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PREFACE TO SECOND EDITION

Some observers appear to believe that epidemiology is no more than the 
 application of statistical methods to the problems of disease occurrence and cau-
sation. But epidemiology is much more than applied statistics. It is a scientifi c 
discipline with roots in biology, logic, and the philosophy of science. For epidem-
iologists, statistical methods serve as an important tool but not a foundation. 
My aim in this book is to present a simple overview of the concepts that are 
the underpinnings of epidemiology, so that a coherent picture of epidemiologic 
 thinking emerges for the student. Th e emphasis is not on statistics, formulas, or 
computation but on epidemiologic principles and concepts.

For some, epidemiology is too simple to warrant serious att ention, and for oth-
ers it is too convoluted to understand. I hope to persuade the reader that nei-
ther view is correct. Th e fi rst chapter illustrates that epidemiology is more than 
just applying “common sense,” unless one has uncommonly good common sense. 
Although it is unusual to begin an epidemiology text with a presentation of con-
founding, I believe that the problem of confounding exemplifi es why we need to 
understand epidemiologic principles lest we fall victim to fallacious inferences. At 
the other extreme, those who believe that epidemiology is too complicated might 
think diff erently if they had a unifying set of ideas that extended across the many 
separate topics within epidemiology. My goal in this book has been to provide 
that unifying set of ideas.

Th e second chapter, new to this second edition, adds a historical perspective 
for the reader who is new to epidemiology, in the form of capsule profi les of 
pioneers in epidemiology and public health. Th e chapter illustrates the deep his-
torical roots of epidemiology, highlighting important contributions from trailblaz-
ers such as Avicenna, Graunt, Nightingale, and Lane-Claypon. Chapter 3 lays a 
conceptual foundation by elucidating a general model of causation and discussing 
the process of causal inference. All too oft en, these concepts are skipped over 
in scientifi c education. Nevertheless, for epidemiologists they are bedrock con-
cerns that belong in any introduction to the fi eld. Chapter 4 continues with a 
 description of the basic epidemiologic measures, and Chapter 5 covers the main 
study types. An important thread for the student is the emphasis on measurement 
and how to reduce or describe measurement error. Chapter 6, also new to the 
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second edition, presents a capsule summary of the key ideas in infectious disease 
epidemiology.

Th e next two chapters deal with measurement error. Systematic error, or bias, 
is treated fi rst, in Chapter 7, and random error in Chapter 8. Chapter 9 intro-
duces the basic analytic methods for estimating epidemiologic eff ects; these meth-
ods are extended in Chapter 10 to stratifi ed data. Chapters 11 and 12 address the 
more advanced topics of interaction and regression modeling. Th ese are subjects 
to be explored in detail in more advanced courses, but their presentation here in 
elementary terms lays the groundwork for advanced study. It also draws a bound-
ary between the epidemiologic approach to these topics and nonepidemiologic 
approaches that can take the analysis in the wrong direction. Th e fi nal chapter 
deals with clinical epidemiology, a branch of epidemiology that continues to grow 
in scope and importance.

Epidemiologic concepts are evolving, as any comparison of this volume with 
earlier texts will reveal. To complement the book, the publisher has graciously 
agreed to host a Website that will support reader participation in discussing, 
extending, and revising points presented in the book. Th e Website will post con-
tributed answers to the questions raised at the end of each chapter in the text. 
Interested readers can fi nd this site at www.oup.com/us/epi/.

Along the way I have received invaluable feedback from many students and 
colleagues. I am especially grateful to Kristin Anderson, Georgett e Baghdady, Dan 
Brooks, Robert Green, Sander Greenland, Tizzy Hatch, Bett ie Nelson, Ya-Fen 
Purvis, Igor Schillevoort, Bahi Takkouche, and Noel Weiss. Cristina Cann pro-
vided unfl agging and generous encouragement; now that she is no longer here 
to continue advising me, she is sorely missed. Katarina Bälter deserves special 
mention for her careful reading of the manuscript and patient, helpful criticisms. 
Finally, I am indebted to my colleague Janet Lang, who gently  prodded me at the 
right time and was an inspiration throughout.

Kenneth J. Rothman
Newton, Massachusett s

July, 2011

www.oup.com/us/epi/
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1

Introduction to 

Epidemiologic Thinking

Th is book presents the basic concepts and methods of epidemiology, which is 
the core science of public health. Epidemiology has been defi ned as “the study 
of the distribution and determinants of disease frequency,”1 or even more simply 
as “the study of the occurrence of illness.”2

Th e principles of epidemiologic research appear deceptively simple. Th is appear-
ance seduces some people into believing that anyone can master epide miology 
just by applying some common sense. In a way that view is correct, but it is 
nevertheless an oversimplifi cation. Th e problem is that the kind of common sense 
that is required may be elusive without training in epidemiologic concepts and 
methods. As a means of introducing epidemiologic thinking, I shall illustrate this 
point with some examples of the fundamental epidemiologic concept known as 
confounding. Confounding is described in greater detail in Chapter 7. Here I aim 
only to demonstrate the kind of problem that epidemiology deals with  routinely. 
I will also point out some basic fallacies, the kind that can be found in the news-
papers on a regular basis and that occur commonly among those who are not well 
versed in epidemiologic thinking.

Common sense tells us that residents of Sweden, where the standard of living 
is generally high, should have lower death rates than residents of Panama, where 
poverty and more limited health care take their toll. Surprisingly, however, a 
greater proportion of Swedish residents than Panamanian residents die each year. 
Th is fact belies common sense. Th e explanation lies in the age distribution of the 
populations of Sweden and Panama. Figure 1–1 shows the population pyramids 
of the two countries. A population pyramid displays the age distribution of a pop-
ulation graphically. Th e population pyramid for Panama tapers dramatically from 
younger to older age groups, refl ecting the fact that most Panamanians are in the 
younger age categories. In contrast, the population pyramid of Sweden is more 
rectangular, with roughly the same number of people in each of the age catego-
ries up to about age 60 years and some tapering above that age. As these graphs 
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make clear, Swedes tend to be older than Panamanians. For people of the same 
age in the two countries, the death rate among Swedes is indeed lower than that 
of Panamanians, but in both places older people die at a greater rate than younger 
people. Because Sweden has a population that is on the average older than that of 
Panama, a greater proportion of all Swedes die in a given year, despite the lower 
death rates within age categories in Sweden compared with Panama.

Th is situation illustrates what epidemiologists call confounding. In this example, 
age diff erences between the countries are confounding the diff erences in death 
rates. Confounding occurs commonly in epidemiologic comparisons. Consider 
the following mortality data, summarized from a study that looked at smoking 
habits of residents of Whickham, England, in the period 1972–1974 and then 
tracked the survival over the next 20 years of those who were interviewed.3–5 
Among 1314 women in the survey, almost half were smokers. Oddly, proportion-
ately fewer of the smokers died during the ensuing 20 years than nonsmokers. 
Th e data are reproduced in Table 1–1.

Only 24% of the women who were smokers at the time of the initial survey 
died during the 20-year follow-up period. In contrast, 31% of those who were 

Figure 1–1  Age distribution of the populations of Panama and Sweden (population 
pyramids). 
source: U.S. Census Bureau, International Data Base.
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nonsmokers died during the follow-up period. Does this diff erence indicate that 
women who were smokers fared bett er than women who were not smokers? Not 
necessarily. One diffi  culty that many researchers quickly spot is that the smoking 
information was obtained only once, at the start of the follow-up period. Smoking 
habits for some women will have changed during the follow-up. Could those 
changes explain the results that appear to confer an advantage on the smokers? It 
is theoretically possible that all or many of the smokers quit soon aft er the survey 
and that many of the nonsmokers started smoking. Although this scenario is pos-
sible, it is implausible; without evidence for these changes in smoking behavior, 
this implausible scenario is not a reasonable criticism of the study fi ndings. A 
more realistic explanation for the unusual fi nding becomes clear if we examine 
the data within age categories, as shown in Table 1–2. (Th e risks for each age 
group are calculated by dividing the number who died in each smoking group by 
the total number of those dead or alive.)

Table 1–1 combines all of the age categories listed in Table 1–2 into a single 
table, which is called the crude data. It is obtained by adding together, or collaps-
ing, the data for each age category in Table 1–2. Th e more detailed display of 
the same data in Table 1–2 is called an age-specifi c display, or a display stratifi ed 
by age. Th e age-specifi c data show that in the youngest and oldest age categories 
there was litt le diff erence between smokers and nonsmokers in risk of death. Few 
died among those in the youngest age categories, regardless of whether they were 
smokers or not, whereas among the oldest women, almost everyone died dur-
ing the 20 years of follow-up. For women in the middle age categories, however, 
there was a consistently greater risk of death among smokers than nonsmokers, 
a  patt ern contrary to the impression gained from the crude data in Table 1–1.

Why did the nonsmokers have a higher risk of death in the study population 
as a whole? Th e reason is evident in Table 1–2: A much greater proportion of 
the nonsmoking women were in the highest age categories, the categories that 
contributed a proportionately greater number of deaths. Th e diff erence in age dis-
tribution between smokers and nonsmokers refl ects the fact that, for most people, 
lifelong smoking habits are determined early in life. During the decades preceding 
the study in Whickham, there was a trend for increasing proportions of young 
women to become smokers. Th e oldest women in the Whickham study grew up 
during a period when few women became smokers, and they tended to remain 
nonsmokers for the duration of their lives. As time went by, a greater proportion 

Table 1–1 Risk of Death in a 20-Year Period 
Among Women in Whickham, England, 
According to Smoking Status at the 

Beginning of the Period*

Smoking
Vital Status Yes No Total
Dead 139 230 369
Alive 443 502 945
Total 582 732 1314
Risk (Dead/Total) 0.24 0.31 0.28

*Data from Vanderpump et al.5
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of women who were passing through their teenage or young adult years became 
smokers. Th e result was strikingly diff erent age distributions for the female smok-
ers and nonsmokers of Whickham. Were this diff erence in the age distribution 
ignored, one might conclude erroneously that smoking was not related to a higher 
risk of death. In fact, smoking is related to a higher risk of death, but confounding 
by age has obscured this relation in the crude data of Table 1–1. In Chapter 10, 
I will return to these data and show how to calculate the eff ect of smoking on 
the risk of death aft er removal of the age confounding.

Confounding is a problem that pervades many epidemiologic studies, but it is 
by no means the only issue that bedevils epidemiologic inferences. One day, read-
ers of the Boston Globe opened the paper to fi nd a feature story about orchestra 
conductors. Th e point of the article was that conducting an orchestra is salubrious, 
as evinced by the fact that so many well-known orchestra conductors have lived 
to be extremely old. Common sense suggests that if the people in an occupation 
tend to live long lives, the occupation must be good for health. Unfortunately, 
what appeared to be common sense for the author of the article is not very sen-
sible from an epidemiologic point of view. Th e long-lived conductors who were 
cited in the article were mentioned because they lived to be old. Citing selected 
examples in this way constitutes anecdotal information, which can be extremely 
misleading. For all we know, the reporter searched specifi cally for examples of 

Table 1–2 Risk of Death in a 20-Year Period Among 
Women in Whickham, England, According to Smoking 

Status at the Beginning of the Period, by Age

Smoking
Age Vital Status Yes No Total
18–24 Dead

Alive
Risk

2
53

0.04

1
61

0.02

3
114

0.03
25–34 Dead

Alive
Risk

3
121

0.02

5
152

0.03

8
273

0.03
35–44 Dead

Alive
Risk

14
95

0.13

7
114

0.06

21
209

0.09
45–54 Dead

Alive
Risk

27
103

0.21

12
66

0.15

39
169

0.19
55–64 Dead

Alive
Risk

51
64

0.44

40
81

0.33

91
145

0.39
65–74 Dead

Alive
Risk

29
7
0.81

101
28

0.78

130
35

0.79
75+ Dead

Alive
Risk

13
0
1.00

64
0
1.00

77
0
1.00
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elderly conductors and overlooked other conductors who might have died at an 
earlier age. Most epidemiologists would not even classify anecdotal information 
as epidemiologic data at all.

Furthermore, the reporter’s observation had problems that went beyond the 
reliance on anecdotes instead of a formal evaluation. Suppose that the reporter 
had identifi ed all orchestra conductors who worked in the United States during 
the past 100 years and studied their longevity. Th is approach avoids relying on 
hand-picked examples, but it still suff ers from an important problem that leads 
to an incorrect answer. Th e problem is that orchestra conductors are not born 
as orchestra conductors. Th ey become conductors at a point in their careers 
when they may have already att ained a respectable age. If we start with a group 
of people who are 40 years old, on the average they are likely to survive to an 
older age than the typical person who was just born. Why? Because they have a 
40-year head start; if they had died before age 40, they could not have been part 
of a group in which everyone is 40 years old. To determine whether conduct-
ing an orchestra is bene fi cial to health, one should compare the risk of death 
among orchestra conductors with the risk of death among other people who have 
att ained the same age as the conductors. Simply noting the average age at death 
of the conductors gives the wrong answer, even if all orchestra conductors in a 
population are studied.

Here is another example that makes this point clearly. Suppose that we study 
two groups of people over a period of 1 year, and we look at the average age at 
death among those who die during that year. Suppose that in group A the aver-
age age at death is 4 years and in group B it is 38 years. Can we say that being a 
member of group A is riskier than being a member of group B? We cannot, for 
the same reason that the age at death of orchestra conductors was misleading. 
Suppose that group A comprises nursery school students and group B comprises 
fi refi ghters. It would be no surprise that the average age at death of people who 
are currently fi refi ghters is 38 years or that the average age at death of people 
who are currently nursery school students is 4 years. Still, we suspect that being 
a fi refi ghter is riskier than being a nursery school student and that these data on 
the average age at death do not address the issue of which of these groups faces 
a greater risk of death. When one looks at the average age at death, one looks 
only at those who actually die and ignores all those who survive. Consequently, 
the average age at death does not refl ect the risk of death but only expresses a 
characteristic of those who die.

In a study of factory workers, an investigator inferred that the factory work 
was dangerous because the average age at onset of a particular kind of cancer was 
lower in these workers than among the general population. But just as for the 
nursery students and fi refi ghters, if these workers were young, the cancers that 
occurred among them would have to be occurring in young people. Furthermore, 
the age at onset of a disease does not take into account what proportion of peo-
ple get the disease. It may have been that the number of workers who developed 
the cancer was no greater, or was even smaller, than the number expected to do 
so based on the risk of cancer in the general population. Looking at the age at 
which cancer develops among those who get cancer cannot address the question 
of risk for cancer.

Th ese examples refl ect the fallacy of comparing the average age at which death 
or disease strikes, rather than comparing the risk of death between groups of the 
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same age. In later chapters, I will explore the proper way to make epidemiologic 
comparisons. Th e point of these examples is to illustrate that what may appear 
to be a commonsense approach to a simple problem can be overtly wrong until 
we educate our common sense to appreciate bett er the nature of the problem. 
Any sensible person can understand epidemiology, but without considering the 
principles outlined in this book, even a sensible person using what appears to be 
common sense is apt to go astray. By mastering a few fundamental epidemiologic 
principles, it is possible to refi ne our common sense to avoid these traps.

QUESTIONS

1. Age is a variable that is oft en responsible for confounding in epidemiol-
ogy, in part because the occurrence of many diseases changes with age. Th e 
change in disease risk with age is oft en referred to as the eff ect of age. Does 
it make sense to think of age as having an eff ect on disease risk, or is it 
more sensible to think that the eff ect of age is itself confounded by other 
factors?

2. More people in Los Angeles die from cardiovascular disease each year 
than do people in San Francisco. What is the most important explanation 
for this diff erence? What additional factors would you consider to explain 
the diff erence in the number of deaths?

3. In Table 1–2, which age group would you say shows the greatest eff ect 
of smoking on the risk of death during the 20-year interval? How have you 
defi ned “greatest eff ect”? What other way could you have defi ned it? Does 
your answer depend on which defi nition you use?

4. On a piece of graph paper, use the data in Table 1–2 to plot the 20-year 
risk of death against age. Put age on the horizontal axis and the 20-year risk 
of death on the vertical axis. Describe the shape of the curve. What biologi-
cal forces account for the shape?

5. A physician who was interested in jazz studied the age at death of jazz 
musicians, whom he identifi ed from an encyclopedia of jazz. He found that 
the average age at death of the jazz musicians was about the same as that in 
the general population. He concluded that this fi nding refuted the prevail-
ing wisdom that jazz musicians tended to live dissolute lives and therefore 
experienced greater mortality than other people. Explain his error.

6. A researcher determined that being left -handed was dangerous, because he 
found that the average age at death of left -handers was lower than that of 
right-handers. Was he correct? Why or why not?

7. What is the underlying problem in comparing the average age at death, 
or the average age at which a person gets a specifi c disease, between two 
populations? How should you avert this problem?



Introduction to Epidemiologic Th inking  7

REFERENCES

1. MacMahon B, Pugh TF. Epidemiology: Principles and Methods. Boston: Litt le, 
Brown; 1970:137–198,175–184.

2. Gaylord Anderson, as cited in: Cole P. Th e evolving case-control study. J Chron Dis. 
1979;32:15–27.

3. Appleton DR, French JM, Vanderpump MPJ. Ignoring a covariate: an example of 
Simpson’s paradox. Am Statistician. 1996;50:340–341.

4. Turnbridge WMG, Evered DC, Hall R, et al. Th e spectrum of thyroid disease in a 
community. Clin Endocrinol. 1977;7:481–493.

5. Vanderpump MPJ, Turnbridge WMG, French JM, et al. Th e incidence of thyroid 
disorders in the community: a twenty-year follow-up of the Whickham survey. Clin 
Endocrinol. 1995;43:55–69.



2

Pioneers in Epidemiology and 

Public Health

Th roughout human history, the major problems of health that men have 
faced have been concerned with community life, for instance, the control of 
 transmissible disease, the control and improvement of the physical environ-
ment  (sanitation), the provision of water and food of good quality and in 
suffi  cient supply, the provision of medical care, and the relief of disability and 
 destitution. Th e relative emphasis placed on each of these problems has varied 
fr om time to time, but they are all closely related, and fr om them has come 
public health as we know it today.

George Rosen, A History of Public Health, 19581

ORIGINS OF PUBLIC HEALTH

Public health may be defi ned as the community eff ort to protect, maintain, and 
improve the health of a population by organized means, including preventive pro-
grams, hygiene, education, and other interventions. Preventive medicine and health 
care are important components of public health, but the reach of public health 
extends beyond medicine to clean water, sanitation, housing, sex education, and 
other areas that aff ect the health of communities. Among the fi elds that contrib-
ute to public health, epidemiology plays a crucial role, but many other disciplines 
are involved. Public-health eff orts may involve contributions from fi elds as diverse 
as engineering, architecture, biology, social science, ecology, and economics.

Th e origin of public health dates from the fi rst aggregation of small clans into 
larger, sett led communities. Some basic needs, such as provision of potable water 
and disposal of bodily waste, were best addressed as community concerns. Public 
wells that provided clean water for drinking and aqueducts that transported water 
from mountain springs or creeks into towns, cities, and agricultural fi elds were 
community eff orts that had obvious health benefi ts. Fountains, public baths, 
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and water delivery systems supplying individual homes were features of ancient 
 civilizations in the Indus River valley, Mesopotamia, Persia, Troy, and China.

Treatment of drinking water in sett ling basins and purifi cation with chemicals 
was practiced in many early civilizations. Sanitary removal of human and ani-
mal waste is a fundamental public-health concern, one that became more chal-
lenging as sett lements increased in size. Th e construction of sewers to remove 
waste materials was also common in antiquity. In ancient Rome, water delivery 
and sanitation were sophisticated engineering feats. Roman aqueducts brought 
mountain water from sources as far away as 100 km or more to the city, using 
trenches, arched bridges, walls, tunnels, and siphons to traverse varied landscapes. 
Th e water supplied a few wealthy homes, public baths, and public fountains, from 
which it overfl owed to fl ush the streets. Excess water collected into a remarkable 
sewer system, culminating in the cloaca maxima (literally, “greatest sewer”), which 
conveyed effl  uent from the city into the Tiber River, facilitating hygiene for the 
city, though at the expense of polluting the river. Parts of the cloaca maxima are 
still connected to the Roman sewage system in the 21st century. Water supply 
and sanitation remain essential concerns for large communities and rank as top 
priorities for public health today. Among those still affl  icted by poverty, and with 
the planet facing continued population growth and mounting environmental con-
cerns, the basic public-health needs of clean water and sanitation are unlikely to 
recede in importance.

Another basic public-health priority has been control of transmissible diseases. 
Historically, community eff orts to prevent the spread of communicable disease 
were oft en hampered by inadequate understanding of eff ective means to control 
transmission. Th e microbial origin of many transmissible diseases became evi-
dent only during the latt er part of the 19th century. Nevertheless, concern about 
disease transmission and measures to control it has deep roots. In the Middle 
Ages, the growth of cities in Europe was accompanied by epidemics of leprosy, 
plague, and other scourges that stirred frightened populations into drastic actions, 
not oft en successful. Th e Black Death was a pandemic of what is believed to be 
bubonic plague that swept Europe in the mid–14th century. Although its cause 
was not clear to medieval populations, who tended to see epidemics as divine 
wrath, it was considered transmissible, which led communities to bar entry to 
foreigners from plague-ridden areas and to isolate patients and all their contacts. 
During periods when plague threatened Venice, an important shipping port, all 
vehicles, goods, and travelers were isolated for a period of time. Th is procedure, 
today called quarantine (from the Italian phrase quaranta dei, meaning “40 days”), 
is still invoked occasionally. It was used to notable advantage during the outbreak 
of severe acute respiratory syndrome (SARS) in 20032 (see Chapter 6).

FROM HIPPOCRATES TO SNOW AND THE MODERN DAY

Although public health has its origins in antiquity and epidemiology is considered 
by many to be the fundamental science of public health, epidemiology did not 
develop noticeably as a scientifi c discipline until the 20th century. Nonetheless, 
certain signal contributions to public health and epidemiology represented 
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 long-lasting, important increments to our outlook and understanding. Here we 
review highlights from some of the key contributors to the foundation of public 
health.

Hippocrates (~460–370 BC)

Hippocrates was a Greek physician who had a profound infl uence on the prac-
tice of medicine as well as on public health. Scholars believe that many of the 
surviving writings that are nominally att ributed to Hippocrates were authored 
by others, probably his students. Nevertheless, these writings were undoubtedly 
infl uenced by Hippocrates and refl ect a revolutionary approach to health and 
disease that Hippocrates helped to bring about. Th e prevailing view in the time 
of Hippocrates was that disease was the result of demonic possession or divine 
displeasure. Hippocrates turned att ention to earthly causes. Greek physicians in 
Hippocrates’ day were itinerant. Hippocrates advised these physicians to consider 
what environmental factors in each community might aff ect locally occurring dis-
eases. For example, in Airs, Waters, and Places, the infl uence of the environment 
on disease occurrence was stressed for the fi rst time in a scholarly treatise3:

Whoever wishes to investigate medicine properly, should proceed thus: in the fi rst place to consider 
the seasons of the year, and what eff ects each of them produces for they are not at all alike, but diff er 
much from themselves in regard to their changes. Th en the winds, the hot and the cold, especially 
such as are common to all countries, and then such as are peculiar to each locality. We must also 
consider the qualities of the waters, for as they diff er from one another in taste and weight, so also 
do they diff er much in their qualities. In the same manner, when one comes into a city to which 
he is a stranger, he ought to consider its situation, how it lies as to the winds and the rising of the 
sun; for its infl uence is not the same whether it lies to the north or the south, to the rising or to 
the sett ing sun. Th ese things one ought to consider most att entively, and concerning the waters 
which the inhabitants use, whether they be marshy and soft , or hard, and running from elevated and 
rocky situations, and then if saltish and unfi t for cooking; and the ground, whether it be naked and 
defi cient in water, or wooded and well watered, and whether it lies in a hollow, confi ned situation, 
or is elevated and cold; and the mode in which the inhabitants live, and what are their pursuits, 
whether they are fond of drinking and eating to excess, and given to indolence, or are fond of 
exercise and labor, and not given to excess in eating and drinking . . .

And in particular, as the season and the year advances, he can tell what epidemic diseases 
will att ack the city, either in summer or in winter, and what each individual will be in danger of 
experiencing from the change of regimen. For knowing the changes of the seasons, the risings 
and sett ings of the stars, how each of them takes place, he will be able to know beforehand what 
sort of a year is going to ensue. Having made these investigations, and knowing beforehand the 
seasons, such a one must be acquainted with each particular, and must succeed in the preservation 
of health, and be by no means unsuccessful in the practice of his art.

Many of the specifi c theories espoused in the writings that are att ributed to 
Hippocrates would seem strange to modern readers. He believed it important to 
study astrology, with each astrological sign being associated with a part of the 
body. He also embraced the theory of humors, which held that when one of 
the four humors (black bile, phlegm, yellow bile, and blood) was out of balance, 
 disease resulted. Although such theories are not in accord with modern views 
of disease, Hippocrates fostered a sea change away from mysticism and religion 
toward observation and reason as means of understanding the causes of disease.
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Avicenna (Ibn Sina) (980–1037)

Avicenna, or Ibn Sina, a Persian philosopher, scientist, and physician, lived dur-
ing the time that Europe was plodding through the Dark Ages, with science in 
full retreat. But in the Islamic world, it was a golden age of knowledge, to which 
Avicenna was a major contributor. A prolifi c genius, he wrote on many topics, 
foremost among them medicine and health. He is not identifi ed specifi cally with 
public health, but, like Hippocrates, his contributions to the understanding of dis-
ease causation and his emphasis on empirical evidence had an enormous infl uence 
on both medicine and public health. His 14-volume Canon of Medicine is perhaps 
the most renowned textbook of medicine ever writt en. It was translated into Latin 
in 1187 and had a long-lasting infl uence in both the East and the West. In Europe, 
it was the primary medical text for centuries and was still in use as late as 1650.

Avicenna emphasized the need for bringing experimentation and quantifi ca-
tion into the study of physiology and medicine. He inferred from his observations 
that some infectious diseases were spread by contagion, and he suggested the 
use of quarantine to limit their spread. Th e following excerpt from the introduc-
tion to Avicenna’s Canon of Medicine shows the infl uence of Hippocrates and his 
embrace of scientifi c study. In it, one can easily see the foreshadowing of modern 
 epidemiologic theory4:

Th e knowledge of anything, since all things have causes, is not acquired or complete unless it is 
known by its causes. Th erefore in medicine we ought to know the causes of sickness and health. 
And because health and sickness and their causes are sometimes manifest, and sometimes hidden 
and not to be comprehended except by the study of symptoms, we must also study the symptoms 
of health and disease. Now it is established in the sciences that no knowledge is acquired save 
through the study of its causes and beginnings, if it has had causes and beginnings; nor completed 
except by knowledge of its accidents and accompanying essentials. . . . Th ese are the subjects of the 
doctrine of medicine; whence one inquires concerning the disease and curing of the human body. 
One ought to att ain perfection in this research; namely, how health may be preserved and sickness 
cured. And the causes of this kind are rules in eating and drinking, and the choice of air, and the 
measure of exercise and rest; and doctoring with medicines and doctoring with the hands. All this 
with physicians is according to three species: the well, the sick, and the medium of whom we have 
spoken.

Fracastoro (1478–1553)

Th e Renaissance physician and poet Fracastoro, from Verona, extended the con-
cept of contagion by suggesting a theory about how contagious disease spreads. 
In his master work, De contagione et contagiosis morbis et curatione, which was pub-
lished in 1546, he described many diseases, such as plague, typhus, and syphilis, 
that were transmitt ed from person to person, and he suggested a theory that dis-
ease was spread through self-replicating particles. He postulated that these par-
ticles, which he called seminaria, or seeds, were too small to see and were specifi c 
for each disease. His theory was the forerunner of the germ theory, although he 
had no concept that the seminaria were alive. He suggested that seminaria could 
infest an environment and could spread disease by direct  person-to-person con-
tact, by indirect contact with articles he called fomites (a term still in use for con-
taminated articles), and by transmission at a distance (eg, through air or water). 
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He thought that atmospheric conditions could infl uence the ability of the sem-
inaria to spread and cause epidemics, an idea that traces back to Hippocrates, 
although for Hippocrates the causal role of airs and waters was more defi nitive.

Despite the importance of De contagione, Fracastoro is best known for his ear-
lier epic poem Syphilis sive morbus Gallicus (“Syphilis or the French Disease”). Th is 
Latin verse was one of the most celebrated poems of the Renaissance, but at the 
same time it was a clinical dissertation on this new disease that had spread rapidly 
through Europe in the early years of the 16th century. He discussed the known 
treatments for syphilis, which included mercury and a New World treatment called 
guaiacum. Th e poem includes a detailed discussion of Columbus’  voyage of discov-
ery, not because of Columbus’ possible role in importing syphilis to Europe but 
because the source of guaiacum was the New World that Columbus had explored.

John Graunt (1620–1674)

A London haberdasher by trade, John Graunt is known as the world’s fi rst epi-
demiologist and demographer. His avocation as a scientist led him to focus on 
an available data resource, the weekly Bills of Mortality, which summarized data 
collected in the parishes of London and later throughout England, originally to 
monitor deaths from the plague. Th e list included baptisms and deaths by cause 
in each parish. Th e collection of these data had begun late in the 15th century 
(uninterruptedly from 1603), and continued until the 19th century, when they 
were superseded by a more formal registration system (see section on William 
Farr). Graunt realized that much could be learned from a compilation of the data, 
thus sett ing a tradition for epidemiologists who still seek to use already collected 
data for epidemiologic research.

He published only one work based on his research, but this small volume 
contained an impressive number of original fi ndings. Th e book had the unwieldy 
title Natural and Political Observations Mentioned in a Following Index, and Made 
Upon the Bills of Mortality. It included the fi rst observation that more boys are 
born than girls. It presented the fi rst actuarial table. It included the fi rst reports 
of time trends for various diseases, adjusting for population size. He noted that 
some diseases changed in frequency because of changes in disease classifi cation, 
as opposed to natural phenomena. He gave the fi rst estimate of the population of 
London, demonstrating that it was growing rapidly through immigration rather 
than by an increase in births. He off ered evidence to refute the theory that plague 
epidemics accompany the crowning of a new king. And he noted that physicians 
see more female patients than male patients.

Although Graunt was an amateur scientist, he had a natural appreciation for 
the fi ne points of epidemiology. For example, he was meticulous in describing the 
method of data collection for the Bills of Mortality5:

Th ese Bills were Printed and published, not onely every week on Th ursdays, but also a general 
Accompt of the whole Year given in, upon the Th ursday before Christmas Day: which said general 
Accompts have been presented in the several manners following, viz. from the Year 1603, to the 
Year 1624, inclusive . . .

We have hitherto described the several steps, whereby the Bills of Mortality are come up to their 
present state; we come next to shew how they are made, and composed, which is in this manner, viz. 



Pioneers in Epidemiology and Public Health 13

When any one dies, then, either by tolling, or ringing of a Bell, or by bespeaking of a Grave of the 
Sexton, the same is known to the Searchers, corresponding with the said Sexton.

Th e Searchers hereupon (who are antient Matrons, sworn to their Offi  ce) repair to the place, 
where the dead Corps lies, and by view of the same, and by other enquiries, they examine by what 
Disease, or Casualty the Corps died. Hereupon they make their Report to the Parish-Clerk, and he, 
every Tuesday night, carries in an Accompt of all the Burials, and Christnings, hapning that Week, to 
the Clerk of the Hall. On Wednesday the general Accompt is made up, and Printed, and on Th ursdays 
published and dispersed to the several Families, who will pay four shillings per Annum for them.

Th e classifi cation of deaths in the Bills of Mortality would seem strange to the 
modern eye. For example, categories of death included “Suddenly,” “Killed by 
Several Accidents,” and “Found Dead in the Streets.” Nevertheless, Graunt’s con-
cern about possible misclassifi cation of the events that were tabulated in the Bills 
of Mortality was very modern. He suspected, for example, that plague deaths were 
underascertained, because in years that had more plague deaths, there were also 
more deaths from other causes. He inferred that about 20% of plague deaths were 
mistakenly recorded as deaths att ributable to other causes and on that basis pro-
duced a refi ned estimate of mortality from the plague. Th is was the fi rst recorded 
example of correction for misclassifi cation error. He also considered the reasons 
for misclassifi cation of deaths. Th e matrons who served as searchers could recog-
nize a corpse as well as anyone and could easily establish whether a death should 
be att ributed to hanging, leprosy, drowning, or other obvious causes. But some 
causes of death were more diffi  cult to ascertain. With respect to consumption 
(ie, tuberculosis), he noted5 that

. . . all dying thereof so emaciated and lean (their Ulcers disappearing upon Death) that the Old-
women Searchers aft er the mist of a cup of Ale, and the bribe of a two-groat fee, instead of one, given 
them, cannot tell whether this emaciation, or leanness were from a Phthisis, or from an Hectic Fever, 
Atrophy, &c or from an Infection of the Spermatick parts.

Graunt’s work provides several lessons that still apply to good epidemiologic 
work.6 Among these are the following:

He was succinct. His short work contained many original fi ndings and yet 1. 
had an ample description of methods and results.
He provided clear explanations for his reasoning, for example with the 2. 
calculations showing the underestimation of plague deaths.
He subjected his theories and novel fi ndings to repeated tests. For exam-3. 
ple, he estimated the population of London to be 384,000, but he derived 
this fi gure using fi ve diff erent approaches.
He invited readers to criticize his work, to “correct my 4. Positions, and raise 
others of their own: For herein I have, like a silly Scholeboy, coming to 
say my Lesson to the World (that Peevish, and Tetchie Master) brought 
a bundle of Rods wherewith to be whipt, for every mistake I have 
 committ ed.”5 Such humility is less common nowadays.
He described how he had revised his opinions in the light of new data.5. 
He relied on estimation, a quantitative approach to his subject matt er rather 6. 
than a qualitative approach, such as the presence or absence of statistical 
signifi cance, which infests much of today’s research (see Chapter 8).
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Bernardino Ramazzini (1633–1714)

Ramazzini was born in Carpi, Italy, in the year when Galileo was interrogated by 
the Inquisition. He was a polymath who became a pioneer in epidemiology and 
especially in the fi eld of occupational medicine. As a physician, he was noted as 
an early proponent for the use of cinchona bark (a source of quinine) to treat 
malaria. His crowning achievement, however, was the text De morbis artifi cum 
 diatriba (“On Artifi cially Caused Disease”), the fi rst comprehensive work on 
occupational diseases and industrial hygiene. Published in 1700, it described risks 
related to dozens of occupational hazards. He counseled physicians to inquire 
about the work activities and workplace exposures of their patients7:

“When you come to a patient’s house, you should ask him what sort of pains he has, what caused 
them, how many days he has been ill, whether the bowels are working and what sort of food he 
eats.” So says Hippocrates in his work Aff ections. I may venture to add one more question: what 
occupation does he follow?

He gave detailed descriptions of specifi c occupational diseases, including a review 
of existing knowledge and suggestions for prevention and treatment. He was also 
concerned with the physical demands of specifi c occupations and with repetitive 
physical tasks. His interest in ergonomics can be seen in this excerpt8:

Nowadays women sit to weave, but in such a posture that they somehow look as though they 
were standing. This kind of work is certainly very fatiguing, for the whole body is tasked, both 
hands, arms, feet, and back, so that every part of the body at once shares in the work. . . . Now an 
occupation so fatiguing naturally has its drawbacks, especially for women, for if pregnant they 
easily miscarry and expel the fetus prematurely and in consequence incur many ailments later 
on. It follows that women weavers, I mean those who are engaged wholly in this occupation, 
ought to be particularly healthy and robust, otherwise they break down from overwork and 
as they get on in years are compelled to abandon this trade. . . . Therefore in work so taxing 
moderation would be the best safeguard against these maladies, for men and women alike; for 
the common maxim “Nothing to excess” is one that I excessively approve.

In 1982, an international group of public-health scientists founded the 
Collegium Ramazzini, headquartered in Carpi. Th e Collegium was founded to 
advance the study of environmental and occupational disease and, according to 
its bylaws, to be “a bridge between the world of scientifi c discovery and those 
social and political centers which must act on these discoveries to conserve life 
and to prevent disease.”9

William Farr (1807–1883)

Farr was the fi rst Compiler of Abstracts at the General Register Offi  ce in England. 
Th e General Register Offi  ce was created by an act of Parliament in 1836 to  record 
the civil registration of births, deaths, and marriages in England and Wales. Around 
that time, information on cause of death was collected along with age and occupa-
tion for all deaths. Farr’s appointment began in 1839, and he remained in the General 
Register Offi  ce for 40 years, where he continued the tradition that began with John 
Graunt of using routinely collected vital statistics to learn about disease occurrence.
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Farr occupied himself with many of the same issues that Graunt addressed. 
He studied demographic issues of population size, sex ratio at birth, fecundity, 
and time trends. He tested the theories that had been proposed by Malthus on 
population growth. He constructed actuarial tables, examined infant mortality, 
and, following in the footsteps of Ramazzini, studied the relation between specifi c 
occupations and mortality. He was famously engaged in a series of analyses of 
the cholera epidemics that struck London in the mid–19th century, in which he 
determined that local and comparatively small changes in altitude were strongly 
related to mortality from cholera. At fi rst, he att ributed the eff ect of altitude to 
atmospheric infl uences, consistent with the then-popular theory that foul air was 
the medium by which cholera was spread. In this, he was in confl ict with John 
Snow, who att ributed the spread of cholera to contaminated water (see next sec-
tion). But eventually his own data persuaded Farr to change his mind, and he 
became a champion of Snow’s theory that sewage contaminated with excreta from 
cholera victims perpetuated the epidemics.

Farr’s work defi ned the fi eld of vital statistics and had a lasting infl uence on 
epidemiology and public health. He was a dispassionate scientist, but he also 
saw the harsh social burden of industrialization and was an ardent reformer as 
well as a member of the sanitary movement. On the fundamental role of epi-
demiology in public health, Farr remarked, “Diseases are more easily prevented 
than cured and the fi rst step to their prevention is the discovery of their exciting 
causes.”10

John Snow (1813–1858)

Esteemed for his meticulous research on cholera as well as his pioneering work 
in the use of anesthetic gases, John Snow is considered the founding father of 
both epidemiology and anesthesiology. His renown as an anesthetist stems from 
his study of anesthetic gases, the design of inhalers to control the fl ow of these 
gases, and the sensational administration of chloroform to Queen Victoria dur-
ing delivery. His renown as an epidemiologist stems from his investigation of the 
London cholera epidemics in the mid–19th century and his famous persuasion 
of the Board of Guardians of Saint James’ Parish to remove the pump handle 
from the Broad Street pump in Golden Square, so as to contain the epidemic of 
cholera that raged there in the summer of 1854.

Th e popularization of the dramatic vignett e of the pump handle has Snow’s 
intervention stopping the epidemic cold. As I describe in Chapter 4, however, the 
epidemic was already waning when the pump handle was removed, and it is not 
clear that any cholera cases were prevented by its removal. On the other hand, 
it is possible that removal of the handle may have prevented a second outbreak. 
Th e likely index case of the outbreak was an infant who lived near the pump 
and whose mother soaked the soiled diapers of the infant in pails and dumped 
them into a cesspool near the pump. Later investigation showed that the brick-
work around the pump was defective and water from the cesspool could enter 
the pump. Th e infant’s father developed cholera the day that the pump handle 
was removed and therefore might have ignited a second epidemic had the pump 
still been in operation.11,12
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Th e real story was not so much the removal of the pump handle but Snow’s 
meticulous investigations that demonstrated the connection between consuming 
fouled water and risk of cholera. By 1854, Snow had already been pursuing for 
several years the theory that cholera was transmitt ed by ingestion of an agent 
that was spread through fecal contamination of drinking water. He brought many 
lines of inquiry to bear on his research. At the time, the germ theory was not 
accepted—most experts still believed that miasmas were the means for spreading 
communicable diseases. Farr, for example, believed in miasmas, despite his own 
analyses that showed that altitude in the London area was a strong determinant of 
cholera risk. Altitude could aff ect the fl ow of bad air, so Farr and others thought 
that the altitude data supported the miasma theory. But altitude is also related to 
the fl ow of water, with individuals living at lower altitudes much more likely to 
be drinking water containing the sewage of those at higher elevations. Snow noted 
that inhalation of bad air would make more sense if the cholera patient developed 
a respiratory disease, but he saw that clinically the disease begins as a gastroin-
testinal affl  iction. Snow marshaled a wide array of facts to make his case. For 
example, he noted that miners experienced a greater risk of cholera than those in 
any other occupation. Miners also spent long hours underground, with no access 
to privies, and carried food along that they ate with bare hands that they were 
unable to wash adequately.

Although the incident with the Broad Street pump is iconic, Snow’s most 
important contribution to epidemiology was his groundbreaking work on the 
relation between water supply and cholera conducted in certain neighborhoods 
of London. Th e key study was one in which water pipes from two competing 
companies, one carrying clean water and the other water that was contaminated 
with London sewage, supplied the same neighborhood. Most residents did not 
even know which company supplied their apartment, because landlords typi-
cally contracted to provide water. Th is situation, elegantly described by Snow as 
being bett er than any experiment that could have been devised, became known 
as a natural experiment. It is described in greater detail in Chapters 4 and 5. 
Snow is celebrated today by epidemiologists even more for being a pioneer of 
epidemiologic study design than for his seminal work on the mode of cholera 
transmission.

Ignasz Semmelweis (1818–1865)

Today recognized as a pioneering epidemiologist and revered as a hero in his 
native Hungary, in his time Semmelweis was an outcast who was widely spurned 
by the medical profession. He was born in Budapest and studied medicine and 
practiced obstetrics in Vienna at a time when puerperal fever raged throughout 
the maternity hospitals of Europe with no satisfactory explanation. Th e Vienna 
Maternity Hospital was the largest hospital of its kind in the world. Patients were 
admitt ed on alternate days to each of its two obstetrics clinics. Medical students 
were taught in the fi rst clinic and midwives in the second. During the period 
1840–1846, the risk of maternal death during delivery was about 10% for women 
admitt ed to the fi rst clinic but less than 4% in the second clinic, where the mid-
wives trained. Almost all maternal deaths were from puerperal fever. Th e mortality 
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rate was so high in the fi rst clinic that women who could aff ord to do so gave 
birth at home rather than risk being assigned to the fi rst clinic.

Semmelweis investigated a theory that doctors themselves were the source of 
disease for their patients. In the fi rst clinic, when a woman died with puerperal 
fever, students and their teachers would conduct an autopsy, and from there they 
would proceed back to the clinic to examine other patients. Semmelweis noted 
that when he left  Vienna for a sabbatical, puerperal fever deaths in the fi rst clinic 
declined, but they rose again aft er his return. He also noted that a colleague who 
nicked himself with a scalpel during an autopsy died of a disease that resembled 
puerperal fever. From these and other observations, Semmelweis theorized that 
the source of disease, the “morbid matt er,” was being spread by doctors and stu-
dents from cadavers in the morgue to patients on the ward. Semmelweis insti-
tuted a policy of washing hands in a chlorinated lime disinfectant before returning 
to the wards, and the risk of puerperal fever in the fi rst clinic was reduced to the 
same level as in the second clinic.

Unfortunately, the germ theory of disease was not yet accepted. Most physi-
cians believed that miasmas, or bad air, were the source of communicable dis-
ease. Semmelweis was also handicapped by his own personality. He was slow to 
publish, loath to accept criticism, quick to anger, and dogmatic.13 Consequently, 
he was not eff ective in persuading others to take his theory seriously, despite the 
remarkable evidence that he assembled. Aft er a series of professional setbacks, he 
died young and ignominiously while hospitalized in a mental institution, and his 
work was forgott en. Eventually, the English surgeon Joseph Lister, infl uenced by 
Pasteur, introduced antiseptic technique to surgery practice, and from there it was 
carried over to maternity clinics. All this happened without any infl uence from 
Semmelweis, whose reputation rose only aft er his work was rediscovered.

Florence Nightingale (1820–1910)

Nightingale is best known for her contribution to nursing, but she also was an 
accomplished epidemiologist and statistician who made major contributions to 
the fi eld of public health.14,15 Born to a wealthy family, she entered the nursing 
profession as a calling to work for the public good, facing parental opposition and 
societal roadblocks. Her early professional eff orts were aimed at caring for people 
in poverty, helping to improve medical care available to the poor, and working 
to reform the Poor Law of the United Kingdom. In 1854, she was asked by the 
British Secretary of War to go to the British front where the Crimean war was 
being waged. She went with a staff  of trained volunteer nurses and discovered that 
poor nutrition and hygiene, lack of medicines, and indiff erence were responsible 
for more deaths among soldiers than batt lefi eld injuries. She instigated improve-
ments such as bett er sewage and ventilation. Death rates soon dropped in the 
 military fi eld hospital.

Nightingale’s eff orts in the Crimea brought her fame and with it a mandate to 
continue her eff orts in public health. She wrote a treatise on health conditions 
in the Crimea, for which she invented a diagram now known as a polar-area dia-
gram or coxcomb (Fig. 2–1). It plott ed monthly deaths att ributable to preventable 
and unpreventable causes (deaths were proportional to area, not to radius); the 
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data revealed that most deaths were preventable and showed clear time trends. 
Back in England, she noted that the poor nutrition and hygiene she had found at 
the front also affl  icted military men stationed at home. She wrote a report that 
sparked an overhaul of medical care of soldiers and led to the establishment of a 
medical school for the army. Later, she turned her att ention to sanitation in rural 
India and became a voice for improvement of public health throughout India. Her 
work was characteristically meticulous, grounded in carefully collected data, and 
presented in compelling graphics.

Janet Lane-Claypon (1877–1967)

Another female British pioneer in epidemiology, who has been largely overlooked 
despite her seminal contribution, is the inventor of the modern case-control 
study. Lane-Claypon, like Nightingale, was a public-health leader who became 
an innovator in epidemiology in pursuit of her public-health objectives. In 1912, 
she published the results of a study that examined breast feeding versus bott le 
feeding in relation to weight gain during infancy and secondarily compared the 
eff ect of boiled versus raw cow’s milk among the bott le-fed infants. Th is study 
has been described as the fi rst retrospective cohort study,16 although one could 
argue that the earlier studies of Snow on cholera or of Semmelweiss on puerperal 
fever were retrospective cohort studies. Regardless of priority, Lane-Claypon’s 
work was ahead of its time, not only for the basic study design but also for 
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Figure 2–1.  Diagram of mortality by cause during the Crimean war, by Florence 
Nightingale, 1858. Each wedge represents one month. Th e area of the outer wedges 
is proportional to death from “preventable or mitigable zymotic diseases,” the area of 
the white wedges represents deaths from wounds, and the area from the dark shaded 
wedges represents deaths from all other causes. Th e graph shows that sickness took 
a much greater toll than injuries, and deaths were much greater during the fi rst year 
than the second.
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her att ention to both systematic and random error. She excluded sick infants to 
prevent confounding, and she wrote about possible confounding by social class, 
a factor that was not controlled and could aff ect the data she reported.

Her seminal work came in 1926 with the publication of results from the fi rst 
modern case-control study, which was aimed at evaluating risk factors for breast 
cancer.17 She selected 500 cases and an equal number of controls from hospitals 
in London and Glasgow. Exposure information was obtained by interview using 
a questionnaire designed for the study. Her analyses laid the groundwork for 
breast cancer epidemiology, establishing the relation of age at fi rst pregnancy, age 
at menopause, number of children, and surgically induced menopause to breast 
cancer risk. Although it was not recognized at the time, this study introduced a 
novel study design that has since become a hallmark of modern epidemiology. 
 Lane-Claypon seemed well aware, however, of the strengths and weaknesses of the 
method. She discussed the possibility of recall bias, long considered an important 
source of error in case-control studies that rely on interviews to gather data. She 
also acknowledged possible problems stemming from the facts that cases were 
survivors and that cases and controls were drawn from a set of hospitals. Many 
decades before the principles of epidemiologic study design were codifi ed and 
discussed, Lane-Claypon had the insight to describe many of the important issues 
in both cohort and case-control studies.18,19

Wade Hampton Frost (1880–1938)

Wade Hampton Frost was the fi rst professor of epidemiology in the fi rst univer-
sity department of epidemiology, at the Johns Hopkins School of Hygiene and 
Public Health (now known as the Johns Hopkins Bloomberg School of Public 
Health).20 Aft er graduating with a degree in medicine from the University of 
Virginia in 1903, Frost chose to pursue a career in public health. (One specula-
tive view suggests that Frost chose a career in public health because he contracted 
tuberculosis while a student and was consequently advised to avoid working in 
general practice.) At the start of the 20th century, the germ theory of disease 
was still new, and the control of disease spread by infectious agents was in its 
infancy. Soon aft er graduation, Frost was called to New Orleans to investigate 
an outbreak of yellow fever. Th e role of the mosquito vector, Aedes aegypti, in 
the transmission of yellow fever had only recently been established. Frost and 
a team of colleagues spent weeks eliminating breeding spots for the mosquito 
and eventually stopped the outbreak aft er 459 people had died. It marked the 
fi rst time that a yellow fever outbreak in the United States was halted before 
the arrival of winter, and it was also the last epidemic of yellow fever in the 
United States.

Frost’s subsequent work and teaching were infl uenced by the classic investi-
gations by William Budd on typhoid fever and by Snow on cholera. His later 
work focused on typhoid, poliomyelitis, meningococcal meningitis, tuberculosis, 
and infl uenza. His studies on polio led to the understanding that paralytic cases 
constitute only a small proportion of those infected by the virus and that child-
hood infection with the virus confers lasting immunity. His infl uenza research 
documented the spread of the global pandemic of 1918–1919, showed that the 
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eff ects of infl uenza epidemics could be tracked using death rates for  pneumonia, 
and revealed that the case-fatality rate for infl uenza during the pandemic had a 
bimodal age distribution, hitt ing hard among young adults and the very old. His 
work on tuberculosis was an early and elegant demonstration of the power of 
 analyzing mortality rates by birth cohort, a method fi rst used a decade  earlier 
by the Norwegian physician Kristian Andvord. Frost is also known for his 
 collaboration with Lowell Reed in developing the elegant Reed-Frost  mathematical 
model for infectious disease transmission and the development of herd immunity 
(see Chapter 6).

ALSO NOTEWORTHY

Th e contributions of these pioneers highlight only a few of the important mile-
stones in the history of epidemiology and public health. Many others could eas-
ily have been mentioned—William Budd, Edward Goldberger, Major Greenwood, 
Edward Jenner, James Lind, Pierre Louis, Peter Panum, Geoff rey Rose, and Edgar 
Sydenstricker, to suggest a few. By the mid–20th century, epidemiology research 
and teaching had expanded rapidly. It had also extended its purview to include an 
ever-widening range of disease foci, such as psychiatric illness, violent behavior, 
and obesity. Leaders such as Austin Bradford-Hill, Richard Doll, Brian MacMahon, 
Abraham Lilienfeld, John Cassel, and many others nurtured the growth of epide-
miology during this period, infl uencing others through their teaching but even 
more so by the quality of their work. Th e surge in epidemiologic activity has 
continued through the 20th century and into the present.

QUESTIONS

1. Although epidemiologic research is greatly facilitated by computers, its 
conduct is based on enumerating events in populations and is not espe-
cially dependent on technology. Th e ideas needed to conduct epidemiologic 
research could have been developed and applied long ago. Speculate as to 
why epidemiologic research did not become commonplace until the middle 
of the 20th century.

2. Both Snow and Semmelweiss conducted research that showed how one 
might prevent infectious disease before the germ theory was accepted. Yet 
the existence of microorganisms had been known for almost 200 years, since 
van Leeuwenhoek fi rst described what he saw under a microscope. Speculate 
on the nature of social and scientifi c thinking of the time that hindered the 
scientists of the 19th century from accepting the role of microorganisms in 
disease.

3. Graunt and Farr advanced the fi eld of epidemiology by studying public 
records and vital statistics, sett ing examples for generations of epidemiolo-
gists. Others, such as Snow and Semmelweiss, devised studies to collect their 
own data, which required considerable time and eff ort but was possible as an 
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independent eff ort. Today, collection of ad hoc epidemiologic data is expen-
sive and oft en requires collaborative eff orts and substantial funding that must 
be approved in a peer-review process. It appears that peer review, had it been 
necessary, might have been an obstacle to Snow and Semmelweiss. Give 
arguments listing the strengths and weaknesses of a system of peer review 
for funding of scientifi c research.

ADDITIONAL READING

Buck C, Llopis A, Nájera E, Terris M. Th e Challenge of Epidemiology: Issues and 
Selected Readings. Pan American Health Organization Scientifi c Publication No. 505. 
Geneva: World Health Organization, 1988.
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3

What Is Causation?

Th e acquired wisdom that certain conditions or events bring about other 
 conditions or events is an important survival trait. Consider an infant whose fi rst 
experiences are a jumble of sensations that include hunger, thirst, color, light, 
heat, cold, and many other stimuli. Gradually, the infant begins to perceive pat-
terns in the jumble and to anticipate connections between actions such as crying 
and eff ects such as being fed. Eventually, the infant assembles an inventory of 
associated perceptions. Along with this growing appreciation for specifi c causal 
relations comes the general idea that some events or conditions can be considered 
causes of other events or conditions.

Th us, our fi rst appreciation of the concept of causation is based on our own 
observations. Th ese observations typically involve causes with eff ects that are 
immediately apparent. For example, changing the position of a light switch on the 
wall has the instant eff ect of causing the light to go on or off . Th ere is, however, 
more to the causal mechanism for gett ing the light to shine than turning the light 
switch to the on position. If the electric lines to the building are down because 
of a storm, turning on the switch will have no eff ect. If the bulb is burned out, 
manipulating the switch also will have no eff ect. One cause of the light going 
on is having the switch in the proper place, but along with it we must include a 
supply of power to the circuit, a working bulb, and intact wiring. When all other 
factors are in place, turning the switch will cause the light to go on, but if one 
or more of the other factors is not playing its causal role, the light will not go 
on when the switch is turned. Th ere is a tendency to consider the switch as the 
unique cause of turning on the light, but we can defi ne a more intricate causal 
mechanism in which the switch is one component of several. Th e tendency to 
identify the switch as the unique cause stems from its usual role as the fi nal fac-
tor that acts in the causal mechanism. Th e wiring can be considered part of the 
causal mechanism, but aft er it is installed, it seldom warrants further att ention. 
Th e switch is typically the only part of the mechanism that needs to be acti-
vated to turn on the light. Th e eff ect usually occurs immediately aft er turning 
the switch, and as a result, we tend to identify the switch as a unique cause. Th e 
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inadequacy of this assumption is emphasized when the bulb fails and must be 
replaced before the light will go on.

THE CAUSAL PIE MODEL

Causes of disease can be conceptualized in the same way as the causes of turning 
on a light. A helpful way to think about causal mechanisms for disease is depicted 
in Figure 3–1.1 Each pie in the diagram represents a theoretical causal mechanism 
for a given disease, sometimes called a suffi  cient cause. Th e three pies illustrate 
that there are multiple mechanisms that cause any type of disease. Each indi-
vidual instance of disease occurs through a single mechanism or suffi  cient cause. 
A given causal mechanism requires the joint action of many component factors, 
or component causes. Each component cause is an event or a condition that plays 
a necessary role in the occurrence of some cases of a given disease. For example, 
the disease may be cancer of the lung, and in the fi rst mechanism in Figure 3–1, 
factor C may be cigarett e smoking. Other factors include genetic traits or other 
environmental exposures that play a causal role in cancer of the lung. Some com-
ponent causes presumably act in many diff erent causal mechanisms. (Terminology 
note: the causal pie model has also been described as the suffi  cient-component cause 
model.)

Implications of the Causal Pie Model

Multicausality
Th e model of causation shown in Figure 3–1 illuminates several important prin-
ciples of causation, the most important of which is that every causal mechanism 
involves the joint action of a multitude of component causes. Consider as an 
example the cause of a broken hip. Suppose that someone experiences a traumatic 
injury to the head that leads to a permanent disturbance in equilibrium. Many 
years later, faulty equilibrium plays a causal role in a fall that occurs while the 
person is walking on an icy path. Th e fall results in a broken hip. Other factors 

Figure 3–1  Th ree suffi  cient causes of a disease.
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playing a causal role for the broken hip may include the type of shoe the person 
was wearing, the lack of a handrail along the path, a sudden gust of wind, and 
the weight of the person. Th e complete causal mechanism involves a multitude 
of factors. Some factors, such as the earlier injury that resulted in the equilibrium 
disturbance and the weight of the person, refl ect earlier events that have had a 
lingering eff ect. Some causal components of the broken hip are genetic. Genetic 
factors aff ect the person’s weight, gait, behavior, and recovery from the earlier 
trauma. Other factors, such as the force of the wind, are environmental (nonge-
netic). Th ere usually are some genetic and some environmental component causes 
in every causal mechanism. Even an event such as a fall on an icy path that results 
in a broken hip is part of a complicated causal mechanism that involves many 
component causes.

Genetic Versus Environmental Causes 

It is a strong assertion that every case of every disease has both genetic 
and environmental causes. Nevertheless, if all genetic factors that determine 
disease are taken into account, essentially 100% of disease can be said to 
be inherited, in the sense that nearly all cases of disease have some genetic 
component causes. What would be the genetic component causes of some-
one who gets drunk and is killed in an automobile aft er colliding with a 
tree? Genetic traits may lead to psychiatric problems such as alcoholism, 
which may lead to drunk driving and consequent fatality. It is also possible 
to claim that essentially 100% of any disease is environmentally caused, even 
diseases that oft en are considered to be purely genetic. Phenylketonuria, for 
example, is considered by many to be purely genetic. Nonetheless, if we 
consider the disease that phenylketonuria represents to be the mental retar-
dation that may result from it, we can prevent the disease by appropriate 
dietary intervention. Th e disease therefore has environmental determinants, 
and its causes are both environmental and genetic. Although it may seem 
like an exaggeration to claim that 100% of cases of any disease are envi-
ronmental and genetic at the same time, it is a good approximation. It may 
seem counterintuitive, because we cannot manipulate many of the causes 
in most situations and the ones that can be controlled are usually solely 
environmental causes, as in the manipulation of diet to prevent the mental 
retardation of phenylketonuria.

Strength of Causes
It is common to think that some component causes play a more important role 
than other factors in the causation of disease. One way this concept is expressed 
is by the strength of a causal eff ect. We say that smoking has a strong eff ect on 
lung cancer risk because smokers have about 10 times the risk of lung cancer 
as nonsmokers. We say that smoking has a weaker eff ect on myocardial infarc-
tion because the risk of a heart att ack is only about twice as great in smokers 
as in nonsmokers. With respect to an individual case of disease, however, every 
component cause that played a role was necessary to the occurrence of that case. 
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According to the causal pie model, for a given case of disease, there is no such 
thing as a strong cause or a weak cause. Th ere is only a distinction between 
 factors that were causes and factors that were not causes.

To understand what epidemiologists mean by strength of a cause, we need to 
shift  from thinking about an individual case to thinking about the total burden of 
cases occurring in a population. We can then defi ne a strong cause to be a compo-
nent cause that plays a causal role in a large proportion of cases and a weak cause 
to be a causal component in a small proportion of cases. Because smoking plays 
a causal role in a high proportion of the lung cancer cases, we call it a strong 
cause of lung cancer. For a given case of lung cancer, smoking is no more impor-
tant than any of the other component causes for that case; but on the population 
level, it is considered a strong cause of lung cancer because it causes such a large 
proportion of cases.

Th e strength of a cause defi ned in this way necessarily depends on the prev-
alence of other causal factors that produce disease. As a result, the concept of a 
strong or weak cause cannot be a universally accurate description of any cause. 
Suppose we say that smoking is a strong cause of lung cancer because it plays 
a causal role in a large proportion of cases. Exposure to ambient radon gas is 
considered to be a weaker cause because it has a causal role in a much smaller 
proportion of lung cancer cases. Imagine that society eventually succeeds in elim-
inating tobacco smoking, with a consequent reduction in smoking-related cases of 
lung cancer. One result is that a much larger proportion of the lung cancer cases 
that continue to occur will be caused by exposure to radon gas; eliminating smok-
ing would strengthen the causal eff ect of radon gas on lung cancer. Th is example 
illustrates that strength of eff ect is not a biologically stable characteristic of a factor. 
From a biologic perspective, the causal role of a factor in producing disease is 
neither strong nor weak; the biology of causation corresponds to the identity of 
the component causes in a causal mechanism and the ways in which they inter-
act to produce disease. Th e proportion of the population burden of disease that 
a factor causes, which we use to defi ne the strength of a cause, can change from 
population to population and over time if there are changes in the distribution of 
other causes of the disease. Th e strength of a cause does not portray the biology 
of causation.

Interaction Between Causes
Th e causal pie model posits that several causal components act in concert to 
produce an eff ect. Acting in concert does not imply that factors must act at the 
same time. Consider the earlier example of the person who sustained trauma to 
the head that resulted in an equilibrium disturbance, which led years later to a 
fall on an icy path. Th e earlier head trauma played a causal role in the later hip 
fracture, as did the weather conditions on the day of the fracture. If both factors 
played a causal role in the hip fracture, they interacted with one another to cause 
the fracture, despite the fact that their time of action was many years apart. We 
would say that any and all of the factors in the same causal mechanism interact 
with one another to cause disease. Th e head trauma interacted with the weather 
conditions and with the other component causes, such as the type of footwear, 
the absence of a handhold, and any other conditions that were necessary to the 
causal mechanism of the fall and the broken hip that resulted. Each causal pie can 
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be considered as a set of interacting causal components. Th is model provides a 
biologic basis for the concept of interaction that diff ers from the more traditional 
statistical view of interaction. Th e implication of this diff erence is discussed in 
Chapter 11.

Sum of Att ributable Fractions
Consider the data in Table 3–1, which shows the rates of head and neck cancer 
according to smoking status and alcohol exposure. Suppose that the diff erences in 
the rates refl ect causal eff ects, so that confounding can be ignored. Among those 
who are smokers and alcohol drinkers, what proportion of the cases of head and 
neck cancer that occur is att ributable to the eff ect of smoking? We know that the 
rate for these people is 12 cases per 10,000 person-years. If these same people 
were not smokers, we can infer that their rate of head and neck cancer would 
be 3 cases per 10,000 person-years. If this diff erence refl ects the causal role of 
smoking, we can infer that 9 of every 12 cases (75%) are att ributable to smok-
ing among those who smoke and drink alcohol. If we turn the question around 
and ask what proportion of disease among these same people is att ributable to 
alcohol drinking, we would be able to att ribute 8 of every 12 cases (67%) to 
alcohol drinking.

Can we att ribute 75% of the cases to smoking and 67% to alcohol drinking 
among those who are exposed to both? Th e answer is yes, because some cases 
are counted more than once as a result of the interaction between smoking and 
alcohol consumption. Th ese cases are att ributable to both smoking and alcohol 
drinking because both factors played a causal role in producing them. One con-
sequence of interaction is that the proportions of disease att ributable to various 
component causes do not sum to 100%.

A widely discussed but unpublished paper from the 1970s writt en by scientists 
at the National Institutes of Health proposed that as much as 40% of cancer is 
att ributable to occupational exposures. Many scientists thought that this fraction 
was an overestimate and argued against this claim.2,3 One of the arguments used 
in rebutt al was as follows: x percent of cancer is caused by smoking, y percent by 
diet, z percent by alcohol, and so on; when all of these percentages are summed, 
only a small percentage, much less than 40%, is left  for occupational causes. Th is 
rebutt al, however, is fallacious because it is based on the naive view that every 
case of disease has a single cause and that two causes cannot both contribute 
to the same case of cancer. Because diet, smoking, asbestos, and various occu-
pational exposures and other factors interact with one another and with genetic 

Table 3–1 Hypothetical Rates 
of Head and Neck Cancer 

(Cases per 10,000 Person-Years) 
According to Smoking Status 

and Alcohol Drinking

Smoking Status Alcohol Drinking
No Yes

Nonsmoker 1  3
Smoker 4 12 
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factors to cause cancer, each case of cancer can be att ributed repeatedly to many 
separate component causes. Th e sum of disease att ributable to various component 
causes has no upper limit.

Induction Time
Because the component causes in a given causal mechanism do not act simul-
taneously, there usually is a period of time between the action of a component 
cause and the completion of a suffi  cient cause. Th e only exception is the last 
component cause to act in a given causal mechanism. Th e last-acting component 
cause completes the causal mechanism, and we can say that disease begins con-
currently with its action. For earlier-acting component causes, we can defi ne the 
induction period as the time interval that begins concurrently with the action of a 
component cause and ends when the fi nal component cause acts and the disease 
occurs. For example, in the illustration of the fractured hip, the induction time 
between the head trauma that resulted in an equilibrium disturbance and the later 
hip fracture was many years. Th e induction time between the decision to wear 
nongripping shoes and the hip fracture might have been a matt er of minutes or 
hours. Th e induction time between the gust of wind that triggered the fall and 
the hip fracture might have been seconds or less.

In an individual instance, we usually cannot know the exact length of an induc-
tion period, because we cannot be sure of the causal mechanism that produces 
disease in an individual instance nor when all the relevant component causes 
in that mechanism exerted their causal action. With research data, however, we 
can learn enough to characterize the induction period that relates the action of a 
single component cause to the occurrence of disease in general. An example of a 
lengthy induction time is the cause-eff ect relation between exposure of a female 
fetus to diethylstilbestrol (DES) and her subsequent development of adenocarci-
noma of the vagina. Th e cancer generally occurs aft er the age of 15 years. Because 
the causal exposure to DES occurs during gestation, there is an induction time of 
more than 15 years for carcinogenesis. During this time, other causes presumably 
operate; some evidence suggests that hormonal action during adolescence may be 
part of the mechanism.4

Th e causal pie model makes it clear that it is incorrect to characterize a dis-
ease itself as having a lengthy or brief induction time. Th e induction time can 
be conceptualized only in relation to a specifi c component cause. We can say 
that the induction time relating DES to clear cell carcinoma of the vagina is at 
least 15 years, but we cannot say that 15 years is the minimum induction time 
for clear cell carcinoma in general. Because each component cause in any causal 
mechanism can act at a time diff erent from the other component causes, each can 
have its own induction time. For the component cause that acts last, the induc-
tion time always equals zero. If another component cause of clear cell carcinoma 
of the vagina that acts during adolescence were identifi ed, it would have a much 
shorter induction time than that of DES. Induction time characterizes a specifi c 
cause-eff ect pair rather than only the eff ect.

In carcinogenesis, the terms initiator and promoter are used to refer to compo-
nent causes of cancer that act early and late, respectively, in the causal mechanism. 
Cancer itself has oft en been characterized as a disease process with a long induc-
tion time, but this characterization is a misconception. Any late-acting component 
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in the causal process, such as a promoter, will have a short induction time, and 
the induction time will always be zero for the last component cause (eg, the gust 
of wind causing the broken hip in the earlier example), because aft er the fi nal 
causal component acts, disease has occurred. At that point, however, the presence 
of disease is not necessarily apparent. A broken hip may be apparent immediately, 
but a cancer that has just been caused may not become noticed or diagnosed for 
an appreciable time. Th e time interval between disease occurrence and its subse-
quent detection, whether by medical testing or by the emergence of symptoms, 
is called the latent period.4 Th e length of the latent period can be reduced by 
improved methods of disease detection. Th e induction period, however, cannot 
be reduced by early detection of disease, because there is no disease to detect 
until aft er the induction period is over. Practically, it may be diffi  cult to distin-
guish between the induction period and the latent period, because there may be 
no way to establish when the disease process began if it is not detected until later. 
Diseases such as slow-growing cancers may appear to have long induction periods 
with respect to many causes, in part because they have long latent periods.

Although it is not possible to reduce the induction period by earlier detection of 
disease, it may be possible to observe intermediate stages of a causal mechanism. 
Th e increased interest in biomarkers such as DNA adducts is an example of focus-
ing on causes that are more proximal to the disease occurrence. Biomarkers may 
refl ect the eff ects on the organism of agents that have acted at an earlier time.

Is a Catalyst a Cause?

Some agents may have a causal action by shortening the induction time of 
other agents. Suppose that exposure to factor A leads to epilepsy aft er an 
average interval of 10 years. It may be that exposure to drug B can shorten 
this interval to 2 years. Is B acting as a catalyst or as a cause of epilepsy? Th e 
answer is both; a catalyst is a cause. Without B, the occurrence of epilepsy 
comes 8 years later than it comes with B, so we can say that B causes the 
epilepsy to occur earlier. It is not suffi  cient to argue that the epilepsy would 
have occurred anyway and therefore that B is not a cause of its occurrence. 
First, it would not have occurred at that time, and the time of occurrence 
is considered part of the defi nition of an event. Second, epilepsy will occur 
later only if the person survives an additional 8 years, which is not certain. 
Agent B therefore determines when the epilepsy occurs, and it can deter-
mine whether it occurs at all. For this reason, we consider any agent that 
acts as a catalyst of a causal mechanism, shortening the induction period for 
other agents, to be a cause. Similarly, any agent that postpones the onset of 
an event, drawing out the induction period for another agent, we consider 
to be a preventive. It should not be too surprising to equate postponement 
with prevention; we routinely use such an equation when we employ the 
euphemism that we prevent death, which can only be  postponed. We pre-
vent death at a given time in favor of death at a later time. Similarly, slow-
ing the process of atherosclerosis can result in postponement (and thereby 
prevention) of cardiovascular disease and death.
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THE PROCESS OF SCIENTIFIC INFERENCE

Much epidemiologic research is aimed at uncovering the causes of disease. Now 
that we have a conceptual model for causes, how do we determine whether a 
given relation is causal? Some scientists refer to checklists for causal inference, and 
others focus on complicated statistical approaches, but the answer to this question 
is not to be found in checklists or statistical methods. Th e question itself is tan-
tamount to asking how we apply the scientifi c method to epidemiologic research. 
Th is question leads directly to the philosophy of science, a topic that goes well 
beyond the scope of this book. Nevertheless, it is worthwhile to summarize two 
of the major philosophic doctrines that have infl uenced modern science.

Induction

Since the rise of modern science in the 17th century, scientists and philosophers 
have puzzled over the question of how to determine the truth about assertions 
that deal with the empirical world. From the time of the ancient Greeks, deductive 
methods have been used to prove the validity of mathematic propositions. Th ese 
methods enable us to draw airtight conclusions because they are self- contained, 
starting with a limited set of defi nitions and axioms and applying rules of logic 
that guarantee the validity of the method. Empirical science is diff erent, however. 
Assertions about the real world do not start from arbitrary axioms, and they 
involve observations on nature that are fallible and incomplete. Th ese stark diff er-
ences from deductive logic led early modern empiricists, such as Francis Bacon, 
to promote what they considered a new type of logic, which they called induction 
(not to be confused with the concept of an induction period). Induction was an 
indirect method used to gain insight into what has been metaphorically described 
as the fabric of nature.

Th e method of induction starts with observations on nature. To the extent that 
the observations fall into a patt ern, they are said to induce in the mind of the 
observer a suggestion of a more general statement about nature. Th e general state-
ment can range from a simple hypothesis to a more profound natural law or nat-
ural relation. Th e statement about nature is reinforced with further  observations 
or refuted by contradictory observations. For example, suppose an investigator 
in New York conducts an experiment to determine the boiling point of water 
and observes that the water boils at 100°C. Th e experiment is repeated many 
times, each time showing that the water boils at about 100°C. By induction, the 
investigator concludes that the boiling point of water is 100°C. Th e  induction 
itself involves an inference beyond the observations to a general statement that 
describes the nature of boiling water. As induction became popular, it was seen to 
diff er considerably from deduction. Although not as well understood as  deduction, 
the approach was considered a new type of logic, inductive logic.

Although induction, with its emphasis on observation, represented an impor-
tant advance over the appeal to faith and authority that characterized medieval 
scholasticism, it was not long before the validity of the new logic was ques-
tioned. Th e sharpest criticism came from the skeptical philosopher David Hume, 
who pointed out that induction had no logical force. Rather, it amounted to the 
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assumption that what had been observed in the past would continue to occur in 
the future. When supporters of induction argued that induction was a valid pro-
cess because it had been seen to work on numerous occasions, Hume countered 
that the argument was an example of circular reasoning that relied on induction 
to justify itself. Hume was so profoundly skeptical that he distrusted any inference 
based on observation because observations depend on sense perceptions and are 
therefore subject to error.

Refutationism

Hume’s criticisms of induction have been a powerful force in modern scientifi c 
philosophy. Th e most infl uential reply to Hume was off ered by Karl Popper. 
Popper accepted Hume’s point that in empirical science one cannot prove the 
validity of a statement about nature in any way that is comparable with a deduc-
tive proof. Popper’s philosophy, known as refutationism, held that statements about 
nature can be “corroborated” by evidence, but corroboration does not amount to 
a logical proof. On the other hand, Popper also asserted that statements about 
nature can be refuted by deductive logic. To grasp the point, consider the earlier 
example of observing the boiling point of water. Th e refutationist view is that the 
repeated experiments showing that water boils at 100°C corroborate the hypoth-
esis that water boils at this temperature, but they do not prove it.5 A colleague 
of the New York researcher who works in Denver, a city located at high altitude, 
would fi nd that water there boils at 94°C. Th is single contrary observation car-
ries more weight regarding the hypothesis about the boiling point of water than 
thousands of repetitions of the initial experiment at sea level.

Th e asymmetric implications of a refuting observation compared with support-
ing observations are the essence of the refutationist view. Th is school of thought 
encourages scientists to subject a new hypothesis to rigorous tests that may falsify 
the hypothesis in preference to repetitions of the initial observations that add 
litt le beyond the weak corroboration that replication can supply. Th e implication 
for the method of science is that hypotheses should be evaluated by subjecting 
them to crucial tests. If a test refutes a hypothesis, a new hypothesis needs to be 
formulated that can then be subjected to further tests. Aft er fi nding that water 
boils in Denver at a lower temperature than it boils in New York, the investigator 
must discard the hypothesis that water boils at 100°C and replace it with a more 
refi ned hypothesis, such as one that will explain the diff erence in boiling points 
under diff erent atmospheric pressures. Th is process describes an endless cycle of 
conjecture and refutation. Th e conjecture, or hypothesis, is the product of scientifi c 
insight and imagination. It requires litt le justifi cation except that it can account 
for existing observations. A useful approach is to pose competing hypotheses to 
explain existing observations and to test them against one another. Th e refutation-
ist philosophy postulates that all scientifi c knowledge is tentative because it may 
one day need to be refi ned or even discarded. In this philosophy, what we call 
scientifi c knowledge is a body of currently unrefuted hypotheses that appear to 
explain existing observations.

How can an epidemiologist apply refutationist thinking to his or her work? If 
causal mechanisms are stated specifi cally, an epidemiologist can construct crucial 
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tests of competing hypotheses. For example, when toxic shock syndrome was 
fi rst studied, there were two competing hypotheses about the origin of the toxin. 
In one, the toxin responsible for the disease was a chemical in the tampon, and 
women using tampons were exposed to the toxin directly from the tampon. In 
the other hypothesis, the tampon acted as a culture medium for staphylococci 
that produced the toxin. Both hypotheses explained the correlation of toxic shock 
occurrence and tampon use. Th e two hypotheses, however, led to opposite predic-
tions about the relation between the frequency of changing tampons and the risk 
of toxic shock. If chemical intoxication were the cause, more frequent tampon 
changes would lead to more exposure to the toxin and possible absorption of a 
greater overall dose. Th is hypothesis predicted that women who changed tam-
pons more frequently would have a higher risk of toxic shock syndrome than 
women who changed tampons infrequently. Th e culture-medium hypothesis pre-
dicted that the women who change tampons frequently would have a lower risk 
than those who left  the tampon in for longer periods, because a short duration 
of use for each tampon would prevent the staphylococci from multiplying enough 
to produce a damaging dose of toxin. Epidemiologic research, which showed that 
infrequent changing of tampons was associated with greater risk of toxic shock, 
refuted the chemical theory.

Critics of refutationism point out that refutation is not logically certain because 
it depends on theories, assumptions, and observations, all of which are susceptible 
to error. In epidemiology, for example, any study result may be infl uenced by an 
obscure bias, which is an inescapable source of uncertainty. Among the dissenting 
philosophic views is that of Th omas Kuhn,6 who held that it is ultimately the col-
lective beliefs of the community of scientists that determines what is accepted as 
truth about nature. According to Kuhn, the truth is not necessarily objective but 
rather something determined by consensus. Feyerabend,7 another skeptic, held 
that science proceeds through intellectual anarchy, without any coherent method. 
A more moderate although still critical view was taken by Haack.8,9 She saw sci-
ence as an extension of everyday inquiry, employing pragmatic methods that she 
likened to solving a crossword puzzle, integrating clues with other answers in a 
trial-and-error approach. Despite these criticisms, refutationism has been a posi-
tive force in science by encouraging bold, testable theories and then fostering a 
valuable skeptical outlook by subjecting those theories to rigorous challenges.

Causal Criteria

Earlier we said that there is no simple checklist that can determine whether 
an observed relation is causal. Nevertheless, att empts at such checklists have 
appeared. Most of these lists stem from the canons of inference described by John 
Stuart Mill.10 Th e most widely cited list of causal criteria, originally posed as a 
list of standards, is att ributed to Hill,11 who adapted them from the U.S. Surgeon 
General’s 1964 report on Smoking and Health.12 Th e Hill standards, oft en labeled 
the Hill criteria, are listed in Table 3–2, along with some problems related to each 
of the criteria.

Although Hill did not propose these criteria as a checklist for evaluating 
whether a reported association could be interpreted as causal, many others have 
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att empted to apply them in that way. Admitt edly, the process of causal inference as 
described earlier is diffi  cult and uncertain, making the appeal of a simple checklist 
undeniable. Unfortunately, this checklist, like all others with the same goal, fails 
to deliver on the hope of clearly distinguishing causal from noncausal relations. 
Consider the fi rst criterion, strength. It is tempting to believe that strong associa-
tions are more likely to be causal than weak ones, but as we saw in our discussion 
of causal pies, not every component cause has a strong association with the dis-
ease that it produces; strength of association depends on the prevalence of other 
factors. Some causal associations, such as the association between cigarett e smok-
ing and coronary heart disease, are weak. Furthermore, a strong association can 
be noncausal, a confounded result stemming from the eff ect of another risk factor 
for the disease that is highly correlated with the one under study. For example, 
birth order is strongly associated with the occurrence of Down syndrome, but it 
is a confounded association that is completely explained by the eff ect of maternal 
age. If weak associations can be causal and strong associations can be noncausal, 
it does not appear that strength of association can be considered a criterion for 
causality.

Th e third criterion (see Table 3–2), specifi city, suggests that a relation is more 
likely to be causal if the exposure is related to a single outcome rather than myr-
iad outcomes. Th is criterion is misleading because it implies, for example, that 
the more diseases with which smoking is associated, the greater the evidence 
that smoking is not causally associated with any of them. Th e fi ft h criterion, bio-
logic gradient, is oft en taken as a sign of a causal relation, but it can just as well 
result from confounding or other biases as from a causal connection. Th e relation 
between Down syndrome and birth order, mentioned earlier, shows a biologic 
gradient despite being completely explained by confounding from maternal age.

Other criteria from Hill’s list are vague (eg, consistency, plausibility, coher-
ence, analogy) or do not apply in many sett ings (eg, experimental evidence). Th e 
only characteristic on the list that is truly a causal criterion is temporality, which 
implies that the cause comes before the eff ect. Th is criterion, which is part of 

Table 3–2 Causal Criteria of Hill

Criterion Problems with the Criterion
1. Strength Strength depends on the prevalence of other 

causes; it is not a biologic characteristic and can be 
confounded.

2. Consistency Causal relations have exceptions that are understood 
best with hindsight.

3. Specifi city A cause can have many eff ects.
4. Temporality It may be diffi  cult to establish the temporal sequence 

between cause and eff ect.
5. Biologic gradient It can be confounded; threshold phenomena would 

not show a progressive relation.
6. Plausibility Too subjective
7. Coherence How does it diff er from consistency or plausibility?
8. Experimental evidence Not always available
9. Analogy Analogies abound.
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the defi nition of a cause, is a useful one, although it may be diffi  cult to establish 
the proper time sequence for cause and eff ect. For example, does stress lead to 
overeating, or does overeating lead to stress? It usually is bett er to avoid a check-
list approach to causal inference and instead consider approaches such as conjec-
ture and refutation. Checklists lend a deceptive kind of mindless authority to an 
inherently imperfect and creative process. In contrast, causal inference based on 
 conjecture and refutation fosters a highly desirable critical scrutiny.

Although checklists may not be appropriate for causal inference, the points laid 
out by Hill are still important considerations. Th e criteria may be useful when 
applied in the context of specifi c hypotheses. For example, Weiss observed that 
the specifi city of eff ects might be important in inferring the benefi cial eff ect of 
sigmoidoscopy in screening for colorectal cancer if the association between sig-
moidoscopy and reduced death from colorectal cancer is stronger for cancer 
occurring at sites within reach of a sigmoidoscope.13

Generalization in Epidemiology

A useful way to think of scientifi c generalization is to consider a generalization to 
be the elaboration of a scientifi c theory. A given study may test the viability of 
one or more theories. Th eories that survive such tests can be viewed as general 
statements about nature that tell us what to expect in people or sett ings that were 
not studied. Because theories can be incorrect, scientifi c generalization is not a 
perfect process. Formulating a theory is not a mathematical or statistical process, 
and generalization should not be considered a statistical exercise. It is the process 
of causal inference itself.

Many people believe that generalizing from an epidemiologic study involves a 
mechanical process of making an inference about a target population of which the 
study population is considered a sample. Th is type of generalization does exist, in 
the fi eld of survey sampling. In survey sampling, researchers draw samples from a 
population to avoid the expense of studying the entire population, which makes 
the statistical representativeness of the sample the main concern for generalizing 
to the source population.

Although survey sampling is an important tool for characterizing a population 
effi  ciently and may be used in some epidemiologic applications, such as preva-
lence surveys, it is a mechanical tool that does not always share the same goals 
as science. Survey sampling is useful for problems such as trying to predict how 
a population will vote in an election or what type of laundry soap the people in 
a region prefer. Th ese are characteristics that depend on att itudes and for which 
there is litt le coherent biologic theory on which to base a scientifi c generalization. 
Survey results may be quickly outdated (eg, election polls may be repeated weekly 
or even daily) and do not apply outside the populations from which the surveys 
were conducted. (Disclaimer: I am not saying that social science is not science or 
that we cannot develop theories about social behavior. I am saying only that sur-
veys about the current att itudes of a specifi c group of people are not the same as 
social theories.) Even if survey sampling is used to characterize the prevalence of 
disease or the medical needs of a population, the objectives are pragmatic rather 
than scientifi c and may not apply outside the study population. Scientifi c results 
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from epidemiologic studies, in contrast, seldom need to be repeated weekly to 
see if they still apply. An epidemiologic study conducted in Chicago showing 
that exposure to ionizing radiation causes cancer does not need to be repeated 
in Houston to determine whether ionizing radiation also causes cancer in people 
living in Houston. Generalization about ionizing radiation and cancer is based on 
understanding of the underlying biology rather than on statistical sampling.

It may be helpful to consider the problem of scientifi c generalization about 
causes of cancer from the point of view of a biologist studying carcinogenesis in 
mice. Most researchers who study cancer in animals do so because they would 
like to understand bett er the causes of human cancer. If scientifi c generaliza-
tion depended on having studied a statistically representative sample of the tar-
get population, researchers studying mice would have nothing to contribute to 
the understanding of human cancer. Mouse researchers obviously do not study 
representative samples of people; they do not even study representative samples 
of mice. Instead, they seek mice that have uniformly similar genes and perhaps 
certain biologic characteristics. In choosing mice to study, they have to consider 
mundane issues such as the cost of the mice. Although researchers studying ani-
mals are unlikely to worry about whether their mouse or rabbit subjects are statis-
tically representative of all mice or rabbits, they may consider whether the biology 
of the animal population they are studying is similar to (and representative of) 
that of humans. Th is type of representativeness, however, is not statistical repre-
sentativeness based on sampling from a source population; it is a biologic rep-
resentativeness based on scientifi c knowledge. Despite the absence of statistical 
representativeness, no one seriously doubts the contribution that animal research 
can make to the understanding of human disease.

Many epidemiologic activities, such as measuring the prevalence of patients in 
need of dialysis, do require surveys to characterize a specifi c population, but these 
activities are usually examples of applied epidemiology rather than the science 
of epidemiology. Th e activities of applied epidemiology involve taking already 
established epidemiologic knowledge and applying it to specifi c sett ings, such as 
preventing malaria transmission by reducing the mosquito vector population or 
reducing lung cancer and cardiovascular disease occurrence by implementing an 
antismoking campaign. Th e activities of epidemiologic research, as in laboratory 
science, move away from the specifi c toward the general. We make specifi c obser-
vations in research studies and then hope to generalize from them to a broader 
base of understanding. Th is process is based more on scientifi c knowledge, insight, 
and conjecture about nature than it is on the statistical representativeness of the 
actual study participants. Th is principle has important implications for the design 
and interpretation of epidemiologic studies (see Chapter 7).

QUESTIONS

1. Criticize the following statement: Th e cause of tuberculosis is infection 
with the tubercle bacillus.

2. A trait in chickens called yellow shank occurs when a specifi c genetic strain 
of chickens is fed yellow corn. Farmers who own only this strain of chickens 
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observe the trait to depend entirely on the nature of the diet,  specifi cally 
whether they feed their chickens yellow corn. Farmers who feed all of their 
chickens only yellow corn but own several strains of chicken observe the 
trait to be genetic. What argument could you use to explain to both kinds 
of farmer that the trait is both environmental and genetic?

3. A newspaper article proclaims that diabetes is neither genetic nor environ-
mental but multicausal. Another article announces that one half of all colon 
cancer cases are linked to genetic factors. Criticize both messages.

4. Suppose a new treatment for a fatal disease defers the average time before 
onset of death among those with the disease for 20 years beyond the time 
when they would have otherwise died. Is it proper to say that this new 
 treatment reduces the risk of death, or does it merely postpone death?

5. It is typically more diffi  cult to study an exposure-disease relation that has 
a long induction period than one that has a short induction period. What 
diffi  culties ensue because the exposure-disease induction period is long?

6. Suppose that both A and B are causes of a disease that is always fatal, 
so that the disease can occur only once in a single person. Among people 
exposed to both A and B, what is the maximum proportion of disease that 
can be att ributed to either A or B? What is the maximum for the sum of 
the amount att ributable to A and the amount att ributable to B? Suppose that 
A and B exert their causal infl uence only in diff erent causal mechanisms, so 
that they never act through the same mechanism. Would that change your 
answer?

7. Adherents of induction claim that we all use this method of inference 
every day. We assume, for example, that the sun will rise tomorrow as it 
has in the past. Critics of induction claim that this knowledge is based on 
belief and assumption and that it is no more than a psychological crutch. 
Why should it matt er to a scientist whether scientifi c reasoning is based on 
 induction or on a diff erent approach, such as conjecture and refutation?

8. Give an example of competing hypotheses for which an epidemiologic 
study would provide a refutation of at least one.

9. Could a causal association fail to show evidence of a biologic gradient 
(ie, Hill’s fi ft h criterion)? Explain.

10. Suppose you are studying the infl uence of socioeconomic factors on car-
diovascular disease. Would the study be more informative if (1) the study 
participants had the same distribution of socioeconomic factors as the gen-
eral population or (2) the study participants were recruited so that there 
were equal numbers of participants in each category of the socioeconomic 
variables? Why?
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4

Measuring Disease Occurrence 

and Causal Effects

As with most sciences, measurement is a central feature of epidemiology, which 
has been defi ned as the study of the occurrence of illness.1 Th e broad scope 
of epidemiology demands a correspondingly broad interpretation of illness, to 
include injuries, birth defects, health outcomes, and other health-related events 
and  conditions. Th e fundamental observations in epidemiology are measures of 
the occurrence of illness. In this chapter, I discuss several measures of disease 
frequency, including risk, incidence rate, and prevalence. I also examine how these 
fundamental measures can be used to obtain derivative measures that aid in 
 quantifying  potentially causal relations between exposure and disease.

MEASURES OF DISEASE OCCURRENCE

Risk and Incidence Proportion

Th e concept of risk for disease is widely used and reasonably well understood 
by many people. It is measured on the same scale and interpreted in the same 
way as a probability. Epidemiologists sometimes speak about risk applying to an 
indivi dual, in which case they are describing the probability that a person will 
develop a given disease. It is usually pointless, however, to measure risk for a 
single person, because for most diseases, the person simply either does or does 
not contract the disease. For a larger group of people, we can describe the pro-
portion who developed the disease. If a population has N people and A people 
of the N develop disease during a period of time, the proportion A/N represents 
the average risk of disease in the population during that period:

Risk
Number of subjects developing disease during a time period

= =A
N NumberNN of subjects followeff d forff the time period
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Th e measure of risk requires that all of the N people are followed for the entire 
time during which the risk is being measured. Th e average risk for a group is also 
referred to as the incidence proportion. Th e word risk oft en is used in reference to 
a single person, and incidence proportion is used in reference to a group of people 
(Table 4–1). Because averages taken from populations are used to estimate the 
risk for individuals, the two terms oft en are used synonymously. We can use risk 
or incidence proportion to assess the onset of disease, death from a given disease, 
or any event that marks a health outcome.

One of the primary advantages of using risk as a measure of disease frequency 
is the extent to which it is readily understood by many people, including those 
who have litt le familiarity with epidemiology. To make risk useful as a technical 
or scientifi c measure, however, we need to clarify the concept. Suppose you read 
in the newspaper that women who are 60 years old have a 2% risk of dying of 
cardiovascular disease. What does this statement mean? If you consider the possi-
bilities, you may soon realize that the statement as writt en cannot be interpreted. 
It is certainly not true that a typical 60-year-old woman has a 2% chance of dying 
of cardiovascular disease within the next 24 hours or in the next week or month. 
A 2% risk would be high even for 1 year, unless the women in question have one 
or more characteristics that put them at unusually high risk compared with most 
60-year-old women. Th e risk of developing fatal cardiovascular disease over the 
remaining lifetime of 60-year-old women, however, would likely be well above 2%. 
Th ere might be some period over which the 2% fi gure would be correct, but any 
other period of time would imply a diff erent value for the risk.

Th e only way to interpret a risk is to know the length of time over which the 
risk applies. Th is period may be short or long, but without identifying it, risk 
values are not meaningful. Over a very short time period, the risk of any partic-
ular disease is usually extremely low. What is the probability that a given person 
will develop a given disease in the next 5 minutes? It is close to zero. Th e total 
risk over a period of time may climb from zero at the start of the period to a 
maximum theoretical limit of 100%, but it cannot decrease with time. Figure 4–1 
illustrates two diff erent possible patt erns of risk during a 20-year interval. In pat-
tern A, the risk climbs rapidly early during the period and then plateaus, whereas 
in patt ern B, the risk climbs at a steadily increasing rate during the period.

How might these diff erent risk patt erns occur? As an example, a patt ern similar 
to A could occur if a person who is susceptible to an infectious disease becomes 
immunized, in which case the leveling off  of risk is sudden, not gradual. Patt ern 
A also could occur if those who come into contact with a susceptible person 
become immunized, reducing the susceptible person’s risk of acquiring the  disease. 
A patt ern similar to B could occur if a person who has been exposed to a cause 

Table 4–1 Comparison of Incidence Proportion (Risk) 
and Incidence Rate

Property Incidence Proportion Incidence Rate
Smallest value 0 0
Greatest value 1 Infi nity
Units (dimensionality) None 1/time
Interpretation Probability Inverse of waiting time
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is nearing the end of the typical induction time for the causal action, such as 
risk of adenocarcinoma of the vagina among young women who were exposed 
to diethylstilbestrol (DES) while they were fetuses, as discussed in Chapter 3. 
In that example, the shape of the curve is similar to that of B in Figure 4–1, 
but the actual risks are much lower than those in Figure 4–1. Another phenom-
enon that can give rise to patt ern B is the aging process, which oft en leads to 
sharply increasing risks as people progress beyond middle age.

Risk is a cumulative measure. For a given person, risk increases with the length 
of the risk period. For a given risk period, however, risks for a person can rise 
or fall with time. Consider the 1-year risk of dying in an automobile crash for a 
driver. For any one person during a period of 1 year, the risk cumulates steadily 
from zero at the beginning of the year to a fi nal value at the end of that year. 
Nevertheless, the 1-year risk is greater for most drivers in their teenage years than 
for the same drivers when they reach their 50s.

Risk carries an important drawback as a tool for assessing the occurrence of 
illness; over any appreciable time interval, it is usually technically impossible to 
measure risk. Th e reason is a practical one: For almost any population followed 
for a suffi  cient time, some people in the population will die from causes other 
than the outcome under study.

Suppose that you are interested in measuring the occurrence of domes-
tic violence in a population of 10,000 married women over a 30-year period. 
Unfortunately, not all 10,000 women will survive the 30-year period. Some may 
die from extreme instances of domestic violence, but many more are likely to die 
from cardiovascular disease, cancer, infection, vehicular injury, or other causes. 
What if a woman died aft er 5 years of being followed without having been a 
victim of domestic violence? We could not say that she would not have been 

Figure 4–1  Two possible patt erns of disease risk with time.
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a victim of domestic violence during the subsequent 25 years. If we count her 
as part of the denominator, N, we will obtain an underestimate of the risk of 
domestic violence for a population of women who do survive 30 years. To under-
stand why, imagine that there are many women who do not survive the 30-year 
follow-up period. It is likely that among them there are some women who would 
have experienced domestic violence if they had instead survived. If we count the 
women who die during the follow-up period in the denominator, N, of a risk 
measure, then the numerator, A, which gives the number of cases of domestic vio-
lence, will be underestimated because A is supposed to represent the number of 
victims of domestic violence among a population of women who were followed 
for a full 30 years.

Th is phenomenon of people being removed from a study through death from 
other causes is sometimes referred to as competing risks. Th ere is one outcome for 
which there can be no competing risk: the outcome of death from any cause. If 
we study all deaths, there is no possibility of someone dying of a cause that we 
are not measuring. For any other outcome, it will always be possible for someone 
to die before the end of the follow-up period without experiencing the event that 
we are measuring. Th erefore, unless we are studying all deaths, competing risks 
become a consideration.

Over a short period of time, the infl uence of competing risks usually is small. 
It is not unusual for studies to ignore competing risks if the follow-up period 
is short. For example, in the experiment in 1954 in which the Salk vaccine was 
tested, hundreds of thousands of schoolchildren were given either the Salk  vaccine 
or a placebo. All of the children were followed for 1 year to assess the vaccine’s 
effi  cacy. Because only a small proportion of school-age children died of compet-
ing causes during the year of the study, it was reasonable to report the results 
of the Salk vaccine trial in terms of the observed risks. When study participants 
are older or are followed for longer periods, competing risks are greater and may 
need to be taken into account. One way to remove competing risks is to measure 
incidence rates instead, and convert these to risk measures, and another is to use 
a life-table analysis. Both approaches are described later in this chapter.

A related issue that aff ects long-term follow-up is loss to follow-up. Some people 
may be hard to track to assess whether they have developed disease. Th ey may 
move away or choose not to participate further in a research study. Th e diffi  culty 
in interpreting studies in which there have been considerable losses to follow-up 
is sometimes similar to the challenge of interpreting studies in which there are 
strong competing risks. In both situations, the researcher lacks complete follow-up 
of a study group for the intended period of follow-up.

Because of competing risks, it is oft en useful to think of risk or incidence pro-
portion as hypothetical measures in the sense that they usually cannot be directly 
observed in a population. If competing risks did not occur and all losses to fol-
low-up could be avoided, we could measure incidence proportion directly in a 
population by dividing the number of observed cases by the number of people 
in the population followed. As mentioned earlier, if the outcome of interest is 
death from any cause, there will be no competing risk; any death that occurs 
represents an outcome that will count in the numerator of the risk measure. Most 
att empts to measure disease risk are focused on outcomes more specifi c than 
death from any cause, such as death from a specifi c cause (eg, cancer, multiple 
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sclerosis, infection) or the occurrence of a disease rather than death. For these 
outcomes, there is always the possibility of competing risks. In reporting the frac-
tion A/N, which is the observed number of cases divided by the number of peo-
ple who were initially being followed, the incidence proportion that would have 
been observed had there been no competing risk will be underestimated, because 
competing risks will have removed some people from the at-risk  population 
before their disease developed.

Att ack Rate and Case-Fatality Rate

A term for risk or incidence proportion that is sometimes used in  connection 
with infectious outbreaks is att ack rate. An att ack rate is the incidence pro-
portion, or risk, of contracting a condition during an epidemic period. For 
example, if an infl uenza epidemic has a 10% att ack rate, 10% of the popu-
lation will develop the disease during the epidemic period. Th e time refer-
ence for an att ack rate is usually not stated but is implied by the biology of 
the disease being described. It is usually short, typically no more than a few 
months, and sometimes much less. A secondary att ack rate is the att ack rate 
among susceptible people who come into direct contact with  primary cases, 
the cases infected in the initial wave of an epidemic (see Chapter 6).

Another version of the incidence proportion that is encountered fre-
quently in clinical medicine is the case-fatality rate, which is described in 
greater detail in Chapter 13. Th e case-fatality rate is the proportion of peo-
ple dying of the disease (fatalities) among those who develop the disease 
(cases). Th us, the population at risk when a case-fatality rate is used is the 
population of people who have already developed the disease. Th e event 
being measured is not development of the disease but rather death from the 
disease (sometimes all deaths among patients, rather than only deaths from 
the disease, are counted). Like an att ack rate, the case-fatality rate is seldom 
accompanied by a specifi c time referent, and this lack of time specifi city can 
make it diffi  cult to interpret. It is typically used and easiest to interpret as a 
description of the proportion of people who succumb to an infectious dis-
ease, such as measles. Th e case-fatality rate for measles in the United States 
is about 1.5 deaths per 1000 cases. Th e period for this risk of death is the 
comparatively short time frame during which measles infects an individual, 
ending in recovery, death, or some other complication. For diseases that 
continue to aff ect a person over long periods, such as multiple sclerosis, it 
is more diffi  cult to interpret a measure such as case-fatality rate, and other 
types of mortality or survival measures are used instead.

Incidence Rate

To address the problem of competing risks, epidemiologists oft en resort to a dif-
ferent measure of disease occurrence, the incidence rate. Th is measure is similar to 
incidence proportion in that the numerator is the same. It is the number of cases, 
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A, that occur in a population. Th e denominator is diff erent. Instead of dividing 
the number of cases by the number of people who were initially being followed, 
the incidence rate divides the number of cases by a measure of time. Th is time 
measure is the summation across all individuals of the time experienced by the 
population being followed.

Incidence rate
Time

Number of subjects developing disease
Total

= =A
timett experienced forff the subjects followeff d

One way to obtain this measure is to sum the time that each person is fol-
lowed for every member of the group being followed. If a population was fol-
lowed for 30 years and a given person died aft er 5 years of follow-up, that person 
would have contributed only 5 years to the sum for the group. Others might 
have contributed more or fewer years, up to a maximum of the full 30 years of 
follow-up.

For people who do not die during follow-up, there are two methods of count-
ing the time during follow-up. Th ese methods depend on whether the disease or 
event can recur. Suppose that the disease is an upper respiratory tract infection, 
which can occur more than once in the same person. Because the numerator of 
an incidence rate could contain more than one occurrence of an upper respiratory 
tract infection from a single person, the denominator should include all the time 
during which each person was at risk for gett ing any of these bouts of infection. 
In this situation, the time of follow-up for each person continues aft er that person 
recovers from an upper respiratory tract infection. On the other hand, if the event 
were death from leukemia, a person would be counted as a case only once. For 
someone who dies of leukemia, the time that would count in the denominator of 
an incidence rate would be the interval that begins at the start of follow-up and 
ends at death from leukemia. If a person can experience an event only once, the 
person ceases to contribute follow-up time aft er the event occurs.

In many situations, epidemiologists study events that can occur more than 
once in an individual, but they count only the fi rst occurrence of the event. For 
example, researchers may count the occurrence of the fi rst heart att ack in an indi-
vidual and ignore (or study separately) second or later heart att acks. If only the 
fi rst occurrence of a disease is of interest, the time contribution of a person to 
the denominator of an incidence rate will end when the disease occurs. Th e uni-
fying concept in regard to tallying the time for the denominator of an incidence 
rate is simple: Th e time that goes into the denominator corresponds to the time 
experienced by the people being followed during which the disease or event being 
studied could have occurred. For this reason, the time tallied in the denominator 
of an incidence rate is oft en referred to as the time at risk for disease. Th e time 
in the denominator of an incidence rate should include every moment during 
which a person being followed is at risk for an event that would get tallied in the 
numerator of the rate. For events that cannot recur, aft er a person experiences the 
event, he or she will have no more time at risk for the disease, and therefore the 
follow-up for that person ends with the disease occurrence. Th e same is true of 
a person who dies from a competing risk.

Figure 4–2 illustrates the time at risk for fi ve hypothetical people being fol-
lowed to measure the mortality rate of leukemia. A mortality rate is an incidence 



44 E P I D E M I O L O G Y

rate in which the event being measured is death. Only the fi rst of the fi ve people 
died of leukemia during the follow-up period. Th is person’s time at risk ended 
with his or her death from leukemia. Th e second person died in an automobile 
crash, aft er which he or she was no longer at risk for dying of leukemia. Th e third 
person was lost to follow-up early during the follow-up period. Aft er a person is 
lost, even if that person dies of leukemia, the death will not be counted in the 
numerator of the rate because the researcher would not know about it. Th erefore 
the time at risk to be counted as a case in the numerator of the rate ends when a 
person becomes lost to follow-up. Th e last two people were followed for the com-
plete follow-up period. Th e total time tallied in the denominator of the mortality 
rate for leukemia for these fi ve people corresponds to the sum of the lengths of 
the fi ve line segments in Figure 4–2.

Incidence rates treat one unit of time as equivalent to another, regardless of 
whether these time units come from the same person or from diff erent people. 
Th e incidence rate is the ratio of cases to the total time at risk for disease. Th is 
ratio does not have the same simple interpretability as the risk measure.

A comparison of the risk and incidence rate measures (Table 4–1) shows that, 
whereas the incidence proportion, or risk, can be interpreted as a probability, 
the incidence rate cannot. Unlike a probability, the incidence rate does not have 
the range of [0,1]. Instead, it can theoretically become extremely large without 
numeric limit. It may at fi rst seem puzzling that a measure of disease occurrence 
can exceed 1; how can more than 100% of a population be aff ected? Th e answer 
is that the incidence rate does not measure the proportion of the population that 
is aff ected. It measures the ratio of the number of cases to the time at risk for dis-
ease. Because the denominator is measured in time units, we can always imagine 
that the denominator of an incidence rate could be smaller, making the rate larger. 
Th e numeric value of the incidence rate depends on what time unit is chosen.

Suppose that we measure an incidence rate in a population as 47 cases occur-
ring in 158 months. To make it clear that the time tallied in the denominator 
of an incidence rate is the sum of the time contribution from various people, 

Figure 4–2  Time at risk for leukemia death for fi ve people.
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we oft en refer to these time values as person-time. We can express the incidence 
rate as

47 cases
158 person-months

0.30 cases
person-month

=

We could also restate this same incidence rate using person-years instead of 
person-months:

47 cases
13.17 person-years

3.57 cases
person-year

=

Th ese two expressions measure the same incidence rate; the only diff erence is the 
time unit chosen to express the denominator. Th e diff erent time units aff ect the 
numeric values. Th e situation is much the same as expressing speed in diff erent 
units of time or distance. For example, 60 miles/hr is the same as 88 ft /sec or 
26.84 m/sec. Th e change in units results in a change in the numeric value.

Th e analogy between incidence rate and speed is helpful in understanding 
other aspects of incidence rate as well. One important insight is that the inci-
dence rate, like speed, is an instantaneous concept. Imagine driving along a 
 highway. At any instant, you and your vehicle have a certain speed. Th e speed 
can change from moment to moment. Th e speedometer gives you a continuous 
measure of the current speed. Suppose that the speed is expressed in terms of 
kilometers per hour. Although the time unit for the denominator is 1 hour, it 
does not require an hour to measure the speed of the vehicle. You can observe 
the speed for a given instant from the speedometer, which continuously calcu-
lates the ratio of distance to time over a recent short interval of time. Similarly, 
an incidence rate is a momentary rate at which cases are occurring within a 
group of people. Measuring an incidence rate takes a nonzero amount of time, 
as does measuring speed, but the concepts of speed and incidence rate can be 
thought of as applying at a given instant. If an incidence rate is measured, as is 
oft en the case, with person-years in the denominator, the rate nevertheless may 
characterize only a short interval, rather than a year. Similarly, speed expressed 
in kilometers per hour does not necessarily apply to an hour but perhaps to an 
instant. It may seem impossible to get an instantaneous measure of incidence 
rate, but in a situation analogous to use of the speedometer, current incidence 
or mortality for a suffi  ciently large population can be measured by counting, 
for example, the cases occurring in 1 day and dividing that number by the 
person-time at risk during that day. Time units can be measured in days or 
hours but may be expressed in years by dividing by the number of days or 
hours in a year. Th e unit of time in the denominator of an incidence rate is 
arbitrary and has no implication for the period of time over which the rate is 
actually measured, nor does it communicate anything about the actual time to 
which it applies.

Incidence rates commonly are described as annual incidence and expressed in 
the form of “50 cases per 100,000.” Th is is a clumsy description of an incidence 
rate, equivalent to describing an instantaneous speed as an “hourly distance.” 
Nevertheless, we can translate this phrasing to correspond with what we have 
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already described for incidence rates. We can express this rate as 50 cases per 
100,000 person-years, or 50/100,000 yr 1. Th e negative 1 in the exponent means 
inverse, implying that the denominator of the fraction is measured in units of 
years.

Whereas the risk measure typically transmits a clear message to epidemiologists 
and nonepidemiologists alike (provided that a time period for the risk is speci-
fi ed), the incidence rate may not. It is more diffi  cult to conceptualize a measure 
of occurrence that uses the ratio of events to the total time in which the events 
occur. Nevertheless, under certain conditions, there is an interpretation that we 
can give to an incidence rate. Th e dimensionality of an incidence rate is that of 
the reciprocal of time, which is another way of saying that in an incidence rate, 
the only units involved are time units, which appear in the denominator. Suppose 
we invert the incidence rate. Its reciprocal is measured in units of time. To what 
time does the reciprocal of an incidence rate correspond?

Under steady-state conditions—a situation in which the rates do not change 
with time—the reciprocal of the incidence rate equals the average time until an 
event occurs. Th is time is referred to as the waiting time. Take as an example the 
incidence rate described earlier, 3.57 cases per person-year. Th is rate can be writ-
ten as 3.57 yr 1; the cases in the numerator of an incidence rate do not have 
units. Th e reciprocal of this rate is 1/3.57 years  0.28 years. Th is value can be 
interpreted as an average waiting time of 0.28 years until the occurrence of an 
event.

As another example, consider a mortality rate of 11 deaths per 1000 person-
years, which could also be writt en as 11/1000 yr 1. If this is the total mortality 
rate for an entire population, the waiting time that corresponds to it will repre-
sent the average time until death. Th e average time until death is also referred 
to as the expectation of life or expected survival time. Using the reciprocal of 
11/1000 yr 1, we obtain 90.9 years, which can be interpreted as the expectation 
of life for a population in a steady state that has a mortality rate of 11/1000 yr 1. 
Because mortality rates typically change with time over the time scales that apply 
to this example, taking the reciprocal of the mortality rate for a population is not 
a practical method for estimating the expectation of life. Nevertheless, it is help-
ful to understand what kind of interpretation we may assign to an incidence rate 
or a mortality rate, even if the conditions that justify the interpretation are oft en 
not applicable.

Chicken and Egg

An old riddle asks, “If a chicken and one half lay an egg and one half in 
a day and one half, how many eggs does one chicken lay in 1 day?” Th is 
riddle is a rate problem. Th e question amounts to asking, “What is the rate 
of egg laying expressed in eggs per chicken-day?” To get the answer, we 
express the rate as the number of eggs in the numerator and the number of 
chicken-days in the  denominator: 1.5 eggs/[(1.5 chickens) • (1.5 days)]  
1.5 eggs/2.25 chicken-days. Th is calculation gives a rate of 2/3 egg per 
chicken day.
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The Relation Between Risk and Incidence Rate

Because the interpretation of risk is so much more straightforward than the inter-
pretation of incidence rate, it is oft en convenient to convert incidence rate mea-
sures into risk measures. Fortunately, this conversion usually is not diffi  cult. Th e 
simplest formula to convert an incidence rate to a risk is as follows:

 Risk  Incidence rate  Time [4–1]

For Equation 4–1 and other such formulas, it is a good habit to confi rm that 
the dimensionality on both sides of the equation is equivalent. In this case, risk 
is a proportion, and therefore has no dimensions. Although risk applies for a spe-
cifi c period of time, the time period is a descriptor for the risk but not part of 
the measure itself. Risk has no units of time or any other quantity built in; it 
is interpreted as a probability. Th e right side of Equation 4–1 is the product of 
two quantities, one of which is measured in units of the reciprocal of time and 
the other of which is time itself. Because this product has no dimensionality, the 
equation holds as far as dimensionality is concerned.

In addition to checking the dimensionality, it is useful to check the range of 
the measures in an equation such as Equation 4–1. Th e risk is a pure number in 
the range [0,1]; values outside this range are not permitt ed. In contrast, incidence 
rate has a range of [0,∞], and time also has a range of [0,∞]. Th e product of 
incidence rate and time does not have a range that is the same as risk, because 
the product can exceed 1. Th is analysis shows that Equation 4–1 is not applica-
ble throughout the entire range of values for incidence rate and time. In general 
terms, Equation 4–1 is an approximation that works well as long as the risk cal-
culated on the left  is less than about 20%. Above that value, the approximation 
deteriorates.

For example, suppose that a population of 10,000 people experiences an inci-
dence rate of lung cancer of 8 cases per 10,000 person-years. If we followed the 
population for 1 year, Equation 4–1 suggests that the risk of lung cancer is 8 in 
10,000 for the 1-year period (ie, 8/10,000 person-years × 1 year), or 0.0008. If 
the same rate applied for only 0.5 year, the risk would be one half of 0.0008, or 
0.0004. Equation 4–1 calculates risk as directly proportional to both the incidence 
rate and the time period, so as the time period is extended, the risk becomes 
proportionately greater.

Now suppose that we have a population of 1000 people who experience a mor-
tality rate of 11 deaths per 1000 person-years for a 20-year period. Equation 4–1 
predicts that the risk of death over 20 years will be 11/1000 yr 1 × 20 yr  0.22, 
or 22%. In other words, Equation 4–1 predicts that among the 1000 people at the 
start of the follow-up period, there will be 220 deaths during the 20 years. Th e 
220 deaths are the sum of 11 deaths that occur among 1000 people every year 
for 20 years. Th is calculation neglects the fact that the size of the population at 
risk shrinks gradually as deaths occur. If the shrinkage is taken into account, fewer 
than 220 deaths will have occurred at the end of 20 years.

Table 4–2 describes the number of deaths expected to occur during each year 
of the 20 years of follow-up if the mortality rate of 11/1000 yr 1 is applied to 
a population of 1000 people for 20 years. Th e table shows that at the end of 
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20 years, about 197 deaths have occurred, rather than 220, because a steadily 
smaller population is at risk of death each year. Th e table also shows that the 
prediction of 11 deaths per year from Equation 4–1 is a good estimate for the 
early part of the follow-up but the number of deaths expected each year gradually 
becomes considerably lower than 11. Why is the number of expected deaths not 
quite 11 even for the fi rst year, in which there are 1000 people being followed 
at the start of the year? As soon as the fi rst death occurs, the number of people 
being followed is less than 1000, which infl uences the number of expected deaths 
in the fi rst year. As is seen in Table 4–2, the expected deaths decline gradually 
throughout the period of follow-up.

If we extended the calculations in the table further, the discrepancy between 
the risk calculated from Equation 4–1 and the actual risk would grow. Figure 4–3 
graphs the cumulative total of deaths that would be expected and the number pro-
jected from Equation 4–1 over 50 years of follow-up. Initially, the two curves are 
close, but as the cumulative risk of death rises, they diverge. Th e bott om curve in 
the fi gure is an exponential curve, related to the curve that describes exponential 
decay. If a population experiences a constant rate of death, the proportion remain-
ing alive follows an exponential curve with time. Th is exponential decay is the 
same curve that describes radioactive decay. If a population of radioactive atoms 
converts from one atomic state to another at a constant rate, the proportion of 
atoms left  in the initial state follows the curve of exponential decay. Th e lower 

Table 4–2 Number of Expected Deaths over 20 Years Among 
1000 People with a Mortality Rate of 11 Deaths per 1000 

Person-Years

Year
Expected Number 

Alive at Start of Year Expected Deaths Cumulative Deaths
 1 1000.000 10.940 10.940
 2 989.060 10.820 21.760
 3 978.240 10.702 32.461
 4 967.539 10.585 43.046
 5 956.954 10.469 53.515
 6 946.485 10.354 63.869
 7 936.131 10.241 74.110
 8 925.890 10.129 84.239
 9 915.761 10.018 94.257
10 905.743 9.909 104.166
11 895.834 9.800 113.966
12 886.034 9.693 123.659
13 876.341 9.587 133.246
14 866.754 9.482 142.728
15 857.272 9.378 152.106
16 847.894 9.276 161.382
17 838.618 9.174 170.556
18 829.444 9.074 179.630
19 820.370 8.975 188.605
20 811.395 8.876 197.481
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curve in Figure 4–3 is actually the complement of an exponential decay curve. 
Instead of showing the decreasing number remaining alive (ie, the curve of expo-
nential decay), it shows the increasing number who have died, which is the total 
number in the population minus the number remaining alive. Given enough time, 
this curve gradually fl att ens, and the total number of deaths approaches the total 
number of people in the population. In contrast, the curve based on Equation 4–1 
continues to predict 11 deaths each year regardless of how many people remain 
alive, and it eventually would predict a cumulative number of deaths that exceeds 
the original size of the population.

Clearly, Equation 4–1 cannot be used to calculate risks that are large, because 
it provides a poor approximation in such situations. For many epidemiologic 
applications, however, the calculated risks are reasonably small, and Equation 4–1 
is quite adequate for converting incidence rates to risks.

Equation 4–1 calculates risk for a time period over which a single incidence rate 
applies. Th e calculation assumes that the incidence rate, an instantaneous concept, 
remains constant over the time period. What if the incidence rate changes with 
time, as is oft en the case? In that event, risk can still be calculated, but it should be 
calculated fi rst for separate subintervals of the time period. Each of the time inter-
vals should be short enough so that the incidence rate that applies to it could be 
considered approximately constant. Th e shorter the intervals, the bett er the overall 
accuracy of the risk calculation, although the intervals should not be so short that 
there are inadequate data to obtain meaningful incidence rates for each interval.

Th e method of calculating risks over a time period with changing incidence 
rates is known as survival analysis. It can also be applied to nonfatal risks, but the 

Figure 4–3  Cumulative number of deaths among 1000 people with a  mortality 
rate of 11 deaths per 1000 person-years, presuming no population shrinkage (see 
Equation 4–1) and taking the population shrinkage into account (ie, exponential decay).
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approach originated from data related to deaths. Th e method is implemented by 
creating a table similar to Table 4–2, called a life table. Th e purpose of a life table 
is to calculate the probability of surviving through each successive time interval that 
constitutes the period of interest. Th e overall survival probability is equal to the 
cumulative product of the probabilities of surviving through each successive interval, 
and the overall risk of death is equal to 1 minus the overall probability of survival.

Table 4–3 is a simplifi ed life table that enables calculation of the risk of dying 
of a motor vehicle injury in a hypothetical cohort of 100,000 people followed 
from birth through age 85.2 In this example, the time periods correspond to age 
intervals. Th e number initially at risk has been arbitrarily set to 100,000 people. 
Th e life-table calculation is strictly hypothetical, because the number at risk at 
the start of each age group is reduced only by deaths from motor vehicle injury 
in the previous age group, ignoring all other causes of death. With this assump-
tion that there are no competing risks, the results are interpretable as risks or 
survival probabilities that would result if the only risk faced by a population was 
the one under study. Th e risk of dying of a motor vehicle injury for each of the 
age intervals is calculated by taking the number of deaths in each age interval 
 (column 3) and dividing it by the number who are at risk during that age interval 
 (column 2). Th e survival probability in column 5 is equal to 1 minus the risk for 
that age category. Th e cumulative survival probability (column 6) is the product 
of the age-specifi c survival probabilities up to that age. Th e bott om number in 
column 6 is the probability of surviving to age 85 without dying of a motor vehi-
cle injury, assuming that there are no competing risks (ie, assuming that without 
a motor vehicle injury, the person would survive to age 85).

Subtracting the fi nal cumulative survival probability from 1 gives the total risk, 
from birth until the 85th birthday, of dying of a motor vehicle injury. Th is risk 
is 1  0.98378  1.6%. Because this calculation is based on the assumption that 
everyone will live to their 85th birthday except those who die of motor vehicle 
accidents, it overstates the actual proportion of people who will die in a motor 
vehicle accident before they reach age 85. Another assumption in the calculation 
is that these mortality rates, which have been gathered from a cross section of the 
population at a given time, can be applied to a group of people over the course of 
85 years of life. If the mortality rates changed with time, the risk estimated from 
the life table would be inaccurate.

Table 4–3 Life Table for Death from Motor Vehicle Injury from 
Birth Through Age 85a

Age Number 
at Risk

Deaths 
in Interval

Risk 
of Dying

Survival 
Probability

Cumulative Survival 
Probability

 0–14 100,000  70 0.00070 0.99930 0.99930
15–24 99,930 358 0.00358 0.99642 0.99572
25–44 99,572 400 0.00402 0.99598 0.99172
45–64 99,172 365 0.00368 0.99632 0.98807
65–84 98,807 429 0.00434 0.99566 0.98378

aMortality rates are deaths per 100,000 person-years.
Adapted from Iskrant and Joliet, Table 24.2
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Table 4–3 shows a hypothetical cohort being followed for 85 years. If this had 
been an actual cohort, there would have been some people lost to follow-up and 
some who died of other causes. When follow-up is incomplete for either of these 
reasons, the usual approach is to use the information that is available for those 
with incomplete follow-up; their follow-up is described as censored at the time 
that they are lost or die of another cause.

Table 4–4 shows what the same cohort experience would look like under the 
more realistic situation in which many people have incomplete follow-up. Two 
new columns have been added with hypothetical data on the number that are 
censored because they were lost to follow-up or died of other causes (column 4) 
and the eff ective number at risk (column 5). Th e eff ective number at risk is cal-
culated by taking the number at risk in column 2 and subtracting one half of the 
number who are censored (column 4). Subtracting one half of those who are cen-
sored is based on the assumption that the censoring occurred uniformly through-
out each age interval. If there is reason to believe that the censoring tended to 
occur nonuniformly within the interval, the calculation of the eff ective number at 
risk should be adjusted to refl ect that belief.

Point-Source and Propagated Epidemics

An epidemic is an unusually high occurrence of disease. Th e defi nition of unusually 
high depends on the circumstances, and there is no clear demarcation between 
an epidemic and a smaller fl uctuation. Th e high occurrence may represent an 
increase in the occurrence of a disease that still occurs in the population in the 
absence of an epidemic, although less frequently than during the epidemic, or 
it may represent an outbreak, which is a sudden increase in the occurrence of a 
 disease that is usually absent or nearly absent (Fig. 4–4).

If an epidemic stems from a single source of exposure to a causal agent, it 
is considered a point-source epidemic. Examples of point-source epidemics are 
food poisoning of restaurant patrons who have been served contaminated food 
and cancer occurrence among survivors of the atomic bomb blasts in Hiroshima 

Table 4–4 Life Table for Death from Motor Vehicle Injury from Birth 
Through Age 85a

Age At Risk

Motor 
Vehicle 
Injury 

Deaths in 
Interval

Lost to
Follow-up 

or Died 
of Other 

Causes

Eff ective 
Number 
at Risk

Risk of 
Dying

Survival 
Proba bility

Cumulative 
Survival 

Probability
 0–14 100,000  67  9,500 95,250 0.00070 0.99930 0.99930
15–24  90,433 301 12,500 84,183 0.00358 0.99642 0.99572
25–44  77,632 272 20,000 67,632 0.00402 0.99598 0.99172
45–64  57,360 156 30,000 42,360 0.00368 0.99632 0.98807
65–84  27,204  64 25,000 14,704 0.00435 0.99565 0.98377

aMortality rates are deaths per 100,000 person-years.
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and Nagasaki. Although the time scales of these epidemics diff er dramatically, 
along with the nature of the diseases and their causes, all people in both cases 
were exposed to the same causal component that produced the epidemic— 
contaminated food in the restaurant or ionizing radiation from the bomb blast. 
Th e exposure in a point-source epidemic is typically newly introduced into the 
environment, thus accounting for the epidemic.

Typically, the shape of the epidemic curve for a point-source epidemic shows an 
initial steep increase in the incidence rate followed by a more gradual decline in the 
incidence rate; this patt ern is oft en described as a log-normal distribution. Th e asym-
metry of the curve stems partly from the fact that biologic curves with a meaningful 
zero point tend to be asymmetric because there is less variability in the direction of 
the zero point than in the other direction. For example, the distribution of recovery 
times for healing of a wound is log-normal. Similarly, the distribution of induction 
times until the occurrence of illness aft er a common exposure is log-normal. If the 
zero point is suffi  ciently far from the modal value, the asymmetry may not be appar-
ent. For example, birth weight has a meaningful zero point, but the zero point is far 
from the center of the distribution, and the distribution is almost symmetric.

An example of an asymmetric epidemic curve is that of the 1854 cholera epi-
demic described by John Snow.3 In that outbreak, exposure to contaminated water 
in the neighborhood of the water pump at Broad Street in London produced 
a log-normal epidemic curve (see Fig. 4–4). Snow is renowned for having con-
vinced local authorities to remove the handle from the pump, but they only did 
so on September 8 (day 21), when the epidemic was well past its peak and the 
number of cases was almost back to zero.

Th e shape of an epidemic curve also may be aff ected by the way in which the 
curve is calculated. It is common, as in Figure 4–4, to plot the number of new 
cases instead of the incidence rate among susceptible people. People who have 

Figure 4–4  Epidemic curve for fatal cholera cases during the Broad Street outbreak 
in London in 1854.
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already succumbed to an infectious disease may no longer be susceptible to it for 
some period of time. If a substantial proportion of a population is aff ected by the 
outbreak, the number of susceptible people will decline gradually as the epidemic 
progresses and the att ack rate increases. Th is change in the susceptible population 
leads to a more rapid decline over time in the number of new cases compared 
with the incidence rate in the susceptible population. Th e incidence rate declines 
more slowly than the number of new cases because in the incidence rate, the 
declining number of new cases is divided by a dwindling amount of susceptible 
person-time.

A propagated epidemic is one in which the causal agent is transmitt ed through 
a population. Infl uenza epidemics are propagated by person-to-person transmis-
sion of the virus. Th e epidemic of lung cancer during the 20th century was a 
propagated epidemic att ributable to the spread of tobacco smoking through many 
cultures and societies. Th e curve for a propagated epidemic tends to show a more 
gradual initial rise and a more symmetric shape than for a point-source epidemic 
because the causes spread gradually through the population. Transmission of 
infectious disease within a population is discussed further in Chapter 6, which 
also presents the Reed-Frost model, a simple model that describes transmission 
of an infectious disease in a closed population.

Although we may think of point-source epidemics as occurring over a short 
time span, they are not always briefer than propagated epidemics. Th e epidemic 
of cancer att ributable to exposure to the atomic bombs detonated in Hiroshima 
and Nagasaki was a point-source epidemic that began a few years aft er the explo-
sions and continues into the present. Another possible point-source epidemic 
that occurred over decades was an apparent outbreak of multiple sclerosis in the 
Faroe Islands that followed the occupation of those islands by British troops dur-
ing the Second World War4 (although this interpretation of the data has been 
 questioned5). Propagated epidemics can occur over extremely short time spans. 
An example is epidemic hysteria, a disease oft en propagated from person to 
person in minutes. An example of an epidemic curve for a hysteria outbreak is 
depicted in Figure 4–5. In this epidemic, 210 elementary school children devel-
oped symptoms of headache, abdominal pain, and nausea. Th ese symptoms were 
att ributed by the investigators to hysteric anxiety.6

Prevalence Proportion

Incidence proportion and incidence rate are measures that assess the frequency of 
disease onsets. Th e numerator of either measure is the frequency of events that 
are defi ned as the occurrence of disease. In contrast, prevalence proportion, oft en 
referred to simply as prevalence, does not measure disease onset. Instead, it is a 
measure of disease status.

Th e simplest way of considering disease status is to consider disease as being 
either present or absent. Th e prevalence proportion is the proportion of people 
in a population who have disease. Consider a population of size N, and suppose 
that P individuals in the population have disease at a given time. Th e prevalence 
proportion is P/N. For example, suppose that among 10,000 women residents of 
a town on July 1, 2001, 1200 have hypertension. Th e prevalence proportion of 
hypertension among women in that town on that date is 1200/10,000  0.12, 
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or 12%. Th is prevalence applies only to a single point in time, July 1, 2001. 
Prevalence can change with time as the factors that aff ect prevalence change.

What factors aff ect prevalence? Clearly, disease occurrence aff ects prevalence. 
Th e greater the incidence of disease, the more people there are who have it. 
Prevalence is also related to the length of time that a person has disease. Th e 
longer the duration of disease, the higher the prevalence. Diseases with short 
duration may have a low prevalence even if the incidence rate is high. One rea-
son is that if the disease is benign, there may be a rapid recovery. For example, 
the prevalence of upper respiratory infection may be low despite a high incidence, 
because aft er a brief period, most people recover from the infection and are no 
longer in the disease state. Duration may also be short for a grave disease that 
leads to rapid death. Th e prevalence of aortic hemorrhage would be low even 
with a high incidence because it usually leads to death within minutes. Th e low 
prevalence means that, at any given moment, only an extremely small propor-
tion of people are suff ering from an aortic hemorrhage. Some diseases have a 
short duration because either recovery or death ensues promptly; appendicitis is 
an example. Other diseases have a long duration because, although a person can-
not recover from them, they are compatible with a long survival time (although 
survival is oft en shorter than it would be without the disease). Diabetes, Crohn’s 
disease, multiple sclerosis, parkinsonism, and glaucoma are examples.

Because prevalence refl ects both incidence rate and disease duration, it is not 
as useful as incidence alone for studying the causes of disease. It is extremely 

Figure 4–5  Epidemic curve for an outbreak of hysteria among elementary school 
children on November 6, 1985.
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useful, however, for measuring the disease burden on a population, especially if 
those who have disease require specifi c medical att ention. For example, the preva-
lent number of people in a population with end-stage renal disease predicts the 
need in that population for dialysis facilities.

In a steady state, which is the situation in which incidence rates and disease 
duration are stable over time, the prevalence proportion, P, has the following 
 relation to the incidence rate:

 
P
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[4–2]

In Equation 4–2, I is the incidence rate and D– is the average duration of disease. 
Th e quantity P/(1  P) is known as the prevalence odds. In general, when a pro-
portion, such as prevalence proportion, is divided by 1 minus the proportion, the 
resulting ratio is referred to as the odds for that proportion. If a horse is a 3-to-1 
favorite at a racetrack, it means that the horse is thought to have a probability of 
winning of 0.75. Th e odds of the horse winning is 0.75/(1  0.75)  3, usually 
described as 3 to 1. Similarly, if a prevalence proportion is 0.75, the prevalence 
odds would be 3, and a prevalence of 0.20 would correspond to a prevalence 
odds of 0.20/(1  0.20)  0.25. For small prevalences, the value of the prevalence 
proportion and that of the prevalence odds are close because the denominator of 
the odds expression is close to 1. For small prevalences (eg, 0.1), we can rewrite 
Equation 4–2 as follows:

 P IDII  [4–3]

Equation 4–3 indicates that, given a steady state and a low prevalence, prev-
alence is approximately equal to the product of the incidence rate and the 
mean duration of disease. Note that this relation does not hold for age-specifi c 
 prevalences. In that case, D– corresponds to the duration of time spent within that 
age category rather than the total duration of time with disease.

As we did earlier for risk and incidence rate, we should check this equation to 
make certain that the dimensionality and ranges of both sides of the equation are 
satisfi ed. For dimensionality, the right-hand sides of Equations 4–2 and 4–3 involve 
the product of a time measure, disease duration, and an incidence rate, which has 
units of reciprocal of time. Th e product is dimensionless, a pure number. Prevalence 
proportion, like risk or incidence proportion, is also dimensionless, which satisfi es 
the dimensionality requirement for the two equations, 4–2 and 4–3. Th e range of 
incidence rate and that of mean duration of illness is [0,∞], because there is no 
upper limit to an incidence rate or the duration of disease. Th erefore Equation 4–3 
does not satisfy the range requirement, because the prevalence proportion on the 
left  side of the equation, like any proportion, has a range of [0,1]. For this rea-
son, Equation 4–3 is applicable only for small values of prevalence. Th e measure 
of prevalence odds in Equation 4–2, however, has a range of [0,∞], and it is appli-
cable for all values, rather than just for small values of the prevalence proportion. 
We can rewrite Equation 4–2 to solve for the prevalence proportion as follows:

P
ID

ID
=

+1 [4–4]
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Prevalence measures the disease burden in a population. Th is type of epide-
miologic application relates more to administrative areas of public health than 
to causal research. Nevertheless, there are research areas in which prevalence 
measures are used more commonly than incidence measures, even to investigate 
causes. Examples are birth defects and birth-related phenomena such as birth 
weight or preterm birth. We use a prevalence measure when describing the 
occurrence of congenital malformations among liveborn infants in terms of the 
proportion of these infants who have a malformation. For example, the propor-
tion of infants who are born alive with a defect of the ventricular septum of the 
heart is a prevalence. It measures the status of liveborn infants with respect to 
the presence or absence of a ventricular septal defect. Measuring the incidence 
rate or incidence proportion of ventricular septal defects would require ascer-
tainment of a population of embryos who were at risk for developing the defect 
and measurement of the defect’s occurrence among these embryos. Such data 
are usually not obtainable, because many pregnancies end before the pregnancy 
is detected, and the population of embryos is not readily identifi ed. Even when 
a woman knows she is pregnant, if the pregnancy ends early, information about 
the pregnancy may never come to the att ention of researchers. For these reasons, 
incidence measures for birth defects are uncommon. Prevalence at birth is eas-
ier to assess and oft en is used as a substitute for incidence measures. Although 
prevalence measures are easier to obtain, they have a drawback when used for 
causal research: Factors that increase prevalence may do so not by increasing 
the occurrence of the condition but by increasing the duration of the condition. 
For example, a factor associated with the prevalence of ventricular septal defect 
at birth could be a cause of ventricular septal defect, but it could also be a fac-
tor that does not cause the defect but instead enables embryos that develop the 
defect to survive until birth. On the other hand, there may be practical inter-
est in understanding the factors that are related to being born alive with the 
defect.

Prevalence is sometimes used in research to measure diseases that have insidi-
ous onset, such as diabetes or multiple sclerosis. Th ese are conditions for which 
it may be diffi  cult to defi ne onset, and it therefore may be necessary in some set-
tings to describe the condition in terms of prevalence rather than incidence.

Prevalence of Characteristics

Because prevalence measures status, it is oft en used to describe the status of 
characteristics or conditions other than disease in a population. For exam-
ple, the proportion of a population that engages in cigarett e smoking oft en 
is described as the prevalence of smoking. Th e proportion of a population 
exposed to a given agent is oft en referred to as the exposure prevalence. 
Prevalence can be used to describe the proportion of people in a popu-
lation who have brown eyes, type O blood, or an active driver’s license. 
Because epidemiology relates many individual and population characteris-
tics to disease occurrence, it oft en employs prevalence measures to describe 
the frequency of these characteristics.
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MEASURES OF CAUSAL EFFECTS

A central objective of epidemiologic research is to study the causes of disease. 
How should we measure the eff ect of exposure to determine whether exposure 
causes disease? In a courtroom, experts are asked to opine whether the disease of 
a given patient has been caused by a specifi c exposure. Th is approach of assigning 
causation in a single person is radically diff erent from the epidemiologic approach, 
which does not att empt to att ribute causation in any individual instance. Th e 
 epidemiologic approach is to evaluate the proposition that the exposure is a cause 
of the disease in a theoretical sense, rather than in a specifi c person.

An elementary but essential principle to keep in mind is that a person may be 
exposed to an agent and then develop disease without there being any causal con-
nection between the exposure and the disease. For this reason, we cannot con-
sider the incidence proportion or the incidence rate among exposed people to 
measure a causal eff ect. For example, if a vaccine does not confer perfect immu-
nity, some vaccinated people will get the disease that the vaccine is intended to 
prevent. Th e occurrence of disease among vaccinated people is not a sign that 
the vaccine is causing the disease, because the disease will occur even more fre-
quently among unvaccinated people. It is merely a sign that the vaccine is not a 
perfect  preventive. To measure a causal eff ect, we have to contrast the experience 
of exposed people with what would have happened in the absence of exposure.

The Counterfactual Ideal

It is useful to consider how to measure causal eff ects in an ideal way. People diff er 
from one another in myriad ways. If we compare risks or incidence rates between 
exposed and unexposed people, we cannot be certain that the diff erences in risks 
or rates are att ributable to the exposure. Th ey could be att ributable to other fac-
tors that diff er between exposed and unexposed people. We may be able to mea-
sure and to take into account some of these factors, but others may elude us, 
hindering any defi nite inference. Even if we matched people who were exposed 
with similar people who were not exposed, they could still diff er in inapparent 
ways. Th e ideal comparison would be the result of a thought experiment: the 
comparison of people with themselves, followed through time simultaneously in 
both an exposed and an unexposed state. Such a comparison envisions the impos-
sible, because it requires each person to exist in two incarnations: one exposed 
and the other unexposed. If such an impossible goal were achievable, it would 
allow us to know the eff ect of exposure, because the only diff erence between 
the two sett ings would be the exposure. Because this situation is impossible, it is 
called counterfactual.

Th e counterfactual goal posits not only a comparison of a person with himself 
or herself but also a repetition of the experience during the same time period. 
Some studies do pair the experiences of a person under both exposed and unex-
posed conditions. Th e experimental version of such a study is called a crossover 
study, because the study subject crosses over from one study group to the other 
aft er a period of time. Although crossover studies come close to the ideal of a 
counterfactual comparison, they do not achieve it because a person can be in only 
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one study group at a given time. Th e time sequence may aff ect the interpretation, 
and the passage of time means that the two experiences that are compared may 
diff er by factors other than the exposure. Th e counterfactual sett ing is impossible, 
because it implies that a person lives through the same experience twice during 
the same time period, once with exposure and once without exposure.

In the theoretical ideal of a counterfactual study, each exposed person would 
be compared with his or her unexposed counterfactual experience. Everyone is 
exposed, and in a parallel universe everyone is also unexposed, with all other 
factors remaining the same. Th e eff ect of exposure could then be measured by 
comparing the incidence proportion among everyone while exposed with the inci-
dence proportion while everyone is unexposed. Any diff erence in these propor-
tions would have to be an eff ect of exposure. Suppose we observed 100 exposed 
people and found that 25 developed disease in 1 year, providing an incidence pro-
portion of 0.25. We would theoretically like to compare this experience with the 
counterfactual, unobservable experience of the same 100 people going through the 
same year under the same conditions except for being unexposed. Suppose that 10 
people developed disease in those counterfactual conditions. Th en the incidence 
proportion for comparison would be 0.10. Th e diff erence, 15 cases in 100 during 
the year, or 0.15, would be a measure of the causal eff ect of the exposure.

EFFECT MEASURES

Because we can never achieve the counterfactual ideal, we strive to come as close 
as possible to it in the design of epidemiologic studies. Instead of comparing the 
experience of an exposed group with its counterfactual ideal, we must compare 
their experience with that of a real unexposed population. Th e goal is to fi nd an 
unexposed population that would give a result that is close, if not identical, to 
that from a counterfactual comparison.

Suppose we consider the same 100 exposed people mentioned earlier, among 
whom 25 get the disease in 1 year. As a substitute for their missing counterfactual 
experience, we seek the experience of 100 unexposed persons who can provide 
an estimate of what would have occurred among the exposed had they not been 
exposed. Th is substitution is the crucial concern in many epidemiologic stud-
ies: Does the experience of the unexposed group actually represent what would 
have happened to the exposed group had they been unexposed? If we observe 
10 cases of disease in the unexposed group, how can we know that the diff erence 
between the 25 cases in the exposed group and the 10 cases in the unexposed 
group is att ributable to the exposure? Perhaps the exposure had no eff ect but the 
unexposed group was at a lower risk for disease than the exposed group. What if 
we had observed 25 cases in both the exposed and the unexposed groups? Th e 
exposure might have no eff ect, but it might also have had a strong eff ect that was 
balanced by the fact that the unexposed group had a higher risk for disease.

To achieve a valid substitution for the counterfactual experience, we resort to 
various design methods that promote comparability. One example is the crossover 
trial, which is based on comparison of the experience of each exposed person 
with himself or herself at a diff erent time. But a crossover trial is feasible only for 
an exposure that can be studied in an experimental sett ing (ie, assigned by the 
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investigator according to a study protocol) and only if it has a brief eff ect. A per-
sistent exposure eff ect would distort the eff ect of crossing over from the exposed 
to the unexposed group. Another approach is a randomized experiment. In these 
studies, all participants are randomly assigned to the exposure groups. Given 
enough randomized participants, we can expect the distributions of other char-
acteristics in the exposed and unexposed groups to be similar. Other approaches 
involve choosing unexposed study subjects who have the same or similar risk-
factor profi les for disease as the exposed subjects. However the comparability is 
achieved, its success is the overriding concern for any epidemiologic study that 
aims to evaluate a causal eff ect.

If we can assume that the exposed and unexposed groups are otherwise com-
parable with regard to risk for disease, we can compare measures of disease 
occurrence to assess the eff ect of the exposure. Th e two most commonly com-
pared measures are the incidence proportion, or risk, and the incidence rate. 
Th e risk diff erence (RD) is the diff erence in incidence proportion or risk between 
the exposed and the unexposed groups. If the incidence proportion is 0.25 for 
the exposed and 0.10 for the unexposed, the RD is 0.15. With an incidence rate 
instead of a risk to measure disease occurrence, we can likewise calculate the 
incidence rate diff erence (IRD) for the two measures. (Terminology note: In older 
texts, the RD is sometimes referred to as the att ributable risk. Th e IRD also has 
been called the att ributable rate.)

Diff erence measures such as RD and IRD measure the absolute eff ect of an 
exposure. It is also possible to measure the relative eff ect. As an analogy, consider 
how to assess the performance of an investment over a period of time. Suppose 
that an initial investment of $100 became $120 aft er 1 year. Th e diff erence in the 
value of the investment at the end of the year and the value at the beginning, 
$20, measures the absolute performance of the investment. Th e relative perfor-
mance is obtained by dividing the absolute increase by the initial amount, which 
gives $20/$100, or 20%. Contrast this investment experience with that of another 
investment, in which an initial sum of $1000 grew to $1150 aft er 1 year. For 
the latt er investment, the absolute increment is $150, far greater than the $20 
from the fi rst investment, but the relative performance of the second investment 
is $150/$1000, or 15%, which is worse than the fi rst investment.

We can obtain relative measures of eff ect in the same manner. We fi rst obtain 
an absolute measure of eff ect, which can be the RD or the IRD, and we then 
divide that by the measure of occurrence of disease among unexposed persons. 
For risks, the relative eff ect is given by the following equation:

Relative effect
Risk difference

Risk in unexposex d
= = RD

R0

where RD is the risk diff erence and R0 is the risk among the unexposed. Because 
RD  R1  R0 (R1 being the risk among exposed persons), this expression can be 
rewritt en as

 
Relative effect = RD

R
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In Equation 4–5, the risk ratio (RR) is defi ned as R1/R0. Th e relative eff ect is 
the risk ratio minus 1 (RR  1). Th is result is exactly parallel to the investment 
analogy, in which the relative success of the investment was the ratio of the value 
aft er investing divided by the value before investing minus 1. For the smaller of 
the two investments, this computation gives ($120/$100)  1  1.2  1  20%. 
If the risk in exposed people is 0.25 and that in unexposed people is 0.10, the 
relative eff ect is (0.25/0.10)  1, or 1.5 (sometimes expressed as 150%). Th e RR 
is 2.5, and the relative eff ect is the part of the RR in excess of 1.0 (which is the 
value of the RR when there is no eff ect). By defi ning the relative eff ect in this 
way, we ensure that we have a relative eff ect of zero when the absolute eff ect is 
also zero.

Although the relative eff ect is RR  1, it is common for epidemiologists to 
refer to the RR itself as a measure of relative eff ect, without subtracting 1. When 
the RR is used in this way, it is important to remember that a value of 1 cor-
responds to the absence of an eff ect. For example, an RR of 3 represents twice 
as great an eff ect as an RR of 2. Sometimes, epidemiologists refer to the percent-
age increase in risk to convey the magnitude of relative eff ect. For example, they 
may describe an eff ect that represents a 120% increase in risk. Th is increase is 
meant to describe a relative, not an absolute, eff ect, because we cannot have an 
absolute eff ect of 120%. Describing an eff ect in terms of a percentage increase in 
risk is the same as the relative eff ect defi ned previously. An increase of 120% cor-
responds to an RR of 2.2, which is 2.2  1.0  120% greater than 1. Th e 120% 
is a description of the relative eff ect that subtracts the 1 from the RR. Usually, it 
is straightforward to determine from the context whether a description of relative 
eff ect is RR or RR  1. If the eff ect is described as a fi vefold increase in risk, for 
example, it means that the RR is 5. If the eff ect is described as a 10% increase in 
risk, it corresponds to an RR of 1.1, which is 1.1  1.0.

Eff ect measures that involve the IRD and the incidence rate ratio are defi ned 
analogously to those involving the RD and the risk ratio. Table 4–5 compares 
absolute and relative measures constructed from risks and from rates.

Th e range of the RD measure derives from the range of risk itself, which is 
[0,1]. Th e lowest possible RD would result from an exposed group with zero risk 
and an unexposed group at 100% risk, giving 1 for the diff erence. Analogously, 
the greatest possible RD, 1, comes from an exposed group with 100% risk and 
an unexposed group with zero risk. RD has no dimensionality (ie, it has no 
units and is measured as a pure number) because the underlying measure, risk, 
is also dimensionless, and the dimensionality of a diff erence is the same as the 
 dimensionality of the underlying measure.

Table 4–5 Comparison of Absolute and Relative 
Effect Measures

Measure Numeric Range Dimensionality
Risk diff erence [ 1, 1] None
Risk ratio [0, ∞] None
Incidence rate diff erence [ ∞, ∞] 1/time
Incidence rate ratio [0, ∞] None
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Th e risk ratio has a range that is never negative, because a risk cannot be nega-
tive. Th e smallest risk ratio occurs when the risk in the exposed group, the numer-
ator of the risk ratio, is zero. Th e largest risk ratio occurs when the risk among 
the unexposed is zero, giving a ratio of . Any ratio measure will be dimension-
less if the numerator and denominator quantities have the same dimensionality, 
because the dimensions divide out. In the case of risk ratio, the numerator, the 
 denominator, and the ratio are all dimensionless.

Incidence rates range from zero to infi nity, and they have the dimensionality of 
1/time. From these characteristics, it is straightforward to deduce the range and 
the dimensionality of the IRD and the incidence rate ratio.

When to Use Absolute and Relative Effect Measures

Absolute and relative eff ect measures provide diff erent messages. When 
measuring the eff ect of an exposure on the health of a population, an 
absolute eff ect measure is needed. It refl ects added or diminished disease 
 burden in that population in terms of an increased risk or incidence rate 
or, for protective exposures, a decreased risk or incidence rate. Th e public-
health implications of any exposure need to be assessed in terms of the 
absolute eff ect measures.

Relative eff ect measures convey a diff erent message. Th e att ributable frac-
tion among exposed people, (RR 1)/RR, is purely a function of the rela-
tive eff ect measure, which gives a clue about the message of relative eff ect 
measures. Th ese measures indicate the extent to which the exposure in 
question accounts for the occurrence of disease among the exposed people 
who get disease. Th e relative measure itself expresses this relation on a scale 
that goes from zero to infi nity, and the att ributable fraction converts it to a 
proportion, but both convey a message about the extent to which disease 
among the exposed population is a consequence of exposure.

It is important to realize that a relative eff ect may be extremely large but 
with litt le public-health consequence. If an exposure has a rate ratio of 10 
for an extremely rare disease, the 10-fold increase in disease implies that 
the exposure accounts for almost all the disease among the exposed; how-
ever, even among exposed the disease may remain rare. Such an exposure 
may have less public-health consequence than another exposure that merely 
doubles the rate of a much more common disease.

In case-control studies (see Chapter 5), usually only relative eff ects are 
directly obtainable. Nevertheless, by taking into account the overall rate or 
risk of disease occurrence in a population, the relative measures obtained 
from case-control studies can be converted into absolute measures, which 
are needed to assess appropriately the public-health impact of an exposure.

Examples

Table 4–6 presents data on the risk of diarrhea among breast-fed infants during 
a 10-day period aft er their infection with Vibrio cholerae 01 according to the level 
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of antipolysaccharide antibody titers in their mother’s breast milk.7 Th e data show 
a substantial diff erence in the risk of developing diarrhea according to whether 
the mother’s breast milk contains a low or a high level of antipolysaccharide anti-
body. Th e RD for infants exposed to milk with low compared with high levels of 
antibody is 0.86  0.44  0.42. Th is RD refl ects the additional risk of diarrhea 
among infants whose mother’s breast milk has low antibody titers compared with 
the risk among infants whose mother’s milk has high titers; it assumes that the 
infants exposed to low titers would have experienced a risk equal to that of those 
exposed to high titers were it not for the lower antibody levels.

We can also measure the eff ect of low titers on diarrhea risk in relative terms. 
Th e risk ratio, RR, is 0.86/0.44  1.96. Th e relative eff ect is 1.96 1, or 0.96, 
indicating a 96% greater risk of diarrhea among infants exposed to low antibody 
titers in breast milk. Commonly, we would describe the risk among the infants 
exposed to low titers as being 1.96 times the risk among infants exposed to high 
titers.

Th e calculation of eff ects from incidence rate data is analogous to the calcu-
lation of eff ects from risk data. Table 4–7 gives data for the incidence rate of 
breast cancer among women who were treated for tuberculosis early in the 20th 
 century.8 Some women received a treatment that involved repeated fl uoroscopy of 
the lungs, with a resulting high dose of ionizing radiation to the chest.

Table 4–6 Diarrhea During a 10-day Follow-up 
Period in Breast-fed Infants Colonized with 
Vibrio cholera 01 According to the Level of 
Antipolysaccharide Antibody Titer in Their 

Mother’s Breast Milk

Antibody Level
Low High Total

Diarrhea 12 7 19
No diarrhea 2 9 11
Total 14 16 30
Risk 0.86 0.44 0.63

Reproduced with permission from Glass RI et al.7

Table 4–7 Breast Cancer Cases and Person-Years of 
Observation for Women with Tuberculosis Who Were 

Repeatedly Exposed to Multiple X-ray Fluoroscopies and 
for Unexposed Women with Tuberculosis

Radiation Exposure
Yes No Total

Breast cancer cases 41 15 56
Person-years 28,010 19,017 47,027
Rate (cases/10,000 person-years) 14.6 7.9 11.9

Reproduced with permission from Boice and Monson.8
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Th e incidence rate among those exposed to radiation is 14.6/10,000 yr 1, 
compared with 7.9/10,000 yr 1 among those unexposed. Th e IRD is (14.6  
7.9)/10,000 yr 1  6.7/10,000 yr 1. Th is diff erence refl ects the rate of breast can-
cer among exposed women that can be att ributed to the radiation exposure and 
assumes that the exposed women would have had a rate equal to that among the 
unexposed women were it not for the exposure. We can also measure the eff ect 
in relative terms. Th e incidence rate ratio is 14.6/7.9, or 1.86. Th e relative eff ect is 
1.86  1, or 0.86, which can be expressed as an 86% greater rate of breast cancer 
among women exposed to the radiation. Alternatively, the incidence rate ratio can 
be described as indicating a rate of breast cancer among exposed women that is 
1.86 times that of the rate among unexposed women.

Rounding: How Many Digits Should Be Reported?

A frequent question that arises in the reporting of results is how many digits 
of accuracy should be reported. In some published papers, a risk ratio may 
be reported as 4.1; in others, the same number may be reported as 4.0846. 
Th e number of digits should refl ect the amount of precision in the data. 
Th e number 4.0846 implies that one is fairly sure that the data warrant a 
reported value that lies between 4.084 and 4.085. Only a truly large study 
can produce that level of precision. Nevertheless, it is surprisingly hard to 
off er a general rule for the number of digits that should be reported. For 
example, suppose that, for a given study, reporting should carry into the 
fi rst decimal (eg, 4.1). If the study reported risk ratios and took on values 
lower than 1.0, the ratios would be rounded to values such as 0.7 or 0.8. 
Th is amount of rounding error is greater, in proportion to the size of the 
eff ect, than the rounding error in a reported value such as 4.1. Th erefore, a 
simple rule such as one decimal place (for example) will not suffi  ce.

How about the rule that suggests using a constant number of meaning-
ful digits? With this rule, 4.1 would have the same reporting accuracy as 
0.83. Th is rule may appear to be an improvement, but it breaks down near 
the value of 1.0 for ratio measures; it suggests that we should distinguish 
0.98 from 0.99 but not 1.00 from 1.01: Both of the latt er numbers would 
be rounded to 1.0, and the next reportable value would be 1.1. Because 
1.0 is the zero point for ratio measures of eff ect, this rule treats positive 
eff ects near zero diff erently from negative eff ects. If all the risk ratios to be 
reported ranged from 0.9 to 1.1, this rule would make litt le sense.

No rule is needed as long as the writer uses good judgment and thinks about 
the number of digits to report. Values used in intermediate calculations should 
never be rounded; one should round only in the fi nal step before reporting. 
Consider that rounding 1.41 to 1.4 is not a large error, but rounding 1.25 to 
1.2 or to 1.3 is a rounding error that amounts to 20% of the eff ect for a rate 
ratio (keeping in mind that 1.0 equals no eff ect). Finally, when rounding a 
number ending in 5, it is customary to round upward, but it is preferable to 
use an unbiased strategy, such as rounding to the nearest even number. Under 
such a strategy, both 1.75 and 1.85 would be rounded to 1.8.
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The Relation Between Risk Ratios and Rate Ratios

Risk data produce estimates of eff ect that are either risk diff erences or risk ratios, 
and rate data produce estimates of eff ect that are rate diff erences or rate ratios. 
Risks cannot be compared directly with rates (they have diff erent units), and for 
the same reason, risk diff erences cannot be compared with rate diff erences. Under 
certain conditions, however, a risk ratio can be equivalent to a rate ratio. Suppose 
that we have incidence rates that are constant over time, with the rate among 
exposed people equal to I1 and the rate among unexposed people equal to I0. 
From Equation 4–1, we know that a constant incidence rate will result in a risk 
that is approximately equal to the product of the rate and the time period, pro-
vided that the time period is short enough so that the risk remains less than about 
0.20. For greater values, the approximation does not work well. Assuming that we 
are dealing with short time periods, the ratio of the risk among the exposed to 
the risk among the unexposed, R1/R0, will be as follows:
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Th is relation shows that the risk ratio is nearly the same as the rate ratio, pro-
vided that the time period over which the risks apply is suffi  ciently short or the 
rates are suffi  ciently low for Equation 4–1 to apply. Th e shorter the time period 
or the lower the rates, the bett er the approximation represented by Equation 4–1 
and the closer the value of the risk ratio to the rate ratio.

Over longer time periods (the length depending on the value of the rates 
involved), risks may become suffi  ciently great that the risk ratio will begin to 
diverge from the rate ratio. Because risks cannot exceed 1.0, the maximum value 
of a risk ratio cannot be greater than 1 divided by the risk among the unex-
posed. Consider the data in Table 4–6, for example. Th e risk in the high-titer 
antibody group (considered to be the unexposed group) is 0.44. With this risk for 
the unexposed group, the risk ratio cannot exceed 1/0.44, or 2.3. Th e observed 
risk ratio of 1.96 is not far below the maximum possible risk ratio. Incidence rate 
ratios are not constrained by this type of ceiling, and when risk among the unex-
posed is high, we can expect there to be a divergence between the incidence rate 
ratio and the risk ratio. Suppose the incidence rates that gave rise to the risks in 
Table 4–6 were constant over the 10-day follow-up period. If we take into account 
the exponential-decay relation between risk and rate, we can back-calculate from 
the risks in Table 4–6 to the underlying rates based on the exponential decay 
curve, and from that result, we can calculate that the ratio of those underlying 
rates is 3.4, compared with the 1.96 for the ratio of risks. Th is large discrepancy 
arises because the risks are large.

If the time period over which a risk is calculated approaches 0, the risk itself 
also approaches 0; the risk of a given person having a myocardial infarction may 
be 10% over a decade, but over the next 10 seconds, it will be extremely small, 
and its value will shrink along with the length of the time interval. Nevertheless, 
the ratio of two quantities that both approach 0 does not necessarily approach 0. 
In the case of the risk ratio calculated for risks that apply to shorter and shorter 
time intervals, as these risks approach 0, the risk ratio approaches the value of 
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the incidence rate ratio. Th e incidence rate ratio is the limiting value for the 
risk ratio as the time interval over which the risks are taken approaches 0. We 
therefore can describe the incidence rate ratio as an instantaneous risk ratio. Th is 
equivalence of the two types of ratios for short time intervals has resulted in 
some confusion of terminology: Oft en, the phrase relative risk is used to refer to 
either an incidence rate ratio or a risk ratio. Either of the latt er terms is prefer-
able to the term relative risk, because they describe the nature of the data from 
which the ratio derives. Nevertheless, because the risk ratio and the rate ratio are 
equivalent for small risks, the more general term relative risk has some justifi ca-
tion. Th e oft en-used notation RR is sometimes read to mean relative risk, which 
equally can be read as risk ratio or rate ratio, all of which are equivalent if the 
risks are suffi  ciently small.

When Risk Does Not Mean Risk

In referring to eff ects, some people inaccurately use the word risk in place 
of the word eff ect. For example, suppose that a study reports two risk ratios 
for lung cancer from asbestos exposure, 5.0 for young adults and 2.5 for 
older adults. Th ese eff ect values may be described as follows: “Th e risk of 
lung cancer from asbestos exposure is not as great among older people as 
among younger people.” Th is statement is incorrect. In fact, the RD between 
those exposed and those unexposed to asbestos is sure to be greater among 
older adults than younger adults, and the risk att ributable to the eff ect of 
asbestos is greater in older adults. Th e risk ratio is smaller among older 
adults because the risk of lung cancer increases steeply with age, and the 
ratio for older adults is based on a larger denominator. Th e statement is 
wrong because the term risk has been used in place of the term risk ratio 
or the more general term eff ect. It is correct to describe the data as follows: 
“Th e risk ratio of lung cancer from asbestos exposure is not as great among 
older people as among younger people.”

Attributable Fraction

If we take the RD between exposed and unexposed people, R1 − R0, and divide it 
by the risk in the unexposed group, we obtain the relative measure of eff ect (see 
Equation 4–5). We can also divide the RD by the risk in exposed people to get 
an expression that we refer to as the att ributable fr action:
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[4–6]

If the RD refl ects a causal eff ect that is not distorted by any bias, the att ribut-
able fraction is a measure that quantifi es the proportion of the disease burden 
among exposed people that is caused by the exposure. Consider the hypotheti-
cal data in Table 4–8. Th e risk of disease during a 1-year period is 0.05 among 
the exposed and 0.01 among the unexposed. Suppose that this diff erence can 
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be reasonably att ributed to the eff ect of the exposure (because we believe that 
we have accounted for all substantial biases). Th e RD is 0.04, which is 80% of 
the risk among the exposed. We would then say that the exposure appears to 
account for 80% of the disease that occurs among exposed people during the 
1-year period. Another way to calculate the att ributable fraction is from the risk 
ratio: (5 − 1)/5  80%. (Terminology note: Th e att ributable fr action sometimes is 
referred to in older texts as the att ributable risk percent or att ributable risk.)

To calculate the att ributable fraction for the entire population of 100,000 
 people in Table 4–8, we fi rst calculate the att ributable fraction for exposed people. 
To get the overall att ributable fraction for the total population, the fraction among 
the exposed is multiplied by the proportion of all cases in the total population 
who are exposed. Th ere are 1400 cases in the entire population, of whom 500 
are exposed. Th e proportion of exposed cases is 500/1400  0.357. Th e overall 
att ributable fraction for the population is the product of the att ributable fraction 
among the exposed and the proportion of cases who are exposed: 0.8 × 0.357  
0.286; that is, 28.6% of all cases in the population are att ributable to the expo-
sure. Th is calculation is based on a straightforward idea: No case can be caused 
by exposure unless the person is exposed. Among all cases, only some of the 
exposed cases can be att ributable to the exposure. Th ere are 500 exposed cases, of 
whom we calculated that 400 represent excess cases caused by the exposure. None 
of the 900 cases among the unexposed is att ributable to the exposure. Th erefore, 
among the total of 1400 cases in the population, only 400 of the exposed cases 
are att ributable to the exposure—the proportion 400/1400  0.286, which is the 
same value that we calculated.

If the exposure is categorized into more than two levels, we can use the follow-
ing equation, which takes into account each of the exposure levels:

 
Total attributable fraction = ∑( )×i i×

i
 [4–7]

AFi is the att ributable fraction for exposure level i, Pi represents the proportion of 
all cases that falls in exposure category i, and ∑ indicates the sum of each of the 
exposure-specifi c att ributable fractions. For the unexposed group, the att ributable 
fraction is 0.

Equation 4–7 can be applied to the hypothetical data in Table 4–9, which 
describe risks for a population with three levels of exposure. Th e att ributable frac-
tion for the group with no exposure is 0. For the low-exposure group, the att rib-
utable fraction is 0.50, because the risk ratio is 2. For the high-exposure group, 

Table 4–8 Hypothetical Data Giving 1-Year 
Disease Risks for Exposed and Unexposed 

People

Exposure
No Yes Total

Disease 900 500 1,400
No disease 89,100 9,500 98,600
Total 90,000 10,000 100,000
Risk 0.01 0.05 0.014
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the att ributable fraction is 0.75, because the risk ratio is 4. Th e total att ributable 
fraction is

0  0.50(0.48)  0.75(0.48)  0.24  0.36  0.60

Th e same result can be calculated directly from the number of att ributable cases 
at each of the exposure levels:

(0  600  900)/2500  0.60

Under certain assumptions, estimation of att ributable fractions can be based on 
rates as well as risks. In Equation 4–6, which uses the risk ratio to calculate the 
att ributable fraction, the rate ratio can be used instead, provided that the condi-
tions are met for the rate ratio to approximate the risk ratio. If exposure results 
in an increase in disease occurrence at some levels of exposure and a decrease at 
other levels of exposure, compared with no exposure, the net att ributable fraction 
will be a combination of the prevented cases and the caused cases at the diff erent 
levels of exposure. Th e net eff ect of exposure in such situations can be diffi  cult 
to assess and may obscure the components of the exposure eff ect. Th is topic is 
discussed in greater detail by Rothman, Greenland and Lash.9

QUESTIONS

1. Suppose that in a population of 100 people, 30 die. Th e risk of death can 
be calculated as 30/100. What is missing from this measure?

2. Can we calculate a rate for the data in question 1? If so, what is it? If 
not, why not?

3. Eventually, all people die. Why should we not state that the mortality rate 
for any population is always 100%?

4. If incidence rates remain constant with time and if exposure causes  disease, 
which will be greater, the risk ratio or the rate ratio?

Table 4–9 Hypothetical Data Giving 1-Year Disease Risks for 
People at Three Levels of Exposure

Exposure
None Low High Total

Disease 100 1,200 1,200 2,500
No disease 9,900 58,800 28,800 97,500
Total 10,000 60,000 30,000 100,000
Risk 0.01 0.02 0.04 0.025
Risk ratio 1.00 2.00 4.00
Proportion of all cases 0.04 0.48 0.48
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5. Why is it incorrect to describe a rate ratio of 10 as indicating a high risk 
of disease among the exposed?

6. A newspaper article states that a disease has increased by 1200% in the past 
decade. What is the rate ratio that corresponds to this level of increase?

7. Another disease has increased by 20%. What is the rate ratio that 
 corresponds to this increase?

8. From the data in Table 4–6, calculate the fraction of diarrhea cases among 
infants exposed to a low antibody level that is att ributable to the low anti-
body level. Calculate the fraction of all diarrhea cases att ributable to expo-
sure to low antibody levels. What assumptions are needed to interpret the 
result as an att ributable fraction?

9. What proportion of the 56 breast cancer cases in Table 4–7 is att ributable 
to radiation exposure? What are the assumptions?

10. Suppose you worked for a health agency and had collected data on the 
incidence of lower back pain among people in diff erent occupations. What 
measures of eff ect would you choose to look at, and why?

11. Suppose that the rate ratio measuring the relation between an exposure 
and a disease is 3 in two diff erent countries. Would this situation imply that 
exposed people have the same risk in the two countries? Would it imply 
that the eff ect of the exposure is the same magnitude in the two countries? 
Why or why not?

REFERENCES

 1. Gaylord Anderson, as cited in Cole P. Th e evolving case-control study. J Chron 
Dis. 1979;32:15–27.

 2. Iskrant AP, Joliet PV. Accidents and Homicides. Cambridge, MA: Harvard University 
Press; 1968.

 3. Snow J. On the Mode of Communication of Cholera. 2nd ed. London: John Churchill; 
1860. (Facsimile of 1936 reprinted edition by Hafner, New York, 1965.)

 4. Kurtzke JF, Hyllested K. Multiple sclerosis in the Faroe Islands: clinical and 
 epidemiologic features. Ann Neurol. 1979;5:6–21.

 5. Poser CM, Hibberd PL, Benedikz J, Gudmundsson G. Neuroepidemiology. 
1988;7:168–180.

 6. Cole TB, Chorba TL, Horan JM. Patt erns of transmission of epidemic hysteria in 
a school. Epidemiology. 1990;1:212–218.

 7. Glass RI, Svennerholm AM, Stoll BJ, et al. Protection against cholera in breast-fed 
children by antibiotics in breast milk. N Engl J Med. 1983;308:1389–1392.

 8. Boice JD, Monson RR. Breast cancer in women aft er repeated fl uoroscopic exami-
nations of the chest. J Natl Cancer Inst. 1977;59:823–832.

 9. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia, 
PA: Lippincott  Williams & Wilkins; 2008.



5

Types of Epidemiologic Studies

Chapter 4 described measures of disease frequency, including risk, incidence rate, 
and prevalence; measures of eff ect, including risk and incidence rate diff erences 
and ratios; and att ributable fractions. Epidemiologic studies may be viewed as 
measurement exercises undertaken to obtain estimates of these epidemiologic 
measures. Th e simplest studies aim only at estimating a single risk, incidence 
rate, or prevalence. More complicated studies aim at comparing measures of 
disease occurrence, with the goal of predicting such occurrence, learning about 
the causes of disease, or evaluating the impact of disease on a population. Th is 
chapter describes the two main types of epidemiologic study, the cohort study 
and the case-control study, along with several variants. More specialized study 
designs, such as two-stage designs and ecologic studies, are discussed in Modern 
Epidemiology.1

COHORT STUDIES

In epidemiology, a cohort is defi ned most broadly as “any designated group of 
individuals who are followed or traced over a period of time.”2 A cohort study, 
which is the archetype for all epidemiologic studies, involves measuring the 
occurrence of disease within one or more cohorts. Typically, a cohort comprises 
persons with a common characteristic, such as an exposure or ethnic identity. For 
simplicity, we refer to two cohorts, exposed and unexposed, in our discussion. In 
this context, we use the term exposed in its most general sense; for example, an 
exposed cohort may have in common the presence of a specifi c gene. Th e pur-
pose of following a cohort is to measure the occurrence of one or more specifi c 
diseases during the period of follow-up, usually with the aim of comparing the 
disease rates for two or more cohorts.

Th e concept of following a cohort to measure disease occurrence may appear 
straightforward, but there are many complications involving who is eligible to be 
followed, what should count as an instance of disease, how the incidence rates or 
risks are measured, and how exposure ought to be defi ned. Before exploring these 
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issues, we consider an example of an elegantly designed epidemiologic cohort 
study.

John Snow’s Natural Experiment

In Chapter 4 we looked at data compiled by John Snow regarding the cholera 
outbreak in London in 1854 (see Fig. 4–4). In London at that time, there were 
several water companies that piped drinking water to residents. Snow’s  so-called 
natural experiment consisted of comparing the cholera mortality rates for residents 
subscribing to two of the major water companies, the Southwark and Vauxhall 
Company, which piped impure Th ames water contaminated with sewage, and 
the Lambeth Company, which in 1852 changed its collection from opposite the 
Hungerford Market upstream to Th ames Ditt on, obtaining a supply of water free 
of the sewage of London. Snow3 described it as follows:

. . . the intermixing of the water supply of the Southwark and Vauxhall Company with that 
of the Lambeth Company, over an extensive part of London, admitt ed of the subject being 
sift ed in such a way as to yield the most incontrovertible proof on one side or the other. In the 
subdistricts . . . supplied by both companies, the mixing of the supply is of the most intimate kind. 
Th e pipes of each company go down all the streets, and into nearly all the courts and alleys. A few 
houses are supplied by one company and a few by the other, according to the decision of the owner 
or occupier at the time when the Water Companies were in active competition. In many cases a 
single house has a supply diff erent from that on either side. Each company supplies both rich and 
poor, both large houses and small; there is no diff erence in either the condition or occupation of 
the persons receiving the water of the diff erent companies . . . it is obvious that no experiment could 
have been devised which would more thoroughly test the eff ect of water supply on the progress of 
cholera than this.

Th e experiment, too, was on the grandest scale. No fewer than three hundred thousand people 
of both sexes, of every age and occupation, and of every rank and station, from gentle folks down to 
the very poor, were divided into two groups without their choice, and, in most cases, without their 
knowledge; one group being supplied with water containing the sewage of London, and amongst 
it, whatever might have come from the cholera patients, the other group having water quite free 
from impurity.

To turn this experiment to account, all that was required was to learn the supply of water to each 
individual house where a fatal att ack of cholera might occur . . . 

From this natural experiment, Snow3 was able to estimate the frequency of 
cholera deaths, using households as the denominator, separately for people in 
each of the two cohorts:

According to a return which was made to Parliament, the Southwark and Vauxhall Company 
supplied 40,046 houses from January 1 to December 31, 1853, and the Lambeth Company 
supplied 26,107 houses during the same period; consequently, as 286 fatal att acks of cholera took 
place, in the fi rst four weeks of the epidemic, in houses supplied by the former company, and only 
14 in houses supplied by the latt er, the proportion of fatal att acks to each 10,000 houses was as 
follows: Southwark and Vauxhall 71, Lambeth 5. Th e cholera was therefore fourteen times as fatal 
at this period, amongst persons having the impure water of the Southwark and Vauxhall Company, 
as amongst those having the purer water from Th ames Ditt on.

Snow also obtained estimates of the size of the population served by the two 
water companies, enabling him to report the att ack rate of fatal cholera among 
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residents of households served by them during the 1854 outbreak (Table 5–1). 
Residents whose water came from the Southwark and Vauxhall Company had an 
att ack rate 5.8 times greater than that of residents whose water came from the 
Lambeth Company.

Snow saw that circumstance had created conditions that emulated an experi-
ment, in which people who were otherwise alike in relevant aspects diff ered by 
their consumption of pure or impure water. In an actual experiment, the inves-
tigator assigns the study participants to the exposed and unexposed groups. In a 
natural experiment, as studies such as Snow’s have come to be known, the inves-
tigator takes advantage of a sett ing that serves eff ectively as an experiment. It 
could be argued that the role of the investigator in a natural experiment requires 
more creativity and insight than in an actual experiment. In the natural experi-
ment, the investigator has to see the opportunity for the research and defi ne the 
study populations to capitalize on the sett ing. For example, Snow conducted his 
study within specifi c neighborhoods in London where the pipes from these two 
water companies were intermingled. In other districts, there was less intermin-
gling of pipes from the various water companies that supplied water to dwellings. 
Comparing the att ack rates across various districts of London would have been 
a less persuasive way to evaluate the eff ect of the water supply because many 
factors diff ered from one district to another. Within the area in which the pipes 
of the Southwark and Vauxhall and those of the Lambeth Companies were inter-
mingled, however, Snow saw that there was litt le diff erence between those who 
consumed water from one company or the other, apart from the water supply 
itself. Part of his genius was identifying the precise sett ing in which to  conduct 
the study.

Types of Experiments

Experiments are conceptually straightforward. Experiments are cohort studies, 
although not all cohort studies are experiments. In epidemiology, an experiment 
is a study in which the incidence rate or the risk of disease in two or more 
cohorts is compared aft er assigning the exposure to the people who constitute 
the cohorts. In an experiment, the reason for the exposure assignment is solely to 
suit the objectives of the study; if people receive their exposure assignment based 

Table 5–1  Attack Rate of Fatal Cholera Among 
Customers of the Southwark and Vauxhall Company 

(Exposed Cohort) and the Lambeth Company 
(Unexposed Cohort), London, 1854

Water Company
Southwark & Vauxhall Lambeth

Cholera deaths 4,093 461
Population 266,516 173,748
Att ack Rate 0.0154 0.0027

Data from Snow.3
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on considerations other than the study protocol, it is not a true experiment. Th e 
protocol is the set of rules by which the study is conducted.

Among the several varieties of epidemiologic experiment, the main types are 
clinical trials, fi eld trials, and community intervention trials. Th e word trial is 
used as a synonym for an epidemiologic experiment. Epidemiologic experiments 
are most frequently conducted in a clinical sett ing, with the aim of evaluating 
which treatment for a disease is bett er. Th ese studies are known as clinical trials. 
In clinical trials, all study subjects have been diagnosed with a specifi c disease, 
but that disease is not the disease event that is being studied. Rather, it is some 
consequence of that disease, such as death or spread of a cancer, that becomes the 
“disease” event studied in a clinical trial. Th e aim of a clinical trial is to evaluate 
the incidence rate or risk of disease complications in the cohorts assigned to the 
diff erent treatment groups. Th e primary outcome of interest is oft en a stage in 
the natural history of the disease, such as recurrence of cancer, or deaths among 
patients with cardiovascular disease. Alternatively, the outcome may be an adverse 
eff ect, ranging from transitory malaise to extreme outcomes such as liver failure or 
sudden death. In most trials, treatments are assigned by randomization, using ran-
dom number assignment. Randomization tends to produce comparability between 
the cohorts with respect to factors that may aff ect the outcome under study.

To take full advantage of random assignment, the groups that should be com-
pared in the analysis of an experiment are the groups that are classifi ed according to 
their random assignment. Suppose 100 patients are randomly assigned to receive a 
new treatment in a clinical trial, and 100 patients are randomly assigned to receive 
an old treatment. To benefi t maximally from the random assignment, the inves-
tigator should compare these two groups of 100, regardless of what treatments 
actually were given. It is not unusual for a patient to be assigned a treatment 
and not to take it as instructed. Th e patient may reject treatment for a variety 
of reasons or change his or her mind aft er the treatment assignment is made. 
Patients assigned to receive an old treatment may fi nd a way to get the new treat-
ment. Even if treatments are disguised in the form of coded medications that are 
not readily identifi ed, patients may not be treated as assigned, because they react 
poorly to an assigned medication or otherwise ignore their assigned  treatment. 
Th us, the assigned treatment may diff er from the actual treatment for a propor-
tion of study participants. Nevertheless, a standard approach in analyzing data 
from a clinical trial is to follow the principle of intent to treat, which means that 
the treatment assignment, rather than the actual treatment, determines the clas-
sifi cation of participants in the data analysis. Th e intent-to-treat approach to the 
data analysis avoids problems that can arise if there is a tendency for patients 
who are at especially high or low risk for the outcome to fail to adhere to their 
assigned treatment. For example, if high-risk patients were more likely than low-
risk patients to switch from the old treatment to the new treatment, the new 
treatment would appear to be worse than it should if the patients were compared 
according to the actual treatment that they received.

An intent-to-treat analysis may misclassify a substantial proportion of study 
participants with respect to their actual exposure. Th is misclassifi cation of actual 
exposure leads to an underestimate of the treatment eff ect (see Chapter 7). 
Although the intent-to-treat approach is oft en desirable because it preserves the 
advantages of random assignment and therefore can lead to bett er comparability 
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of the study groups, the fact that it will underestimate the treatment eff ect should 
be borne in mind. Underestimating the benefi t of a new treatment may be con-
sidered a small problem, because adoption of the treatment will have even greater 
benefi ts than anticipated. If the randomized trial is intended to study adverse 
eff ects of treatment, however, underestimating the magnitude of those eff ects is 
a larger problem. In trials aimed at evaluating the safety (rather than effi  cacy) of 
a new treatment, the drawbacks of an intent-to-treat analysis may outweigh any 
advantages, and it may be preferable to analyze the data based on the actual expo-
sure of participants, rather than the category determined by random assignment.

Natural Experiments Are Not Experiments

In John Snow’s natural experiment, customers of the Southwark and Vauxhall 
and the Lambeth companies were not randomly assigned to their water 
supply, as they would be in an experiment. Th e natural experiment is not 
an actual experiment; it is a cohort study that simulates what would occur 
in an experiment. In Snow’s description of the customers of the two water 
companies, he gives the impression that the comparability between them 
was nearly as good as might have been achieved by random  assignment. 
Th us, we have an experiment created by “nature,” or a natural experiment, 
which may be more accurately described as a cohort study designed by an 
ingenious epidemiologist.

Th e data in Table 5–2 come from a clinical trial of adult patients recently 
infected with human immunodefi ciency virus (HIV) that was undertaken to 
determine whether early treatment with zidovudine was eff ective in improving the 
prognosis.4 Patients were randomly assigned to receive zidovudine or placebo and 
then followed for an average of 15 months. Th e data show that the risk of gett ing 
an opportunistic infection during the follow-up period was low among those who 
received early zidovudine treatment but considerably higher among those who 
received a dummy (placebo) treatment.

Clinical trials may be the most common type of epidemiologic experiment, but 
they are not the only type. Epidemiologists also conduct fi eld trials, which diff er 

Table 5–2 Randomized Trial Comparing the 
Risk of Opportunistic Infection Among 

Patients with Recent HIV Infection Who 
Received Either Zidovudine or Placebo

Treatment Group
Zidovudine Placebo

Opportunistic infection 1 7
Total patients 39 38
Risk 0.026 0.184

Data from Kinloch-de Loes et al.4
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from clinical trials mainly in that the study participants are not patients. In a fi eld 
trial, the goal is to study the primary prevention of a disease, rather than treat-
ment of an existing disease. For example, experiments of new vaccines to prevent 
infectious illness are fi eld trials because the study participants have not yet been 
diagnosed with a particular disease. In a clinical trial, the study participants can 
be followed through regular clinic visits, whereas in a fi eld trial, it may be neces-
sary to contact participants for follow-up directly at home, work, or school. Th e 
largest formal human experiment ever conducted, the Salk vaccine trial of 1954, 
is a prominent example of a fi eld trial.5 It was conducted to evaluate the effi  cacy 
of a new vaccine to prevent paralytic poliomyelitis, and it paved the way for the 
fi rst widespread use of vaccination to prevent poliomyelitis.

Another type of experiment is a community intervention trial. In this type of 
study, the exposure is assigned to groups of people rather than singly. For example, 
the community fl uoridation trials in the 1940s and 1950s that evaluated the eff ect 
of fl uoride in a community water supply were community intervention trials. Th e 
data in Table 5–3 illustrate a community intervention trial that evaluated a pro-
gram of home-based neonatal care and management of sepsis designed to prevent 
death among infants in rural India.6 Th is trial, as is oft en the case for community 
intervention trials, did not employ random assignment. Instead, the investigators 
selected 39 villages targeted for the new program and 47 villages in which the new 
program was not introduced. Th e program consisted of frequent home visits aft er 
each birth in the village by health workers who were trained for the study to deal 
with problems in neonatal care. Th is program resulted in reduced neonatal mortal-
ity for each of the 3 years of its implementation, with the reductions increasing 
with time. Th e data in Table 5–3 show the results for the third of the 3 years.

Population at Risk

Snow’s study on cholera defi ned two cohorts on the basis of their water supply. 
One was the customers of the Southwark and Vauxhall Company, which drew 
polluted water from the lower Th ames River, and the other was the customers of 
the Lambeth Company, which drew its water from the comparatively pure upper 

Table 5–3 Neonatal Mortality in the 
Third of 3 Years After Instituting 
a Community Intervention Trial of 
 Home-Based Neonatal Care in Rural 

Indian Villages

Intervention Group
Home Care Usual Care

Infant deaths 38 64
Number of births 979 940
Risk 0.039 0.068

Data from Bang et al.6
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Th ames. Any person in either of these cohorts could have contracted cholera. 
Snow measured the rate of cholera occurrence among the people in each cohort.

Experiments Are an Imperfect Gold Standard

Randomized trials are commonly described as the gold standard of epide-
miologic studies, with all that implies. Th e random assignment does confer 
an important advantage, usually preventing or at least reducing confounding 
by measured and unmeasured risk factors. Nevertheless, randomized trials 
are far from perfect:

Th e full benefi ts of random assignment depend on conducting an • 
intent-to-treat analysis, which comes with its own bias, leading to 
an underestimate of the eff ect.
In small trials, random assignment can lead to large imbalances • 
between groups, thus failing to balance risk factors as hoped.
For practical and ethical reasons, many research questions do not • 
lend themselves to being study in a randomized trial.
Some trials evaluate treatments that are delivered more rigorously • 
in the trial sett ing or diff er in other ways from the real-world 
 interventions that occur outside of trials.
Th e expense of large trials may lead to substituting for the intended • 
end point a more common intermediate end point, such as a change 
in a biomarker; this approach allows smaller studies, but the results 
may not correspond to the eff ect on the intended outcome.
Th e small size of many trials leads to imprecise results that may not • 
be replicable.

Th e gold standard does not necessarily provide certainty. If trials were 
 perfect, trials of the same study question would always produce similar 
results, but that is seldom seen. Moreover, if the results of a trial and a non-
experimental study diff er, it is not guaranteed that the trial results are closer 
to the truth. Th orough consideration of the design and analysis of both 
studies is warranted to resolve discrepancies and is much more  informative 
than simply assuming that results from randomized trials, being based on a 
 supposed gold standard, are always correct.

To understand which people can belong to a cohort in an epidemiologic study, 
we must consider a basic requirement for cohort membership: Cohort members 
must meet the criteria for being at risk for disease. Th e members of a cohort to 
be followed are sometimes described as the population at risk. Th e term implies 
that all members of the cohort should be at risk for developing the specifi c dis-
eases being measured. Determining who may be part of the population at risk 
may depend on which disease is being measured.

A standard requirement of any population at risk is that everyone be free of 
the disease being measured at the outset of follow-up. Th e reason is that a person 
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usually cannot develop anew a disease that he or she currently has. Someone 
with diabetes cannot develop diabetes, and someone with schizophrenia cannot 
develop schizophrenia. To be at risk for disease also implies that everyone in the 
population at risk must be alive at the start of follow-up; dead people are not 
at risk of gett ing any disease. Being alive and free of the disease are straightfor-
ward eligibility conditions, but other eligibility conditions may not be as simple. 
Suppose that the outcome is the development of measles. Should people who 
have received a measles vaccination be included in the population at risk? If they 
are completely immunized, they are not at risk for measles, but how can we know 
whether the vaccine has conferred complete immunity? In a cohort being stud-
ied for the occurrence of breast cancer, should men be considered part of the 
population at risk? Men do develop breast cancer, but it is rare compared with 
its occurrence in women. One solution is to distinguish male and female breast 
cancer as diff erent diseases. In that case, if female breast cancer is being studied, 
men would be excluded from the population at risk.

Some diseases occur only once in a person, whereas others can recur. Death is 
the clearest example of a disease outcome that can occur only once for a given 
person. Other examples include diabetes, multiple sclerosis, chicken pox, and cleft  
palate. Disease can occur only once if it is incurable (eg, diabetes, multiple sclero-
sis), if recovery confers complete lifetime immunity (eg, chicken pox), or if there 
is a period of vulnerability that a person passes through only once (eg, cleft  pal-
ate). If the disease can only occur once, anyone in a cohort who develops the 
disease is no longer at risk for it again and therefore exits from the population at 
risk as soon as the disease occurs. Also, any person who dies during the follow-
up period, for whatever reason, is no longer part of the population at risk. Th e 
members of the population at risk at any given time must be people in whom the 
disease can still occur.

It may be possible, however, for someone with a disease to recover from the 
disease and then develop it again. For example, someone with a urinary tract 
infection can recover and then succumb to another urinary tract infection. In 
that case, the person is not part of the population at risk while he or she has 
the urinary tract infection but can become part of the population at risk again 
at the time of recovery. Being part of a population at risk is a dynamic process. 
People may enter and leave a population at risk depending on their health and 
other possible eligibility criteria (eg, geography).

Cohort Study of Vitamin A During Pregnancy: An Example

To study the relation between diet and other exposures of pregnant women and 
the development of birth defects in their off spring, Milunsky and colleagues7 
interviewed more than 22,000 pregnant women early in their pregnancies. Th e 
original purpose was to study the potential eff ect of folate to prevent a class of 
birth defects known as neural tube defects. A later study, based on the same 
population of women, evaluated the role of dietary vitamin A in causing another 
class of birth defects that aff ect either the heart or the head, described as cranial 
neural crest defects.8 For the latt er study, the women were divided into cohorts 
according to the amount of vitamin A in their diet from food or supplements. 
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Th e data in Table 5–4 summarize the results of this cohort study and show that 
the prevalence of these defects increased steadily and substantially with increasing 
intake of vitamin A supplements by pregnant women.

Table 5–4 gives results for four separate cohorts of the study population, 
each defi ned according to the level of supplemental intake of vitamin A that the 
women reported in the interview. Th e occurrence of cranial neural crest defects 
increased substantially for women who took supplements of vitamin A in doses 
greater than 8000 IU/day.

Closed and Open Cohorts

Epidemiologists follow two types of cohorts. A closed cohort is one with a fi xed 
membership. Aft er it is defi ned and follow-up begins, no one can be added to a 
closed cohort. Th e initial roster may dwindle, however, as people in the cohort 
die, are lost to follow-up, or develop the disease. Randomized experiments are 
examples of studies of closed cohorts (Fig. 5–1); the follow-up begins at random-
ization, a common starting point for everyone in the study. Another example of a 

Disease-Free Does Not Imply Healthy

Although a population at risk should be free of disease at the outset of 
 follow-up, it is incorrect to conclude that the population at risk is healthy. 
Th e requirement to be free of disease does not imply health; it merely 
implies that the people being followed do not have the specifi c disease being 
measured. Th e search for a population that is healthy in the sense of being 
free of all disease is fruitless. If disease is defi ned broadly, virtually every 
person has some disease or disorder at any given time. Acne, periodontal 
disease, back ailments, allergies, vision defi cits, obesity, asthma, and respira-
tory infection are examples of the prevalent conditions that make it almost 
impossible to fi nd even one person who is completely healthy. Being free of 
disease and therefore a member of a population at risk implies only that the 
person is free of the specifi c disease being followed, not all diseases.

Table 5–4 Prevalence of Cranial Neural-Crest Defects Among 
the Offspring of Four Cohorts of Pregnant Women, Classified 
According to Their Intake of Supplemental Vitamin A During 

Early Pregnancy

Level of Vitamin A Intake from Supplements (IU/ Day)
0–5000 5001–8000 8001–10,000 ≥10,001

Aff ected infants 51 54 9 7
Pregnancies 11,083 10,585 763 317
Prevalence  0.46%  0.51%   1.18%   2.21%

Data from Rothman et al.8
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closed cohort study is the landmark Framingham Heart Study, which was initiated 
in 1949 and is still ongoing.9

In contrast, an open cohort, also referred to as a dynamic cohort or a dynamic pop-
ulation, can take on new members as time passes (see Fig. 5–1). An example of 
an open cohort is the population of Connecticut, where one of the oldest cancer 
registries in the United States is found. Th e population studied in the Connecticut 
cancer registry may be considered a dynamic cohort that comprises the people of 
Connecticut. Cancer incidence rates over a period of time in Connecticut refl ect the 
rate of cancer occurrence among a changing population as people move to or away 
from Connecticut. Th e population at risk at any given moment comprises current 
residents of Connecticut, but since residency may change, and in particular new resi-
dents may be added to the population, the population being described is dynamic, 
not closed. Another example of a dynamic population is the population of a school, 
with new students entering each year and others leaving. An extreme example of a 
dynamic cohort is the population of current U.S. presidents: whenever there is a new 
one sworn into offi  ce, the previous one leaves the cohort, and whenever one leaves, 
a new one takes over; the size of the  population always remains constant at 1.

In contrast to a dynamic cohort, a closed cohort always becomes smaller with 
passing time. Ideally, investigators of a closed cohort att empt to track down cohort 
members if they leave the vicinity of the study. Members of a closed cohort 
 constitute a group of people who remain members of the cohort even if they 
leave the area of the study. In a dynamic population that is defi ned geographically, 
people who leave the geographic boundaries of the study are leaving the cohort 
and will not be followed.

Counting Disease Events

In cohort studies, epidemiologists usually calculate incidence rates or risks by 
dividing the number of new disease events (ie, the number of disease onsets) by 
the appropriate denominator, based on the size of the population at risk. Usually 

Figure 5–1  Size of hypothetical dynamic and closed cohorts over time.
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there are one or more categories of disease that are of special interest, and new 
cases of those diseases are counted. Occasionally, however, some disease onsets 
are excluded, even if they represent the disease under study.

One reason to exclude a disease event might be that it is not the fi rst occur-
rence of the disease in that person. For example, suppose a woman develops 
breast cancer in one breast and later develops breast cancer in the other breast. 
In many studies, the second onset of breast cancer would not be counted as a 
new case, despite all biologic indications that it represents a separate cancer rather 
than spread of the fi rst cancer. Similarly, in many studies of myocardial infarc-
tion, only the fi rst myocardial infarction is counted as a disease event, and subse-
quent heart att acks are excluded. Why should investigators make this distinction 
between the fi rst occurrence of a disease and subsequent occurrences? First, it 
may be diffi  cult to distinguish between a new case of disease and a recurrence or 
exacerbation of an earlier case. Second, recurrent disease may have a diff erent set 
of causes than the primary occurrence. If the investigator limits his or her interest 
to the fi rst occurrence of a disease, all subsequent occurrences will be excluded, 
but there will also have to be a corresponding adjustment in the population at 
risk. If only the fi rst occurrence of disease is of interest, any person who devel-
ops the disease is removed from the at-risk population at the time the disease 
develops. Th is procedure is consistent with the requirement that members of the 
population at risk must be eligible to develop the disease. If only the fi rst occur-
rence is counted, people who develop the disease terminate their eligibility to get 
disease at the point at which they develop disease.

If the epidemiologist is interested in measuring the total number of disease 
events, regardless of whether they are fi rst or later occurrences, then a person who 
is in the cohort would remain as part of the population at risk even aft er gett ing 
the disease. In such an analysis, the fi rst disease event would be counted just the 
same as a subsequent event, and there would be no way to distinguish the occur-
rence of fi rst versus later events. Th e distinction can be made, however. One way 
is to calculate separate occurrence measures for fi rst and subsequent events. For 
example, it is possible to calculate the incidence rate of fi rst events, second events, 
third events, and so forth. Th e population at risk for second events would be those 
who have had a fi rst event. On having a fi rst event, a person would leave the popu-
lation at risk for a fi rst event and enter the population at risk for a second event.

Another reason not to count a disease event is that there was insuffi  cient 
time for the disease to be related to an exposure. Th is issue is addressed in the 
“Exposure and Induction Time” section.

Measuring Incidence Rates or Risks

From a closed cohort, we can estimate a risk or an incidence rate to measure 
disease occurrence. Calculation of a risk is complicated by the problem of com-
peting risks (see Chapter 4). Because of competing risks, the population at risk 
will not remain constant in size over time, which means that some people will 
be removed from the population at risk before they have experienced the entire 
period of follow-up. Despite this problem, there are many cohort studies in which 
risks are estimated directly. Usually, the period of follow-up is short enough or 
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the competing risks are small enough in relation to the disease under study that 
there is relatively litt le distortion in the risk estimates. In these studies, the risk 
in each cohort is calculated by dividing the number of new disease events by 
the total number of people who are being followed in the closed cohort. Th is 
approach was used to calculate the risk for cholera in Snow’s analysis depicted in 
Table 5–1. Essentially the same approach was used in the study of vitamin A and 
birth defects described earlier, although the measure reported is the prevalence, 
rather than the risk, of birth defects.

It is problematic to measure risk directly in a dynamic cohort, in which new 
people are added to the cohort during the follow-up period. To get around this 
problem, the investigator can take into account the amount of time that each per-
son spends in the population at risk and calculate an incidence rate by dividing 
the number of new disease events by the amount of person-time experienced by 
the population at risk. Th e same approach can be applied to a closed cohort, 
addressing the problem of competing risks.

In the calculation of an incidence rate, the ideal situation is to have precise 
information on the amount of time that each person has been in the population 
at risk. Oft en, this time is calculated for each person in terms of days at risk, 
although the fi nal results may be expressed in terms of years aft er converting the 
time units.

Cohort Study of X-Ray Fluoroscopy and Breast Cancer: 

An Example

Th e data in Table 4–6 (see Chapter 4) are taken from a cohort study of radia-
tion exposure and breast cancer. As part of their treatment for tuberculosis, many 
of the women received substantial doses of x-rays for fl uoroscopic monitoring of 
their lungs. Because the women were followed for highly variable lengths of time, 
it would not have been reasonable to calculate directly the risk of breast cancer; 
to do so requires a fi xed length of follow-up or at least a minimum follow-up time 
for all the women in the cohort. (Th ey could have calculated the risk of breast 
cancer for segments of the follow-up time using the life-table method described in 
Chapter 4.) Instead, the investigators measured the incidence rate of breast cancer 
among these women with x-ray exposure. Th ey compared this rate with the rate 
of breast cancer among women treated during the same period for tuberculosis 
but not with x-rays. Th e data in Table 4–6 show that the women who received 
x-ray exposure had nearly twice the incidence rate of breast cancer as the women 
who did not receive x-ray exposure.

Exposure and Induction Time

Aft er World War II, the United States and Japan jointly undertook a cohort study 
of the populations of Hiroshima and Nagasaki who survived the atomic bomb 
blasts. Th ese populations have been followed for decades, initially under the 
aegis of the Atomic Bomb Casualty Commission and later under its successor, 
the Radiation Eff ects Research Foundation. A category of outcome that has been 
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of primary interest to the researchers has been cancer occurrence. Leukemia is 
one of the types of cancer that or substantially increased in incidence by  ionizing 
 radiation. Consider the survivors of the bombs to constitute several closed cohorts, 
each corresponding to a diff erent dose category of ionizing radiation. Th e main 
factors that determined the dose of exposure were the distance from the epicenter 
of the blast and the shielding provided by the immediate environment, such as 
 buildings, at the time of the blast.

Suppose that we wish to measure the incidence rate of leukemia among atomic 
bomb survivors who received a high dose of ionizing radiation and compare this 
rate with the rate experienced by those who received litt le or no radiation  exposure. 
Th e cohorts are defi ned as of the time of the blasts, and their subsequent experi-
ence is tracked as part of the cohort study. We might consider that those who 
received a high dose of ionizing radiation immediately entered the population at 
risk for leukemia. Th e diffi  culty with beginning the follow-up immediately aft er 
the exposure is that it does not allow a suffi  cient induction time for leukemia 
to develop as a result of the radiation exposure. For example, an exposed per-
son who was diagnosed with leukemia 2 weeks aft er exposure is unlikely to have 
developed his or her leukemia as a consequence of the radiation exposure. Aft er 
the exposure, disease does not occur until the induction period has passed (see 
Chapter 3). Th e induction period corresponds to the time that it takes for the 
causal mechanism to be completed by the action of the  complementary com-
ponent causes that act aft er radiation exposure. Suppose that the average time 
it takes before causal mechanisms that involve radiation are completed and leu-
kemia occurs is 5 years and that few causal mechanisms if any are completed 
until 3 years have passed. Aft er disease occurs, there is an additional interval, the 
latent period, during which disease exists but has not yet been diagnosed. It is 
important to consider the induction period and the latent period in the calcula-
tion of incidence rates. To measure the eff ect of radiation exposure most clearly, 
the investigator should defi ne the time period at risk for leukemia among exposed 
people in a way that allows for the induction time and perhaps for the latent 
period. It would make more sense to allow exposed people to enter the popula-
tion at risk for leukemia only aft er a delay of at least 3 years, if we assume that 
any case occurring before that time could not plausibly be related to exposure.

Typically, the investigator cannot be sure what the induction time is for a 
given exposure and disease. In that case, it may be necessary to hypothesize 
various induction times and reanalyze the data under each separate hypothesis. 
Alternatively, there are statistical methods that estimate the most appropriate 
induction time.10

Among exposed people, what happens to the person-time that is not related to 
exposure under the hypothesis of a specifi c induction time? Consider the previ-
ous example of studying the eff ect of radiation exposure from the atomic bomb 
blasts on the development of leukemia. If we hypothesize that no leukemia can 
occur as a result of the radiation until at least 3 years have elapsed since the blast, 
what happens to the fi rst 3 years of follow-up for someone who was exposed? 
How should we treat the experience of exposed people before they are exposed? 
Although the induction time comes aft er exposure, it is a period during which the 
exposure is presumed not to have any eff ect and is therefore like the time that 
comes before exposure. Th ere are two reasonable options for dealing with this 
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time: ignore it or combine it with the follow-up time of people who were never 
exposed.

Th e hypothetical data in Figure 5–2 can be used to calculate incidence rates for 
exposed and unexposed cohorts in a cohort study. Figure 5–2 depicts the follow-
up time for 10 people, 5 exposed and 5 unexposed, who were followed for up 
to 20 years aft er a point exposure. Th ere are three ways in which follow-up can 
end: the person can be followed until the end of the study follow-up period of 
20 years, the person can be lost to follow-up, or the person can get the disease. 
Th ose who are followed for the full 20 years are said to be withdrawn at the end 
of follow-up. We can calculate the incidence rate among exposed people during 
the 20 years aft er exposure. Figure 5–2 shows that the follow-up times for the fi rst 
5 people are 12, 20, 15, 2, and 10 years, which sum to 59 years. In this expe-
rience of 59 years, three disease events have occurred, for an incidence rate of 
3 events per 59 years, or 3/59 yr−1. We also can express this rate as 5.1 cases per 
100 person-years, or 5.1/100 yr−1. For the unexposed group, the follow-up times 
were 20, 18, 20, 11, and 20 years, for a total of 89 years, and there was only one 
disease event, for a rate of 1/89 yr−1, or 1.1/100 yr−1.

Th e rate for the exposed group, however, does not take into account the 3-year 
induction period for exposure to have an eff ect. To take that into account, we 
must ignore the fi rst 3 years of follow-up for the exposed group. Th e follow-up 
times for the exposed cohort that comes aft er the induction period for exposure 
are 9, 17, 12, 0, and 7 years, for a total of 45 years, with only two disease events 

Figure 5–2  Follow-up data for 10 people in a hypothetical cohort study that fol-
lowed 5 exposed people (top fi ve lines) and 5 unexposed people (bott om fi ve lines). 
Th e exposure was a point exposure that is hypothesized to have a minimum 3-year 
induction time (cross-hatched area) before any case of disease could result from it.
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occurring during this follow-up experience. Th e rate aft er taking into account the 
3-year induction period would be 2/45 yr−1, or 4.4/100 yr−1. Th ere is no reason 
to exclude the fi rst 3 years of follow-up for the unexposed group, because there 
is no induction period among those who are not exposed. An investigator may 
also consider including the fi rst 3 years of follow-up for each exposed person as 
unexposed experience, because under the study hypothesis, this experience is not 
related to exposure. With that approach, the denominator of the rate for unex-
posed would include 14 additional years of follow-up and one additional event, 
giving a rate of 2/103 yr−1, or 1.9/100 yr−1.

Th e assumption that the induction time is 3 years is only a hypothesis, and it 
may be wrong. Other possible induction times can be considered as alternatives, 
leading to diff erent results. Many epidemiologists ignore the issue of induction 
time and do not exclude any period of time following exposure. Th at practice is 
equivalent to assuming that the induction time is zero, which may be a reasonable 
assumption, but it may be unreasonable for many study questions. To the extent 
that the induction time hypothesis is incorrect, there will be nondiff erential mis-
classifi cation of exposure, which introduces a bias (see Chapter 7).

Eligibility Criteria, Exposure Classifi cation, and Time Loops

In a prospective cohort study, the investigator selects subjects who meet the study 
eligibility criteria and then assigns them to exposure categories as they meet the 
conditions that defi ne those categories. For example, in a prospective cohort study 
of smoking, subjects who meet age and other entry criteria may be invited into 
the cohort and then classifi ed in appropriate smoking categories as they meet the 
defi nitions for those categories. A person classifi ed as a nonsmoker at the start of 
the follow-up may be reclassifi ed as a smoker if he takes up smoking during the 
follow-up, or a smoker who gives up smoking may be reclassifi ed as an ex-smoker 
if he gives it up. In retrospective cohort studies, it is important to ensure that deci-
sions about eligibility of participants and any exposure categorization are based on 
information that is known at the time to which these decisions or assignments 
pertain, rather than later. Th e investigator should only use information that would 
have been known at that time if the investigator had been conducting a prospec-
tive cohort study. If this rule is not observed, the result may be the formation 
of a “time loop,” in which a decision is made to include or exclude or classify a 
study subject at a point in time before the information is known that the deci-
sion is based on. For example, suppose the intent is to exclude ex-smokers from 
the study. A smoker who gives up smoking during the follow-up and becomes an 
 ex-smoker could not be prevented from enrolling in a prospective cohort study 
if the discontinuation of smoking is in the future at the time the study begins, 
because the information is not yet known. If the smoker becomes an ex-smoker 
during follow-up, it would create problems to exclude retroactively his already 
accumulated experience from the study. An investigator can, however, exclude or 
censor the person’s future experience starting when he becomes an ex-smoker.

It is permissible to change the classifi cation of a study participant as circum-
stances change during follow-up, but those changes should infl uence only the 
follow-up time that comes aft er the change. An unexposed person can become 
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exposed during the follow-up period of a cohort study. Th at information should 
not be used to change that person’s categorization at the start of follow-up, when 
the person was unexposed. It can be used, however, to change the exposure 
 category in which the person’s follow-up time is tallied aft er the time he or she 
became exposed.

One example of the eff ect of a time loop is the creation of immortal person-
time. Suppose we are conducting a cohort study of mortality among workers 
in a factory who are exposed to mercury vapor on the job. A common feature 
of many exposure measures for occupational (and other) exposures is that the 

Which Measures to Report from Cohort Studies?

In a cohort study, the epidemiologist oft en has data that allow the calcu-
lation of a risk or a rate of disease. Th e choice depends on whether the 
denominators available are the number of people in the cohort, which gives 
risks, or the amount of person-time, which gives rates. To measure risks, 
everyone in the cohort should be followed for at least the length of the 
risk period. Risks are oft en reported in experimental studies, which usually 
aim for a uniform length of follow-up. If the follow-up time varies consider-
ably from person to person, it may be preferable to use person-time as the 
denominator measure and report rates. In some cohort studies, the actual 
risks or rates in each cohort are not reported; instead, a risk or rate ratio is 
reported for one or more levels of the study exposure. Reporting only risk 
or rate ratios is a disservice to readers, who deserve to know the underlying 
risks or rates if these are obtainable. Ideally, the investigator should report 
the risk or rate for each level of exposure, as well as the numerators and 
denominators from which these risks or rates are calculated. Th e risk or rate 
diff erences are still of interest, although they are secondary to the actual 
risks or rates, because they can be derived from the risks or rates.

One reason that some studies report only ratio measures is that the 
investigators may have used a statistical model to analyze their data that 
only produces ratio measures. Nevertheless, it is not diffi  cult to use strati-
fi cation or other analytic methods to obtain the risks or rates themselves 
(see Chapter 10). Some cohort studies report odds ratios rather than risk 
ratios. Usually, odds ratios are reported because the statistical model used is 
a logistic model, which estimates odds ratios (see Chapter 12). Odds ratios 
are a fundamental measure in case-control studies, where they are used to 
estimate risk or rate ratios. In cohort studies, the risks or rates are obtainable 
directly, and there is litt le reason to consider an odds ratio. Although odds 
ratios are oft en reported in experiments, they should not be used, because 
in experiments, the outcome is typically frequent enough that the odds 
ratio is a poor estimate of the risk ratio, which could be obtained directly. 
Odds ratios are appropriate when analyzing case-control studies, but odds 
ratios usually have litt le reason to appear in cohort studies and should not 
be reported. If they are reported, it is bett er for readers to ignore them and 
look for information on the actual risks or rates.
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measure is based on the amount of time exposed. For example, the number of 
years of employment for workers exposed to mercury vapor on the job is a crude 
index of cumulative exposure, especially if the exposure in the workplace has 
been relatively stable over time. It may seem reasonable to compare the mortal-
ity among workers who were employed for only a few years with the mortality 
among workers employed for longer periods. Consider classifying workers into 
the categories of 0 to 9 years, 10 to 19 years, and 20+ years of employment, 
which we hope will separate workers with diff erent levels of exposure to mercury 
vapor. A worker who ends up in the category of 20+ years of employment must 
pass through the other two categories fi rst. How do we tabulate the follow-up 
time for a worker at this factory, starting at the beginning of employment? For 
the fi rst 10 years of employment, the follow-up time must be tallied in the cat-
egory of 0–9 years and, for the next 10 years, in the second category. It is only 
aft er 20 years of employment that a worker can begin to contribute follow-up 
time to the third category of employment. If a worker with 40 years of employ-
ment had been inappropriately classifi ed in the 20+ category with respect to all 
40 years, the fi rst 20 of those 40 years would constitute immortal person-time. 
Th ose long-term workers were not actually immortal during their fi rst 20 years 
on the job, but if any of them had died before reaching the 20th anniversary of 
employment, he or she could not have reached the category of 20+ to contribute 
any time at all. Everyone in the category of 20+ would have had 20 years dur-
ing which they could not have died, because those who did were not classifi ed 
in this category. Th is mistake would lead to a severe underestimate of mortality 
among the longest employed workers and an overestimate of mortality for those 
employed for shorter periods. Th is kind of problem can be avoided by avoiding 
any time loops that come from using future information to classify person-time 
before that information could have been known.

Retrospective Cohort Studies

A prospective cohort study is one in which the exposure information is recorded at 
the beginning of the follow-up (with possible updates if exposure status changes), 
and the period of time at risk for disease runs concurrently with the conduct of 
the study. Th is is always the case with experiments and with many nonexperimental 
cohort studies. Nevertheless, a cohort study is not always prospective; cohort stud-
ies can also be retrospective. In a retrospective cohort study (also known as a historical 
cohort study), the cohorts are identifi ed from recorded information, and the time dur-
ing which they are at risk for disease occurred before the beginning of the study.

An outstanding example of a retrospective cohort study was conducted by 
Morrison et al.11 Th ey studied young women who were born in Florence in the 
15th and 16th centuries and who were enrolled in a dowry fund soon aft er they 
were born. Th e dowry fund was an insurance plan that would pay the family a 
sizable return if an enrolled woman married. If the woman died or joined a con-
vent fi rst, the fund did not have to pay a dowry. Th e fund records contain the 
date of birth, date of investment, and date of dowry payment or death of 19,000 
girls and women. More than 500 years aft er the fi rst women were enrolled in the 
dowry fund, epidemiologists were able to use the fund records to chart waves 
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of epidemic deaths from the plague and show how successive plague epidemics 
became milder over a period of 100 years. Th is retrospective cohort study, con-
ducted centuries aft er the data were recorded, illustrates well that a cohort study 
need not be prospective.

Because a retrospective cohort study must rely on existing records, important 
information may be missing or otherwise unavailable. Nevertheless, when a retro-
spective cohort study is feasible, it off ers the advantage of providing information 
that is usually much less costly than that from a prospective cohort study, and it 
may produce results much sooner because there is no need to wait for the disease 
to occur.

Tracing of Subjects

Cohort studies that span many years present a challenge with respect to main-
taining contact with the cohort to ascertain disease events. Whether the study 
is retrospective or prospective, it is oft en diffi  cult to locate people or their 
records many years aft er they have been enrolled in study cohorts. In prospec-
tive cohort studies, the investigator may contact study participants periodically 
to maintain current information on their location. Tracing subjects in cohort 
studies is a major component of their expense. If a large proportion of partici-
pants are lost to follow-up, the validity of the study may be threatened. Studies 
that trace less than about 60% of subjects usually are regarded with skepticism, 
but even follow-up of 70%, 80%, or more can be too low if the subjects lost 
to follow-up are lost for reasons related to both the exposure and the disease. 
Increasing access to the Internet may provide more effi  cient ways to enroll and 
trace participants in cohort studies.12 We later consider the relative importance 
of successful tracing of subjects versus successful recruitment of subjects for 
cohort studies.

Special Exposure and General Population Cohorts

Cohort studies permit the epidemiologist to study many diff erent disease end 
points at the same time. A mortality follow-up can be accomplished just as easily 
for all causes of death as for any specifi c cause. Health surveillance for one dis-
ease end point can sometimes be expanded to include many end points without 
much additional work. A cohort study can provide a comprehensive picture of 
the health eff ect of a given exposure. Cohort studies that focus on people who 
share a particular exposure are called special-exposure cohort studies. Examples of 
special-exposure cohorts include occupational cohorts exposed to substances in 
the workplace; soldiers exposed to Agent Orange in Vietnam; residents of the 
Love Canal area of Niagara, New York, exposed to chemical wastes; Seventh Day 
Adventists adhering to vegetarian diets; and atomic bomb victims exposed to 
ionizing radiation. Each of these exposures is uncommon; therefore, it is usually 
more effi  cient to study them by identifying a specifi c cohort of people who have 
sustained that exposure and comparing their disease experience with that of a 
cohort of people who lack the exposure.
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In contrast, common exposures are sometimes studied through cohort studies 
that survey a segment of the population that is identifi ed initially without regard to 
their exposure status. Th ese general-population cohorts typically focus on exposures 
that a substantial proportion of people have experienced. Otherwise, there would 
be too few people in the study who are exposed to the factors of  interest. Aft er 
a general-population cohort is assembled, the cohort members can be classifi ed 
according to smoking, alcoholic beverage consumption, diet, drug use, medical 
history, and many other factors of potential interest. Th e study described earlier 
of vitamin A intake in pregnant women and birth defects among their off spring8 
is an example of a general-population cohort study. No women in that study were 
selected for the study because they had vitamin A exposure. Th eir exposure to 
vitamin A was determined aft er they were selected for the study during the inter-
view. Although the study was a general-population cohort study, a high level of 
vitamin A intake during pregnancy was not a common exposure. Table 5–4 shows 
that only 317 of the total of 22,058 women, or 1.4%, were in the highest category 
of vitamin A intake. Fortunately, the overall study population was large enough 
that the vitamin A analysis was feasible; it would have been diffi  cult to identify 
or recruit a special-exposure cohort of women who had a high intake of vitamin 
A during pregnancy.

In both special-exposure and general-population cohort studies, the investi-
gator must classify study participants into the exposure categories that form the 
cohorts. Th is classifi cation is easier for some exposures than for others. When 
the female off spring of women who took diethylstilbestrol (DES) were assembled 
for a special population cohort study, defi ning their exposure was comparatively 
clear-cut, based on whether their mothers took DES while they were pregnant.13 
For other exposures, such as secondhand smoke or dietary intake of saturated 
fat, almost everyone is exposed to some extent, and the investigator must group 
people together according to their level of intake to form cohorts.

CASE-CONTROL STUDIES

Th e main drawback of conducting a cohort study is the necessity in many situations 
to obtain information on exposure and other variables from large  populations to 
measure the risk or rate of disease. In many studies, however, only a tiny minority 
of those who are at risk for disease actually develop the disease. Th e case-control 
study aims at achieving the same goals as a cohort study, but more effi  ciently, 
using sampling. Properly carried out, case-control studies provide information that 
mirrors what could be learned from a cohort study, usually at considerably less 
cost and time.

Case-control studies are best understood by considering as the starting point 
a source population, which represents a hypothetical study population in which 
a cohort study might have been conducted. Th e source population is the popula-
tion that gives rise to the cases included in the study. If a cohort study were under-
taken, we would defi ne the exposed and unexposed cohorts (or several cohorts), 
and from these populations obtain denominators for the incidence rates or risks 
that would be calculated for each cohort. We would then identify the number of 
cases occurring in each cohort and calculate the risk or incidence rate for each. 
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In a case-control study, the same cases are identifi ed and classifi ed according to 
whether they belong to the exposed or unexposed cohort. Instead of obtaining 
the denominators for the rates or risks, however, a control group is sampled from 
the entire source population that gives rise to the cases. Individuals in the  control 
group are then classifi ed into exposed and unexposed categories. Th e purpose 
of the control group is to determine the relative size of the exposed and unex-
posed components of the source population. Because the control group is used 
to estimate the distribution of exposure in the source population, the cardinal 
requirement of control selection is that the controls be sampled  independently of 
exposure status.

Figure 5–3 shows the relation between a case-control study and the cohort 
study that it replaces. In the illustration, 25% of the 288 people in the source 
population are exposed. Suppose that the cases, illustrated at the right, arise dur-
ing 1 year of follow-up. For simplicity, assume that the cases all occur at the end 
of the year; ordinarily they are spread out through time, which would necessitate 
discontinuing the person-time contribution to follow-up for each case at the time 
of the event. Th e rate of disease among exposed people is 8 cases occurring in 
72 person-years, for a rate of 0.111 cases per person-year. Among the 216 unex-
posed people, 8 additional cases arise during the 1 year of follow-up, for a rate 
of 0.037 cases per person-year. In this hypothetical example, the incidence rate 
among the exposed cohort is three times the rate among the unexposed cohort. 
Now consider what would happen if a case-control study were conducted. Th e 
rectangle drawn around a portion of the source population represents a sample 
that could represent the control group. Th is sample must be taken independently 
of the exposure. Among the 48 people in the control group, 12 are exposed. If 
the sample is taken independently of the exposure, the same proportion of con-
trols will be exposed as the proportion of people (or person-time) exposed in the 
original source population, apart from sampling error. Th e same cases that were 
included in the cohort study are also included in the case-control study as the 
case group. Later, we will see how the data in the case-control study can be used 
to estimate the ratio of the incidence rates in the source population, giving the 
same result for the incidence rate ratio that the cohort study provides.

Nested Case-Control Studies

It is helpful to think of every case-control study as being nested, or conducted, 
within cohorts of exposed and unexposed people, as illustrated in Fig. 5–3. 
Epidemiologists sometimes refer to specifi c case-control studies as nested case-
control studies when the population within which the study is conducted is 
a well-defi ned cohort, but almost any case-control study can be thought of as 
nested within some source population. In many instances, this population may be 
identifi able, such as all residents of Rio de Janeiro during the year 2001; in other 
instances, the members of the source population may be hard to identify.

In occupational epidemiology, a commonly used approach is to conduct a 
case-control study nested within an occupational cohort that has already been 
 enumerated. Th e reason for conducting a case-control study even when a cohort 
can be enumerated is usually that more information is needed than is readily 
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available from records and that it would be too expensive to seek this information 
for everyone in the cohort. A nested case-control study is then more effi  cient. 
In these studies, the source population is easy to identify. It is the occupational 
cohort. A control group can be selected by sampling randomly from this source 
population.

As an example of a case-control study in which the source population is hard 
to identify, consider one in which the cases are patients treated for severe psoria-
sis at the Mayo Clinic. Th ese patients come to the Mayo Clinic from all corners 
of the world. What is the specifi c source population that gives rise to these cases? 
To answer this question, we need to know exactly who goes to the Mayo Clinic 

Figure 5–3  Schematic of a cohort study and a nested case-control study within the 
cohort shows how the control group is sampled from the source population.
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for severe psoriasis. We cannot identify this population because many people in it 
do not know themselves that they would go to or be referred to the Mayo Clinic 
for severe psoriasis unless they developed it. Nevertheless, we can still imagine a 
population spread around the world that constitutes the people who would go to 
the Mayo Clinic if they developed severe psoriasis. It is this population in which 
the case-control study is nested and from which the control series would ide-
ally be drawn. (In practice, an investigator would likely draw the controls from 
other patients who att ended the Mayo clinic, who might constitute a proxy sam-
ple, as discussed later.) From this perspective, almost any case-control study can 
be thought of as nested within a source population, and a description of this 
 population corresponds to eligibility criteria for both cases and controls.

Basic Types of Case-Control Studies

Controls in a case-control study can be sampled in several ways, with each giv-
ing rise to a type of case-control study with slightly diff erent implications for the 
design, analysis, and interpretation. Th e three basic types are density-based sam-
pling, cumulative sampling, and case-cohort sampling. In density sampling, controls 
are sampled to represent the distribution of person-time in the source population 
with respect to exposure. In cumulative sampling, controls are sampled aft er the 
source population has gone through a period of risk, which is presumed to be 
over when the study is conducted. For example, a case-control study examining 
the eff ect of vaccination on the risk of infl uenza may be conducted at the end 
of the infl uenza season, when the annual epidemic has ended. In the cumulative 
case-control study, the control group is sampled from among those who did not 
become cases during the period of risk. If the cases were those who contracted 
infl uenza, the controls would be sampled from among those who remained free 
of infl uenza during the epidemic. In the case-cohort study, controls are sampled 
from the list of all people in the source population, regardless of whether they 
become cases. As a result, in a case-cohort study, some of the controls may also 
be included as cases. Th ese three case-control designs are discussed further in the 
following sections.

Density Case-Control Studies

Th e phrase density-based sampling comes from the term incidence density, which is 
sometimes used as a synonym for incidence rate. Th e aim of this type of control 
sampling is to have the distribution of controls mirror the distribution of person-
time in the source population with respect to exposure. If 20% of the person-
time in the source population is classifi ed as exposed person-time, the aim of a 
density case-control study will be to sample controls in such a way that 20% of 
them are exposed. In an actual study, we ordinarily do not know the exposure 
 distribution in the source population, and we rely on our sampling methods to 
reveal it through our control series.

Suppose that we have a dichotomous exposure. We can consider the source 
population to have two subcohorts, exposed and unexposed, which we denote 
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by the subscripts 1 and 0, respectively. During a given time period, the incidence 
rates for the exposed population would be 

I
a

PT1
1TT

=

For the unexposed population, it would be

I
b

PT0 =
0TT

In these equations, I1 and I0 are the incidence rates among exposed and unex-
posed, respectively; a and b are the respective numbers of exposed and unex-
posed people who developed the disease; and PT1 and PT0 are the respective 
amounts of person-time at risk for the exposed and the unexposed cohorts.

In a case-control study with density-based sampling, the control series provides 
an estimate of the proportion of the total person-time for exposed and unexposed 
cohorts in the source population. Suppose that the control series sampled from 
the source population contains c exposed people and d unexposed people. Th e 
aim is to select the control series so that the following ratios are equal, apart from 
statistical sampling error: 

c
d

PT
PT

= 1TT

0TT

Equivalently, 

c
PT

d
PT1 0TT PTT

=

Th e ratios c/PT1 and d/PT0 are called the control sampling rates for the exposed 
and unexposed components of the source population. Th ese sampling rates will 
be equal if the control sampling is conducted independently of exposure. If this 
goal is achieved, the incidence rate ratio can be readily estimated from the case-
control data as follows: 
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Th e quantity ad/bc, which in a case-control study provides an estimate of the 
incidence rate ratio, is called the cross-product ratio or, more commonly, the odds 
ratio. Using the odds ratio in a case-control study with density-based sampling, 
an investigator can obtain a valid estimate of the incidence rate ratio in a popu-
lation without having to obtain individual information on every person in the 
population.

What disadvantage is there in using a sample of the denominators rather than 
measuring the person-time experience for the entire source population? Sampling 
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of the source population can lead to an inaccurate measure of the exposure dis-
tribution, giving rise to an incorrect estimate. A case-control study off ers less 
statistical precision in estimating the incidence rate ratio than a cohort study 
of the same population. A loss in precision is to be expected whenever sam-
pling is involved. Th is loss can be kept small if the number of controls selected 
per case is large. Th e loss is off set by the cost savings of not having to obtain 
information on everyone in the source population. Th e cost savings may allow 
the epidemiologist to enlarge the source population and therefore obtain more 
cases, resulting in a bett er overall estimate of the incidence rate ratio statistically 
and otherwise than would be possible using the same expenditures to conduct 
a cohort study.

Defining the Source Population
Th e earlier discussion presumes that all people who develop the disease of inter-
est in the source population are included as cases in the case-control study. Th e 
defi nition of the source population corresponds to the eligibility criteria for cases 
to enter the study. In theory, it is not necessary to include all cases occurring 
within an identifi able population, such as within a geographic boundary. Th e 
cases identifi ed in a single clinic or treated by a single medical practitioner can be 
used for case-control studies. Th e corresponding source population for the cases 
treated in a clinic is all people who would att end that clinic and be recorded with 
the diagnosis of interest if they had the disease in question. It is important to 
specify “if they had the disease in question” because clinics serve diff erent popu-
lations for diff erent diseases, depending on referral patt erns and the reputation 
of the clinic in specifi c specialty areas. Unfortunately, without a precisely identi-
fi ed source population, it may be diffi  cult or impossible to select controls in an 
 unbiased fashion.

Control Selection
In density case-control studies, the control series is sampled to represent the 
person-time distribution of exposure in the source population. If the sampling is 
conducted independently of the exposure, the case-control study can provide a 
valid estimate of the incidence rate ratio. Each control sampled represents a cer-
tain amount of person-time experience. Th e probability of any given person in the 
source population being selected as a control should be proportional to his or her 
person-time contribution to the denominators of the incidence rates in the source 
population. For example, a person who is at risk of becoming a study case for 
5 years should have a fi ve times higher probability of being selected as a control 
than a person who is at risk for only 1 year.

For each person contributing time to the source population experience, the 
time that he or she is eligible to be selected as a control is the same time during 
which he or she is also eligible to become a case if the disease occurs. A person 
who has already developed the disease or has died is no longer eligible to be 
selected as a control. Th is rule corresponds to the treatment of subjects in cohort 
studies: Every case that is tallied in the numerator of a cohort study contributes 
to the denominator of the rate until the time that the person becomes a case, 
when the contribution to the denominator ceases.
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One way to implement control sampling according to these guidelines is to 
choose controls from the unique set of people in the source population who are 
at risk of becoming a case at the precise time that each case is diagnosed. Th is 
set, which changes from one case to the next as people enter and leave the source 
population, is sometimes referred to as the risk set for the case. Risk-set sam-
pling allows the investigator to sample controls so that each control is selected in 
 proportion to his or her time contribution to the person-time at risk.

A conceptually important feature of the selection of controls with density-based 
sampling is their continuous eligibility to become cases if they develop the disease. 
Suppose that the study period spans 3 years and that a given person free of dis-
ease in year 1 is selected as a control. Th e same person may develop the disease 
in year 3, becoming a case. How is such a person treated in the analysis? If the 
disease is uncommon, it will matt er litt le, because a study is unlikely to have many 
subjects eligible to be both a case and a control, but the question is nevertheless 
of some theoretical interest. Because the person in question did develop disease 
during the study period, many investigators would be tempted to count the per-
son as a case, not as a control. Recall, however, that if a cohort study were being 
conducted, each person who developed disease would contribute not only to the 
numerator of the disease rate, but also to the person-time experience counted in 
the denominator, until the time of disease onset. Th e control group in density 
case-control studies is intended to provide estimates of the relative size of the 
denominators of the incidence rates for the compared groups. Th erefore, each case 
should have been eligible to be a control before the time of disease onset; each 
control should be eligible to become a case as of the time of selection as a  control. 
A person selected as a control who later develops the disease and is selected as a 
case should be included in the study both as a control and as a case.

As an extension of the previous point, with density-based sampling, a person 
selected as a control should remain eligible to be selected again as a control as long 
as he or she remains at risk for disease in the study population. Although unlikely 
in typical studies, the same person may appear in the control group two or more 
times. Note, however, that including the same person at diff erent times does not 
necessarily lead to exposure (or confounder) information being repeated, because 
this information may change with time. For example, in a case-control study of 
viral hepatitis, the investigator may ask about raw shellfi sh ingested within the 
previous 6 weeks. Whether a person has consumed raw shellfi sh during the previ-
ous 6 weeks will change with time, and a person included more than once, fi rst 
as a control and then later as either a control or as a case, may have diff erent 
exposure information at the diff erent points in time. Th e same can be true for 
confounding variables, which may also change with time.

Illustration of Density-Based Case-Control Data
Consider the data for the cohort study in Table 4–6 (see Chapter 4). Th ese data 
are shown again in Table 5–5 along with a hypothetical control series of 500 
women that might have been selected from the two cohorts.

Th e ratio of the rates for the exposed and unexposed cohorts is 14.6/7.9 = 
1.86. Suppose that instead of conducting a cohort study, the investigators con-
ducted a density case-control study by identifying all 56 breast cancer cases that 
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occurred in the two cohorts and a control series of 500 women. Th e control 
series should be sampled from the person-time of the source population so that 
the exposure distribution of the controls sampled mirrors the exposure distribu-
tion of the person-time in the source population. Of the 47,027 person-years of 
experience in the combined exposed and unexposed cohorts, 28,010 (59.6%) are 
person-years of experience that relate to radiation exposure. If the controls are 
sampled properly, we would expect that more or less 59.6% of them would be 
exposed and the remainder unexposed. If we happened to get just the proportion 
that we would expect to get on the average, we would have 298 exposed controls 
and 202 unexposed controls, as indicated in Table 5–5.

Table 5–5 shows the case and control series along with the full cohort data 
for comparison. In an actual case-control study, the data would look like those in 
Table 5–6. Because there are two rows of data and two columns with four cell 
frequencies in the table (not counting the totals on the right), this type of table 
is oft en referred to as a 2 × 2 table.

From these data, we can calculate the odds ratio to get an estimate of the 
incidence rate ratio. 

Odds ratio
41 202
15 298

1.85 Incidence rate ratio= = =
×
×

Th is result diff ers from the incidence rate ratio from the full cohort data by 
only a slight rounding error. Ordinarily, we would expect to see additional error 
because the control group is a sample from the source population, and there may 
be some diff erence between the exposure distribution in the control series and 
the exposure distribution in the source population. In Chapter 9, we see how to 
take this sampling error into account.

Table 5–5 Hypothetical Case-Control Data from a Cohort 
Study of Breast Cancer Among Women Treated for 

Tuberculosis with X-ray Fluoroscopies and Full Cohort 
Data for Comparison

Radiation Exposure
Yes No Total

Breast cancer cases 41 15 56
(Person-years) (28,010) (19,017) (47,027)
Control series (people) 298 202 500
Rate (cases/10,000 person-years) 14.6 7.9 11.9

Table 5–6 Case-Control Data Alone from 
Table 5–5

Radiation Exposure
Yes No Total

Breast cancer cases  41  15  56

Controls 298 202 500
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Cumulative Case-Control Studies

Density case-control studies correspond to cohort studies that measure person-
time and estimate rates. Th e eff ect estimates from density case-control studies 
are estimates of rate ratios, with each control representing a certain amount of 
person-time. In cumulative case-control studies or in case-cohort studies, each 
control represents a certain number of people. Th ese studies correspond to cohort 
studies that follow a closed population and measure risks, rather than rates. Th e 
eff ect estimate obtained from cumulative case-control studies or from case-cohort 
studies is a risk ratio rather than a rate ratio.

When sampling controls from a closed source population, an investigator may 
choose to sample the controls from the entire source population at the start of 
follow-up or at the end of the follow-up from the noncases that remain aft er 
the cases have been identifi ed. If the control sample is drawn from the entire 
source population at the start of the follow-up, the design is called a case-cohort 
study, which is described later. If the control sample is drawn from the noncases 
at the end of the follow-up, the design is called a cumulative case-control study. 
Cumulative case-control studies are oft en conducted at the end of an epidemic 
period or a specifi c but time-limited risk period. For example, an investigator may 
be interested in the eff ect of specifi c drug exposures during early pregnancy on 
the occurrence of birth defects. To conduct a case-control study that addresses 
this issue, the investigator may identify cases who are born with birth defects. 
Typically, the control series is sampled from babies born without birth defects. 
At birth, the period of risk for birth defects is over, so the case and control 
sampling occurs aft er the risk period has ended. Th ere is an intuitive appeal to 
choosing controls from among those babies who did not develop a birth defect, 
but such babies do not represent the experience of the entire source population. 
Some babies who were at risk for birth defects may not have survived to be born 
alive, but even if all had, selecting controls from among those born without birth 
defects omits the experience of the cases from the population at risk. Because 
the experience of cases is part of the overall experience of the source population, 
omitt ing them from the control series can result in a bias that will overestimate 
the risk ratio.

In a cumulative case-control study, the risk ratio is estimated from the same 
measure used in density case-control studies, the odds ratio. 

Odds ratio = ad
bc

In this equation, a and b are the number of exposed and unexposed cases, respec-
tively, and c and d are the number of exposed and unexposed controls. Because of 
the sampling approach in a cumulative case-control study, this odds ratio is an esti-
mate of the risk ratio, rather than the rate ratio obtained from density  case-control 
studies. If the disease is rare, the experience of cases will be a small part of the 
overall experience of the source population, and the odds ratio obtained from 
cumulative control sampling will be very close to the risk ratio. If the risk for 
disease is high enough, however, the cumulative case-control study can  seriously 
overestimate the risk ratio.
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We can illustrate this phenomenon with a hypothetical example. In Table 5–7, 
the top section shows hypothetical data from a cohort study of a closed popula-
tion of 200 people, one half of whom are exposed. Th e risk of disease is 40% 
among exposed and 10% among unexposed, for a risk ratio of 4.0. Th e next sec-
tion in the table shows the result if a case-control study had been conducted, 
with all cases included and 50 controls, using cumulative sampling. At the end 
of follow-up, there were a total of 50 cases, leaving 150 people who did not get 
the disease. Suppose that 50 controls were sampled from these 150 noncases. Th e 
exposure distribution of these controls is shown in the next section of Table 5–7. 
Although one half of the closed source population was exposed, only 40% of the 
noncases at the end of follow-up are exposed (there are 60 noncases among those 
exposed and 90 among those unexposed). Th e reason for this discrepancy is that 
exposure is associated with disease, and the disease is common, leaving fewer 
exposed noncases than unexposed noncases. Th e estimate of the risk ratio mea-
suring the eff ect of exposure is obtained from the odds ratio. For the cumulative 
sampling, the odds ratio = (40 × 30)/(10 × 20) = 6.0, considerably greater than 
the correct value for the risk ratio of 4.0. Th is departure is a bias that results from 
the sampling method, combined with high risk of disease. If the risks were 4% 
and 1% among exposed and unexposed, the odds ratio from the same sampling 
approach would be about 4.1 instead of 6, much closer to the correct value of 
4.0 for the risk ratio. As the risk for disease becomes very small, sampling from 
the noncases at the end of follow-up becomes almost identical to sampling from 
the entire cohort.

Cumulative sampling results in valid estimates of the risk ratio if the risk of 
disease is suffi  ciently low. Th is condition is described as the rare disease assump-
tion. In the past, it has been mistakenly thought to be a necessary assumption to 
get a valid result for any case-control study, but the rare disease assumption is 
needed only for cumulative case-control studies. Density case-control studies, for 
example, provide unbiased estimates of the rate ratio even when the disease is 
common. When the rare disease assumption is met, it is worth keeping in mind 
that the risk ratio will approximate the rate ratio, which is to say that in a cumula-
tive case-control study when risks are small, the odds ratio, the risk ratio, and the 
rate ratio will all be close to the same value.

Case-Cohort Studies

Th e third basic approach to control sampling is the case-cohort study. In this 
type of study, each control represents a certain number of people in the source 

Table 5–7 Cumulative Sampling versus Case-Cohort Sampling 
in a Case-Control Study

Exposed Unexposed Risk or Odds Ratio
Cases  40  10
Cohort denominator 100 100 4.0
Controls (cumulative)  20  30 6.0
Controls (case-cohort)  25  25 4.0
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population, just as in the cumulative case-control study. As in the cumulative 
case-control study, the case-cohort study ordinarily provides estimates of risk 
ratio, rather than rate ratio. In the case-cohort study, however, the controls are 
sampled from the entire source population rather than from the noncases. Every 
person in the source population has the same chance of being included in the 
study as a control, regardless of whether that person becomes a case. Th e case-
cohort design may also be used even if subjects are followed for various amounts 
of time. With this type of sampling, each control participant represents a fraction 
of the total number of people in the source population, rather than a fraction of 
the total person-time. Th e risk ratio is, as with cumulative case-control studies, 
estimated from the odds ratio. Because the controls are sampled from the entire 
source population, however, there is no need for the rare disease assumption 
in case-cohort studies. As seen in the lower section of Table 5–7, the exposure 
distribution among controls in a case-cohort study will, on average, refl ect the 
exposure distribution among all persons followed in the source population, even 
if disease is common.

If the proportion of subjects that is sampled and becomes part of the control 
series is known, it is possible to estimate the actual size of the cohorts being fol-
lowed and to calculate separate risks for the exposed and the unexposed cohorts. 
Usually, this sampling proportion is not known, in which case the actual risks 
cannot be calculated. As long as the controls are sampled independently of the 
exposure, however, the odds ratio will still be a valid estimate of the risk ratio, 
just as the odds ratio in a density case-control study is an estimate of the inci-
dence rate ratio. No rare disease assumption is needed, because the controls are 
sampled from the entire source population.

One advantage of a case-cohort study over a density case-control study is con-
venience. Suffi  cient data to allow risk-set sampling (discussed earlier) may not 
be available, for example. Moreover, the investigators may intend to study several 
diseases. In risk-set sampling, each control must be sampled from the risk set (ie, 
the set of people in the source population who are at risk for disease at that time) 
for each case. Th e defi nition of the risk set changes for each case, because the 
identity of the risk set is related to the timing of the case. If several diseases are 
to be studied, each disease will require its own control group to maintain risk-set 
sampling. Control sampling for a case-cohort study requires only a single sample 
of people from the roster of people who constitute the cohort. Th e same control 
group can used to compare with various case series, just as the same denomina-
tors for calculating risks can be used to calculate the risk for various diseases in 
the cohort. Th is approach can therefore be considerably more convenient than 
density sampling.

In a case-cohort study, a person who is selected as a control may also be a 
case in the study (the same possibility exists in a density case-control study). 
Th is possibility may seem bothersome; some epidemiologists take pains to avoid 
the possibility that a control subject may have even an undetected stage of the 
disease under study. Nevertheless, there is no theoretical diffi  culty with a control 
participant also being a case. Th e control series in a case-cohort study is a sam-
ple of the entire list of people who are in the exposed and unexposed cohorts. 
If we did not sample at all but included the entire list, we would have a cohort 
study from which we could directly calculate risks for exposed and unexposed 
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groups. In a cohort study risk calculation, every person in the numerator (ie, 
every case) is also included in the denominator (ie, is a member of the source 
population). Th is situation is analogous to the possibility that a person who is 
sampled as a control subject in a case-cohort study might be someone who has 
been included as a case. It may be helpful to consider the timing of control ver-
sus case selection. If the control series is seen as a sample of the exposed and 
unexposed cohorts at the start of their follow-up, the control sampling represents 
people who were free of disease, because everyone at the start of follow-up in a 
cohort study is free of disease. It is only later that disease develops in some of 
these people, who then become cases. Th ese parallels in thinking between case-
control and cohort studies help to clarify the principles of control selection and 
illustrate the importance of viewing case-control studies as cohort studies with 
sampled denominators. If the same subject is included with the same data as 
both case and control in a case-cohort study, some refi ned formulas may be used 
to analyze the data, taking account of the status of subjects who serve a dual 
role as case and control. Modern Epidemiology off ers a more detailed discussion 
of case-cohort studies.1

Illustration of Case-Cohort Data
Consider the data in Table 5–1 describing John Snow’s natural experiment. 
Imagine that he had conducted a case-cohort study instead, with a sample of 
10,000 controls selected from the source population of the London neighbor-
hoods that he was investigating. If the control series had the same distribution 
by water company that the entire population in Table 5–1 had, the data might 
resemble the 2 × 2 table shown in Table 5–8. We would obtain the odds ratio 
from these hypothetical case-cohort data as follows: 

Odds ratio
4093
461

5.79 Risk ratio= = =
×

×
3946

6054

Th is result is essentially the same value that Snow obtained from his natural 
experiment cohort study. In this hypothetical case-cohort study, 10,000 controls 
were included, instead of the 440,000 people Snow included in the full cohort-
study comparison. If Snow had to determine the exposure status of every person 
in the population, it would have been much easier to conduct the case-cohort 
study and sample from the source population. As it happened, Snow derived his 
exposure distribution by estimating the population of water company custom-
ers from business records, making it unnecessary to obtain information on each 
 person. He did have to ascertain the exposure status of each case, however.

Table 5–8 Hypothetical Case-Cohort Data for 
John Snow’s Natural Experiment

Water Company
Southwark & Vauxhall Lambeth

Cholera deaths 4,093 461
Controls 6,054 3,946
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Sources for Control Series

Th e ideal method of control selection in a case-control study is to sample con-
trols directly from the source population of cases. If the cases represent all cases 
or a representative sample of cases within a geographic area, the controls should 
be sampled from the entire at-risk population of that geographic area. Th is is a 
population-based study, which means it is based on a geographically defi ned popu-
lation. Th e at-risk subset of the population, which is the source population for 
cases, is those who met the study inclusion criteria for age, sex, and other fac-
tors. Th is subset also excludes current cases or any other people who were not 
able to become study cases, such as women with a hysterectomy in a study of 
endometrial cancer. Control sampling in a population-based study is facilitated if 
a population registry is available, from which potential controls may be identifi ed, 
perhaps through random sampling.

Random sampling of controls does not necessarily mean that every person 
should have an equal probability of being selected to be a control. With density 
sampling, a person’s control selection probability is proportional to the person’s 
time at risk. For example, in a case-control study nested within an occupational 
cohort, workers on an employee roster have been followed for various lengths of 
time. Random sampling for a density-based case-control study should refl ect the 
variation in time followed. Random sampling for a case-cohort study in the same 
sett ing, however, involves every person on the employee roster having an equal 
probability of being sampled as a control.

If no registry or roster of the source population is available, other approaches 
must be found to sample controls from the source population. One approach 
that has oft en been used is random-digit dialing. Th is method is based on 
the assumption that randomly calling telephone numbers simulates a random 
sample of the source population. Random-digit dialing off ers the advantage of 
approaching all households in a designated area, even those with unlisted tele-
phone numbers, through a telephone call. Th e method poses a few challenges, 
however.

First, the method assumes that every case can be reached by telephone, because 
the source population being sampled is that part of the total population that is 
reachable by telephone. If some cases have no telephone, in principle, they should 
be excluded from a study employing random-digit dialing. Th e second issue is 
that random dialing gives every telephone an equal probability of being called, 
but that is not equivalent to giving every person an equal probability of being 
called. Households vary in the number of people who reside in them and in the 
amount of time someone is at home. Th ird, making contact with a household 
may require many calls at various times of day and various days of the week. 
Fourth, it may be challenging to distinguish business from residential telephone 
numbers, a distinction that aff ects calculating the proportion of nonresponders. 
Fift h, the increase in telemarketing in many areas and the availability of caller 
identifi cation has further compromised response rates to cold calling. Obtaining 
a control subject meeting specifi c eligibility characteristics can require dozens of 
telephone calls. Other problems include answering machines and households with 
multiple telephone numbers, a rapidly increasing phenomenon. Because telephony 
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is rapidly changing in rich and poor countries, the use of random-digit dialing is 
becoming more complicated, and the possible biases introduced by identifying 
controls using this method must be carefully considered in each study in which 
the method is contemplated.

Another method to identify population-based controls when the source pop-
ulation cannot easily be enumerated is sampling residences in some systematic 
fashion. If a geographic roster of residences is not available, some scheme must 
be devised to sample residences without enumerating them all. Oft en, matching is 
employed as a convenience. Aft er a case is identifi ed, one or more controls who 
reside in the same neighborhood as that case are identifi ed and recruited into 
the study. With this type of design, neighborhood must be treated as a matching 
factor (see Chapter 7).

If the case-control study is not population based, it may be based on a referral 
population in a hospital or clinic. In these studies, the source population rep-
resents a group of people who would be treated in a given clinic or hospital if 
they developed the disease in question. Th is population may be hard to identify, 
because it does not correspond to the residents of a specifi c geographic area. Any 
clinic-based study can be restricted to a given geographic area, but the hospitals or 
clinics that provide the cases for the study oft en treat only a small proportion of 
those in the geographic area, making the actual source population unidentifi able. 
A case-control study is still possible, but the investigator must take into account 
referral patt erns to the hospital or clinic in the sampling of controls. Typically, he 
or she would draw a control series from patients treated at the same hospitals or 
clinics as the cases. Th e source population does not correspond to the population 
of the geographic area, but only to those who would att end the hospital or clinic 
if they contracted the disease under study. Other patients treated at the same hos-
pitals or clinics as the cases will constitute a sample, albeit not a random sample, 
of this source population.

Th e major problem with any nonrandom sampling of controls is the possibility 
that they are not selected independently of exposure in the source population. 
Patients hospitalized with other diseases at the same hospitals, for example, may 
not have the same exposure distribution as the entire source population, because 
exposed people are more or less likely than nonexposed people to be hospital-
ized for the control diseases if they develop them or because the exposure may 
cause or prevent these control diseases in the fi rst place. Suppose the study aims 
to evaluate the relation between tobacco smoking and leukemia. If controls are 
people hospitalized with other conditions, many of them will have been hospital-
ized for conditions that are caused by smoking. A variety of other cancers, cardio-
vascular diseases, and respiratory diseases are related to smoking. Th us, a series of 
people hospitalized for diseases other than leukemia may include more smokers 
than the source population from which they came. One approach to this problem 
is to exclude any diagnosis from the control series that is likely to be related to 
the exposure. For example, in the imagined study of smoking and leukemia, it 
would be reasonable to exclude from the control series anyone who was hospital-
ized with a disease thought to be related to smoking. Th is approach may lead to 
the exclusion of many diagnostic categories, but even a few remaining diagnostic 
categories should suffi  ce to fi nd enough control subjects.
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It is risky, however, to reduce the control eligibility criteria in a hospital-
based case-control study to a single diagnosis. Using a variety of diagnoses has 
the advantage of diluting any bias that may result from including as the control 
series only a specifi c diagnostic group that turns out to be related to the expo-
sure. For the diagnostic categories that constitute exclusion criteria for controls, 
the exclusion should be based only on the cause of the hospitalization used to 
identify the study subject, rather than on any previous hospitalization. In the 
example of a hospital-based case-control study of tobacco smoking and leukemia, 
a person who was hospitalized because of a traumatic injury and is therefore 
eligible to be a control should not be excluded if he or she had previously been 
hospitalized for cardiovascular disease. Th e reason is that the source popula-
tion includes people who have had cardiovascular disease, and they must also 
be included in the control series. In considering whether to exclude potential 
controls, the investigator must distinguish between the current hospitalization 
and past hospitalizations.

In some situations, it is impractical or impossible to identify the actual source 
population for cases. It may still be possible to conduct a valid study, however, 
by the use of proxy sampling. Th eoretically, if a control series can be identifi ed 
that has the same exposure distribution as does the source population for cases, 
that control series should give the same results as one that draws controls directly 
from the source population. A control series comprising people who are not in 
the source population but who serve as valid proxies for those who are in the 
source population is a reasonable study design.

Consider a case-control study examining the relation between ABO blood 
type and female breast cancer. Could such a study have a control series com-
prising the brothers of the (female) cases? Th e brothers of the cases are not 
part of the source population. Nevertheless, the distribution of ABO blood type 
among the brothers should be identical to the distribution of ABO blood type 
among the source population of women who might have been included as cases, 
because ABO blood type is not related to sex. Clinic-based studies that use as 
controls clinic patients with disease diagnoses diff erent from that of the cases may 
also involve proxy sampling if those control patients would not have come to the 
same clinic if they had been diagnosed with the disease that the cases have. In 
studies in which cases who have died are compared with a control series com-
prising dead people, a comparison sometimes justifi ed by the interest in gett ing 
comparable information for cases and controls, the controls cannot be part of the 
source population. Death precludes the occurrence of any further disease, and 
dead people therefore are not at risk to become cases. Nevertheless, if a series of 
dead controls can provide the same exposure distribution as exists in the source 
population, it may be a reasonable control series to use.

Prospective and Retrospective Case-Control Studies

Case-control studies, like cohort studies, can be prospective or retrospective. In 
a retrospective case-control study, cases have already occurred when the study 
begins; there is no waiting for new cases to occur. In a prospective case-control 
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study, the investigator must wait, just as in a prospective cohort study, for new 
cases to occur.

Cohort/Case-Control Studies Versus Prospective/
Retros pective Studies

Early descriptions of cohort studies oft en referred to them as prospective 
studies and to case-control studies as retrospective studies. We now reserve 
the terms prospective and retrospective to refer to the timing of the informa-
tion and events of the study, and we use the term case-control to describe 
studies in which the source population is sampled rather than ascertained in 
its entirety, as in a cohort study. Th e early descriptions carried the implica-
tion that retrospective studies were less valid than prospective studies, an 
idea that lingers. It is still commonly thought that case-control studies are 
less valid than cohort studies. Th e truth is that validity issues can aff ect 
both case-control studies and cohort studies (including randomized  trials), 
whether they are prospective or retrospective. Nevertheless, there is no 
reason to discount a study simply because it is a case-control study or a 
retrospective study. Case-control studies represent a high achievement of 
modern epidemiology, and if conducted well, they can reach the highest 
standards of validity.

Case-Crossover Studies

Many variants of case-control studies have been described in recent years. One that 
is compelling in its simplicity and its elegance is the case-crossover study, which 
is a case-control analog of the crossover study. A crossover study is a self-matched 
cohort study, usually an experimental study, in which two or more interventions 

Is Representativeness Important?

Some textbooks claim that cases should be representative of all persons with 
the disease and that controls should be representative of the entire non-
diseased population. Such advice can be misleading. Cases can be defi ned 
in any way that the investigator wishes and need not be representative of 
all cases. Older cases, female cases, severe cases, or any clinical subset of 
cases can be studied. Th ese groups are not representative of all cases but 
are allowable as case defi nitions. Any type of case that can be used as the 
disease event in a cohort study also can be used to defi ne the case series 
in a case-control study.

Th e case defi nition implicitly defi nes the source population for cases, 
from which the controls should be drawn. It is this source population for 
the cases that the controls should represent, not the entire nondiseased 
population.
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are compared, with each study participant receiving each of the interventions at 
diff erent times. If the crossover study is an experiment, each subject receives the 
interventions in a randomly assigned sequence, with some time interval between 
them so that the outcome can be measured aft er each intervention. A crossover 
study requires the eff ect period related to the intervention to be short enough so 
that it does not persist into the time period during which the next treatment is 
administered.

Th e case-crossover study, fi rst proposed by Maclure,14 may be considered a case-
control version of the crossover study. Unlike an ordinary case-control study, how-
ever, all the subjects in a case-crossover study are cases. Th e control series, rather 
than being a diff erent set of people, is represented by information on the exposure 
distribution drawn from the cases themselves, outside of the time window during 
which the exposure is hypothesized to cause the disease. Usually, this informa-
tion is drawn from the experience of cases before they develop disease to address 
the concern that aft er gett ing the disease, a person may modify the exposure, as 
in someone who cuts back on caff eine aft er having a myocardial infarction. In 
some situations, however, when the disease cannot or does not infl uence subse-
quent exposure, the experience of cases before and aft er their disease event may 
be used. For example, if studying the eff ect of transient air pollution on asthma 
att acks, air pollution levels aft er a case’s asthma att ack may be used to describe 
the frequency of air pollution episodes, because the asthma att ack  cannot aff ect 
ambient air pollution levels.

Th e case-crossover study design can be implemented successfully only for an 
appropriate study hypothesis. As in a crossover study, in a case-crossover study, 
the eff ect of the exposure must be brief, and the disease event ideally will have 
an abrupt onset. Th e study hypothesis defi nes a time window during which the 
exposure may cause the disease event. Th e window should be brief in relation 
to the time between typical successive exposure intervals, so that the eff ect of 
exposure will have suffi  cient time to fade before the next episode of exposure 
according to the study hypothesis. Each case is classifi ed as exposed or unex-
posed, depending on whether there was any exposure during the hypothesized 
time window just before the disease event. Maclure used the example of studying 
whether sexual intercourse causes myocardial infarction. Th e period of increased 
risk aft er sexual intercourse was hypothesized to be 1 hour. Th e cases would 
be a series of people who have had a myocardial infarction. Each case would 
then be classifi ed as exposed if he or she had sexual intercourse within the hour 
preceding the myocardial infarction. Otherwise, the case would be classifi ed as 
unexposed.

Th is process appears to diff er litt le from what may be done for any case-
 control study. Th e key diff erence is that there is no separate control series; 
instead, the control information is obtained from the cases themselves. In the 
example of sexual intercourse and myocardial infarction, the average frequency 
of sexual intercourse would be ascertained for each case during a period (eg, 1 
year) before the myocardial infarction occurred. Under the study hypothesis, aft er 
each instance of sexual intercourse, the risk of myocardial infarction during the 
following hour is elevated, and that hour is considered exposed person-time. All 
other time would be considered unexposed. If a person had sexual intercourse 
once per week, 1 hour per week would be considered exposed and the remaining 
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167 hours would be considered unexposed. Such a calculation can be performed 
for each case, and from the distribution of these hours within the experience of 
each case, the incidence rate ratio of myocardial infarction aft er sexual intercourse 
in relation to the incidence rate at other times can be estimated. Th e analysis uses 
analytic methods based on matching, with each case being self-matched to his or 
her own experience outside the case time window. Th us, all the information for 
the study is obtainable from a series of cases.

Only certain types of study questions can be studied with a case-crossover design. 
Th e exposure must be something that varies from time to time for a person. Th e 
eff ect of blood type cannot be examined in a case-crossover study, because it does 
not change. An investigator can study whether coff ee drinking triggers an asthma 
att ack within a short time, however, because coff ee is consumed intermitt ently. It is 
convenient to think of the case-crossover study as evaluating exposures that trigger 
a short-term eff ect. Th e disease also must have an abrupt onset. Th e causes of mul-
tiple sclerosis cannot be considered in a case-crossover study, but whether an auto-
mobile driver who is talking on a telephone is at higher risk of having a collision 
can. Th e eff ect of the exposure must be brief. If the exposure had a long eff ect, it 
would not be possible to relate the disease to a particular episode of exposure.

CROSS-SECTIONAL VERSUS LONGITUDINAL STUDIES

All of the study types previously described in this chapter can be described as 
longitudinal studies. In epidemiology, a study is considered to be longitudinal if 
the information obtained pertains to more than one point in time. Implicit in a 
longitudinal study is the universal premise that the causal action of an exposure 
comes before the subsequent development of disease as a consequence of that 
exposure. Th is concept is integral to the thinking involved in following cohorts 
over time or in sampling from the person-time at risk based on earlier exposure 
status. All cohort studies and most case-control studies rely on data in which 
exposure information refers to an earlier time than that of disease occurrence, 
making the study longitudinal.

Occasionally, epidemiologists conduct cross-sectional studies, in which all 
of the information refers to the same point in time. Th ese studies are basically 
snapshots of the population status with respect to disease or exposure variables, 
or both, at a specifi c point in time. A population survey, such as the decennial 
census in the United States, is a cross-sectional study that att empts to enumerate 
the population and to assess the prevalence of various characteristics. Surveys are 
conducted frequently to sample opinions, but they may also be used to measure 
disease prevalence or even to assess the relation between disease prevalence and 
possible exposures.

A cross-sectional study cannot measure disease incidence, because risk or rate 
calculations require information across a time period. Nevertheless, cross- sectional 
studies can assess disease prevalence. It is possible to use cross-sectional data 
to conduct a case-control study if the study includes prevalent cases and uses 
concurrent information about exposure. A case-control study that is based on 
prevalent cases, rather than new cases, does not necessarily provide information 
about the causes of disease. Because the cases in such a study are those who 
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have the disease at a given point in time, the study is more heavily weighted with 
cases of long duration than any series of incident cases would be. A person who 
died soon aft er gett ing disease, for example, would count as an incident case but 
likely would not be included as a case in a prevalence survey, because the disease 
 duration is so brief.

Sometimes, cross-sectional information is used because it is considered a good 
proxy for longitudinal data. For example, an investigator may wish to know how 
much supplemental vitamin E a person consumed 10 years in the past. Because 
no writt en record of this exposure is likely to exist, the basic choices are to ask 
people to recall how much supplemental vitamin E they consumed in the past 
or to fi nd out how much they consume now. Recall of past use is likely to be 
hazy, whereas current consumption can be determined accurately. In some situ-
ations, accurate current information may be a bett er proxy for the actual con-
sumption 10 years earlier than the hazy recollections of that past consumption. 
Current consumption may be cross-sectional, but it would be used as a proxy 
for exposure in the past. Another example is blood type. Because it remains 
constant, cross-sectional information on blood type is a perfect proxy for past 
information about blood type. In this way, cross-sectional studies can some-
times be almost as informative as longitudinal studies with respect to causal 
hypotheses.

RESPONSE RATES 

In a cohort study, if a substantial proportion of subjects cannot be traced to 
determine the disease outcome, the study validity can be compromised. In a 
case- control study, if exposure data is missing on a sizable proportion of sub-
jects, it can likewise be a source of concern. Th e concern stems from the pos-
sibility of bias from selectively missing data, which is a form of selection bias 
(see Chapter 7). Th e more missing data on outcome there is in a cohort study, 
or analogously the more missing exposure data there is in a case-control study, 
the greater the potential for selection bias. For that reason, critics are oft en skep-
tical about cohort studies with a high proportion of subjects with unknown dis-
ease outcome or about case-control studies with a high proportion of subjects 
lacking exposure information. Th ese two proportions are sometimes referred to 
as response rates, with the disease outcome corresponding to the response in a 
cohort study and the exposure information corresponding to the response in 
a case- control study.

Th ere is no absolute threshold for what a response rate ought to be, but as 
discussed for tracing subjects in a cohort study, if the response rate or propor-
tion traced is less than 70% to 75%, it may engender some skepticism about the 
study. Nevertheless, in some sett ings, a low response rate need not be an impor-
tant validity concern. Suppose that in a case-control study of risk of acquired 
immunodefi ciency syndrome (AIDS) aft er transfusion, the exposure information, 
a history of transfusion, was ascertained from medical records but that only one 
half of the desired medical records were obtainable for review. Even so, if there is 
no association between a history of transfusion and the availability of the records 
for review, an unbiased estimate of the eff ect of transfusion should be obtainable 
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from the records that are available. Selection bias is a concern when the inter-
relation between the study variables in the missing data is diff erent from the 
 corresponding relation in the available data.

In many cohort studies, subjects are recruited as volunteers from a larger 
population, perhaps from the general population. Recruitment of volunteers is 
a well-known feature of experimental studies, but it is also common in nonex-
perimental cohort studies. Th e recruitment proportion should not be viewed as 
a response rate. Even if recruitment is diffi  cult, there may be litt le reason to be 
concerned with the validity of the study results. In a randomized experiment, 
the internal validity of the study fl ows from the random assignment, which is 
implemented among those who volunteer to be studied, even if they represent 
a small proportion of a larger population. In other cohort studies, the partici-
pants who are recruited should all be free of disease at the start of follow-up. 
Regardless of the success or lack of success in recruiting volunteers, there will 
not be any selection bias from volunteering to be studied unless volunteering is 
related to both exposure and disease risk. Because disease has not yet occurred 
in cohort participants, the presence of disease cannot infl uence volunteering, 
apart from prodromal eff ects. Th e internal comparisons of a cohort study based 
on a select group of volunteers should ordinarily be free of selection bias stem-
ming from volunteering even if recruitment success is poor. Th e external validity, 
or generalizability, of the study may be aff ected by a low recruitment rate, but 
only if the study participants represent a subset of the population in which the 
relation between exposure and disease is diff erent from the relation for those 
who did not volunteer. Th ese considerations have implications for the eff ort 
expended to recruit study participants. In some cohort studies, it may be most 
sensible to have a gentle approach to recruit volunteers as opposed to a hard sell 
that recruits more reluctant volunteers. If reluctant participants are persuaded 
to volunteer for the study but later drop out, their missing follow-up data may 
have a more profound eff ect on the study’s validity than their nonparticipation 
in the study in the fi rst place. Because dropouts are usually worse for a study 
than refusals to participate from the beginning, a bett er strategy is to concen-
trate eff orts more on follow-up than on recruitment. On the other hand, in case-
control studies in which study participants know their exposure status, gett ing 
high levels of participation is important, because agreement to be studied may 
depend on exposure. If study participants do not know their exposure status, 
because, for example, it is obtainable only from a laboratory test that most peo-
ple would not have had, low recruitment into a case-control study is less of a 
concern.

COMPARISON OF COHORT AND CASE-CONTROL STUDIES

It may be helpful to summarize some of the key characteristics of cohort and case-
control studies. Th e primary diff erence is that a cohort study involves complete 
enumeration of the denominator (ie, people or person-time) of the disease mea-
sure, whereas case-control studies sample from the denominator. As a result, case-
control studies usually provide estimates only of ratio measures of eff ect, whereas 
cohort studies provide estimates of disease rates and risks for each cohort, which 



Types of Epidemiologic Studies 107

can then be compared by taking diff erences or ratios. Case-control studies can be 
thought of as modifi ed cohort studies, with sampling of the source population 
being the essential modifi cation.

Consistent with this theme is the idea that many issues that apply to cohort 
studies apply to case-control studies in the same way. For example, if a person 
gets a disease, he or she no longer contributes time at risk to the denominator 
of a rate in a cohort study (assuming that only the fi rst occurrence of disease in 
a person is being studied). Analogously, in a density case-control study, a per-
son who gets disease is from that point in time forward no longer eligible to 
be sampled as a control. Another example of the parallels between cohort stud-
ies and case-control studies is the classifi cation of studies into prospective and 
 retrospective studies.

Case-control studies are usually more effi  cient than cohort studies because the 
cost of the information that they provide is oft en much lower. With a cohort 
study, it is oft en convenient to study many diff erent disease outcomes in relation 
to a given exposure. With a case-control study, it is oft en convenient to study 
many diff erent exposures in relation to a single disease. Th is contrast, however, 
is not absolute. In many cohort studies, a variety of exposures can be studied 
in relation to the diseases of interest. Likewise, in many case-control studies, the 
case series can be expanded to include more than one disease category, which 
in eff ect leads to several parallel case-control studies conducted within the same 
source population. Th ese characteristics are summarized in Table 5–9.

QUESTIONS

1. During the second half of the 20th century, there was a sharp increase in 
hysterectomy in the United States. Concurrent with that trend, there was an 
epidemic of endometrial cancer that has been att ributed to widespread use 
of replacement estrogens among menopausal women. Th e epidemic of endo-
metrial cancer was not immediately evident, however, in data on endome-
trial cancer rates compiled from cancer registries. Devise a hypothesis based 
on considerations of the population at risk for endometrial cancer that can 
explain why the epidemic went unnoticed.

Table 5–9 Comparison of the Characteristics of Cohort 
and  Case-Control Studies

Cohort Study Case-Control Study
Complete source population denominator 
experience tallied

Sampling from source population

Can calculate incidence rates or risks, 
and their diff erences and ratios

Can calculate only the ratio of 
 incidence rates or risks (unless the 
control sampling fraction is known)

Usually very expensive Usually less expensive
Convenient for studying many diseases Convenient for studying many 

exposures
Can be prospective or retrospective Can be prospective or retrospective
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2. What is the purpose of randomization in an experiment? How is the same 
goal achieved in nonexperimental studies?

3. When cancer incidence rates are calculated for the population covered by 
a cancer registry, the usual approach is to take the number of new cases of 
cancer and divide by the person-time contributed by the population covered 
by the registry. Person-time is calculated as the size of the population from 
census data multiplied by the time period. Th is calculation leads to an under-
estimate of the incidence rate in the population at risk. Explain.

4. In the calculations of rates for the data in Figure 5–2, the rate in the 
exposed group declined aft er taking the induction period into account. If 
exposure does cause disease, would you expect that the rate in exposed 
 people would increase, decrease, or stay the same aft er taking into account 
an appropriate induction period?

5. If a person already has disease, can that person be selected as a control in 
a case-control study of that disease?

6. If a person has already been selected as a control in a case-control study 
and then later during the study period develops the disease that is being 
studied, should the person be kept in the study as (1) a case, (2) a control, 
(3) both, or (4) neither?

7. In case-cohort sampling, a single control group can be compared with 
various case groups in a set of case-control comparisons, because the control 
sampling depends on the identity of the cohorts and has nothing to do with 
the cases. Analogously, the denominators of risk for a set of several diff er-
ent diseases occurring in the cohort will be the same. Risk-set sampling, in 
contrast, requires that the investigator identify the risk set for each case; the 
sample of controls will be diff erent for each disease studied. If the analogy 
holds, this observation implies that the denominators of incidence rates will 
diff er when calculating the rates for diff erent diseases in the same cohort. Is 
that true? If not, why not? If so, why should the denominators for the risks 
not change no matt er what disease is studied, whereas the denominators for 
the rates change from studying one disease to another?

8. Explain why it would not be possible to study the eff ect of cigarett e smok-
ing on lung cancer in a case-crossover study but why it would be possible 
to study the eff ect of cigarett e smoking on sudden death from arrhythmia 
using that design.

9. Cumulative case-control studies are conducted by sampling the controls 
from people who remain free of disease aft er the period of risk for disease 
(eg, an epidemic period) has ended. With this sampling strategy, demon-
strate why the odds ratio will tend to be an overestimate of the risk ratio.
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10. Oft en, the time at which disease is diagnosed is used as the time of 
 disease onset. Many diseases, such as cancer, rheumatoid arthritis, and 
schizophrenia, may be present in an undiagnosed form for a considerable 
time before the diagnosis. Suppose you are conducting a case-control study 
of a cancer. If it were possible, would it be preferable to exclude people with 
undetected cancer from the control series?
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Infectious Disease Epidemiology

Symbiosis refers to the interactive relation between diff erent species. It  encompasses 
a broad range of patt erns ranging from mutualism at one end of the spectrum, in 
which both species benefi t, to parasitism at the other end, in which one species, 
the parasite, obtains nutriment from the other, the host, while off ering litt le or 
nothing in return. Parasitism is a ubiquitous feature of life. Virtually every animal 
and plant is either a parasite or host to a parasite during part or all of its life 
cycle. Parasites tend to reproduce more quickly than their hosts and to evolve 
rapidly in response to host defenses, perpetuating a continual struggle that deter-
mines the boundary between disease and health and life or death. An infectious 
parasite is typically much smaller than its host, living within or on the host, on 
which it depends for its sustenance. Agents that infect humans include a range of 
microorganisms, including viruses, bacteria, fungi, and protozoa, as well as some 
larger animals such as helminths. In this chapter, we refer to the microscopic 
agents as pathogens and reserve the term parasite for larger animals.

Evolution has fostered the development of defenses against infection. Th e skin 
is an eff ective, if passive, barrier against most bacteria and viral infections. Surface 
responses that help resist infection include sweating and desquamation, cilia 
movement in the respiratory tract, and production of mucus along interior epi-
thelial surfaces. Mucous membranes have antibacterial properties; stomach acid, 
saliva, and tears help to resist infection. In the gut, entrenched but friendly bacte-
ria compete with pathogens, limiting opportunities for the pathogens to establish 
themselves. For pathogens that manage to penetrate skin or mucous membranes, 
the immune system provides two more levels of defense. Th e fi rst comes from the 
innate immune system. Injury to cells triggers a nonspecifi c infl ammatory  reaction, 
which is a cascade of events involving chemical and cellular responses to the 
local injury. Th e infl ammatory reaction recruits a variety of blood cells, including 
mast cells, phagocytes, neutrophils, and others that play various roles in the host 
response. Th e innate immune system also activates the adaptive immune system, 
which allows a specifi c response to infectious agents. Th is system produces anti-
bodies that are designed to att ach to specifi c sites on the pathogen or its toxins, 
neutralizing the threat. Specialized B-cell lymphocytes work in conjunction with 
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helper T cells to produce antibodies. Th ese cells also record the antigenic patt ern 
that stimulated their response, enabling a faster and more eff ective response if the 
antigen is encountered again. Th is antigenic memory is what is commonly referred 
to as immunity to an infectious agent. Immunity occurs naturally aft er an infec-
tion, but it can also be stimulated by vaccination, which is intended to provoke an 
immunogenic reaction without causing an initial pathogenic infection. Immunity 
can vary in duration from a relatively short period to lifetime protection.

Th e sophistication of host defenses implies that humans have always had to 
reckon with infectious disease. Th e balance between host and pathogen, however, 
is readily tipped by changing social conditions. For example, human invasions or 
migrations sometimes brought immunologically naïve populations into contact 
with diseases to which they had not previously been exposed. Urbanization dur-
ing the Middle Ages brought on the conditions that fostered spread of the plague. 
Europeans brought with them to the New World a host of infections, such as 
smallpox, measles, typhus, and cholera, which had catastrophic consequences for 
natives of the Western Hemisphere. Europeans had adapted to these agents, but 
the newly exposed natives of the Americas had no natural defenses. Conversely, 
some speculate that syphilis was prevalent in the Americas but unknown in 
Europe until aft er Columbus’ fi rst voyage to the New World.

Th e public-health burden from infectious disease began to diminish aft er the 
acceptance of the germ theory and the arrival of greatly improved sanitation and 
hygiene. Wealthy nations saw much faster progress than poorer ones, because 
implementing the needed public-health programs was expensive. Th e advent of 
antibacterials was another crucial development in fi ghting infection. Th is tool 
was also more available to wealthy nations. Nevertheless, sanitation and hygiene 
had the more powerful eff ect, as can be seen in Figure 6–1. Th is graph depicts 
the steady decline in mortality from infectious disease in the United States over 
the course of the 20th century. Th e fi gure also indicates the spike in deaths dur-
ing 1919, the year with the majority of cases of pandemic H1N1 infl uenza that 
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Figure 6–1  Crude death rate from infectious disease in the United States between 
1900 and 1996.
Adapted from Armstrong et al.2
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swept the world beginning in 1918 and continuing into 1919. Th is epidemic may 
have accounted for more human deaths than any catastrophe humanity has faced, 
apart from bubonic plague, the notorious Black Death that swept Europe in the 
14th century. (In light of this graph, it is understandable that the 2009 outbreak 
of H1N1 was initially a cause for great concern1 and fortunate that it turned out 
to be much less deadly than the 1918 version.) Antibiotics did not come into 
widespread use in medicine until the mid–20th century, when most of the decline 
in mortality rates from infectious disease had already occurred.

What Makes a Pandemic?

In Chapter 4, an epidemic was defi ned as an unusually high occurrence of 
disease. A pandemic is defi ned in the Dictionary of Epidemiology2 as “an epi-
demic occurring worldwide or over a very wide area, crossing boundaries 
of several countries and usually aff ecting a large number of people.” Th e 
World Health Organization (WHO) had a more specifi c description that it 
had used for pandemic infl uenza: “An infl uenza pandemic occurs when a new 
infl uenza virus appears against which the human population has no immu-
nity, resulting in several, simultaneous epidemics worldwide with enormous 
numbers of deaths and illness.” Just before WHO announced that the H1N1 
infl uenza of 2009 (swine fl u) had become pandemic, it changed its descrip-
tion of pandemic by dropping the phrase “with enormous numbers of deaths 
and illness.” Th is new description of pandemic was more consistent with the 
defi nition quoted from the Dictionary of Epidemiology.2 It also allowed the 
WHO to declare a pandemic for a disease that did not have extraordinary 
mortality and morbidity. Th e announcement of the pandemic in 2009 led to 
criticism that the declaration was motivated by ties between the WHO and 
the pharmaceutical industry, a claim that the WHO denied.3–5

TYPES OF TRANSMISSION

Th e host population constitutes the reservoir for the pathogen; this is the bio-
logic space that serves as the primary habitat for the pathogen. Reservoirs are 
usually a collection of discrete organisms, which creates a problem for the path-
ogen, because to survive beyond the life of a particular host, it must fi nd a way 
to spread to another host within its reservoir. First, it usually needs to repro-
duce within the host. Most pathogens reproduce extracellularly within the host, 
but a virus is unusual in that it can reproduce only aft er penetrating a host cell. 
While within a host cell, it is protected from the immune system, but it can be 
intercepted and deactivated by antibodies before entry into a cell. Th e specifi c 
immune response, which is a key defense against viral pathogens, typically does 
not occur rapidly enough to avert disease on the initial infection. It can take days 
for the antibody response to build, so those who lack previous contact are gen-
erally susceptible to infection from a virus. Aft er an initial infection, the antibody 
response is typically rapid enough to prevent subsequent disease or at least to 
mitigate it, leading to immunity.
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To move from one host to another, pathogens have evolved a variety of 
 mechanisms. Pathogens whose infection leads to early death of the host have a 
more pressing problem, because they may not long survive the death of the host. 
Th is problem exerts an evolutionary pressure for the pathogen to spread more 
effi  ciently or to become more benign, at least to the extent that it allows the host 
to survive long enough for the pathogen to be transmitt ed to a new host.

Table 6–1 lists a variety of mechanisms that pathogens have evolved to move 
from one human host to another. Th e most direct of these involve person-to-person 
transmission. Diseases that spread from one person to another, such as measles, 
are described as communicable or contagious. Th e only reservoir for measles virus 
is humans. It spreads from one infected person to another largely through cough-
ing or sneezing, which produces a cloud of infected droplets. Th ese droplets can 
be inhaled directly by a susceptible person or spread indirectly aft er landing on a 
contaminated surface, where the virus will remain viable for a couple of hours.

Some agents have both human and animal reservoirs, and they spread from 
person to person by means of a transmitt ing animal, which is called vector-borne 
transmission. Technically, when pathogens are spread through vectors, the vector 
represents an intermediate host for the pathogen that is necessary to its life cycle 
and its transmission. Human malaria is an infection with the Plasmodium protozoa, 
which is transmitt ed from human to human by certain species of the Anopheles 
mosquito, the vector of malaria transmission. A mosquito that bites an infected 
person acquires a blood meal that contains infected Plasmodium gametocytes, and 
it can transmit the infection to other people during subsequent blood meals. In 
rare cases, malaria can spread from person to person without the Anopheles vector 
(eg, through contaminated blood, from a pregnant mother to a fetus), but most 
transmission occurs through the mosquito vector. Many other infectious diseases, 
such as yellow fever, Chagas disease, Lyme disease, plague, West Nile encephalitis, 
and dengue fever are spread by animal vectors. In all these examples, the vectors 
are arthropods. (Viruses that are transmitt ed through arthropod vectors are called 
arboviruses, which is short for arthropod-borne viruses.)

Table 6–1 Major Routes of Transmission for Infectious Disease

Transmission Route Examples
Direct transmission Airborne

Direct contact
Fecal-oral

Maternal-fetal
Sexual 

Anthrax, chicken pox, common cold, 
infl uenza, measles, mumps, rubella, 
tuberculosis, whooping cough
Athlete’s foot, impetigo, warts
Cholera, hepatitis A, rotavirus, 
salmonella
Hepatitis B, syphilis
Chlamydia, gonorrhea, hepatitis B, 
herpes, syphilis, human papillomavirus 
(HPV)

Indirect transmission Intermediate host

Vector-borne

Tapeworm (from consuming 
 inadequately cooked pork)
Bubonic plague, malaria, typhus, West 
Nile encephalitis, yellow fever



114 E P I D E M I O L O G Y

Diseases that spread from animal reservoirs to humans are called zoonoses. 
Zoonoses may be vector-borne, as with equine encephalitis or plague, or may 
spread from the animal reservoir directly to humans, as with toxoplasmosis (for 
which the primary reservoir is cats) and Ebola virus (for which the primary res-
ervoir is thought to be bats). Infl uenza virus infects humans, birds, and pigs and 
frequently jumps from one species to another. Rabies is a zoonotic virus that 
infects all warm-blooded animals. Th e case-fatality rate from untreated rabies 
is close to 100%, but despite killing its hosts, the virus is an old one that has 
spread throughout the world. Like some other pathogens, it causes changes in 
behavior in infected hosts that are conducive to its transmission. In the case of 
rabies, it aff ects the brain directly and leads to hyperexcitability, spasms, and 
aggressive behavior that can help the parasite spread through bite wounds from 
infected hosts. Because the disease is transmitt ed to humans from animal bites but 
rarely is transmitt ed from a human host, humans are considered an incidental or 
 “dead-end” host for rabies.

Giardia is a protozoan parasite, a zoonosis that infects many species. It spreads 
through contaminated water or by oral-fecal transmission. It takes the form of 
dormant cysts that get excreted in feces and can survive for weeks or months 
in warm water, from which it may be ingested by a susceptible host. Cholera is 
another infection that spreads by oral-fecal transmission; its spread through con-
taminated water was the focus of Snow’s landmark investigations in London (see 
Chapters 4 and 5).

In Chapter 4, two types of epidemic outbreaks were described, point source and 
propagated. Person-to-person transmission of a pathogen can manifest as either 
type of outbreak. Th e famous outbreak of cholera in Golden Square that Snow 
investigated was a point-source epidemic, transmitt ed from one infected person to 
the population that partook of water from the Broad Street pump. In a propagated 
epidemic, infection may begin from a single source, but it spreads through prop-
agation in the population, transmitt ed from many infected people to uninfected 
people who come in contact with them.

HERD IMMUNITY AND BASIC REPRODUCTIVE NUMBER

For an infection that depends on person-to-person transmission, the relative 
proportions of immune and susceptible persons in a population can determine 
whether the infection will take hold in the community or die out quickly. If a sub-
stantial proportion of the population is immune from previous experience with the 
pathogen or from vaccination, an infected person will be less likely to spread the 
infection to another susceptible person because many of the contacts who might 
have provided an opportunity for person-to-person transmission will be immune 
and therefore not susceptible to infection. If enough are immune, the prevalence of 
the infection will decrease with time and the outbreak will wane until it is extin-
guished. Th is situation is described as herd immunity. When it exists, susceptible 
people in the population are protected indirectly by the immunity of the people 
with whom they interact. Th e immunity of potential contacts limits the interactions 
that can expose a susceptible person to infection. Th us, vaccination campaigns pro-
tect those who get vaccinated and also confer protection on the unvaccinated.
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A key concept in assessing whether an outbreak that is spread by person-
 to-person transmission will ignite or die out is the basic reproductive number, usu-
ally writt en as R0. It is the average number of secondary cases that occur from a 
single index case in a susceptible population in which no interventions are being 
taken. If the basic reproductive number is less than 1, each case will on aver-
age lead to less than one additional case, and the outbreak will die out, unless 
fueled by external re-infections. Th e rate at which disease disappears from the 
population depends on how much below 1 the basic reproductive number is and 
on the interval between successive generations of infection. If the basic repro-
ductive number is above 1, each case in the early stage of an outbreak produces 
more than one new secondary case, and the epidemic grows. Th e speed at which 
it grows depends on the magnitude of the basic reproductive number for that 
 disease and the time between successive infections.

Th e reproductive number refl ects the biologic potential of the infectious agent 
and the social intercourse that leads to situations in which transmission might 
occur. For example, if infected persons are too sick to move about while they are 
infectious, there may be few contacts and a low reproductive number. Th e basic 
reproductive number varies from population to population, because the number 
of potential contacts diff ers by population. For the same reason, it also varies by 
subgroups within a population. Th e overall basic reproductive number is an aver-
age over these subgroups. Even if the basic reproductive number is low, transmis-
sion probabilities may vary considerably from person to person, and some social 
networks within a population may form a subset in which an epidemic spreads 
rapidly even if the overall basic reproductive number for the total population is 
low, perhaps even below 1.6 A few “superspreaders” such as needle-sharers trans-
mitt ing a blood-borne infection can suffi  ce to spark an outbreak. Table 6–2 gives 
some examples of the basic reproductive number for various human diseases that 
are spread by person-to-person transmission.

Table 6–2 Basic Reproductive Number for Various Diseases 
Spread by Person-to-Person Transmission

Disease
Primary Mode 
of Transmission

Basic Reproductive 
Number

Measles Airborne 15
Pertussis Airborne droplet 15
Diphtheria Saliva 6
Smallpox Social contact 6
Polio Fecal-oral route 6
Rubella Airborne droplet 6
Mumps Airborne droplet 5
HIV/AIDS Sexual contact 3
SARS Airborne droplet 3
Ebola Bodily fl uids 2
1918 infl uenza (H1N1) Airborne droplet 2
2009 infl uenza (H1N1) fl u Airborne droplet 1.5

Abbreviations: AIDS, acute immunodefi ciency syndrome; HIV, human 
immunodefi  ciency virus; SARS, severe acute respiratory syndrome.



116 E P I D E M I O L O G Y

Th e basic reproductive number indicates the potential for spread of an out-
break in a population of susceptibles. In practice, given some immunity (which 
may come from vaccinations, recovery from the infection during the outbreak, or 
previous exposure to the same or a similar agent) and given att empts to reduce 
person-to-person contact aft er an outbreak begins, the reproductive number that 
characterizes an outbreak as it develops will be lower than the basic reproduc-
tive number. Th e eff ective reproductive number, Rt, is the value of the reproductive 
number that takes into account the mix of immunity and social interaction at 
any point in time as an outbreak progresses. Th e eff ective reproductive number 
changes with time, usually decreasing as immunity spreads among those who have 
recovered from their infection. While the eff ective reproductive number remains 
above 1, an epidemic spreads, but the eff ective reproductive number eventually 
decreases to 1 or below as the proportion of susceptible people remaining in 
the population diminishes or as control measures are implemented. In the long 
run, Rt will fall below 1, and the epidemic will sputt er out, or it will maintain 
an endemic equilibrium at an Rt of 1. In the equilibrium state, the prevalence of 
infection remains level over time as new susceptibles are added to the popula-
tion to balance those who acquire immunity. In such an endemic equilibrium, 
Rt = 1 = R0 × ps , where ps is the proportion of the population susceptible to infec-
tion at equilibrium. Th erefore, in an equilibrium state one can estimate the basic 
 reproductive number, R0, as 1/ps.

A basic strategy to reduce transmission and contain an outbreak of a disease 
spread by person-to-person transmission is isolation of infected persons. By reduc-
ing contacts of infectious persons, isolation can limit the spread of an infection, 
and if applied on a broad enough scale, it can lower the eff ective reproductive 
number. A related strategy that has been used since antiquity is quarantine (see 
Chapter 2). Th e intent of quarantine is to restrict contacts among people who 
are not yet ill but who have come into contact with infected persons. Like isola-
tion, quarantine can lower the eff ective reproductive number. Th e combination of 
isolating infected patients and quarantining contacts together can be eff ective in 
cutt ing short an outbreak.

Th is strategy of isolation and quarantine worked well against severe acute 
respiratory syndrome (SARS), a viral disease that nearly became a pandemic in 
2003. Th e disease rapidly spread from its index location in China to 37 countries, 
infecting more than 8000 people, with a case-fatality rate of almost 10%. Within 
months of the fi rst appearance of SARS, the possibility of a calamitous pandemic 
with a high case-fatality rate seemed like a strong possibility. In Toronto, where 
it seemed that the spread of SARS was nearly out of control, Canadian offi  cials 
quarantined more than 23,000 people who had been in contact with SARS cases, 
about 100 persons for every identifi ed case of SARS. Th e movement of those 
under quarantine was restricted until 10 days aft er their last patient contact. Such 
stringent methods ultimately contained the epidemic.

SARS was a new disease in 2003, and no vaccine was available. If vaccine is 
available, a vaccination campaign can contain an outbreak. Th e basic strategy is to 
lower the reproductive number from the basic value to an eff ective reproductive 
number < 1, providing suffi  cient herd immunity to stop the outbreak. In a pop-
ulation in which some people are vaccinated, the eff ective reproductive number 
depends on vaccine effi  cacy and the vaccination coverage of the population. If Ve 
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Glossary of Key Terms in Infectious Disease Epidemiology

Communicable: capable of person-to-person transmission.
Generation time: the time interval between one person gett ing infected 
and another person gett ing infected from the fi rst.
Herd immunity: a prevalence of susceptibles in a population low enough 
so that transmission cannot be sustained.
Immunity: resistance to infection.
Incubation period: the time interval between gett ing infected and devel-
oping symptoms.
Reproductive number: the average number of infected persons resulting 
from contact with a single infected person. Th e basic reproductive number 
is the average number of infections that would be caused by one infected 
person when everyone else is susceptible. Th e eff ective reproductive num-
ber is the average number of infections resulting from one infected person 
given that not everyone is susceptible.
Reservoir: the host population for an infectious agent.
Secondary cases: cases of infection that occur from contact with a primary 
case.
Secondary att ack rate: risk of infection among susceptibles exposed to an 
infected source.
Susceptibility: at risk of contracting disease (lack of immunity).
Transmission probability: probability of transmission from an infected 
person to a susceptible person during a contact.
Vector: an animal that transmits disease from an infected person to an 
uninfected person.
Virulence: the degree to which a pathogen can cause disease and death. 

is vaccine effi  cacy and Vc is vaccine coverage, the proportional reduction in the 
basic reproductive number will be (1 − Ve × Vc). Th e eff ective reproductive num-
ber, Rt, will be R0 (1 − Ve × Vc). From this relation, it can be shown that to lower 
Rt so that it is less than 1, Vc must exceed the following quantity: 

V
R

VcVV
eVV

>
−1 1

0  [6–1]

When R0 is large, high coverage and high effi  cacy are required for vaccination to 
succeed in curtailing the epidemic. If R0 is 10 and the vaccine effi  cacy is 95%, 
the vaccine coverage must be greater than (1 − 1/10)/0.95 = 95% to reduce the 
eff ective reproductive number below 1. Measles, with a basic reproductive num-
ber of 15, requires more than 93% coverage with a vaccine of 100% effi  cacy to 
stop an epidemic. For a vaccine with the same high effi  cacy aimed at preventing 
infection of a disease for which R0 is 2, the vaccine coverage need only exceed 
(1 − 1/2)/0.95 = 53% to reduce the eff ective reproductive number below 1. From 
the inequality in Equation 6–1, we observe that if the vaccine effi  cacy is less than 
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1 − 1/R0, even 100% coverage of the population will not be suffi  cient to lower 
the eff ective reproductive number below 1. In this situation, herd immunity can-
not be achieved from the vaccine. Although the vaccine would still be valuable in 
lowering the risk of infection among those who were vaccinated, there would be 
enough secondary infections to keep the epidemic growing, perhaps until natural 
immunity lowered the eff ective reproductive number further.

THE REED-FROST EPIDEMIC MODEL

In 1928, Lowell Reed and Wade Hampton Frost developed a simple deterministic 
mathematical model to simulate the spread of an outbreak through a susceptible 
population. Th e model assumes that the epidemic began with one or few infected 
people and progressed through a succession of time periods, which correspond 
to the generation time, defi ned as the time between acquiring an infection and 
transmitt ing it. Within each of these time periods, the basic Reed-Frost model 
assumes that (1) there is random mixing, with contact between infected people 
and susceptible people within the population during each time period; (2) there 
is a uniform, fi xed probability that a contact between an infected person and a 
susceptible person would result in transmission; (3) an infection is always fol-
lowed by immunity; (4) the population is isolated from other populations; and 
(5) these conditions remain constant with time. Despite these mostly unrealistic 
assumptions, the model serves as a reasonable teaching tool about the course of 
an outbreak.

Th e Reed-Frost model uses the following formula:

C S pt tS CS −1( (1− ) )Ct

In this equation, Ct is the number of infected people at time t, Ct+1 is the num-
ber of infected people at time t + 1, St is the number of susceptible people at 
time t, and p is the probability that within one time period an infected person 
will transmit the infection to a susceptible person with whom there is contact. 
If St × p is above 1, the epidemic grows, and when St × p declines below 1, the 
epidemic abates.

Figure 6–2 shows the application of a Reed-Frost model to a population of 
100 people, all of whom are susceptible except for a single initially infected 
person. In the upper diagram, the probability of eff ective contact is set at 4%. 
Because one person is infected initially, with a 4% probability of transmission 
on contact, four will be infected aft er one generation time. Th is corresponds to 
an R0 of 4, a high value that produces an explosive outbreak and infects most of 
the population within a few generation times. In the lower diagram, the prob-
ability of eff ective contact is set at 1.5%, corresponding to a lower R0 of 1.5, 
which leads to a more gradual epidemic that ultimately infects only about 60% 
of the population.

Th e Reed-Frost and many other mathematical models of the spread of infection 
make unrealistic assumptions. For example, the assumption that there is random 
mixing with contact between infected and susceptible people may be extremely 
unrealistic, because subgroups of any community form affi  nities that may well be 
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related to susceptibility. Such was the case in an extended outbreak of measles in 
Quebec, where more than 95% of the population was vaccinated, but pockets of 
those who objected to vaccination on religious grounds had numerous contacts 
with one another and created conditions in which the epidemic could spread over 
an extended period.7

INFECTIOUS DISEASE EPIDEMIOLOGY INVESTIGATIONS

Several types of epidemiologic studies are unique to the investigation of infectious 
disease or fi gure more prominently than in other areas. Four types of studies are 

Figure 6–2  Reed-Frost projection of epidemic curve for infected, susceptible, and 
immune subpopulations among 100 people with one initial infected person and an 
eff ective contact probability of 4% (high R0 in upper panel) and 1.5% (low R0 in 
 bott om panel). Th e time scale is measured in generation times.
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worthy of mention: contact-tracing studies, outbreak investigations, seroprevalence 
surveys, and vaccine trials.

Contact-tracing studies1. . In the early stage of an epidemic, it may be possi-
ble to interrupt person-to-person transmission enough to bring the repro-
ductive number, Rt, below the critical threshold value of 1. Th e most 
eff ective approach is to isolate cases to prevent further contacts and to 
identify any previous contacts so they may be treated or quarantined. 
Th is “shoe-leather” approach to stemming an outbreak has been eff ective 
in preventing the spread of many sexually transmitt ed diseases, such as 
syphilis, chlamydia, and gonorrhea, and it has been eff ective in containing 
outbreaks of airborne-spread disease, such as diphtheria and SARS.
Outbreak investigations2. . When a local epidemic occurs, epidemiologists are 
typically tasked with documenting the outbreak and then investigating its 
origin and propagation. Th e fi rst job is not trivial. Many apparent disease 
clusters represent nothing more than a chance aggregation of cases, and 
they may include cases whose disease does not meet rigorous criteria for 
diagnosis but have been included as a result of their proximity in time or 
place to other apparent cases. For epidemics of infectious diseases that are 
indisputable and represent immediate public-health problems, epidemiolo-
gists will be called on to assess the origin of the epidemic and its means 
of spread. Oft en, these investigations can also be characterized as shoe-
leather epidemiology, calling for detective work that follows leads about 
infective or contaminated sources and that requires knocking on doors 
and traveling to factories, farms, food-processing plants, and other spots 
where an epidemic may have originated. In other cases, these investiga-
tions involve more classic study designs, cohort or case-control studies 
aimed at determining which hypothesis of several can account for an out-
break. Some of these research studies will be prosaic, perhaps doing litt le 
more than pinning the blame for a diarrhea outbreak at the church supper 
on the potato salad. Others may become scientifi c milestones, elucidating 
a new disease, as did early studies of acute immunodefi ciency syndrome 
(AIDS), toxic shock syndrome, and SARS.
Seroprevalence surveys3. . Seroprevalence surveys are like any other prev-
alence study, aiming to estimate the prevalence of a characteristic in a 
population. Like other prevalence surveys, they usually rely on sampling 
methods to estimate the population prevalence and require a represen-
tative sample for the prevalence estimates to be valid. Th e characteristic 
of interest is immunity to a specifi c antigen, which requires obtaining a 
blood sample to measure antibody response. Gett ing blood samples from 
representative cross sections of a population can be challenging. It oft en is 
easier to collect samples in the context of delivering health care, although 
patient populations may diff er in the immune status from the general pop-
ulation. Seroprevalence data are invaluable for assessing the vulnerability 
of a population to existing infectious agents, for fi nding subgroups that 
are susceptible to outbreaks, and for sett ing priorities for vaccination cam-
paigns. Seroprevalence studies may be an important component of surveil-
lance activities that are conducted to monitor the health of a population 
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with respect to potential infectious diseases. Surveillance for epidemic 
diseases is a crucial public function that is usually the responsibility of 
one or more government agencies tasked with monitoring the health of 
a population.
Vaccine trials4. . A randomized trial of a preventive measure is called a fi eld 
trial (see Chapter 5). Trials of therapies (ie, clinical trials) are usually 
easier to conduct than fi eld trials. One reason is that if the outcome that 
the preventive measure is intended to prevent is rare, the study must be 
large, which can be prohibitively expensive. Th e Salk Vaccine trial, with 
hundreds of thousands of elementary school children as study subjects, 
was the largest formal human experiment ever conducted. Th e aim was 
to prevent paralytic poliomyelitis. Although infection with the poliomy-
elitis virus was common, the complication of muscle paralysis was rare, 
requiring an extremely large study. Some vaccine trials can be success-
ful even if small, because they are aimed at preventing common out-
comes. Vaccine trials for infl uenza, for example, can be relatively small 
if the population studied is susceptible to the strain of the virus that 
circulates, because a large proportion of a susceptible population will 
succumb to infl uenza during an epidemic. As vaccines become estab-
lished for diseases that represent continuing threats, it may be diffi  cult 
to study new versions of vaccines in randomized studies. If vaccination 
provides lengthy immunity, those who need vaccination may be only a 
small proportion of a population, such as immigrants or newborns. If 
herd immunity exists, investigators may have to look outside a popu-
lation to fi nd enough people who are susceptible to an infective agent 
and in whom an outbreak might occur. Furthermore, if a new vaccine is 
being compared with an older vaccine, the study will have to be large 
enough to measure what may be a small diff erence in effi  cacy between 
the two vaccines.

OUTLOOK FOR INFECTIOUS DISEASE EPIDEMIOLOGY

For a brief time at the dawn of the antibiotic era, it seemed that humans might 
have found the ultimate defense against infection from bacteria. During the same 
era, continued progress in the development of vaccines gave rise to hope that 
viral illness also might be tamed and in some cases eradicated, as was the case 
for smallpox. With these successes, it looked like infectious disease might become 
a historical problem. Unfortunately, the high reproductive rate of microorganisms 
and their ability to mutate have enabled them to evade many of our technologi-
cally driven defenses. Widespread and possibly some unnecessary use of antibiotics 
has produced antibiotic-resistant bacteria. Increasing urbanization and interconti-
nental travel have added to the risks of communicating infectious illnesses. Social 
and medical practices that change rapidly have opened new routes of transmission 
for infectious agents to spread, as illustrated by the spread of human immunode-
fi ciency virus (HIV) through needle sharing, blood banks, and increased sexual 
contacts. Even good sanitation and hygiene, the most important weapon in the 
struggle against infectious disease, is unavailable to an appallingly large proportion 



122 E P I D E M I O L O G Y

of the world’s population, and where present, it is easily disrupted by natural 
disaster or economic instability.

Infectious disease epidemiology is a frontier that has observed two remarkable 
triumphs that go beyond the good news conveyed by Figure 6–1. One is the 
eradication from the planet of an age-old human scourge, smallpox. By a combi-
nation of vaccination, contact tracing, and other containment methods employ-
ing a rapid response to contain any new outbreak, the spread of smallpox was 
gradually constricted until, in 1977, the last case was reported. With no animal 
reservoir, smallpox cannot recur in humans, apart from the risk of deliberate 
spread from biologic samples stored for research purposes. Th e second triumph 
is the near-elimination of a second disease, poliomyelitis, currently the focus of a 
global eradication campaign. In 2009, there were fewer than 1600 cases of polio-
myelitis recorded. Control of smallpox and poliomyelitis are major achievements 
of epidemiology and public health. Th ere is hope that other diseases can also 
be eradicated. Malaria is one candidate, but eradication has proved challenging. 
An eff ective malaria vaccine has been elusive because the life cycle of the mul-
tistage Plasmodium parasites that cause malaria is complex, the parasite is spread 
by mosquito, and some forms of Plasmodium have a primate reservoir other than 
humans.8

Our vulnerability to infectious agents remains high. Nevertheless, these suc-
cesses indicate that the prospect of eradication of some infectious diseases and 
bett er control of others is a realistic, if ambitious, goal. Th is combination of vul-
nerability on some fronts and the hope of success on others ensures that infectious 
disease epidemiology will remain an important subdiscipline for epidemiologists 
in the 21st century and beyond.

QUESTIONS

1. Give reasons why crowding can foster the spread of infection.

2. Figure 6–1 displays crude death rates over time. Th e age distribution of 
the population was changing over the time scale shown, gradually shift ing 
toward an older age distribution. If age had been controlled so that the curve 
refl ected the change in death rates among people with the same age distribu-
tion, would the curve drop more steeply or less steeply than what is shown 
in Figure 6–1? Comment on the apparent rise in the crude death rate in the 
past 15 years covered by the graph.

3. Explain the relation between quarantine and the eff ective reproductive 
number.

4. Th e Reed-Frost model is a simplifi ed model of transmission that assumes 
the population is closed. Suppose that with each generation time there is 
some migration into and out of the population. Under what conditions 
would that mixing hasten the transmission of disease, and under what con-
ditions would it slow the transmission?
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5. Varicella infection (chicken pox) results in long-term immunity to the virus 
that causes it, but infected people can experience a recrudescence of their 
infection, known as shingles, years or decades aft er their initial infection. How 
does the virus persist in the body over such a long period despite an immune 
system that is primed to deactivate the virus with specifi c antibodies?

6. Despite evidence of person-to-person spread, contact tracing was not 
widely used to control the spread of HIV in the early stages of the epidemic. 
Give pro and con arguments regarding the desirability of contact tracing to 
contain the transmission of HIV.
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Dealing with Biases

Two broad types of error affl  ict epidemiologic studies: random error and system-
atic error. In designing a study, an epidemiologist att empts to reduce both sources 
of error. In interpreting a study, a reader should be aware of both types of error 
and how they have been addressed.

What is meant by error in a study? In Chapter 5, I said that an epidemiologic 
study could be viewed as an att empt to obtain an epidemiologic measure. Th e 
object of measurement may be a rate or a risk, but it typically is a measure of 
eff ect, such as an incidence rate ratio. Suppose a study is conducted to att empt 
to measure the ratio of the incidence rate of Alzheimer’s disease among those 
who are physically active compared with those who are physically inactive. We can 
imagine that there is a correct value for the incidence rate ratio. A given study will 
produce an estimate of this correct value. If the study estimates a value of the inci-
dence rate ratio that is close to the correct value, we would consider the study to 
be accurate, which means that it has litt le error. Conversely, a study estimate that 
diff ers considerably from the correct value is inaccurate. Unfortunately, we can 
never know the correct value for the rate ratio of Alzheimer’s disease among phys-
ically active people compared with the physically inactive or for any other measure 
that we try to estimate; all we can know is the value of the estimates from a study. 
Because the correct values are unknown, we cannot determine the actual amount 
of error in any given study. Nevertheless, epidemiologists can still take steps in the 
design and analysis of studies to reduce errors. We also can look for features in 
the design and analysis of a study that may contribute to or prevent errors.

Th is chapter focuses on systematic error; random error is discussed in 
Chapter 8, which deals with statistical issues in epidemiologic research. Another 
term for systematic error is bias. Bias can refer to an att itude on the part of the 
investigator, but it is also used to describe any systematic error in a study. A study 
can be biased because of the way in which the subjects have been selected, the 
way the study variables are measured, or some confounding factor that is not 
completely controlled.

Th ere is a simple way to distinguish random errors from systematic errors. 
Imagine that a given study could be increased in size until it was infi nitely large. 
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Some errors would be reduced to zero if a study became infi nitely large; these 
are the random errors. Other errors are not aff ected by increasing the size of the 
study. Errors that remain even in an infi nitely large study are the systematic errors, 
also described as biases (Fig. 7–1). As study size increases and as random error 
concomitantly decreases, the relative role of systematic error becomes greater. In 
a suffi  ciently large study, virtually all errors of concern are systematic errors.

To see the diff erence between systematic errors and random errors, consider 
the following example. Suppose your task is to determine the average height of 
women in the city of Centerville, which has a population of 500,000 women. To 
conduct this work, you are supplied with an offi  cial measuring tape. You may 
decide to measure the height of 100 women sampled randomly from the popula-
tion of all women in the city. You can use the average of the 100 measurements 
as an estimate of the average height of women in Centerville. What sources of 
error aff ect your estimate? A measuring tape will give diff erent readings depend-
ing on how it is held, how it is read, the time of day the measurement is taken, 
and who is taking the measurement. Some of these errors, such as how the mea-
suring tape is held during a given measurement, may be random; some of these 
errors sometimes lead to a reading that is too high and sometimes to a reading 
that is too low, but on average, readings do not tend to be too high or too low. 
If the sample of 100 were increased to 1000 or to 10,000 women, the eff ect of 
these random errors would become less important because the greater number 
of measurements would ensure that the discrepancy between the average mea-
sured height for women in the sample and the height of all women in Centerville 
would be close to zero. Other errors, however, would not be aff ected by increas-
ing the number of women measured. Suppose that the offi  cial tape used in the 
measurements was a cloth tape that had been laundered before the project began. 
Unknown to anyone, the laundering shrank the tape. Consequently, the height 

Figure 7–1  Th e relation of systematic error and random error to study size.
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estimates derived from using the shrunken tape would tend to be high by an 
amount that depends on the amount of shrinkage. Th is systematic error cannot 
be reduced by taking more measurements with the same shrunken tape. Similarly, 
any defect in the measuring technique, such as a tendency to hold the tape crook-
edly, may also lead to measurements that are systematically wrong and would not 
be off set by increasing the number of subjects.

SOURCES OF BIAS IN EPIDEMIOLOGIC STUDIES

Error can creep into epidemiologic studies from myriad directions. Although many 
types of specifi c biases have been described, it is helpful to classify bias into three 
broad categories: selection bias, information bias, and confounding.

Selection Bias

Selection bias is a systematic error in a study that stems from the procedures used 
to select subjects and from factors that infl uence study participation. It comes 
about when the association between exposure and disease diff ers for those who 
participate and those who do not participate in the study. Because the association 
between exposure and disease among nonparticipants is unknown, the presence 
of selection bias must usually be inferred, rather than observed.

Suppose that a new screening test was devised to detect colon cancer and that 
this test was off ered to a community in a pilot evaluation. Later, the effi  cacy of 
the test was assessed by comparing the incidence rate of colon cancer among 
those who volunteered to be tested with the incidence rate among community 
residents who were not tested. We would suspect that such a comparison would 
suff er from a selection bias. At issue is whether we could expect any diff erence 
in colon cancer incidence between these two groups regardless of whether the 
screening test had any eff ect. Th ere likely would be a diff erence, because people 
who volunteer for cancer screening usually are more health conscious than those 
who do not volunteer, and people who are more health conscious may have a 
diet that lowers the risk of colon cancer. If so, those who volunteer for screening 
might be expected to have a lower rate of colon cancer for reasons that do not 
result from the screening. Th is diff erence would be superimposed on any eff ect of 
the screening and would represent a bias in assessing the screening eff ect.

Another possibility is that some of those who volunteer for screening may vol-
unteer because they are especially worried about their colon cancer risk. Th ey 
may, for example, have a family history of colon cancer. Some volunteers may 
be at lower risk than nonvolunteers, and other volunteers may be at a higher 
risk than nonvolunteers. Th ese biases would tend to counteract one another, but 
because neither one is easy to quantify, the net bias would be unknown. Concern 
about selection bias has been the main reason why the effi  cacy of many screen-
ing procedures is evaluated by randomized trials. Although a randomized trial 
is much more cumbersome and expensive than a cohort study, the randomiza-
tion ensures that the groups studied are reasonably comparable if the study is 
 reasonably large.
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Th e selection bias in the previous example is a bias arising from self-selection, 
because the study subjects selected themselves to be screened. Selection bias can also 
arise from choices made more directly by the investigator. For example, many studies 
of workers’ health have compared the death rate among workers in a specifi c job with 
that among the general population. Th is comparison is biased because the general pop-
ulation contains many people who cannot work because of ill health. Consequently, 
overall death rates for workers are oft en substantially lower than death rates for the 
general population, and any direct comparison of the two groups is biased. Th is selec-
tion bias is oft en referred to as the healthy worker eff ect. One way to avert the bias 
is to compare the workers in a specifi c job with workers in other jobs that diff er in 
their occupational exposures or hazards. If all subjects involved in the comparison are 
workers, the investigator can avoid bias from the healthy worker eff ect.

Table 7–1 shows how the healthy worker eff ect comes about. If the mortality rate 
of an exposed group of workers at a specifi c plant is compared with that of the gen-
eral population (the Total column in Table 7–1), their overall mortality rate appears 
much lower; in this hypothetical example, their overall mortality rate is 5/7, or 71% 
of the rate in the general population. Th e general population, however, comprises two 
groups: a majority that is healthy enough to work and a minority that is too ill to 
work. Th e latt er group is included among the nonworkers in Table 7–1, and results 
in the nonworkers having a higher mortality rate than the remainder of the general 
population that comprises current workers. In this hypothetical example, workers in 
the general population have the same mortality rate as the exposed workers at the 
study plant, but because the nonworkers in the general population have a rate that 
is fi ve times as great as that of workers, the overall rate in the general population 
is considerably greater than that of the exposed workers. In a study that compared 
the mortality rate of the exposed workers with that of the general population, the 
exposed workers would have a lower mortality rate as a result of this selection bias.

Th e data in Table 7–1 are hypothetical data chosen to illustrate the healthy 
worker selection bias. Some actual data that show an eff ect of selection bias come 
from studies of infl uenza vaccine effi  cacy among the elderly. One such study com-
bined cohort data from several health plans over many years, thereby including 
713,872 person-seasons of experience. Th e investigators found that those who 
were vaccinated had a 48% decrease in overall mortality during infl uenza season.1 
Other evidence, however, indicates that perhaps 5% and at most 10% of deaths 
among the elderly during infl uenza season are att ributable to infl uenza.2 How can 

Table 7–1 Healthy Worker Effecta

Exposed
Workers

General Population
Workers Nonworkers Total

Deaths 50 4500 2500 7000
Person-time 1,000 90,000 10,000 100,000
Mortality rate (cases/yr) 0.05 0.05 0.25 0.07

aTh e healthy worker eff ect is an example of a selection bias that underestimates the 
mortality related to occupational exposures, as illustrated by these hypothetical 
rates for workers and the general population.
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a vaccine, even one that is completely eff ective in preventing infl uenza, prevent 
one half of all deaths among those vaccinated if infl uenza itself accounts for at 
most 10% of those deaths? In simple terms, it cannot. Th e huge decrease in over-
all mortality must refl ect a selection bias. Th e unvaccinated group in this study 
is likely to include most of the elderly patients who are at the brink of death, 
because for them vaccination is most likely not seen as a priority. Evidence to 
support this hypothesis about selection bias comes from a study that examined 
the eff ect of infl uenza vaccine on mortality in the elderly during three periods 
each year: before infl uenza arrived, during infl uenza season, and aft er the infl uenza 
season.3 Th e fi ndings are summarized in Figure 7–2. During the infl uenza period, 
the investigators found about the same vaccine effi  cacy as had been reported by 
others, with almost 50% of all deaths being “prevented.” Th ey also found, how-
ever, that the eff ect estimate indicating protection from the vaccine for all causes 
of death appeared even greater during the period each winter before the infl uenza 
virus arrived, when the vaccine could not have had any eff ect and all the apparent 
eff ect must stem from bias. Smaller biases were evident aft er the infl uenza season, 
when the vaccine effi  cacy should also theoretically be zero. Th e biases observed 
before and during the infl uenza season would also be operating during the infl u-
enza season. Th e selection factors responsible for the bias appear to be strongest 
at the outset of the study period, just aft er the vaccinations are administered, and 
they then weaken with the passage of time, as can be expected if the eff ect is the 
result of vaccine not being off ered to those with a high risk of near-term death. 
A similar trend, also indicating strong selection bias, was evident for the outcome 
of hospitalization for pneumonia or infl uenza. Th ese data indicate that selection 
bias among the elderly gett ing vaccinated for infl uenza is much stronger than any 
possible eff ect of the vaccine. Th ese fi ndings leave open the question of the actual 
magnitude of the vaccine eff ect on death in the elderly.

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

 Before influenza season Influenza season

Time Period

All cause mortality

R
el

at
iv

e 
R

is
k 

in
 v

ac
ci

na
te

d 
vs

 u
nv

ac
ci

na
te

d

Pneumonia or influenza hospitalization

After influenza season

Figure 7–2  Th e relation of systematic error and random error to study size. 
(Reproduced with permission from Jackson et al.3)
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Matching in Case-Control Studies
Another prominent form of selection bias comes from a design feature of some 
case-control studies. When matching is used to select controls in case-control 
studies, ostensibly to prevent confounding, matching usually paradoxically results 
in selection bias. In Chapter 5, the point was made that to get a valid eff ect esti-
mate in a case-control study, the controls must be sampled independently of the 
exposure. Matching in case-control studies typically violates this assumption. With 
matching, controls are selected because they have one or more characteristics 
that match the corresponding characteristics of a case in the study. Commonly 
used matching factors are age, sex, and geographic location, but they may also 
include many other factors that may be specifi c to a given study. Th e motivation 
for matching usually is to prevent confounding, and the matching factors there-
fore are usually potential confounding factors. As described later in this chapter, 
confounding factors are associated with both exposure and disease. By matching 
controls to cases on possible confounding factors, the investigator selects con-
trols according to factors that are related to exposure, depending on the extent 
that the exposure is associated with the matching factors. Because of the match-
ing, the exposure distribution in the control series may not refl ect the exposure 
 distribution of the source population for cases. Instead, the exposure distribution 
among matched controls will tend toward the exposure distribution of the cases. 
If the exposure were perfectly correlated with one of the matching factors, con-
trols would then have exactly the same exposure distribution as the cases, which 
would appear to indicate no eff ect of exposure, regardless of the actual eff ect that 
the exposure has.

Suppose 10% of a community is exposed to an agent that multiplies the risk 
of disease tenfold. Let us hypothesize that males have a fi ve times greater risk 
for the disease than females, and 90% of males are exposed, compared with only 
10% of females. If we have 100,000 males and 100,000 females in the population, 
the data for this community describing the risk during 1 year is summarized in 
Table 7–2. Because males and exposed people are at higher risk, and most males 
are exposed, most cases occur in exposed males.

Because males have a much greater risk of disease than females and because the 
preponderance of exposed people are males, whereas most unexposed  people are 
females, the imbalance of males between exposed and unexposed subgroups will 
confound the eff ect of exposure. Although the eff ect of exposure is to increase the 
risk of disease tenfold, if we calculated the risk among all exposed, 4600/100,000, 

Table 7–2 Hypothetical Data Showing Risk for a Disease 
During 1 Year by Exposure Status and Sex

Sexa Data
Population Risk No. of Cases

Exposed Male
Female

90,000
10,000

5.00%
1.00%

4500
 100

Unexposed Male
Female

10,000
90,000

0.50%
0.10%

  50
  90

aBeing male is associated with exposure and is a risk factor for disease.
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and compared it with the risk among all unexposed, 140/100,000, we would 
obtain a risk ratio estimate of 32.9, rather than the value of 10 that corresponds 
to the actual eff ect of exposure.

Can matching prevent confounding? We could try conducting a cohort study 
within this population and match the unexposed subjects to the exposed subjects 
by sex. We could take a random 10% sample of the total exposed population as 
the exposed cohort and match 10,000 unexposed people to this group of 10,000 
exposed people so that each person in a matched pair has the same sex. Th e sum-
mary data aft er this matching is given in Table 7–3.

Aft er matching by sex, there is no longer an imbalance of males between 
exposed and unexposed. Th e crude data for the study represented in Table 7–3 
produce an estimate of risk among exposed of 460/10,000 and among unexposed 
of 46/10,000, for a risk ratio of 10. Matching has prevented the confounding by 
male sex.

Th e situation is not so prett y, however, if a case-control study is conducted 
with the aim of using matching to prevent confounding by male sex. Suppose we 
include in such a study all the cases occurring during 1 year in the  community. 
From Table 7–2, we have a total of 4740 cases. We can then select a control group 
of 4740 people from the community, matched by sex, in an att empt to prevent 
confounding. Ideally, the controls should be selected from the entire population 
at risk to be cases, which in this sett ing is the entire population of the com-
munity, rather than just the noncases (see Chapter 5). Of the 4740 cases, 4550 
are males and 190 are females. Th e 4740 controls, aft er matching by sex, include 
4550 male controls and 190 female controls. Because 90% of males are exposed 
and 10% of females are exposed, we would expect, on average, that there would 
be 0.9 × 4550 = 4095 exposed male controls and 0.1 × 190 = 19 exposed female 
controls, for a total of 4095 + 19 = 4114 exposed controls. Th e summary data for 
this case-control study is given in Table 7–4.

Unlike the cohort study, matching in the case-control study does not give the 
correct risk ratio of 10. Th e estimate also diff ers from that of the confounded 
relation, RR = 32.9, which was seen for the total population. Th e RR estimate 
of 5.0 that is obtained is an underestimate of the correct value, rather than an 
overestimate. What happened? Th is result stems from selection bias. Choosing 
controls based on their sex leads to a control series that is mostly male, and that 
has an exposure distribution that has been shift ed toward that of the cases, lead-
ing to an underestimate of the eff ect. Th e matching has substituted one bias for 

Table 7–3 Hypothetical Cohort Studya

Sex Data
Population Risk No. of Cases

Exposed Male
Female

9,000
1,000

5.00%
1.00%

450
 10

Unexposed Male
Female

9,000
1,000

0.50%
0.10%

 45
  1

aBased on a 10% sample of exposed from the population in 
Table 7–2 and 10,000 unexposed people matched by sex.
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another. As is explained in Chapter 5, the key design element in a case-control 
study is that controls must be selected independently of exposure. If they are not, 
selection bias results. Matching controls to cases for a variable that is correlated 
with exposure introduces selection bias because it violates the design element that 
controls must be selected independently of exposure.

In Table 7–5, the case-control data are shown separately for males and females. 
Among males and among females, the case-control data give the correct estimate 
of RR = 10. Th is analysis illustrates that in case-control studies the selection bias 
introduced by the matching can be removed by appropriate analytic methods, such 
as stratifying the data by the matching factor or factors. Regression models that 
condition on the matching factors can also be used to remove the selection bias.

As explained in Chapter 10, stratifying the data into male and female groups 
can suffi  ce to control confounding by sex, even without matching by sex in sub-
ject selection. Because matching by sex introduces a bias that also requires control 
of sex in the data analysis to be removed, what does matching by sex in subject 
selection achieve? Th e answer is very litt le and perhaps nothing. One argument for 
matching in a case-control study is that the data analysis becomes more effi  cient 
in a technical sense. Th e distribution of controls over the two strata in Table 7–5 
is identical to that of the cases as a result of the matching. Having controls dis-
tributed across strata identically to cases ordinarily makes for a statistically effi  -
cient stratifi ed analysis. Without matching, one half of controls would have been 
female, and there would have been more than 2000 female controls to compare 
with only 190 female cases, whereas male cases would have outnumbered male 
controls. Although matching in a case-control study does not appear to improve 
validity (by preventing confounding), it may improve the effi  ciency of a stratifi ed 
analysis that is employed to remove the confounding.

Unfortunately, the argument for effi  ciency gain from matching in case-control 
studies is not clear-cut. One problem is that analytic control of the matched vari-
able may not have even been necessary without the matching. If the matched vari-
able is related to exposure, matching on it will introduce selection bias. But if it is 
not related to disease, it is not a confounding factor and can be ignored. Matching 

Table 7–4 Hypothetical Case-Control Study 
Based on All Cases in the Study Population 
and One Control per Case Matched by Sex

Exposed Unexposed Total

Cases 4,600 140 4,740
Controls 4,114 626 4,740

Table 7–5 Case-Control Data from Table 7–4, 
Stratified by Sex

Males Females
Exposed Unexposed Exposed Unexposed

Cases 4,500  50 100  90
Controls 4,095 455  19 171

RR = 10 RR = 10
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for such a variable introduces the need to control it in the analysis, which typically 
cannot improve effi  ciency compared with not needing to control for that factor 
in the fi rst place. Another problem is that matching on some variables or a set of 
variables may lead to small numbers within strata. In the illustration, we matched 
on sex and combined all matched pairs that were male into a male stratum and all 
female pairs into a female stratum. If matching is implemented for many variables, 
however, it may produce unique combinations of values for each matched set, 
leading to strata for the stratifi ed analysis that will each have a single case with 
one or more matched controls. With such small numbers in the strata, there is a 
reasonably high likelihood that the case and all the matched controls within a set 
will have the same value for exposure: all exposed or all unexposed. When expo-
sure does not vary within a stratum, the stratum does not contribute information 
to the analysis. Eff ectively, any subjects in such a stratum, which is described as 
a concordant set, are lost to the analysis, leading to a loss of effi  ciency.

Given these potential problems, is matching worthwhile in case-control stud-
ies? Sometimes it is, but oft en it is not. Matching can be expensive, and in case-
control studies, it does not improve validity. Effi  ciency gains are possible but not 
guaranteed and may not be worth the added cost. In some sett ings, effi  ciency 
may be lost rather than gained because of concordant sets. For these reasons, 
matching usually is best avoided in case-control studies, except for some specifi c 
exceptions. One exception is convenience matching. Th ere may be circumstances 
in which some types of matching may simply be a convenient way to identify 
controls. Risk-set sampling is an example of a type of matching oft en done for 
convenience (see Chapter 5); it involves matching on time as a means of selecting 
controls proportional to their person-time contribution to the source population 
of cases. With convenience matching, the matching factor may not be related to 
exposure, and the matching may not introduce any selection bias. In that event, 
it can be ignored in the analysis. On the other hand, if the time variable in risk-
set sampling is related to exposure, it must be controlled in the analysis, as is the 
case for any matching factor in a case-control study that is related to exposure. 
For example, consider a case-control study of mobile telephone use and brain 
cancer that matched risk sets on time of occurrence of the brain cancer. If mobile 
telephone use changed appreciably over the time scale in which the cases were 
identifi ed, it might be necessary to retain the matched sets in the analysis, even 
if the only matching factor were calendar time. Ordinarily, the need to take the 
matching into account in the analysis is evaluated by comparing the results of an 
analysis that does take the matching into account with an analysis that ignores the 
matching. If the results are close, the matching need not be considered further in 
the analysis.

Another motivation for matching in case-control studies may be to control for 
variables that would be impossible to control in the analysis without matching. 
For example, suppose an investigator wishes to control for early-childhood envi-
ronmental and genetic infl uences by controlling for family, specifi cally by using 
sibling controls. Th e only practical way to ensure that sibling controls can be used 
is to select them by matching on sibship during subject ascertainment. Apart from 
such exceptions, however, the drawbacks of matching typically may outweigh any 
advantages. If the investigator does decide to match in a case-control study, it 
may be worth considering using a high matching ratio (the number of controls 
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matched to each case). A high matching ratio will reduce the probability that any 
matched set would have completely concordant exposures and reduce the number 
of matched sets that would be lost to the analysis.

Information Bias

Systematic error in a study can arise because the information collected about or 
from study subjects is erroneous. Such information is oft en referred to as misclas-
sifi ed if the variable is measured on a categorical scale and the error leads to a 
person being placed in an incorrect category. For example, a heavy smoker who is 
categorized as a light smoker is misclassifi ed. Misclassifi cation of subjects can be 
diff erential or nondiff erential. Nondiff erential misclassifi cation is a misclassifi cation 
that is unrelated to other study variables. In contrast, with diff erential misclassifi -
cation, the misclassifi cation diff ers according to the value of other study variables. 
Th e two key variables to consider with regard to misclassifi cation are exposure 
and disease.

A common type of information bias is recall bias, which occurs in case-control 
studies in which a subject is interviewed to obtain exposure information aft er dis-
ease has occurred. For example, case-control studies of babies born with birth 
defects sometimes obtain interview information from mothers aft er the birth. 
Mothers who have given birth to a baby with a serious birth defect are thought 
to be able to recall accurately many exposures during early pregnancy, such as 
taking nonprescription drugs or experiencing a fever, because the adverse preg-
nancy outcome serves as a stimulus for the mother to consider potential causes 
of the birth defect. Mothers of normal babies, however, have had no comparable 
stimulus to search their memories and may consequently fail to recall exposures 
such as nonprescription drugs or fevers. Th e discrepancy in recall gives rise to 
a particular version of recall bias known as maternal recall bias. Th is problem is 
distinct from the more general problem of remembering and reporting exposures, 
which aff ects all people to some extent and tends to be a nondiff erential rather 
than a diff erential misclassifi cation.

How can recall bias be prevented? One approach is to frame the questions 
to aid accurate recall. Improving accuracy of recall reduces recall bias, because it 
limits the inaccurate recall among controls. Another approach is to use an entirely 
diff erent control group that will not be subject to the incomplete recall. For exam-
ple, mothers of babies born with birth defects other than the one under study 
may provide recall of earlier exposures comparable with that of case  mothers. 
Another approach to avoiding recall bias is to conduct a study that does not use 
interview information but instead uses information from medical records that was 
recorded before the birth outcome was known.

Recall bias is a diff erential misclassifi cation because the exposure informa-
tion is misclassifi ed diff erentially for those with or without disease. Although 
it occurs only in case-control studies, there is an analogous type of diff erential 
misclassifi cation that occurs in follow-up studies, in which unexposed people are 
underdiagnosed for disease more than exposed people. Suppose an investigator 
conducts a cohort study to assess the eff ect of tobacco smoking on the occur-
rence of  emphysema. Suppose also that the study asks about medical diagnoses 
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but does not involve any examinations to check the diagnoses. It may happen 
that  emphysema, a diagnosis that is oft en missed, is more likely to be diagnosed 
in smokers than in nonsmokers. Both the smokers and their physicians may be 
inclined to search more thoroughly for respiratory disease because they are con-
cerned about the eff ects of smoking. As a result, the diagnosis of emphysema 
may be missed more frequently among nonsmokers, leading to a diff erential 
misclassifi cation of disease. Even if smoking did not lead to emphysema, smok-
ers would appear to have a greater incidence rate of emphysema than nonsmok-
ers because of the greater likelihood that a case of emphysema would remain 
undiagnosed in a nonsmoker. Th is bias could be avoided by conducting exami-
nations for  emphysema as part of the study itself, thereby avoiding the biased 
follow-up.

Th e previous biases are examples of diff erential misclassifi cation, when the expo-
sure is misclassifi ed diff erentially according to a person’s disease status or disease 
is misclassifi ed diff erentially according to a person’s exposure status. Diff erential 
misclassifi cation can exaggerate or underestimate an eff ect. A more pervasive type 
of misclassifi cation, which aff ects every epidemiologic study to some extent, is 
nondiff erential misclassifi cation. With nondiff erential misclassifi cation, exposure 
or disease (or both) is misclassifi ed, but the misclassifi cation does not depend 
on a person’s status for the other variable. For example, suppose that the study 
hypothesis concerns the relation between consumption of red wine and the devel-
opment of emphysema; assume for this example that consumption of red wine is 
not related to smoking. Unlike the situation for smoking, there is litt le reason to 
suppose that those who drink more or less red wine will have a greater or a lesser 
tendency to be diagnosed with emphysema if they have it. As a result, although 
some people with emphysema will not have it diagnosed, the proportion of people 
who do not have their emphysema diagnosed would be expected to be the same 
for those who do and who do not drink red wine. Th e underdiagnosis represents 
some misclassifi cation of emphysema, but because the tendency for underdiagno-
sis is the same for exposed and unexposed people, the misclassifi cation of disease 
is nondiff erential with respect to exposure. Similarly, if an exposure is misclassifi ed 
in a way that does not depend on disease status, the exposure misclassifi cation is 
nondiff erential with respect to disease.

Nondiff erential misclassifi cation leads to more predictable biases than does dif-
ferential misclassifi cation. Misclassifi cation of a dichotomous exposure that is non-
diff erential with respect to disease tends to produce estimates of the eff ect that are 
“diluted” or closer to the null or no-eff ect value than the actual eff ect. If there is 
no eff ect to begin with, nondiff erential misclassifi cation of the exposure will not 
bias the eff ect estimate.

Th e simplest case to consider is nondiff erential misclassifi cation of an exposure 
that is measured on a dichotomous scale: exposed versus nonexposed. Suppose 
that an investigator conducts a case-control study to assess the relation between 
eating a high-fat diet and subsequent heart att ack. Everyone in the study is clas-
sifi ed according to some arbitrary cutoff  value of dietary fat intake as having a 
high-fat diet or not. Th is classifi cation cannot be perfectly accurate because it is 
almost impossible to avoid some measurement error. In the case of measuring 
the fat content of a person’s diet, there is likely to be substantial error, and some 
people who do not have a high-fat diet may be classifi ed as having one and vice 
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versa. If these misclassifi cations are not related to whether a person gets a heart 
att ack, the misclassifi cation is nondiff erential with respect to disease.

Th e eff ect of nondiff erential misclassifi cation of a dichotomous exposure is 
illustrated in Table 7–6. On the left  are hypothetical data that presume no mis-
classifi cation with respect to a high-fat diet. Th e incidence rate ratio (calculated 
from the odds ratio) is 5.0, indicating a substantially greater mortality rate among 
those eating a high-fat diet. Th e center columns show the result if 20% of those 
who actually do not eat a high-fat diet were inaccurately classifi ed as eating a 
high-fat diet. Th is level of misclassifi cation is higher than ordinarily expected, 
even for an exposure as diffi  cult to measure as diet, but it still involves only a 
small proportion of the subjects. By moving 20% of those from the No column 
to the Yes column, the resulting data give a rate ratio of 2.4, less than one half 
as great as the value with the correct data. In terms of the eff ect part of the risk 
ratio, the excess risk ratio of 4.0 (= 5.0 − 1) has been reduced to 1.4 (= 2.4 − 1), 
which means that about two thirds of the eff ect has been obscured. Notice that 
we have transferred both 20% of cases and 20% of controls. Nondiff erential mis-
classifi cation of exposure implies that these percentages of misclassifi ed subjects 
among cases and controls will be equal. If the proportions of cases and controls 
that were misclassifi ed diff ered from one another, the misclassifi cation would be 
diff erential with respect to disease.

Th e third set of columns in Table 7–6 adds further nondiff erential misclassifi ca-
tion: 20% of cases and controls who ate a high-fat diet are misclassifi ed as not hav-
ing a high-fat diet. Th is misclassifi cation is added to the misclassifi cation in the other 
direction, with the result as shown in the right part of the table. With this additional 
misclassifi cation, the rate ratio has declined to 2.0, even closer to the null value of 
1.0, nullifying three fourths of the eff ect seen in the correctly classifi ed data.

Nondiff erential misclassifi cation of a dichotomous exposure will always bias an 
eff ect, if there is one, toward the null value. If the exposure is not dichotomous, 
there may be bias toward the null value, but there may also be bias away from 
the null value, depending on the categories to which individuals get misclassifi ed. 

Table 7–6 Nondifferential Misclassification in a Hypothetical 
Case-Control Study

Correct
Classifi cation Nondiff erential Misclassifi cation

20% of 
No → Yes

20% of
No → Yes

20% of
Yes → No

High-Fat Diet High-Fat Diet High-Fat Diet

No Yes No Yes No Yes
Myocardial  
infarction cases

450 250 360 340 410 290

Controls 900 100 720 280 740 260
RR = 5.0 RR = 2.4 RR = 2.0
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Nondiff erential misclassifi cation between two exposure categories usually makes 
the eff ect estimates for those two categories converge toward one another.4

Confounding

Confounding is a central issue for epidemiologic study design. A simple defi nition 
of confounding is the confusion of eff ects. Th is defi nition implies that the eff ect 
of the exposure is mixed with the eff ect of another variable, leading to a bias. 
Consider a classic example: the relation between birth order and the occurrence 
of Down syndrome. Figure 7–3 shows data on birth order and Down syndrome 
from the work of Stark and Mantel.5

Th ese data show a striking trend in prevalence of Down syndrome with increas-
ing birth order, which can be described as the eff ect of birth order on the occur-
rence of Down syndrome. Th e eff ect of birth order, however, is a blend of whatever 
eff ect birth order has by itself and the eff ect of another variable that is closely 
correlated with birth order: the age of the mother. Figure 7–4 gives the relation 
between mother’s age and occurrence of Down syndrome from the same data. It 
indicates a much stronger relation between mother’s age and Down syndrome. 
In Figure 7–3, the prevalence increased from about 0.6/1000 at the fi rst birth to 
1.7/1000 for birth order of 5 or greater, a respectably strong trend. In Figure 7–4, 
however, the prevalence increases from 0.2/1000 at the youngest category of 
mother’s age to 8.5/1000 at the highest category of mother’s age, more than a 
40-fold increase. (Th e vertical scale changes from Figure 7–3 to Figure 7–4.)

Figure 7–3  Prevalence of Down syndrome at birth by birth order. (Data from Stark 
and Mantel.2)
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Confounding by Indication

Pharmacoepidemiologists study the epidemiology of intended and unin-
tended drug eff ects, oft en by using nonexperimental studies. In these stud-
ies, the essential comparisons involve a contrast of outcomes for individuals 
who have taken a specifi c drug with those who have not taken the drug. 
Without a randomized trial, it can be challenging to design a study that 
yields a valid comparison of drug takers with nontakers. Th e main challenge 
comes from a phenomenon that epidemiologists refer to as confounding by 
indication. Th e problem arises from the fact that those who take a drug usu-
ally diff er from those who do not according to the medical indication for 
which the drug was prescribed. Even if the comparison group represents 
patients with the same disease who received a diff erent therapy or none at 
all, there typically are diff erences in disease severity or other risk factors 
between populations who receive diff erent treatments. Th ese diff erences 
introduce a bias in the comparison that is called confounding by  indication, 
which is described further in Chapter 13.

Because birth order and the age of the mother are highly correlated, we can 
expect that the mothers who are giving birth to their fi ft h baby are, as a group, 
considerably older than mothers who are giving birth to their fi rst baby. Th erefore 
the comparison of high-birth-order babies with lower-birth-order babies is to some 
extent a comparison of babies born to older mothers with babies born to youn-
ger mothers. Th us, the birth-order comparison in Figure 7–3 mixes the eff ect of 
mother’s age with the eff ect of birth order. Th e extent of the mixing depends on 
the extent to which mother’s age is related to birth order. Th is mixing of eff ects 
is called confounding; the birth order eff ect depicted in Figure 7–3 is confounded 
by the eff ect of mother’s age.

Is the eff ect of mother’s age in Figure 7–4 also confounded by the eff ect 
of birth order? Th is is a reasonable question; the answer depends on whether 
birth order has any eff ect at all on its own. Because the eff ect in Figure 7–4 for 
mother’s age is so much stronger than the eff ect in Figure 7–3 for birth order, 
we know that birth order cannot fully explain the maternal age eff ect, whereas 
it remains a possibility that maternal age fully accounts for the apparent eff ect 
of birth order. A good way to resolve the extent to which one variable’s eff ect 
explains the apparent eff ect of the other is to examine both eff ects simultaneously. 
Figure 7–5 pre sents the prevalences of Down syndrome at birth by both birth 
order and mother’s age simultaneously.

Figure 7–5 shows that within each category of birth order, looking from the 
front to the back, there is the same striking trend in prevalence of Down syn-
drome with increasing maternal age. In contrast, within each category of mater-
nal age, looking from left  to right, there is no discernible trend with birth order. 
Th us, the apparent trend with birth order in Figure 7–3 is entirely explained by 
confounding by maternal age. Th ere is no confounding in the other direction: 
Birth order does not confound the maternal age association, because birth order 
has no eff ect. We call the apparent eff ect of birth order in Figure 7–3 the crude 



138 E P I D E M I O L O G Y

Figure 7–4  Prevalence of Down syndrome at birth by mother’s age.

Figure 7–5  Prevalence of Down syndrome at birth by birth order and mother’s age.
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eff ect of birth order. In Figure 7–5, we can see that within categories of maternal 
age there is no birth order eff ect, and the crude eff ect in this instance is entirely 
a result of confounding.

Although the maternal age eff ect in Figure 7–4 is not confounded by birth 
order, which appears to have no eff ect on its own, it is confounded by other 
factors. We can be sure of that because age is just a marker of time. Th ere must 
be biologic events that occur during a woman’s aging process that lead to the 
sharp increase in occurrence of Down syndrome among the off spring of older 
mothers. Mother’s age is thus a proxy for unidentifi ed events that more directly 
account for the occurrence of Down syndrome. When these events are identi-
fi ed, we may ultimately fi nd that mother’s age has no eff ect aft er we take into 
account the  biologic changes that are correlated with age. In this sense, we 
can say that the apparent eff ect of mother’s age is presumably confounded by 
unknown factors.

Th e research process of learning about and controlling for confounding can 
be thought of as a walk through a maze toward a central goal. Th e path through 
the maze eventually permits the scientist to penetrate deeper levels of under-
standing. In this example, the apparent relation between Down syndrome and 
birth order can be explained entirely by the eff ect of mother’s age, but that 
eff ect ultimately will be explained by other factors that have not yet been iden-
tifi ed. As the layers of confounding are left  behind, we gradually approach a 
deeper causal understanding of the underlying biology. Unlike a maze, how-
ever, this journey toward the goal of biologic understanding does not have 
a clear end point, because there is always room to understand the biology in a 
deeper way.

Confounding previously was defi ned as the confusion of or mixing of eff ects. 
Strictly speaking, the exposure variable may or may not have an eff ect; in the 
Down syndrome example, birth order did not have an eff ect. Th e confound-
ing variable, however, must have an eff ect on the outcome to be confounding. 
Th eoretically, a confounding variable should be a cause of the disease, but in prac-
tice, it may be only a proxy or a marker for a cause. Th at is the case for mother’s 
age, which by itself does not cause Down syndrome but serves as a marker for 
unknown biologic events that accumulate with time. Whether an actual cause or 
just a marker for a cause, a confounder is a predictor of  disease occurrence.

Nevertheless, not every predictor of disease occurrence is a confounding factor. 
For confounding to occur, a predictor of disease occurrence must also be imbal-
anced across exposure categories. Suppose that age is a risk factor for a given dis-
ease (as it usually is). Age would not be confounding unless the age distributions 
of people in the various exposure categories diff ered, as they did for smoking 
and nonsmoking women in Table 1–2. If every exposure category contains people 
whose age distribution is the same as that for people in other exposure categories, 
the comparison of disease rates across exposure categories is not distorted by age 
diff erences. On the other hand, if age is imbalanced across exposure categories, 
the comparison of one exposure category with another involves the comparison 
of people whose age distributions diff er. Under those circumstances, the eff ect of 
exposure will be confounded with the eff ect of age to an extent that depends on 
the strength of the relation between age and the disease and on the extent of the 
age imbalance across exposure categories.
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Consider another example. In 1970, the University Group Diabetes Program 
published the results of a randomized trial designed to assess how well three treat-
ments for diabetes prevented fatal complications.6 Table 7–7 presents the crude 
data comparing one of the treatments, the drug tolbutamide, with placebo, with 
respect to total mortality over a period that averaged 7 years.

Th e proportion of subjects who died was greater in the tolbutamide group 
than in the placebo group, a surprising result that spurred a long and bitt er con-
troversy and brought tremendous scrutiny to these study results. If we measure 
the eff ect of treatment as the diff erence in proportion of those who died in the 
tolbutamide and placebo groups, we estimate an adverse eff ect of tolbutamide of 
0.147 − 0.102 = 0.045. Th is result translates to an estimate that subjects who 
receive tolbutamide face an additional risk of 4.5% of dying over 7 years  compared 
with subjects receiving placebo.

Although this study was a randomized experiment, the random assignment in 
this case led to imbalances between the tolbutamide and placebo groups with 
respect to age. Randomization is intended to balance potential confounding fac-
tors between the compared groups, but it cannot guarantee such a balance. In 
this case, the tolbutamide group comprised subjects who were older on average 
than the placebo group. Because age is strongly related to the risk of death, this 
imbalance in age introduced confounding. In the Down syndrome example, we 
removed the confounding by examining the eff ect of birth order within categories 
of mother’s age. Th is process is called stratifi cation. We can also stratify the data 
from the University Group Diabetes Program by age (Table 7–8).

Table 7–8 shows that of the 204 subjects who received tolbutamide in the 
study, 98 (48%) were 55 years old or older; in contrast, only 85 of 205 placebo 
subjects (41%) were age 55 or older. Th is diff erence may not appear striking, 

Table 7–7 Deaths Among Patients Who 
Received Tolbutamide and Placebo in the 

University Group Diabetes Program in 1970

Tolbutamide Placebo
Deaths 30 21
Surviving 174 184
Total 204 205
Mortality proportion 0.147 0.102

Table 7–8 Deaths Among Subjects Who Received Tolbutamide 
and Placebo in the University Group Diabetes Program in 1970, 

Stratified by Age

Age < 55 Age 55>

Tolbutamide Placebo Tolbutamide Placebo
Dead 8 5 22 16
Surviving 98 115 76 69
Total 106 120 98 85
Mortality proportion 0.076 0.042 0.224 0.188
Diff erence in proportion 0.034 0.036
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but the diff erence in the risk of dying during the 7 years is strikingly greater for 
those age 55 or older than for younger subjects. With age so strongly related to 
the risk of death, the diff erence in the age distribution is potentially worrisome. 
Did it lead to confounding by age? To answer that, we can look at the diff er-
ence in the proportion who died, comparing tolbutamide with placebo, in each 
of the two age groups. In both groups, there is an approximately 3.5% greater 
risk of death over the 7 years for the tolbutamide group than for the placebo 
group. (Th e data show a diff erence of 3.4% for the younger group and 3.6% for 
the older group. As a summary measure, we can average these two values and 
call the overall diff erence 3.5%. Technically, we would want to take an average 
that weighted each of the age categories according to the amount of data in that 
 category.) When age was ignored, we found a diff erence of 4.5%. Th e value of 
4.5% that we obtained from the crude data is confounded and gives an over-
estimate of the adverse eff ect of tolbutamide. Th e value of 3.5% obtained aft er 
the age stratifi cation may not be completely unconfounded by age. Because we 
used only two age categories, it is possible that age diff erences remain within the 
age categories in Table 7–8. Nevertheless, even with this simple age stratifi ca-
tion, the estimate of eff ect is lower than the estimate from the crude data. Th e 
crude data overestimate the adverse eff ect of tolbutamide by almost 30% (4.5% 
is almost 30% greater than 3.5%). Th e topic of stratifi cation is discussed further 
in Chapter 10.

Properties of a Confounding Factor

Confounding can be thought of as a mixing of eff ects. A confounding fac-
tor therefore must have an eff ect, and it must be imbalanced between the 
exposure groups that are being compared. Th ese conditions imply that a 
confounding factor must have two associations:

A confounder must be associated with the disease (either as a cause • 
or as a proxy for a cause, but not as an eff ect of the disease).
A confounder must be associated with the exposure.• 

Th ere is also a third requirement. A factor that is an eff ect of the exposure 
and is an intermediate step in the causal pathway from exposure to dis-
ease will have the previously described properties, but causal intermediates 
are not confounders; they are part of the eff ect that we wish to study. For 
example, if a diet high in saturated fat leads to higher levels of low-density 
lipoproteins (LDL) in the blood, and a high LDL level leads to atheroscle-
rosis, a high LDL level will be associated with both diet and atherosclerosis. 
Nevertheless a high LDL level does not confound the relation between diet 
and atherosclerosis; it is part of the exposure’s eff ect and should not be con-
sidered confounding. Any eff ect of the exposure, whether it is part of the 
causal pathway to the disease or not, is not a confounder. Th us, the third 
property of a confounder is the following:

A confounder must not be an eff ect of the exposure. • 
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Th e University Group Diabetes Program illustrates that even randomization 
cannot prevent confounding in all instances. In this case, it led to an age imbal-
ance, which caused a moderate amount of confounding. Th e confounding in 
the Down syndrome example was greater, in large part because the association 
between mother’s age and birth order is stronger than the association between 
age and tolbutamide that the randomization produced in the University Group 
Diabetes Program.

Notice that confounding can cause a bias in either direction. It can cause an 
overestimate of the eff ect, as the confounder mother’s age did for birth order 
and Down syndrome and the confounder age did for tolbutamide and death, or 
it can cause an underestimate of an eff ect, as the confounder age did for smok-
ing and death in the example in Chapter 1. Th e bias introduced by confound-
ing occasionally can be strong enough to reverse the apparent direction of an 
eff ect,7 as illustrated in Chapter 1 when comparing the death rates in Panama 
and Sweden.

Control of Confounding
Confounding is a systematic error that investigators aim to prevent or to remove 
from a study. Th ere are three methods that are used to prevent confounding. One 
of them, randomization, or the random assignment of subjects to experimental 
groups, can be used only in experiments. Th e second method, restriction, involves 
selecting subjects for a study who all have the same value or almost the same 
value for a variable that would otherwise be a confounding variable. Restriction 
can be used in any epidemiologic study, regardless of whether it is an experi-
ment or not. Th e third approach is matching, which is an eff ective way to prevent 
confounding in cohort studies, but as discussed earlier, causes a selection bias in 
case-control studies. Because no method prevents confounding completely, these 
design methods may be best viewed as methods to limit confounding.

In experiments, in which the investigator assigns the exposure to study sub-
jects, randomization confers powerful benefi ts. With a suffi  ciently large study pop-
ulation, randomization produces two or more study groups with almost the same 
distribution of characteristics. Th is similarity for all variables implies that the com-
pared groups will be similar for risk factors that predict the outcome of interest 
and that these risk predictors therefore will not confound. Randomization cannot 
guarantee the absence of confounding; a random process can still lead to con-
founding imbalances, such as the age imbalance that occurred in the University 
Group Diabetes Program experiment and shown in Tables 7–7 and 7–8. Th e like-
lihood of a large imbalance, however, becomes small as the number of subjects 
who are randomized increases. Perhaps the most important benefi t of randomi-
zation is that it prevents confounding for unidentifi ed factors as well as for fac-
tors that are already known to be of concern. Even unknown risk factors will not 
confound a randomized experiment of suffi  cient size.

Restriction, unlike randomization, cannot control for unknown confounding 
factors, but it is more certain to prevent confounding for those factors for which 
it is employed. For example, in a study of alcohol drinking and cancer of the 
throat, smoking may be considered a likely confounding variable. Smoking is a 
cause of throat cancer, and people who drink alcohol smoke more than people 
who do not drink alcohol. If the study were confi ned to nonsmokers, smoking 
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could not be confounding. Similarly, if age is thought to be a likely confounding 
factor in a study, confounding by age can be prevented by enrolling subjects who 
are all the same age. If everyone in a study has the same value for a variable, 
that factor can no longer vary in the study sett ing; it becomes a constant. For 
confounding to occur, a confounding factor must be associated with exposure, 
but if a factor is constant, it cannot be associated with anything. Restriction is an 
eff ective way to prevent confounding in any study.

Restriction is used in experiments in addition to randomization to be certain 
that confounding for certain factors does not occur. It is also used by laboratory 
scientists conducting animal experiments to prevent confounding and enhance the 
validity of their studies. Typically, a researcher conducting an experiment with 
mice seeks only mice bred from the same laboratory and that have the same gen-
otype, the same age, and sometimes the same sex.

It may appear puzzling that restriction is not used more oft en in epidemiologic 
research. One explanation is that many researchers have been taught that an epi-
demiologic study, whether an experiment or a nonexperimental study, should com-
prise study subjects whose characteristics are representative of the target population 
for whom the study results are intended. Th e goal of representativeness appears to 

Is Confounding in a Randomized Experiment a Bias?

Earlier in this chapter, I proposed that if an error in a study would decrease 
if the study were larger, then that error is a random error, whereas an 
error that would not decrease if the study were larger is a systematic error. 
Confounding is usually considered a systematic error, but confounding in 
an experiment is an exception. In all types of epidemiologic studies, con-
founding arises from imbalances in risk factors for the outcome across the 
exposure categories. Uniquely in randomized experiments, however, these 
imbalances are determined by random assignment. As a result of the law 
of large numbers, the larger the experiment, the more closely the randomly 
assigned groups will resemble one another in their distributions of risk fac-
tors. Because the amount of confounding depends on the size of the exper-
iment, confounding in an experiment is an example of random error rather 
than systematic error. For systematic errors, replicating the study replicates 
the error, but for confounding in an experiment, replicating the study (with 
a new random assignment) will not replicate the same confounding because 
there will be an entirely new set of assignments to the study groups. Despite 
being an example of random error rather than systematic error, confound-
ing in an experiment can be controlled using the same methods to control 
confounding in nonexperimental studies.

In this discussion, a large experiment does not necessarily mean one 
with many participants; rather, it is one that has a large number of random 
assignments. For example, a study may involve the random assignment of a 
community intervention to eight cities that contain millions of people. With 
only eight random assignments, however, it is not large enough to prevent 
substantial confounding.
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work contrary to the method of restriction, which provides a study population that 
is homogeneous and therefore not similar to most target populations of interest. 
Elevating the importance of representativeness is a fallacy that has plagued epide-
miologic studies for decades. As explained in Chapter 3, the notion that represen-
tativeness is a worthwhile goal presumably stems from the arena of survey research, 
in which a sample of a larger population is surveyed to avoid the expense and 
trouble of surveying the entire population. Th e statistical inference that such sam-
pling allows is only superfi cially similar to the scientifi c inference that is the goal 
of epidemiologic research. For scientifi c inference, the goal is not to infer a conclu-
sion that would apply to a specifi c target population but rather to infer an abstract 
theory that is not tied to a specifi c population. It is possible to make such a scien-
tifi c inference more readily without confounding; restriction enhances the ability to 
make a scientifi c inference, as those who work with laboratory animals know.

What about the concern that restriction makes it diffi  cult to know whether a 
studied relation applies to people with characteristics diff erent from those in a 
study population? For example, suppose that an investigator uses restriction to 
study the eff ect of drinking wine on cardiovascular disease risk among people 
who are 60 years old. Would the study results apply to people who are 45-years 
old? Th e answer is maybe; without outside knowledge, it is not possible to say 
whether the study results apply to people who are 45 years old. Th is uncertainty 
leaves open the possibility of an erroneous or incomplete conclusion, but such 
is the nature of science. It is nevertheless wrong to think that the theorization 
needed to apply the results of a study to people with diff erent characteristics 
could be replaced by mechanical sampling. If an investigator suspects that the 
eff ect of wine consumption on cardiovascular risk is diff erent for 60-year-olds and 
45-year-olds, he or she would want to select a group of 45-year-olds to study in 
addition to 60-year-olds. Th e number of the study subjects and their age distribu-
tion should not refl ect the age distribution in some target population; why let the 
demographics of a locale dictate the age distribution of subjects that are chosen 
for study? Instead, the investigator can choose to study subjects of whatever age 
seems interesting and in numbers that suit the study design rather than refl ect the 
numbers of people in a target population at those ages. Scientifi cally, there is no 
specifi c target population. Th ere is instead a scientifi c theory about wine, cardio-
vascular disease risk, and perhaps age. Th e theory is the real target of inference. 
A valid study is the best route to a correct inference, and restriction, rather than 
representativeness, is the more desirable means to achieve the correct inference.

Matching should be distinguished from restriction. With restriction, all subjects 
are confi ned to a single value or narrow range of values for one or more factors 
that are suspected of being possible confounding factors. Matching imposes no 
constraint on the index subjects, those who are the target of the matching. Th e 
other subjects are selected to conform to the index series for whatever match-
ing factors are employed. Suppose one is conducting a cohort study and wishes 
to control for age by matching. Generally, when matching in a cohort study, the 
index series is the exposed series, and the goal of matching is to assemble an 
unexposed series that has the same age distribution as the exposed subjects. Th ere 
are two ways to accomplish this goal. One approach is to describe the age distri-
bution of exposed subjects and then select unexposed subjects to replicate that age 
distribution. Th at approach is called fr equency matching. Th e other approach is to 
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take the exposed subjects one by one and to fi nd for each of them an unexposed 
subject that has a matching age. Th e investigator also can select two or three or 
any fi xed number of unexposed subjects to match with each exposed subject. Th is 
approach is called individual matching. Whether frequency matching or individual 
matching is used, the result is that for the matched factor, the exposed and unex-
posed cohorts will have the same distribution, and therefore that factor will not 
be confounding. To the extent that the matching is loose rather than tight, such 
as matching within 5 years of age rather than match to the exact year of age, there 
may still be minor diff erences in the age distribution. Th e tighter the match, the 
more eff ective the elimination of age confounding. For variables that are categori-
cal, such as sex, defi ning a tight match is not an issue.

Matching is very eff ective in preventing confounding, but there are a few cau-
tions to consider. Th e greatest caution, described earlier in this chapter, is that it 
does not work to prevent bias in case-control studies. In cohort studies, it does 
work well, and it can lead to results that are unbiased by the matching factors, 
provided that the cohort is followed for a short enough time for the matching to 
be maintained. Because matching is accomplished for people, not person-time, as 
people are lost to follow-up for various reasons, the initially equal distributions 
across cohorts for matching factors may become diff erent if exposed people and 
unexposed people are lost to the study at diff erent rates.

Matching can be an expensive process. To match an unexposed cohort to a  sizable 
exposed cohort can be costly and consequently has seldom been att empted. Th e main 
exception is when all potential subjects and their data are already stored in a data 
warehouse or database. In that case, matching an unexposed cohort is no more costly 
than implementing a computer program to fi nd the matching subjects, and match-
ing becomes considerably more cost-eff ective. Th ere is a drawback to using matching 
within a database, however. If the data are already available in a database, match-
ing will result in excluding some subjects from the study. Some excluded subjects 
will be possible matches that were not used because there were closer matches that 
were chosen instead; others may be outliers that are unmatchable. Th is loss of sub-
jects may lessen the appeal of matching compared with alternative methods that can 
be employed in the data analysis that retain all possible subjects. On the other hand, 
the exclusion of unmatchable subjects may enhance the validity of the study and be 
preferable to including them; this point is discussed further in Chapter 12.

Control of confounding in the data analysis requires that the study data include 
adequate information about the confounding factor or factors. Two methods can 
be used to deal with confounding in the data analysis. One is stratifi cation, a 
technique that was illustrated in Table 7–8 and in Chapter 1. It is discussed in 
greater detail in Chapter 10. Th e other approach is by using regression models, 
an analytic technique that is described in Chapter 12.

QUESTIONS

1. Suppose a case-control study could be expanded to be infi nitely large. 
Which sources of error would be eliminated by such a study, and which 
would not? Suppose that a randomized trial could be infi nitely large. Which 
sources of error would remain in such a trial?
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2. Will a larger study have less bias than a smaller study? Why or why not?

3. When recall bias occurs, patients who have been affl  icted with a medi-
cal problem, such as a heart att ack, give responses about possible causes of 
that problem that diff er from those given by nonaffl  icted subjects. Whose 
responses are thought to be more accurate?

4. Suppose that in analyzing the data from an epidemiologic study, a com-
puter coding error led to the exposed group being classifi ed as unexposed 
and the unexposed group being classifi ed as exposed. What specifi c eff ect 
would this error have on the reported results? Is this a bias? If so, what type? 
If not, what type of error is it?

5. Explain the diff erence between a confounding factor and a potential con-
founding factor. In what situations might a potential confounding factor not 
end up being a confounding factor?

6. Th e incidence rate of cardiovascular disease increases with increasing age. 
Does that mean that age always confounds studies of cardiovascular disease 
in the same direction? Why or why not?

7. Th e eff ectiveness of randomization in controlling confounding depends 
on the size of the experiment. Consider an experiment to study the eff ect 
of nutritional education of schoolchildren on their serum cholesterol  levels. 
Suppose that the study involved randomly assigning 10 classrooms with 
30 children each to receive a new curriculum and assigning another 10 
classrooms with 30 children each to receive the old curriculum. Should this 
be considered a study that compares two groups with 300 in each group 
or 10 in each group from the viewpoint of the eff ectiveness of controlling 
 confounding by randomization?

8. Confounding by indication arises because those who take a given drug dif-
fer for medical reasons from those who do not take the drug. Is this problem 
truly confounding, or is it more appropriately described as a selection bias?

9. Th ose who favor representative studies claim that one should not gener-
alize a study to a population whose characteristics diff er from those of the 
study population. A study of smoking and lung cancer in men would tell 
nothing about the relation between smoking and lung cancer in women. 
Give the counterarguments. (Hint: if the study were conducted in London, 
would the results apply to those who lived in Paris?)
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8

Random Error and the Role 

of Statistics

Statistics plays two main roles in the analysis of epidemiologic data: fi rst, to 
 measure variability in the data in an eff ort to assess the role of chance, and  second, 
to estimate eff ects aft er correcting for biases such as confounding. Th is chapter 
concentrates on the assessment of variability. Th e use of statistical approaches to 
control confounding is discussed in Chapters 10 and 12.

An epidemiologic study can be viewed as an exercise in measurement. As in 
any measurement, the goal is to obtain an accurate result, with as litt le error as 
possible. Systematic error and random error can distort the measurement process. 
Chapter 7 describes the primary categories of systematic error. Th e error that 
remains aft er systematic error is eliminated is random error. Random error is noth-
ing more than variability in the data that cannot be readily explained. Sometimes, 
random error stems from a random process, but it may not. In randomized trials, 
some of the variability in the data refl ects the random assignment of subjects to 
the study groups. In most epidemiologic studies, however, there is no random 
assignment to study groups. For example, in a cohort study that compares the 
outcome of pregnancy among women who drink heavily chlorinated water with 
the outcome among women who drink bott led water, it is not chance but the 
decision making or circumstances of the women themselves that determines the 
cohort in which the women are grouped. Th e individual assignments to categories 
of water chlorination are not random; nevertheless, some of the variability in the 
outcome is considered to be random error. Much of this variation may refl ect 
hidden biases and presumably can be accounted for by factors other than drink-
ing water that aff ect the outcome of pregnancy. Th ese factors may not have been 
measured among these women or perhaps not even discovered.

ESTIMATION

If an epidemiologic study is thought of as an exercise in measurement, the 
result of the study should be an estimate of an epidemiologic quantity. Ideally, 
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the analysis of data and the reporting of results should report the magnitude of 
that epidemiologic quantity and portray the degree of precision with which it is 
measured. For example, a case-control study may be undertaken to estimate the 
incidence rate ratio (RR) between use of cellular telephones and the occurrence 
of brain cancer. Th e report on the results of the study should present a clear 
estimate of the RR, such as RR = 2.5. When an estimate is presented as a single 
value, we refer to it as a point estimate. In this example, the point estimate of 
2.5 quantifi es the estimated strength of the relation between the use of cellular 
telephones and the occurrence of brain cancer. To indicate the precision of the 
point estimate, we use a confi dence interval, which is a range of values around the 
point estimate. A wide confi dence interval indicates low precision, and a narrow 
interval indicates high precision.

Chance

In ordinary language, the word chance has a dual meaning. One meaning 
refers to the outcome of a random process, implying an outcome that could 
not be predicted under any circumstances; the other refers to outcomes that 
cannot be predicted easily but are not necessarily random phenomena. For 
example, if you unexpectedly encounter your cousin on the beach at Cape 
Cod, you may describe it as a chance encounter. Nevertheless, there were 
presumably causal mechanisms that can explain why you and your cousin 
were on the beach at Cape Cod at that time. It may be a coincidence that 
the two causal mechanisms led to both of you being there together, but 
randomness does not necessarily play a role in explaining the encounter.

Flipping a coin is usually considered to be a randomizing event, one 
that is completely unpredictable. Nevertheless, the fl ip of a coin can be 
predicted with suffi  cient information about the initial conditions and the 
forces applied to the coin. Th e reason we consider it a randomizing event 
is that most of us do not have the necessary information nor the means to 
fi gure out from it what the outcome of the fl ip would be. Some individuals, 
however, have practiced fl ipping coins enough to predict the outcome of 
a given toss almost perfectly. For the rest of us, the fl ip of a coin appears 
random, despite the fact that the underlying process is not actually random. 
As we practice fl ipping or learn more about the sources of error in a body 
of data, we can reduce errors that may appear random at fi rst. Physicists 
tell us that we will never be able to explain all components of error, but 
for the problems that epidemiologists address, it is reasonable to assume 
that much of the random error that we observe in data could be explained 
with bett er information.

POINT ESTIMATES, CONFIDENCE INTERVALS, 

AND P  VALUES

We use confi dence intervals because a point estimate, being a single value, can-
not express the statistical variation, or random error, that underlies the estimate. 
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If a study is large, the estimation process can be comparatively precise, and there 
may be litt le random error in the estimation. A small study, however, has less 
precision, which means that the estimate is subject to more random error. A con-
fi dence interval indicates the amount of random error in the estimate. A given 
confi dence interval is tied to an arbitrarily set level of confi dence. Commonly, 
the level of confi dence is set at 95% or 90%, although any level in the interval of 
0% to 100% is possible. Th e confi dence interval is defi ned statistically as  follows: 
If the level of confi dence is set to 95%, it means that if the data collection and 
analysis could be replicated many times and the study were free of bias, the con-
fi dence interval would include within it the correct value of the measure 95% of 
the time. Th is defi nition presumes that the only thing that would diff er in these 
hypothetical replications of the study would be the statistical, or chance, element 
in the data. It also presumes that the variability in the data can be described ade-
quately by a statistical model and that biases such as confounding are nonexistent 
or completely controlled. Th ese unrealistic conditions are typically not met even 
in carefully designed and conducted randomized trials. In nonexperimental epi-
demiologic studies, the formal defi nition of a confi dence interval is a fi ction that 
at best provides a rough estimate of the statistical variability in a set of data. It 
is bett er not to consider a confi dence interval to be a literal measure of statistical 
variability but rather a general guide to the amount of random error in the data.

Th e confi dence interval is calculated from the same equations that are used to 
generate another commonly reported statistical measure, the P value, which is the 
statistic used for statistical hypothesis testing. Th e P value is calculated in relation 
to a specifi c hypothesis, usually the null hypothesis, which states that there is no 
relation between exposure and disease. For the RR measure, the null hypothesis is 
RR = 1.0. Th e P value represents the probability, assuming that the null hypothesis 
is true and the study is free of bias, that the data obtained in the study would 
demonstrate an association as far from the null hypothesis or farther than what was 
actually obtained. For example, suppose that a case-control study gives, as an esti-
mate of the relative risk, RR = 2.5. Th e P value answers this question: What is the 
probability, if the true RR = 1.0, that a given study may give a result as far as this 
or farther from 1.0? Th e P value is the probability, conditional on the null hypoth-
esis, of observing as strong an association as was observed or a stronger one.

P values can be calculated using statistical models that correspond to the type 
of data that have been collected (see Chapter 9). In practice, the variability of 
collected data is unlikely to conform precisely to any given statistical model. For 
example, most statistical models assume that the observations are independent 
of one another. Many epidemiologic studies, however, are based on observations 
that are not independent. Data also may be infl uenced by systematic errors that 
increase variation beyond that expected from a simple statistical model. Because 
the theoretical requirements are seldom met, a P value usually cannot be taken as 
a meaningful probability value. Instead, it can be viewed as something less techni-
cal: a measure of relative consistency between the null hypothesis and the data 
in hand. A large P value indicates that the data are highly consistent with the 
null hypothesis, and a low P value indicates that the data are not very consistent 
with the null hypothesis. More specifi cally, if a P value were as small as .01, it 
would mean that the data were not very consistent with the null hypothesis, but 
a P value as large as .5 would indicate that the data were reasonably consistent 
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with the null hypothesis. Neither of these P values should be interpreted as a 
strict probability. Neither tells us whether the null hypothesis is correct or not. 
Th e ultimate judgment about the correctness of the null hypothesis will depend 
on the existence of other data and the relative plausibility of the null hypothesis 
and its alternatives.

What is the Probability That the Null Hypothesis Is 
Correct?

Some people interpret a P value as a probability statement about the cor-
rectness of the null hypothesis, but that interpretation cannot be defended. 
First, the null hypothesis, like any hypothesis, should be regarded as true 
or false but not as having a probability of being true. A probability would 
not be assigned to the truth of any hypothesis except in a subjective sense, 
as in describing bett ing odds. Even in framing a subjective interpretation 
or in assigning bett ing odds, the P value should not be considered to be 
equivalent to the probability that the null hypothesis is correct.

It is true that the P value is a probability measure. When the data are 
very discrepant with the null hypothesis, the P value is small, and when 
the data are concordant with the null hypothesis, the P value is large. 
Nonetheless, the P value is not the probability that the null hypothesis is 
correct. It is calculated only aft er assuming that the null hypothesis is cor-
rect, and it refers to the probability that the association observed in the 
data, divided by its standard error, would deviate from the null value as 
much as it did or more. It can thus be viewed as a measure of consistency 
between the data and the null hypothesis, but it does not address whether 
the null hypothesis is correct. Suppose you buy a ticket for a lott ery. Under 
the null hypothesis that the drawing is random, your chance of winning 
is slim. If you win, the P value evaluating the null hypothesis (that you 
won by chance) is tiny, because your winning is not a likely outcome in a 
random lott ery with many tickets sold. Nevertheless, someone must win. If 
you did win, does that constitute evidence that the lott ery was not random? 
Should you reject the null hypothesis because you calculated a very low 
P value? Th e answer is that even with a very low P value, the tenability 
of the null hypothesis depends on what alternative theories you have. One 
woman who twice won the New Jersey state lott ery said she would stop 
buying lott ery tickets to be fair to others. Th e more reasonable interpreta-
tion is that her two wins were chance events. Th e point is that the null 
hypothesis may be the most reasonable hypothesis for the data even if the 
P value is low. Similarly, the null hypothesis may be implausible or just 
incorrect even if the P value is high.

STATISTICAL HYPOTHESIS TESTING VERSUS ESTIMATION

Oft en, a P value is used to determine the presence or absence of statistical 
 signifi cance. Statistical signifi cance is a term that appears laden with meaning, 
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although it tells nothing more than whether the P value is less than some  arbitrary 
value, almost always .05. Th e term statistically signifi cant and the statement 
“P < .05” (or whatever level is taken as the threshold for statistical signifi cance) 
are equivalent. Neither is a good description of the information in the data.

Statistical hypothesis testing is a term used to describe the process of deciding 
whether to reject or not to reject a specifi c hypothesis, usually the null hypoth-
esis. Statistical hypothesis testing is predicated on statistical signifi cance as deter-
mined from the P value. Typically, if an analysis gives a result that is statistically 
signifi cant, the null hypothesis is rejected as false. If a result is not statistically 
signifi cant, it means that the null hypothesis cannot be rejected. It does not mean 
that the null hypothesis is correct. No data analysis can determine defi nitively 
whether the null hypothesis or any hypothesis is true or false. Nevertheless, it 
is unfortunately oft en the case that a statistical signifi cance test is interpreted to 
mean that the null hypothesis is false or true according to whether the statis-
tical test of the relation between exposure and disease is or is not statistically 
 signifi cant. In practice, a statistical test, accompanied by its declaration of “sig-
nifi cant” or “not signifi cant,” is oft en mistakenly used as a forced decision on the 
truth of the null hypothesis.

A declaration of statistical signifi cance off ers less information than the P value, 
because the P value is a number, whereas statistical signifi cance is just a dichoto-
mous description. Th ere is no reason that the numeric P value must be degraded 
into this less-informative dichotomy. Even the more quantitative P value has a 
problem, however, because it confounds two important aspects of the data, the 
strength of the relation between exposure and disease and the precision with 
which that relation is measured. To have a clear interpretation of data, it is impor-
tant to be able to separate the information on strength of relation and precision, 
which is the job that estimation does for us.

P-VALUE (CONFIDENCE INTERVAL) FUNCTIONS

To illustrate how estimation does a bett er job of expressing strength of relation 
and precision, we describe a curve that is oft en called a P-value function but is 
also referred to as a confi dence interval function. Th e P-value function enlarges on 
the concept of the P value. Th e P value is a statistic that can be viewed as a 
measure of the compatibility between the data in hand and the null hypothesis. 
We can enlarge on this concept by imagining that instead of testing just the null 
hypothesis, we also calculate a P value for a range of other hypotheses. Consider 
the rate ratio measure, which can range from 0 to infi nity and equals 1.0 if the 
null hypothesis is correct. Th e ordinary P value is a measure of the consistency 
between the data and the hypothesis that RR = 1.0. Mathematically, however, we 
are not constrained to test only the hypothesis that RR = 1.0. For any set of data, 
we can in principle calculate a P value that measures the compatibility between 
those data and any value of RR. We can even calculate an infi nite number of 
P values that test every possible value of RR. If we did so and plott ed the results, 
we end up with the P-value function. An example of a P-value function is given 
in Figure 8–1, which is based on the data in Table 8–1 describing a case-control 
study of drug exposure during pregnancy and congenital heart disease.1
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Th e curve in Figure 8–1, which resembles a tepee, plots the P value that tests 
the compatibility of the data in Table 8–1 with every possible value of RR. When 
RR = 1.0, the curve gives the P value testing the hypothesis that RR = 1.0; this is 
the usual P value testing the null hypothesis. For the data depicted in Figure 8–1, 
the ordinary P value is .08. Th is value would be described by many observers as 
not signifi cant, because the P value is greater than .05. To many people, not signifi -
cant implies that there is no relation between exposure and disease in the data. It 
is a fallacy, however, to infer a lack of association from a P value. Th e curve also 
gives the P values testing every other possible value of the RR, thus indicating the 
degree of compatibility between the data and every possible value of RR. Th e full 
P-value function in Figure 8–1 makes it clear that there is a strong association in 

Figure 8–1  P-value function for the case-control data in Table 8–1.

Table 8–1 Case-Control Data for 
Congenital Heart Disease and 
Chlordiazepoxide Use in Early 

Pregnancy

Chlordiazepoxide Use
Yes No Total

Cases 4  386  390
Controls 4 1250 1254
Total 8 1636 1644

OR = (4 ×1250)/(4 ×386) = 3.2

Data from Rothman et al.1



154 E P I D E M I O L O G Y

the data, despite the ordinary P value being greater than .05. Where the curve 
reaches its maximum (for which P = 1.0), the value of RR at that point is the 
value most compatible with the observed data. Th is RR value is called the point 
estimate. In Figure 8–1, the point estimate is RR = 3.2. As the RR departs from 
the point estimate in either direction, the corresponding P values decline, indicat-
ing less compatibility between the data and these relative risk hypotheses. Th e 
curve provides a quantitative overview of the statistical relation between exposure 
and disease. It indicates the best single value for the RR based on the data, and 
it gives a visual appreciation for the degree of precision of the estimate, which is 
indicated by the narrowness or the breadth of the tepee.

For those who rely on statistical signifi cance for their interpretation of data, the 
ordinary P value (testing the hypothesis that RR = 1.0) of .08 in Figure 8–1 may 
be taken to imply that there is no relation between exposure and disease. But that 
interpretation is already contradicted by the point estimate, which indicates that 
the best estimate is more than a threefold increase in risk among those who are 
exposed. Moreover, the P-value function shows that values of RR that are reason-
ably compatible with the data extend over a wide range, from roughly RR = 1 to 
RR = 10. Th e P value for RR = 1 is identical to the P value for RR = 10.5, so 
there is no reason to prefer the interpretation of RR = 1 over the interpretation 
that RR = 10.5. A bett er estimate than either of these is RR = 3.2, the point esti-
mate. Th e main lesson here is how misleading it can be to try to base an inference 
on a test of statistical signifi cance, or, for that matt er, on a P value.

Th e lesson is reinforced when we consider another P-value function that 
describes a set of hypothetical data given in Table 8–2. Th ese hypothetical data 
lead to a narrow P-value function that reaches a peak slightly above the null value, 
RR = 1. Figure 8–2 contrasts the P-value function for the data in Table 8–2 with 
the P-value function given earlier for the data in Table 8–1. Th e narrowness of 
the second P-value function refl ects the larger size of the second set of data. Large 
size translates to bett er precision, for which the visual counterpart is the narrow 
P-value function.

Th ere is a striking contrast in messages from these two P-value functions. Th e 
fi rst function suggests that the data are imprecise but refl ect an association that 
is strong; the data are readily compatible with a wide range of eff ects, from very 
litt le or nothing to more than a 10-fold increase in risk. Th e fi rst set of data thus 
raises the possibility that the exposure is a strong risk factor. Although the data 
do not permit a precise estimate of eff ect, the range of eff ect values consistent 
with the data includes mostly strong eff ects that would warrant concern about 
the exposure. Th is concern comes from data that give a “nonsignifi cant” result for 
a test of the null hypothesis. In contrast, the other set of data, from Table 8–2, 
gives a precise estimate of an eff ect that is close to the null. Th e data are not 
very compatible with a strong eff ect and, indeed, may be interpreted as reassuring 
about the absence of a strong eff ect. Despite this reassurance, the P value testing 
the null hypothesis is .04; a test of the null hypothesis would give a “statistically 
signifi cant” result, rejecting the null hypothesis. In both cases, reliance on the 
signifi cance test would be misleading and conducive to an incorrect interpreta-
tion. In the fi rst case, the association is “not signifi cant,” but the study is prop-
erly interpreted as raising concern about the eff ect of the exposure. In the second 
case, the study provides reassurance about the absence of a strong eff ect, but the 
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signifi cance test gives a result that is “signifi cant,” rejecting the null hypothesis. 
Th is perverse behavior of the signifi cance test should serve as a warning against 
using signifi cance tests to interpret data.

Although it may superfi cially seem like a sophisticated application of quantita-
tive methods, signifi cance testing is only a qualitative proposition. Th e end result 
is a declaration of “signifi cant” or “not signifi cant” that provides no quantitative 
clue about the size of the eff ect. Contrast that approach with the P-value func-
tion, which is a quantitative visual message about the estimated size of the eff ect. 
Th e message comes in two parts, one relating to the strength of the eff ect and the 
other to precision. Strength is conveyed by the location of the curve along the 
horizontal axis and precision by the amount of spread of the function around 
the point estimate.

Because the P value is only one number, it cannot convey two separate quan-
titative messages. To get the message about both strength of eff ect and precision, 

Table 8–2 Hypothetical Case-Control Data

Exposure
Yes No Total

Cases 1,090 14,910 16,000
Controls 1,000 15,000 16,000
Total 2,090 29,910 32,000

OR = (1,090 × 15,000)/(1,000 × 14,910) = 1.1

Figure 8–2  P-value function for the data in Table 8–1 and the hypothetical 
 case-control data in Table 8–2.
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at least two numbers are required. Perhaps the most straightforward way to get 
both messages is from the upper and lower confi dence limits, the two numbers 
that form the boundaries to a confi dence interval. Th e P-value function is closely 
related to the set of all confi dence intervals for a given estimate. Th is relation is 
depicted in Figure 8–3, which shows three diff erent confi dence intervals for the 
data in Figure 8–1. Th ese three confi dence intervals diff er only in the  arbitrary 
level of confi dence that determines the width of the interval. In Figure 8–3, the 
95% confi dence interval can be read from the curve along the horizontal line 
where P = .05 and the 90% and 80% intervals along the lines where P = .1 
and .2, respectively. Th e diff erent confi dence intervals in Figure 8–3 refl ect the 
same degree of precision but diff er in their width only because the level of con-
fi dence for each is arbitrarily diff erent. Th e three confi dence intervals depicted in 
Figure 8–3 are described as nested confi dence intervals. Th e P-value function is a 
graph of all possible nested confi dence intervals for a given estimate, refl ecting all 
possible levels of confi dence between 0% and 100%. It is this ability to fi nd all 
possible confi dence intervals from a P-value function that leads to its description 
as either a P-value function or a confi dence interval function.

It is common to see confi dence intervals reported for an epidemiologic mea-
sure, but it is uncommon to see a full P-value function or confi dence interval 
function. Fortunately, it is not necessary to calculate and display a full P-value 
function to infer the two quantitative messages, strength of relation and precision, 
for an estimate. A single confi dence interval is suffi  cient, because the upper and 
lower confi dence bounds from a single interval are suffi  cient to determine the 
entire P-value function. If we know the lower and upper limit to the confi dence 
interval, we know the location of the P-value function along the horizontal axis 

Figure 8–3  P-value function for the data from Table 8–1, showing how nested 
 confi dence intervals can be read from the curve.
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and the spread of the function. Th us, from a single confi dence interval, we can 
construct an entire P-value function. We do not need to go through the labor of 
calculating this function if we can visualize the two messages that it can convey 
directly from the confi dence interval.

Regrett ably, confi dence intervals are too oft en not interpreted with the image 
of the corresponding P-value function in mind. A confi dence interval can unfor-
tunately be used as a surrogate test of statistical signifi cance: a confi dence interval 
that contains the null value within it corresponds to a signifi cance test that is “not 
signifi cant,” and a confi dence interval that excludes the null value corresponds to 
a signifi cance test that is “signifi cant.” Th e allure of signifi cance testing is so strong 
that many people use a confi dence interval merely to determine “signifi cance” and 
thereby ignore the potentially useful quantitative information that the confi dence 
interval provides.

Example: Is Flutamide Effective in Treating Prostate Cancer?

In a randomized trial of fl utamide, which is used to treat prostate cancer, 
Eisenberger et al.2 reported that patients who received fl utamide fared no bett er 
than those who received placebo. Th eir interpretation that fl utamide was ineff ec-
tive contradicted the results of 10 previous studies, which collectively had pointed 
to a modest benefi t. Th e 10 previous studies, on aggregate, indicated about an 
11% survival advantage for patients receiving fl utamide [odds ratio (OR) = 0.89]. 
Th e actual data reported by Eisenberger et al. are given in Table 8–3. From these 
data, we can calculate an OR of 0.87, almost the same result (slightly bett er) as 
was obtained in the 10 earlier studies. (We usually calculate odds ratios only for 
case-control data; for data such as these from an experiment, we normally calcu-
late risk ratios or mortality rate ratios. Th e meta-analysis of the fi rst 10 experi-
ments on fl utamide, however, reported only the OR, so we use that measure also 
for consistency.) Why did Eisenberger et al.2 interpret their data to indicate no 
eff ect when the data indicated about the same benefi cial eff ect as the 10 previous 
studies? Th ey based their conclusion solely on a test of statistical signifi cance, 
which gave a result of P = .14. By focusing on statistical signifi cance testing, 
they ignored the small benefi cial eff ect in their data and came to an incorrect 
interpretation.

Table 8–3 Summary of Survival Data 
from the Study of Flutamide and 

Prostate Cancer

Flutamide Placebo
Died 468 480
Survived 229 205
Total 697 685

OR = 0.87
95% CI: 0.70–1.10

Data from Eisenberger et al.2
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Th e original 10 studies on fl utamide were published in a review that sum-
marized the results.3 It is helpful to examine the P-value function from these 10 
studies and to compare it with the P-value function aft er adding the study of 
Eisenberger et al.2 to the earlier studies (Fig. 8–4).4 Th e only change apparent 
from adding the data of Eisenberger et al.2 is a slightly improved precision of the 
estimated benefi t of fl utamide in reducing the risk of dying from prostate cancer.

Example: Is St. John’s Wort Effective in Relieving 

Major Depression?

Extracts of St. John’s Wort (Hypericum perforatum), a small, fl owering weed, have 
long been used as a folk remedy. It is a popular herbal treatment for depression. 
Shelton et al.5 reported the results of a randomized trial of 200 patients with major 
depression who were randomly assigned to receive either St. John’s Wort or pla-
cebo. Of 98 who received St. John’s Wort, 26 responded positively, whereas 19 of 
the 102 who received placebo responded positively. Among those whose depres-
sion was relatively less severe at entry into the study (a group that the investi-
gators thought might be more likely to show an eff ect of St. John’s Wort), the 

Figure 8–4  P-value functions for the fi rst 10 studies of fl utamide and prostate cancer 
survival (solid line)3 and for the fi rst 11 studies (dashed line) aft er adding the study by 
Eisenberger et al.2 Th e study by Eisenberger et al. did not shift  the overall fi ndings 
toward the null value but instead shift ed the overall fi ndings a minuscule step away 
from the null value. Nevertheless, because of an inappropriate reliance on statistical 
signifi cance testing, the data were incorrectly interpreted as refuting earlier studies and 
indicating no eff ect of fl utamide, despite the fact that the fi ndings replicated previous 
results. (Reproduced with permission from Rothman et al.4)
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proportion of patients who had remission of disease was twice as great among the 
59 patients who received St. John’s Wort as among the 50 who received a  placebo 
(Table 8–4).

In Table 8–4, risk ratio refers to the “risk” of having a remission in symptoms, 
which is an improvement, so any increase above 1.0 indicates a benefi cial eff ect 
of St. John’s Wort; the RR of 2.0 indicates that the probability of a remission 
was twice as great for those receiving St. John’s Wort. Despite these and other 
encouraging fi ndings in the data, the investigators based their interpretation on a 
lack of statistical signifi cance and concluded that St. John’s Wort was not eff ec-
tive. A look at the P-value function that corresponds to the data in Table 8–4 is 
instructive (Fig. 8–5).

Figure 8–5 shows that the data regarding remissions among the less severely 
aff ected patients hardly support the theory that St. John’s Wort is ineff ective. Th e 
data for other outcomes were also generally favorable for St. John’s Wort but, for 

Table 8–4 Remissions Among Patients 
with Less Severe Depression

St. John’s Wort Placebo
Remission 12  5
No remission 47 45
Total 59 50

RR = 2.0
90% CI: 0.90–4.6

Data from Shelton et al.5

Figure 8–5  P-value function for the eff ect of St. John’s Wort on remission from major 
depression among relatively less severely aff ected patients. (Data from Shelton et al.5)
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almost all comparisons, not statistically signifi cant. Instead of concluding, as they 
should have, that these data are readily compatible with moderate and even strong 
benefi cial eff ects of St. John’s Wort, the investigators drew the wrong conclusion, 
based on the lack of statistical signifi cance in the data. Although the P value from 
this study is not statistically signifi cant, the P value for the null hypothesis has the 
same magnitude as the P value testing the hypothesis that the RR = 4.1 (on the 
graph, the dashed line intersects the P-value function at RR = 1.0 and RR = 4.1). 
Although the investigators interpreted the data as supporting the hypothesis that 
RR = 1.0, the data are equally compatible with values of 1.0 or 4.1. Furthermore, 
it is not necessary to construct the P-value function in Figure 8–5 to reach this 
interpretation. An investigator need look no farther than the confi dence interval 
given in Table 8–4 to appreciate the location and the spread of the underlying 
P-value function.

SIMPLE APPROACHES TO CALCULATING 

CONFIDENCE INTERVALS

Th e following chapters present basic methods for analyzing epidemiologic data. 
Th e focus is on estimating epidemiologic measures of eff ect, such as risk and rate 
ratios and, in cohort studies, risk and rate diff erences as well. Th e overall strategy 
in a data analysis is to obtain a good point estimate of the epidemiologic measure 
that we seek and an appropriate confi dence interval.

Confi dence intervals are usually calculated on the presumption that the esti-
mate comes from the statistical distribution called a normal distribution, the usual 
bell-shaped curve. Estimates based on the normal distribution are always reason-
able with enough data. When data are sparse, it may be necessary to use more 
specialized formulas for small numbers (usually called exact methods), but such 
situations are the exception rather than the rule. A given normal distribution is 
described with regard to its mean, or center point, and its spread, or standard 
deviation (standard error is an equivalent term for the standard deviation in the 
applications discussed here).

In estimating the confi dence interval for an incidence rate diff erence (RD), we 
can use basic formulas to calculate an estimate of the standard deviation (SD) of 
the RD from the data, and from the SD, we can calculate a confi dence interval 
around the point estimate. To calculate a 95% confi dence interval, we would add 
and subtract 1.96 × SD to the point estimate to get the 95% confi dence limits. 
Th e value 1.96 is a constant multiplier for the SD that determines an interval 
encompassing 95% of the normal distribution. For a diff erent level of confi dence 
for the interval, we would use a diff erent multiplier. For example, the multiplier 
1.645 corresponds to 90% confi dence.

We have the following formula for a 90% confi dence interval for the rate 
diff erence: 

 RD RD RD SDL U, .RD RDURD = ×RD .RD ± 1 645  [8–1]

In Equation 8–1,  RDL refers to the lower confi dence limit, obtained using the 
minus sign, and RDU refers to the upper confi dence limit, obtained by using the 
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Statistical Significance Testing Versus Estimation

Statistical signifi cance testing is so ingrained that it is almost ubiquitous. 
Even those who acknowledge the impropriety of basing a conclusion on 
the results of a statistical signifi cance test oft en fall into the bad habit of 
equating a lack of signifi cance with a lack of eff ect and the presence of sig-
nifi cance with “proof ” of an eff ect. Signifi cance testing evaluates only one 
theory that is an alternative to causation to explain the data, the theory 
that chance accounts for the fi ndings. Nonchance alternative theories, such 
as confounding, selection bias, and bias from measurement error, are all 
more important to consider. For example, if an investigator fi nds a non-
signifi cant result and consequently does not explore it further, he or she 
may be ignoring an important and even strong association that has been 
underestimated because of confounding or nondiff erential misclassifi cation. 
To evaluate these issues, it is crucial to take a quantitative view of the data 
and their interpretation. Th at is, it is essential to think in terms of estima-
tion rather than testing.

Signifi cance testing is qualitative, not quantitative. When P values are cal-
culated, they are oft en reported using inequalities, such as P < .05, rather 
than equalities, such as P = .023. Nothing is gained by converting the con-
tinuous P-value measure into a dichotomy, but even the numeric P value 
is far inferior to an estimate of eff ect, such as that obtained from a confi -
dence interval. Estimation using confi dence intervals allows the investiga-
tor to quantify separately the strength of a relation and the precision of an 
estimate and to reach a more reasonable interpretation. Th e key issue in 
interpreting a confi dence interval is not to take the limits of the interval 
too literally. Instead of sharp demarcation boundaries, they should be con-
sidered gray zones. Ideally, a confi dence interval should be viewed as a tool 
to conjure up an image of the full P-value function, a smooth curve with no 
boundary on the estimate. In most instances, there is no need for any test 
of statistical signifi cance to be calculated, reported, or relied on, and we are 
much bett er off  without them.

plus sign. We use the point estimate of RD as the center point for the interval. If 
95% confi dence limits had been desired, the value 1.96 could be substituted for 
1.645. Th e values for the RD point estimate and for the SD would be calculated 
from the data, as is demonstrated in subsequent chapters.

Equation 8–1 is the same general form that would be used to calculate risk 
diff erences or rate diff erences. We modify this equation slightly, however, when 
we estimate risk or rate ratios. Th e reason is that for small or moderate amounts 
of data, the distribution of ratio measures is asymmetrically skewed toward large 
values. To counteract the skewness, it is customary to set the confi dence limits on 
the log scale (ie, aft er a logarithmic transformation). For the RR, we can use the 
following equation to determine a 90% confi dence interval. 

ln( ), ln( ) ln( ) 1.645 (ln( ))L U), ln(RR RR SD RRln( )RR ×
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Th e term ln() refers to the natural logarithm transformation. A natural loga-
rithm is a logarithm using the base e ≈ 2.7183. Because this equation gives confi -
dence limits on the log scale, the limits need to be converted back to the RR scale 
aft er they are calculated, by reversing the transformation, which involves taking 
antilogarithms. Th e whole process can be summarized by Equation 8–2 (for a 
90% confi dence interval): 

RR RR RR RR
L URR 1.645 SD(ln( ))), = ± ×1.645e(ln( )  [8–2]

In the next chapter, we apply these equations to the analysis of simple epide-
miologic data.

QUESTIONS

1. Why should confi dence intervals and P values have a diff erent interpreta-
tion in a case-control study or a cohort study than a randomized  experiment? 
What is the eff ect of the diff erence on the interpretation?

2. Which has more interpretive value, a confi dence interval, a P value, or a 
statement about statistical signifi cance? Explain.

3. In what way is a P value inherently confounded?

4. What are the two main messages that should come with a statistical 
 estimate? How are these two messages conveyed by a P-value function?

5. Suppose that a study showed that former professional football players 
experienced a rate ratio for coronary heart disease of 3.0 compared with 
 science teachers of the same age and sex, with a 90% confi dence interval of 
1.0 to 9.0. Sketch the P-value function. What is your interpretation of this 
fi nding, presuming that there is no confounding or other obvious bias that 
distorts the results?

6. One argument sometimes off ered in favor of statistical signifi cance testing 
is that it is oft en necessary to come to a yes-or-no decision about the eff ect 
of a given exposure or therapy. Signifi cance testing has the apparent ben-
efi t of providing a dichotomous interpretation that could be used to make a 
 yes-or-no decision. Comment on the validity of the argument that a decision 
is sometimes needed based on a research study. What would be the pros 
and cons of using statistical signifi cance to judge whether an exposure or 
a therapy has an eff ect?

7. Are confi dence intervals always symmetric around the point estimate? 
Why or why not?

8. What is the problem with using a confi dence interval to determine whether 
or not the null value lies within the interval?
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9. Consider two study designs, A and B, that are identical apart from the 
study size. Study A is planned to be much larger than study B. If both 
 studies are conducted, which of the following statements is correct? (1) Th e 
90% confi dence interval for the rate ratio from study A has a greater prob-
ability of including the true rate ratio value than the 90% confi dence interval 
from study B. (2) Th e 90% confi dence interval for the rate ratio from study 
A has a smaller probability of including the true rate ratio value than the 
90% confi dence interval from study B. (3) Th e 90% confi dence intervals for 
the rates ratio from study A and study B have equal probabilities of including 
the true rate ratio value. Before answering, be sure to take into account the 
fact that no study is without some bias.
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Analyzing Simple 

Epidemiologic Data

Th is chapter provides the statistical tools to analyze simple epidemiologic data, 
such as crude data from a study with no confounding. Because our emphasis is 
on estimation rather than statistical signifi cance testing, we concentrate on formu-
las for obtaining confi dence intervals for basic epidemiologic measures, although 
we also include formulas to derive P values.

Th e equations presented in this chapter give only approximate results and are 
valid only for data with suffi  ciently large numbers. More accurate estimates can 
be obtained by using what is called exact methods. It is diffi  cult to determine a 
precise threshold of data above which we can say that the approximate results are 
good enough and below which we would say that exact calculations are needed. 
Fortunately, even for studies with modest numbers, the interpretation of results 
rarely changes when exact rather than approximate results are used to estimate 
confi dence intervals. For those who inappropriately place emphasis on whether 
a confi dence interval contains the null value (thereby converting the confi dence 
interval into a statistical test), it may appear to matt er if the limit changes its value 
slightly with a diff erent equation and the limit is near the null value—a situation 
equivalent to being on the borderline of statistical signifi cance. As explained in 
the previous chapter, however, placing emphasis on the exact location of a con-
fi dence interval, equivalent to placing emphasis on statistical signifi cance, is an 
inappropriate and potentially misleading way to interpret data. With proper inter-
pretation, which ignores the precise location of a confi dence limit and instead 
considers the general width and location of an interval, the diff erence between 
results from approximate and exact formulas becomes much less important.

CONFIDENCE INTERVALS FOR MEASURES 

OF DISEASE FREQUENCY

Risk Data and Prevalence Data

Suppose we observe that 20 people of 100 become ill with infl uenza during the 
winter season. We would estimate the risk, R, of infl uenza to be 20/100, or 0.2. 
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To obtain a confi dence interval, we need to apply a statistical model. For risk data 
or prevalence data, the model usually applied is the binomial model. To use the 
model to obtain a confi dence interval, it helps to have some simple notation. We 
can use a to represent cases and N to represent people at risk. Using this nota-
tion, our estimate of risk is the number of cases divided by the total number of 
people at risk: R = a/N. We can obtain a confi dence interval from the following 
equation: 

 RL, RU = R ± Z ⋅ SE(R) [9–1]

In Equation 9–1, the minus sign is used to obtain the lower confi dence limit 
and the plus sign is used to obtain the upper confi dence limit. Z is a fi xed value, 
taken from the standard normal distribution, that determines the confi dence level. 
If Z is set at 1.645, the result is a 90% confi dence interval; if it is set at 1.96, the 
result is a 95% confi dence interval. SE(R) is the standard error of R. Th e standard 
error is a measure of the statistical variability of the estimate. Under the binomial 
model, the standard error of R would be 

SE( )
( )a(

N
= 3

Example: Confi dence Limits for a Risk or Prevalence

Using the following equation with the example of 20 cases of infl uenza among 
100 people, we can calculate a 90% confi dence interval for the risk as follows. 
Th e lower bound would be

R R ZL −R = =⋅=
⋅

SS ( )R( )RR .0 2. 0 1−− 645
20 80
100

0 1. 33

Th e upper bound could be obtained by substituting a plus sign for the minus 
sign in the calculation. Making this substitution gives a value 0.27 for the upper 
bound. With 20 infl uenza cases in a population of 100 at risk, the 90%  confi dence 
interval for the risk estimate of 0.2 is 0.13 to 0.27.

Incidence Rate Data

For incidence rate data, we use a to represent cases and PT to represent  person-time. 
Although the notation is similar to that for risk data, these data diff er conceptually 
and statistically from the binomial model used to describe risk data. For binomial 
data, the number of cases cannot exceed the total number of people at risk. In 
contrast, for rate data, the denominator does not relate to a specifi c number of 
people but rather to a time total. We do not know from the value of the person-
time denominator, PT, how many people might have contributed time.

For statistical purposes, we invoke a model for incidence rate data that allows 
the number of cases to vary without any upper limit. It is the Poisson model. 
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We take a/PT as the estimate of the disease rate, and we calculate a confi dence 
interval for the rate using Equation 9–1 with the following standard error: 

SE( )
a

PT
= 2

Do Rates Always Describe Population Samples?

Some theoreticians propose that if a rate or risk is measured in an entire 
population, there is no point to calculating a confi dence interval, because a 
confi dence interval is intended to convey only the imprecision that comes 
from taking a sample from a population. According to this reasoning, if the 
entire population is measured instead of a sample, there is no sampling error 
to worry about and therefore no confi dence interval to compute. Th ere is 
another side to this argument, however. Others hold that even if the rate 
or risk is measured in an entire population, that population represents only 
a sample of people from a hypothetical superpopulation. In other words, 
the study population, even if enumerated completely without any sampling, 
represents merely a biologic sample of a larger set of people; therefore, a 
confi dence interval is justifi ed.

Th e validity of each argument may depend on the context. If one is 
measuring voter preference, it is the actual population in which one is 
interested, and the fi rst argument is reasonable. For biologic phenomena, 
however, what happens in an actual population may be of less interest 
than the biologic norm that describes the superpopulation. Th erefore, for 
 biologic phenomena the second argument is more compelling.

Example: Confi dence Limits for an Incidence Rate

Consider as an example a cancer incidence rate estimated from a registry that 
reports 8 cases of astrocytoma among 85,000 person-years at risk. Th e rate is 
8/85,000 person-years, or 9.4 cases/100,000 person-years. A lower 90%  confi dence 
limit for the rate would be estimated as

R R ZL person-years person-year
−R = − ⋅= −SS ( )R( )RR

,
.

( ,
8

85 000
1 645

8
000 ss

person-years

)

. / ,

2

3. 100 000=

Using the plus sign instead of the minus sign in the equation gives 14.9/100,000 
person-years for the upper bound.

CONFIDENCE INTERVALS FOR MEASURES OF EFFECT

Studies that measure the eff ect of an exposure involve the comparison of two or 
more groups. Cohort studies may be conducted using a fi xed follow-up period for 
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each person. Th ese studies allow direct calculation of risks, which may then be 
compared. Alternatively, cohort studies may allow for diff erent follow-up times for 
each person, giving rise to data from which incidence rates may be estimated and 
compared. Case-control studies also come in more than one variety, depending 
on how the controls are sampled. Usually, the analysis of case-control studies is 
based on a single underlying statistical model that describes the statistical behav-
ior of the odds ratio. Prevalence data, obtained from surveys or cross-sectional 
studies, usually may be treated as risk data for statistical analysis because, like 
risk data, they are expressed as proportions. Similarly, case-fatality rates, which are 
more aptly described as data on risk of death among those with a given disease, 
may usually be treated as risk data.

Cohort Studies with Risk Data or Prevalence Data

Consider a cohort study of a dichotomous exposure, classifi ed into exposed and 
unexposed. If the study followed all subjects for a fi xed period of time and there 
were no important competing risks and no confounding, we could display the 
essential data as follows:

Exposed Unexposed
Cases a b
People at risk N1 N0

From this table, it is easy to estimate the risk diff erence, RD, and the risk 
ratio, RR:

RD
a

N
b

N
= −

1 0N

and

RR
a

N
b

N
=

1 0N

To apply Equation 8–1 and 8–2 to get confi dence intervals for the risk diff er-
ence and the risk ratio, we need formulas for the standard error of the RD and 
the  ln(RR):

 
SE( )

( ) ( )a(
N

b(
N

= +1

1
3

0

0
3  [9–2]

and

 
SE(ln( ))RR

a N b N
= − + −1 1 1 1

1 0b N
 [9–3]
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Example: Confi dence Limits for Risk Difference and Risk Ratio

As an example of risk data, consider Table 9–1, which describes recurrence risks 
among women with breast cancer treated either with tamoxifen or with a combina-
tion of tamoxifen and radiotherapy. From the data in Table 9–1, we can calculate 
a risk of recurrence of 321/686 = 0.47 among women treated with tamoxifen and 
radiotherapy and a risk of 411/689 = 0.60 among women treated with tamoxifen 
alone. Th e risk diff erence is 0.47 − 0.60 = −0.13, with the minus sign indicating 
that the treatment group receiving both tamoxifen and radiotherapy had the lower 
risk. To obtain a 90% confi dence interval for this estimate of risk diff erence, we 
use Equation 8–1 and 9–2 as follows:

RDL = − +

= − =

0 13 1− 645
321 365

686
411 278

689

0 13 1− 645 0 027

3 3+
689

.13 1

.13 1 .

⋅ ⋅365 411

−− 0 17

RDU = − +

= − =

0 13 1+ 645
321 365

686
411 278

689
0 13 1+ 645 0 027

3 3+
689

.13 1+

.13 1+ .

⋅ ⋅365 411

−= −−− 0 08

Th is calculation gives 90% confi dence limits around −0.13 of −0.17 and −0.08. 
Th e 90% confi dence interval for the risk diff erence ranges from a risk that is 17% 
lower in absolute terms to a risk that is 8% lower in absolute terms for women 
receiving the combined tamoxifen and radiotherapy treatment.

We can also compute the risk ratio and its confi dence interval from the 
same data. Th e risk ratio is (321/686)/(411/689) = 0.78, indicating that the 
group receiving combined treatment faces a risk of recurrence that is 22% lower 
(1 − 0.78) relative to the risk of recurrence among women receiving tamox-
ifen alone. Th e 90% lower confi dence bound for the risk ratio is calculated as 
follows:

RRL =

=

− + −

−

e

e

ln( . ) .

. .

7. 8)− 645
1

321
1

686
1

411
1

689

0 2. 4 1− 645 0 051

⋅

⋅ = === −e 0 327 0 72.

Substituting a plus sign for the minus sign before the Z multiplier of 1.645 gives 
0.85 for the upper limit. Th e 90% confi dence interval for the risk ratio estimate of 

Table 9–1 Risk of Recurrence of Breast Cancer in 
a Randomized Trial of Women Treated with Tamoxifen 

and Radiotherapy or Tamoxifen Alone

Tamoxifen and Radiotherapy Tamoxifen Only
Women with recurrence 321 411
Total women treated 686 689

Data from Feychting et al.1
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0.78 is 0.72 to 0.85, which is equivalent to saying that the benefi t of combined 
treatment ranges from a 28% lower risk to a 15% lower risk, measured in relative 
terms. (It is common when describing a reduced risk to convert the risk ratio to a 
relative decrease in risk by subtracting the risk ratio from unity; a lower limit for 
the risk ratio equal to 0.72 indicates a 28% lower risk because 1 − 0.72 = 0.28, 
or 28%.) Keep in mind that these percentages indicate a risk measured in relation 
to the risk among those receiving tamoxifen alone: the 28% lower limit refers to a 
risk that is 28% lower than the risk among those receiving tamoxifen alone.

Confidence Intervals Versus Confidence Limits

A confi dence interval is a range of values about a point estimate that indi-
cates the degree of statistical precision that describes the estimate. Th e 
level of confi dence is set arbitrarily, but for any given level of confi dence, 
the width of the interval expresses the precision of the measurement. A 
wider interval implies less precision, and a narrower interval implies more 
precision. Th e upper and lower boundaries of the interval are the  confi dence 
limits.

Cohort Studies with Incidence Rate Data

For cohort studies that measure incidence rates, we use the following notation:

Exposed Unexposed
Cases a b
People-time at risk PT1 PT0

Th e incidence rate among exposed is a/PT1, and that among unexposed is 
b/PT0. To obtain confi dence intervals for the incidence rate diff erence (ID), 
a/PT1 − b/PT0, and the incidence rate ratio (IR), (a/PT1)/(b/PT0), we use the 
following equations for the standard error of the rate diff erence and the logarithm 
of the incidence rate ratio: 

 
SE( )

a
PT

b
PT

= +
1TT 2

0TT 2  [9–4]

 
SE(ln( ))IR

a b
= +1 1  [9–5]

Example: Confi dence Limits for Incidence Rate Difference 

and Incidence Rate Ratio

Th e data in Table 9–2 are taken from a study by Feychting et al.1 that compared 
cancer occurrence among the blind with occurrence among those who were not 
blind but had severe visual impairment. Th e study hypothesis was that a high 
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circulating level of melatonin protects against cancer. Melatonin production is 
greater among the blind because visual detection of light suppresses melatonin 
production by the pineal gland.

From these data, we can calculate a cancer rate of 136/22,050 person-years = 
6.2/1000 person-years among the blind, compared with 1709/127,650 person-
years = 13.4/1000 person-years among those who were visually impaired but 
not blind. Th e incidence rate diff erence (ID) is (6.2 − 13.4)/1000 person-
years = −7.2/1000 person-years. Th e minus sign indicates that the rate is lower 
among the group with total blindness, which is here considered to be the exposed 
group. To get a 90% confi dence interval for this estimate of rate diff erence, we use 
Equations 8–1 in combination with Equation 9–4, as follows.
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= −
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Th is calculation gives 90% confi dence limits around the rate diff erence, −7.2/1000 
person-years, of −8.2/1000 person-years and −6.2/1000 person-years.

Th e incidence rate ratio for the data in Table 9–2 is (136/22,050)/
(1709/127,650) = 0.46, indicating a rate among the blind that is less than one 
half that among the comparison group. Th e lower limit of the 90% confi dence 
interval for this rate ratio is calculated as follows:

IRL

0.775 0.92

=

=

e

e e=

ln( . ) .
,

4. 6) 645
1

136
1

1 709
⋅645 +

− −0 775 1.645⋅0.089 − 22 = 0 40

A corresponding calculation for the upper limit gives IRU = 0.53, for a 90% 
confi dence interval around the incidence rate ratio of 0.46 of 0.40 to 0.53.

Table 9–2 Incidence Rate of Cancer Among a Blind 
Population and a Population That Is Visually 

Severely Impaired but not Blind

Totally Blind Visually Severely Impaired 
but Not Blind

Cancer cases 136 1,709
Person-years 22,050 127,650

Data from Petitt i et al.2
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Case-Control Studies

Th is and later chapters deal with methods for the analysis of a density case- control 
study or a cumulative case-control study. Th e analysis of case-cohort studies and 
case-crossover studies is slightly diff erent and is left  for more advanced texts. For 
the data display from a case-control study, we use the following notation:

Exposed Unexposed
Cases a b
Controls c d

Th e primary estimate of eff ect that we can derive from these data is the inci-
dence rate ratio or risk ratio, depending on how controls were sampled. In either 
case, the eff ect measure is estimated from the odds ratio (OR), ad/bc. We obtain 
an approximate confi dence interval for the odds ratio using the following  equation 
for the standard error of the logarithm of the odds ratio: 

SE(ln( ))OR
a b c d

= + + +1 1 1 1
 [9–6]

Example: Confi dence Limits for the Odds Ratio

Consider as an example the data in Table 9–3 on amphetamine use and stroke in 
young women, from the study by Petitt i et al.2 For these case-control data, we can 
calculate an odds ratio (OR) of (10)(1,016)/[(5)(337)] = 6.0. An approximate 
90% confi dence interval for this odds ratio can be calculated from the standard 
error Equation 9–6 in combination with Equation 8–1: 

ORL =
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+ + +

−

e

e e=

ln( . ) .−
,

. . .

0. 645
1

10
1
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1
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1
1 016

1 797 1 645 0 551⋅ 11 797 0 907 0 890 2 4. .797 0 .− = =e

Using a plus sign instead of the minus sign in front of the Z multiplier of 1.645, 
we get ORU = 14.9. Th e point estimate of 6.0 for the odds ratio is the geometric 
mean between the lower limit and the upper limit of the confi dence interval. Th is 
relation applies whenever we set confi dence intervals on the log scale, which we 
do for all approximate intervals for ratio measures. Th e limits are symmetrically 
placed about the point estimate on the log scale, but the upper bound appears 

Table 9–3 Frequency of Recent Amphetamine Use 
Among Stroke Cases and Controls Among Women 

Between 15 and 44 Years Old

Amphetamine Users No Amphetamine Use
Stroke cases 10   337
Controls  5 1,016

Adapted from Petitt i et al.2
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farther from the point estimate on the untransformed ratio scale. Th is asymme-
try on the untransformed scale for a ratio measure is especially apparent in this 
example because the OR estimate is large.

CALCULATION OF P  VALUES

Although the investigator is bett er off  relying on estimation rather than tests of 
statistical signifi cance for inference, for completeness, we give the basic formulas 
from which traditional P values can be derived that test the null hypothesis that 
exposure is not related to disease.

Risk Data

For risk data, we use the following expansion of the notation used earlier in the 
chapter:

Exposed Unexposed Total
Cases a b M1

Noncases c d M0

People at risk N1 N0 T

Th e P value testing the null hypothesis that exposure is not related to disease 
can be obtained from the following equation for χ:

χ =
−a

N M
T

N N M M
T

1 1M

1 0N 1 0M
2 ( )−T 1

 [9–7]

For the data in Table 9–1, Equation 9–7 gives χ as follows:

χ =
−

= −321
686 732

1375
686 689 732 643

1375 1374

321 365 20
85 64

2

⋅

⋅ ⋅689 ⋅
⋅

.
.

= −== 4 78

Th e P value that corresponds to this χ statistic must be obtained from tables 
of the standard normal distribution (see Appendix). For a χ of −4.78 (minus sign 
indicates only that the exposed group had a lower risk than the unexposed group), 
the P value is very small (roughly 0.0000009). Th e Appendix tabulates values of 
χ only from −3.99 to +3.99.

Incidence Rate Data

For incidence rate data, we use the following notation, which is an expanded 
 version of the table we used earlier:
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Exposed Unexposed Total
Cases a b M
Person-time PT1 PT0 T

for which we can use the following equation to calculate χ:

 

χ =
−a

PT
T

M

M
PT
T

PT
T

1TT

1TT 0TT  [9–8]

Applying this equation to the data of Table 9–2 gives the following result for χ:

χ =
−

=
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Th is χ is so large in absolute value that the P value cannot be readily calculated. 
Th e P value corresponding to a χ of −8.92 is much smaller than 10−20, implying 
that the data are not readily consistent with a chance explanation.

Case-Control Data

For case-control data, we can apply Equation 9–7 to the data in Table 9–3.

χ =
−

= − =
10

15 347
1368

15 1353 347 1021
1368 1367

10 3 80
2 81

3 70

2

⋅

⋅ ⋅1353 ⋅
⋅

From the appendix table, we see that this result corresponds to a P value of 
0.00022.

QUESTIONS

1. With person-time data, the numerators of rates are considered Poisson 
random variables, and the denominators are treated as if they were constants, 
not subject to variability. Nevertheless, the person-time must be measured 
and is therefore subject to measurement error. Why are the denominators 
treated as constants if they are subject to measurement error? What would 
be the eff ect on the confi dence interval of taking this measurement error 
into account instead of ignoring it?

2. Th e approximate formulas for confi dence intervals described in this  chapter 
do not work well with small numbers. Suppose 20 people are  followed, 
and 1 develops a disease of interest, giving a risk estimate of 1/20 = 0.05. 
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Th e binomial model would give a 90% confi dence interval for the risk from 
−0.03 to 0.13. Th e lower limit implies a negative risk, which does not make 
sense. Th e lower limit should never go below zero, and the upper limit 
should never go above 1. Th ese risk estimates, based on only one case, are 
too small for these approximate formulas. Instead, exact formulas based on 
the binomial distribution can be used. Would you expect a confi dence inter-
val for risk calculated from an exact formula to be symmetric around the 
point estimate (0.05), as the approximate confi dence interval is?

3. Th ere is another approximation for obtaining the confi dence interval 
for a binomial proportion that comes closer to the exact method. It is an 
 expression that was proposed in 1927 by Wilson3:

N
N Z

a
N

Z
N

Z
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N
Z
N

+ ± +
⎡
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⎥
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22 4N N 3
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In this formula, a is the number of cases (numerator), N is the number at 
risk (denominator), and Z is the multiplier from the standard normal distri-
bution that corresponds to the confi dence level. Th e ± sign gives the lower 
bound when the minus sign is used and the upper bound when the plus sign 
is used. Even with only 1 case among 20 people, this formula gives results 
very close to the exact confi dence interval, and its accuracy only improves 
with larger numbers. What is the 90% confi dence interval for the risk esti-
mate of 1/20 using Wilson’s equation? If Wilson’s equation is so accurate, 
why do you suppose that it has not been adopted more widely as the usual 
approach to gett ing confi dence limits for a binomial variable?

4. Why are the estimation equations to obtain confi dence intervals the same 
for prevalence data and for risk data (see Equations 9–2 and 9–3)?

5. Why do the estimation equations for confi dence intervals diff er for risk 
data and case-control data (see Equations 9–3 and 9–6), whereas the for-
mula for obtaining a χ statistic to test the null hypothesis is the same for risk 
data and case-control data (see Equation 9–7)?

6. Does it lend a false sense of precision to present a 90% confi dence interval 
instead of a 95% confi dence interval?

7. Calculate a 90% confi dence interval and a 95% confi dence interval for the 
odds ratio from the following crude case-control data relating to the eff ect of 
exposure to magnetic fi elds on risk of acute leukemia in children4:

Median Nightt ime Exposure

≥2 μT <2 μT Total
Cases  9 167 176
Controls  5 409 414
Total 14 576 590
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Controlling Confounding by 

Stratifying Data

In an earlier chapter, we saw that the apparent eff ect of birth order on the prev-
alence at birth of Down syndrome (see Fig. 7–3 in Chapter 7) is att ributable 
to confounding. As demonstrated in Figure 7–4, maternal age has an extremely 
strong relation to the prevalence of Down syndrome. Figure 7–5, which classifi es 
the Down syndrome data simultaneously by birth order and maternal age, shows 
that there is a maternal-age eff ect at every level of birth order, but no clear birth 
order eff ect at any level of maternal age. Th e birth order eff ect in the crude data 
is confounded by maternal age, which is correlated with birth order.

Figure 7–5 is a graphic demonstration of stratifi cation. Stratifi cation is used 
here to mean the cross-tabulation of data; usually, in this context, stratifi cation 
refers to cross-tabulation of data on exposure and disease by categories of one or 
more other variables that are potential confounding variables. Another example 
of stratifi cation was discussed in Chapter 1, which introduced the concept of 
confounding. Stratifi cation is an eff ective and straightforward means to control 
confounding. In this chapter, we explore stratifi cation in greater detail and present 
formulas to derive an unconfounded estimate of an eff ect from stratifi ed data.

AN EXAMPLE OF CONFOUNDING

Consider another example of confounding. Th e data in Table 10–1 are mor-
tality rates for male and female patients with trigeminal neuralgia, a recurrent 
 paroxysmal pain of the face.

Th e rate ratio of 1.10 indicates a slightly greater mortality rate for males than for 
females in these crude data. (Th e male group may be thought of as the exposed 
group and the female group as the unexposed group to make this example analo-
gous to other sett ings in which the exposure variable is a specifi c agent.) Th is esti-
mate of the association between being male and death among trigeminal neuralgia 
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patients is confounded. Table 10–2 shows the data stratifi ed into two age strata, 
which are split at age 65. Th e age stratifi cation reveals several interesting things 
about the data. First, as might have been predicted, patients in the older age group 
have much higher death rates than those in the younger age group. Th e striking 
increase in risk of death with age is typical of any population of older adults, 
even adults in the general population. Second, the stratifi cation shows a diff er-
ence in the age distribution of the person-time of male and female patients; the 
male person-time is mainly found in the younger than 65 years category, whereas 
the female person-time is predominantly found in the 65 years or older category. 
Th us, the female experience is older than the male experience. Th is age diff erence 
lowers the overall death rate for males relative to females, because to some extent 
comparing the death rate among males with that of females is a comparison of 
young with old. Th ird, in the crude data the rate ratio (male/female) was 1.10, 
but in the two age categories, it was 1.57 and 1.49, respectively. Th is discrepancy 
between the crude rate ratio and the rate ratios for each of the two age catego-
ries is a result of the strong age eff ect and the fact that the female patients tend 
to be older than the male patients. It is a good example of confounding by age, 
in this case biasing the crude rate ratio downward because the male person-time 
 experience is younger than that of the females.

Stratifi cation into age categories allows us to assess the presence of  confounding. 
It also permits us to refi ne the estimate of the rate ratio by controlling age 
 confounding. Later we will show how to remove confounding for this trigeminal 
 neuralgia example and examples of other types of data by using stratifi cation.

Table 10–1 Mortality Rates Among Patients with 
Trigeminal Neuralgia Categorized by Sex1

Males Females
Deaths   90  131
Person-years (pyr) 2465 3946
Mortality rate 36.5/1000 pyr 33.2/1000 pyr
Rate ratio 1.10
90% CI 0.88–1.38

Data from Rothman and Monson.1

Table 10–2 Mortality Rates Among Patients with Trigeminal 
Neuralgia by Sex and Age Category1

Age
<65 Years 65+ Years

Males Females Males Females
Deaths 14 10 76 121
Person-years 1516 1701 949 2245
Mortality rate 
(cases/1000 person-years)

9.2 5.9 80.1 53.9

Rate ratio 1.57 1.49

Data from Rothman and Monson.1
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UNCONFOUNDED EFFECT ESTIMATES AND CONFIDENCE 

INTERVALS FROM STRATIFIED DATA

How does stratifi cation control confounding? Confounding, as explained in 
Chapter 7, comes from the mixing of the eff ect of the confounding variable 
with the eff ect of the exposure. If a variable that is a risk factor for the disease 
is associated with the exposure in the study population, confounding will result. 
Confounding occurs because the comparison of exposed with unexposed people is 
also a comparison of those with diff ering distributions of the confounding factor. 
In the trigeminal neuralgia example, comparing men with women was also a com-
parison of younger people (ie, men in the study) with older people (ie, women in 
the study). Stratifi cation creates subgroups in which the confounding factor either 
does not vary at all or does not vary much. Stratifi cation by nominal scale vari-
ables, such as sex or country of birth, theoretically results in strata in which the 
variables of sex or country of birth do not vary; in actuality, there may still be 
some residual variability because some people may be misclassifi ed into the wrong 
strata. Stratifi cation by a continuously measured variable, such as age, will result in 
age categories within which age can vary, although over a restricted range. With 
either kind of variable, nominal scale or continuous, a stratifi ed analysis proceeds 
under the assumption that within the categories of the stratifi cation variable there 
is no meaningful variability of the potential confounding factor. If the stratifi ca-
tion variable is continuous, such as age, the more categories that are used to form 
strata, the less variability by age there can be within those categories.

In some stratifi ed analyses, the end result is nothing more than the presenta-
tion of the data within each of the strata, with estimates of rates, risks, or eff ect 
estimates for each stratum. Oft en, however, the investigator hopes to summarize 
the relation between exposure and disease over the strata. Th e methods that do 
so compare exposed and unexposed subjects within each stratum and then aggre-
gate the information from these comparisons over all the strata. Th e two basic 
approaches to aggregate the information over strata are referred to as pooling and 
standardization, representing two diff erent methods for combining the data across 
the strata.

Pooling

Pooling is one method for obtaining unconfounded estimates of eff ect across 
a set of strata. When pooling is used, it comes with an important assumption: 
that the eff ect being estimated is constant across the strata. With this assump-
tion, each stratum can be viewed as providing a separate estimate, referred to as 
a stratum-specifi c estimate, of the overall eff ect. Th e principle behind pooling is to 
take an average of these stratum-specifi c estimates of eff ect. Th e average is taken 
as a weighted average, which is a method of averaging that assigns more weight to 
some values than to others. In pooling, the weights are assigned so that the strata 
that provide the most information, which is to say the strata with the most data 
get the most weight. Th is weighting is built directly into the formulas for obtain-
ing the pooled estimate. When the data do not conform to the assumption that 
the eff ect is constant across all strata, pooling is not applicable. In that situation, 
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it is still possible to obtain an unconfounded summary estimate of the eff ect over 
the strata using standardization, which is discussed later.

Cohort Studies with Risk Data or Prevalence Data

Consider risk data; for analytic purposes, prevalence data may be treated the same 
as risk data. We use the same basic notation as we did for unstratifi ed data, but 
we add a stratum-identifying subscript, i, which ranges from 1 to the total number 
of strata. Th e notation for stratum i in a set of strata of risk data is as follows:

Exposed Unexposed Total
Cases ai bi M1i

Noncases ci di M0i

Total at risk N1i N0i Ti

For risk data, we can calculate a pooled estimate of the risk diff erence or the 
risk ratio. Th e pooled risk diff erence may be estimated from stratifi ed data using 
Equation 10–1:
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∑ signifi es summation over all values of the stratum indicator i. Th e subscript 
“MH” for the pooled risk diff erence measure refers to Mantel-Haenszel, indicating 
that the equation is one of a group of equations for pooled estimates that derive 
from an approach that was originally introduced by Mantel and Haenszel.2

Th e pooled risk ratio from stratifi ed risk or prevalence data can be calculated 
by Equation 10–2:
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Example: Stratifi cation of Risk Data

Th e stratifi cation of risk data is illustrated in the example of the University Group 
Diabetes Program (see Tables 7–7 and 7–8 in Chapter 7). For convenience, the 
age-specifi c data are repeated in Table 10–3.

First, we consider the risk diff erence. From the crude data (see right part of 
Table 10–3), the risk diff erence is 4.5%. Contrary to expectations, the tolbuta-
mide group had a greater risk of death than the placebo group, despite the fact 
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that tolbutamide was thought to prevent complications of diabetes that might lead 
to death. Critics of the study believed this fi nding to be erroneous and looked for 
explanations such as confounding that might account for this surprising result. Age 
was one of the possible confounding factors. By chance, the tolbutamide group 
tended to be slightly older than the placebo group. Th is age diff erence is evident 
in Table 10–3: 48% (98/204) of the tolbutamide group is at least 55 years old, 
whereas only 41% (85/205) of the placebo group is at least 55 years old. Older 
people have a greater risk of death, a relation that is also evident in Table 10–3. 
Consider the placebo group: Th e risk of death during the study period was 18.8% 
for the older age group but only 4.2% for the younger age group. We therefore 
suspect that the greater risk of death in the tolbutamide group is in part due to 
confounding by age. We can explore this issue further by obtaining a pooled esti-
mate of the risk diff erence for tolbutamide compared with placebo aft er stratifying 
by the two age strata in Table 10–3.

We obtain a pooled estimate of the risk diff erence by applying Equation 10–1:

RDMH =
+

+
=

8 120 5 106
226

22 85 16 98
183

106 120
226

98 85
183

1 9. 0
⋅ ⋅−120 5 ⋅ ⋅−85 16

⋅ ⋅120 98
3 133 650

56 283 45 519
0 035

+
=.

. .283 45+
.

Th e result, 3.5%, is smaller than the risk diff erence in the crude data, 4.5%. 
Notice that 3.5% is within the narrow range of the two stratum-specifi c risk 
diff erences in Table 10–3, 3.4% for age <55 years and 3.6% for age 55+ years. 
Mathematically, the pooled estimate is a weighted average of the stratum-specifi c 
values, and it will always be within the range of the stratum-specifi c estimates 
of the eff ect. Th e crude estimate of eff ect, however, is not within this range. We 
should regard 3.5% as a more appropriate estimate of the risk diff erence than the 
value of 4.5% from the crude data, because it removes age confounding. Th e crude 
risk diff erence diff ers from the unconfounded estimate of risk diff erence because 
the crude estimate refl ects a combination of the eff ect of tolbutamide (which we 
estimate to be 3.5% from this analysis) and the confounding eff ect of age. Because 
the tolbutamide group is older on average than the placebo group, the risk dif-
ference in the crude data is greater than the unconfounded risk  diff erence. If the 

Table 10–3 Risk of Death for Groups Receiving Tolbutamide or 
Placebo in the University Group Diabetes Program in 19703

Age
Total<55 Years 55+ Years

Tolb. Placebo Tolb. Placebo Tolb. Placebo
Deaths 8 5 22 16 30 21
Total at risk 106 120 98 85 204 205
Risk of death 0.076 0.042 0.224 0.188 0.147 0.102
Risk diff erence 0.034 0.036 0.045
Risk ratio 1.81 1.19 1.44

Data from University Group Diabetes Program.3
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tolbutamide group had been younger than the placebo group, the confounding 
would have worked in the opposite direction, resulting in a lower risk diff erence 
in the crude data than from the pooled analysis aft er stratifi cation.

Residual Confounding

Th e two age categories for the data in Table 10–3 may not be suffi  cient to 
control all of the age confounding in the data. More strata with narrower 
boundaries usually can control confounding more eff ectively than fewer 
strata with broader boundaries. If age strata (or strata by any continuously 
measured stratifi cation factor) are broad, there may be confounding within 
them. A stratifi ed analysis controls only between-stratum confounding, not 
within-stratum confounding. Within-stratum confounding is oft en referred 
to as residual confounding. Th e same term is used to describe confounding 
from factors that are not controlled at all in a study or from factors that are 
controlled but are measured inaccurately.

To avoid within-stratum residual confounding, it is desirable to carve the 
data into more strata and to avoid open-ended strata (eg, age 55+) when 
possible. On the other hand, stratifying too fi nely may stretch the data unrea-
sonably, producing small frequencies of events within cells and leading to 
imprecise results. Finding the best number of strata to use in a given analysis 
oft en requires balancing the need to control confounding against the need to 
avoid random error in the estimation and ends up being a compromise.

Th e unconfounded estimate of the risk diff erence, 3.5%, is unconfounded only 
to the extent that stratifi cation into these two broad age categories removes age 
confounding. It is likely that some residual confounding remains (see box) and 
that the risk diff erence that is fully unconfounded by age is smaller than 3.5%.

We can also calculate a pooled estimate of the risk ratio from the data in 
Table 10–3 using Equation 10–2:

RRMH
. .
.

=
+

+
= +

+

8 120
226

22 85
183

5 106
226

16 98
183

4 248 10 219
2 345

⋅ ⋅120 22

⋅ ⋅106 16 88 568
1 33

.
=

Th is result, like that for the risk diff erence, is closer to the null value than the 
crude risk ratio of 1.44, indicating that some age confounding has been removed 
by the stratifi cation. Th e pooled estimate is within the range of the stratum-
specifi c estimates, as it must be mathematically. Note, however, that for the risk 
ratio, the stratum-specifi c estimates for the data in Table 10–3, 1.81 and 1.19, 
diff er considerably from one another. Th e wide range between them includes the 
pooled estimate and the estimate of eff ect from the crude data. When the stra-
tum-specifi c estimates of eff ect are almost identical, as they are for the risk diff er-
ences in the data in Table 10–3, we have a good idea of what the pooled estimate 
will be just from inspecting the stratum-specifi c data. When the stratum-specifi c 
estimates vary, it is not clear on inspection what the pooled estimate will be.
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As stated earlier, the equations used to obtain pooled estimates are premised 
on the assumption that the eff ect is constant across strata. Th e pooled risk ratio of 
1.33 for the previous example is premised on the assumption that there is a single 
value for the risk ratio that applies to both the young and the old stratum. Th is 
assumption seems reasonable for the risk diff erence calculation, for which the two 
strata gave almost the same estimate of risk diff erence, but how can we use this 
assumption to estimate the risk ratio when the two age strata give such diff erent 
risk ratio estimates? Th e assumption does not imply that the estimates of eff ect 
will be the same or even almost the same in each stratum. It allows for statistical 
variation over the strata. It is possible to conduct a statistical evaluation, called 
a test of heterogeneity or a test of homogeneity, to determine whether the variation 
in estimates from one stratum to another is compatible with the assumption that 
the eff ect is uniform.4 In any event, it is helpful to bear in mind that the assump-
tion that the eff ect is uniform is probably wrong in most situations. It is asking 
too much to have the eff ect be absolutely constant over the categories of some 
stratifi cation factor. It is more realistic to consider the assumption as a fi ctional 
convenience, one that facilitates the computation of a pooled estimate. Unless the 
data demonstrate some clear patt ern of variation that undermines the assumption 
that the eff ect is uniform over the strata, it is usually reasonable to use a pooled 
approach, despite the fi ction of the assumption. In Table 10–3, the variation of 
the risk ratio estimates for the two age strata is not striking enough to warrant 
concern about the assumption that the risk ratio is uniform. If a more formal sta-
tistical evaluation of the assumption of uniformity were undertaken for these data 
(calculating a P value to test the assumption), it would support the view that the 
assumption of a uniform risk ratio for the data in Table 10–3 is reasonable.

Confi dence Intervals for Pooled Estimates

To obtain confi dence intervals for the pooled estimates of eff ect we need variance 
formulas to combine with the point estimates. Table 10–4 lists variance formulas 
for the various pooled estimates that we consider in this chapter.

Although the formulas may look complicated, they are easy to apply. Each 
variance formula corresponds to a particular type of stratifi ed data. First consider 
the pooled risk diff erence. For the data in Table 10–3, we calculated an RDMH of 
0.035. We can derive the variance for this estimate and a confi dence interval by 
applying the fi rst formula from Table 10–4 to the data in Table 10–3.
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Th is gives a standard error of (0.001028)½ = 0.0321 and a 90% confi dence 
interval of 0.035 ± 1.645 ⋅ 0.0321 = 0.035 ± 0.053 = −0.018 to 0.088. Th e 
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confi dence interval is broad enough to indicate a fair amount of statistical 
uncertainty in the fi nding that tolbutamide is worse than placebo. It is notable, 
however, that the data are not very compatible with any compelling benefi t for 
tolbutamide.

A confi dence interval can be constructed for the risk ratio estimated from the 
same stratifi ed data. In that case, an investigator would use the second formula in 
Table 10–4, sett ing limits on the log scale, as we did in the previous chapter for 
crude data. Th e variance for the logarithm of the RRMH can be calculated as
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Th is result gives a standard error for the logarithm of the RR of (0.0671)½ = 
0.259 and a 90% confi dence interval of 0.87 to 2.0.
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Th e interpretation for this result is similar to the interpretation for the confi -
dence interval of the risk diff erence, which is as expected because the two mea-
sures of eff ect and their respective confi dence intervals are alternative ways of 
expressing the same fi nding from the same set of data.

As another example, consider again the data in Table 1–2. We can calculate the 
risk ratio for 20-year risk of death among smokers compared with nonsmokers 
across the seven age strata using Equation 10–2. Th is calculation gives an overall 
Mantel-Haenszel risk ratio of 1.21, with a 90% confi dence interval of 1.06 to 1.38. 
Th e Mantel-Haenszel risk ratio is diff erent from the crude risk ratio of 0.76, and 
as discussed in Chapter 1, it points in the opposite direction.

Cohort Studies with Incidence Rate Data

For rate data, we have the following notation for stratum i of a stratifi ed analysis:

Exposed Unexposed Total
Cases ai bi Mi

Person-time at risk PT1i PT0i Ti

As we did for risk data, we can calculate a pooled estimate of the rate diff er-
ence or the rate ratio. Th e pooled rate diff erence may be estimated from stratifi ed 
data using Equations 10–4 and 10–5:
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A pooled estimate of the rate ratio may be calculated as follows. Consider the rate data 
in Table 10–5. Th ese data come from a study of mortality rates among current users 
and past users of clozapine, a drug used to treat schizophrenia. Clozapine is thought 
to aff ect mortality primarily for current users. Th e experience of past users, who still 
have many of the indications for using the drug but who have for various reasons 
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discontinued it, was used as the reference for judging the eff ect of current use. As for 
the tolbutamide example, the data are stratifi ed into two broad age categories.

Th e death rates are much greater for older patients than for younger patients, 
as expected. Among schizophrenia patients, as for the general population, death 
rates climb strikingly with age. Th ere is also an association between age and cur-
rent versus past use of clozapine. Among current users, 9% (6085/68,204) of 
the person-time is in the older age category, whereas among past users, 15% 
(2780/18,543) of the person-time is in the older age category. Th is diff erence is 
enough to introduce some confounding, although it is not large enough to pro-
duce more than a modest amount. Because the person-time for past use has an 
older age distribution, the age diff erences will lead to lower death rates among 
current users. Th e crude data do indicate a lower death rate among current users, 
with a rate diff erence of −912.8 cases per 100,000 person-years. At least some of 
this diff erence is att ributable to age confounding. We can obtain an estimate of 
the mortality rate diff erence that is unconfounded by age (apart from any residual 
age confounding within these broad age categories) from Equation 10–4:

IDMH
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Th is result is smaller in absolute value than the crude rate diff erence of 
−912.8 × 10−5 person-years, as was predictable from the direction of the diff erence 
in the age distributions. Th e amount of the confounding is modest, despite age 
being a strong risk factor, because the diff erence in the age distributions between 
current and past use is also modest. We cannot say that the remaining diff erence 
of −720.0 × 10−5 person-years is completely unconfounded by age because our 
age categorization comprises only two broad age categories, but the pooled esti-
mate removes some of the age confounding. Further control of age confounding 
might move the estimate further in the same direction, but it is unlikely that age 
confounding could account for the entire eff ect of current use on mortality.

Table 10–5 Mortality Rates for Current and Past Clozapine Users, 
Overall and by Age Category5

Age
10–54 Years 55–94 Years Total

Current Past Current Past Current Past
Deaths 196 111 167 157 363 268
Person-years 62,119 15,763 6,085 2,780 68,204 18,543
Rate (×105 yr) 315.5 704.2 2,744 5,647 532.2 1,445

Rate Diff erence (×105 yr) −388.7 −2903 −912.8
Rate Ratio 0.45 0.49 0.37

Data of Walker et al.5
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What is the confi dence interval for the pooled estimate? To obtain the interval, 
we use the third variance equation in Table 10–4:
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Th e square root of the variance gives a standard error of 89.8 × 10−5 person-years, 
for a 90% confi dence interval of (−720.0 ± 1.645 ⋅ 89.8) × 10−5 person-years = 
−867.7 × 10−5 person-years, −572.3 × 10−5 person-years. Th e narrow confi dence 
interval is the result of the large numbers of observations in the two strata.

Th e pooled incidence rate ratio for these same data is calculated from 
Equation 10–5 as
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Th is value indicates that aft er control of confounding by age in these two age 
categories, current users have about one half the mortality rate of past users. (We 
have been using the notation of incidence rate in these formulas, but we are actu-
ally describing mortality data. Th is use is legitimate because a mortality rate is an 
incidence rate of death.)

Th e 90% confi dence interval for this pooled estimate of the mortality rate ratio 
can be calculated from the fourth variance equation in Table 10–4:
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Th e corresponding standard error is (0.00660)½ = 0.081. Th e 90% confi dence 
interval for the pooled rate ratio is calculated as

IR

IR
L

ln(0.47) 1.645 0.081

U
ln( . ) 1 645

0.41=( )=

=( )=

−e

e

⋅

4. 7 8) 1.645 0.0⋅ 1 0 5.5455

Th is confi dence interval is narrow, as is that for the rate diff erence, because there is 
a large number of deaths in the study. Th us, the study indicates with substantial preci-
sion that current users of clozapine had a much lower death rate than past users.
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Case-Control Studies

For case-control data, we use the following notation for stratum i of a stratifi ed 
analysis:

Exposed Unexposed Total
Cases ai bi M1i

Controls ci di M0i

Total N1i N0i Ti

Th e pooled incidence rate ratio is estimated as a pooled odds ratio from 
Equation 10–6:
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Th e data in Table 10–6 are from a case-control study of congenital heart disease 
that examined the relation between spermicide use and Down syndrome among the 
subset of cases who had both congenital heart disease and Down syndrome. Th e 
total congenital heart disease case series comprised more than 300 subjects, but the 
Down syndrome case series was a small subset of the original series that was of 
interest with regard to the specifi c issue of a possible relation with spermicide use.

For the crude data, combining the previous strata into a single table, the odds 
ratio is 3.50. Applying Equation 10–6 gives us an estimate of the eff ect of sper-
micide use unconfounded by age.
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Table 10.6 Infants with Congenital Heart Disease 
and Down Syndrome, and Healthy Controls, by 

Maternal Spermicide Use before Conception and 
Maternal Age at Delivery6

Maternal Age (years), Spermicide Use
<35 35+

Yes No Total Yes No Total
Cases 3 9 12 1  3  4
Controls 104 1,059 1,163 5 86 91
Total 107 1,068 1,175 6 89 95
Odds Ratio 3.39 5.73

Data from Rothman.6
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Th is result is slightly larger than the crude estimate of 3.50, indicating that there 
was modest confounding by maternal age. We can obtain a confi dence  interval for 
the pooled estimate from the last variance formula in Table 10–4:
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Th e corresponding standard error is (0.349)½ = 0.591. Th e 90% confi dence 
interval for the pooled odds ratio is calculated as follows:
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STANDARDIZATION

Standardization is a method of combining category-specifi c rates into a single 
summary value by taking a weighted average. Th e weights used in averaging 
come from a standard population or distribution. Th e weights defi ne the stan-
dard. Suppose an investigator is standardizing a set of age-specifi c rates to con-
form to a specifi c age standard. He or she may decide to use the U.S. population 
of 2010 as the standard. Th at choice means that the weights used to average the 
age-specifi c rates refl ect the age distribution of the U.S. population in the year 
2010. Standardization is a process of averaging the rates in two or more categories 
using a specifi ed set of weights.

Suppose we have a rate of 10/1000 yr−1 for males and a rate of 5/1000 yr−1

for females. We can standardize these sex-specifi c rates to any standard that 
we wish. A reasonable standard may be one that weights males and females 
equally. We would then get a weighted average of the two rates that would 
equal 7.5/1000 yr−1. Suppose the rates refl ected the disease experience of 
nurses, 95% of whom are female. In that case, we may wish to use as a stan-
dard a weight of 5% for males and 95% for females. Th e standardized rate 
would then be

0.05 × 10/1000 yr−1 + 0.95 × 5/1000 yr−1 = 5.25/1000 yr−1
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If all categories had similar rates, the choice of weights would not matt er much. 
Suppose that males and females had the same rate, 8.0/1000 yr−1. Th e standard-
ized rate, aft er standardizing for sex, would have to be 8.0/1000 yr−1, because the 
standardization would involve taking a weighted average of two values, both of 
which were 8.0/1000 yr−1. In this situation, the choice of weights is not impor-
tant. When rates do vary over categories, however, the choice of weights, which 
means the choice of a standard, can greatly aff ect the overall summary result. If 
the standard couples large weights with categories that have high rates, the stan-
dardized rate will be high, whereas if it assigns large weights to categories with 
low rates, the standardized rate will be low. Some epidemiologists prefer not to 
derive a summary measure when the value of the summary is so dependent on 
the choice of weights. Nevertheless, it may be convenient or even necessary to 
obtain a single summary value, in which case a standardized rate at least provides 
some information about how the category-specifi c information was weighted, by 
disclosing which standard was used.

Although an investigator can standardize a single set of rates, the main rea-
son to standardize is to facilitate comparisons; therefore, there are usually two or 
more sets of rates that are standardized. To compare rates for exposed and unex-
posed people, we would standardize both groups to the same standard. Th e stan-
dardized comparison is akin to pooling. Both standardization and pooling involve 
comparing a weighted average of the stratum-specifi c results. With pooling, the 
weights for each stratum are buried within the Mantel-Haenszel equations, and 
their values are not immediately obvious. Th e built-in weights refl ect the infor-
mation content of the stratum-specifi c data. Th ese Mantel-Haenszel weights are 
large for strata that have more information and small for strata that have less 
information. Because the weighting refl ects the amount of information in each 
stratum, the result of pooling is an overall estimate that is optimal from the point 
of view of statistical effi  ciency. Th at effi  ciency translates to a narrower confi dence 
interval for the eff ect estimate than what would be obtained using a less effi  cient 
approach. Standardization also assigns a weight to each stratum and also involves 
taking a weighted average of the results across the strata. Unlike pooling, however, 
in standardization, the weights may have nothing to do with the amount of data in 
each stratum. In pooling, the weights come from the data themselves, whereas in 
standardization, the weights can come from outside the data. Th e standard may 
correspond to a specifi c population of interest or may be chosen arbitrarily. Th e 
study population itself could be chosen as the standard, which will lead to an 
effi  cient analysis that will approximate the effi  ciency of pooling, but the standard 
is not required to be based on the study data.

Standardization also diff ers from pooling in that pooling requires the assump-
tion that the eff ect is the same in all strata (oft en called the assumption of uni-
formity of eff ect). Th is assumption is the premise from which the formulas for 
pooling are derived. As explained earlier, even when the assumption of uniformity 
of eff ect is wrong, pooling may still be reasonable. We do not necessarily expect 
that the eff ect is strictly uniform across strata when we make the assumption of 
uniformity; rather, it is an assumption of convenience. We may be willing to toler-
ate substantial variation in the eff ect across strata as a price for the convenience 
and effi  ciency of pooling as long as we are comfortable with the idea that the 
actual relation of the eff ect to the stratifi cation variable is not strikingly diff erent 
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for diff erent strata. When the eff ect is strikingly diff erent for diff erent strata, how-
ever, we can still use standardization to obtain a summary estimate representing 
the net eff ect across strata, because standardization has no requirement that the 
eff ect be uniform across strata.

Crude Rates and Standardized Rates

A crude rate may be thought of as a weighted average of category-specifi c 
rates, in which the weights correspond to the actual distribution of the pop-
ulation. Consider age for the purpose of discussion. Every population can 
be divided into age categories. Th e age-specifi c rates in a population can be 
averaged to get an overall rate. If the averaging uses weights that refl ect the 
amount of the population (or person-time) that actually falls into each age 
category, the weighted average that results is the crude rate. Algebraically, if 
each age-specifi c rate is denoted as Ai/PTi, where Ai is the number of cases 
in age category i (i ranging from 1 to K) and PTi is the number of person-
time units in that category, the crude rate is as follows:
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A is the total number of cases in the population, and PT is the total 

person-time. Th e crude rate is a weighted average of the age-specifi c rates 
in which the weights are the same as the denominators for the rates: PT1, 
PT2, . . ., PTK. Th ese are the natural weights, or latent weights, for the popu-
lation. If we change the weights from the denominator values of the rates to 
an outside set of weights drawn from a standard, the resulting standardized 
rate can be viewed as the value that the crude rate would have been if the 
population age structure were changed from what it actually is to that of 
the standard, and the same age-specifi c rates applied. A standardized rate is 
a hypothetical crude rate that would apply if the age structure were that of 
the standard instead of what it happens to be.

Although standardization is preferable to pooling when an eff ect apparently 
varies across strata, standardization may be desirable even when pooling is a rea-
sonable alternative, simply because standardization uses a defi ned set of weights 
to combine results across strata. Th is characteristic of standardization provides for 
bett er comparability of stratifi ed results from one study to another or in comparing 
diff erent subgroups within a study. Standardization can guarantee that diff erences 
in the distribution of the standardized variable cannot account for any diff er-
ences in the summary measures of the exposure eff ect. In contrast, with pooling, 
the weights are diff erent for every summary measure, because they come from 
the data that are being summarized, and therefore diff erences between pooled 
 summary measures may be infl uenced by diff erences in the stratifi cation variable. 
We say that pooled measures are internally unconfounded (ie, comparing the 
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exposed with unexposed within the measure) but not externally unconfounded 
(ie, comparing two diff erent summary measures). Standardized estimates that use 
the same standard weights are both internally and externally unconfounded.

Consider the data on clozapine use and mortality in Table 10–5. We obtained a 
pooled estimate of the mortality rate diff erence, using the Mantel-Haenszel approach, 
of −720 × 10−5 yr−1. Suppose we chose instead to standardize the rates for age over 
the two age categories. First we must choose an age standard to use. We might 
standardize to the age distribution of current clozapine use in the study, because 
that is a reasonable approximation for the age distribution of those who use the 
drug. Th ere were a total of 68,204 person-years of current clozapine use, of which 
62,119 (91.1%) were in the younger age category. To standardize the death rate for 
past users to this standard, we take a weighted average of past use as follows:

0.911 × 704.2/100,000 yr−1 + 0.089 × 5647/100,000 yr−1

  = 1144/100,000 yr−1

Th e standardized rate for current users, standardized to the age distribu-
tion of current users, is the same as the crude rate for current users, which is 
532.2/100,000 yr−1. Th e standardized rate diff erence is the diff erence between 
the standardized rates for current and past users, which is (532.2 − 1144)/
100,000 yr−1 = −612/100,000 yr−1, slightly smaller in absolute value than 
the −720/100,000 yr−1 that was obtained from the pooled analysis. Analogously, 
we can obtain the standardized rate ratio by dividing the rate among current users 
by that among past users, giving a result of 532.2/1144 = 0.47, essentially identi-
cal to the result obtained through pooling. Th e stratum-specifi c rate ratios did 
not vary much, so any weighting, whether pooled or standardized, will produce 
a result close to this value.

Both pooling and standardization can be used to control confounding. Because 
they are diff erent approaches and can give diff erent results, it is fair to ask why 
we would want to use one rather than the other. Both involve taking weighted 
averages of the stratum-specifi c results. Th e diff erence is where the weights come 
from. In pooling, the data determine the weights, which are derived mathemati-
cally to give statistically optimal results. Th is method gives precise results (ie, 
relatively narrow confi dence intervals), but the weights are statistical constructs 
that come out of the data and cannot easily be specifi ed. Standardization, unlike 
pooling, may involve weights that are ineffi  cient if large weights are assigned to 
strata with litt le data and vice versa. On the other hand, the weights are explicit. 
Ideally, the weights used in standardization should be presented along with the 
results. Making the weights used in standardization explicit facilitates compari-
sons with other data. Standardization may be less effi  cient, but it may provide 
for bett er comparability. A more detailed discussion of standardization, including 
appropriate confi dence interval equations for standardized results, can be found in 
Rothman, Greenland and Lash7 (see pages 265–269 of that text).

In a stratifi ed analysis, another option that is always open is to stratify the data 
and to present the results without aggregating the stratum-specifi c information 
over the strata. Stratifi cation is highly useful even if it does not progress beyond 
the examination of the stratum-specifi c fi ndings. Th is approach to presenting the 
data is especially att ractive when the eff ect measure of interest appears to change 
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considerably across the strata. In this situation, a single summary estimate is less 
att ractive an option than in a situation in which the eff ect measure is almost 
 constant across strata.

CALCULATION OF P  VALUES FOR STRATIFIED DATA

Earlier, we gave the reasons why estimation is preferable to statistical signifi cance 
testing. Nevertheless, for completeness, the formulas for calculating P values from 
stratifi ed data are given here. Th ese formulas are straightforward extensions of the 
formulas presented in Chapter 9 for crude data.

For risk, prevalence, or case-control data, all of which consist of a set of 2 × 2 
tables, chi can be calculated as follows:
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What Is an SMR?

When the standardized rate ratio is calculated using the exposed group as 
the standard, the resulting standardized rate ratio is usually referred to as a 
standardized mortality ratio or standardized morbidity ratio (SMR). Th e stan-
dardized rate ratio for clozapine that is calculated using the age distribution 
of current users as the age standard is an example of an SMR. An SMR can 
be expressed as the ratio of the total number of deaths in the exposed group, 
which was 363 in the clozapine example, divided by the number expected in 
the exposed group if the rates among the unexposed prevailed within each 
of the age categories. For the 10- to 54-year-old age group, if the rate among 
past users of 704.2/100,000 yr−1 had prevailed among the 62,119 person-
years experienced by current users, there would have been 437.4 deaths 
expected in that age category. Similar calculations give 343.6 deaths expected 
in the 55- to 94-year-old age category. Th e fi gure for total expected deaths 
is 437.4 + 343.6 = 781.0. Th e SMR is the ratio of observed to expected 
deaths, which is 363/781.0 = 0.47. Th is result is algebraically identical to 
standardization based on taking a weighted average of the age-specifi c rates 
and taking the age distribution of current users as the standard.

Th e SMR is sometimes claimed to result from a method of standard-
ization called indirect standardization, as opposed to direct standardization. 
Direct standardization is what we have been describing as standardization. 
Indirect standardization is a misnomer. Th e method is actually the same 
as direct standardization, but it has one additional feature, which is that 
the standard is always the exposed group. It is sometimes described diff er-
ently, but mathematically the calculations are the same as direct or ordinary 
 standardization, with the proviso that the standard is the exposed group.
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Applying this formula to the case-control data in Table 10–6 gives the follow-
ing chi statistic:
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Th is result translates to a P value of 0.016 (see Appendix).
For rate data, the corresponding formula is as follows:
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Applying this equation to the data in Table 10–5, we obtain the following:
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Th is result is too large in absolute value to be found in the Appendix table, imply-
ing an extremely small P value.

MEASURING CONFOUNDING

Th e control of confounding and the assessment of confounding are closely inter-
twined. It may seem reasonable to assess how much confounding a given variable 
produces in a body of data before we control for that confounding. Th e assess-
ment may indicate, for example, that there is not enough confounding to present 
a problem, and we may therefore ignore that variable in the analysis. It is possible 
to predict the amount of confounding from the general characteristics of con-
founding variables, that is, the associations of a confounder with both exposure 
and disease. To measure confounding directly, however, requires that we control 
it: Th e procedure is to remove the confounding from the data and then see how 
much has been removed.

An example of the measurement of confounding can be found in Tables 1–1 
and 1–2 (see Chapter 1). In Table 1–1, we have a risk of death over a 20-year 
period of 0.24 among smokers and 0.31 among nonsmokers. Th e crude risk ratio 
is 0.24/0.31 = 0.76, indicating a risk among smokers that is 24% lower than that 
among nonsmokers. As was indicated in Chapter 1 and earlier in this chapter, 
this apparent protective eff ect of smoking on the risk of death is confounded by 
age, which can be seen from the data in Table 1–2. Th e age confounding can be 



194 E P I D E M I O L O G Y

removed by applying Equation 10–2, which gives a result of 1.21. Th is value indi-
cates a risk of death among smokers that is 21% greater than that of nonsmokers. 
Th e discrepancy between the crude risk ratio of 0.76 and the unconfounded risk 
ratio of 1.21 is a direct measure of the age confounding. Were these two values 
equal, there would be no indication of age confounding in the data. To the extent 
that they diff er, it indicates the presence of age confounding. Th e age confounding 
is strong enough in this instance to have reversed the apparent eff ect of smok-
ing, making it appear that smoking is related to a reduced risk of death in the 
crude data. Th is biased result occurs because the smokers tend to be younger than 
the nonsmokers, and the crude comparison between smokers and nonsmokers is 
to some extent a comparison of younger women with older women, mixing the 
smoking eff ect with an age eff ect that negates it. By stratifying, the age confound-
ing can be removed, revealing the adverse eff ect of smoking. Th e direct measure 
of this confounding eff ect is the comparison of the pooled estimate of the risk 
ratio with the crude estimate of the risk ratio.

A common mistake is to use statistical signifi cance tests to evaluate the pres-
ence or absence of confounding. Th is mistaken approach to the evaluation of 
confounding applies a signifi cance test to the association between a confounder 
and the exposure or the disease. Th e amount of confounding, however, is a result 
of the strength of the two associations between the confounder and both expo-
sure and disease. Confounding does not depend on the statistical signifi cance of 
these associations, only the magnitude of the associations. Furthermore, a signifi -
cance test evaluates only one of the two component associations that give rise to 
confounding. A common situation in which this mistaken approach to evaluat-
ing confounding is applied is in the analysis of randomized trials, when baseline 
characteristics are compared for the randomized groups. Baseline comparisons are 
useful, but they oft en are conducted with the sole aim of checking for statisti-
cally signifi cant diff erences in any of the baseline variables as a means of detect-
ing confounding. A bett er way to evaluate confounding in a trial or any study is 
to control for the potential confounder and determine the extent to which the 
unconfounded result diff ers from the crude, potentially confounded, result.

STRATIFICATION BY TWO OR MORE VARIABLES

For convenience of presentation, the examples in this chapter have used few 
strata with only one stratifi cation variable. Nevertheless, stratifi ed analysis can be 
conducted with two or more stratifi cation variables. Suppose that an investigator 
wished to control confounding by sex and age simultaneously, with fi ve age catego-
ries. Th e combination of age and sex categories will produce 10 strata. All of the 
methods discussed in this chapter can be applied without any modifi cation to a 
stratifi ed analysis with two or more stratifi cation variables. Th e only real diffi  culty 
with such analyses is that with several variables to control, the number of strata 
increases quickly and can stretch the data too far. Controlling fi ve diff erent vari-
ables with three categories each in a stratifi ed analysis would require 3 × 3 × 3 × 
3 × 3 = 243 strata. With so many strata, many of them would contain few observa-
tions and would end up contributing litt le or no information to the data summary. 
When the numbers within strata become very small, and in particular when zeroes 
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become frequent in the tables, some tables may not contribute any information 
to the summary measures, and some of the study information is eff ectively lost. 
As a result, the analysis as a whole becomes less precise. Consequently, stratifi ed 
analysis is not a practical method to control for many confounding factors at once. 
Fortunately, it is rare to have substantial confounding by many variables at once.

STRATIFICATION AFTER MATCHING

When matching is used in study design to control confounding, the matching 
should be taken into account in the data analysis. As described in Chapter 7, the 
implications of matching are very diff erent in case-control studies and in cohort 
studies. In cohort studies, matching on potential confounding factors prevents 
confounding by creating a balance of risk factors for the outcome in the com-
pared cohort. As a result, the matching can be ignored in the analysis without 
introducing any bias; matching has done its job in the selection of subjects, which 
suffi  ces to prevent confounding by the matched factors. Even so, it is worthwhile 
to take the matching into account in the analysis by stratifying by the matched 
sets of subjects. Doing so does not remove any confounding, which has already 
been prevented, but it can lead to narrower confi dence intervals than would be 
obtained if the matching had been ignored.

For case-control studies, unlike cohort studies, matching by one or more factors 
that are related to exposure will result in selection bias, which must be removed 
in the data analysis (see Chapter 7). Stratifi cation by the matched sets (each set 
consisting of a case and its matched controls is an individual stratum) can accom-
plish this goal. If some matched sets have the same values for all the matching 
factors, they can be lumped together into one stratum, which may narrow the 
resulting confi dence interval. Usually, epidemiologists employ a specialized regres-
sion model rather than stratifi cation to remove the bias introduced by matching in 
case-control studies. Th is model is the conditional logistic model, which is a version 
of the logistic regression model that conditions on the sets that comprise a case 
and all its matched controls (see Chapter 12 for a discussion of logistic models). 
Conditional logistic models provide the same or almost the same result as strati-
fi ed analysis, but they have the advantage of allowing the investigator to include 
in the regression model other confounders that were not matched,  something not 
easily accomplished in a stratifi ed analysis.

IMPORTANCE OF STRATIFICATION

Th e equations in this chapter may look imposing, but they can be applied readily 
with a hand calculator, a spreadsheet, or a pencil and paper. Consequently, the 
methods described to control confounding are widely accessible without heavy 
reliance on technology. Th ese are not the only methods available to control con-
founding. In Chapter 12, we discuss multivariate modeling to control  confounding. 
Multivariate modeling requires computer hardware and soft ware but off ers the 
possibility of convenient methods to control confounding not merely for a single 
variable but simultaneously for a set of variables. Th e allure of these multivariate 
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methods is almost irresistible. Nevertheless, stratifi ed analysis is preferable and 
should always be the method of choice to control confounding. Th is is not to say 
that multivariate modeling should be ignored; it does have its uses. Stratifi cation, 
however, is a preferred approach, at least as the initial approach to data analysis. 
Stratifi cation has several advantages over multivariate analysis:

With stratifi ed analysis, the investigator can visualize the distribution of 1. 
subjects by exposure, disease, and the potential confounder. Strange fea-
tures in the distributions of the major variables, such as data that have 
been miscoded during programming, can become immediately apparent. 
Regression models do not divulge this kind of information as readily.
Not only the investigator, but the consumer of the research as well can 2. 
visualize the distributions. Indeed, from detailed tables of stratifi ed data, 
a reader can check the calculations or conduct his or her own pooled or 
standardized analysis.
Fewer assumptions are needed for a stratifi ed analysis, reducing the 3. 
 possibility of obtaining a biased result.

It should be standard practice to examine the data by categories of the primary 
potential confounding factors, that is, to conduct a stratifi ed analysis. A multi-
variate analysis rarely changes the interpretation produced by a competent strati-
fi ed analysis. Th e stratifi ed analysis can keep the researcher and the reader bett er 
informed about the nature of the data. Even when it is reasonable to conduct a 
multivariate analysis, it should be undertaken only aft er the researcher has con-
ducted a stratifi ed analysis and has a good appreciation for the confounding in the 
data or lack of it by the main study variables.

QUESTIONS

1. In Table 10–3, the crude value of the risk ratio is 1.44, which is between 
the values for the risk ratio in the two age strata. Could the crude risk ratio 
have been outside the range of the stratum-specifi c values, or must it always 
fall within the range of the stratum-specifi c values? Why or why not?

2. Th e pooled estimate for the risk ratio from Table 10–3 was 1.33, also 
within the range of the stratum-specifi c values. Does the pooled estimate 
always fall within the range of the stratum-specifi c estimates of the risk ratio? 
Why or why not?

3. If you were comparing the eff ect of exposure at several levels and needed 
to control confounding, would you prefer to compare a pooled estimate of the 
eff ect at each level or a standardized estimate of the eff ect at each level? Why?

4. Prove that an SMR is directly standardized to the distribution of the 
exposed group; that is, prove that an SMR is the ratio of two standardized 
rates that are both standardized to the distribution of the exposed group.
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5. Suppose that an investigator conducting a randomized trial of an old and 
a new treatment examines baseline characteristics of the subjects (eg, age, 
sex, stage of disease) that may be confounding factors and fi nds that the 
two groups are diff erent with respect to several characteristics. Why is it 
 unimportant whether these diff erences are “statistically signifi cant”?

6. Suppose one of the diff erences in question 5 is statistically signifi cant. A 
signifi cance test is a test of the null hypothesis, which is a hypothesis that 
chance alone can account for the observed diff erence. What is the explana-
tion for baseline diff erences in a randomized trial? What implication does 
that explanation have for dealing with these diff erences?

7. Th e larger a randomized trial, the smaller the expected confounding. 
Why? Explain why the size of a study does not aff ect confounding in 
 nonexperimental studies.

8. Imagine a stratum of a case-control study in which all subjects were 
 unexposed. What is the mathematic contribution of that stratum to the esti-
mate of the pooled odds ratio (see Equation 10–6)? What is the mathematic 
contribution of that stratum to the variance of the pooled odds ratio (see 
 bott om equation in Table 10–4)?
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Measuring Interactions

Th e nature of causal mechanisms is complicated enough that we expect some 
causes to have an eff ect only under certain conditions. Th is principle is illustrated 
by the observation that even among the heaviest of cigarett e smokers, only 1 in 
10 will develop lung cancer during their lives. If we accept the proposition that 
cigarett e smoking causes lung cancer, this observation implies that some comple-
mentary causes that act together with cigarett e smoking to cause lung cancer play 
their causal role in only 10% of heavy smokers. Th ese complementary causes 
interact biologically with cigarett e smoke. Some form of causal interaction occurs 
in every case of every disease, so there is good reason for epidemiologists to be 
interested in interaction. Unfortunately, there is substantial confusion surrounding 
the evaluation of interaction, much of which stems from the fact that the term is 
used diff erently in statistics and in epidemiology.

Knowledge about causal interactions is not just of academic interest; it has 
important public-health implications. By identifying groups or sett ings in which 
interaction occurs, preventive actions can be more eff ective. Th ree examples illus-
trate how knowledge of causal interactions aff ects public health. First, infl uenza 
can lead to serious complications, but those at highest risk for complications are 
the young, the elderly, and people with heart and lung disorders. Th ese groups 
can be targeted for infl uenza vaccination (but also see discussion of infl uenza vac-
cine effi  cacy in Chapter 7). Second, people who do get infl uenza are sometimes 
treated with aspirin. A rare but potentially deadly consequence of aspirin therapy 
is Reyes syndrome, which can also occur without aspirin use but is more likely 
to occur among youngsters who take aspirin for a viral illness. Rather than deter 
everyone from using aspirin, which is a useful drug with many indications in 
adults, epidemiologic knowledge of the interaction between aspirin and age has 
enabled preventive eff orts to focus on discouraging aspirin use only in children. 
Th ird, one of the best-known eff orts based on a causal interaction is the public-
health campaign against drunk driving. Both driving and alcohol consumption 
are risk factors for injury, but their combination is a much more potent cause of 
injury than either alone.
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EFFECT-MEASURE MODIFICATION

In statistics, the term interaction is used to refer to a departure from additivity 
on the scale used in a statistical model. Because various statistical models use 
diff erent scales, interaction does not have a consistent, universal meaning; statis-
tical interaction in one model may be diff erent from the interaction in another 
model based on a transformed scale, even with the same data. Th e arbitrariness 
of this concept of interaction has a counterpart in epidemiology in the term eff ect-
measure modifi cation, which refers to the common situation in which a measure of 
eff ect changes over values of some other variable.

Suppose, for example, that we are measuring the eff ect of an exposure and that 
the other variable is age. Consider the age-incidence curves in Figure 11–1. Th e 
rate of disease rises linearly with age among those who are unexposed. If it also 
rose linearly and with the same slope among those who are exposed, as depicted 
by the other solid line in Figure 11–1, the diff erence in incidence rate between 
exposed and unexposed people would be constant with age (ie, the two lines are 
parallel). In that case, we would say that age does not modify the rate diff erence 
measure of eff ect. Looking at the same two curves, however, we can see that the 
rate ratio measure of eff ect does change with age—that is, the ratio of the inci-
dence rate among exposed versus unexposed people is large at younger ages and 
small at older ages, despite the constant rate diff erence. Th e reason that the rate 
ratio declines with age is the steady rise in rate among the unexposed with age.

Figure 11–1 also illustrates an alternative situation, in which the rate among 
the exposed increases linearly with age, so that the ratio of the rate in exposed 

Figure 11–1  Age-incidence curves showing disease incidence increasing linearly with 
age for unexposed people and two possible linear relations with age for exposed people.
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versus unexposed people remains constant with increasing age; this alternative is 
depicted by the dashed line. In this situation, we would say that because the rate 
ratio is constant over age, age does not modify the rate ratio eff ect measure. Th e 
rate diff erence measure, however, does increase with age, as is evident from the 
increasing distance between the dashed line for exposed and the solid line for 
unexposed as age increases.

From these examples, it is easy to see that even in the unusual situation in 
which one of the eff ect measures is not modifi ed by age, the other is likely to 
be modifi ed. Th erefore, we typically cannot make a blanket statement about the 
presence or absence of eff ect-measure modifi cation, because the answer depends 
on which eff ect measure is under discussion.

Effect Modification Versus Effect-Measure Modification

Epidemiologists oft en use the term eff ect modifi cation to mean what is 
described here as eff ect-measure modifi cation. Th e addition of the word 
measure to the phrase is intended to emphasize the dependence of this phe-
nomenon on the choice of the eff ect measure and its consequent ambiguity. 
One cannot speak in general terms about the presence or absence of eff ect 
modifi cation, any more than one can speak in general terms about the pres-
ence or absence of clouds in the sky, without being more specifi c as to 
the details. For clouds in the sky, the details would include the geographic 
area, the time, and perhaps what is meant by a cloud. In the case of eff ect-
measure modifi cation, the details are in the choice of eff ect measure.

Consider the hypothetical data in Table 11–1 describing the risk of lung can-
cer according to two environmental exposures, cigarett e smoke and asbestos. 
What can we say about how exposure to smoking modifi es the eff ect of asbestos? 
Suppose that we measure the risk diff erence. Among nonsmokers, the risk diff er-
ence for the eff ect of asbestos is 5 − 1 = 4 cases per 100,000. Among smokers, 
the risk diff erence is 50 − 10 = 40 cases per 100,000, ten times as great. On 
this basis, we would say that smoking is an eff ect modifi er of the risk diff erence 
measuring the eff ect of asbestos. If we look at the risk ratio measure instead, 
however, we fi nd that the risk ratio measuring an eff ect of asbestos is 5 among 
nonsmokers and also 5 among smokers. In both groups, fi ve times more people 
with asbestos exposure develop lung cancer compared with people not exposed to 
 asbestos. Th erefore, smoking does not modify the risk ratio measure of the asbes-
tos eff ect. Is smoking an eff ect-measure modifi er of the asbestos eff ect? It is and 
it is not, depending on which eff ect measure we use. Th is example, like the previ-
ous one, illustrates the ambiguity of the concept of eff ect-measure  modifi cation. 
Th e example also could be turned around to ask whether asbestos modifi es the 
eff ect of smoking. Th e patt ern is symmetric, and the answer is the same: the risk 
diff erence of the smoking eff ect is modifi ed by asbestos exposure, but the risk 
ratio is not.

Th e ambiguity of the concept of eff ect-measure modifi cation corresponds 
directly to arbitrariness in the concept of statistical interaction. Some key statistical 



Measuring Interactions 201

models used in epidemiology are discussed in Chapter 12. If a statistical model is 
based on additivity of eff ects, as an ordinary linear regression model is, the data 
in Table 11–1 would indicate the presence of statistical interaction, because the 
separate eff ects of smoking and asbestos are not additive when both are present. 
If a statistical model is based on the multiplication of relative eff ects, as is the 
case for many popular statistical models used in epidemiologic applications (logis-
tic regression is one example), the data in Table 11–1 would indicate no statistical 
interaction, because the relative eff ects of smoking and asbestos are multiplicative. 
Th at is, the risk ratio of smoking alone, 10, multiplied by the risk ratio of asbestos 
alone, 5, gives the risk ratio of 50 for those with both exposures compared with 
those with neither exposure.

Pooling and a Multiplicative Relation

A stratifi ed analysis that uses pooling to summarize an eff ect across strata 
is based on the assumption that the eff ect measure is constant over strata. 
If the eff ect measure is the risk ratio or the rate ratio, pooling requires 
the assumption that the ratio is constant over the strata. Th is amounts to 
assumption of a multiplicative relation between the exposure and the strati-
fi cation variable. In Table 11–1, suppose that asbestos is the exposure and 
the data are stratifi ed by smoking. Within the stratum of nonsmokers, the 
risk ratio for asbestos is 5/1, or 5. Within the stratum of smokers, the risk 
ratio for asbestos is 50/10 or 5. Th erefore, the risk ratio for asbestos is 
5 within each stratum of smoking. Th e relation is symmetric: if we con-
sider smoking to be the exposure and asbestos the stratifi cation variable, 
we would fi nd that the risk ratio for smoking is 10 within each stratum of 
asbestos.

A uniform risk ratio across strata is equivalent to a multiplicative rela-
tion between exposure and the stratifi cation variable. As explained in this 
chapter, a multiplicative relation is evidence of biologic interaction, because 
multiplicative relations are more than additive. Consequently, pooling over 
strata to estimate a uniform risk ratio requires us to assume that there is 
a biologic interaction between the exposure and the stratifi cation variable. 
Th is implicit assumption is not necessarily a problem with pooling, but it 
is a feature of stratifi ed analysis worth keeping in mind.

Table 11–1 Hypothetical 1-Year 
Risk of Lung Cancer According 

to Exposure to Cigarette 
Smoke and Exposure to 

Asbestos (Cases per 100,000)

Smoke Exposure Asbestos Exposure
No Yes

Nonsmokers  1  5
Smokers 10 50
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Th ese examples illustrate the arbitrariness in the terms “eff ect-measure modifi -
cation” and “statistical interaction.” Both depend on an arbitrary choice of mea-
sure or scale. In contrast, biologic interaction refers to a mechanistic interaction 
that either exists or does not exist. It is not a feature that can be turned off  or 
on by the arbitrary choice of an eff ect measure or a statistical model. Statistical 
interaction, having an interpretation that is model dependent, cannot correspond 
to the specifi c concept of biologic interaction among component causes. For 
this reason, it is important not to confuse statistical with biologic interaction.1 
Unfortunately, when statistical interaction is discussed, it is usually described as 
simply  “interaction” and is oft en confused with biologic interaction. Oft en, the 
only way to distinguish one from the other is by a careful reading of what is 
being reported or described. Here, we will use the terms biologic interaction and 
 statistical interaction to keep these concepts separate.

Biologic interaction between two causes occurs whenever the eff ect of one is 
partially or wholly dependent on the presence of the other. For example, being 
exposed to someone with an active measles infection is a causal risk factor for 
gett ing measles, but the eff ect of the exposure depends on another risk factor, lack 
of immunity. Someone who has been vaccinated or has already had measles will 
not experience any eff ect from being exposed to someone with an active measles 
infection. Th e eff ect is limited to people who lack immunity. Lack of immunity is 
sometimes referred to as susceptibility, a term that in its broadest sense refers to 
the condition of already having one of two interacting causes and therefore being 
predisposed to the eff ect of the other. (Other terms commonly used to describe 
aspects of biologic interaction include predisposition, promotion, predisposing factor, 
and cofactor.)

Another example of biologic interaction is the development of melanoma 
among those with high levels of exposure to ultraviolet light who also have fair 
skin. Dark skin protects against the adverse eff ects of ultraviolet light exposure, 
whereas those with fair skin experience a much greater increase in risk from ultra-
violet light exposure. Many environmental causes of disease interact with genetic 
predisposing factors. People who carry the predisposing gene constitute a group 
that has high susceptibility to the environmental factor. For example, people who 
carry a gene that codes for faulty receptor sites for low-density lipoprotein (“bad 
cholesterol”) have a greater risk for cardiovascular disease from a diet high in 
saturated fat than do those who do not carry the gene. For these genetically pre-
disposed people, the eff ect of the dietary exposure to saturated fat interacts with 
the presence of the gene to cause disease.

A DEFINITION OF BIOLOGIC INTERACTION

How can we derive an unambiguous defi nition for biologic interaction? We have 
already described what we mean by interaction between causes in terms of the 
suffi  cient/component cause model (ie, coparticipation in a causal mechanism of 
two or more component causes). Interaction between causes A and B in a given 
instance corresponds to the occurrence of a case of disease in which A and B 
both played a causal role. It means that both A and B were part of the causal 
mechanism for that case, or, in terms of the model, both A and B were parts 
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of the same causal pie. Factors A and B can both be causes of the same disease 
without any direct interaction, but for that to happen they would have to operate 
through diff erent mechanisms and would be causes of diff erent cases, rather than 
acting together as causes of the same case. In other words, suppose that A plays 
a role in causal mechanisms in which B does not, and vice versa. Under those 
circumstances, some cases would occur as a result of causal mechanisms involving 
A, and others would occur from causal mechanisms involving B. In this situation, 
both factors would act independently as causes of the disease.

With regard to the interaction of factors A and B, there are four possible classes 
into which all causal mechanisms of the disease fall (Fig. 11–2). Th e fi rst class 
(far left  pie diagram in Fig. 11–2) comprises those mechanisms in which A and B 
interact in producing the disease. Th e piece of the causal pie labeled U refers to 
the unidentifi ed complementary component causes that also interact with A and 
B to produce disease. Because U could represent many diff erent combinations of 
component causes that act in concert with A and B through the same mecha-
nism, we refer to the fi rst pie as a set, or class, of causal mechanisms. Within this 
class of mechanisms, every specifi c causal mechanism includes both A and B as 
component causes. If either A or B were absent in a given person, that person 
could not get the disease through any mechanism in this class. Cases that occur 
through these mechanisms would not have occurred if either A or B had not 
been present. We can therefore say that these cases depend on the joint presence 
of both A and B.

Th e second and third diagrams in Figure 11–2 denote classes of causal mecha-
nisms in which either A or B plays a causal role but the other does not. Again, 
U refers to unidentifi ed complementary component causes other than A or B and 
could represent various combinations of complementary causes, explaining why 
each pie is an entire class of causal mechanisms.

Th e fourth class of mechanisms, oft en referred to as the background occurrence, 
consists of causal mechanisms that produce disease without either A or B playing 
any causal role. Th e solitary U in that pie represents all combinations of causal 
components that can cause the disease, with the proviso that these combinations 
include neither A nor B. Th is background occurrence represents disease mecha-
nisms that are independent of the causal action of A or B.

One way to measure the interaction between A and B would be to measure the 
risk of developing disease that was caused by mechanisms in which both A and 
B played a role—in other words, the risk of disease caused by mechanisms in the 
fi rst class in Figure 11–2. Unfortunately, there is no way to tell, by direct obser-
vation alone, which class of causal mechanisms is responsible for an individual 

Figure 11–2  Four classes of causal mechanisms involving component causes A and 
B. U refers to unidentifi ed complementary component causes other than A or B.
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case. Even if a person were exposed to both A and B and developed the disease, 
the disease might have been caused by a causal mechanism in any of the classes 
in Figure 11–2, and one or both of the exposures to A and B might have been 
just an incidental characteristic rather than a factor that played a causal role for 
that case of disease. We can, however, indirectly estimate the risk of becoming 
a case through mechanisms involving both A and B. We start by measuring the 
risk among people exposed to both factor A and factor B. Cases of disease among 
people exposed to both A and B will include cases occurring from all four classes 
of mechanisms in Figure 11–2. We narrow these down to the fi rst class of mecha-
nisms in Figure 11–2 by subtraction. For simplicity, we assume that all risks are 
low, and we ignore competing risks.

Let us defi ne RAB as the risk of disease among those with exposure to both A 
and B. People exposed to both A and B will get disease through all four classes of 
mechanisms in Figure 11–2. Let us now subtract that component of the total risk 
for those with exposure to A and B that corresponds to the risk of gett ing disease 
from mechanisms that include factor A but not factor B. We can estimate this 
component by measuring the disease risk among people exposed to A but not 
to B. We will call this risk RA. People exposed to A but not B cannot get disease 
from any causal mechanism that involves B. Th erefore, the fi rst and third classes 
of mechanisms in Figure 11–2 do not occur among these people. Th ey can get 
disease through mechanisms that involve A but not B and through mechanisms 
that involve neither A nor B (the background). Th erefore, of the original four 
classes of causal mechanisms, the expression RAB − RA removes cases stemming 
from two of those classes and leaves two others: the class of causal mechanisms 
involving biologic interaction between A and B and the class of causal mecha-
nisms involving factor B without factor A. (For this subtraction of risks to be 
valid, we have to assume that there was no confounding, which we must always 
assume when we use the risk or rate in one group to estimate what would happen 
in another group under counterfactual circumstances.)

Next, to eliminate the class of mechanisms that involve B without A, so that we 
are left  with just the class of mechanisms that include both A and B, we subtract 
the risk of disease among those with exposure B who lack exposure A. We will 
designate this risk RB. Th is subtraction removes disease mechanisms that involve 
B without A, but it also subtracts disease mechanisms that involve neither B nor 
A (the background). Because the background was already subtracted once when 
we subtracted RA, if we subtract it a second time with RB we need to add it back 
again. We then have the following equation:

 Interaction RisRR k AB A B U= R RAB B− +BA −  [11–1]

Expression 11–1 is a measure that quantifi es the risk of disease stemming from 
causal mechanisms that include both factor A and factor B. Th us, it measures the 
risk of gett ing disease through mechanisms in which A and B interact biologically. 
If this expression is zero, we would say that there is no interaction between A and 
B, which means that A and B act as causes only in distinct causal mechanisms, 
rather than acting together in the same mechanism. By sett ing Equation 11–1 
equal to zero, which corresponds to no biologic interaction, we can derive an 
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expression that gives the relation among the risks if A and B are biologically 
 independent:

Interaction RisRR k AB A B

AB A B U

AB U A U

= = −
+A

=

0 R RAB − R RB +
R RAB = R RB −

U

( )AB UR RAB − ( )A UR RA − +++ ( )−B U  [11–2]

Equation 11–2 expresses the relation between the risks under conditions of 
biologic independence. Th is equation says that the risk diff erence between those 
with joint exposure to A and B and those with exposure to neither A nor B is 
equal to the sum of the risk diff erences for the eff ect of exposure to A in the 
absence of B and the eff ect of exposure to B in the absence of A, both compared 
with the risk among those who lack exposure to both factors (ie, the background 
risk). In short, the risk diff erences are additive under independence. (Technically, 
the converse is not strictly true: although independence implies additivity of risk 
diff erences, additivity does not guarantee complete independence between the 
two causes, because there may be two or more types of biologic interactions that 
cancel each other and produce, on balance, additivity. Nevertheless, when there 
is additivity of risk diff erences, the net eff ect of the two causes on a population 
is equivalent to what occurs under biologic independence. For a more detailed 
discussion, see Chapter 5 in Modern Epidemiology.2)

Because Equation 11–2 involves absolute risks, it appears to be useful only for 
cohort studies, in which risks can be measured. Is there an analogous expression 
for case-control studies, from which risk ratios can be estimated but risks and risk 
diff erences are not obtainable? To derive an equivalent expression for risk ratios, 
we need only divide each term in Equation 11–2 by the background risk, RU:

( ) ( ) ( )AB A B) (+))) (=)  [11–3]

In Equation 11–3, RRAB denotes the risk ratio for those exposed jointly to A 
and B compared with those exposed to neither factor (for whom the risk is RU); 
RRA denotes the risk ratio for those exposed to A but not B compared with RU; 
and RRB denotes the risk ratio for those exposed to B but not A compared with 
RU. All of the risk ratios in Equation 11–3 can be obtained from a case-control 
study that measures the eff ect of factors A and B.

PARTITIONING THE RISK AMONG THOSE WITH 

JOINT EXPOSURE

Equations 11–2 and 11–3 allow us to predict the risk or the risk ratio that would 
occur under biologic independence for those exposed jointly to two factors. In 
fact, these equations allow us to partition the observed risk of disease for those 
with exposure to A and B into four components that correspond to the four 
classes of causal mechanisms depicted in Figure 11–2.

As an illustration, let us partition the risk in Table 11–1 for people jointly 
exposed to cigarett e smoke and asbestos into its four components. Th e value of 
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the risk for those with joint exposure is 50 cases per 100,000. From Table 11–1, 
the risk among those who are nonsmokers and are not exposed to asbestos is 1 
per 100,000. Th is value is the background risk, which is equal to the background 
component in the partitioning of the risk among those with joint exposure. It 
means that for every 50 cases of lung cancer occurring among those who were 
exposed to both smoke and asbestos, an average of 1 of those cases would be 
expected to have occurred from background causes that involve neither smok-
ing nor asbestos. How many cases would we expect from smoking acting in the 
absence of asbestos? Th e risk diff erence for smokers who are not exposed to 
asbestos is 10 − 1 = 9 cases per 100,000. Th erefore, among every 50 cases with 
exposure to both smoking and asbestos, we would expect 9 cases to have occurred 
from smoking through causal mechanisms that do not involve asbestos. Similarly, 
from the risk diff erence for asbestos alone, we would expect 4 of the cases to 
have occurred from mechanisms involving asbestos but not smoking. Th ese three 
components add to 1 + 9 + 4 = 14 cases.

We have so far accounted for 14 cases of every 50 that occur among those with 
joint exposure. If smoking and asbestos acted independently of one another, we 
would expect the risk among those with both exposures to be 14 per 100,000. Th is 
is the value if there is no biologic interaction. All of the excess above 14 cases in 
every 50 corresponds to the eff ect of biologic interaction between smoking and 
asbestos. Th is excess is 36 cases out of 50. Th erefore, most of the risk among peo-
ple with both exposures is att ributable to biologic interaction between asbestos 
and smoking. Every 50 cases among those with both exposures can be partitioned 
into those resulting from the eff ect of background (1 case), the eff ect of smoking 
alone (9 cases), the eff ect of asbestos alone (4 cases), and the biologic interaction 
between smoking and asbestos (36 cases). Th us, the data in Table 11–1 show 
considerable biologic interaction; quantitatively, we can say that 36/50 or 72% of 
the cases occurring among people with joint exposure are att ributable to causal 
mechanisms in which both factors play a causal role, which is to say that 72% of 
the cases are att ributable to biologic interaction.

As another example, let us consider the risk ratio data in Table 11–2, which 
reports on the interaction between oral contraceptives and hypertension in the 
causation of stroke. Th ese data come from a case-control study, but we can use 
the same approach as we used for the lung cancer data in Table 11–1 to evalu-
ate interaction. Th e idea, once again, is to partition the eff ect measure for those 
with joint exposure into four parts: the background eff ect, the eff ects relating to 
each of the two exposures in the absence of the other (ie, the independent eff ects 
of the two risk factors), and the eff ect att ributable to the biologic interaction. 
Th e risk ratio for those who are hypertensive and who also use oral contracep-
tives is 13.6. Th e background component is 1.0 out of 13.6, because the value of 
1.0 for the risk ratio is by defi nition the value among those with neither expo-
sure. How do we determine the eff ect of oral contraceptives in the absence of 
hypertension?

Among those without hypertension, oral contraceptive users had a risk ratio 
of 3.1, which means that oral contraceptive use increased the risk ratio from 1.0 
to 3.1. Th e diff erence, 2.1, is the eff ect of oral contraceptives in the absence of 
hypertension. Similarly, the eff ect of hypertension in the absence of oral contra-
ceptive use was 6.9 − 1.0 = 5.9. Th at gives us three of the four components of 
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the 13.6 cases: 1.0 for the background, 2.1 for oral contraceptives alone, and 5.9 
for hypertension alone. Th e remainder, 4.6 cases, represents the part of the risk 
ratio that is att ributable to the biologic interaction between oral contraceptive use 
and hypertension in the causation of stroke. We can describe the amount of bio-
logic interaction by estimating the proportion of stroke cases, among women with 
hypertension who also use oral contraceptives, that is att ributable to the biologic 
interaction of these two causes. Th is proportion is 4.6/13.6 = 34%. Th e propor-
tion would be zero if the two causes were biologically independent; the fact that 
about one third of all cases result from biologic interaction between the two 
causes indicates that the interaction is considerable.

Th e data in Table 11–2 provide an interesting contrast between the evalua-
tion of biologic interaction and that of statistical interaction. A purely statistical 
approach to these case-control data would ordinarily fi t a multiplicative model to 
the data, because such models are typically used for the analysis of case-control 
data (see Chapter 12). Using such a model, we would fi nd that there is a statis-
tical interaction in the data in Table 11–2, but it goes in the opposite direction 
to the biologic interaction that we have just described. A multiplicative model 
would predict a value of the risk ratio for women who use oral contraceptives and 
are hypertensive by multiplying the product of the individual risk ratios for each 
risk factor alone. Th e predicted risk ratio for joint exposure in this case would be 
3.1 × 6.9 = 21.4, whereas the observed risk ratio for the group with joint expo-
sure was 13.6. Th erefore, evaluation of statistical interaction based on a multipli-
cative model indicates that those with joint exposure exhibit a smaller eff ect than 
would be predicted from the separate eff ects of the two causes. Th is conclusion 
is strikingly diff erent from the interpretation that emerges from an evaluation of 
biologic interaction, as previously shown.

Th e evaluation of statistical interaction means only that the eff ect in those with 
joint exposure is less than multiplicative; it has no biologic implication. Th e data 
in this example demonstrate how misleading it can be to examine statistical inter-
action when the interest is in the biologic interaction between two causes. Use of 
multiplicative models as the baseline from which to measure (statistical) interac-
tion will lead to an estimate of interaction that is smaller than an evaluation based 
on departures from additivity of risk diff erences. In the worst-case scenario, such 
as in this example of stroke, the two approaches can be so diff erent that they 
point in opposite directions.

Table 11–2 Risk Ratio of Stroke by 
Exposure to Oral Contraceptives 

and Presence or Absence of 
Hypertension

Oral Contraceptive Use Hypertension
No Yes

Nonusers 1.0 6.9
Users 3.1 13.6

Data from Collaborative Group for the Study 
of Stroke in Young Women.3
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Assessing Biologic Interaction with Preventive Factors

Th e approach to measuring biologic interaction described in this chapter 
involves partitioning the cases that have simultaneous exposure to two fac-
tors into four subsets, according to the types of causal mechanisms involved. 
Th e method assumes that both factors are causes, rather than preventives. If 
both factors are preventives, or if one is a cause and the other is a preven-
tive, the assessment can be more complicated. It is possible to avoid the 
complication of preventive factors, however, if one chooses the high-risk 
category of both factors to be the “exposed” category for that factor, mak-
ing the group with the lowest risk, considering the combination of the two 
risk factors, the referent category for comparisons.4 Th is technique changes 
a preventive factor into a causal factor by considering lack of the preventive 
to be the cause. For example, suppose that a vaccine prevents disease. We 
could say that being unvaccinated is a cause of disease. Similarly, if regu-
lar exercise reduces the risk of cardiovascular disease, we could just as well 
say that the absence of regular exercise increases the risk. By defi ning the 
exposure category so that each factor is viewed as a cause of disease, rather 
than a preventive, one can avoid the problem of dealing with preventive 
factors or a  combination of causes and preventives in assessing biologic 
interaction.

Why is it that biologic interaction should be evaluated as departures from addi-
tivity of eff ect? Perhaps the easiest way to understand the connection between 
additivity and biologic independence is to refl ect on the derivation of Equation 
11–2, which establishes additivity as the defi nition of biologic independence. 
Th is derivation depends on the concept that we can partition the cases occur-
ring among those with joint exposure to two factors into the four causal subsets 
depicted in Figure 11–2. Partitioning of a set of objects implies classifying them 
into subsets that are mutually exclusive and collectively exhaustive, and this is the 
case for the subsets in Figure 11–2. Th is partitioning process would not make 
much sense if one were to invoke scale transformations fi rst. For example, you 
can partition a collection of colored marbles into subsets by color or by size, 
but it makes less sense to consider partitioning the logarithm of the number 
of marbles into equivalent subsets. Multiplicative models typically involve loga-
rithmic transformations of the original scale for which partitioning into the four 
biologically distinct causal subsets is sensible. It is because the partitioning into 
subsets can be easily understood only on the original scale in which the cases are 
enumerated that the defi nition of biologic interaction is linked logically to that 
original scale. Because of this linkage, biologic independence is inherently linked 
to the additivity of risk diff erences. A more thorough discussion of this topic is 
given in Chapter 5 of Modern Epidemiology.2

Although multivariable modeling is not discussed until the next chapter, it 
is worth noting here that most of the multivariable models in common use for 
epidemiologic data employ logarithmic transformations. As a result, att empt-
ing to evaluate interaction from these models using the conventional statistical 
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approaches (ie, inclusion of “product terms” in the model) amounts to the evalu-
ation of departures from a multiplicative model rather than departures from addi-
tivity. Th erefore, statistical evaluation of interaction using these models will not 
yield an appropriate assessment of biologic interaction. It is possible, however, to 
use multivariable models to assess biologic interaction appropriately; in fact, it is 
straightforward. Th e method for doing so is given in the next chapter.

QUESTIONS

1. Explain why the mere observation that not every cigarett e smoker gets 
lung cancer implies that cigarett e smoking interacts with other factors in 
causing lung cancer.

2. From the data in Table 11–2, estimate the proportion of stroke cases 
among hypertensive women who use oral contraceptives that is att ributable 
to the causal role of oral contraceptives.

Independence Is Not a Model

Some writers have pointed out that under certain circumstances we should 
expect to see variables that have a multiplicative relation, and under other 
circumstances we should expect to see an additive relation. Th ey have used 
this observation to argue in favor of fl exibility for choosing diff erent types 
of models in epidemiologic analysis. Th e argument is fl awed, however, if 
it is used to suggest that we should be fl exible about which model to use 
as a starting point for measuring interaction. Th e main problem is confu-
sion between the goal of modeling, which is to fi nd a succinct mathematical 
expression to explain the patt erns in the data, and the goal of measuring 
biologic interaction, which requires that we know the reference point from 
which we are measuring the interaction. Th e reference point for measur-
ing biologic interaction is additivity of risk diff erences, as has been shown 
in this chapter. Taking this reference point as the defi nition of biological 
independence is not the same thing as applying an additive model; in fact, 
it is not modeling at all.

It may be that two causes have a multiplicative relation, as they do in 
Table 11–1. Nevertheless, even then, the amount of biologic interaction in 
the data is measured by taking the excess over additivity of eff ects. Doing so 
does not amount to the application of an additive model, or of any model, 
but rather the application of a specifi c defi nition of biologic independence. 
It is important to avoid confusion between modeling, on the one hand, 
and defi ning the relation specifi ed by biologic independence, on the other 
hand. We can be fl exible in modeling, but there is less room for arbitrari-
ness when defi ning biologic independence. In short, evaluating interaction 
is not the same as choosing a statistical model.
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3. In an analysis of the eff ect of oral contraceptives on stroke based on the 
data in Table 11–2, suppose that you were interested in the oral-contraceptive 
eff ect and wished only to control for possible confounding by hypertension 
using stratifi cation. What would be the stratum-specifi c risk ratio estimates 
for oral contraceptive use for the two strata of hypertension? In an ordinary 
stratifi ed analysis, why is there a separate referent category in each stratum?

4. Show that if there is an excess over a multiplicative eff ect among those 
with joint exposure to two causes, there will also be an excess over an 
 additive eff ect.

5. Th e investigators of the study described in Table 11–2 claimed that women 
who faced increased risk from one risk factor ought to avoid additional risk 
from another risk factor, regardless of whether the two factors interacted in 
the causation of the disease. Does this suggestion make sense? What would 
it imply about seat belt use for women who take oral contraceptives?

6. List reasons why the study of biologic interaction is more diffi  cult than the 
study of the eff ects of single factors.
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Using Regression Models in 

Epidemiologic Analysis

Th e straight line depicted in Figure 12–1 is an example of a simple mathematical 
model. It is a model because we use the mathematical equation for the straight 
line that is fi tt ed to the data as a way of describing the relation between the 
two variables in the graph, in this case cigarett e smoking and laryngeal cancer 
 mortality. Models in epidemiology are used for various purposes, the two  primary 
ones being to make predictions and to control for confounding. Prediction models 
are used to estimate risk (or other epidemiologic measures) based on information 
from risk predictors. For example, an equation can be used to estimate a per-
son’s risk of heart att ack during a 10-year period based on information about the 
person’s age, sex, family history, blood pressure, smoking history, weight, height, 
exercise habits, and medical history. Values for each of these predictors could be 
inserted into an equation that predicts the risk of heart att ack from the combi-
nation of risk factors. Th e model must have terms in it for all the risk  factors 
listed.

In contrast to the goal of risk prediction for specifi c people, much of epide-
miologic research is aimed at learning about the causal role of specifi c factors for 
disease. In causal research, regression models are used to evaluate the causal role 
of one or more factors while simultaneously controlling for possible confounding 
eff ects of other factors. Because this use of multivariable regression models diff ers 
from the use of models to obtain estimates of risk for people, there are diff erent 
considerations that apply to the construction of multivariable models for causal 
research. Unfortunately, many courses in statistics do not distinguish between the 
use of regression models for prediction of individual risk and the use of such 
models for causal inference.

Th e data in Figure 12–1 illustrate an almost perfect linear relation between the 
number of cigarett es smoked per day and the age-standardized mortality rate of 
laryngeal cancer. Seldom do epidemiologic data conform to such a striking linear 
patt ern. Th e line drawn through the data points is a regression line, meaning that 
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it estimates average values for the variable on the vertical scale (Y) according to 
values of the variable on the horizontal scale (X). In this case, it is a simple regres-
sion because it can be described as a single straight line in the following form:

Ŷ = a0 + a1X

Ŷ (oft en called “Y-hat”) is the estimated value of Y for any given value of X; a0 
is the intercept, or the value of Ŷ when X is zero; and a1 is the coeffi  cient of X, 
which describes the slope of the line, or the number of units of change in Ŷ for 
every unit change in X. In the fi gure, Ŷ is the age-standardized mortality rate from 
laryngeal cancer, and X is the number of cigarett es smoked daily.

Th e equation for the regression line in Figure 12–1 is Ŷ = 1.15 + 0.282X. 
Th ese values refer to deaths per 10,000 person-years. Th e intercept, 1.15, repre-
sents the number of deaths per 10,000 person-years that are estimated to occur 
in the absence of cigarett e smoking. Th ere is also a direct observation for the 
rate at the zero level of smoking, which is 0.6 deaths per 10,000 person-years. 
Th e regression line estimates a slightly larger value, 1.15, than the value that was 
observed; this estimate is based not just on the zero level for smoking but on all 
fi ve data points. Th e regression line slope, 0.282, indicates that the number of 
deaths per 10,000 person-years is estimated to increase by 0.282 for every addi-
tional cigarett e smoked daily.

Assuming that confounding and other biases have been properly addressed, 
the slope value of 0.282 quantifi es the eff ect of cigarett e smoking on death from 
laryngeal cancer. Th e regression line also allows us to estimate mortality rate 
ratios at diff erent smoking levels. For example, from the regression line, we can 
estimate the mortality rate among those who smoke 50 cigarett es daily (equiva-
lent to 2.5 packs/day) to be 15.2 deaths per 10,000 person-years. Compared with 

Figure 12–1  Age-standardized mortality from laryngeal cancer according to number 
of cigarett es smoked daily, derived from data of Kahn.1 (Adapted from Rothman et al2 
with permission of the American Journal of Epidemiology.)
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the estimated rate among nonsmokers of 1.15 deaths per 10,000 person-years, the 
estimated rate ratio for smoking 2.5 packs daily is 15.2/1.15 = 13.3. Put in these 
terms, we can readily see that the regression coeffi  cient indicates a strong eff ect 
of smoking on laryngeal cancer mortality.

THE GENERAL LINEAR MODEL

Models that incorporate terms for more than one factor at a time can be used as 
an alternative to stratifi cation to achieve control of confounding. Th ese models 
succeed in controlling confounding because when several risk factors are included, 
the eff ect of each is unconfounded by the others. Let us consider an extension of 
the simple linear model in Figure 12–1 to a third variable.

 Ŷ = a0 + a1X1 + a2X2 [12–1]

Equation 12–1, like the one for Figure 12–1, has the same outcome variable, 
Ŷ (also known as the dependent variable), but there are now two predictor vari-
ables, X1 and X2, which are referred to as independent variables. Suppose that Y 
is the mortality rate from laryngeal cancer, as in Figure 12–1, and that X1, as 
before, is the number of cigarett es smoked daily. Th e new variable, X2, might 
be the number of grams of alcohol consumed daily (alcohol is also a risk fac-
tor for laryngeal  cancer). With two independent variables and one dependent 
variable, the data points must now be visualized as being located within a three-
 dimensional space: two dimensions for the two independent variables and one 
dimension for the dependent variable. Imagine a room in which the edge of the 
fl oor against one wall is the axis for X1 and the edge where the adjacent wall 
meets the fl oor is the axis for X2. Th e line from fl oor to ceiling where these two 
adjacent walls meet would be the Y axis. Equation 12–1 is a straight line through 
the  three-dimensional space of this room.

What is the advantage of adding the term X2 to the model? Ordinarily, because 
cigarett e smoking and alcohol consumption are correlated, we might expect that 
cigarett e smoking and alcohol drinking would be mutually confounding risk fac-
tors for laryngeal cancer. A stratifi ed analysis could remove that confounding, but 
the confounding can also be removed by fi tt ing Equation 12–1 to the data. In a 
model such as Equation 12–1 with terms for two predictive factors, smoking (X1) 
and alcohol (X2), the coeffi  cients for these terms, a1 and a2, respectively, provide 
estimates of the eff ects of cigarett e smoking and alcohol drinking that are mutu-
ally unconfounded. Mathematically, there is no limit to the number of terms that 
could be included as independent variables in a model, although limitations of 
the data provide a practical limit. Th e general form of Equation 12–1 is referred 
to as the general linear model.

TRANSFORMING THE GENERAL LINEAR MODEL

Th e dependent variable in a regression model is not constrained mathematically 
to any specifi c range of values. In actual epidemiologic applications, however, the 
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dependent variable might be constrained in various ways. For example, the depen-
dent variable might be FEV1 (forced expiratory volume in 1 second), a measure 
of lung function that cannot be negative. As another example, the dependent vari-
able might be the occurrence of disease, which is measured as either no or yes 
and is usually assigned a value of 0 or 1. Th is dichotomy is a highly constrained 
variable, because only two values are observable, and the estimates would theo-
retically be constrained to be within the range [0,1]. It is common when using 
constrained outcome variables to use a transformation to avoid gett ing impossible 
values for the dependent variable. For example, the straight line in Figure 12–1 
has an intercept of 1.15 deaths per 10,000 person-years. With only slightly diff er-
ent data points, however, it would have been possible to have the line cross the 
Y-axis at a value less than 0, implying a negative mortality rate for nonsmokers. 
A negative mortality rate is impossible, but mathematically there is nothing in the 
fi tt ing of a straight line that confi nes the line to positive territory.

How could we fi t a model for rate data that avoids the possibility of the depen-
dent variable taking negative values? We can transform the data to confi ne the 
line to positive territory. One way to achieve that is to fi t the straight line to the 
logarithm of the mortality rate rather than to the mortality rate itself:

 ln(Ŷ) = a0 + a1X1 + a2X2
 [12–2]

where ln(Ŷ) is the natural logarithm of Ŷ. In Equation 12–2, the left  side can 
range from minus infi nity to plus infi nity, as can the right side, but Ŷ itself must 
always be positive because one cannot take the logarithm of a negative number. 
Th is equation can be solved for Ŷ by taking the antilogarithm of both sides, 
giving

 Ŷ = ea0 + a1X1 + a2X2 [12–3]

Equation 12–3 allows only positive values for Ŷ. On the other hand, to achieve 
this nicety, we no longer have a simple linear model but an exponential model 
instead.

Having an exponential model has some implications for the interpretation of 
the coeffi  cients. Consider again the simple linear model in Figure 12–1. Th e slope, 
0.282, is a measure of the absolute amount of increase in the death rate from 
laryngeal cancer with each additional cigarett e smoked per day. If a similar model 
were applied to an exposure that was measured on a dichotomous scale, with the 
“unexposed” condition assigned a value of 0 and the “exposed” condition assigned 
a value of 1, the coeffi  cient a1 would correspond to the rate diff erence between 
the exposed and unexposed states, which can be determined by subtracting the 
equation given that a person is unexposed (when X = 0) from the equation given 
that a person is exposed (when X = 1).

 exposed (X = 1): Ŷe = a0 + a1X = a0 + a1

 unexposed (X = 0): Ŷu = a0 + a1X = a0

 exposed-unexposed: Ŷe − Ŷu = a1
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Th us, without any transformation, a1 can be interpreted as an estimate of 
the rate diff erence between exposed and unexposed persons. If, however, we 
use the logarithmic transformation that is shown in Equations 12–2 and 12–3, 
we fi nd that the coeffi  cient a1 in that model is not interpretable as a rate 
diff erence:
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Rather, the antilogarithm of the coeffi  cient (which is what you get when you 
raise the constant e to the power of the coeffi  cient) is the rate ratio of exposed to 
unexposed persons. Th us, the transformation that provides for the good behavior 
of the predictions from the model with respect to avoiding negative rate estimates 
also has an implication for the interpretation of the coeffi  cient. Without the trans-
formation, the coeffi  cient estimates rate diff erences; with the transformation, the 
coeffi  cient estimates rate ratios (aft er exponentiating).

THE LOGISTIC TRANSFORMATION

Suppose that we had data for which the dependent variable was a risk mea-
sure. Whereas rates are never negative but can go as high as infi nity, risks are 
mathematically confi ned to the narrower range, [0,1]. For any straight line with 
nonzero slope, Y ranges from minus infi nity to plus infi nity rather than from 0 
to 1. Consequently, a straight line model without transformation could lead to 
individual predicted risk values that are either negative or greater than 1. Th ere 
is a commonly used transformation, however, the logistic transformation, that will 
confi ne the predicted risk values to the proper range.

It is easier to understand the logistic transformation if we think of it as two 
transformations. Th e fi rst converts the risk measure, R, to a transformed measure 
that ranges from zero to infi nity instead of [0,1]. Th is transformation is accom-
plished by using R/(1−R) in place of R. For values of R near 0, the quantity 
R/(1−R) will be litt le diff erent from R, but as R approaches 1, the denominator 
of the transformed value approaches 0 and the ratio R/(1−R) approaches infi nity. 
Th us, this transformation raises the upper end of the range from 1 to infi nity. Th e 
quantity R/(1−R) is called the risk-odds (any proportion divided by its comple-
ment is an odds). Th e second transformation converts the risk-odds to a measure 
that ranges all the way from minus infi nity to plus infi nity. Th at transformation 
is the same as the one used previously for incidence rates: one simply takes the 
logarithm of the risk-odds. Th e resulting measure, aft er both transformations, is 
ln[R/(1−R)], a quantity that is called a “logit.” Th e two-step transformation is 
known as the logistic transformation.
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Th e logistic model is one in which the logit is the dependent variable of a 
straight-line equation:
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Equation 12–4 shows only a single independent variable, but, just as in other 
linear models, it is possible to add additional independent variables to the model, 
making it a “multiple logistic” model. What is the interpretation of the coeffi  -
cient a1 in this model? For an X that is dichotomous (ie, X = 1 for exposed and 
X = 0 for unexposed), the coeffi  cient a1 is the ratio of logits for exposed relative 
to unexposed. Th is ratio is equal to the logarithm of the risk-odds ratio:
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Th is result means that, in the logistic model, the antilogarithm of the coeffi  -
cient of a dichotomous exposure term estimates the odds ratio of risks.
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As a consequence of this interpretation for the logistic coeffi  cient, the logistic 
model has become a popular tool for the analysis of case-control studies, in which 
the odds ratio is the primary statistic of interest.

CHOICES AMONG MODELS

From a mathematical perspective, the advantages of these transformations are tied 
to the mathematical behavior of the measures, ensuring that individual estimates 
from the models conform to the allowed range. From a practical standpoint, 
however, the transformations dictate what type of measure the coeffi  cients in the 
model will estimate. If one has risk data and wishes to estimate risk diff erence, 
the logistic model will not conveniently provide it will provide odds ratios. If 
one is using a model to obtain risk estimates for people, it may be important to 
avoid gett ing estimates of risk that are negative or greater than 100%, because 
these are invalid estimates. On the other hand, if the model is being used pri-
marily to assess an overall eff ect of the exposure from the coeffi  cient in the fi tt ed 
model, there may be less concern about whether all the individual estimates stay 
within their allowable ranges and more interest in which eff ect measure the model 
can provide. In many epidemiologic applications, it is the choice among eff ect 
 measures that dictates the type of model the investigator ought to use.

Consider the data in Table 12–1, which describe the risk of acquiring a hypo-
thetical disease over a 5-year period according to the subject’s age at the start of 
the period. Twenty subjects were followed for 5 years, and each either did or did 
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not develop the disease. Th ese data are plott ed as a scatt erplot in Figure 12–2. 
In a scatt erplot with a binary outcome variable that takes values of either 0 or 1, 
all the observations fall either at 0 or at 1 on the vertical axis. Figure 12–2 also 
shows the linear regression line through the 20 data points and its equation. Th e 
intercept of the regression line is the estimated value of the risk for those with 
age 0. Th e value of the intercept is −0.49, an impossible value for a risk. In fact, 
the line estimates a negative risk for all ages less than 24 years and a risk greater 
than 100% for all ages greater than 74 years.

One can avoid the inadmissible risk estimates from the regression line in 
Figure 12–2 by fi tt ing a logistic model instead of a straight line. Th e logistic model 
for the same data from Table 12–1 is illustrated in Figure 12–3. Its sigmoid shape 
is characteristic of the logistic curve. Th is shape keeps the curve within the range 
[0,1] for any age, preventing the impossible estimates that come from the linear 
model in Figure 12–2.

It might appear from a comparison of these two fi gures that the logistic model 
is always preferable for risk data, because it cannot result in estimates of risk 
that are inadmissible (ie, either less than zero or greater than one). Th is example 
is presented, however, to make the point that the logistic model is not always 
 preferable. Th e age coeffi  cient in the straight-line equation in Figure 12–2 is 
interpretable as a risk diff erence for each year of age: it indicates that the risk 
increases by an estimated 2% for each year of age. It is true that the fi tt ed straight 

Table 12–1 Risk 
of Developing a 

Hypothetical Disease 
During a 5-Year Period 

for 20 Subjects
Subject No. Age Disease
 1 18 0
 2 21 0
 3 22 0
 4 25 0
 5 26 0
 6 28 0
 7 33 0
 8 34 0
 9 35 0
10 37 0
11 42 1
12 47 1
13 55 0
14 56 1
15 58 0
16 61 1
17 65 1
18 68 1
19 75 1
20 77 1
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line is not expected to fi t the data well outside the central region of the graph. 
Nevertheless, for this central region in the middle of the age span, the straight 
line provides a simple and useful way of estimating the risk diff erence for each 
year of age. In contrast, the logistic model in Figure 12–3 does not permit direct 
estimation of a risk diff erence. Instead, it allows estimation of an odds ratio 
associated with a 1-year increase in age, from the antilogarithm of the logistic 
coeffi  cient: e0.144 = 1.15, which is the risk-odds ratio for each 1-year increase in 
age. Although there is nothing fundamentally wrong with estimating the odds 
ratio, the straight-line model may be preferable if one wishes to estimate a risk 
 diff erence. As mentioned earlier, the logistic model is particularly appropriate for 
the analysis of case-control studies because the odds ratio can be obtained from 
it, and the odds ratio is the statistic of central interest for estimating rate ratios 
in case-control studies.

CONTROL OF CONFOUNDING WITH REGRESSION MODELS

One of the principal advantages of multivariable regression models for epide-
miologic analysis is the ease with which several confounding variables can be 
controlled simultaneously. In a multivariable regression model, the inclusion of 
several variables results in a model in which each term is unconfounded by the 
other terms in the model. Th is approach makes it easy and effi  cient to control 
confounding by several variables at once, something that might be diffi  cult to 
achieve through a stratifi ed analysis.

For example, as described in Chapter 10, suppose that you were conducting 
an analysis with fi ve confounding variables, each of which had three categories. 

Figure 12–2  Scatt erplot of risk data from Table 12–1 and a linear regression line 
fi tt ed to the data.
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To control for these variables in a stratifi ed analysis, you would need to create 
three strata for the fi rst variable, then divide each of those three strata into three 
more substrata for the second variable, giving nine strata, and so on until there 
are 3 × 3 × 3 × 3 × 3 = 243 strata. If any of the variables required more than 
three categories, or if there were more than fi ve variables to control, the num-
ber of strata would rise accordingly. With such a large number of strata required 
for a stratifi ed analysis to control several variables, the data could easily become 
uninformative because there are too few subjects within each stratum to give use-
ful estimates. Multivariable regression modeling solves this problem by allowing a 
much more effi  cient way to control for several variables simultaneously. Everything 
has its price, however, and so it is for multivariable regression analysis. Th e price 
is that the results from the regression model are readily susceptible to bias if the 
model is not a good fi t to the data.

To illustrate the problem, consider the hypothetical data in Figure 12–4, with 
data points for exposed and unexposed people by age and by some unspecifi ed 
but continuous outcome measure. Th ese data show an unfortunate situation in 
which there is no overlap in the age distributions between the exposed popula-
tion and unexposed population. If a stratifi ed analysis were undertaken to control 
for age, there would be litt le or no overlap in any age category between exposed 
and unexposed groups, and the stratifi ed analysis would produce no estimate of 
eff ect. In essence, a stratifi ed analysis att empting to control for age would give the 
result that there is no information in the data.

In contrast, in a multiple regression with both age and exposure terms, the 
model will essentially fi t two parallel straight lines through the data, one relating 
age to the outcome for unexposed people and the other relating age to the out-
come for exposed people. If the dichotomous exposure term is coded 0 or 1, at 

Figure 12–3  Scatt erplot of risk data from Table 12–1 and a logistic regression line 
fi tt ed to the data.
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any age the diff erence in the outcome between exposed and unexposed is equal 
to the coeffi  cient for the exposure, which measures the exposure eff ect:

Outcome AgeAa a0 1a 2E p u

Th us the regression model produces a statistically stable estimate from the 
nonoverlapping sets of data points. Basically, the model extrapolates the age rela-
tion for the unexposed and exposed persons and estimates the eff ect from the 
extrapolated lines, as indicated in Figure 12–4. Th is estimation process is much 
more effi  cient than a stratifi ed analysis, which for these data would not produce 
any eff ect estimate at all.

But what if the actual relation between age and the outcome were as pictured 
in Figure 12–5? If age has the curvilinear relation pictured there, there is no eff ect 
of exposure on the outcome, and the eff ect estimated from the model depicted in 
Figure 12–4 would be incorrect. Th e apparent eff ect in Figure 12–4 is simply a bias 
introduced by the model and its inappropriate extrapolation beyond the observa-
tions. Because we cannot know whether the model in Figure 12–4 is appropri-
ate or whether the relation is actually like the patt ern depicted in Figure 12–5, 
the lack of results from a stratifi ed analysis of these data begins to look good 
compared with the regression analysis, which might produce an  incorrect result. 
Saying nothing is bett er than saying something incorrect.

Stratifi ed analysis has other advantages over regression analysis. With stratifi ed 
analysis, both the investigator and the reader (if the stratifi ed data are presented) 
are aware of the distribution of the data by the key study variables. When examin-
ing the output from a multiple regression analysis, on the other hand, the reader 

Figure 12–4  Hypothetical example of a multivariable linear regression of outcome 
data involving a dichotomous exposure variable (exposed = solid circles, unexposed = 
open circles) and age.
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is typically in the dark, and the researcher may not be much bett er off  than the 
reader. For this reason, a multivariable regression analysis should be used only 
as a supplement to a stratifi ed analysis, rather than as the primary analytic tool. 
Unfortunately, many researchers tend to leap into regression modeling without 
arming themselves fi rst with the knowledge that would come from a stratifi ed 
analysis. Typically, the reader is also deprived and is presented with no more than 
the coeffi  cients from the regression model. Th is approach has the lure of seeming 
sophisticated, but it is a mistake to plunge into regression modeling until one has 
viewed the distribution of the data and analyzed them according to the methods 
presented in Chapter 10.

PREDICTING RISK FOR A PERSON

Much of the advice on how to construct a regression model is craft ed for mod-
els aimed at making individual predictions regarding the outcome of interest. For 
example, Murabito et al3 published a logistic model that provided 4-year risk esti-
mates for intermitt ent claudication (the symptomatic expression of atherosclerosis 
in the lower extremities). Th e model is given in Table 12–2.

To obtain individual risk estimates from this model, one would multiply the 
coeffi  cients for each variable in the table by the values for a given person for each 
variable, which gives the logit for a given person. Because the exponentiated logit 
equals the risk-odds, exp(logit) = [R/(1−R)], the logit can be converted to a risk 
estimate by taking into account the relation between risk and risk-odds:

Odds
Risk

1 RisRR k
or Risk

Odds
1 Odds

= =

Figure 12–5  A possible age-outcome curve for the data in Figure 12–4 (exposed = 
solid circles, unexposed = open circles).
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Th us, the risk can be estimated as R = exp(logit)/[1 + exp(logit)]. For example, 
suppose we wish to estimate the 4-year risk of intermitt ent claudication for a 
70-year-old nonsmoking man who has normal blood pressure, diabetes, coronary 
heart disease, and a cholesterol level of 250 mg/dL. Th e logit would be −8.915 + 
1 ⋅ 0.503 + 70 ⋅ 0.037 + 0 ⋅ 0.000 + 1 ⋅ 0.950 + 0 ⋅ 0.031 + 250 ⋅ 0.005 + 
1 ⋅ 0.994 = −2.628, and the risk estimate over the next 4 years for intermitt ent 
claudication to develop would be exp(−2.628)/[1 + exp(−2.628)] = 6.7%. If the 
man had stage 2 hypertension instead of normal blood pressure, the logit would 
be −1.830 and the risk estimate would be 13.8%.

In a model such as the one in Table 12–2, the purpose of including each indi-
vidual term in the model is to improve the estimate of risk. To produce a useful 
risk estimate, it does not matt er whether any of the predictor terms is causally 
related to the outcome. In the model in Table 12–2, some of the predictors can-
not be viewed as causes: age is an example of a noncausal predictor, as is heart 
disease, which presumably does not cause intermitt ent claudication, although the 
two diseases may have causes in common. Nevertheless, despite not being causes 
of intermitt ent claudication, both age and the presence of coronary heart disease 
are good predictors of the risk of developing intermitt ent claudication; therefore, 
it makes sense to include them in the prediction model. Other predictors, such 
as cigarett e smoking, hypertension, and diabetes, may be causes of intermitt ent 
claudication.

STRATEGY FOR CONSTRUCTING REGRESSION MODELS 

FOR EPIDEMIOLOGIC ANALYSIS

Although a detailed discussion of the strategy for constructing multivariable 
regression models for epidemiologic analysis goes beyond the scope of this 
book, I outline here some basic principles for the use of these models in causal 
research.

Table 12–2 Logistic Model to Obtain Estimates 
of 4-Year Risk for Intermittent Claudication

Variable Coeffi  cient
Intercept −8.915
Male sex 0.503
Age 0.037
Blood pressure
 Normal 0.000
 High-normal 0.262
 Stage 1 hypertension 0.407
 Stage 2+ hypertension 0.798
Diabetes 0.950
Cigarett es/day 0.031
Cholesterol (mg/dL) 0.005
Coronary heart disease 0.994



Using Regression Models in Epidemiologic Analysis 223

Centering of Variables in Regression Models

Th e intercept in a regression model is the predicted outcome when all inde-
pendent predictors equal 0. In a model with one predictor, the intercept is 
the predicted value when that predictor equals 0. But how can we inter-
pret the intercept when 0 is not a meaningful value for the predictor? For 
example, suppose we fi t a regression that predicts mortality rate according 
to body mass index (BMI), which is defi ned as weight in kilograms divided 
by the square of height in meters. Th e intercept would correspond to the 
predicted mortality rate for people with a BMI of 0, which is impossible. In 
such situations, it is useful to “center” the predictor variable around some 
central value, such as a BMI of 22 kg/m2. Centering is accomplished simply 
by subtracting 22 from each BMI value, so that the new BMI variable is the 
diff erence above or below a BMI of 22 kg/m2. With the centered variable, 
the intercept corresponds to the mortality rate predicted when BMI is 22 
kg/m2, rather than 0, which is much more interpretable. Centering does not 
aff ect the basic interrelationships of the study variables, but it does make it 
easier to interpret the coeffi  cients, especially when there are product terms 
in the model that would further complicate the interpretations.

Do a Stratified Analysis First
Th e fi rst step should always be a stratifi ed analysis. Th e main contribution of a 
multivariable regression analysis to causal research is to enable the simultaneous 
control of several confounding factors. In accomplishing this goal, multivariable 
modeling ought to be thought of as a supplement to stratifi ed analysis, to be used 
in situations in which there are too many confounders to be handled comfort-
ably in a stratifi ed analysis. Even is those circumstances, it is common that most 
of the confounding stems from one or two variables and a multivariable regres-
sion model will give essentially the same result as a properly conducted stratifi ed 
analysis.

Determine Which Confounders to Include in the Model
Start with a set of predictors of the outcome based on the strength of their rela-
tion to the outcome, as indicated from analyses of each factor separately or from 
a preliminary model in which all potential confounders are included. Th en, build 
a model by introducing predictor variables one at a time. Aft er each term is intro-
duced, examine the amount of change in the coeffi  cient of the exposure term. If 
the exposure coeffi  cient changes considerably (most investigators look for a 10% 
change), then the variable just added to the model is a confounder (provided 
that it also meets the conditions for a confounder described in Chapter 7); if 
not, it is not an important confounder. To judge the confounding eff ect in this 
way, it is essential for the exposure to be included in the model as a single term. 
For example, if the exposure is cigarett e smoking, one might enter a single term 
that quantifi es the amount of cigarett e smoking rather than several terms for lev-
els of cigarett e smoking. It is likewise important to avoid any product terms that 
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involve cigarett e smoking (or whatever the exposure variable is) at this stage of 
the analysis.

Estimate the Shape of the Exposure-Disease Relation
If the exposure is a simple dichotomy, one can estimate the exposure eff ect directly 
from the coeffi  cient of the exposure term aft er the confounders have been entered 
into the model. If, however, the exposure is a continuous variable, such as the 
number of cigarett es smoked daily, the exposure term needs to be redefi ned aft er 
the confounders are entered into the model. Th e reason for redefi ning the expo-
sure term is that the single exposure term that was in the model for the purpose 
of evaluating confounding will not reveal the shape of the exposure-disease rela-
tion for a continuous exposure variable. If the model involves a logarithmic trans-
formation, as do most of the models commonly used in epidemiologic analysis, a 
single term for a continuous exposure variable will be mathematically constrained 
to take the shape dictated by the model. In a logistic model, the exposure coef-
fi cient is the logarithm of the odds ratio for a unit change in the exposure vari-
able. If the exposure is the number of cigarett es smoked daily, the coeffi  cient of a 
single term that corresponds to the number of cigarett es smoked daily would be 
the logarithm of the odds ratio for each single cigarett e smoked. Because there is 
only a single term, the model dictates that the eff ect of each cigarett e multiplies 
the odds ratio by a constant amount. Th e result is an exponential dose-response 
curve between exposure and disease (Fig. 12–6).

Th is exponential shape will be fi t to the data regardless of the actual shape 
of the relation between exposure and disease, as long as the exposure variable 
is continuous and confi ned to a single term in a model that uses a logarithmic 

Stepwise Models in Epidemiologic Analysis

Stepwise construction of regression models is accomplished by an algo-
rithm that automatically selects which terms to include in the fi nal model. 
Th e algorithm typically selects terms based on the level of statistical sig-
nifi cance of the coeffi  cient for each term. Stepwise modeling makes much 
more sense for the construction of a prediction model than for a causal 
model. As discussed in Chapter 8, statistical testing does not allow us to 
grasp either the strength of a relation or the precision of an estimate in 
isolation; it mixes the two. Using statistical signifi cance levels to determine 
which potential confounders to include in a model is a bad idea, whether 
it is part of an automatic stepwise algorithm or not, for several reasons. 
First, the amount of confounding depends on two associations—the rela-
tion between the potential confounder and the exposure, and the relation 
between the potential confounder and the outcome. Th e coeffi  cient that is 
tested for signifi cance in a stepwise algorithm evaluates only the latt er rela-
tion; it ignores the relation between the potential confounder and the expo-
sure. Th erefore, this method can result in the inclusion of variables that are 
not confounding. It can also omit variables that are confounding but for 
which the relation with the outcome is not “statistically signifi cant.”
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transformation. In linear models, a linear relation, rather than an exponential rela-
tion, will be guaranteed. Th e problem is that the actual relation set by nature 
may be nothing like the shape of the relation posed by the model. Indeed, few 
 dose-response relations in nature look like the curve in Figure 12–6.

To avoid this diffi  culty of having the model dictate the shape of the dose-response 
relation, the investigator can allow the data, rather than the model, to determine 
the shape. To accomplish this goal, the investigator must redefi ne the exposure 
term in the model. One popular approach is factoring the exposure. Factoring here 
refers to categorizing the exposure into ranges and then creating a separate term 
for each subrange of exposure, except for one category that becomes by default 
the reference value. For example, cigarett e smoking could be categorized as zero 
cigarett es per day, 1 to 9 per day, 10 to 19 per day, and so on. Th e model would 
have a term for each cigarett e-smoking category except 0, which is the reference 
category. Th e variable corresponding to each term would be dichotomous, simply 
revealing in which category a given person fell. Each smoker would have a value of 
1 for the smoking category that applied and a value of 0 for every other category; 
a nonsmoker would have a 0 for all smoking categories. Th e resulting set of coeffi  -
cients in the fi tt ed model indicate a separately estimated eff ect for each level of 
smoking, determined by the data and not by the mathematics of the model.

Another approach for estimating the shape of the dose-response trend is to use 
curve-smoothing methods, such as spline regression, which allow a diff erent fi tt ed 
curve to apply in diff erent ranges of the exposure variable.

Th e important point in evaluating dose-response relations is to avoid lett ing the 
model determine the shape of the relation between exposure and disease. Whether 
one uses factoring, splines, or other smoothing methods, it is desirable to allow 
the data, not the model, to defi ne the shape of the dose-response curve.

Figure 12–6  Shape of a positive dose-response relation between exposure and 
 disease from a logistic model with a single continuous exposure term.
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Evaluate Interaction
To evaluate interaction appropriately, the investigator should redefi ne the two 
exposures in question by considering them jointly as a single composite exposure 
variable and entering combinations of the exposures into the model as a factored 
set of terms. For two dichotomous exposures, A and B, the composite variable 
would have four categories: exposed to neither, exposed to A but not B, exposed 
to B but not A, and exposed to both. Each person will fall into only one category 
of the joint exposure to the two variables. Using exposed to neither as the refer-
ence category, the model will provide estimates of relative eff ect for each of the 
other three categories, enabling the investigator to partition the risk or risk ratio 
among those with joint exposure to two agents into the four categories described 
in Chapter 11.4,5 If one or both of the variables is a preventive rather than a cause, 
then it should be redefi ned so that the referent category is the lower risk category 
of the variable.6 For more discussion related to the evaluation of interaction, see 
Chapter 11.

OVERFITTING OF REGRESSION MODELS AND SUMMARY 

CONFOUNDER SCORES

Th e great advantage of regression models for epidemiologic analysis is the ability to 
control simultaneously for several confounding variables. Very oft en, there is litt le 
confounding from most of the potential confounders in a body of data, apart from 
one or two that exhibit moderate or strong confounding. When it is not necessary 
to control for more than one or two variables, it is oft en advisable to present the 
results of a stratifi ed analysis as the primary fi ndings. With several confounders 
that all contribute at least moderate amounts of confounding, however, some mul-
tivariable regression approach is preferred. In extreme cases, there may be a large 
number of variables that all contribute substantial confounding, and in some of 
these situations, it may not be feasible to fi t a regression model. For example, in 
a cohort study with a small number of outcomes, the sparsity of outcomes may 
pose a problem. One rule of thumb that is commonly cited is that there should 
be at least 10 or 15 observations for every term in a regression model. With fewer 
observations than that, the fi tt ed model may be overfi tt ed, which means that the 
model will be too heavily infl uenced by random error in the data.7,8

In most epidemiologic studies, “observations” are equivalent to people, but in 
many studies, it is not the total number of people that serves as the limiting factor 
but the number of people with the study outcome. Suppose that you conducted 
a cohort study in 10,000,000 people aimed at learning about the causes of acute 
liver failure. Th is is a large cohort, but because acute liver failure is rare, in 1 year 
you might observe only 70 cases. Th is small number of cases is the limiting num-
ber for determining how many terms could be included in a regression model 
without overfi tt ing. With 70 cases, the maximum that the model can reasonably 
accommodate will be about 7 to 10 terms. Th e number of variables may be less 
than the number of terms. For example, if a variable such as age is categorized into 
10-year age categories, age alone may require several terms in the model, one for 
each category apart from the referent category. Th erefore, the number of variables 
that can be accommodated may be quite limited if overfi tt ing is to be avoided.
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One way to avoid overfi tt ing is to use a confounder summary score to control for 
confounding. Th ere are two types of confounder summary scores. One is a dis-
ease risk score. To obtain a disease risk score, a regression model is fi tt ed that 
predicts disease risk for every person in a study based on the information from 
confounding factors. Th en the actual risk estimates are calculated for each person, 
and these estimates of risk are added to the data as a new variable. Th is new var-
iable in theory summarizes the confounding information from all the disease risk 
predictors that were used to obtain it. In the fi nal stage of the analysis, the inves-
tigator only needs to control for one variable, the disease risk score. Th is control 
can be accomplished by a stratifi ed analysis, matching, or a regression model that 
contains no more than the disease risk score along with the exposure variable.9

Use of a disease risk score as a confounder summary would not overcome the 
problem of overfi tt ing if the regression model used to fi t the disease risk score 
contained many confounders and just a handful of people with the outcome, as in 
the example of acute liver failure. In these situations, another type of confounder 
summary score may be used. It is an exposure summary score, usually referred 
to as a propensity score. Suppose that the aim of the acute liver failure study is 
to examine the relation between administration of antibiotics and the develop-
ment of acute liver failure. To get a summary exposure score, one could fi t a 
regression model that predicts whether each person would receive an antibiotic. 
Overfi tt ing that model is less of a problem than overfi tt ing a model that predicts 
risk of acute liver failure: although few people get acute liver failure, many people 
use antibiotics. From the regression model that predicts antibiotic exposure, one 
would calculate a propensity score for each person in the study and treat that 
score as a summary confounder. Th en, in the fi nal analysis, the investigator would 
need to control for only a single variable, the propensity score, which eff ectively 
will control for all the component variables used to estimate the propensity score. 
Because exposures typically are not as rare as many disease outcomes, propensity 
scores can oft en be used to control for a large number of confounding factors in 
a regression model without the diffi  culty of overfi tt ing the model.

Using a summary confounding score amounts to more work than fi tt ing the typi-
cal multivariable regression model, and despite the greater eff ort it does not always 
appear to result in substantially bett er control of confounding.10 Nevertheless, the 
use of summary confounder scores, especially propensity scores, is increasing. One 
reason, as just described, is the ability to control for numerous confounders when 
there are few outcome events in the data. Another value in using a confounder 
summary score is the ability to examine the range of confounder scores for all 
subjects and to exclude outlier subjects who are outside the range common to 
both exposed and unexposed subjects (a procedure called trimming). Suppose one 
looked at the age distribution of exposed and unexposed subjects and discovered 
that exposed subjects tend to be older, with the oldest exposed subjects having 
ages well above those of the oldest unexposed subjects. On the other end of the 
age distribution, there may be unexposed subjects younger than any exposed sub-
jects. It would be good practice to restrict the age distributions of exposed and 
unexposed subjects to the range common to both. Doing so would reduce residual 
confounding by age. Th e same approach could be used with a confounder summary 
score, likewise reducing residual confounding (Fig. 12–7). Th e advantage of trim-
ming the distributions based on a summary confounder score is that one needs to 
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trim for only that one variable. Trimming for age may reduce residual confounding 
by age, but it does not aff ect residual confounding by other variables. Trimming 
for several variables may control residual confounding at the price of losing much 
of the data. Trimming the data once according to a summary confounder score 
reduces residual confounding much more eff ectively than trimming by a single 
variable, and it conserves data by making the trimming process effi  cient.11

Th ere is an important caution to keep in mind when selecting variables for pro-
pensity score models. When regression modeling is taught, students are oft en told 
that the aim is to put into the model the best predictors of the outcome. Th at may 
be true for regression models that are used to make individual predictions. When 
the purpose of the model is to control confounding, however, as it is in propensity 
score models, putt ing in the best predictors of the outcome may be undesirable. 
Very strong predictors of exposure may or may not be confounders, depending on 
their relation to the disease. If a strong predictor of exposure is unrelated to the 
disease, including it in a propensity score regression model will not accomplish any 
control of confounding. Including such a variable will, however, lead to separation 
of the exposed and unexposed distributions, as depicted in Figure 12–7, result-
ing in loss of data that are useful for direct comparison and ultimately resulting 
in wider confi dence intervals. Th erefore, it is important to avoid including strong 
predictors of exposure in a propensity score regression model unless they are also 
confounders, which means that they are also predictors of disease and that they 
are not in the causal pathway between exposure and disease.

EXAMPLE OF USING PROPENSITY SCORES: ARE DRUG-

ELUTING STENTS BETTER THAN BARE-METAL STENTS?

In pharmacoepidemiology, the use of propensity scores to model the probability 
of treatment as a summary confounder score has become a dominant method for 
the control of confounding. Th is method was employed by Mauri et al13 in a 2008 
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Figure 12–7  Trimming of subjects outside the range of propensity scores that is 
common to both exposed and unexposed subjects.
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Variable Matching Ratios, Confounding, and Trimming

Suppose you were conducting a cohort study of treated (exposed) and 
untreated (unexposed) patients in which there was expected to be substan-
tial confounding by indication. Accordingly, you have decided to compute 
a propensity score for each subject to control for confounding. One option 
in the data analysis is to match an untreated patient to every treated patient, 
ending up with two cohorts that are matched by their propensity scores. 
All of the variables that went into the propensity score model should be 
adequately controlled in the comparison between the treated cohort and 
the individually matched untreated cohort. In fact, one can usually dem-
onstrate that the compared cohorts show a balance for all the risk factors 
that went into the propensity score model, even if they were severely unbal-
anced before the matching process.12 Such a demonstration can persuade 
skeptics that a propensity score model can indeed control eff ectively for 
many confounding variables simultaneously. Another advantage of matching 
is that it automatically achieves the trimming illustrated in Figure 12–7.

Matching one untreated subject to each treated subject comes at a cost, 
however. Many subjects may have propensity scores that put them in the 
range to be matched, but simply do not get matched. Th ey are omitt ed 
from the analysis, resulting in a loss of information and leading to a wider 
confi dence interval. Th ese subjects could be retained in the study if either 
a stratifi ed analysis or a regression model were used to analyze the data. 
Alternatively, the matching could be expanded so that instead of matching 
only one unexposed person with each exposed person, all unexposed per-
sons who have approximately the same propensity score as the exposed per-
son would be included. Including as many subjects as possible that match 
on propensity score produces a variable matching ratio rather than a fi xed 
ratio of untreated patients for every treated patient. A variable matching ratio 
simply means that the ratio of untreated to treated subjects varies across 
matched sets. A drawback to a variable matching ratio is that one cannot 
display a simple table that shows the desired balance between all treated 
and untreated subjects for each of the variables that goes into the propen-
sity score. Such overall balance will result only if the matching ratio is fi xed, 
yielding the same number of unexposed people for each exposed person. 
A table that demonstrates balance is a useful way to persuade skeptics that 
use of the propensity score has successfully controlled for all its component 
variables that could be confounding, but this persuasive demonstration is 
not possible when the matching ratio varies across matched sets.

Rather than exclude subjects from the study who could have been 
included simply to obtain a table showing a balance of potential confound-
ers, one might consider using a two-step process: fi rst, select matched pairs 
(ie, using a fi xed matching ratio of 1) to produce a table that shows bal-
ance for the individual variables in the propensity score model; second, add 
back into the data those subjects who could have been matched but were 
excluded to keep the matching ratio to a value of 1. Th e fi rst step shows 
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study on the comparative safety of two diff erent kinds of stents. Stents are tubular 
wire cages used to keep arteries patent aft er narrowed vessels have been widened 
by angioplasty. Th e authors identifi ed adults undergoing stenting at Massachusett s 
hospitals for acute myocardial infarction during an 18-month period. Th ey then 
measured the risk of death over the 2 years following insertion of the stent, com-
paring the risk for patients receiving bare-metal stents and those receiving drug-
eluting stents. Th e latt er stents are coated with medication to prevent scar tissue 
formation within the artery walls. Some previous studies, but not all, had indi-
cated that patients with drug-eluting stents had a greater risk of eventual cardiac 
complications and death than patients receiving bare-metal stents.

Th e study by Mauri et al.13 showed some diff erences in the characteristics of 
patients receiving the two kinds of stents. Th ese diff erences were consistent with 
the explanation that a greater proportion of those receiving bare-metal stents were 
treated under emergency conditions. It is possible that drug-eluting stents were 
more widely used in big referral centers, whereas patients with an immediate car-
diac crisis were more likely to be treated at local hospitals that were more likely 
to use bare-metal stents. Of course, this diff erence in prognosis would bias the 
study results unless it could be controlled adequately in the analysis. To att empt 
to control for these confounding diff erences, the authors calculated the propensity 
for each patient to receive a drug-eluting stent rather than a bare-metal stent, and 
then they matched patients receiving one kind of stent to patients receiving the 
other kind according to their propensity score.

No analytic method is perfect in controlling for confounding, because of 
unmeasured confounders or imperfect measurement of identifi ed confounders. 
Mauri et al.13 proposed an ingenious way to gauge the eff ectiveness of control of 
confounding in their study. Th e risk of death aft er a myocardial infarction is high-
est during the fi rst few days and then declines gradually over time. Based on the 
mechanism of action, drug elution from a stent is thought to have no eff ect dur-
ing the fi rst days aft er placement of the stent. Th erefore, the researchers compared 
the risk of death among patients receiving the two types of stents during the 2 
days following insertion of the stent, a period in which the type of stent should 
make no diff erence. If the propensity score model were eff ective in controlling for 

that the propensity score achieves balance between the cohorts, because it 
uses a fi xed matching ratio. Th e second step expands the comparison group 
by allowing a variable matching ratio, which avoids the loss of information 
from those who would have been omitt ed from the matched-pair analysis.

Th e above discussion of a cohort study does not apply to a case-control 
study. For case-control studies, matching on any variable related to expo-
sure induces a selection bias that must be controlled in the analysis (see 
Chapter 7). Showing balance between cases and controls is no reassur-
ance that the bias has been removed. Th e diff erent behavior of matching 
in cohort and case-control studies derives from the fact that the matching 
in cohort studies is between exposed and unexposed subjects, whereas in 
case-control studies it is between subjects who have disease (the cases) and 
those at risk for disease (the controls)—an entirely diff erent phenomenon.
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confounding, then one would expect to see the same risk of death over the 2 days 
following insertion for patients receiving drug-eluting versus bare-metal stents. In 
fact, however, the 2-day risk for those receiving a bare-metal stent was almost 
double the 2-day risk for those receiving a drug-eluting stent: 1.2% versus 0.7%. 
Th is diff erence indicates that matching on the propensity score did not balance 
the risk factors that predict death between the two groups of patients.

Unfortunately, Mauri et al. incorrectly focused on the lack of statistical sig-
nifi cance of the diff erence in 2-day risk of death between the two study cohorts. 
Th e P value was 0.06, but using statistical signifi cance to assess a diff erence is a 
poor approach to interpreting the data, as explained in Chapter 8. In this situa-
tion, the authors’ mistake was even more profound, because the question at hand 
was not whether the diff erence between the cohorts might have been compatible 
with chance. Rather, the question was the size of the imbalance in risk factors 
and how much it biased the fi nal results of the study. Th e authors claimed that 
their study showed a lower risk of death over 2 years for patients receiving drug-
eluting stents. Aft er control of confounding, they found that the 2-year risk of 
death was 10.7% among patients receiving a drug-eluting stent and 12.8% (20% 
greater) among those receiving a bare-metal stent. Th ese conclusions, however, 
ignored the analysis that demonstrated residual confounding, which indicated 
almost double the risk for short-term death among the bare-metal stent group. 
If the confounding that was evident during the mortality experience of the fi rst 
2 days stemmed from risk factors that persisted over the next 2 years, then we 
would expect that, from confounding alone, the risk over 2 years would be almost 
twice as high for patients receiving bare-metal stents as for those receiving drug-
eluting stents. Because the risk of death for patients receiving bare-metal stents 
was in fact much less than twice as high (only 20% higher), one can conclude 
that these data indicate that it was actually much safer to receive a bare-metal 
stent, a conclusion opposite to that drawn by the authors.

One problem in this interesting case study was the authors’ focus on the P 
value instead of the magnitude of the risk imbalance that they reported. Another 
problem surfaced in later published correspondence,14,15 when the authors sug-
gested that the diff erences in 2-day risks were unimportant for another reason. 
Th ey dismissed the greater risk of death over the fi rst 2 days for patients gett ing 
bare-metal stents because the risk diff erence for death over 2 days was 0.5%, small 
in relation to the diff erence of 2.1% in the other direction seen over 2 years. 
Th e value of a risk, however, is cumulative over the time period for which the 
risk is measured (see Chapter 4). Th e risks and the corresponding risk diff er-
ences for the fi rst 2 days are necessarily smaller than the risks that accumulate 
over 2 years. Suppose that the patients receiving bare-metal stents had a greater 
risk over 2 days because they were older than those receiving drug-eluting stents. 
Th e age diff erence would continue to contribute to the risk diff erence between 
the two cohorts over the next 2 years, with the cumulative eff ect being roughly 
proportional to the period of time. Diff erences in propensity score would likely 
work similarly.

To adjust the study fi ndings for the discrepancy seen in the 2-day risk, one 
would need to project the diff erence in risk over 2 days to the full 2 years, which 
requires using the proportionality of the risks as an adjustment factor. Over 
2 days, those gett ing bare-metal stents had a risk that was 73% higher than the 
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risk for those gett ing drug-eluting stents. Over 2 years, the risk observed in the 
bare-metal stent group was 20% higher than in the drug-eluting stent group. If 
the confounding alone would have led to a risk that was 73% higher, it seems 
that these data indicate that gett ing the bare-metal stent was considerably safer 
than gett ing the drug-eluting stent. Aft er using the ratio of risks over the fi rst 
2 days to adjust the risk ratio at 2 years, one can then convert that 2-year risk 
ratio to a risk diff erence with some simple assumptions that we will not elaborate 
here. Using such methods, one can infer that based on the study of Mauri et al.13 
the bare-metal stent patients had an absolute risk of death that was actually 4.4% 
lower over 2 years than that of the drug-eluting stent patients, rather than the 
2.1% greater risk the authors reported.

SUMMARY

Regression models are extremely useful in epidemiologic analysis, both for predict-
ing disease risk and for controlling confounding, especially when there are several 
important confounders that must be controlled simultaneously. Many advanced 
techniques, which are beyond the scope of this text, rely on diff erent types of 
regression models in various ways. Nevertheless, there is a case to be made that 
epidemiologists have demonstrated an overreliance on regression models. As sug-
gested earlier in this chapter, in almost all situations a stratifi ed analysis should be 
undertaken as a fi rst approach to analyzing the data in an epidemiologic study. If 
there are several important confounders, it may not be possible for all of them to 
be controlled simultaneously, but it is rare that there are more than one or two 
substantial confounders. Even when there are, a stratifi ed analysis can be con-
ducted that will measure and control confounding for each variable singly, a pro-
cess that informs the multivariable regressions done subsequently. Furthermore, it 
may be feasible to control for two or three confounders with simple stratifi cation 
and to get a good estimate of the exposure eff ect from the tables used for this 
analysis.

A great strength of a stratifi ed analysis is that the data are revealed for all to 
peruse. To capitalize on that advantage, when stratifi ed analyses are presented, the 
researcher should include more than just the summary results. Th e tables with 
the stratifi ed data should also be presented. In this way, readers will have access 
to the key data from which unconfounded eff ect estimates can be calculated, 
and this approach keeps everyone well informed about the data. Presenting these 
tables will lead to fewer mistakes.

Another strength of stratifi ed analysis is that for cohort studies it lends itself 
more readily than regression models to presentation of exposure-specifi c rates or 
risks. For example, one can use standardization to obtain exposure-specifi c rates 
of disease from a cohort. From those standardized rates, it is easy to calculate 
standardized rate diff erences and rate ratios. In contrast, most regression models 
are limited to one eff ect measure and do not off er estimation of exposure- specifi c 
rates or risks. Th us, although epidemiologists are taught that an advantage of 
cohort studies is the ability to measure absolute rates or risks rather than just 
relative measures, many cohort studies are analyzed and reported using regres-
sion models that provide estimates solely of ratio measures, with no information 
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on diff erence measures or actual rates or risks. Th is approach negates one of the 
important advantages of cohort studies. Using stratifi ed analysis as the primary 
analysis will avert this problem.

In many cases, there will be enough recorded information on variables that 
have confounding eff ects so that fi tt ing a regression model will ultimately be use-
ful, aft er a thorough stratifi ed analysis. Th e results from the regression model in 
most situations should be well anticipated by a preliminary stratifi ed analysis. Th e 
regression results should be presented in the published work or fi nal report only 
to the extent that they represent an important refi nement of the fi ndings. Rather 
than being the fi rst analysis and oft en the only analysis presented, regression 
models should ordinarily reinforce what has already been shown.

QUESTIONS

1. In a multivariable regression model with a nominal scale variable that has 
three categories, how many indicator terms would need to be included? In 
general, for a variable with n categories, what is the expression for the num-
ber of terms that would need to be included in the model?

2. Th e analysis depicted in Figure 12–4 is more effi  cient than a stratifi ed 
analysis but also more biased. Why is it more biased?

3. Why is an exponential curve, such as the one in Figure 12–6, not a rea-
sonable model for the shape of a dose-response trend? What would be the 
biologic implication of a dose-response curve that had the shape of the curve 
in Figure 12–6?

4. If the age term is removed from the model shown in Table 12–2, what 
would happen to the coeffi  cients for blood pressure? Why?

5. In a regression model with a continuous exposure variable, why is it desirable 
to have a single exposure term in the model when evaluating confounding?

6. If we have a continuous exposure variable and use a single exposure term 
to evaluate confounding, the shape of the dose-response curve for that term 
will be implied by the model. Th at imposition can be avoided by factor-
ing the exposure into several terms defi ned by categories of the exposure. 
Th e use of several exposure terms, however, will make it diffi  cult to evaluate 
confounding. How can we evaluate confounding and also avoid the model-
imposed restrictions on the shape of the dose-response curve?
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Epidemiology in Clinical Settings

Clinical epidemiology focuses the application of epidemiologic principles on 
questions that relate to diagnosis, prognosis, and therapy. It also encompasses 
screening and other aspects of preventive medicine at both the population and 
the individual level. Th erapeutic thinking has been greatly aff ected by advances 
in pharmacoepidemiology, an area that has extended the reach of epidemiologic 
research from the study of drug benefi ts to that of adverse eff ects and has led to 
the burgeoning fi elds of outcomes research and comparative eff ectiveness. Outcomes 
research marries epidemiologic methods with clinical decision theory to deter-
mine which therapeutic approaches are the most cost-eff ective, whereas compara-
tive eff ectiveness aims to evaluate the eff ect of diff erent interventions against one 
another in a variety of sett ings.

DIAGNOSIS

Assigning a diagnosis is both crucial and subtle. To a large extent, the process of 
diagnosis may appear to involve intuition, conviction, and guesswork, processes 
that are opaque to quantifi cation and analysis. Nevertheless, formal approaches 
to understanding and refi ning the steps in assigning a diagnosis have helped to 
clarify the thinking and solidify the foundation for diagnostic decision making. 
Th e basis for formulating a diagnosis comprises the data from signs, symptoms, 
and diagnostic test results that distinguish those with a specifi c disease from those 
who do not have that disease.

The Gold Standard

Diagnosis cannot be a perfect process. Rarely does any sign or symptom, or any 
combination of them, distinguish completely between those with and those with-
out a disease. Oft en a diagnosis is considered established when a specifi c com-
bination of signs and symptoms that has been posed as the criterion for  disease 
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is present. A diagnosis meeting this standard may be “defi nitive” but only in a 
circular sense, that is, by defi nition. Another way that a defi nitive diagnosis can be 
reached is by expert judgment, oft en by consensus; but once again this approach 
makes a diagnosis defi nitive only by defi nition. No approach is perfect, and two 
diff erent approaches to the same disease will not necessarily lead to the same 
classifi cation for every patient. Nevertheless, even if it is arbitrary, we need to 
have some defi nition of disease to use as a “gold standard” by which to judge the 
fi ndings from individual signs and symptoms or screening tests.

Sensitivity and Specifi city

For years, the diagnosis of tuberculosis (TB) has rested on detection of the 
Mycobacterium tuberculosis organism from smears of acid-fast bacilli and from 
culture, but this method requires 10,000 bacteria/mL and does not distinguish 
among various mycobacteria. Catanzaro et al.1 investigated how well an acid-fast 
smear predicted the diagnosis of clinical TB among patients who were suspected 
to have active pulmonary TB solely on the basis of clinical judgment. Th e diag-
nosis of TB was established by an expert panel of three judges, who used culture 
information and clinical information according to specifi c guidelines to classify 
patients into those who had and those who did not have TB. Th e distribution by 
diagnosis and by outcome of the acid-fast smear results is given in Table 13–1.

A total of 338 patients with suspected active pulmonary TB were studied. 
Of these, 72 (21%) were diagnosed as having it. Among these 72 TB patients, 
43 (60%) had a positive smear. Th is proportion is known as the sensitivity of 
the smear. Th e sensitivity of a test, sign, or symptom is defi ned as the propor-
tion of people with the disease who also have a positive result for the test, sign, 
or  symptom. If everyone who has the disease has a given sign or symptom, the 
sensitivity of that sign or symptom is 100%. It is easy to fi nd signs or symptoms 
that have high sensitivities. For example, in diagnosing headache, we might note 
that all patients have heads, making the sensitivity of having a head 100%. Having 
a head would have a low specifi city, however. Th e specifi city of a test, sign, or 
symptom is the proportion of people among those who do not have the disease 

Table 13–1 Distribution of Patients with Suspected Active 
Pulmonary Tuberculosis, by Diagnosis and by Results of 

Acid-Free Bacillus Smear Testing
Tuberculosis

Smear Present Absent Total
Positive 43  22  65
Negative 29 244 273
Total 72 266 338

Sensitivity of smear
43
72

60%      Predictive Value Positivii= = e ofee smear
43
65

66%

Specificity of smear
244
266

92%    Pred

= =

= = iictive Value Negative of smear
244
273

%= = 89
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who have a negative test, sign, or symptom. Th e specifi city of the acid-fast smear 
test, based on the data in Table 13–1, was 244/266 (92%). Th e specifi city of 
having a head in diagnosing a headache would be zero, because everyone has a 
head. Th e most useful tests, signs, or symptoms for diagnosing a disease are those 
with both high sensitivity and high specifi city. A test with 100% sensitivity and 
100% specifi city would be positive for everyone with disease and negative for 
everyone without disease. Almost all tests, however, fall short of providing perfect 
 separation of those with and without disease.

Tests, signs, and symptoms can be used in combination to improve either the 
sensitivity or the specifi city. Suppose test A had a sensitivity of 80% and a specifi c-
ity of 90% by itself, and test B also had a sensitivity of 80% and a specifi city of 
90%. If we used the two tests in combination to indicate disease, we might postu-
late that a positive result on both tests would be required to indicate the presence 
of disease. If the tests results were independent of each other, then 0.8 × 0.8 = 0.64 
of all patients with disease would test positive on both, making the sensitivity of 
the combination 64%, worse than the sensitivity of either test alone. On the other 
hand, the specifi city would improve, because those who are negative for the com-
bination of tests would include all those who tested negative on either test. In this 
example, 90% of those without disease would test negative on the fi rst test, and 
among the 10% who did not, 90% would test negative on the second test, making 
the specifi city of the combination 0.9 + (0.1 × 0.9) = 99%. Th erefore, requiring a 
positive result from two tests increases the specifi city but decreases the sensitivity.

Th e reverse occurs if a positive result on either test is taken to indicate the 
presence of disease. For the example given, 80% of those with disease would test 
positive on the fi rst test, and of the remaining 20%, 80% would test positive on 
the second test, making the sensitivity 0.8 + (0.2 × 0.8) = 96%. Th e price paid to 
obtain a higher sensitivity is a lower specifi city, which would be the proportion of 
those without disease who test negative on both tests, 0.9 × 0.9 = 81%.

Th is discussion assumes that the test results are independent, which is rarely the 
case. Nevertheless, the principle always applies that combinations of tests, signs, and 
symptoms can be used to increase either the sensitivity or the specifi city—one at 
the cost of the other—depending on how a positive outcome for the combination 
of tests is defi ned. Th is principle is used to detect cervical cancer by a Papanicolaou 
smear, which has a high sensitivity but a lower specifi city. As a result, a Pap smear 
will detect almost all cervical cancers but has a high proportion of false-positive 
results. By requiring a sequence of positive Pap smears before taking further diag-
nostic action, however, it is possible to improve the specifi city of the smear (ie, 
reduce the false-positive results) without compromising by much the already high 
sensitivity. In recent years there has been improvement on the approach of repeated 
smears: now, a single cervical smear can be simultaneously tested for the DNA of 
human papilloma virus, another risk factor for cervical cancer, to improve the sen-
sitivity of a single screen rather than having to rely on repeated Pap testing.2

Predictive Value

Sensitivity and specifi city describe the characteristics of a test, sign, or symptom 
in correctly classifying those who have or do not have a disease. Predictive value is 
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a measure of the usefulness of a test, sign, or symptom in classifying people with 
disease. It can be calculated from the same basic data from which we calculate 
sensitivity and specifi city. Consider the TB example in Table 13–1. We can use 
these data to calculate the predictive value of a positive smear. Among the 65 
people with a positive smear, 43 had TB. Th erefore, a positive smear correctly 
indicated the presence of TB in 43/65 (66%) of people who were tested. Th is 
proportion is referred to as the predictive value positive, or the predictive value 
of a positive test, usually abbreviated as PV+. We can also measure the predic-
tive value negative, or the predictive value of a negative test, which is abbreviated 
PV−. In the same data, of the 273 who had a negative smear, 244 did not have 
TB, making the predictive value negative of the smear 244/273 (89%).

Sensitivity and specifi city should theoretically be constant properties of a test, 
regardless of the population that is being tested, but in practice they can vary 
with the mix of patients. In contrast, predictive value varies even theoretically 
from one population to another, because it is highly dependent on the prevalence 
of disease in the population being tested. We can illustrate the dependence of 
predictive value on the prevalence of disease by examining what would result if 
we added to the population described in Table 13–1 500 people who did not 
have TB. Th e eff ect is similar to the change one would fi nd in moving from 
a clinic serving a population in which TB was common to a clinic serving a 
population in which TB was less common. Th e augmented data are displayed in 
Table 13–2.

Let us assume that the sensitivity and specifi city of the test remain the same. 
We still have 72 people with TB, of whom 43 have a positive smear. We now 
have 766 people without TB, which includes the original 266 plus 500 additional 
people who do not have TB. We have assumed that the specifi city of the test 
remains the same, 92%, which means that 703 of the 766 patients without TB 
will have a negative smear. Th e PV+ and PV− are considerably diff erent in this 
second population, however. Th e PV+ is 43/106 = 41%, much less than the PV+
of 66% for the population in Table 13–1. As the prevalence of disease decreases, 
the predictive value of a positive test will decrease as well. At the same time, the 
PV− has changed from 89% in the original data to 703/732 = 96% in the aug-
mented data. As the prevalence of the disease decreases, the PV+ decreases but 
the PV− increases.

Table 13–2 Results from Table 13–1 Augmented with Data from 
500 Additional People Without Tuberculosis

Tuberculosis
Smear Present Absent Total
Positive 43  63 106
Negative 29 703 732
Total 72 766 838

Sensitivity of smear
43
72

60%      Predictive Value Positivii= = e ofee smear
43

106
%

Specificity of smear
703
766

92%    Pre

= =

= =

41

dictive Value Negativedd of smearf
703
732

%= = 96
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Th ese changes in predictive value with changes in prevalence should not be too 
surprising. If we tested a population in which no one had disease, there would still 
be some false-positive test results. Th e predictive value of a positive test in such a 
population would be zero, because no one in that population actually had the dis-
ease. On the other hand, the predictive value of a negative test would be perfect 
(100%). Taking the other extreme, if everyone in a population had the disease, 
then the PV+ would be 100% and the PV− would be zero. Changes in predic-
tive value with prevalence of disease have implications for the use of diagnostic 
and screening tests. Tests that have reasonably good PV+ in a clinic population 
of patients presenting with symptoms may have litt le PV+ in an asymptomatic 
population being screened for disease. For this reason, it may not make sense to 
convert diagnostic tests into screening tests that would be applied to populations 
with a low prevalence of disease.

Screening

Th e premise of screening for disease is that for many diseases early detection 
improves the prognosis. Otherwise, there would be no point to screening, because 
it is expensive both in monetary terms and in terms of the burden it places on 
the screened population. To be suitable for screening, a disease must be detect-
able during a preclinical phase by some test, and early treatment must convey a 
benefi t over later treatment (ie, the treatment that would occur aft er the disease 
comes to att ention without screening).3 Furthermore, the benefi t that early treat-
ment conveys should outweigh the overall costs of the screening. Th ese costs are 
more than just the expense of administering the screening test to a healthy popu-
lation. Screening will result in some false-positive tests, saddling those who have 
the false result with the mistaken prospect of facing a disease that they do not 
have. Furthermore, a false-positive test usually leads to further tests and some-
times even to treatments that are unnecessary and risky. Another cost comes from 
false-negative results, which provide false reassurance about the absence of dis-
ease. Even for those whom the screening test labels correctly with disease, there 
is a psychological cost that comes from being labeled earlier in the natural history 
of the process than would have occurred without screening. Weighing against this 
cost is the useful reassurance for those who do not have the disease that comes 
from having tested negative.

For screening to succeed, the disease being screened for should have a rea-
sonably long preclinical phase so that the prevalence of people in this preclinical 
phase is high. If the preclinical phase is short and people who develop the disease 
promptly pass through it into a clinical phase, there is litt le point to screening. In 
such a situation, the low prevalence of the preclinical phase of the disease in the 
population will produce a low PV+ for the screening test.

Lead-Time Bias
Because screening advances the date of diagnosis for a disease, it can be diffi  cult 
to measure its eff ect. Suppose the disease is cancer. Th e success of treating cancer 
is usually measured by the survival time aft er diagnosis or the time to recurrence. 
If early treatment is advantageous, one would expect it to result in longer survival 
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time or longer time until recurrence. Aft er screening, however, survival time and 
time to recurrence will increase even if the screening and earlier treatment do no 
good. Th e reason is that the time of diagnosis is moved ahead by screening, so 
that the diagnosis is registered earlier in the natural history of the disease process 
than it would have been without screening. Th e diff erence in time between the 
date of diagnosis with screening and the date of diagnosis without screening is 
called the lead time. Lead time should not be counted as part of the survival 
time aft er disease diagnosis, because it does not represent any real benefi t. If it 
is counted, it will erroneously infl ate the survival time, a problem known as lead-
time bias. Lead time can be estimated by comparing the course of disease among 
a screened population with the course of disease among a similar population that 
has not been screened.

Prognostic Selection Bias
In addition to lead-time bias, another diffi  culty in evaluating the success of a 
screening eff ort is bias that comes from self-selection of subjects who decide to 
be screened. Th is bias is called prognostic selection bias. Because screening pro-
grams are voluntary, those who volunteer to get screened will diff er in many ways 
from those who refuse to be screened. Volunteers are likely to be more interested 
in their health, to be more eager to take actions that improve their health, and 
to have a more favorable clinical course even in the absence of a benefi t from 
screening. One way to avoid this bias, as well as lead-time bias and the eff ect 
of length-biased sampling (see next section), is to evaluate the screening test or 
program in a randomized trial. In nonexperimental studies, however, these biases 
are important issues that must be taken into account to obtain a valid assessment 
of screening effi  cacy.

Length-Biased Sampling
Another diffi  culty in measuring the eff ect of screening comes from length-biased 
sampling, which results from natural variability in the progression rate of  disease. 
To simplify the issue, suppose that breast cancer comes in two types, fast-
 progressing and slow-progressing. Th ose with fast-progressing breast cancer have 
the worse prognosis; their disease goes quickly through the preclinical phase into 
a clinical phase and spreads rapidly, leading to an early demise for many patients. 
Slow-progressing breast cancer is more benign, taking many more months or years 
to progress through the preclinical phase into a clinical phase that also is char-
acterized by slow progression. Women with slow-progressing breast cancer have 
a bett er prognosis, even without treatment, although they are also more likely to 
benefi t from treatment.

Let us assume that an equal number of cases of slow-progressing and fast-
progressing breast cancer occur in a population. Despite the equal incidence, the 
prevalence of slow-progressing cases would be greater, because prevalence refl ects 
duration as well as incidence. Th us, more individuals with slow-progressing breast 
cancer will be in the preclinical phase of disease, because each case takes longer 
to pass through that stage of the disease process. A screening program, there-
fore, would tend to identify more slow-progressing cases than fast-progressing 
cases. Even if early identifi cation and treatment of breast cancer had no eff ect on 
the disease, cases identifi ed in a screening program would tend to have a bett er 
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prognosis than the average of all cases because of length-biased sampling: the 
screening tends to favor identifi cation of slow-progressing cases, which have a 
 bett er prognosis.

PROGNOSIS

Prognosis is a qualitative or quantitative prediction of the outcome of an illness. 
A full description of the prognosis involves not merely the duration of the illness 
and the timing of recovery or progression but also the nature of the illness as it 
progresses along its clinical course. Epidemiologic evaluation of prognosis focuses 
specifi cally on the measurement in epidemiologic terms of serious sequelae or 
recovery. Th e most serious sequela is death, and much of epidemiologic prognos-
tication focuses on the occurrence of death among newly diagnosed or treated 
patients.

Th e simplest epidemiologic measure of prognosis is the case-fatality rate. Despite 
the name, this measure is an incidence proportion rather than a true rate. It is 
the proportion of people with newly diagnosed disease who die from the dis-
ease. Strictly speaking, the case-fatality rate should be measured over a fi xed and 
stated time period, such as 3 months or 12 months. Traditionally, however, the 
measure has been used to describe the clinical course of acute infectious illnesses 
that progress toward recovery or death within a short time. Th e time period 
implicit in the measure is the period of active infection and its aft ermath and is 
oft en left  unspecifi ed. For example, we might describe typhoid fever as having a 
case- fatality rate of 0.01, paralytic poliomyelitis as having a case-fatality rate of 
0.05, and Ebola disease as having a case-fatality rate of 0.75, with each disease 
having its own characteristic time period during which the patient either dies or 
recovers.4 Eventually, of course, all the patients with any disease will die from one 
cause or another. Th e presumption of the case-fatality rate is that essentially all 
of the deaths that occur promptly aft er disease onset are a consequence of the 
disease.

For diseases with a long clinical course, it becomes more important to specify 
the time period over which the case-fatality rate is measured. When it is measured 
over longer periods, the term case-fatality rate is oft en not even used. Instead, we 
use terms such as 5-year survival rate to refer to the proportion of patients surviv-
ing for 5 years aft er diagnosis. Th is is simply the complement of the proportion 
who die during the same period. Beyond a simple incidence proportion or sur-
vival proportion, we can derive a survival curve, which gives the survival prob-
ability according to time since diagnosis. Th e survival curve conveys information 
about the survival proportion for all time periods up to the limit of what has been 
observed, thus providing greater information than any single survival proportion. 
(A common method for obtaining a survival curve is the Kaplan-Meier product-
limit method, which is a variant of the life-table approach described in Chapter 4. 
Th e Kaplan-Meier method recalculates the proportion of survivors at the time of 
each death in a cohort.5)

Th e complement and close cousin to the survival curve is the curve that 
expresses the cumulative proportion of patients who reach a specifi c end point. 
Figure 13–1 exemplifi es a pair of such cumulative incidence curves. Th ey 
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describe the results of a randomized trial that compared the eff ect of ramipril, an 
 angiotensin-converting enzyme inhibitor, with placebo in preventing the occur-
rence of myocardial infarction, stroke, or death in patients with certain cardio-
vascular risk factors.6 In this example, the curves show the cumulative proportion 
who  experienced any of the end points over a 5-year follow-up period.

THERAPY

It has been said that it was not until the early 20th century that the average patient 
visiting the average physician was likely to benefi t from the encounter. Th e course 
of illness today is oft en greatly aff ected by the choice of treatment options. Th e 
large clinical research enterprise that evaluates new therapies is heavily dependent 
on epidemiology. In fact, a large part of clinical research is clinical epidemiology.

Clinical Trials

Th e randomized clinical trial is the epidemiologic centerpiece of clinical epide-
miology. Although the clinical trial is but one type of epidemiologic experiment 
(the others are fi eld trials and community intervention trials), it is by far the most 
common. (See Chapter 5 for a discussion of the types of epidemiologic experi-
ments.) A full discussion of clinical trials merits a separate textbook; here, I will 
only touch on some highlights that bear on the interpretation of trial results.

Th e central advantage of trials over nonexperimental studies is their ability 
to control confounding eff ectively. A particularly knott y problem in therapeutics 
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Figure 13–1  Cumulative proportion of patients experiencing a myocardial infarction, 
stroke, or death from cardiovascular causes, by treatment group. (Adapted with per-
mission from Heart Outcomes Prevention Evaluation Study Investigators. Eff ects of an 
angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events in high-risk 
patients. N Engl J Med. 2000;342:145–153, copyright © 2000, Massachusett s Medical 
Society. All rights reserved.)
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is the problem of confounding by indication. When nonexperimental studies are 
 conducted to compare the outcomes of diff erent treatments, confounding by indi-
cation can present an insuperable problem. Confounding by indication is a bias 
that stems from inherent diff erences in prognosis between patients given diff erent 
therapies. For example, suppose a new antibiotic shows promise in treating resis-
tant strains of meningitis-causing bacteria but has common adverse eff ects and is 
costly. It is likely that the new treatment will be reserved for patients who face the 
greatest risk of a fatal outcome. Even if the drug is highly eff ective, the mortality 
rate among those who receive it could be greater than that among those receiving 
the standard drugs, because those who get the new drug are at the highest risk. 
A valid evaluation of the new drug can be achieved only if the prognostic diff er-
ences can be adjusted or otherwise controlled in the epidemiologic comparison. 
Nonexperimental studies can deal with such confounding by indication if there is 
suffi  ciently good information on measured risk factors for the disease complica-
tion that the therapy aims to prevent. Nevertheless, the best eff orts to control 
confounding by indication oft en fail to remove all of the bias. Th is problem is 
the primary motivation to conduct experiments that compare therapies. With the 
random assignment that is possible in a clinical trial, prognostic factors can be 
balanced between groups receiving diff erent therapies.

Blinding and Use of Placebos
Blinding refers to hiding information about treatment assignment from the key par-
ticipants in a trial. Th e concern is that knowledge of the treatment assignment will 
infl uence the evaluation of the outcome. Th is concern relates most directly to the 
person or persons who are supposed to make judgments or decisions regarding 
the outcome. For example, if the outcome is hospitalization for an exacerbation 
of the disease, the physician who makes the determination about hospitalization 
might be infl uenced by knowledge about which treatment was assigned to a given 
patient. Th is concern is amplifi ed if the physician has a strong view about the mer-
its of the new therapy. If the physician does not know which treatment the patient 
has received, then the evaluation should be free of this source of potential bias.

Blinding is not always necessary. If the only outcome of interest is death, there 
is litt le reason to be concerned about biased classifi cation of the outcome, because 
judgment is not an important factor in determining whether someone is dead. In 
other instances, blinding may be infeasible. If the treatment is an elaborate inter-
vention, such as major surgery, it may be neither possible nor ethical to provide 
a sham procedure that would allow blinding.

Some trials are described as double-blind. Th is term implies that the evalua-
tor assessing the patient for the possible outcome does not know the treatment 
assignment, and the patient also does not know the treatment assignment. Th e 
person who administers the treatment may also be kept unaware of which treat-
ment is being assigned, in which case the study might be described as triple-blind. 
In all of these situations, the goal is to keep the information about treatment 
assignment a secret so that the evaluation of the outcome will not be aff ected.

One method that is oft en used to facilitate blinding is placebo treatment for the 
comparison group. A placebo (from the Latin, “I shall please”) is intended to have 
no biologic eff ect outside the off er of treatment itself. Placebo pills typically con-
tain sugar or other essentially inert ingredients. Such pills can be manufactured to 
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be indistinguishable from the new therapy being off ered. Other types of placebo 
treatment involve sham procedures. For example, in a trial of acupuncture, the 
placebo treatment could involve the application of acupuncture needles at points 
that are, according to acupuncture theory, not correct. Placebo treatments need to 
be adapted to the particular experiment in which they are used.

Although a placebo treatment facilitates blinding, that is not the primary rea-
son it is used. It has long been known that even if a treatment has no eff ect, off er-
ing that treatment may have a salubrious eff ect. An off er of treatment is an off er 
of hope, and it may bring the expectation of treatment success. Expectations are 
thought to have a powerful infl uence on outcome. If so, a new treatment may have 
an eff ect that comes only through the lift ing of patient expectations. According to 
some scientists, “Th e history of medical treatment until recently is largely the his-
tory of the placebo eff ect.”7 Th e use of a placebo comparison in a trial is intended 
to distinguish treatments that have only a placebo eff ect from those that have a 
greater therapeutic eff ect. Th e placebo eff ect itself is highly variable, depending on 
the nature of the outcome and the nature of the treatment.

Ethics of Placebo Use in Randomized Trials

Only decades ago, it was common for physicians to prescribe placebos so 
that patients could benefi t from improved expectations. Today such prac-
tice is rare, and many would consider it unethical. Placebo use continues 
in randomized trials, however, where the biggest concern is also an ethical 
one. According to the 1964 Declaration of Helsinki of the World Medical 
Association,8 the interests of patients must come before the interests of sci-
ence and society. Furthermore, every patient in a trial should be assured of 
gett ing the equivalent of the best available treatment, even those assigned 
to the comparison group. Th erefore, it is unethical to use a placebo in any 
trial if there is already an accepted treatment for the condition under study. 
Instead, an investigator must test a new therapy against the existing stan-
dard, to see if it beats the current best treatment.

According to the principles embodied in the Declaration of Helsinki, 
no researcher should deny a patient the best available treatment solely for 
the purpose of learning whether a new treatment is bett er than placebo. 
Identifying new treatments that are bett er than placebo but worse than the 
current best treatment is of less interest than identifying new treatments 
that are bett er than the best existing treatment. As medicine progresses, 
there should be fewer and fewer conditions for which a placebo-controlled 
study is ethical, because standard therapies that are bett er than placebo will 
exist for more and more conditions. Unfortunately, the use of placebos in 
trials has achieved paradigm status in the minds of many researchers and 
even offi  cial agencies.9 Th e paradigm should certainly include a comparison, 
but not necessarily a placebo comparison.8,9

Threats to Validity in Trials
Despite the strengths of randomized trials, there are several issues that can lead 
to biases in assessment. As mentioned, blinding is intended to reduce some of 
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these biases, by reducing opportunities for subjective evaluations to be infl uenced 
by knowledge of treatment. Some other sources of bias in trials are incomplete 
follow-up, intent-to-treat analysis, and confounding imbalances that stem from 
random assignment.

Incomplete Follow-up
Randomized trials are susceptible to many of the same biases that affl  ict other 
types of cohort studies. One source of bias is diff erential follow-up of the treat-
ment groups. Th e ideal situation regarding follow-up is for there to be no subjects 
lost to follow-up, which prevents any bias from this source. In most trials, how-
ever, some subjects are not followed to the intended study end point. Reasons 
for incomplete follow-up are the same ones that occur in other cohort studies, 
which include subjects moving from the study area, withdrawing their consent to 
participate in the study, or dying from a disease that is not one of the study end 
points. If some study subjects are lost to follow-up for any of these reasons, the 
count of events will be underestimated compared with what it would have been 
had there been no losses to follow-up.

To deal with this potential source of bias, investigators may analyze the data 
under the assumption that the experience of those who were lost to follow-up is 
similar to that of those who remained in the study. Th is assumption, however, is 
not always reasonable. For example, subjects with worsening symptoms may be 
more inclined to drop out of the study than those with a bett er prognosis. In that 
case, the risk of the outcome in each treatment group would be underestimated if 
it were based on the experience of those with complete follow-up. Alternatively, 
those with the worst prognosis may be less likely to drop out of a study if they 
believe that they will receive bett er care by remaining in it. In that case, the study 
will overestimate the risks of the study outcome, because those dropping out are 
at lower risk than those remaining in the study. If follow-up is incomplete and is 
related to both the study intervention and the study outcome, the result is diff er-
ential loss to follow-up between study groups, a type of selection bias. Diff erential 
loss to follow-up can lead to study results that are biased in either direction.

Intent-to-Treat Analysis
As described in Chapter 5, an intent-to-treat analysis is oft en employed in ran-
domized trials. In this type of analysis, the random assignment at the outset of 
the trial determines the treatment group in which a subject will be included for 
the analysis, regardless of whether the subject adhered to that treatment assign-
ment. Th erefore, patients who get assigned to a new therapy but for various rea-
sons decide to discontinue it, or never to begin taking it, will still be considered 
as part of that treatment group for the analysis. Th is approach maintains the 
benefi ts of random assignment for the comparison of a new treatment against 
an older treatment, but at the cost of misclassifi cation of actual treatment. Th ose 
who “cross over” from their assigned treatment to the other treatment group, for 
example, will be analyzed with their assigned treatment, ignoring the crossover. 
As a result, the analysis using the intent-to-treat principle incorporates some mis-
classifi cation of actual exposure. To the extent that the misclassifi cation is inde-
pendent of the study outcome, the misclassifi cation will be nondiff erential and 
will lead to  underestimation of the eff ect of actual treatment.
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Underestimation of the actual treatment eff ect is oft en considered acceptable, 
because it implies that a successful treatment is even bett er than the value esti-
mated with the intent-to-treat approach. Nevertheless, as mentioned in Chapter 5, 
adverse eff ects of a treatment will also be underestimated by this method. Th is 
underestimation of risks is a serious drawback to using an intent-to-treat analy-
sis for trials evaluating the safety of a treatment. In such trials, an analysis that 
classifi es subjects according to their actual treatment may be preferred. Because 
an analysis based on actual treatment would not have all the benefi ts of a ran-
domized comparison, the usual array of epidemiologic methods would have to be 
employed to assess and control confounding in the data analysis.

Confounding Imbalances
Baseline risk factors are prognostic factors for the outcome that are measured at 
the time of random assignment. If randomization succeeds in achieving its goal, 
the frequency of the outcome will be similar in the various treatment groups cre-
ated by randomization, apart from the eff ect of the intervention, because the over-
all risk for the outcome is balanced between groups. Although there is no direct 
way to measure whether such a balance in overall prognosis for the treatment 
groups has been achieved, it is possible to measure the distribution of individual 
prognostic factors in the compared groups to see how well balanced they are. Any 
imbalance in a baseline risk factor represents confounding, because a confounding 
factor is a risk factor that is associated with exposure. To say that a risk factor is 
imbalanced means that it is not distributed equally in the compared treatment 
groups and therefore is associated with the assigned treatment.

Randomization is intended to prevent confounding. Th e outcome of a ran-
dom process, however, is predictable only if aggregated over many repetitions. In 
a specifi c case or in a particular trial, unlikely distributions can result from the 
randomization. In the University Group Diabetes Program,10 the group that was 
randomly assigned to receive tolbutamide was older on average than the group 
randomly assigned to receive placebo. As a result, there was confounding by age 
in the evaluation of the tolbutamide eff ect. Th is age confounding was illustrated 
in Chapter 7: the crude diff erence in mortality proportion between tolbutamide 
and placebo, ignoring the age imbalance, was 0.045 (Table 7–7), whereas, aft er 
stratifi cation into two age strata (Table 7–8), the tolbutamide eff ect was estimated 
as 0.035.

Distributions are rarely identical, so how can we tell when the imbalance in 
a baseline risk factor is severe enough to warrant treating the variable as a con-
founding factor? If a factor that is severely imbalanced has only a small eff ect 
on the outcome, there will be litt le confounding even with the large imbalance. 
On the other hand, even a modest imbalance in a strong risk factor for the out-
come might lead to worrisome confounding. Th erefore, the amount of imbalance 
in the risk factor is not, by itself, a good guide to the amount of confounding 
that the baseline imbalance introduces. Th e best way to assess the confounding 
is to use the same approach that epidemiologists use in other situations, which 
is basically the method that was used to compare the eff ects for tolbutamide 
estimated in Tables 7–7 and 7–8. Comparison of the crude estimate of eff ect, 
which is obtained without control of confounding, with an unconfounded esti-
mate reveals how much confounding is removed when the variable is treated as 
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a confounder (see Chapter 10). It may seem cumbersome that one has to con-
trol the confounding to measure how much there is, but no evaluation of the 
imbalance in the baseline risk factor alone can reveal the amount of confounding, 
which depends on the interplay between that imbalance and the relation of the 
risk factor to the outcome.

A common mistake in conducting and reporting clinical trials is to use sta-
tistical signifi cance testing to assess imbalances in baseline risk factors. Chapter 
8 explains the problems with statistical signifi cance testing in general and sug-
gests that it be avoided. Table 8–3 from that chapter displays the results from a 
prominently published clinical trial that was misinterpreted because the authors 
relied on statistical signifi cance for their inference. Use of statistical signifi cance 
testing for interpretation of the results of a study is undesirable, but it is even 
less desirable to use statistical signifi cance testing to assess baseline diff erences 
in a trial.

Aside from the usual problems with statistical signifi cance testing that are 
described in Chapter 8, its use in the assessment of baseline imbalances intro-
duces further problems. Perhaps the most obvious problem is that an imbalance 
in baseline risk factors by itself does not refl ect the amount of confounding, as 
explained earlier. A second problem is that the amount of confounding is the 
result of the strength of the associations between the baseline risk factor and the 
two main study variables, treatment (exposure) and outcome (disease). In con-
trast, the result of a statistical signifi cance test depends not just on the strength of 
the association being tested but also on the size of the study: for a given strength 
of association, more data results in a smaller P value. Th us, a given amount of con-
founding in a large study might yield a statistically signifi cant diff erence in a base-
line risk factor, whereas the same amount of confounding in a small study might 
not. For these reasons, it does not make much sense to use statistical signifi cance 
testing to evaluate confounding. Instead, one should simply compare the crude 
eff ect estimate with the estimate aft er controlling for the possible  confounder and 
assess the diff erence between the two results.

If an imbalance of baseline risk factors is serious enough to induce worrisome 
confounding into the eff ect estimate of a trial, how should it be handled? One 
school of thought holds that any imbalance should be ignored, because the intent 
of a randomized trial is to compare the experience of the randomized groups, 
period. According to this theory, one simply hopes that randomization will control 
successfully for all possible confounding factors, and then one relies on conduct-
ing a crude analysis without any control of confounding, no matt er what happens 
aft er the randomization. Th e motivation for this view is that if the researcher does 
control for confounding, problems can be introduced into the analysis that can 
nullify the benefi ts of random assignment.

It is true that in an ideal sett ing randomization will prevent confounding. But if 
randomization has failed to prevent confounding, the options that the investigator 
faces are either to rely on a biased comparison of the crude data or to conduct 
an analysis that controls for the confounding that has been identifi ed. Given the 
expense and eff ort of a trial, it makes litt le sense to ignore confounding that has 
been identifi ed and thereby risk having the results of the study ignored because 
critics claim that the study is biased. It makes much more sense to att empt to 
control for any confounding that has been identifi ed. Critics may still claim that 
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the randomization has “failed” (although it has not really failed). Nevertheless, the 
hope that random assignment will prevent confounding has already been defeated 
if confounding has been identifi ed in the data. Th e question is how to proceed 
now that randomization has not prevented confounding.

Some might argue that if an identifi ed confounder is controlled, that process 
itself can introduce confounding by some other, possibly unidentifi ed factor. 
Although that is possible, there is no basis to assume that control of a known bias 
will introduce an unknown bias. Instead, it is more reasonable to control all iden-
tifi ed confounders and treat the analysis like any other epidemiologic study.11,12

Example: Th e Alzheimer’s Disease Cooperative Study 
of Selegiline and α-Tocopherol
Th e question of how to deal with baseline diff erences arose in a trial13 of selegi-
line and α-tocopherol, two treatments intended to slow progression of Alzheimer’s 
disease. Th e trial followed a factorial design; that is, participants were assigned to 
groups so that every combination of treatments was studied. In this study with 
two treatments, there were four groups: one group received only α-tocopherol, 
one received only selegiline, one received both α-tocopherol and selegiline, and 
one received a placebo. Th e mean score on the Mini-Mental State Examination 
(MMSE) at the start of the trial for the patients randomly assigned to receive 
α-tocopherol alone was 11.3 on a scale from 0 to 30, whereas the placebo group 
had a mean score of 13.3 (higher scores indicate bett er cognitive function). Th us, 
the random assignment resulted in lower cognitive function at baseline in the 
group assigned to α-tocopherol compared with the placebo group.

An Unrejectable Null Hypothesis

Th ere is yet another reason why the use of statistical signifi cance testing 
to evaluate baseline imbalances in a clinical trial makes no sense. If such a 
statistical test is applied, one might ask what null hypothesis it tests. Th e 
answer must be that the null hypothesis is that any observed imbalance 
is just the result of chance. If a statistically signifi cant result is observed, 
those who focus on signifi cance testing might take that to mean that the 
null hypothesis is rejected. In the case of baseline imbalances in a random-
ized trial, that would mean rejecting the hypothesis that chance produced 
the imbalances. But we cannot reject that hypothesis! Apart from the pos-
sibility of chicanery or incompetence, we know that chance did in fact pro-
duce the imbalance: the imbalance is the result of a randomized allocation. 
Random assignment can produce unusual results, but we already know in 
a trial that the imbalances that do occur are due to chance. Th erefore it 
makes no sense to test the null hypothesis. Actually, it makes no diff er-
ence whether the imbalance was caused by chance or not. What matt ers 
is that the imbalance exists, and what is important to know is how much 
confounding it causes. Statistical signifi cance testing cannot reveal that, but 
the straightforward application of epidemiologic rules for assessment of 
confounding can.
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At fi rst the investigators disregarded this diff erence, and they found that the 
α-tocopherol group had a risk ratio of 0.7 with respect to the occurrence of at 
least one of several primary end points, including death, institutionalization, and 
onset of severe dementia. Th us the estimate of the crude eff ect of α-tocopherol 
indicated a substantial benefi t. Adjustment for the baseline diff erence in MMSE 
score would be expected to increase the estimated benefi t even further, because 
the α-tocopherol group had more signs of dementia to begin with, and this was 
indeed the case: the estimated rate ratio aft er adjusting for baseline diff erences 
was 0.47, representing an even greater benefi t.

Th ese fi ndings were challenged by a correspondent,14 who claimed that the 
adjusted results were biased. Th e critic did not off er a clear rationale for the sup-
posed bias, nor did he discuss its magnitude or direction. When a critic suggests 
that a result is biased, it is incumbent on that person to quantify the eff ect of the 
bias. In this case, the critic implied that the adjusted results should be ignored and 
that the results from the crude analysis should be used for interpretation. Recall 
that even the crude eff ect, with no adjustment for the baseline diff erence, showed 
a worthwhile benefi t, with a rate ratio of 0.70, indicating a 30% reduction in the 
occurrence of the primary end-point events. Nevertheless, the critic stated that 
“no true eff ect of treatment has been proved,” suggesting that α-tocopherol had 
no eff ect at all. Th is conclusion was apparently based not on the eff ect estimate, 
which showed a 30% reduction in occurrence of the adverse end points, but rather 
on a lack of statistical signifi cance. Th is misinterpretation of the fi ndings was aided 
by the authors of the original report, who themselves placed great emphasis on 
statistical signifi cance. Th ey also assessed the baseline diff erences in terms of their 
statistical signifi cance rather than the amount of confounding that they produced.

In this example, which estimate of eff ect should be relied on as the best esti-
mate of the eff ect of α-tocopherol on Alzheimer’s disease? Th e crude estimate 
for the rate ratio is 0.70, and the adjusted estimate is 0.47, but we know that 
the crude estimate is biased because of baseline diff erences in the MMSE score. 
It does not matt er what the P value is for these baseline diff erences, nor exactly 
how they arose; what matt ers is the amount of confounding that they introduce. 
Contrary to what the correspondent asserted, the estimate of the α-tocopherol 
eff ect aft er adjustment for those baseline diff erences contains less bias, not more 
bias, than the crude estimate of the eff ect. With adjustment, the estimated ben-
efi t of α-tocopherol in slowing the progression of Alzheimer’s disease is striking. 
In this example, distrust for an analysis that removed confounding and reliance 
on statistical signifi cance testing for interpretation wrongly called into question a 
striking benefi t.

Pharmacoepidemiology

Drug epidemiology, also known as pharmacoepidemiology, is an active area of epi-
demiologic research that focuses on the eff ectiveness and safety of therapeutic 
drugs and devices. Although randomized trials are, strictly speaking, under the 
umbrella of pharmacoepidemiology, this discipline is commonly thought to com-
prise nonexperimental research on drugs and devices. Safety studies are oft en 
nonexperimental, because adverse eff ects are typically much less common than 
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the intended eff ects of drugs, and the randomized trials that are conducted to 
evaluate the effi  cacy of new drugs are seldom large enough to provide an adequate 
assessment of drug safety. Consequently, most of the epidemiologic information 
on drug safety comes from studies that are conducted aft er a drug is marketed.

Th is research activity is usually referred to as postmarketing surveillance. Much 
of it is not surveillance in the traditional sense; instead, it is based on discrete 
studies aimed at evaluating specifi c hypotheses. In the United States, however, the 
Food and Drug Administration (FDA) encourages the voluntary reporting of sus-
pected adverse drug eff ects. Th ese spontaneous reports are challenging to interpret. 
First, only a small, but unknown, proportion of suspected adverse drug eff ects are 
reported spontaneously; presumably, unexpected deaths, liver or kidney failure, 
and other serious events are more likely to be reported than skin rashes, but even 
so it is widely believed that only a small fraction of serious events are reported 
spontaneously. Second, it is diffi  cult to know whether the number of spontane-
ously reported exposed cases, who represent only one cell in a 2 × 2 table of 
exposure versus disease, represent an actual excess of exposed cases or just the 
number that chance would predict.

Case reports such as those submitt ed to the FDA as part of their surveillance 
eff ort are presumed to represent cases that are att ributed to a given drug expo-
sure; that is, the reporting process requires the reporter to make an inference 
about whether a specifi c drug exposure caused the adverse event. Although this 
type of inference is encouraged in clinical practice, it runs counter to the think-
ing that prevails in an epidemiologic study. As discussed in Chapter 3, it is not 
possible to infer logically whether a specifi c factor was the cause of an observed 
event. We can only theorize about the causal connection and test our theories 
with data.

Epidemiologists typically collect data from many people before making infer-
ences about a causal connection, and we usually do not apply the inference to 
any specifi c person. If a person receives a drug and promptly dies of anaphylactic 
shock, a causal inference about the connection between the drug and the death 
may appear strong; but many inferences for individual events are tenuous, based 
more on conviction than anything else. Th e danger of thinking in terms of causal 
inferences in regard to individuals is that if this approach is applied to epidemio-
logic data, it defeats the validity of the epidemiologic process. If case inclusion 
in any epidemiologic evaluation takes into account information on exposure, it is 
apt to lead to biases. Instead, disease should be defi ned on the basis of criteria 
that have nothing to do with exposure, and the inferences in an epidemiologic 
study should relate to the general causal theory rather than what happened to 
any single person.

One way in which this problem can get out of hand is if a disease is defi ned 
in terms of an exposure. Once that occurs, a valid epidemiologic evaluation may 
be impossible. Consider the example of “analgesic nephropathy.” Th is “disease” 
refers to kidney failure that is supposedly induced by the eff ect of analgesic drugs, 
based on the theory that analgesic drugs cause kidney failure in some people. 
Although there may be no reason to doubt the theory, if it is applied by defi n-
ing cases of analgesic nephropathy to be kidney failure in people who have taken 
analgesics for a specifi ed time, it will be impossible to evaluate epidemiologically 
the relation of analgesics to kidney failure. A valid evaluation would require that 
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kidney failure be defi ned and diagnosed on the basis of disease-related criteria 
alone, with information about analgesic use excluded from the disease defi nition 
and diagnosis. Even if the disease is not called analgesic nephropathy, as long as 
the information on analgesic use is taken into account in making the diagnosis, 
an epidemiologic evaluation of the relation between analgesics and kidney failure 
will be biased.

When the Disease Definition Includes an Exposure

It is not only in the epidemiologic study of drugs that one encounters dis-
ease defi nitions that refer to exposures. If a clear understanding of a causal 
relation exists, it is a natural tendency to refi ne the defi nition of disease to 
refl ect this insight. On the other hand, if the “insight” is only a presumption 
that a researcher would like to study, it is essential to apply disease defi ni-
tions that are independent of the exposure. Th e following is a list of some 
examples of diseases defi ned on the basis of an exposure. (Most infectious 
diseases, such as syphilis, malaria, and infl uenza, could also be included.)

Analgesic nephropathy• 
Asbestosis• 
Berylliosis• 
Food poisoning• 
Frostbite• 
Heatstroke• 
Hypervitaminosis D• 
Iron-defi ciency anemia• 
Motion sickness• 
Protein-calorie malnutrition• 
Radiation sickness• 
Silicosis• 
Smoker’s cough• 
Strep throat• 
Tennis elbow• 
Tuberculosis• 

Much of the work in pharmacoepidemiology today is conducted using health data-
bases, which allow investigators to design studies from computerized fi les that include 
information on drug prescriptions, demographic factors, and health data from medical 
records or from claims that deal with reimbursement. Th e Boston Collaborative Drug 
Surveillance Program was a pioneering eff ort in pharmacoepidemiology, starting with 
hospital-based interviews of inpatients using nurse monitors.15 As the medical world 
gradually became more computerized, this work and that of other pharmacoepidemi-
ologists evolved to use data that were already entered into computers as part of the 
record-keeping system, such as in some private prepaid health plans in the United 
States and in governmental plans such as that of the province of Saskatchewan in 
Canada. Pharmacoepidemiology is now an active fi eld of research that has established 
itself as a separate specialty area with its own textbooks.16,17



252 E P I D E M I O L O G Y

HEALTH OUTCOMES RESEARCH

Health outcomes research and the related fi eld of pharmacoeconomics are com-
paratively new research areas with loft y goals. Randomized trials and other med-
ical research studies typically focus on a primary end point, such as survival 
or disease recurrence. Th erapeutic evaluations based on narrowly defi ned end 
points have been subject to the criticism that they do not adequately take into 
account the overall quality of life that patients face based on the combination 
of therapeutic outcomes and unintended eff ects that a given treatment produces. 
Furthermore, classic therapeutic research typically does not take into account the 
economic costs of diff erent therapeutic options. Th e economic costs are borne 
either directly by the patient or insurers or indirectly by the government and thus 
by society as a whole. In either case, there is strong motivation to fi nd thera-
pies that off er desirable results for patients at costs that are att ractive to patients 
or society relative to the therapeutic alternatives. Th ese are the goals that health 
outcomes research and pharmacoeconomics address, using methods such as meta-
analysis, cost-eff ectiveness analysis, decision analysis, and sensitivity analysis in 
addition to more traditional epidemiologic methods. Th e interested reader should 
consult the text by Petitt i18 for a comprehensive overview.

QUESTIONS

1. Predictive value depends on disease prevalence, but sensitivity and spec-
ifi city do not. What might cause the sensitivity and specifi city of a test to 
vary from one population to another?

2. Suppose that you wished to conduct a prospective cohort study to evalu-
ate the benefi ts of prostate-specifi c antigen testing as a screening tool for 
prostate cancer. What outcome would most interest you? What biases 
would aff ect the study results? Would these biases also aff ect the results of 
a  randomized trial?

3. Because everyone eventually dies, why would we not say that the case-
fatality rate among patients with any disease is 100%?

4. Under what conditions might one fi nd that the baseline diff erence in a 
variable in a clinical trial is “statistically signifi cant” but, nevertheless, not 
confounding? Under what conditions might we fi nd that the baseline diff er-
ence is not “statistically signifi cant” but, nevertheless, is confounding?

5. Th e Alzheimer’s disease cooperative trial manifested confounding by 
MMSE score. If the trial were repeated, would you expect that this same 
risk factor would be confounding again?

6. Equipoise is a state of genuine uncertainty as to which of two treat-
ments is bett er. Ethicists consider equipoise to be an ethical requirement for 
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conducting a randomized therapeutic trial: if the researcher is already of the 
view that one treatment is bett er than the other, it would be unethical for 
that researcher to assign patients to the treatment that he or she believes 
is inferior. Under what conditions can equipoise be achieved in a placebo-
controlled trial?
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Appendix P Values Corresponding to Values of the Standard Normal Distribution (χ Or Z) Ranging from 0.00 to 3.99
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