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PREFACE

Game theory sheds a light on many aspects of the social sciences and is based
on an elegant and non-trivial mathematical theory. The bestowal of the 1994
Nobel Prize in economics upon the mathematician John Nash underscores the
important role this theory has played in the intellectual life of the twentieth
century. There are many textbooks on this topic but they tend to be one sided
in their approaches. Some focus on the applications and gloss over the mathe-
matical explanations while others explain the mathematics at a level that makes
them inaccessible to most non-mathematicians. This monograph fits in between
these two alternatives. Many examples are discussed and completely solved with
tools that require no more than high school algebra. These tools turn out to be
strong enough to provide proofs of both von Neumann’s Minimax Theorem and
the existence of the Nash Equilibrium in the 2 x 2 case. The reader therefore
gains both a sense of the range of applications and a better understanding of the
theoretical framework of two deep mathematical concepts.

This book is based on lectures I presented in MATH 105 Introduction to
Topics in Mathematics as well as in MATH 530 Mathematical Models
I at the University of Kansas. The first of these courses is normally taken by
Liberal Arts majors to satisfy their Natural Sciences and Mathematics Distri-
bution Requirements. The presentation of Chapters 1-9 and 11-13 in this class
took about 25 lectures and was supplemented with notes on statistics, linear
programming and/or symmetry. In the mathematical models class this mate-
rial was used to supplement a standard linear programming course. It can be
covered in about a dozen lectures with proofs included in both the presentation
and the homework assignments. Those chapters and exercises that are deemed
to be more theoretically demanding are starred. Such proofs as are included in
the text appear in the conclusion of the appropriate chapters.

The exposition is gentle because it requires only some knowledge of coordinate
geometry, and linear programming is not used. It is mathematical because it

xi



xii PREFACE

is more concerned with the mathematical solution of games than with their
applications. Nevertheless, I have included as many convincing applications as I
could find.

I am indebted to my colleagues James Fred McClendon for helping me out
with some of the technical aspects of the material and Margaret Bayer for root-
ing out some of the errors in an earlier draft. I owe my own understanding of the
material and many examples to the books by John D. Williams and David Gale.
David Bitters, Sergei Gelfand, Edward Dunne, and an anonymous reviewer con-
tributed many valuable suggestions. Larisa Martin and Sandra Reed converted
the manuscript to TeX and Sarah Donnelly supervised the production. To them
all T owe a debt of gratitude.

Saul Stahl
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INTRODUCTION

The notion of a zero-sum game is informally introduced and
several examples are discussed.

The mathematical theory of games was first developed as a model for situations
of conflict. It gained widespread recognition in the early 1940’s when it was
applied to the theoretical study of economics by the mathematician John von
Neumann and the economist Oskar Morgenstern in their book Theory of Games
and Economic Behavior. Since then its scope has been broadened to include co-
operative interactions as well and it has been applied to the theoretical aspects of
many of the social sciences. While the jury is still out on the question of whether
this theory furnishes any valuable information regarding practical situations, it
has stimulated much basic research in disciplines such as economics, political
science, and psychology.

Situations of conflict, or any other kind of interactions, will be called games
and they have, by definition, participants who are called players. We shall limit
our attention to scenarios where there are only two players and they will be
called Ruth and Charlie. The existence of a conflict is usually due both to
the desire of each player to improve his circumstances, frequently by means of
some acquisition, and the unfortunate limited nature of all resources. For all
but the last three chapters of this book it will be assumed that each player is
striving to gain as much as possible, and that each player’s gain is his opponent’s
loss. Finally, each player is assumed to have several options or strategies that he
can exercise (one at a time) as his attempt to claim a portion of the resources.
Because of the introductory nature of this text, most of the subsequent discussion
is restricted to situations wherein the players make their moves simultaneously
and independently of each other. It will be argued in Chapter 10 that this
does not truly limit the scope of the theory and that the mathematical theory
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of games does have something to say about games, such as poker, in which the
players move alternately and do possess a fair amount of information about their
opponent’s actions.

The foregoing discussion is admittedly vague and this chapter’s remainder is
devoted to the informal exposition of several examples of increasing complexity.
The requisite formal definitions are postponed to the next chapter.

PENNY-MATCHING. Ruth and Charlie each hold a penny and they display
them simultaneously. If the pennies match in the sense that both show heads or
both show tails, then Ruth collects both coins. Otherwise, Charlie gets them.

It is clear that this game is fair in the sense that neither player has an ad-
vantage over the other. Moreover, if the game is only played once, then neither
player possesses a shrewd system, or strategy, that will improve his position, nor
is there a foolish decision that will worsen it.

The situation changes if the game is played many times. While the repeated
game remains symmetrical, and neither player has a strategy that will guarantee
his coming out ahead in the long run, it is possible to play this game foolishly.
Such would be the case were Ruth to consistently display the head on her penny.
In that case Charlie would be sure to catch on and display the tail each time,
thus coming out ahead. It is a matter of common sense that neither player
should make any predictable decisions, nor should a player favor either of his
options. In other words, when this game is repeated many times each player
should play each of his options with equal frequency 1/2 and make his decisions
unpredictable. One way a player can accomplish this is by flipping his coin rather
than consciously deciding which side to show. With an eye to the analysis of
more complex games, this game is summarized as

Charlie
Head Tail
Head 1 -1
Ruth
Tail| —1 1

The entry 1 denotes a gain of one penny for Ruth, and the entry —1 denotes a
loss of one penny for Ruth. Since Ruth’s gain is Charlie’s loss, and vice versa,
this array completely describes the various outcomes of a single play of the game.

All the subsequent examples and most of the discussion will be phrased in
terms of the same two players Ruth and Charlie. Payoffs will be described from
Ruth’s point of view. Thus, a payoff of a penny will always mean a penny gained
by Ruth and lost by Charlie.

ROCK-ScCissORS-PAPER. Ruth and Charlie face each other and simultane-
ously display their hands in one of the following three shapes: a fist denoting a
rock, the forefinger and middle finger extended and spread to as to suggest scis-
sors, or a downward facing palm denoting a sheet of paper. The rock wins over
the scissors since it can shatter them, the scissors win over the paper since they
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Scissors

FIGURE 1.1. A randomizing spinner.

can cut it, and the paper wins over the rock since it can be wrapped around the
latter. The winner collects a penny from the opponent and no money changes
hands in the case of a tie.

This game has features that are very similar to those of Penny-matching.
There are neither shrewd nor foolish decisions for a single play. If the game is
repeated many times then players who favor one of the options place themselves
at a disadvantage. The best strategy for each player is to play each of the options
with the same frequency of 1/3 in a manner that will yield the opponent as little
information as possible about any particular decision. For example, he could
base each of his decisions on the result of a spin of the spinner of Figure 1.

The outcomes of the Rock-scissors-paper game are tabulated as

Charlie
Rock Scissors Paper
Rock| O 1] -1
Ruth Scissors| —1 0 1
Paper 1 -1 0

As before, a positive entry denotes a gain for Ruth whereas a negative entry is
a gain for Charlie.

The biologists B. Sinervo and C. M. Lively have recently reported on a lizard
species whose males are divided into three classes according to their mating
behavior. The interrelationship of these three alternative behaviors very much
resembles the Rock-Scissors-Paper game and merits a digression here. Each male
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of the side-blotched lizards (Uta stansburiana) exhibits one of three (genetically
transmitted) mating behaviors:

a) highly aggressive with a large territory that includes several females;

b) aggressive with a smaller territory that holds one female;

¢) nonagressive sneaker with no territory who copulates with the others’ fe-

males.

In a confrontation, the highly aggressive male has the advantage over the monog-
amous one who in turn has the advantage over the sneaker. However, because
the highly aggressive males must split their time between their various consorts,
they are vulnerable to the sneakers. The observed consequence of this is that the
male populations cycle from a high frequency of aggressives to a high frequency
of highly aggressives, then on to a high frequency of sneakers and back to a high
frequency of aggressives.

The next game is played in Italy using three fingers. For pedagogical reasons
it is its two finger simplification that will be examined here.

Two-FINGER MORRA. At each play Ruth and Charlie simultaneously extend
either one or two fingers and call out a number. The player whose call equals the
total number of extended fingers wins that many pennies from the opponent. In
the event that neither players’ call matches the total, no money changes hands.

It would be clearly foolish for a player to call a number that cannot possibly
match the total number of displayed fingers. Thus, a player who extends only
one finger would call either 2 or 3, whereas a player who extends two fingers
would call only 3 or 4. Consequently, each player has in reality only four options
and the game’s possible outcomes are summarized as

Charlie
(12) (13) (23) (24)

(1,2) 0 2 | -3 0

(1,3)| -2 0 0 3
Ruth

(2,3) 3 0 0| —4

(2,4) 0| -3 4 0

where the option (i, j) denotes the extension of ¢ fingers and a call of j.

This game, like its predecessors, is symmetrical. Neither player has a built-in
advantage. It is tempting, therefore, to conclude that when this game is played
many times, each player should again randomize his decisions and play them
each with a frequency of 1/4 . This, however, turns out to be a poor strategy.
If Ruth did randomize this way then Charlie could ensure his coming out ahead
in the long run by consistently employing option (1, 3). Note that in that case
the expected outcome per play can be computed by the rules of probability (see
the discussion at the end of this chapter) as

1 1 1 1

1
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In other words, if Ruth plays each option with a frequency of 1/4 and Charlie
consistently employs option (1, 3), Charlie can expect to win, on the average, 1/4
of a penny per play. Thus, this game differs drastically from the two previous
ones. Whereas the symmetry of the game makes it clear that each player should
be able to pursue a long term strategy that entitles them to expect to come out
more or less even in the long run, it is not at all clear this time what this strategy
is. We shall return to this game and issue in Chapter 11.

The above considerations point out a difficulty that will have to be dealt
with when the general theory of games is proposed. It was noted that if Ruth
randomizes her behavior by using each of her four options with a frequency of
1/4, then Charlie can guarantee a long run advantage by consistently employing
option (1, 3). However, should Charlie choose to do so, Ruth is bound to notice
his bias, and she will in all likelihood respond by consistently opting for (1, 2),
yielding her a win of 2 on each play. Charlie, then, will respond by playing (2,
3) consistently for a win of 3 on each play. Ruth, then, will switch to (2, 4) for
a repeated gain of 4. Charlie, then, will switch back to (1, 3), thus beginning
the whole cycle again. A reasonable theory of games should provide a stable
strategy that avoids such “logical loops”, and we will see that such is indeed the
case.

BOMBING SORTIES. Ruth and Charlie are generals of opposing armies. Every
day Ruth sends out a bombing sortie that consists of a heavily armed bomber plane
and a lighter support plane. The sortie’s mission is to drop a single bomb on
Charlie’s forces. However, a fighter plane of Charlie’s is waiting for them in
ambush and it will dive down and attack one of the planes in the sortie once.
The bomber has an 80% chance of surviving such an attack, and if it survives it
is sure to drop the bomb right on the target. General Ruth also has the option of
placing the bomb on the support plane. In that case, due to this plane’s lighter
armament and lack of proper equipment, the bomb will reach its target with a
probability of only 50% or 90%, depending on whether or not it is attacked by
Charlie’s fighter.

This information is summarized in the table below where the entries denote
the probability of the bomb’s delivery.

Attack
Bomber Support

Bomb DBomber|  80% 100%
placement

Support | 90% 50%

Ruth knows that if the bomb is placed consistently on the bomber she can
reasonably expect at least 80% of the missions to succeed. In all likelihood, Char-
lie’s observers at the bombing site would notice this bias and he would direct his
fighter plane pilot to always attack the bomber, thus holding Ruth’s expectation
down to 80% and no more. However, Ruth, who is an experienced poker player,
decides to bluff by placing the bomb on the support plane occasionally. Let us
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Table 1.1 Bombing sorties.

Probability Likelihood of
Compound event of event success of sortie

The bomb is on the bomber and

the fighter attacks the bomber .75 x .50 = .375 80%

The bomb is on the bomber and

the fighter attacks the support plane .75 x .50 = .375 100%

The bomb is on the support plane and

the fighter attacks the bomber .25 x .50 = .125 90%

The bomb is on the support plane and

the fighter attacks the support plane .25 x .50 = .125 50%

say for the sake of argument that she does so 1/4 = .25 of the time. Charlie now
faces a dilemma. His observers have advised him of Ruth’s new strategy and
he suspects that it would be advantageous for him to attack the support plane
some of the time, but how often should he do so?

Suppose Charlie decides to counter Ruth’s bluffing by attacking the support
plane half the time. In this case the situation is summarized as

Attack
frequencies

.50 .50
Bomber Support

Bomb .75 Bomber| 80% 100%
placement

frequencies .25 Support| 90% 50%

Since Ruth and Charlie make their daily decisions independently of each other,
it follows that on any single sortie, the probabilities of each of the four possible
outcomes occurring are as displayed in Table 1 above. Hence, under these cir-
cumstances, wherein the bomb is placed on the support plane 1/4 of the time and
this plane is attacked by the fighter 1/2 of the time, the percentage of successful
missions, as computed on the basis of Table 1, is

375 x 80% + .375 x 100% + .125 x 90% + .125 x 50%
=30% + 37.5% + 11.25% + 6.25% = 85%.

Thus, this response of Charlie’s to Ruth’s bluffing has created a situation wherein
the bomb can be expected to get through 85% of the time. Since this figure
amounts to only 80% when the bomb is placed consistently in the bomber, Ruth’s
bluffing seems to have paid off.
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Table 1.2 Bombing sorties.

Probability Likelihood of
Compound event of event success of sortie

The bomb is on the bomber and

the fighter attacks the bomber .75 x .80 = .60 80%

The bomb is on the bomber and

the fighter attacks the support plane 75 x.20=.15 100%

The bomb is on the support plane and

the fighter attacks the bomber .25 x .80 = .20 90%

The bomb is on the support plane and

the fighter attacks the support plane .25 %x.20 = .05 50%

However, Charlie can change his response pattern. He could, say, decide to
diminish the frequency of attacks on the support plane to only 1/5 of the time,
leading to the situation

Attack
frequencies

.80 .20
Bomber Support

Bomb .75 Bomber| 80% 100%
placement

frequencies .25 Support 90% 50%

In this case the percentage of successful sorties, computed on the basis of Table
2, is

.60x80%+.15x100%+.20 X 90%+.05 % 50% = 48%+15%+18%+2.5% = 83.5%.

Thus, by diminishing the frequency of attacks on the support plane Charlie
would create a situation wherein only 83.5% of the sorties would be success-
ful. From Charlie’s point of view this is an improvement on the 85% computed
above. Could greater improvements be obtained by a further diminution of the
frequency of attacks on the support plane? Suppose these attacks are completely
eliminated. Then the state of affairs is

Attack
frequencies

1 0
Bomber Support

Bomb .75 Bomber| 80% 100%
placement

frequencies .25 Support 90% 50%
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Table 1.3 Bombing sorties.

Probability Likelihood of
Compound event of event success of sortie

The bomb is on the bomber and

the fighter attacks the bomber 75x1=.75 80%

The bomb is on the bomber and

the fighter attacks the support plane 75x0=0 100%

The bomb is on the support plane and

the fighter attacks the bomber 25x1=.25 90%

The bomb is on the support plane and

the fighter attacks the support plane 25x0=0 50%

and the associated Table 3 tells us that the percentage of successful sorties is

.75 x 80% + 0 x 100% + .25 x 90% + 0 x 50%
=60% + 0% + 22.5% + 0% = 82.5%.

This would seem to indicate that when Ruth bluffs 1/4 of the time Charlie should
nevertheless ignore the support plane and direct his attacks exclusively at the
bomber. Moreover, these calculations indicate that this strategy enables Ruth
to improve on her bomber’s 80% delivery rate by another 2.5%. These various
analyses raise several questions that will guide the development of the subsequent
sections. Can Ruth improve on the above 82.5% with a different strategy? What
is the best improvement Ruth can obtain? What is Charlie’s best response to
any specific strategy of Ruth’s? Does Charlie have an overall best strategy that
is independent of Ruth’s decisions?

An Addendum on Probabilistic Matters

Unless otherwise stated, it will always be assumed here that each time a game
is played Ruth and Charlie make their respective decisions independently of each
other. This comes under the general heading of Independent Random FEuvents,
i.e., random events whose outcomes have no bearing on each other. For example,
if a nickel and a dime are tossed the outcomes will in general be independent,
unless the two coins are glued to each other. Similarly, suppose Ruth draws a
card at random from a standard deck, replaces it, shuffles the deck, and then
Charlie draws a card from that deck. The two draws are then independent. On
the other hand, if Ruth does not replace her card in the deck, then Charlie’s
draw is very much affected by Ruth’s draw, since he cannot possibly draw the
same card as she did. In this case the two random draws are not independent.
The probabilities of independent events are related by the formula
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If the two events E and F are independent then
probability of (E and F) = (probability of E) x (probability of F).

Thus, the probability of the aforementioned coins both coming up heads is
.5 x .5 = .25. Similarly, If a nickel and a standard six sided die are tossed
simultaneously, then the probability of the coin coming up tails and the die
showing a 3is 1 -1 = L.

Some random events have numerical values attached to their outcomes. Thus,
the faces of the standard die have dots marked on them, a person selected at
random has a height, and a lottery ticket has a monetary value (that is un-
known at the time it is purchased). Loosely speaking, the ezpected value is the
average of those numerical values when they are weighted by the corresponding

probabilities. More formally:

If the random variable X assumes the numerical values x1,Za,... , T, with
probabilities py, pa, . . . , pn, Tespectively, then the expected value (weighted average)
of X is

P1T1 + P22+ -+ + Prn.

For example, suppose that the records of an insurance company indicate that
during a year they will pay out for accidents according to the following pattern:

$100,000 with probability .0002
$50,000 with probability .0015
$25,000 with probability .003

$5,000 with probability .01
$1,000 with probability .03
$0 with probability .9553

Then the expected payment per car during the next year is

$100, 000 - .0002 + $50, 000 - .0015 + $25, 000 - .003 + $5,000 - .01 + $1,000 - .03
+ $0 - .9553 = $250.

Similarly, if 5000 lottery tickets are sold of which one will win $10,000, two will
win $1,000, five will win $100 and the rest will all receive a consolation prize
worth one dime, then the expected value of each ticket is

1 2 5 4992
$10,000 - 5000 + $1, 000 - 5000 + $100 - 5000 +$.10 - 5000 $2.60.

Chapter Summary

Four examples of repeated games were discussed. For the first two, Penny-
matching and Scissors-paper-rock, the players have obvious reasonable goals: to
come out even. The means for attaining these goals are also clear: they should
randomize their decisions and employ their options with equal frequencies. In
the case of Morra, the players are again entitled to expect to come out even
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in the long run, but the means of attaining this goal are not apparent. The
player who randomizes his Morra options and plays them with equal frequencies
places himself at a disadvantage. Finally, in the Bombing-sorties game neither
the exact goal nor the means of attaining it are evident.

Chapter Terms

Bombing sorties 5 Conflict 1
Gain 1 Game 1
Interaction 1 Loss 1
Morra 4 Option 1
Payoff 2 Penny-matching 2
Rock-scissors-paper 2 Strategy 1

EXERCISES 1

1. Ruth is playing Morra and has decided to play the options with the following
frequencies:

(1, 2) — 40%

(1, 3) — 30%

(2, 3) — 20%

(2, 4) — 10%.
Design a spinner that will facilitate this pattern;
What will be the expected outcome if Charlie consistently plays (1,2)7
What will be the expected outcome if Charlie consistently plays (1,3)7
What will be the expected outcome if Charlie consistently plays (2,3)?
What will be the expected outcome if Charlie consistently plays (2,4)?
Which of the above consistent moves is best for Charlie?

2
2

2. Ruth is playing Morra and has decided to play the options with the following
frequencies:

a0 O

[¢]

)
)
)
)
)

£)

(2,4) — 0%.
Design a spinner that will facilitate this pattern;
What will be the expected outcome if Charlie consistently plays (1,2)7
What will be the expected outcome if Charlie consistently plays (1,3)?
What will be the expected outcome if Charlie consistently plays (2,3)?
(2:4)

What will be the expected outcome if Charlie consistently plays 7
Which of the above consistent moves is best for Charlie?

I

3. Ruth is playing Morra and has decided to play the options with the following
frequencies:
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Design a spinner that will facilitate this pattern;

What will be the expected outcome if Charlie consistently plays (1,2)?
What will be the expected outcome if Charlie consistently plays (1,3)?
What will be the expected outcome if Charlie consistently plays (2,3)?
What will be the expected outcome if Charlie consistently plays (2,4)?

Which of the above consistent moves is best for Charlie?

4. General Ruth has decided that she will put the bomb on the support plane
10% of the time.

Design a spinner that will facilitate this pattern.

What will be the expected mission success rate if General Charlie persists
in attacking the bomber exclusively?

What will be the expected mission success rate if General Charlie persists
in attacking the support plane exclusively?

What will be the expected mission success rate if General Charlie attacks
each plane 50% of the time?

What will be the expected mission success rate if General Charlie attacks
the support plane 40% and the bomber 60% of the time?

5. General Ruth has decided that she will put the bomb on the support plane
30% of the time.

a)
b)

Design a spinner that will facilitate this pattern.

What will be the expected mission success rate if General Charlie persists
in attacking the bomber exclusively?

What will be the expected mission success rate if General Charlie persists
in attacking the support plane exclusively?

What will be the expected mission success rate if General Charlie attacks
each plane 50% of the time?

What will be the expected mission success rate if General Charlie attacks
the support plane 40% and the bomber 60% of the time?

6. General Ruth has decided that she will put the bomb on the support plane
40% of the time.

Design a spinner that will facilitate this pattern.

What will be the expected mission success rate if General Charlie persists
in attacking the bomber exclusively?

What will be the expected mission success rate if General Charlie persists
in attacking the support plane exclusively?

What will be the expected mission success rate if General Charlie attacks
each plane 50% of the time?

What will be the expected mission success rate if General Charlie attacks
the support plane 40% and the bomber 60% of the time?
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THE FORMAL DEFINITIONS

The fundamental notions of a zero-sum game,
mixed and pure strategies, and expected payoff are defined.

It is time to make some formal definitions. For purely pedagogical reasons we
begin with games in which each of the players has only two options, leaving the
more general case for the end of the section.

Taking our cue from the Penny-matching and Bombing-sorties games of the
previous section, we define a 2 x 2 zero-sum game as a square array of 2x 2 =4
numbers. Thus, the mathematical representation of the Penny-matching game
is the array

1 -1

-1 1

and the mathematical representation of the Bombing-sorties game is the array

80% 100%
90% 50%

Just as it is convenient to represent the addition of 8 oranges to 6 oranges by
the abstract equation 8 + 6 = 14, we shall ignore the actual details of the games
in most of the subsequent discussion and simply deal with arrays of unitless
numbers. Thus, the most general 2 x 2 zero-sum game has the form

a b

c d

13
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where a, b, ¢, d are arbitrary numbers. This abstraction has the advantages of
succinctness and clarity. We shall, however, make a point of discussing some
concrete games every now and then, and many more such games will be found
in the exercises.

Each 2 x 2 zero-sum game has two players, whom we shall continue to call Ruth
and Charlie. The mathematical analog of deciding on one of the options is the
selection of either a row or a column of this array. Specifically, Ruth decides on
an option by selecting a row of the array, whereas Charlie makes his decision by
specifying a column. Thus, in Bombing-sorties, Ruth’s placement of the bomb in
the bomber, and Charlie’s attacking the support plane are tantamount to Ruth’s
selecting the first row and Charlie’s selecting the second column of the array

o0
S
N
—_
)
S
N

[t

Each individual play of the game consists of such a pair of selections, made
simultaneously and independently. The selected row and column constitute the
outcome of the play and its payoff is the entry of the array that is contained in
both of the selections. Thus, the payoff of the play illustrated above is 100%.
On the other hand, had Ruth selected the second row and had Charlie stayed
with the second column the payoff would have been 50%. This payoff of course
represents Ruth’s winnings (and Charlie’s loss) from that play and she will in
general wish to maximize its value, whereas Charlie will be guided by the desire
to minimize this payoff.

Informally speaking, a players’ strategy is a decision on the frequency with
which each available option will be chosen. More formally, a strategy is a pair of
numbers [a, b],

0<a<l, 0<b<L1, a+b=1,

where a denotes the frequency with which the first row (or column) is chosen,
and b denotes the frequency with which the second row (or column) is chosen.
Thus, Ruth’s decision to place the bomb on the support plane 1/4 of the time is
denoted by the pair [.75,.25] and Charlie’s strategy of attacking the two planes
with equal frequencies is denoted by [.5,.5]. When discussing general strategies
it is convenient to denote Ruth’s strategy by [1 — p,p] and Charlie’s strategy by
[1 — q,q]. The rationale for placing the p and the g in the second component
rather than the first one will be explained in Chapter 4.

This formalization of the intuitive concept of strategy as a list of probabil-
ities was first offered by the mathematician E. Borel in series of papers that
were written in the 1920’s. Borel was also the first one to view these games as
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rectangular arrays. The decision to limit the notion of strategy in this manner
could not have been an easy one and Borel’s papers exhibit some ambivalence
on this issue. It is very tempting to believe, as did Borel, that one can gain some
advantage over the opponent by varying one’s probabilities at each play, but it
is not at all clear how to formulate such a variation. At the conclusion of one of
his papers he wrote:

The function f(a:, y) [the strategy| must then vary at each instant, and vary without
following any law at all. One may well doubt if it is possible to indicate an effective
and sure means of carrying out such counsel. It seems that, to follow it to the letter, a
complete incoherence of mind would be needed, combined, of course, with the intelligence
necessary to eliminate those methods we have called bad.

It is our contention, and assumption, that, in practice, every player has a
strategy in the sense of a fixed pair of probabilities. Truly random behavior
is impossible to attain within the context of a game. For how can any person
repeatedly play a game such as Rock-scissors-paper in a truly random fashion,
that is to say, without some pattern of frequencies emerging from his choices? If
he makes each individual decision in his head, his past experience and personal
preferences are sure to dictate a pattern. If, on the other hand, he uses some
device such as a die or a spinner to implement the randomization, the device
itself will shape the randomness into a frequency distribution. Each face of the
die will come up approximately 1/6 of the time and the spinner’s arrow will stop
within each sector with a frequency that is proportional to that sector’s central
angle.

Another argument against the feasibility of a strategyless manner of playing
is that each actual sequence of choices made by a player over his lifetime can
be construed as a strategy. If a player of Penny-matching has been observed to
have displayed Heads 83 times and Tails 39 times, it could be reasonably said
that, since 83 + 39 = 122, it follows that this player has the strategy

[83 39

o7 @] ~ [.68,.32)]

In reality, of course, such statistics are rarely available. However, the point we
are making here is that it is permissible to assume that every player is indeed
employing some strategy that may or may not be known to the opponent.

More serious than the inability of people to behave in a truly random fashion
is the theoretical impossibility of treating such a concept within a mathematical
framework. Even in the mathematical theory of statistics, where random vari-
ables are as a commonplace as ants at a picnic, every such variable is assumed
to have a probability distribution. Von Neumann and Morgenstern, who also
identified strategies with probabilities as was done above, explicitly admitted
that they were doing so simply because they had no theory that could handle
anything else (see discussion at the end of Chapter 4).

Thus, it will henceforth be assumed that

Every player employs a strategy.
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It was seen in Bombing-sorties that the specification of each player’s strategy
resulted in a situation wherein an expected payoff could be computed. This
expected payoff can be defined and computed for arbitrary 2 x 2 games in a
similar manner. Thus, given the strategies [1 — p,p] and [1 — g, q] for the general
2 X 2 zero-sum game

1-q ¢

1-p a b
p c d

(1)

the likelihood of Ruth getting the payoff a is the probability of her choosing the
first row and Charlie choosing the first column. Since these choices are made
independently, we conclude that

the probability of Ruth getting payoff a is (1 — p) x (1 — q).
Similarly,
the probability of Ruth getting payoff b is (1 — p) x ¢

the probability of Ruth getting payoff c is p x (1 — q)
the probability of Ruth getting payoff d is p x q.

As these four events are mutually exclusive and they exhaust all the possibilities
it follows that Ruth’s expected payoff is

1-p)x(1—-¢)xa+(1—-p)xgxb+px(l—q)Xc+pxgqgxd.

Diagrams such as that of (1) above, wherein the players’ strategies are appended
to the game’s array, are called auziliary diagrams. They turn the computation
of the expected payoff into a routine task and so will be repeatedly used in the
sequel as a visual aid.

ExAMPLE 1. For the Bombing-sorties game Ruth’s strategy [.3,.7] and Char-
lie’s strategy [.6,.4] yield the auxiliary diagram

.6 4
80% 100%
90% 50%

The corresponding payoff is

3% .6 x80%+ .3x.4x100% + .7 x .6 x 90% + .7 x .4 x 50%
= 14.4% + 12% + 37.8% + 14% = 78.2%.

In other words, when the players employ the above specified strategies, Ruth
can expect 78.2% of the missions to be successful.
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ExaMPLE 2. Compute the expected payoff of the strategies [.2,.8] of Ruth
and [.3,.7] of Charlie for the abstract 2 x 2 zero-sum game

5 0
-1 2
The auxiliary diagram is
3 7
5 0
-1 2

and so the expected payoff is

2X.3x5+.2x.7Tx0+.8x.3x(-1)+.8%x.7x2
=3+0-.24+112=1.18.

In other words, when the players use the specified strategies within the context
of the given (repeated) game, Ruth can expect to win, on the average, 1.18 per
play. Of course, this being a zero-sum game, Charlie should expect to lose the
same amount per play.

We now turn to the formal definition of games in which one or both of the
players have more than two options. If m and n are any two positive integers,
then an m X n zero-sum game is a rectangular array of mn numbers having m
rows and n columns. Thus,

0 1 -1
-1 0 1
1 -1 0

0 -3 4 0

is a 4 X 4 zero-sum game (Two-finger Morra). The array below is an example of
an abstract 3 x 4 zero-sum game (an interesting concrete nonsquare game will
be discussed in Chapter 7 in detail).
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2 -1 -3 3

0 -2 3 -3

1 0 1 -2

(2)

It is again assumed that in each play Ruth selects a row and Charlie selects a
column of the array. The selected row and column constitute the outcome of that
play and the entry of the array which is the intersection of Ruth’s chosen row
with Charlie’s chosen column is the corresponding payoff. Thus, in the above
abstract game, if Ruth selects the second row and Charlie selects the fourth
column, the corresponding payoff is —3, a loss for Ruth.

Given an m X n zero-sum game, a strategy for Ruth is a list of numbers
[p1,P2,- - ,Pm], such that

0<p; <1 foreach i =1,2,... ,m, and
Pt+pet.. tpm=1,

where p; denotes the frequency with which Ruth chooses the i-th row. Similarly,
a strategy for Charlie is an ordered list of numbers g1, g2, ... , ¢s], such that

0<g; <1 for each j =1,2,... ,n, and
Q+re+...+qg, =1,

where g; denotes the frequency with which Charlie chooses the j-th column.
Thus, in the symmetrical Rock-scissors-paper game, the strategy [.6,.3,.1] de-
notes the decision, by either player, to display rock 60% of the time, scissors 30%
of the time, and paper only 10% of the time. In the above abstract 3 x 4 zero-
sum game (or in any 3 x 4 zero-sum game for that matter) the strategy [.2, .3, .5]
denotes Ruth’s choosing the first, second, or third rows 20%, 30%, 50% of the
time respectively. The strategy [.4,0,.1,.5] denotes Charlie’s choosing the first,
second, third, or fourth columns 40%, 0%, 10%, and 50% of the time. A pure
strategy is one which calls for the exclusive use of a particular row or column.
In Bombing-sorties each player has two pure strategies: [1, 0] which calls for the
use of the first row or column only, and [0, 1} which calls for the exclusive use
of the second row or column. In the abstract game of (2), Ruth has three pure
strategies: [1,0,0], [0,1,0], and [0,0,1]. In the same game Charlie has four pure
strategies: [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1]. Strategies which are
not known to be pure are called mized. Thus, the strategies [.3,.7] and [1 — p, p]
are mixed strategies, even though the later may turn out to be pure when p is
either 0 or 1.

Every such choice of specific strategies on the part of both players narrows the
situation down to a point where an expected payoff can be computed. Suppose
Ruth employs the strategy [p1,p2,...,Pm) and Charlie employs the strategy
lg1,92, ... ,¢s] in some abstract m x n zero-sum game. If a; ; denotes the payoff
in the i-th row and the j-th column of this game (see Table 2.1), then the
likelihood of this payoff actually taking place is the probability of Ruth choosing
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TABLE 2.1. Computing the expected payoff

qj

Di aij

the i-th row and Charlie choosing the j-th column, which, of course, equals
p; X g;. Thus, this specific outcome’s contribution to the expected payoff is
p;i X q; % a; j. Consequently the total expected payoff, being the sum of all these
contributions, equals

Sum of all p; x g; X a;; 1=12,...,m, j=12,...,n.

ExXAMPLE 3. Compute the expected payoff when Ruth employs the strategy
[.2,.3,.5] and Charlie employs the strategy [.1,.7,.2] in the Rock-scissors-paper
game.

The auxiliary diagram is

1 7 2
2 0 1 -1
3 -1 0 1
5 1 -1 0

and the corresponding sum is

2Xx.1x04+.2x.7x14+.2x.2x%x(-1)
+.3x.1x(-1)+.3x.7x0+.3x.2x1
+5x.Ix1+.5x.7x(-1)+.5%x.2x0
=0+.14—-.04—-.034+0+ .06 +.05—-.35+0=—.17.

In other words, under these circumstances, Ruth should expect to lose .17 pennies
per play.

EXAMPLE 4. Compute the expected payoff when the strategies [.3,0,.7] and
[.1,.2,.3,.4] are used by Ruth and Charlie respectively in the abstract game (2)

above.
Using the auxiliary diagram
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1 2 3 A4
3 2 -1 -5 3
0 0 -2 3 -3
7 1 0 1| -2

we get an expected payoff of

Bx.Ix24+3x.2x(-1)+.3x.3%x(=5)+.3x.4x3
+0x.1x04+0x.2x(-2)+0x%x.3%x3+0x.4x(-3)
+.7x.1Ix14.7x.2x0+.7x.3x1+.7x.4x%x(=2)
=.06-.06-.454+.364+0+0+04+0+.074+0+ .21 — .56 = —.37.

Chapter Summary

The notion of an abstract zero-sum two person game was extracted from the
concrete examples of the previous section. The associated concepts of strategies
and expected payoffs were formally defined.

Chapter Terms

Auxiliary diagram 16 Expected payoff 16, 19
General 2 x 2 zero-sum game 13 m X n zero-sum game 17
Mixed strategy 18 Outcome 14, 18
Payoff 16, 19 Play 14
Pure strategy 18 Selecting options 14
Strategy 14, 18 2 X 2 zero-sum game 13

EXERCISES 2

In each of Exercises 1-11 compute the expected payoff where R denotes a strat-
egy for Ruth and C denotes a strategy for Charlie for the given game G.

2 3
4 1
1. R=1[2,8,C=[7.3,G=
2 3
4 1
2. R=1[6,4],C=0,1],G =
-1 3
4 -2
3. R=[2,8,C=[7.3,G=
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-1 3
4 | -2
4. R=[6,4],C=[01],G =
1 0| -2 3
-3 4 2 | -4
0| -1 0 1
5. R=[6,3,1,C=1[1,4,3.2,G =
1 0| -2 3
-3 4 2 | -4
0| -1 0 1
6. R=[6,0,.4,C=10,5,.3,.2,G=
-2 3
-3 2 | -4
0 1
7. R=[0,1,0], C = [5,0,0,.5], G =
1| -3 2
0 4| -4
-2 0 2
3| -3 | -1
-3 5 1
8. R=[2,0,.4,0,4],C=[1,.1,8],G=
1] -3 2
0 4 | -4
-2 0 2
3| -3 | -1
-3 5 1
9. R =[0,0,0, .4,.6],C = [1,0,.9, G =
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10.

11.

12.

13.

14.
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1 -3 2

0 4 4

9 0 5

3 -3 -1

R = [0,0,0,1,0], C = [0,1,0], G = -3 5 1
1 -3 2

0 4 —4

_9 0 5

3 -3 -1

R = [0,1,0,0,0], C = [0,0,1], G = =3 5 1

The following games are reprinted with the kind permission of the RAND
Corporation. Describe each as a table.

The River Tale (J. D. Williams) Steve is approached by a stranger who
suggests that they match coins. Steve says that it’s too hot for violent exer-
cise. The stranger says, “Well then, let’s just lie here and speak the words
heads or tails—and to make it interesting I'll give you $30 when I call tails
and you call heads, and $10 when it’s the other way round. And—just to
make it fair—you give me $20 when we match.”

The Birthday (J. D. Williams) Frank is hurrying home late, after a particu-
larly grueling day, when it pops into his mind that today is Kitty’s birthday!
Or is it? Everything is closed except the florist’s. If it is not her birthday and
he brings no gift, the situation will be neutral, i.e., payoff 0. If it is not and he
comes in bursting with roses, and obviously confused, he may be subjected to
the Martini test, but he will emerge in a position of strong one-upness—which
is worth 1. If it is her birthday and he has, clearly, remembered it, that is
worth somewhat more, say 1.5. If he has forgotten it he is down like a stone,
say, —10.

The Hi-Fi (J. D. Williams) The firm of Gunning & Kappler manufactures
an amplifier. Its performance depends critically on the characteristics of one
small, inaccessible condenser. This normally costs Gunning and Kappler $1,
but they are set back a total of $10, on the average, if the original condenser
is defective. There are some alternatives open to them. It is possible for
them to buy a superior quality condenser, at $6, which is fully guaranteed;
the manufacturer will make good the condenser and the costs incurred in
getting the amplifier to operate. There is available also a condenser covered
by an insurance policy which states, in effect “If it is our fault, we will bear
the costs and you get your money back.” This item costs $10. (This is a 3 x 2
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game that Gunning & Kappler is playing against Nature whose options are
to supply either a defective or a nondefective condenser.)

The Huckster (J. D. Williams) Merrill has a concession at the Yankee Sta-
dium for the sale of sunglasses and umbrellas. The business places quite a
strain on him, the weather being what it is. He has observed that he can sell
about 500 umbrellas when it rains and about 100 when it shines; and in the
latter case he also can dispose of about 1000 sunglasses. Umbrellas cost him
50 cents and sell for $1 (this is 1954); glasses cost 20 cents and sell for 50
cents. He is willing to invest $250 in the project. Everything that isn’t sold
is a total loss (the children play with them).

The Coal Problem (J. D. Williams) On a sultry summer afternoon, Hans’
wandering mind alights upon the winter coal problem. It takes about 15 tons
to heat his house during a normal winter, but he has observed extremes when
as little as 10 tons and as much as 20 were used. He also recalls that the price
per ton seems to fluctuate with the weather, being $10, $15, and $20 a ton
during mild, normal, and severe winters. He can buy now, however, at $10
a ton. He considers three pure strategies, namely, to buy 10, 15, or 20 tons
now and the rest, if any, later. He will be moving to California in the spring
and he cannot take excess coal with him.
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OPTIMAL RESPONSES
TO SPECIFIC STRATEGIES

The search for a player’s optimal strategies for zero-sum games
is initiated by an analysis of the situation where
the opponent’s strategy is known.

We shall now examine a player’s options when he happens to know his oppo-
nent’s strategy. Before doing so, however, it is necessary to caution against
reading too much into this statement. Knowing the opponent’s strategy is not
tantamount to being able to predict the opponent’s next decision. A strategy
is merely a list that specifies the frequency with which each option should be
played. Ideally speaking, once a player has decided on a strategy he will use
some appropriate randomizing device to implement the strategy. For example,
the strategy [.25,.5,.25] could make use of the spinner of Figure 1 or else the
player could flip a coin twice and base his decision on the outcome as follows:

choose option 1 if two heads come up,
choose option 2 if a head and a tail come up,

choose option 3 if two tails come up.

In Bombing-sorties we considered the question of what Charlie should do if he
observes that Ruth bluffs by placing the bomb on the support plane 1/4 of the
time. Let us reconsider this question in a somewhat more formal manner. Using
the notation and terminology of the previous chapter, Ruth’s decision to bluff
in this manner is tantamount to adopting the strategy [.75,.25] and Charlie’s
search for an appropriate response reduces to finding a strategy [1 — g, g] such
that the corresponding expected payoff (rate of successful missions) is as low as

25
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FIGURE 3.1. A randomizing spinner

possible. This search can now be made more methodical. The auxiliary diagram
that describes this situation is

1-g¢q q
75 80% | 100%
.25 90% 50%

and the expected payoff is

75 % (1 —¢q) x 80% + .75 x g x 100% + .25 x (1 — q) x 90% + .25 x ¢ x 50%
= .60(1 — q) + .75¢ + .225(1 — q) +.125¢
= .60 — .60g + .75q + .225 — .225q + .125¢
= .825 + .05q.

In other words, as a function of ¢, the expected payoff is .825 + .05q. Bearing in
mind that g is a probability and hence 0 < ¢ < 1, it follows that the expected
payoff is least when ¢ is 0, when it assumes the value

.825 4+ .05 x 0 = .825 = 82.5%.

This means that Charlie’s best response to Ruth’s bluffing is to set ¢ = 0 in
his general strategy [1 — gq,q]. Le. he should ignore the bluffing and consis-
tently attack the bomber, just as was concluded in Chapter 1 on the basis of an
incomplete analysis.
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Suppose that instead of bluffing 1/4 of the time Ruth decides that she will
place the bomb on the support plane 1/2 the time, that is, suppose that Ruth
adopts the strategy [.5,.5]. What is Charlie’s best strategy then? Now the
auxiliary diagram is

1-¢ q
50 80% 100%
.50 90% 50%

and the expected payoff is

50 % (1 — q) x 80% + .50 x ¢ x 100% + .50 x (1 — q) x 90% + .50 x g x 50%
= .40(1 — q) + .50q + .45(1 — q) + .25¢
= .40 — .40qg + .50q + .45 — .45q + .25¢q
— 85— .10q.

Since Charlie is trying to minimize payoffs it is clearly to his advantage to assign
to q the largest possible value, namely 1. This means that under these circum-
stances Charlie’s best strategy is [L —1,1] = [0,1]. In other words, if Ruth places
the bomb (at random) on either plane with frequency 1/2, then it is to Charlie’s
advantage to attack the weaker support plane consistently.

It will prove convenient to introduce some new terms here. In the face of any
specific strategy of Ruth’s, that strategy of Charlie’s that results in the smallest
expected payoff to Ruth is called Charlie’s optimal counterstrategy. Similarly, in
the face of a specific strategy of Charlie’s, that strategy of Ruth’s that provides
her with the largest expected payoff is called her optimal counterstrategy. The
conclusion of the above discussion is that when Ruth employs the mixed strategy
[.75,.25], Charlie’s optimal counterstrategy is [1,0] whereas when Ruth employs
the strategy [.5,.5], Charlie’s optimal counterstrategy is [0,1]. That both of
the counterstrategies are pure is no coincidence and we formulate the general
principle as a theorem.

THEOREM 1. If one player of a game employs a fized strategy, then the op-
ponent has an optimal counterstrategy that is pure.

This theorem reduces the task of determining a player’s optimal counterstrat-
egy to his opponent’s fixed strategy to a manageable number of computations.
It should be pointed out that sometimes nonpure optimal counterstrategies are
also available (see Example 3 below).

ExXAMPLE 2. Find an optimal response for Charlie if it is known that Ruth
is committed to the strategy [.2,.3,.5] in Rock-scissors-paper.

We know that Charlie has a pure optimal counterstrategy and so we com-
pute the expected payoffs that correspond to the three pure strategies that are
available to him. Making use of the auxiliary diagrams below, and ignoring the
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1 0 o0 o 1 0
2 o | 1] -1 2 o | 1] -1
3| -1 ] ol 1 3| 1] ol 1
5 1] -1 ] o 5 1] 1] o

o o0 1

2 ol 1] -1

3 | 1| o 1

5 1| -1] o

columns that are used with 0 frequencies, we get:

for [1,0,0]:
2x1x04+.3x1x(-1)+.5x1x1=0-.3+.5=.2,
for [0,1,0]:
2Xx1x14+.3x1x04+5%x1x(-1)=.24+0-.5=-.3,
for (0,0, 1]:

2X1x(-1)+3x1x14+.5x1x0=-2+.3+0=".1.

Since the expected payoff denotes Ruth’s winnings, Charlie should opt for the
minimum payoff of —.3 by choosing the pure strategy [0, 1, 0], i.e., by consistently
displaying the scissors. Note that this agrees with our intuition. After all, Ruth’s
commitment to the strategy [.2,.3,.5] favors the paper option. It therefore makes
sense that Charlie should capitalize on this information by favoring the scissors,
since they win over Ruth’s favorite paper. What is perhaps surprising, is the
conclusion that under these circumstances Charlie should not only favor scissors
but in fact use it exclusively. Such, however, is the implication of Theorem 1
above.

ExXAMPLE 3. Find an optimal counterstrategy for Ruth if it is known that
Charlie is committed to the strategy [.5, .4, .1] in the abstract zero-sum game

1 1 1
2 0 3
—4 5 10
3 -1 2

The auxiliary diagrams that correspond to Ruth’s four pure options are
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5 4 1 5 4 1
1 1 1 1 0 1 1 1
0 2 0 3 1 2 0 3
0 —4 5 | 10 0 —4 5 | 10
0 3 | -1 2 0 3| -1 2

5 4 1 5 4 1
0 1 1 1 0 1 1 1
0 2 0 3 0 2 0 3
1 —4 5 | 10 0 —4 5 | 10
0 3 -1 2 1 3 -1 2

and the corresponding expected payoffs are:
for [1,0,0,0]:
Ixb5x1+1x4x1+1x.1x1=5+.44+.1=1,
for [0,1,0,0]:
1x.5x24+1x.4x0+1%x.1x3=1+0+.3=1.3,
for [0,0,1,0]:
Ix5x(-4)+1x4x54+1x.1x10=-2+24+1=1,
for [0,0,0,1}:
I1x5x3+1x4x(-1)+1x.1x2=15—-.4+.2=13.

Since Ruth wishes to maximize the expected payoff she will aim for the 1.3.
She can use either of the pure strategies [0, 1,0,0] or [0,0,0,1] to guarantee this
expectation and optimize her response. In fact, any mix of these two strategies
will also provide the same guarantee. Thus, Ruth’s mixed strategy [0,.3,0,.7]
yields the expected payoft

g4 o w oo
o
o
w
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BX5Xx24+3xA4x0+3x.Ix3+.7x5x3+.Tx4x(-1)+.7x.1x2
=3+0+.09+105—-.284.14=13.

The principle in question here is made explicit in the following theorem.

THEOREM 4. In any zero-sum game, if one player employs a fized strategy,
then any mizture of the opponent’s pure optimal counterstrategies is itself a mized
optimal counterstrategy.

Proofs of 2 x 2 Cases*

THEOREM 5. In any 2 X 2 zero-sum game, if one player employs a fized
strategy, then the opponent has an optimal counterstrategy that is pure.

PROOF. Suppose E(p,q) is the expected payoff when Ruth and Charlie em-
ploy the strategies [1 — p, p] and [1 — g, g] respectively in the game

a b
G =

c d

Then

E(p,q) =(1-p)(1—qla+ (1 —p)gb+p(1l —q)c+pgd
=p(—a+aqg+c—bg—cqg+dg)+ (a—aq+bq).

If Charlie employs a fized strategy [1 — g, q] then the quantities a, b, ¢, d, g are all
fixed and so F(p,q), as a function of p, 0 < p < 1, assumes its minimum value
at
_ { 0 if —a+ag4+c—bg—cq+dqg>0
P= 1 if —a4+ag+c—bg—cqg+dqg<O0.
In either case, Ruth has a pure optimal counterstrategy. The proof that Charlie
has pure optimal counterstrategies is relegated to Exercise 21.
Alternately,

E(p,q) = (1 -p)((1 - q)a+ gb) +p((1 - g)c + qd)
= (1-p)E(0,9) + pE(1,q).

Hence E(p, q), being a weighted average of E(0, q) and E(1,q), must lie between
them. Consequently Ruth’s optimal response to Charlie’s [1 — ¢, g] can be ob-
tained by setting p to be either 0 if E(0,q) > E(1,q) or 1 if E(1,q) > E(0,q).
In other words, Ruth has a pure optimal counterstrategy. A similar proof works
for Charlie (see Exercise 22). q.e.d.
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Chapter Summary

We considered the situation where one player has fixed on a specific strategy.
Under these circumstances, the opponent can optimize his response with a pure
counterstrategy. It may happen that several pure strategies will serve to optimize
the opponent’s response, and in that case any mixture of these optimal pure
responses is itself a mixed optimal counterstrategy.

Chapter Terms
Optimal counterstrategy 27

EXERCISES 3

In Exercises 1-18 R denotes a fixed strategy of Ruth’s and C denotes a fixed
strategy of Charlie’s for the given game G. In each case find an optimal coun-
terstrategy for the opponent.

-1 3 -1 3
LR=[L9,G=_" 1 7? 2 R=[82,G=_* | ~*
-1 3 -1 3
3. R=[5,.5,G= B 4. C=[1,9],G= 1] 2
-1 3 -1 3
5. C=[8,2],G= 1] 2 6. C=1[5,5],G= 1] 2
1 0| -2 3
-3 | 4 2 | —4
7.R=[1,7.2,G= S 0 !
1 0| -2 3
-3 | 4 2 | —4
8. R=[5.50],G= S 0 !
1 0| -2 3
3 | 4 2 | -4
9. R=[8,.1,.1], G = S 0 !
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1 0| -2 3
-3 4 2 | -4
0| -1 0 1
10. C=[1,.7,.1,.1], G =
1 0| -2 3
-3 4 2 | —4
0| -1 0 1
11. C = [5,0,.5,0], G =
1 0| -2 3
-3 4 2 | -4
0| -1 0 1
12. C =[8,.1,0,.1], G =
1| -3 2
0 4 | -4
-2 0 2
3| -3 | -1
-3 5 1
13. R=1[2,3,2.2.1,G=
1| -3 2
0 4 | -4
-2 0 2
3| -3 | -1
-3 5 1
14. R =0, .4,0,.6,0], G =
1| -3 2
0 4 | -4
—2 0 2
3| -3 | -1
-3 5 1
15. R = [4,0,.3,0,.3], G =




16.

17.

18.

19%.
20%*.
21*.

22*
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1| -3 2

0 4 | —4

—2 0 2

3| -3 | -1

C=[1,7.2,G= -3 > !
] 3] 2

0 4 | —4

—2 0 2

3| -3 | -1

C=[7.2.1,G= -3 > !
1| -3 2

0 4 | —4

-2 0 2

3| -3 | -1

C=[2.1.7,G= -3 > !

Prove Theorem 1.
Prove Theorem 4.

Using the first method in the proof of Theorem 5, prove that if Ruth
employs a fixed strategy for the 2 x 2 game G then Charlie has an optimal
counterstrategy that is pure.

Using the second method in the proof of Theorem 5, prove that if Ruth
employs a fixed strategy for the 2 x 2 game G then Charlie has an optimal
counterstrategy that is pure.
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THE MAXIMIN STRATEGY

A good strategy for Ruth is defined and proposed.

We shall now devise and justify a good strategy for Ruth when she plays the
general 2 X 2 zero-sum game

a b

c d

Because of Theorem 3.1 above, Ruth knows that for any strategy [1 — p, p] that
she employs she can expect Charlie to pursue a counterstrategy that returns to
her the lesser of the payoffs coming from the two pure strategies that are available
for him. Let r;(p) and r2(p) be the expected payoffs that come from Charlie’s
pure strategies [1,0] and [0, 1] respectively. Here the auxiliary diagrams are

1 0 0 1

1-p a b 1-p a b

p C d p (o d
r1(p) r2(p)

and we compute
rp)=(1-p)x1lxa+pxlxc=a(l-—p)+cp=(c—a)p+a,
ro(p) =(1—p)x1xb+px1xd=bl-p)+dp=(d—bp+b.

If Er(p) denotes the expected payoff selected from r1(p) and r2(p) by Charlie,
then, since Charlie can be relied on to lower this payoff as much as he can,

ERr(p) = the lesser of {ri(p),r2(p)}. (1)

35
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This completely determines Ruth’s expected payoff, Er(p), as a function of p,
i.e., as a function of her strategy. We shall use the graph of this function in order
to suggest a strategy for Ruth.

Since the independent variable p appears in the expressions of r1(p) and r2(p)
with degree at most 1, the graphs of these functions are straight lines. Inasmuch
as p denotes a probability, we have 0 < p < 1, and so these graphs consist of line
segments that lie over the interval [0, 1] on the p-axis. More specifically, since

r11(0)=ax(1-0)+cx0=a
ri(l)=ax(l-1)4+cx1=c¢,

it follows that the graph of r1(p) is the line segment joining the points (0, a) and
(1,¢). Similarly, since

r2(0) =bx (1—0)+dx0=b
ra(1)=bx (1-1)+dx1=d,

it follows that the graph of r2(p) consists of the straight line segment joining
(0,b) and (1,d). It will be seen that this makes the sketching of the graphs of
r1(p) and r2(p) a very easy matter (it is for this reason that we chose to denote
Ruth’s general strategy by [1 — p, p] rather than [p,1 — p], since the latter would
have reversed the graphs, thereby adding an unnecessary complication). The
graph of Er(p) is then also easily derived according to the following observation:

The graph of Eg(p) consists of that line which, for every permissible value of
p, contains the lower of the two points (p,r1(p)) and (p,r2(p)).

The subsequent examples will demonstrate that much useful information can
be read from this graph.

ExAMPLE 1. For Penny-matching, a =d =1, b = ¢ = —1, and the graph of

Head Tail
Head 1 -1
Tail -1 1

Er(p) is the broken heavy line in Figure 1.

Since this graph coincides with that of ro(p) for 0 < p < .5, it follows that if
Ruth employs a strategy [1 — p, p] with p < .5, then Charlie should respond with
the pure strategy [0, 1]. In other words, if Ruth favors heads, then Charlie should
respond by showing tails all the time, a conclusion that is intuitively plausible.
On the other hand, if Ruth favors tails and employs a strategy with p > .5, then,
since the graph of Fr(p) now coincides with that of r1(p), it follows that Charlie
should employ the pure strategy [1,0] and play heads all the time. When p = .5,
the graph of Er(p) coincides with both the graphs of 71 (p) and r2(p) and so it
does not matter which strategy is employed by Charlie. We summarize this by
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FIGURE 4.1. A graph of Ruth’s expectation.

saying that
[0,1] is an optimal counterstrategy for Charlie when p < .5,
[1,0] is an optimal counterstrategy for Charlie when p > .5.

Moreover, since the highest point on the graph of Eg(p) is the one that
corresponds to p = .5, this figure tells us that Ruth had best employ the strategy
[1-.5,.5] = [.5,.5] since that is the one that guarantees her the largest expected
payoff, namely, 0. This conclusion, too, fits in well with our intuition.

ExXAMPLE 2. For the Bombing sorties game

80% 100%
90% 50%

we have a = 80% = .8, b=100% =1, ¢ = 90% = .9, d = 50% = .5,
r1(p)=(9—-8)p+.8=.1p+ .8,
r2(p) = (5-1p+1=-5p+1,

and so the graph of Egr(p) is the heavy broken line of Figure 2.
As the graph of Er(p) coincides with that of r1(p) for small values of p, it
follows that when Ruth employs the strategy [1 — p,p| for small values of p,
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FIGURE 4.2. A graph of Ruth’s expectation.

Charlie should counter with the pure strategy [1,0] and when p is close to 1,
Charlie should respond with [0,1]. The cutoff point is of course the value of p
that lies directly below the point of intersection of the graphs of 71 (p) and r2(p).
This important value is found by solving the equation

r1(p) = r2(p)

or
Ap+.8=-5p+1
.bp=.2
2 2 1
P=%6"6 3
Hence,

[1,0] is an optimal counterstrategy for Charlie when p < 1/3,
[0,1] is an optimal counterstrategy for Charlie when p > 1/3.

In other words, as long Ruth places the bomb on the support plane less than 1/3
of the time, Charlie should persist in attacking the bomber. Once the bomb is
placed on the support plane with a frequency greater than 1/3, Charlie should
switch to attacking this weaker plane consistently. When p = 1/3 all of Charlie’s
strategies will yield the same expected payoff.

Since the intersection of the graphs of 71 (p) and 72(p) also happens to be the
highest point on the graph of Fr(p), it also corresponds to Ruth’s wisest choice.

By employing the strategy
L
3'3] [3'3
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Ruth obtains the largest possible expected payoff she can guarantee. The exact
value of this largest expected payoff can be computed by substituting p = 1/3
into either r1(p) or r2(p):

1 1 _

or
1 1 -
T9 (5) =-5x 3 +1=.8333...=83.3%.
It is clear from the foregoing examples that the highest point of the graph
of Er(p) is of special strategic significance. Unfortunately, this graph may have
more than one highest point (see Example 6 below) and so some care must be

exercised in stating following definition/theorem.

DEFINITION/THEOREM 3. If (z,y) is any highest point on the graph of Er(p)
then

[1 — z,z| is a mazimin strategy for Ruth, and
y is Ruth’s mazimin expectation.

If Ruth employs the mazimin strategy [1 — z, x] then she can expect to win, on
the average, at least y on each play.

The reason for this nomenclature is that every point on this graph is the lesser
(minimum) of the two choices available to Charlie, and Ruth, in choosing the
highest point on this graph is mazimizing Charlie’s minimal return. Speaking
informally, the maximum strategy and expectation are given by the high point on
the low curve. Thus, the maximin strategy in Penny-matching is [1/2,1/2] and
Ruth’s maximin expectation is 0. Similarly, the maximin strategy in Bombing-
sorties is [2/3,1/3] and Ruth’s maximin expectation is 83.3%. The next example
demonstrates that the maximin strategy need not correspond to the intersection
of r1(p) and r2(p).

EXAMPLE 4. In the abstract game

0 -1

2 3

a=0,b=-1,c=2,d=3, and

ri(p) = (2-0)p+0 =2p,
r2(p) = (3= (-)p+(-1) =4p—1.

The graph of Fr(p) is the broken heavy line of Figure 3.

Note that in this figure the unit on the expected payoff axis has a different
length from the unit on the Strategy (or p) axis. This is convenient because
in most of the subsequent games the payoffs will be integers, sometimes fairly
large ones. The resulting distortion will have no effect on the validity of the
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FIGURE 4.3. A graph of Ruth’s expectation.

conclusions. To find the intersection of the graphs of ri(p) and r2(p) we set
r1(p) = r2(p) and solve for p:

2p=4p—-1
—2p=-1
-1 1
P=55-3

Thus, Charlie should employ the pure strategy [1,0] or [0, 1] according as Ruth
favors her second or her first option.

In this case the highest point on the graph of Er(p) is not the intersection of
the graphs of 71 (p) and r2(p). Rather, it is the point (1,2). Hence, the maximin
strategy of Ruth is the pure strategy [1 —1,1] = [0, 1]. In retrospect, this makes
good sense. Since every entry of the second row of this game is larger than the
entry above it, Ruth only stands to lose by selecting the first row, no matter
what Charlie does. Thus, Ruth should select the second row consistently; i.e.,
she should use the pure strategy [0, 1].

The maximin expectation, the y-coordinate of the highest point (1,2) is 2.
This example underscores the fact that this maximin expectation constitutes a
floor, or a lower bound, for Ruth’s expectations. If she employs the maximin
strategy of [0, 1], then she can expect to win at least 2 each time the game is
played. However, should Charlie play foolishly (i.e., should he make occasional
use of his second column), then Ruth might win more.

EXAMPLE 5. In the abstract game

3 1

-1 -2
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FI1GURE 4.4. A graph of Ruth’s expectation.

a=3,b=1,c=-1,d=—-2 and

ri(p) = (-1-3)p+3 = —4dp +3,
ro(p)=(-2-1)p+1=-3p+1.

In this case, as is clear from Figure 4, the graph of Er(p) coincides with the
graph of r2(p) for all 0 < p < 1. This means that regardless of Ruth’s specific
strategy, Charlie should always select his second column. Actually, we didn’t
really need the graph to see this. Since every entry of the second column is less
than the entry on its left, Charlie only stands to lose by ever employing the first
column.

Ruth’s maximin strategy, the one that yields the largest guaranteed expected
payoff, comes from the left endpoint of the graph of Er(p), namely, the one
above p = 0. Thus, it is the pure strategy {1 — 0,0] = [1,0]. Inasmuch as this
strategy dictates that Ruth should select the first row exclusively, it follows that
this strategy guarantees Ruth an expected payoff of 1 (this being the least entry
in the first row).

In all of the above examples Ruth’s maximin strategy turned out to be unique.
This need not always be the case. For example, in the game

0 0
0 0
it clearly does not matter what either player does, and consequently any strategy

of Ruth’s is a maximin strategy guaranteeing the value 0. A more interesting
example is offered below.

ExAMPLE 6. The abstract game
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FIGURE 4.5. A graph of Ruth’s expectation.

0 1

2 1

hasa=0,c=2,b=d=1and

ri(p) = (2-0)p+0=2p,
ra(p)=(1-1p+1=1

The graph of Eg(p) is the heavy line of Figure 5. Rather than a peak, this graph
has a plateau consisting of the heavy line segment to the right of the intersection
of the graphs of r1{p) and r2(p). This point of intersection is again obtained by
setting r1(p) = r2(p):
2p=1 or p=.5.

Hence any strategy [ —p, p] with p > .5 is a maximin strategy for Ruth, including
the mixed strategy [.5,.5] and the pure strategy [0,1]. Any of these strategies
will guarantee Ruth an expected payoff of 1 (the height of the plateau).

In conclusion, the maximin strategy is good in the sense that it guarantees
Ruth a certain expected payoff and, moreover, this is the best expected payoff
that can be guaranteed. Nonetheless, it is natural to ask now whether the
maximin strategy is the best strategy? The answer to this question, of course,
depends on one’s yardstick. If the yardstick is that of absolute guarantees, then
the maximin strategy is definitely not the best. For example, suppose the game

) -3

2 4

is played 10 times and Ruth employs the maximin strategy of [.2,.8]. If she
happens to select the first row on the first, fifth, and ninth plays only, and if
Charlie happens to select the second column on those same plays only, then
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Ruth ends up with a total win of 7-2+4 3 (—3) = 5, which is much less than the
total of 20 she would have been sure to win had she always selected the second
row. What the maximin strategy is best at, is guaranteeing the expected payoff,
which in the above example equals 10(.2 - 5 + .8 - 2) = 26 which is considerably
better than the aforementioned absolute guarantee of 20.

Von Neumann and Morgenstern were aware of the relativistic value of the
maximin strategy. They viewed it as defensive strategy since it protected one’s
expected payoff. In their words:

All this may be summed up by saying that while our good strategies are perfect
from the defensive point of view, they will (in general) not get the maximum out of the
opponent’s (possible) mistakes,—i.e. they are not calculated for the offensive.

It should be remembered, however, that our deductions of 17.8 are nevertheless co-
gent; i.e. a theory of the offensive, in this sense, is not possible without essentially new
ideas. The reader who is reluctant to accept this, ought to visualize the situation in
Matching Pennies or Stone, Paper, Scissors once more; the extreme simplicity of these
two games makes the decisive points particularly clear.

Chapter Summary

In any 2 x 2 zero-sum game, the function Er(p) denotes the expected payoff
that Ruth can look forward to when she employs the strategy [1 — p,p]. The
graph of this function is easily drawn. If (z,y) are the coordinates of any highest
point on this graph then [1 — z,z] is the recommended maximin strategy for
Ruth, and y = Egr(z) is the corresponding payoff. Of all the mixed strategies
available to her, this maximin strategy [1 — z,z] provides Ruth with the best
guarantee on her expected payoff.

Chapter Terms

Er(p) 35 Maximin expectation 39
Maximin strategy 39

EXERCISES 4

For each of the games in Exercises 1-15,

a) draw the graph of Er(p),

b) determine a maximin strategy,

¢) find Ruth’s maximin expectation,

*) specify for which values of p Charlie’s optimal counterstrategy is [1,0] and
for which it is [0, 1].

d

1 3 3 2 2 1
2 1 0 2 3 1
1 2. 3.
2 1 2 1 1 -3
1 3 4 6 -2 1
4 d. 6
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10.

13.

1 3
-2 1
1 1
2 -1
5 -1
—4 3
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11.

14.

12.

15.

2 4

0 -1

-2 1
0 3
8 2
2 -8
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THE MINIMAX STRATEGY

A good strategy for Charlie is defined and proposed.

We now turn to Charlie and devise for him too a good strategy. The graph of
Charlie’s expected payoff in 2 x 2 zero-sum games is obtained in much the same
way as Ruth’s graph, with some important differences, and similar conclusions

can be drawn.

Because of Theorem 1 of Chapter 3, Charlie knows that for any strategy
[1 — ¢, ¢| that he employs in the general 2 x 2 game

a

b

Cc

d

he can expect Ruth to pursue a counterstrategy that returns to her the larger
of the payoffs coming from the two pure strategies that are available to her.
Let ci1(q) and cz(g) denote the expected payoffs that come from Ruth’s pure
strategies [1,0] and [0, 1] respectively. Here the auxiliary diagrams are

1-q ¢

1 a b

0 c d
01(‘1)

and the expected payoffs are

l1-q ¢
a b
c d
c2(q)

ca(@=1x(1-g)xa+1xgxb=a(l —q)+bg=(b-a)g+a,
(@) =1x(1—¢g)xc+1lxgxd=c(l—q)+dg=(d—c)g+ec

45
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If Ec(q) denotes the expected payoff selected from c;(q) and cz(q) by Ruth,
then, since Ruth aims to maximize her gains,

Ec(q) = the larger of {c1(q), c2(q)} (1)

This completely determines the expected payoff Ec(q) as a function of g, i.e., as
a function of Charlie’s strategy. We shall use the graph of this function in order
to suggest a good strategy for Charlie.

Inasmuch as the independent variable g appears in the expressions of ¢;(q)
and c2(q) with degree at most 1, the graphs of these functions are straight lines.
Since ¢ denotes a probability, we have 0 < q < 1, and so these graphs consist
of line segments that lie over the interval [0,1] on the g-axis. More specifically,
since

c1(0)=ax(1-0)+bx0=a
a(l)=ax(1-1)+bx1=b,
it follows that the graph of c;(g) is the line segment joining the points (0, a) and
(1,b). Similarly, since
20)=cx(1-0)+dx0=c
ce(l)=cx(1-1)+dx1=d,
it follows that the graph of ce(q) consists of the straight line segment joining
(0,¢) and (1,d). Again this makes the sketching of the graphs of ¢;(¢q) and c2(q)

a very easy matter. The graph of E¢(q) is then also easily derived according to
the following observation:

The graph of Ec(q) consists of that line which, for every permissible value of q,
contains the higher of the two points (g,c1(q)) and (g,c2(q)).

We shall now reexamine each of the games of the previous chapter from Char-
lie’s point of view.

ExXAMPLE 1. For the Penny-matching game a =d=1,b=c= —1, and

1 -1

-1 1

the graph of Ec(q) is the broken heavy line in Figure 1.

Since this graph coincides with that of ¢;(q) for 0 < ¢ < .5, it follows that
if Charlie employs a strategy [1 — ¢, q] with ¢ < .5, then Ruth should respond
with the pure strategy [1,0]. In other words, if Charlie favors heads, then Ruth
should respond by showing heads all the time, a conclusion that is intuitively
plausible. On the other hand, if Charlie favors tails by employing a strategy
with g > .5, then, since the graph of Ec(q) now coincides with that ca(q), it
follows that Ruth should follow the pure strategy [0,1] and play tails all the
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FIGURE 5.1. A graph of Charlie’s expectation.

time. When ¢ = .5 all of Ruth’s strategies will yield the same expected payoff.
This is summarized as

(1,0] is an optimal counterstrategy for Ruth when g < .5,

[0,1] is an optimal counterstrategy for Ruth when ¢ > .5.
Moreover, since the lowest point on the graph of Ec(q) is the one above ¢ = .5,
this figure tells us that Charlie had best employ the strategy [1 —.5,.5] = [.5,.5]

since that is the one that guarantees the lowest possible expected payoff for Ruth,
namely, 0. This conclusion, too, fits in well with our intuition.

ExXAMPLE 2. For the Bombing-sorties game

80% 100%
90% 50%

we have a = 80% = .8, b=100% =1, c = 90% = .9, d = 50% = .5,

c1(g) =1 —.8)g+ .8 =.2¢+ .8,
c2(q)=(5—-.9)¢g+9=—-4¢+.9,

and so the graph of Ec(q) is the heavy broken line of Figure 2.
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FIGURE 5.2. A graph of Charlie’s expectation.

Since the graph of Ec(q) coincides with that of c2(q) for small values of g, it
follows that when Charlie employs the strategy [1 — g, q] for small values of g,
Ruth should respond with the pure counterstrategy [0, 1]; when ¢ is close to 1,
Ruth should respond with [1,0]. In other words, if Charlie is observed to hardly
ever attack the support plane (i.e., if ¢ is small), Ruth should always place the
bomb on the support plane; if Charlie is observed to mostly attack to support
plane (i.e., if ¢ is close to 1), Ruth should always put the bomb on the bomber.
The cutoff point is of course the value of g that lies directly below the point of
intersection of the graphs of c¢;(q) and cy(g). This value is found by solving the
equation

c1(q) = ca(q)

or
29+ .8=-49+ .9
6g =.1
11
=66
Hence,

[0,1] is an optimal counterstrategy for Ruth when q < 1/6,
(1,0] is an optimal counterstrategy for Ruth when q > 1/6.

In other words, as long as Charlie attacks the support plane no more than 1/6
of the time, Ruth should persist in placing the bomb on this lighter plane. Once
the support plane is attacked with a frequency greater than 1/6, Ruth should
switch to placing the bomb on the bomber consistently. When ¢ = 1/6 all of
Ruth’s strategies yield the same expected payoff.

Since the intersection of the graphs of ¢;(¢) and c3(q) also happens to be
the lowest point on the graph of Ex(q), it also corresponds to Charlie’s wisest
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strategy. By employing the strategy

=55l 5

Charlie lowers the expected payoff as much as he can. The exact value of this
lowest expected payoff can be computed by substituting ¢ = 1/6 into either c¢;(q)

or ¢ca2(q):
1 _
a (—) =.2 X 8 +.8=.8333...=83.3%
or
1 1 _
c2 <~> =-—-4x 5 +.9 =.8333... = 83.3%.

It is clear from the foregoing examples that the lowest point of the graph
of Ec(q) is of special strategic significance. As was the case with the highest
points of the graph of Er(p), the graph of Ec(q) may have more than one of
these lowest points. We now state a definition that is the analog of the main
concepts of the previous chapter.

DEFINITION/THEOREM 3. If (z,y) is any lowest point on the graph of Ec(q)
then

[1 — z, z]is @ minimaz strategy for Charlie, and

y 1s Ruth’s minimax expectation.

If Charlie employs the minimaz strategy [1 — x, x| then he can expect to hold
Ruth’s average winnings to no more that y.

The reason for this nomenclature is that every point on this graph is the larger
(maximum) of the two choices available to Ruth, and Charlie, in choosing the
lowest point on this graph is minimizing Ruth’s maximum return. Speaking
informally, the minimax strategy and expectation are given by the low point on
the high curve. Thus, the minimax strategy in Penny-matching is [1/2,1/2] and
Ruth’s minimax expectation is 0. Similarly, the minimax strategy in Bombing
sorties is [5/6,1/6] and Ruth’s minimax expectation is 83.3%. The next example
demonstrates that if Ruth is not careful, then even if Charlie is employing a
minimax strategy she may win less than the minimax expectation.

EXAMPLE 4. In the abstract game

0 -1

2 3

a=0,b=-1,c=2,d=3, and

ci(g) =(-1-0)g+0=—g,
c2(q) =(3-2)g+2=g+2.
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FIGURE 5.3. A graph of Charlie’s expectation.

It is clear from Figure 3 that here the graph of E¢(q) coincides with that of
c2(q). Since the low point on this graph corresponds to ¢ = 0, it follows that
Charlie’s minimax strategy is the pure strategy [1,0]. By pursuing this strategy
all Charlie can accomplish is to hold Ruth’s winnings down to no more than 2
per play, but that is the best he can do under the circumstances. This game is
patently unfair to Charlie.

The minimax expectation, the y-coordinate of (0,2) which is the lowest point
of the graph of Ec(q), is 2. This game underscores the fact that this minimax
expectation constitutes a ceiling, or an upper bound, on Ruth’s expectation.
If Charlie employs the minimax strategy [1,0] and Ruth is foolish enough to
occasionally select the first row, the she will average less than 2 per play. On the
other hand, if she plays wisely, then she can win 2 (which equals the minimax
expectation) in each play.

EXAMPLE 5. In the abstract game

3 1
-1 -2

a=3,b=1,¢c=-1,d= -2 and

ci(g) =(1-3)g+3=-2¢+3,
e(g)=(-2+1)g—1=—-g-1

In this case, as is clear from Figure 4, the graph of Ec(q) coincides with the
graph of ¢;(g). This means that regardless of Charlie’s specific strategy, Ruth
should always employ her first option. Again, we didn’t really need the graph
to see this. Since every entry of the first row is greater than the entry below it,
Ruth only stands to lose by ever employing the second row.
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FIGURE 5.4. A graph of Charlie’s expectation.

Charlie’s minimax strategy, the one that yields the smallest expected payoff
to Ruth, comes from the right endpoint of the graph of Ex(q), namely, the one
above ¢ = 1. It is the pure strategy [1 — 1,1] = [0, 1]. Since the largest entry of
the corresponding second column is 1, this will result in Charlie’s holding Ruth’s
winnings down to at most 1 per play. As was the case for Ruth’s maximin
strategy, Charlie’s minimax strategy need not be unique.

Chapter Summary

In any 2 X 2 zero-sum game, the function E¢(q) denotes the expected payoff
that Ruth can look forward to when Charlie employs the strategy [1 — g, ¢]. The
graph of this function is easily drawn. If (z,y) are the coordinates of any lowest
point of this graph, then [1 — z,z] is the recommended minimax strategy for
Ruth, and y = E¢|z] is the minimax expectation. This minimax expectation is
the best ceiling that Charlie can put on Ruth’s expected winnings.

Chapter Terms

Ec(q) 46 Minimax expectation 49
Minimax strategy 49

EXERCISES 5

For each of the games in Exercises 1-15,
a) draw the graph of Ec(q),
b) determine a minimax strategy,
c¢) find Ruth’s minimax expectation,
d*) specify for which values of ¢ Ruth’s optimal counterstrategy is [1,0] and
for which it is [0, 1].
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10.

13.

5. THE MINIMAX STRATEGY

1 3 2 2 1
2 0 2 3 1
3.
2 2 1 1 -3
1 4 6 -2 1
6.
1 3 0 -1 2 4
-2 1 0 1 0 -1
8. 9.
1 1 1 1 -2 1
2 -1 -3 1 0 3
11. 12.
) -1 -1 3 8 2
—4 3 6 —4 2 -8
14. 15.
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SOLUTIONS OF ZERO-SUM GAMES

The solution of an m x n zero-sum game is defined and
a method for finding it in the 2 x 2 case is provided.

The examples of the previous two chapters contain an apparent coincidence. For
each of those games Ruth’s maximin expectation (computed in Chapter 4) and
her minimax expectation (computed in Chapter 5) are equal. For example, in
Bombing-sorties both expectations turn out to be 83.3%. Table 1 below lists the
common value v of both types of expectations for all of these examples. This is a
unexpected coincidence because these two expectations, and their accompanying
guarantees, have definitions that are diffrent in essential ways. The maximin ex-
pectation is a floor, or minimum, that Ruth guarantees for her expected winnings
by using the maximin strategy, whereas the minimax expectation is a ceiling that
Charlie can impose on Ruth’s expectation by employing his minimax strategy.
Since the maximin and minimax strategies are in general different—they are
[2/3,1/3] and [5/6,1/6] in Bombing-sorties—there is no obvious reason why the
maximin and minimax expectations should always be the same.

In order to further impress the reader with the surprising nature of this co-
incidence we pause to reexamine nonrepeated games. Guarantees can be made
for these games too, but Ruth’s and Charlie’s guarantees will in general be very
different. For example, in Bombing-sorties, if Ruth sends out only one mis-
sion, she can guarantee an 80% likelihood of success by placing the bomb on
the bomber. Charlie, on the other hand, can guarantee by attacking that same
bomber that Ruth’s likelihood of success will not exceed 90%. Similarly, in any
single play of the abstract game below, Ruth can guarantee a payoff of at least

1 8

4 3

53
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3 by selecting the second row, while Charlie can hold Ruth’s winnings down to
no more than 4 by selecting the first column. Thus, for nonrepeated games, floor
and ceiling type guarantees need not agree.

The coincidence of the guarantees for repeated zero sum games is the central
theorem of Game Theory. It will be first stated and discussed in the context of
2 x 2 games and reformulated in a more general context later in the chapter.

THEOREM 1. For every 2 X 2 zero-sum game there is a single number v such
that
i) the mazimin strategy guarantees Ruth an expected payoff of at least v;
ii) the minimax strategy guarantees Charlie that Ruth’s ezpected payoff will
not exceed v.

The nature of the guarantees is such that if both players employ their recom-
mended strategies, then the expected payoff will be exactly v. In other words,
when Ruth employs the maximin strategy and Charlie employs the minimax
strategy, then Ruth can expect to win v units per play (on the average). For this
reason the number v is called the value of the game. The value of a game together
with its maximin and minimax strategies constitute the solution of the game.
Thus, by Example 1 of the previous two chapters the solution of Penny-matching
is

value =0
maximin strategy = [.5, .5]

minimax strategy = [.5,.5].

Similarly, Example 2 of the previous two chapters is summarized by saying that
the solution of Bombing-sorties is

value = 83.3%
maximin strategy = [2/3,1/3]
minimax strategy = [5/6,1/6].

The previous two chapters detailed methods for finding the solution of any 2 x 2
zero-sum game. We now proceed to provide some shortcuts. For this purpose it
is convenient to classify the 2 x 2 games into two types.

1) Strictly determined 2 x 2 games—those for which Ruth has a pure
maximin strategy (and, as it turns out, Charlie has a pure minimax strategy).
Graphically, this means that the line segments corresponding to 71 (p) and r2(p)
either do not intersect at all (Example 4.5), intersect in a common endpoint,
or else their intersection point is not the highest point on the graph of Er(p)
(Example 4.4). The reason for this nomenclature is that the strategies being
pure, each player knows with complete certainty which option he will play next—
the one indicated by the pure strategy.
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TABLE 6.1. Expected values of some games

Example v
4.1,5.1 0
4.2, 5.1 83.3%
44,54 2
4.5, 5.5

2) Nonstrictly determined 2 x 2 games—all the other games, for which,
necessarily, the maximin strategies (and, as it turns out, also the minimax strate-
gies) are never pure. Graphically this means that the line segments correspond-
ing to r1(p) and ro(p) intersect internally and the point of intersection is higher
than any other point on the graph of Er(p). In other words, these line segments
form an approximate figure X. Such is the case for both Penny-matching and
Bombing-sorties.

Strictly determined games have a convenient structural characterization that
makes them easy to recognize.

THEOREM 2. A 2 X 2 zero-sum game is strictly determined if and only if it
contains an entry s which is minimal for its row and mazimal for its column.

An entry in a 2 x 2 game that is minimal for its row and maximal for its
column is called a saddle point. Thus, the entry 2 is a saddle point of the game

0 -1

2 3

of Example 4 of Chapters 4, 5. Similarly, the entry 1 is a saddle point of the
game

3 1

-1 -2

of Example 5 of Chapters 4, 5. Notice that these entries also constitute the
values of these games, and that is no coincidence.

THEOREM 3. The saddle point of a strictly determined 2 X 2 game is also its
value, and its row and column constitute pure mazimin and minimaz strategies.

The following procedure takes all the guesswork and/or graphing out of the
task of recognizing and solving strictly determined games. Given a game, write
at the bottom of each column that column’s maximum entry and write at the
right of each row that row’s minimum entry (see Table 2). If any of the column
maxima equals any of the row minima, the game is strictly determined, that
common entry is the saddle point and the value of the game, and its row and
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TABLE 6.2. Three games.

a b c
5| 3|3 2 13| 2 ) 0| 2
4 1|1 4 |11 -1 1| =L
5 3 4 3 -1 1
value = 3 Not value = —1
strictly
maximin determined maximin
strategy = [1,0] strategy = [0,1]
minimax minimax
strategy = [0, 1] strategy = [1,0]

column constitute the respective pure maximin and minimax strategies of the
game. This is the case for games a and c of Table 2. Game b, however, is
nonstrictly determined.

The 2 x 2 nonstrictly determined zero-sum games are subject to a solution
procedure that is just as simple as the one that solves the strictly determined
variety. For any such game

M

we define Ruth’s oddments to be that one of the pairs
[d—c,a—=b] or [c—d,b—a)

which consists of positive numbers alone (the game being nonstrictly determined,
one of them will have this property). For example, for game b of Table 2 Ruth’s
oddments are

4-1,3-2]=[3,1]

whereas for the (nonstrictly determined) game

5 -2

1 4

Ruth’s oddments are
4-1,5-(-2)]=[3,7].
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The maximin strategy is obtained from the oddments when they are each divided
by their sum. In game b of Table 6.2, the maximin strategy is

301 31
[3+1’3+1} - [Z’Z] = [75,.25]

and the oddments [3, 7] of the game above yield the maximin strategy

3 7 3 7
[3+7’3+7] B [E’Iﬁ] = 13,7}

Charlie’s oddments in game (1) consist of that one of the pairs
[d—ba—c or [b—d,c—a]

which consists of two positive numbers. These oddments are converted to the
minimax strategy in the same manner as above. Thus, for game b of Table 6.2
Charlie’s oddments are

[3_ 154_2] = [232]

and his minimax strategy is

ESES R R

The rationale for this procedure is given in Lemmas 9, 10 below. The value
of a nonstrictly determined 2 x 2 zero-sum game can be computed from the
auxiliary diagram that is based on maximin and minimax strategies. For game
b of Table 6.2 this diagram is

.5 5
75 2 3
.25 4 1

and so the value of the game is

TH5X HOX24+.75x.5x3+.25x . 5x4+.25x .5x1
=.75+1.125+ .5+ .125 = 2.5.

The following two examples should help in pulling the various methods of this
section together.

EXAMPLE 4. Solve the game

We first check to see whether this game is strictly determined, and that indeed
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0| -3 10
4 1 1
4 1

turns out to be the case. Consequently, this game has value 1, Ruth’s maximin
strategy is [0, 1] and Charlie’s minimax strategy is [0, 1].

ExXAMPLE 5. Solve the game

The diagram below shows that this game is nonstrictly determined.

0 3 10
4 1 41
4 3

Consequently, Ruth’s oddments are [4—1,3—0] = [3, 3] and her maximin strategy
is [3/6,3/6] = [.5,.5]. Charlie’s oddments are [3 — 1,4 — 0] = [2,4] and his
minimax strategy is [2/6,4/6] = [1/3,2/3]. The value of the game comes from
the auxiliary diagram

1/3 2/3
5 0 3
5 4 1

and equals

1 2 1
.5><§x0+.5x§x3+.5x§x4+.5x§><1

2 1
=0+1+ 3 + 3= 2.

The calculation of the value of a nonstrictly determined game can be further
simplified by observing that since the peak point of the graph of Er(p) lies on
both the graphs of r1(p) and ro(p) it follows that either of the pure strategies
[1,0] or [0, 1] can be substituted for Charlie’s minimax strategy. In other words,
the auxiliary diagram of Example 5 can be replaced by either of the diagrams

1 0 0 1
.0 0 3 ) 0 3

5 4 1 5 4 1
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Indeed, these diagrams yield respectively the values
HXx1Ix0+.5x1x4=0+2=2
and

SOX1Ix34+5x1x1=15+.5=2,

in agreement with the previously derived value. Similarly, Ruth’s maximin strat-
egy could have been replaced with either [1,0] or [0, 1], leading to the auxiliary
diagrams

1/3 2/3 1/3 2/3
1 | o] 3 0 o 3
o | 4|1 1| 4|1

and again the values
1 2
IXx-x04+1x=-x3=04+2=2
3 + 3 +

and
4 2 6

1 2
IX=X4+1lXx-xl==-4-==-=2.
ERR 37373
As promised above, we now give the full statement of von Neumann’s Minimax

Theorem.

MINIMAX THEOREM 6. For every m X n zero-sum game there is a number v
which has the following properties:
a) Ruth has a mized strategy that guarantees her an ezpected payoff of at
least v;
b) Charlie has a mized strategy that guarantees that (Ruth’s) expected payoff
will be at most v.

The quantity v whose existence is asserted in Theorem 6 is called the value
of the game. The strategies mentioned in parts a and b of this theorem are
called, respectively, the mazimin and the minimax strategies of the game. The
value of the game together with its maximin and minimax strategies constitute
its solution. This terminology is of course consistent with the way these words
were used above for the 2 x 2 games.

Efficient computerized methods for finding both the maximin and minimax
strategies and the value of a game are known. These, however, fall outside the
scope of this book. Instead, the remainder of this chapter and Chapters 7-9 are
devoted to the solution of some special cases.

The notion of a strictly determined 2 x 2 game extends to larger dimensions
with no difficulty. An entry in an m X n game that is minimal for its row and
maximal for its column is called a saddlepoint. Thus the entries 2 and —1 are
respective saddlepoints of the two games of Table 3. The same bookkeeping
method of comparing row minima with column maxima will locate these saddle-
points in the larger games just as well as it did for the 2 x 2 games. A game
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TABLE 6.3. Two strictly determined games.

a b
9 | -2 | -5 | 5 5 | -2 1| -3 4 | 73
5 1| -9 | -9 0| -2 5 0| -1 | —2
3 2 5 2 9 | -1 0 2 1| =L
-5 0 1| -5 9 -1 5 2 4
9 2 5

with a saddlepoint is said to be strictly determined. The saddlepoint’s entry is
the value of the game and its row and column constitute Ruth’s maximin and
Charlie’s minimax strategies. Thus, the solutions of the two games of Table 3
are

Game a b
Value 2 -1
Maximin strategy [0,0,1,0] [0,0,1]
Minimax strategy [0,1,0] [0,1,0,0,0,]

Proofs*

The formal proof of the minimax theorem for 2 x 2 games is preceded by an
incomplete visual argument that lends support to its validity. Let p and g be
replaced by z and y respectively, and let the expected value of the game

a b

G =
c d

when Ruth and Charlie employ the mixed strategies [1 — z,z] and [1 — y, ],
respectively be denoted by E(z,y). Then this expectation function has the
value

Ez,y=z=(a—b—c+d)zy+(c—a)z+ (b—a)y +a.

This function has as its graph a surface over the unit square 0 < z,y < 1. When
Ruth selects a strategy [1 — p, p], this is tantamount to intersecting the surface
of E(z,y) with the vertical plane z = p. The resulting cross section happens to
be a straight line with parametric equations

z=p, y=t, z=[(a—b—c+dp+(b—a)lt+(c—a)p+a. (1)

The significance of this cross section is that as long as Ruth sticks to her specific
choice of [1 — p,p], Charlie’s choice of any g yields Ruth an expectation that
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FIGURE 6.1. An expectation surface.

is equal to the z-coordinate of the corresponding point on the cross section. In
particular, if this cross section happens to be horizontal, then Ruth’s expectation
will remain unaltered by any of Charlie’s vacillations. Similarly, Charlie’s selec-
tion of a strategy [1 — g, ¢ is tantamount to intersecting the surface of E(z,y)
with the vertical plane y = q. This cross section too is a straight line with
parametric equations

z=t y=gq, z=[(a—b-c+d)g+ (c—a)lt+ (b—a)g+a. (2)

This straight line has the same significance for Charlie as the previous one has
for Ruth. For example, Figure 1 displays the expectation graph for the Penny
Matching game. As is customary in all such displays, the grid on the surface
consists of cross sections of the surface by planes parallel to the x — z and y — 2
planes. What is particular to this (and to all expectation surfaces) is that these
grid lines are in fact straight lines. All of these cross sections have varying slopes,
but those corresponding to z = .5 and y = .5, which have been designated by
solid lines, are horizontal and so they must correspond to the minimax and
maximin strategies. The fact that these two cross sections (necessarily) intersect
corresponds to the equality of the maximin and minimax values of the players,
and the z-coordinate of the intersection is this common value.

That the situation described in Figure 1 is fairly typical as long as a—b—c+d #
0 follows from (1,2) and the fact that if a # 0 then any surface of the type

z=axy+Pr+yy+6
can be converted to a surface of the type

z=azx'y +8&
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FIGURE 6.2. An expectation surface

by means of the straightforward translation of coordinates z = 2’ — (y/a) and
y = 3y — (B/a). These last surfaces are easily seen to have a shape that is
essentially the same as that of the surface in Figure 1.

In those cases where a —b— c+ d = 0 the expectation surface has an equation
of the type

z=Bx+yy+96

which is the portion of a plane that lies over the unit square as depicted in Figure
2. Once again the grid lines of the graph are straight lines whose significance is
the same as before. None of these cross sections are horizontal, though, and so
a different argument is needed to prove the Minimax Theorem. In the generic
subcase we may suppose that the corners A, B, C, D in Figure 2 are each
lower than the next. Suppose further that the cross sections that correspond to
Ruth’s fixing on a strategy [1 — p,p] are those that are parallel to AB and CD
(see Exercise 63). The maximin strategy then dictates that Ruth should choose
that cross section whose lower end is as high as possible, i.e., CD. By fixing on a
strategy Charlie chooses among the cross sections parallel to AC and BD. The
minimax strategy dictates that he should choose a cross section whose higher
end is as low as possible. That is AC. The coincidence of C' on both of these
choices is the purport of the Minimax Theorem and the z-coordinate of C' is the
value of the game. A similar argument disposes of all the other subcases (see
Exercise 64). It is clear from the fact that the minimax value of the game (the
height of C) occurs at the end of both the determining cross sections that in this
case the game is strictly determined.

The formal proof of the Minimax Theorem for 2 x 2 games is broken down into
a sequence of lemmas. In the geometrical proofs of these lemmas it is helpful,
when drawing the graph of Eg(p) (or Ec(q)), also to draw in the graph of the
linep=1(org=1).
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E E E E
(o}
d d d
b b b
c a
a b C
c
a a d
TP P 1 7 | 7
d c<d d<c
<a c b<d <
FiG. 6.3 FiGc. 6.4 FiG. 6.5 FiG. 6.6

LEMMA 7. Ruth has a pure mazimin strategy if and only if G has a saddle
point. In that case the payoff of the saddle point equals the maximin value.

PROOF. It may be assumed without loss of generality that a < b. Suppose
first that Ruth has a pure maximin strategy. The reader is reminded that the
line segments r1(p) = (1 —p)a+pc and r2(p) = (1 —p)b+pd, 0 < p < 1, join the
points (0,a) to (1,c¢) and (0,b) to (1,d) respectively. Since the maximin strategy
is given by the high point of Eg(p) it follows from the assumption of its purity
that either these line segments do not intersect in an interior point (Figures 3, 4)
or they both have nonnegative slopes (Figure 5) or they both have nonpositive
slopes (Figure 6). Keeping in mind that a < b it is now easily verified that in
these four cases the game G has saddle points at a, ¢, d, a respectively and that
these payoffs equal the maximin value of the game.

Conversely, suppose the game G has a saddle point. This saddle point entails
inequalities on the payoffs of G which in turn yield partial information about the
graphs of r1(p) and r2(p). These inequalities and their graphical implications
are displayed in Figures 7-10. It is now easily verified that in each case Ruth
has a pure maximin strategy with a value that coincides with the payoff of the
saddle point. q.e.d.

The next lemma should now come as no surprise and its proof is relegated to
Exercise 65.

LEMMA 8. Charlie has a pure minimaz strategy if and only if G has a saddle
point. In that case the payoff of the saddle point equals the minimazx value.

Between them, Lemmas 5 and 6 imply the validity of the Minimax Theorem
for 2 x 2 games with saddle points.
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Saddle Saddle Saddle Saddle
point point point point
at a at b at ¢ at d
E E E E
c
b b b / d
at—_] a=b ¢
17 1 P 1 7 1 7
a=>b a<c b<d
c<a
b>d c<d d<c
FiGc. 6.7 FiGc. 6.8 FiGc. 6.9 Fic. 6.10

LEMMA 9. If the game G has no pure mazimin strategies then it has

aximin strate d—c a-b
mazimin stra = ,
9y a—b—-c+d a—-b—c+d
o ad — be
mazimin value = ——.
a—b—c+d

PROOF. Since G is assumed to not have a pure maximin strategy, it follows
that the graphs of r;(p) and ro(p) must intersect and have slopes of opposite
signs. Thus the game has a maximin strategy that comes from the intersection
of the graphs of 71 (p) and r2(p). As r1(p) = (1—p)a+pc and r2(p) = (1—-p)b+pd
this nonpure maximin strategy is found by solving the equation

(1-pla+pc=(1-p)b+pd
or
(a—b—c+dp=a—->
for p. Since G is nonstrictly determined a — b — ¢+ d # 0 (see Exercise 62), and
sop=(a—b)/(a—b—c+d)and 1 —p = (d—c)/(a —b—c+d). The maximin
value is then obtained by substituting this value of p into either r1(p) or r2(p).
q.e.d.

Once again the next lemma comes as no surprise and its proof is relegated to
Exercise 66.

LEMMA 10. If the game G has no pure minimaz strategies then it has

o d—»b a—c
minimaz strategy = “b—c+d a—-b-c+d
ad — bc

minimaz value = ——.
a—-b—c+d
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We are now ready to prove the Minimax Theorem for 2 x 2 games.

2 x 2 MINIMAX THEOREM 11. For every 2 x 2 zero-sum game there is a
number v which has the following properties:
a) Ruth has a mized strategy that guarantees her an expected payoff of at
least v,
b) Charlie has a mized strategy that guarantees that Ruth’s expected payoff
will be at most v.

PROOF. As noted above, if the game has a saddle point then this theorem
follows from Lemmas 7 and 8. If the game does not have a saddle point then
it follows from Lemmas 7 and 8 that the game has neither a pure maximin
nor a pure minimax strategy. Hence, by Lemma 9 Ruth has a strategy that
guarantees her an expected payoff of (ad — bc)/(a — b — ¢ + d) and by Lemma
10 Charlie has a strategy that guarantees that Ruth’s expected payoff will not
exceed (ad — bc)/(a —b—c+d). Thus, v = (ad —bc)/(a —b— c+d). q.ed.

Chapter Summary

Von Neumann’s Minimax Theorem states that the guarantees provided by
the maximin and minimax strategies for any m X n zero-sum game coincide
numerically at a number called the value of the game. The value of the game
together with its maximin and minimax strategies constitute the solution of the
game. Quick methods are provided for solving 2 x 2 zero-sum games, but the
solution of the general m x n game falls outside the scope of this book. Zero-sum
games are classified into two varieties: strictly determined games whose maximin
and minimax strategies are pure, and nonstrictly determined games.

Chapter Terms

Maximin strategy 54 Minimax strategy 54
Minimax Theorem 94, 59, 65 Nonstrictly determined game 55
Oddments 56 Saddle point 55, 59
Solution of game 54, 59 Strictly determined game 54
Value of game 54, 59

EXERCISES 6

Solve the games in Exercises 1-40. I.e., find the value and both a maximin and
a minimax strategy.

1 3 3 2 2 1
2 1 0 2 3 1
1 2. 3.
2 1 2 1 1 -3
1 3 4 6 -2 1
4 5. 6
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10.

13.

16.

19.

22.

25.

28.

31.

33.

35.

6. SOLUTIONS OF ZERO-SUM GAMES

1 3 0| -1 2 4
—2 0 0 1 0| -1
8. 9
1 1 1 1 ~2 1
2 | -1 -3 1 0 3
11. 12.
5 | -1 -1 3 8 2
—4 3 6 | —4 2 | -8
14. 15.
3|1 -3 1 3| -3
1| 3 —4 | -2 -6 1
17. 18.
0 1 -1 | -2 -1 | -2
0| -2 1 3 0| -3
20. 21.
8 | -2 2 4 2 | -2
2 8 0| -1 2 2
23. 24,
3| -1 1|0 1| -2
0 3 2|0 3 0
26. 27.
2 | 1 0| -1 —2 2
2 | 4 -1 1 5 | -5
29. 30.
3 1 2 0| -2 7 2
5 | -1 3 1| -1 | -1 2
32.
0 2
1| -1 -5 5 0
2 3 2 | -2 1
1 | -2 4 3 2
34.
1| -2 0| -3
1 | -2 0 1
5 | —4 6 | —3
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1 2 3 0 2 —4 0
0 1 2 -2 0 -2 4
-1 0 1 4 2 0 6
36. -2 -1 0 37, 0 0 —6 0
-1 -2 0 1 0
3 4 2 2 4
2 0 1 -1 -3
38, 1 -1 ) 2 6
2 1 1 3
6 -1 -7 8
-8 1 7 -6
5 0 -5 1
39, -1 —2 2 3
5 2 -5 6 0
-2 0 2 0 -3
5 1 0 -1 -2
3 0 -1 2 -2
40, 0 2 -1 0 -1

For which values of x are the games in Exercises 41-52 strictly determined?

1 T 2 T 1 T

0 2 0 1 0 1
41%*. 42%. 43*.

T 2 T 2 T T

1 0 1 1
4%, 45*. * 46*. 0

1 2 T

T T T x 7 0 3

ae 5] O ag [T | Pr A B
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1] 210 1] 21 s 1| 2| 2
7|z | 3 710 3 71z | 3
sor L& 1S 4] g [ B ] e 5]

53. Solve the game in Exercise 2.12.

54. Solve the game in Exercise 2.13.

55. Solve the game in Exercise 2.15.

56. Solve the game in Exercise 2.16.

57*. Prove that if a, b, ¢, d, x are any numbers then the two games below have the
same maximin and the same minimax strategies. What is the relationship
between their values?

a b a+zx b+ x

c d c+x d+x

58. (Dixit & Nalebuff) Ruth is a professional tennis player. She finds that when
she anticipates her opponent’s serve to be aimed at her forehand, she returns
90% of his serves when she is correct, but only 30% when she is wrong. On
the other hand, when she anticipates the serve to be aimed at her backhand,
she returns 60% of the serves when she is correct and only 30% when she
is wrong. What is Ruth’s maximin strategy? Suppose she is playing an
opponent who is aware of these statistics; what is the opponent’s minimax
strategy?

a b
c d
59*. Is it true that the game is strictly determined if and only if the
a c
b | d |, . .
game is strictly determined? Prove your answer.
a b c
d e f
h i
60*. Is it true that the game I is strictly determined if and only
a d
b e
: c | f .. .
if the game is strictly determined? Prove your answer.




A GENTLE INTRODUCTION TO GAME THEORY 69

0 b c
—b 0 d
. —c | —d LU o
61*. Isit true that the game is strictly determined if and
0 -b —c
b 0 —d
: c d o | . ,
only if the game is strictly determined? Prove your
answer.
a b
: c | d|. .
62*. Prove that if a — b — ¢+ d = 0 then the game is strictly
determined.

63*. Modify the informal proof of the 2 x 2 Minimax Theorem to cover the case
where the cross sections that correspond to fixing = = p are parallel to AC
and BD.

64*. Complete the informal proof of the 2 x 2 Minimax Theorem when the 2
coordinates of the corners A, B, C, D in Figure 2 are not all distinct.

65*%. Prove Lemma 8.

66*. Prove Lemma 10.

A game is said to be fair if its value is 0.

a 0 0
0 b 0
. . 010 ] c|.. .
67*. For which values of a, b, c is the game fair? Justify your
answer.
1 a
. . b | -1 : :
68*. For which values of a, b is the game fair? Justify your
answer.
a 0
. . bl e |, . :
69*. For which values of a, b, c is the game fair? Justify your answer.

70*. Prove that if an m X n game has more than one saddle points then their
payoffs are all equal.
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2 x n AND m x 2 GAMES

The solution of zero-sum games in which
one of the players has only two options is given.

The graphical method of Chapter 4 can be used to solve any 2 x n game that
is nonstrictly determined. It is only necessary to bear in mind that in such
games Charlie has to select from n available pure strategies rather than just 2.
Accordingly, if, for j =1,2,...,n, r;(p) denotes the expected payoff when Ruth
employs strategy [1 — p,p], 0 < p < 1, and Charlie consistently selects the j-th
column, and if Er(p) again denotes the payoff Ruth can reasonably expect when
employing strategy [1 — p, p], then the analog of (1) of Chapter 4 is

Egr(p) = the minimum of {r;(p),r2(p), ... ,7n(p)}

and the graph of Er(p) coincides for each p with the lowest of the points on the
graphs of 71(p),r2(p),... ,mn(p). As was the case before, if the j-th column of
the game is

then the graph of 7;(p) consists of the line segment that joins the points (0, g)
and (1,h).

EXAMPLE 1. Solve the game

-2 0 -1 2

3 1 0 -1

71
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3t r
2
Expected
payoff
1 r
. I3 14
1 Strategy
-1 ra
-2

FIGURE 7.1. A graph of Ruth’s expectation.

The row and column bookkeeping below testify that this game is nonstrictly

-2 0 -1 2 |2
3 1 0 -1 |-
3 1 0 2

determined. We may therefore pass on to the graphical method. The graph
of Ruth’s expected payoff is the broken heavy line of Figure 1. The peak of
Ruth’s graph, which determines Ruth’s maximin strategy, is the intersection of
the graphs of r3(p) and r4(p), and is circled in the figure. The corresponding
value of p could of course be extracted from the equation r3(p) = r4(p), but
a modification of the oddments method works better here too. Note that the
graphs of r1(p) and r2(p) both pass above the circled peak point. It therefore
follows that their columns are irrelevant to Charlie’s minimax strategy, since each
of them would work to Ruth’s clear benefit. Thus, Charlie’s minimax strategy
must have the form [0,0,1 — g, g], for some 0 < ¢ < 1. Since columns 1 and 2
should never be used, they might as well be deleted from the original array, thus
resulting in the reduced 2 x 2 subgame

-1 2

0 -1

This subgame does not have a saddlepoint either and so it may be solved by
the oddments method. Here Ruth’s oddments are [1,3] and so her maximin
strategy for both the subgame and the original game is [.25,.75]. On the other
hand, Charlie’s oddments for the subgame are [3, 1] and so his minimax strategy
for the subgame is [.75,.25] and his minimax strategy for the original game is



7. LARGER GAMES 73

2 2]
Expected
1 3
payoff
) p
1 Strategy
-1 rn
-2

FIGURE 7.2. A graph of Ruth’s expectation.

[0,0,.75,.25]. The value of the original game is the same as the value of the
subgame whose auxiliary diagram

.25 -1 2

.75 0 -1

yields the answer

25X 1x (=1)+.75x 1 x 0 = —.25.

EXAMPLE 2. Solve the game

0 1 -2

2 -1 1

As this game is easily verified not to have a saddle point we go on to graph Er(p)
in Figure 2. Inasmuch as the high point of this graph lies on the graphs of r2(p)
and r3(p) it follows that we may restrict our attention to the subgame

1 -2

-1 1

that consists of the second and third columns of the original game. This subgame
is nonstrictly determined and has oddments [2, 3] for Ruth and (3, 2] for Charlie.
The original game has maximin strategy [.4,.6], minimax strategy [0, .6, .4], and
the auxiliary diagram
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3+ r

Expected
payoff

r
\ " »

1/3 12 1 Strategy

FIGURE 7.3. An unusual game.

yields the value
v=4Xx1x1+6x1x(-1)=4—-6=-.2
for the original game.

Surprisingly, it is possible for a nonstrictly determined 2 x n game to reduce
to a strictly determined subgame. This can happen only if the peak of the
graph of Er(p) is actually a plateau and this exceptional case calls for caution.

EXAMPLE 3. The 2 x 3 game below clearly has no saddle point.

o 1| 2|0
311 1] 0o

3 1 2

For this game, the graph of Er(p) appears in Figure 3 and it has a plateau
rather than a peak. If we were to choose to work (by analogy with the previous
examples) with the intersection of the graphs of r1(p) and r2(p) we would obtain
the subgame

0 1 |0
3 1 |1
3 1

which clearly does possess a saddlepoint.

The given game has the additional interesting feature that its maximin strat-
egy is not unique. Any point of the portion of the graph of 7o (p) that lies between
its intersections with the graphs of r1(p) and r3(p) yields a maximin strategy.
These points of intersection can still be obtained by the oddments method, even
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though the subgames are strictly determined. Thus, the left endpoint corre-
sponds to the subgame above which yields oddments [3 — 1,1 — 0] = [2, 1] and
maximin strategy [2/3,1/3] for Ruth. The right endpoint corresponds to the
subgame

in which Ruth’s oddments are [1 — 0,2 — 1] = [1,1] yielding a maximin strategy
of [.5,.5]. Thus, any strategy [1 — p,p] with 1/3 < p < 1/2 will serve as the
maximin strategy. The value of the game is the value of Fr(p) for these p, and
a glance at Figure 3 tells us that this is the value 1 (the height of the plateau off
the p-axis). Finally, the minimax strategy is that which guarantees to Charlie
that Ruth’s expected payoff will not exceed 1 and so it is the pure strategy that
selects the (second) column that created the plateau, i.e., [0,1,0].

The following theorem should be kept in mind when solving the exercises.

THEOREM 4. When solving a 2 X n zero-sum game, if a maximin strategy is
determined by the point of intersection of two of the r;’s, then the corresponding
value of p can be determined by the oddments method.

Games of dimensions m x 2 are subject to a resolution that is similar to that
of 2 x n games, the main difference being that now it is Charlie’s point of view
that guides us. Accordingly, if for each i = 1,2,... ,m c;(q) denotes the expected
payoff when Ruth consistently employs her i-th row against Charlie’s arbitrary
mixed strategy of [1 — ¢, ¢q], 0 < ¢ <1, and if F-(g) denotes the expected payoff
that Ruth will select under these circumstances, then the analog of (1) of Chapter
5 is

Ec(q) = the maximum of {c¢1(q), c2(q), ... ,em(q)}-

The graph of Ec(q) coincides for each ¢ with the highest of the points on the
graphs of ¢;(q),c2(q), ... ,cm(q). As was the case before, if the i-th row of the
game is

g h

then the graph of ¢;(q) consists of the line segment that joins the points (0, g)
and (1, h).

ExXAMPLE 5. The game
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FIGURE 7.4. A graph of Charlie’s expectation.

is nonstrictly determined and the graph of Charlie’s expected payoff is the broken
heavy line of Figure 4. In this figure the graph of c;(q) has been labeled on
its right with ¢; for each ¢ = 1,2,3. The low point of Charlie’s graph, which
determines his minimax strategy and is circled in the figure, is the intersection
of the graphs of c;(q) and c2(q). Consequently, it is possible to restrict our
attention to the subgame

3 0
2 3

which consists of the first two rows of the given game. For this subgame Charlie’s
oddments are [3 — 0,3 — 2] = [3, 1] which yield [.75,.25] as his minimax strategy.
Ruth’s oddments for the subgame are [3 — 2,3 — 0] = [1,3] and her maximin
strategy is therefore [.25,.75,0]. The value of the given game is the same as the
value of the subgame which is

1x.75x3+1x.25 x0=2.25.

It is possible for a nonstrictly determined game to reduce to a strictly determined
game, as is the case when the graph of Ec(q) has a flat floor rather than a single
low point. As indicated by Theorem 6 below, when this happens the endpoints
of the floor can still be determined by the oddments method.

THEOREM 6. When solving an m X 2 zero-sum game, if a minimaz strategy is
determined by the point of intersection of two of the c;’s, then the corresponding
value of ¢ can be determined by the oddments method.

EXAMPLE 7. Solve the game
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FIGURE 7.5. A graph of Charlie’s expectation.

The graph of Ec(q) is the broken heavy line in Figure 5.

The left endpoint of the flat bottom comes from Charlie’s oddments in the
subgame determined by the first and third rows:

1 1

2 -2

These oddments are [1 — (—2),2 — 1] = [3,1] which yields a minimax strategy
[3/4,1/4], or ¢ = 1/4.

The right endpoint of the flat bottom comes from Charlie’s oddments in the
subgame determined by the first and second rows:

1 1

-2 2

These oddments are [2 — 1,1 — (—2)] = [1, 3] which yields a minimax strategy
[1/4,3/4], or ¢ = 3/4.

The value of the game is the value of Ec(q) for any g between 1/4 and 3/4
and a glance at Figure 5 tells us that this is 1 (the height of the flat bottom of
Charlie’s expectation curve off the g-axis). Finally, the maximin strategy is any
strategy of Ruth’s that holds Charlie’s expectation down to 1. This Ruth can
accomplish by consistently choosing the first row, i.e., with the pure maximin
strategy of [1,0,0].

THE JAMAICAN FISHING VILLAGE. This chapter’s last example describes a
game that was extracted by the anthropologist W. C. A. Davenport from his
observations of the behavior of the inhabitants of a certain Jamaican fishing
village. These fishermen possessed twenty siz fishing canoes manned each by a
captain and two or three crewmen. The fishing took the form of setting pots
(traps) and drawing from them. The fishing grounds were divided into inside
and outside banks. The inside banks lay from 5 to 15 miles offshore, whereas
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the outside banks lay beyond. The crucial factor that distinguished between the
two areas was the occasional presence of very strong currents in the latter, which
rendered fishing impossible. Accordingly, each captain must decide on a trap
setting policy. He could:

(1) set all his pots inside,

(2) set all the pots outside, or

(3) set some of the pots inside and some outside.

Davenport modeled this situation as a 3 X 2 game whose players are the
village and the environment. Each of the captains’ selections of a fishing strategy
constituted a play on the part of the village. The environment “decided” on its
option by either sending a current or not. Based on his observations of the local
market place and the costs accrued by the captains, Davenport estimated the
payoffs of the various possibilities as follows:

Environment
Current No-current

Inside 17.3 11.5

Village In-out 5.2 17.0
Outside —4.4 20.6

The monetary unit was the Pound and the reason for the one negative payoff
was that the Captain must pay his crew for each outing, regardless of the catch.
Davenport went on to treat this as a zero-sum two person game, solved it as
such, and compared the game’s maximin strategy to the actual distribution of
the captains’ choices.

Pretending that the environment is a conscious player, its expectation graph
Ec(q) is drawn in Figure 6. This figure indicates that the requisite subgame
consists of the first two rows of the given game

17.3 11.5
5.2 17.0

The village’s oddments are [17.0 — 5.2,17.3 — 11.5] = [11.8, 5.8] which, in turn,
yield the maximin strategy of
[.67,.33,0]

with a corresponding maximin expectation of
67 % 17.3+ .33 x 5.2 =13.31.

This is to be understood as saying that Game Theory’s recommendation to the
village is that 67% of its fishing should be done in the inside banks exclusively,
33% as an inside-outside combination, and none of the fishermen should dedi-
cate themselves to fishing in the outside banks alone. This way the village can
guarantee its fishermen an expected payoff of at least 13.31 per outing.
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FIGURE 7.6. A fishing game.

Davenport observed that 18 (69%) of the captains fished only in the inside
banks, 8 (31%) adopted the inside-outside combination, and none restricted their
fishing to the outside banks alone. A remarkable fit between theory and obser-
vation.

Two additional comments may be in order here. During his two year stay
Davenport observed that a current was present in the outside bank on 25% of the
days. This can be interpreted as a fixed strategy of [.25,.75] for the environment.
In accordance with Chapter 3, the village’s optimal counterstrategy should be
a pure strategy whose specific value is computed on the basis of the auxiliary
diagrams

25 75 25 75 25 75
1 17.3 11.5 ol 173 11.5 ol 173 11.5
5.2 17.0 1 5.2 17.0 0 5.2 17.0
—44 20.6 0| —44 20.6 1| —44 20.6
a b c

which have respective expected payoffs v, vy, v., where

v, =1%x.25 x17.3+1x.75 x 11.5 = 12.95
vp=1x%x.25%x52+1x.75 x17.0 =14.05
ve=1x.25 x (—4.4) +1 x .75 x 20.6 = 14.35.

Since 14.35 is the largest of these expected payoffs, the village as a whole would

profit in the long run by restricting their fishing to the outside banks. Neverthe-
less, such risk taking seems to be contrary to human nature.
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Something needs to be said about the minimax strategy of this game. The
environment’s oddments are [17.0 — 11.5,17.3 — 5.2] = [5.5,12.1] and so its min-
imax strategy is [.31,.69]. In other words, if the environment were a sentient
being bent on yielding as little as possible to the Jamaican fishermen, it would
be inclined to create a current on 31% of the days. This is not as exciting a fit
with the observed 25% as we had for the village’s maximin strategy, but it is still
close. While this is not to be taken as evidence for the anthropomorphic view
of nature, it should be pointed out that the game’s payoffs are dependent on
many factors, including the frequencies of the currents and the village’s fishing
strategies. Is it possible that this dependence might cause the game’s entries to
stabilize at values whose minimax strategy agrees with the actual frequency of
the current?

Chapter Summary

The graphical method of Chapters 4, 5 was applied to the solution of all zero-
sum games in which one of the players has exactly two options. As part of this
process it became evident that every such game contains a 2 x 2 subgame whose
solution gives the value and maximin and minimax strategies of the original
game. This technique was then applied to the game theoretic analysis of the
fishing strategies adopted by the members of a Jamaican fishing village.

EXERCISES 7

Solve the games in Exercises 1-23. I.e., find their values and some maximin and
minimax strategies.

-1 1 2 4 6 -3 )
2 1 -2 5 -2 8 4
1 2.
4 -2 1 1 5 3 4
-2 ) -1 5 1 3 2
3 4
0 -2 5 2 1 3
0 6 —4 ) 0 4
) 6.
3 -7 0 —4 -1 -9 4 0
—6 1 -1 -5 -1 5 -1 0
7 8
2 3 2 4 1 7 4 2
1 ) -3 —4 6 0 4 2
9 10.
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16.

19.

12.

15.

22.

21.

11.

14.

17.

20.

23.

24. Solve the game in Exercise 2.14.
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DOMINANCE

Some m X n games can be solved by identifying and
deleting irrelevant rows and columns.

As was mentioned above, the general solution of m x n games lies outside the
scope of this text. Occasionally, however, larger games may be reduced to more
tractable dimensions by the deletion of some rows and/or columns whose irrel-
evance is easily recognized. This is first demonstrated with an example which
will be followed by a statement of the general principle in question.

ExAMPLE 1. Consider the game

-5 4 6
3 -2 2
2 -3 1

Observe that Ruth should never choose the third row since she could always do
better by choosing the second row, no matter what Charlie’s selection is.
The reason for this is that every entry in the second row is greater than the entry
directly below it, and Ruth is always looking to get the larger payoff. Similarly,
Charlie should never choose the third column since each of its entries is larger
than the corresponding entry in the second column. This is dictated by Charlie’s
goal of keeping the payoff (Ruth’s gain) as small as possible. Consequently, each
of the players will restrict their attention to their first two options, thereby
reducing the given game to the subgame

83
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-5 4

3 -2

which is easily solved by the oddments method.
The underlying idea here is that of dominance. Given two lists of equal length
L, =(ai,as,...,a,) and Lo = (b1, bo,... ,by)
we say that list L; dominates Lo provided
a; > b; foralli=1,2,...,n.
Thus, the second row of the game of Example 1 dominates its third row because
3>2, -2 2> -3, 2>1.

Similarly the second column of this game is dominated by its third column.
The following observation is justified by the fact that Ruth always looks for
the larger payoff whereas Charlie seeks to minimize Ruth’s gains.

THEOREM 2. In any zero-sum game Ruth has a mazimin strategy that does
not employ any dominated rows, and Charlie has a minimaz strategy that does
not employ any dominating columns.

EXAMPLE 3. Solve the 4 x 4 zero-sum game

3 -2 2 -1
1 -2 2 0
0 6 0 7
-1 ) 0 8

Since this game is not strictly determined, we go on to look for dominance
amongst its rows and columns. The fourth column dominates the second one,
and this is in fact the only instance of dominance. This is denoted by

3 -2 2 -.1
1 -2 2 0
0 6 0 7
-1 5 0 8

and the fourth column is deleted. The resulting 4 x 3 subgame has dominance
amongst its rows:
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e 3 -2 2
b ] -2 2
------- 0 6 0

i B 5 0

After the dominated rows are deleted from this subgame the resulting 2 x 3
subgame still has some dominance

which finally reduces the original game to

-2 2

6 0

Ruth’s oddments in this subgame are [6 — 0,2 — (—2)] = [6,4]. Since the rows of
this 2 x 2 game are the remnants of the first and third rows of the original game,
this latter game has the maximin strategy of [.6,0,.4,0]. Similarly, Charlie’s
oddments of [2 — 0,6 — (—2)] = [2, 8] yield the minimax strategy [0, .2, .8,0] for
the original game. The value of the original game equals the value of its subgame.
Using the auxiliary diagram

0 1
-2 2
6 0

this common value is computed as .6 x 2+ .4 x 0 = 1.2.
The following example is due to J. D. Williams.

EXAMPLE 4. During a period of political uncertainty, an investor is weighing
his options of buying government bonds, armament stocks, or industrial stocks.
He sees the near future as bringing either actual war, cold war, or peace, and,
on the basis of past experience, computes the following rates of interest for each
eventuality (the percent signs are implicit):
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Future
Actual Cold
war war Peace
Government bonds 2 3 3.2
Investor  Armament stocks 18 6 -2
Industrial stocks 2 7 12

Viewing this as a game between the investor and nature we now calculate the
investor’s maximin strategy.

Since the third row dominates the first one, the latter can be discarded. For
the resulting 2 x 3 game

18 6 -2

2 7 12

the graph of the investor’s (i.e., Ruth’s) strategy is drawn in Figure 1. This
graph yields the subgame

18 6
2 7

The investor’s oddments for the final subgame are [7 — 2,18 — 6] = [5, 12] giving
[0,5/17,12/17] as the maximin strategy. In other words, the game theoretic
point of view recommends that the investor ignore the government bonds, invest
5/17 = 29.4% of his funds in armament stocks and the remaining 70.6% in
industrial stocks. The value of the game is computed from the auxiliary diagram

1 0

5/17| 18 6
12/17 2 7

as
5 12 90+24 114

Thus, the above maximin strategy guarantees the investor an expected return of
6.7% on his investments.

We conclude with a comment about the relationship between dominance and
saddlepoints. Briefly put, the reduction process described in this chapter can-
not uncover new saddlepoints (see Exercise 12). In other words, if a game is
not strictly determined but does have some dominance amongst its rows and
columns, then the subgame resulting from the appropriate eliminations is also
not strictly determined. Thus, a game needs to be scrutinized for a saddlepoint
only once.
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FIGURE 8.1. An investment game.

Chapter Summary

The concept of dominance can be used to identify options that are clearly
“bad” for the player. Their deletion from an m x n game reduces its size and
sometimes leads to a complete solution.

Chapter Terms

Dominance 84

EXERCISES 8

Solve the games in Exercises 1-10.

3 3 4 1 2
3 3 3 2 2
0 -2 1 4 )
1.
3 2 0 2 -2
2 2 2 1 2
5 4 3 2 1
2.
2 3 2 4 )
-5 9 1 8 -1
8 -2 2 -5 3
3.
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4 -2 3
6 8 -5
3 -3 3
) 8 —6
" b) -2 4
3 -3 —4 5 -3 8
4 -2 -3 8 -2 5
1 -1 -3 6 -1 -3
2 0 -2 2 0 2
5 5 -1 3 6. -3 -1 6
2 0 1 1 0
3 1 2 2 1 0 1 0 1 1
1 2 1 2 2 -1 0 0 -1 2
. 0 1 1 0 3 8 -1 1 -1 1 0
1 2 3 3 1 1 2 2 2
2 1 2 1 2 3 3 2 1
1 2 2 4 1 2 1 2 2
1 1 3 1 2 2 4 2 1
9. 2 1 1 2 10. 1 3 1 2 1

11*. Prove that a 2 x 2 zero-sum game has a saddle point if and only if either
one of its rows dominates the other, or else one of its columns dominates
the other.

12*. Let G be a zero-sum game in which one row (column) dominates another,
and let H be the game obtained from G by deleting the dominated (domi-
nating) row (column). Prove that G is strictly determined if and only if H
is strictly determined.
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SYMMETRIC GAMES

Many games have a built in symmetry that makes the recognition
of their solutions an easy matter.

Many concrete zero-sum games are symmetric in the sense that the players’ roles
are interchangeable. Such is the case for the Rock-scissors-paper and Morra
games described in the first chapter. On the other hand, the Bombing-sorties
and Jamaican fishing village games are not symmetric since the players have
clearly distinct roles. The property of symmetry can sometimes be used to solve
a game when the previous methods are of no avail.

Since in a symmetric game the players’ roles are interchangeable, neither
player has an advantage over the other and consequently neither player has any
reason to expect to win in the long run. Moreover, any strategy that guarantees
to Ruth a break-even expectation can also be used by Charlie for the same
purpose. Hence we have the following theorem (see comments at the end of this
chapter).

THEOREM 1. Every symmetric zero-sum game has value 0 and identical maz-
imin and minimax strategies.

Games with value 0 are said to be fair. Unfortunately, as was seen in the game
of Morra, knowing that a game is fair does not tell us how to find the maximin and
minimax strategies. Nevertheless, this knowledge can be used to check whether
any specific strategy, arrived at by either a random choice or a lucky guess, is
or is not a maximin strategy. To wit, suppose R = [p1,p2,...,Pm] is some
strategy of Ruth’s in some symmetric game G. Suppose that Charlie possesses
a pure strategy C which, when employed against R yields a negative expected
payoff. Then it is clear that R is not a maximin strategy since, by definition,
the maximin strategy guarantees an expected payoff of at least 0 against any
strategy of Charlie’s. On the other hand, if every pure response of Charlie’s

89
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yields a nonnegative expected payoff, then the outcome of every mixed strategy
of Charlie’s, being a weighted average of the pure payoffs (see second proof of
Theorem 3.5), is also nonnegative. Since 0 is the most that Ruth can reasonably
expect here, it follows that this strategy R is in fact a maximin strategy for
Ruth. This reasoning is summarized below.

THEOREM 2. In a fair game, in order to verify that a given strategy of Ruth’s
s indeed mazximin, it suffices to show that it guarantees a nonnegative expected
payoff against each of Charlie’s pure responses.

ExAMPLE 3. We shall verify that the strategy R = [0,4/7,3/7,0] is a max-
imin (and therefore also a minimax) strategy in the game of Morra. From the
auxiliary diagrams

1 0 0 0 0 1 0 0
0 0 2 -3 0 0 0 2 -3 0
4/7 -2 0 0 3 4/7 -2 0 0 3
3/7 3 0 0 —4 3/7 3 0 0 —4
0 0 -3 4 0 0 0 -3 4 0

a b
0 0 1 0 0 0 0 1
0 0 2 -3 0 0 0 2 -3 0
4/7 -2 0 0 3 4/7 -2 0 0 3
3/7 3 0 0 —4 3/7 3 0 0 —4
0 0 -3 4 0 0 0 -3 4 0

c d

we compute that

4 3 -84+9 1
va—?xlx(—2)+7xlx3— =
4 3
vb=7x1><0+?><1><020+0=0,
4 3
vcz?x1x0+?x1x0=0+0=0,
4 3 12 —-12
== 2 x1x(—4)= =0.
Vg 7><1><3—|~7>< x (—4) Z 0
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Since all these expected payoffs are nonnegative, it follows that the given strategy
is indeed maximin.

The arrays associated with the symmetric games of Rock-scissors-paper and
Morra possess a visual feature that is common to all symmetric games. All
the entries on the diagonal from top left to bottom right are 0 and if a and b
are entries in positions that are in mirror image location relative to this same
diagonal, then b = —a. This follows from the interchangeability of the roles of
the players and the fact that Ruth’s gain is Charlie’s loss (and vice versa). These
properties are summarized as follows.

THEOREM 4. The arrays of symmetric games are characterized by the prop-
erty

Pi,j=—Pj,i 1:2].,2,.‘.,771, j=1,2,...,n,
where p; ; denotes the payoff in the i-th row and j-th column.

It follows that every 3 x 3 symmetric game has the form

0 a b
—a 0 c
-b —c 0

where a, b, ¢, are some real numbers. It so happens that these 3 x 3 symmetric
games have solutions that are easily described. (See Exercise 12.)

THEOREM 5. If the 3 x 3 symmetric game

0 a b
—a 0 c
-b —c 0

is nonstrictly determined, then its mazimin and minimax strategies are
le| |b] la]
la| + 6] +lc[” la +[b] +|c|” |a| + [b] + |c]

ExAMPLE 6. For Rock-scissors-paper the array is

0 1 -1
-1 0 1
1 -1 0

and hence the maximin and minimax strategies are

1 1 1 1o
14141 14141 1+41+1] |3 3 3|’
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just as expected.

EXAMPLE 7. The symmetric game

0 -2 —6
2 0 —4
6 4 0

has a saddle point in its lower right hand entry. Consequently its value is 0 and
both its maximin and minimax strategies are (0,0, 1].

EXAMPLE 8. The symmetric game

0 -2 6
2 0 —4
—6 4 0

is nonstrictly determined. It has value 0 and both its maximin and minimax
strategies are

4 6 2 _)_[4 6 2]_qL11
2+46+4" 2+6+4" 2+6+4| |12° 127 12| 3’2’6/

EXAMPLE 9*. The symmetry of the game of Two-finger Morra can be used
to derive all its maximin strategies. If R = [z, ¥y, z,w] and C = [s, ¢, u,v] denote
arbitrary strategies for Ruth and Charlie, then the auxiliary diagram

s t Uu v
X 0 2 -3 0
y -2 0 0 3
Z 3 0 0 —4
w 0 -3 4 0

yields the expected payoft
E = (=2y+32)s + (2z — 3w)t + (—3z + 4w)u + (3y — 42)v.
If R is a maximin strategy, then the symmetry of the game implies that
regardless of the values of s,t,u,v (as long as they are kept nonnegative), the

value of E is nonnegative. This is logically equivalent to the following four
inequalities:

—2y+32>0, 2z—-3w>0, -3z+4w>0, 3y—4z>0
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or
3z > 2y 2 > 3w

1
3y >4z an 4w > 3z 1)
The two inequalities on the right can be combined into

8x > 12w > 9z,

and since x and w are nonnegative it follows that £ = w = 0. The constraint
z+y+z+w=1yields z =1 — y. Substitution into the left hand inequalities
of (1) then results in

or 4
> > 2
~y_7 (2)

Hence any strategy of the form [0,y,1 — y,0] is a maximin (and minimax)
strategy for this game, as long as y is constrained by (2). For example, [0, .6, .4, 0]
and [O, %, %, O] are two such strategies.

We conclude with some remarks about Theorem 1. It has already been noted
that the idea of modeling a game by means of a rectangular array goes back
to Borel’s papers of the early 1920’s. The same papers also took the first steps
towards the identification of the notion of a strategy with a sequence of probabil-
ities and even a formulation of the notion of the maximin value of a game. This
was all done in reference to symmetric games only. Such a restricted context is
not surprising in view of the fact that the first games that come to mind usually
possess a fair amount of symmetry.

It was taken for granted both at the beginning of this chapter and in the
initial discussion of Penny-matching and Two-finger Morra that such symmetric
games have strategies that guarantee the players an expected payoff of at least
0. This was not at all obvious to Borel at the time he initiated this study. In
fact, at least for a while, he believed in the existence of symmetric games in
which knowledge of the opponents strategy, no matter which one it might be,
could always be turned to one’s advantage. In other words, he did not believe in
the existence of minimax and maximin strategies for these games. A surprising
mistake that was shortly set straight by von Neumann’s proof of the Minimax
Theorem in 1928.

Chapter Summary

While the solution of symmetric zero-sum games is no easier than the solution
of the general m x n zero-sum games, it is a simple matter to verify whether a
proposed strategy for a given symmetric game is in fact a maximin (or minimax)
strategy or not. A formula is given for the solution of any symmetric nonstrictly
determined 3 x 3 zero-sum game.

Chapter Terms

Fair game 89 Symmetric game 89
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EXERCISES 9

In each of Exercises 1-5 decide which of the given strategies R;, Ry, Rs, if any,
is a maximin strategy for the given symmetric game G.

1. Ry = [4/7,0,1/7,2/7), Ry = [2/7,4/7,0,1/7), Rs = [0,1/7,2/7,4/7),

0 2 -2 1

-2 0 1 2

2 -1 0 —4

G- -1 -2 4 0

2. R; =[3/8,3/8,0,1/4], R, = [1/4,3/8,3/8,0], Rs = [3/8,0,3/8,1/4],

0 1 2 -3

-1 0 -1 2

-2 1 0 3

3. Ry =[1/4,1/4,1/4,1/4], Ry = [3/7,1/7,0,3/7), Rs = [4/7,0,0,3/7],

0 3| -2 | -1
-3 0 0 3
2 0 0| —4
a_| 1] -3 4 0

4. Ry =[1/3,0,1/3,1/3], Ry = [1/3,1/3,1/3,0], Rs = [0,1/3,1/3,1/3],
0 1| -1 | -1
-1 0 1| -1
1| -1 0 1
a | ! 1| -1 0

5. Ry =[.25,.5,.25,0], Ry = [.5,.25,.25,0}, R3 = [.25, .25, .25, .25],

0 1| -2 3
-1 0 1| -2
2 | -1 0 1
-3 2 | -1 0
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Solve the games in Exercises 6 — 10.

0 1 -2 0 1 2
-1 0 -3 -1 0 -3
2 3 0 -2 3 0
6. 7.
0 -1 -2 0 -2 2
1 0 3 2 0 -3
2 -3 0 -2 3 0
8 9.
0 3 -2
-3 0 2
2 -2 0
10.

11*. Prove that the symmetric 3 x 3 game

0 a b
—a 0 c
—b —c 0

is strictly determined if and only if one of the following three conditions holds:
i) a>0and b>0,
ii) a<0andc>0,
iii) b<0and c<O0.

12*. Prove Theorem 5.

13*. Let a,b,c > 0. The game below is an obvious generalization of the game of
Morra.

0 a -b 0
—a 0 0 b
b 0 0 —c
0 —b c 0

i) Find this game’s maximin strategy when a =3, b=4, ¢ =5;
ii) Find this game’s maximin strategy when a =4, b=3, ¢ = 5;
iii) Find this game’s maximin strategy when a =2, b =4, ¢ = 8.
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14*. Let a,b,c > 0. The game below is an obvious generalization of the game of
Morra.

0 a —b 0
—a 0 0 b
b 0 0 —c
0 =b c 0

i) Show that if b*> = ac, 7 = % = %, and a and (3 are two nonnegative numbers
such that o + 8 = %5, then [rB,ra, @, 8] is a maximin strategy for this
game.

ii) Show that if b#> = ac then every maximin strategy has the form specified
in part 1.

iii) Show that if 4> > ac and 2 > r > £, then [0
strategy for this game.

iv) Show that if b> > ac then every maximin strategy has the form specified
in part iii.

v) Show that if b> < ac and -g <r < ¢, then [ﬁ,o, 0, H%] is a maximin
strategy for this game.

vi) Show that if b> < ac then every maximin strategy has the form specified
in part v.

r 1 . .
s Tr7 7470 0] 18 @ maximin

15*. Is Penny-matching a symmetric game?

16*. Prove that every symmetric 2 x 2 game is strictly determined.

1 0 a
0 1 0
: 0 0 1 . .
17*. For what value of a is the game fair? Find the

corresponding maximin and minimax strategies.

1 0 —-a
0 1 0
. —b 0 1 . .
18*. For what values of a,b is the game fair? Find the

corresponding maximin and minimax strategies.
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POKER-LIKE GAMES

Some very simple poker-like games are modeled
and solved as zero-sum games.

At first glance, many popular games, such as Poker and Monopoly, even when
they are played by only two players, seem very different from the games that
have been discussed so far. While these former games do constitute situations
of conflict, and they are zero-sum in that one player’s gain constitutes the other
player’s loss, the nature of their moves does not appear to conform to the format
posited by the mathematical theory of games. The latter requires that the players
exercise their options simultaneously and independently of each other, whereas
the players of Poker and Monopoly alternate their moves and are fully aware of
each other’s actions.

This apparent shortcoming of the theory can be remedied by a careful inter-
pretation of the meaning of a player’s options, in other words, his pure strategies.
Here we return to the original, nonmathematical, sense of the word strategy as
a guiding principle for making specific decisions. However, an accurate mathe-
matical analysis requires more precise and detailed guidelines than such vague
prescriptions as “Call if your opponent is holding his breath” or “Bluff if the
moon is full.” For us here a pure strategy is a set of unequivocal instructions
which tells the player exactly what to do in any set of circumstances. We shall
assume that each player begins each play by first settling in his mind on some
such strategy for that play. He will of course give his opponent no hint about his
mindset, and he may (and probably should) change his strategy from one play
to another. This changing of strategies is of course tantamount to the use of a
mixed strategy in the sense of the previous chapters.

In Poker (or Monopoly) a single such detailed set of instructions would fill
many pages, and the number of such instruction booklets (i.e., the number of

97
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pure strategies) that the theory would have to take into account is literally
unimaginable. For these reasons games like Poker and Monopoly have so far
defied mathematical analysis. Nevertheless, it is possible to describe and solve
some highly simplified versions of Poker where the pure strategies are completely
specifiable and where the mathematical solution does provide some food for
thought.

EXAMPLE 1. Two cards marked H (for high) and L (for low) are placed in
a hat. Ruth draws a card and inspects it. She may then fold in which case she
pays Charlie amount a, or she may bet in which case Charlie may either fold,
paying amount a to Ruth, or call. If Charlie calls he receives from or pays to
Ruth amount b according as Ruth’s card is marked H or L.

Figure 1 contains a diagram illustrating the players’ options after Ruth draws
her card. As such diagrams describe a branching process they are called game
trees.

Since Charlie does not know which card is drawn, when it comes to his turn he
has only two options which are in fact also his pure strategies. He can either fold
or call. Ruth, on the other hand, can take her card into account when deciding
what to do. In principle she therefore has four pure strategies:

Fold . Fold if card = H
Fold “%  Foldif card = L
Fold . Fold if card = H
Bet e Bet ifcard =L
Bet . Bet ifcard = H
Fold "¢ Foldif card = L
Bet . Bet if card = H

Bet ¢ Betifcard = L

The actual payoffs of course depend on the nature of Ruth’s card. They are
exhibited, as Ruth’s gains and losses, first in Figure 2 as two modifications of
Figure 1, and then in Table 1, in the usual array form. In these arrays, Ruth’s
actual action (which depends on the card in her hand) is underlined. Some of
these entries also call for clarification. For instance, it could be argued that
since Ruth’s folding terminates the play, it does not make any sense to insert
any entry into the top row of either of these arrays. After all, when Ruth folds
Charlie never gets a chance to either fold or call. We counter this by reiterating
that Ruth’s Ifgfj and Charlie’s Fold do not denote actual actions. Instead, they
denote strategies that the players can decide (before the play) to adopt. Thus,
the —a in the upper left hand of each of the arrays of Table 1 denotes the fact
that if Ruth adopts the pure strategy of folding (no matter what) and if Charlie
adopts the pure strategy of folding on his turn, then each play will result in Ruth
losing amount a, even though Charlie will never get a chance to actually fold.
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Ruth’s turn

Fold and lose a

Charlie’s turn

Fold and lose a

Be
Call and win(lose) b if card = L(H

FI1GURE 10.1. A Simplified Poker.
Ruth’s Charlie’s Ruth’s Charlie’s
turn turn turn turn
o= —a Dol = —a

POt = a Toatt = a
Bet Bet

Sallte= b Saller= —b

RUTH'S CARD IS H

RUTH'S CARDIS L

FIGURE 10.2. A simplified Poker.

TABLE 10.1. Arrays for a Simplified Poker.

Fold Call
Fold _ —a
Fold a
Fold —a —a
Bet
Bet
Fold a b
Bet b
Bet a

RUTH’S CARD IS H

Fold Call
Fold
Fold —a —a
Fold
@ a —b
Bet
Fold —a —a
Bet
Bet a -b

RUTH’S CARD IS L

99
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Inasmuch as Ruth’s chances of getting the H card are 50% and the same goes
for the L card, it follows that Ruth can expect the payoff from each of the arrays
of Table 1 50% of the time. Consequently these two tables are summarized into
one (Table 2) by averaging the corresponding payoffs. The indicated dominance
patterns are a consequence of the fact that a and b are understood to be positive
numbers. Taking these dominances into account we obtain the subgame below.

TABLE 10.2. Simplified Poker as a zero-sum game.

B[ e [«

Bld| o [-a-byz=
Ba| o |@-ar2| |

et

of a 0 [II__.
Fold Call
Bet, b—a
Fold 0 N
Bet
Bet a 0

The solution of this subgame calls for distinguishing two cases.

CASE 1. b < a. In this case the entry 9;—“ is either negative or 0, and so the

lower right hand entry is a saddle point. The value of this game is 0, Ruth’s
pure maximin strategy is gz: (i.e., bet on any card) and Charlie’s pure minimax

strategy is always Call on his turn.

CASE 2. b > a. This game is not strictly determined. Consequently, the
maximin and minimax strategies are mixed. In other words these strategies
dictate that in contrast with Case 1, Ruth should sometimes fold when holding
an L and that occasionally Charlie should fold on his turn. For example, if a = 4
and b = 6, then the subgame is

Fold Call
Bet
Fold 0 !
Bet
Bet 4 0

Here Ruth’s oddments are [4,1] and her maximin strategy is [.8,.2], i.e., she
should bluff (bet on a low card) 20% of the time. Charlie’s oddments are [1, 4],
resulting in a minimax strategy of [.2,.8]. The value of the game is .8 x0+.2x4 =
.8. The general solution of Case 2 is relegated to Exercise 1.

ExAMPLE 2. Each player places an amount a in the pot. In each of two hats
two cards marked H and L are placed (so that there is a total of four cards).
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Ruth’s turn Charlie’s turn

See and win/lose/split; pot = 2a
pot= Z2a Fold and lose; pot = 2a+b
Raise; pot = 2a+b

Call and win/lose/split; pot = 2a+2b

FI1GURE 10.3. A simplified Poker.

Each player draws a card at random from his designated hat. Ruth has two
alternatives now: she can see (i.e., challenge Charlie) or she can raise by adding
amount b to the pot. If she sees, the higher hand wins the pot and equal hands
split it. If she raises, Charlie has two options: he can fold or he can also add
amount b to the pot and call. If he folds, Ruth wins the pot. If he calls then
again the higher hand wins and equal hands split the pot. These are all the rules
and they are summarized in Figure 3.
Ruth has the following four pure strategies available to her

See See Raise Raise
See Raise See Raise

where the top entry refers to the preferred action if Ruth draws an H and the
bottom entry to the preferred action if she draws an L. Thus, the first of these
calls for her seeing regardless of the nature of the card in her hand whereas the
third strategy R;ize describes a decision to raise if the card is H and see if the
card is L.

Charlie also has four pure strategies available which we denote as:

Fold Fold Raise Raise
Fold Raise Fold Raise

As before, the top(bottom) entry describes the action to be taken if Charlie’s
card is H(L).

The payoffs depend on the cards that are drawn. There are four possible ways
the cards can be drawn and the four corresponding payoff arrays are described
in Figures 4-7. In each of the pure strategies the action taken by the player is
underlined.
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pot= 2a

Ruth’s turn Charlie’s turn
See; payoff = 0

Fold; payoff = a
Raise; pot= (2a+b)

Call; payoff = 0

RUTH’S CARD IS H
CHARLIES CARDIS H

Fold Fold Call Call

Fold Call Fold Call

See

See 0 0 0 0
See

Raise 0 0 0 0
Rai

S:ése a a 0 0
Raise

Raise a a 0 0

FIGURE 10.4. A simplified Poker.
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pot= 2a

Ruth’s turn Charlie’s turn
See; payoff = a

Fold; payoff = a
Raise; pot= (2a+b)

Call; payoff = (a +b)

RUTH'S CARD IS H
CHARLIES CARDIS L

Fold Fold Call Call
Fold Call Fold Call

See

See a a a a
See

Raise a a a a
Raise

See a a+b a a+b
% a a+b a a+b

FIGURE 10.5. A simplified Poker.

103
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Ruth’s turn

See; payoff = —a

pot= 2a

Fold; payoff = a

Raise; pot= (2a+ b)

Charlie’s turn

Call; payoff = (-a - b)

RUTHS CARD IS L
CHARLIES CARD IS H

See
See

See
Raise
Raise
See
Raise
Raise

Fold Fold Call Call

Fold Call Fold Call

—-a —a —a —-a
a a —a—-b —a—>b

—a —a —-a —a
a a —a—b —a-—>b

FIGURE 10.6. A simplified Poker.
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Ruth’s turn Charlie’s turn
See; payoff = 0

pot= 2a Fold; payoff = a
Raise; pot= (2a+b)

Call; payoff =0

RUTH'S CARD IS L
CHARLIE'S CARD IS L

Fold Fold Call Call
Fold Call Fold Call

gee 0 0 0 0
See

Pfaise a 0 a 0
Raise 0 0 0 0
Raise

Ra;se a 0 a 0

FIGURE 10.7. A simplified Poker.
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Since the four possible card distributions occur with equal probability, the four
arrays of Figures 4-7 are combined into a single zero-sum game by averaging the
corresponding entries (Table 3).

The dominance patterns indicated in Table 3 are a consequence of the fact
that a and b are positive quantities. The resulting subgame is depicted in
Table 4.

TABLE 10.3. A Simplified Poker as a Zero-sum Game.

Fold Fold Call Call
Fold Call Fold Call

e | o 0 0 0 |
Rocse| 3al4 | a2 |(@-by4| -b/4 |-
Raisel iy |(aebyd| 0 | b [-1d

Raise

Raise\ 5 |Ga+b)d|(@-by4| 0O - :

TABLE 10.4. A Simplified Poker as a Reduced Zero-sum Ggame.

Call Call
Fold Call
Raise
See 0 %
Raise a=b 0
Raise 4

Observe that our analysis so far indicates that Ruth should always raise if her
card is H and Charlie should always call if his card is H. The solution of the
subgame depends on the values of a and b in a somewhat complicated manner
and we discuss only two special cases, leaving the remainder to Exercises 6, 7.
Note that the two strategies R;ei:e (for Ruth) and fgll(ll (for Charlie) suggest that
the respective player act cautiously if his card is L, whereas the two remaining
strategies g‘;: (for Ruth) and gjﬁ (for Charlie) dictate an aggressive reaction
to that card. Accordingly, the first two will be described as conservative whereas
the last two as bluffing.

If @ = 4 and b = 8 the subgame becomes

Call Call
Fold Call
Conservative Bluffing
ls{(f‘é S¢ Conservative 0 2

faise  Biufing ] o
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Ruth’s  Charlie’s Ruth’s
turn turn turn

Fold and lose a
Bet <
Call and lose(win) if card = H(L)
<Pass (payoff = 0) Fold and lose a
Pass
Bet

Call and win(lose) if card = H(L)

FI1GURE 10.8. A simplified Poker.

which has a saddle point with value 0 in the upper left hand corner and which
suggests that both players consistently play conservatively.
If a = 8 and b = 4 the subgame becomes

Call Call
Fold Call
Conservative Bluffing
R:él 5¢ Conservative 0 1
Eg‘}gg Bluffing 1 0

This game is not strictly determined. The subgame’s maximin strategy of [.5,.5]
suggests that upon drawing an L Ruth should bluff 50% of the time. A similar
bluffing policy is suggested by the minimax strategy of [.5,.5]. The value of the
game is .5.

ExXAMPLE 3. Two cards marked H and L are placed in a hat. Ruth picks
a card at random and inspects it. She then may either bet or pass. If Ruth
bets, Charlie may either fold and pay a, or else he can call and either lose or
win amount b according as Ruth’s card is H or L. If Ruth passes, Charlie may
decide to pass, in which case the payoff to each player is 0, or he may bet, in
which case the play reverts to Ruth again. This time she may fold and lose a,
or she may call winning or losing amount b according as her card is or is not H.

The rules of this game are summarized in Figure 8.

Given any card in her hand, Ruth may decide to either bet or pass. If she
passes she has to be ready to face the contingency that Charlie will choose to
bet and then she will have to either fold or call. Thus, Ruth needs to take three
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move sequences into account when planning her strategy:

B — Bet.
PF — Pass and fold if Charlie bets.
PC — Pass and call if Charlie bets.

Consequently, Ruth has 9 pure strategies:

B B B PF PF PF PC PC PC
B PF pPC B PF pPC B PF PC

In these strategies the top entry specifies the move sequence to be taken if
Ruth gets card H, and the bottom entry specifies the action to be taken if she
gets card L.

On the other hand, Charlie has four pure strategies:

F ie Fold if Ruth bets
P 7 Pass if Ruth passes
F . . Fold if Ruth bets
B Betif Ruth passes
C ie Call if Ruth bets
P 7 Pass if Ruth passes
Cc Call if Ruth bets
B "% Betif Ruth passes

The game trees and payoff arrays that correspond to cards H and L are displayed
in Figures 9 and 10 respectively.
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Ruth’s Charlie’s Ruth’s
turn turn turn

Fold; payoff = a
Bet <
Call; payoff = b
Pass; payoff = 0
Pass < P Fold; payoff = —a
Bet

Call; payoff = b

RUTH'S CARD IS H

P B P B
% a a b b
%F a a b b
%C a a b b
E—F 0 —a 0 —a
% 0 —a 0 —a
g—g 0 —a 0 —a
£C 0 b 0 b
oo b 0 b
£ | o b 0 b

F1GURE 10.9. A simplified Poker.
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Ruth’s Charlie’s Ruth’s
turn turn turn

Fold; payoff = a
Bet <
Call; payoff = —b
Pass; payoff = 0
Pass < w Fold; payoff = —a
Bet

Call; payoff = —b

RUTH’S CARDIS L

P B P B
g a a —b -b
II§_F 0 —a 0 —a
Bc 0| —b 0| —b
B a a | =b | —b
g 0 —a 0 —a
BE | o 5| of -b
BC [ ol af b | —b
g_g 0 —a 0 —a
b 0| —b 0| —b

FIGURE 10.10. A simplified Poker.
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Since the probability of Ruth getting any specific card is 50%, the two tables
of Figures 9 and 10 are summarized by averaging their respective entries. The
resulting array is displayed in Table 5.

While the general solution of this game lies beyond the scope of this text,
enough tools were provided in the previous chapters to enable us to draw inter-
esting conclusions in some special cases.

If a > b then the game of Table 5 has a saddlepoint in its upper right hand
entry. Thus, this game is strictly determined. Ruth’s maximin strategy calls for
consistent betting, regardless of her card, and Charlie minimax response is to
consistently call her bets. The value of this game is 0.

TABLE 10.5. A Simplified Poker as a
Zero-sum Game

F F C C
P B P B
B
B a a 0 0
Be | 3 | o | & [ &
B a a—b b 0
PC 2 2 2
PF a 0 =b —a—b
B 2 2 2
EE 0 —a 0 —a
—a—b —a—b
be | o ; 0 )
PC a atb —b 0
B 2 2 2
P —a - _a
Pg 0 3 U i32_
PC
PC 0 0 0 0

Suppose, on the other hand, that a = 2 and b = 4, in which case the game
reduces to

TABLE 10.6. A Reduced Simplified Poker.

P b P %
B 2 2 0 0
}I§F 1 0 2 1
PC 1 3 -2 0
kG 0 1 0 1
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Techniques that lie outside the scope of this text can be used to derive the
following solution to this game (see Exercises 20, 21, 22, though).
value = .8

maximin strategy = [.2, .4, 0, .4]

minimax strategy = [.2,.2,0, .6].
It is noteworthy that this maximin strategy suggests that even when Ruth holds
a high card she should pass 40% of the time, rather than cash the high card in
immediately. It is also interesting that while the pure strategy g looks at first
very promising for Charlie since only one of its entries is positive and the sum
of its entries is 0, the minimax strategy specifies that this pure strategy should
never be used by Charlie.

Chapter Summary

Three very simple variations on the game of poker are modeled as zero-sum
games and then solved.

Chapter Terms
Game tree 98 Strategy 97

Exercises 10
In all the following exercises the quantities a, b, c, ... are assumed to be positive.

1. Show that the general solution to the subgame of Table 10.2 when b > a

a(b—a) 2a_ b—a
atb a+b’ a-+b

is value =

b—a 2
(58, 25
2. Suppose that in the game of Example 1, Charlie pays amount b (rather than
a) when he folds. Show that this leads to the subgame

maximin strategy = [ ], minimax strategy =

b—a b—a
2 2
b 0

and solve this subgame. (Hint: consider the two cases b < a and b > a
separately.)

3. Suppose that in the game of Example 1, Ruth loses amount b (rather than a)
when she folds. Show that this game is strictly determined and solve it.

4. Suppose that in the game of Example 1 Charlie loses amount ¢ (rather than
a) when he folds. Show that this leads to the subgame

c—a

b—a
2 2
0

c

and solve this subgame.
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14.
15.
16.
17.

18.

19.
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. Suppose that in the game of Example 1 Charlie loses amount a (rather than

b) if he calls and Ruth turns out to be holding H. Show that this game is
strictly determined and solve it.

. Show that if a > b then the game of Table 10.3 is not strictly determined.

Show that in this case the game has value b(a;b) and its maximin and minimax
a=b b a—b

strategies are [0,0, %%, 2] and [0,0, 2, 23] respectively.

Show that if a < b then the game of Table 10.3 is strictly determined and
solve it.

Suppose that in the game of Example 2 Charlie adds amount a (rather than
b) to the pot. Show that the resulting game can be reduced to the subgame
0 0
a—b a—3b
1 8
a—b 3a—b
8 8
3a—3b a—b
8 2

. Solve the game of Exercise 8 if a = 16 and b = 8.
10.
11.
12.

Solve the game of Exercise 8 if a = 8 and b = 16.

Solve the game of Exercise 8 for any positive a and b.

Suppose that in the game of Example 2 Ruth adds amount a (rather than
b) to the pot when she raises. Show that the resulting game can be reduced
to the subgame

0 0 0
3a 0—3a
4 0 8
a b—a 3b—a
4 8 8
b—a b—a
a 8 2

Solve the game of Exercise 12 if a = 8 and b = 16.

Solve the game of Exercise 12 if a = 16 and b = 8.

Solve the game of Exercise 12 if a > b.

Solve the game of Exercise 12 if b > 3a.

Show that if @ > b in the game of Example 3, then the game is strictly
determined and solve it.

Suppose that in the game of Example 3, Ruth loses amount b (rather than
a) whenever she folds. Show that the resulting game is strictly determined
and solve it.

Suppose that in the game of Example 3, Charlie loses amount b (rather than
a) whenever he folds. Show that the resulting game is strictly determined
and solve it.
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20.

21.

22.

23.

24.

10. POKER-LIKE GAMES

Show that if Ruth employs strategy [.2,.4,0, .4] in the subgame of Table 10.6
and Charlie employs any pure strategy, then the resulting payoff is no less
than .8.

Show that if Charlie employs strategy [.2,.2,0, .6] in the subgame of Table
10.6 and Ruth employs any pure strategy, then the expected payoff is no
greater than .8.

Use Exercises 21, 22 to argue that value = .8, maximin strategy = [.2, .4, 0, .4]
and minimax strategy = [.2,.2,0,.6] constitute a solution to the subgame of
Table 10.6.

Show that if b > a then Example 3 reduces to the subgame

F F C C
P B P B
B a a 0 0
B
b b—a
Be 2 0 2 3
PC a atb =b 0
B 2 2 2
PC —a b—a
PF 0 b5 0 N
Show that
ab(b — a)
value = m

b2+a2’ b244a2 " b+ a2
(b—a)? a(b—a) _ a(b+a)
b24+a?’ b24+a2’ 7 b2 +q2

. {(b —a)? 2a(b-a) 2a? }
maximin strategy =

minimax strategy = [

constitutes a solution to this subgame.

Solve the following variation on the game of Example 2. Each player places
an amount a in the pot. In each of two hats an Ace, a King and a Queen
are placed (so that there is a total of six cards). Each player draws a card at
random from his designated hat. Ruth has two alternatives now: she can see
(i.e., challenge Charlie) or she can raise by adding amount b to the pot. If
she sees, the higher hand wins the pot and equal hands split it. If she raises,
Charlie has two options: he can fold or he can also add amount b to the pot
and call. If Charlie folds, Ruth wins the pot. If he calls then again the higher
hand wins and equal hands split the pot. (Hint: It clearly doesn’t make any
sense to adopt a strategy that simultaneously calls for an aggressive move on
one card and a conservative move on a higher card. Consequently each player
needs consider only three strategy: aggressive on all three cards, aggressive

on the Ace and King only, or aggressive on the Ace only.)
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PURE MAXIMIN AND
MINIMAX STRATEGIES

What to do when a zero-sum game is played only once.

Sometimes a game such as Bombing-sorties is played only one time, so that

Attack
Bomber Support

Bomb 80% 100%
placement -

Support |  90% 50%

the von Neumann Theorem is not applicable. Nevertheless, the basic idea of
the maximin and minimax strategies can still be used to make decisions in a
manner that seems to correspond quite realistically to the manner in which
people actually think. Note that in this game, if General Ruth places the bomb
on the bomber she is guaranteed a payoff of an 80% chance of the mission being
successful. On the other hand, the alternative of placing the bomb on the support
plane can only guarantee a 50% chance of success. The U. S. military directives
are quite explicit on this subject. A commander is enjoined to select that course
of action which offers the greatest promise of success in view of all the enemy
capabilities. In other words, that course of action is to be pursued which can
guarantee, regardless of enemy actions, the best possible results. In this case, the
directive calls for placing the bomb on the bomber, since that guarantees a payoff
of 80%, regardless of the fact that placing the bomb on the support plane might
result in the higher 90% if Charlie attacks the bomber (as he most likely will).
This conservative search for guarantees is applicable to any zero-sum game. For
Ruth this is called the pure mazimin strategy and it dictates the selection of that

115
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row whose minimum entry is the largest (amongst all the rows). That largest
minimum entry is called the pure mazimin value of the game.

ExXAMPLE 1. Find the pure maximin strategy and value of the game

3 2 6 2 2

5 14| 3| 41 3

1 2 3 1 1

Consequently, this game’s pure maximin strategy is [0, 1, 0] and its pure maximin
value is 3.

In Bombing-sorties, Charlie’s military directives imply that he should attack
the bomber, since that reduces the mission’s chance of success to 80%. He
would be foolish to attack the support plane on the offchance that it might
hold the bomb, since that might allow for a 100% chance of success if the bomb
is on the other plane. In fact, General Charlie must choose the column that
guarantees the least chance of success for Ruth, no matter what Ruth does! This
is formalized as the pure minimaz strategy of an arbitrary zero-sum game, which
calls for Charlie’s selection of that column whose maximum entry is the smallest
(amongst all the columns). That smallest maximum entry is the pure minimaz
value of the game.

ExAMPLE 2. To find a pure minimax strategy and the value of the game of
the previous example, each column’s maximum entry is tallied at the bottom.

3 2 6 2
5 4 3 4
1 2 3 1

5 4 6 4

Since the smallest of these maxima is 4, it follows that both [0, 1, 0, 0] and [0,
0, 0, 1] constitute pure minimax strategies and the pure minimax value is 4.

For any single instance of the game of Examples 1, 2, Ruth can guarantee,
by selecting the second row, that she will gain at least 3. Charlie, on the other
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hand, can guarantee, by selecting the second column, that Ruth will gain no
more than 4. Since this is true for any single instance even when the game
is played many times, it follows that the (mixed) value of the game must lie
between these guarantees. In general the following holds.

THEOREM 3. For any m X n zero-sum game
pure maximin value < mized value < pure minimax value.

EXAMPLE 4. In the game of Examples 1,2 the third row is dominated by the
first one and may consequently be deleted. In the resulting 2 x 4 game the first
and the last columns both dominate the second one and can be deleted. The
resulting subgame

2 6

4 3

is not strictly determined. Ruth has oddments [4 — 3,6 — 2] = [1,4] and so her
maximin strategy is [.2, .8]. The value of both the subgame and the original
game is

2x1x2+8x1%x4=.44+32=36

which does indeed lie between the pure maximin value of 3 and the pure minimax
value of 4.

Chapter Summary

When a zero-sum game is played only once the mixed minimax and maximin
strategies are of no avail. Instead pure maximin and minimax strategies (and
values) are recommended. The relation between the pure and mixed solutions
of a game is displayed in Theorem 3.

Chapter Terms
Pure minimax strategy 116 Pure minimax value 116
Pure maximin strategy 115 Pure maximin value 116

EXERCISES 11

Find the pure maximin and minimax strategies and values for the games in
Exercises 1-8.

2 -1 2 -1 0
0 2 0 2 -1
1 2.
0 -3 1 2 3
1 2 4 S 6
-1 5 7 8 9
3. 4




118 11. PURE MAXIMIN AND MINIMAX STRATEGIES

1 9 1 )
0 -1 -2 3 6 2 6 0
-2 1 0 ) ) 7 3 2
5 4 -2 2 1 6. 8 4 3 4

-2 3 -1 —4 9

4 -9 -5 0 2

) -5 6 —6 0

. 5 3 1 2 4

-9 1 2 3 —4

4 -8 ) -3 6

7 0 =7 0 8

1 -2 3 —6 3

8. -1 4 5 6 )

2 -1 -1 5 3 4

0 2 0 -2 0 -5
9 10. 11

2 3 ) -1 2 0

0 9 -2 3 -1 2
12. 13. 14.

15*. Prove that for any 2 x 2 game, if any two of the following three quantities
are equal to each other then all three are equal to each other: the value of
the game, the pure mazimin value of the game, the pure minimaz value of
the game. Find a 2 x 3 game for which this is false.

16. The payoffs in the game below denote dollars. Ruth and Charlie are about

to play this game 100 times.

3 -1

1 2
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a) Does Ruth have a strategy that guarantees her winning something each
time the game is played?

b) Does Ruth have a strategy that guarantees her winning a total of $80
or more?

c) Does Ruth have a strategy that guarantees her winning a total of $120
or more?

d) Ruth is playing this game in order to raise $120 which she needs very
badly (she owes this money to a loan shark). What strategy should she
use?

e) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $90?

f) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $1207

g) It so happens that Charlie only has $125. Should he lose more, he will
have to ask his parents again for some money, something he is not willing
to do anymore. If he still wants to play, what should his strategy be?

17. The payoffs in the game below denote dollars. Ruth and Charlie are about
to play this game 100 times.

3 -2

-1 2

a) Does Ruth have a strategy that guarantees her winning something each
time the game is played?
b) Does Ruth have a strategy that guarantees that her losses will not exceed
$1207
¢) Does Ruth have a strategy that guarantees that her losses will not exceed
$807
d) Ruth is playing this game in order to raise $30 which she needs very
badly (she owes this money to a loan shark). What strategy should she
use?
e) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $907
f) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $1207
g) It so happens that Charlie only has $60. Should he lose more, he will
have to ask his parents again for some money, something he is not willing
to do anymore. If he still wants to play, what should his strategy be?
18. The payoffs in the game below denote dollars. Ruth and Charlie are about
to play this game 100 times.
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19.

20~.
21*.

22*.
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a) Does Ruth have a strategy that guarantees her winning something each
time the game is played?

b) Does Ruth have a strategy that guarantees her winning a total of $200
or more ?

c¢) Does Ruth have a strategy that guarantees her winning a total of $300
or more?

d) Ruth is playing this game in order to raise $30 which she needs very
badly (she owes this money to a loan shark). What strategy should she
use?

e) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $90?

f) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $2507

g) It so happens that Charlie only has $250. Should he lose more, he will
have to ask his parents again for some money, something he is not willing
to do anymore. If he still wants to play, what should his strategy be?

The payoffs in the game below denote dollars. Ruth and Charlie are about
to play this game 100 times.

3 -3
—4 2

a) Does Ruth have a strategy that guarantees her winning something each
time the game is played?

b) Does Ruth have a strategy that guarantees that her losses will not exceed
$1207

¢) Does Ruth have a strategy that guarantees that her losses will not exceed
$3007

d) Charlie is playing this game in order to raise $30 which he needs very
badly (he owes this money to a loan shark). What strategy should he
use?

e) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $1807

f) Does Charlie have a strategy that is guaranteed to hold Ruth’s winnings
to less than $2507

g) It so happens that Ruth only has $35. Should she lose more, she will have
to ask her parents again for some money, something she is not willing
to do anymore. If she still wants to play, what should her strategy be?

Prove Theorem 3.

Suppose the rules of game playing are changed so that Charlie is allowed

to make his move after Ruth has made her move and in full knowledge of

her actions. Identify Ruth’s optimal strategy.

Suppose the rules of game playing are changed so that Ruth is allowed to

make her move after Charlie has made his move and in full knowledge of

his actions. Identify Charlie’s optimal strategy.



http://dx.doi.org/10.1090/mawrld/013/12

_1:2_

PURE NONZERO-SUM GAMES

Some well known concrete nonzero-sum games are discussed.
Solutions are offered for the unrepeated games and
their characteristics are appraised.

A considerable amount of scholarly effort has been expended on attempts to carry
over parts of the theory of zero-sum games to other, less restrictive, games. These
are games wherein one player’s gain is not necessarily the other player’s loss,
where the payoff may be unquantifiable, and where the players’ decisions may
not be independent of each other. Sometimes the payoff may be oneupmanship
or loss of face, and in some situations reasonable behavior on the part of the
players will lead to greater payoffs for both of them. Of the many generalizations
of zero-sum games, the remainder of this text is confined to a discussion of two-
person noncooperative nonzero-sum games. The term noncooperative refers to the
assumption that the players do not consult each other about ways and means
for improving their payoffs. In the interest of brevity these games are referred
to as simply nonzero-sum games in the sequel.

Nonzero-sum games are also modeled by having Ruth select a row and Charlie
select a column from a suitable rectangular array. However, since a player’s gain
is not necessarily his opponent’s loss anymore, the payoff of each outcome can
no longer be described by a single number. The result of Ruth choosing row 14
and Charlie choosing column j is the payoff pair

(aia b])

where a; denotes Ruth’s payoff and b; denotes Charlie’s payoff. Thus, the general
2 x 2 nonzero-sum game has the array

121
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Charlie

(al,bl) (a27b2)
(a3, b3) | (as,bs)

Ruth

(1)

With some care, the zero-sum game strategies can be applied here as well.
First, however, it is necessary to formalize a guiding principle that presumably
motivates the players decisions. In the zero-sum case Ruth looked to maximize
her payoff, and, since Ruth’s gain was his loss, Charlie sought to minimize the
same payoff. Now, since the two players’ payoffs are independent of each other,
it will be assumed that each player bases his own decisions on his payoffs alone.
This is commonly formalized as follows.

THE PRINCIPLE OF RATIONALITY. Fvery player wishes to come out as well
off as possible.

In other words, cutting off one’s nose in order to spite one’s spouse is not
rational behavior, and such impulses will be given no consideration in this text.
A consequence of the Principle of Rationality is that each player will ignore the
other player’s payoffs in forming his decision. Thus, we may think of Ruth as
facing the (zero-sum) game

a a2

Ruth

as Qa4

against an irrelevant opponent and of Charlie as facing the (zero-sum) game

Charlie

b bo
b3 by

wherein his object, just like Ruth’s is to mazimize his payoff. Consequently, both
players have mazimin strategies. The payoff pair in the outcome determined by
the two pure maximin solutions is called the pure value pair of the game. The
pure maximin strategies and pure value pairs of any nonzero-sum game are easily
derived.

ExAMPLE 1. Find the pure maximin strategies and pure value pairs of the
game

(2,3) (3,5)
(2,2) (1,3)
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By the Principle of Rationality, Ruth’s considerations are confined to the
array

Ruth

and so her pure maximin strategy is [1, 0] with a corresponding maximin value
of 2. On the other hand, Charlie’s analysis is confined to the array

Charlie
3 5
2 3
2 3

and so his maximin strategy is [0, 1] with a corresponding maximin value of
3. Note that the entry at the bottom of each column is the minimum for that
column and that Charlie will choose the largest of these minima, in contrast
with the pure minimax stratetgy, which calls for recording the maxima of each
column and choosing the smallest amongst them.

The pure value pair is therefore the entry of the first row and second column,
(3, 5). Notice that this pure value pair does not consist of the two pure maximin
values. In subsequent examples Ruth’s and Charlie’s payoffs will not be sepa-
rated and the tallies will be kept next to the array of the original game. Thus,
this example’s two separate arrays for Ruth and Charlie will be replaced by the
single diagram below which still contains all the required information.

(2,3) (3,5)
(2,2) (1,3) |1

Ino

2 3

ExAMPLE 2. Find the pure maximin strategies and pure value pairs of the
game

(-1,0) (1,3)
(2,2) (0,1)

The row minima of Ruth’s and Charlie’s arrays are both tallied below.
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(_1’0) (1a3) -1
(2,2) (0,1)

(e

0 1

Since Ruth’s pure maximin value is 0 it follows that Ruth’s pure maximin strat-
egy is to select the second row. Charlie’s pure maximin value is 1 and so his
pure maximin strategy is also to select the second row of the b-array, i.e., the
second column of the given game. The pure value pair is (0, 1).

PRrISONER’S DILEMMA. Two people are arrested and held in connection with
a certain robbery. The prosecution only has enough evidence to convict them
of the robbery itself, but it is believed that the robbers were actually carrying
guns at the time, making them liable to the more severe charge of armed robbery.
The prisoners are held in separate cells and cannot communicate with each other.
Each of them is offered the same deal: If you testify that your partner was armed
but he does not testify against you, your sentence will be suspended while he will
spend 15 years in jail. If both of you testify against each other, you will both
get 10 years, and if neither of you does so, you both get 5 years in jail. Both
prisoners are fully aware that both have been offered the same deal. They are
given some time to think the deal over, but neither is aware of his expartner’s
decision.

This game is clearly nonzero-sum and can be described as

Refuse Accept
the deal the deal
Refuse
the deal (—5,-5) (—15,0)
Accept
the deal (0, —15) (—10,-10)

where the payoff —z denotes a jail term of x years. Each player’s pure maximin
strategy is easily derived.

(—5,-5) (—15,0) —15
(0, —15) (-10,-10) | —10

-15 -10
The pure maximin strategy is [0, 1] for both players. Thus, the maximin strat-
egy recommends that both prisoners accept the deal offered by the prosecution,
thereby guaranteeing that each will receive a 10 year jail term. Both experience
and experimentation testify to the fact that this is frequently the decision made
by people in such circumstances. This is unsettling because if both of the players
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had refused the deal, they would have each received the 5 year term, a distinctly
better sentence for both.

Let us digress in order to formalize this vague notion of “unsettling.” In any
nonzero-sum game, a payoff pair (a, b) is said to be better than the payoff (a’,b’)
if either of the following conditions hold:

a>a and b>b or a>d and b>V.

Equivalently, (a, b) is better than (a’,b’) if it dominates it in the sense of Chapter
8 and they are also distinct. Thus, (3, 2) is better than each of the payoffs (1, 2),
(3, 1) and (2, 2). An outcome of a game is Pareto optimal if the game possesses
no outcome with a better payoff. In game (1) below, the outcomes with payoffs
(2, 3) and (1, 5) are both Pareto optimal.

(2,3) | (1,5)
(2,2) (0,3)

On the other hand, in the game of Example 1 above, the outcome with payoff
(3, 5) is the only Pareto optimal outcome.

It is clear that when the players of a game are treated as a group, Pareto opti-
mal outcomes are desirable. The unfortunate and tragic aspect of the Prisoners’
dilemma game is that both the strategy recommended by game theory and the
observed behavior of people result in the outcome with payoff (—10, —10), which
is dominated by (—5, —5) and hence is not Pareto optimal.

CHICKEN. This game describes a very common situation. Two adversaries
are set on a collision course. If both persist, then a very unpleasant outcome,
sometimes mutual annihilation, is guaranteed. If only one of the players swerves
away (chickens) he loses the game. If both swerve, the result is a draw.

Usually, the reward for winning this game is merely a sense of dominance, and
swerving only entails loss of face, both equally unquantifiable. The possibility of
mutual annihilation when both players persist is what makes this a nonzero-sum
situation. In that case neither player gains anything; in fact, quite frequently
both stand to lose their lives. We shall offer no solution and wish to discuss
only some paradoxical aspects of the game. For this purpose, the game will
be made concrete by transferring our attention to the Cuban missile crisis of
October 1962, certainly one of best known and most frightening Chicken games
ever played.

In that month the United States discovered that the USSR was building a
missile base in Cuba. As a small Soviet fleet was on its way to the island to
bring in supplies, the Americans set up a naval blockade. It is quite likely that if
these two fleets had met, the conflict would have escalated into a full fledged, and
probably nuclear, war. In the event, the Soviets blinked, their ships withdrew,
and the United States “won”. It is our purpose here to discuss a curious wrinkle
on this confrontation.
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While it is impossible to realistically quantify the various outcomes of this
game, it is possible to introduce some numbers into it by a preferential ranking
of the various outcomes. There were four possible outcomes for the Cuban missile
crisis:

(US swerves, USSR swerves), (US persists, USSR, swerves)
(US swerves, USSR persists), (US persists, USSR persists).

The players would rank these outcomes preferentially as follows (1 denoting
the least desirable and 4 the most desirable outcomes):

US USSR
(US persists, USSR swerves) 4 (US swerves, USSR persists)
(US swerves, USSR swerves) 3 (US swerves, USSR swerves)
(US swerves, USSR persists) 2 (US persists, USSR, swerves)
(US persists, USSR persists) 1 (US persists, USSR persists).

These preferences are summarized as the nonzero-sum game:

USSR
Swerve Persist

US Swerve (37 3) (27 4)
Persist | (4,2) (1,1)

Here the “payoff” (i, j) associated with any outcome denotes the fact that the
US assigns this outcome the ranking i in its preference list, whereas the USSR
assigns it the ranking j. The maximin solution of this game recommends that
both players swerve and has payoff (3, 3).

Suppose now that on October 27, the day before the crisis ended, President
Kennedy had been notified that his staff was infiltrated by Soviet spies and that
whatever decision he would make would immediately be made known to Premier
Khrushchov. One would think this to be a cause for much consternation for the
Americans. We will argue that the opposite is the case and that in fact:

In the game of Chicken, a player’s foreknowledge of his opponent’s decision
works to that player’s disadvantage, provided that the opponent is aware of the
player’s foreknowledge.

This conclusion will be drawn on the basis of the Principle of Rationality.
Taking the infiltration into account, President Kennedy would have reasoned as
follows:

if I decide to swerve, Khrushchov will know it and, choosing between (3, 3)
and (2,4), he will decide to persist, an outcome with payoff (2,4);

if I decide to persist, Khrushchov will know it and, choosing between (4,2)
and (1,1), he will decide to swerve, an outcome with payoff (4,2).



A GENTLE INTRODUCTION TO GAME THEORY 127

Thus, if Kennedy swerves the outcome will be (2, 4), whereas if he persists
the outcome will be (4, 2). He would therefore choose to persist, resulting in the
payoff pair (4, 2) wherein the Soviets swerve.

This is, of course, exactly what transpired. It could be argued that while
the USSR had in all likelihood not been privy to the American decision making
process, its leaders were wiser and more cognizant of the possible disastrous
consequences of political games of Chicken. After all, only 17 years had passed
since the conclusion of World War II in which 20 million Russians are estimated
to have perished and major portions of their land were devastated whereas only
one of that war’s battles was fought on American soil.

The essential feature of the infiltration that was hypothesized in the Cuban
Missile Crisis is that the USSR did not select its option until after the US had
done so. In general this prerogative may or may not be beneficial to the player
who possesses it.

ExaMPLE 3. Consider the game

(5,2) | 3,00 | (&1 | (23
6,3) | (5,4) | (7.4) | (L)
(7,5) | (4,6) | (6,8 | (0,2)

Suppose first that Charlie is informed of Ruth’s decision when he makes his own,
and that Ruth is aware of this fact. Then Ruth will reason as follows:

If I select row 1, Charlie will opt for the payoff pair (2, 3);
If T select row 2, Charlie will opt for one of the payoff pairs (5, 4) and (7, 4);
If I select row 3, Charlie will opt for the payoff pair (6, 8).

The Principle of Rationality then will direct Ruth to select row 3 and Charlie
to choose column 3 resulting in an outcome with payoff pair (6, 8).

On the other hand, if Ruth is the one who is informed of Charlie’s decision
when she makes her own, and if Charlie is aware of this fact, then he will reason
as follows:

If I select column 1, Ruth will opt for payoff pair (7, 5);
If I select column 2, Ruth will opt for payoff pair (5, 4);
If I select column 3, Ruth will opt for payoff pair (8, 1);
If I select column 4, Ruth will opt for payoff pair (2, 3).

The Principle of Rationality then will direct Charlie to choose column 1 and
Ruth to choose row 3 for a payoff pair of (7, 5).

If neither player is informed of their opponent’s decisions, then Ruth’s max-
imin strategy calls for the selection of row 1 for a guaranteed payoff of at least 2.
Charlie’s maximin strategy calls for the selection of column 1 for a guaranteed
payoff of at least 2. The actual outcome will then have payoff pair (5, 2). Thus,
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in this game, information about the opponent’s decisions is advantageous to each
player.

It was seen in the discussion of the Chicken game that the maximin analysis
can fail to properly describe human behavior in some gamelike situations. In
retrospect, in that particular case, the failure was due to the oversimplification
that occurred when it was assumed that the players made their decision indepen-
dently and simultaneously. In most instances of this game however, the players’
behaviors very much affect each other. They continuously observe each other and
when one swerves the other will most certainly persist to the end. Rather than
completely disqualify the maximin strategy for such games, a way was found to
adapt it so as to continue to supply researchers with satisfactory solutions.

Both the pure and the mixed maximin solutions of the zero-sum games possess
a qualitative trait that can be transferred to the nonzero-sum context as well.
Recall that both yield a maximal guaranteed payoff; an exrpected payoff in the
mixed case, but still guaranteed. In other words, if the player is looking for
guarantees, then he only stands to lose (i.e., have his guarantee diminished) by
switching to a nonmaximin strategy. Consider, for example, the zero-sum game
below in which the underlined 1 is a saddlepoint.

4 0 4
1 1 1
4 0 4

The maximin strategy calls for Ruth to select the second row. Note that if she
selected either of the other rows, she might possibly gain 4, but her guarantee of
always winning at least 1 would be gone. Experience indicates that this search
for guarantees is a very strong motivator of human behavior. While it may not
lead to the best of all possible payoffs, it does offer the players the consolation of
having eliminated the possibility of their regretting their decisions. Each player
knows that he has played so as to obtain the best possible guarantee, regardless
of what the opponent did. This No Regrets policy can be applied to nonzero-sum
games as well.

In a nonzero-sum game, an outcome is said to be a Nash equilibrium point
if its payoff pair (a;,b;) is such that a; is maximum for its column, and b; is
maximum for its row. Such a Nash equilibrium point has the desired No Regrets
property since, given that Charlie selected column j, Ruth has no reason to
regret having selected row i—no other selection of Ruth’s would have yielded
her a better payoff. Similarly, given that Ruth selected row i, Charlie has no
reason to regret having selected column j—no other selection of his would have
yielded him a better payoff. Note that in this definition of the Nash equilibrium
each player is assumed to be concerned with regrets only over her or his own
actions. Any feelings that they might have regarding the other players’ choices
are ignored. The reason for this limitation is that the incorporation of such
feelings would result in too many complications.
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ExAMPLE 4. Find the Nash equilibrium points of the game

(5,2) | (3,00 | (8,1) | (2,3)
6,3) | (54) | (7.,4) | (L)
(7,5) | (4,6) | (6,8) | (0,2)

129

One method for finding these points is to examine all the payoff pairs (a;, b;) in
succession and to star both each a; that is a maximum for its column and each
b; that is a maximum for its row. The Nash equilibrium points are those

(5,2) (3,0) (8%,1) (2%,3%)
(6,3) | (57,47) (7,47) (1,1)
(77,5) (4,6) (6,8") (0,2)

whose payoff pairs have both entries starred. Thus, the Nash equilibrium points
of the given game are those with payoffs (5, 4) and (2, 3). Note that one of these
payoff pairs, namely (5, 4), is clearly preferable to the other. Nevertheless, this
does not necessarily mean that either Ruth or Charlie will aim for this “better”
payoff pair. After all, by selecting the second row (that of the pair (5, 4)), Ruth
opens herself up to the possibility of obtaining a payoff of only 1 if Charlie selects
column 4. Similarly, if Charlie were to select the second column (that of the pair
(5, 4)) he would be opening himself up to the possibility of gain 0 if Ruth selects
row 1.
The next example shows that pure Nash equilibrium points need not exist.

ExXAMPLE 5. Find the Nash equilibrium points of the game

(2,1) (1,2)
(1,2) (2,1)

When the row maximum of the first entry and the column maximum of the
second entry of each payoff pair are starred we obtain the pattern

(2%,1) (1,2%)
(1,2%) (2%,1)

Since no payoff pair has both of its entries starred it follows that this game has
no pure Nash equilibrium points.

The logic that underlies the Nash equilibrium is the expectation that as the
players watch each other maneuver, the situation will naturally gravitate towards
a Nash equilibrium outcome. Such was the case in the Cuban Missile Crisis. As
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those October days passed the Russians became convinced of the Americans’
determination to persist and so they swerved. The diagram below demonstrates
that this actual outcome is indeed one of the two Nash equilibrium points of that
confrontation.

USSR
Swerve Persist
Us Swerve (3,3) (2*,4%)
Persist | (4%,2%) (1,1)

Prisoner’s Dilemma has only one Nash equilibrium point with

Refuse Accept
the deal the deal
Refuse
the deal (=5,-5) (—15,0%)
Accept
the deal (0%, -15) (-10%, —10%)

payoff pair (—10, —10) which is consistent both with its maximin strategy and
many observed solutions. Here, of course, the players cannot watch each other
reach their decisions. Nevertheless, the oft reached outcome wherein both pris-
oners accept the deal does turn out to be a Nash equilibrium point.

The Nash equilibrium points have become a popular tool for theoretical econo-
mists. The next example should give the reader some feel for how this concept
is used by them.

THE JOB APPLICANTS. Firms 1 and 2 have one opening each for which they
offer salaries 2a and 2b, respectively (the 2 is only used in order to prevent
fractions from appearing later). Each of Ruth and Charlie can apply to only one
of the positions and they must simultaneously decide whether to apply to firm 1
or to firm 2. If only one of them applies for a job, he gets it; if both apply for
the same position, the firm hires one of them at random.

This situation is modeled as the 2 x 2 nonzero-sum game

Charlie
applies to
firm 1 firm 2
firm 1 (a’ a) (2(1, 2b)
Ruth applies to
firm 2| (2b,2a) (b,b)

In this array the entries (2a,2b) and (2b,2a) are self-explanatory. The entry
(a,a) is obtained by reasoning as follows. If both Ruth and Charlie apply to the
same firm, then, because it was stipulated that the firm will select an applicant
at random, each can expect a payoff of half the salary, i.e., a. A similar line of
thought justifies the entry (b,b).
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Not surprisingly, the analysis of the game depends on the relationship between
a and b. Suppose first that

a<2b and b < 2a.

In other words, suppose first that the two salaries are not too far out of line
with each other in that neither exceeds double the other. Then the two entries
(2a,2b) and (2b,2a) are both pure Nash equilibria. Such, for example might be
the outcome if Ruth and Charlie became aware of each other’s existence and
came to some mutual agreement.

On the other hand, if the salaries are out of line with each other, say

b > 2a.

then it is the entry (b, b) that constitutes the unique pure Nash equilibrium point.
This corresponds to both Ruth and Charlie applying for the better job. The case
where b = 2a is intermediary and has all of the above three outcomes as its Nash
equilibria.

Thus, this highly simplified model predicts that if the disparity between the
salaries is not too great then some reasonable distribution of the positions may
happen. If one job is much better than the other, then both will apply for it
resulting in a situation where one of them remains unemployed.

This model will be discussed again in greater depth in the next two chapters.

We mention in closing this chapter that the 2 x 2 nonzero-sum games have
been classified in Rapoport, Guyer, and Gordon (1976) into 78 different types.
This classification depends on the distribution of Pareto optimal outcomes, Nash
equilibrium points, and their relationship to the maximin strategies.

Chapter Summary

Nonzero-sum games, where one player’s gain is not necessarily the other
player’s loss are modeled as rectangular arrays of pairs of numbers. The pure
maximin strategy can be used as a guideline in such games when they are played
a single time. Two concrete games, Prisoner’s Dilemma and Chicken were dis-
cussed in detail. Their analyses led to the definition of Pareto optimal and Nash
equilibrium outcomes.

Chapter Terms

Better than 125 Chicken 125
Nash equilibrium 128 Nonzero-sum game 121
Pareto optimal outcome 125 Payoff pair 121

Principle of Rationality 122 Prisoner’s dilemma 124
Pure maximin strategy 122 Pure value pair 122

EXERCISES 12

For each of the nonzero-sum games in Exercises 1-10 find the following:
a) all the pure maximin strategies,
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b) the pure maximin values,

) all the pure value pairs,

) all the Pareto optimal payoffs,

) all the pure Nash equilibrium points,

f) the outcome of the game if Charlie is aware of Ruth’s decision when he
makes his, and Ruth knows of this,

g) the outcome of the game if Ruth is aware of Charlie’s decision when she
makes hers, and Charlie knows of this.

¢
d
e

(2,3) | (1,4) 0,5) | (2,3) (L3) | 3,1)
Jos [an | lav|ay ] @] e
(5,4) | (41) (L,2) | (3,4)
D | &5 (L4 | 3,2 (5.6) | (7.8)
Jav ey | [GD 58| ([0 | 69
(9,0) (8,1) (7,2) (9,0) (8,-1) (7,-2)
(6,3) | (5,4) | (4,5) 6,-3) | (5,—4) | (4,-5)
7 (376) (277) (1,9) 8. (37_6) (27_7) (17_9)

(172) (1’_2) (1)1) (0a3)

(231) (an) (_3>0) (17_2)

G-1 | (=2,1) (2,1) (2,2)

9. (2,1) (2,2) (1,-1) (-1,1)

(-1,2) (-2,1) (2,0) (1,2)

(1’1 (350) (05'—3) (‘-2»1)

(1,-2) (3,0) (1,2) (0,3)

10. (3,0) (2’2) (_1»1) (_1’1)

Describe the following situations as nonzero sum games.

11. Leader (A. Coleman) Two motorists are waiting to enter a heavy stream
of traffic from opposite ends of an intersection, and both are in a hurry to
get to their destinations. When a gap in the traffic occurs, each must decide
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13.

14.

15.

16.

17.

18.

19.

20.
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whether to concede the right of way to the other or to drive into the gap.
(Use the preferential ranking of the game of Chicken to assign numerical
values to the payoffs).

Battle of the sexes (Luce and Raiffa) Ruth and Charlie, who are happily
married, are planning an evening’s entertainment. Ruth would like to go to
the concert at the Arts Center, and Charlie would rather stay home and watch
the ball game on TV. Still, both would rather spend their time together than
separately. (Use the preferential ranking of the game of Chicken to assign
numerical values to the payoffs).

Two leagues (Dixit & Nalebuff) Two football leagues, USFL and NFL, are
deciding whether to schedule their games in the fall or in the spring. They
estimate that 10 million viewers will watch football in the fall, but only 5
million will watch in the spring. If one league has a monopoly during a
season, it gets the entire market. If both leagues schedule their games for
the same season, the NFL gets 70% and the USFL gets 30% of the market.
Oil Cartel (Dixit & Nalebuff) Ruth and Charlie are the rulers of two coun-
tries that have formed an oil cartel. In order to keep the price of oil up,
they have agreed to limit their productions respectively to 4 million and 1
million barrels per day. For each, cheating means producing an extra 1 mil-
lion barrels each day. Depending on their decisions, their total output would
therefore be 5, or 6, or 7 million barrels, with corresponding profit margins
of $16, $12, and $8 per barrel.

Robbery (Dixit & Nalebuff) Ruth is typical homeowner, and Charlie an
average burglar. Ruth is trying to decide whether to keep a gun in her home
and Charlie faces the options of whether or not to bring a gun to his next
break-in. (Use preferential ranking).

Altruist’s dilemma (Heckathorn) Ruth and Charlie, who are married, are
considering their Christmas gift strategy. To simplify matters, suppose they
can each either spend a lot or a reasonable amount on each other’s presents.
Use preferential ranking to display this as a nonzero-sum game.
Assurance game (Heckathorn) Ruth and Charlie are the employees of a firm
that has been remarkably successful over the last two years. They know that
their boss has more than enough money to give them both a raise. Suppose
each has the options of either not doing anything at all or else presenting
their boss with the ultimatum: “If you don’t give me a raise I quit!” Use
preferential ranking to present this situation as a nonzero-sum game.
Privileged game (Heckathorn) This is essentially the same as Ex. 17 with
the additional wrinkle that Ruth and Charlie are aware that when the boss
caves in to one employee’s ultimatum he will automatically give the other
employee a smaller raise.

Does every nonzero-sum game have to have at least one Pareto optimal out-
come? Justify your answer.

Give an example of a nonzero-sum game in which all the payoffs are distinct
and each outcome is Pareto optimal.
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MIXED STRATEGIES FOR
NONZERO-SUM GAMES

Mixed analogs of the Nash equilibrium and the maximin solutions
of 2 X 2 nonzero-sum games are offered. Examples from
economics and biology are discussed in detail.

Just like their zero-sum kin, nonzero-sum games may be repeated and their
strategies may be mixed. In analogy with the contents of the previous chapter
we shall discuss both mixed maximin strategies and mixed Nash equilibria.

As was done in the discussion of zero-sum games, we begin with 2 x 2 nonzero-
sum games. A mixed strategy for the general 2 x 2 game

Charlie

(alybl) (a27b2)
(as,b3) | (a4,bs)

Ruth

consists of a pair [s,t] where s and t are nonnegative numbers such that
s+t=1.

Ruth’s and Charlie’s general mixed strategies will again be denoted by [1—p, p]
and [1 — q,¢|, respectively. It will prove convenient to refer to such a pair of
strategies as a mized strategy pair. When Ruth and Charlie employ these mixed
strategies in a nonzero-sum game the expected payoff pair is computed in much
the same manner as it was for the zero-sum games, except that each player
focuses on his own payoffs. When the mixed strategies pair is ([1—p, p], [1—¢, q]),
Ruth’s expected payoff is denoted by er(p,q) and Charlie’s expected payoff is
denoted by ec(p, q).
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ExaMPLE 1. Compute the expected payoffs when Ruth and Charlie employ
the mixed strategy pair ([.3,.7],[.6,.4]) in the game

(1,2) (3,-2)
(-1,0) (0,4)
The auxiliary diagram
6 A4
3 (1,2) | (3,-2)
7 | (=1L0) (0,4)

yields

er(7,4)=3x6x1+.3x4x3+.7x.6x(—1)+.7x.4x0
= .18+ .36 — .42+ 0 =.12

and

ec(7,4)=3x6x24+3x4x(-2)+.Tx.6x0+.7x.4x4
=.36—-.244+0+1.12=1.24.

In the previous chapter the pure maximin strategy of either player of the gen-
eral 2 x 2 nonzero-sum game was obtained by each player confining his attention
to his own portion of the payoff array, and such also is the case for the mized
mazimin strategy. Each player will be assumed to be playing his array as a
zero-sum game against an irrelevant opponent, and the mixed maximin strat-
egy is that one which guarantees the best possible expected payoff. This payoff
constitutes that player’s mized mazimin value for that game.

ExXAMPLE 2. Find the mixed maximin strategies and values for the game

(5,4) | (2,2)
(4,1) | (1,3)

In this game, Ruth’s payoffs are

Ruth

which array, when viewed as a zero-sum game played by Ruth against an irrele-
vant opponent, has a saddle point in its upper right hand entry. Consequently,
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Ruth’s mixed maximin strategy is the pure strategy [1,0] and the mixed maximin
value is 2. On the other hand, Charlie’s payoffs constitute the array

Charlie

4 2

1 3

which is not strictly determined. Since his oddments are [3 — 2,4 — 1] = [1, 3],
it follows that his mixed maximin strategy is [.25,.75] and his mixed maximin
value is

25 x 44 .75 x 2 =2.5.

Since Ruth’s and Charlie’s portions of the payoff array of any nonzero-sum game
are independent of each other, there will be in general no relationship between
Ruth and Charlie’s mixed maximin values. This, of course, stands in marked
contrast to the state of affairs in zero-sum games where the player’s mixed val-
ues are identical (or each other’s negatives, depending on one’s point of view).
Thus, no analog of von Neumann’s Theorem 6.6 exists for the mixed maximin
strategies.

However, in 1950, John Nash succeeded in transferring the No Regrets aspect
of von Neumann’s Theorem to the nonzero-sum context. The significance of this
achievement was underscored in 1994 when he was awarded the Nobel Prize for
economics, in which discipline the concept of an equilibrium point has become
an indispensable theoretical tool. The remainder of this chapter is devoted to a
discussion of Nash’s point of view together with several examples and applica-
tions. To formulate this new version it will again be assumed that the players
are guided by the No Regrets policy enunciated in the previous chapter. In other
words, after the repeated game is done, each player would like to rest assured
that no other behavior on his part would have resulted in a better expected pay-
off. For the sake of completeness Nash’s theorem is stated in its full generality
even though its terms cannot be fully defined here. This general statement will
be followed by a working restricted version.

NasH’S THEOREM 3. Fuvery n-person finite nonzero-sum game has an equi-
librium point.

The ensuing discussion and examples are confined mostly to two-person 2 x 2
nonzero-sum games. Our limited version of Nash’s Theorem can now be stated
as follows.

THEOREM 4. In any 2 X 2 nonzero-sum game, there is a mized strategy pair
(L =p,p, [1-q,q]) such that

er(p,q) > er(p,q) forallp, 0<p<1 (1)

and
eC(ﬁa (7) 2> eC(ﬁv q) for all q, 0< q< 1. (2)
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Inequality (1) of this theorem says that if both players adopt the stipulated
strategies then Ruth would have gained naught by adopting any other strategy.
In other words, having employed the recommended strategy [1 — p,p], Ruth
has no cause for regrets as long as Charlie sticks to [1 — §,q]. Inequality (2)
makes a similar assertion about her opponent: Charlie has no cause to regret his
employment of [1 — g, ] as long as Ruth sticks to [1 —p, p]. The pair of strategies
[1-p,p], [1 -3, q] described by this theorem constitute a mized Nash equilibrium.
The numbers eg(p, ) and ec(p, §) are the game’s mized value pair. Together,
the mixed Nash equilibrium and the mixed value pair are a Nash equilibrium
solution of the game.

All known proofs of Nash’s Theorem are nonconstructive. In other words,
while they assert the existence of the mixed Nash equilibrium, they provide
no method for actually deriving its constituent mixed strategies. Chapter 14
describes a method for finding the mixed Nash equilibria of 2 x 2 nonzero-sum
games. The present chapter is confined to a description of a method for recogniz-
ing Nash equilibrium pairs. This topic is very similar to the issue of recognition
of maximin and minimax strategies for symmetric zero-sum games discussed in
Chapter 9.

First it is necessary to reconsider the optimal counterstrategies of Chapter 3
in the context of nonzero-sum games. Since each player is concerned only with
his own payoffs, it follows that an optimal counterstrategy is one that maximizes
a player’s payoff. Consequently, Theorem 3.1 holds for nonzero-sum games as
well (see Exercise 29):

THEOREM 5. If one player of a nonzero-sum game employs a fixed strategy,
then the opponent has an optimal counterstrategy that is pure.

EXAMPLE 6. Suppose Ruth employs the strategy [.2, .8] in the game

(3,2) (2,1)
(0,3) | (4,4)

Find an optimal response for Charlie.

We know that Charlie has an optimal counterstrategy that is pure and so we
compute the expected payoffs that correspond to the two pure strategies that
are available to him. The auxiliary diagrams below contain Charlie’s

1 0 0 1
2 2 1 2 2 1
8 3 4 8 3 4

payoffs only and they yield
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2x2+.8x3=28  for[1,0],
2x1+8x4=34 for[0,1].

Since Charlie is interested in maximizing his payoff, it follows that the pure
strategy [0, 1] , which yields him a payoff of 3.4, is an optimal response for him.

EXAMPLE 7. Suppose Charlie employs the strategy [.7, .3] in the game

3,2 | (1)
0,3) | (44)

Find an optimal response for Ruth.

Since Ruth has an optimal counterstrategy that is pure, we compute the
expected payoffs that correspond to the two pure strategies that are available to
her. The auxiliary diagrams below contain Ruth’s

7 3 703
1 3 2 0 3 2
0 0| 4 1 0 4

payoffs only and they yield

TIx3+3x2=27 for[1,0],
Ix0+3x4=12  for [0,1].

Since Ruth is interested in maximizing her payoff, it follows that the pure strat-
egy |1, 0] , which yields her a payoff of 2.7, is an optimal response for her.

We now turn to the issue of recognizing Nash equilibiria. Suppose your math-
ematical consultant has provided you, at cost, with a mixed Nash equilibrium
pair for a game that is of interest to you. How can you be sure that the mathe-
matician has not made a mistake and that you are indeed getting your money’s
worth? Theorem 5 above provides us with a straightforward method for check-
ing on the proposed strategy pair. One need merely verify that none of the pure
strategies at each player’s disposal provide that player with a better payoff than
that resulting from the proposed Nash equilibrium pair.

ExXAMPLE 8. Verify that the mixed strategy pair ([.5, .5], [4, .6]) constitutes
a mixed Nash equilibrium for the game

—~
(3]
—

~—
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Ruth’s and Charlie’s payoffs for the proposed Nash equilibrium pair are respec-
tively,

er(.5,6)=5x.4x3+5x.6x2+5x.4x0+.5x.6x4
=6+.6+12=24,

and

ec(5,6)=5x4x24+5x6x14+5%x4x3+.5%x.6x4
=4+3+.6+12=25.
Is it possible for Ruth to improve her payoff by switching to an alternate strategy?

If so, then there must be a pure alternate strategy that allows her to accomplish
this. However, the auxiliary diagrams below both yield payoffs of

4 6 4 6
1| 32 | (21 0o | G2 | =1
0 | (03 | (44 1| (0,3) | (4,4

4x3+.6x2=24  for [1,0],
Ax0+.6x4=24 for[0,1],

both of which equal the value of eg(.5,.6) computed above. This demonstrates
that Ruth stands to gain nothing by switching to any alternate pure (or mixed)
strategy. Thus, the proposed Nash equilibrium pair can cause Ruth no regrets.
Does Charlie have any cause for regrets? The auxiliary diagrams below yield
payoffs
1 0 0 1
5 (3,2) | (2,1) 5 (3,2) | (2,1)

5 0,3) | (4,4) 5 0,3) | (4,4)

Hx2+.5x3=25  for [1,0],
SHx1+.5x4=25  for [0,1],
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both of which equal the value of ec(.5,.6) computed above. Thus, Charlie has
no cause for regrets either.

The conclusion is that the strategy pair ([.5,.5],[.4,.6]) constitutes a Nash
equilibrium pair for the given game.

The same method can also be used to recognize strategy pairs that are not
Nash equilibria.

EXAMPLE 9. Decide whether ([3,2], %, 2]) constitutes a Nash equilibrium
pair for the game

5,1 | (0,0)
(0,0) | (1,5)

The expected payoffs corresponding to the proposed strategy pair are
1/6 5/6

/3 1 (51) | (0,0)

2/3 (0,0) (1,5)

25 1 1 2 5 54+10 15 5
m(?5>:§XEX5+§XEX1: 18 18 6
25 1 1 2 5 1+50 51 17
eC(M)=§X6“+5X6X5=T=ﬁ=‘&

To see whether Ruth has any cause for regrets we compute the payoffs of the
auxiliary diagrams below as

1/6 5/6 1/6 5/6
1| 5,1 | (0,0 o | (51 | (0,0
0 | (0,0) | (1,5 1 | (0,00 | (1,5)
éxf):g for [1,0],
%xlzg for [0, 1].

As these alternate payoffs equal the value of eg (%, g), Ruth stands to gain
nothing by relinquishing the given strategy [%, %] Passing on to Charlie, the
auxiliary diagrams for the alternate pure strategies yield payoffs
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1 0 0 1
131 (1) | (0,0 13 (5,1) | (0,0)
2/3 | (0,0) | (1,5) 2/3 | (0,0) | (1,5)
1
%ng for [1,0],
1
§x5:§Q for [0,1].
Since the second of these, 12 = 3.3, exceeds the value I = 2.16 of ec (2, 2),

it follows that Charlie could improve his payoff by abandoning the proposed
strategy of [g, 2] in favor of the pure strategy [0, 1]. Hence, the given mixed
strategy pair does not constitute a Nash equilibrium.

We offer the reader an alternate way of visualizing the defining properties
of the Nash equilibrium. Suppose the values of egr(p,q) and ec(p,q), p

0, .2, 4, 6, .8, 1, ¢g=0, .2, .4, .6, .8, 1 are tabulated for the game

3,1) | (1,5)

(1,2) | (4,1)
in the form
W 0 0.2 0.4 0.6 0.8 1
o @G (2.6,1.8) || 222:6) I (1834) | (1.442) | (1,9
0.2 2612) | (2.4,1.8) ?(2.2,2.4)§ 23) | (1.83.6) | (1.64.2)
04 @2.14) | @218) | 2222) 1} 2226) | 223) | 234
0.6] (18,1.6) | (218 [ (222 || 2422 | 2624) | 28.26)
08 (418) | (818 218§ @618 | G18) | G418 |
1 12 (16,1.8) || 22,1.6) {| (28,14) | 3412) | (4,1

Observe that in the ¢ = .4 column, the first entry of all of the payoff pairs has
the constant value of 2.2, and that in the p = .8 row, the second entry has the
constant value of 1.8. Consequently the mixed strategy pair ([.2, .8], [.6, .4]) is
a Nash equilibrium since neither player stands to gain anything by changing his
mixed strategy.

While such a table can be a useful pedagogical tool, its construction is rather
laborious and the details are greatly dependent on the exact numerical values of
the constituent mixed strategies of the equilibrium. No more space will therefore
be devoted to such tables in this text.
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The next two examples are meant to demonstrate the wide range of applica-
bility of the notion of a mixed Nash equilibrium. They come from the disciplines
of economics and biology, respectively.

THE JOB APPLICANTS. In the previous chapter we modeled a situation
wherein Ruth and Charlie were allowed to apply to one of two positions offering
salaries 2a and 2b respectively, as the game

Charlie
ap;lﬁ?es to

firm 1 firm 2

firm 1 (a,a) (2a, 2b)
firm 2| (2b,2a) (b,b)

Ruth applies to

It was noted above that this game always has pure Nash equilibria whose exact
values depend on the relative sizes of a and b. Specifically, if neither salary
exceeds double the other, i.e., if

b<2a and a <?2b,

then the outcomes corresponding to the payoffs (2a,2b) and (2b,2a) constitute
pure Nash equilibria. In that case, however, the game also possesses a mixed
Nash equilibrium (see Ex. 18) each of whose strategies is

2a—b 2b—a
a+b’a+b |’
The components of this common strategy can be interpreted as this model’s pre-

dictions for the probabilities of Ruth (or Charlie) applying to the corresponding
firm. Ie., if a < 2b and b < 2a, then

2a —b
;+ 5 is the predicted probability of Ruth applying to firm 1
2b —

m ; is the predicted probability of Ruth applying to firm 2.
a

For example, if firms 1 and 2 offer salaries of $20,000 and $30,000 respectively,
then a = $10,000, b = $15,000, and this model predicts that the probability of
a player applying for firm 2’s position is

2 x 15,000 — 10,000 20,000
10,000 + 15,000 ~ 25,000

On the other hand, if either a > 2b or b > 2a, or, in other words, if one of the
salaries is more than double the other, then all the Nash equilibria are the pure
ones that were already discussed in Chapter 12 .

This analysis provides economists with a starting point for an investigation
of the question of what effect wage differentials have on the pool of applicants.
The details of this investigation fall outside the scope of this book.
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AN EVOLUTIONARY GAME. In recent years biological evolution has offered
some applications of Nash equilibria as well. In many species mating is preceded
by a duel between the males. Stags shove each other with their antlers and snakes
have wrestling matches. The winner gets to mate. Similar intraspecies contests
result from territorial disagreements. A surprising aspect of these contests is
that nature seems to be pulling its punches. Some individuals run rather than
fight. Stags do not gore each other’s vulnerable sides and in some species snakes
do not bite each other. This is, of course, quite sensible behavior for the species,
and the biologists Maynard Smith and Price have constructed a game theoretic
model for these contests in which this moderated ferocity is explained as a Nash
equilibrium. An unusual feature of this game is that it pits the species in question
against itself.

To define the game, we stipulate a species whose individuals engage in in-
traspecies duels. Each such confrontation constitutes a play of the game. The
individual members of the species are classified as either Hawks or Doves. A
Hawk always attacks in a confrontation and a Dove always runs away. The win-
ner of a confrontation gets to mate, or gets the better territory, and so he is
in a better position to propagate his genes. In the event of an actual physical
struggle, the loser sustains an injury. The payoff to the species of a single play
consists of the effect the duel has on the individual’s ability to reproduce, an
elusive quantity called his fitness. It will be assumed that the confrontation’s
winner’s fitness is augmented by amount 2a, and that a fight’s loser’s fitness is
reduced by amount 2b (the 2 is introduced here into the payoffs just in order
to simplify the subsequent calculations). The precise payoffs are computed as
follows:

Hawk vs. Hawk: The two contestants continue fighting until one is injured.
Inasmuch as each has a 50% chance of winning (and gaining 2a) or losing (and
losing 2b), each of them is assigned the payoff

50% x 2a + 50% x (—2b) = a — b.

Hawk vs. Dove: Since the Dove runs away, no physical struggle takes place;
Hawk gains 2a and Dove neither gains nor loses anything.

Dove vs. Dove: Again each contestant has a 50% chance of adding 2a to his
fitness, but as there is no physical fight, there is no question of injury. Thus,
each player is assigned the payoff

50% x 2a = a.
The resulting nonzero-sum game has the array
Hawk Dove
Hawk (a —b,a—0b) (2a,0)
Dove (0,2a) (a,a)
3)

In this game both Ruth and Charlie represent the same species, and each play
consists of a confrontation between some individuals. The pure strategy [1, 0]
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calls for the species to evolve Hawks only. The pure strategy [0, 1] calls for the
species to evolve Doves only. A mixed strategy consists of evolving a mixture of
both Hawks and Doves within the species. Such a strategy would presumably
be encoded into the species’ genes. However, mutations do occur with high
frequency, and it is reasonable to assume that whatever strategy is now in effect
could not be improved upon by any mutations. After all, if a change (that
is internal to the species) could improve on its overall fitness, then, given the
amount of time most species have been in existence, such a change would have
in all likelihood taken place a long time ago. Thus, it is reasonable to conclude
that the current ratio of Hawks to Doves in this species is a stable quantity
that maximizes its overall fitness. It will now be argued that the optimality of
this ratio implies that it actually comes from a mixed Nash equilibrium of the
nonzero-sum game (3).

Let us consider the mathematical analog of this optimality argument. Suppose
the species is currently using the mixed strategy [1—p, p], i.e., its Hawks-to-Doves
ratio is now (1 —p) : p. Each individual’s confrontation then augments his fitness
by the expected payoff computed from the auxiliary diagram

1-p p
1-p (a—b,a—b) (2a,0)
D (0,2a) (a,a)

This value is

er(p,p) = ec(p,p) = (1 —p)*(a — b) + p(1 — p)2a + p°a
=p*(a—b—2a+a)+p(—2(a—b) +2a) + 1(a — b)
= —p°b+ 2pb+a — b.

The reason egr(p,p) and ec(p,p) are equal is that both Ruth and Charlie rep-
resent the same species. The actual common value of these two expressions
is in fact immaterial at this point. It is only necessary to keep in mind that
eR(ﬁaﬁ) = eC(ﬁ)ﬁ)‘

Suppose now that a comparatively small subpopulation of this species mutates
and begins breeding Hawks and Doves with a mixed strategy of [1 —p, p] for some
p # p. Since this subpopulation is presumed small, its individuals will mostly
be confronting normal individuals, and hence the expected increment to the
mutated individual’s fitness from each battle is the common value of eg(p,p)
and ec (P, p) that correspond to the auxiliary diagrams

Normal population

1-p D
1-p (a_bva_b) (20"0)

Mutated
population P (0,2a) (a,a)
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or

Mutated population

I-p p
1-p| (a—b,a—0b) (2a,0)
Normal
population P (0, 2a) {(a,a)

The normal individual, however, still confronts mostly other normal individuals
and hence his fitness is augmented by the same quantity as before, namely,

eR(ﬁ7 ﬁ) = eC(pa ﬁ)

The above Panglossian argument that mutated strategies will not improve upon
the existing strategy entails, amongst others, the inequalities

eR(ﬁaﬁ) > eR(paﬁ) and eC(ﬁ:ﬁ) 2 eC(ﬁ,p)-

These inequalities, however, are tantamount to the No Regrets guideline since,
if we interpret game (3) as a game between the distinct opponents Ruth and
Charlie, these inequalities say that neither Ruth nor Charlie could have improved
their expected payoffs by changing from the strategy [1 — p,5] to any other
strategy [1—p, p]. Thus, the existing Hawks and Doves breeding strategy [1—p, p]
constitutes a mixed Nash equilibrium strategy of game (3). Let us examine the
Nash equilibria of this game.

If a > b, then a — b > 0 and the outcome with payoff (a — b, a — b) constitutes
the only (pure or mixed) Nash equilibrium (Exercise 14.31). The associated
pure strategy is [1, 0]. This can be interpreted as saying that if the advantage
of winning outweighs the injuries that accompany a loss, then the species will
breed only Hawks.

If a < b, then (Exercise 14.32) there are two pure Nash equilibria with re-
spective payoffs (2a,0) and (0,2a) and another mixed Nash equilibrium with
strategies

[1 _pvp] = [1 _CI'»Cﬂ = [%11 - %] .
The pure Nash equilibria can be ignored since each has [1, 0] as the strategy for
one player and [0, 1] as the other player’s strategy - an impossible situation given
that both players stand for one and the same species. This leaves us with the
mixed Nash equilibrium as the one that describes the species’ Hawks-to-Doves
ratio. Note that as a diminishes in comparison to b, this model predicts that
the species will breed fewer and fewer Hawks. In particular, ifa=1and b =3
i.e., if the effect of an injury from a duel outweighs the benefits of winning by a
factor of 3-to-1, then this model predicts that only

of the individuals of the species will be Hawks.
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Given the inherently inaccurate nature of the payoffs, the final case, a = b,
because of the exact equality it demands, is of course unlikely to occur in reality.
Exercise 14.34 asserts that in this case Hawks alone will be bred.

An alternate interpretation of the Nash-equilibrium strategy [1 — p, p] in this
evolutionary game is that it constitutes a ferocity index. On a scale of 0 (Hawk)
to 1 (Dove), the quantity s denotes the willingness to fight that evolution has
encoded into the genes of that species. This could explain why, when fighting
each other, the aforementioned snakes wrestle rather than bite.

m X n nonzero-sum games. All the concepts developed here for 2 x 2 nonzero-
sum games apply to larger games as well. An m X n nonzero-sum game is a
rectangular array of m rows and n columns in which each entry is a pair of num-
bers. The entry in the 7th row and jth column is denoted by (a; ;, b; ;). Given
two mixed strategy pair ([p1,p2,.--,Pm],[q1,92,---,qn]), Ruth and Charlie’s
expected payoffs, denoted by er and ec respectively are computed as

i=1,2,...
i=1,2,...

er =sum of all p; X g; X a;; ym,i=1,2,...,n,

ec =sum of all p; x g; x b; ; ,myi=1,2,... n.

ExAMPLE 10. Compute the expected payoffs when Ruth and Charlie use the
mixed strategy pair ([.5, .2, .3], [.1, .2, .3, .4]) in the nonzero-sum game

(1,2) | (0,-1) 3,1) | (-2,0)
(1,-3) (0,0) (2,1) | (=1,1)
(3,2) (1L,1) | (-1,1) | (3,-1)
The auxiliary diagram
1 2 3 4
(1,2) | (0,-1) (3,1) | (-2,0)
(1,-3) (0,0) 2,1) | (-1,1)
(3,2) (L1 | (=L,1) | (3,-1)

yields the expected payoffs

eg=5x.1%x14+5x.2x0+.5x.3x3+.5x.4x(-2)
+.2x1x14+2x2x0+.2x.3x2+.2x.4x(-1)
+3x.1I1x3+3x.2x14+.3x3x(-1)+.3x.4x%x3
=.05+ 45— .4+ .02+ .12 - .08 +.09 + .06 — .09 + .36 = .58,
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ec=5%xX.1x24+5x2x(-1)+.5x.3x1+.5x.4x%x0
+2x.1x(=-3)+2x2x0+.2x3x1+.2x.4x1
+3x.1x24+3x2x14+3x.3x1+.3x.4x(-1)
=.1-.14.15—-.06+ .06+ .08 4+ .06 + .06 4+ .09 — .12 = .32.

Theorem 5 offers the same guidance in the search for optimality in this wider

context as well.

EXAMPLE 11. If Ruth employs the strategy [.5, .2, .3] in the game of Example

10, find an optimal counterstrategy for Charlie.

The auxiliary diagrams

1 0 0 0
5 (1,2) | (0,-1) &1 | (=20
2 (1,-3) (0,0) 2,1 | (-L1)
3 (3,2) LY | =LY | B,-1)
0 1 0 0
5 (1,2) | (0,-1) 3,1 | (=20
2 (1,-3) (0,0) 21 | <11
3 (3,2) LY | LY | B3,-1)
0 0 1 0
5 (1,2) | (0,-1) 3,1 | (=20
2 (1,-3) (0,0) 21 | L1
3 (3,2) LYy | (<L | &-1
0 0 0 1
5 (1,2) | (0,-1) 3,1 | (=20
.2 (1,-3) (0,0) (2,1) (-1,1)
3 (3,2) LY | L1 | B3,-1)

yield the following payoffs for Charlie:
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ec=5x2+2x%x(-3)+.3x2=1-6+.6=1 for[1,0,0,0],
ec=5x(-1)+.2x0+.3x1=-5+.3=-.2 for[0,1,0,0],
ec=5x1+2x1+3x1=5+2+3=1  for[0,0,1,0],
ec=5x0+2x1+3x(-1)=.2-3=—.1 for [0,0,0,1].

I

Since 1 is the largest of these payofls, it follows that both [1, 0, 0, 0] and [0, 0,
1, 0] are optimal counterstrategies for Charlie.

The procedure used to check on proposed Nash equilibrium pairs for 2 x 2
games can be applied in the more general context of m x n games as well.

EXAMPLE 12. Show that ([.4,.4,.2],[.2,.6,0,.2]) is a Nash equilibrium for the
nonzero-sum game

(0,1) (1,0) (1,0) (0,1)
(1,0) (0,1) (1,0) (2,-1)
(1,0) (1,0) (1,0) (-1,2)
The auxiliary diagram
2 .6 0 2
4 (0,1) (1,0) (1,0) (0,1)
4 (1,0) (0,1) (LO) | (2-1)
2 (1,0) (1,0) (LO) | (=12

yields the expected payoffs

eR=4X6x14+4x2%x14+4%x.2%x24+2x2x1+.2%x.6x1
+.2x.2x(-1)=.24+.08+4+ .16+ .04 + .12 — .04 = .6,
ec=4X2x14+4x2x14+4x6x1+4%x2x(-1)+.2x.2x2
= .08 4+ .08 + .24 — .08 + .08 = 4.

On the other hand, if Charlie sticks to his [.2, .6, 0, .2] and Ruth experiments
with her pure strategies, she gets the payoffs

6x1=.6 for [1,0,0],
2x14+.2%x2=.6, for [0, 1,0],
2x1+.6x1+4.2x(-1)=.6 for[0,0,1],
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all of which equal the value of eg. Thus, Ruth has no reason to abandon her given
strategy. If Ruth sticks to her strategy of [.4, .4, .2] and Charlie experiments
with his pure strategies, he gets the payoffs

4x1=.4 for [1,0,0,0],
4x1=4 for [0,1,0,0],
0 for [0,0,1,0],
J

Ax1+4x(-1)+.2x2=.4 for[0,0,0,1],

none of which is better than the value of ec (note that one is actually worse).
Thus, Charlie has no reason to regret staying with the given strategy either, and
so the given strategy pair is indeed a Nash equilibrium.

Chapter Summary

The notion of a mixed Nash equilibrium point of a nonzero-sum game was
defined. Nash’s existence theorem was stated for 2 x 2 games and a method
for the verification of Nash equilibiria was provided. Applications to theoretical
economics and biology were discussed.

Chapter Terms

Dove 144 ec 147
ec(p,q) 135 Equilibrium solution 138
er 147 er(p,q) 135
Evolutionary game 144 Hawk 144
Job applicants 143 Mixed Nash equilibrium 138

Mixed strategy pair 135

EXERCISES 13

Compute the expected payoff when the games of Exercises 1-6 are played with
the specified mixed strategy pairs.

@4 | (01)

L LGB0 ] YD g 512 8)
@1 | (0,2)

o LD | WO | s 815, 5)
40) | (0,1)

3 | 32 | 5 (1.3, 7], [.8, -2])




6.

10.

11.

12.
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(4,3) | (0,2)
(1,0) | (1,1)
4,2) | (0,1)
(1,2) | (1,0)
(1,4) (1,1)
(2,0) (0,1)

([.7, .3], [0, 1))

(1, 01, [0, 1])

([-1, 9], [.5, .9])

For each of the games in Exercises 7-12:
a) Determine the mixed maximin strategies and values;
b) Decide whether the specified mixed strategies pair constitutes a Nash

equilibrium.
(3,2) (2,4)
(2,3) (4,-3)
3,2 (2,4)
(2,3) | (4,-3)
(3,2) (2,4)
(2,3) (4,-3)
(Za _3) (_1» 3)
(0,1) (1,-2)
(2,-3) (-1,3)
0,1 | (1,-2)
2,-3) | (-1,3)
(0,1) (1,-2)
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13. Decide whether the strategy pair ([%
equilibrium for the nonzero-sum game

,0,2,1],[3,4,0]) constitutes a Nash

(1,1) (0,2) (-1,3)
(0,2) (-1,3) (2,0)
(1,1) (0,2) (1,1)
(-1,3) (2,0) (0,2)

14. Decide whether the strategy pair ([4, i,O %] , [%, 0, i %]) constitutes a Nash
equilibrium for the nonzero-sum game

(1a0) (071) (LO) (—1’2)
(170) (1,0) (_1’2) (1’0)
(—1a2) (1’0) (1,0) (1,0)
(0,1) (1,0) (1,0) (1,0)
15. Decide whether the strategy pair ([0, 2 % %] , [%, %, % O]) constitutes a Nash

equilibrium for the nonzero-sum game

%, Z, %]) constitutes a Nash

17. Decide whether the strategy pair ([2
equilibrium for the nonzero-sum game

(-1,2) (1,0) (0,1) (1,0)
(1L,0) | (-1,2) (1,0) (0,1)
(0,1) (1,0) (-1,2) (1,0)
(1,0) (-1,2) (1,0) (-1,2)
16. Decide whether the strategy pair ([2,0,2,2],[0,2,2
equilibrium for the nonzero-sum game
(<12 | 10 | @y | 1o
(1,0) (-1,2) (1,0) (0,1)
(0,1) (1,0) (-1,2) (1,0)
(1,0) (-1,2) (1,0) (-1,2)
0.3.3.[3.3.3

EN 0]) constitutes a Nash
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19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29~

. Show that the strategy pair( [
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(-1,2) (1,0) (0,1) (1,0)
(1,0) (-1,2) (1,0) (0,1)
(0,1) (1,0) (-1,2) (1,0)
(1,0) (-1,2) (1,0) (-1,2)

2a—b 2b—a 2a—b 2b—a : :
STh ath ] , [ b ath ]) constitutes a mixed

Nash equilibrium for the Job Applicants game whenever neither salary ex-
ceeds double the other.

Suppose a = $12,000 and b = $25,000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 17 b) Firm 27
Suppose a = $24,000 and b = $20,000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 1?7 b) Firm 27
Suppose a = $10,000 and b = $12,000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 1?7 b) Firm 27
Suppose a = $50,000 and b = $20, 000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 17 b) Firm 27
Suppose a = $12,000 and b = $18,000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 1?7 b) Firm 27
Suppose a = $11,000 and b = $26,000 in the Job Applicants game. What is
the predicted probability of Ruth applying to the position offered by

a) Firm 17 b) Firm 27
Suppose a = 2 and b = 3 in the Maynard-Smith & Price Evolutionary Game.
What is the predicted proportion of

a) Hawks? b) Doves?
Suppose a = 3 and b = 2 in the Maynard-Smith & Price Evolutionary Game.
What is the predicted proportion of

a) Hawks? b) Doves?
Suppose a = 15 and b = 9 in the Maynard-Smith & Price Evolutionary
Game. What is the predicted proportion of

a) Hawks? b) Doves?
Suppose a = 6 and b = 15 in the Maynard-Smith & Price Evolutionary
Game. What is the predicted proportion of

a) Hawks? b) Doves?

. Prove Theorem 5.
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FINDING MIXED NASH EQUILIBRIA
FOR 2 x 2 NONZERO-SUM GAMES

A graphical method for finding the mixed Nash equilibria of
2 X 2 nonzero-sum games is described.

All known proofs of Nash’s Theorem are nonconstructive. In other words, while
they assert the existence of the mixed Nash equilibrium, they provide no method
for actually deriving its constituent mixed strategies. However, a graphical
method for finding these equilibria for 2 x 2 games is known and will now be
presented. For this purpose it is convenient to have an explicit formula for the
expected payoff when a given mixed strategy pair is used. The subsequent dis-
cussion and eventual proof pertain to the game

Charlie

(a1,b1) | (az,b2)
(a3, b3) (aq,b4)

Ruth

The following statement is easily verified by a reference to the appropriate aux-
iliary diagram (Exercise 28).

If Ruth and Charlie are employing mized strategy pairs ([1 — p,p],[1 — q,4])

in the general 2 X 2 nonzero-sum game of, then

er(p,q) = (a1 — a2 —az +ag)pg + (a3 — a1)p + (a2 — a1)g + a;
and (1)

ec(p,q) = (b1 — by — bs + bg)pg + (bs — b1)p + (b2 — b1)g + by.

155
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m<0 m=0 m>0

FIGURE 14.1. Looking for a Maximum.
The solution we are about to describe is based on the following observations
regarding maximum values.

LEMMA 1. For any fized m,c, and any variable z, 0 < x < 1, the value of
max + ¢ is mazimized by

only z=0 if m < 0,
any 0<z<1 if m =0,
only r=1 if m > 0.

Figure 1 contains typical graphs of the straight line segment y = mz +¢, 0 <
z < 1, in each of the three cases described in Lemma 1, and the justification of
this assertion follows from the fact that the maximum value of mz+c corresponds
to the highest point on the graph of y = mx + c.

The Nash equilibrium points of 2 x 2 nonzero-sum games will be found as the
intersections of two graphs. One of these graphs describes all the mixed strategy
pairs which will bring no regrets to Ruth, and the other graph describes all the
mixed strategy pairs which bring no regrets to Charlie.

RuTH’S NO REGRETS GRAPH. Which mized strategy pairs ([ — p,pl,[1 — ¢,4q])
result in no regrets for Ruth? Her expectation when an arbitrary pair ([1 —
p,pl, [1 — q,q]) is employed in the general game is

er(p,q) = (a1 — ag — ag + ag)pg + (a3 — a1)p + (a2 — a1)q + a1.

Since the effect on the value of eg(p, g) of changing p depends on the coefficients
of p, it makes sense to factor out the variable p wherever possible and write

er(p,q) =mp+c

where
m = (a; —az —az +a4)g + (ag — a1),c = (a2 —a1)g + ai.
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It now follows from Lemma 1 that Ruth will have no regrets in the following
three cases:

p=0ifm<0 | 0<p<lifm=0 | p=1ifm>0. (2)

The corresponding strategy pairs ([1 — p,p|, [l — ¢,4q]) can now be plotted in
a Cartesian coordinate system with a horizontal p-axis and a vertical g-axis.

ExAMPLE 2. Draw Ruth’s No Regrets graph for the game

(3,2) (2,4)
(2,3) (4,-3)

Here

m = (a1 — a2 — a3z + a4)q + (a3 — a1)
=(8-2-2+4+4)g+(2-3)

=3q¢—-1.
Here the three cases of (2) become
ifm<0 ifm=0 ifm>0
if3g—1<0 if3g—1=0 if3¢—1>0
if 3g < 1 if 3g =1 if 3¢ > 1
if g <1/3 ifg=1/3 if g >1/3

Keeping in mind that 0 < ¢ < 1, Ruth’s No Regrets graph consists of the three
line segments containing, respectively, all those points (p, q) such that

p=0 0<p<l1 p=1
0<q<1/3 qg=1/3 1/3<¢q¢<1

A drawing of Ruth’s No Regrets graph appears in Figure 2.

Ruth’s No Regrets graph of Figure 2 should be interpreted as follows. The
vertical segment along the y-axis tells us that Ruth should employ the pure strat-
egy [1, 0] whenever Charlie uses ¢ < 1/3. The horizontal portion corresponds to
the observation that if Charlie employs the mixed strategy [2/3, 1/3] then Ruth’s
expected payoff does not depend on her strategy; she can expect the same payoff

of
1 2
c:(ag—al)q+a1:(2~3)x—3+3:2§

regardless of how she behaves. Finally, the vertical portion above p = 1 tells us
that Ruth should employ the pure strategy [0, 1] whenever Charlie uses ¢ > 1/3.

CHARLIE’S NO REGRETS GRAPH. Which mized strategy pairs ([1—p,p],[1—

q,q)) result in no regrets for Charlie? His expectation when an arbitrary pair
(1 = p,p], 1 — g¢,q]) is employed in the general game is

ec(p,q) = (by — ba — bz + bs)pg + (bs — b1)p + (b2 — b1)q + b1.
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1 -
q
-1
1/3p<q <1
1/3 0spzl
q=1/3
=0
0 <1/
P

1
14.2. Locating a Nash Equilibrium.

Since the effect on the value of ec(p, ) of changing q depends on the coefficients
of ¢, it makes sense to factor out the variable ¢ wherever possible and write

ec(p,q) =m/q+¢
where
m' = (by — by — bg + ba)p + (b2 — by),
c = (b3 - bl)p+ by.

It now follows from Lemma 1 that Charlie will have no regrets in the following
three cases:

g=0ifm'<0 | 0<g<1ifm' =0 | g=1ifm >0. (3)

The mixed strategy pairs that cause Charlie no regrets can now be graphed in
the same p — ¢ coordinate system that was used for Ruth’s No Regrets graph.

ExAMPLE 3. Draw Charlie’s No Regrets graph for the game

(3,2) (2,4)
(2,3) | (4,-3)

Here

m' = (by — by — bg + bg)p+ (by — by)
=(2-4-34+(-3)p+(4-2)
= —-8p+2.

The three cases of (3) now become:
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O<p<1/4

1 - - o o -

g=1"1

'
'
'
'
'
'
'
1 0<gq
'
'
'
'
1
'

1/4<p<l

. )4
1
Fi1GURE 14.3. A No Regrets Graph for Charlie.
q=0 0<¢<1 =1
ifm' <0 ifm' =0 ifm' >0
if -8p—2<0 if 8p+2=0 if -8+2>0
if —8p < -2 if —8p=-2 if —8p > —2
ifp>1/4 ifp=1/4 ifp<1/4

Keeping in mind that 0 < p < 1, Charlie’s No Regrets graph consists of the three
line segments containing, respectively, all those points (p, q) such that

1/4<p<1 p=1/4 0<p<1/4
q=0 0<g<l1 q=1

A drawing of Charlie’s No Regrets graph appears in Figure 3.

Charlie’s No Regrets graph of Figure 3 should be interpreted as follows. The
short horizontal segment to the immediate right of the q axis tells us that Charlie
should employ the pure strategy [0, 1] whenever Ruth uses p < 1/4. The vertical
portion corresponds to the observation that if Ruth employs the mixed strategy
[3/4, 1/4] then Charlie’s expected payoff does not depend on his strategy; he can
expect the same payoff of

d=(bs—b)p+b=(3-2) X%+2=2%.
regardless of how he behaves. Finally, the horizontal portion along the p-axis
tells us that Charlie should employ the pure strategy [1, 0] whenever Ruth uses
p>1/4.

Each player’s No Regrets graph consists of those mixed strategy pairs ([1 —
p,p),[1 — q,q]) that put that player in the position of not having to regret his
or her own decision. Since the Nash equilibrium points consist of those strategy
pairs ([1 — p,p],[1 — ¢, q]) that cause regrets to neither player, they constitute
the intersections of Ruth’s and Charlie’s No Regrets graphs.
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FIGURE 14.4. Locating a Nash Equilibrium.

ExXAMPLE 4. To find the Nash equilibrium points of the game of Examples
2 and 3 it is now only necessary to superimpose the graphs of Figures 2 and 3
in Figure 4. Ruth’s and Charlie’s No Regrets graphs intersect in one (circled)
point (1/4, 1/3) which is this game’s only Nash equilibrium point.

In this equilibrium Ruth will use the mixed strategy (1 — 1,1] = [3,1] and
Charlie will use the mixed strategy [1 — 1, 1] = [%, 3]. That these strategies do
constitute a mixed Nash equilibrium can be verified directly:

1 1 1
eR(p,—):(3—2—2+4)xpx§+(2—3)xp+(2—3)><§+3

3
1 8
=P-p-3+3=3;
1 1 1
ec(z,q)—(2—4—3-—3)xqu+(3—2)><Z-+—(4—2)><q+2

1 9
=—-2q+-+2¢+2=-.
q+4+ q+ 1

Thus, neither player stands to gain anything by relinquishing his Nash equilib-
rium strategy. It follows from these calculations that the expected payoff pair
associated with this equilibrium is (8/3, 9/4).

As the next example demonstrates, a game may possess both pure and mixed
Nash equilibrium points.

ExAMPLE 5. Find the Nash equilibrium points of the game o

(3,2) (2,1)
0,3) (4,4)
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To construct Ruth’s No Regrets graph we compute
m=3-2-0+4)g+(0—-3)=>5¢—3.
It follows from (2) that on Ruth’s No Regrets graph

p=0 0<p<1 p=1
ifm<0 ifm=0 ifm>0
if5g—-3<0 if5¢—-3=0 if5¢ —3>0
if 5 < 3 if 5¢ =3 if 5¢ > 3
if g <3/5 ifg=3/5 if¢g>3/5

Keeping in mind that 0 < g < 1, Ruth’s No Regrets graph consists of the
three line segments containing, respectively, all those points (p, q) such that

p=0 0<p<1 p=1
0<¢g<3/5 q=3/5 3/5<qg<1

Ruth’s No Regrets graph is the solid line of Figure 5.
To draw Charlie’s No regrets graph we compute

m=(2-1-34+4)p+(1-2)=2p—1.
It follows from (3) that on Charlie’s No Regrets graph

q=0 0<qg<1 g=1
ifm' <0 ifm' =0 ifm’ >0
if2p—1<0 if2p—1=0 if2p—1>0
if 2p < 1 if 2p = 1 if2p>1
if p<1/2 if p=1/2 ifp>1/2

Keeping in mind that 0 < p < 1, Charlie’s No Regrets graph consists of the
three line segments containing, respectively, all those points (p, q) such that

0<p<1/2 p=1/2 1/2<p<1
q=0 0<q¢<1 g=1

This graph is depicted by the dashed line in Figure 5.

The Nash equilibrium points are given by the (circled) intersections of these
two No Regrets graphs. Thus, there are three such equilibria corresponding to
O:(p=0,g=0),A: (p=3,q=2),and B: (p =1,¢g = 1), respectively. In
other words, equilibrium O involves both players using the pure strategy [1,
0]; equilibrium A involves Ruth using the mixed strategy [.5, .5] and Charlie
using the mixed strategy [.4, .6]; and in equilibrium B both players use the pure
strategy [0, 1]. A glance at the given game will verify that O and B constitute
pure Nash equilibria. That A is also an equilibrium point can be verified directly:

er(p, 6)=(3-2-0+4)xpx.6+(0-3)xp+(2-3)x.6+3
=3p—3p—.64+3 =24,

ec(5,9)=(2-1-344)x5xg+B-2)x.5+(1—-2)xq+2
=q+.5—-q¢g+2=25.
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FIGURE 14.5. Locating a Nash Equilibrium.

Thus, neither player stands to gain anything by relinquishing the equilibrium
strategy. It also follows from these calculations that the expected payoff pair
associated with the mixed Nash equilibrium A4 is (2.4, 2.5).

The graph of the next example looks quite different from those of the previous
two.

EXAMPLE 6. Find the Nash equilibria of the game

(L4) | (2,2
(2,2) | (41)

To construct Ruth’s No Regrets graph we compute
m=(1-2-2+4)g+(2—-1)=q+1.
It follows from (2) that on Ruth’s No Regrets graph

p=0 0<p<1 p=1
ifm<0 ifm=0 ifm>0
ifg+1<0 ifg+1=0 ifg+1>0
if g < —1 if g=—1 if g > —1

Keeping in mind that 0 < ¢ < 1, the first two possibilities make no contribution
to Ruth’s No Regrets graph. Consequently this graph consists of the single line
segment:

p=1
0<¢g<1.

This is the solid vertical line segment in Figure 6.
To construct Charlie’s No Regrets graph we compute

m=4-2-2+1)p+(2-4)=p—2.
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FIGURE 14.6. Locating a Nash Equilibrium.

It follows from (6) that on Charlie’s No Regrets graph

qg=0 0<¢<1 g=1
ifm’ <0 ifm' =0 ifm' >0
ifp—2<0 ifp—2=0 ifp—2>0
ifp<?2 ifp=2 ifp>2

Keeping in mind that 0 < p < 1, we see that the last two alternatives make
no contributions to the graph. Consequently Charlie’s No regrets graph consists
of the line segment:

0<p<l1
=0.

This graph is depicted as the dashed line in Figure 6.
The Nash equilibrium point is given by the (circled) intersection of the two
graphs. At this point we have p = 1 and ¢ = 0. Consequently, this Nash
equilibrium point consists of the pure strategies [0, 1] for Ruth and [1, 0] for
Charlie, with the payoff pair (2, 2). It is interesting to note that the pure
strategies [1, 0] for Ruth and [0, 1] for Charlie do not constitute an equilibrium
even though they yield exactly the same payoff pair (2, 2).

THE JOB APPLICANTS. In the previous two chapters we modeled a situation
wherein Ruth and Charlie were allowed to apply to one of two positions offering
salaries 2a and 2b respectively, as the game

Charlie
applies to

firm 1 firm 2
firm 1 (a,a) (2a, 2b)
firm 2| (2b,2a) (b,b)

Ruth applies to
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It was noted above that this game always has pure Nash equilibria whose exact
locations depend on the relative sizes of a and b. We now go on to find the mixed
Nash equilibria. To construct Ruth’s No Regrets graph we compute

m=(a—2a—2b+b)g+ (2b—a) =—(a+b)g+ (2b—a).

It follows from (2) that

p=0 0<p<l1
ifm<0 ifm=0
if —(a+b)g+(26—a)<0 if —(a+b)g+(2b—a)=0
if —(a+b)g < —(2b—a) if —(a+b)g=—(2b—a)
if g > =g if g = 22
p=1
ifm>0

if —(a+b)g+(2b—a)>0
if —(a+b)g > —(2b—a)

if g < 25
If
a < 2bandb< 2a (4)
then (see Exercise 33)
o<
a+b

In this case Ruth’s No Regrets graph is depicted by the solid heavy line of
Figure 7. Since Charlie’s and Ruth’s positions are interchangeable in this game,
a similar argument (Exercise 36) yields the dashed heavy line of the same figure
as Charlie’s No Regrets graph.

Two of these Nash equilibria are pure and are identical with the ones already
discussed in the previous chapter. The third one yields

2b—a 2b—a]

20 —b 2b—a
a+b’ a+bd

a+b’ a+b

as the mixed Nash-equilibrium strategy for both Ruth and Charlie. The signifi-
cance of the Nash equilibria of this game was already discussed above.

Proofs*

John Nash’s important theorem asserts the existence of an equilibrium for all
finite n-person (nonzero sum) games. Here we content ourself with the restricted
cases we have been considering. The proof is based on the solution technique
developed above.

THEOREM 7. FEvery two person 2 X 2 nonzero sum game has a Nash Equilib-
rium point.
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FIGURE 14.7. Nash Equilibria for Job Applicants.

PRrRoOOF. To prove the existence of a Nash Equilibrium point it suffices to
show that Ruth’s and Charlie’s No Regrets graphs always intersect. We begin
by listing all the possible forms that these graphs can take.

With reference to the 2 x 2 game G illustrated in the beginning of the chapter,
set D =a; —az2 — a3 + a4 and E = a3 — a;. Then the quantity that determines
Ruth’s No Regrets graph can be expressed as m = Dq + E. Consequently,
Ruth’s No Regrets graph is the intersection of the unit square with the union of
the following three sets of points

{(0, ¢) such that Dg + E < 0]}
{(p,q) such that 0 < p <1 and Dq + E = 0}
{(1, q) such that Dq + E > 0}.

Depending on the signs of D and F this union consists of one of the graphs in
Figure 8, where it should be born in mind that the quantity —F/D could fall
anywhere on the g-axis. Consequently, depending on the value of —E/D, Ruth’s
No regrets graph has one of the forms listed in Figure 9. A similar argument
whose details are left to the reader, or else an argument based on the symmetrical
roles of p and g, permit us to conclude that Charlie’s No Regrets graph has one
of the forms listed in Figure 10.

In all cases Ruth’s graph connects the horizontal sides of the unit square whereas
Charlie’s graph connects the vertical sides of the square. The existence of the
required intersection therefore follows whenever either Ruth’s graph contains an
entire vertical side or else Charlie’s graph contains an entire horizontal side. In
the remaining four cases, where neither player’s graph contains an entire side,
the superimposition of the two graphs illustrated in Figure 11 makes it again
clear that the required intersection exists. O



166 14. FINDING MIXED NASH EQUILIBRIA FOR 2 x 2 NONZERO-SUM GAMES

-E/D

TP TP i\ K4 TP

-E/D ——I

D=0
D> 0 D<0 E>0

D=0 D
E<O E

0
0

1

FIGURE 14.8. Ruth’s Unrestricted No Regrets Line.

FIGURE 14.9

FIGURE 14.10. Charlie’s No Regrets Graphs.
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FIGURE 14.11. Locating the Nash Equilibria.

Chapter Summary
A graphical method for finding the Nash equilibria of 2 X 2 nonzero-sum

games was described. This was followed by a proof of the existence of mixed
Nash equilibria for such games.

Chapter Terms
Charlie’s No Regrets Graph 157 Ruth’s No Regrets graph 156

EXERCISES 14

For each of the games in Exercises 1-25:
a) Determine the mixed maximin strategies and values;
b) Find the mixed Nash equilibrium points and mixed value pairs.
c) Whenever a nonpure Nash equilibrium ([1 — 5, 5], [1 — §,q]) exists, verify
that er(p, q) and ec(p, q) are independent of ¢ and p respectively.

(4,4) (0,1) (4,1) (0,2) (4,0) (0,1)
L (1,0) (2,3) 9 (1,2) (1,0) 3. (1,2) (2,5)
(4,3) (0,2) (4,2) (0,1) (1,4) (1,1)
" (1,0) (2,1) 5 (1,2) (1,0) 6. (2,0) (0,1)
(3,4) (2,2) 3,1) (2,2) (1,3) (1,2)
" (1,3) (3,4) . (1,3) (3,0) 9. (2,0) (4,1)
(4,1) (3,4) (0,4) (2,1) (1,4) (4,2)
10. (3,5) (1,0) 1 (1,0) (5,1) 19. (3,3) (1,4)
(3,1) (6,2) (0,3) (2,4) (1,1) (4,4)
3. (3,3) (1,1) 14 (1,0) (5,3) 15, (3,3) (1,0)
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16.

19.

22.

25.
26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.
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64 | D 6D | 02 3.0 | ©1
co [ ay | lev]ay| |e)]wy
63 | @2 62 | @4 | @y
o [ay | @y ]eo| [y oy
9 | @2 19 | @2 @3 | @3
63 | a9 | | @y an] | ay ] oy
11 | @9

6.3 | (10

Does the Leader game of Exercise 12.11 have a mixed Nash equilibrium
point? If so, interpret it.

Does the Battle of the Sexes game of Exercise 12.12 have a mixed Nash
equilibrium point? If so, interpret it.

Verify the equations of (1).

Verify directly that the points circled in Figure 7 are Nash equilibria of the
Job Applicants game.

Verify that if the assumptions of (4) do not hold then all the Nash equilibrium
points of the Job Applicants game are pure.

Verify that if @ > b then the evolutionary game has only one Nash equilib-
rium point and this point is pure.

Derive all the Nash equilibria of the evolutionary game under the assumption
that a < b.

Show that if a and b are any two positive numbers such that ¢ < 2b and

b < 2a, then

2b—a <land 0< 20-b
+b a+b

Show that if @ = b in the evolutionary game, then the model predicts that

the species will evolve Hawks only.

Can a 2 x 2 game have exactly one pure and one nonpure Nash equilibria?

Justify your answer.

Derive Charlie’s No Regrets graph in Figure 7.

0< <1
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SOLUTIONS TO SELECTED EXERCISES

Chapter 1:
a) 144°,108°,72°,36° b)0 c¢).5 d) —.8 e).1 f)(2,3)
a) 36°, 72°, 108°,144° b) .5 ¢)—-.1 d)-13 e) —.6 f)(1,3)

a) 108°, 252° b) 83% c¢)85% d) 84% ) 83.8%

Chapter 2:
1. 294 3.18 5..37 7.-35 9..12 11. -4
B-day No
Flowers 1.5 1
Frank o 5
13. No -
Rain  Shine
Umbrellas | 250 50
Merill 0 300
15. Glasses
Chapter 3:

1. [0,1] 3.[0,1] 5.[0,1] 7.[0,0,0,1]
9. [0,0,1,0] 11.[0,0,1] 13.[0,0,1] 15. [1,0,0]

17. [0,0,0,1,0]

Chapter 4:

1. b) [1/3,2/3] ©)5/3 d)p<2/3,p>23
3. b) Any strategy c) 1 d) [0,1] for all p
5.b)[0,1] ¢)4 d)p=1/3,p<1/3

7. b) [1, 0] ¢)1 d)[1,0] for all p

9. b)[1,0] ¢)2 d)p<2/3,p>2/3

11. b) [1,0] ¢)1 d) [1,0] for all p

171
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13. b) [7/13,6/13] ¢) 11/13 d) p > 6/13, p < 6/13
15. b) [1,0] ¢)2 d) [0,1] for all p

Chapter 5:
1. b) [2/3,1/3] ¢)5/3 d)g=>1/3,¢<1/3
3. b)[0,1] ¢)1 d)[0,1] for all ¢
5. b) [1,0] ¢)4 d) [0,1] for all ¢
7.b) [1,0] ¢)1 d)[1,0] for all ¢
9. b) [1,0] ¢)2 d)[1,0] for all ¢
. b) Any strategy c¢) 1 d) [1,0] for all ¢
13. b) [4/13,9/13] ¢) 11/13 d) ¢ <9/13, ¢ >9/13
b) [0,1] ¢) 2 d)[1,0] for all ¢
Chapter 6:
1. [1/3,2/3], [2/3,1/3], 5/3 3. Any strategy, [0,1], 1
5. [0,1], [1,0], 4 7. [1,0], [1,0], 1
9. [1,0], [1,0], 2 11. [1,0], any strategy, 1
13. [7/13,6/13], [4/13,9/13], 11/13 15. [1,0], [0, 1], 2
17. [1,0], [1,0], -3 19. [1,0], [1,0], 0
21. [1,0], [0,1], =2 23. [1,0], [1,0], 2
25. [3/7,4/7), [4/7,3/7),9/7 27. [0,1], [0,1], 0
29. [2/3,1/3], [2/3,1/3], —1/3 31. [1,0, [0,1,0], 1
33. [0,0,1,0], [1,0}, 2 35. [0,1,0], [0,1,0,0], —2
37. [0,0,1,0], [0,0,1,0], 0 39. [1,0,0,0,0], [0,1,0,0], 1
41. z>1 43. 2>1 45. 1<z <2 47. Allz
49. £ <4 51. No«x

Stranger
Heads Tails
Heads| -20 30
Steve
53. Tails 10 —-20

Steve: [3/8,5/8], Stranger: [5/8,3/8], value: —1/8
55. Merrill should invest $150 in umbrellas and $100 in glasses.
59. Yes 61. Yes

Chapter 7:
1. [4/7,3/7), [4/7,0,3/7), 2/7 3. [2/3,1/3], [0,2/9,7/9], 1/3
5. [1—p,p] 1/4<p<4/9,[1,0,0,0 7. [2/3,1/3],[0,1/9,0,8/9], —13/3
9. [1,0], [1,0,0,0] or [0,0,1,0], 2 11. [9,1,0], [1 — q,q] for 1/4 < ¢ < 2/3, 1
13. [0,1,0], [1,0], 2 15. [0,0,1,0], [1,0], 3
17. [0,4/5,0,1/5], [9/10,1/10], 16/5 19. [0,1/3,2/3,0], [2/5,3/5], 1
21. [.5,.5,0,0] or many others, [.5,.5], 3
23. Any strategy, any strategy, 1
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Chapter 8:

1. [0,6/7,1/7], [0,2/7,0,5/7,0], 16/7 3. [1,0,0], [0,0,1,0,0], 2

5. [0,0,0,2/3,1/3], [0,5/6,1/6], —=1/3 7. [.5,.5,0], [0,.5,.5,0,0], 1.5
9. [.5,.5,0,0,0], [.5,.5,0,0], 1.5

Chapter 9: 1. R1 3. R2 5. Rl
7. [1,0,0], [1,0,0}, 0 9. [3/7,2/7,2/7), [3/7,2/7,2/7], 0
13. i) [0,y,1 — y,0] for 4/7 >y > 5/9
ii) [z,0,0,1 — z] for 5/8 >z > 3/7
iii) [2w,2/3 — 2w,1/3 — w,w| for 1/3>w >0
15. No.

Chapter 10:

3. Bet/Bet, Call, 0

5. If a > b: Bet/Bet, Call, (a — b)/2. If a < b: Bet/Fold, Call, 0

7. Raise/See, Call/Fold, 0 9. Raise/Raise, Call/Fold, 3
11. If a < b: See/See, Call/Fold, 0. If b < a: Raise/Raise, Call/Fold, 3(a —b)/8.
13. Raise/See or Raise/Raise, Call/Fold, 1
15. See/See, Call/Fold, 0 17. B/B, C/B, 0
19. If a < b: B/PF or PC/PF, C/B, (b a)/2;

If a > b: B/B or B/PC or PC/PC, C/B, 0.

Chapter 11:

1. [0,1], 0, any strategy, 2 3. [0,1,0], 1, [1,0], 1

5. Any strategy, -2, [0,1,0,0],1 7. [0,0,0,1], 1, [0,0,0,1,0], 2
9.0<.8<2 11.3<3<3 13. -1<13/11<3

17. a) No b) [0,1] ¢) No d) [3/8,5/8] e) No f)No g) |[.5,.5]
19. a) No b) No c¢) [1,0] d) [5/12,7/12] e) No f)[0,1] g) [.5,.5]

Chapter 12:
1. a) [1,0],[1,0] b)1,3 c¢)(2,3) d)Alloutcomes e)None f)[1,0],[0,1],
(1’4) g) [1’0]7 [1’0]7 (2’ 3)
3. a) [0,1], [1,0]] b)2,2 ¢)(2,2) d)(3,1),(2,5) e) None f) [0,1], [0,1],
2)

(275) g) [0,1], [1,0], (2,

5. a [1 0 O] [1 0] or [Oa ] ) ’ 1 ) (574) or (4a1) d) (5’5) e) (5v4)1
(5,5) f)[1,0,0], [1,0], ( ,4) or [0,0,1], [0,1], (5,5)

7. a)[1,0,0], [0 0,1 b)7,2 ¢)(7,2) d)Alloutcomes e)(7,2) f)][1,0,0],
[070 ]7 ( g) [ 707 ’ [O’O 1 (7 2)

]

9. a) [1,0,0, ] [1000]0 [0,0,1,0] b) 0, -1 ¢)(1,2)or (1,1) d) (0,3),
(3,-1), (2,2) e) (2,2), (2,2) f)[0,1,0,0], [1,0,0,0], (2,1) or [0,0,1,0],
[000 1], (2,2) or [0,0,0,1], [0,1,0,0], or (2,2) g) [0,0,0,1], [0,1,0,0],
(2 2)or[0010] [0,0,0,1], (2,2)

19. Yes.

Chapter 13:

1. (.86,1.36) 3. (1.66,1.88) 5. (0,1) 7. No 9. Yes 11. Yes 13. Yes
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15. No 17. Yes 19.a)0 b)1 21.a)4/11 b)7/11 23.a).2 b).8

25. a) 2/3 b)1/3 27. a) 100% b) None

Chapter 14:
1. a) [1/5,4/5], 8/5, [1/3,2/3], 2 D) (p,q) = (0,0), (.5,.6), (1,1)

3. a) [2,.8],16,[0,1], 1 b) (p,q) = (1,1)

5. )[01] 1, [1,0],2 b) (p,q) = (0,0)

7. a) [2/3, 1/3] 7/3, [2/3, 1/3] 10/3 b) (p,q) = (0,0), (2/3,2/3), (1,1)
9. a)[0,1],2,[0,1],1 b) (p,q) = (1,1)

11. a) [0,1], 1, 0,1}, 1 b) (p,q) = (1,1)

13. a) [1,0], 3, [1/3,2/3], 5/3 b) (p,tJ) (0,1), (p,0) for p>1/3

15. a) [2/5,3/5], 11/5, [2/3,1/3],2 b) (p, ) (0,1), (.5,.4), (1,0)
17. a) [0,1], 1, [1,0], 1 b) (p,q) = (.5,.5)

19. a) [1,0], 2, [0,1], 1 D) (p,q) = (0,0)

21. )[10],2 [01] 1 b) (p,q) = (0,0)

23. a) [.25,.75], 1.75, [1,0], 3 b) (p,q) = (1,0)

25. a) [4/ ,3/7] 19/7, 2/3,1/3],2 D) (p,q) = (1,0), (1/2,4/7), (0,1)
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GAME THEORY
Saul Stahl

This book is an excellent introduction to the mathematical aspects of game theory for
beginners without a background in calculus.
—Journal of Mathematical Psychology

Game theory, in the sense of von Neumann and Morgenstern, studies models of competi-
tion in situations of uncertainty. It provides a means for both deriving desirable strategies
and explaining naturally occurring behavior; it finds applications ranging from econom-
ics and politics to evolutionary biology. All this and its intrinsic human interest (read here
how it elucidates the outcome of the Cuban Missile Crisis) make it a favorite undergrad-
uate topic, particularly for students majoring outside mathematics. There is not a faster
read in the realm of higher mathematics. Recommended for college libraries.
Undergraduates and up. —CHOICE

The mathematical theory of games was first developed as a model for situations of con-
flict, whether actual or recreational. It gained widespread recognition when it was applied
to the theoretical study of economics by von Neumann and Morgenstern in Theory of
Games and Economic Behavior in the 1940s. The later bestowal in 1994 of the Nobel Prize
in economics on Nash underscores the important role this theory has played in the intel-
lectual life of the twentieth century.

This volume is based on courses given by the author at the University of Kansas. The expo-
sition is “‘gentle” because it requires only some knowledge of coordinate geometry; linear
programming is not used. It is “mathematical” because it is more concerned with the math-
ematical solution of games than with their applications.

ISBN 0-8218-1339-0
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