic the Hedgehog. (2013 remaster) ChristianWhitehead, Headcannon (pub. Sega).
Mobile.

Sorry! (board game, 1929) W.H. Storey & Co.

Souls. (series, first game 2009) FromSoftware (pub. Bandai Namco). Console/PC.

Space Invaders. (1978) Taito. Arcade.

SpaceChem. (2011) Zachtronics Industries. PC/mobile.

Spacewar! (1962) Steve Russell et al. PDP-1.

Spelunky. (2008) Mossmouth. PC/console.

365

Ludography

Spider-Man. (2018) Insomniac Games (pub. Sony). Console.

Spore. (2008) Maxis (pub. Electronic Arts). PC.

Starbound. (2016) Chucklefish. PC/console.

Starcraft. (series, first game 1998) Blizzard Entertainment. PC.

Stardew Valley. (2016) ConcernedApe. PC/console.

Stream Animals. (2020) Smash Bolt Games. PC.

Street Fighter. (series, first game 1987) Capcom et al. Arcade/PC/console.

Street Fighter III: Third Strike Online Edition. (2011) Capcom. Console.

Subnautica. (2018) Unknown Worlds Entertainment. PC.

Super Mario. (series, first game 1985) Nintendo. Arcade/console.

Super Mario 64. (1996) Nintendo. Console.

Super Mario Bros. (1985) Nintendo. Arcade.

Super Mario Galaxy. (2007) Nintendo. Console.

Super Mario Maker. (2015) Nintendo. Console.

Super Meat Boy. (2010) Team Meat. PC/console.

Super Motherload. (2013) XGen Studios. PC/console.

Super Smash Bros. (series, first game 1999) HAL Laboratory et al. (pub. Nintendo).
Console.

Super Smash Bros. Ultimate. (2018) Bandai Namco and Sora Ltd. (pub. Nintendo).
Console.

Superliminal. (2019) Pillow Castle. PC.

Superman: The New Superman Adventures (“Superman 64”). (1999) Titus Interactive.
Console.

Tabletop Simulator. (2015) Berserk Games. PC.

Team Fortress 2. (2007) Valve. PC/console.

Tennis for Two. (1958) William Higinbotham. Analog computer.

Terraforming Mars. (board game, 2016) FryxGames.

Terraria. (2011) Re-Logic. PC/console/mobile.

The Binding of Isaac: Rebirth. (2014) Nicalis and Edmund McMillen (pub. Nicalis).
PC.

The Lab. (2016) Valve. PC (VR).

The Last of Us. (2013) Naughty Dog (pub. Sony). Console.

The Last of Us 2. (2020) Naughty Dog (pub. Sony). Console.

The Legend of Zelda. (series, first game 1986) Nintendo et al. Console/handheld.

The Legend of Zelda: Breath of the Wild. (2017) Nintendo. Console.

The Legend of Zelda: Skyward Sword. (2011) Nintendo. Console.

The Long Dark. (2017) Hinterland Studio. PC/console.

The Sims. (series, first game 2000) Maxis et al. (pub. Electronic Arts). PC/console.

366

Ludography

The Sims. (2000) Maxis (pub. Electronic Arts). PC.

The Sims 3. (2009) Maxis et al. (pub. Electronic Arts). PC/console.

The Stanley Parable. (2011) Galactic Cafe. PC.

The Witcher. (series, first game 2007) CD Projekt Red. PC.

The Witcher 3. (2015) CD Projekt Red. PC/console.

The Witness. (2016) Thekla Inc. PC.

This War of Mine. (2014) 11 Bit Studios. PC/console.

The Legend of Zelda: Ocarina of Time. (1998) Nintendo. Console.

The Legend of Zelda: Twilight Princess. (2006) Nintendo. Console.

Tomb Raider. (series, first game 1996) Core Design et al. (pub. Eidos Interactive and
Square Enix). Console/PC.

Ultimate Chicken Horse. (2016) Clever Endeavour Games. PC/console.

Uncharted. (series, first game 2007) Naughty Dog (pub. Sony). Console.

Uncharted 2: Among Thieves. (2009) Naughty Dog (pub. Sony). Console.

Uncharted 3: Drake’s Deception. (2011) Naughty Dog (pub. Sony). Console.

Undertale. (2015) Toby Fox. PC/console.

Valorant. (2020) Riot Games. PC.

Watch Dogs: Legion. (2020) Ubisoft Toronto (pub. Ubisoft). PC/console.

What Remains of Edith Finch. (2017) Giant Sparrow (pub. Annapurna Interactive).
PC/console.

Wii Fit. (2007) Nintendo. Console.

Wii Sports. (2006) Nintendo. Console.

World of Warcraft. (2004) Blizzard Entertainment. PC.

XCOM: Terror from the Deep. (1995) MicroProse. PC/Console.

Xenoblade Chronicles. (series, first game 2010) Monolith Soft (pub. Nintendo).
Console.

Yavalath. (board game, 2007) Cyberite Ltd.

Zoo Tycoon. (series, first game 2001) Blue Fang Games et al. (pub. Microsoft
Studios). PC/console.

Zoo Tycoon 2. (2004) Blue Fang Games et al. (pub. Microsoft Studios). PC.

367

Subject Index

A
Accessibility 68, 86–89, 110–112, 125,

198–199
Action adventure games 22–24
Action genre 126–128, 160–161
Adventure games 176–178
Affordances 96, 119–120, 136, 150, 202–203
Agile development 284, 291–297
Analytics 326, 349
Arcade games 10–12
Art 107–108, 271
Artificial intelligence (AI) Chapter 9
Attention 24, 43, 82–86, 105
Audio 76–78, 158, 194
Augmented reality (AR) 192

B
Behaviour 66, 180–183, 250–265, 274
Board games 4, 7–9
Brain-computer interaction (BCI) 346

C
Camera 79, 125–131, 154, 192–196, 199–200
Card games 8–9
Character 73, 82–84, Chapter 6, 126–133,

254–262
Cognition 32
Concept 283–288, 325
Consistency 55, 96–99, 103, 122–124,

136–137
Constraints 96, 120–122
Control Chapter 5
Controller Chapter 5, 27–29, 78–80, 203–205
Customization 122–124, 127, 175

D
Data 79–84, 246, 310–321
Difficulty 49–53, 313
Dynamic difficulty adjustment

(DDA) 263–265

E
Educational games 240, 342–343
Emotion 158, 214

Engagement 3–5, 43, 158, 235
Environment 21–24, 30, 62–65, 165
Esports Chapter 8

F
Feedback Chapter 4, 24–28, 32–35, 213–215
First-time user experience (FTUE) 321–323
Flow 69, 207–208
Free-to-play (F2P) 11, 152, 217, 340

G
Games user research (GUR) Chapter 11, 31
Gestural control 120, 139, 194, 201–203
Graphical user interface (GUI) Chapter 4

H
Haptics 78, 204
Heads-up display (HUD) Chapter 4, 28,

89–99, 213
Heuristics 311, 329

I
Human-computer interaction (HCI) 31, 276
Immersion 207–209
Indie games 38, 152, 216, 338
Input Chapter 5
Integration 144–145, 149
Interaction Chapter 2, 3–8
Interface Chapters 4–5, 28
Iterative design 281, 291–295, 324

L
Learning 43–66
Location 80–83, 197
Locomotion 126–131, 196–199, 209

M
Machine learning (ML) 245–248, 271–274
Mapping 118–119, 133–136, 142
Memory 138–140
Mixed reality (MR) 192, 337
Monetization 338–340
Motion 75–82, 125, 195–201, 207, 210
Motivation 173–176, 231

368

Subject Index

Multiplayer 223–230
Music 76–82, 105–109

N
Narrative Chapter 6, 107
Navigation 146–147
Non-player characters (NPCs) 29, 163, 168,

177, 180–183

O
Observation 313–316
Onboarding 43, 66–67

P
Pacing 49–55, 64–65
Perception 173, 194, 251
Performance 196, 263
Personas 283
Player versus environment (PvE) 229
Player versus player (PvP) 225
Port 140–143
Preferences 34, 123–124, 310
Procedural content generation (PCG) 266–270
Psychology 32

Q
Quality assurance (QA) 196, 272,

307–308

R
Reward 35, 44, 182
Role-playing game (RPG) 30, 61, 80

S
Sandbox games 20, 55, 230
Serious games 21
Sound Chapter 4, 20, 24–29
Story Chapter 6, 47, 62, 65, 286
Storyboarding 290
Strategy 132, 225
Streaming Chapter 8
Surveys 316–318, 325–326

T
Third-person 126–130
Tutorial Chapter 3

U
Usability Chapter 11, 34, 272
User experience (UX) Chapter 11, 31
User interface Chapter 4
User-centred design (UCD) 31, 294

V
Virtual reality (VR) Chapter 7, 78
Visibility 96–98, 103, 147

W
Waterfall development 289–291

369

Game Index

A
A Plague Tale: Innocence 262
Agar.io. 230
Alien: Isolation 143
Among Us 227, 231, 239
Angry Birds 24, 116, 124, 273, 333
Animal Crossing 293
Anthem 327, 340
Antichamber 343
Assassin’s Creed 45, 240
Assassin’s Creed II 46
Assassin’s Creed: Odyssey 341
Astroneer 266

B
Batman: Arkham Knight 141
Battlefield V 200
Bayonetta 160
Beat Saber 37, 78, 190, 200–213
Bejeweled 24
The Binding of Isaac: Rebirth 268
BioShock 47, 48, 159, 161, 169, 182
Bioshock Infinite 250–256
Blade + Sorcery 212
Boggle 333
Boneworks 78, 140, 195, 199–206, 211, 212
Boom Beach 153
Borderlands 125, 202
Braid 338, 343
Bravely Default 102
Brawl Stars 153
Brütal Legend 151

C
Call of Duty 167, 342, 352
Call of Duty: Warzone 49, 151, 229
Candy Crush 24, 25, 108, 116, 151, 272, 303
Carcassonne 8
Carrion 130, 131
Celeste 21, 52, 53, 165, 287, 344
ChefSquad 39, 238
Choice Chamber 236
Cities: Skylines 144
Civilization 132, 145, 150, 185

Civilization V 57
Clash of Clans 116, 153, 340
Clash Royale 153
Clone Drone in the Danger Zone 235
Clustertruck 236
Commandos: Behind Enemy Lines 104
Cook, Serve, Delicious! 38, 85
Cookie Clicker 41
Cooking Mama 49
Cooking Simulator 136
Counter-Strike 127
Counter-Strike: Global Offensive 223
Crash Bandicoot 2 263
CSR Racing 152, 153
Cuphead 55, 56, 256, 342
Cyberpunk 2077 227, 340

D
Dark Souls 3 36, 49–52, 58, 141, 151, 250, 293,

300
Dead Cells 236
Dead Space 99, 108–110
Death Stranding 340
Deep Rock Galactic 128, 258, 316
Destiny 111, 162, 202
Dig Dug 10
Dishonored 202, 204, 255
Divinity: Original Sin 98
Donkey Kong 10, 90
Don’t Starve 48, 49, 147, 148, 268
Doom 89, 108, 127, 150, 302
Doom Eternal 89, 108
DotA 2 223–225, 228, 249
Drawful 237
Dreadhalls 214
Dreams 110
Duck Hunt 337
Dungeons and Dragons 9, 180, 241, 354
Dwarf Fortress 269, 270

E
E.T. the Extra-Terrestrial 306
The Elder Scrolls 61, 80, 99, 128
The Elder Scrolls III: Morrowind 62

370

Game Index

The Elder Scrolls IV: Oblivion 96
The Elder Scrolls V: Skyrim 61, 81, 90, 99, 149,

163, 165, 180, 185, 195, 252, 261, 267–269
The Elder Scrolls V: Skyrim VR 195, 205, 206
Elite Dangerous 109, 180, 215

F
F.E.A.R. 254, 260, 263, 278
Fall Guys: Ultimate Knockout 230
Fallout 109, 145, 180, 202
Fallout 3 170, 181
Fallout 4 176, 177, 267–269
Fallout 4 VR 140
Fallout 76 340
Far Cry 127
Far Cry 4 162
Far Cry 5 127
Farmville 153
Fez 338, 339
Final Fantasy 174, 250
Firewatch 159
For Honor 273
Forager 105
Fortnite 223–225, 228, 340, 342
Frogger 10
Fruit Ninja 335
FTL: Faster Than Light 60, 182, 183, 268

G
Galaga 10
Galaxy on Fire 180
Galaxy on Fire 2 87, 103, 181
Garry’s Mod 3, 354
Getting Over It With Bennett Foddy 36
God of War 174, 217, 328
Grand Theft Auto 180, 244, 248
Grand Theft Auto V 144, 185, 231
Gris 342

H
Habbo Hotel 340
Hades 256, 257, 268
Half-Life 25, 60, 76, 142, 168, 207
Half-Life: Alyx 25, 125, 133, 164, 170, 171,

199, 201, 203, 206, 210–214, 258, 340
Half-Life 2: Episode Two 163, 174, 250
Halo 302
Hatoful Boyfriend 108
Hay Day 153
Hearthstone 91, 229, 340
Hellblade: Senua’s Sacrifice 21, 344
Hollow Knight 50–52, 80, 255, 300, 354
Horizon Zero Dawn 110, 302
Hotline Miami 104, 159
HQ Trivia 238, 239
Human: Fall Flat 239

I
I Am Bread 130
I Expect You to Die 209
InFamous 180
Inside 130

J
The Jackbox Party Pack 231, 234
Jet Island 208
Just Cause 185

K
Katamari Damacy 130
Keep Talking and Nobody Explodes 145, 146,

150, 205
Khan Academy Kids 344
King’s Quest V 120
Kingdom Hearts II 184

L
LA Noire 175
The Lab 211, 215
The Last of Us 37, 150, 163, 168
The Last of Us 2 88
League of Legends 108, 223–225, 228–231, 273,

326, 354
Left 4 Dead 259, 264, 267, 273, 279
Left 4 Dead 2 101, 102
The Legend of Zelda 73, 76, 173
The Legend of Zelda: Breath of the Wild 22, 23,

62, 125, 174, 261
The Legend of Zelda: Ocarina of Time 166
The Legend of Zelda: Skyward Sword 54
The Legend of Zelda: Twilight Princess 174
LEGO Star Wars Battles 153
Life Is Strange 96, 178, 179
Lightseekers 239
Limbo 95, 338, 339
The Long Dark 84, 85

M
Manifold Garden 343
Marbles on Stream 235
Mario Kart 263
Mario Kart 8 264
Mario Kart: Double Dash 263
Marvel vs. Capcom 102
Mass Effect 2 164, 180
Mass Effect 3 166, 180
Metal Gear 76, 167, 174, 257
Metal Gear Solid V: The Phantom Pain 185, 263,

286
Microsoft Flight Simulator 145
Minecraft 21, 42, 55, 97, 121, 147–149, 176,

224, 231, 266–270, 337, 345, 354
Minit 345
Mirror’s Edge 128, 169

371

Game Index

Mirror’s Edge: Catalyst 128
Monopoly 4
Mortal Kombat X 141
Moss 211
Mugen 235

N
Nier: Automata 58
Night in the Woods 21
No Man’s Sky 37, 76, 105, 208, 227, 266–270,

340
No More Heroes 183
Noita 268
Noughts and Crosses (OXO) 10

O
Observation 66
Octodad: Dadliest Catch 130, 140
Okami 107, 161, 184
Okami HD 107, 184
Old School Runescape 221
1-2 Switch 78
Onward 204, 212
Opus Magnum 39
Ori and the Blind Forest 36, 107, 129
Osu! 124
Overwatch 81, 104, 228–230, 250, 315, 326,

340

P
Pac-Man 10, 15, 90, 258, 279
Papers, Please 287, 288
Parcheesi 7
Party Hard 236
Pavlov VR 78, 133, 199, 203, 212
Pentalath 275
Persona 5 106, 110
Phasmophobia 125, 207, 214
Pistol Whip 212–214
Planet Coaster 135, 148, 251
Planet Zoo 60
Plants vs. Zombies 2 140
Pokémon 37, 59–61, 77
Pokémon Go 192, 335
Pokémon Red 220, 226, 235, 237, 242
Pokémon Sword and Shield 60
Pong 10, 304
Portal 75, 127, 164, 174, 177, 343
Portal 2 62–65, 76, 165
Prodigy Math Game 344
Psychonauts 151

Q
Quake 137
Quiplash 237
QWOP 36, 134

R
Rainbow Six Siege 132, 151
Red Dead Redemption 2 129, 202
Resident Evil 129
Resident Evil 4 142
Robo Recall 204
RollerCoaster Tycoon 122, 254

S
Second Life 340
Sekiro: Shadows Die Twice 250, 255, 293
Shariki 24
The Sims 2, 3, 132, 135, 180, 251, 354
The Sims 3 3, 133
Skribbl.io 237
Snake Pass 130
Sonic 143
Sonic the Hedgehog 143
Sonic the Hedgehog (“Sonic ’06”) 306
Sorry! 7
Souls 49, 129
Space Invaders 10, 304
SpaceChem 39, 54
Spacewar! 10
Spelunky 266
Spider-Man 328
Spore 180, 266, 267
The Stanley Parable 165, 166
Starbound 91
Starcraft 93, 225
Stardew Valley 98, 99, 119, 149, 151, 266, 267
Stream Animals 237
Street Fighter 72, 80, 219, 241
Street Fighter III: Third Strike Online Edition 239
Subnautica 47, 109, 145, 165, 210, 214, 215,

261, 268, 270, 316
Super Mario 69, 299, 354
Super Mario 64 126, 129
Super Mario Bros 76, 104, 352
Super Mario Galaxy 126, 130, 299, 300
Super Mario Maker 69, 237
Super Meat Boy 104, 338
Super Motherload 162
Super Smash Bros 91, 354
Super Smash Brothers: Ultimate 168
Superliminal 343
Superman: The New Superman Adventures

(“Superman 64”) 306

T
Tabletop Simulator 212
Team Fortress 2 99
Tennis for Two 10
Terraforming Mars 8
Terraria 55, 148, 255, 266–269
This War of Mine 342
Tomb Raider 122, 129, 163, 174

372

Game Index

U
Ultimate Chicken Horse 237
Uncharted 23, 24, 122, 168, 174
Uncharted 2: Among Thieves 161
Uncharted 3: Drake’s Deception 169
Undertale 57–59, 77, 168, 178, 182, 345

V
Valorant 101

W
Watch Dogs: Legion 254, 259
What Remains of Edith Finch 130, 131, 164
Wii Fit 344
Wii Sports 78, 138, 344

The Witcher 128, 131, 135, 159, 174–176
The Witcher 3 91, 135, 340
The Witness 145, 146, 150, 342
World of Warcraft 94, 119, 151, 223, 224, 232

X
XCOM: Terror from the Deep 152
Xenoblade Chronicles 80

Y
Yavalath 275

Z
Zoo Tycoon 251, 259
Zoo Tycoon 2 260

373

Because you’ve made it to the very, very end of this book, here’s a coloring page for
you. Feel free to tear it out and stick it on your fridge, whiteboard, face or any other
surface you like. And send us a picture (you can find us at gamedesignplaybook.com)
if you get a chance, we’re lonely.

gamedesignplaybook.com

	Cover

	Titlepage

	Copyright

	Dedication

	Foreword
	Preface and Acknowledgments
	Contents
	1 Caveman Arcade
	1.1 What's in a game?
	1.2 A (Relatively) brief history of game interaction
	1.3 How to use this book

	2 The Parlance of Play
	2.1 Making humans and computers play nicely
	2.2 What successful game interaction design looks like
	2.3 The field of game interaction design
	2.4 How can we define successful game interaction design?
	2.5 What to expect from the rest of this book
	Expert Profile: David Galindo—Food for thought

	3 The Long Con
	3.1 Baby steps
	3.2 A masterclass in learning
	Expert Profile: Romana Ramzan—Player champion

	4 Say What you Mean
	4.1 Communication and the senses
	4.2 Continuous communication and HUD design
	4.3 Responsive communication
	4.4 Brief thoughts on creative direction
	Expert Profile: Cherry Thompson—Accessibility by design

	5 Control Freaks
	5.1 I can't find the ``any'' key
	5.2 Rules of thumbstick
	5.3 Virtual input and two-way interfaces
	Expert Profile: Jason Avent—Changing Tides

	6 The Play's the Thing
	6.1 What's in a feeling?
	6.2 Act I: Narrative and characters
	6.3 Act II: Player agency
	Expert Profile: Osama Dorias—Something for everyone

	7 Rejecting your Reality
	7.1 Designing for VR
	7.2 What we don't want VR to give us
	7.3 Putting the ``real'' in reality
	Expert Profile: Mark Laframboise & Steven Smith—Partners in Play

	8 The Audience is Listening
	8.1 The ratings war
	8.2 Come on down
	Expert Profile: Kris Alexander—Learn to play, play to learn

	9 Rise of the Machines
	9.1 The toaster is sentient now
	9.2 AI that plays with you
	9.3 AI that works for you
	Expert Profile: Regan Mandryk—The science of fun

	10 Making the Thing
	10.1 Chasing the lightbulb
	10.2 Follow the rulebook
	10.3 Re-writing the rulebook
	Expert Profile: Ario Jafarzadeh—Steps from perfection

	11 Test your Patience
	11.1 Spend your questions wisely
	11.2 A crash course in testing
	11.3 The melting pot of methods
	Expert Profile: Graham McAllister—Having a clear vision

	12 What Comes Next?
	12.1 Pocket supercomputers strapped to your face
	12.2 Buy low, sell high
	12.3 Game changers
	Expert Profile: Jason Della Rocca—Optimizing for success

	 Glossary
	 List of Acronyms
	 Ludography
	 Subject Index
	 Game Index

